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General introduction 

 

 

Glacial cycles and diversification 

 

Allopatry has been considered the most common mechanism of diversification at 

the species and population levels (Coyne & Orr, 2004; Price, 2007). This process, by 

definition, relies on the geographic separation of populations either though the 

colonization of new territories (dispersal) or the separation as a consequence of an 

emerging geographical barrier (vicariance). Traditionally, these vicariant events were 

associated with geological changes, such as continent breakups, mountain ranges or 

large rivers. But species sometimes display large continuous ranges with clearly 

differentiated populations despite a lack of apparent barriers between them, which 

suggests that a previous isolating factor acted between those populations and has since 

disappeared allowing secondary contacts. One of the first explanations proposed for 

such situations was the effect of historical climate and habitat changes, especially during 

large-scale events such as glacial cycles (Rand, 1948). Ever since, the glacial cycles of the 

Quaternary [from 2.6 million years ago (Mya) to the present] (Fig. 1), and especially the 

last glacial maximum (LGM) (ca. 21,000 years ago), have received substantial attention 

as promoters of allopatric diversification (e.g. Mengel, 1964; Avise & Walker, 1998; 

Hewitt, 1996, 2004; Weir & Schluter, 2004; Lovette, 2005). 

 

 

Figure 1: Changes in the global temperature during the Pleistocene, based on the estimates from EPICA 

community members (2004) (blue line) and Lisiecki & Raymo (2005) (black line). 
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Glacial cycles deeply altered the global climate (Fig. 2), modifying the distribution 

of habitats worldwide and in turn the distribution of many species, especially in 

temperate and cold regions (Webb III & Bartlein, 1992; Dynesius & Jansson, 2000). These 

species overcame such changes by persisting in areas of refugia during climatically 

unsuitable periods (Bennett & Provan, 2008; Gavin et al., 2014). Over multiple glacial 

and interglacial episodes, species would have experienced repeated contractions and 

expansions of their distribution ranges, leaving a genetic print on the lineages over time 

(Avise & Walker, 1998; Hewitt, 1999, 2000, 2004). However, molecular studies on bird 

species in North America challenged the idea of an increased diversification during the 

Pleistocene (Klicka & Zink, 1997). This sparked a debate between authors that defended 

a Pleistocene origin for many North American bird species and subspecies (Johnson & 

Cicero, 2004; Cicero & Johnson, 2006), and those advocating for an earlier origin (Zink 

et al., 2004; Zink & Klicka, 2006). When considered together, both perspectives show 

that the timing of the diversification in these birds is extremely dependant on the degree 

of relatedness between species/lineages (Lovette, 2005). While the split in some species 

pairs predates the Pleistocene, more closely related species diverged mostly during the 

Pleistocene, as well as subspecies or populations within species. But more importantly, 

the proximity to the glaciated areas is a key factor to explain these differences. Northern 

bird species, whose habitats were more affected during glacial periods, tend to show a 

more recent diversification than temperate and tropical species (Weir & Schluter, 2004; 

Lovette, 2005). This also applies to bird species in the southern hemisphere (Weir et al., 

2016) and, to a lesser extent, to boreal mammals (Arbogast & Kenagy, 2001) and 

Neotropical montane species (Weir, 2006). 
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Figure 2: Mean annual temperature in the northern hemisphere in the present (representing an 

interglacial period) and during the last glacial maximum (ca. 21,000 years ago) with the extension of the 

main glaciers (in white), modified from Ehlers et al. (2011). 

 

 

High latitude areas, in particular the Arctic and boreal regions have often been 

considered as “evolutionary freezers”, with slow evolutionary rates and low diversity 

due to its harsh climatic conditions (Rohde, 1992; Wright et al., 2006). On top of that, 

some authors also attributed the low genetic diversity to the repeated action of glacial 

cycles (Hultén, 1937; Hewitt, 1999). But recent studies suggest the opposite, considering 

the Arctic as a young region (Murray, 1995) where species and their populations 

diversified during recent times (Weir & Schluter, 2004; Brochmann & Brysting, 2008). 

Recent works that built upon genetic data support a recent diversification of many Arctic 

species from different taxa, including plants (e.g. Abbott & Comes, 2004; Eidesen et al., 

2013), butterflies (e.g Todisco et al., 2012; Kleckova, et al., 2015), mammals (e.g. 

