
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 

 
Development of RTP processing for kesterite solar cells 

 
Alejandro Hernández Martínez 

 
 
 

 
 

 
 
 
Aquesta tesi doctoral està subjecta a la llicència Reconeixement- CompartIgual 4.0. Espanya 
de Creative Commons. 
 
Esta tesis doctoral está sujeta a la licencia  Reconocimiento - CompartirIgual 4.0.  España de 
Creative Commons. 
 
This doctoral thesis is licensed under the Creative Commons Attribution-ShareAlike 4.0. Spain 
License.  
 



Tesi doctoral 

Development of RTP 

processing for 

kesterite solar cells  
 

Alejandro Hernández Martínez 

Dr. Edgardo Saucedo & Dr. Paul Pistor  

 

 

 

  



 
 

  



 
 

Development of RTP 

processing for 

kesterite solar cells 
 

Programa de doctorat en Nanociències 

 

Autor: Alejandro Hernández Martínez 

  

 

 Directors: Dr. Edgardo Saucedo i Dr. Paul Pistor 

Tutor: Prof. Dr. Alejandro Pérez Rodríguez 

 

 

Lloc on s’ha dut a terme: 

 



 
 

 
 

 



 
 

 
 

 

 

 

 

 

 

 

In Loving Memory of Víctor Erenas Lobato, 

Always loved, never forgotten 

We will keep rocking for you, as promised 

 

 

 

 

 

 

 

 

 

 



 
 

 
 

  



 
 

 
 

 

 

 

DESPRÉS 

 
No serà falaguer, l'estiu, i la tardor 

-saps prou com l'estimàvem- 

serà potser en excés melangiosa. 

Quan s'escurcin els dies te'm faràs més 

present, 

perquè el silenci fa més densos 

els records, i més íntim el temps 

que ens és donat per viure'ls. 

A ulls clucs et veuré: tot serà tu 

per la cambra, pels llibres, en la fosca. 

Després passaran anys i esdevindràs 

translúcida 

i a través teu estimaré el futur 

potser sense pensar-te ni sentir-te. 

Arribaràs a ser una part tan íntima 

de mi mateix, que al capdavall la mort 

se t'endurà de nou quan se m'endugui. 

 

Miquel Martí i Pol 

 

 

 

 



 
 

 
 

  



 
 

i 
 

Acknowledgments 

 

Almost four years ago, I embraced the biggest challenge and adventure in my life so far. In those 

years, I’ve lived so many new experiences that I could have never ever dreamt about them. I’ve 

worked in a very cool lab, I’ve learnt about a topic that fascinates me, Photovoltaics, I’ve 

improved my background, I’ve learnt more about myself that probably I had prior done in my 

life. This adventure is reaching its end, but in contrast to previous stages in my life that I was 

looking forward to finish them and burn stages, in this one I’ve enjoyed it as it deserved but I 

feel like it’s time to move on and keep walking through this one-way ticket in this path called 

life.  

First of all, I would like to acknowledge the NASCENT and IGNITE project (ENE2013-49136-C4-1-

R, ENE2017-87671-C3-1-R) from the Ministry of Economy and Competitiveness (MINECO) from 

the Government of Spain; the INFINITE-CELL project (H2020-MSCA-RISE-2017-777968) from the 

European Commission and the “Formación del Personal Investigador” (F.P.I) fellowship from the 

MINECO (BES-2015-074171) which allowed me to perform my research and realize my thesis. 

In this thesis there are two capital persons that helped me through these years, my thesis 

directors: Edgardo and Paul. Edgar, thanks a lot for trusting me and letting me embrace this 

challenge, thanks for all your wisdom, thanks for all your support, thanks for all your advices, 

thanks for all the laughs, thanks for the opportunities, thanks for all the scientific explanations, 

thanks specially for teaching me how to properly present stuff, thanks a lot also for the moments 

when I needed to be remarked that I wasn’t working properly, in those moments it’s where we 

learn more. I’m very proud to say that I’ve been able to perform my PhD under your direction. 

Finally, I would also want to thank you Edgar for always believing in me and my abilities, even in 

the moments when I doubted on myself, you never did and I strongly appreciate it. Paul, I’ve 

loved working with you, I believe that you and Edgar are an amazing tandem to work with. 

Thanks Paul, you have also always been there, I’ve loved working with you, it brought new ideas, 

different scopes, very wise advices for my presentations, for my articles, for my reports. I feel 

blessed because I got the opportunity to work with you. Also, I wanted to thank you for being 

my first close experience to your amazing country. It was incredible to get the chance to work 

back together in Germany. I loved our weekly meetings and being able to get to know your 

personal facet even more. I strongly believe that in our life we are able to meet a certain amount 

of people that strikes in your personality and I believe that I’m a better person thanks to have 

met you. Vielen Dank Paul.  

I would also like to thank Alejandro for being always such an extremely kind and nice person 

whatever it happens, for his deep knowledge and advices not only about PV, but also about life 

and attitude towards life. Also, thanks for the incredible work done as our group leader and 

directing the group that has awarded us with the chance to work with you and to realize our 

thesis. 

I have been awarded with the chance to work at IREC, my beloved institute. We might not be 

the biggest institute nor the richest one, but I strongly believe that we are the ones with the 

biggest motivation and illusion to show the best of everyone. I wanted to thank the amazing 

team that we all together become. I would like to specially thank Elisabeth Chulilla, for being 

someone simply special for me, your advices and wisdom are simply extremely clever and 

believe me if I tell you that you are one of the persons I pay more attention when comes to 



 
 

ii 
 

advices in my life. I can’t and I won’t forget my dear Inés, what an incredible woman, thanks for 

all the support, all the laughs in our metro ways and for always listening, withstanding me in the 

bad and in the good moments in this thesis and your incredible help in the crazy Belarus Visa 

process. The whole administration team is always there and extremely supportive: thanks 

Jaume, Emili, Montse, Yolanda, Vanesa, Josep Maria, Francesc Torregrossa, Raquel, Víctor, 

Ramón, Alba, Marta (Maresme lliure i tropical sempre), Miguel and Francesc. I don’t forget also 

the previous staff at IREC who were so supportive and friendly to me: Alexandra, Marta, Ferran 

and David. 

Performing your PhD is also about learning how to work in a team, and about this, I’ve been 

extremely lucky. I specially need to thank the whole team in the SEMS group at IREC: 

 Nacho: the person I’ve considered here my biggest friend and who has been almost all 

the time in this process working in parallel with me. So many, long days working 

together, so many lab hours, so many laughs, so many songs, so many nice moments, 

so many advices for science and for life, a true colleague and a true friend.  Also, always 

listen carefully to him, he’s able to say the coolest sentences such as: “I’ve discovered 

I’ve the ability not to miss people, actually to be happy when they are missing”. 

 Yudenia: half-time colleague and half-time mother for me. Thanks for all our beautiful 

moments in front of the CdS discussing about our stuff, your advices have always been 

great and I hope that I’ve also been able to help you a little bit raising that incredible 

diamond you’ve at home, take care of him, he’s a very talented kid!  

 Marcel: as I’ve always said my non-official Thesis director, thanks Marcel for such an 

incredible help in the lab, I owe you almost everything, without you this thesis wouldn’t 

have been done. Thanks also for all the laughs and all your jokes, they made the long 

journeys way easier 

 Victor: The Raman God. Thanks, for all the figures, the explanations, the teaching, the 

origin classes, the XRD, the Raman, the critics also, the laughs, the jokes and the crazy 

ideas. You have been capital in my thesis thanks Victor, I’ll never forget all your help. 

 Sergio: one of the best colleagues you can find. My other pal from Santa Coloma, we 

have also been together in this process since the very beginning, it has been really fun 

travelling together, partying together, working until late in the lab, our music, our jokes, 

our crazy ideas. Thanks a lot for everything mona and don’t change. 

 Diouldé: I strongly believe that if I’m able to properly work in a lab is thanks to you. 

Thanks for catching a young, barely experienced Alex and teaching him so, so, so many 

things. Thanks Diouldé, I appreciate so much how you took care of me, how many things 

you taught me, how much you worried about me and how much you withstood me. 

After, I was also lucky to get to know you and I saw even clearer how cool and clever 

you are, Merci. 

 Jacob: my great tablemate. I loved our confidences next to each other at our tables. It 

has been great to work altogether, if they ask me about Jacob, I can say that he’s 

someone you can trust in. 

 Maкс: The Raman Master. I’ve learnt a lot from your mastery in Raman and you helped 

me a lot when I started discovering this place that has so much to offer called the East. 

СПАСИбО) 

 Mohammed: pure heart and nice guy. I can say that I’ve learnt a lot from you, specially 

about attitude towards life. 



 
 

iii 
 

 Pedro: The starter of the Galician crew at IREC, It’s lovely to work with you and even 

more partying, you are a cool guy. 

 Robert: my beloved Robert. I strongly believe that signing you up, was a huge success 

for the group, working with you is simply a pleasure. Also, you have such a big heart that 

you wouldn’t even harm a fly (like Nacho, but for other reasons). Thanks for all our 

laughs. Gràcies! 

 Alex López: The last addition for the PhD guys, you are facing an amazing challenge but 

I’m sure about your future success, I like your attitude towards life, thanks for all the 

laughs these short time. 

 Oriol: The perovskite master of the lab, in the short time we’ve been able to share table, 

we’ve really got along and I strongly appreciate all your advices and life-wisdom. 

Gràcies! 

 Zac: extremely talented scientist, thanks for all the advices and all your shared wisdom, 

I always pay attention because I know that every word is gold, keep rocking man, never 

change. I’m glad that I had the chance to meet you. 

 Kunal: It’s been a pleasure to meet you and I’m very well aware about how talented you 

are, I hope all your scientific and not scientific dreams will come true. 

I don’t forget our previous member that also contributed to my thesis: Mirjana, Mona Simón, 

Moisés, Markus, Florian, Laia, Laura, Rokas, Haibing and Ikram. They did an amazing work at 

IREC and I thank you all for your help through this period. It deserves a special acknowledge my 

dear and good friend Tato Matías, I owe you a lot and I strongly appreciate you. Working with 

you, getting to know you, partying like hell with you and talking about our things (you know 

what I’m talking about) has been incredible, thanks my friend and really looking forward to see 

you soon. I also want to thank Osvaldo, for his incredible help since the start of my thesis and 

also his extremely wise advices, I will never forget that I’ve been lucky to meet you. 

At IREC, I’ve been awarded with getting to know incredible people: 

 Henrik May: incredible friend, these people that you connect, I love you and you know 

how much you mean to me, I love when you give me your point of view, it helps me a 

lot and even though we can’t see each other much, by the second we see each other is 

like yesterday. Vielen Dank, bis gleich! 

 Anna Niemczyk: my favourite polish girl around the world, we simply get along well, it’s 

so funny being around you and sharing our experiences and day-to-day, with you I can 

simply be myself and it’s something very important for me. I must be honest, I’m looking 

forward your wedding, a super cool polish wedding! 

 Виктория Голованова: one of the most talented girls that has ever worked at IREC, I’m 

amazed by your dedication, by your passion about science, you never surrender and 

that’s extremely important for someone on her PhD, you were born to shine and I’m 

sure at the end of the process, the result will be great and as I said you will shine. Simply 

never change, I’ve been able to meet Vika and I’m very well aware about how cool and 

incredible she is, all completed by a unique smile. 

 Mona Lisa: my favourite Indian girl ever, I’ve loved sharing every tea moment with you 

and when we had the chance to stick to our calendars and meet each other outside 

work, never change! Thanks for everything. 

In this Thesis, I’ve been able to travel a lot and perform my research in different countries with 

different people, I’ve met really cool people who made this journey really amazing: Antonio, 



 
 

iv 
 

Matteo, Claudia, Alberto, Sara and Jorge. Thanks for making congresses extremely enjoyable 

and helping me so much through this thesis, I owe you a visit.  

In Germany, I discovered a country that amazed me since the very beginning. I wanted to thank 

Prof. Scheer for letting me work in his research group with very warming and welcoming people. 

Every time when I remember Halle, I can only smile and it’s thanks to all of you. Thanks Törsten, 

Samantha, Thomas Schneider, Thomas Burwig, Marcin Morawski, Setareh, Arrigo, Karl. Special 

thanks are for my dear Matthi, you know how much I appreciate you and how I loved working 

and cooking and partying together, I miss you. Chris, my dear Chris, what you have done for me 

it’s simply incredible, I love you and for me you are like a brother, I hope I’ll see you soon. Also, 

I would like to thank my roommates in Halle: Nici, Kristin, Phine, Jenny, Julia and Ivan. Finally, 

my Mittwochs Stammtisch and the Bierkanzlei team for being the coolest people on Earth, miss 

you guys and I’ll visit all of you soon. 

In Belarus, I discovered a country with people so talented that they will be the only one putting 

their boundaries. Thanks for inviting me to visit and work at your university Prof. Bodnar. I loved 

working with you and going for heavy metal concerts Katia, best wishes in your new adventure 

in Vilnius. My dear roommate Volha, we are the best team together and we know how to enjoy, 

thanks for everything since the first day. My great friends Caro and Anna, thanks for an 

unconditional friendship and all the great moments together, I miss you and I’m looking forward 

to see you soon. In Belarus, I also meet one of my best friends my dear Alexa, a woman who is 

more heart than body, you are simply special to me and for you I can spend a whole evening 

reading poetry or gossiping together, I love you my friend never change and then there is 

Svetlana, the coolest teacher in the world with the biggest heart that I’ve seen, you are 

incredible, never change and never doubt, I’m here for whatever you need, miss you. 

I wanted to thank my friends from Mataró, you are my people there and I’m blessed for having 

such cool friends: Pol, Víctor, Tito, Enric, Kiku, Carles Vilà, Montsant, Edu, Salva, Natalia and 

specially my best friend Armando. I met you and my life reached a turning point, my life is way 

better since I met you, I’ve learnt, I learn and I will keep learning from you. Parties like the ones 

we have together are simply unbeatable. You are the definition of friendship, for the good and 

for the bad moments, I can only say that I love you and you are extremely important for me. 

Thanks for all the support through this time. Also, I wanted to thank the whole Molly Mallone’s 

crew because there I feel literally like at home and I feel appreciated, thanks! 

Special mention for Anna Villa for all your unconditional friendship especially in some very hard 

moments, you know I love you and even though I’m in another country I’m there with you, 

always. Joaquín, thanks for being such a cool friend and always been there, by you I feel loved 

and that’s the two ways. My friend Alejandro Martínez who has always been there, since I can’t 

even remember, you are a true friend and I’ll never forget that. Also, special mention for my 

three beloved girls: Sílvia Freixes, Paula Rodríguez and Núria Alcalde, never change you are 

incredible. Marc Lluís thanks for being the first friend I’ve ever had, whatever happens my phone 

is always there for you or your family. Thanks my dear Natalia Laso for always having a smile 

ready for me. Gracias Lola, por ser mi punta de lanza en temas tan importantes como el 

feminismo, sabes cuánto te admiro. 

I would also like to thank all of those teachers I had that set the spark for my mind to keep into 

studying and improving my skills: thanks Mari Carmen, Mari Ángeles, José, Salvador, Victoria, 

Imma, Maria Antònia, Mónica Sánchez, Rosa Pursals, Carlos Abajo, Albert Dotras (who was the 

one who first taught me that science is about understanding things! Jaume Prat, Jordi Vadell, 



 
 

v 
 

Jordi Lluís, Germà Giné, Juan Bracero and David Codina. Special thanks to Ainhoa, the first who 

saw my potential and has always been the best guidance I ever had. I also would like to 

acknowledge Joan F. Piniella for being the best teacher I had through my university studies and 

I’m very glad that we are still in touch, thanks for showing me that crystallography is indeed 

extremely interesting. 

I would also like to thank my family for their unconditional support through all my studies, since 

the very beginning until this moment when I am submitting my Thesis. Biggest thanks also to: 

Mama, Papa, Carlos and Yaya for always supporting me, discussing with me about my ideas, 

withstanding me (especially in the end of the thesis) and of course working like hell to help me 

pay my studies. Gracias de corazón. 

Finally, this Thesis is specially dedicated to: Xavier, Pau, Grau, Noa, Sigurd and Maia. You kids 

are our future and I hope that this Thesis will enlighten your path if you ever also decide to 

embrace this big adventure. 

 

Gràcies, Gracias, Thanks, Danke, Спасибо, Дзякуй 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hernández Martínez, Alejandro 

25/09/2019 

Sant Adrià del Besòs 

 

 



 
 

vi 
 

 

  



 
 

vii 
 

Table of Contents 

1 Introduction ______________________________________________________ 3 

1.1 Mitigating the Climate Change __________________________________________ 3 

1.2 Global Electricity Production ____________________________________________ 5 

1.3 Photovoltaic technologies ______________________________________________ 9 

1.4 Kesterite solar cells __________________________________________________ 14 

1.5 Objectives of the present thesis ________________________________________ 20 

2 Methodology and Experimental _____________________________________ 23 

2.1 Physical Vapour Deposition: Sputtering __________________________________ 24 
2.1.1 Magnetron Sputtering ______________________________________________________ 26 

2.2 Rapid Thermal Annealing _____________________________________________ 28 
2.2.1 The RTP set-up ____________________________________________________________ 28 
2.2.2 RTP State of Art ___________________________________________________________ 29 

2.3 Characterizations ____________________________________________________ 33 

3 Transferring and understanding the kesterite’s annealing baseline towards RTP

 37 

3.1 Comparison of the optimized CTP and RTP process protocol and best device 

efficiencies _______________________________________________________________ 37 
3.1.1 First attempts: Single-step processing _________________________________________ 39 
3.1.2 Improvement: Two-step temperature profiling __________________________________ 41 

3.2 Insights into the Formation Pathways of Cu2ZnSnSe4 Using Rapid Thermal Processes

 42 
3.2.1 Design of the break-off experiment ___________________________________________ 42 
3.2.2 Selenium incorporation and morphology evolution ______________________________ 43 
3.2.3 Depth profiling ____________________________________________________________ 44 
3.2.4 Phase analysis ____________________________________________________________ 45 
3.2.5 Devices __________________________________________________________________ 51 

3.3 Summary __________________________________________________________ 53 

4 Driving the kesterite formation pathway with the chalcogen availability: a 

kinetic and phase analysis ______________________________________________ 57 

4.1 The importance about studying the kesterite formation pathways ____________ 57 

4.2 Introducing a kinetic and phase analysis for the selenization of the kesterite under 

slow or fast ramping conditions ______________________________________________ 59 
4.2.1 Cu2ZnSnSe4 formation reaction kinetic and phase analysis with different chalcogen 

availabilities _____________________________________________________________________ 59 
4.2.2 First extension to Cu2ZnSnS4 case _____________________________________________ 69 

4.3 Summary __________________________________________________________ 72 

5 Kesterite solar cells combining Electrodeposition and RTP ________________ 75 

5.1 Electrodeposition of kesterite thin film __________________________________ 75 
5.1.1 Stacked elemental layer approach for electrodeposition __________________________ 76 



 
 

viii 
 

5.1.2 Cu-Sn-Zn metal alloy Electrodeposition ________________________________________ 76 
5.1.3 Quaternary Electrodeposition ________________________________________________ 76 

5.2 CZTSe solar cells combining co-electrodeposition and Rapid Thermal Processing _ 78 
5.2.1 Effects and results obtained on RTP annealing over co-electrodeposited precursors ____ 78 

5.3 Summary __________________________________________________________ 87 

6 Conclusions and Outlook ___________________________________________ 91 

7 References _______________________________________________________ 95 

8 Appendix _______________________________________________________ 112 

8.1 Section 1- Appendix related to Chapter 3 _______________________________ 112 

8.2 Section 2- Appendix related to Chapter 4 _______________________________ 115 

8.3 Section 3 - Research Articles published _________________________________ 120 

8.4 Section 4 - Copyright permissions ______________________________________ 146 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

ix 
 

List of Tables 

Table 1 Selection of the best reported kesterite solar cells, including pure selenium CZTSe, 

solid solution CZTSSe, pure Sulphur CZTS, Electrodeposited (ED) solar cells and over semi-

transparent substrates (FTO). __________________________________________________ 17 

Table 2 Evolution of the RTP state of the art through the last years (2011-2018) __________ 32 

Table 3 Summary of the most relevant annealing parameters for the conventional, slow CTP 

annealing process at IREC’s baseline _____________________________________________ 38 

Table 4. Summary of the most relevant annealing parameters for the RTP single step annealing 

process at IREC’s baseline _____________________________________________________ 40 

Table 5 Summary of the most relevant annealing parameters for the RTP annealing process at 

IREC’s baseline ______________________________________________________________ 41 

Table 6 Summary of some of the most relevant papers published in the literature analyzing the 

formation mechanisms of kesterites. ____________________________________________ 50 

Table 7 Estimation of the kinetic parameters for the identified reaction-orders and for the 

different chalcogen availabilities. _______________________________________________ 65 

Table 8 Summary of the detected phases extracted from Figure 4.5.  (-) – Not detected. (+) – 

Present but in small quantities. (++) – Present in high quantities. (?) – Not clear. __________ 66 

Table 9 Summary of the detected phases extracted from Figure 4.7. depending on the 

chalcogen availability regime. (-) – Not detected. (+) – Present but in small quantities. (++) – 

Present in high quantities. (?) – Not clear. _________________________________________ 71 

Table 10 Chemical composition and elements ratios in selected CZT and CZTSe films1. _____ 79 

Table 11 CZTS best device optoelectronic parameters1 ______________________________ 86 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

x 
 

List of Figures 

Figure 1.1 CO2 evolution from the atmosphere as analysed in ice cores at LAW DOME showing 

pre-industrial levels and post-industrial levels2 ______________________________________ 3 

Figure 1.2 Comparison of the share of different generation types for the global electricity 

production between 1973 and 20167 _____________________________________________ 5 

Figure 1.3. Global renewable electricity generation by energy source in 20158 _____________ 6 

Figure 1.4 Increase into the World Solar PV electricity production7 ______________________ 7 

Figure 1.5 Swanson’s law, the learning curve of PV12 _________________________________ 8 

Figure 1.6 Price trends for Solar PV module during the period 2010-201714 _______________ 9 

Figure 1.7a) Schematic of the standard solar cell structure. b) band diagram of the p-n junction 

(Eg: band-gap energy, Ec: conduction band energy, Ev: valence band energy, Ef: fermi level). c) 

relevant electronic properties of semiconductor materials in a p-n junction (Efa: electron 

affinity, W: work function, EI: Ionization energy)15 __________________________________ 10 

Figure 1.8 Classification and main characteristics of the available PV technologies15 _______ 11 

Figure 1.9 Annual PV production share by technology for the period 2013-201832 _________ 13 

Figure 1.10 Best research-cell efficiencies for the different PV technologies (Reproduced from 

the National Renewable Energy Laboratory, Golden, CO)36. ___________________________ 14 

Figure 1.11 Kesterite increasing trend of Research Articles, when the words “kesterite or 

Cu2ZnSnS4 or Cu2ZnSnSe4 or CZTS or CZTSe” are searched published through the period 2005-

2019. Values obtained from Scopus39. ____________________________________________ 15 

Figure 1.12 Cross-sectional scanning electron microscope (SEM) picture of a typical kesterite 

solar cell and a schematic drawing of the device architecture. _________________________ 16 

Figure 1.13 Conventional unit cells of the (a) kesterite structure and (b) the stannite structure 

for CZTSe, containing four Cu atoms (light grey), two Zn atoms (black) two Sn atoms (blue) and 

eight Se atoms (red) per conventional unit cell. Reproduced from Persson84. _____________ 18 

Figure 1.14 Ionization levels of intrinsic defects in the band-gap of CZTSe. Red bars contain 

acceptor levels, whereas blue bars contain donor levels, with initial and final charge states 

labelled in parenthesis. Reproduced from Chen et al90. ______________________________ 19 

Figure 2.1 Schematics of the typical fabrication and characterization process for CZTSe solar 

cells by Rapid Thermal Processing at IREC. ________________________________________ 23 

Figure 2.2 Sputtering schema95 _________________________________________________ 24 

Figure 2.3 Sputtering mechanism96 ______________________________________________ 25 

Figure 2.4 Magnetron sputtering principle99 _______________________________________ 26 

Figure 2.5 Magnetron sputterings present at IREC __________________________________ 27 

Figure 2.6 ANNEALSYS-AS-ONE 100103 ____________________________________________ 29 

Figure 2.7 Evolution of the citations about Kesterite and RTP processing through the last years. 

