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Every human civilization has inevitably collapsed. Ours is not going to 

be different. However, this time we have the knowledge and capacity 

to decide how we want it to happen. Let’s make it softly, peacefully 

and living long and happy lives in harmony with nature. 
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Preface and publications 

The work presented in this thesis was carried out at the Catalonian Institute for Energy 

Research (IREC) in Sant Adrià de Besòs (Barcelona, Spain) from 2015 to 2019 in the framework 

of the ECOART project (RTC-2014-2426-7) from the Ministry of Economy and Competitiveness 

(MINECO) of the Government of Spain; and of the INFINITE-CELL project (H2020-MSCA-RISE-

2017-777968) from the European Commission. The main subject of the thesis is the 

development of Earth-abundant Cu2ZnSn(Sx,Se1-x)4 (kesterite) solar cells on three strategic 

alternative substrates (polyimide, ceramic and transparent substrates) which have the 

potential to sustainably reduce the energy fabrication cost of photovoltaics through their 

compatibility with mass production processes and/or advanced applications. The thesis is 

structured in six chapters: the first chapter gives a general introduction and expounds the main 

motivations behind this work, the second chapter describes the experimental methodology 

employed, the three following chapters cover the main results obtained throughout the thesis 

and, finally, the last chapter summarizes and highlights the outcomes and conclusions of this 

work. A more detailed description of the different chapters that comprise the structure of the 

thesis is presented below: 

· The first chapter is subdivided in well differentiated sections. It starts with an analysis of the 

role of photovoltaics in the current socioeconomic system taking into account the lights and 

shadows of this way of renewable energy with a focus on its energy return on energy 

investment (EROI). Then, the fundamentals of solar cells are briefly examined in order to 

provide an understanding of the key concepts behind their structure and operation. This is 

followed by a review of the state-of-the-art and sustainability of the current commercial 

photovoltaic technologies comparing 1st generation (Si-based) and 2nd generation (thin film) 

devices with a stress on the main issues that may limit their present and future EROI. Next, 

kesterite-based 2nd generation solar cells are introduced as a sustainable alternative to such 

commercial technologies. The evolution of the technology from its early stages until the 

present state-of-the-art is thoroughly reviewed together with its main limitations and 

technological challenges. Finally, as a result of the ideas presented throughout the different 

parts of the chapter, the importance of developing kesterite solar cells on alternative 

substrates to the conventional Mo-coated soda-lime glass is expounded giving rise, in turn, to 

the objectives the thesis. 

· The second chapter covers the experimental methodology employed throughout this work. 

First, a brief overview of such methodology is presented. Then, the main characterisation, 

deposition and synthesis techniques used throughout the thesis as well as the pieces of 

equipment employed to carry them out are described and explained. Finally, the fabrication 

process followed for the fabrication of kesterite solar cells is thoroughly detailed. 

The next three chapters cover the main results obtained with the three different types of 

alternative substrates investigated: polyimide (light-weight and flexible), ceramic and 

transparent. The third (polyimide) and fourth (ceramic) chapters are based on scientific papers 

published in high impact factor peer-reviewed journals,as will be detailed below, while the 
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material presented in the fifth chapter has not been published yet. All of them start with a 

brief examination of the advantages and possibilities of each of the substrates for 

photovoltaics compared to conventional Mo-coated soda-lime glass. This is followed by a 

review of the best results obtained so far with each substrate focusing on kesterite and closely 

related Cu(In,Ga)Se2-based devices. Then, the main limiting factors as well as the technological 

challenges of the substrates for the fabrication of kesterite solar cells are explored and suitable 

strategies to overcome them are proposed. 

· The third chapter is based on the following publication (reproduced with permission, 

copyrighted by John Wiley and Sons): 

I. Becerril-Romero, L. Acebo, F. Oliva, V. Izquierdo-Roca, S. López-Marino, M. Espíndola-

Rodríguez, M. Neuschitzer, Y. Sánchez, M. Placidi, A. Pérez-Rodríguez, E. Saucedo, P. Pistor, 

CZTSe solar cells developed on polymer substrates: Effects of low-temperature processing, 

Prog. Photovolt. Res. Appl. (2017). doi:10.1002/pip.2945. Impact factor: 6.726 

The chapter explores the fabrication of Cu2ZnSnSe4 solar cells on polyimide: a light-weight and 

flexible substrate. The main limitations of the substrate are identified to be its lack of alkaline 

elements and its low thermal robustness that limits process temperatures below 500ᵒC. These 

issues are experimentally addressed throughout the chapter. First, different doping strategies 

are investigated for the incorporation of Na and K on devices fabricated on polyimide at 470ᵒC. 

Pre-annealing synthesis is shown to be an effective doping strategy that causes important 

improvements in solar cell performance and carrier concentration when doping either with 

NaF or KF. Then, the effect of working at different kesterite synthesis temperatures (450-

490ᵒC) is studied both on polyimide and standard soda-lime glass. Working at low temperature 

is linked to the formation of a detrimental SnSe2 secondary phase, especially on polyimide. 

This phase is found to decrease the open-circuit voltage of the devices and to be the main 

factor controlling their performance. Further experimentation leads to a 4.9% efficiency record 

device on polyimide by combining NaF and Ge doping at a 480ᵒC. 

· The fourth chapter is based on the following publication (reproduced with permission, 

copyrighted by Elsevier): 

I. Becerril-Romero, S. Giraldo, S. López-Marino, M. Placidi, Y. Sánchez, D. Sylla, A. Pérez-

Rodríguez, E. Saucedo, P. Pistor, Vitreous enamel as sodium source for efficient kesterite solar 

cells on commercial ceramic tiles, Sol. Energy Mater. Sol. Cells. 154 (2016) 11–17. 

doi:10.1016/j.solmat.2016.04.035. Impact factor: 4.732 

The work presented in this chapter studies the feasibility of producing efficient Cu2ZnSnSe4 

solar cells on ceramic substrates which have a direct application in building-integrated 

photovoltaics. An innovative approach is employed to overcome the limitations of ceramic 

substrates for solar cell fabrication: high roughness, lack of alkaline elements and presence of 

detrimental impurities. This way, vitreous enamels with controlled amounts of Na2O in their 

composition (2-20% wt%) are used as surface smoothers, diffusion barriers for impurities and 

sodium sources. It is observed that trying to accommodate large amounts of Na2O in the 

enamels results in high densities of three surface defects: undulations, pinholes and cracks. 

While undulations and pinholes do not affect cell performance critically, cracks are identified 
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as very detrimental since they strongly deteriorate the conductivity of the back contact. 

Besides surface defects, enamelled ceramic substrates are observed to behave in a similar way 

to conventional soda-lime glass. In particular, an effective Na diffusion from the enamel is 

detected which leads to significant improvements on device performance. In addition, the 

annealing process is found to be critical. In a first attempt, a too long annealing time leads to 

the formation of SnSe2 degrading the performance of the devices. However, this phase is 

completely eliminated by reducing the annealing time yielding a record device on ceramic with 

a 7.5% efficiency. 

· The fifth chapter investigates the development of Cu2ZnSnSe4, Cu2ZnSnS4 and Cu2ZnSn(S,Se)4 

solar cells on SnO2:F-coated soda-lime glass transparent substrates. In particular, the effect of 

adding thin layers of a wide selection of transition metal oxides and/or of Mo:Na on top of 

such substrates is studied as an approach to improve the non-optimum p-kesterite/n-contact 

back interface of the devices. Firstly, the optical and electrical properties of the deposited 

transition metal oxides nanolayers are studied before and after being submitted to an 

annealing process to verify their compatibility with the fabrication of kesterite devices. Then 

solar cells are fabricated on the different oxide-containing substrate configurations. Shunting 

appears as the main limitation of kesterite devices fabricated on the bare transparent 

substrate while the addition of transition metal oxides introduces a severe current blockage. 

On the other hand, the use of a Mo:Na nanolayer and its subsequent transformation into 

Mo(Sx,Se1-x)2 is found to alleviate shunting and to protect SnO2:F from degradation during 

annealing leading to highly improved devices. Then, the combination of the different transition 

metal oxides with Mo:Na is investigated. Although it does not lead to significant improvements 

for most of the oxides, TiO2 and V2O5 are observed to further increase the performance of 

Cu2ZnSnSe4 and Cu2ZnSn(S,Se)4 devices, respectively, while degrading the performance of 

Cu2ZnSnS4 ones. In addition, an improvement in charge collection towards the back interface is 

also observed for these substrate configurations although they exhibit a complex behaviour. 

Despite this complexity, record efficiencies of 6.2%, 6.1% and 7.9% are obtained for 

Cu2ZnSnSe4, Cu2ZnSnS4 and Cu2ZnSn(S,Se)4 devices, respectively. Finally, morphological, 

structural and in-depth compositional characterisation of the best devices is carried out for a 

better understanding of the results. 

· The sixth chapter summarizes the main results and conclusions of the thesis. 

Prefacio y publicaciones 

El trabajo presentado en esta tesis fue llevado a cabo en el Institut de Recerca en Energia de 

Catalunya (IREC) situado en Sant Adrià del Besòs (Barcelona, España) entre los años 2015 y 

2019 en el marco del proyecto ECOART (RTC-2014-2426-7) del Ministerio de Economía y 

Competitividad (MINECO) del Gobierno de España; y del proyecto INFINITE-CELL (H2020-

MSCA-RISE-2017-777968) de la Comisión Europea. El tema principal de la tesis es el desarrollo 

de células solares de Cu2ZnSn(Sx,Se1-x)4 (Kesterita), las cuales están basadas en elementos 

abundantes en la corteza terrestre, sobres tres sustratos alternativos estratégicos con 

potencial para reducir de manera sostenible los costes energéticos de fabricación de la 
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fotovoltaica a través de su compatibilidad con procesos de producción en masa y/o con 

aplicaciones avanzadas. La tesis se estructura en seis capítulos: el primer capítulo consiste en 

una introducción general en la que se exponen las principales motivaciones detrás de este 

trabajo, el segundo capítulo describe la metodología experimental utilizada, los tres capítulos 

siguientes recogen los principales resultados obtenidos durante la tesis y, finalmente, el último 

capítulo resume y puntualiza las conclusiones obtenidas en este trabajo. A continuación, se 

describen con más detalles los distintos capítulos que componen la estructura de la tesis: 

· El primer capítulo se divide en secciones bien diferenciadas. Comienza con un análisis del 

papel de la fotovoltaica en el sistema socioeconómico actual en el que se discuten los puntos 

fuertes y débiles de esta forma de energía renovable centrándose en su tasa de retorno 

energético (EROI). Posteriormente, se examinan brevemente los fundamentos de las células 

solares con el fin de establecer un pequeño marco teórico que permita comprender los 

conceptos clave detrás de su estructura y funcionamiento. Seguidamente, se lleva a cabo una 

revisión del estado del arte y de la sostenibilidad de las tecnologías fotovoltaicas comerciales 

actuales en la que se comparan los dispositivos de 1ª generación (basados en Si) y los de 2ª 

generación (de capa delgada) haciendo hincapié en los principales limitantes de su EROI tanto 

en el presente como para el futuro. A continuación, se presentan las células solares de 2ª 

generación basadas en Kesterita como una alternativa a las tecnologías comerciales actuales. 

Se describe la evolución de la tecnología desde sus inicios hasta el estado del arte actual y se 

analizan las principales limitaciones y retos tecnológicos que presenta. Finalmente, como 

resultado de las ideas presentadas a los largo del capítulo, se expone la importancia de 

desarrollar células solares de Kesterita sobre sustratos alternativos al vidrio soda-lima 

recubierto de Mo lo que da lugar, a su vez, al establecimiento de los objetivos de la tesis. 

· El segundo capítulo abarca la metodología experimental utilizada a lo largo de este trabajo. 

Primero, se realiza un pequeño resumen de dicha metodología. Seguidamente, se describen y 

explican las principales técnicas de caracterización, depósito y síntesis usadas a lo largo de la 

tesis así como los equipos utilizados para llevarlas a cabo. Finalmente, se detalla 

minuciosamente el proceso seguido para la fabricación de células solares de Kesterita. 

Los siguientes tres capítulos recogen los resultados obtenidos con los tres tipos de sustratos 

alternativos estudiados: poliimida (ligero y flexible), cerámico y transparente. El tercer 

(poliimida) y cuarto (cerámica) capítulos están basados en artículos científicos publicados en 

revistas de revisión por pares de alto impacto, como se detalla más abajo, mientras que el 

material presentado en el quinto capítulo no ha sido publicado todavía. Los tres capítulos 

comienzan con una breve descripción de las ventajas y posibilidades de cada uno de los 

sustratos de cara a su aplicación en fotovoltaica con respecto al sustrato estándar vidrio soda-

lima recubierto de Mo, seguida de una revisión de los mejores resultados obtenidos con ellos 

en dispositivos fotovoltaicos basados en Kesterita y en Cu(In,Ga)Se2. Seguidamente, se 

analizan sus principales limitaciones y los retos tecnológicos que plantean para la fabricación 

de células solares de Kesterita y se proponen estrategias para superarlos. 

· El tercer capítulo está basado en la siguiente publicación (reproducida con permiso, copyright 

de John Wiley and Sons): 
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I. Becerril-Romero, L. Acebo, F. Oliva, V. Izquierdo-Roca, S. López-Marino, M. Espíndola-

Rodríguez, M. Neuschitzer, Y. Sánchez, M. Placidi, A. Pérez-Rodríguez, E. Saucedo, P. Pistor, 

CZTSe solar cells developed on polymer substrates: Effects of low-temperature processing, 

Prog. Photovolt. Res. Appl. (2017). doi:10.1002/pip.2945. Factor de impacto: 6.726 

Este capítulo explora la fabricación de células solares de Cu2ZnSnSe4 sobre poliimida: un 

sustrato ligero y flexible. Su falta de elementos alcalinos y su baja robustez térmica, la cual 

limita las temperaturas de procesado por debajo de los 500ᵒC, se identifican como los 

principales limitantes del sustrato. Estos factores son abordados experimentalmente a lo largo 

del capítulo. Primero se investigan diferentes estrategias de dopado para la incorporación de 

Na y K en dispositivos fabricados sobre poliimida a 470ᵒC. Se observa que “síntesis pre-

recocido” es una estrategia de dopado efectiva que causa importantes mejoras en el 

funcionamiento de las células solares y en su densidad de portadores cuando se dopa con NaF 

o KF. A continuación se estudia el efecto de trabajar a distintas temperaturas de fabricación 

(450ᵒC-490ᵒC) tanto sobre poliimida como sobre vidrio soda-lima. Se observa que trabajar a 

baja temperatura provoca la formación de una fase secundaria perjudicial de SnSe2, 

especialmente en el caso de la poliimida. Esta fase disminuye el voltaje de circuito abierto de 

los dispositivos fotovoltaicos y se perfila como el principal factor que controla su 

funcionamiento. Experimentos adicionales llevan a la obtención de un dispositivo record de 

4.9% de eficiencia en poliimida combinando el dopado con NaF y Ge a 480ᵒC. 

· El cuarto capítulo está basado en la siguiente publicación (reproducida con permiso, 

copyright de Elsevier): 

I. Becerril-Romero, S. Giraldo, S. López-Marino, M. Placidi, Y. Sánchez, D. Sylla, A. Pérez-

Rodríguez, E. Saucedo, P. Pistor, Vitreous enamel as sodium source for efficient kesterite solar 

cells on commercial ceramic tiles, Sol. Energy Mater. Sol. Cells. 154 (2016) 11–17. 

doi:10.1016/j.solmat.2016.04.035. Factor de impacto: 4.732 

El trabajo presentado en este capítulo estudia la factibilidad de producir células solares 

eficientes de Cu2ZnSnSe4 sobre sustratos cerámicos con aplicación directa en la fotovoltaica 

integrada en edificios. Se utiliza un enfoque innovador para superar las limitaciones de los 

sustratos cerámicos para la fabricación de células solares: su alta rugosidad, falta de elementos 

alcalinos y la presencia de impurezas perjudiciales. Así, se utilizan esmaltes vítreos con 

contenido controlado de Na2O en su composición (2-20% en peso) para alisar la superficie de 

la cerámica, como barrera contra la difusión de impurezas y como fuente de sodio. Se observa 

que intentar acomodar grandes cantidades de Na2O en el esmalte produce una alta densidad 

de tres defectos superficiales: ondulaciones, agujeros y grietas. Por un lado, las ondulaciones y 

agujeros no afectan el funcionamiento de las células solares de manera crítica. Sin embargo, 

las grietas deterioran fuertemente la conductividad del contacto trasero resultando altamente 

perjudiciales. Dejando a un lado los defectos de superficie, se observa que los sustratos 

cerámicos esmaltados se comportan de manera similar al vidrio soda-lima convencional. 

Concretamente, se detecta una difusión efectiva de Na que mejora significativamente el 

funcionamiento de los dispositivos fotovoltaicos. Por otra parte, se detecta que el proceso de 

recocido es crítico. En un primero intento, un recocido excesivamente largo resulta en la 

formación de la fase SnSe2, la cual degrada el funcionamiento de los dispositivos. Sin embargo, 
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esta fase se consigue eliminar completamente reduciendo el tiempo de recocido los que 

conduce a la obtención de un dispositivo record con una eficiencia de 7.5% sobre cerámica. 

· El quinto capítulo investiga el desarrollo de células solares de Cu2ZnSnSe4, Cu2ZnSnS4 and 

Cu2ZnSn(S,Se)4 sobre sustratos transparentes de vidrio recubierto con SnO2:F. En concreto, se 

estudia el efecto de añadir capas delgadas de óxido de metales de transición y/o de Mo:Na 

sobre dichos sustratos como estrategia para mejorar la interfaz trasera no óptima kesterita-

p/contacto-n de los dispositivos. Primero se lleva a cabo un estudio de las propiedades ópticas 

y eléctricas de las nanocapas de óxidos de metales de transición, antes y después de ser 

sometidas a un proceso de recocido, para comprobar su compatibilidad con el proceso de 

fabricación de dispositivos de kesterita. A continuación se fabrican células solares sobre 

configuraciones de sustrato que incluyen los distintos óxidos. Las corrientes de deriva (shunts) 

se muestran como la principal limitación de los dispositivos de kesterita fabricados sobre los 

sustratos transparentes sin capas adiciones mientras que la adición de óxidos de metales de 

transición ocasiona una barrera para el flujo de corriente. Por otra parte, el uso de Mo:Na y su 

transformación en Mo(Sx,Se1-x)2 disminuyen los shunts y protegen el SnO2:F durante el proceso 

de recocido lo que conlleva una gran mejora de los dispositivos. Seguidamente, se investiga la 

combinación de los diferentes óxidos de metales de transición con Mo:Na. Aunque esto no 

produce mejoras significativas para la mayoría de los óxidos, se observa que el TiO2 y el V2O5 

incrementan los efectos beneficiosos de las capas de Mo:Na en los dispositivos de Cu2ZnSnSe4 

y Cu2ZnSn(S,Se)4, respectivamente, mientras que degradan el funcionamiento de los de 

Cu2ZnSnS4. Además, se observa una mejora de la colección de cargas fotogeneradas en la 

región de la interfaz trasera de los dispositivos aunque muestra un comportamiento complejo. 

A pesar de dicha complejidad, se obtienen eficiencias record de 6.2%, 6.1% y 7.9% en 

dispositivos de Cu2ZnSnSe4 y Cu2ZnSnS4 y Cu2ZnSn(S,Se)4, respectivamente. Finalmente, se lleva 

a cabo una caracterización morfológica, estructural y de composición en profundidad para una 

mejor comprensión de los resultados. 

· El sexto capítulo resume los resultados y conclusiones principales de la tesis.  
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1. Introduction 

1.1 Energy supply in a growth-addicted financial 

system: what is the role of photovoltaics in all 

this? 

1.1.1 The threat of fossil-fuel dependence: the hidden link between 

economy, growth, complexity and energy 

Although most people tend to ignore it, either because they do not know or want to think 

about it, human civilization and our current model of society might be at the edge of collapse. 

The main reason for this is that the global financial system on which our current civilization is 

founded has developed in such a way that it requires continuous and sustained growth in 

order to function correctly and provide “stability” [1–3]. The most clear aspect of its growth-

dependency is the use of debt as the motor driving the economy: banks, companies and 

governments create different types of debt with interest rates that can only be repaid in the 

future when the global economy has grown [3,4]. But, what is growth, where does it come 

from and why is it threatening for our society? 

It is necessary to start this brief analysis by understanding that our financial system and even 

our civilization behaves and can be accurately modelled as a complex adaptive system (CAS), 

i.e. a system comprised by individual parts that are able to adapt as a whole to generate a 

collective shift in its internal behaviour in order to prolong its existence [2,3,5,6]. Living 

organisms and ecosystems are typical examples of CASs. In this context, growth can be defined 

and understood as an increase in the complexity of the system. The complexity of a CAS is 

represented by its size, the distinctiveness of its constituent parts, the diversity of specialised 

roles that it incorporates, the information exchange between its parts and the self-organising 

mechanisms that convert these into a coherent, functioning whole [3,7]. In the case of human 

civilization, we commonly identify the increase of complexity as “progress”: rise of world 

population, globalised economy, advances in science and technology, high degree of 

interconnection through the development of transport and telecommunication infrastructures, 

etc. 

The evolution of every complex system found in nature, including our global economy and 

civilization, is subjected to the laws of thermodynamics [2,3,5]. In particular, the second law of 

thermodynamics states that physical systems, such as CASs, tend to dissipate energy (in the 

form of heat) and increase their entropy until reaching equilibrium with their surroundings. 

Therefore, growth or increased complexity (which denotes ordered or low entropy states) goes 

against the natural thermodynamic flow toward randomness [6]. However, CASs are open 

systems that are able to overcome thermodynamic decay by using low entropy energy and 

transforming it into useful work before dissipating it in the form of heat to their surroundings 

and, this way, maintain and even increase their complexity [2,3,5,6]. In other words, CASs can 
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only exist at the expense of a continuous energy input. What is more, this also implies that the 

level of complexity that can be attained by CASs depends on the availability of low entropy 

energy sources and on the ability of the system to exploit them. 

Consequently, economy, growth, progress and energy consumption are inherently connected 

by the fundamental laws of thermodynamics that govern the evolution of CASs and cannot be 

treated separately. This may be difficult to conceive for some or sound too simplistic to others 

but whether we like it or not the laws of thermodynamics lie at the foundations of life itself 

and it would be pretentious to think that they cannot be applied to understand the way 

humans behave at a global scale. Actually, it is not difficult to find solid evidences that support 

this idea. Figure 1 gives proof of the deep connection between energy, growth and economy. It 

shows that the world energy consumption has been increasing year after year for the last 40 

years along with the world economy (Figure 1, left) and that every growth of the world’s gross 

domestic product (GDP) has been driven by an increasing and adaptive energy input (Figure 1, 

right) [8]. This means that our financial system behaves as a complex system and needs a 

continuous and increasing flow of energy in order to keep growing and avoid collapse. This 

would not pose an immediate problem to our society if we had access to a clean and 

inexhaustible energy source that could meet the world increasing demand for energy but, 

currently, 90% of this demand is supplied by fossil and nuclear fuels (Figure 2) which are far 

from cleanness and inexhaustibility [9]. 

 

Figure 1. Left: World GDP vs World energy consumption. Right: Growth rate of the world GDP and world energy 
demand. Sources: World energy consumption extracted from BP’s Statistical Review of World Energy - 
underpinning data, 1965-2016; real world GDP from United States Department of Agriculture 

Fossil fuels are the result of ancient organic matter, mainly vegetation, buried under an 

enormous amount of sediment rocks in low-oxygen and extreme pressure and temperature 

conditions for hundreds of millions of years. This organic matter grew and stored energy 

through photosynthesis in the form of carbon-based chemical bonds [10]. As a consequence of 

the extreme conditions, the energy stored in the matter gets highly concentrated resulting in 

burnable fuels. Depending on the nature of the organic matter and the conditions of the 

process three different kinds of fossil fuel can arise: coal, oil and natural gas. 
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Even though it took the Earth hundreds of millions of years to create fossil fuels, human kind 

has managed to drain the planet’s reserves at an astonishing speed in little more than 200 

years, since the dawn of the Industrial Revolution. As can be seen in Table 1, the proven 

reserves of oil, gas and coal will last for just 54, 53 and 150 years respectively at the current 

consumption rate. However, this prediction is far too optimistic for several reasons. Firstly, if 

the world economy is to keep growing, the energy consumption will increase accordingly. The 

U.S. Energy Information Administration forecasts a 28% increase in energy demand by 2040 

[11]. Consequently, the reserves will decrease much faster (last row of Table 1). Secondly, the 

size of the reserves and the consumption rate do not provide a realistic view of the situation. A 

very important factor that needs to be taken into account is the energy return on energy 

investment (EROI) of fossil fuels, i.e. the ratio of the amount of primary energy contained in 

the fuel to the amount of energy employed to extract that energy from it: 

 𝐸𝑅𝑂𝐼 =
𝐸𝑛𝑒𝑟𝑔𝑦 𝑜𝑢𝑡𝑝𝑢𝑡

𝐸𝑛𝑒𝑟𝑔𝑦 𝑖𝑛𝑝𝑢𝑡
 (1) 

When a reservoir (coal mine or oil/gas field) is first discovered it is relatively easy to extract its 

resources and, thus, its EROI is very high. It can be regarded as taking the “low hanging fruit” 

from a tree [1]. However, as the easy-to-exploit resources deplete, exploitation becomes 

harder and more resources (viz. money and energy) need to be put into extracting the fuels 

thus decreasing their EROI. As an example, when the first oil fields in the USA were discovered 

in 1919 they had an EROI of 30:1 that decreased below 10:1 in 2010 [12]. In addition, the 

purity of the fuel also affects its EROI. For example, oil extracted from tar sands is estimated to 

have an EROI as low as 4:1 [13]. This means that not the whole reserves are viably exploitable. 

And, thirdly, as one of the fuels starts to deplete or becomes more expensive to exploit, it will 

be partially substituted by the others thus increasing the overall depletion rate [1]. 

 

Figure 2. World energy consumption by fuel during 2016. Source: [9] and BP’s Statistical Review of World Energy - 
underpinning data, 1965-2016. 
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One might argue that we should not worry about the availability of fossil fuels in the future 

because more reserves will be found and technological improvements will allow us to exploit 

the current reserves to a larger extent. However, fuel scarcity is not the only issue for a fossil 

fuel-based civilization. Even in the unlikely scenario of everlasting cheap fossil fuels, the 

environmental effects of burning oil, coal and gas would force us to put an end to the fossil 

fuel era before their depletion. It is widely known that burning fossil fuels releases enormous 

amounts of CO2 to the atmosphere. Only during 2016 human-related emissions ascended to 

the unconceivable amount of 10 Gigatonnes of carbon [14]. Earth’s CO2 sinks (mainly forests 

and oceans) can only absorb around 50% of human emissions so the rest simply accumulates 

in the atmosphere [15]. Just in the last 40 years the atmospheric CO2 has raised from around 

340 ppm to more than 400 ppm [14]. CO2 is a greenhouse gas and, consequently, its 

accumulation in the atmosphere causes the Earth’s temperature to rise in a process commonly 

referred to as “global warming” which may have serious impacts on global climate with 

potential disastrous consequences for our civilization. Abrupt climate change can lead to the 

decline and collapse of many ecosystems leading to widespread extinctions and it can even 

endanger food supply by decreasing the productivity of the oceans and by causing crops to fail 

more regularly [16]. In addition to CO2 and its climatic consequences, burning fossil fuels also 

releases numerous pollutants (especially particulates, sulphur oxides and nitrogen oxides) to 

the environment that affect ecosystems and pose serious risks for human health [17].  

Table 1. Reserves and depletion year of fossil fuels. Source: BP’s Statistical Review of World Energy - 
underpinning data, 1965-2016 and [11].

*
Assuming 2016’s proven reserves and consumption. 

†
Assuming a 28% 

linear increase of consumption for every fossil fuel from 2016 to 2040. 
‡
Assuming estimated 2040’s remaining 

reserves and consumption. 

 Oil Coal Natural Gas 

Proven reserves (2016) 240710 Mt 1139331 Mt 186574 km3 

Consumption (2016) 4418 Mt 7615 Mt 3542 km3 

Depletion year* 2069 2165 2068 

Remaining reserves in 2040† 109134 Mt 912567 Mt 81096 km3 

Consumption in 2040† 5655 Mt 9747 Mt 4534 km3 

Depletion year‡ 2059 2134 2058 

 

In summary, the astonishing degree of complexity achieved by our society has only been 

possible thanks to the enormous amount of energy provided by fossil fuels. We depend on a 

continuous and growing supply of cheap fossil fuels in order to avoid the collapse of civilization 

as we know it. However, such a system is completely unsustainable since fossil fuels are a 

limited resource approaching depletion and, in addition, their massive employment is 

threatening our society by globally altering Earth’s climate and polluting the planet. Thus, we 

need to shift towards a more sustainable model if we want to delay or, more optimistically, 

avoid collapse. 

1.1.2 Lights and shadows of photovoltaics: potential, EROI and 

limitations 

In order to develop a more sustainable energy model, we need to start by decreasing our huge 

dependency on fossil fuels. Their substitution by renewable energies is often regarded as the 
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solution or, at least, as the roadmap to follow for the decarbonisation of the current 

socioeconomic system. Renewables can generate energy from inexhaustible natural 

phenomena without emitting CO2 or pollutants to the atmosphere. This is why they are usually 

referred to as green energies. There is a wide variety of phenomena that can be used for 

power generation. These can be Sun-triggered (e.g. sunlight, rain, wind or biomass growth) or 

can have other origins (e.g. geothermal heat or tides). 

Among all renewable sources, sunlight has by far the highest theoretical potential to substitute 

fossil fuels with 89300 TJ of energy reaching the Earth’s surface every second of which roughly 

7500 TJ are estimated to be viably convertible into electricity [18]. To put this figure into 

perspective, at that power rate the current yearly world primary (not only electricity) energy 

demand (see Figure 1) could be met in around one day. In another work, it was estimated that 

covering a total area of just 785000 km2 (~8.5% of the Sahara desert) distributed throughout 

different “sweet spots” in Earth (blue discs in Figure 3) with 8% energy conversion efficiency 

solar power generators would suffice to meet the world energy demand [19]. Hence, at first 

glance it seems that all the energy problems of our civilization can be easily solved by shifting 

towards a solar-based energy model and, moreover, that there is still huge room for our 

financial system to keep growing so there is nothing to worry about. Surely, these rough 

figures give a sense of the huge availability of solar energy. However, if one wants to assess 

the real capacity of solar energy in replacing fossil fuels there are other factors that should be 

taken into account. 

 

Figure 3. Average solar irradiance from 1991 to 1993. The blue discs represent the area needed to be covered 
with PV power generators to meet the world energy demand assuming an 8% energy conversion efficiency. For 
more details of the origin of the data check source. Source: [19] 

Before addressing this issue, let us start by analysing the different ways of capturing the 

energy contained in sunlight. There are two types of solar energy harvesting technologies: 

solar photovoltaics (PV) and solar thermal. PV technologies are based on the use of 
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semiconductor materials that convert sunlight into electricity while solar thermal devices 

transform sunlight into heat. In both cases light can be concentrated prior to its conversion by 

the use of mirrors or lenses combined with sun trackers. This way, concentrating photovoltaics 

(CPV) allow to obtain greater conversion efficiencies and concentrated solar thermal power 

(CSP) can be employed to drive steam-based generators and produce electricity [20]. However, 

concentrating technologies (both CPV and CSP) only work with direct sunlight, present difficult 

technological challenges and cannot currently compete with conventional photovoltaics due to 

their higher cost [21]. In addition, conventional solar PV presents several advantages versus 

concentrating technologies: 1) module manufacturing can be done in large production 

factories allowing for economies of scale; 2) it is a very modular technology which results in 

very flexible generation; and 3) in contrast to CPV and CSP conventional PV can generate 

power from diffuse sunlight increasing its range of favourable geographical locations [20]. 

Consequently, conventional PV is the dominant solar technology in the market representing 

98% of all solar power plants in the world with an accumulated capacity of 303 GW in 2016 

[22]. As such, PV is the only relevant solar technology in the present day. 

Now we can return to the evaluation of the capacity of solar energy (mainly PV) to replace 

fossil fuels to power our current socioeconomic system. In this context, EROI is a very valuable 

tool since it gives a clear numeric picture of the energetic profitability of different energy 

sources (both renewable and non-renewable) and allows direct comparison between them. In 

the case of burnable fuels, the calculation of EROI from Eq.(1) is rather straightforward: it is 

the ratio between the primary energy contained in the fuel (energy output) over the energy 

needed to extract and process it (energy input). In the case of PV, the inputs necessary for 

computing the two terms involved in Eq.(1) are a bit more complicated but, in general, are as 

following: 

 Energy output   energy produced by solar panels during their lifetime 

 Energy input  energy necessary for extraction of raw materials, manufacturing of the 

final product, transportation, installation, operation, maintenance and end-of-life 

management. 

Our modern society has been estimated to require energy sources with an EROI of at least 14:1 

in order to maintain the present living standards such as health care, education, art, etc. [23]. 

Oil, gas and coal surpass this limit with current EROIs around 15:1, 50:1 and 70:1, respectively, 

and 30:1 for the combination of the three fossil fuels together [24]. So, what about PV? It 

should be noted that there is no consensus in how to estimate the EROI of PV since a lot of 

different datasets, assumptions and boundaries can be used to calculate the energy in and 

energy out terms depending on the PV technologies analysed, the geographical locations 

examined or the objective of the study generating a wide range of results (for more 

information about EROI calculation procedures for PV see references [25–27]). This fact 

becomes especially critical when trying to calculate a global value. However, some moderately 

optimistic studies point towards an average EROI value of around 10:1 for the current state of 

the technology [13,23,28–30]. This value states that PV is a viable means of power generation 

but, at the same time, it also renders clear that direct substitution of fossil fuels by PV is not 

currently viable. 
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This result might be shocking because the PV community often tends to focus on the huge 

availability of solar energy and to overlook (or even forget about) its inherent drawbacks. 

However, in order to understand the motivation behind this thesis, it is necessary to analyse 

and comprehend the limitations of this way of renewable energy generation. On the one hand, 

solar irradiance is not equally distributed throughout the globe and strongly depends on 

latitude and climate as shown in Figure 3. In addition, only direct sunlight is truly useful for 

power generation. Thus, the energy yield of PV is very location-specific with the most 

productive locations (like American Southwest or the Saharan Africa) distant to the places of 

consumption [1]. On the other hand, in contrast to fossil fuels, PV generation is intermittent 

(also called non-dispatchable) due to day-night cycles and difficult-to-predict weather 

(especially cloudiness) variability. This prevents the use of solar energy as baseload generation 

and poses serious challenges for its integration in the current electricity grid in which supply 

and demand need to be precisely balanced at every time [1,13,23,31,32]. In this framework, 

penetrations of non-dispatchable energy sources of just around 20% are considered to be 

acceptable [1,13,23,32]. All this variability translates into a low energy output that affects EROI 

very negatively. It would be possible to overcome intermittency by employing energy storage 

but at the current status of storage technologies this is not economically viable or, in order 

words, it increases the energy input necessary to generate power from PV further decreasing 

its EROI [33]. Another fact that is usually overlooked by the PV community is that, nowadays, 

solar energy is totally dependent on fossil fuels for two main reasons. Firstly, the production of 

PV power generators has a very high upfront energy cost (i.e. extraction of raw material and 

manufacturing) that currently can only be assumed by fossil-fuels [1,28,34]. Hence, 

paradoxically an increase in the share of solar energy in the global energy mix can only be 

realized at the expense of employing great amounts of fossil fuels and, thus, aggravate the fuel 

scarcity and environmental problems mentioned before. And secondly, without storage an 

increasing amount of non-dispatchable energy sources has to be compensated with an 

increasing number of natural gas fast-reacting backup generators [1,31,33]. These factors 

greatly contribute to limit the EROI of PV by increasing the energy input term in Eq.(1). 

To sum up, despite the huge availability of sunlight, direct substitution of fossil fuels by PV is 

not currently viable due to its low EROI arising from its inherent variability and its high 

production cost. In addition, these two issues also make PV to be highly dependent on fossil 

fuels. So, unfortunately, at the current state of the technology, solar energy is not capable of 

maintaining our high living standards, of sustaining the greed for continuous growth of our 

financial system and, consequently, of avoiding the collapse of our socioeconomic system. 

Then, does all this mean that solar energy is useless? Of course it does not. Two main 

conclusions can be extracted from this analysis: 

1. It is of utmost importance to find strategies and technological solutions to boost the 

EROI of PV and make it as independent as possible from fossil fuels. 

2. Contrarily to what most people tend to believe, solar energy is not likely to be able to 

solve humanity energy problems by itself and a deep change of paradigm has to be 

adopted. We need to start thinking in the long term as a whole, living in greater 

harmony with nature and reducing our energy needs in a sustainable financial and 

political framework not based on debt, profit and continuous economic growth. Inside 
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this framework, every form of renewable generation will be of utmost importance. 

However, due to its greater potential solar PV is called to be one the game-changing 

forms of energy generation. 

Although the second conclusion above is extremely interesting and challenging, apart from the 

obvious intention of raising awareness and pushing the PV community to think beyond its 

comfort zone, it is out of the scope of this work.  

1.1.3 Focus and motivation of this work 

This thesis is motivated by the urgent necessity of exploring ways to increase the EROI of PV. 

As explained in the previous section, both the energy input and energy output terms in Eq.(1) 

are taking part in limiting the EROI of PV and this thesis aims to address both of them: 

i. On the one hand, it investigates the reduction of the high energy upfront cost (energy 

input) of PV through the development of Earth-abundant and sustainable kesterite 

thin film solar cells onto substrates that enable high throughput production and 

integration as well as advanced applications and functionality. 

ii. On the other hand, strategies are designed and implemented to try to maximise the 

power conversion efficiency (energy output) of the kesterite-based photovoltaic 

devices fabricated on such substrates by adapting the solar cell fabrication process to 

their characteristics. 

Before getting down to business, though, it is necessary to review the main commercial PV 

technologies and their limitations in the context of energy production cost and EROI which, in 

turn, requires a previous understanding of the working principles, structure and main 

parameters of solar cells. These topics are thoroughly covered in sections 1.2 and 1.3. 

1.2 Fundamentals of solar cells 

1.2.1 What is a solar cell and how does it work? 

Solar cells are devices that can convert light into electricity. This is possible thanks to the so-

called photovoltaic effect that consists in the creation of a voltage and an electric current in a 

material upon exposure to light. It was first observed by Edmond Becquerel in 1839 [35]. 

Although the first solid state solar cell based on selenium was developed in 1877 by Adams 

and Day [36], it was not until 1954 that the first device with a significant power conversion 

efficiency was developed by Bell laboratories [37]. Bell’s solar cell was based on silicon under 

the influence of the rapid development of the electronics industry and set the basis for the 

future development of PV. At first, intensive research on PV solar cells was triggered by their 

successful application in satellite-powering at the beginning of the space era [38]. However, 

once that the technology was well-established for space applications and after 1973 OPEC’s oil 

embargo the focus changed towards terrestrial power generation [38]. Since then, there has 

been a huge development of PV owing to continuous research efforts that have made PV a 

competitive means of power generation. Si-based solar cells are the dominant technology 

today. However, the intensive research carried out in the last decades has allowed the 
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development of many other successful and emerging technologies that will be analysed later 

on. 

Regardless the technology, the same concept lies behind the operation of every photovoltaic 

device: 

1. A material capable of generating electric carriers under illumination 

2. An internal structure capable of selectively separating and transporting those carriers 

out of the material and into an external circuit to generate a useful electric current.  