Fedorov & Goropashnaya, 1999; Hope et al., 2012), reptiles (e.g. Babik et al., 2004; 

Horreo et al., 2018) and birds (e.g. Buehler & Baker, 2005; Jones et al., 2005; Maley & 

Winker, 2010; van Els et al., 2012). 

These studies highlight the role of the Pleistocene glacial cycles in the 

diversification between and within species, and point at the refugia as a key component 

in allopatric speciation processes. However, most of them only suggest the existence of 
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the refugia based on divergence times and/or population-size changes estimated from 

genetic data. Although valuable, those approaches do not provide information on the 

spatial mechanisms involved in diversification processes. Such mechanisms are 

necessary to understand the relationship between the number and location of the main 

areas of refugia, and the emergence of the current genetic and phenotypic diversity of 

the species during the Pleistocene. 

 

The definition of “refugia” is a matter of debate which has been reviewed by 

several authors (Bennett & Provan, 2008; Ashcroft, 2010; Stewart et al., 2010). In 

general, the term refers to geographic areas sustaining certain climatic conditions that 

are disappearing everywhere else (Ashcroft, 2010; Dobrowski, 2011), providing shelter 

for the species that are experiencing a retreat in their ranges (Keppel et al., 2012). As 

the climatic conditions become more favourable, populations emerge from the different 

refugia recolonizing the totality or part of their previous ranges. At this point, isolated 

populations can expand into a large portion of the species former distributions or make 

secondary contact with other populations, resulting in a new genetic landscape across 

the range of the species (Hewitt, 1999). 

There have been some influential studies that proposed specific areas of glacial 

refugia as the geographic origin of subspecies across a wide number of Arctic species 

(Macpherson, 1965; Ploeger, 1968). These works consisted mostly in educated guesses 

based in the knowledge of paleoclimatic environments of their time and without any 

available genetic and fossil data or paleodistribution models to support them. But 

nonetheless, they provided a strong foundation for posterior hypotheses on the 

phylogeography of Arctic species, and the critical role of the areas of northern refugia 

on the distribution of the species during glacial periods (see Stewart & Lister, 2001; 

Provan & Bennett, 2008). 

 

The knowledge about the phylogeographic histories of Arctic species has greatly 

advanced over the last decades, yet there still are uncertainties in the link between the 

genetic and geographic mechanisms involved. Genetic structure and divergence times 

within Arctic species suggest, but do not demonstrate, the implication of glacial cycles 
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in their diversification. In order to confirm such hypothesis, there is a need for an 

integrative approach to explore the spatial processes involved in this genetic divergence. 

Furthermore, this needs to be assessed for multiple species and across the whole Arctic 

to identify different patterns and processes, instead of generalising from the results 

obtained from individual species. As highlighted by Hickerson et al. (2010), integrating 

different genetic and geographic approaches across large taxonomic groups or ecologic 

assemblages should be a priority for future advances in phylogeography. 

 

Birds, and especially northern species, have been the most common studied group 

to investigate the diversification of species during the Pleistocene (Avise & Walker, 

1998; Weir & Schluter, 2004; Lovette, 2005). Even the most contentious aspects of this 

evolutionary process have been assessed with the study of temperate and northern bird 

species (Klicka & Zink, 1997; Johnson & Cicero, 2004; Zink et al., 2004; Cicero & Johnson, 

2006; Zink & Klicka, 2006). Beyond the classic interest in birds from scientists and 

naturalists, their utility as a study group on this topic is also due to their widespread 

distributions across different habitats and regions, the large amount of Arctic and boreal 

species and their high intraspecific diversity. 

 

The Arctic shorebirds 

 

In this thesis, we used the Arctic species of shorebirds as case study group. The 

shorebirds (also known as waders) are one of the most representative groups of the 

Arctic avifauna due to the amount of species in the region and their large population 

densities (Järvinen & Väisänen, 1978; Meltofte et al., 2007). These birds constitute an 

ecologically homogeneous group, although not phylogenetically. They all belong to the 

order Charadriiformes to which also belong seagulls, terns, auks, skimmers, skuas, 

pratincoles and coursers. Within this order, shorebirds form a polyphyletic group with 

two main clades: Charadrii (plovers and allies) and Calidri (sandpipers and allies), the 

latter being the sister group to Lari (gulls, terns, auks and others) (Paton et al., 2003; 

Thomas et al., 2004; Paton & Baker, 2006; Baker et al., 2007). 
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The are 12 families and over 210 species of shorebirds distributed across all 

continents, reaching even Antarctica (del Hoyo et al., 2018). As the name shorebirds (or 

waders) suggests, their preferred habitats are near the water, and are usually found in 

wetlands, marshes or intertidal and coastal areas, where they feed mainly out of 

molluscs, insects and other invertebrates (Fig. 3).  