Values obtained from Scopus by searching “Kesterite or CZTS or CZTSe or Cu2ZnSnSe4 or 

Cu2ZnSnS4” and “RTP or RTA or Rapid Thermal Annealing or Rapid Thermal Processing” 116. _ 31 

Figure 3.1 a) Temperature profile of the two-step CTP annealing process from IREC’s baseline. 

b) Record efficiency CZTSe solar cell obtained at IREC and presented into Giraldo et al.66 ___ 38 

Figure 3.2 AS-ONE-100 RTP furnace showing the special set up designed at IREC. _________ 39 

Figure 3.3 a) Single-step RTP annealing processing schema detailing the processing conditions. 

b) Example of a non-homogeneous sample obtained by single-step RTP annealing. ________ 40 

Figure 3.4 a) Two-step RTP annealing processing scheme detailing the processing conditions. 

b) Example of a homogeneous sample obtained by two-step RTP annealing. _____________ 41 

Figure 3.5 j-V illuminated curve (under AM1.5G conditions, no ARC nor metallic grid), and 

external quantum efficiency of the champion cell obtained by RTP. ____________________ 42 



 
 

xi 
 

Figure 3.6 Temperature profile with the different stages where the annealing process was 

stopped. Points A-E are covering temperatures during the first temperature ramping, being 

200, 250, 300, 350, and 400 ⁰C, respectively. Points E-I are the different key points in the 

annealing process. ___________________________________________________________ 43 

Figure 3.7 Evolution of the concentration of the different elements determined by XRF for the 

several stages at this experiment. _______________________________________________ 44 

Figure 3.8 Cross-section SEM images of devices from the most relevant samples for the 

analysis (E-H). _______________________________________________________________ 44 

Figure 3.9 Comparison of Cu, Zn, Sn and Se depth profiles in different samples, measured after 

different RTP step processes ___________________________________________________ 45 

Figure 3.10 a) XRD diffractogram and (b-e) Raman spectra using four different excitation 

wavelengths (325, 442, 532, and 785 nm) of the different samples produced at the different 

stop points (A-I) (detailed diffractograms and Raman spectra are reported in Figure A2 and 

Figure A3 in the Appendix). Here and in the following, CTSe stands for the ternary Cu2SnS3 

compound. _________________________________________________________________ 46 

Figure 3.11 a) Evolution of the absolute area of most relevant peaks detected by Raman 

spectroscopy (surface analysis < 300 nm), corresponding to the different binary, ternary, and 

quaternary phases present in the system. b) Evolution of the XRD diffraction peaks area 

corresponding to the different binary, ternary and quaternary phases that have been 

normalized with respect to the total area of the 110 reflection of the Mo layer at 40.5⁰, 

extracted from Figure A2. _____________________________________________________ 47 

Figure 3.12 Raman spectra under UV non-bandgap resonant conditions (325nm) for samples E 

to I together with a reference sample annealed using an optimized conventional thermal 

process. ___________________________________________________________________ 49 

Figure 3.13 Schematic representation of the two competing formation mechanism for the RTP 

annealing. __________________________________________________________________ 51 

Figure 3.14 J-V illuminated curve of devices obtained from absorbers produced during the 

break-off experiments (points G, H and I). Evolution of the different optoelectronic parameters 

of the same three points. ______________________________________________________ 52 

Figure 3.15 Summary of the dependence on the kesterite formation pathways for IREC’s RTP 

annealing baseline. ___________________________________________________________ 53 

Figure 4.1 Evolution of the concentration of the different elements as determined by XRF for 

CZTSe samples prepared with fast ramping (180 ⁰C/min) (a) and slow ramping (20 ⁰C/min) (b).

 __________________________________________________________________________ 60 

Figure 4.2 Se concentration for the experiments performed stopping the reaction at different 

temperatures (RTP) and using different ChA values __________________________________ 63 

Figure 4.3 Complete kinetic analysis of the selenization of metallic stacks using fast ramping. 

The fittings are presented for three different kinetic orders (zero, first and second order), as 

well as for two different chalcogen availabilities (medium-low and medium-high). ________ 64 

Figure 4.4 Thermal profile and top view SEM images of absorbers generated with a fast ramp 

at different chalcogen availabilities (a). Thermal profile and top view SEM images of absorbers 

generated slow ramp at different chalcogen availabilities (b). _________________________ 65 

Figure 4.5 Schematic representation of the phase analysis performed using Raman 

spectroscopy and XRD for the whole chalcogen availability range, for fast ramp (a), and slow 

ramp (b) processes. Vertical white lines represent the chalcogen availability where the 

maximum signal intensity corresponding to this particular phase is detected. The intensity of 

the colour correlates with the quantity of each phase. _______________________________ 66 



 
 

xii 
 

Figure 4.6 Evolution of the concentration of the different elements as determined by XRF for 

samples sulfurized under slow ramping conditions (20 ⁰C/min). _______________________ 70 

Figure 4.7 Schematic representation of the phase analysis performed using Raman 

spectroscopy and XRD for the whole chalcogen availability range for CZTS. Vertical white lines 

represent the chalcogen availability where the maximum intensity of this particular phase is 

obtained. __________________________________________________________________ 71 

Figure 4.8 Summary of the dependence on the kinetic regime for the RTP annealing process at 

IREC. ______________________________________________________________________ 72 

Figure 5.1 Strengths, weaknesses, opportunities and threats analysis of the three main 

electrodeposition routes used to form kesterite precursors. Reproduced from Colombara et 

al.173 ______________________________________________________________________ 77 

Figure 5.2 XRD pattern of (a) CZT precursor electrodeposited at -1.2 V (vs Ag/AgCl) during 15 

min ad (b) CZTSe thin film obtained after RTP treatment. ____________________________ 79 

Figure 5.3 Top-view FESEM pictures of (a-b) co-electrodeposited CZT precursor (c-d) CZTSe thin 

film obtained after RTP selenization. Cross-section view of (e) CZT precursor and (f-h) CZTSe 

thin films (no etching). Pictures (g-h) show defects at Mo/CZTSe interface using higher 

magnification._______________________________________________________________ 81 

Figure 5.4 Raman spectra of a finished solar cell under different excitation wavelengths: (a) 

442 nm and (b) 633 nm. _______________________________________________________ 82 

Figure 5.5 Raman μ-maps of the best CZTSe sample obtained by co-electrodeposition and RTP; 

(a) microscopy image and grid used to record the maps; (b) 514 nm Raman map; (c) 514 nm 

colour contour of Raman intensity signals; (d) 786 nm Raman map and (e) 786 nm colour 

contour of Raman intensity signals. ______________________________________________ 84 

Figure 5.6 I-V voltage curves obtained under simulated AM1.5G for the best CZTSe solar cell 

obtained. The insert shows an image of the full sample and the statistical values are presented 

into Table 11. _______________________________________________________________ 85 

Figure 5.7 External Quantum Efficiency (EQE) of the best device obtained. The inset shows the 

calculated BG of the CZTSe absorber from the EQE data. _____________________________ 86 

Figure 5.8 I-V curves of champion cell summarizing the main causes for its Voc deficit. _____ 88 

 

  



 
 

xiii 
 

 

 

 

 

 

 

 

 

 

Preface 
 

 

 

 

 

 

 

 

 

 

 

 



 
 

xiv 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

xv 
 

Preface 

The work presented in this thesis has been carried out at the Catalonia Institute for Energy 

Research (IREC) in Sant Adrià del Besòs (Barcelona, Spain) from 2015 until 2019. The main 

subject of this Thesis is the understanding and development of new annealing strategies via 

Rapid Thermal Processing (RTP) for Earth-abundant Cu2ZnSn(Sx,Se1-x) (CZTSSe) kesterite solar 

cells, which show a clear consensus amongst the scientific community as one of the most 

suitable production techniques for a posterior industrial implementation.  

The thesis is structured into six chapters: the first chapter provides a general introduction to 

renewable energies and expounds the underlying motivation of this thesis. The second chapter 

provides details about the main experimental methodologies used throughout the thesis. The 

next three chapters cover the main experimental results obtained during the course of this 

Thesis, presenting the optimization of the RTP processing baseline at IREC, a comprehensive 

study about the kesterites formation pathways and an investigation of the robustness of the 

baseline developed at IREC. This is followed by a chapter highlighting the conclusions and 

outcomes of this work. A more detailed description of the different chapters that comprise the 

structure of the thesis is presented below: 

 The first chapter is subdivided in well differentiated sections. It starts with an analysis 

of the problematic derived from greenhouse emissions and climate change and the 

measures that have been provided to deal with it. After that, an in order to justify why 

Renewable Energies are so important for mitigating it, it is also commented how the 

energy demand is increasing with time and how this increase still relies mostly on fossil 

fuels, even though the share of sources is every time more and more split. The chapter 

advances by introducing a short review about PV production and why the market is 

dominated mostly by Si technologies. Then, the fundamentals of solar cells are briefly 

commented with the aim to provide an understanding of the key concepts behind their 

operation and internal structure. This explanation is later followed by a description of 

the currently available commercial photovoltaic technologies comparing 1st generation 

(Si-based), 2nd generation (thin film) and third generation technologies (emerging, novel 

technologies and advanced concepts) are also introduced and provided with further 

discussion about strengths and drawbacks of the different PV technologies. The next 

sub-section aims to discuss the main advantages and current limitations of kesterite thin 

film technologies, upon which this Thesis is based on. Then, a review of the state-of-the-

art about kesterites and their best results for the high amount of synthesis techniques 

employed is presented. Finally, this chapter also presents the objectives of this thesis. 

 The second chapter covers the experimental methodology employed in the present 

work. This includes the general process for manufacturing kesterite solar cells at IREC, 

as well as the main characterization methods, mostly summarized into optoelectronic 

and Raman spectroscopy. As the development of an RTP process is the main objective 

of this work, the Magnetron Sputtering setup and the RTP equipment employed are 

presented in more detail. 

 The third chapter explores the implementation of an RTP process into IREC’s kesterite 

production baseline. First, most interesting capabilities that can be achieved by using 

RTP are introduced and then the evolution that the RTP annealing process underwent 

through this present Thesis is described. It starts by commenting the previously and 

long-time running established annealing procedure for conventional furnaces at IREC 
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and how the RTP annealing process ended up evolving towards a double-step RTP 

annealing procedure. It also depicts how the scope was set-up into obtaining an 

annealing procedure that would maximize the beneficial effects of RTP into the 

minimum possible processing time without compromising its efficiency. Moreover, it 

shows an RTP process that has been able to reach up to 8.3% (neither Anti-Reflective 

Coating nor metallic grids were applied) in a 12 min annealing process. Once this double-

step RTP annealing procedure was established, it was of key importance to obtain a 

deep and comprehensive knowledge about the process ins and outs. In order to do so, 

a break-off experiment where the process was stopped in key parts of it and strongly 

characterized with several techniques was implemented. The main results of this 

Chapter have given rise to the following publication: 

Hernández-Martínez, A.; Placidi, M.; Arqués, L.; Giraldo, S.; Sánchez, Y.; Izquierdo-Roca, V.; 

Pistor, P.; Valentini, M.; Malerba, C.; Saucedo, E. Insights into the Formation Pathways of 

Cu2ZnSnSe4 Using Rapid Thermal Processes. ACS Appl. Energy Mater. 2018, 1 (5), 1981–1989. 

DOI: 10.1021/acsaem.8b00089 Impact factor: pending 

The fourth chapter presents the analysis and understanding of the importance of the 

chalcogen availability to drive the kesterite formation pathways. The Chapter is focused 

on understanding the relationship between the intermediate phases and the possible 

formation routes in physical vapour deposition methodologies, together with a kinetic 

analysis of the system. In order to do so, innovative experiments were implemented to 

demonstrate the strong interrelationship between the reaction pathways for kesterites 

using sequential processes, depicting how crucial the chalcogen availability is for the 

kesterite synthesis. Furthermore, a kinetic analysis combined altogether with an 

extensive phase analysis of the selenization process is presented for the first time. This 

kinetic analysis shows the relationship between the chalcogen availability and the 

reaction order. Furthermore, it is also presented that the binary phases compounds, 

even being able to be driven to a marginal extent, they cannot be completely eliminated. 

The most relevant results of this Chapter have been submitted for publication with the 

following detail: 

A. Hernández-Martínez, S. Giraldo, X. Alcobé, J. Andrade, M. Placidi, V. Izquierdo-Roca, P. Pistor, 

A. Pérez-Rodríguez, E. Saucedo. Driving the kesterite formation pathway with the chalcogen 

availability: a kinetic and phase analysis. Angewandte Chemie (submitted) Impact factor: 

12.257(Q1). 

 

 The fifth chapter deals with the reliability and trustiness on the RTP annealing baseline 

established in Chapter 3 by extending its use to other precursor synthesis techniques, in 

this case electrodeposition. First, the electrodeposition synthesis technique is 

introduced and reviewed in order to obtain a broad view of this technique that also 

possesses very interesting properties. Electrodeposited precursors were submitted to 

the new established RTP annealing baseline developed in order to check its efficiency 

and optoelectronic results, turning out into a very interesting result of 5.2% efficiency 

for co-electrodeposited precursors and RTP annealing, the highest reported in the 

literature so far under these synthesis conditions (to the best of my knowledge). This 

device has been strongly characterized and proves the reliability of the RTP annealing 
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baseline developed in this Thesis. The most important results of this Chapter have been 

published in the following paper. 

Valdés, M.; Hernández-Martinez, A.; Sánchez, Y.; Oliva, F.; Izquierdo-Roca, V.; Perez Rodriguez, 

A.; Saucedo, E. Cu2ZnSnSe4 based solar cells combining co-electrodeposition and rapid thermal 

processing. Sol. Energy 2018, 173 (June), 955–963. DOI: 10.1016/j.solener.2018.08.049 Impact 

factor: 4.674 (Q1). 

 The sixth chapter summarizes the main results of this Thesis, providing the most 

relevant Conclusions, and putting them into a perspective for the future progresses of 

kesterite photovoltaic technology. 
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Prefacio 

El trabajo presentado en esta tesis ha sido realizado en el “Institut de Recerca en Energia de 

Catalunya” (IREC) en Sant Adrià del Besòs (Barcelona, España) desde el 2015 hasta el 2019. El 

tema principal de la presente tesis es el desarrollo de nuevas estrategias de recocido por Rapid 

Thermal Procesing (RTP, Procesos de Recocido Rápidos) para celdas solares basadas en kesterita, 

Cu2ZnSn(Sx,Se1-x) (CZTSSe). Esta tecnología está siendo extensivamente estudiada gracias a que 

gracias a que su estructura está formada únicamente por elementos abundantes en la corteza 

terrestre y de baja toxicidad. Además, la síntesis del material incluyendo técnicas RTP es de gran 

interés para una posible aplicación industrial en el futuro cercano. 

La tesis se estructura en seis capítulos. El primer capítulo provee una introducción general sobre 

las energías renovables y expone las motivaciones de la tesis. El segundo capítulo relata una 

descripción sobre los detalles experimentales y la metodología utilizada a lo largo de la tesis. Los 

tres capítulos siguientes presentan los resultados obtenidos más importantes incluye: la 

optimización de la línea de trabajo en RTP para la producción de celdas solares de kesteritas en 

IREC, un estudio exhaustivo sobre las vías de reacción para la formación de estos compuestos y 

un estudio sobre la robustez de la línea de trabajo desarrollada. Finalmente, se desarrolla un 

capítulo que resalta las conclusiones y resultados obtenidos por el trabajo realizado. A 

continuación, se presenta una descripción más detallada de cada uno de los diferentes capítulos 

que comprenden la estructura de la tesis: 

 El primer capítulo se encuentra subdividido en secciones bien diferenciadas. Empieza 

con un análisis sobre la problemática derivada de las emisiones de gases de efecto 

invernadero y el cambio climático, comentando además las medidas emprendidas para 

mitigarlo. A continuación, y con la idea de justificar por qué las energías renovables son 

tan importantes en este sentido, se comenta cómo la demanda de energía está 

creciendo sosteniblemente, dependiendo enormemente aún hoy en día de los 

combustibles fósiles pese a que la generación de energía está cada vez más diversificada 

y tiende hacia la generación por renovables. El capítulo avanza mediante la introducción 

de una pequeña revisión sobre la producción fotovoltaica y cómo el mercado está 

dominado por la tecnología basada en el silicio. A continuación, se comentan 

brevemente los fundamentos en los que se basa la tecnología de las celdas solares con 

la intención de destacar los conceptos claves detrás de su operación y estructura 

interna. La explicación continúa con la descripción de las diferentes tecnologías 

fotovoltaicas: la primera generación (basada en tecnología de Silicio), la segunda 

generación (basada en tecnología de capa delgada) y la tercera generación (que engloba 

tecnologías emergentes, noveles y conceptos avanzados) proveyendo además con sus 

puntos fuertes y limitaciones. La siguiente subsección se enfoca en la tecnología de capa 

fina basada en kesterita remarcando sus ventajas y limitaciones, tecnología sobre la cual 

se centra la presente tesis. El primer capítulo presenta además una revisión del estado 

del arte de las diferentes tecnologías para la síntesis de kesterita compilando los 

mejores resultados obtenidos. Finalmente, el capítulo concluye presentando los 

objetivos de la tesis. 

 El segundo capítulo engloba la metodología experimental utilizada en el presente 

trabajo. Esta metodología incluye el proceso completo de fabricación de las celdas 

solares de kesterita en IREC, junto con las técnicas de caracterización más relevantes 

incluyendo: caracterización optoelectrónica y espectroscopia Raman. Debido a que el 

desarrollo de un proceso de RTP es el objetivo primordial de la tesis, el equipo de 
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Magnetron Sputtering (evaporación catódica) y de RTP también son comentados 

detalladamente. 

 El tercer capítulo explora la implementación de un proceso de RTP en la línea de 

producción de celdas solares de kesterita de alta eficiencia en IREC. Inicialmente, se 

introducen todas las características altamente interesantes que provee el trabajar con 

RTP y a continuación se describe la evolución experimentada por el proceso de RTP a lo 

largo de la presente tesis. Empieza por comentar el proceso de recocido previamente 

establecido basado en la utilización de hornos tubulares convencionales en IREC y cómo 

el proceso de RTP ha evolucionado hasta un proceso que cuenta con dos etapas. 

Además, comenta cómo el foco ha estado dirigido hacia la obtención de un proceso de 

RTP que maximizaría los puntos fuertes de esta técnica en el tiempo mínimo de proceso 

sin comprometer así la eficiencia. Por otra parte, se muestra un proceso capaz de 

obtener hasta un 8.3% de eficiencia (sin aplicar recubrimientos anti-reflexión o 

contactos metálicos) con un proceso de tan solo 12 minutos. Finalmente, el capítulo se 

enfoca en desarrollar un experimento novedoso donde el proceso de recocido se 

detiene y se analiza en etapas claves, para obtener una mayor comprensión de este. Los 

resultados más relevantes de este capítulo han dado lugar a la siguiente publicación: 

Hernández-Martínez, A.; Placidi, M.; Arqués, L.; Giraldo, S.; Sánchez, Y.; Izquierdo-Roca, V.; 

Pistor, P.; Valentini, M.; Malerba, C.; Saucedo, E. Insights into the Formation Pathways of 

Cu2ZnSnSe4 Using Rapid Thermal Processes. ACS Appl. Energy Mater. 2018, 1 (5), 1981–1989. 

DOI: 10.1021/acsaem.8b00089 Factor de Impacto: pending 

 El cuarto capítulo se centra en comprender los aspectos termodinámicos y cinéticos del 

proceso de RTP, en función de la cantidad de calcogenuro (selenio) presente en el 

sistema. En primera instancia el estudio se centra en la comprensión de las fases 

intermediarias presentes en el mecanismo de formación de la kesterita. Para ello se ha 

implementado un estudio comparativo entre el proceso convencional de síntesis del 

material y el proceso RTP, intentando comprender y comparar los pasos que están 

determinados termodinámica y cinéticamente en ambos casos, en función de la 

cantidad de selenio presente en la atmósfera de recocido. Como resultado se presenta 

por primera vez un análisis combinado sobre la cinética y las fases presentes en el 

proceso de selenización. El análisis cinético en particular discierne sobre la relación 

entre la presencia de calcógeno y el orden de la reacción. Finalmente, se demuestra que 

los compuestos de fases binarias, pese a que pueden ser reducidos hasta niveles bajos, 

nunca pueden ser completamente eliminados. Los resultados más relevantes de este 

capítulo han sido enviados para publicación recientemente, con el siguiente detalle: 

A. Hernández-Martínez, S. Giraldo, X. Alcobé, J. Andrade, M. Placidi, V. Izquierdo-Roca, P. Pistor, 

A. Pérez-Rodríguez, E. Saucedo. Driving the kesterite formation pathway with the chalcogen 

availability: a kinetic and phase analysis. Angewandte Chemie (presentado) Factor de Impacto: 

12.257 (Q1) 

 El quinto capítulo demuestra la versatilidad y robustez de la línea de síntesis 

desarrollada mediante RTP en el capítulo 3, estudiando su extensión hacia precursores 

obtenidos con otras técnicas de síntesis, en este caso electrodeposición. Primero, la 

técnica de recubrimiento de capas metálicas mediante electrodeposición es introducida 

y revisada con la intención de proveer con un conocimiento amplio sobre la misma, y su 

aplicación en el depósito de capas metálicas. Precursores metálicos obtenidos por 

electrodepósito fueron selenizados mediante la nueva línea de síntesis establecida con 
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RTP y caracterizados, obteniendo un dispositivo récord de 5,2%, probablemente el 

resultado más alto para esta combinación reportado hasta la fecha. Los resultados más 

relevantes han sido presentados en el siguiente artículo: 

Valdés, M.; Hernández-Martinez, A.; Sánchez, Y.; Oliva, F.; Izquierdo-Roca, V.; Perez 

Rodriguez, A.; Saucedo, E. Cu2ZnSnSe4 based solar cells combining co-electrodeposition and 

rapid thermal processing. Sol. Energy 2018, 173 (June), 955–963. DOI: 

10.1016/j.solener.2018.08.049 Factor de Impacto: 4.674 (Q1). 

 El sexto capítulo resume los principales resultados obtenidos en la Tesis, 

contextualizándose en el marco del desarrollo de energías renovables sostenibles y 

presenta las conclusiones generales de la Tesis. 
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1 Introduction 
 

Nowadays one of the main challenges that humanity is facing is the climate change due to the 

greenhouse gases (GHG) that increases the average temperature of the planet with 

consequences such as the thaw in polar areas and in mountain glaciers, the decrease of the 

humidity in the ecosystems and the increase of the desertification of the same, among others. 

Even though climate change is a natural process and in Earth’s history it has already happened 

several times (i.e. the so-called ice age)1, in this case the climate change due to anthropomorphic 

effects has never been so fast and with so many implications in a short period of time. The origin 

of this anthropomorphic strong impact into the climate change comes from one of the turning 

points in human history: The Industrial Revolution, as illustrated in Figure 1.1.  

 

Figure 1.1 CO2 evolution from the atmosphere as analysed in ice cores at LAW DOME showing 
pre-industrial levels and post-industrial levels2 

Despite humanity was prior strongly depending on the world energy primary sources (mostly in 

form of biomass) it was not until the origin of The Industrial Revolution that a huge dependence 

on fossil fuels was originated and has not been overcome yet. The Industrial Revolution resulted 

into a massive change of our societies (social, technological, political, etc.) but also became a 

turning point for our climate. 

 

1.1 Mitigating the Climate Change 
 

Several efforts to fight this climate change have been attempted with different scopes and 

results: the first concerted effort was the creation of the United Nations Framework Convention 
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on Climate Change (UNFCC) in 1992 yet did not fully operate until 1994. The main UNFCC 

objective was: “stabilize greenhouse gas concentrations in the atmosphere at a level that would 

prevent dangerous anthropogenic interference with the climate system"3. Although it was a 

good and promising starting point it also contained several shortcomings, mostly summarized 

into it was not set a concentration level for the anthropomorphic GHG dangerous level for the 

climate system and it also suggested that the climate change was unstoppable. So, it recognized 

there was no scientific evidence about what might be hazardous. The UNFCC was also indicating 

to embrace preventive actions but moreover to take actions to adapt to the new situation that 

would arise from this climate change. In order to overpass these limitations in 1997, the UNFCC 

started its most important action up to date: The Kyoto Protocol. The main objective of the 

Kyoto Protocol (KP) was to reduce the onset of global warming by reducing GHG gas 

concentrations into the atmosphere, in a legally tied way: “to a level that would prevent 

dangerous anthropogenic interference with the climate system"4. One of the obvious successes 

of KP’s was that for a first-time countries were tied in a legal way. Yet it was not completely 

effective as it is based on the principle of common problem but varying responsibilities.  

Furthermore, these climate negotiations have faced the common problems of politics and 

international legislation, as not all the countries signed and ratified the protocols. The KP was 

based on the idea that all countries have different capabilities for combating climate change, so 

subsequently countries were indexed into annexes that would define their capabilities and 

responsibilities into fighting the climate change. As time passed by, it became clear that KP was 

not enough to effectively fight the climate change, another meeting was set up, the Paris 

Agreement in 2015. The Paris Agreement has been the most ambitious international plan to 

mitigate climate change so far. The main objectives for the Paris Agreement are5: 

1. “Holding the increase in the global average temperature to well below 2°C above pre-

industrial levels and to pursue efforts to limit the temperature increase to 1.5°C above 

pre-industrial levels, recognizing that this would significantly reduce the risks and 

impacts of climate change” 

2. “Increasing the ability to adapt to the adverse impacts of climate change and foster 

climate resilience and low greenhouse gas emissions development, in a manner that 

does not threaten food production” 

3. “Making finance flows consistent with a pathway towards low greenhouse gas 

emissions and climate-resilient development”. 