A p-n junction diode possesses those two properties. As for the first point, diodes are formed 

by semiconductor materials which, due to their band structure with a full valence band and an 

empty conduction band (at T = 0 K, at higher temperatures some electrons have enough 

thermal energy to jump to the conduction band), are capable of transforming radiative energy 

into electric carriers. More specifically, if a photon with an energy equal or higher than the 

energy gap (Eg) between the bands (bandgap) hits an electron in the valence band (VB), the 

latter can be promoted to the conduction band (CB) leaving a hole (equivalent to a positively 

charged particle) behind thus creating and electron-hole pair (EHP) (Figure 4). However, if the 

charges are not separated and extracted, the EHP will eventually recombine giving off the 

energy absorbed. This is why not just a semiconductor but a p-n junction is necessary for a 

solar cell. 

 

Figure 4. Band diagram of a semiconductor. VB and CB stand for valence and conduction band, respectively; Eg 
stands for the energy of the bandgap and hν is the energy of an incident photon, 

A p-n junction is the junction between an n-type semiconductor and a p-type semiconductor. 

In an intrinsic semiconductor, the concentration of electrons (n) and holes (p) is always equal: 

 𝑛 = 𝑝 = 𝑛𝑖 (2) 

where ni is called intrinsic concentration. In contrast to intrinsic semiconductors, n-type 

semiconductors possess donor impurities or defects with a concentration ND that give away 
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electrons to the conduction band where they become mobile charges. The number of free 

electrons donated by the donor atoms exceeds ni and unbalances Eq.(2) so that  

 𝑛 >> 𝑝 = 𝑛𝑖 (3) 

This makes the conductivity of n-type semiconductors much greater than that of intrinsic 

semiconductors. The semiconductor is called n-type because the majority carriers have a 

negative charge. Similarly, in p-type semiconductors there are acceptor impurities or defects 

within the semiconductor with a concentration NA that are filled with electrons from the 

valence band leaving holes behind so that 

 𝑝 >> 𝑛 = 𝑛𝑖 (4) 

The conductivity is also greatly improved compared to an intrinsic semiconductor. In this case, 

the semiconductor is called p-type because the majority carriers have a positive charge. 

 

Figure 5. Diagram of a p-n junction. Ebi stands for the built-in electric field, Fd,x and FE,x with x=h,e stands for the 
diffusion and electric force acting on holes (h) and on electrons (e).  

A p-n junction can be fabricated by introducing donor impurities and acceptor impurities in 

opposite sides of a semiconductor (homojunction) or by putting in close contact an n-type 

semiconductor with a p-type semiconductor (heterojunction). When this is done, due to the 

different charge concentrations (i.e. charge chemical potential) at both sides of the junction, 

holes diffuse out from the p side towards the n side and free electrons diffuse out from the n 

side towards the p side leaving uncompensated ions behind (Figure 5). This causes the p-type 

side to become negatively charged and the n-type side to become positively charged 

generating an electric field (Ebi) across the junction directed from the n to the p side that, in 

turn, opposes the diffusion process. When the force exerted on the carriers by the electric field 

equals the diffusion force, equilibrium is reached. This process leaves a carrier-free zone 

around the junction called the depletion region or the space-charge region (SCR). If an EHP is 

generated by photon absorption and reaches the SCR, the hole and the electron will be drifted 
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away from each other (the electron towards the n region and the hole towards the p region) 

by the built-in electric field generating an electric current. 

 

Figure 6. Schematic of selective membrane behaviour (top) and charge separation (bottom) of p-doped and n-
doped semiconductors. Ec and Ev are the positions of the conduction band minimum and valence band maximum, 
respectively. Filled blue circles represent electrons (e

-
) and hollow red circles holes (h

+
). The tapered arrows 

represent the concentrations of the carriers. This figure should only be taken as an illustration and not as a real 
physical system. 

However, a build-in electric field is not really mandatory to fabricate a solar cell but rather a 

material capable of generating carriers (absorber) and selective membranes for each kind of 

carrier [39]. With a proper band alignment like the one depicted at the top part of Figure 6, an 

n-type semiconductor can allow electrons to pass and block most of the holes and, vice versa, 

a p-type semiconductor can be very permeable to holes and almost impermeable to electrons. 

In addition, the conductivity of a semiconductor can be expressed as 

 𝜎𝑇 = 𝜎𝑒 + 𝜎ℎ = 𝑛𝜇𝑒𝑞 + 𝑝𝜇ℎ𝑞 (5) 

where σe and σh are the conductivities and μe and μh are the mobilities for electron and holes, 

respectively. Taking into account Eqs.(3) and (4), it is easy to see that σe>>σh for n-type 

semiconductors and σh>>σe for p-type semiconductors. Blocking one type of carrier while 

efficiently conducting the other provides n and p-type semiconductors with the properties 

required for a selective membrane. Forgetting about the built-in electric field, when EHPs are 
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being generated continuously in the absorber of such a device they diffuse in every direction. 

Since they cannot pass efficiently through the membranes, holes and electrons will tend to 

accumulate near the n and the p semiconductors, respectively (bottom of Figure 6). This, in 

turn, will cause a gradient in the chemical potential of the carriers along the device that will 

eventually drive holes towards the p part and electrons towards the n part selectively 

separating the charges [39]. Thus, such a device can transform light into an electric current 

without the effect of a build-in electric field. 

It should be noted that the electrons promoted to the conduction band are in an excited state 

so recombination is always present in solar cells during the processes described above. When a 

solar cell is at a steady state it means that generation and recombination processes keep 

continuously taking place but they have reached equilibrium. 

Now that the fundamentals behind EHP generation and separation have been analysed, the 

question that follows is how to extract power from the devices. For this matter, it is useful to 

look at what happens in solar cells under illumination in two limiting operating conditions: 

open circuit and short-circuit.  

In open circuit conditions (i.e. charges cannot escape the solar cell), at some point the 

concentration of charges inside and outside the membranes will be the same and no more 

diffusion can take place. In addition, as the number of charges increases so does 

recombination. In equilibrium, all the new charges generated will recombine. Since both 

membranes are “filled” with the highest possible number of charges, the electrochemical 

potential between them (which translates into a voltage) is at its maximum. This voltage is 

called the open circuit voltage (Voc). Logically, since charges cannot leave the device, there is 

no current and no power can be extracted from the cell. 

In short-circuit conditions (i.e. charges can freely escape the solar cell through an external ideal 

non-resistive wire), once equilibrium is reached all the charges generated that do not 

recombine inside the device, will reach the membranes and flow outside towards the opposite 

membrane generating a current. Since all the charges reaching the membranes are escaping 

the device, the current generated by the cell is at its maximum. This current is called the short-

circuit current (Jsc). However, since the charges can flow freely towards the opposite 

membrane through the wire and recombine, the membranes are “empty” so there is no 

electrochemical potential between them, no voltage can build up and no power can be 

extracted from the cell.  

Logically, in order to extract power from a cell, an intermediate situation is needed. If an 

external load is connected to the device, the charges generated can accumulate inside the 

membranes to a certain extent until the electrochemical potential (voltage) between them is 

high enough to leave the cell generating a current and producing work at the load. 

Finally, it is necessary to take a quick look at the internal structure of a solar cell to understand 

how the light reaches the devices and how the charges are extracted from the cells. As 

depicted in Figure 7, the basic structure of a p-n solar cell consists of: 
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 An absorber (or base)  Most of the light is absorbed and the carriers are generated 

in this part. Its bandgap should be around 1-1.5 eV in order to efficiently absorb 

sunlight [40]. Depending on the technology it can be either an n-type or a p-type or 

even an intrinsic semiconductor. 

 An emitter  It must be as transparent as possible to sunlight so this can reach the 

absorber. In p-n junction cells it must the opposite type of semiconductor than that of 

the absorber. 

 A back and a front contact  The contacts collect the carriers and allow them to travel 

into an external circuit. Metals are usually employed due to their high conductivity. 

However, other materials like transparent conductive oxides are also commonly 

employed. 

Each part is usually composed of a combination of different layers to optimise its properties 

for charge generation, separation and/or collection and to avoid any incompatibilities between 

them that can cause losses. This way, each technology has its own optimised layer structure. 

 

Figure 7. Basic structure of a p-n junction solar cell. 

1.2.2 Main parameters of solar cells 

From the previous section, it can be concluded that, grosso modo, solar cells are just light-

sensitive p-n diodes. This is why they are commonly modelled with a one-dimensional diode 

equation. Thus, in the dark, the current density-voltage (J-V) dependency of a solar can be 

expressed as: 

 𝐽(𝑉) = 𝐽0 [𝑒𝑥𝑝 (
𝑞

𝑘𝐵𝑇
𝑉) − 1] (6) 

where J0 is the reverse saturation current of the diode (i.e. the current due to the diffusion of 

minority carriers from the n and p regions towards the SCR), q is the elemental charge, kB is 

Boltzmann’s constant and T is the temperature. Under illumination, it is necessary to add to 

the former equation an extra term to include the photocurrent generated by the cell (Jph): 

 𝐽(𝑉) = 𝐽0 [𝑒𝑥𝑝 (
𝑞

𝑘𝐵𝑇
𝑉) − 1] − 𝐽𝑝ℎ (7) 

This equation is equivalent to a circuit with a current source and a diode connected in parallel.  
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Figure 8 represents the previous equations graphically. From it, it is possible to extract the 

main parameters that describe the operation of solar cells. The maximum possible voltage of a 

solar cell, Voc, is obtained at J = 0 and the maximum current density, Jsc, at V = 0. Their product 

defines the maximum theoretical power (Ptheo) of the cell (it should be noted that this power is 

not achievable even in perfect devices). However, in real operating conditions, the maximum 

power that can be extracted from a solar cell (Pmax) is given by the point of the J-V curve that 

maximizes the product of J by V and is called the maximum power point (MPP). The MPP 

defines the current density and voltage at maximum power denoted by Jmp and Vmp, 

respectively. The ratio between Pmax and Ptheo is called the fill factor (FF): 

 𝐹𝐹 =
𝑃𝑚𝑎𝑥

𝑃𝑡ℎ𝑒𝑜
=

𝐽𝑚𝑝𝑉𝑚𝑝

𝐽𝑠𝑐𝑉𝑜𝑐
 (8) 

This parameter measures the squareness of a J-V curve with respect to an ideal diode. Finally, 

the power conversion efficiency (η) of a solar cell, i.e. the ratio between the maximum power 

generated by the device (Pmax) and the power reaching the cell (Pin), is usually expressed as: 

 𝜂 =
𝑃𝑚𝑎𝑥

𝑃𝑖𝑛
=

𝐽𝑠𝑐𝑉𝑜𝑐𝐹𝐹

𝑃𝑖𝑛
 (9) 

In standard measuring conditions, Pin corresponds to the power extracted from the integration 

of the solar spectrum AM1.5G (1000 W/m2 or 1 Sun). 

 

Figure 8. Characteristic J-V curves of a solar cell represented by equations (6) and (7) (with the sign of the Y axis 
inverted) and the main parameters used for its description. MTP stands for maximum theoretical power point. 

Up to this point, it has been assumed that solar cells behave as ideal diodes. However, a real 

solar cell exhibits manifold losses. These can be encompassed in two terms: the series 

resistance (Rs) and the shunt resistance (Rsh). The former includes all the resistive losses along 

the device (i.e. due the electrical resistance of the different layers and the contact resistance 

between them at the interfaces) while the latter accounts for losses caused by alternative 

current paths (shunts). These terms can be included in Eq.(7) as follows: 
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 𝐽(𝑉) = 𝐽0 [𝑒𝑥𝑝 (
𝑞𝑉 − 𝑞𝐽𝑅𝑠

𝑘𝐵𝑇
) − 1] +

𝑉 − 𝐽𝑅𝑠

𝑅𝑠ℎ
− 𝐽𝑝ℎ (10) 

This equation describes the circuit depicted in Figure 9. Eq.(10) works well for ideal p-n 

homojunction solar cells in which the main recombination process is radiative (i.e. an electron 

falls directly from the conduction to the valence band emitting a photon) and takes place in 

the neutral region. However, in the case of far from ideal p-n junctions, like heterojunctions, 

there are important losses due to recombination in the SCR. This recombination can have both 

radiative and non-radiative components. Inside non-radiative, the main recombination 

mechanisms are Shockley-Read-Hall (SRH) in which an electron falls from the conduction band 

to a mid-bandgap state and, then, to the valence band; and Auger in which an electron falls 

from the conduction to the valence band and the energy difference is given to another 

electron. These losses can be included in Eq.(10) by means of an extra term called the diode 

quality factor, A: 

 𝐽(𝑉) = 𝐽0 [𝑒𝑥𝑝 (
𝑞𝑉 − 𝑞𝐽𝑅𝑠

𝐴𝑘𝐵𝑇
) − 1] +

𝑉 − 𝐽𝑅𝑠

𝑅𝑠ℎ
− 𝐽𝑝ℎ (11) 

The factor A typically varies from 1 (ideal solar cell with mainly radiative recombination at the 

neutral regions) to 2 (main recombination at the SCR) [41,42]. 

 

Figure 9. Equivalent circuit of a solar cell with resistive and shunt losses. Jsh stands for the shunt current density. 

1.3 Photovoltaics: current commercial 

technologies and EROI 

1.3.1 1st generation PV: crystalline Si solar cells 

Nowadays, crystalline Si-based solar cells are the dominant PV technology with around a 95% 

of market share [43]. These are based in p-n homojunctions in which boron (p-type impurity) is 

diffused into a phosphorus-doped (n-type) Si wafer or vice versa (see (11)Figure 10) although 

heterojunction concepts have also been very successfully developed [44].  
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Figure 10. Structure of a monocrystalline Si PERL solar cell. Reproduced with permission from [45]. Copyrighted 
by John Wiley and Sons. 

There are two main types of crystalline Si-based solar cells in the market: monocrystalline (c-Si) 

and polycrystalline (p-Si) (Figure 11). The former rely on very high purity monocrystalline Si 

wafers. The lack of defects and grain boundaries in the semiconductor material allows 

obtaining very high efficiencies. This, combined with an intensive electrical and optical 

engineering at the front and back sides of the devices has set the current record efficiency at 

26.7% for an heterojunction c-Si solar cell [46]. Commercial c-Si solar panels show average 

efficiencies around 15-19% with the best ones exceeding 20% [47]. Their market share is 

around 45% [43]. However, their high efficiencies carry a counterpart: their production is very 

energy intensive, complicated and expensive since it requires a very precise control to obtain 

flawless monocrystalline ingots through the so-called Czochralski crystal pulling process [48]. In 

order to reduce production costs by avoiding pulling processes, p-Si technology was 

developed. Multicrystalline ingots are casted from molten Si controlling the cooling 

temperature so that the grains grow in a columnar structure [48]. Although the individual 

grains possess high crystalline quality, there is a higher density of crystallographic defects due 

to dangling bonds at the grain boundaries but also to dislocations and point defects [49]. 

However, extensive research on crystal growth and on the passivation of such defects, 

together with front and back side optical engineering has allowed the technology to get very 

close to c-Si with a record efficiency of 22.3% [50]. Commercial modules currently range 13-

17% efficiency and represent a market share of around 50% [43]. 

 

Figure 11. Pictures of p-Si (left) and c-Si (right) solar cells. Source: http://www.tindosolar.com.au/learn-
more/poly-vs-mono-crystalline/ (Accessed on 12/03/19) 

http://www.tindosolar.com.au/learn-more/poly-vs-mono-crystalline/
http://www.tindosolar.com.au/learn-more/poly-vs-mono-crystalline/
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Si is a very mature and well-performing technology. However the fabrication costs, even of p-

Si, are very high. This is due to several reasons [48,51]: 

1. Although Si is very abundant in nature, it mainly occurs in the form of SiO2. In order to 

reduce it to metallurgic-grade (98% pure) Si, very high temperatures (1800°C) are 

necessary. This process requires around 50 MJ to produce 1 kg of Si. 

2. The covalent nature of silicon-silicon bonds, in combination with an indirect 1.14 eV 

bandgap, results in poor defect tolerance, which necessitates high-purity material so 

additional purifying and high temperature (1300°C) chemical vapour deposition 

(CVD) processes are necessary. 

3. The manufacturing of Si ingots requires melting the purified material again (1400°C) 

as well as complex pulling/casting process. This is especially critical for c-Si. 

4. Wafers need to be cut from ingots with thicknesses usually >100 μm due to the low 

light absorption and fragility or Si. During the sawing process, there is a considerable 

loss of material so that 3-9 g of raw (before sawing) Si are necessary per peak watt 

(Wp) at the module level. 

Although the price of Si modules has strongly decreased in the last years, the high upfront 

energy cost of Si wafer production described above translates into solar panels with a very 

high embedded energy or, in other words, into a high value of the energy input term in Eq.(1), 

that yields low EROI values for the crystalline Si PV technologies as shown in Table 2 and Figure 

15. These data show that the superior performance of c-Si does not compensate the high 

amount of energy necessary for its production. In addition, they show how critical energy 

production cost is since, by reducing the energy needs associated to bullet point 3 above it is 

possible to decrease a 30-35% the embedded energy of p-Si compared to c-Si and obtain a 

significantly higher EROI despite its lower efficiency. A more efficient wafer sawing process 

with less Si waste and wafer thickness reduction (bullet point 4) may slightly increase the EROI 

of the technology. However, the energy costs associated to bullet points 1 and 2 are inherent 

to the technology and, thus, extremely challenging to be reduced suggesting that the 

employment of less energy costly technologies might be a better approach to increase the 

EROI of PV. 

1.3.2 2nd generation PV: thin film solar cells 

The so-called 2nd generation PV started to be developed as a response to the high production 

costs of Si solar cells. This generation of PV is based on the usage of direct bandgap and highly 

light-absorbent materials that allow reducing the thickness of solar cells down to a few 

microns, in contrast to Si wafers. The fabrication of such devices consists on the deposition of 

thin layers with different functionalities (back contact, absorber, emitter, etc.) onto a low cost 

substrates. This is why they are widely known as thin film PV. The wide range of substrates, 

materials and deposition techniques that can be employed for its fabrication provide 2nd 

generation PV with an enormous versatility, a large potential for cost reduction and opens the 

door to many innovative applications. Currently, there are 3 main technologies competing with 

crystalline Si with a non-negligible market share: amorphous silicon (a-Si), CdTe and 

Cu(In,Ga)Se2 (CIGS). 
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Amorphous Si 

Amorphous Si was the first thin film PV technology to be commercialised. It has been 

successfully powering low power consumer electronics since the 1980s (Figure 12, left). It is a 

mixture of Si and H (5-20at% H) and is usually deposited at low temperature by plasma 

enhanced CVD (PECVD) [52,53].  Hydrogen plays a critical role improving the quality of the 

material by passivating the dangling bonds occurring naturally due to its amorphous structure. 

This hydrogenated material has a 1.7 eV bandgap and a very high absorption coefficient (105 

cm-1) that allows reducing the absorber layer below 1 μm resulting in a solar cell with a total 

thickness of 2 μm [53–55]. Devices are usually fabricated based on a p-i-n junction (Figure 12, 

right) either in superstrate or substrate configuration with the light entering from the p-side 

[55]. 

The main advantages of this technology are its simplicity, low temperature processing and the 

extremely reduced usage of Si. However, the presence of H in the semiconductor structure 

causes a light-induced degradation known as the Staebler-Wronski effect. The stability and 

efficiency of the devices can be improved by employing multiple p-i-n junctions with different 

bandgaps or by tandems a-Si/μc-Si (μc-Si stands for microcrystalline Si, a form of Si with 

crystalline nanograins embedded in an a-Si matrix) [54,56]. The record efficiencies (stabilised 

after degradation) for laboratory single junction solar cells are around 10% (12.6% for tandem) 

while commercial modules typically present efficiencies around 7% [56,57]. The market share 

of a-Si is currently below 1% due its limited efficiency compared to other thin film PV 

technologies and the price reduction experienced by crystalline Si panels in the last years. 

 

Figure 12. Left: a-Si powered calculator. Right: structure of a single junction a-Si solar cell in superstrate 
configuration. Sources: pixabay.com (right) and [55] (left).  

CdTe 

CdTe is the oldest among thin film PV technologies with the first device with a significant 

efficiency (6%) being produced back in 1972 [58]. It is a II-IV binary chalcogenide 

semiconductor with a zinc blende structure (see Figure 16) and an inherent p-doping. In its 

polycrystalline form it has a bandgap of 1.45 eV, very close to the optimum bandgap for PV, 

and possesses a large absorption coefficient (>104 cm-1) that allows to efficiently absorb 

incident light in just a few microns [40,59–61]. CdTe solar cells are based on a heterojunction 

with the n-type semiconductor CdS. Although both superstrate and substrate configurations 
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work well for this technology, the latter yields a lower performance due to problems with 

forming an ohmic contact at the back [62]. In superstrate configuration, the basic deposition 

process consists on the deposition of a transparent conductive oxide (TCO) on a glass substrate 

followed by the deposition of a CdS buffer layer, a CdTe absorber layer and a back contact (see 

Figure 13). CdTe can be deposited employing a wide variety of techniques including physical 

vapour deposition (PVD) or electrodeposition with the best cells being usually fabricated by 

close space sublimation (CSS) at relatively low temperature (500-600°C) [63]. 

 

Figure 13. Structure of a CdTe solar cell. Reproduced with permission from [54]. Copyrighted by Elsevier. 

Its favourable properties and the continuous development of the technology have converted 

CdTe in a mature PV technology with efficiencies similar to those of p-Si. The record laboratory 

cell was achieved by First Solar, the largest CdTe manufacturer, with a 22.1% efficiency [64]. 

Commercial modules range 15-18% and directly compete against Si [57,65]. CdTe has currently 

the highest market share among thin film technologies with around a 3% [43]. In addition, First 

Solar claims that CdTe has the lowest energy production cost and, thus, is the most 

environmentally friendly PV technology in the market [57,66]. However, its high performance 

and low embedded energy are clouded by concerns about the toxicity of Cd and the scarcity of 

Te that may limit their future production [67]. 

CIGS 

CuInSe2 (CIS) started to be regarded as a potential material for PV in 1976, when the first thin 

film solar cell was fabricated with a 5% efficiency [68]. CIS is a ternary I-III-VI2 chalcogenide 

semiconductor with a chalcopyrite crystal structure (see Figure 16), naturally occurring p-

doping and a high absorption coefficient (>105 cm-1) [69]. It has a direct bandgap of 1.04 eV but 

it was realized soon after the first stages of development of the technology that it was possible 

to substitute In atoms by Ga atoms to widen its bandgap and improve the overall properties of 

the material [53]. This way, by alloying CuInSe2 and CuGaSe2 in different proportions Cu(InxGa1-

x)Se2, it is possible to tune the bandgap of the material from 1 to 1.7 eV [70]. Likewise, the 

substitution of Se by S allows further bandgap tuning [71].  As in the case of CdTe, CIGS devices 

are based on the heterojunction with CdS although Cd-free alternatives like Zn(O,S,OH)x have 

also been successfully employed [72]. The fabrication of devices is carried out in substrate 

configuration employing typically soda-lime glass (SLG) since Na plays a fundamental role in 

the synthesis of the material [73–76]. A Mo back contact is deposited onto soda-lime glass 

(SLG) followed by the deposition of the CIGS absorber and a CdS/TCO window layer (Figure 
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14). CIGS can be deposited in different ways employing both physical and chemical routes 

although physical routes usually result in better performances [72,77]. Inside physical 

procedures, sputtering of a metallic CuInGa precursor followed by a reactive annealing in S/Se 

atmosphere and co-evaporation of Cu, In, Ga and S/Se are the most successful deposition 

routes [72,78]. These techniques can proffer a precise control of In/Ga composition along the 

thickness of the absorber layer that enables bandgap grading engineering which has been 

found to be mandatory in order to achieve high efficiencies [79,80]. 

 

Figure 14. Structure of a CIGS solar cell. Reproduced with permission from [72]. Copyrighted by IOPscience. 

Nowadays, it is the thin film commercial technology with the highest reported efficiency 

23.35%, even higher than p-Si [81]. Commercial modules normally range 14-17% efficiency 

with the most advanced ones, by Solar Frontier, exceeding 18% [57,82]. Its market share is 

around 2% [43]. Despite its high efficiency, since it is a quaternary compound its fabrication 

process requires a very precise compositional control so it has a higher capital cost than CdTe 

[83]. In addition, as in the case of CdTe, there are concerns about its future due to In and Ga 

scarcity issues [67]. 

EROI and future prospects 

Thin film PV technologies offer good performance devices while reducing the thickness of the 

active material by two orders of magnitude compared to 1st generation PV. In addition, the 

fabrication techniques are relatively simple, low cost and low energy consumption. But, does 

this represent a real advantage in terms of EROI? 

It has been shown above that CdTe and CIGS solar panels perform very similarly to c-Si and p-Si 

ones. In addition, their lifetimes are also similar [28]. These two factors dominate the Poutput 

term for EROI calculation in Eq.(1) so no great differences are expected amongst the different 

technologies. Therefore, the critical term for EROI, in this case, is the Pinput. Table 2 shows 

average values of the embedded energy of solar panel for the different technologies. As 

explained in section 1.3.1, shifting from c-Si to p-Si entails a significant reduction in energy 

production requirements (30-35%). However, the low material usage as well as the low-cost 

and low energy-intensive techniques employed for thin film module fabrication represent one 

step forward in energy reduction with CIGS and CdTe requiring around 40% and 60%, 

respectively, less energy than p-Si for their production. 
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Table 2. Embedded energy of module fabrication of the main PV technologies. Data source: [28]. 

 Embedded energy 

c-Si 6200 MJ/m2 

p-Si 3900 MJ/m2 

a-Si 1700 MJ/m2 

CdTe 1600 MJ/m2 

CIGS 2300 MJ/m2 

 

Figure 15 shows the EROI of each PV technology employing the values shown in Table 2 and 

under harmonized performance conditions. In effect, the lower embedded energy of thin film 

technologies at similar performance rates translates into higher EROI values. An impressive 

30:1 EROI is obtained for CdTe, around 3 times higher than that of Si-based technologies and 

even above that of fossil fuels combined. In the case of CIGS, due to its higher energy 

production cost, its EROI is around 20:1, still very superior to Si. These values should only be 

taken as illustrative and not as absolute due the many factors influencing the calculation of 

EROI (see section 1.1.2). However, they show the great potential of 2nd generation 

technologies for increasing the EROI of PV to levels compatible with our current energy needs. 

 

Figure 15. EROI of the main PV technologies. Data sources: [23,24,28]. 

On the other hand, it should be taken into account that the EROI of an energy source varies 

with time. Despite the high EROI of CdTe and CIGS one should not forget that they are made of 

scarce elements: Te, In and Ga. It is difficult to perform predictions on the precise impact the 

scarcity of these materials will have in PV module production since they are mainly obtained as 

by-products of Cu (Te), Zn (In) and Al (Ga) purification processes, but some authors point out 

towards price volatility, problems with short-term availability and, more importantly, towards 

a limitation of module production below the TW/year level which is necessary for a true 

exploitation of the cost reduction capabilities of thin films technologies through mass 

production [67,84–88]. However, as in the case of fossil fuels, it is clear that the more scarce 
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these resources become, the higher the energy input required for their extraction. Thus, their 

EROI is likely to fluctuate and decrease in the near future. So, CdTe and CIGS should not be 

considered as the ultimate thin film PV technologies but rather as a kind of medium-term 

solution which has to be succeeded by other technologies based on more abundant materials. 

Finally, the case of a-Si is very interesting. Despite its considerably lower performance 

compared to crystalline Si technologies, its EROI is higher. As with the previous c-Si versus a-Si 

comparison, but more markedly, these data show how critical fabrication energy is for the 

EROI of PV and that high efficiencies, although desirable, are not indispensable to increase this 

factor. 

To sum up, thin films are the right direction to follow to effectively increase the EROI of PV 

widely surpassing 1st generation technologies. This is mainly due to the fact that the energy 

required for fabrication is a very critical parameter for the EROI of PV technologies, even more 

than power conversion efficiency (to a certain extent). However, current commercial high 

efficiency thin film technologies rely on scarce elements that will reduce their EROI in the near 

future. Therefore, the future of PV depends upon the development of thin film technologies 

based on Earth-abundant elements. 

1.4 Earth-abundant thin films: kesterite solar cells 

1.4.1 Fundamental properties 

The necessity of developing thin film technologies based on Earth-abundant elements that 

boost the EROI of solar energy in a long-lasting and sustainable manner is patently clear from 

the analysis carried out in the previous sections. The excellent performance achieved with 

CdTe and CIGS devices suggests that inorganic chalcogenide compounds with zinc blende-

derived crystal structure make good candidates for developing high efficiency thin film 

technologies. In this regard, there is a family of chalcogenide compounds that possesses ideal 

characteristics to take up the torch in thin film photovoltaics: kesterites. These are I2-II-IV-VI4 

materials that owe their name to their crystal structure. Figure 16 shows how the kesterite 

crystal structure can be derived from zinc blende (CdTe) passing through chalcopyrite (CIGS).  

 

Figure 16. Derivation of kesterite crystal structure from zinc blende and chalcopyrite. Adapted with permission 
from [89]. Copyrighted by American Physical Society. 
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The great similarity between chalcopyrite and kesterite structures entails that different 

materials with both structures (and a close composition) will exhibit similar electrical 

properties. Inside the kesterite family, Cu2ZnSnSe4 (CZTSe), Cu2ZnSnS4 (CZTS) and their solid 

solution Cu2ZnSn(SxSe1-x)4 (CZTSSe) are particularly interesting since they present ideal physical 

properties for thin film photovoltaics, very close to those of CIGS, while being formed solely by 

non-toxic and Earth-abundant elements. This way, CZTSSe compounds display a natural p-

doping and optimum bandgap values (for single junction) that range from 1.0 eV for CZTSe to 

1.5 eV for CZTS enabling the possibility of fine bandgap tuning in the solid solution compound 

by controlling the S-Se composition [40,90–92]. In addition, they possess a very high 

absorption coefficient (>104 cm-1) that allows to absorb most of the incident light in just a few 

microns [92]. Thus, from the fundamental properties perspective, CZTSSe compounds are ideal 

candidates for the development of a thin film PV technology that can ensure a long lasting high 

EROI.  

1.4.2 Evolution and state-of-the-art 

Cu2ZnSnS4 thin films were first synthesised, studied and identified as a potential material for 

PV for the first time in 1988 under the influence of the success of CuInSe2 solar cells [93]. The 

great similarity between both materials, led the PV community to try and apply the available 

knowledge on CIGS to the development of kesterite based-solar cells. This way, the first CZTS-

based solar cell with a significant power conversion efficiency (0.66%) was fabricated by 

Katagiri et al. in 1997 by sulfurization of electron beam evaporated Cu/Sn/Zn precursors and 

using a similar cell configuration as CIGS: SLG/Mo/CZTS/CdS/ZnO/Al [94]. The possibility of 

successfully applying CIGS’s already developed PVD-based techniques and knowledge allowed 

the group of Katagiri to rapidly optimise their process and increase 10-fold the efficiency of 

their devices in a decade reaching a 6.8% in 2008 by sulfurization of RF-sputtered Cu/SnS/ZnS 

precursors [95]. At that time, IBM was researching on solution deposition processes as a 

possible route to reduce the cost of high vacuum-based CIGS manufacturing. Mitzi et al. 

succeeded and obtained efficiencies >10% employing a hydrazine-based chemical route [96]. 

With the feasibility of producing efficient kesterite solar cells proven, they joined the quest for 

improving the technology and, in 2010, by applying their novel CIGS solution-based process to 

CZTSSe they achieved a remarkable 9.6% efficiency device [97].  Further optimisation of their 

hydrazine process led IBM in 2013  to the current certified record: 12.6% efficiency [98]. 

Nowadays, CZTSe, CZTS and CZTSSe have been widely studied and successfully synthesised by 

a wide variety of vacuum and non-vacuum routes. Despite the compound synthesised, all the 

fabrication routes yielding high performance kesterite absorbers involve a two-step process 

with the following stages: 

1. Precursor synthesis and/or deposition 

2. High temperature (>500°C) annealing to synthesise the kesterite phase and/or 

promote grain growth. 

In contrast to CIGS, solution-based routes resulted traditionally in better performing devices 

but, nowadays, both vacuum and solution-based routes have attained comparable efficiency 

levels. Table 3 shows a selection of the best solar cells reported with different deposition 

techniques. In every case, the same cell configuration was employed following the basic 
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substrate-like structure depicted in Figure 17. There have been some attempts of employing a 

superstrate configuration but the efficiencies achieved are well below the standard 

configuration [99]. In addition, the superstrate configuration limits the choice for cell structural 

support to only transparent materials. However, in substrate configuration, any material can 

be employed increasing the range of applicability of the technology as will be shown later on. 

 

Figure 17. Standard cell configuration and typical layer thicknesses of kesterite solar cells. 

 

Table 3. Selection of the best solar cells reported for different kesterite compounds and synthesis routes. The best devices of each 
compound are highlighted in bold. The ‘/’ symbol in the ‘Precursor Type’ column indicates that the precursor is composed by 
different stacked layers. In the ‘Annealing Technique’ column HP stands for Hot Plate, RTP for Rapid Thermal Processing and TF for 
Tubular Furnace. The ‘-‘ symbol is used when no information is available. *Homemade halogen lamp-based furnace. 

Material 

Optoelectronic parameters Precursor Annealing 

Ref Eg 
(eV) 

Voc 
(mV) 

Jsc 
(mA/cm2) 

FF 
(%) 

η 
(%) 

Type 
Deposition 
Technique 

Technique Atmosphere 
T 

(°C) 

CZTSSe 

1.13 466 38.9 69.8 12.6 
Hydrazine 
CuZnSnSSe 

Spin coating HP - >500 [98] 

1.07 485 37.5 64.9 11.8 Zn/Sn/Cu Sputtering RTP S+Se 520 [100] 

1.13 531 33.7 64.8 11.6 
DMSO 

CuZnSnS 
Spin coating RTP Se 550 [101] 

1.07 471 31.6 69.6 10.3 
DMSO 

CuZnSnS 
Doctor blade RTP* Se 540 [102] 

CZTSe 

1.0 423 40.6 67.3 11.6 CuZnSnSe Co-evaporation Hot plate Se 590 [103] 

1.04 463 36.0 66.3 11.0 Cu/Sn/Zn Sputtering TF Se 550 [104] 

1.03 443 38.1 68.0 11.4 Zn/CuSn/Zn Sputtering TF Se 530 [105] 

1.06 400 35.2 66.2 9.3 
Nanoparticles 

CuZnSnS 
Doctor blade - Se 550 [106] 

1.05 440 31.3 60.0 8.2 Cu/Sn/Zn Electrodeposition TF Se+Sn 550 [107] 

CZTS 

1.5 731 21.7 69.3 11.0 CuZnSnS Co-Sputtering RTP S+Sn 560 [108] 

1.5 661 19.5 65.8 8.4 CuZnSnS Co-evaporation HP S 570 [109] 

1.5 746 19.1 62.0 8.8 
Sol-gel  

CuZnSnS 
Spin coating - S+Sn 560 [110] 

1.5 567 22.0 58.1 7.3 Cu/Zn/Sn Electrodeposition TF S 585 [111] 
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1.4.3 Voc deficit: the main limitation of kesterites 

In spite of the similarity between CIGS and CZTSSe absorbers, there is a very large performance 

gap between the record devices of each technology as shown in Table 4. The main parameter 

limiting the efficiency of kesterite solar cells is their high Voc deficit. This parameter is defined 

as the difference between the maximum Voc theoretical value according to the Shockley–

Queisser (SQ) limit and the measured Voc of the device [112]: 

 𝑉𝑜𝑐 𝑑𝑒𝑓𝑖𝑐𝑖𝑡 = 𝑉𝑜𝑐 𝑆𝑄 − 𝑉𝑜𝑐 (12) 

Table 4. Comparison of the record CIGS and CZTSSe devices. 

 Eg 
(eV) 

Voc 
(mV) 

Jsc 
(mA/cm2) 

FF 
(%) 

η 
(%) 

Voc deficit 
(mV) 

CZTSSe [98] 1.13 466 38.9 69.8 12.6 664 
CIGS [113] 1.13 746 38.5 79.7 22.9 384 

 

There have been intense research efforts trying to understand the origin this problem and 

kesterites have been found to possess a manifold of intrinsic problems that can lie at the origin 

of the Voc deficit. The main issues limiting the Voc of kesterite solar cells are reviewed below. 

Formation of secondary phases 

Kesterites are complex quaternary compounds and their single phase formation 

thermodynamic region is very narrow compared to that of CIGS (Figure 18) [92,114–116]. This 

implies that the formation of unwanted secondary phases is very likely to occur together with 

the kesterite phase. In addition, high efficiency devices have been shown to require Cu-poor 

Zn-rich compositions [90,116–121]. Taking a look at the bottom-right part of Figure 18, it is 

easy to see how the size of the stable region decreases for Cu-poor conditions aggravating the 

situation. Working in this regime, the formation of Zn(S,Se) phases is, thus, extremely likely to 

happen [90,122]. 

What is more, the loss of Sn and Se during high temperature absorber synthesis has been 

identified as a critical issue for kesterites due to the high volatility of Sn(S,Se) compounds 

[122–124]. A common approach to minimize the loss of these materials is to increase their 

vapour pressure by working in an excess Se and Sn atmosphere. However, besides preventing 

material loss, these annealing conditions also promote the formation of Sn(S,Se)x secondary 

phases. 

Other secondary phases like Se0, Cux(S,Se), Cu2Sn(S,Se)3 or SnO2, although less likely to be 

formed in Cu-poor Zn-rich conditions, have also been reported, especially at the front and back 

sides of the absorber [125,126]. 

Secondary phases could be avoided by a very precise control of the kesterite formation 

mechanism, and, especially, of the partial pressures of the different compounds during 

annealing processes. However, this is very challenging technologically. A more practical 

approach proposed by several authors is to accept defeat and allow some secondary phase 

formation only to later eliminate them from the surface of as-annealed CZTSSe absorbers using 

selective chemical etchings [119,125,127–129]. 
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Either way, the formation of these phases within the bulk of the absorber is very difficult to 

eliminate completely and can lead to compositional fluctuations at the kesterite/secondary 

phase interfaces that can induce the formation of defects that act as recombination centres 

and ultimately cause Voc losses [127,128,130–132]. 

 

Figure 18. Chemical potential equilibrium diagrams for CuInSe2 (top) and Cu2ZnSnSe4 (bottom). The black area 
represents the stable one phase region. Reproduced with permission from [92]. Copyrighted by John Wiley and 
Sons. 

High density of defects 

Although theoretical calculations have proven that the kesterite crystal structure is the most 

energetically favourable for CZTSSe compounds, the energy difference with the stannite crystal 

structure (see Figure 19, up-left) is very small [133]. This small difference, together with the 

isoelectronicity and similar ionic radii of Cu and Zn, induces a strong tendency to the formation 

of CuZn and ZnCu anti-site defects [134]. In particular, the donor–acceptor defect complex [CuZn 

+ ZnCu] has an extremely low formation energy which results in a high concentration of these 

defects, widely known as the Cu/Sn disorder [92,134,135]. 

On the other hand, in Cu-poor Zn-rich compositions, VCu is the defect with lowest formation 

energy and is expected to be the main responsible for p-type conductivity of CZTSSe absorbers 

(Figure 19, up-right) [92]. This way, a high concentration of VCu, CuZn and ZnCu is expected in 

CZTSSe absorbers. In addition, it has been proposed that deep defects like SnZn and defect 

clusters such as [2CuZn + SnZn] can also occur during kesterite formation even in Zn-rich 

conditions [136–138]. 