 

 

 

 

 

Figure 3: pictures of different species of shorebirds. On the top left, a group of Eurasian Oystercatchers 

(Haematopus ostralegus) (photo: Ángel Arcones); on the top right, a Common Redshank (Tringa totanus) 

(photo: Xavier Ferrer); on the bottom left, a Dunlin (Calidris alpina) (photo: Xavier Ferrer); on the bottom 

right, a Ruddy Turnstone (Arenaria interpres) (photo: Marco Sannolo) 

 

Around half of all the species have partial of full migratory behaviour (del Hoyo et 

al., 2018). Furthermore, up to 70 different species reach Arctic and subarctic areas 

during their breeding season (Chester, 2016), where the tundra constitutes their main 

habitat. The migration to those high-latitude breeding grounds often involves travelling 

over 5,000 kilometres, sometimes non-stop, from their non-breeding grounds in 

intertropical regions or temperate areas of the southern hemisphere (van de Kam et al., 

2004). To achieve such feats, these birds display a great ability to adapt their bodies and 

metabolism to meet the demands of the travel. Before the spring migration, they stack 

up fat reserves and increase the size of their pectoral muscle and the heart, while 
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reducing the size of their digestive system (Piersma et al., 1999, 2002). The bulk of 

migrants arrive at the Arctic between May and early June (Meltofte 1985, Syroechkovski 

& Lappo, 1994, del Hoyo et al., 2018), and after 2-3 weeks they lay a clutch of usually 

four eggs (see Meltofte et al., 2007). Between July and August begins the autumn 

migration, minimizing the post-breeding stay in the Arctic to avoid a decline in food 

availability during their migration to the non-breeding grounds (Schneider & Harrington, 

1981). 

Migrating to breed in the Arctic is a very expensive strategy in terms of energy. 

Aside from the fat storage required for the travel, these birds also have a higher 

metabolic rate while staying at high latitudes due to the cooler climatic conditions 

(Lindström & Klaassen, 2006; Piersma et al., 2003). In order to make such strategy cost-

efficient, other factors must be playing a key role. It has been hypothesized that peaks 

in the primary productivity of habitats during the spring and summer plays an important 

role in the migratory behaviour of birds (Ponti et al., 2018). In the Arctic, the period of 

productivity only lasts a few months during the short summer, but since suitable areas 

were uninhabited during the winter, the initial intra and interspecific competence during 

the breeding season is much lower than in tropical areas, were competing 

species/individuals occur year-round (Cox, 1968). Breeding in the Arctic also provides 

more hours of daylight for foraging (Meltofte et al., 2007), a lower risk of predation 

(McKinnon et al., 2012) and a lower parasite prevalence that help saving some energy 

expenditure in the immune system (Piersma, 1997). 

As the distribution of the species changed over the glacial cycles, the long-distance 

migration of these and other Arctic birds would have changed too. Zink & Gardner (2017) 

suggested an interruption of the migration in many species during the glacial periods, 

although it is unclear if this was the case for Arctic species with available northern 

breeding areas during these periods. Upon post-glacial expansion, the migratory routes 

likely determined the different paths of expansion of the species, contributing in some 

cases to the divergence between populations during this period (Buehler et al., 2006; 

Milá et al., 2006, 2007; Ruegg, Hijmans, & Moritz, 2006). 
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Arctic shorebirds have a notable intraspecific diversity, as 21 of the 70 Arctic 

species have described subspecies (Engelmoer & Roselaar, 1998; del Hoyo et al., 2018), 

with a few more awaiting recognition (e.g. Barisas et al., 2015; Jukema et al., 2015; 

Leblanc et al., 2017). In his work on the geographic differentiation within Arctic geese 

and fowls, Ploeger (1968) extended his inference to some Arctic shorebird species, 

supporting similar patterns of diversification linked to the ice-free areas during the LGM. 