The Paris Agreement has been considered the first comprehensive attempt to reduce climate 

change. In contrast to KP, the structure of the Paris Agreement arises from a bottom-up 

structure. The emphasize has consisted in finding common consensus that will end-up into 

voluntary and national targets, in contrast to Kyoto’s where legally binding targets had legal 

force. The Paris Agreement has set more the scope into political targets than legal. In contrast 

to KP, The Paris Agreement has been able to overpass the differences into countries by following 

the motto: “Common but Differentiated Responsibility and Respective Capabilities". The Paris 

Agreement negotiations shall keep going on in order to clarify the roles for each nation more 

specifically, as it will run since the beginning of 2020.  

Moving the scope to European Union (EU) in Paris Agreement, EU has become one of the key 

actors in putting together the Paris Agreement. EU has been into the forefront of the 

international efforts for turning the Paris Agreement into a success. Currently, it is leading the 

Agreement with the higher targets on it. Also the EU was the first major economy to submit its 

intended contribution to the UNFCC to its new agreement by March 20156. Speaking about 

https://en.wikipedia.org/wiki/Greenhouse_gas
https://en.wikipedia.org/wiki/Human_impact_on_the_environment
https://en.wikipedia.org/wiki/Climate_system
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targets, EU has ratified the EU’s Nationally Determined Contribution (NDC) for the Paris 

Agreement in order to reduce the GHG emissions in EU by at least 40% by 2030 in comparison 

to its emissions in 1990, as it will be all reported in the new 2030 climate and energy agreement 

framework replacing the HORIZON 2020 agreement.  

 

1.2 Global Electricity Production 
 

Figure 1.2 shows the increasing into the world energy generation between 1973 and 2016, 

depicting that humanity is demanding every day more and more energy. Still nowadays, this 

demand is mostly covered by non-renewable energies. By the year 2016, only an 8% of the total 

energy demand was supplied by non-hydro renewables energies. The gap between the source 

share for fossil fuels and renewables is still wide, implying that further measures should be taken 

into the near future and there is an enormous field to work in. In this commented scenario of 

climate change and the actions that should be considered to fight it, renewable energies appear 

as one of the most important actors for its mitigation. 

 

Figure 1.2 Comparison of the share of different generation types for the global electricity 
production between 1973 and 20167 

Figure 1.3 shows the global share of renewable energies production in 2015 depicting that the 

most advanced and consolidated technologies are hydropower and wind as altogether cope up 

to the 86% of the total share. On the other hand, solar PV only represents a 5% of the total 

production. Living in a planet where the Sun is the highest unlimited energy source further 

development into PV is required. 

Source shares of electricity 

generation 
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Figure 1.3. Global renewable electricity generation by energy source in 20158 

 

In the previous Figure 1.3 it has been shown that the PV energy production is still in a very low 

market-share in comparison to other renewable energies. Whereas, this market-share is 

expected to increase due to the huge increasing rate that the PV electricity production has been 

showing. Figure 1.4 shows the world solar PV electricity production from 2005 to 2016, where 

it is depicted how the growth on the production, which has been following a very high growing 

trend, almost exponential. It is of special interest the paper that China has played into the PV 

market, especially since in 2010 a new Feed-in-Tariff policy was introduced by the Chinese 

government acting, since then, as the leader of the PV increase. Currently, China operates up to 

nearly 1/3 of the world’s solar power generator capacities9. 



 
 

7 
 

 

Figure 1.4 Increase into the World Solar PV electricity production7 

 

China’s incursion in the PV market has provoked an earthquake in the industry10, as module-

prices have gone down to their lowest levels in history (0.35 €/W, April 2019)11. This increase in 

the PV production has been supported by the lowering of the PV module prices predicted into 

the so-called Swanson’s law (Figure 1.5). Swanson’s law, usually related and compared to 

Moore’s law, comments the observation of PV module prices which tend to drop by 20% for 

every doubling of cumulative shipped volume. 
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Figure 1.5 Swanson’s law, the learning curve of PV12 

Swanson’s law and the huge reduction into the PV module prices can be observed in Figure 1.6 

which shows the evolution of module prices between 2010 and 2017. Module prices have been 

cut by over 80%, predicting a huge PV revolution. The next PV revolution will find its path in self-

consumption. Self-consumption possesses unique features that can be summarized into13: 

 Contributes to the decentralization of electricity production 

 Provides the consumers with higher prominence 

 Energy demand and energy production can be modulated 
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Figure 1.6 Price trends for Solar PV module during the period 2010-201714 

 

1.3 Photovoltaic technologies 
 

PV allows a direct energy conversion from sun to electricity. When a photon with enough energy 

falls on a semiconductor material it gets absorbed. Then this energy will be transferred to an 

electron that will jump from a lower state (valence band, VB) to a higher state (conduction band, 

CB) where they can freely move. This absorption and transfer to a higher state are the key for 

the energy generation. This electron by jumping to the CB leaves behind it a “hole” (+ charge) in 

the VB, generating two charge carriers, the so-called “electron-hole pair”. Almost all PV devices 

consist of p-n junctions where a p-type semiconductor material (excess of holes) and a n-type 

semiconductor material (excess of electrons) are joined.  

In Figure 1.7a the standard solar cell structure is presented along with the band diagram of its 

p-n junction and its relevant electronic properties. The Eg or bandgap is the minimum amount 

of energy required to excite an electron from the VB towards the CB. The valence band (Ev) 

corresponds to the valence level of the isolated atom (hence its name), which determines its 

interactions with the outside and the energy level at which this electron is considered free to 

move, is called the conduction band (Ec). The difference in energy between the minimum energy 

of the conduction band and the maximum of the valence band in space E vs K, corresponds to 

the so-called forbidden energy band or Gap, which in representation E vs X  is the one presented 

in Figure 1.7. The Work function (W) of the material is defined as the minimum required energy 

to transfer an electron from the Fermi level (EF) to the vacuum level (EVAC), while the electron 

affinity (EEA) is the energy needed to transfer an electron from the conduction band to the 

vacuum level. 
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Figure 1.7a) Schematic of the standard solar cell structure. b) band diagram of the p-n junction 
(Eg: band-gap energy, Ec: conduction band energy, Ev: valence band energy, Ef: fermi level). c) 

relevant electronic properties of semiconductor materials in a p-n junction (Efa: electron 
affinity, W: work function, EI: Ionization energy)15 

As previously commented the p-n junction consists of n-doped and p-doped semiconductor 

materials. In the first case, the main charge carriers are the electrons, while in the second case 

the holes and the p-doped are a high concentration of holes, so that in the p-n junction the 

electrons diffuse from the region of type n to the region of type p. This movement of the 

electrons and the holes towards the other side of the junction leave the exposed charges 

unbalanced and fixed charges on both sides (ionized donor and acceptors, respectively) with the 

consequent formation of an electric field (positive on the n side and negative on the p side). 

Because of that an internal electric field is formed between both sides in a zone called the 

“depletion region” or the “space charge region”. The generated electric field favours the drift 

movement of minority carriers (holes in part n and electrons in part p) and opposes the diffusion 

of major carriers on both sides, so that total current through the junction has two components: 

 The diffusion due to the majority carriers 

 Drift current due to minority carriers 

Under equilibrium conditions the total current through the junction must be zero. 

P-n junctions can be obtained with different semiconductor and several different PV 

technologies have been developed in the past. These are historically classified into three 

categories: the first-generation PV consists mainly of crystalline and multi-crystalline silicon PV, 

the second generation of PV consists of the thin film PV and finally the third one that includes 

the emerging and novel concepts in PV. The main characteristics of the three PV technologies 

are summarized and presented into Figure 1.8. In the next pages, the different PV technologies 

will be presented. 



 
 

11 
 

 

Figure 1.8 Classification and main characteristics of the available PV technologies15 

The First generation of PV is the one that englobes all the Si-based PV. It is the most mature and 

robust technology and when people think about PV, they are most probably thinking about Si-

based PV. This technology includes mono-crystalline (single-crystal) and multi-crystalline (poly-

crystalline) Si-based devices. Si PV relies on its maturity, as it has already been studied and 

optimized for decades. There is also a high amount of information about evaluating the 

reliability and robustness of its designs, as a result of those decade’s research, crucial for a good 

final performance. Si PV also benefits from the huge microelectronics industry and about Si 

being one of the most abundant materials on Earth16. Si-based devices show a high operational 

reliability and stability as crystal silicon modules can reach lifetimes of more than 25 years and 

exhibit little long-term degradation. Si PV industry also employs industrial high-quality and purity 

Si wafers. All this interesting properties of Si PV have helped to obtain the highest performance 

for mass-produced single junction devices, which reduce the final cost installation17. Based on 

all those advantages Si-based devices are dominating the PV market and constituted 95% of the 

total PV production in 201818. Despite all the advantages, Si-based PV also contain some 

challenges: Si PV is reaching the theoretical efficiency limit19,20 for single junction devices (over 

26% for mono-crystalline cells and over 21% for poly-crystalline cells)21, so any new 

improvement is becoming more and more difficult. The other challenges when working with Si-

based devices are its indirect band gap, which ends up with a low absorption coefficient, 

requiring a thicker absorber layer (around 200 μm) that increases the material cost and its usage. 

The required purity of the Si (99.9999%) and the problems derived from cutting the wafers from 

blocks might turn into a problem for Si PV. Despite Si is one of the most abundant materials in 

the world, it enters competition with the microelectronics industry that may develop into a 

second silicon crisis as in 2008.  

The Second-generation PV is the one based on Thin Film PV. Thin film PV technologies are 

generally based on absorber materials with direct bandgaps, high absorber coefficients and in 

contrary to Si-based PV they do not require thick layers of semiconductor materials (around 100 
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times less material). This direct band-gap also allows for a higher throughput with less material 

as the required thickness for thin film PV is way smaller than for Si-based devices, so almost any 

semiconductor material is inexpensive enough to be considered as a suitable candidate22. By 

metal or chalcogenide substitutions it is also possible to tune their band-gap23. Furthermore, a 

very interesting benefit when comes to Thin Film PV is the wide range of physical, chemical, 

electrochemical, plasma based and hybrid techniques that are available for depositing thin films 

of one material24. Finally, another technological advantage is the possibility to deposit Thin Films 

directly onto almost any given substrate (glass, polyimide, stainless steel or ceramics).  

The main commercial thin film PV technologies are: amorphous Si (a-Si:H) with efficiencies over 

14%21, Cadmium Telluride (CdTe) with efficiencies up to 21%21 and the chalcopyrite materials 

family like CIS (CuInSe2) or the most common and used CIGSe (Cu(In1-xGax)Se2 with a top record 

amongst commercial thin film PV about 22.9% efficiency21. 

Amorphous Silicon was a very promising material based on its use of non-toxic abundant Si, but 

in contrast to crystalline silicon bearing the advantage of thin film deposition: direct band gap 

ranging from 1.4-1.6eV, flexible deposition, no bonding, no cutting losses25. However, the 

several advantages that a-Si:H has shown, its late low efficiencies have situated it in a decline 

trend. 

CdTe is currently the second most common PV technology in the marketplace, only after c-Si, 

sharing a 5% of the marketplace. CdTe solar cells  show direct-band gap on its structure 

(1.45eV)26 and benefits from its ease and low cost manufacturing. The appearance of Cd on its 

structure it’s the main culprit for CdTe solar cells. Despite being an abundant material its high 

toxicity might compromise the expansion of CdTe manufacturing27. 

On the other hand, CIGS has been the thin film PV that has reached the highest efficiencies 

(22.9%)21. Even though CIGS and CdTe are very interesting technologies with a high number of 

advantages, their limitations are also challenging for its relatively near future. CIGS and CdTe 

contain either toxic materials as Cd28 or very scarce elements like In and Te29. This limitation may 

develop into a shortage of raw materials which could make it difficult to deploy beyond the 

Terawatt level30,31.  

In order to overpass this possible shortage scenario, the scientific community started to look for 

other PV materials where kesterite solar cells appeared as one of the most promising 

technologies to overpass these previously commented limitations. 

 



 
 

13 
 

 

Figure 1.9 Annual PV production share by technology for the period 2013-201832 

Figure 1.9 shows a decrease in the PV market share of thin films. However, this decrease is by 

far not caused by declining production levels. To the contrary, the absolute module production 

levels of thin films have substantially increased (by 40%, 2500 MWp)18 over the past 10 years, 

and are only outnumbered by tremendous increase in Si PV production over the past years, 

leading to the decreased market share. 

The third generation of PV joins the most innovative and breakthrough ideas in the field of PV. 

Even aiming to overpassing the theoretical efficiency limits (Shockley-Queisser limit20,33) for 

single-junction solar cells. But always trying to maintain economic and environmental costs in 

line with thin film advantages. In third generation PV several technologies can be found such as: 

concentrator photovoltaics (CPV), multi-junction tandem solar cells (MJ) which are receiving an 

increasing attention, as they possess potential to achieve efficiencies over 50%34. Another huge 

research field into the third generation PV are: organic photovoltaics (OPV), advanced inorganic 

thin film, represented by technologies such as kesterite or Sb2Se3, and thermo-photovoltaics 

(TPV). Moreover, one of the most promising and representative are the perovskite-based solar 

cells with efficiencies over 25%21 but with stability and reliability problems35. 
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Figure 1.10 Best research-cell efficiencies for the different PV technologies (Reproduced from 
the National Renewable Energy Laboratory, Golden, CO)36.  

Figure 1.10 represents the best research-cell efficiencies for all the currently studied PV 

technologies. If MJ, tandem or GaAs are not taken into consideration because of being 

composed by more than one cell or their enormous costs as in GaAs, it is clear that by far 

crystalline Si is the most interesting technology thanks to the reasons previously commented. 

Yet, the comparison between novel and emerging technologies, as the kesterite that this present 

thesis is devoted to, should not be completely addressed as Si PV has been studied for a very 

long time (since the 50’s37) in contrast to kesterite’s whose first studied solar cells were only 20 

years ago38. Si-based PV technologies are a mature technology, whereas kesterite it’s only at its 

dawn.  

 

1.4 Kesterite solar cells 
 

Kesterite solar cells are composed of Cu2ZnSnS4 (CZTS). They replace the scarce elements In and 

Ga from CIGS with the Zn and Sn, two non-critical elements16,30, overcoming the main limitation 

for CIGS. CZTS and its related compounds: Cu2ZnSnSe4 (CZTSe) and its solid solution 

Cu2ZnSn(SxSe1-x)4 (CZTSSe) have been regarding increasing attention from the research 

community. As an example, in Figure 1.11 the number of publications is depicted and shows a 

fast increase of research articles published on kesterite. 
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Figure 1.11 Kesterite increasing trend of Research Articles, when the words “kesterite or 
Cu2ZnSnS4 or Cu2ZnSnSe4 or CZTS or CZTSe” are searched published through the period 2005-

2019. Values obtained from Scopus39.  

CZTS’s history starts first in 1988 when it was suggested as a suitable alternative absorber 

material40. However, it was not until 1997 when Katagiri et al.38 achieved fabricating the first 

CZTS solar cell that reached up to 0.66% efficiency38. This early solar cell set up the spark for an 

increasing research into kesterites. During the, next years, researchers were able to considerably 

increase the efficiency of kesterites solar cells. By the year 2008, kesterites demonstrated 

efficiencies of 6.77%41 through subsequent optimizations of the materials and the deposition 

techniques, introducing in-line vacuum steps42 and etchings to remove detrimental secondary 

phases41. In the following years, IBM laboratories developed a solution-based process and were 

able to increase the top efficiency by the year 2010, when IBM laboratories published a 9.66%43 

efficiency. This efficiency, only one year later, was increased up to 10.1%44. The current certified 

record stands for a CZTSSe 12.6%45 cell efficiency that was reported in 2013 by Prof. Mitzi’s group 

at IBM. 

CZTS solar cells exhibit several advantages that can be summarized: 

 It is composed by earth-abundant, non-critical and non-toxic materials. 

 Because of intrinsic points defects, kesterites already show intrinsic p-type doping. 

 It has a direct band-gap transition with a high absorption coefficient (≈104cm-1)46. 

 This direct band-gap can be tuned through varying the S/Se ratio, from 1.0eV for the 

pure Se kesterite CZTSe up to 1.5 eV for the pure S kesterite CZTS47,48. There are also 

other strategies available for an effective tuning of the band-gap via cation substitution 

like: Ge-alloying (Sn substitution)49, Cd-alloying (in Zn position)50, Ag-allowing (in Cu 

position)51 or Li-alloying (also in Cu position)52. 
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 Kesterite is usually commonly called a “close cousin” of CIGS; this implies knowledge 

obtained within the CIGS community can be directly transferred to and adopted by the 

kesterite technology.  

The standard architecture of a CZTS solar cell is presented in Figure 1.12. For CZTS solar cells, 

soda-lime glass (SLG) is usually used as substrate, though a variety of alternative substrates such 

as polyimide53, stainless steel54 or ceramics55 can also be used. On the SLG substrate, at first a 

Mo layer with around 800 nm thickness is deposited that serves as a back-contact. Afterwards, 

the ≈1.6m thick kesterite absorber is synthesized by a sequential process (Sputtered metallic 

precursor stack + reactive annealing under S+Se atmosphere) that will act as the p part of the p-

n junction. In order to finish the p-n junction a ≈50 nm thick layer of n-type CdS is deposited via 

Chemical Bath Deposition (CBD). Finally, in order to finish the solar cell, a conductive transparent 

window layer is sputtered as front contact consisting of: ≈50 nm intrinsic ZnO (i-ZnO) and ≈200 

nm of In2O3:SnO2 (ITO). Finally, an Ag or Ni/Al metallic contact grid can be deposited on top in 

order to facilitate charge extraction. Optionally, a MgF2 anti-reflective coating (ARC) can be 

applied. 

 

Figure 1.12 Cross-sectional scanning electron microscope (SEM) picture of a typical kesterite 
solar cell and a schematic drawing of the device architecture. 

Several advantages for the kesterite solar cell devices have been commented and explained but 

one of the key points for its high implementation into research lines all over the world has been 

its high feasibility to be synthesized. Usually, its synthesis methods are summarized into two 

main groups: vacuum-based (mostly Physical Vapour Deposition techniques (PVD)) and non-

vacuum-based techniques. Vacuum-based techniques include thermal evaporation, e-beam 

evaporation, sputtering or pulsed-laser deposition (PLD) being the most widespread techniques. 

Non-vacuum techniques include solution processing via spin-coating/dip coating/doctor-blade-

coating/spraying of the precursor, chemically synthesizing CZTS nanoparticle solution or 

electrochemical deposition. 

This high number of synthesis technologies with their pros and contra has generated a 

widespread of record efficiencies for each of these technologies that can be observed in Table 
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1. The record nowadays is set at 12.7%56 by a solution-processed solar cell and several other 

synthesis techniques have proven efficiencies over 10%. 

Table 1 Selection of the best reported kesterite solar cells, including pure selenium CZTSe, 
solid solution CZTSSe, pure Sulphur CZTS, Electrodeposited (ED) solar cells and over semi-

transparent substrates (FTO). 

 

Corresponding references: a57, b58, c59, d60, e61, f62, g63, h64, i65, j66, k56, l45, m67, n68, o69, p70, q71, 

r72, s73, t74, u75, v76. Partially reproduced and extended from: Sergio Giraldo15 

 

Crystal structure and associated defects 

The natural mineral kesterite belongs to the family of 𝐴2
𝐼𝐵𝐼𝐼𝐶𝐼𝑉𝑋4

𝑉𝐼compounds, which can be 

found in two main tetragonal crystal structure types: the kesterite type and the stannite type 

structure77. Those structures are closely related but differ in their cationic distribution (AI and 

BII). In their structures each anion XVI is surrounded by two AI, one BII, and one CIV. In addition, 

every cation is tetrahedral coordinated by XVI as can be observed in Figure 1.13. Both structures 

are quite similar and difficult to depict their differences only by applying crystallographic 

methods, which leads to the necessity of applying a careful crystal structural analysis with the 

aim to differentiate within structures. Nevertheless, several First-principle calculations predict 

the kesterite structure to be more stable than the stannite one, for both CZTS and CZTse78–80. 

Neutron power diffraction has proven to be, all together with high-resolution XRD studies, a 

good tool to support that both CZTS and CZTSe crystallize in the kesterite structure81,82. Quite 

recently, polarized Raman spectroscopy has also proven to distinguish kesterite and stannite 

structure and confirm the presence of kesterite in most compounds83. 



 
 

18 
 

 

Figure 1.13 Conventional unit cells of the (a) kesterite structure and (b) the stannite structure 
for CZTSe, containing four Cu atoms (light grey), two Zn atoms (black) two Sn atoms (blue) and 

eight Se atoms (red) per conventional unit cell. Reproduced from Persson84. 

The kesterite structure and more specifically the arrangement of its atoms generates very 

interesting and challenging phenomena. The most important and recognized one is the Cu/Zn 

disorder70,85. This Cu/Zn disorder is originated by the presence of mixed Cu-Zn planes in the 

kesterite structure, the similar ionic radii of Cu and Zn and the fact that both are isoelectronic 

makes them very likely to interchange positions. This Cu/Zn disorder promotes the formation of 

common CuZn and ZnCu antisites defects. Usually, those defects are tried to be compensated by 

applying Cu-poor Zn-rich composition as a target for high-efficiency devices86,87. However this 

synthesis conditions, not all the Cu/Zn disorder can be eliminated and it promotes an increase 

into the bad-tailing (formation of trap states that arise due to electrostatically potential 

fluctuations), which are detrimental for the open-circuit voltage (Voc) and the final efficiency of 

the solar cells88,89. 
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Figure 1.14 Ionization levels of intrinsic defects in the band-gap of CZTSe. Red bars contain 
acceptor levels, whereas blue bars contain donor levels, with initial and final charge states 

labelled in parenthesis. Reproduced from Chen et al90. 

In Figure 1.14 theoretically calculated ionization levels of different intrinsic defects can be 

observed, e.g. cation anti-sites and vacancy defects. The most common and shallow acceptor 

defects are the VCu and CuZn and they are expected to contribute to the p-type conductivity of 

the CZTSe. Deep defects are a striking issue into CZTSe solar cells as they act as recombination 

centres for hole-electron pairs, resulting detrimental for the solar cell final performance. Looking 

into detail in Figure 1.14, most of the Sn-related defects, (VSn and Sn-antisite defects) are located 

deep within the band-gap potentially detrimental for the device operation. Moreover, Sn atoms 

in the kesterite structure have been identified to adopt different oxidation states (+II or +IV) that 

may contribute to the formation of detrimental defects, in a more specific sight: SnZn has proven 

to be a deep recombination centre when Sn adopts state +II91.  

A very interesting and promising research strategy in the kesterite community is doping (or 

alloying). Doping as mixing with small amounts (<1at%.) is a very interesting path to modify 

electrical properties, transport charge properties, interfaces characteristics, morphology or 

elemental distributions. Yet doping will not or only slightly affect the optical band-gap or 

structural parameters. On the other hand, alloying (typically >1at%.) is the most interesting path 

to tune the band-gap and achieve fundamental properties changes. 
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1.5 Objectives of the present thesis 
 

The main objective of this thesis is to develop novel high efficiency thin film photovoltaic 

technologies based on sustainable kesterite (Cu2ZnSnSe4) absorbers. Taking as a basis IREC’s 

previously established baseline: a sequential process (sputtering of metallic precursors followed 

by reactive annealing), it has been implemented a Rapid Thermal Processing (RTP) annealing. In 

order to fulfil this general objective, several sub-objectives are proposed: 

 

1. Development, establishment and optimization of a sequential process for the synthesis 

of kesterite thin films, consisting on the sputtering deposition of Cu/Sn/Cu/Zn metallic 

stacks onto Mo-coated soda-lime glass substrates and its posterior annealing in a Se 

atmosphere via Rapid Thermal processing in a semi-closed system. 

2. Study and establishment of the fastest possible RTP annealing process that maximize its 

efficiency without compromising the solar cell qualities. 

3. Obtainment of a deep understanding on the formation pathways that run the kesterite 

synthesis through the annealing technologies present at IREC. 

4. Acknowledge the synthesis conditions to drive the kesterite through the different 

formation pathways, depicting its pros and contras. 

5. Study of the flexibility and reliability of the established Rapid Thermal Processing 

annealing baseline by extending it to other precursor synthesis techniques. 
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Methodology and Experimental 
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2 Methodology and Experimental 

 

Figure 2.1 Schematics of the typical fabrication and characterization process for CZTSe solar 
cells by Rapid Thermal Processing at IREC. 

In Figure 2.1 can be appreciated the sequential process developed at IREC for the synthesis of 

CZTSe absorber layers, as well as the fabrication and characterization of the corresponding solar 

cell devices. This include the following steps: metallic stack precursors deposition by DC-

magnetron sputtering, absorber synthesis via Rapid Thermal Processing or Conventional 

Thermal Processing, detrimental secondary phases removal via chemical etching and finally 

buffer layer and window layer deposition via chemical bath deposition and pulsed DC-

magnetron sputtering respectively. In more detail: 

1. Metallic precursor deposition. Cu/Sn/Cu/Zn metallic precursors were deposited by DC-

magnetron sputtering (Alliance Concept Ac-450) onto Mo coated soda lime glass (10 x 

10 cm2, 600-800 nm Mo + 3mm glass, R□ = 0.25-0.4 Ω/□). Precursors films were 

approximately 650 nm thick, with compositions range near of those reported as ideal 

for high-efficiency solar cell devices, namely, Cu-poor and Zn-rich conditions: Cu/(Zn+Sn) 

= 0.77, Zn/Sn = 1.21, Cu/Zn = 1.41 and Cu/Sn = 1.71. 