All these charged defects and defect clusters, depending on their spatial distribution, induce 

point defects (isolated defects), bandgap fluctuations (spatial correlation of the defects in the 

VB and the CB) and/or potential fluctuations (uneven spatial distribution of charged defects) 

that translate into a series of permitted states within the bandgap (see Figure 19, bottom) 
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[137,139–141]. This phenomenon is known as band tailing since it is characterised by sub-

bandgap absorption that can be described as 

 𝛼~𝑒𝑥𝑝 (−
𝐸𝑔 − 𝐸

𝐸𝑈
) (13) 

where α represents absorption and EU stands for the so called Urbach energy. The states 

within the bandgap can act as recombination centres and, thus, strongly reduce the Voc in 

kesterite devices. In fact, a near-linear correlation between EU and the Voc deficit of different 

technologies was found a De Wolf et al. [142]. 

 

 

Figure 19. Up-Left: Comparison between the kesterite and stannite crystal structures. Adapted with permission 
from [89]. Copyrighted by American Physical Society. Up-Right: Ionization levels of intrinsic defects in the band 
gaps of Cu2ZnSnSe4. The red bars show the acceptor levels and the blue bars show the donor levels, with the 
initial and final charge states labelled in parentheses. Reproduced with permission from [92]. Copyrighted by 
John Wiley and Sons. Bottom: bandgap and electrostatic potential fluctuations due to the uneven spatial 
distribution of defects. Reproduced with permission from [139]. Copyrighted by AIP Publishing. 

Other limiting factors 

Some other factors that have been considered to limit the Voc of kesterite solar cells to a lesser 

extent are: 

 Front interface (CdS/CZTSSe) recombination due to non-optimum band alignment, 

especially for wide bandgaps [143–145] 

 Back interface recombination due to a defective CZTSSe/Mo coupling and chemical 

instability [120,143,144,146,147] 

 Short minority carrier lifetime [139,148] 

 Grain-to-grain nonuniformities [149,150] 
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As a final remark, it should be born in mind that all the different factors affecting the Voc deficit 

of kesterites discussed above are not isolated one from each other and that there are deep 

relationships between them (see Figure 20) [151,152]. 

 

Figure 20. Relationship between different factors affecting the Voc deficit of kesterites. Reproduced with 
permission from [151]. Copyrighted by Elsevier. 

1.4.4 Alkali doping 

Doping the absorbers with alkaline elements has been observed to be a critical issue for the 

development of CIGS and CZTSSe solar cells and an effective way of reducing the large Voc 

deficit of the technologies. Alkalis, especially Na, have the ability of modifying the synthesis 

process and improving the morphological and electrical properties of the absorbers which 

results in enhanced device performance. The following sections review the evolution and main 

effects of alkaline doping in kesterite solar cells. 

Sodium and doping strategies 

The discovery of the beneficial effects of Na doping in CIGS absorbers was one of the major 

breakthroughs in the development of the technology [136,153,154]. They were first described 

by Hedström et al. in 1993 [155]. They fabricated CIGS devices in different substrates (soda-

lime glass, borosilicate, sapphire, and alumina) and observed that the absorbers grown on 

soda-lime glass exhibited a superior crystal structure and performance and associated it to the 

presence of Na coming from SLG [156]. Since then, Na doping became a hot research topic and 

its presence was ultimately found to be a requirement to achieve high efficiencies [153,154]. 

Following the success of Na doping in CIGS, the beneficial effects of alkali doping in kesterites 

solar cells have also been a major topic of research in the last years. Na has been found to 

produce similar effects in kesterite devices than in CIGS and to be crucial to achieve high 

efficiencies [154,157,158]. The main effects attributed to Na in CZTSSe absorbers commonly 

reported in the literature are summarised in Table 5. Principally, Na acts three-fold: 

i. As a fluxing agent and increasing crystal size 

ii. As a grain boundary passivator 
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iii. As a carrier concentration booster 

All these effects translate into devices with a highly improved performance due to enhanced 

Voc and FF, mainly. It is widely accepted that Na ions have a large mobility in kesterites during 

high temperature annealings easily migrating through Cu vacancies due to the low energy 

formation of NaCu [159–161] and that Na tends to accumulate at the grain boundaries where, 

due to their synergy with oxygen, help passivating defects like VS,Se [162,163] or create a 

positive potential that facilitates charge separation [163]. However, the precise mechanisms 

behind the effects of Na in kesterite (and CIGS) solar cells described in Table 5 are still not clear 

and remain a matter of debate.  

Table 5. Main effects of Na in CZTSSe absorbers reported in the literature. 

General effect Proposed Mechanisms Remarks Effect on devices References 

Crystal growth 
enhancement 

and <112> 
texturing 

Formation on liquid Na-Se phases (not 
directly observed) 

Depends on alkali incorporation 
strategy 

It has a threshold behaviour 

Too much Na can hinder crystal 
growth 

Improved Voc and FF 
(correlation 

morphology-
performance not clear) 

[162–170] 

Grain boundary 
passivation and 

enhanced carrier 
transport 

Na accumulates in grain boundaries and 
attracts oxygen. Oxygen passivates Se 
dangling bonds 

Creation of a positive potential at grain 
boundaries that attract electrons and repels 
holes 

Passivation supresses non-radiative 
recombination 

Separation of charges leads to an 
enhanced carrier collection 

Improved Voc and FF 
[162,163,171,

172] 

Increase of carrier 
concentration 

Na occupies Cu vacancies (NaCu) and avoids 
the formation of ZnCu donor defect 

NaCu is formed at high temperature but 
becomes less stable during cooling down. 
Na out-diffuses from Cu positions and leaves 
VCu 

Formation of acceptor NaZn 

Suppression of VS,Se 

Reduction of activation energy of shallow 
acceptor 

Mechanism not well understood Improved Voc 
[116,161,163,
167,168,173,

174] 

 

The optimum amount of Na incorporation in order to obtain observable and beneficial effects 

has been found to be around 0.1-0.5 at% which is the amount of Na typically incorporated 

when using a SLG substrate and a high temperature (>500°C) annealing [175–177]. This way, 

the employment of SLG is a very effective and, probably, the most extended doping strategy. 

However, it presents two major drawbacks that prevent a proper control of Na incorporation: 

1. SLG presents spatial and batch to batch inhomogeneities  

2. Na ions diffuse through oxygen bonds at the Mo back contact grain boundaries [178–

180]. Therefore, the total diffused amount of Na depends on the: 

a. Thickness of Mo back contact 

b. Number and oxidation state of  grain boundaries 

c. Annealing temperature 
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The eagerness for a more precise control of Na incorporation together with the fabrication of 

solar cells on Na-free substrates have motivated the development of alternative doping 

strategies. The most commonly employed are: 

 Na-containing Mo back contacts (Mo:Na) [158,181–183] 

 Extrinsic deposition of a Na-containing layer (NaF, Na2(S,Se), etc.) [73,74,158,184,185]. 

Depending on where the layer is deposited, there are two different strategies: 

o Pre-absorber synthesis (PAS): the layer is deposited on the Mo back contact 

prior to the deposition of the precursor and synthesis of the absorber.  

o Post-annealing treatment (PDT): the layer is deposited on the synthesised 

absorber and a re-annealing process is carried out to diffuse the alkaline 

element into it. 

 Incorporation of Na compounds into precursor solution [157,186,187] 

The strategy employed has an important influence on the effects produced by Na. If Na is 

available during the synthesis process (SLG, Mo:Na, PAS, etc.), it can strongly affect the 

crystallization process and morphology of the absorbers while in PDT treatments, since are 

applied once the absorber has been crystallized, it will mainly affect its electrical properties. 

Potassium and other alkalis 

Owing to the success of Na-doping, the CIGS community soon started to research the potential 

of other alkaline elements. In particular, a lot of attention was put onto the closest relative of 

Na which is also present (although in a very small concentration) in SLG substrates: potassium. 

The first works showed that it was possible to incorporate K into the CIGS structure and that it 

also improved the Voc of the devices [74]. However, the first major success of K doping was 

made by Chirilă et al. who demonstrated a 20.3% efficiency device on a polyimide substrate by 

combining NaF and KF PDT [188]. Since then, many groups included KF PDT treatments in their 

processes and most of them noticed significant increases in the Voc and FF of their devices 

[189–192]. 

Some of the observed effects of K are very similar to the ones described for Na like crystal 

growth enhancement, grain boundary passivation and carrier concentration increase [74,193]. 

However, the most critical effect of KF PDT in CIGS was observed to be a Cu-depletion of the 

surface of the absorbers that promotes an enhanced growth of the CdS buffer layer due to Cd 

diffusion into the Cu-depleted regions [190,194]. The beneficial effects of potassium seem to 

be more profound when combined with Na due to an ion exchange mechanism between the 

two alkalis in which K tends to replace Na within the absorber and, thus, it is more effectively 

incorporated [161,185,195]. 

As for kesterites, K doping has also been thoroughly investigated trying to reproduce the 

positive results obtained for CIGS. KF PDT treatments do not seem to have the same beneficial 

effects than for CIGS and even decrease the performance of the devices due to a current 

blocking behaviour [196,197]. However, a Cu-depleted surface has in fact been observed when 

adding KOH to the precursor solution that, as in the case CIGS, enables a better growth of CdS 

and improves the Jsc of the devices [186]. On the other hand, some similarities with Na have 

also been spotted in CZTSSe absorbers. This way, it has been detected that the addition of a K 
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source into the precursor solution results in an improved carrier concentration [186,198]. 

Similarly, K has also been observed to increase crystal size and enhance <112> orientation with 

a fewer dopant amount compared to Na due a lower melting point of K-Se species [165,199]. A 

passivation effect related to its tendency to remain at the grain boundaries has also been 

spotted [132,159,198]. Finally, differently to Na, the addition of K has been related to the 

avoidance of ZnS formation and the promotion of SnSe2 formation [199,200]. The mechanisms 

behind these effects are expected to be similar to those described above for Na (Table 5) 

although the incorporation and mobility of K in Cu vacancies is expected to be lower due to the 

higher formation energy of KCu caused by its larger ionic size [159,161]. 

Other alkaline elements have also been studied with fruitful results. In the case of CIGS, heavy 

alkali PDT has enabled boosting the efficiency of devices beyond 22%. In particular, Jackson et 

al. achieved a world-record 22.6% efficiency device employing a RbF PDT treatment [78]. 

As for kesterites, heavy alkaline elements have been observed to enhance crystal growth but 

neither clear electrical nor performance enhancements have been reported [157,186]. 

However, the lightest alkali, Li, has demonstrated the capability of incorporating into kesterite 

absorbers very easily (due to the low formation energy of LiCu) and boost the Voc and efficiency 

of the devices [101,157]. This way, an huge improvement from 5% (no doping) up to 11.6% (6 

at% of Li) was reported by Cabas-Vidani et al.. However, the amount of Li employed and the 

widening of the bandgap reported for the best devices (3-7 at%) indicate that Li is not acting as 

a dopant but as an alloyer. 

1.4.5 Summary and final remarks 

Kesterite is a very promising thin film PV technology based on Earth-abundant elements. The 

fact that the best efficiencies have been obtained by high-vacuum-free processes indicates 

that it has a large potential for increasing the EROI of PV through low cost mass production. 

Although the current efficiency levels combined with a low cost production could suffice for an 

adequate and long-lasting medium-high EROI, or at least superior to that of Si technologies, 

there is still a huge room for improvement. The main problem of the technology is the large Voc 

deficit of the devices due to the formation of secondary phases and the high density of 

defects. However, continuous research efforts and process optimisation are likely to increase 

the open-circuit voltage of kesterites. The study of alkali doping is crucial for a successful 

improvement of the technology, especially for its development on alkali-free substrates which 

have the potential of exploiting its true potential regarding cost reduction and EROI increase.  

1.5 Context and objectives of the thesis 

1.5.1 The limitations of soda-lime glass and Mo 

As described in the previous section, the standard substrate employed for kesterite solar cells 

is SLG covered with a Mo back contact. SLG is a very convenient substrate for thin film 

photovoltaics for several reasons 

i. Its mechanical stability [201] 

ii. Its thermal resistance (softening point 550°C) [42] 
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iii. Its coefficient of thermal expansion (CTE) matching that of kesterite (SLG 9·10-6 K-1 

[201], CZTSSe 8.5·10-6 K-1 [202]) 

iv. Its chemical inertness 

v. Very low surface roughness (Rrms0.5 nm) [42] 

vi. Extensively and cheaply produced for glazing (0.8-1.7 $/kg or 6-13 $/m2 for a 3 mm 

glass) [201] 

vii. Beneficial Na-containing composition  [42,201] 

In fact, all the high efficiency devices reported in Table 3 were fabricated on glass substrates. 

However, the stiffness, fragility and high weight of glass set limits to PV module industrial 

fabrication processes (in particular to production throughput), require careful handling of 

modules and strongly limits the applicability of kesterite solar cells. 

As stated before, the true potential of 2nd generation PV and, especially, of an Earth-abundant 

thin film technology like kesterites  to increase the EROI of PV resides in a large cost reduction 

through high-throughput production, advanced applications and ubiquity which cannot be 

attained only with SLG substrates. 

Regarding Mo, it has been proven to be the best choice of back contact for kesterite solar cells 

due to its excellent conductivity, thermal resistance and limited chemical degradation during 

the synthesis process [203]. In addition, its reaction with S/Se in a controlled manner produces 

a back Mo(S,Se)2 buffer layer of which aids in forming an ohmic contact [147]. However, its 

lack of transparency also limits the possibilities of kesterite-based photovoltaics. 

In this context, the development of kesterite solar cells on alternative substrates to the 

standard SLG/Mo should clearly be a must for the kesterite community in order to provide a 

bright future not only for kesterites but for PV in general. Yet, soda-lime glass is still the 

quintessential substrate used in research for kesterite solar cells.  

1.5.2 Objectives of the thesis 

The main objective of this thesis is to shed light on the feasibility of developing kesterite solar 

cells onto alternative substrates to the standard SLG/Mo that can fully exploit the capabilities 

of this Earth-abundant thin film PV technology. In particular, the substrates investigated 

possess the potential to increase the EROI of PV by reducing the overall fabrication costs 

through their compatibility with low cost mass production processes and/or with advanced PV 

applications. Thus, the substrates investigated are the following: 

 Polyimide (PI): a light-weight and flexible substrate compatible with roll-to-roll mass 

production processes 

 Ceramics: the fabrication of solar cells onto a building material like ceramics offers a 

direct application in building-integrated photovoltaics. 

 SLG/SnO2:F: a transparent substrate which enables the fabrication of bifacial and 

tandem solar cells as well as transparent devices with an application in building-

integrated photovoltaics. 

Nevertheless, these substrates present a series of drawbacks with respect to the standard 

SLG/Mo that hinder the development of kesterite solar cells. This thesis aims to identify and 
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address the main issues of each substrate to enable the development of kesterite solar cells 

onto them. In particular, their lack of alkalis, the low thermal robustness of polyimide, the 

rough surface of ceramics and the hindered carrier collection of SLG/TCO will be investigated. 
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2. Methodology 

2.1 Overview 

In this chapter, the general aspects of the methodology employed throughout this work will be 

presented. However, the specific experimental features of the different investigations 

presented in this thesis will be detailed in their corresponding chapters. 

In order to carry through the objectives exposed above and study the feasibility of developing 

high efficiency kesterite solar cells on different alternative substrates, the methodology 

employed is based on the following basics: 

1. Substrate analysis and identification of the main issues for solar cell fabrication 

2. Fabrication of solar cells on the substrates by a two-step process involving the 

chalcogenisation of sputtered metallic precursors 

3. Characterisation of absorbers and devices 

First, the main processing and characterization techniques employed throughout the thesis as 

well as the pieces of equipment utilised to carry them out will be briefly presented. Then, the 

standard procedure employed for the fabrication of kesterite solar cells will be explained in 

detail. 

2.2 Techniques and pieces of equipment 

2.2.1 Structural, compositional and morphological characterisation 

Optical and confocal microscopy 

Confocal microscopy is a type of optical microscopy in which a pinhole/screen is placed at the 

conjugated focal point of the objective lens system. This way, most of the out-of-focus signal is 

blocked and an image corresponding to only a thin section of the sample is acquired. By 

scanning the sample in the Z-axis and combining the 2D acquired images with the Z position 

information, it is possible to reconstruct the 3D surface morphology (topography) of the 

sample. 

A Sensofar PLu neox confocal microscope (Figure 21) was employed for this purpose. This 

microscope features a white and a blue LED light sources and three objectives with 20x, 50x 

and 100x magnification. The system can be used both in optical and confocal modes. This 

system was employed to study the surface morphology of ceramic substrates both in optical 

(standard image) and confocal (3D topographies) modes. Additionally, it was also used to 

measure the thickness of the X-ray fluorescence calibration samples. 
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Figure 21. Sensofar PLu neox confocal microscope. 

Field emission scanning electron microscopy and energy dispersive X-ray 

spectroscopy 

An electron microscope is a type of microscope that uses electrons as the source of 

illumination. Owing to the shorter wavelength of electrons compared to visible photons, the 

resolving power of an electron microscope is far higher than that achievable with standard 

optical microscopes. In a field emission scanning electron microscope (FESEM), a small-

diameter and highly coherent beam of electrons is generated by a field emission gun, focused 

on the surface of the sample and raster-scanned in a rectangular area. The beam interacts with 

the atoms in the specimen producing several signals that can be detected individually using 

different types of detectors. The FESEM microscope employed in this work, a ZEISS Series 

Auriga (Figure 22), is capable of detecting, mainly, three types of signal: 

 Back scattered electrons: This signal corresponds to the electrons from the scanning 

beam which are elastically back-scattered by the atoms of the sample. Since the 

probability of back scattering increases with the atomic number of the element, this 

signal produces micrographs in which areas with different composition appear with a 

different contrast and thus provides spatial-compositional information. 

 Secondary electrons: This signal is generated by low energy electrons ejected from the 

surface of the sample as a result of an inelastic scattering process. The number of 

emitted secondary electrons depends on the interaction volume of the beam with the 

sample which, in turn, depends on the angle between them. This way, edges and steep 

surfaces (in which the interaction volume is higher) appear brighter than flat surfaces 
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providing micrographs with a well-defined contrast that enable structural and 

topographical analyses. 

 Characteristic X-rays: This signal arises from the interaction of the incident electron 

beam with the low-energy electrons located at the inner shells of the atoms of the 

sample. The incident beam can promote these electrons to an excited state. A high-

energy electron from an outer shell can then occupy the low energy vacancy emitting 

the energy difference between both states as an X-ray photon. Since the energy 

difference between the different electronic shells is dependent on the atom itself, 

each element generates photons with characteristic energies. Thus, by analysing the 

radiation emitted by the sample, it is possible to get precise information about its 

elemental composition. This process is called energy dispersive X-ray spectroscopy 

(EDX). 

The results presented in this thesis are based, mainly, on secondary electron imaging 

employing a standard Everhart-Thornley detector. This detector consists of a collector which is 

at around 350 V in order to attract the electrons emitted by the sample, a scintillator system 

and a photomultiplier to overcome the low emission rate and energy of secondary electrons 

and obtain a sufficiently strong signal useful for imaging [204]. This way, FESEM was employed 

to analyse the surface of kesterite absorbers (top view) and/or the layer structure of complete 

devices (cross section) through detailed micrographs acquired from secondary electrons. The 

micrographs were normally obtained using a 5 kV accelerating voltage and a 30 µm aperture 

for the electron beam as well as a working distance ranging from 4 to 7 mm. 

Additionally, the FESEM microscope was employed to analyse the surface composition of some 

selected kesterite absorbers employing an EDX Oxford Instruments XMax detector integrated 

in the system. A 15 kV accelerating voltage was employed for this purpose. 

 

Figure 22. ZEISS Series Auriga field emission scanning electron microscope. 
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X-ray fluorescence 

X-ray fluorescence (XRF) is a phenomenon in which atoms emit radiation upon X-ray 

illumination. Energetic X-rays can be absorbed by electrons located at the inner shells of an 

atom which are subsequently promoted to an excited state leaving a vacancy behind. An 

electron from a higher energy shell can then fall into the low-energy vacancy emitting the 

energy difference between both energy levels as a photon. The possible energies of the 

emitted photons depend on the electronic structure of the atom and, thus, are characteristic 

of each element. By analysing the spectrum emitted by a sample under X-ray illumination, it is 

possible to obtain information about its elemental composition. 

However, different elements possess distinct mass absorption coefficients so the intensity of 

their fluorescence is different. In addition, this factor is also influenced by the density of the 

material which largely depends on the technique employed for its synthesis/deposition. 

Finally, for complex multilayers stacks like the ones employed in this work, the radiation 

emitted by the layers at the bottom is attenuated by the upper layers before escaping the 

sample. This attenuation will depend on the thickness and density of the different layers 

above. Therefore, it is not possible to extract quantitative information from XRF 

measurements in a direct way. The spectra obtained need to be fitted employing a model that 

takes all these issues into consideration. 

A Fischerscope XVD XRF analyser (Figure 23) was employed to measure and control the 

thickness and composition of Mo back contact layers, precursor metallic stacks and kesterite 

absorbers, mainly. The software of this XRF system allows creating complex layer models 

(recipes) and fits the obtained spectra to them through an iterative process in order to provide 

information about the composition and thickness of the different layers. Three types of layer 

model have been mainly employed throughout this work: 

1. SLG/Mo: for measuring the thickness of Mo back contacts 

2. SLG/Mo/CuZnSn: for measuring the thickness and composition of precursor metallic 

stacks 

3. SLG/Mo/CuZnSnSSe: for measuring the thickness and composition of kesterite 

absorbers 

The same measuring parameters were employed in the three recipes: an accelerating voltage 

of the primary X-ray source of 50 kV, a Ni10 filter to reduce background signal, a spot size of 1 

mm and an integration time per measuring point of 45 s. Usually, a 9 to 16-point measuring 

grid was distributed throughout the surface of the sample and the mean compositional and 

thickness values were calculated.  

Due to the fairly complex layer systems measured and to the fact that the density of the 

materials deposited and synthesised in this thesis differs from standard bulk values, in order to 

obtain accurate values from the fittings of the measuring recipes, these had to be calibrated 

employing reference samples with known thicknesses and compositions. In addition, the 

calibration samples were fabricated at IREC’s laboratory employing the standard procedure 

described in section 2.3 so that the samples had layer structures, thicknesses, densities and 

compositions close to those of the samples measured afterwards with each of the recipes. The 
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thickness and composition of the reference samples was measured by high-precision 

techniques prior to the calibration of the XRF system. The following sets of samples were 

fabricated for this purpose: 

1. SLG/Mo: Three samples with different thicknesses. The thickness of the samples was 

at IREC measured by FESEM. 

2. SLG/Mo/CuZnSn: Seven samples with standard thickness and different compositions: 

one sample with a standard Cu-Sn-Zn composition and six samples in which one the 

metals was varied either +10 at% or -10 at%, approximately. The composition of the 

samples was determined by an external laboratory employing inductively coupled 

plasma mass spectrometry (ICP) while the thickness was measured at IREC by means 

of FESEM and confocal measurements. 

3. SLG/Mo/CuZnSnSSe: Seven absorbers obtained from the chalcogenisation of identical 

precursors to the ones described above. The composition of the samples was 

externally determined by ICP and the thickness was measured at IREC by FESEM and 

confocal measurements. 

Finally, it should be noted that the recipes employed for the XRF measurements shown above 

are based on the standard SLG/Mo substrate. The reason for this is that in IREC most of the 

research on kesterites is carried out employing this substrate. Instead of creating and 

calibrating different measuring recipes for each substrate configuration, a more practical 

approach is employed: a SLG/Mo reference sample is processed simultaneously with the 

samples processed on other substrates. This way, the XRF measurements can be carried out on 

the SLG/Mo sample and the values obtained for it are assumed to be similar to the other 

substrate configurations. 

 

Figure 23. Fischerscope XVD X-ray fluorescence analyser. 
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X-ray diffraction 

X-ray diffraction (XRD) is a powerful technique that allows the identification of crystalline 

phases in a target material and provides information about their orientation, crystallinity and 

texture. It is based on the interaction of monochromatic X-ray electromagnetic waves with a 

regular array of atoms. The incident radiation makes the electrons in the sample to re-emit 

secondary X-ray waves (elastic scattering). These secondary waves interact with each other 

through interference processes. In a crystalline structure, where atoms are ordered in 

different planes, these waves interfere constructively if the Bragg’s law is fulfilled: 

 2𝑑𝑠𝑖𝑛𝜃 = 𝑛𝜆 (14) 

where d is the spacing between diffracting planes, θ is the incident angle, n is an integer 

number and λ is the wavelength of the incident radiation (see Figure 24). By scanning a sample 

in the θ coordinate, it is possible to detect the different diffracting planes present in the 

sample which are parallel to its surface. Then, comparing the position of the peaks in the 

obtained diffractogram with reference patterns, it is possible to identify the crystalline phases 

present in the sample as well as their crystallographic orientation. In addition, by analysing the 

height and shape of the peaks, it is possible to get an insight on the crystalline quality and 

texture of the material. 

 

Figure 24. Constructive interference between elastically scattered secondary X-ray waves fulfilling Bragg's law. 

A Bruker D8 Advance XRD system (Figure 25) was employed for phase identification an to 

analyse the crystal structure of Mo layers and kesterite absorbers. The measurements were 

carried out employing a Cu Kα radiation source (λ = 1.5418 Å) at 40 kV and 40 mA, in θ-2θ 

(Bragg-Brentano) configuration, at 2θ angles from 10ᵒ to 90ᵒ in 0.017ᵒ steps, with an 

integration time of 2 s per step and with sample rotation. The diffractograms where anaylised 

and compared with reference patterns using X’pert High Score Plus software. 
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Figure 25. Bruker D8 Advance X-ray diffraction system. 

Raman spectroscopy 

Raman spectroscopy is an advanced characterisation technique based on the analysis of 

inelastic scattering processes of light with the vibrations (phonons) of the atoms or molecules 

in a material. A Raman spectrum is obtained by illuminating the material and measuring the 

inelastically scattered radiation arising from it as a function of its frequency (usually called 

Raman shift). For crystalline materials, a Raman spectrum consists of individual Lorentzian-

shaped peaks, each of them related to an individual phonon. The parameters of the individual 

peaks can be directly related to the vibrational properties of a material which, in turn, depend 

on its composition and internal structure. This way, the symmetries of its crystalline structure 

determine the type of vibrations, the number of atoms in the unit cell influences the number 

of possible phonons and the frequency of the phonons is defined by the type of atoms (i.e. 

chemical composition). Thus, Raman spectroscopy can be used to determine the presence of 

different phases in a material, their composition, crystalline structure and crystalline quality. 

Raman measurements were carried out to investigate different properties of selected kesterite 

absorbers synthesised throughout this work. In particular, their crystalline quality, S-Se 

composition and/or the presence of secondary phases were evaluated. A Raman setup 

developed at IREC (Figure 26) was employed for this purpose. It consists of a Raman probe 

coupled by optical fibres to two spectrometers: a Horiba Jobin Yvon FHR640 (optimised for the 

ultraviolet-visible spectral region) and a Horiba Jobin Yvon iHR320 (optimised for the near 

infrared-infrared region) which are coupled, in turn, to cooled CCD detectors. Several lasers 

with wavelengths ranging from 325 to 1024 nm are available as excitation sources depending 

on the properties and materials studied. The selection of the laser is particularly important for 

investigating the presence of secondary phases. By coupling the excitation wavelength with 

the bandgap of a specific secondary phase (usually called resonant Raman conditions), a highly 
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increased sensitivity is achieved enabling the detection of very small concentrations almost 

undetectable otherwise. 

 

Figure 26. Raman spectroscopy setup developed at IREC. 

2.2.2 Optical and electrical characterisation 

Ultraviolet-visible-near infrared spectroscopy 

In ultraviolet-visible-near infrared (UV-vis-NIR) spectroscopy, a monochromated beam of light 

is used to study the optical properties of a material through the analysis of the wavelength 

dependence of its transmittance, reflectance and/or absorbance. 

 

Figure 27. UV-vis-NIR spectrophotometer. 

A Perkin Elmer Lambda 950 spectrophotometer (Figure 27) was employed to analyse the 

transparency of the different transparent substrate/back contact configurations of employed. 

It is equipped with deuterium (for UV-vis) and halogen (for vis-NIR) light sources, a 
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monochromator, an integrating sphere and high-sensitivity photomultiplier and Peltier-

controlled PbS detectors. 

Four point probe 

A four point probe (4pp) is an electrical measurement setup consisting of four terminals: a pair 

of outer current-carrying electrodes and a pair of inner voltage-sensing electrodes. By applying 

a current through the outer electrodes and due to the high impedance of the voltmeter, 

almost no current will flow through the sensing wires avoiding contact and wire resistances 

and enabling the measurement of very small resistances. 

This technique was employed to measure the sheet resistance (Rsheet) of conductive layers such 

as Mo and TCOs. An Everbeing setup with 4 equidistant measuring tips connected to a Keithley 

2420 power source (Figure 28) was employed for this purpose. 

 

Figure 28. Everbeing four point probe. 

Capacitance-voltage 

Capacitance-voltage (C-V) measurements provide information about the carrier concentration 

and the width of the SCR of a solar cell based on the assumption that a p-n junction can be 

modelled as a parallel plate capacitor. In kesterite solar cells, the doping level of the n side of 

the junction (CdS) is orders of magnitude higher than that of CZTSSe and, in addition, its 

thickness is orders of magnitude lower. This way, the SCR can be assumed to be located 

entirely at the p side. In this approximation, the charge (Q) “stored” in the capacitor is 

equivalent to the number of doping impurities within the width of the SCR (W) times the 
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elemental charge (q). By applying a bias voltage to the p-n junction, the width of the SCR varies 

and so does the charge: 

 𝑑𝑄 = 𝑞𝑁(𝑊)𝑑𝑊 → 𝑁(𝑊) =
1

𝑞

𝑑𝑄

𝑑𝑊
 (15) 

where N(x) is the linear density of doping impurities. On the other hand, the capacitance of a 

capacitor can be expressed as:  

 𝐶 =
𝜖𝐴

𝑥
→ 𝑥 =

𝜖𝐴

𝐶
 (16) 

where ε is the dielectric constant, A the overlapping area of the parallel plates and x the width 

of the capacitor (W for a p-n junction). In the case of a p-n junction, if the space charge region 

is varied by applying a voltage, its capacitance will also vary: 

 𝑑𝑊 = −
𝜖𝐴

𝐶2
𝑑𝐶 (17) 

Finally, the change of the charge stored in a capacitor when the voltage is between its 

terminals is varied can be obtained from the fundamental definition of capacitance:  

 𝐶 =
𝑑𝑄

𝑑𝑉
→ 𝑑𝑄 = 𝐶𝑑𝑉 (18) 

Combining Eqs.(15), (17) and (18), it is possible to calculate n(W) (the carrier concentration as 

a function of the SCR width) from C-V measurements: 

 𝑛(𝑊) = −
𝐶3

𝑞𝜖𝐴2

𝑑𝑉

𝑑𝐶
→ 𝑛(𝑊) =

2

𝑞𝜖𝐴2 (
𝑑𝐶−2

𝑑𝑉
)

−1

 (19) 

C-V measurements were performed on complete devices by applying a 50 mV oscillating AC 

voltage at various frequencies and measuring the quadrature current response at different 

bias voltages. The measurements were carried out employing a Keysight E4990A impedance 

analyser and a homemade Faraday cage sensor box (Figure 29). The measurements were used 

to calculate the carrier concentration and the width of the space charge region of selected 

devices. 

 

Figure 29. Keysight E4990A based capacitance-voltage measurement setup. 
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Current-voltage analysis 

The fundamentals of current-voltage (J-V) analysis were explained in section 1.2.2. 

A setup consisting of a Keithley 2400 source and a pre-calibrated Sun 3000 Class AAA solar 

simulator by Abet Technologies (Figure 30) was employed to carry out the J-V measurements 

of the different devices fabricated in this work. The measurements were carried out at 25 ᵒC 

and both in the dark (for selected devices) and under simulated AM1.5 illumination (1000 

W/m2). The main parameters of the solar cells were extracted from the J-V curves: Voc, Jsc, FF 

and η. In some cases the shunt and series resistances (Rsh and Rs) were also calculated from the 

J-V curves. 

 

Figure 30. J-V analysis setup based on a calibrated Sun 3000 Class AAA solar simulator by Abet Technologies. 

External quantum efficiency 

External quantum efficiency (EQE) is an optoelectronic characterisation technique that 

complements J-V analyses by providing information about charge collection as a function of 

the illumination wavelength. This way, in EQE measurements, the sample is illuminated with 

monochromated light and the ratio between the number of incident photons to the number of 

collected EHPs is measured at different wavelengths to provide a collection spectrum. By 

integrating the EQE spectrum times the AM1.5 illumination spectrum, it is possible to obtain 

the Jsc of the device. 

EQE measurements were performed on selected devices to study their collection. A Bentham 

PVE300 spectral response system (Figure 31) consisting on Xe and halogen light sources, a 

monochromator and a lock-in amplifier was employed for this purpose (Figure 31). 



45 
 

 

Figure 31. Spectral response system used for EQE measurements. 

2.2.3 Solar cell fabrication 

Direct current magnetron sputtering 

Direct current (DC) magnetron sputtering is a PVD coating technique that allows the deposition 

of thin films of a wide variety of materials. An inert gas plasma (usually Ar) is generated inside 

a chamber by applying a high voltage between a cathode (usually the target material) and an 

anode (usually the deposition substrate) (Figure 32). The plasma is confined around the target 

through a strong magnetic field generated by a magnetron. The moving ions in the plasma hit 

the target material and sputter atoms out from its surface. Most of the sputtered atoms are 

neutral so are not affected by the electromagnetic field and fly away in straight lines from the 

target. This way they can reach a substrate and stick onto it. By varying the inert gas pressure 

and/or plasma power, it is possible to control the sputtering rate (which determines the 

growth rate of the layer) and the kinetic energy of the sputtered atoms (which influences the 

density, morphology and adhesion of the deposited layer). The substrate can be heated up 

during deposition to improve or tune the crystallization of the deposited material. In addition, 

by introducing a reactive gas in the plasma, like O2, it is possible to make the sputtered atoms 

react with it before being deposited. This is called reactive sputtering. 

DC magnetron sputtering is an ideal technique for metal deposition due to their high 

conductivity that facilitates the creation of the plasma. When depositing low conductivity 

materials, charge can build up on the surface of the target and, in addition, the target can heat 
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up substantially complicating the deposition process. In order to minimize these issues, a 

pulsed DC source can be employed to generate the plasma.  

 

Figure 32. Schematic of DC magnetron sputtering operation. 

Two different sputtering systems were employed throughout this thesis in order to deposit the 

different layers required for the fabrication of kesterite solar cells: 

 Alliance Ac450 (Figure 33, left): This system is comprised by a load lock and a 

deposition chamber connected to a mechanical pump and a turbomolecular pump. 

Inside the deposition chamber there are three cathodes located at the top where 101 

mm diameter targets can be placed. The substrate is placed at the bottom. It is 

equipped with a DC generator (TRUMPF Truplasma DC 3002) for sputtering and a RF 

generator (TRUMPF PFG 300 RF) for plasma etching surface treatments. This system 

was used for the deposition of metallic layers (Mo, Cu, Zn and Sn). The depositions 

were performed using an Ar plasma. 

 Alliance CT100 (Figure 33, right): This system is comprised by a load lock and two 

deposition chambers each of them connected to independent mechanical and 

turbomolecular pumps. There are two cathodes at the left chamber and three at the 

right chamber where 101 mm diameter targets can be placed. It is equipped with a 

pulsed DC generator (Advanced Energy DC pinnacle plus). The left chamber was 

employed for Mo and Mo:Na deposition and the right chamber for the deposition of 

TCOs (ZnO and In2O3 : SnO2).  

 The deposition of Mo was performed in continuous DC mode using an Ar plasma and 

the deposition of TCOs was carried out in pulsed DC mode employing an Ar+O2 plasma. 
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Figure 33. Sputtering systems. 

Thermal evaporation 

In thermal evaporation a crucible/boat containing a material is heated up by an intense 

electric current under high vacuum. When the appropriate pressure and temperature are 

reached, the material evaporates. Due to the high vacuum, the particles in the vapour can 

travel almost freely around the evaporation chamber. When they reach a colder surface they 

condense onto it thus enabling the deposition of thin films. By varying the heating power of 

the crucible/boat, it is possible to control the deposition rate. 

 

Figure 34. Thermal evaporator. 
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An Oerlikon Univex 250 thermal evaporator (Figure 34) was employed to deposit nanolayers of 

different materials such as alkaline salts, metals and transition metal oxides (TMOs) for a 

manifold of purposes, from doping to back contact engineering or metallisation. The system is 

comprised by an evaporation chamber connected to a mechanical and a turbomolecular 

pump, a DC generator (PCM lambda) and a multi-channel quartz crystal sensor (SQM-160) to 

control the layer growth rate. 

Chemical bath deposition 

Chemical bath deposition (CBD) is a thin film deposition technique in which the substrate is 

introduced into a solution containing dissolved precursor materials. Then, a synthesis and/or a 

nucleation reaction are triggered so that the targeted compound is synthesised within the 

solution and grown onto the substrate. By controlling the chemical route and solution 

parameters such as concentration, pH and temperature it is possible to control the deposition 

characteristics and tune the properties of the deposited layers. 

CBD was employed to deposit the CdS buffer layer of the devices fabricated in this thesis 

employing a homemade setup consisting in a thermocouple-controlled hot plate and a double 

beaker bain-marie system for a more precise and homogeneous temperature control and heat 

distribution (Figure 35). 

 

Figure 35. Setup for CdS chemical bath deposition. 

Reactive annealing 

A reactive annealing is a synthesis technique based on a thermal treatment carried out in a 

reactive atmosphere. This technique was employed to synthesise kesterite absorbers out of 

metallic precursor stacks. The precursors were placed into graphite boxes with crucibles 

containing S/Se and Sn (Figure 36). The graphite boxes were placed, in turn, inside a Hobersal 

three-zone tubular furnace (Figure 37) consisting of a quartz tube and resistance-based 
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heating elements. The tube is connected to a mechanical pump at the rear end and to an Ar 

inlet at the front. 

 

Figure 36. Graphite box for reactive annealing. 

 

Figure 37. Hobersal three-zone tubular furnaces. 

2.3 Solar cell fabrication procedure 

2.3.1 Substrate cleaning 

All the substrates employed for solar cell fabrication were cleaned prior to the deposition 

processes. The cleaning method varied slightly depending on the substrate. 
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SLG, SLG/FTO and polyimide 

The substrates were submitted to an ultrasonic bath cleaning process with the following 

solvent sequence: acetone, isopropanol and deionized water. The time of the ultrasonic 

treatment in each solvent was approximately 10 minutes at a temperature of 55°C. The 

substrates were then dried with a nitrogen flux. The PI substrates were further submitted to a 

surface etching treatment using a RF plasma (100 W, 2 × 10−3 mbar Ar pressure, room 

temperature, 5 min). 

Ceramics 

Due to the high porosity of ceramics, only the enamelled surface of the ceramic substrates was 

cleaned. The cleaning was done mechanically with ethanol. The substrates were then dried 

with a nitrogen flux and submitted to a surface etching treatment using a RF plasma (100 W, 2 

× 10−3 mbar Ar pressure, room temperature, 5 min). The later showed to be crucial for a 

proper adhesion of the Mo back contact. 

2.3.2 Back contact deposition 

SLG, polyimide and ceramics 

A 670-800 nm Mo back contact was deposited by DC magnetron sputtering on SLG, PI and 

ceramic substrates. A trilayer configuration, developed at IREC and similar to the one 

described in [147], was employed. This configuration consists of a MoA (250-500 nm)/MoB 

(120-500 nm)/MoA (30-50 nm) stack where MoA refers to a dense and conductive layer 

deposited at high power and low pressure, and MoB refers to a porous layer deposited at lower 

power and higher pressure. All these layers were deposited from a monoblock Mo target 

(Neyco, 99.99% purity, 101 mm diameter). The typical deposition parameters of each layer are 

summarized in the first two rows of Table 6. The growth rate (GR) of the different layers was 

controlled by XRF thickness measurements. The resistivity of the back contact was measured 

by 4pp. Typical resistivity values ranged 0.25-0.5 Ω/□. 