2. Absorber formation.  Precursors (2.5 x 2.5 cm2 in area) were then selenized by RTP using 

an AnnealSys AS-ONE-100 furnace in a semiclosed system made up by a graphite box 

with a reaction volume of 3.8 cm3. Approximately, 20 mg of elemental Se (Alfa Aesar, 

99.999% purity) are placed into the box next to the substrates and after two vacuum 

and purge cycles (base vacuum of 3x10-2 mbar), the Ar flow was increased until obtaining 

1 mbar total pressure inside the furnace. Then, the reactive annealing was conducted in 

a two-step process. (1) heating from room temperature up to 400 ⁰C (ramp, 180⁰C/min; 

dwell time, 3 min) and (2) heating to 500 ⁰C with an increasing in pressure up to 900 

mbar (ramp, 60 ⁰C/min; dwell time, 5 min). The temperatures during all the process are 

measured by a calibrated pyrometer located just below the sample holder, which 

consists of a specially designed graphite box. After the second step, the setup cools 

down naturally to below 80 ⁰C (also at 900 mbar). The whole annealing process lasts for 

12 min with additional 8 min for the cool down step. In RTP, the reaction process is so 

fast that no extra Sn in principle is required. 

3. Detrimental secondary phases removal. The CZTSe absorbers are submitted to two 

etchings in order to remove mainly ZnSe and SnSe secondary phases. (1) KMnSO4 

etching in H2SO4 acidic media in order to transform ZnSe92 into elemental Se and (2) 

(NH4)2S etching was also realized in order to remove the previously formed elemental 

Se and also possible Sn-Se secondary phases93. 

4. Buffer layer deposition. CdS is grown by chemical bath deposition (CBD) in a vertical 

configuration at 75 ⁰C for 40 min by a Cd(NO3)2 bath. The chemical bath is composed by 
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Cd(NO3)2, Na3C6H5O, CH4N2S and NH4OH with a pH = 9.5. The thickness of the CdS buffer 

layer is around 50 nm. 

5. Window layer deposition. First an i-ZnO layer around 50 nm is deposited and then a 200 

nm In2O3: SnO2 (ITO) layer were deposited via DC pulsed magnetron sputtering (CT100 

Alliance). The sheet resistance of the window layer is around 30-100 Ω/□. 

Once the solar cells were finished, 3 x 3 mm2 cells were mechanically scribed and indium was 

soldered onto Mo surface in order to complete device fabrication. 

 

2.1 Physical Vapour Deposition: Sputtering 
 

Sputtering deposition is englobed into the Physical Vapour Deposition (PVD) techniques. PVD 

are techniques that normally involve vaporized coating techniques, which rely on the material 

transfer up to atomic/molecular level. One of the main points for PVD is that in contrast to 

Chemical Vapour Deposition (CVD) techniques, the material that is going to be deposited starts 

initially already in solid state (gaseous for CVD). Sputtering deposition was originally thought to 

deposit refractory materials and has found a very interesting application in thin films depositions 

and most of the materials are able to be deposited by sputtering techniques94. 

The basic principle for sputtering deposition is:  

 “Bombardment and removal of the cathode material with positive ions from a rare gas 

discharge”95 

This principle can be depicted onto the basic schema for sputtering deposition, where it can be 

observed what is required for a sputtering deposition: a vacuum chamber, an external pumping 

system, sputter sources, vacuum gauges, a substrate holder and a gas flow supply. 

 

Figure 2.2 Sputtering schema95 
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In order to obtain the deposition of the sputtered element, the inert gas ions are accelerated 

onto the target and some of the surface atoms are sputtered off from the target, leading to the 

ejection of those atoms that can “flow” towards the substrate holder in order to finally obtain 

the grown thin film. Moreover, one of the most interesting points about sputtering deposition 

is that the deposited film will have the same stoichiometry as the target. 

 

Figure 2.3 Sputtering mechanism96 

The sputtering process is usually characterized by the sputtering yield S (see the definition of S 

in Seah et al97). S most typically ranges from 0.01 to 4. This sputtering yield depends on98: 

 The energy of the incident ions 

 The masses of the ions and target atoms 

 The binding energy of atoms in the solid 

 The incident angle of ions 

In summary the advantages of sputtering deposition can be summarized into: 

 Elements, alloys and compounds can be sputtered and deposited onto substrates 

 Employing sputtering targets provide a stable and a vaporization source with a long life. 

 Also, reactive depositions can be obtained by using reactive species activated by a 

plasma. 

 The source and substrates are spaced together in the same chamber 

 The volume of the sputtering chamber can be chosen. 
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2.1.1 Magnetron Sputtering 
 

There are several sputtering working conditions such as: DC (direct current) diode sputtering, RF 

(radiofrequency) sputtering, reactive sputtering and the one employed in this thesis: magnetron 

sputtering.  

 

Figure 2.4 Magnetron sputtering principle99 

The magnetron sputtering working mode is represented into Figure 2.4 which shows how this 

technology employs powerful magnets with the aim to confine the glow discharge plasma to the 

closest region towards the target. This configuration helps to hugely improve the deposition rate 

just by maintaining a high density of ions, ending onto an electron/gas molecule collision process 

way more efficient. Magnetron sputtering is able to employ either DC or RF sources100. 

In summary, magnetron sputtering ensures a high deposition rate, helps reducing electron 

bombardment over the substrate and allows to extend the operating vacuum range. All those 

conditions commented previously have situated Magnetron Sputtering as the most widely 

commercially practiced sputtering method. 

At IREC two main sputtering systems are fully operational into the kesterite solar cell processing 

baseline, being101: 

 Alliance Ac450 (Figure 2.5, left): This system is comprised by a load lock and a deposition 

chamber connected to a mechanical pump and a turbomolecular pump. Inside the 

deposition chamber there are three confocal cathodes located at the top where 101 mm 

diameter targets can be placed. The substrate is placed at the bottom. It is equipped 

with a DC generator (TRUMPF Truplasma DC 3002) for sputtering and a RF generator 

(TRUMPF PFG 300 RF) for plasma etching surface treatments. This system was used for 

the deposition of metallic layers (Cu, Zn and Sn). The depositions were performed using 

an Ar plasma. 

 Alliance CT100 (Figure 2.5, right): This system is comprised by a load lock and two 

deposition chambers each of them connected to independent mechanical and 
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turbomolecular pumps. There are two cathodes at the left chamber and three at the 

right chamber where 101 mm diameter targets can also be placed. It is equipped with a 

pulsed DC generator (Advanced Energy DC pinnacle plus). The left chamber was 

employed for Mo deposition and the right chamber for the deposition of oxides and 

TCOs (ZnO and In2O3 : SnO2).  

 

Figure 2.5 Magnetron sputterings present at IREC 
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2.2 Rapid Thermal Annealing 
 

This section is devoted to the description of the Rapid Thermal Annealing (RTP) equipment 

available at IREC, due to the key relevance of this technique in the present Thesis. 

 

2.2.1 The RTP set-up 
 

The RTP set-up available at IREC consists of an ANNEALSYS-AS-ONE 100 furnace which has been 

specially designed to be able to perform in a wide range of laboratories such as: universities, 

research laboratories or small-scale production lines. The equipment contains a process 

chamber made out of stainless steel cold wall technology designed at ANNEAL-SYS, optimal for 

a fast cooling102. The substrate size accepted is up to 100 mm in diameter and the temperature 

range works up to 1300 ⁰C, however the one present at IREC has only been calibrated for 

temperatures below 750 ⁰C due to the kesterite annealing conditions. The RTP employs 4 gas 

lines: compressed air, Argon (Ar), argon: hydrogen (Ar:H2) and Nitrogen (N2) and a dry pump to 

reach the desired vacuum for the process. Thanks to the special low-volume design for the 

process chamber, a fast pumping and a very low process gases consumption can be easily 

obtained.  The temperature is measured in three different points in the chamber by employing 

a pyrometer and two extra thermocouples being controlled by the fast PID for RTP employed in 

the present equipment, allowing a very accurate control of the process. Finally, this RTP process 

is directed by its own software that can include processes with up to 100 steps and a complete 

logging of the data processing and the historical process realized. 

 Physical specifications 

 Voltage: 3x400V+N+Gr 

 Power: 30 kW 

 Water: 2 to 4 bars, pressure drop 1 bar, 10 l/min 

 Compressed air: 6 bars (valve actuation) 

 Process gas fittings: double ferrule 1 4⁄  

 Width: 530 mm 

 Depth: 800 mm 

 Height: 1.425 mm 

 Mass: 194 kg 

 Temperature range up to 1300 ⁰C 

 Ramp up rate up to 200 ⁰C/s (depending upon version) 

 Cooling rate up to 100 ⁰C/s with special equipment 

 Gas mixing capability with mass flow controllers 

 Vacuum range: atmosphere to 10-6 Torr 

 Full PC control with Windows compatibility 
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Figure 2.6 ANNEALSYS-AS-ONE 100103 

 

2.2.2 RTP State of Art 
 

RTP processing has become one of the hottest topics amongst the kesterite community as it 

employment has kept increasing over the years. First works reported into the literature date 

from 2011 by Maeda et al.104 where the annealing temperature dependence for CZTS thin films 

was studied. On it, two-steps annealing procedures were also implemented with a first step at 

250 °C for 10 min and a second step that ranged from 350 up to 600 °C that also lasted for 10 

min, employing a ramp of 100 °C/min, double than the maximum possible ramp with CTP by 

IREC’s furnaces. Despite this, and although no working devices were already obtained, 

interesting properties that RTP processing generates for the absorbers have been reported such 

as: improvements into the gran size, reduction of S defects and increase in the crystalline quality 

of the films with short cycle times and low thermal budgets. More research groups started 

working with RTP through the next years105–108 and by the year 2013 CZTSSe devices with a 6.6% 

efficiency were already reported108. Unfortunately, only info about the processing temperature 

was reported (500 °C). An impressive 7.5% obtained by solution processes was also reported,  

yet once again very few details about the RTP processing were published.109 

By the year 2014, first approaches to employ RTP with precursors obtained via sputtering were 

performed for CZTS by Sousa et al.110 and for CZTSe by Fairbrother et al.111 reaching up to 3.1% 

and 4.3%, respectively. Deep studies on the annealing properties and the conditions were 

carried on by Sousa et al.110 studying: the heating rate, the maximum sulfurization temperature, 

the time at maximum temperature and the amount of evaporated sulphur. The amount of 
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evaporated sulphur proved that samples sulfurized at higher temperatures, shorter times and 

higher amount of it exhibited larger grain sizes. On the other hand, Fairbrother et al.111 focused 

his studies onto the precursor stack order, which is of key importance for the films properties 

including alloys formation, composition and/or elemental losses, morphology and its secondary 

phases appearance and distribution. The most beneficial precursor ordering obtained was 

Sn/Zn/Cu thanks to its reduction into elemental losses. Furthermore, it must be pointed out that 

those were the first studies about RTP processing carried on at the Solar Energy Materials and 

Systems group (SEMS) at IREC. 

The year 2015 came as a breakthrough for RTP processing as the number of publications related 

to it, widely increased. New techniques such as cathodoluminiscence (CL) started to be 

employed to characterize RTP annealed samples, focusing into the phases presented and the 

crystalline quality112, yet it was proven that there was not enough database to report an 

exhaustive and detailed study. For the first time, spin-coated CZTS thin films were started to be 

annealed by RTP113 but due to a low crystallinity it was not possible to obtain working devices. 

Also, Pre-annealing treatments (PAT) appeared and were included into processing baselines114. 

PAT helped to enhance CZTSSe overall parameters thanks to its fully developed micron-sized 

grains, without interfacial voids, in contrast to the cases where PAT was not applied. PAT also 

affected the elemental concentrations through the whole sample. The upper parts showed well-

crystallized kesterite phases, whereas in films without PAT voids and zinc-segregations were also 

found. Thanks to this PAT, the CZTSSe efficiency was able to reach up to 6.77%. The major 

progress obtained in RTP processing came from the solution processed kesterite by Haass et 

al.115 where an impressive 11.2% device was obtained. This device was synthesized via 

hydrazine-free DMSO approach, reporting a Voc deficit of only 0.57 V. This Voc improvement is 

attributed to the three-stage RTP annealing process, which allowed to obtain an increase into 

the incorporation of selenium and large-grained microstructure, generating a higher minority 

carrier lifetime, lower diode current saturation that are related to dispositive with a low 

concentration of recombination centres. 
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Figure 2.7 Evolution of the citations about Kesterite and RTP processing through the last years. 
Values obtained from Scopus by searching “Kesterite or CZTS or CZTSe or Cu2ZnSnSe4 or 

Cu2ZnSnS4” and “RTP or RTA or Rapid Thermal Annealing or Rapid Thermal Processing” 116. 

In the year 2016, the scope moved even more towards obtaining highly efficient kesterite. In 

order to do so, several studies about the effects on the process to synthesize the kesterite were 

performed. One of the most remarkable and interesting was conducted by Hages et al.117. On it, 

it is studied how to tune and how critical are large grains for highly efficient devices. The role of 

liquid Selenium through the synthesis process at the RTP annealing was studied and a 

mechanism was proposed for a liquid assisted grain growth. Furthermore, a nanoparticle based 

dispositive of 9.3% was reported. Another pathway studied by the kesterite community in order 

to overcome the large Voc deficit was the doping with other elements. In this research line, one 

of the most interesting was the one were Ag was introduced into the CZTSe structure118. By 

alloying Cu with Ag it was possible to address the absorber band tailoring, reducing the Voc deficit 

up to 110 meV, reaching an efficiency of 10.2% for a CZTSe device, and also 9.4%62 for co-

sputtering plus RTP processing were obtained. 

Other techniques introducing cost-efficient production methods with a high throughput started 

to be studied. Between them, one of the most promising was to obtain precursors by doctor 

blade methods and later submit them to RTP annealing processes, though non-working devices 

were obtained in 2016119. Finally, the highest record obtained for a CZTSSe solar cell by RTP was 

also obtained at 2016, by Yang et al. 120 who were able to obtain an impressive record-efficiency 

of 12.3% for a CZTSSe device, very close to the world record in Kesterite (12.6%). In their work, 

their scope was set into obtaining a band-gap grading and in order to so SeS2 was employed. By 

using a SeS2/Se ratio, they were able to obtain a graded band gap into the depletion region. 

Thanks to this band-gap grading a record Voc deficit of 0.576 V was achieved. 
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By the year 2017, studies on Ag-alloying kept going on and the record efficiency for 

(Cu,Ag)2ZnSn(S,Se)4  (CAZTSSe) was increased up to 10.36%121. Doping/alloying with Ag allowed 

to impact on the reduction of the Cu-Zn disorder defects which helps to improve the quality of 

the thin film.  

Further strategies to tackle the Voc deficit problem, were investigated by stacking two CZTS 

layers with different doping level122. Thanks to this double stacking structure, it was possible to 

increase the Voc around 70-80 mV, yet the Jsc decreased because of voids between layers and 

several tailoring problems. With this procedure efficiency up to 7.5% were able to be obtained. 

Also, in 2017, as in CIGS, alkali doping was turning a hot topic for solar cells and very interesting 

reports about it started to appear in the literature123. It must be commented the one realized by 

Haass et al.124 where by employing a potassium post deposition treatment, they were able to 

reduce the Voc deficit, implying a decrease of interface recombination. On the other hand, this 

post deposition treatment implied also a decrease into the Jsc, the fill factor and the efficiency 

of the devices. However, it opened a very interesting path to help reducing one of the main 

drawbacks of the kesterite technology, the Voc deficit. 

In the year 2018, the quest for highly efficient kesterite devices remained open and alkali doping 

was increasing its presence more and more. Several elements were studied such as Na or Li. 

About Na doping it was studied via applying a NaF layer either before the RTP annealing or after 

it as a post-deposition treatment125. This Na doping helped to once again increase the acceptor 

concentration, which ended up into an improvement for the Voc and the FF. Li doping also proved 

to be a booster for kesterite efficiency and helps to improve the overall electronic parameters. 

Furthermore, by tuning the ratio Li/(Li+Cu) it is possible to tune the band gap of the solar cell126. 

Also, studies on the Zn/Sn ratio were conducted by Min et al.127 depicting once again, as through 

the last years, the importance and how challenging is to study the precursor composition for a 

highly efficient device. On their study, it was demonstrated that by increasing the Zn/Sn ratio it 

was possible to slightly narrow the energy band gap to extend the light absorption range and 

improving the photocurrent. Devices with efficiencies up to 10.1% were reported. All those 

works of course were performed using RTP annealing. 

Table 2 Evolution of the RTP state of the art through the last years (2011-2018) 

Ref Year Material Annealing Process Efficiency(%) Remarkable info 

a 2011 CZTS 

(1)250 °C-10min-
100°C/min (2) 300-

600°C-10min-
100°C/min - First processes applied 

b 2013 CZTSSe 
Sulfur containing 

atmosphere 6.6 First efficiencies reported 

c 2013 CZTSSe 540°C for 6 minutes 7.5 
Tri-layer structure with 

homogeneous structure 
d 2014 CZTS 0.2 °C/s rate 3.1 Large gran sizes 

e 2014 CZTSe 500 °C-180°C/min-3min 4.3 
Sn/Zn/Cu Precursor Stack 

Order 
f 2015 CZTSe 550 °C-5min - CL Characterization 
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g 2015 CZTS 
500 °C-120 °C/min-10 

min - Spin-coated films 
h 2015 CZTSSe 600 °C-25°C/s-20 min 6.77 PAT study 
i 2015 CZTSSe 300,500,550°C-100 min 11.2 Three stage process 
j 2016 CZTSe 500°C-5°C/s 9.3 Nanoparticles 
k 2016 CZTSe 450-600°C 10.2 ACZTSe 
l 2016 CZTSe 550 °C-4°C/s- 5 min 9.4 Co-sputtering process 

m 2016 CZTS 500°C -30 min - Ball-Milled precursors 

n 2016 CZTSSe 
300°C-25 min-510°C-

18min 12.3 Bandgap grading 
o 2017 CZTSe 480°C-9°C/s-20min 11.2 ACZTSe 
p 2017 CZTS 9°C/min and 30°C/min 7.5 Double Stack Layer 
q 2017 CZTSSe 300,500,550°C-100 min 9.7 KF PDT 
r 2018 CZTSe 550°C-4°C/s-5min 7 NaF Pre orPDT 
s 2018 CZTSSe 300,500,550°C-100 min 11.6 Li doping 

References: a104, b108, c109, d110, e111, f112, g113, h114, i115, j117, k118, l128, n120, o129, p122, q124, r125, s126. 

 

2.3 Characterizations 
 

In this section, a very brief description of the main characterization techniques is presented, 

together with the typical parameters employed during this Thesis. 

 Scanning electron microscopy (SEM). The SEM images were obtained through a ZEISS 

Series Auriga microscope using accelerating voltage (5-10 kV), with a working distance 

of 5-8 mm and a magnification ranges from 10000 x to 50000.  
 X-ray diffraction (XRD). XRD measurements were performed using a PANalyticial X’Pert 

ProMPD diffractometer with Cu Kα radiation (λ = 1.54056 Å) monochromated and a 

secondary graphite monochromator. 

 Raman spectroscopy (RS). Raman scattering measurements were performed in back 

scattering configuration using a Horiba Jobin Yvon fHR-640 spectrometer for the 

wavelengths 325nm, 442nm and 532nm and an iHR-320 spectrometer for the 785nm 

wavelength. Spectrometers are coupled with Raman probes developed at IREC and a 

low noise CCD detector cooled to -70°C. Excitation and light collection were made using 

a macro optic system with a laser spot diameter of the order of 50 µm. In order to avoid 

thermal effects in the spectra, the power density on the surface of samples was kept 

below 150 W/cm2. The position of all spectra has been corrected taking into account the 

first order Raman spectrum of monocrystalline silicon as a reference measured before 

each acquisition and imposing its position at 520 cm-1.  

 X-ray fluorescence spectroscopy (XRF). A Fischerscope XVD system has been used for 
the measurement of the composition and the thickness of metallic precursors and 
kesterite absorbers. The system is calibrated with a set of standards whose composition 
was determined via inductively coupled plasma optical-emission spectroscopy (ICP-OES, 
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Perkin-Elmer Optima 3200 RL). Usually average values were obtained by measuring 9 or 
16 points for each sample. 

 Glow discharge optical emission spectrometer (GDOES). Depth profiling analysis were 
performed by GDOES using a Horiba Jobin Yvon GD Profiler 2 Spectrometer, equipped 
with an anode diameter of 4 mm and 19 element channels. 

 Current Density-Voltage measurements (J-V). Dark and illuminated J-V curves have 

been obtained using an ABET Technologies Sun 3000 Class AAA solar simulator 

calibrated by a reference silicon solar cells at 1 sun, AM 1.5G and 25 ⁰C. 

 External Quantum Efficiency (EQE). The external quantum efficiency of the devices has 

been obtained on a Bentham PVE300 system, calibrated by Si and Ge photodetectors. 

The maximum measurement range is 300-1600 mm. 
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3 Transferring and understanding the kesterite’s annealing 

baseline towards RTP 
 

3.1 Comparison of the optimized CTP and RTP process protocol and best device 

efficiencies 
 

Obtaining a good quality kesterite absorbers remains still as one of the main challenges for 

kesterite technology. In order to do so at IREC, the baseline developed has been based on  the 

so-called sequential process where the precursor and the absorber are synthesized in separated 

steps130,131. Sequential processes show a high number of advantages and are in possession of 

several of the highest efficiencies amongst the kesterite technology. They consist of the separate 

synthesis of the precursors (Cu, Zn, Sn) (CZT) and their reactive annealing in furnaces. Thanks to 

this separate synthesis process, it is possible to achieve a high accuracy of the thickness of the 

different layers allowing a precise control of the precursor’s ratio obtained in order for them to 

be Cu-poor and Zn-rich. This region has been proven to be the one with the highest efficiency 

for kesterite compounds132. 

Employing sequential processes might seem more time consuming because of each layer for the 

precursor must be deposited successively. However, it allows a higher deposition rate than for 

co-evaporated processing as it is not necessary to balance all the deposition metals at once. 

Once the precursor is deposited, then it is submitted to the annealing step in order to synthesize 

the kesterite. This annealing step is commonly realized within CTP and this technology has 

shown the highest efficiencies amongst the kesterite technologies. CTP furnaces have been 

extensively employed into laboratory research and provide annealing routes with radiative 

heating generated from electrical resistances that last for several hours. 

IREC’s kesterite baseline production has not been an exception and an extensive research over 

CTP annealing routes has been carried out over the last years64,130,133. Usually, the absorber 

synthesis process consists of two steps: a first one about the synthesis of the kesterite at low 

temperature and a second one that consists on the crystallization of the kesterite grains in order 

to obtain a better absorber at a higher temperature. For the CTP annealing process it is 

necessary to include extra Sn, in powder form at IREC’s baseline, in order to compensate the 

loss of highly volatile species through the process that would affect the final performance of the 

device134. The annealing process is driven by thermodynamic (temperature, total pressure and 

the chalcogen partial pressure) and kinetic parameters (ramp rate and dwelling time) that must 

be controlled and optimized in order to obtain highly efficient kesterite devices. At IREC’s 

baseline a particular system that is composed of a semi closed graphite box has been specially 

designed which has allowed to improve the kesterite performance through the years until 

reaching 11.8% (Illuminated Area) for CZTSe as published in Giraldo et al.66.  

Previous studies over the CTP annealing have been conducted through the years at IREC until 

establishing a current annealing baseline process that consists of: 
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Table 3 Summary of the most relevant annealing parameters for the conventional, slow CTP 
annealing process at IREC’s baseline 

 

 

Figure 3.1 a) Temperature profile of the two-step CTP annealing process from IREC’s baseline. 
b) Record efficiency CZTSe solar cell obtained at IREC and presented into Giraldo et al.66 

Major progresses and advances, either at IREC or worldwide, have been carried out into CTP. If 

discussing about a possible posterior industrial application, CTP annealing it is not a very suitable 

candidate as the annealing routes usually take around 2-3h for each annealing, compromising 

its possible adaptation. Whereas, RTP appears as a very promising way to foresee a future 

industrial application for kesterite thanks to its many advantages: 

 The use of fast heating through the halogen lamps is extensively employed into the 

conventional PV industry, helping for a future easier adaptation. 

 RTP offers a substantial reduction of the time required for the synthesis and 

crystallization process, minimizing the processing time and energy consumption. 

 The RTP setup allows obtaining a more precise control of thermal treatment 

parameters.  

 In contrast to CTP that is governed by a thermodynamically control, RTP allows a kinetic 

control. 

 RTP processing is better suited for the development of complex recrystallization 

processes involving several steps. 

 RTP processing allows achieving higher chalcogen vapour pressures from its very 

beginning producing several changes that have been proven to be beneficial for the 

kesterite, which will be further presented and explained through this present chapter. 

In order to establish a new baseline for kesterite annealing via RTP at IREC’s sequential process, 

all the knowledge obtained at IREC in the CTP has been taken as a basis for the RTP baseline. A 
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new set up has been designed for the RTP annealing consisting of a specially designed semi-

closed system of a graphite box with a volume of 3.8 cm3, located at the centre of the chamber 

as can be observed in Figure 3.1 using an AS-ONE-100 furnace. Approximately, 20 mg of 

elemental Se are placed into the graph box next to the substrates and submitted to the 

annealing process. 

 

Figure 3.2 AS-ONE-100 RTP furnace showing the special set up designed at IREC. 

The aim for the RTP process optimization has been set to obtaining the highest efficiency 

achievable for CZTSe employing the fastest possible process, as it would be most interesting for 

the industry.  

 

3.1.1 First attempts: Single-step processing 
 

Working with standard CZT precursors obtained at IREC, the first attempts were conducted with 

a single step process: 
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Figure 3.3 a) Single-step RTP annealing processing schema detailing the processing conditions. 
b) Example of a non-homogeneous sample obtained by single-step RTP annealing. 

Table 4. Summary of the most relevant annealing parameters for the RTP single step annealing 
process at IREC’s baseline 

 

Single-step RTP processes were able to provide already functionalizing devices reaching 

efficiencies up to 6.4%. Although, this was an acceptable starting point, single-step devices 

showed a very low homogeneity and uniformity. This shows the difficulty to properly control the 

selenization of the absorber with this approach. It became clear that although this was a very 

fast processing way, single-step RTP processing compromised the efficiency of the final device. 

So, two-step processes were started to be studied based on the previous knowledge obtained 

in the group for CTP. From the start of the two-stages RTP implementation, improvements in 

homogeneity and uniformity came clear even by bare eye.  
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Figure 3.4 a) Two-step RTP annealing processing scheme detailing the processing conditions. 
b) Example of a homogeneous sample obtained by two-step RTP annealing. 

 

3.1.2 Improvement: Two-step temperature profiling 
 

For the two-step RTP annealing procedure two evacuation and purge cycles (base vacuum of 

3x10-2 mbar) are realized, before the Ar flow is increased until obtaining 1 mbar total pressure 

inside the annealing chamber. Then, the reactive annealing is conducted in a two-step 

temperature profile: (1) heating from room temperature to 400 ⁰C (ramp, 180 ⁰C/min; dwell 

time, 3 min) and (2) heating to 500 ⁰C (ramp, 60 ⁰C/min; dwell time, 5 min). The temperatures 

through the whole process were measured by a calibrated pyrometer located just below the 

sample holder. During the second step the pressure is raised up to 900 mbar, once the second 

dwelling time finishes the process cools down naturally (also at 900 mbar) to below 80 ⁰C. The 

whole annealing process takes only 12 min, with an additional 8 min approximately for the cool 

down. This process is summarized into Table 5: 

Table 5 Summary of the most relevant annealing parameters for the RTP annealing process at 
IREC’s baseline 

 

As it can be observed in Table 5, for the RTP annealing process those no extra Sn in form of 

powder is added to the graphite box. This is thanks to RTP’s so fast annealing processing that 

not even the volatile species are able to evaporate towards the atmosphere, as will be discussed 

in more detail throughout the chapter. 

The champion cell obtained with this only 12 min (20 min including the cooling process) 

annealing has achieved an 8.3% efficiency, without Anti-reflective coating (ARC) nor metallic 

grid, comparable with the results obtained for the CTP and proving how promising RTP annealing 
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processing is. If we compare this device with others previously reported at our group using the 

CTP annealing (10.1%, 10.6%, 8.2% and 11.8%)64–66,135 it can be concluded that the Voc is at the 

same level, only Jsc and FF are slightly lower. Though, it should be noted that the RTP annealing 

devices have been prepared without any additional Ge doping layer. The Jsc is somehow lower 

than expected, a plausible cause is the rather small absorber thickness (1.2 μm) for these 

absorbers; also, no ARC has been applied. The lower FF can be related to the necessity to adapt 

and optimize the back and front contacts for the RTP absorbers and the fact that no metallic 

grids were applied. 

 

Figure 3.5 j-V illuminated curve (under AM1.5G conditions, no ARC nor metallic grid), and 
external quantum efficiency of the champion cell obtained by RTP. 

 

3.2 Insights into the Formation Pathways of Cu2ZnSnSe4 Using Rapid Thermal 

Processes 
 

In order to comprehend the mechanism that drives the kesterite formation in the RTP process 

at IREC, a break-off experiment was implemented. The results obtained will be subsequently 

discussed in this chapter and have been published in Hernández-Martínez, et al. 136 

(DOI: 10.1021/acsaem.8b00089), also included into the Appendix of this thesis. 

 

3.2.1 Design of the break-off experiment 
 

Figure 3.6 summarizes the break-off experiment, where the process was interrupted at different 

times of the annealing protocol. The first five points (A-E) cover different temperatures during 

the first temperature ramp in stage one. Point F is after finishing the dwell time of the first stage. 

Points G-H-I finally cover different annealing times during the second dwell time at 500 °C 

(beginning, middle and end of the second stage).  The resulting samples after interrupting the 

https://dx.doi.org/10.1021/acsaem.8b00089
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process at times A-I were then thoroughly characterized in a comprehensive manner for their 

compositional, structural and morphological properties by SEM, XRF, XRD, Raman and GDOES. 

 

Figure 3.6 Temperature profile with the different stages where the annealing process was 
stopped. Points A-E are covering temperatures during the first temperature ramping, being 

200, 250, 300, 350, and 400 ⁰C, respectively. Points E-I are the different key points in the 
annealing process. 

 

3.2.2 Selenium incorporation and morphology evolution 
 

The selenium incorporation was studied via XRF analysis (Figure 3.7) which shows that the 
selenization of the metallic precursors is almost completed at point E (Se content approximately 
50%). Before E, the selenization is uncompleted (Se content < 15%) and only rather small 
quantities of Se are further incorporated times later than E. It should also be noted that the 
Zn/Sn ratio is not severely increased during processing, indicating the mitigation of Sn loss for 
the fast RTP processes carried out at IREC.  

Focusing on the morphology evolution of the samples during the annealing, it was analysed by 
comparing cross-sectional SEM images. The most relevant samples can be observed in Figure 
3.8. At point E, the thickness of the precursor has already increased almost as twice with respect 
to the typical metallic stack obtained with IREC’s baseline (Figure A1 in Appendix). This huge 
increasing into the thickness, in line with the previously observed via XRF, confirms that most of 
the selenization has already taken place. The first step synthesizes the kesterite and the second 
one (steps F-I) helps to improve the crystallinity of the absorber. The grain size is clearly 
increased throughout E-H (first in the surface near region, afterward these grains grow towards 
the back interface) and rough superficial structures are reduced. Through this morphological 
analysis conducted the importance of applying a double-step annealing process became clear. 
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Figure 3.7 Evolution of the concentration of the different elements determined by XRF for the 
several stages at this experiment. 

 

 

Figure 3.8 Cross-section SEM images of devices from the most relevant samples for the 
analysis (E-H). 

 

3.2.3 Depth profiling 
 

In order to illuminate the elemental distribution of the layered structures observed in the SEM 

cross sections and to support the previous statements by XRF, a GDOES depth profiling of the 

samples has been carried out. Characterization of the samples F-I can be observed in Figure 3.9, 

the depth profiles show a homogeneous elemental distribution already for the sample F, after 

the end of the first stage. This implies that despite starting with stacked metallic precursors, at 

the end of the first stage, all elements have intermixed and form a homogeneously mixed 

material. GDOES measurements with respect to the Na evolution through the process can be 

observed in Figure A4 from the Appendix. 

Other significant effects are the widening of the selenium depth profile, probably due to the 

molybdenum selenization, and the increasing of a shoulder in the Cu profile that should arise 



 
 

45 
 

from a copper diffusion inside the molybdenum. It is also visible a change in the surface element 

distribution: while the Se content at the surface seems almost constant during the process (after 

the step 2), Cu and Zn concentration seem to increase whereas an opposite trend is found for 

Sn.  

 

 

Figure 3.9 Comparison of Cu, Zn, Sn and Se depth profiles in different samples, measured after 
different RTP step processes 

 

3.2.4 Phase analysis 
 

RTP annealing clearly accelerates the Se incorporation thanks to the high Se vapour pressures 

present. As previously shown in Figure 3.8, this has a visible impact on the crystallization (large 

crystals are formed in very short times), but most likely this feature also has an impact on the 

phase evolution during the kesterite formation too. 

In order to investigate this last assumption, a detailed phase analysis by XRD and Raman was 

performed of the complete set of samples.  Figure 3.10 a) shows the series of diffractograms 

corresponding to all samples, while Figure 3.11b) shows the evolution of the relative XRD 

intensity for the different detected phases. This relative XRD intensity has been normalized with 

respect to the (110) reflection of Mo, which is supposed to be constant for all the samples. It is 

important to remark that the main XRD peaks of the ZnSe, Cu2SnSe3 (CTSe), and CZTSe phase 

almost coincide at room temperature, making the distinction extremely complicated.137 While 

this  impedes the detection of ZnS/CTSe secondary phases in a kesterite matrix, there are several 
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additional characteristics peaks with low intensity for the tetragonal kesterite phase, which 

allows to clearly identifying the latter. There are for example the peaks at 22.1⁰, 28.3⁰, 35.2⁰ and 

36.1⁰ corresponding to diffraction planes (110), (103), (202) and (121), respectively. The first 

and major consequence came as already in point E, i.e., at the very beginning of the first dwell 

time at 400 ⁰C, it was already possible to detect peaks corresponding to the CZTSe tetragonal 

kesterites phase, all along with SnSe. There was no evidence of another phases. 

 

 

 

Figure 3.10 a) XRD diffractogram and (b-e) Raman spectra using four different excitation 
wavelengths (325, 442, 532, and 785 nm) of the different samples produced at the different 
stop points (A-I) (detailed diffractograms and Raman spectra are reported in Figure A2 and 
Figure A3 in the Appendix). Here and in the following, CTSe stands for the ternary Cu2SnS3 

compound. 
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The early appearance of the CTZSe kesterite phase already at the point E turned out as a huge 

surprise as it contrasts with the samples prepared by the standard conventional thermal 

processing at IREC with very similar conditions (see Figure A2 at the Appendix, point E), where 

no evidence of kesterite formation is found, although other groups have reported the possibility 

of also forming the kesterite at such low temperatures with standard annealing138. Whereas in 

the RTP annealing case, for the kesterite phase synthesis, i.e. point E, several secondary phases 

are observed, even including metallic ones. Once again, the appearance of those phases implies 

that in the RTP processing the formation of kesterite phases can occur faster at lower 

temperatures and/or lower times. This fast appearance of the kesterite phase is thought to be 

related to this high Se vapour pressure already achieved since the first’s steps of the process. 

Although the RTP process seems to produce kesterite with acceptable crystalline quality even at 

400 ⁰C it is necessary a second step at higher temperature to enlarge grains in order to obtain 

working devices. 

 

Figure 3.11 a) Evolution of the absolute area of most relevant peaks detected by Raman 
spectroscopy (surface analysis < 300 nm), corresponding to the different binary, ternary, and 

quaternary phases present in the system. b) Evolution of the XRD diffraction peaks area 
corresponding to the different binary, ternary and quaternary phases that have been 

normalized with respect to the total area of the 110 reflection of the Mo layer at 40.5⁰, 
extracted from Figure A2. 

The evolution of the diffractograms of the different samples describes the phase formation in 

the bulk during the annealing process. From room temperature (RT) to point D, it can be 

observed the transformation of the metallic phases from a highly textured Sn phase and Cu-Sn, 
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Cu-Zn alloys toward a Cu-Sn alloy, accompanied by a reduction on the peaks of the Sn and Cu-

Zn phases. The reduced intensities of the Zn related phase are attributed to the formation of 

ZnSe with low crystallinity. At point E and beyond (end of the first temperature ramp), no 

metallic phases are observed anymore. There are only slight differences between the 

diffractogram of point F to the one of point E, with a slight increase in the intensity of the CZTSe 

peaks, while the peaks corresponding to SnSe are decreased in favour of increasing SnSe2 peaks. 

In this work, is postulated that the SnSe formed during the first dwell time gets further selenized 

to SnSe2. Finally, for points G, H, and I (the last stages which correspond to the crystallization 

step at 500 ⁰C), the intensity and the full width at half-maximum (FWHM) of the characteristic 

CZTSe peaks remain practically constant. Additionally, a thin MoSe2 layer is formed, as expected 

in kesterite annealing. Highly [400] textured and nontextured SnSe is also detected, but its origin 

is most probably from the condensation of remaining gaseous Sn-Se during the user-forced 

cooling process.139In concordance with the previously stated arguments, the actual quaternary 

kesterite phase is already completely formed during the first dwell time at 400 ⁰C (point E) and 

the second dwell time at 500 ⁰C is predominantly necessary for an improved crystallization of 

the absorber. 

In order to extend and complement the previous XRD analysis, Raman spectroscopy with four 

different excitation wavelengths (325, 442, 532, and 785 nm) was performed. The use of various 

excitation wavelengths leads to pre-resonant conditions for different compounds and enhances 

the ability to detect several secondary phases140. This helps to overcome the XRD limitations in 

forms of impossibilities to differentiate between several secondary phases. Panels b-e from 

Figure 3.10 show the Raman spectra obtained in the different samples for the four excitation 

wavelengths. In particular, under UV excitation (325 nm) the ZnO phase is strongly enhanced141, 

together with a non-bandgap resonant enhancement of the CZTSe.142 Under blue excitation (442 

nm) the detection of ZnSe is enhanced, 130,143  and with red excitation (785 nm) the detection of 

Sn-Se53 and ternary Cu-Sn-Se phases130(CTSe). Figure 3.11a) depicts the evolution of the 

absolute intensity for the Raman peaks evolution of the absolute intensity for the Raman 

recorded at the absorber surface (<300 nm) using the signal acquired with the most favourable 

excitation wavelength for each phase. During the first ramp (from point A up to point E) ZnO 

(appearing from the oxidation of the precursor), ZnSe, SnSe and Cu2SnSe3, are clearly detected. 

We find only traces of CuSe at point E. These results appeared as a surprise, as in literature the 

formation reaction is commonly reported to proceed via the reaction of binary compounds, and 

CuSe (S) is most frequently found along with SnSe (S) or SnSe (S) compounds133. Alternatively, 

Cu2SnSe(S)3 is found when the formation of kesterites proceeds via the reaction of this ternary 

phase with ZnSe144. The intimate mixing of all these phases and the presence of both Sn-Se and 

Cu-Sn-Se coexisting in the bulk of the same absorber suggest that most probably these two 

reactions pathways are competing and contributing both to the formation of kesterites under 

the studied conditions. We find that between point D (350 ⁰C) and point E (400 ⁰C) the kesterite 

formation starts, which is in agreement with the literature data144,145. However, when RTP is 

applied in our case the heating ramp is of 180 ⁰C/min, i.e., to move from point D to point E only 

takes the very short time of 17 s. This fast ramp implies that once the minimum formation 

temperature is reached, the precursor phases react very quickly with selenium in the RTP and 

form the kesterite almost immediately. 

At point E, even though the kesterite phase is already detected the kesterite synthesis has not 

been completed yet, as strong contributions from the ternary Cu-Sn-Se compounds and ZnSe 

are found altogether with few quantities of Cu-Se and Sn-Se. At point F, the reaction can be 

considered almost finished, the kesterites are completely formed, and only some small residues 



 
 

49 
 

of secondary phases still remain: ZnSe due to the Zn-rich composition and SnSe most probably 

into the MoSe2/CZTSe interface130 and the surface due to condensation during the cooling 

process from pre-evaporated material.139 Also, a clear contribution from the SnSe2  (under 

resonant conditions with 785 nm excitation) is observed and can be arguably correlated with 

the superficial structures observed in the corresponding SEM images (Figure 3.8). Interestingly, 

after point F, i.e., once the temperature is increased to 500 ⁰C, no reduction of the Raman FWHM 

is observed for the CZTSe phase. This contrasts with CTP processes where in the last step a clear 

improvement of the crystal quality with the annealing time has been reported66. On the other 

hand, if compared with an accurate analysis (using the Raman nonbandgap resonant conditions 

with 325 nm excitation) a clear modification of the bands at 175, 233, and 250 cm-1  can be 

observed (Figure 3.12). Modifications of these peak intensities have been attributed to changes 

in the VCu and ZnSn point defect concentrations which have shown a strong impact in the final 

optoelectronic properties.142 
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Figure 3.12 Raman spectra under UV non-bandgap resonant conditions (325nm) for samples E 
to I together with a reference sample annealed using an optimized conventional thermal 

process. 

These first results raised the question about the possible kesterite formation mechanisms for 

our RTP annealing process and how it may be altered. With start our considerations, with an 

extensive analysis of the formation mechanisms reported in the literature summarized in Table 

6: 
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Table 6 Summary of some of the most relevant papers published in the literature analyzing the formation mechanisms of kesterites. 

Ref: a146, b147, c144, d148, e149, f145 

Ref. Material Process Precursor Annealing process Reaction pathway TF 
(⁰C)* 

a CZTSSe Chemical: 
Hydrazine based 

slurries 

Cu2S-S/SnSe2-Se/Zn slurries 
Spin coating 

Hot Plate at 540 ⁰C 𝐶𝑢 + 𝑆𝑛 + 𝑍𝑛 + 𝑋 𝑜𝑟 𝑎𝑙𝑙𝑜𝑦𝑠

→  𝐵𝑖𝑛𝑎𝑟𝑦 𝑐ℎ𝑎𝑙𝑐𝑜𝑔𝑒𝑛𝑖𝑑𝑒𝑠

→ 𝐶𝑢2𝑍𝑛𝑋3 + 𝑍𝑛𝑋

→ 𝐶𝑢2𝑍𝑛𝑆𝑛𝑆4, 𝑋 = 𝑆, 𝑆𝑒 

350 

b CZTS Physical: 
Sputtering 

(metallic stacks) 

Sn/Cu/Zn metallic stacks Graphite box (S+Sn) at 550 
⁰C 

[𝐶𝑢2𝑆 + 𝑆𝑛𝑆](𝑙𝑖𝑞) + 𝑍𝑛𝑆 + 𝑆2(𝑔𝑎𝑠)

→ 𝐶𝑢2𝑍𝑛𝑆𝑛𝑆4 

480 

c CZTSe Chemical: 
Ethanol based 

inks 

Cu (II) and Zn nitrates, Sn (IV) 
chloride. Knife coating. Se top 

capping layer. 

Graphite dome with enough 
Se at 550 ⁰C 

(𝐶𝑢, 𝑍𝑛, 𝑆𝑛)
~190º𝐶
→    𝐶𝑢𝑆𝑒𝑥

~340º𝐶
→     𝐶𝑢2𝑆𝑛𝑆𝑒3

+ 𝐶𝑢2𝑍𝑛𝑆𝑛𝑆𝑒4
~420º𝐶
→     𝐶𝑢2𝑍𝑛𝑆𝑛𝑆𝑒4 

340 

d CZTS Chemical: 
electro- 

deposition of 
metals 

Cu and Zn metallic 
electrodeposited. 

Graphite box with S and Sn 
at 550 ⁰C as maximum T 

2𝑍𝑛𝑆(𝑠) + 𝐶𝑢2−𝑥𝑆(𝑠) + 𝑆𝑛𝑆(𝑔) + 1/2𝑆2(𝑔)

→ 𝐶𝑢2𝑍𝑛𝑆𝑛𝑆4(𝑠) + 𝑍𝑛𝑆(𝑠) 

>500 

e CZTS Physical: 
sputtering 
(sulphides) 

ZnS, SnS2 and Cu by sputtering Tubular furnace (N2/H2S 
95%/5%) at 550⁰C as 

maximum T 

𝐶𝑢2𝑆 + 𝑆𝑛𝑆2
350º𝐶
→   𝐶𝑢2𝑆𝑛𝑆3 

𝐶𝑢2𝑆𝑛𝑆3 + 𝑍𝑛𝑆
500º𝐶
→   𝐶𝑢2𝑍𝑛𝑆𝑛𝑆4 

500 

f CZTSe Physical: 
sputtering 
(metals) 

Cu, Zn and Sn metals by co-
sputtering 

Graphite box with 
elemental Se at a maximum 

T of 600 ⁰C 

𝛼𝐶𝑢 + 𝛽𝐶𝑢𝑥𝑆𝑛𝑦 + 𝑍𝑛 + 2𝑆𝑒2

→ 𝐶𝑢2𝑍𝑛𝑆𝑛𝑆𝑒4 

>350 

f CZTSe Physical: 
sputtering 
(metals) 

Cu, Zn and Sn metals by co-
sputtering 

Three zones furnace using 
elemental Se with a 
cracking zone at a 

maximum T of 600 ⁰C 

𝛼′𝐶𝑢2−𝑧𝑆𝑒 + 𝑍𝑛𝑆𝑒 + 𝑆𝑛𝑆𝑒 + 𝛾′𝑆𝑒2
→ 𝐶𝑢2𝑍𝑛𝑆𝑛𝑆𝑒4 

300 
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Amongst the kesterite research community there is a general agreement that the synthesis 

route of kesterites proceeds either via the formation of binary metal selenides such as: Cu-X, Zn-

X, and Sn-X, X = S and/or Se) or ternary (mainly Cu-Sn-X phase, X = S and/or Se) compounds, 

which react at a given temperature to form the corresponding kesterite quaternary phase with 

Zn-X. From Table 6 the formation of the pure Se-based kesterite compound seems to proceed 

at lower temperatures (≈350 ⁰C) than the formation of the pure S-based counterpart (≈500 ⁰C). 

The mechanism including the ternary compound (CTSe) has a clear advantage over the one 

based on three binary selenides: it has a simplified, formation scheme, with less phases involved 

in the synthesis which potentially can resist reaction and form detrimental secondary phases 

after the end of the synthesis process. When compared our first RTP results with those reported 

in the literature a few observations can be done. For low chalcogen vapour pressures and/or 

low availability of chalcogens (e.g., no chalcogen in the precursors), the formation of kesterites 

is likely to proceed via the binary compound. On the other hand, under high chalcogen vapor 

pressure, such as in this work, or high availability of chalcogens from the very beginning of the 

annealing (i.e. if the precursors already contain chalcogen in their composition), the reaction 

preferably proceeds via the formation of ternary compounds. In the case of our RTP annealing 

processing both mechanisms are present and compete between them. Figure 3.13 sketches the 

hypothesized competition between both reaction pathways: 

 

Figure 3.13 Schematic representation of the two competing formation mechanism for the RTP 
annealing. 

 

3.2.5 Devices 
 

Finally, in order to study the impact of the different stages on the properties and characteristics 

of the devices, solar cells were prepared with the most relevant samples. As expected, devices 

prepared with absorbers from A up to F (end of the first dwell time) do not produce any working 

solar cell. All of them were shunted, most probably because of the presence of very large 

amounts of secondary phases as has been observed with Raman and XRD altogether with a very 

poor crystallization or uncompleted reaction of the kesterite phase. However, with samples G, 

H and I working solar cells could be obtained, as presented in Figure 3.14. In this figure, the short 

circuit current density (Jsc), open circuit voltage (Voc), the fill factor (FF) and efficiency (η) are 

presented. The solar cells prepared with absorber G exhibit low efficiencies mainly due to the 

low Voc and FF. However, the slight differences between F and G (only 100 s and 100 ⁰C) seem 

to be enough to pass from non-working devices to working ones. This change implies that the 
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crystallization/defect reordering observed previously by Raman spectroscopy under 325 nm 

excitation wavelength (Figure 3.12) is also very fast for the RTP process with relatively high Se 

pressures. Nevertheless, at point G, the absorber properties (defects concentration or type and 

presence of a residual SnSe2 phase) are still not good enough to ensure a high performance, 

implying the necessity of a longer dwell time into this second step. Also, this low Voc and FF might 

be related with the relatively small grains observed by SEM. A large number of grain boundaries 

which are not well passivated might lead to an increased density of defects. All of those, could 

severely deteriorate the charge transport properties of the absorber and explain the bad 

performance. 

After only 150 additional seconds at 500 ⁰C, both the Voc and the FF are largely improved (and 

in consequence the efficiency). The Jsc is also slightly increased. This large improvement can be 

explained by a healing of defects within the crystal structure, an improved crystalline quality 

with larger grains of the absorber, as well as the complete consumption or minimization of 

detrimental secondary phases. Longer crystallization times seem to have a limited impact on the 

improvement of the performance of the devices, suggesting that times as short as 150 s (point 

H) at relatively high temperatures can be enough to crystallize the CZTSe absorber and fully 

exploit the potential of the RTP annealing. 

 

 

Figure 3.14 J-V illuminated curve of devices obtained from absorbers produced during the 
break-off experiments (points G, H and I). Evolution of the different optoelectronic parameters 

of the same three points. 
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3.3 Summary 
 

In this chapter the advantages of employing an RTP process have been presented. The set-up 

designed specifically for this purpose at IREC was introduced, consisting of a semi-closed 

graphite box with a volume of 3.8 cm3. This set-up allows to achieve very high chalcogen vapour 

pressures from the very beginning of the kesterite synthesis. For the RTP processes, 20 mg of 

Se, and no extra Sn are applied. First attempts showed the necessity of adopting a two-step 

temperature profile because of the homogeneity of single step processes. The final optimized 

annealing parameters studied for IREC’s RTP baseline can be revisited in Table 5. 