Table 6. Typical sputtering deposition parameters for Mo back contacts. P stands for deposition power, pB for the 
minimum base vacuum before deposition and p to the Ar pressure employed during deposition. 

 
P (W) V (V) I (A) p

B 
(mbar) p (mbar) GR (nm/min) 

Mo
A
 330 345 0.96 8 x 10

-6
 1.3 x 10

-3
 20 

Mo
B
 220 315 0.70 8 x 10

-6
 5.1 x 10

-3
 14 

Mo:Na 200 310 0.65 8 x 10
-6

 5.6 x 10
-3

 20 

 

The idea behind this back contact configuration is the following: 

i. The first MoA layer provides the back contact with a good adhesion and conductivity. 

ii. The MoB layer, rich in oxygen, acts as a barrier for Se. 

iii. The last MoA layer is a sacrificial layer completely selenized during the reactive 

annealing. 

This way, a conductive layer with a controlled MoSe2 thickness is obtained. 
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SLG/FTO 

Two slightly different SLG/SnO2:F (SLG/FTO) commercial substrates were employed: a 1.6 mm 

thick SLG/FTO substrate (15 Ω/□, Kaivo) and a 2.2 mm SLG/FTO substrate (7 Ω/□, Sigma-

Aldrich). Different transition metal oxides (MoO3, MoO2, V2O5, TiO2, NiO, Co3O4 and CuO) were 

deposited, in some cases, on top of the FTO by thermal evaporation. A W boat containing pure 

oxide powders (99.99% purity, Sigma-Aldrich) was used for evaporation. The evaporations 

were carried out at varying power at a deposition rate of 0.3 Å/s after reaching a 5.6 x 10-3 

mbar base pressure. In some cases, a 20 nm MoA or Mo:Na layer was deposited on top of the 

FTO or the transition metal oxide with the deposition parameters shown in Table 6. In the case 

of Mo:Na, the target employed contained 5 at% Na in the form of Na2MoO4 and 

2.3.3 Precursor deposition 

A metallic precursor stack was deposited by DC magnetron sputtering on top of the back 

contact with the following structure: Cu (5 nm)/Sn (255 nm)/Cu (180 nm)/Zn (160 nm).  

This configuration was based on previous works carried out in IREC [146,205]. The layers were 

deposited from pure metal monoblock targets (Neyco, 99.99% purity, 101 mm diameter). 

Typical sputtering parameters of the different layers are shown in Table 7. The thickness of the 

different layers was selected to obtain Cu-poor (Cu/(Zn+Sn)0.75) and Zn-rich (Zn/Sn1.23) 

compositions since this has been proved to be a requirement for high efficiency kesterite 

devices (see section 1.4.3) and was controlled by XRF thickness and compositional 

measurements. The first thin copper layer was used to enhance the growth and adhesion of 

the Sn layer. 

Table 7. Typical sputtering deposition parameters for the metallic precursor stack. P stands for deposition power, 
pB for the minimum base vacuum before deposition and p to the Ar pressure employed during deposition. 

 
P (W) V (V) I (A) p

B 
(mbar) p (mbar) GR (nm/min) 

Sn 50 370 0.14 8 x 10
-6

 3.6 x 10
-3

 7 

Cu 100 400 0.25 8 x 10
-6

 3.6 x 10
-3

 10 

Zn 100 480 0.21 8 x 10
-6

 3.6 x 10
-3

 15 

 

Additional layers 

In some cases, additional layers were added to the metallic stack: 

 NaF or KF nanolayers (5-20 nm) were thermally evaporated on top (PDT) of or below 

(PAS) the metallic stack for alkaline doping purposes in polyimide substrates 

 Ge nanolayers (10 nm) were thermally evaporated on top of some absorbers for a 

general improvement of the devices as described in [206] 

2.3.4 Absorber synthesis 

In order to synthesise the kesterite phase the precursors were submitted to a thermal reactive 

annealing. They were first were placed inside a graphite box together with crucibles containing 

Se (Alfa‐Aesar, powder, 200 mesh, 99.999%), S (Alfa – Aesar, random size pieces, 99.999%) and 
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Sn (Alfa‐Aesar, powder, 100 mesh, 99.995%). Then, the graphite boxes were introduced into a 

3-zone tubular furnace where a 2-step thermal annealing was performed consisting of: 

1. A first step carried out at low temperature, 1.5 mbar and under continuous Ar flow for 

phase formation (in a microcrystalline form). 

2. A high temperature step for crystal growth 

Depending on the absorber synthesised, the temperature profile of the process was slightly 

different. Standard annealing parameters for the synthesis of the different absorbers on 

standard SLG/Mo substrates are presented in Table 8. It should be noted that the 3 zones of 

the furnace were kept at the same temperature during the whole process to ensure spatial 

homogeneity throughout the entire length of the furnace. At the end of the process, the 

samples were let to cool down naturally. The thickness and composition of the absorbers was 

measured by XRF. Typical absorber synthesis range 1.4-1.7 μm. 

Table 8. Reactive annealing parameters for kesterite absorber synthesis. 

Absorber 
Box 

volume 
(cm3) 

Se 
(mg) 

S 
(mg) 

Sn 
(mg) 

pB 
(mbar) 

Step 
p 

(mbar) 
Ar 

flow 
Ramp 

(°C/min) 
T 

(°C) 
t 

(min) 

CZTSe 69 100 - 5 3·10-2 
1 1.5 Yes 20 400 30 

2 1000 No 20 550 15 

CZTSSe 23.5 2 48 5 3·10-2 
1 1.5 Yes 20 250 20 

2 1000 No 20 550 40 

CZTS 69 - 50 5 3·10-2 
1 1.5 Yes 20 200 15 

2 1000 No 20 550 40 

 

2.3.5 Chemical etchings for secondary phase removal 

The as-annealed absorbers were then subjected to 3 successive chemical etchings to remove 

secondary phases from their surface before CdS deposition: 

i. The samples were first submitted to an oxidising etching in a KMnO4/H2SO4 solution to 

remove ZnSe, as described in [127]. 

ii. Then, the samples were placed into a (NH4)2S solution to remove elemental Se and 

Sn(S,Se) as described in [128] 

iii. Finally, a diluted KCN etching was employed to remove Cux(S,Se) phases 

In the case of the samples processed on SLG/FTO, only the (NH4)2S was performed. 

2.3.6 CdS buffer layer deposition 

A 40-60 nm CdS buffer layer was deposited onto the absorbers by CBD. Cd(NO3)2 (0.12 M) was 

employed as the cadmium precursor salt together with thiourea (0.3 M) as the sulphur source. 

The deposition was carried out with a solution pH = 9.5 and at 70°C for 40 min.[207] 
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2.3.7 Window layer/front contact deposition 

Immediately after CdS deposition, an i-ZnO (50 nm)/ITO (200-300 nm) bilayer was deposited 

by pulsed DC magnetron sputtering employing Cu-back plated targets (Neyco, ZnO, 99.99% 

purity; and Neyco, In2O3:SnO2 90:10 wt.%, purity 99.99%) and an Ar/O2 plasma with the 

parameters shown in Table 9. An additional piece of SLG was included during the deposition in 

order to measure the resistivity of the bilayer by 4pp. Typical resistivity values range 35-80 

Ω/□. The thickness was controlled by XRF. 

Table 9. Typical sputtering deposition parameters for ZnO and ITO. P stands for deposition power, pB for the 
minimum base vacuum before deposition and p to the Ar+O2 pressure employed during deposition. 

 
P (W) V (V) I (A) p

B 
(mbar) p (mbar) O2/Ar (%) GR (nm/min) 

ZnO 120 500 0.24 8 x 10
-6

 0.4 x 10
-3

 5.3 5 

ITO 130 390 0.33 8 x 10
-6

 1.3 x 10
-3

 1.6 10 

 

2.3.8 Solar cell scribing and contact 

Once the layer structure was complete, individual 3 x 3 mm2 solar cells (8.7 mm2 active area) 

were electrically isolated employing a manual microdiamond scriber (OEG MR200) (Figure 38). 

The scribing lines were performed down to the back contact. A small area at one of the edges 

of the sample was scratched to expose the back contact and some In was welled onto it. Owing 

to the small size of the cells, no additional contacts were used and the electrical 

measurements were carried out by contacting directly the ITO of each cell and the In pad. 

 

 

Figure 38. Microdiamond scriber. 
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In the case of SLG/FTO substrates, two additional layers were added to some of the finished 

devices by evaporation: 

 A 1.5 µm Ag metallic grid using a mask 

 A 110 nm MgF2 layer as anti-reflective coating (ARC) 

In these cases, the size of the individual solar cells was 5 x 5 mm2 (see Figure 39) 

 

Figure 39. Solar cell with metallic grid and anti-reflective coating. 

2.3.9 Low temperature post-annealing treatment 

Once completed and after a first surveying characterisation, most of the devices were 

submitted to low temperature post-annealing treatments (LT-PAT). These were carried out in 

air employing a hot plate at temperatures from 180 to 300°C (depending on the experiment). 

Low-temperature post-annealing treatments (LT-PAT) have been reported to increase 

performance of kesterite solar cells [118,140,161,208,209]. This improvement has been 

attributed mainly to Cu depleted grain boundaries and absorber surface that have a 

passivating effect reducing recombination and improving the CZTSe/CdS interface [140]. 

However, there is still not a clear consensus on the effects of LT-PATs.   
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3. CZTSe solar cells developed on 
polymer substrates: Effects of low-
temperature processing 

3.1 Introduction 

3.1.1 Light-weight and flexible substrates for kesterite solar cells 

Light-weight and flexible (LWF) substrates are key for solar cell manufacturing cost reduction. 

This is mainly due to their compatibility with roll-to-roll (R2R) high throughput fabrication 

processes. This type of production starts out from a roll of a bare flexible substrate and ends 

with a roll of finished product. All the processing takes places in line as the substrate moves 

between the two rotating rolls (see Figure 40). Although the initial upfront investment on a 

R2R facility can be very high due to the complicated design of the production line, its high 

throughput should permit its recovery through economy of scale in the short-mid-term and 

enable low cost mass production [210]. Therefore, by developing thin-film solar technologies 

onto light-weight and flexible substrates, it is possible to go towards mass production of PV 

devices at a reduced fabrication cost and, thus, towards an increased EROI of such 

technologies. 

 

Figure 40. Schematic of a PVD-based kesterite solar module R2R production line. 

Besides reduced manufacturing costs, flexible modules present a manifold of advantages with 

respect to standard rigid modules: 

 They can adapt to curved surfaces usually found in buildings (see section 4.1.1), cars, 

ships, planes, satellites, clothing, etc. (Figure 41, left) 

 Their light-weight increases Wp/kg ratio, makes them attractive for the automotive or 

aerospace industries where weight is a critical factor, reduces transportation and 

installation costs and turns PV into a compatible and easily integrable powering option 

in portable electronics and the Internet of Things (IoT) devices (Figure 41, centre) 

 They are easier to handle due to their low fragility which allows easy rolling for storage 

and transportation or even systems where the modules can be rolled and unrolled at 
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will (e.g. they can be deployed when the weather is propitious for power generation 

and rolled up at night or under unfavourable meteorological conditions to preserve 

their integrity) (Figure 41, right) 

All this translates into a widely enhanced range of applicability of PV, the enabling of advanced 

PV applications and the potential for enhancing the ubiquity of PV which, ultimately, also 

contributes to an overall cost reduction and, thus, to an increased EROI. 

 

Figure 41. Left: LWF solar panels integrated in a car. Source: 
https://sopraygroup.manufacturer.globalsources.com/si/6008828274640/pdtl/Solar-panel/1062980597/Solar-

Panel.htm. Centre: SunnyBag®. Source: https://fr.sunnybag.com. Right: Brunton Solar Roll®. Source: 
https://www.livefortheoutdoors.com/gear-reviews/accessories/articles/Gear-Reviews/Search-

Results/Accessories/Brunton-Solar-Roll-14-2010-solar-panel.  

As stated before, kesterite-based solar cells are particularly well-suited for their development 

on mass production-enabling LWF substrates due to their Earth-abundant composition (see 

section 1.4). Yet, most of the research carried out on kesterite-based solar cells has been done 

employing SLG as substrate due to its favourable thermomechanical properties, availability 

and its beneficial composition (see section 1.5). 

Despite the supremacy of rigid glass substrates, a small number of flexible kesterite devices 

can be found in the literature. Cu2ZnSnS4 (CZTS) solar cells were successfully produced on Al 

foil (η = 1.9%, printing) [211], flexible glass (η = 3.1%, sequential sputtering) [212] and Mo foil 

(η = 3.8%, sputtering) [213]. Likewise, a 6.1% Cu2ZnSnSe4 (CZTSe) device was reported on 

stainless-steel foil via sequential sputtering of metals [158]. Regarding CZTSSe, a remarkable 

11.5% flexible device was achieved by a hydrazine-based chemical route employing ultrathin 

yttria-stabilized zirconia as a substrate [214] and a 7% device was recently fabricated on Mo 

foil by sputtering [215]. All these devices give proof of the feasibility of fabricating efficient 

kesterite solar cells on different flexible substrates.  

3.1.2 Polyimide: a promising and unexplored substrate 

Taking a look at the more mature CIGS, polyimide (PI) foil has demonstrated to be the most 

promising flexible substrate for this technology without a doubt. Employing PI as substrate, an 

impressive 20.4% efficiency solar cell was fabricated, very close to cells on SLG and even to p-Si 

solar cells [190]. 

https://sopraygroup.manufacturer.globalsources.com/si/6008828274640/pdtl/Solar-panel/1062980597/Solar-Panel.htm
https://sopraygroup.manufacturer.globalsources.com/si/6008828274640/pdtl/Solar-panel/1062980597/Solar-Panel.htm
https://fr.sunnybag.com/
https://www.livefortheoutdoors.com/gear-reviews/accessories/articles/Gear-Reviews/Search-Results/Accessories/Brunton-Solar-Roll-14-2010-solar-panel
https://www.livefortheoutdoors.com/gear-reviews/accessories/articles/Gear-Reviews/Search-Results/Accessories/Brunton-Solar-Roll-14-2010-solar-panel
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PI features several advantageous properties for LWF photovoltaics like high mechanochemical 

stability (for a polymer) or the absence of harmful impurities (it is mainly formed by C, H and 

O) that combined with its insulating nature avoid the use of additional barrier layers and allow 

monolithic interconnection (see Table 10).  

Table 10. Main properties of Upilex 50S polyimide foils. Source: 
http://www.upilex.jp/catalog/pdf/upilex_s_e.pdf?20190220. 

Composition C16H6O6 

Tensile strength 460 MPa 
Tensile modulus 93 GPa 
Density 1470 kg/m3 
Resistivity >1013 Ω/□ 
Coefficient of thermal expansion 16 ·10-6 K-1 
Chemical resistance to organic solvents Excellent 
Chemical resistance to strong acids Good 
Chemical resistance to strong alkalis Good 
Surface roughness (Rrms) 2 nm 
Maximum temperature before pyrolysis 500°C 

 

However, despite its great potential for PV, the compatibility of this substrate with kesterite-

based solar cells has been barely studied. Only a very scarce number of publications report 

kesterite solar cells fabricated on polyimide substrates. Using spray pyrolysis deposition, a 

CZTS device with a modest 0.15% was fabricated on PI [216]. A 0.49% CZTS solar cell was also 

achieved using PI as a substrate by screen-printing [217]. Finally, CZTS was successfully 

synthesized on PI by sulfurization of sputtered metallic precursors but no working devices 

were reported [218]. 

The motivation behind the work presented in this chapter is to fill this gap and shed light on 

the feasibility of fabricating high efficiency Cu2ZnSnSe4 solar cells onto FLW mass production-

compatible PI substrates as well as on the issues that need to be taken into account and 

overcome in doing so. 

3.1.3 Limitations of polyimide and objectives of this work 

Two main concerns arise when working with polyimide. Firstly, the low thermal robustness of 

PI limits process temperatures below 500°C.  Although the kesterite phase can be synthesised 

at low temperatures, high efficiency devices are usually obtained at temperatures higher than 

500°C (see Table 3). The second concern is the lack of alkali in PI in contrast to conventional 

soda-lime glass. Alkaline elements (specially Na and K) have been observed to play a 

fundamental role in the synthesis of high quality CIGS and kesterite absorbers through many 

different mechanisms like crystal growth enhancement, grain boundary passivation along with 

an increment of carrier concentration that result in a drastic enhancement of solar cell 

performance (see section 1.4.4). 

This work endeavours to tackle both issues and is divided into three main parts: 

i. First, in a preliminary experiment, CZTSe devices are fabricated on polyimide at a 

moderate temperature (470°C) and different alkaline doping strategies are 

http://www.upilex.jp/catalog/pdf/upilex_s_e.pdf?20190220
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investigated for the incorporation of Na and K into the kesterite absorber: pre-

absorber synthesis (PAS) and post-deposition treatment (PDT). 

ii. Then, CZTSe is synthesised at different temperatures (<500°C) on SLG in order to 

investigate the effect of temperature and the difficulties that come out when 

synthesizing kesterite at such low temperatures. 

iii. Finally, based on the results obtained in the previous experiments, an attempt to 

increase the power conversion efficiency of CZTSe devices fabricated on polyimide is 

made by employing higher annealing temperatures (470-490°C) combined with the 

study of an advanced PAS doping strategy combining Na and Ge. 

3.2 Experimental 

3.2.1 Sample preparation 

Solar cell preparation 

Two different substrates were employed in this work: 3 mm soda-lime glass (2.5 x 2.5 cm2) 

and 50 μm polyimide foil (Upilex 50S, see Table 10) (1.2 x 2.5 cm2). A 670 nm trilayer Mo back 

contact was deposited on the clean substrates with a sheet resistance of 0.2-0.3 Ω/□. 

Cu/Sn/Cu/Zn metallic precursor stacks were deposited onto the Mo back contact with Cu-poor 

Zn-rich composition. The precursors were selenized through a 2-step thermal reactive 

annealing at maximum temperatures in the second step ranging 450°C-490°C (depending on 

the experiment). The as-annealed CZTSe absorbers were then subjected to three successive 

chemical etchings in order to remove surface secondary phases followed by the deposition of a 

CdS buffer layer. The devices were completed with a i-ZnO (50 nm)/ITO (200 nm) bilayer (50-

80 Ω/□). Each sample was scribed into 10 to 18 individual solar cells (9 mm2). For a more 

detailed description of the fabrication process, see sections 2.2.3 and 2.3. 

Doping strategies in polyimide substrates 

In the case of polyimide samples, an additional step was performed in which a 0, 10 or 15 nm 

nanolayer of NaF or KF was thermally evaporated to act as doping layer (see section 2.3.3 for 

further details). Two different approaches were employed in this regard: pre-absorber 

synthesis (PAS) and post-deposition treatment (PDT). In PAS, the NaF/KF layer was deposited 

on the Mo back contact prior to the metallic stack. This way, the incorporation of the alkali 

into the CZTSe absorber occurs during the thermal reactive annealing (Figure 42, middle). In 

the PDT approach, the NaF/KF layer was deposited on top of the as-synthesized CZTSe 

absorber. The samples were then submitted to an additional annealing in Se atmosphere at 

325°C and 1.5 mbar for 12.5 min in order to induce the diffusion of the alkali elements into the 

absorber (Figure 42, top). An additional 10 nm Ge nanolayer was also deposited on top of the 

precursor by thermal evaporation in some of the samples (Figure 42, bottom). 
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Figure 42. Alkaline doping strategies studied. 

Remarks about polyimide substrate handling for solar cell fabrication 

The extremely low weight, reduced thickness and high flexibility of polyimide complicated the 

fabrication of kesterite solar cells on this substrate due to various reasons: 

 Tendency to fly away when resting at any surface as well as during pumping, transfer 

and venting processes within sputtering and evaporation systems 

 Tendency to move during thin film deposition 

 Tendency to bend when having layers deposited onto them 

 Strong bending during selenization 

 

Figure 43. Homemade frames employed initially for polyimide substrate handling. 

As a first approach to minimize these issues and enable the fabrication of solar cells on 

polyimide, homemade stainless steel frames were employed in order to give a rigid support to 

the substrates (Figure 43). The frames were, in turn, stuck onto SLG substrates with adhesive 

Kapton tape. This way, the samples remained immobile and flat during the deposition 
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processes (Figure 44). However, due to the low thermal resistance of Kapton tape (<300°C), 

the samples had to be detached from SLG for reactive annealing (Figure 45). Then, after 

selenization, they had to be stuck on glass again in order to carry out the chemical etchings 

and CdS deposition. After CdS, for a proper removal of any remaining of the different chemical 

processes, the samples usually had to be detached again from the SLG, rinsed thoroughly in 

deionized water and, finally, stuck once more on glass for i-ZnO/ITO sputtering. 

 

Figure 44. Polyimide within frames stuck with Kapton tape to SLG. A reference sample on SLG is shown for 
comparison. 

 

Figure 45. CZT precursors on polyimide detached from SLG for selenization. 

Although somewhat tedious, the use of such frames enabled the use of polyimide substrates 

for solar cell fabrication. However, this type of frame presented several problems: 

 Difficulty of fitting the substrate into the frames in a totally flat position. 

 During selenization, the tendency of polyimide to bend occasionally caused the 

samples either to come out the frame or to bend the frame itself. 

 The frames were getting selenized forming fine FexSey chips that detached from the 

frames during the annealing itself and, especially, during chemical processes 

contaminating the solutions. 

 Liquid could remain within the folds of the frame after chemical processes and 

contaminate the CdS bath or come out during pumping in sputtering and affect the 

deposition of the window layer (Figure 46). 
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Figure 46. Liquid stored in the frames' folds released during ZnO/ITO deposition. 

In order to avoid some of these issues, more advanced frames were fabricated in which 

polyimide was screwed into a thick piece of stainless steel (Figure 47). This way, it was not 

necessary to continuously stick the substrates onto and detach from SLG, the samples were 

not coming out of the frames or bend during annealing and there were no folds where liquid 

could remain. However, although the handling of the substrates and cleaning of the samples 

was greatly enhanced, the devices fabricated with these frames systematically presented 

shunting problems and very low efficiencies so they were discarded.  

 

Figure 47. More advanced frame design where polyimide was screwed into a thick piece of stainless steel. 

Finally, an experiment was carried out in order to study if avoiding bending during annealing 

and, thus, the use of frames was really necessary. This way, the two different types of frames 

together with samples with no frame were fabricated simultaneously. Surprisingly, although 

the bending of the substrates was greatly reduced using frames as stated before, samples 

without frame performed slightly better than the framed ones. Therefore, the use of any type 

of frame was abandoned from that point in order to simplify. This way, polyimide substrates 

were directly stuck onto glass for deposition and chemical processes and carefully detached 

for selenization. Although the sticking/detaching of the substrates became a much more 

delicate procedure, especially after selenization when the samples were completely bent 

(Figure 48), with this approach no FexSey chips were generated and no liquid remained on the 

samples after chemical processes. 
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The results presented in section 3.3.1 correspond to samples processed with basic stainless 

steel handmade frames. However, the results presented in section 3.3.3 correspond to 

samples processed without frame. 

 

Figure 48. Left: bent polyimide substrates after selenization. Right: bent polyimide substrate flattened and stuck 
onto SLG using Kapton tape. 

3.2.2 Characterization 

FESEM secondary electron imaging was employed to examine the surface of the absorbers (top 

view configuration) and the structure and morphology of the full devices (cross-section 

configuration) using an acceleration voltage of 5 kV and working distances of 4.5 mm. The 

composition of the inhomogeneities and clusters found on the surface of some of the 

absorbers was analysed by EDX with and acceleration voltage of 15 kV. 

C-V measurements were performed in the dark at room temperature with an AC modulation 

voltage of 50 mV at 126 kHz and a -1.25 to 0.2 V bias voltage measuring range. From C-V 

measurements charge carrier concentration profiles were calculated assuming a relative 

dielectric permittivity of ε = 8.5 for CZTSe [219]. 

The J-V characteristics of the devices were obtained under simulated AM1.5 illumination (1000 

W/m2 intensity at room temperature) using a pre-calibrated solar simulator. The EQE was 

measured using a spectral response system. 

Raman scattering measurements were made under a 785 nm excitation wavelength on 

complete devices. The measurements were performed in backscattering configuration 

focusing the excitation laser spot on the window layer surface. A diameter of 50 μm and an 

excitation power density of about 1 kW/cm2 were used in order to inhibit thermal effects in 

the spectra while light collection was made through a x20 objective. For this particular 

excitation wavelength, estimated penetration depth of backscattered light in CZTSe is 

estimated to be around 100 nm. The 785 nm excitation wavelength was employed for two 

reasons. The first one is due to the low interaction of this wavelength with the upper window 

layer that allows to characterize the absorber without removing the CdS/ZnO/ITO layers [220]. 

The second advantage is related to the coupling of the energy of the excitation photons with 

the direct band gap of SnSe2. This allows to work under resonant conditions largely increasing 

the sensitivity of the Raman measurements of this phase by several orders of magnitude. 
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For more information about the characterisation techniques employed, see section 2.2. 

3.3 Results 

3.3.1 CZTSe on polyimide: alkali doping strategies 

Sample summary and low temperature post annealing treatment (LT-PAT) 

In a preliminary experiment, CZTSe solar cells were fabricated on PI substrates at a moderate 

temperature of 470°C to ensure that the substrate would withstand the process without 

degrading. PAS and PDT doping strategies were studied in which 0, 10 and 15 nm NaF/KF 

layers were evaporated on the samples before the metallic stack or after the synthesis of the 

absorbers, respectively (see Figure 42). A SLG reference sample with no additional doping was 

processed simultaneously in the same batch. Once completed, the full devices were annealed 

on a hot plate at 180°C in air during 30 min. 

 

Figure 49. Boxchart of the main solar cell parameters of the samples processed on PI with PAS doping strategy 
before (solid box) and after (dashed box) hot plate reannealing. 

It is interesting to start by taking a quick look at the effect of the LT-PAT on the devices. Figure 

49 shows the main solar cell parameters of the PAS and reference samples before and after LT-

PAT at 180°C. A marked improvement of the Jsc and FF of the devices can be observed after LT-

PAT while, contrarily to most reports (see references in section 2.3.9), the Voc of some devices 

experiences a slight decrease. Nevertheless, the beneficial effect of LT-PAT is confirmed since 

the overall performance of all the devices is ultimately enhanced in a significant way. 
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Effects of alkali doping on the performance of the devices 

Table 11 summarizes the main parameters of the record solar cells of each of the samples 

(after LT-PAT). From these data, the first observation that should be made is that all the 

samples fabricated in this experiment result in working devices demonstrating the 

compatibility of the polyimide substrate with the solar cell fabrication process employed based 

on the selenization of sputtered metallic stack precursors. Furthermore, most of them exceed 

the efficiencies reported in previous works (see section 3.1.2) with the alkali-free reference 

exhibiting a 1.3% efficiency. 

Table 11. Parameters of the record cells of the CZTSe devices fabricated on PI with different doping strategies 
extracted from J-V measurements. 

Sample 
Jsc 

(mA/cm2) 

Voc 

(mV) 

FF 

(%) 

η 

(%) 

SLG 470°C 29.9 344 57.6 5.9 

Undoped 18.6 231 31.3 1.3 

P
A

S 

N
aF

 

10 
nm 

24.8 257 43.5 2.8 

15 
nm 

24.0 303 44.3 3.2 

K
F 

10 
nm 

24.7 282 51.2 3.6 

15 
nm 

22.8 255 42.0 2.4 

P
D

T 

N
aF

 

10 
nm 

18.9 147 32.2 0.9 

15 
nm 

19.5 180 31.6 1.1 

K
F 

10 
nm 

18.7 116 31.0 0.7 

15 
nm 

10.6 76.2 27.2 0.2 

 

Regarding alkaline doping, large differences are encountered when employing a PAS or a PDT 

strategy. On the one hand, all the samples fabricated with the PDT doping approach exhibit a 

lower performance than the undoped reference sample. While the Jsc and FF seem mostly 

unaffected by the PDT doping (except for the 15 nm KF sample), the Voc of the devices is 

severely reduced. In the case of NaF, a higher amount of this dopant appears alleviate this 

negative effect. However, the opposite applies when using KF as doping source. On the other 

hand, the PAS approach is able to significantly improve both the record and the average device 

performance in all the cases studied (see Figure 50). The employment of either NaF or KF leads 

to a global enhancement of all the cell parameters. In the case of NaF, the thickness of the 

doping layer seems to be directly related to the voltage of the devices. This way, 10 nm of NaF 

cause an average increase of 50 mV in the Voc and 15 nm raise it by 85 mV with respect to 

the undoped reference. As for KF, there is a marked difference between depositing a 10 or a 

15 nm layer. Doping with 10 nm KF increases Voc to a similar extent as NaF and improves FF 

more effectively than the latter (18% absolute with respect to the undoped sample). 

However, increasing the amount of KF to 15 nm reduces the beneficial effects of the PAS KF 

doping. 
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Figure 50. Boxchart of the main solar cell parameters of the samples fabricated on PI with the PAS doping 
approach extracted from J-V measurements after LT-PAT. Solid black boxes correspond to the left axes: Efficiency 

(top) and Voc (bottom). Dashed red boxes correspond to the right axes: FF (top) and Jsc (bottom). 

The best cell on PI is obtained using 10 nm of KF with an efficiency of 3.6%. Nevertheless, all 

the PI samples are well below the performance of the SLG reference processed simultaneously 

at 470°C (5.9% record efficiency) which exhibits larger Voc, Jsc, and FF. This can be clear in 

Figure 51 (left). This figure also shows the EQE of the different devices. It can be seen that 

doping either with NaF or KF increases carrier collection significantly in the 300-900 nm range 

compared to the undoped reference indicating reduced absorption at the CdS/CZTSe interface 

and a better collection within the absorber. 

 

Figure 51. J-V (left) and EQE (right) of the best cells fabricated on polyimide with the PAS doping approach. 
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Influence of alkali doping on the morphology of CZTSe absorbers 

In order to investigate how the absorber morphology is influenced by the different alkali 

doping strategies, the samples were inspected by FESEM. As expected, no appreciable 

differences in the morphology with respect to the alkali-free reference were observed for the 

samples prepared with post-deposition treatment (PDT) since with this approach the alkali are 

applied after the synthesis and crystallisation of the absorber. Figure 52 shows the top view 

and cross section of the best performing samples: the soda-lime glass reference, the undoped 

PI reference and the PI samples doped with 15 nm of NaF and 10 nm of KF by PAS. No 

morphological differences could be spotted between samples with different thicknesses of the 

same dopant, therefore these can be taken as representative for the whole batch of samples. 

Top view 

The top view images of the as-annealed absorbers (before chemical etchings) reveal a 

fundamental difference between the samples processed on glass and on polyimide: while the 

SLG sample in this experiment (processed at 470°C) shows a surface with well-defined grains, 

all the PI samples display a surface covered by a layer of small nanocrystals and a few 

elongated grains (clearly seen in Figure 52c) regardless the doping strategy. Similar surface 

nanocrystals have been identified by several authors as ZnSe (or ZnS in the case of CZTS) 

[119,127,162,221]. The elongated grains that coexist with ZnSe in the top layer resemble the 

SnSex crystals reported by Xie et al. in [128]. Despite this top layer, kesterite grains can be 

discerned underneath. Although the origin of this top layer will be discussed later on, it should 

already be noted that ZnSe and SnSe are almost completely removed from the surface of the 

absorbers by the selective chemical etchings applied before the deposition of the buffer layer. 

Cross section 

 The cross-sectional images of the full devices (i.e. after chemical etchings and CdS/TCO 

deposition) provide a sharper view of the distribution of grains in the bulk. A bi-layered 

structure can be distinguished in all samples with small grains next to the Mo back contact and 

large grains on top. The largest grains are observed in the undoped and the SLG samples. Na 

doping does not modify the grain morphology significantly, but the small grains in the bottom 

layer seem to be slightly smaller and more compact with respect to the undoped reference. 

This differs from most of the reports in which an important enhancement of crystal size is 

observed when doping with Na [158,162,163,165,166,170] (see section 1.4.4) for more 

information). Doping with K, on the other hand, appears to hinder crystal growth and only a 

few micron-size grains can be spotted scattered throughout the sample with a predominant 

presence of small crystals. As shown before, the 10 KF PAS is the best performing PI sample of 

the batch which suggests that large grains, although desirable, do not always imply a better 

performing device. A similar result was observed by López-Marino et al. for KF-doped CZTSe 

samples fabricated on steel substrates [158]. 
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Figure 52. FESEM images of the CZTSe samples fabricated on PI and doped with the PAS approach. Left and 
middle: top view images of the as-annealed absorbers. Right: cross-sectional images of the full devices. 

Carrier concentration modification by alkali doping 

C-V measurements were performed on these devices in order to estimate their charge carrier 

concentration and depletion width (Figure 53). The relatively low efficiencies and voltages 

obtained suggest the samples exhibit high concentrations of bulk deep defects and/or 

interface states which complicate the interpretation of the C-V data based on a simple 

capacitor model. For this kind of samples, the carrier concentration is usually overestimated 

and the space charge region width becomes frequency dependent [222]. Nevertheless, the 

measurements allow qualitative comparison of the different dopants and provide evidence of 

an increased carrier concentration by the PAS doping approach.  The cell without intentional 

doping shows the lowest carrier concentration with 4·1015 cm-3. The addition of 15 nm of NaF 

and 10 nm of KF increases the carrier concentration up to 7·1015 cm-3 and 1·1016 cm-3 

respectively indicating an effective incorporation of the dopants into the CZTSe absorber. This 

augmented carrier concentration might explain, at least partially, the increased Voc of the 

doped samples with respect to the undoped reference. 
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Figure 53. C-V measurements of the record cells of the CZTSe samples fabricated on PI and doped with the PAS 
approach. 

Summary 

To sum up, the results presented in this section demonstrate the feasibility of producing 

efficient devices both on PI (3.5%) and SLG (6%) at temperatures as low as 470°C using 

sequential sputtering and selenization. In addition, they also show that the PAS approach is an 

effective way of doping the CZTSe absorber while PDT requires further analysis. 

3.3.2 Low temperature CZTSe on SLG: effect of processing temperature 

Once that the feasibility of producing efficient solar cells at 470°C had been demonstrated, 

new devices were fabricated on SLG at different annealing temperatures (450-490°C) in order 

to shed light on the impact of low process temperatures on the synthesis of CZTSe absorbers. 

Morphological analysis 

Figure 54 shows FESEM top view images of the as-annealed (before chemical etchings) CZTSe 

absorbers. The micrographs indicate a strong dependence of crystal size with temperature. At 

450°C there is less energy available for crystal growth. The surface of the absorber is covered 

by a small layer of nanocrystals (ZnSe) in which some elongated grains (SnSex) can also be 

spotted. This surface morphology is very similar to the one observed on PI samples above and 

will be discussed later on. Small CZTSe crystals (<1 µm) can be discerned underneath the top 

nanocrystal layer. With a slight increase of temperature to 470°C micron-size grains mixed with 

smaller crystals can be clearly spotted throughout the whole surface of the absorber. The 

amount of ZnSe and SnSex crystals is widely reduced. This is consistent with the characteristics 

of the sample fabricated on glass at 470°C shown above (see Figure 52). As the temperature 

increases up to 480-490°C the presence of small grains decreases and a well-packed surface 

with good crystal quality and no trace of superficial secondary phases is observed. 
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Figure 54. FESEM top view images of the as-annealed CZTSe absorbers processed at low temperature on SLG. 

Secondary phase evaluation by Raman spectroscopy 

The strong presence of ZnSe and SnSex observed by FESEM suggested that these or other 

secondary phases could also exist underneath the surface and, thus, withstand chemical 

etchings. In order to evaluate this issue, the full devices were investigated by Raman 

spectroscopy under a 785 nm excitation wavelength. The inset in Figure 55 shows the 

normalized Raman spectra of the samples fabricated at different temperatures. The main 

peaks of the CZTSe phase are clearly identified at 169 and 195 cm-1 and, from the fitting of the 

spectra, a good absorber crystal quality independent from the annealing temperature is 

observed. However, the main feature brought about by these spectra is the detection of SnSe2 

as confirmed by the intense peaks at 184 cm-1 and, more subtly, at 119 cm-1 [223]. The absence 

of peaks at 108, 130, 133 and 151 cm-1 indicates that no SnSe coexists with SnSe2 on the 

surface of the absorbers [224]. Figure 55 shows the maximum, minimum and average SnSe2 

concentration found in each of the samples as estimated by the peak area ratio 

A(SnSe2)/A(CZTSe). The distribution of the SnSe2 phase is found to be very inhomogeneous. 

Taking into account that the measurements have been performed with a macrospot size (50 

μm), these results suggest the formation of isolated SnSe2 clusters. A reduction of the average 

concentration and dispersion of SnSe2 with annealing temperature can be clearly seen. The 

SnSe2 peak completely disappears for some points of the 490°C sample. 

 

Figure 55. Minimum, maximum and average peak area ratio A(SnSe2)/A(CZTSe) as an estimation of SnSe2 
concentration of CZTSe samples synthesized on SLG as a function of annealing temperature. Dashed lines are 
intended as a visual guide for the reader. Inset: Normalized Raman spectra of the samples. 
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Solar cell performance and influence of SnSe2  

The average solar cell parameters of the as-fabricated samples (before LT-PAT) are shown in 

solid boxes in Figure 56 and also in Table 12. They show an improvement of the performance 

of the solar cells with annealing temperature with efficiencies around 1% at 450°C increasing 

to an average efficiency of 4.2% at 490°C. This is consistent with the gradual disappearance of 

the secondary phases detected with FESEM and Raman spectroscopy. Although all the 

optoelectronic parameters are enhanced with the annealing temperature, a closer look reveals 

that Voc is the dominant parameter exhibiting an almost linear increase with temperature. The 

samples were submitted to a hot plate air reannealing at 200°C for 30 min in order to improve 

their performance as explained above. The results are shown as dashed boxes in Figure 56 and 

are also listed in Table 12. Surprisingly, the Voc of these devices is heavily deteriorated after 

reannealing. However, the Voc reduction is less intense in the case of the 490°C sample. Jsc is 

also deteriorated for the 450°C and 460°C samples while it remains unchanged for the 470°C 

sample and increases for higher temperatures. FF improves in all cases. This way, efficiency is 

only enhanced for the 490°C sample. However, not all the cells in the 490°C sample behave in 

the same way as can be deduced from the increased standard deviation of the Voc, FF and 

efficiency after reannealing. 

 

Figure 56. Boxchart of the main solar cell parameters of the CZTSe samples processed on SLG at different 
temperatures before (solid boxes) and after (dashed boxes) hot plate reannealing. 

The response of these CZTSe solar cells to a LT-PAT process differs strongly from other reports 

(see section 2.3.9). A deeper Raman investigation linked this unexpected reannealing 

behaviour to the presence of SnSe2. Many cells of every sample were analysed and this phase 

was intensely detected in all them except for the 490°C sample. In this sample, SnSe2 was 

found only in some of the cells while others were completely SnSe2-free. Interestingly, the 
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reannealing hampers Voc and, thus, efficiency only in cells containing SnSe2. In the case of 

SnSe2-free cells, the Voc is only reduced by a few mV (as observed in the first doping 

experiment, see Figure 49) while Jsc and FF are boosted resulting in a highly enhanced 

efficiency. This finding is summarized in the last two rows of Table 12. Therefore, from these 

results it seems clear that large amounts of SnSe2 deteriorate both Jsc and Voc during low 

temperature reannealing. For low amounts of SnSe2, Jsc is less affected and even starts to 

improve during reannealing. However, even with reduced amounts of SnSe2, Voc is still largely 

reduced resulting in decreased efficiencies. Finally, when SnSe2 is not detected, the Voc is only 

very slightly reduced and the efficiency of the devices is greatly increased through higher Jsc 

and FF. 