In order to understand the mechanisms underlying the fast selenization during the RTP kesterite 

synthesis, a detailed experimental analysis of the phase formation and evolution has been 

conducted. For this a series of break-off experiments is presented, which allows to study 

morphology and composition of the resulting samples as well as the phase present by applying 

a detailed SEM, XRF, Raman, XRD and GDOES analysis of all involved samples. In continuation, 

the main results of this break-off experiments are summarized: 

 The second step at 500 ⁰C is necessary in order to obtain working solar cells due to 

improvements in phase purity and crystal quality, even if the formation reaction of the 

kesterite phase seems to be completed without it. 

 The higher vapour pressures achieved with the RTP annealing at IREC have shown to 

have a very strong impact on the formation pathways of the kesterite absorber. 

 In contrast to conventional CTP annealing, where the selenization of metallic precursors 

precedes predominantly via binary metal selenide compounds, in RTP a competition 

between two distinct mechanisms (binaries and ternaries) is observed. 

 Literature shows that a pathway involving binary selenides is preferred for relatively low 

Se availability during the annealing and a pathway involving the CTSe ternary compound 

predominates for relatively high Se availability. In between apparently both mechanisms 

can compete. 

Finally, a champion device of 8.3% (No ARC nor metallic grid) from a process only lasting 12 

minutes’ is obtained, comparable with devices obtained by CTP at IREC. This proves that RTP 

processing is a very promising way to obtain highly efficient kesterite devices. 

 

 

Figure 3.15 Summary of the dependence on the kesterite formation pathways for IREC’s RTP 
annealing baseline. 
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4 Driving the kesterite formation pathway with the chalcogen 

availability: a kinetic and phase analysis 
 

Previous results obtained in Chapter 3 depicted the differences into the formation pathways for 

the kesterite synthesis. Two main routes are present: one ruled by binary compounds and a 

second one by the ternary compound. In this chapter a deep and comprehensive study about 

driving the kesterite formation pathway to one or another option through a kinetic analysis 

altogether with an extensive phase analysis is going to be presented. Furthermore, the results 

presented in this chapter have been summarized into a manuscript already submitted for 

publication. 

 

4.1 The importance about studying the kesterite formation pathways 
 

This Thesis is centred in sequential processes for the synthesis of the kesterite absorber, 

whereas it is of key importance for obtaining highly efficient solar cell devices to deeply 

understand all the intermediates species participating into the formation routes of the absorber 

layer. In fact, as has started to be commented in the previous chapter, the formation 

mechanisms are directed either via binary compounds, or between ternary and binary ones66,150. 

It can be foreseen that when the precursor already contains chalcogen on its structure, the route 

involving the ternary compound is the preferred one, whereas when the precursor is chalcogen 

free the route involving binary compounds is the most commonly reported, as can be observed 

in Table 6 and in Hernandez et al.136 Nevertheless, most of the present literature deals with 

thermodynamic and phase analysis aspects about those systems151–155, because kinetically 

aspects had been very difficult to be evaluated. 

When discussing about kinetics aspects related to sequential processes for chalcogenides, even 

for CIGS there is very little available bibliography, depicting only general studies using mainly 

precursors that already contain chalcogen or are limited to theoretical analysis156–161. About 

kesterite, as has been previously noted, the different possible formation systems have been 

prior studied in some extent, yet from the thermodynamic point of view and once again only 

very limited and qualitatively kinetic information is available. Bodeaux et al.162 studied the 

selenization of co-sputtered Cu-Zn-Sn precursors, suggesting that the kinetics of the reaction 

between Sn and Se is slower than the corresponding one between Cu and Se, indicating that this 

is probably a limiting factor for the CZTSe formation rate. On the other hand, Qu et al.163 studied 

the sulfurization kinetics of CZTSSe nanoparticles using the parabolic grain growth and Avrami 

models. These methodologies are mainly useful for understanding grain growth processing or 

chalcogen diffusion yet provides limited information about the reaction kinetic types and the 

corresponding kinetic parameters that might be very relevant at early stages of the compound 

formation. The correlation between the kinetic aspects at the very beginning of the kesterite 

formation, combined with a thermodynamic phase analysis can be very helpful to understand 

and overcome possible synthesis limitations inside the systems. 

In order to do so, this chapter is devoted to study the kinetic and phase aspects of the formation 

reaction of kesterite at very early stages. For it, the formation reaction of the kesterites must be 

stopped employing the sequential process in IREC’s baseline (sputtering of metallic stacks 
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followed by reactive annealing either in CTP or in RTP) at different temperatures, studying both 

fast and slow ramping processes, and moreover introducing the chalcogen availability factor as 

the most relevant annealing parameter (see definition below). By only employing a relatively 

simple compositional measurement a first kinetic analysis of the pure selenide kesterite 

formation extracting important parameters such as the reaction order, kinetic constant and 

reaction half-time will be proposed. Also, thanks to the combination of multi-wavelength RS and 

XRD to perform a complete and deep phase analysis, it will be correlated this kinetic regime with 

the phases formed. 

The samples for this study were prepared following IREC’s standard baseline up to the annealing 

process that was extend for two reactive annealing types: CTP and RTP, in order to obtain either 

a slow or a fast ramping process respectively. The most important parameter to study in this 

chapter is related to the chalcogen vapour pressure, defined as chalcogen availability (ChA). For 

all the samples studied in this chapter: the area, the thickness and the maximum temperature 

were kept constant, in the defined set-up only the chalcogen mass and reactor volume were 

varied. 

Accordingly, for the different annealing performed, the chalcogen availability has been defined 

as: ChA = mCh(g)/VGB(cm3), where mCh is the mass of chalcogen (S or Se) used during the 

experiments performed in grams and VGB is the volume of the graphite box in cubic centimetres. 

The RTP samples were annealed following the special set-up designed at IREC where a 3.8 cm3 

semi-closed graphite box is employed. However, the annealing process was not the complete 

process, commented and studied in deepness in Chapter 3, yet consisted on heating from room 

to maximum temperature (400 ⁰C, 350 ⁰C, 300 ⁰C, 250 ⁰C and 200 ⁰C) with a fast ramp (180 

⁰C/min) and a total pressure of 1 mbar of Ar, being also stopped after 20s, 50s, 80s, 110s, 140s 

and 200s. When the RTP process reaches the desired temperature is immediately stopped and 

the system quickly cooled down as fast as possible in a natural way. The set of samples obtained 

with different Se availabilities were split into three types of regimes: low, medium and high Se 

availability. More concretely, the following six quantities were employed: 2.6x10-4 gSe/cm3 (low 

availability); 1.32x10-3, 2.64x10-3 and 5.26x10-3 gSe/cm3 (medium availability); and 1.32x10-2 and 

2.6x10-2 gSe/cm3 (high availability). The employment of six quantities responds to the necessity 

of having statistics and intermediate points to validate the presented kinetic models. 

Additionally, a set of samples was also studied under slow ramping annealing conditions with 

the CTP in a Se(S) + Sn atmosphere. Once again, a semi-closed system specially designed at IREC 

made up by a graphite box with a reaction volume of 69 cm3 was employed at 1 mbar of Ar as 

total pressure, being heated from room temperature up to 400 ⁰C (either for S and Se) with a 

ramp of 20 ⁰C/min and for the following Se or S availabilities: 7.2x10-5 gSe/cm3 and 7.2x10-4 

gSe/cm3 (low availability); 1.45x10-3, 2.90x10-3 and 7.2x10-3 gSe/cm3 (medium availability); and 

1.45x10-2 gSe/cm3 (high availability). 
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4.2 Introducing a kinetic and phase analysis for the selenization of the kesterite 

under slow or fast ramping conditions 
 

In the next sections of this Chapter, a complete kinetic model and phase analysis of samples 

prepared with different chalcogen availabilities (from low to high) using fast ramps (for Se by 

RTP, kinetically controlled), and slow ramps (for S and Se, thermodynamically controlled by CTP), 

will be presented. 

The first scope of the study presented here is to obtain the fundamental kinetic parameters of 

the selenization process which depend on the chalcogen availability. Once they are obtained, it 

is of key importance to detect and identify the intermediate species present through the 

kesterite formation at the different regimes. Finally, and as a summary, a kinetic model of 

metallic stacks chalcogenization for the pure selenide kesterite compound and a first extension 

for the pure sulphide compound will also be presented. 

 

4.2.1 Cu2ZnSnSe4 formation reaction kinetic and phase analysis with different 

chalcogen availabilities 
 

Figure 4.1 presents the evolution of the elemental composition of Cu, Zn, Sn and Se as a function 

of the ChA parameter covering the three studied regimes, as well as for two types of processes, 

either with fast (180 ⁰C/min) or slow ramping (20 ⁰C/min), which are defined as: 

- Low availability: [Se] < 1x10-3 g/cm3 

- Medium availability: 1x10-3 ≤ [Se] ≤ 1x10-2 g/cm3 

- High availability: [Se]> 1x10-2 g/cm3 

The temperature was decided to be stopped at 400 ⁰C based on previous results from Chapter 

3 and bibliography66,136,147 depicting that the kesterite formation has already started at such 

temperature. Only by changing the processing ramp, it is possible to, in principle, investigate 

two type of processes, being one kinetically controlled (RTP, fast ramping) and the other one 

thermodynamically controlled (CTP, slow ramping). Applying this strategy can be very useful to 

depict and understand differences and similarities between slow and fast processing, separating 

the kinetic and thermodynamic factors which may play a major role through the formation of 

these compounds. 
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Figure 4.1 Evolution of the concentration of the different elements as determined by XRF for 
CZTSe samples prepared with fast ramping (180 ⁰C/min) (a) and slow ramping (20 ⁰C/min) (b). 

When it comes to a detailed study of (a) (fast ramping process) it can be observed that only 

partial Se incorporation takes place for low and even for medium-low chalcogen availabilities. 

Only when high chalcogen availabilities are approached, all the possible Se is then incorporated 

into the layer. On the other hand, this situation changes drastically when it comes to applying 

slower ramps, where almost all the Se is already included even for very low chalcogen 

availabilities (b), suggesting that the chalcogenization process has prior achieved the equilibrium 

and is almost completed in a relatively short time, in good agreement with reports164.  

Those results clearly indicate that for the case of fast ramping the system is still out of 

equilibrium and probably under kinetic control, which opens very interesting possibilities to 

perform a kinetic analysis of the system. In order to study the kinetic of the metallic phases 

chalcogenization reaction, several appreciations must be taken care of, such as the possible 

order of the selenization reaction and to do so, it is necessary to define a generic reaction which 

is: 

𝑚𝑀(𝑠) + 𝑛𝑆𝑒2(𝑔)
𝑇,𝑡
↔ 𝑥𝐶ℎ(𝑠) 

Equation 1. Generic kesterite formation mechanism. 

Where M represents all the metals together in the precursor layer and m is their stoichiometric 

factor in the reaction, Se2 is the selenium presented in the atmosphere and n is it stoichiometric 

factor, and Ch represents the formed chalcogens and x is the corresponding stoichiometric 

factor. T is temperature and t is time. 

If we start from the general reaction, the simplest kinetic rate equation that can be used for the 

chalcogenization of metals based on the law of mass action is165: 

𝑑[𝐶ℎ]

𝑑𝑡
= 𝑥𝑘[𝑀]𝑚[𝑆𝑒2]

𝑛 

Where k is the kinetic constant. Two reasonable assumptions can be introduced in order to 

simplify this present model. Firstly, by considering that M is a solid specie and it can be 

considered that the concentration will remain constant into our system, implying that is not 

affecting the reaction rate. Secondly, Ch corresponds to the total chalcogen introduced in the 

precursor layer as measured by XRF, which is going to be represented as [Se]k. Lastly, the Se 

concentration into the atmosphere corresponds to the selenium availability defined at the 

beginning of the study minus the reacted Se. 
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 In this case: 

[𝑆𝑒2] = [𝑆𝑒]𝐶ℎ𝐴 − [𝑆𝑒]𝐾 

 

So, then the kinetic rate equation can be further simplified as: 

𝑑([𝑆𝑒]𝐾)

𝑑𝑡
= 𝑥𝑘([𝑆𝑒]𝐶ℎ𝐴] − [𝑆𝑒]𝐾)

𝑛 

In this study, it has been supposed three types of kinetic orders for the chalcogenization of 

metallic stacks, applying a differential method166 and are represented by the following 

equations: 

−𝑑([𝑆𝑒]𝐾) = 𝑘0𝑑𝑡 ⇒ [𝑆𝑒]𝐾 = ([𝑆𝑒]𝐶ℎ𝐴 − [𝑆𝑒]𝐾)0 − 𝑘0𝑡 Zero order kinetic 

−𝑑([𝑆𝑒𝐾])

([𝑆𝑒𝐶ℎ𝐴]−[𝑆𝑒𝐾])
= 𝑘1𝑑𝑡 ⇒ ln ([𝑆𝑒𝐶ℎ𝐴] − [𝑆𝑒𝐾]) = 𝑙𝑛([𝑆𝑒𝐶ℎ𝐴] − [𝑆𝑒𝐾])0 − 𝑘1𝑡 First order 

kinetic 

−𝑑([𝑆𝑒𝐶ℎ𝐴]−[𝑆𝑒𝐾])

([𝑆𝑒𝐶ℎ𝐴]−[𝑆𝑒𝐾])
2 = 𝑘2𝑑𝑡 ⇒

1

([𝑆𝑒𝐶ℎ𝐴]−[𝑆𝑒𝐾])
=

1

([𝑆𝑒𝐶ℎ𝐴]−[𝑆𝑒𝐾])0
− 𝑘2𝑡 Second order kinetic 

Where k0, k1 and k2 are the kinetic constants corresponding to zero, first and second order 

reactions respectively. With the obtained knowledge and considering the vapour pressure of 

selenium, it can be considered that no or very few chalcogen is going to be available below 200 

⁰C66,136. In this sense, it can be estimated t starting when the heating up process is just above 

200 ⁰C and finishing when the cooling down process is just below 200 ⁰C in order to estimate 

the reaction times. 

By employing the previous equations, altogether with info from Figure 4.2 the experimental 

values can be fitted to the supposed kinetic orders with the aim to identify which one adjusts 

better to them. In the present model there are made two important assumptions: 

1. There are no competing reactions, implying that chalcogen is preferably introduced by 

a single reaction 

2. Even if T was not constant for each experiment, and k as well as the chalcogen 

concentrations depends on T, it is supposed that most of the chalcogenization reactions 

happen in a narrow T range where the system can be considered constant. 

Once those two issues have been taken into consideration, k values for the different kinetic 

models have been estimated and are going to be presented in this Chapter. Moreover, 

depending on the kinetic order it can be estimated a kinetic parameter called half-life time (t1/2), 

which represents the time required for the system to complete half of the reaction. It is normally 

considered that the reaction is completed after six times the half-life value. The t1/2 presented 

have been calculated as follows: 

𝑡1/2 =
([𝑆𝑒]𝐶ℎ𝐴−[𝑆𝑒]𝐾)0

2𝑘0
  For a zero-order reaction 

𝑡1/2 =
𝑙𝑛2

𝑘1
  For a first order reaction 
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Obviously, an in-situ analysis of the chalcogenization process would be the ideal strategy, but is 

rather complicate with this sequential annealing process due to the harsh processing conditions. 

In most cases of analysis in dedicated in situ characterization setups, the processes can not be 

reproduced exactly as used for the general absorber synthesis. In addition, the chalcogenization 

reaction is a relatively fast process, much faster than the typical times necessary for a complete 

annealing process (of the order of several tens of minutes), even under fast ramping conditions. 

Therefore, the application of the differential method for the determination of the reaction-order 

is very challenging, requiring some assumptions.  

Figure 4.2 shows the Se concentration obtained for different layers where the RTP 

chalcogenization process has been stopped at different temperatures (nominally 200 °C, 250 °C, 

300 °C, 350 °C and 400 °C; for this last temperature in another different run than the one 

presented in Figure 4.1) and employing four different chalcogen availabilities (low, medium-low, 

medium and high regimes). If the temperature is below 250 °C the chalcogenization reaction 

does not proceed, or partially proceeds only under high chalcogen availabilities. When the 

temperature is equal or above 400 °C, the reaction is almost completed at the very beginning, 

even under low ChA values. This last affirmation leaves only the temperature range between 

250-350 °C useful for the kinetic analysis. 300 °C has been selected as the most suitable 

temperature for a deep kinetic analysis, considering that common differential methods for 

kinetic analysis require isotherm conditions166. 

The methodology employed for approaching the kinetic model of CZT metallic stacks 

selenization is based on the following assumptions: 

1. In the working limited range of temperature employed (in most of the cases from 250-

350 °C), the most stable phases in the kesterite system does not change133,164. 

2. Most of the phases involved into the system are solid (and their concentrations can be 

considered independent of temperature) apart from Se vapour which temperature 

variation is being considered with the measurement of chalcogen incorporation into the 

layers. 

3. The diffusion of Se can be considered fast in the chalcogenide system even at relative 

low temperature and is enhanced by sodium’s presence167,168. 
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Figure 4.2 Se concentration for the experiments performed stopping the reaction at different 
temperatures (RTP) and using different ChA values 

Taking the previous assumptions into consideration, it is possible to develop a simplified kinetic 

model for Equation 1. This way a qualitative estimation of the kinetic constants can be obtained 

as well as the kinetic order of the reaction determined. The simplified kinetic model for the 

reaction presented in Equation 1 can be simplified as: 

d([Se]sat−[Se]K)

dt
= kn([Se]sat − [Se]K)

n Equation 2. General kinetic model for metallic stacks 

selenization. 

Where [Se]sat is the Se concentration (or number of moles) for an infinite-time reaction, [Se]K is 

the Se concentration (or number of moles) in the kesterite compound, and Kn is the kinetic 

constant corresponding to a reaction-order n. In fact, ([Se]sat - [Se]K) is the Se quantity required 

to end the reaction or, equivalent, the metallic phases consumed during the selenization. Using 

this general kinetic expression, the data with reactions of zero-, first- and second kinetic can be 

fitted as described previously. Figure 4.3 presents the kinetic results obtained for medium-low 

and medium-high chalcogen availabilities, at 300 °C. It is worth to mention that for high 

chalcogen availabilities the reaction is very fast, so then the metallic layers are almost 

completely selenized in very short times, impeding reliable kinetic analysis with our set-up. 
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Figure 4.3 Complete kinetic analysis of the selenization of metallic stacks using fast ramping. 
The fittings are presented for three different kinetic orders (zero, first and second order), as 

well as for two different chalcogen availabilities (medium-low and medium-high). 

For medium-low ChA (≈ 1x10-3 gSe/cm3, the three different kinetic orders are contemplated and 

fitted (see upper part of Figure 4.3) being the best obtained fitting for a first-order kinetic (Table 

A1  in the Annex). Most probably this is the reaction-order, although a zero-order kinetic cannot 

be discarded at the very beginning of the reaction. Nevertheless, this type of kinetic is often 

considered as a pseudo-state because it cannot continue after one of the involved reactants is 

exhausted. Normally, before going to zero, the reaction rate will change to another rate law166, 

ins this case a first-order one. Two conditions can lead to a zero-order kinetic at the very 

beginning: 1) when only a small part of the reactants are in the state required to react but this 

small fraction is continually supported from the reactive source; and 2) when the concentration 

of one reactant is orders of magnitudes greater than the others. In the present case, it can be 

considered that the first condition better represents the system at the very beginning due to the 

Se quantity available for the reaction is limited in the range of medium-low ChA, yet the Se is 

continuously supplied during the reaction time. Despite this, it can be considered that in overall 

the selenization reaction proceed via a first order reaction whose kinetic parameters are 

summarized in Table 7. 

The situation only slightly changes when the ChA is increased to medium-high values as can be 

observed in the lower part of Figure 4.3. In this case an only for the first four times, it can be 

used because the system saturates for longer annealing times. Best fitting is obtained again 

supposing a first order kinetic, implying that the selenization rate is directly proportional to the 

ChA. This is the most expected situation, depicting that by controlling the ChA value it can be 

controlled the selenization reaction rate. Whereas, higher reaction orders (second order) do not 

fit well with any condition, suggesting that the selenization process proceeds via a relatively 

simple mechanism. Table 7 summarizes also the main kinetic parameters extracted from Figure 

4.3 for the different chalcogen availabilities, including the half-life time (t1/2) determined as 

explained previously in this present Chapter. As already commented, it can be considered a 

reaction finished after 6 times the t1/2, implying that for a complete selenization approximately 

30-40 s are required even for medium-low chalcogen availabilities, confirming that the 

chalcogenization of the metallic stacks is a very fast process, which typically would require only 

few minutes to be completed64,66,136. 
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Table 7 Estimation of the kinetic parameters for the identified reaction-orders and for the 
different chalcogen availabilities. 

Chalcogen 
availability 

More probable 
reaction order 

k1 (s-1) t1/2 (s) 

Medium-Low First k0 = (1.9 ± 0.2) x10-2 37 

Medium-High First k1 = (2.9 ± 0.4) x10-2 24 

 

Summarizing, in this chapter are presented, for the first time to the best of my present 

knowledge, kinetic parameters for the selenization of metallic precursor stacks, observing that 

this type of synthetic route follows a first-order kinetic for a wide range of chalcogen availability 

values, implying that this process depends mainly on this parameter (ChA). This means that the 

chalcogen either reacts with the metal matrix indistinctly of the alloys that are formed (mainly 

bronzes and brasses), or that the selenization of one of these metal alloys is remarkably slower 

than the others, controlling the reaction kinetic. Additionally, it is expected that this does not 

depend on the type of ramping and this analysis could be transferred to slow ramping processes. 

In order to further study and characterize the system, a complete morphology and phase 

analysis of samples whose composition has been presented in Figure 4.1 was performed. Figure 

4.4. shows SEM top view images for the two types of ramping processes under study, and for 

the whole range of chalcogen availabilities present (the complete set of SEM images is presented 

in Figure A5 at the Annex). When a fast ramping is applied, the samples surface morphology 

prepared at low Se availability is very similar to the typical metallic precursor surface169, 

confirming a low Se incorporation. As expected, morphology changes when increasing the Se 

availability as the Se is more and more incorporated into the metallic layers. For all the cases, 

the layers look either amorphous or nanocrystalline, suggesting that crystallization has not 

started under these conditions. Those appreciations reinforce the kinetic model presented 

before because they imply that all the Se incorporated into the samples has been mainly used 

to diffuse into the metallic layer to form the kesterite and not to crystalize it. 

 

Figure 4.4 Thermal profile and top view SEM images of absorbers generated with a fast ramp 
at different chalcogen availabilities (a). Thermal profile and top view SEM images of absorbers 

generated slow ramp at different chalcogen availabilities (b). 
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Figure 4.5 presents a schematic representation of the different phases identified by XRD and 

Raman spectroscopy for fast and slow ramps. The data plotted has been obtained from the 

characterizations presented in the Figure A7-10 at the Annex. In the Figure 4.5 the chalcogen 

availability for whom the maximum intensity for each phase is obtained and represented by a 

vertical white line. The intensity of the Raman signal corresponding to each phase is plotted by 

the colour graduation. In addition, and with the aim to help clarifying the discussion, in Table 8 

all the detected phases under the different experimental conditions are summarized. 

 

Figure 4.5 Schematic representation of the phase analysis performed using Raman 
spectroscopy and XRD for the whole chalcogen availability range, for fast ramp (a), and slow 

ramp (b) processes. Vertical white lines represent the chalcogen availability where the 
maximum signal intensity corresponding to this particular phase is detected. The intensity of 

the colour correlates with the quantity of each phase. 

Table 8 Summary of the detected phases extracted from Figure 4.5.  (-) – Not detected. (+) – 
Present but in small quantities. (++) – Present in high quantities. (?) – Not clear. 

Thermal process Chalcogen availability (mg/cm3) 
Low (ChA < 1x10-3) Medium (1x10-3 ≤ ChA 

≤ 1x10-2) 
High (ChA > 1x10-2) 

Fast ramping  
(kinetic control) 

 Cu-Se: (-) 
 ZnSe: (++) 
 Sn-Se: (++) 
 Cu-Sn-Se: (-) 
 Cu2ZnSnSe4: (+) 
 Metals: (+) (bronze),  

(?) (brasses) 

 Cu-Se: (-), or (?) 
 ZnSe: YES 
 Sn-Se: (+) 
 Cu-Sn-Se: (++) 
 Cu2ZnSnSe4: (+) 
 Metals: (-) 

 Cu-Se: (-) 
 ZnSe: (++) 
 Sn-Se: (+) 
 Cu-Sn-Se: (+) 
 Cu2ZnSnSe4: (++) 
 Metals: (-) 
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Slow ramping 
(thermodynamic 
control) 

 Cu-Se: (++) 
 ZnSe: (++) 
 Sn-Se: (++) 
 Cu-Sn-Se: (-) 
 Cu2ZnSnSe4: (-), or (?) 
 Metals: (++) (Sn) 

 Cu-Se: (++) 
 ZnSe: (++) 
 Sn-Se: (++) 
 Cu-Sn-Se: (++) 
 Cu2ZnSnSe4: (+) 
 Metals: (++) (Sn) 

 Cu-Se: (++) 
 ZnSe: (++) 
 Sn-Se: (+) 
 Cu-Sn-Se: (++) 
 Cu2ZnSnSe4: (++) 
 Metals: (++) (Sn) 

 

In the case of medium-low chalcogen availabilities, where probably a pseudo-zero-order kinetic 

is the most likely selenium-incorporation mechanism at the very beginning, which later evolves 

towards a first-order kinetic, only a mix of metallic and binary-chalcogenide phases are observed 

for both, fast and slow ramping. This strongly suggests that the preferred pathway formation for 

kesterite under such conditions is the one based on the reaction of binary phases. This reaction 

is fully compatible with the zero- or first- order kinetics, because in that case Se is limited reagent 

onto the precursor surface, so it reacts indistinctly with the immediate available metal forming 

the simplest and fastest species (binaries). It can be affirmed that main differences between fast 

or slow processes are only related to the type of metallic phases present in the system. 