Table 12. Average and standard deviation (in brackets) of the main solar cell parameters of the CZTSe devices 
fabricated on SLG at different temperatures extracted from J-V measurements. The last two rows show the 
parameters of a cell from the 490°C sample containing SnSe2 and from the SnSe2-free record cell. AF stands for 
“As-fabricated” and AR stands for “After hot plate reannealing”. 

 Jsc (mA/cm
2
) Voc (mV) FF (%) Efficiency (%) 

 AF AR AF AR AF AR AF AR 

450 21.5 (0.9) 19.1 (1.0) 121 (15) 78 (6) 36.7 (1.8) 37.9 (1.8) 1.0 (0.1) 0.6 (0.1) 

460 21.3 (0.7) 18.5 (0.9) 174 (10) 84 (4) 38.7 (1.8) 41.8 (1.4) 1.4 (0.2) 0.7 (0.1) 

470 22.2 (0.4) 22.2 (0.9) 263 (14) 127 (11) 36.4 (0.6) 40.3 (0.7) 2.1 (0.2) 1.1 (0.1) 

480 23.2 (1.2) 23.9 (1.0) 309 (17) 154 (16) 38.4 (1.5) 41.3 (1.7) 2.8 (0.4) 1.5 (0.2) 

490 25.0 (1.0) 27.5 (0.9) 370 (16) 330 (50) 45 (3) 51 (7) 4.2 (0.6) 4.7 (1.4) 

490 
SnSe2 

24.0 27.2 349 246 42.0 41.8 3.5 2.8 

490 
record 

24.7 28.0 383 378 47.6 61.0 4.5 6.4 

 

Despite all this, a 6.4% record cell was achieved at 490°C after reannealing giving proof of the 

feasibility of fabricating efficient CZTSe devices at low temperature (if the formation of SnSe2 is 

avoided) with a performance close to samples processed at higher temperatures by identical 

procedures (see [140,158,206]). 

3.3.3 Further strategies to increase conversion efficiency: higher 

temperatures and Na+Ge doping 

Sample summary 

Finally, CZTSe solar cells were fabricated on PI at different temperatures (470-490°C) in order 

the study the feasibility of increasing their performance by working at higher temperatures 

without degrading the substrate. In addition, the effect of introducing a Ge nanolayer was also 

studied. Ten nanometres of Ge deposited on top of the metallic precursors prior to 

selenization have been demonstrated to improve the performance of CZTSe solar cells 

fabricated on glass at 550°C [104,206,225]. This beneficial effect is not purely due to Ge itself 

but arises from the interaction between Ge and the Na provided by the glass substrate [225]. 

Therefore, taking this into account, the addition of a 10 nm Ge layer was combined with PAS 
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NaF (10 nm) doping. Two batches of samples were processed simultaneously. One of them was 

used to investigate the morphology of the absorbers (batch 1) and the other was employed to 

fabricate full devices (batch 2). None of the PI substrates presented any signs of degradation 

after the processing and no appreciable differences could be spotted between them. 

Effects of temperature and doping on absorber morphology 

Figure 57 shows top view FESEM images of the as-annealed and etched absorbers (batch 1). 

Before applying the chemical etchings, all the samples exhibit surfaces covered by a top layer 

of small nanocrystals similar to the one described in previous sections for CZTSe absorbers 

fabricated at low temperature on PI and SLG. Some differences can be spotted between the 

undoped and the doped absorbers. In the case of undoped samples, this layer completely 

covers the surface and is almost entirely composed by ZnSe nanocrystals. Increasing the 

annealing temperature does not eliminate nor even reduce this layer. On the other hand, 

when NaF+Ge doping is employed, the density of the ZnSe nanocrystals is slightly reduced 

exposing some CZTSe grains. This is accompanied by the appearance of large elongated SnSex-

like crystals in the samples processed at 470°C and 490°C. No elongated crystals are found on 

the surface of the 480°C sample. Compared to previous results (Figure 54 and Figure), some of 

these SnSex crystals look different. They are larger, thicker and slightly more rounded. 

 

Figure 57. FESEM top view images of the as-annealed and etched CZTSe absorbers synthesized on PI with and 
without Na+Ge doping at different temperatures (batch 1). 



73 
 

After the chemical etchings the surface ZnSe nanocrystals are completely removed from all the 

samples. However, SnSex grains are only partially eliminated. Clusters of SnSex remain 

randomly scattered in the 470°C undoped sample and, more intensely, in all the NaF+Ge 

doped samples. An EDX analysis revealed that these clusters are formed purely by SnSe2 

crystals (Figure 58). 

 

Figure 58. EDX spectra of the etched surface of the absorbers synthesized on PI with NaF+Ge doping. The red 
region corresponds to a secondary phase-free region. The black region corresponds to a SnSex phase cluster. 

Low temperature post annealing treatment 

The devices fabricated with the absorbers from batch 2 were submitted to successive 25 min 

hot plate LT-PATs at different temperatures (180, 200, 275 and 300°C). This was due to the fact 

that the reannealing conditions successfully used before (180°C for 30 min) did not improve 

significantly the performance of any of the samples and, even more, was detrimental for some 

of them. Figure 59 shows the evolution of a characteristic solar cell from each of the samples 

with the different LT-PATs. Although there are no clear general trends and the behaviours 

seems very sample-dependant, some conclusions can be extracted from this figure: 

i. The Jsc of the devices tends to increase with the increasing reannealing temperature in 

most cases. 

ii. Annealing at 200°C seems to have a negative effect on the Voc of most devices. 

iii. Annealing at T>200°C seems to recover the Voc of the devices and, in some cases, it 

even surpasses the Voc of the as-fabricated devices. 

iv. In the cases where the Voc is improved with respect to the as-fabricated devices at T > 

200°C, the FF is also greatly improved resulting in superior efficiencies. 

v. Otherwise, at T>200°C the FF remains approximately constant and there is no 

efficiency improvement. 
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Figure 59. Effect of reannealing temperature on the solar cell parameters of a characteristic solar cell of each of 
the samples. Dashed lines correspond to undoped samples while continuous lines correspond to sample doped 

with NaF+Ge. 

Device performance 

Table 13 shows the J-V parameters of the record device from each sample after the 300°C LT-

PAT. The performance of the undoped devices increases clearly with process temperature. 

2.4% and 2.8% efficiencies were obtained at 470°C and 480°C, respectively; and a remarkable 

4.2% maximum efficiency device was achieved at 490°C. The Voc and FF of these samples 

increase with temperature almost linearly as observed in the devices fabricated on SLG shown 

above. As for the Jsc, it remains similar at 470°C and 480°C while it increases very abruptly at 

490°C (28.9 mA/cm2 compared to 25 mA/cm2 at lower temperatures) largely enhancing the 

efficiency of this sample. 

On the contrary, the samples with NaF+Ge doping do not exhibit a clear trend. Unexpectedly, 

NaF+Ge doping has negative effect at 470°C and 490°C degrading all the optoelectronic 

parameters with respect to the undoped samples. Nevertheless, NaF+Ge doping highly 

enhances the Voc (+55 mV) and FF (+13% absolute) at 480°C compared to its undoped 

counterpart. This translates into a device with 4.9% efficiency which sets a record for a CZTSe 

device fabricated at low temperature on a polymer substrate. 
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Table 13. Main solar cell parameters of the CZTSe record devices fabricated on PI with and without NaF+Ge 
doping at different temperatures (batch 2) extracted from J-V measurements. 

 Doping Jsc (mA/cm
2
) Voc (mV) FF (%) η (%) 

4
7

0
 - 25.7 248 37.1 2.4 

NaF+Ge 19.8 182 31.6 1.1 

4
8

0
 - 24.7 283 40.6 2.8 

NaF+Ge 27.2 337 53.2 4.9 
4

9
0

 - 28.9 317 45.4 4.2 

NaF+Ge 18.6 198 31.4 1.2 

 

Relation between solar cell performance and SnSe2 

In order to investigate this unexpected behaviour, the samples were inspected by Raman 

spectroscopy with λex= 785 nm. SnSe2 was found inhomogeneously distributed throughout all 

the samples as in the case of the low-temperature samples prepared on SLG reported in the 

previous section. In Figure 60, the maximum SnSe2 concentration (A(SnSe2)/A(CZTSe) peak area 

ratio) found in the record cells of each of the samples is plotted as a function of the fabrication 

temperature. Among the undoped samples, a moderate amount of SnSe2 is found. The SnSe2 

content is reduced as the process temperature increases and becomes zero at 490°C. The 

strongest SnSe2 concentrations are found in the NaF+Ge doped samples synthesised at 470°C 

and 490°C. However, no SnSe2 is detected at 480°C. These results correlate perfectly with the 

performance of the devices and explain the odd behaviour of the doped samples. The low 

SnSe2 content found in the NaF+Ge 480°C might seem inconsistent with SEM analysis in which 

SnSe2 clusters were clearly observed in this sample. This issue will be discussed later on. 

 

Figure 60. Maximum peak area ratio A(SnSe2)/A(CZTSe) as an estimation of the maximum SnSe2 concentration 
found in the record cells of the CZTSe samples processed on PI with and without NaF+Ge doping at different 
temperatures. Inset: Normalized Raman spectra of the samples. 
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Again, the results show that SnSe2 limits the performance of the devices by largely decreasing 

their Voc. This detrimental phase is reduced with increased selenization temperature for the 

undoped samples. This is consistent with the results obtained on SLG. However, the formation 

of SnSe2 seems to be somehow promoted by NaF+Ge doping.  

Conclusions 

Despite SnSe2 formation, the feasibility of fabricating flexible CZTSe devices with efficiencies 

greater than 4% at annealing temperatures below 500°C and without any intentional doping 

has been demonstrated. In addition, although SnSe2 appears to be linked to NaF+Ge doping, 

the addition of a Ge nanolayer has been shown to improve the performance of low 

temperature devices up to 5% efficiency. A deeper optimisation of the process and, 

especially, of the thermal annealing is likely to further increase the conversion efficiency of 

both doped and undoped devices. Figure 61 compares the J-V curves of the best devices 

obtained in this work. While Jsc is similar in the three devices, the SLG record cell presents 

superior Voc and FF than the PI devices. The graph shows that NaF+Ge doping helps to reduce 

the gap between the two substrates by increasing Voc and FF of the PI devices. 

 

Figure 61. J-V curves of the best performing samples obtained in this work fabricated on SLG (dashed blue line) 
and on PI with (black) and without (grey) doping at temperatures below 500°C. Inset: table with the main solar 
cell parameters of the cells. 

3.4 Discussion 

3.4.1 Alkali doping 

It has been shown that PAS doping with NaF and KF is a very effective way of improving the 

conversion efficiency of CZTSe solar cells fabricated on polyimide. The consequences of 

introducing these dopants during the synthesis of the CZTSe absorbers are enhanced 

collection, Voc and FF as well as a higher net carrier concentration. 
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NaF 

In the case of Na, the improvements observed in the Voc and FF can be partially attributed to 

the grain boundary passivation effect of this alkali that avoids deep defects and reduces non-

radiative recombination [162,168,226]. This is also reflected in the improved carrier collection 

observed in the EQE measurements. However, from the C-V results obtained, it is plausible to 

believe that most of the Voc enhancement detected is related to an augmented carrier 

concentration. This can happen by various mechanisms. Nagaoka et al. speculated that the 

incorporation of Na into the absorber creates antisite NaCu defects that inhibit the formation of 

donor ZnCu defects (favoured by Cu-poor Zn-rich compositions), increasing the net carrier 

concentration and, in consequence, the Voc [173]. Another explanation was given by Yuan et al. 

[161]. They proposed that NaCu is only stable at high temperatures. During cooling down, Na 

out-diffuses from the kesterite structure leaving acceptor VCu defects behind and thus 

increasing the carrier concentration and Voc of the devices. Finally, a boost in Voc and carrier 

concentration has also been attributed to a reduction of the activation energy of shallow 

acceptor levels [162,168]. 

KF 

As for K, little information about its effect on kesterite devices is available. Some authors 

reported a highly improved FF due to a decrease of the Rs of the devices [199,200]. Table 14 

presents the shunt and series resistance extracted from the J-V curves shown in Figure 51 

(left). It can be noticed that the highly improved FF observed in the 10 nm KF doped sample 

also comes from a reduced Rs. What is more, the K-doped sample presents a Rs similar to the 

SLG reference and one order of magnitude lower than the undoped and the Na-doped 

samples.  Taking a look at the effects of K on CIGS solar cells, this enhanced FF could be related 

to the modification of the surface of the absorber (Cu depletion) that improves the CIGS/CdS 

heterojunction through the creation of CdCu antisites [190,193,227]. The creation of such an 

electronically inverted absorber surface (n-type) is also plausible in CZTSe devices and would 

reduce recombination in the CZTSe/CdS interface improving the FF [158]. The EQE in Figure 51 

(right) also shows an improved collection at short wavelengths providing more support to this 

theory. Besides an improved FF, such an enhanced CZTSe/CdS interface would also increase 

the Voc of the devices which is also observed in the 10 nm KF sample. 

Table 14. Rs and Rsh of the record cells fabricated with PAS doping. 

 Rs (Ω·cm2) Rsh (Ω·cm2) 

SLG 0.7 120 

No doping 4.7 20 

NaF 15 nm 2.9 60 

KF 10 nm 0.9 70 

 

However, the increase in Voc and, especially, the large enhancement of the FF produced by 10 

nm KF doping can be also attributed to an effective passivation of the grain boundaries as 

observed for K-doped CIGS devices [192,193,228]. This grain boundary passivation effect can 

be clearly seen in this work since the 10 nm KF sample exhibits the best performance and FF of 

the whole batch despite its smaller grain size (and higher number of grain boundaries) 
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compared to NaF and undoped samples. Comparing the FF of Na and K doped samples, the 

higher FF of the latter also suggests that recombination at the grain boundaries is more 

effectively reduced by K than by Na.  

K has been calculated to preferably incorporate into CZTSe as KCu antisite similarly to Na 

although to a lesser extent [229]. Thus, a similar increase in carrier concentration (through the 

avoidance of ZnCu or creation of VCu) is expected and consistent with the results presented here 

[161]. Such an increase in carrier concentration related to K-doping has been reported for 

kesterite devices by several authors [186,198,199]. 

PDT 

Contrarily to PAS, the PDT approach did not provide positive results. PDT processes are usually 

carried out at 350-400°C for CIGS [73,153,230,231]. López-Marino et al. used a temperature of 

400°C on CZTSe devices for NaF and NaF+KF PDT doping and obtained a moderate 

improvement on Voc while FF remained similar [158]. The PDT process employed in this work 

was carried out at 325°C. This temperature is probably not enough for an effective diffusion of 

the alkali into the absorber and might be increased in future attempts with this strategy. It 

might be possible that the incorporation of alkalis in PDT occurs, at least partially, through the 

formation of liquid alkali-Se phases or alkali-metal-Se phases [186,232]. The reduced 

temperature employed might have, thus, impeded the formation and/or melting of such 

phases preventing alkali incorporation. Based on the mechanism proposed by Yuan et al., 

another explanation may lie at the low solubility of Na and K in CZTSe at such low reannealing 

temperatures and, thus, the difficulty of forming alkaliCu antisites [161]. Be as it may, it is clear 

that the PDT doping strategy is not straightforward and needs a careful study and optimisation 

for kesterite absorbers in order to be as successful as in CIGS devices.  

3.4.2 Differences in the temperature-dependence of secondary phase-

formation in soda-lime glass and polyimide substrates 

The most obvious consequence of working at low temperatures has been observed to be the 

high formation of ZnSe secondary phases on the surface of the CZTSe absorbers. Taking into 

account that the composition of the precursors was selected to be Zn-rich, Zn is the top layer 

of the precursor and the absorbers are synthesized in an excess Se atmosphere, the formation 

of ZnSe is very likely to occur [119,122,127,205]. Furthermore, ZnSe has the highest formation 

enthalpy among all the binaries (excluding MoSe2) that participate in the synthesis of the 

CZTSe absorber making it a very stable phase [122,221,233,234]. Thus, working at low 

temperature in these conditions clearly hinders the incorporation of ZnSe into the CZTSe 

structure and ZnSe crystals remain on the surface of the absorber during the cool down. As the 

temperature increases, the higher available thermal energy should facilitate the incorporation 

of ZnSe into CZTSe. This is clearly observed in the SLG samples in which the presence of ZnSe is 

very high at 450°C and totally vanishes at 490°C. 

However, the same behaviour is not observed in polyimide samples. Comparing Figure 54 and 

Figure 57 it is evident that even the PI samples processed at the highest temperature (490°C) 

present a similar ZnSe content to the sample fabricated at the lowest temperature (450°C) on 

glass. This implies that PI samples are behaving differently to SLG during the annealing process. 
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More specifically, they behave as if they were processed at a lower temperature compared to 

SLG samples. 

A possible explanation of this effect arises from the tendency of polyimide samples to bend 

during annealing due to their lack of stiffness and the expansion of the CZTSe layer during 

selenization (see Figure 48 and Figure 62). As the samples bend during annealing, the contact 

surface of the PI substrate with the graphite box becomes almost zero (only the edges of the 

substrate are in direct contact with the box) and, thus, the heat transfer by conduction from 

the box to the PI substrate is greatly diminished. In consequence, the effective amount of 

thermal energy supplied to the sample is largely reduced. This might explain the similarities 

between PI samples processed at temperatures as high as 490°C and the SLG samples 

processed at 450°C. According to this theory, it is expectable that the energy received by a PI 

sample varies in quite a random manner from sample to sample depending on how it bends 

during annealing making the process difficult to control and resulting in a low repeatability. An 

illustrative example of different random bending of polyimide substrates during the same 

process is shown in Figure 62. In addition, this explanation could also lie at the origin of the 

bad performance of the samples fabricated using the frames shown in Figure 47. The only 

thermal contact between these frames and the graphite box during annealing occurs at the tip 

of the four small screws that hold the polyimide in place. Thus, a very low heat transfer by 

conduction from the box to the substrate is also expectable when using these frames. 

 

Figure 62. Picture of the as-annealed samples showing different bending and contact geometry with the graphite 
box. 

An incongruent behaviour of the NaF+Ge PI samples with annealing temperature has been 

observed, in which only the sample processed at 480°C performed well mainly due to an 

absence of SnSe2 as measured by Raman while samples processed at very similar temperatures 

(470°C and 490°C) were degraded by high concentrations of this secondary phase. Taking into 

account what has just been explained above, it is very likely that the samples processed at 

470°C and 490°C experienced a more pronounced or faster bending than the one processed at 

480°C and, thus, absorbed a lower amount of heat during annealing resulting in an increased 

formation of SnSe2. What is more, the inconsistence found between FESEM (clear presence of 

SnSe2 clusters) and Raman measurements (very little SnSe2 detected with some SnSe2-free 

cells) of the 480°C NaF+Ge samples can also be explained the same way. FESEM measurements 
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were performed in batch 1 samples and Raman measurements on batch 2 samples. Although 

both batches were processed simultaneously, it is possible that twin samples from different 

batches might have behaved differently during annealing thus generating a different amount 

of SnSe2. 

3.4.3 Origin and effects of SnSe2 

As just explained, the formation of SnSe2 is another direct consequence of working at low 

temperatures. It is well known that the loss of Sn and Se is a critical issue for the synthesis of 

kesterite-based PV devices [122–124]. However, at annealing temperatures below 500°C an 

excess of Sn has been spotted in the films in the form of SnSe2. According to the diagrams 

performed by Dudchak et al. the coexistence of CZTSe and SnSe2 during the synthesis of the 

absorber is expectable in the range of compositions and temperatures employed in this work 

[115]. At 550°C, Sn-loss is believed to occur by the instability of the SnIV oxidation state 

compared to SnII that causes the reduction of SnSe2  

2SnSe22SnSe+Se2(g)      (R1) 

and the subsequent vaporization of the SnSe phase [122,124]. However, based on the results 

presented in this work, it may be possible that low annealing temperatures slow down the 

kinetic of R1 preventing an effective reduction of SnSe2 into SnSe. This way, SnSe2 would 

remain mixed within and on top of the CZTSe absorber. On SLG and undoped PI, a 

diminishment of SnSe2 with the increasing annealing temperature has been observed which is 

consistent with this theory.  

The hypothesis of SnSe2 formation due to a low supply of thermal energy during annealing is 

supported by observations performed in other works. Márquez et al. observed a strong 

formation of SnSe2 when processing CZTSe at 450°C that disappeared for samples processed at 

500°C [235]. The duration of the annealing was the same at both temperatures so the energy 

supplied to the sample was directly related to the annealing temperature. Likewise, Indubala 

et al. fabricated CZTSSe absorbers from binaries through a 3-hour reactive annealing at 

temperatures from 350 to 650°C [236]. They also detect SnSe2 at temperatures ≤450°C that 

disappeared at higher temperatures. What is more, Temgoua et al. fabricated CZTSSe devices 

at 600°C for different annealing times and observed the formation of SnSe2 from 1 to 30 min 

annealings that vanished for longer annealing times [237]. In this case, the amount of energy 

supplied to the samples was proportional to the duration of the annealing. Thus, it can be 

concluded that the supply of thermal energy is one of the keys to the formation of SnSe2. 

Finally, regarding the discussion about the bending of polyimide substrates that hinders heat 

transfer during annealing, a higher SnSe2 content would be expectable in such circumstances 

which agrees with the results presented here. 

On the other hand, when NaF+Ge doping is employed, the formation of SnSe2 is greatly 

enhanced (or its elimination hindered) to an extent in which micron-sized clusters of this phase 

are found scattered throughout the surface of the absorbers. Ge does not incorporate into the 

CZTSe structure itself but rather increases the incorporation of Na into the absorber [225]. 

Thus, it might be possible that the increased SnSe2 formation observed with NaF+Ge doping 

can be attributed solely to an enhanced Na content. Lin et al. also found a connection between 
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the amount of Na diffused to the CZTSe absorber and the formation of SnSe2 on samples 

processed at 460°C [226]. One could argue that, if this was true, an increased amount of SnSe2 

should be found in SLG samples processed at 490°C due to a higher Na diffusion attributable to 

a higher temperature. However, it should be noted that this effect only appears when 

combined with a low annealing temperature or, more specifically, to a low supply of thermal 

energy to the samples during annealing. At higher temperatures on SLG, despite the increased 

formation of SnSe2 arising from a high Na diffusion from the substrate, the kinetic of R1 would 

be fast enough for an effective reduction of this phase into SnSe and its subsequent 

evaporation. 

A possible explanation for this Na-SnSe2 relationship lies at the fact that both Na and Ge are 

believed to form Na-Se compounds and GexSey liquid phases that act as fluxing agents 

increasing the availability of Se within the forming absorber [162,163,225]. Thus, it might be 

plausible that, since elemental Se is a by-product of R1, the high availability of Se due to the 

such fluxing phases somehow contributes in slowing down R1. According to this hypothesis, 

this slowdown effect should be stronger with Ge since Se availability would be two-fold 

enhanced: an increased amount of Se due to the increased presence of Na caused by Ge and 

to the presence of GexSey liquid phases themselves. 

 

Figure 63. Voc and efficiency of different cells fabricated in this work as a function of the maximum SnSe2 
concentration found in them as estimated by the peak area ratio A(SnSe2)/A(CZTSe) of the Raman spectra. 
Dashed lines are intended as a visual guide for the reader. 
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The main effect of SnSe2 on CZTSe devices observed in this work is a strong reduction of the 

Voc. Figure 63 shows the Voc of the different cells analysed in this work as a function of the 

maximum SnSe2 content found by Raman observations. A clear correlation can be observed 

independently from the substrate, doping or fabricating temperature. This interesting result 

indicates that all these factors only vary the amount of SnSe2 synthesized along with CZTSe but 

that this phase is the main factor dominating the behaviour of the devices and the main issue 

when working at low temperatures. 

Regarding the origin of the degradation of the Voc, it has been reported that the presence of 

SnSe2 within CZTSSe introduces shunting paths in the devices decreasing the Voc [237]. This 

effect can also be observed in the SLG samples fabricated in this work. Figure 64 shows that 

the reduction in the Voc observed at low temperatures (or high SnSe2 contents) is strongly 

related to a lower shunt resistance (Rsh). Shunting might be indicating that SnSe2 does not only 

form near the surface but also in the bulk and the grain boundaries creating undesirable 

current paths. 

 

Figure 64. Boxchart of the Rsh of the devices fabricated on SLG at different temperatures before (solid) and after 
(dashed) hot plate reannealing extracted from J-V measurements. 

Another interesting effect of this secondary phase observed in the SLG samples processed at 

low temperature is an additional reduction of the Voc of SnSe2-containing devices after a 200°C 

air reannealing (LT-PAT). As observed in Figure 64, this is mainly due to a further decrease of 

Rsh. Nevertheless, LT-PAT is a very complex process in which order-disorder transitions, surface 

and grain boundary compositional changes, CdS modifications and even Na dynamics play 

important roles [140,141,238]. Although it is clear that the presence of SnSe2 is detrimental for 

low temperature reannealing of CZTSe full devices processed on SLG, a deeper study should be 

performed in order to shed light on this issue. In fact, the last experiment on PI showed that 

while reannealing at 200°C lead, in general, to a lower Voc (Figure 59), which correlates with a 

lower Rsh, reannealing at 300°C can improve the performance of both doped and undoped 
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CZTSe absorbers even if they contain moderate amounts of SnSe2. These results might be 

pointing towards a decomposition of the SnSe2 phase at high LT-PAT temperatures that 

eliminates shunt paths. As an illustrative example, Figure 65 shows the evolution of the Voc and 

Rsh of the sample processed on PI at 490°C without doping with LT-PAT temperature. It can be 

observed that the Rsh decreases when the sample is reannealed at 200°C, similarly to what is 

shown in Figure 64. However, this is followed by a sudden increase of the Rsh at higher 

temperatures supporting the idea of a possible decomposition of the shunting SnSe2 phase. 

However, the study of these reannealing effects is beyond the scope of this work and will be 

left for future studies. 

 

Figure 65. Evolution of Voc and Rsh with reannealing temperature of the record cell from the PI sample processed 
at 490°C without doping. 

3.5 Conclusions 

This work demonstrates the compatibility of mass production-enabling polyimide substrates 

with the fabrication of Earth-abundant kesterite-based thin film solar cells. 

One of the main concerns when working with polyimide is its low thermal robustness that 

limits processing temperatures below 500°C. However, the feasibility of producing efficient 

CZTSe devices by sequential precursor sputtering and selenization at such low annealing 

temperatures, not only on PI (4.9% efficiency) but also on SLG (6.4% efficiency) has been 

proved. These results set a record for CZTSe devices fabricated on a polymer substrate. 

On the other hand, alkali doping has been found to be crucial for enhancing the performance 

of the devices fabricated on polyimide and reduce the performance gap with respect to SLG 

substrates. Different doping strategies were investigated for Na and K doping. The results lay 

bare the difficulty of the PDT doping approach. On the contrary, PAS has been shown to be an 

effective doping strategy that causes important improvements in solar cell performance, 
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carrier concentration as well as modifying the grain morphology when doping either with NaF 

or KF. Further experimentation led to a 4.9% record sample on PI by combining NaF and Ge 

doping. 

Nevertheless, working at low temperature has also been linked to the formation of a 

detrimental SnSe2 secondary phase both on SLG and PI. This effect is aggravated on PI devices 

due to bending-related hindered heat absorption during annealing, making the process highly 

irreproducible. This phase has been found to severely decrease the Voc of the devices by, 

apparently, creating shunting paths and to be the main factor controlling the performance of 

the devices. The Voc is further decreased by LT-PATs if SnSe2 is present. However, an interesting 

elimination of the negative effects of small amounts of SnSe2 has been observed by 

reannealing the devices at rather high temperatures (275-300°C). 

Based on the results presented here, it seems plausible to completely eliminate SnSe2 by a 

deep optimisation of the fabrication process. More specifically, four easily implementable 

actions are proposed: 

i. Adjustment of Sn-composition in the precursor and elimination of elemental Sn from 

the annealing atmosphere. 

ii. Design of a frame or annealing box that ensures good thermal contact between the 

box and the sample during annealing.  

iii. Complement the low annealing temperature with longer annealing times to ensure an 

adequate thermal energy input into the sample. 

iv. RTP-based annealing, in which the heat transfer occurs from top to bottom could also 

be an interesting option to increase annealing temperature without substrate damage. 

Regarding alkaline doping, besides PAS and PDT, doped Mo back contacts (Mo:Na, Mo:K or a 

combination of both) combined with Ge can be an interesting alternative strategy for a more 

controllable, reproducible and effective doping process. 

Thus, the results obtained in this work suggest that through extensive research and the 

optimisation of the fabrication process in line with the strategies proposed above, polyimide-

based kesterite solar cells with similar efficiencies as the current state of the technology on 

SLG can be achieved. This would open the door to low-cost mass production of kesterite solar 

devices with a high EROI. 

  



85 
 

4. Vitreous enamel as sodium source 
for efficient kesterite solar cells on 
commercial ceramic tiles 

4.1 Introduction 

4.1.1 Building integrated photovoltaics 

In sections 1.1.2 and 1.3 some of the current problems of PV were explored. The fabrication 

energy was found to be one of the most critical ones contributing to the low EROI of PV. 

However, there is another key issue that was not included in the discussion since its influence 

on the EROI is not straightforward: the large area required to generate a significant amount of 

power from PV (with regards to other ways of generation). This is due to the low power 

density of solar panels. Current top c-Si commercial modules exhibit power densities around 

200 Wp/m2 [47,239,240]. Assuming that the power capacity of an average size coal-fired power 

station is around 300 MW, 1.5 km2 of solar panels working at 100% power rate would be 

necessary for an equivalent capacity. In a solar farm, some spacing between panels is 

necessary to avoid shadowing and facilitate operation and maintenance tasks. Typical power 

densities of solar farms are, thus, reduced to 4-10 W/m2 [241]. In this case, 30-75 km2, the size 

of a small town, would be required to match the capacity of a coal-fired power plant. These 

rough figures give a sense of the large land allocation needs of PV. If we add to the equation 

power losses in transmission and distribution from solar farms to the point of consumption, 

the power density is further reduced. 

Building integrated photovoltaics (BIPV) is a very interesting approach to overcome both cost 

and area issues of PV. In BIPV, solar power generators become an integral part of buildings 

rather than being attached a posteriori (usually referred to as building attached photovoltaics 

or, in short, BAPV). In contrast to BAPV, BIPV systems replace the outer building envelope skin, 

thus serving simultaneously both as climate screens and as power sources [242–245]. This 

approach presents a series of advantages in the face of traditional centralized solar farm 

generation and even of BAPV: 

 Buildings possess large façade, glazing and roof areas exposed to solar radiation 

suitable for the installation of PV systems. Thus, the need for extra land allocation is 

eliminated. 

 Most of the energy generated is consumed at the place of generation (the building) 

avoiding transmission and distribution losses. 

 Manufacturing and installation costs are significantly reduced since solar cells act both 

as building structural materials and power generators [242,243,246–248]. When 

compared to conventional cladding materials, installing BIPV adds only a marginal 

extra cost (2%–5%) to the overall construction costs of a building [248]. 

 Integration allows aesthetically attractive designs. 
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All this has made of BIPV a growing market with a forecasted annual growth rate of 17% (until 

2024) [249]. Although BIPV technologies cannot presently be considered to be in a mature 

state of development, there are a manifold of commercial products currently available. BIPV 

products can be categorized in four main categories depending on their realm of application: 

foils, solar tiles, integrated modules and solar glazing [242,243]. 

BIPV foils 

BIPV foils are based on solar devices fabricated onto low weight and flexible modules. These 

characteristics make them easily integrable at any building surface (Figure 66). Inside the 

different foil substrates, polyimide is particularly interesting for integration since it combines 

low weight and flexibility with a very high mechanochemical resistance (see Table 10) that 

translates into weather-tight products ideal for climate-screen outer building envelope skin. 

 

Figure 66. BIPV foil Evalon® solar by alwitra. Source: https://alwitra.de/wp-
content/uploads/2019/02/alwitra_Evalon_Solar_cSi_GB_2019_01.pdf (accessed on 10/05/19). 

BIPV integrated modules 

BIPV integrated modules are almost identical to conventional BAPV modules but made with 

weather skin solutions so they may replace different types of roofing or walling [242,243]. An 

example can be seen in Figure 67. 

 

Figure 67. Solesia® by Creaton. Source: https://www.zi-online.info/en/artikel/zi_2011-
10_Sunshiny_days_for_photovoltaics_1265944.html (accessed on 10/05/19). 

https://alwitra.de/wp-content/uploads/2019/02/alwitra_Evalon_Solar_cSi_GB_2019_01.pdf
https://alwitra.de/wp-content/uploads/2019/02/alwitra_Evalon_Solar_cSi_GB_2019_01.pdf
https://www.zi-online.info/en/artikel/zi_2011-10_Sunshiny_days_for_photovoltaics_1265944.html
https://www.zi-online.info/en/artikel/zi_2011-10_Sunshiny_days_for_photovoltaics_1265944.html
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BIPV glazing 

BIPV glazing products are semi-transparent devices that transmit a portion of sunlight into the 

interior of buildings and use the rest for power generation. Logically, they also insulate the 

building from external weather just like conventional glazing. Most commercial products are 

based on opaque devices with some spacing between solar cells to allow diffuse light to pass 

through them (Figure 68, left) [243]. The transparency of such devices can be tuned by varying 

the size of and/or spacing between the different cells. However, narrow/wide-bandgap 

technologies that mostly absorb invisible IR/UV light can also be employed to achieve 

semitransparency (Figure 68, right). This is usually accompanied by reduced thicknesses of the 

absorber layers. Different degrees of transparency and colours can be obtained by varying the 

bandgap and/or thickness of the absorbing layers. 

 

Figure 68. Left: Skylights made from spaced opaque modules (left) and semitransparent devices (right) by Onyx 
Solar. Source: https://www.onyxsolar.com (accessed on 10/05/19). 

BIPV solar tiles 

Solar tiles, on which this work is focused, are roof/wall tiles that have been equipped with a 

solar generator. By the partial or total substitution of standard tiles by BIPV solar tiles it is 

possible to maintain the favourable aesthetical appearance and mechanical properties of 

roofs/walls while converting them in power generators. One of the main advantages of this 

BIPV product is that it can be easily retrofitted into existing buildings [242]. Figure 69 shows 

different examples of roof solar tiles. 

 

Figure 69. Left: Solé Powertile
TM

. Source: https://cleantechnica.com/files/2010/05/SRS_Tile.jpg (accessed on 
10/05/19). Right: Solar roof by Tesla. Source: https://www.solarguide.co.uk/tesla-energy/solar-roof-tiles#/ 

(accessed on 10/05/19). 

https://www.onyxsolar.com/
https://cleantechnica.com/files/2010/05/SRS_Tile.jpg
https://www.solarguide.co.uk/tesla-energy/solar-roof-tiles#/
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4.1.2 Solar tiles and thin film photovoltaics: a combination with great 

potential 

Current commercial solar tiles consist of roof tiles with an attached or integrated Si solar cell 

[242]. Instead of being attached to or integrated into the tile structure a posteriori, thin film 

solar cells bring the possibility of direct deposition onto commercial ceramic tiles as an 

additional manufacturing step so that the tile becomes a solar module itself. The price of 

commercial tiles normally used in roofs, façades or ventilated walls typically ranges 30-75 

€/m2, similar to conventional SLG glass [201,250]. Thus, thin film solar cells could be 

implemented onto commercial tiles at the same cost as on glass, without the need of 

complicated integration or attaching designs and, thus, at lower prices than current solar tiles. 

Despite the great potential of thin-film-based solar tiles, this topic has not yet been studied 

thoroughly enough. Nevertheless, the feasibility of employing commercial ceramics as 

substrates for thin-film PV has already been successfully demonstrated in a small number of 

publications. a-Si were deposited on roof and wall tiles obtaining 5% and 4% efficient cells, 

respectively [251]. As for CIGS, solar cells were fabricated on commercial ceramic tiles 

achieving 14% conversion efficiency, similar to the results obtained on soda-lime glass (SLG) 

using the same procedure (selenization of sputtered binary compounds) [252]. 

Due to the Earth-abundance and low toxicity of their constituent elements, kesterites solar 

cells are ideal candidates for the mass deployment of solar tiles. Thus, developing an efficient 

kesterite solar tile technology seems of great importance for the BIPV market. Nevertheless, 

the kesterite community has not shown interest in this critical market niche. Only one proof-

of-concept for a kesterite solar cell on a ceramic was published but with a very limited power 

conversion efficiency below 2% [253]. The work presented here aims to demonstrate the 

feasibility of fabricating efficient Cu2ZnSnSe4 solar cells employing commercial ceramic tiles as 

substrates. 

4.1.3 Limitations of ceramic substrates for thin film deposition and 

objectives of this work 

Commercial ceramic tiles present a series of characteristics that complicate their use for thin 

film deposition and for the fabrication of kesterite solar cells: 

 They are rough, wavy and full of other morphological imperfections which are larger 

than the absorber thickness causing film discontinuity, short-circuit and shunting 

problems  [251,252,254]. 

 They contain (almost) no alkaline elements which are crucial for high solar cell 

performance (see section 1.4.4) 

 Their composition contains impurities (like Fe) which are detrimental for the 

performance of kesterite devices [255] 

In this work an approach that addresses these three critical issues simultaneously is 

investigated: employing ceramic substrates covered with a vitreous enamel in which Na2O is 

incorporated in controlled quantities (from 2 to 20 wt%) to its composition. This way, the 

enamel works three-fold: 
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 As a surface smoother 

 As a controlled sodium source 

 As a barrier for impurities 

The need of vitreous enamels to smooth the surface of raw ceramics and enable thin film 

deposition was already identified as a critical issue by several authors reporting working thin-

film devices on ceramics [251–254,256,257]. As for doping, this concept has been successfully 

implemented in the case of CIGS solar cells grown on steel foils, where an enamel was used as 

an efficiently working alkali source [195]. 

This work is divided in three main parts: 

i. First, the effects that incorporating different amounts of Na2O into the composition of 

the enamel causes on the surface morphology of the substrates and on the back 

contact deposited on them are investigated. 

ii. Then, CZTSe solar cells are fabricated onto this first batch of substrates and their 

performance is analysed. 

iii. Based on the previous results, a new batch of substrates is employed and the thermal 

reactive annealing is improved in order to increase the power conversion efficiency of 

the devices. 

4.2 Experimental 

4.2.1 Substrate description and sample preparation 

The substrates employed in this work are 4.5 mm thick (2.2 x 2.2 cm2) commercial ecological 

porcelain stoneware ceramics, which were developed at University Jaume I using a ceramic 

paste formulation with the addition of industrial wastes (recycled glass, sludges and chamote). 

The approximate composition and main properties of the ceramic substrates are shown in 

Table 15. These were coated with vitreous enamels containing quantities of Na2O ranging from 

2 to 20 wt%. 

Table 15. Composition and main properties of ecologic ceramic substrates. 

Composition (wt%) 

SiO2 

Al2O3 

CaO 
MgO 
ZrO2 

Na2O+K2O+Fe2O3 

65.2 
22.2 
2.7 
2.4 
2.2 
5.3 

Density 2400 kg/m3 
Coefficient of thermal expansion 5.8 ·10-6 K-1 
Thermal conductivity ~2.5 W/(m·K) 
Maximum temperature before degradation >1000°C 

 

A 780 nm trilayer Mo back contact was deposited on the clean substrates with a sheet 

resistance of 0.6 Ω/□. Cu/Sn/Cu/Zn metallic precursor stacks were deposited onto the Mo 

back contact with Cu-poor Zn-rich composition followed by a 10 nm Ge nanolayer. The first 
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batch of precursors were selenized through a 2-step thermal reactive annealing process similar 

to the one described in Table 8 but with a longer 2nd step annealing time (30 min). The second 

batch of precursors was selenized with standard annealing times. The as-annealed CZTSe 

absorbers were then subjected to three successive chemical etchings in order to remove 

surface secondary phases followed by the deposition of a CdS buffer layer. The devices were 

completed with a i-ZnO (50 nm)/ITO (350 nm) bilayer (75 Ω/□). Each sample was scribed into 

36 individual solar cells (9 mm2). Complete devices were post-annealed in air at 180°C on a 

hot plate for 30 minutes. For a more detailed description of the fabrication process, see 

sections 2.2.3 and 2.3. 

4.2.2 Characterisation 

The impact of the Na2O content of the enamel on different macro and microscopic properties 

of the Mo back contact was analysed by different techniques: 

 The surface morphology (macroscopic) was analysed by confocal and optical 

microscopy. It should be noted that the area of the analyses shown (27 mm2) 

accounts for roughly 5% of the samples and that morphology can vary significantly 

within the same sample. Several measurements were carried out on different regions 

of each sample. The results shown are chosen to be representative of each sample, 

showing average characteristics.  

 The structural and microscopic properties were studied by XRD and FESEM (top view, 5 

kV acceleration voltage, 5 mm working distance), respectively. 

 The sheet resistance (Rsheet) of the Mo layers was measured by a 4-point probe. 

As for the kesterite absorbers, their structural and microscopic properties were studied by XRD 

and FESEM (cross-section, 5 kV acceleration voltage, 5-7 mm working distance). 

The J-V characteristics of the devices were obtained under simulated AM1.5 illumination (1000 

W/m2 intensity at room temperature) using a pre-calibrated solar simulator. The EQE was 

measured using a spectral response system. 

Raman scattering measurements were made under 532 and 785 nm excitation wavelengths on 

CZTSe absorbers. The measurements were performed in backscattering configuration focusing 

the excitation laser spot on the window layer surface. A diameter of 50 μm and an excitation 

power density of about 1 kW/cm2 were used in order to inhibit thermal effects in the spectra 

while light collection was made through a x20 objective. 

For more information about the characterisation techniques employed, see section 2.2. 

4.3 Results 

4.3.1 Substrate and back contact analysis 

Surface characteristics 

The average surface roughness (Ra) of the Mo-coated ceramic substrates was calculated from 

confocal 3D topographies. Several measurements were performed in different regions of the 
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samples. Due to the lack of flatness, an 80 μm Gaussian filter (in compliance with ISO 25178) 

was used to separate waviness from roughness. A piece of Mo-coated SLG was also measured 

as a reference. The results show that the average roughness (Ra) does not vary substantially 

with the Na2O content of the enamel and lies in the 15-20 nm range except for the 20% Na2O 

sample (35 nm) (Figure 70). Although high in comparison to SLG (7 nm), these roughness 

values are comparable to, for example, those of stainless steel and can be considered 

acceptable for thin film deposition and PV applications [258]. 

 

Figure 70. Average roughness of the Mo-coated enamelled ceramic substrates. 

Although the roughness of the substrates is quite resilient to the composition of the enamel, 

their surface morphology is worsened with increasing Na2O contents. This is evidenced even 

with the naked eye for the Mo-coated substrates (Figure 71). While the substrate with 2% 

Na2O displays a rather flat surface, the rest of the substrates exhibit visually rough surfaces full 

of imperfections. 3D topographies provide more detailed information about the surface 

morphology of the different substrates (Figure 72). This way, it is possible to differentiate 

between two main types of surface defect: undulations and pinholes. While no strict 

dependence on the Na2O content can be observed, both undulations and, especially, pinholes 

tend to be more abundant and pronounced with the increasing Na2O content of the enamel. 

With regards to pinholes, more detailed 3D topographic images reveal that their diameter 

typically ranges from 50 μm to 300 µm and their depth oscillates from 500 nm up to several 

microns (Figure 73). 
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Figure 71. Pictures of the different Mo-coated enamelled ceramic substrates. 

 

Figure 72. 3D topographies of the Mo-coated enamelled ceramic substrates. 

 

Figure 73. Detailed 3D topographies of the Mo-coated ceramic substrates. 
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In addition to pinholes and undulations, Figure 73 also reveals crack-like lines in the sample 

with 18% Na2O content. These cracks were further investigated under an optical microscope at 

a larger scale (Figure 74). Interestingly, all the substrates with Na2O < 10% did not show any 

cracks while every sample with Na2O content ≥ 10% presented clearly cracked surfaces. 

Furthermore, the number of cracks was found to increase steadily with the increasing Na2O 

concentration in the enamel. 

 

Figure 74. Optical images showing superficial cracks on Mo-coated ceramic substrates with enamels containing 
more than 8% Na2O. 

Structural and electrical characteristics 

The influence of the different enamel compositions on the structural and microscopic 

properties of the Mo back contact was investigated by XRD and FESEM, respectively. All the 

different samples present almost identical XRD diffractograms regardless the Na2O content 

(Figure 75). More specifically, they all show a preferred growth orientation of Mo in the (110) 

direction with a small presence of the (211) and (220) directions (ICDD 00-042-1120). On the 

other hand FESEM micrographs confirm these results showing similar grain size and 

morphology independently from the Na2O composition (Figure 76).  
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Figure 75. XRD diffractograms of Mo back contact deposited on enamels with different Na2O content. 

 

Figure 76. FESEM top view micrographs of Mo back contact deposited on enamels with different Na2O content. 

With regards to the electrical properties of Mo back contacts, it was observed that the 

conductivity of the substrates is affected by the enamel composition (Figure 77). A constant 

and homogeneous Rsheet of approximately 0.6 Ω/sq (similar to the SLG reference) is found in 

samples with a Na2O content below 10% (Figure 77). Nevertheless, Rsheet increases substantially 

and presents a large dispersion in higher Na2O content samples. This result matches the 

surface cracks described above found in substrates with Na2O content ≥ 10%. Cracks disrupt 

the continuity of the Mo film and become highly resistive barriers that create isolated 

conductive Mo islands. When measuring, the tips of the 4pp reach two or more different 

islands resulting both in an increased Rsheet and measurement dispersion. On the other hand, 

undulations and pinholes do not seem to have a negative effect on the electrical conductivity 

of the substrates as suggested by the 8% Na2O sample which presents a high density of such 

defects while displaying the same Rsheet than flatter substrates. 
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Figure 77. Rsheet of the Mo back contacts deposited on enamels with different Na2O content. 

Summary 

To sum up, the accommodation of large Na2O contents in the composition of the enamel alters 

its surface morphology creating undulations, pinholes and cracks that are transferred to the 

Mo back contact deposited on them. A higher amount of Na2O tends to result in a larger 

density of such surface imperfections. This is especially critical in the case of cracks, which 

appear only in samples with more than 8% Na2O. The sheet resistance of the back contact is 

strongly affected by cracks since they create resistive barriers that hinder charge transport. 

However, pinholes and undulations do not have a negative effect on the electrical properties 

of Mo. 

4.3.2 Device analysis 

Performance 

Table 16 shows the parameters of the best solar cells obtained in each of the ceramic 

substrates studied. Devices prepared on the substrates with enamel Na2O content ≥ 10% 

present efficiencies well below 0.5%, mainly due to an increased series resistance. This 

correlates with the increased Rsheet of the Mo back contact found on those substrates due to 

surface cracks. On the other hand, all the samples with Na2O contents below 10% result in 

working devices with efficiencies above 3% that exceed previous reports [253]. Figure 78 (left) 

shows the J-V curves of those devices. No correlation between performance and Na2O content 

of the enamel can be spotted. Actually, all the samples present similar Voc values (300 mV). 

Moreover, the record devices fabricated on 2-6% Na2O substrates also present similar Jsc and 

FF. However, the record device of the 8% Na2O substrate exhibits superior Jsc and, especially, 

FF that translate into a 4.6% record efficiency. The EQE (Figure 78, right) measurements show 

that the increased Jsc arises from a better collection of long-wavelength (> 850 nm) photons. It 

is interesting to note that the record device was fabricated on a substrate with numerous 
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pinholes and strong undulation suggesting that these are not a critical factor for solar cell 

fabrication and performance. 

Table 16. Solar cell parameters of the best devices prepared on the enamelled ceramic substrates with different 
Na2O composition. 

 Na2O (wt%) 

 2 4 6 8 10 12 14 18 20 

Jsc (mA/cm2) 25.3 25.0 25.2 26.6 7.3 2.5 0.4 3.0 - 

Voc (mV) 306 310 292 320 224 140 42 280 - 

FF (%) 45.8 44.6 44.3 54.5 25.3 25.4 25.0 26.7 - 

η (%) 3.5 3.5 3.3 4.6 0.4 0.1 - 0.2 - 

Rsh (Ω·cm2) 62 64 44 106 31 - - - - 

Rs (Ω·cm2) 1.6 1.6 1.8 1.4 3.8 - - - - 

 

 

Figure 78. J-V (left) and EQE (right) of the best devices fabricated on enamelled ceramic substrates with different 
Na2O content. 

X-ray diffraction and FESEM 

The working devices were analysed by XRD. No relevant differences could be observed 

between the kesterite samples prepared on the different ceramic substrates. Figure 79 shows 

a representative XRD diffractogram. The main peaks can be attributed to CZTSe (ICDD 04-010-

6295) and Mo (ICDD 00-042-1120) in addition to the characteristic peaks of MoSe2 (ICDD 04-

005-6604). These are very similar to the XRD patterns typically reported for CZTSe absorbers 

deposited on glass [259,260]. 

Figure 80 shows cross-sectional FESEM micrographs of devices fabricated on substrates with  

low, medium and high Na2O content which are representative for the whole batch of samples. 

A bi-layer structure, typical for sequential processing, with large crystals at the top and smaller 

crystals at the bottom is detected in all cases. No clear differences can be observed between 

samples containing 2-8% Na2O which correlates with the results obtained by XRD. However, 

significantly larger crystals are found in samples with Na2O contents ≥ 10%.  
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Figure 79. XRD diffractogram of a CZTSe absorber grown on a Mo-coated enamelled ceramic tile (2 wt% Na2O). 

 

Figure 80. FESEM micrographs (cross section) of CZTSe solar cells grown on Mo-coated ceramic substrates with 
enamels containing 2% (top), 8% (middle) and 12% (bottom) Na2O. 

Raman investigation 

The apparent similarity of the Mo back contact and CZTSe absorbers fabricated on the 2-8% 

Na2O substrates combined with the significantly superior performance of the device fabricated 

on the 8% Na2O enamel, suggested the existence of a missing underlying factor. In order to 

find this differential factor, the CZTSe absorbers were analysed by Raman spectroscopy under 
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532 and 785 nm excitation wavelengths. The analysis was carried out in several individual cells 

from each sample. Figure 81 shows illustrative Raman spectra corresponding to the record 

device of the 4% Na2O substrate together with a low efficiency cell and the record device from 

the 8% Na2O sample. The spectra acquired with a 532 nm excitation wavelength show the 

main peaks of the CZTSe phase at 169 and 195 cm-1 and, from the fitting of spectra, device-

grade absorbers with good crystalline quality are observed independently from the substrate 

or cell efficiency. No additional peaks are observed. However, by measuring the same samples 

with a 785 nm excitation wavelength, the spectra reveal the clear presence of a SnSe2 phase in 

most of the cells analysed. In particular, this secondary phase is detected in every cell except 

for the highest efficiency ones from the 8% Na2O sample. In addition, the intensity of this peak 

seems related to cell efficiency. In order to corroborate this tendency, the peak area ratio 

SnSe2 to CZTSe of every cell measured in the analysis was calculated as an estimation of the 

amount of SnSe2 present in them. Figure 82 shows a plot of the main parameters of each cell 

as a function of the amount of SnSe2 detected. These data show that the presence of this 

phase is, in effect, directly correlated to solar cell performance. In particular, the amount of 

SnSe2 detected sets a limit for the maximum achievable Jsc, FF and Voc. The latter shows to be 

more strongly influenced by SnSe2 which dominates solar cell performance. 

 

Figure 81. Raman spectra of the record device of the 4% Na2O sample (left) together with a low efficiency cell 
(middle) and the record device (right) from the 8% Na2O sample. 

It should be noted that the enhanced detection of SnSe2 with the 785 nm excitation 

wavelength is due to the fact that such wavelength is coupled with the bandgap of SnSe2. This 

resonance effect enables the detection of very small amounts of this phase almost 

undetectable otherwise. For more information see Raman description in section 2.2.2. 
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Figure 82. Optoelectronic parameters of different solar cells from different samples as a function of the peak area 
ratio A(SnSe2)/A(CZTSe) obtained from the fitting of Raman spectra. The dashed red lines are only intended as a 
visual guide for the reader. 

4.3.3 Discussion 

The results presented here reveal interesting information about how the surface morphology 

of the enamelled ceramic substrates influences solar cell fabrication. On the one hand, 

pinholes and undulations do not seem to harm the Mo back contact quality and solar cell 

performance noticeably. This result is expectable for undulations since these are soft defects in 

which the curvature of the surface changes very gradually allowing deposited thin films to 

follow and adapt to it. Nevertheless, tension and higher film stress can be expected at the 

inflexion points of the undulations. In the case of pinholes, this result is more surprising since 

the curvature change is much steeper in them which could lead to layer discontinuity and 

short-circuiting. However, based on the results obtained with the 8% Na2O sample which 

presented a high density of pinholes but no short-circuiting or shunting, it is possible to 

conclude that sputtered films also adapt quite well to them. Most of the pinholes observed 

have diameters ≥ 50 μm, one order of magnitude above the thickness of the layers comprising 

the solar cell structure which could be the reason for their benignity. It can be speculated, 

thus, that smaller pinholes would lead to steeper surface changes and to a greater likelihood 

of layer discontinuity and short-circuit issues. On the hand, cracks in the vitreous enamel are 

transferred to the Mo back contact and greatly increase its sheet resistance by disrupting the 

continuity of the layer. However, this type of defect only appears in enamel formulations with 

Na2O content ≥ 10 wt% so it is easily avoidable. Moreover, the sodium supplied by the 2-8% 
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Na2O vitreous enamels seems to be sufficient for the fabrication of efficient kesterite devices 

making it unnecessary, in principle, to go beyond 8% Na2O contents. 

With regards to the effect of Na on the absorbers, the samples processed in 2, 4, 6 and 8% 

Na2O-containing enamels present similar morphologies and performances (except for some 

higher efficiency cells of the 8% Na2O sample). However, samples with higher Na2O content 

displayed a highly enhanced crystal size suggesting a greater sodium supply. There are many 

reports of Na-enhanced crystallization of kesterite absorbers (see section 1.4.4). Nevertheless, 

it can be speculated that the cracks observed on those samples allowed the increased diffusion 

of sodium (and possibly impurities from the ceramic substrate) rather than the higher Na-

content of the enamels per se. Unfortunately, the larger crystals were accompanied by a highly 

degraded Mo back contact unsuitable for solar cell applications. 

Finally, it has been shown that small amounts of SnSe2 were formed together with the CZTSe 

absorbers in every sample degrading the performance of the devices. The annealing time 

employed in the second step of the selenization process (550°C, atmospheric pressure) for the 

synthesis of the CZTSe absorbers was twice as long (30 min) than the standard annealing time 

routinely employed in IREC for SLG substrates (15 min). This longer time was initially selected 

based on the high thickness, porosity and expected low thermal conductivity of the substrates. 

However, the thermal conductivity was later found to be in a similar range to that of SLG. 

Therefore, SnSe2 was probably the consequence of a too long high temperature annealing that 

led to a slight decomposition of the kesterite phase into binaries [122]: 

Cu2ZnSnSe4Cu2Se+ZnSe+SnSe2      (R2) 

The chemical etchings performed on the absorbers are effective against Cu2Se, ZnSe and SnSe 

but not against SnSe2 [127,128]. This would explain why only the latter was detected even 

after etching. 

Since this phase was detected in almost every cell measured, it might be possible that the 

similarities found between the devices fabricated in the 2-8% Na2O substrates arose from an 

homogenizing effect of SnSe2 rather than to other factors like a self-limited Na incorporation 

from the enamel regardless its Na content. 

4.3.4 New batch of substrates and modified annealing 

Substrates and device performance 

In order to study the issues discussed above, a new batch of ceramic substrates was ordered 

with the following specifications: 

 The Na2O content should be ≤ 8 wt% to prevent cracks 

 It should contain an enamel with the minimum possible Na2O content 

 Avoidance of small pinholes 

Figure 83 shows the 3D topographies and Na2O content of the new batch of substrates. It can 

be observed that the low Na2O enamels (1.4 and 2%) feature very flat surfaces while the 

higher Na2O enamels (4 and 6%), as expected, possess increasingly undulated surfaces 
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although no significant pinholes are detected in any of them. Additionally, none of them 

present surface cracks. 

 

Figure 83. 3D topographies and Na2O content of the new batch of enamelled ceramic substrates. 

Solar cells were fabricated on those substrates reducing the duration of the second step of the 

annealing from 30 to 15 min, i.e. to the standard time used for SLG. A SLG sample was 

processed simultaneously. Table 17 shows the main optoelectronic parameters of the record 

devices found on each of the substrates. A very large improvement can be observed with 

respect to the previous samples even in the almost Na-free sample. All the parameters are 

substantially improved and efficiencies from 6 to 7.5% are achieved. Moreover, a clear 

tendency of the Voc to increase with the increasing Na2O content of the enamel is observed. 

This can be seen in a clearer way in Figure 84, where the average Voc of the top 5 devices found 

on each substrate is plotted with respect to the Na2O content of the enamel. Raman analysis 

did not detect any trace of SnSe2 in any of the devices so, in principle, this trend can be 

attributed solely to a higher diffusion of Na from the substrate. In addition, it confirms that 

CZTSe decomposition due a long annealing time was the cause of the presence of SnSe2 in the 

samples processed before. 

Table 17. Solar cell parameters of the best devices prepared on the new batch of enamelled ceramic substrates. 

 Na2O (wt%) 

 1.4 2 4 6.6 SLG 8 (old) 

Jsc (mA/cm2) 27.6 28.3 29.5 30.1 29.6 26.6 

Voc (mV) 369 379 393 397 416 320 

FF (%) 59.3 59.5 64.7 63.1 64.0 54.5 

η (%) 6.0 6.4 7.5 7.5 7.9 4.6 

Rsh (Ω·cm2) 150 170 310 320 480 106 

Rs (Ω·cm2) 0.4 0.4 0.4 0.5 0.5 1.4 
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Figure 84. Voc of the top 5 devices found on each substrate. 

Na diffusion 

In order to corroborate that sodium is effectively diffusing from the enamel into the absorber 

during CZTSe synthesis and could be the responsible of the Voc increase, the 1.4 and 4% Na2O 

samples were investigated by time-of-flight secondary ion mass spectroscopy (TOF-SIMS). 

 

Figure 85. TOF-SIMS depth profile of low and medium Na2O content enamelled ceramic substrates. A profile 
corresponding to one of the record devices fabricated in IREC on SLG (not in this work) is also shown for 
comparison. 
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Figure 85 shows the compositional depth profiles obtained for both substrates together with 

one of IREC’s record devices on SLG (not from this work). It can be observed that there is an 

effective diffusion of Na from the enamels to the CZTSe absorber in both cases. Furthermore, 

Na incorporation seems to be very similar in both ceramic substrates. However, the higher 

accumulation of Na towards the ZnO/CdS interphase indicates indeed a higher Na supply from 

the enamel with a higher Na2O content. A very weak incorporation of K is also observed 

although its effect on the CZTSe absorber is probably negligible. Finally, alkali incorporation is 

found to be much lower than in the case of SLG. 

Discussion 

Effects of Na diffusion 

Returning to Table 17, a large difference between the 1.4 and 2% and the 4 and 6% Na2O 

samples can be spotted with the latter displaying an improved FF with respect to the former. 

Although the TOF-SIMS analysis indicates that Na incorporation is only slightly higher with a 

higher Na2O content, these results suggest that this small variation is enough to make a 

difference on the devices. On the one hand, comparing the 1.4 and 2% Na2O samples, the 

difference in sodium incorporation is enough to slightly to improve the Voc of the latter. 

However, both samples possess a similar FF. On the other hand, by just increasing the Na2O 

content of the enamel from 2 to 4%, apart from a further increase of the Voc, the FF is also 

improved. Increasing the Na content from 4 to 6.6% keeps increasing the Voc but does not 

result in any further improvement of the FF. Therefore, it looks like Na diffusion from the 

enamels affects the Voc and the FF of the devices in different ways. 

In the case of the Voc, a roughly linear behaviour is observed: the higher amount of Na in the 

enamel, the higher Voc of the devices. Na has been observed to increase the Voc of kesterite 

and CIGS solar cells by inducing the creation of copper vacancies (VCu) which are acceptor 

defects that increase carrier concentration [161,173]. This matches the results shown here 

since a higher amount of Na would be expected to produce a higher amount of VCu and, thus, a 

steady increase of the Voc. 

In the case of the FF, a threshold behaviour is observed. Na has been observed to improve the 

FF of kesterite devices by accumulating at the grain boundaries and passivating them thus 

avoiding deep defects and reducing non-radiative recombination [162,168,226]. From the 

results presented here, it seems that, contrarily to carrier concentration enhancement, in 

order to effectively passivate grain boundaries and increase the FF, a certain threshold amount 

of Na is necessary and is only achieved for Na2O contents ≥ 4%. Once that threshold is reached, 

additional Na does not seem to further improve the FF of the devices, not even in the case of 

SLG (in which the Na diffusion is much greater than in ceramic substrates according to the TOF-

SIMS measurements). 

Comparison of record devices in ceramic and SLG 

There are almost no differences between the devices fabricated on the substrates with 4 and 

6.6% Na2O in the enamel. Both of them result in a remarkable 7.5% efficiency, the highest 

reported for a kesterite device fabricated on a ceramic substrate. What is more, Table 17 
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reveals that the only difference between the best devices fabricated on SLG and on ceramic 

substrates lies in a 20 mV lower Voc of the latter. The origin of this difference seems to be a 

lower shunt resistance of ceramic substrates. This is expectable due to their non-flat surface 

that may induce slight layer discontinuities leading to shunt paths. The impressive similarity 

between both types of substrates is better represented in Figure 86 which shows the J-V 

curves of the record devices achieved on SLG and ceramic (6.6% Na2O). Interestingly, the Jsc of 

the 6.6% Na2O ceramic substrate is slightly higher than that of SLG. This could be related to the 

non-flat morphology of ceramic substrates which acts similarly to an optical texturisation of 

the absorber layer that increases the effective active area available per device allowing a 

better absorption of long-wavelength photons. This is clearly observed in the EQE 

measurements shown in the inset of Figure 86. This was also observed in the first batch of 

substrates in which the most undulated substrate (8% Na2O) also presented a higher collection 

of long-wavelength photons (Figure 78). Thus, a non-flat surface is like a double edged sword 

leading to potentially higher light collection but also to shunt problems. 

 

Figure 86. J-V curves of the record devices obtained on SLG and 6.6% Na2O enamelled ceramic substrate. Inset: 
EQE curves of the same devices. 

Annealing time and SnSe2 

Finally, the formation of SnSe2 has been completely eliminated by reducing annealing time. 

This indicates that, in effect, this phase was arising from CZTSe decomposition due to the 

prolonged annealing times. In addition, regarding the results obtained with the second batch 

of substrates, it seems plausible that the lack of differences observed between the devices 

fabricated on the first batch of substrates was originated purely by the degrading effect of 

SnSe2. 
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4.4 Conclusions 

This work demonstrates the feasibility of producing efficient Earth-abundant kesterite solar 

cells on ceramic substrates with a direct application in solar tiles, a BIPV concept with a great 

potential to reduce cost and area allocation issues of PV. 

The innovative approach employed here in which a smoothing Na2O containing vitreous 

enamel is also used as a diffusion barrier for impurities and as a source of sodium, has been 

proven to be the right direction in order to use ceramics as substrates for thin film 

photovoltaics. It has been demonstrated that there is an effective diffusion of Na from the 

enamels into the CZTSe absorbers, although to a lesser extent than when employing SLG. 

While Na led to Voc and FF improvements, no appreciable impact on crystal size was observed 

for enamels with Na2O contents between 2 and 8 wt%. Nevertheless, it was observed that 

trying to accommodate large amounts of Na2O in the enamel results in higher densities of 

three surface defects: undulations, pinholes and cracks. Interestingly, undulations and pinholes 

do not affect cell performance critically. But, on the other hand, cracks (which only occurred 

for Na2O contents ≥ 10%) were identified as very detrimental since they strongly deteriorate 

the conductivity of the back contact and prevent the fabrication of working devices. 

In addition, the annealing process has been found to be very critical. In a first attempt, a 

prolonged annealing time led to the formation of SnSe2 which degraded the performance of 

the devices by mainly limiting their Voc. However, this phase was completely eliminated by 

reducing the time of the second step of the annealing. 

Finally, a record efficiency of 7.5% was achieved with two different enamels containing 4 and 

6.6% Na2O. This is the highest efficiency reported for a kesterite device fabricated on a 

commercial ceramic substrate. But, more importantly, the same process led to a 7.9% 

efficiency on SLG. This implies that enamelled ceramic substrates behave in a similar way to 

conventional SLG. Thus, there is a high potential of achieving similar levels of efficiency on 

both substrates. This shows the great potential of ceramic substrates for substituting SLG, not 

only for BIPV, but also for other applications of fabrication processes not compatible with the 

latter. 

In particular, the greater thermal resistance of ceramics in comparison to SLG opens the door 

to a redesign of annealing processes at temperatures greater than 600°C which could greatly 

improve the results shown here. In addition, a combination of a low-Na enamel with other 

alkaline elements and doping approaches like PAS, PDT or alkali-doped Mo back contacts are 

also interesting strategies to keep improving the performance of kesterite-based solar tiles. 
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5. Transition metal oxides for 
kesterite solar cells developed on 
transparent substrates 

5.1 Introduction 

5.1.1 Transparent back contacts for kesterite solar cells 

Thin film solar cells typically employ transparent TCO-based electrodes at the front illuminated 

side in order to allow light to reach the absorber layer and opaque metallic electrodes at the 

rear. Metals are ideal back electrodes due to their superior conductivity that facilitates charge 

collection and extraction. However, their lack of transparency limits the possibilities of thin 

film photovoltaics. Their substitution by transparent electrodes opens the way to a manifold of 

advanced applications. 

 

Figure 87. Schematic of albedo light reaching the front and rear sides of a bifacial solar panel in a rooftop 
installation. 

On the one hand, solar cells with a transparent back electrode can generate a significant 

amount of energy when illuminated from the rear. Solar cells that operate by collecting 

photons from the front and rear sides simultaneously are commonly called bifacial solar cells. 

Although this concept is almost as old as photovoltaics itself, with the first related patent 

dating back to 1966 [261] and the first article on the topic being published in 1980 [262], it is 

still a not well-established but a powerful way of increasing the energy output of solar cells. 

Bifacial solar cells can be used for standard rooftop installations. This way, while generating 

most of the power from direct front illumination, diffuse and reflected albedo light reaching 

the back side of the panel (Figure 87) can be employed to generate a considerable amount of 
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extra power [263]. In addition, bifacial solar cells possess a large potential for BIPV (see section 

4.1.1) since they can be fitted into surfaces that, due to the design of the building, are mostly 

illuminated from one side in the morning and from the other side in the afternoon or that are 

partially illuminated from the interior of the building via reflections, artificial illumination, etc.. 

One the other hand, the thickness and bandgap tunability of thin film PV technologies 

combined with a transparent back electrode enable the fabrication of semi-transparent 

devices. In the case of absorber thickness, by making it sufficiently low, only a portion of the 

incident light is absorbed and used for power generation while the rest is transmitted (Figure 

88, b). Similarly, by employing very wide bandgap or IR selective materials, most of the light 

absorption for power generation can be shifted to non-visible UV or IR spectral regions, 

respectively, allowing visible radiation to traverse the device resulting in very transparent 

devices (Figure 88, c). By precise tuning of the thickness and/or bandgap of the devices, 

different degrees of transparency and even different colours can be obtained. Such semi-

transparent devices have direct application as BIPV solar glazing (see section 4.1.1). In 

addition, wide-bandgap semi-transparent devices can be employed as top cells for tandem 

solar cell concepts (Figure 88, d). 

 

Figure 88. Schematic of light absorption and transmission of different concepts of semi-transparent solar cells. 

These advanced applications have the potential to push thin film photovoltaics towards higher 

power densities (bifacial and tandem devices) and lower costs by building integration (bifacial 

and semi-transparent devices) and are likely to play an important role in the future mass 

deployment of PV. Since kesterite solar cells are composed only by Earth-abundant and low 

toxicity elements, they are particularly well-suited for such applications. Thus, the 

development of this technology onto transparent substrates is of great importance. 

The most adequate family of materials that can substitute opaque Mo back contacts in 

kesterite solar cells is the same one currently employed at the front side: TCOs. These are 

metallic oxides that possess both very high (degenerate) doping levels (≥1020 cm-3), which 

make them conductive (ρ10-3 Ω·cm), and wide bandgaps (≥ 3 eV), which make them very 

transparent (transmittance higher than 80% in the visible range) [264]. However, the 

substitution of Mo by these materials is not straightforward for kesterites solar cells since the 
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conductivity of p-doped TCOs is typically 2-3 orders of magnitude lower than that of n-doped 

TCOs making the latter the only acceptable option for their use as back contacts [265]. Thus, a 

barrier behaviour and/or the formation of a detrimental second diode at the back p-

Kesterite/n-TCO interface can be expected. Despite this non-optimum compatibility, the 

substitution of Mo by transparent oxides has been successfully demonstrated for CIGS and 

efficient solar cells have been fabricated on the most commonly employed TCOs in thin film 

PV: SnO2:In2O3 (ITO), Al-doped ZnO (AZO) and fluorine-doped SnO2 (FTO) [266,267]. 

The best performance for CIGS solar cells developed on transparent substrates has been 

obtained on a SLG/ITO transparent substrate with a 15.2% record efficiency achieved by 

Nakada et al. in 2004 [266]. However, ITO presents two major drawbacks for its use as back 

contact on kesterite devices. Firstly, it has been observed to be unstable at the high annealing 

temperatures required for the synthesis of efficient kesterite devices (550°C) with In atoms 

diffusing out from the ITO contact into the kesterite absorbers [268–273]. While In-

incorporation in kesterites can improve carrier concentration and avoid deep Sn-related 

defects [268], the loss of In greatly diminishes the conductivity of ITO either by thickness 

reduction [268] and/or the formation of low conductivity SnO2 at the back [269,270,272,273]. 

Secondly, as in the case of CIGS, the scarcity and high demand of In will affect the production 

of ITO turning its use unsustainable in the long term (see last part of section 1.3.2). 

Likewise, AZO has also been observed to be incompatible with high temperature processing 

and, as a result, the only efficient CIGS devices fabricated on SLG/AZO substrates have been 

achieved by working at very low temperatures (250°C) incompatible with the fabrication of 

kesterite devices [267,274]. 

On the other hand, FTO shares with ITO a high thermal resistance that has also led to the 

fabrication of efficient CIGS devices (14%) while being an In-free TCO [266]. Thus, besides a 

higher sustainability in the long term as compared to SLG/ITO, the absence of In also renders 

SLG/FTO substrates a higher affinity for the fabrication of kesterite solar cells. The 

compatibility of this TCO with the synthesis of CZTS absorbers was first demonstrated in 2011-

2012 by Sarswat et al. [275–278]. Later works not only confirmed this compatibility but also 

demonstrated the superiority of SLG/FTO substrates for the fabrication of kesterite devices 

with respect to SLG/ITO [269,271]. This way, Kim et al. fabricated CZTSe solar cells on both 

TCOs (ITO and FTO) by selenization of sputtered precursors and found a superior performance 

of the devices fabricated on FTO (4.1% on ITO vs 5.7% FTO) which was ascribed to its higher 

inertness during annealing [269]. In addition, Espíndola-Rodríguez et al. also reported a better 

performance of CZTSe solar cells on FTO (2.0%) than on ITO (1.3%) fabricated also by 

selenization of sputtered precursors [271]. Finally, the feasibility of fabricating wider bandgap 

CZTSSe and CZTS-based devices on SLG/FTO (which have a greater potential for semi-

transparent applications) has also been recently demonstrated with record devices exhibiting 

efficiencies up to 2.6% [279] and 4.7% [280], respectively . 

To sum up, the development of kesterite solar cells on transparent SLG/TCO substrates widens 

the range of applications of this technology towards advanced concepts like bifacial, semi-

transparent and tandem solar cells which are of great importance for the future of PV. Among 
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the different TCOs, the most promising candidate for kesterites is FTO with efficiencies just 

below 6% already demonstrated. 

5.1.2 Improving the kesterite/TCO interface and objectives of this 

work 

Although promising, the efficiencies shown above are well below those of the best kesterite 

devices fabricated on standard SLG/Mo substrates (see Table 3). This is mainly due to the 

complex behaviour of the p-kesterite/n-TCO interface. In particular, it has been found that this 

interface shows a non-ohmic behaviour that creates a barrier and hinders charge extraction 

[268,269]. Thus, interface engineering deems mandatory in order to reduce the efficiency gap 

and enable the fabrication of efficient devices on SLG/TCO transparent substrates. 

One of the main differences between employing TCO-based or standard Mo back contacts for 

kesterite solar cells is that for the latter a Mo(SxSe1-x)2 buffer layer is formed at the back 

interface during absorber synthesis. This layer has been widely observed to assist on the 

formation of an ohmic contact at the back interface both in CIGS and kesterite devices 

[147,281–284]. Thus, forming a Mo(SxSe1-x)2 layer as a buffer between the absorber and TCO-

based back contacts could be an interesting approach in order to improve the ohmicity of the 

back interface for semi-transparent devices. This idea has been successfully applied both in 

CIGS and kesterite technologies by depositing a thin Mo layer on top of the TCO 

[271,273,279,285,286]. In the case of CIGS, Abou-Ras et al. found that the performance of 

devices fabricated on SLG/ITO substrates was impressively improved from 2% to 11.8% 

efficiency by depositing (and pre-selenizing) a thin Mo layer on top of ITO before CIGS 

deposition [285]. Likewise, Rostan et al. observed that the rectifying behaviour of the 

CIGS/AZO interface became ohmic when a thin layer of Mo was deposited on top of the AZO 

contact [286]. As for kesterites, Kim et al. reported an improvement of CZTSe solar cells 

fabricated on ITO with the inclusion of a thin Mo interlayer that improved the interface and 

also alleviated the aforementioned In-related detrimental effects caused by this TCO on 

kesterite devices [273]. In addition, Espíndola-Rodríguez et al. observed an important 

performance enhancement of CZTSe and CZTSSe devices fabricated on SLG/FTO when a 20 nm 

Mo layer was deposited onto the substrate shifting from efficiencies around 2% for CZTSe and 

2.5% for CZTSSe on the bare FTO up to 5% and 6.3%, respectively, on the Mo-containing 

substrate configuration [271,279]. Interestingly, the performance of such devices was 

furthered increased to 6.2% (CZTSe) and 6.8% (CZTSSe) by substituting Mo by a Mo:Na layer 

which was attributed to the fact that FTO may act as a barrier for Na diffusion from SLG [279]. 

Another possible way of enhancing the kesterite/TCO interface is through the use of hole-

selective interlayers that may improve charge collection. In this regard, thin layers of transition 

metal oxides (TMOs) have been employed as hole injectors and hole extractors for a long time 

in organic electronics due to their high work function and the possibility of low temperature 

deposition [287,288]. In addition, TMOs also feature a high optical transparency. Thus, on 

paper, TMOs possess the right properties to improve the back interface of kesterite devices 

fabricated on TCO-based transparent substrates. The idea of using TMOs as hole extractors in 

inorganic PV has already been successfully tested on CdTe [289], CIGS [290], kesterite 

[147,291–293] and, more extensively, on c-Si solar cells [294–298]. For the latter both MoO3 
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and V2O5 have been shown to be a promising alternative to a-Si:H and B p-doping for hole 

extraction in n-type c-Si devices [295,297]. 

 

Figure 89. Band diagram of TMO/c-Si before junction (a) and for junctions with n-type (b) and p-type (c) c-Si. The 
band positions of Si and MoO3 were taken from [297]. The position of the Fermi levels is arbitrary. 

The success of employing TMOs at ITO-based transparent anodes in organic photovoltaics 

(OPV) and c-Si technologies to facilitate hole extraction lies at their high work function (φ) and 

is schematically represented in Figure 89 (the figure depicts the case of a MoO3/c-Si junction 

for illustration but the behaviour shown is equivalent for other materials). More specifically, 

the large work function difference between the absorber and the TMO (φTMO-φabs) causes an 

electron flow from the valence band of the absorber into the lower energy levels present in 

the TMO (Figure 89a). This, in turn, depletes the surface of the absorber of electrons producing 

a large band bending and a built-in voltage (Vbi). In the case of OPV absorbers, it has been 

proposed that, due to the favourable alignment of the highest occupied molecular orbital 

(HOMO) of the absorber and the conduction band of the TMO, hole extraction occurs through 

the latter [287,299,300]. Thus, the electron-depleted surface of the absorber becomes a 

charge recombination layer in which holes from the absorber recombine with electrons from 

the TMO transforming a hole current into an electron current and allowing efficient charge 

extraction. In the case of c-Si, the proposed mechanisms are very similar. In n-type c-Si, 

extreme band bending changes the conductivity of the surface from n to p+ forming an 

inversion layer which facilitates hole extraction in a similar fashion to traditional surface p-

doping [295–298] (Figure 89b). In p-type c-Si, both the formation of a p+ accumulation layer 

[298] and a favourable alignment of the valence band of the absorber and the conduction 

band of the TMO (similar to the case of OPV) [295] have been proposed as possible 

explanations for the enhanced hole extraction (Figure 89c). Additional beneficial effects of the 

TMOs like the upward bending of the conduction band acting as a barrier for electrons and 
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surface passivation have also been reported [295–298]. Finally, it is worth mentioning that 

both in OPV and c-Si, defect states in oxygen deficient TMOs and the creation of a dipole (Δ) at 

the absorber/TMO interface are thought to play a crucial role in facilitating carrier transport 

towards the ITO contact [287,296]. 

TMOs and their hole-extraction mechanism have not been so thoroughly studied for other PV 

technologies but, as mentioned above, positive results have already been achieved. The most 

relevant results in the case of CIGS devices fabricated on a transparent substrate were 

obtained by Simchi et al. who showed that the addition of 10 nm of MoO3 can reduce the 

barrier at the CIGS/ITO interface allowing the efficiency of the devices to rise from 8% to 11.9% 

[290]. As for kesterites, only the combination of TMOs with opaque back contacts has been 

reported. In this regard, a 92 mV Voc improvement was achieved on a high-efficiency (>11%) 

CZTSSe device by exfoliating it from its SLG/Mo substrate and depositing a new MoO3 (20 

nm)/Au (100nm) back contact onto  it [291]. Similarly, Ranjbar et al. used a thin (10 nm) MoO3 

layer on top of Mo which increased significantly the minority carrier lifetime and Voc of the 

devices although no changes in the CZTSe/Mo band alignment were found [292]. Liu et al. 

found similar effects on Cd-doped CZTS although, in this case, they attributed them to a 

change in band alignment that was enhancing electron back reflection [293]. Finally, López-

Marino et al. used a thin (20 nm) MoO2 interlayer within a trilayer Mo configuration as a 

selenization barrier in CZTSe devices and observed both a change in MoSe2 preferred growth 

orientation and a 67 mV increase of the Voc leading to a remarkable final value of 460 mV 

[147]. 