Apparently, when fast ramping annealing is applied only complex metallic phases (bronzes and 

maybe brasses) are presented, due to shorter time annealing that is not enough to allow further 

phase transformation, implying that Se reacts directly with them by following Equation 3 and 

Equation 4. Nevertheless, for slow ramping processes, metallic Sn is also observed suggesting 

that when the system is thermodynamically driven, bronzes tend to be transformed during the 

selenization through Equation 5, releasing some free metallic Sn170. This result agrees with 

previous reports where metallic Sn has frequently been observed for slow ramping annealing 

during early stages of the kesterite synthesis147. Then, the resulted Cu-rich bronze is directly 

selenized as is shown in Equation 6. Basically, it can be inferred that for fast ramping processes 

the bronze metallic phases seem to be directly selenized, whilst when there is enough time in 

slow ramping cases and thermodynamics have enough time to play a major role over kinetics, 

bronzes first decompose and then the elemental metals are selenized. In the case of brasses, 

reliable information cannot be extracted from XRD because this phase as well as Zn and Cu 

metallic phases are hardly observed, so it can be supposed that even at very low chalcogen 

availabilities, the Cu-Zn alloys are directly selenized. 

𝐶𝑢6𝑆𝑛5(𝑠) +
11

2
𝑆𝑒2(𝑔)

𝑇=400º𝐶
𝐹𝑎𝑠𝑡 𝑟𝑎𝑚𝑝
→       6𝐶𝑢𝑆𝑒(𝑠) + 5𝑆𝑛𝑆𝑒(𝑠)   Equation 3. Possible selenization of 

bronzes under fast ramping and low chalcogen availability. 

𝐶𝑢5𝑍𝑛8(𝑠) +
13

2
𝑆𝑒2(𝑔)

T=400ºC
→      5𝐶𝑢𝑆𝑒(𝑠) + 8𝑍𝑛𝑆𝑒(𝑠)   Equation 4. Possible selenization of 

brasses under low chalcogen availability independently on the ramp. 

𝐶𝑢6𝑆𝑛5(𝑠)

𝑇=400º𝐶
𝑆𝑙𝑜𝑤 𝑟𝑎𝑚𝑝
→        2𝐶𝑢3𝑆𝑛(𝑠) + 3𝑆𝑛(𝑠)   Equation 5. Possible decomposition of bronzes under 

slow ramping and low chalcogen availability. 

 𝐶𝑢3𝑆𝑛(𝑠) + 2𝑆𝑒2(𝑔)

𝑇=400º𝐶
𝑆𝑙𝑜𝑤 𝑟𝑎𝑚𝑝
→        3𝐶𝑢𝑆𝑒(𝑠) + 𝑆𝑛𝑆𝑒(𝑠)  Equation 6. Possible selenization of bronzes 

under slow ramp and low chalcogen availability. 

2𝐶𝑢𝑆𝑒(𝑠) + 𝑆𝑛𝑆𝑒(𝑠) + 𝑍𝑛𝑆𝑒(𝑠)
𝑇=400º𝐶
→      𝐶𝑢2𝑍𝑛𝑆𝑛𝑆𝑒4(𝑠)  Equation 7. Most probable formation 

reaction for kesterite at low chalcogen availability. 
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This implies that the only way to form kesterite under such conditions is through the reaction of 

the binary chalcogenide compounds, appearing Equation 7 as one possibility. It must be pointed 

out, when considering the complex Cu-Se and Sn-Se phase diagrams the competence with other 

possible binary compounds coming from these systems shall not be discarded, yet the general 

schema will not change and the possible competing reactions will always be those of a complex 

solid state reaction. 

In summary, it can be concluded that when low amounts of chalcogen atoms are available in the 

system, the kesterite is formed mainly via binary phases reactions independently on the type of 

heating ramps. The only difference lies in the fact that bronzes are (at least partially) 

decomposed before being selenized when slow ramps are introduced, which is not the case for 

fast ramping. All these metallic phases are indistinctly selenized most probably via a zero-order 

reaction at the very beginning that immediately evolves towards a first order kinetic. Obviously, 

working under low chalcogen availabilities it is not recommended at all, due to the high risk to 

end up having unreacted binary-selenide and even metallic phases, altogether with the 

complexity of the mechanisms involved into the formation of the kesterite phase. 

When the chalcogen availability is increased to values considered either medium or high, the 

situation drastically changes. As has been shown previously, the kinetic mechanism is better 

explained by a first order reaction with a relatively high kinetic constant and relatively low t1/2 

values. This implies that the reaction is accelerated and Se reacts very fast with any kind of 

metallic phase available in the system. It is clear in Figure 4.5. and Table 8 that the Cu2SnSe3 

ternary phase becomes the most relevant so far and no metallic phases are observed at all for 

fast ramping annealing, while only Sn is detected for slow ramping. So, in principle it can be 

considered that for this case bronzes and brasses react directly with selenium to form the 

intermediates. For fast ramping the selenization of bronze occurs most likely through Equation 

8, where the ternary Cu2SnSe3 is directly formed, but inevitably altogether with Sn-Se phases at 

the same time. These results are very relevant, because they indicate that binary Sn-Se phases 

are necessarily always formed, independently on the selenization route followed by the bronze 

alloy. Brasses only have the possibility to react via Equation 4, where Cu-Se and ZnSe are the 

resulting phases. This allows to the first general conclusion that for medium-high chalcogen 

availabilities and fast ramping: even if in such conditions, the synthesis route of CZTSe involving 

in this case more complex phases like the ternary compound can be transformed, yet it is 

impossible to avoid the presence of simpler binary compounds as competitors. 

On the other hand, this situation does not change too much when slow ramps are used. Still, 

elemental Sn is always observed for very high chalcogen availabilities implying that Equation 5 

(i.e. transformation of Cu6Sn5 into Cu3Sn) is in general faster than the selenization of bronzes. 

Then, Cu3Sn is directly selenized forming the ternary compound as shown in Equation 9. Then, 

for that case and due to the presence of high quantities of ternary Cu2SnSe3 compound the 

formation of kesterite can proceed via the reaction of the ternary compound with ZnSe as 

described in Equation 10. 

𝐶𝑢6𝑆𝑛5(𝑠) +
11

2
𝑆𝑒2(𝑔)

𝑇=400º𝐶
𝐹𝑎𝑠𝑡 𝑟𝑎𝑚𝑝
→       3𝐶𝑢2𝑆𝑛𝑆𝑒3(𝑠) + 2𝑆𝑛𝑆𝑒(𝑠)    Equation 8. Most probable reaction 

between bronzes and selenium under medium or high chalcogen availability and fast ramping. 

𝐶𝑢3𝑆𝑛(𝑠) + 2𝑆𝑒2(𝑔)

𝑇=400º𝐶
𝑆𝑙𝑜𝑤 𝑟𝑎𝑚𝑝
→        𝐶𝑢𝑆𝑒(𝑠) + 𝐶𝑢2𝑆𝑛𝑆𝑒3(𝑔)  Equation 9. Possible selenization of 

bronzes under medium or high and slow ramping. 
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𝐶𝑢2𝑆𝑛𝑆𝑒3(𝑠) + 𝑍𝑛𝑆𝑒(𝑠)
𝑇=400º𝐶
→      𝐶𝑢2𝑍𝑛𝑆𝑛𝑆𝑒4(𝑠)   Equation 10. Most probable formation 

reaction for kesterite at medium-high chalcogen availability.  

Nevertheless, as can be observed from Equation 8, Equation 9, Figure 4.5 and Table 8., the 

presence of binary phases including Cu-Se and Sn-Se ones is almost unavoidable and have been 

detected at some time in all the possible kesterite formation pathways independently on the 

chalcogen availability and the type of kinetic reaction. This implies that, for medium and high 

chalcogen availability reaction in Equation 10 is the prevalent mechanism for kesterite 

formation. However, the reaction via Equation 7 is always present and competing, although 

probably to lesser extents as the chalcogen availability increases. As a summary, it is 

demonstrated that for low chalcogen availabilities the binary route with a pseudo-zero-order 

kinetics evolving to a first-order one for longer times is largely preferred, and for medium-high 

chalcogen availabilities the synthesis route via ternaries with a first-order kinetic is the 

prevalent, but competing with the binary route seems to be inevitable. 

The results presented open very important perspectives for the synthesis of kesterites 

employing sequential processes where the precursors are metallic stacks. Independently on the 

precursor type and/or the chalcogenization conditions, the presence of undesired binary phases 

(Cu-Se and Sn-Se) even if it can be minimized, yet it cannot be 100% eliminated. At high 

chalcogen availabilities, the quantity of theses phases seems to be strongly reduced, although 

never eliminated. This has been considered the better condition to synthesize homogeneous 

absorbers. Nevertheless, and in order to ensure the lowest possible quantity of secondary 

phases at the end of the synthesis process it is strongly recommended to take additional 

measures such as: 1) ensure a high degree of intermixture between the metallic precursors, 2) 

ensure enough annealing time to let the reaction finish, and 3) post-deposition treatments are 

probably useful for the diffusion and termination of the reaction of these unreacted phases. 

Finally, all the presented results in this section, strongly suggest that, despite the latest 

impressive progresses achieved with this type of synthetic routes, it is still nowadays impossible 

to obtain kesterite absorbers free of secondary phases with the chalcogenization of elemental 

metallic precursors. Further improvements are still required in future that might come by using 

precursors with a better mix of the different metals, i.e. complex alloyed precursors, better 

control of the chalcogen availability (temperature, pressure) and/or combination with 

precursors that already contain chalcogen. 

 

4.2.2 First extension to Cu2ZnSnS4 case 
 

With the aim to further develop this previous kinetic analysis to other types of kesterites, it was 

extended to the case of sulphur-based kesterites. For this study, the reactive annealing was also 

stopped at 400 ⁰C, yet and due to technological reasons only a slow ramp (20 ⁰C/min was 

applied), once again covering the full chalcogen availability range. Figure 4.6 presents the 

evolution of the different elemental concentrations with increasing chalcogen availability, being 

analogue to Figure 4.1. It must be pointed out that even for high S amounts, the reaction is not 

completed after the investigated temperature, suggesting that the sulfurization process is a 

much slower process than the selenization one. This affirmation comes as a contradictory 

intuition to the expected trend: sulphur has a much higher vapour pressure and usually, sulphur 

vapours are more reactive than the selenium ones. Even at very high chalcogen availabilities 
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(>0.01 gS/cm3), the sulphur content in the layer tends to saturate at 42% under the studied 

conditions. 

 

Figure 4.6 Evolution of the concentration of the different elements as determined by XRF for 
samples sulfurized under slow ramping conditions (20 ⁰C/min). 

As for the CZTSe study, these CZTS samples produced with different chalcogen availabilities, 

have also been characterized by Raman Spectroscopy and XRD. The complete Raman spectra 

with different excitation wavelengths as well as the XRD patterns are presented in Figure A11 

and A12 at the Annex. The evolution of the different phases is graphically schematized in Figure 

4.7 and summarized in Table 9. In the case of the sulphur compound, when low chalcogen 

availabilities are applied a complex mix of metallic phases (bronzes, brasses and free Sn) are 

mainly present, altogether with remarkable amounts of ZnS. Those results corroborate the 

previous affirmation about the lower reactivity of sulphur with respect to Se and that this 

chalcogen reacts very selectively with Zn in order to form ZnS, which is the most stable phase in 

this system. Most probably kesterite is not formed due to the absence of Cu-S and Sn-S binary 

phases, because it is expected that for these synthesis conditions the binaries route for the 

formation of kesterite prevails. 

When medium chalcogen availabilities are reached, the quantity of metallic phases starts to be 

drastically reduced. Other sulphide phases different than ZnS are observed including SnS and 

Cu2SnS3 and also small amounts of kesterite. This, once again, suggests that for medium 

chalcogen availability the formation pathway involving the ternary compound is the preferred 

route similarly to the observed for the selenide compound. By increasing the chalcogen 

availabilities to high values, an early kesterite formation is promoted with a strong reduction on 

the Cu2SnS3 and ZnS signals. This depicts an accelerated formation of CZTS under such 

conditions, but again both possible pathways including binaries and ternary compounds are 

most likely to be competing as in the case of the selenides.  

The data presented in this chapter indicates that the formation pathways of sulphur and 

selenium compounds are very similar, although some differences are observed mainly in the 

processes dynamics, suggesting that the kinetic of the sulfurization of metallic stacks is 

somehow different and slower that the one observed for the selenides. 
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Figure 4.7 Schematic representation of the phase analysis performed using Raman 
spectroscopy and XRD for the whole chalcogen availability range for CZTS. Vertical white lines 
represent the chalcogen availability where the maximum intensity of this particular phase is 

obtained. 

Table 9 Summary of the detected phases extracted from Figure 4.7. depending on the 
chalcogen availability regime. (-) – Not detected. (+) – Present but in small quantities. (++) – 

Present in high quantities. (?) – Not clear. 

Thermal process Chalcogen availability (mg/cm3) 
Low (ChA < 1x10-3) Medium (1x10-3 ≤ ChA 

≤ 1x10-2) 
High (ChA > 1x10-2) 

Fast ramping  
(kinetic control) 

 Cu-S: (-) 
 ZnS: (++) 
 Sn-S: (-) 
 Cu-Sn-S: (-) 
 Cu2ZnSnS4: (-) 

 Cu-S: (-) or few 
 ZnS: (++) 
 Sn-S: (+) 
 Cu-Sn-S: (++) 
 Cu2ZnSnS4: (+) 

 Cu-S: (-) 
 ZnS: (++) 
 Sn-S: (+) 
 Cu-Sn-S: (+) 
 Cu2ZnSnS4: (++) 

1E-5 1E-4 0.001 0.01 0.1

1E-5 1E-4 0.001 0.01 0.1

ZnS

CTS

CZTS

SnS

Chalcogen availability (gs/cm3)

 CZTS

(23º)

Raman

 ZnS

/CZTS

/CTS

(28.4º)

 SnS

(22.1º)

 Cu5Zn8

(34.8º)

 Cu6Sn5

(30.2º)

XRD

Chalcogen availability (gs/cm3)

CTS

(46.2º)

 Sn

(32º)

a) 

b) 
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 Metals: (+) (bronze), 

(+) (brasses), (-) (Sn) 
 Metals: (+) (bronze), 

(+) (brasses), (+) (Sn) 
 Metals: (-) or (?) (Sn) 

 

4.3 Summary 
 

In this chapter it has been once again depicted and commented the high interest that physical 

vapour deposition methodologies have reached for the synthesis of kesterites. In those 

processes and specially for sequential processes based on metallic stacks, it is of key importance 

to deeply understand and comprehend the intermediate phases and possible formation routes 

on them for their future progress. In between those formation routes, one parameter identified 

that has turned out crucial is the chalcogen availability. In this present chapter a combined 

kinetic and phase analysis of the selenization process that includes slow and fast ramped 

annealing steps has been presented. On the study performed, it has been observed that for a 

medium-low chalcogen availability situation the kesterite is formed through a pseudo-zero 

order kinetic reaction, with a constant equal to k0 = (1.9 ± 0.2) x10-2 s-1 and a t1/2 = 37 s, which 

evolves towards a first-order reaction for relatively long annealing times, mainly controlled by 

the reaction of Cu-Se, Sn-Se, and ZnSe binary phases. When the chalcogen availability is 

increased towards medium-high values, the kinetic of the selenization process is then identified 

as a first-order, with a kinetic constant about k1 = (2.9 ± 0.4) x10-2 s-1, and a t1/2 = 24 s. Finally 

evolving towards a simpler pathway involving the ternary Cu-Sn-Se compounds with ZnSe, 

simplifying the formation route of CZTSe. This is a clear advantage, as it reduces the occurrence 

of unreacted secondary phases after the selenization is finished. Nevertheless, it has also been 

commented that in spite of the high chalcogen availability, the synthesis route involving binary 

compounds is always observed and cannot be completely eliminated yet reduced to a much 

lower extent. With those conclusions in mind, it has also been affirmed that additional strategies 

for ensuring high quality absorbers free of secondary phases using this approach are still 

required. 

Also, a first extension towards the sulphide kesterites has been developed through the chapter 

showing similarities in terms of phases observed, depicting the route involving binaries being 

the preferred one for low ChA, and the one involving the Cu2SnS3 ternary compound for high 

ChA. Finally, even though the sulfurization process still would require a more detailed analysis, 

it can be affirmed that the sulfurization process is slower than the selenization one. 

 

Figure 4.8 Summary of the dependence on the kinetic regime for the RTP annealing process at 
IREC.  
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Kesterite solar cells combining 

Electrodeposition and RTP 
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5 Kesterite solar cells combining Electrodeposition and RTP 
 

After optimizing the RTP and contrasting it to CTP employing standard sputtered metallic 

precursor layers from the IREC baseline (Chapter 3) and unravelling the fundamental 

mechanisms underlying rapid kesterite synthesis and film formation (Chapter 4), now the RTP 

versatility will be tested using different precursor layers. For this purpose, electrodeposited 

precursor layers are used with the optimized RTP procedure from Chapter 2. In this Chapter, we 

introduce the precursor electrodeposition process and fully characterize the finished absorbers 

with detailed Raman mapping at different wavelengths, X-ray diffraction, SEM and 

optoelectronic. First solar cell devices with electrodeposited precursor applying an RTP 

selenization are presented opening promising perspectives for this kind of processing and 

showing the versatility of the developed RTP process. The work presented in this chapter is 

summarized in a research article, also found in the appendix, M. Valdés, A. Hernández-Martínez, 

et al. 171 (DOI: 10.1016/j.solener.2018.08.049). 

 

5.1 Electrodeposition of kesterite thin film  
 

During this Thesis, sequential processes where metallic precursors are first deposited and then 

reacted into kesterites have been studied. Until now, the scope has been set onto the annealing 

step by implementing, optimizing and understanding a new annealing via RTP processing. In the 

next step, the versatility and robustness of the new RTP process should be tested. In order to 

so, the focus moves now towards a variation of the precursor deposition. Amongst the 

techniques to deposit kesterite precursors, electrodeposition (ED) appears as one of the most 

important routes because of several distinct advantages: 

 Allows to deposit large-area thin films with a high throughput 

 The ED method takes place at atmospheric pressure at low temperatures 

 ED is a low-cost technique 

 High quality films can be obtained with a very low capital investment 

 The bath where the reaction occurs can be reused for many cycles if the solutions are 

refilled (reduced waste production, high material yield). 

 A high-grade recycling of the materials used can be applied 

 ED methods have already successfully been implemented into industry172 

ED methods involve electron transfer reactions between electrodes and dissolved reactant ions, 

which are usually dissolved in an aqueous solution. Despite the previously mentioned 

advantages ED also presents challenges that must be overcome. The main challenge for ED is to 

ensure a uniform lateral distribution both at microscopic scale (morphology of the electro-

deposited material) and also at the macroscopic scale (thickness/density of coverage of 

substrate area)173. In order to address both problems several strategies can be implemented: 

the microscopic uniformity is mostly influenced by the deposition potential and the interactions 

between the solution and the substrate. On the other hand, the macroscopic uniformity can be 

ensured by applying a uniform current to ensure the mass transport in an isotropic convection, 

in order not to limit mass transport174. 

https://dx.doi.org/10.1016/j.solener.2018.08.049
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When it comes to efficient ED processes for kesterites, there are two main techniques employed 

nowadays: Stacked elemental layer approach (SEL) and Cu-Sn-Zn metal alloy electrodeposition. 

5.1.1 Stacked elemental layer approach for electrodeposition 
 

Currently the best efficiencies achieved for ED kesterites have been obtained by SEL processing, 

as reported for CZTSe by Vauche et al.75 reaching efficiencies up to 8.2% and in the case of CZTS 

by Jiang et al 74 up to 8%. Employing SEL it is very interesting thanks to its high feasibility and it 

is also very easy to variate the composition of the precursors just by independently changing the 

deposition parameters of each electrodeposited layer individually. The precursor composition 

can be easily tuned by changing the thickness of each layer present on it, e.g. by a variation of 

the deposition time. 

The main drawbacks of this technique are a limitation of the available precursor designs. In ED 

the standard reduction potentials of the elements play a determinant role for deposition of an 

elemental layer on top of another. Because of this only the sequence Mo/Cu/Sn/Zn is able to 

behave correctly; it must be pointed out that the best efficiencies were obtained with this 

sequence.174–179 

 

5.1.2 Cu-Sn-Zn metal alloy Electrodeposition 
 

In contrast to the SEL routes where three separate electrolytes, baths and depositions are 

needed to obtain the metallic stack, for co-electrodeposition only one single electrolyte and 

one-electrodeposition step to form a precursor film is required. However, as in previous cases it 

also contains culprits related to difficulties to deposit homogeneous layers and problems with 

bath stability that might explain why up to now co-electrodeposition routes have shown lower 

efficiencies than SEL. Furthermore, obtaining an accurate control of the precursor metallic 

composition is challenging. 

In terms of efficiencies ranges from 2-6% have been reported in the literature employing for co-

electrodeposition followed by selenization or sulfurization treatments.180–184 Most of these 

publications, report a low temperature thermal treatment on the CZT precursors prior the 

annealing. The highest efficiency achieved for co-electrodeposited precursors via ED was of 8.0% 

by Jeon et al.185 and for the case of CZTS a 7.4% efficiency was reported by Ge et al.186 

 

5.1.3 Quaternary Electrodeposition  
 

The simultaneous electrodeposition of four elements (Cu, Sn, Zn and S (e)) is interesting as it 

consists of only one single deposition step, reducing enormously time and costs as less 

equipment and process steps are implied. Also, it could be expected that by depositing all the 

elements in a single step the precursor will be more uniformly intermixed at atomic scale. The 

deposition of all those elements altogether has proven to be extremely challenging and very few 

works have produced working devices, the best device obtained 5.5% efficiency and was 

reported by Ge et al.187 
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The different ED deposition options are summarized with their strengths and weaknesses in 

Figure 5.1. For this work, co-electrodeposited metallic precursor layers have been selected as 

most promising approach to be pursued. 

 

Figure 5.1 Strengths, weaknesses, opportunities and threats analysis of the three main 
electrodeposition routes used to form kesterite precursors. Reproduced from Colombara et 

al.173 
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5.2 CZTSe solar cells combining co-electrodeposition and Rapid Thermal 

Processing 
 

In this chapter, CZTSe thin films prepared by a sequential process combining a short-time co-

electrodeposited CZT precursor deposition and a selenization step in the RTP baseline 

implemented at IREC will be presented. 

In this work, we succeed in fabricating a 5.2% efficiency solar cell synthesized by this preparation 

route, which is about twice the efficiency of previous kesterite solar cells with co-

electrodeposited precursors and conventional thermal annealing fabricated from IREC188 

previously. When compared to the literature, only one work has been published that also 

combines co-electrodeposition and RTP treatments reaching 4.5% efficiency189. In the work 

presented with IREC’s RTP baseline, the final efficiency is increased, and the processing times 

are reduced by 4 times, if compared to the 4.5% device reported. 

As throughout this whole thesis, CZTSe solar cells are prepared on SLG substrates, following the 
procedure commented in Chapter 2 until the Mo deposition step. Once the back contact was 
deposited, the CZT precursors alloy was co-electrodeposited employing a three-electrode cell in 
collaboration with PhD. Valdés. In order to obtain the best adherence for the ED layer, the Mo 
was immersed into a 20% NH4OH solution for 3 min to remove native MoOx. A platinum (purity 
99.999%) mesh composed of much larger dimensions than the working electrode was used as 
an auxiliary electrode. Also, a silver chloride electrode (Ag/AgCl, KCl saturated) was employed 
as a reference. 

The electrolyte solutions for the ED were prepared using deionized water containing milli molar 

concentrations of CuSO4·5H2O (ACS reagent ≥98% Sigma-Aldrich); ZnSO4·7H2O (ReagentPlus®, 

≥99.0% Sigma-Aldrich) and SnSO4 (≥95% Sigma-Aldrich). Sodium citrate tribasic (Na3C6H5O7, ACS 

reagent, ≥99.0% Sigma-Aldrich) was used as complexing agent in the electrolyte solution for the 

co-deposition of CZT as was previously reported by Valdés et al.190 The molar ratios of 

Cu:Zn:Sn:Na-cit in the electrolyte were fixed to 1.3:1.2:1:20 with a copper concentration of 

13·10-3 mol/L.  The final pH of the solution was close to 6 without any addition of acids or bases. 