However, besides these few publications, there is a clear lack of research exploring the 

potential of Mo nanolayers and TMOs as hole-selective layers to enhance the performance of 

kesterite PV devices fabricated on transparent substrates. The work presented here aims to 

contribute in filling this gap. The effect of adding thin interlayers (5-20 nm) of a wide selection 

of TMOs (MoO3, MoO2, V2O5, TiO2, NiO, Co3O4 and CuO) and their combination with Mo-based 

nanolayers are empirically screened as an approach to improve the back interface of CZTSe, 

CZTS and CZTSSe solar cells fabricated on SLG/FTO transparent substrates. The work is divided 

in four main parts: 

i. First, the optical and electrical properties as well as the stability of the different 

SLG/FTO/TMO substrate configurations are evaluated before and after a thermal 

reactive annealing similar to that employed for the synthesis of CZTSe absorbers. 

ii. Then, CZTSe solar cells are fabricated onto the different substrate configurations in 

order to study their suitability for enhancing the FTO/kesterite interface based on their 

performance. The addition of a Mo:Na layer on top of the TMOs is also investigated. 

iii. The three best performing TMOs are further studied on CZTSe devices to determine 

the most adequate configuration. 

iv. Finally, the best substrate configurations for CZTSe are applied to wide bandgap 

CZTSSe and CZTS solar cells. This is accompanied by a morphological, structural and in-

depth compositional characterisation of the best devices. 
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5.2 Experimental 

5.2.1 Substrate description 

The substrate configurations studied in this work were fabricated on commercial FTO-coated 

SLG. Two slightly different (but comparable) SLG/FTO commercial substrates were employed. 

In the first part of the work (Series A), where an initial screening of the different TMOs is 

carried out, a 1.6 mm thick SLG/FTO substrate (15 Ω/□, Kaivo) was used. For the rest of the 

work, where only a small selection of TMOs is studied, a 2.2 mm SLG/FTO substrate (7 Ω/□, 

Sigma-Aldrich) was utilised. 

Table 18. Main optoelectronic properties of the TMOs employed in this work. 

 
Semiconductor 

type 
Ionization Energy 

(eV) 
Bandgap 

(eV) 
Work function 

(eV) 
Reference 

MoO3 n 9.4 3.0 6.9 [299] 

V2O5 n 9.26 2.8 6.85 [301] 

TiO2 n 8.0 3.4 5.2 [302] 

NiO p 6.7 3.2 6.3 [303] 

Co3O4 p 6.4 1.6 6.1 [304] 

CuO p 5.7 1.4 5.6 [303] 

MoO2 metallic 6.0 - 6.0 [305] 

 

The SLG/FTO substrates were coated with different thicknesses (5, 10 and 20 nm) of a wide 

selection of TMOs and, additionally, also with a 20 nm Mo:Na layer (both substrate 

configurations with and without Mo:Na were investigated). Due to the complex nature of the 

p-kesterite/n-FTO interface, n-type (MoO3, V2O5 and TiO2), p-type (NiO, Co3O4 and CuO) and 

metallic (MoO2) TMOs were studied. The main optoelectronic properties of these oxides are 

summarized in Table 18. Nevertheless, it should be noted that the properties of the TMOs are 

known to be strongly related to their oxidation state which is heavily influenced by the 

deposition conditions and air exposure [295,306]. Finally, it should be born in mind that 

evaporated TMOs are rarely stoichiometric and are usually denoted in the literature as  MoOx, 

V2Ox, etc. [287].  However, they will be designated with their stoichiometric formulation 

throughout this work. 

For a more detailed description of the deposition of the TMO and Mo:Na layers, see section 

2.3.2. 

5.2.2 Sample preparation 

The substrate configurations employed and the general preparation of the samples was 

different in each part of the work. For the sake of clarity, the different set of samples have 

been named as series A, B and C. Below, the general procedure follow for their fabrication as 

well as the particularities of each series are detailed. However, for a more detailed description 

of the fabrication process, see sections 2.2.3 and 2.3. 
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General procedure 

Cu/Sn/Cu/Zn metallic precursor stacks with Cu-poor Zn-rich composition were deposited on 

the different substrate configurations. The precursors were submitted to a 2-step thermal 

reactive annealing to synthesise kesterite absorbers. The as-annealed absorbers were then 

subjected to a chemical etching in (NH4)2S in order to remove surface secondary phases. Then, 

the devices were completed with a CdS buffer layer as well as a i-ZnO (50 nm)/ITO (200 nm) 

bilayer (50-80 Ω/□).  

Series A: Screening of  TMOs as back contact buffers in CZTSe solar cells 

The SLG/FTO commercial substrates (Kaivo) were coated with 0, 5, 10 and 20 nm of MoO3, 

V2O5, TiO2, NiO, Co3O4, CuO or MoO2. Then, either 10 nm of NaF or 20 nm of Mo:Na were 

deposited on top of the different substrate configurations prior to the deposition of the 

metallic precursor stacks. The precursors were submitted to a reactive annealing under Se+Sn 

atmosphere in order to synthesise CZTSe absorbers. 

Series B: Repetition of the best performing TMOs with optimised device 

configurations 

The SLG/FTO commercial substrates (Sigma-Aldrich) were coated with 0, 5, 10 and 20 nm of 

V2O5 or TiO2 followed by a 20 nm Mo:Na layer. Prior to the reactive annealing, a 10 nm Ge 

nanolayer was deposited on top of the metallic precursor stacks. The precursors were 

submitted to a reactive annealing under Se+Sn atmosphere in order to synthesise CZTSe 

absorbers. The completion of the devices with CdS/i-ZnO/ITO was followed by the deposition 

of an Ag metallic grid and a MgF2 anti-reflective coating. 

Series C: Technology transfer to wide-bandgap CZTS and CZTSSe 

The SLG/FTO commercial substrates (Sigma-Aldrich) were coated with 0 and 10 nm of V2O5 or 

TiO2 followed by a 20 nm Mo:Na layer. Prior to the reactive annealing, a 10 nm Ge nanolayer 

was deposited on top of the metallic precursor stacks. The precursors were submitted to a 

reactive annealing under S+Sn or S+Se+Sn atmosphere to synthesise CZTS and CZTSSe 

absorbers, respectively. The completion of the devices with CdS/i-ZnO/ITO was followed by the 

deposition of an Ag metallic grid and a MgF2 anti-reflective coating. 

5.2.3 Characterisation 

The transmittance of the different substrate configurations was investigated using UV-vis-NIR 

spectroscopy before and after being submitted to a selenization process identical to the one 

employed for the synthesis of the CZTSe absorbers. The analysis was carried out from 300 to 

1500 nm. The average transmittance was estimated by integrating the spectra in different 

spectral regions and calculating the mean value. In order to evaluate the transparency of the 

substrates, the visible region was defined from 435 to 670 nm following the work by Lunt et al. 

[307]. In addition, the different TMOs were deposited (20 nm) onto a quartz substrate to avoid 

the near-UV absorption of SLG and enable the calculation of their bandgap from the inflexion 

points of their transmittance spectra. In this case, the spectra were acquired from 200 to 1500 

nm. The sheet resistance of the different substrate configurations was measured using a 4pp 

system. 
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The J-V characteristics of the devices were obtained under simulated AM1.5 illumination (1000 

W/m2 intensity at room temperature) using a pre-calibrated solar simulator. The EQE was 

measured using a spectral response system. 

Raman scattering measurements were made under a 785 nm excitation wavelength on 

complete devices. The measurements were performed both at the front and the back side of 

the samples. A diameter of 50 μm and an excitation power density of about 1 kW/cm2 were 

used in order to inhibit thermal effects in the spectra while light collection was made through 

a x20 objective. A 785 nm excitation wavelength was employed due to its low interaction with 

the SLG/FTO substrate (for back measurements) and the upper window layer (for front 

measurements) that allows to characterize the absorber without exfoliating it from the 

substrate or removing the CdS/ZnO/ITO layers, respectively [220]. 

FESEM secondary electron imaging was employed to examine the structure and morphology of 

the full devices in cross-section configuration using an acceleration voltage of 5 kV and working 

distances of around 5 mm. 

The elemental depth profiles of the full kesterite solar cells were measured by TOF-SIMS with a 

magnetic sector Cameca 7f microprobe. The analysis was made with a Cs+ primary beam. The 

elements are measured as M+Cs cluster ions, where M is the element to be analysed. 

Additional measurements were performed in O2
+ positive mode in order to obtain a clearer 

signal of Ti. 

For more information about the main characterisation techniques employed, see section 2.2. 

5.3 Results 

5.3.1 Properties of the TMOs 

The most interesting properties of the different TMOs for the fabrication of bifacial or semi-

transparent devices, viz. transparency and conductivity, were evaluated by analysing the 

transmittance spectra and sheet resistance of the SLG/FTO substrates coated with different 

TMO thicknesses. This analysis was carried out both before and after submitting the substrates 

to an annealing process identical to that employed for the synthesis of CZTSe solar cells. In 

addition, the bandgap of the different TMOs was also evaluated. 

As deposited 

Transmittance 

Figure 90 (a-g) shows the transmittance spectra of the SLG/FTO substrates coated with 5, 10 

and 20 nm of the different TMOs. In addition, Table 20 (in page 118) shows the average 

transmission values extracted from them in the UV, visible and IR regions. 

All the substrate configurations with 5 and 10 nm TMO layers show similar transmittance 

levels in the visible of around 70%. Taking into account that the SLG/FTO reference has a 75% 

transmission in that range, the optical losses due to the TMOs represent less than a 10% 

(relative). This result is surprising since the reported bandgaps of some of the oxides studied 
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are quite narrow (see Table 18) so higher above-bandgap absorption was expected. As will be 

presented in the following subsection, this is due to the fact that the evaporated TMO 

nanolayers exhibit much larger bandgaps than the bulk materials. As expected, increasing the 

thickness of the TMO layers to 20 nm leads to lower transmission levels in general. However, 

in this case, the different TMOs show dissimilar behaviours. NiO leads to the lowest 

transmittances in the visible and in the infrared. On the contrary, the most hindered 

transmittance in the UV region is found for V2O5. Interestingly, increasing the thickness of TiO2 

from 5 to 20 nm does not have any detectable influence on its transparency in the whole 

spectral range. As for MoO3, increasing its thickness only reduces transmittance slightly in the 

UV and IR regions while leaving the visible region unaffected. The rest of the TMOs show 

varying transmission reductions in the different spectral regions when shifting from 5 to 20 nm 

layers although these are moderate and remain below 8% (absolute) in all cases. Thus, overall, 

it can be concluded that all the TMOs studied have a minor effect on substrate transparency in 

the range of thicknesses studied. 

The high transparency of the different TMOs studied is further confirmed by Figure 90 (h) and 

Table 19 which show the transmittance of 20 nm layers of the different oxides deposited 

directly on quartz and subtracting the effect of the substrate. Most of the TMOs exhibit 

transmittance levels >75% in the visible and ≥90% in the IR. 

Table 19. Average transmittance of the different TMOs deposited on quartz without the effect of the substrate. 
Values calculated from Figure 90 (h). 

 Tavg (%) 

 300-435 nm 435-670 nm 670-1500 nm 

MoO3 59.8 80.5 90.8 

V2O5 49.8 82.0 91.3 

TiO2 80.8 93.0 96.6 

NiO 60.8 71.3 84.2 

Co3O4 61.1 75.9 89.9 

MoO2 56.4 78.0 82.5 

CuO 70.0 88.6 95.5 
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Figure 90. Total transmittance before (solid line) and after (dashed line) selenization of the SLG/FTO substrates 
coated with 5, 10 and 20 nm of (a) MoO3, (b) V2O5, (c) TiO2, (d) MoO2, (e) NiO, (f) Co3O4 (g) CuO. (h) Total 
transmittance of as deposited TMOs (20 nm) (without the effect of the substrate). 
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Bandgap 

The bandgap of the different TMOs was calculated from Figure 90 (h) by locating the inflection 

points of the transmittance spectra. The results are plotted in Figure 91. 

 

Figure 91. Optical band gap of the different TMOs (ordered from lowest to highest) as obtained from the 
transmittance spectra shown in Figure 90 (h) for 20 nm (squares), 40 nm (circles) and 80 nm (tringles) thicknesses. 
Inset: logarithmic decrease of the bandgap of MoO3 with the increasing thickness. 

All the TMOs show very wide bandgaps ranging from 3.85 eV (MoO2) to 4.60 eV (Co3O4). 

Comparing these values with the literature (see Table 18), it can be observed that the values 

presented here are much higher, in general. This can be attributed to the small crystallite size 

and/or the amorphous nature of the nanometric layers deposited in this work (expectable 

since the deposition was carried out at room temperature). It has been reported that the 

bandgap of nanometric semiconductor crystallites follows a logarithmic trend with the 

increasing grain size due to quantum confinement effects [308–311]. In order to confirm this 

possible cause for the high bandgaps observed, the bandgap of MoO3 was investigated for 

different layer thicknesses (20, 40 and 80 nm) (inset of Figure 91). In effect, the bandgap is 

found to decrease approximately logarithmically with the increasing layer thickness and to 

approach the bulk values reported in the literature for the 80 nm layer. It should also be taken 

into account that the evaporated oxides are likely to be very defective. This may generate a 

very low correlation distance (even below crystallite size) of their crystal structure which can 

further increase quantum confinement effects [312]. In addition, the modification of the band 

structure that follows quantum confinement can result in different allowed transitions 

compared to bulk materials that can shift the bandgap from a narrow indirect to wide direct 

one. The extremely large bandgap shifts observed for CuO and Co3O4 with respect to the 

values reported in Table 18 (+2.6 eV for CuO and +3 eV for Co3O4) fit with this explanation. In 

the case of CuO, this is supported by experimental observations made in the field of 
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nanoparticle synthesis. Lim et al. observed the coexistence of both an indirect (1.4 eV) and a 

direct (3.1 eV) bandgap when analysing the optical properties of 80 nm CuO nanoparticles 

[313]. In addition, Arun et al. reported a direct 4.2 eV bandgap for 20 nm CuO nanoparticles 

[314]. These results fit with the bandgap observed in this work for CuO and give further prove 

of the small crystallite size of the evaporated layers. On the other hand, no information about 

such a wide direct bandgap for Co3O4 nanoparticles has been found in the literature. However, 

He et al. reported a 4.0 eV bandgap for 33 nm CoO nanoparticles [315]. Thus, it may be 

possible that, apart from quantum confinement, the oxidation state of Co3O4 powder changed 

during evaporation which could explain the high bandgap observed for this TMO. In the case of 

V2O5, two clear inflexion points are observed corresponding to a 2.75 eV (similar to bulk 

values) and a 4.13 eV bandgap. Following the same reasoning, this could be due to a crystallite 

size in which both an indirect and a direct bandgap coexist as in the case of 80 nm CuO 

nanoparticles [313]. Finally, the fact that a clear bandgap is observed for MoO2, which should 

be metallic, and its similarity to that of MoO3 indicates that the oxidation state of this TMO 

changed during evaporation to MoO3-x rather than remaining as MoO2. 

After annealing 

Transmittance 

After being submitted to a selenization annealing process, the transmittance of most substrate 

configurations (with 20 nm TMO layers) is widely reduced in the visible and, specially, in the IR 

regions (see Figure 90 and Table 20). 

Table 20. Average transmittance of the SLG/FTO substrates coated with 5, 10 and 20 nm of the different TMOs 
calculated from Figure 90 (a-g). The values in red were measured after submitting the substrates to a selenization 
annealing process. 

 Tavg (%) 

 300-435 nm 435-670 nm 670-1500 nm 

 5 nm 10 nm 20 nm 5 nm 10 nm 20 nm 5 nm 10 nm 20 nm 

MoO3 36.6 34.9 34.0 34.8 68.1 67.8 68.9 54.5 73.1 72.9 68.3 39.0 

V2O5 37.0 33.2 28.2 41.9 70.8 69.6 67.5 64.6 69.7 69.2 67.9 59.7 

TiO2 39.6 38.2 38.4 47.5 71.4 70.7 70.9 74.2 71.3 71.0 71.1 72.0 

NiO 38.6 36.1 32.6 26.4 70.3 68.3 62.7 45.2 70.6 69.1 66.4 48.8 

Co3O4 39.0 38.0 34.5 30.4 70.8 69.5 65.9 52.6 75.7 75.2 73.3 58.0 

MoO2 41.7 38.2 34.6 38.5 72.0 69.6 66.9 56.3 74.6 72.3 68.1 43.5 

CuO 38.0 33.7 33.8 45.0 70.6 67.8 68.2 71.3 75.8 75.5 75.1 67.8 

SLG/FTO 45.4 74.6 75.6 

 

NiO is the TMO which exhibits the most degraded transmittance in the UV and visible ranges. 

Co3O4 shows a similar degradation profile to NiO although to a lesser extent. Likewise, the 

transparency of MoO3 and MoO2 is harshly reduced in the visible and, even more intensely, in 

the IR. These severe reductions in transmittance can be attributed to the formation of low 

bandgap selenide compounds like Ni3Se2 (Eg1.4 eV, [316]), CoSe (Eg1.5 eV, [317]) and MoSe2 

(Eg1.1 eV, [318]) which strongly absorb radiation in the spectral range studied. A different 

behaviour can be observed for V2O5. Although it shows a degraded transmittance in the IR, it 
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maintains a high transparency in the visible region and even exhibits a significant improvement 

in the UV. Interestingly, CuO and TiO2 show almost no degradation after annealing. In the case 

of CuO, its transmittance is only slightly reduced in the IR region. As for TiO2, not only it does 

not degrade but it experiences an overall improvement in its transmittance. 

Sheet resistance 

The sheet resistance of the different configurations seemed to be independent from the TMO 

employed and did not vary noticeably with respect to the reference SLG/FTO substrate 

(Rsheet15 Ω/□). After the annealing process, all the substrate configurations with and without 

TMO layer showed a slightly improved conductivity with Rsheet decreasing to 9 Ω/□. 

Summary 

The optical and electrical properties of the different SLG/FTO/TMO configurations studied 

seem compatible with the use of such substrates as back contacts in semi-transparent and 

bifacial devices. Very wide bandgaps are observed in every TMO which can be attributed to 

quantum confinement effects. The transmittance of some of the TMOs is, though, reduced 

after being submitted to a selenization process partly due to the formation of TMO-selenide 

species while their conductivity is not degraded at all. However, it should be taken into 

account that the post-selenization results should be only interpreted as illustrative since in 

“real conditions” the TMOs will be coated with a CZT metallic precursor which may change the 

way they react to the annealing process. 

5.3.2 Series A: Screening of  TMOs as back contact buffers in CZTSe 

solar cells 

In order to empirically evaluate the suitability of the different TMOs for their use at the back 

contact, CZTSe solar cells were fabricated on every substrate configuration studied above and 

their performance was analysed and compared. Due to the elevated number of samples and 

for the sake of clarity, the analysis was carried out taking into consideration only the main 

optoelectronic parameters of the record solar cell obtained with each substrate configuration 

which can be considered as representative of the whole samples. 

Bare TMOs 

In a first attempt, CZTSe solar cells were fabricated directly on the different SLG/FTO/TMO 

substrate configurations. In order to compensate the possible Na-blocking behaviour of FTO 

[279] and/or the TMOs, 10 nm of NaF were deposited onto the substrates prior to the 

deposition of the CZT metallic precursor stack. The J-V curves and parameters of the best 

devices found in each substrate configuration are shown in Figure 92 and Table 21 (left), 

respectively. 

The reference sample fabricated directly on SLG/FTO exhibits a low efficiency (2.9%) but also 

shows some interesting features. The CZTSe/FTO interface does not present a severe current 

blocking behaviour as can be deduced from the Jsc, FF and the shape of the J-V curve which 

suggest that the Rs of the device is not a critical factor. However, the slope of the curve near 

the V = 0 axis and the low Voc (255 mV) could be pointing towards a low Rsh as the possible 

main limitation of the device. Similar observations with a very low Rsh as the main limiting 
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factor were made by Espíndola-Rodríguez et al. [271,279] but differ from other works in which 

Rsh was not a clear limitation [269]. 

 

Figure 92. J-V curves of the record CZTSe devices obtained with each SLG/FTO/TMO substrate configuration. In 
some cases, the dark J-V curves are also shown as dashed lines. 

The addition of TMOs does not lead to any improvement and, what is more, proves to be very 

detrimental except for MoO3 and MoO2. Some similarities can be detected between the TMOs 

that were observed to get selenized during the annealing process (MoO3, MoO2, Co3O4 and 

NiO) and the TMOs which seemed mostly unaffected by it (V2O5, TiO2 and CuO). 

With regard to the latter group, V2O5 is the less degrading oxide. It is found to lower principally 

the Jsc and FF of the devices due to a higher Rs. As for TiO2 and CuO, they produce a strong 

current blockage that completely distorts the J-V curves of the devices into S-shaped curves. 

However, while for TiO2 the degradation is more acute as the layer thickness is increased, the 

opposite is observed for CuO. 

Regarding the Se-reacting TMOs, the most damaging one is found to be Co3O4. The formation 

of a CoxSey interlayer leads to an extremely high series resistance that totally degrades the J-V 

curves of the devices. The degradation is stronger as the thickness of the TMO (and, 

consequently, of the associated CoxSey layer) is reduced. NiO also shows a current blocking 

behaviour although less severe than in the case of Co3O4 attributable as well to the formation 

of a NixSey interlayer. As for MoO3, although it also presents a high Rs for 5 and 10 nm layers, it 

leads to a highly enhanced Voc compared to the SLG/FTO reference. This suggests that, in this 

case, the formation of MoSe2 creates a more favourable back interface which is in consonance 

with previous works (see references in section 5.1.2). All the optoelectronic parameters rise 

with the increasing MoO3 (and, thus, MoSe2) layer thickness. With a 20 nm TMO layer, the 

current blocking behaviour vanishes resulting in greatly increased Jsc which combined with the 

high Voc (344 mV) translates into a 3.8% efficiency, significantly higher than that of the 
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SLG/FTO reference. In the case of MoO2 all the solar cell parameters are also enhanced with 

the increasing TMO thickness. However, contrarily to MoO3, it does not produce any current 

blocking behaviour at low layer thickness. In addition, the MoO2-containing devices show as 

well superior Voc (351- 368 mV) and FF (44.5-45.9%) that boost the efficiency of the devices up 

to 4.9% with a 20 nm TMO layer. The difference observed between MoO3 and MoO2 is 

surprising due to their similarity since MoO2 was found to be deposited as MoO3-x (see 

bandgap subsection in page 117). However, the fact that the effect of 20 nm of MoO3 

resembles that of 5 nm of MoO2 could indicate that this difference may be due simply to a 

thickness underestimation of the latter oxide. The evaporation of MoO2 was difficult to control 

so such a misestimation is possible. 

Table 21. Solar cell parameters of the record devices obtained with each SLG/FTO/TMO (left) and 
SLG/FTO/TMO/Mo:Na (right) substrate configuration. The rows in bold correspond to devices with efficiencies 
above those of the reference TMO-free substrates. 

Substrate 
configuration 

TMO 
(nm) 

Jsc 

(mA/cm
2
) 

Voc 

(mV) 
FF 
(%) 

η 
(%) 

 
Substrate 

configuration 
TMO 
(nm) 

Jsc 

(mA/cm
2
) 

Voc 

(mV) 
FF 
(%) 

η 
(%) 

FTO - 25.2 255 44.4 2.9 
 FTO/Mo - 27.6 307 37.8 3.2 

 FTO/Mo:Na - 26.1 328 42.2 3.6 

FTO/MoO3 

5 12.3 306 31.2 1.2  

FTO/MoO3/Mo:Na 

5 13.5 297 30.0 1.2 

10 16.1 317 36.1 1.8  10 13.1 265 27.3 0.9 

20 27.4 344 40.7 3.8  20 11.2 289 26.6 0.9 

FTO/V2O5 

5 21.7 241 31.0 1.6  

FTO/V2O5/Mo:Na 

5 27.4 338 38.3 3.6 

10 20.2 242 30.8 1.5  10 29.9 352 42.0 4.4 

20 23.9 234 34.9 2.0  20 30.2 353 45.0 4.8 

FTO/TiO2 

5 16.5 230 29.2 1.1  

FTO/TiO2/Mo:Na 

5 26.6 373 46.8 4.6 

10 12.4 223 22.2 0.6  10 27.4 364 49.3 4.9 

20 4.2 188 17.2 0.1  20 25.0 403 40.1 4.0 

FTO/NiO 

5 8.6 137 28.3 0.3  

FTO/NiO/Mo:Na 

5 15.0 205 37.8 1.2 

10 11.7 180 34.3 0.7  10 10.9 254 35.8 1.0 

20 12.5 243 34.8 1.1  20 11.5 249 35.8 1.0 

FTO/Co3O4 

5 2.5 119 24.3 0.1  

FTO/Co3O4/Mo:Na 

5 22.0 351 32.3 2.5 

10 4.3 142 24.6 0.2  10 23.7 346 43.9 3.6 

20 8.6 240 23.8 0.5  20 24.3 327 40.7 3.2 

FTO/CuO 

5 - - - -  

FTO/CuO/Mo:Na 

5 25.7 338 37.2 3.2 

10 5.5 202 16.6 0.2  10 24.3 318 40.8 3.2 

20 16.3 255 30.6 1.3  20 24.7 321 37.6 3.0 

FTO/MoO2 

5 24.9 351 44.5 3.9  

FTO/MoO2/Mo:Na 

5 13.5 304 29.5 1.2 

10 28.4 366 43.8 4.6  10 10.4 254 27.3 0.7 

20 29.0 368 45.9 4.9  20 10.0 328 25.8 0.8 

 

Addition of Mo:Na and MoSe2 formation 

The performance of the devices fabricated on the bare TMOs clearly indicates that a MoSe2 

interlayer between the kesterite absorber and the FTO is necessary for an improved back 

interface. In order to confirm this result and following the work by Espíndola-Rodríguez et al. 

[279], CZTSe solar cells were fabricated on SLG/FTO coated with 20 nm of Mo (with no 

additional NaF layer) or Mo:Na. The results are shown in the first two rows of Table 21 (right) 

and the top left corner of Figure 93. 

The addition of either Mo or Mo:Na causes analogous improvements to those observed when 

employing MoOx layers with no current blocking behaviour and an improved Voc arising from 
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an improved Rsh compared to the SLG/FTO reference. The use of Mo:Na, though, leads to 

significantly higher Voc and FF than just standard Mo which is consistent with the results 

reported by Espíndola-Rodríguez et al. and attributable to a higher Na incorporation into the 

absorber [279]. In general, the Voc enhancement provided by MoSe2 could be interpreted as a 

reduction of the aforementioned shunts. 

In view of these positive results, CZTSe devices were fabricated on the different SLG/FTO/TMO 

substrate configurations with a 20 nm Mo:Na layer deposited on top. The results are shown in 

Table 21 (right) and Figure 93. 

 

Figure 93. J-V curves of the record CZTSe devices obtained with each SLG/FTO/TMO/Mo:Na substrate 
configuration. 

The addition of Mo:Na to the SLG/FTO/MoOx substrate configurations results in highly 

degraded devices with a large series resistance as can be deduced from their low Jsc and FF. 

Regarding the other Se-reacting TMOs, Mo:Na tends to reduce the Rs and improve the Voc of 

the devices with respect to the bare TMOs. However, despite these improvements, none of 

the devices surpasses the performance of the SLG/FTO/Mo:Na reference since they still 

present a current blocking behaviour. 

As for the more Se-inert TMOs, all of them exhibit radical improvements with the addition of a 

20 nm Mo:Na layer. The S-shape behaviour of some of the J-V curves observed before 

completely disappears. In the case of CuO, its performance is below that of the 

SLG/FTO/Mo:Na reference due to a lower Jsc and FF. On the other hand, TiO2 and V2O5 lead to 

much higher efficiencies than employing just Mo:Na. In particular, a 10 nm TiO2 layer results in 

a 4.9% efficiency device with remarkably enhanced Voc (364 mV) and FF (49.3%). A thicker TiO2 

layer seems to induce a slight current blockage that hinders the overall performance. As for 

V2O5, a 20 nm layer leads to a  4.8% efficiency device with a largely enhanced Jsc (30.2 mA/cm2) 

but also with improved Voc and FF. In contrast to TiO2, a large V2O5 thickness does not affect Rs 
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negatively. Thus, the use of V2O5 and TiO2 represents a significant enhancement with respect 

to the SLG/FTO/Mo:Na reference (+1-1.2% efficiency increase, absolute). 

Summary 

The main limitation of the CZTSe/FTO interface seems to lie at the presence of shunt paths 

that hinder, mainly, the Voc of the devices. The addition of TMOs to the interface does not 

reduce shunting but degrades the devices by inducing a large series resistance. A different kind 

of current blocking behaviour is observed for the oxides that get selenized during the CZTSe 

synthesis process and for those that remain mostly unchanged. 

On the other hand, the formation of a MoSe2 buffer interlayer has been observed to reduce 

shunting and increase the Voc of the devices fabricated on every substrate configuration. 

Furthermore, the combination of MoSe2 with TiO2 and V2O5 has been found to greatly boost 

the performance of the devices. 

5.3.3 Series B: Repetition of the best performing TMOs with optimised 

device configurations 

After the positive results obtained in the initial screening (series A), the best performing 

substrate configurations were further studied to check the reproducibility of the results in 

optimised device structures that include a 10 nm Ge layer as well as a metallic grid and an anti-

reflecting coating (see section 5.2.2). More specifically, the selected configurations were the 

following: 

 SLG/FTO (reference) 

 SLG/FTO/Mo:Na (reference) 

 SLG/FTO/TiO2/Mo:Na 

 SLG/FTO/V2O5/Mo:Na 

Thickness screening 

The same thickness screening (5, 10 and 20 nm) was repeated for the selected substrate 

configurations. However, this time the optoelectronic parameters of all the devices fabricated 

in each substrate configuration (16 solar cells per sample) are analysed together by means of 

a boxchart (Figure 94) in order to discern more global trends. In addition, Table 22 shows the 

main optoelectronic parameters of the record devices together with their calculated series and 

shunt resistances. 

Compared to series A (see Table 21), it can be seen that the SLG/FTO reference presents a 

significantly higher maximum efficiency on the new substrate (+0.9%, absolute) due, mainly, to 

a superior Jsc. A large portion of this increase is due to the implementation of a metallic grid 

and an ARC layer. Likewise, the slightly higher Voc can be ascribed to the addition of a 10 nm 

Ge layer [206]. Nevertheless, despite this moderate improvement, the Voc is still the main 

limiting factor of the device. In addition, a low homogeneity with large FF and Jsc variations 

throughout the sample can be observed in Figure 94 which limits the average efficiency of the 

sample to just 2.9%. The presence of strong shunt paths speculated in the previous screening 

is numerically confirmed here two-fold: on the one hand, the record device exhibits a very low 
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Rsh value (60 Ω·cm2) and, on the other hand, it also presents the lowest Rs, by far, among all 

the substrate configurations. These two observations together indicate that there exist 

channels or paths within the device through which the carriers can travel with low resistivity. 

However, other problems like an insufficient grain boundary passivation cannot be discarded. 

The addition of Mo:Na (and the resulting MoSe2 layer) to the SLG/FTO substrate is also 

confirmed to alleviate shunting (Rsh and Rs increase almost 4 times and 2 times, respectively) as 

observed in the previous screening. This way, the Voc and FF of the devices are significantly 

improved resulting in an enhanced 4.1% (5.0%) average (record) efficiency. In addition, the 

homogeneity of the sample is improved. 

 

Figure 94. Boxchart of the main solar cell parameters of the devices fabricated on the different substrate 
configurations. 

The combination of Mo:Na with V2O5 and TiO2 leads to further improvements. In the case of 

the SLG/FTO/V2O5/Mo:Na configuration, this is only achieved with a 10 nm V2O5 layer. 

Compared to the SLG/FTO/Mo:Na reference, the average Voc and FF are moderately enhanced 

which translates into a 5.4% record efficiency. However, the origin of these improvements is 
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not clear from the data presented here. On the other hand, the combination of 5 and 10 nm 

TiO2 layers with Mo:Na leads to a large improvement of all solar cell parameters. The best 

performance is reached with a 10 nm TiO2 layer. Compared to the SLG/FTO/Mo:Na reference 

there is an average improvement of 65 mV in Voc, 5% (absolute) in FF and 2.2 mA/cm2 in Jsc. All 

this leads to a remarkable 6.2% record efficiency. In this case, these enhancements can be 

clearly attributed to a highly increased shunt resistance (twice higher than that of the Mo:Na 

reference). However, increasing the thickness of the TiO2 layer to 20 nm causes a strong 

reduction of the average FF and Jsc as well as a large loss of homogeneity as can be observed in 

Figure 94. Although this degradation matches with a larger series resistance, this is not 

reflected in Table 22 since the record device corresponds to an extreme outlier case (as a 

result of the large inhomogeneity) not representative of the global tendency of the sample. 

Table 22. Optoelectronic parameters of the record devices obtained with each substrate configuration. The rows 
in bold correspond to the best configuration obtained with each TMO. 

Substrate 
configuration 

TMO 
(nm) 

 Jsc 

(mA/cm
2
) 

Voc 

(mV) 
FF 
(%) 

η 
(%) 

 Rsh 

(Ω·cm
2
) 

Rs 

(Ω·cm
2
) 

FTO -  31.5 263 46.3 3.8  60 0.8 

FTO/Mo:Na -  32.7 315 48.9 5.0  230 1.4 

FTO/TiO2/Mo:Na 

5  35.0 346 49.1 5.9  270 1.4 

10  34.4 355 50.9 6.2  520 1.5 

20  33.1 355 49.5 5.8  160 1.1 

FTO/V2O5/Mo:Na 

5  32.8 316 45.2 4.7  170 1.7 

10  33.8 328 48.7 5.4  240 1.4 

20  30.2 315 49.5 4.7  270 1.0 

 

To further explore the effects of the different substrate configurations, the spectral response 

(EQE) of the record devices was also studied. The results are shown in Figure 95. 

The SLG/FTO reference presents an almost linearly decreasing collection of photogenerated 

charges from 500 nm (80%) to 1200 nm (40%). The most likely explanation for this low carrier 

collection is recombination. The EQE profile shows that the deeper EHPs are generated (i.e. at 

longer illumination wavelengths) the more likely recombination is. This suggests that the origin 

of recombination may lie at the back interface. The addition of Mo:Na enhances charge 

collection around 8% (absolute) in average along the 500-1200 nm range, reaching the largest 

improvement at around 950 nm. The fact that MoSe2 is located at the back interface and that 

the largest collection improvements with respect to the SLG/FTO reference are observed for 

deeply generated carriers reinforces the idea of the back interface being the main source of 

recombination. Thus, besides improving Rsh, the formation of MoSe2 also reduces 

recombination at the CZTSe/FTO interface. 

The substrate configurations containing TMOs present complex and very thickness-sensitive 

behaviours. In the case of the SLG/FTO/V2O5/Mo:Na configuration, the only significant 

improvement is found for a 10 nm V2O5 layer which boosts collection in the 500-1200 nm 

range compared to Mo:Na. For 5 and 20 nm V2O5 layers, there is no collection improvement 

with respect to the SLG/FTO/Mo:Na reference. As for the combination of TiO2 and Mo:Na, 

charge collection is substantially increased with respect to the other substrate configurations 

in the 800-1200 nm spectral range when employing either a 5 or a 10 nm TiO2 layer. For 
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wavelengths <800 nm, the differences with respect to the Mo:Na reference are negligible. 

Increasing the thickness of the TiO2 layer to 20 nm maintains an improved collection for 

wavelengths larger than 900 nm but causes it to significantly drop in the 500-900 nm range 

changing the shape of the EQE curve and suggesting an influence of TiO2 not only at the back 

but also at the front interface. 

 

Figure 95. EQE of the record devices obtained with in the thickness screening. 

Transmittance and sheet resistance 

In section 5.3.1, it was demonstrated that the TMOs are very transparent and do not affect the 

resistivity of the substrates. However, the best performing substrate configurations 

(SLG/FTO/10 nm TiO2/Mo:Na and SLG/FTO/10 nm V2O5/Mo:Na) differ from those initially 

studied since they contain a 20 nm Mo:Na layer. Therefore, the following question arises: are 

the best performing configurations transparent and conductive? Figure 96 shows the 

transmittance spectra of the best substrate configurations before and after being submitted to 

a reactive annealing process. In addition, Table 23 shows the average transmission values 

extracted from them in the UV, visible and IR regions. 

Before annealing, the transmittance levels are significantly lower compared to the Mo:Na-free 

configurations. The reduction in transmittance is observed to be independent from the TMO 

employed and decreases with the increasing illumination wavelength: 28% in the UV, 26% in 

the visible and 15% in the infrared relative to the bare TMOs. On the other hand, the 

conductivity of the substrates is totally degraded by the addition of a 20 nm Mo:Na layer with 

Rsheet increasing from 10 Ω/□ up to 2.2 kΩ/□. This is due to the fact that the Na present in the 
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Mo:Na layer is in the form of Na2MoO4 which has a very low conductivity due to its high 

oxygen content [182,319,320]. 

 

Figure 96. Total transmittance before (solid line) and after (dashed line) selenization of the best performing 
substrate configurations. 

During the annealing process, the Mo:Na layers are selenized, as expected, into MoSe2. which 

further decreases their transmittance. This decrease is stronger for the V2O5-containing 

configuration than for the TiO2-containing one suggesting a different growth of the MoSe2 

layer or a higher stability of the TiO2 layer during the annealing process as observed in section 

5.3.1. This way, SLG/FTO/V2O5/Mo:Na configuration exhibits the lowest transmittance (45.1% 

in the visible and 49.5% in the IR). However, this level of transparency, although low, is still 

compatible with the fabrication of semi-transparent and bifacial devices. 

On the other hand, the annealing process restores the conductivity of Mo:Na-containing 

substrates to 10 Ω/□ since the Mo:Na layer is completely selenized and MoSe2 is more 

electrically benign that Na2MoO4. 

Table 23. Average transmittance values of the best performing substrate configurations. The values in red were 
measured after submitting the substrates to an annealing process. Values calculated from Figure 96. 

 Tavg (%) 

 300-435 nm 435-670 nm 670-1500 nm 

 
Bare 

10 nm 
+Mo:Na 

Bare 
10 nm 

+Mo:Na 
Bare 

10 nm 
+Mo:Na 

V2O5 33.2 24.1 18.6 69.6 51.4 45.1 69.2 59.1 49.5 

TiO2 38.2 27.5 22.3 70.7 52.2 49.0 71.0 60.6 57.0 

SLG/FTO 45.4 74.6 75.6 
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Summary 

The presence of shunts that reduce the Rsh of the devices is confirmed to be the main limiting 

issue of CZTSe devices fabricated on SLG/FTO. However, strong recombination is also observed 

in EQE measurements probably originated at the back interface. The addition of extra MoSe2,  

V2O5/MoSe2 and TiO2/MoSe2 layers is observed to act twofold: on the one hand it increases Rsh 

and, on the other hand, it reduces recombination. Both beneficial effects exhibit a complex 

behaviour and are very sensitive to layer thickness becoming even detrimental in some cases. 

Despite this complex behaviour, clearly superior substrate configurations have been found in 

which the improvements provided by the extra layers outweigh any detrimental effects and 

result in highly enhanced devices with respect to the reference substrates: 

 SLG/FTO/10 nm V2O5/Mo:Na 

 SLG/FTO/10 nm TiO2/Mo:Na 

Finally, despite the formation of MoSe2, these substrate configurations still present a high 

enough transparency to be compatible with bifacial or semi-transparent applications. 

5.3.4 Series C: Technology transfer to wide-bandgap CZTS and CZTSSe 

Once the best the substrate configurations were found for CZTSe devices, the suitability of 

employing them for wider bandgap kesterite devices was studied. In order to do this, CZTS and 

CZTSSe (S/S+Se  0.9) devices were fabricated in a similar way to series B (with Ge, metallic 

grid and ARC) on the following substrate configurations: 

 SLG/FTO 

 SLG/FTO/Mo:Na 

 SLG/FTO/10 nm V2O5/Mo:Na 

 SLG/FTO/10 nm TiO2/Mo:Na 

First, the performance of the different devices is analysed and compared with the previously 

fabricated CZTSe ones. Then, morphological, structural and in-depth compositional 

characterization of the devices is presented to further investigate the effects of the different 

substrate configuration on the kesterite devices. 

Device performance 

Table 24 shows the main optoelectronic parameters of the record devices together with their 

calculated series and shunt resistances. As in the initial screening, only the record cells, which 

can be considered as representative of the full samples, are shown for the sake of simplicity. 

Similar shunting problems to those observed in CZTSe are detected for CZTS and CZTSSe 

devices fabricated on SLG/FTO. However, in contrast to the former, the series resistance of the 

latter is also a very limiting issue which results in solar cells with very low fill factor and 

efficiencies below that of CZTSe. In the case of CZTSSe, the Rs exhibits extremely high values 

one order of magnitude higher than those found on pure Se solar cells and around 3 times 

higher than in the case of S. Espíndola et al. reported the degradation of FTO in a S+Se 

annealing atmosphere with a noticeably hindered transmittance and a 10 times higher sheet 

resistance [279]. The series resistance issues observed here fit perfectly with such an increased 
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sheet resistance of the FTO back contact due to a low inertness during annealing in pure S and, 

especially, in S+Se mixture. The addition of Mo:Na and subsequent formation of Mo(Sx,Se1-x)2, 

apart from insulating shunts as in the case of CZTSe, is also observed to prevent FTO S-related 

degradation during annealing resulting in devices with highly diminished series resistances. 

However, both Mo:Na and the different TMO substrate configurations studied present 

dissimilar behaviours depending of the absorber employed. 

Table 24. Optoelectronic parameters of the record devices obtained with each substrate configuration and 
kesterite absorber. The rows in bold correspond to the best configuration obtained for each absorber. 

Absorber 
Substrate 

configuration 
TMO 
(nm) 

 
Jsc 

(mA/cm
2
) 

Voc 

(mV) 
FF 
(%) 

η 
(%) 

 
Rsh 

(Ω·cm
2
) 

Rs 

(Ω·cm
2
) 

CZTSe 

FTO -  31.5 263 46.3 3.8  60 0.8 

FTO/Mo:Na -  32.7 315 48.9 5.0  230 1.4 

FTO/TiO2/Mo:Na 10  34.4 355 50.9 6.2  520 1.5 

FTO/V2O5/Mo:Na 10  33.8 328 48.7 5.4  240 1.4 

CZTS 

FTO -  17.2 579 37.4 3.7  60 4.5 

FTO/Mo:Na -  14.6 755 55.2 6.1  320 1.7 

FTO/TiO2/Mo:Na 10  11.3 542 42.3 2.6  170 8.7 

FTO/V2O5/Mo:Na 10  15.2 618 41.5 3.9  110 1.8 

CZTSSe 

FTO -  17.1 546 35.2 3.3  100 13.8 

FTO/Mo:Na -  18.1 617 46.4 5.2  180 2.9 

FTO/TiO2/Mo:Na 10  18.9 589 58.0 6.4  320 3.3 

FTO/V2O5/Mo:Na 10  21.7 620 58.8 7.9  270 1.8 

 

In the case of CZTS, the shunting reduction effect of Mo:Na is particularly strong which, among 

other factors, leads to an impressive 755 mV Voc (176 mV increase). This is the highest Voc 

reported for a kesterite solar cell fabricated on a transparent substrate and is comparable to 

some of the highest Voc values reported for pure sulphur kesterite [321,322]. The devices also 

present a highly enhanced FF attributable to the strong Rs reduction provided by Mo:Na. 

Despite the low Rs, a significantly lower Jsc (2.6 mA/cm2 lower) compared to the reference 

limits the efficiency of the record device to 6.1%. On the other hand, the combination of 

Mo:Na with 10 nm of V2O5 eliminates the beneficial effects of the former with respect to 

shunting while its combination with 10 nm of TiO2 induces a very high Rs degrading, in both 

cases, the performance of the devices. 

As for CZTSSe devices, although Mo:Na provides a large series resistance reduction, it does not 

completely impede the degradation of the FTO leading to a twice higher Rs compared to CZTSe 

and CZTS. However, the Voc is still greatly improved by 71 mV yielding a 5.2% efficiency device. 

On the other hand, the combination of Mo:Na with 10 nm V2O5 and TiO2 layers causes 

important improvements with respect to the Mo:Na reference, especially on the Rsh of the 

devices. In the case of TiO2, a highly increased FF and significantly lower Voc are detected with 

respect to those of the Mo:Na reference leading to an improved 6.4% efficiency. In the case of 

V2O5, the FF is also highly increased but maintaining the same Voc as the Mo:Na reference. In 

addition, V2O5 also provides a significantly lower Rs that allows a 3.6 mA/cm2 higher Jsc. All this 

translates into a 7.9% record efficiency. This is the highest efficiency reported for a kesterite 

device fabricated on a transparent substrate. 
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Morphological characterisation 

Figure 97 shows FESEM cross-sectional micrographs of the CZTSe, CZTS and CZTSSe devices 

fabricated on the different substrate configurations. In the case of CZTSe, no significant 

differences can be spotted in the morphology of the absorbers despite the different back 

interfaces employed. All of them present large micron-sized grains and a compact structure. 

However, the use of V2O5/Mo:Na seems to induce a bilayer morphology with slightly smaller 

grains at the bottom.  

 CZTSe CZTS CZTSSe 

SLG/FTO 
 

   

/Mo:Na 

   

/TiO2/Mo:Na 

   

/V2O5/Mo:Na 

   
Figure 97. Cross-sectional FE-SEM micrographs of the best performing CZTSe, CZTS and CZTSSe devices on the 

different substrate configurations. 

In the case of CZTS, the substrate configuration completely changes the morphology of the 

absorber. The device fabricated directly on SLG/FTO presents a small crystallite porous 

structure with numerous voids at the bottom. The addition of Mo:Na increases grain size at 

the top of the absorber whilst the bottom still presents very small crystallites. However, the 

number of voids is greatly reduced and the structure becomes much more compact. On the 

other hand, the combination of TiO2 and V2O5 with Mo:Na largely hinders crystal growth 

resulting in a morphology dominated by small crystallites similar to SLG/FTO reference which 

could lie at the origin of the low performance of the devices fabricated on those substrate 

configurations. 

As for CZTSSe, the absorber synthesised on SLG/FTO exhibits large grains although combined 

with abundant voids and crystallites at the bottom. The addition of Mo:Na leads to a more 

compact structure with slightly larger grain size and reduced number of voids. Interestingly, 

the combination of Mo:Na with TiO2 and V2O5 largely increases crystal size and layer 
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compactness completely eliminating any sign of crystallites and voids and yielding large 

columnar grains with a reduced number of grain boundaries. This improved morphology 

correlates with the large enhancements observed in the optoelectronic parameters of the 

solar cells fabricated on such substrates. 

Raman analysis 

Figure 98 shows the front and back Raman spectra of the CZTSe, CZTS and CZTSSe devices 

fabricated on the different substrate configurations. The measurements were carried out with 

λex = 785 nm which allows to investigate both the front and back sides without removing the 

window layer or exfoliating the device from the substrate, respectively. 

In general, no significant differences can be observed in the position and full width at half 

maximum (FWHM) of the main kesterite peaks regardless the absorber, substrate 

configuration employed or the side of the sample measured. Nevertheless, the FWHM of the 

335 cm-1 (CZTSSe) and 337 cm-1 (CZTS) peaks is slightly higher (below 13%) in the spectra 

obtained from back side measurements suggesting a more defective kesterite (see Figure 99). 

In addition, there is no trace of secondary phases in CZTSe and CZTSSe devices neither at the 

front nor at the back of the absorbers. This is particularly revealing in the case of CZTSe since 

the excitation wavelength employed is resonant with the bandgap of SnSe2 (as already shown 

in chapters 3 and 4) whose formation could be a priori expected when working with an FTO 

back contact. In the case of CZTS, some SnS is detected at the front surface of the devices 

fabricated on SLG/FTO and SLG/FTO/Mo:Na. 

 

Figure 98. Raman spectra of the CZTSe, CZTSSe and CZTS devices fabricated on the different substrate 
configurations. The measurements were carried out at the front surface (continuous lines) and the back surface 
(dotted lines) employing λex = 785 nm. 

The back measurements of the CZTSe devices confirm the formation of MoSe2 when Mo:Na is 

employed at the back. The bandgap of MoSe2 is resonant with the excitation wavelength 

employed so its signal is highly enhanced impeding to obtain clear information from the CZTSe 

absorber. The opposite is observed in CZTS and CZTSSe in which no information can be 

obtained about the MoS2 and Mo(S,Se)2 layers since they are transparent to the excitation 

laser source due to their elevated bandgap. 
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Figure 99. FWHM of the 195 cm
-1

 (CZTSe), 335 cm
-1

 (CZTSSe) and 337 cm
-1

 (CZTS) peaks extracted from Lorentzian 
fittings. The S/(S+Se) ratios calculated with a similar method to that described in [323] are shown for CZTSSe. 

Employing a peak area ratio method similar to the one developed by Dimitrievska et al. 

[323,324], the S/(S+Se) compositional ratio of the CZTSSe devices was analysed to study if the 

different substrate configurations could affect the anionic composition of the absorbers. 

However, no significant differences are observed with the S/(S+Se) ratios ranging from 0.86 to 

0.91 (values in the middle part of Figure 99). 

In-depth compositional analysis 

In order to shed light on the role and location of the different layers added to the FTO back 

contact as well as on Na diffusion and incorporation, the best performing CZTSe, CZTS and 

CZTSSe devices were analysed by TOF-SIMS (Figure 100). 

The spectra c and d in Figure 100 give clear confirmation of the FTO acting as a Na barrier. 

However, a significant amount of Na can still diffuse through it. Na is observed to accumulate 

at the back kesterite/FTO interface in every case which is expectable since Mo:Na is located 

there and Na has been demonstrated to assist the formation of MoSe2 and incorporate into it 

[325,326]. In addition, there is also an accumulation of Na towards the kesterite/CdS interface. 

This indicates that Na is effectively diffusing from the back to the front of the absorbers and, 

thus, is being effectively incorporated into the kesterite structure. The front interface Na 

accumulation seems higher in the case of CZTS which may be suggesting a higher incorporation 

of this alkaline element promoted by the smaller grain size (or larger amount of grain 

boundaries) of the absorber. However, it is difficult to quantitatively compare Na incorporation 

onto the different absorbers due to possible matrix effects between the different elements 

analysed that may change the ionization energy of Na and, therefore, the intensity of the SIMS 

signal. 

Regarding the TMOs, clear signals of V and Ti (only in O2
+ mode, spectrum b in Figure 100) are 

found at the back interface of CZTSSe and CZTSe absorbers. This gives proof of their stability 
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and their presence at the back after the kesterite synthesis process. Thus, some of the effects 

observed in the optoelectronic properties of the devices can be truly ascribed to the presence 

of these TMOs at the back. Interestingly, in the case of Ti, an accumulation at the front 

interface is also observed which points towards a diffusion of this metal through the absorber. 

It was shown before that 20 nm of TiO2 modify the EQE response in the 500-900 nm range (see 

Figure 94) which may be related to the observed Ti accumulation towards the CdS/kesterite 

interface. 

 

Figure 100. TOF-SIMS spectra of the best CZTSe (a), CZTS (c) and CZTSSe (d) performing devices fabricated on 
SLG/FTO/TiO2/Mo:Na, SLG/FTO/Mo:Na and SLG/FTO/V2O5/Mo:Na, respectively, obtained from the Cs

+
 signal. b) 

CZTSe spectrum obtained from the O2
+
 signal. Elements displayed: Cu (blue), Sn (red), S/Se (dark yellow), V/Ti 

(orange), Na (purple), Mo (dark grey), Cd (yellow) and O (blue). The boundaries between the different layers 
shown in the spectra are only intended as a visual guide for the reader. 
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Transmittance 

Finally, it is interesting to take a quick look at the transparency of the finished devices to 

evaluate their potential for semi-transparent applications. Their transmittance spectra are 

shown in Figure 102. Since the absorbers are 1.5-2 μm thick, they absorb nearly all the visible 

light making them completely opaque. However, they allow a significant portion of the 

infrared light to pass, especially wide-bandgap CZTS and CZTSSe devices. This implies that, on 

the one hand, these substrate configurations have a true potential for semi-transparent 

kesterite applications if wide-bandgap materials are used and, on the other hand, that it is 

necessary to combine this approach with a highly reduced  absorber thickness. 

 

Figure 101. Transmittance spectra of the finished devices. 

Summary 

It has been shown that CZTSe, CZTS and CZTSSe absorbers behave differently on the different 

substrate configurations studied. Firstly, in contrast to the high inertness of FTO during 

annealing in Se atmosphere, the presence of S degrades its conductivity and hinders the series 

resistance of the resulting CZTS and CZTSSe devices. Apart from reducing shunting issues, the 

use of Mo:Na and subsequent formation of MoSe2 prevents the degradation of FTO during 

annealing. In the case of CZTS, the combination of both effects leads to a record device with a 

very high Voc and a 6.2% efficiency. However, the use of V2O5 and TiO2 eliminates the beneficial 

effects of Mo:Na/MoSe2. Oppositely, these TMOs highly improve the performance of CZTSSe 

devices, specially V2O5, leading to a 7.9% record efficiency.  

Raman characterisation shows that the different substrate configurations do not influence the 

crystalline quality nor the composition of the Kesterite absorbers. On the contrary, FESEM 

reveals they have a profound effect on the morphology of the absorber which correlates with 
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the performance of the devices. Finally, TOF-SIMS measurements confirm that some of the 

effects observed can be ascribed the presence of TMOs at the back interface. 

5.4 Discussion 

The discussion presented below should be taken with great caution since it only aims to 

provide some clues that may help to interpret the results obtained with the different 

SLG/FTO/TMO/Mo(Sx,Se1-x)2 substrate configurations. However, due to the complexity of such 

multilayered back interfaces, it would be pretentious to extract solid conclusions solely from 

the J-V and EQE data of the devices which represent the majority of the characterisation 

performed to the samples. In order to fully understand the behaviour of these substrate 

configurations, further experimentation and more advanced characterisation are necessary. 

Unfortunately, this is beyond the scope of this work: a preliminary screening and an empirical 

search of substrate configurations that may improve the Kesterite/FTO interface. 

5.4.1 CZTSe 

FTO/CZTSe interface and addition of TMOs 

The results obtained in this work show that the series resistance is not a critical issue when 

fabricating CZTSe solar cells on SLG/FTO substrates which suggests that the CZTSe/FTO 

junction exhibits a near-ohmic behaviour. This contradicts previous works in which Rs was 

reported to be a limiting factor for the performance of CZTSe solar cells fabricated on FTO 

[269,271,279]. However, although not obvious since the properties of CZTSe and FTO can vary 

considerably depending on their fabrication process, a near-ohmic behaviour is somehow an 

expectable result regarding the work functions reported in the literature for CZTSe and FTO 

which show a favourable band alignment as depicted in Figure 102a. 

 

Figure 102. Band diagrams of CZTSe, CZTS and FTO. Data sources: CZTSe and CZTS [330]; FTO [331]. 
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The addition of TMO layers on top of the FTO for the fabrication of CZTSe devices has been 

observed to induce a current-blocking behaviour (except for MoOx) and, thus, to be very 

detrimental for the devices. However, two different cases can be distinguished. On the one 

hand, V2O5 and, especially, TiO2 and CuO lead to distorted J-V curves that even become S-

shaped for the latter oxides. Since these TMOs have been found to be rather inert to the 

annealing process (Figure 90) and to remain at the back interface (Figure 100), the distortion of 

the J-V curves can be directly attributed to their presence between CZTSe and FTO. S-shaped 

curves are commonly encountered in OPV and are usually related to electronic issues such as 

the formation of an extra diode or charge accumulation as a result of a bad band alignment 

[327–329]. In principle, as shown in Figure 89, large work function TMOs are expected to 

provide a more effective hole extraction either through creating an accumulation or a 

recombination layer. However, it is clear that this is not the case here and that these TMOs 

completely ruin the favourable CZTSe/FTO band alignment shown in Figure 102. On the other 

hand, Co3O4 and NiO also lead to distorted J-V curves. Owing to the more linear shape of the 

curves and to the fact that they these TMOs get selenized during annealing, the high Rs of the 

devices could be arising from an increased contact resistance (rather than from a unfavourable 

band alignment) caused by the formation of very rough or non-continuous NixSey/CoxSey 

layers. 

Origin of shunting and recombination and the role of MoSe2 

The main issue found when fabricating CZTSe devices directly on SLG/FTO has been found to 

be a very low shunt resistance. The origin such a strong shunting is not easy to discern, though. 

FESEM micrographs (Figure 97) show devices with large grains, a compact structure and with 

no evidence of front-back interconnection. Likewise, Raman spectroscopy (Figure 98) does not 

detect any secondary phases that could act as a shunt paths like SnSe2 (see section 3.4.3). 

Another possible source of shunting which has not been explored in this work is the presence 

of conductive grain boundaries. In this respect, Guo et al. reported a low shunt resistance in 

CZTSe devices and attributed it to Se-poor and Sn-rich grain boundariess (measured by EDX) 

exhibiting a metallic behavior and acting as conductive channels [332]. Since, in this work, 

CZTSe devices are fabricated on FTO, a Sn-enrichment of the grain boundaries as an effect of 

Sn-diffusion from the substrate seems plausible and could lie at the origin of the observed 

shunting. 

The formation of MoSe2 (arising either from Mo, Mo:Na or MoOx layers) on top of the FTO has 

been observed to alleviate shunting largely increasing the Voc of the devices. This effect has 

been initially attributed to MoSe2 acting as an insulating layer and, thus, reducing shunt 

currents. Interestingly, the SLG/FTO/MoOx/Mo:Na configurations have resulted in highly 

degraded devices with a large series resistance. This current-blocking behaviour may be 

ascribed to a different growth of MoSe2. López-Marino et al. reported a change in the 

orientation of the c-axis of MoSe2 when selenizing a 20-30 nm Mo sacrificial layer deposited on 

SLG/Mo and SLG/Mo/MoO2 substrates shifting from purely parallel to the substrate (i.e. 

electrically benign columnar grains) in the former case to a mixture of parallel and 

perpendicular (i.e. stacked horizontal MoSe2 layers potentially detrimental for Rs) when MoO2 

was present [147]. Thus, it may be possible that the degradation of the Rs observed when 

combining MoOx and Mo:Na is related to the presence of a too thick MoSe2 layer with an 
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electrically unfavourable orientation. This could also explain the differences observed between 

using Mo/Mo:Na metallic layers and MoOx as MoSe2 precursors. This way, the MoSe2 layer 

formed from MoOx would be more insulating and, thus, would reduce shunting more 

effectively. 

In addition to shunting, EQE measurements (Figure 95) have also revealed strong 

recombination towards the back interface as a limiting factor of the CZTSe devices fabricated 

on SLG/FTO. The low carrier collection can be considered to be independent from shunting 

since, except in extreme cases, shunts can be neglected in short-circuit conditions (see Eq.(10)) 

so they should affect neither the Jsc nor the EQE of the devices noticeably. Although Figure 

102a shows an expected favourable band alignment and the CZTSe/FTO interface displays 

ohmicity, the results also indicate that CZTSe-FTO coupling is far from perfect. Thus, the origin 

of the observed recombination issues may lie at a non-optimum p-kesterite/n-FTO band 

alignment in which an extended region with a high density of defects can be expected to be 

formed. The existence of defects becomes evident by comparing the Jsc value obtained from J-

V analysis (31.5 mA/cm2) and from integrating the EQE curve (28.4 mA/cm2) (see section 

5.3.3). This 10% difference indicates the presence of charged defects that affect collection 

during low light intensity EQE measurements but are partially neutralized by photogenerated 

carriers under more intense illumination in J-V curve acquisition. 

The formation of MoSe2 on top of the FTO has been observed to reduce recombination which 

may also be contributing to the Voc improvement associated to this layer. The mechanism 

through which MoSe2 improves collection is not clear but may be related to an electronically 

improved interface. If highly doped, MoSe2 could be acting as a p+ accumulation layer reducing 

the width of the barrier formed at the CZTSe/FTO interface and preventing the formation of an 

extended defect region. However, it may also be possible that the improved collection is due 

to the passivation of interface defects. It was observed in Figure 100 that a large amount of Na 

remains at the back within the MoSe2 layer. Thus, this Na reservoir may be assisting in 

passivating such interface defects. 

Combination of TMOs with Mo:Na 

The combination of the TMOs with Mo:Na (MoSe2), has been found to improve the 

performance of the CZTSe devices with respect to the case of the bare oxides twofold: 

1. By reducing or even eliminating the current blocking behaviour observed for the bare 

TMOs 

2. By increasing the Voc of every SLG/FTO/TMO configuration. 

However, although related, both effects seem to have different origins. The Voc increase occurs 

in, more or less, a similar way in every substrate configuration regardless the TMO and may be 

linked, as explained above, to MoSe2 shunt insulation. On the other hand, the reduction of the 

current blocking behaviour seems related to an improved back interface. In the case of Se-

reacting TMOs, MoSe2 alleviates, although does not eliminate, the contact resistance induced 

by NixSey and CoxSey layers possibly by improving the morphology of the back interface. In the 

case of Se-inert TMOs, the distorted S-shaped J-V curves disappear. However, while in the case 
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of p-type CuO a current barrier still remains, for n-type TMOs (i.e. TiO2 and V2O5) there is no 

current blockage and the devices are highly improved compared the Mo:Na reference. 

The superior performance of combining Mo:Na with n-type TMOs could be tentatively ascribed 

to a p-CZTSe/p+-MoSe2/n-TMO/n+-FTO complex back interface that may be offering a more 

favourable band coupling. However, the results obtained in section 5.3.3 also suggest that the 

presence of these oxides at the back is adding an extra shunt protection to that provided by 

MoSe2. This theory is supported by the fact that shunt reduction seems directly related to the 

TMO layer thickness (see Table 21 and Table 22). Nevertheless, both shunting insulation and a 

more favourable band coupling can occur simultaneously and the performance enhancements 

caused by these TMOs are probably a combination of both effects.  

TiO2 and V2O5 have also been observed to assist MoSe2 in reducing recombination. These 

oxides have been reported to exhibit passivating properties in c-Si so it may be possible that 

they are also helping in passivating CZTSe/FTO interface defects [296]. However, their 

passivation effectiveness shows a complex thickness-dependant behaviour with a tendency to 

decrease with the increasing layer thicknesses. 

Shunting insulation and recombination reduction 

Interestingly, by comparing the J-V and EQE measurements of the substrate configurations 

studied in section 5.3.3, a non-dependence between shunt insulation and recombination 

reduction can be spotted. In the case of TiO2, the EQE profiles for both 5 and 10 nm TMO 

layers are identical indicating a similar recombination reduction. However, a much higher 

shunt resistance is obtained for the 10 nm layer. Likewise, in the case of V2O5, shunt resistance 

increases with the increasing layer thickness while only an enhanced carrier collection is 

observed for a 10 nm layer. Thus, it is clear that an increased Rsh does not necessarily mean 

reduced recombination and vice versa. This supports the idea that both shunting insulation, a 

more favourable band coupling and passivation are contributing to improve the devices but 

also indicate that these processes are rather independent from each other. 

5.4.2 Comparison of CZTSe, CZTS and CZTSSe 

Series resistance and Mo(Sx,Se1-x)2 

Series resistance has been found to be a critical factor for CZTS and CZTSSe-based devices 

fabricated directly on FTO. As explained in section 5.3.4, this can be ascribed to the 

degradation of the conductivity of FTO due to a low inertness of this layer to S (and S+Se) 

during high temperature annealing processes. However, the higher work function of S-rich 

kesterite absorbers may also be leading to a less favourable band alignment as shown in 

Figure 102b contributing to the high Rs. Besides improving shunting as in the case of CZTSe, 

Mo(Sx,Se1-x)2 layers also become key in reducing the large series resistance of CZTS and CZTSSe 

devices. Although this effect can be attributed to Mo(Sx,Se1-x)2 acting as a protective layer and 

preventing the reaction of S (and S-Se) species with the FTO, it may be also possible that 

Mo(Sx,Se1-x)2 is acting as a p+ accumulation layer alleviating the aforementioned non-

favourable band alignment. 
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Effect of the TMOs 

The different substrate configurations studied display a similar behaviour in CZTSSe and CZTSe 

devices with the combination of Mo:Na with TiO2 and V2O5 yielding further Rsh improvements 

with respect to the Mo:Na reference. As explained above for the case of CZTSe, both a p-

CZTSSe/p+-Mo(SxSe1-x)2/n-TMO/n+-FTO favourable back interface and an extra shunt insulation 

are likely to be the main effects provided by the combination of Mo:Na and n-TMOs. 

However, comparing the results obtained with CZTSe and CZTSSe devices, it can be observed 

that the predominance of one effect or the other depends on the TMO employed. This way, 

TiO2 exhibits a higher insulting capacity leading to larger shunt resistances both in CZTSe and 

CZTSSe. However, this can be a double edged sword and TiO2 can also lead to a high series 

resistance. On the other hand, V2O5 also leads to large performance enhancements while 

exhibiting a lower Rsh but, at the same time, not affecting the Rs of the devices noticeably. This 

suggest that the beneficial effects of TiO2 might be predominantly related to shunt insulation 

while those of V2O5 might be principally arising from an electronically improved back 

interface. 

Finally, contrarily to the case of CZTSe, the use of TMOs largely influences the morphology of 

CZTS and CZTSSe absorbers. In the case of CZTS, the deposition of V2O5 and TiO2 layers leads 

to a kesterite absorber full of small crystallites which is probably behind the low efficiency of 

the devices. On the contrary, an absorber layer with very large grains is found for CZTSSe 

when these TMOs are present. A possible explanation of these differences may be that, 

similarly to the FTO, these oxides are not inert to S during annealing and the resulting layers 

influence the growth of the layers growing above them. 

5.4.3 Difficulties for band alignment analysis 

In order to have a better understanding of the devices and confirm some of the theories 

expounded above, it would be very useful to perform a band alignment analysis of the 

different substrate configurations similar to that shown in Figure 89. However, this task cannot 

be carried out due to the lack of information about the electronic properties of the TMOs. First 

of all, the work function and conductivity of the oxides are known to be strongly related to 

their oxidation state which is heavily influenced by the deposition conditions during thermal 

evaporation and air exposure [295,306]. A clear evidence of this effect is the bandgap 

observed for MoO2 which indicates that its oxidation state is MoO3-x. In addition, the TMOs 

evaporated in this work show bandgap values much larger than those usually reported in the 

literature due to quantum confinement effects which, logically, strongly modifies band 

structure and alignment. Finally, contrarily to the works that study TMOs in c-Si and organic 

electronics, the TMOs are submitted to a high temperature reactive annealing process which 

further modifies their properties. Thus, all these issues prevent to carry out a correct analysis 

of the band alignment of the kesterite/TMO interfaces. 

5.5 Conclusions 

This work demonstrates the viability of fabricating highly efficient kesterite-based devices on 

SLG/FTO transparent substrates through the combination of thin Mo and TMO layers. This 
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opens the door to advanced kesterite applications such as bifacial and tandem solar cells as 

well as BIPV glazing which are key for the future of the PV market. 

The optical and electrical characterization of the TMO nanolayers evaporated on top of the 

SLG/FTO substrate has demonstrated the compatibility of these oxides with the fabrication of 

kesterite devices. The evaporated TMO nanolayers possess very wide bandgaps due to 

produces quantum confinement effects as a result of their amorphous nature that have to be 

taken into account when assessing their suitability as hole transport layers. In addition, 

contrarily to c-Si or OPV technologies, it has been found that the TMOs do not act as hole 

selective layers in CZTSe solar cells but rather damage the devices by inducing very high series 

resistances either by getting selenized and damaging contact resistance or, in the case of Se-

inert TMOs, by causing a severe electronic barrier. 

On the other hand, the addition of a MoSe2 nanolayer between the kesterite absorber and the 

FTO contact has proved to be fundamental in order to achieve high efficiencies. This layer acts 

twofold: it reduces the shunting issues encountered in SLG/FTO/CZTSe devices and improves 

carrier collection. The beneficial effects of MoSe2 are boosted if combined with thin layers of 

V2O5 and TiO2 TMOs. The mechanisms behind these improvements are not clear and show a 

complex dependence on layer thickness but they seem related both to the creation of a p-

CZTSe/p+-MoSe2/n-TMO/n+-FTO complex back interface that provides a more favourable band 

alignment for hole extraction and to shunt insulation. 

The transference of these concepts to wide bandgap CZTS and CZTSSe devices has been very 

successful. In these cases, besides the aforementioned beneficial effects of MoSe2, Mo(Sx,Se1-

x)2 layers also prevent the sulphur-induced degradation of FTO during annealing. However, 

TMOs are only found to boost the beneficial effects of Mo(Sx,Se1-x)2 in the case of CZTSSe while 

they degrade the performance of CZTS devices due to a strong modification of the morphology 

of the absorbers. 

Although this work is mostly a preliminary screening and the characterisation performed in 

this work is insufficient to fully understand the results obtained, it renders clear that the use of 

TMO and/or Mo:Na nanolayers is a very promising strategy to improve the limited 

performance of kesterite devices fabricated on transparent substrates. What is more, the 

efficiencies achieved here for CZTS (6.1%) and CZTSSe (7.9%) devices are the highest reported 

for these absorbers using a transparent substrate. As summary and to illustrate the 

improvements offered by this approach, Figure 103 compares the J-V curves of the reference 

samples fabricated directly on SLG/FTO and of the record substrate configurations for the 

different absorbers. 

This work shows the large potential of combining Mo(Sx,Se1-x)2 and TMOs for kesterite devices 

fabricated on transparent substrate and lights the way for further research that may provide a 

deeper insight on the mechanisms behind these complex multilayered interfaces. In particular, 

a full characterisation of the oxidation state of the TMOs and of the electronic properties of 

both TMOs and Mo(Sx,Se1-x)2 together with a deep electrical characterisation of the devices 

including the use of n-diode model fitting may allow the study the band alignment from a 

more theoretical point of view and provide a powerful tool for the optimisation of the devices. 
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Likewise, the transference of these substrate configurations to ultra-thin kesterite absorbers is 

of great interest for semi-transparent applications. 

 

Figure 103. Reference and record J-V curves obtained for CZTSe, CZTS and CZTSSe devices fabricated on SLG/FTO. 
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6. Conclusions 

The work carried out in this thesis demonstrates the feasibility of fabricating sustainable and 

efficient kesterite solar cells on polyimide, ceramic and SLG/FTO transparent substrates. These 

substrates are an alternative to the standard SLG/Mo and their combination with a sustainable 

thin film PV technology based on Earth-abundant materials like kesterites may contribute in 

decreasing the energy fabrication cost of solar cells and, thus, in increasing the EROI of 

photovoltaics. This is a critical matter since the development of high EROI and sustainable 

energy sources that can substitute fossil fuels is a must in order to avoid the collapse of our 

current civilization. 

The advantages of the substrates studied in this work with respect to SLG/Mo that can 

decrease the energy fabrication costs of kesterite-based PV can be generalized as: 

 Possibility of low cost processing through high-throughput production or through 

integration 

 Enabling of advanced applications and functionality 

However, these alternative substrates also present several intrinsic limitations for the 

fabrication of kesterite solar cells that have been individually evaluated. Both the main 

advantages and limitations found for of each of the substrates are summarized in Table 25. In 

order to fabricate high efficiency devices, different strategies have been designed, studied and 

developed to specifically adapt the kesterite solar cell fabrication process to each of the 

substrates in view of their limitations. 

Table 25. Main advantages (green) and limitations (red) of the substrates studied. 

Polyimide Ceramic SLG/FTO 

· Light-weight and flexible 

· Compatible with roll-to-roll 
fabrication processes 

· Suitable for advanced 
integration concepts 

· Direct application in BIPV 

· High temperature processing 

· Enabling of bifacial and tandem 
solar cells 

· Possibility of fabricating semi-
transparent solar cells 

· No alkali content 

· Low thermal robustness 

· High surface roughness 

· No alkali content 

· Detrimental impurities 

· Challenging p-kesterite/n-TCO 
interface 

 

Regarding polyimide, extrinsic doping has proved to be fundamental to reduce the efficiency 

gap with respect to the devices fabricated on SLG. In particular, the pre-deposition treatment 

doping strategy employing evaporated NaF and KF nanolayers has been shown both to 

influence the morphology of the kesterite absorbers and, more importantly, to increase carrier 

concentration and aid in passivation largely improving the performance of the devices. On the 

contrary, the post-deposition treatment doping strategy has not yielded positive results. 
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In addition, the maximum temperature employed during the kesterite synthesis annealing 

process has been limited to below 500ᵒC to avoid the degradation of the polyimide substrates. 

Within this limit, the impact of annealing temperature on the devices has been evaluated both 

for SLG and polyimide. Working at such low temperatures has been observed to cause the 

formation of a detrimental SnSe2 secondary phase within the kesterite absorber for both 

substrates that severely degrades the Voc of the devices by, apparently, creating shunt paths. 

The origin of this phase has been ascribed to a slowdown of the Sn-loss mechanism during the 

annealing process as a result of the low temperature employed. This affects more strongly the 

devices fabricated on polyimide due to a hindered heat absorption as a result of the tendency 

of the samples to bend during annealing. Resonant Raman spectroscopy has allowed not only 

to detect the presence of very small amounts of SnSe2 but also to directly correlate its 

concentration with the performance of the devices. 

Despite these challenges, a 4.9% efficiency record device has been achieved by combining NaF 

doping with a Ge nanolayer and employing an annealing temperature of 480ᵒC. This is the 

highest efficiency reported to date for a kesterite device fabricated on a polymer substrate. 

This result proves the feasibility of developing the kesterite PV technology onto this roll-to-roll 

compatible substrate which opens the door to a future low-cost mass production of kesterite 

devices. 

In the case of ceramic, an innovative approach has been employed to overcome the limitations 

of the substrate in which a vitreous enamel with a controlled amount of Na2O in its 

composition is used a surface smoother, as a Na source and as an impurity diffusion barrier. It 

has been observed that trying to accommodate large amounts of Na2O in the enamel results in 

high densities of three surface defects: undulations, pinholes and cracks. Interestingly, 

undulations and pinholes do not affect cell performance critically while cracks strongly 

deteriorate the conductivity of the back contact. However, cracks can be avoided by limiting 

the amount of Na2O present in the enamel to below 10%wt. On the other hand, the annealing 

process has been found to be very critical. With resonant Raman spectroscopy, the formation 

of SnSe2 could be evidenced for extended annealing times which degraded the performance of 

the devices by mainly limiting their Voc similarly to the case of polyimide substrates. However, 

this phase has been completely supressed by re-adjusting and reducing the annealing time. In 

addition, an effective Na incorporation from the enamel into the kesterite structure as well as 

the absence of impurities have been confirmed. 

As a result of this investigation, two different enamels containing 4 and 6.6% Na2O have led to 

a 7.5% record efficiency. This is the highest efficiency reported for a kesterite device fabricated 

on a commercial ceramic substrate. More importantly, the same process has led to a 7.9% 

efficiency on a SLG reference processed simultaneously which implies that the enamelled 

ceramic substrates behave in a similar way to conventional SLG. This proves that the 

innovative strategy employed in this work is the right direction to follow and shows the great 

potential of ceramics for the fabrication of sustainable kesterite-based solar tiles which have a 

direct application in the fast-growing BIPV market. 

Concerning the transparent SLG/FTO substrate, the use of transition metal oxides and Mo-

based nanolayers has been studied as an approach to improve the non-optimum p-kesterite/n-
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FTO interface. The optical and electrical characterization of the TMO nanolayers evaporated on 

top of the substrates has demonstrated their compatibility with the fabrication of kesterite 

devices. However, the TMOs exhibit very wide bandgaps compared with commonly reported 

values due to quantum confinement effects that have to be taken into account for their 

utilisation as hole selective layers. 

The main issue that has been encountered for the fabrication of kesterite devices on SLG/FTO 

is the presence of shunts that limit the Voc of the devices. Contrarily to organic photovoltaics 

and c-Si, the use of transition metal oxides at the interface does not to enhance hole transport 

and collection but, on the contrary, it strongly degrades the series resistance of the devices by 

introducing a current barrier. On the other hand, the deposition of a Mo:Na nanometric layer 

and the subsequent formation of Mo(Sx,Se1-x)2 at the interface has proved to be fundamental 

to reduce shunting and, in general, improve the characteristics of the kesterite/FTO junction 

leading to highly improved devices. In addition, this layer prevents the degradation of FTO 

during annealing in sulphur-containing atmospheres. 

The combination of the different TMOs with Mo:Na does not lead to significant improvements 

for most of the oxides. However, TiO2 and V2O5 are observed to further increase the 

performance of Cu2ZnSnSe4 and Cu2ZnSn(S,Se)4 devices, respectively, while degrading the 

performance of Cu2ZnSnS4 ones due to a degraded absorber morphology. In addition, an 

improvement in charge collection towards the back interface is also observed for these 

substrate configurations although they exhibit a complex behaviour. The improvements 

observed are tentatively attributed both to an improved shunt insulation and to the likely 

formation of a p-kesterite/p+- Mo(Sx,Se1-x)2/n-TMO/n+-FTO complex interface at the back. 

Although the complexity of such multi-layered back interface requires further experimentation 

and characterisation to fully understand the results obtained, it can be concluded that the use 

of Mo:Na and/or TMO nanolayers is a very promising strategy to improve the performance of 

kesterite devices fabricated on FTO-based transparent substrates. The best performing devices 

have been achieved in different substrate configurations depending of the absorber employed. 

In the case of CZTSe, a 6.2% efficiency device has been obtained employing a 

SLG/FTO/TiO2/Mo:Na substrate configuration. On the other hand, a 6.1% efficiency CZTS 

device has been fabricated on a SLG/FTO/Mo:Na configuration. Finally, a 7.9% efficiency 

CZTSSe device has been achieved on a SLG/FTO/V2O5/Mo:Na substrate configuration. The 

efficiencies achieved for CZTS and CZTSSe devices are the highest reported for these absorbers 

on a transparent substrate. Thus, these results demonstrate the viability of developing 

advanced kesterite applications such as bifacial and tandem solar cells as well as BIPV glazing 

which are key for the future of the PV market. 

To conclude, the results obtained in this thesis are a clear evidence of the feasibility of 

employing alternative substrates to the standard SLG/Mo for kesterite-based devices. Solar 

cells with high efficiencies beyond the current state-of-the-art in the respective substrates 

have been obtained. and achieve high efficiencies. It should be born in mind that most of the 

work presented here can be considered as a proof-of-concept and that there is still a huge 

room for improvement mainly by process optimisation and, especially, by the optimisation of 

the annealing process in the three substrates studied. Thus, owing to the Earth-abundant 
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nature of kesterite solar cells, these results open the way for a future deployment of this PV 

technology at low cost through mass production, integration (especially in BIPV) and advanced 

applications which may help in increasing the EROI of photovoltaics. 
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