CZT precursor films were co-electrodeposited at room temperature in potentiostatic mode 

applying a potential of -1.2 V (vs. Ag/AgCl) during 15 min employing a VSP Electrochemical 

Workstation (Biologic). Once the CZT precursors were deposited by ED, the samples were 

submitted to the same RTP annealing process as summarized in Table 5. The samples were then 

etched and further completed to solar cell devices and characterized as previously reported in 

Chapter 2.  

 

5.2.1 Effects and results obtained on RTP annealing over co-electrodeposited 

precursors 
 

In line with the rest of this Thesis, putting a strong emphasis on revealing the formation 

pathways of the kesterite synthesis process we proceed to analyse the phases present on the 

reacted absorbers. For this, an XRD analysis was also carried out for the non-annealed and the 

RTP annealed samples, as can be observed in Figure 5.2: 
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Figure 5.2 XRD pattern of (a) CZT precursor electrodeposited at -1.2 V (vs Ag/AgCl) during 15 
min ad (b) CZTSe thin film obtained after RTP treatment. 

The precursor obtained by co-electrodeposition is mainly composed of binary phases such as: 

CuZn, Zn-rich Cu5Zn8 and Cu6Sn5. Furthermore, weak signals related to Sn phases are found in 

the diffractogram. When compared to bibliography, those alloy phases are common and have 

been reported by several authors180,191–193. As a result of the co-electrodeposition routes, the 

formation of alloys instead of pure metals is observed. The presence of intermetallic CuZn has 

also been related to a Cu-poor composition of the CZT precursor191 and it is suspected that the 

concentration of Cu ions regulates the formation of intermetallic compounds193. 

After RTP selenization, the diffractogram of the film presents intense and sharp peaks of the 

main crystallographic planes of the CZTSe phase. Furthermore, also MoSe2 and elemental Se 

phases are also detected. This Se phase is suspected to arise from the cooling down of the 

annealing process where residual selenium on the samples can be deposited by condensation 

of Se vapour194. 

Besides the crystal structure, the chemical composition is of key importance to achieve highly 

efficiency devices, particularly the Cu/ (Zn + Sn) (CZT) and Zn/Sn (ZT) ratios. More specifically, 

ideal values for the absorber composition are Cu-poor and Zn-rich compositions with a CZT of 

around 0.8-0.9 and a ZT of 1.2132.  

Table 10 Chemical composition and elements ratios in selected CZT and CZTSe films1. 

Sample Thickness [nm] %Cu %Zn %Sn %Se Cu/(Zn+Sn) Zn/Sn 

CZT 480.5 ± 95. 2 44.2 ± 1.1 27.9 ± 1.5 27.8 ± 1.1 - 0.79 1.00 
 

Sample Thickness [µm] %Cu %Zn %Sn %Se Cu/(Zn+Sn) Zn/Sn 
CZTSe 1.65 ± 0.21 22.7 ± 1.2 14.1 ± 1.0 10.4 ± 0.3 52.8 ± 1.5 0.94 1.38 

CZTSe + KMnO4 1.62 ± 0.15 22.5 ± 0.9 12.9 ± 0.6 12.5 ± 0.5 52.1 ± 1.0 0.88 1.03 
CZTSe + KMnO4 + 

(NH4)S 
1.55 ± 0.1 22.8 ± 0.6 13.2 ± 1.1 11.4 ± 0.4 52.6 ± 1.3 0.93 1.16 

CZTSe + KMnO4 + 
(NH4)S + KCN2 

1.53 ± 0.15 21.4 ± 0.8 13. 6 ± 0.8 11.2 ± 0.6 53.8 ± 1.8 0.86 1.21 

1Chemical composition and film thicknesses were determined using XRF. For CZT and CZTSe films 

the mean value and the error were calculated from six individual point measurements, while for 

the etched films not less than four individual measurements were taken. 

2Composition of the best device reported in this thesis by co-electrodeposition and RTP. 
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In this work, the composition of the co-electrodeposited precursor as well as the finished 

absorber layer have been analysed by XRF. The results are presented in Table 10. As can be 

observed, the precursors obtained via ED are Cu-poor and contain equal amounts of zinc and tin 

atoms. It must be noted that one of the main drawbacks173 about applying ED techniques is its 

difficulty to obtain homogeneously thick layers. This problem is also present here, as the 

thickness is around 0.5 μm, with a standard deviation around 100nm. However, the final 

deviation on the chemical composition for each element is below 5% for a 2.5 x 2.5 cm2 

electrodeposited film, which is a sign of good uniformity. After RTP annealing, the final 

composition approaches the desired Cu-poor Zn-rich stoichiometry. Finally, the excess of Se 

(above 50%) is thought to belong either to the MoSe2 layer which is formed during the 

selenization and this phase is condensed elemental Se, as previously observed by XRD. 

Furthermore, Table 10 also includes the variation of the composition of the CZTSe film after 

etching it, with the standard etching treatment used at IREC to remove secondary phases like 

ZnSe, Sn-Se and CuxSe93,195. After complete etchings are performed, the composition of the best 

CZTSe absorber possesses a Cu/ (Zn + Sn) ratio of approx. 0.85 and Zn/Sn ≈1.2. As common for 

CZTSe absorber its thickness is approximately three times the one of the precursor layers. 
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Figure 5.3 Top-view FESEM pictures of (a-b) co-electrodeposited CZT precursor (c-d) CZTSe thin 
film obtained after RTP selenization. Cross-section view of (e) CZT precursor and (f-h) CZTSe 

thin films (no etching). Pictures (g-h) show defects at Mo/CZTSe interface using higher 
magnification. 
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In order to characterize the differences in morphology, SEM analysis were conducted and are 

presented in Figure 5.3. At low magnification, Figure 5.3(a), all the films seem to be correctly 

and homogeneously deposited as no voids or cracks can be observed. When the magnification 

is increased (b) round particles within the nanometer range are noticed, with some dispersion 

of bigger agglomerates at the top surface. Once the RTP annealing is realized, (c), the films keep 

showing a high degree of homogeneity, but the morphology completely changes towards planar 

particles with an irregular shape. After selenization, CZTSe absorbers depict a greyish and 

opaque film. When increasing the magnification, (d), smalls voids start appearing at the surface. 

Those present voids might appear as a result of partial evaporations from volatile compounds 

formed at high temperatures such as SnSex
134,196,197. This evaporation of volatile SnSex, would 

also explain the increase of the Zn/Sn ratio from 1 to 1.38 after RTP selenization. A similar 

behaviour has also been reported by Unveroglu et al.198  

Finally, cross section pictures for CZT in (e) and CZTSe (f) also help to corroborate the previous 

XRF thickness measurements presented and provide additional evidences about the increase on 

the film’s thickness after RTP annealing. The CZT precursor shows compactness and high 

adherence to the Mo substrate. On the other hand, the CZTSe absorber, obtained via RTP, 

exhibits void at the Mo/CZTSe interface. Furthermore, localized delamination (partial 

detachment of the kesterite from the substrate) is observed, which is expected to be highly 

detrimental for the final device performance, as a low-quality Mo/CZTSe interface will strongly 

influence the overall solar performance. The formation of this voids and the local delamination 

is a common problem throughout the kesterite technology as it is reported for several synthesis 

techniques like sputtering197,199 or chemical deposition methods200,201. 

 

Figure 5.4 Raman spectra of a finished solar cell under different excitation wavelengths: (a) 
442 nm and (b) 633 nm. 

In order to further analyse the phases, present in our samples, Raman spectroscopy with several 

wavelengths was carried out. Figure 5.4 depicts the spectra obtained for wavelengths 442 and 

633 nm. Several wavelengths have been applied in order to take into account resonant 

excitation. When studying CZTSe, resonant effects are usually detected in binary compounds 

like ZnSe or Sn-Se, at excitation wavelengths of 442 or 663 nm respectively202.  

Once the chemical etching procedures developed at IREC and commented in Chapter 2 were 

implemented, no traces of SnSe2 and/or ZnSe secondary phases were detected. In Figure 5.4a 

the spectrum of a complete device for the 442 nm wavelength is presented. Here, we observe a 
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dominant band at 300 cm-1 identified as A1(LO) and weaker contributions at around 195 and at 

600 cm-1 that can be identified as Se-Se vibrations of the CZTSe and the second order of the A1 

(LO) CdS mode. Resonant effects of CdS for this wavelength may explain the remarkable 

difference in Raman intensities between CdS and CZTSe layers203. Moreover, the absence of 

contributions at 250 and 500 cm-1 which are characteristic of ZnSe under resonant conditions 

(488 nm) suggest the absence of this phase in the CZTSe204. 

When a laser excitation of 633 nm is applied (Figure 5.4b) only Raman signals coming from the 

CZTSe layer are present in the spectrum without interference from the upper layers203. No 

contribution from further secondary phases can be detected. The spectrum obtained shows the 

main modes of CZTSe at 195 cm-1 and at 170 cm-1, both of them containing A symmetry; and 

other two minor signals at 235 and 250 cm-1 with E and B symmetry, as has been reported into 

literature205. Under these excitation conditions the absence of Raman signals between 110 and 

180 cm-1 might be taken as an indication of the absence of Sn-Se related secondary phases on 

the surface of the film206.  

With the aim to deeply analyse these samples, Raman micro-mapping was employed. Raman 

micro-mapping is considered nowadays a very powerful tool to study the homogeneity of thin 

films and their properties. Raman maps have been recorded for the sample present in Figure 

5.5a following the grid depicted in (a), using 20 μm steps in the x and y directions. Raman maps 

performed at excitation wavelengths of 532 (b and c) and 786 nm (d and e) showing a 

homogenous distribution of kesterite Raman signals along the analysed area (80 x 80 μm) 

altogether with a weak and broad signal from the CdS buffer layer, which is only visible when 

the excitation wavelength applied is 514 nm (close to the resonant effect). The broad 

appearance of the CdS Raman mode can be explained by its nanocrystalline dimensions. Also, 

the even distributions of Raman signals and a more statistical representation can be visualized 

by showing the maps in the form of colours contours. Those are represented for each 

wavelength in (c and d) respectively. In both figures narrows and high intensity colour bands 

around the main A mode (195 cm-1) of the CZTSe, which is an indication of high crystallinity and 

homogeneity of the CZTSe absorber throughout the whole sample. 
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Figure 5.5 Raman μ-maps of the best CZTSe sample obtained by co-electrodeposition and RTP; 
(a) microscopy image and grid used to record the maps; (b) 514 nm Raman map; (c) 514 nm 

colour contour of Raman intensity signals; (d) 786 nm Raman map and (e) 786 nm colour 
contour of Raman intensity signals.  
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The optoelectronic parameters of the best solar cell obtained by co-electrodeposition and RTP 

are presented into Figure 5.6. Moreover, the solar cell parameters for the best cell and statistical 

values for the full sample can be found in Table 11. As commented previously, a solar cell with 

a maximum efficiency of 5.2% has been achieved doubling the previous results at IREC188. TO the 

best of my knowledge and this is also the highest value presented in the literature for co-

electrodeposited precursors annealed by an RTP. Shunt and series resistance for the record cell 

were Rshunt = 67.4 Ω cm2 and Rs = 0.2 Ω cm2 respectively. In concordance with the observation 

from the Mo/CZTSe interface, the Rshunt of the solar is quite low in comparison to higher 

efficiency cells (around 10 times higher)64.  

It must be commented that there is no cross-over between dark and illuminated I-V curves. 

Usually, the cross-over has been explained by to the generation of photogenerated carrier 

trapping in the CdS layer135,207,208. In conclusion, the absence of a cross-over is a hint towards a 

good CZTSe/CdS interface quality and proper band alignment. 

 

Figure 5.6 I-V voltage curves obtained under simulated AM1.5G for the best CZTSe solar cell 
obtained. The insert shows an image of the full sample and the statistical values are presented 

into Table 11. 
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Table 11 CZTS best device optoelectronic parameters1 

 

RSD, relative standard deviation. 

1Main optoelectronic parameters (η, VOC, JSC) are reported as best value at cell size (active area: 

0.087 cm2), average value for the full sample (21 cells, see insert in Figure 5.5a), and its relative 

standard deviation. The reported values for fill factor (FF), series resistance (RS), and shunt 

resistance (RSH) are average for the full sample.  

 

Figure 5.7 External Quantum Efficiency (EQE) of the best device obtained. The inset shows the 
calculated BG of the CZTSe absorber from the EQE data. 

Finally, an EQE spectrum of the best cell is shown in Figure 5.7. The EQE reaches 70-80% 

between 500 and 800 nm indicating quite good carrier collection for the p-n junction. Below 500 

nm absorption of the CdS buffer layer reduces the EQE in this region. Finally, from 900 nm, the 

decay in EQE is probably related to the deep absorption and low diffusion length of charge 

carriers generated at these wavelengths. 

 

 

η 
(best) 

[%] 

η 
(mean) 

[%] 

RSD 
[%] 

Jsc (best) 
[mA cm-

2] 

Jsc (mean) 
[mA cm-2] 

RSD 
[%] 

Voc 
(best) 
[mV] 

Voc 
(mean) 

[mV] 

RSD 
[%] 

FF 
[%] 

RSH 
[Ω.cm2] 

RS 
[Ω.cm2] 

5.2 4.5 11.7 30.9 30.8 4.7 327 309.9 5.4 46.7 48.5 0.8 
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5.3 Summary 
 

In this Chapter, the potential of fast, low-cost ans large area compatible processes for the 

preparation of earth-abundant kesterite solar cell technologies has been further expanded. For 

this, the previously developed RTP process for the reactive annealing of metallic precursors is 

applied to a new set of metallic precursor layers fabricated by electrodeposition. 

Electrodeposition (ED) offers fast and industrially compatible processing on large areas. From 

the different electrodeposition of metallic alloys from one electrolyte solution has been selected 

because of its simplicity. 

Following the main emphasis of this Thesis, the layer properties and phases present in the 

precursor and final absorber films have been analysed. We find that the metallic CZT films 

synthesized by co-electrodeposition consist of mainly binary CuZn and CuSn alloys. The 

composition of the films, after the RTP annealing reached the desired Cu-poor Zn-rich 

stoichiometry. The investigation of the morphology by SEM showed a homogeneous coverage 

of the ED films composed of round particles with nanometric size. The deposited metallic 

precursor alloys showed a pronounced thickness variation of roughly 20% over 2.5 x 2.5 cm2 

sized substrates. While this is a common problem for ED, the thickness homogeneity should be 

improved in future optimizations. After RTP annealing, film thickness roughly triples and the film 

morphology changed to a large extent, showing now platelet-shaped grains. Cross-sectional 

micrographs revealed voids located in the Mo/CZTSe interface partial film delamination.  

The XRD analysis conducted presented sharp and intense peaks of the main crystallographic 

planes of the kesterite phase, altogether with MoSe2 and elemental Se. This elemental Se is 

thought to come from re-condensation of Se vapour in the chamber. The Raman spectroscopy 

analysis performed showed that after the chemical etchings procedures applied, no contribution 

from secondary phases was detected. Also, a Raman micro-mapping study was applied to the 

films, depicting homogeneous distributions of the signals, which are signs of high crystallinity 

and homogeneity of the CZTSe absorber. 

Finally, absorbers made from co-electrodeposited precursor films selenized with optimized RTP 

recipe developed in this Thesis were completed to solar cell devices. The best device reached a 

promising 5.2% with no roll-over effect. This is twice as much as previously obtained at IREC with 

electrodeposited absorbers and conventional thermal annealing. It shows the versatility and 

applicability of the newly developed RTP process for different precursors and opens new 

horizons for industrially viable earth-abundant thin film PV technologies. 
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Figure 5.8 I-V curves of champion cell summarizing the main causes for its Voc deficit. 
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6 Conclusions and Outlook 

 

The first objective of this present Thesis was to develop, establish and optimize a RTP annealing 

process for the synthesis of CZTSe absorbers in the IREC’s baseline. Special focus has been set 

on the obtainment of the fastest possible RTP annealing process without compromising its later 

efficiency, achieving remarkable values up to 8.3% for a CZTSe device submitted to an annealing 

process which lasts only 12 minutes. This is one of the highest efficiency for such a fast reaction 

so far. The second objective consisted in a comprehensive analysis of the reaction kinetics during 

the selenization process as a function of processing conditions and in comparison with slow 

standard slow processes developed for conventional tube furnaces. Finally, the technology 

transfer of the stablished RTP process to another set of precursor layers by co-electrodeposition 

was tested successfully. Most of the results of this thesis have been already published as 

research articles in high impact peer-reviewed journals or are in process to be published. 

In the first part of this thesis, previously established baselines for conventional tubular furnaces 

at IREC were presented and the key points contrasted to RTP processing. It was demonstrated 

that a two-step temperature profile of the annealing process was necessary in order to properly 

control the homogenization of the selenization and to obtain uniform absorbers. The optimized 

two-step RTP process stablished at IREC through this thesis consists of a first stage at 400 ⁰C at 

1 mbar that lasts for 3 minutes, using a 180 ⁰C/min ramp and a second stage at 500 ⁰C at 900 

mbar that lasts in this case for 5 minutes, employing a 60 ⁰C/min ramp.  

After technological process optimization, the question of how the reaction kinetics and phase 

formation pathways are influenced by the dynamics of the annealing procedure appeared. In 

order to do so, a break-off experiment where the process was interrupted at different times of 

the annealing protocol was implemented. It has been proven that the high vapour pressures 

obtained with RTP have a strong impact on the formation pathways of the kesterite absorber. 

In the RTP case, a competition between two mechanisms was found, one driven by binary metal 

selenide compounds and a second one driven by the ternary Cu-Sn-Se and Zn-Se compounds. 

While the selenium is already completely incorporated into the absorber after the first annealing 

step, the necessity of the second annealing step also came clear. In order to obtain high quality 

absorbers and efficient solar cells, the crystal quality still needs to be enhanced with the second 

annealing step. 

The next part of this thesis, has provided evidences that the kesterite formation pathway 

critically depends on the chalcogen availability. It has been studied how to drive the formation 

mechanism with the chalcogen availability to a formation pathway based on the ternary 

compound Cu2SnSe3, which possesses a lower risk of secondary phases. A comprehensive 

analysis was carried with a combined kinetic and phase analysis for slow and fast ramping 

conditions. These studies confirmed that the formation pathways depend on the chalcogen 

availability and for medium-low chalcogen availabilities (1x10-3 ≤ [Se] ≤ 1x10-2 g/cm3) the 

kesterite is formed through a pseudo-zero order kinetic reaction, with a constant equal to k0 = 

(1.9 ± 0.2) x10-2 s-1 and a t1/2 = 37 s, which evolves to a first-order reaction when annealing times 

are long enough. On the other hand, when the chalcogen availability is increased to medium-

high conditions the kesterite formation reaction follows a first-order type, with a kinetic 

constant about k1 = (2.9 ± 0.4) x10-2 s-1, and a t1/2 = 24 s. Therefore, we were able to prove that 

the chalcogen availability allows to change the kesterite formation pathway. However, we could 

also show that the formation of binary compounds cannot be completely eliminated, but only 
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be diminished until marginal extents. Moreover, it has also been demonstrated that the 

sulfurization process is a slower process than the selenization. 

In the last part of the Thesis, the reliability and feasibility of the stablished RTP process has been 

tested. In order to do so, the RTP annealing process was extended to precursors synthesized by 

other techniques, in this case co-electrodeposited Cu-Sn-Zn metals. This co-electrodeposited 

precursor layers consisted mainly on binary CuZn and CuSn alloys. After the RTP annealing was 

carried on, the composition of the films became the desired Cu-poor Zn-rich. The XRD analysis 

depicted sharp and intense peaks for the kesterite phase and also showed the appearance of 

elemental Se, most probable from condensation of Se reminiscences in the chamber. On the 

other hand, the Raman analysis proved that after the etching procedures no contribution from 

secondary phases was detected. Cross-sectional micrographs revealed voids located in the 

Mo/CZTSe interface. Finally, with this co-electrodeposition technique altogether with RTP 

processing, a very promising and remarkable efficiency of 5.2% was reached, being the highest 

result reported with this combination so far. 

On the whole, the work presented in this Thesis provides extensive and comprehensive results 

about the development, establishment and optimization of an RTP annealing process for 

kesterite solar cells. The presented RTP annealing process has led to efficiencies which can 

withstand the comparison with the ones obtained by conventional furnace. It also has clarified 

how to drive the kesterite formation pathway by the chalcogen availability and the kinetics 

involved, providing a comprehensive picture of the kesterite synthesis and the turning knob that 

enable fine-tuning it. Overall, this has added a new kesterite production baseline option to IREC 

opening a wide new field of promising research possibilities. 

In spite of the huge amount of research already performed in kesterite, there is still room for 

improvement. Research on kesterite has been mostly relying on what has been prior done to its 

“close cousin” CIGS, driving kesterite until nowadays where all the previous work has reached a 

limit, as can be observed in the no-improvement of the world record. Now is the time for 

kesterite to “leave the nest”. New strategies specifically for kesterite must be addressed and 

RTP processing, thanks to all the interesting skills that provides such as: faster processing time, 

the possibility to achieve a high Se vapour since the early beginning of the annealing or its easy 

adaptation to work with process including several steps, appears as one of the most interesting 

paths for improving kesterite research. Paraphrasing Richard P. Feynman, “there is plenty of 

room at the bottom”, several strategies must still be addressed to improve the now established 

kesterite RTP processing baseline at IREC, such as: alkali doping such as Li or Ge, study on the 

layers engineering by introducing new precursors containing bronze on its structure instead of 

pure Sn, studying the Na dynamics on the absorbers obtained by RTP, introducing an elemental 

Se layer prior to the annealing step, introducing anti-reflective coatings and metallic grids, start 

working on a band-gap grading and finally to follow modern trends in thin film research like the 

use of semi-transparent contacts. 
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8 Appendix 

8.1 Section 1- Appendix related to Chapter 3 
 

 

Figure A1. Cross sectional image of a kesterite precursor obtained via Sputtering. 

 

Figure A2. Samples studied in Chapter 3 ranging from RT up to 500 ⁰C 
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Figure A3. Raman analysis of the samples studied in Chapter3 from RT up to 500 ⁰C under 4 

different excitation wavelengths (325 nm, 442 nm, 532 nm and 785 nm) 
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Figure A4. Sodium depth-profile evolution through RTP processing 

It can be observed that the typical sodium segregation at the interfaces (CZTSe/Mo and 

CZTSe/air) increases with increasing process steps. Sample H shows a sodium profile out of 

trend, probably due to an anomalous sodium content in the glass substrate.      
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8.2 Section 2- Appendix related to Chapter 4 
 

Complete SEM analysis of samples prepared under different chalcogen availabilities 

and EDX of selected samples 

 

Figure A5. a) Top view SEM images of absorbers generated by RTP at different Se vapor 

pressures. b) Top view SEM images of absorbers generated by CTP at different Se vapor 

pressures. c) Top view SEM images of absorbers generated by CTP at different S vapor 

pressures. 

 

Figure A6. SEM top-view image of sample prepared under high chalcogen availability (low 
ramp), and corresponding elemental distribution. 
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Table A1. Equations employed for the order fitting 

Kinetic Order General Equation Fitted Equation 

Zero Order 
−
𝑑[𝑆𝑒]

𝑑𝑡
 = 𝑘 

[𝑆𝑒]𝑡 = [𝑆𝑒]𝑡0 − 𝑘𝑡 

First Order 
−
𝑑[𝑆𝑒]

𝑑𝑡
= 𝑘[𝑆𝑒] ln [

[𝑆𝑒]𝑡
[𝑆𝑒]𝑡0

] =  −𝑘𝑡 

Second Order 
−
𝑑[𝑆𝑒]

𝑑𝑡
= 𝑘[𝑆𝑒]2 

1

[𝑆𝑒]
=  

1

[𝑆𝑒]𝑡0
+ 𝑘𝑡 

 

- The [Se] has been extracted from the XRF measurements 

- t0: has been considered by [Se] at 250 ⁰C 

Fast ramping selenization- 

 

Figure A7. Raman spectra for absorbers prepared using fast ramping process under different 

chalcogen availabilities, with the following excitation wavelengths: 442 nm (a), 532nm (b) and 

785nm (c). 
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Figure A8. XRD diffractogram of the different samples studied varying the ChA with fast 

ramping. 

Slow ramping selenization- 

 

Figure A9. Raman spectra for absorbers prepared using slow ramping process under different 

chalcogen availabilities, with the following excitation wavelengths: 442 nm (a), 532nm (b) and 

785nm (c). 
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Figure A10. XRD diffractogram of the different samples studied varying the ChA with fast 

ramping. 

 
 
Slow ramping sulfurization- 

 

Figure A11. Raman spectra for absorbers prepared using slow ramping process under different 

chalcogen availabilities, with the following excitation wavelengths: 325 nm (a), 532nm (b) and 

785nm (c). 
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Figure A12. XRD diffractogram of the different samples studied varying the ChA with fast 

ramping. * relates to unidentified peaks. 
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