A work on the Dunlin (Calidris alpina) also linked the diversification of its subspecies 

from proposed areas of refugia (Greenwood, 1986). The first studies based on molecular 

analyses highlighted a very recent origin of the current diversity (Wenink et al., 1993, 

1994, 1996; Baker et al., 1994; Kraaijeveld & Nieboer, 2000). However, the timing greatly 

varied between species. For example, C. alpina showed consistently older lineages than 

Calidris canutus, suggesting different evolutionary histories (Wenink et al., 1993, 1996; 

Buehler & Baker, 2005).  

Additionally, multiple studies reported very shallow genetic diversity and a lack of 

genetic structure in Arctic shorebird species, despite having recognised phenotypic 

subspecies. This is the case, for example, of C. canutus (Baker et al., 1994), Tringa 

totanus (Ottvall et al., 2005), Arenaria interpres (Wenink et al., 1994), Calidris maritima 

(Barisas et al., 2015; Leblanc et al., 2017) and Charadrius hiaticula (Thies et al., 2018). 

Some authors point out that the current phenotypic variation does not always 

reflect genetic differentiation (Marthinsen et al., 2007; Rheindt et al., 2011). The overall 

low genetic diversity has been attributed to severe changes in their ranges and 

population sizes in recent times (Kraaijeveld & Nieboer, 2000), which many authors 

consider a consequence of Pleistocene glacial cycles (Wenink et al., 1993, 1996; Baker 

et al., 1994; Buehler & Baker, 2005; Pruett & Winker, 2005; Thies et al., 2018). However, 

the link between glacial cycles, biogeographic changes and intraspecific diversification 

across this group remains mainly unknown. Previous phylogeographic studies focused 

around individual species (e.g. Ottvall et al., 2005; Marthinsen et al., 2007; Miller et al., 

2013; Thies et al., 2018) or the comparation between only two species (Wenink et al., 

1994; Buehler & Baker, 2005; Pruett & Winker, 2005). Moreover, these studies tend to 

oversee the geographic implications of the glacial and interglacial periods, and base their 

assumptions on the results from genetic data. 
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Understanding the implications of the Pleistocene glacial cycles in the diversity 

and distribution of Arctic species represents a key topic in phylogeography (Avise & 

Walker, 1998; Hewitt, 2000, 2004; Weir & Schluter, 2004; Lovette, 2005). Arctic 

shorebirds are representative of all the different Arctic and subarctic ecosystems, and 

reflect the diversity patterns that are also found in other Arctic taxa. Understanding the 

role of the climate in their diversification would provide a more complete picture of the 

recent evolution of the Arctic biodiversity. This is fundamental not only in evolutionary 

terms, but also to assess potential responses of Arctic species to the current climate 

change (Parmesan, 2006; Williams et al., 2013). Among birds, migratory and northern 

species are some of the most endangered by climate change (Crick, 2004; Huntley et al., 

2008; Virkkala & Rajasärkkä, 2011; Barbet-Massin et al., 2012; Tayleur et al., 2016). The 

long-distance migrations of the Arctic shorebirds reinforce their value as indicators of 

the impacts of climate change in the biodiversity worldwide (Piersma & Lindström, 2004; 

Meltofte et al., 2007; Galbraith et al., 2014) 
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Objectives 

 

In this thesis we aim to disentangle the role that the changes in the global climate 

had in the diversification and conservation of Arctic shorebirds. To achieve this goal, we 

take an integrative approach that combines both geographic and genetic perspectives, 

covering all the species possible, and exploring both past and future potential changes. 

 

 

Chapter 1: In this chapter, we explored the effects of the glacial and interglacial periods 

on shorebird spatial diversification from a geographic perspective. The main hypothesis 

is that the fragmentation and isolation of the breeding populations during these periods 

led to the current intraspecific diversity. Combining species distribution models (SDMs) 

and the fossil record, we compared the distribution patterns between monotypic 

species and those with multiple subspecies that help explain their intraspecific diversity 

differences. Additionally, we examined whether this pattern changed between 

geographic regions, and its potential implications on the long-distance migration in 

these birds. 

 

Chapter 2: The geographic mechanisms derived from the first chapter needed 

confirmation from a genetic point of view. Using various molecular clock and coalescent 

methods, we test whether the timing of the diversification supported the role of the 

glacial cycles in the process, and if the resulting genetic structure is related to the 

geographic patterns recovered. 

Since the availability of specific mitochondrial molecular clock rates for shorebirds is 

greatly reduced, and the use of “universal” evolutionary rates is criticized, we developed 

a new estimation. This involved the largest analysis of this type in terms of number of 

species, genes, and fossil calibrations used. The goal was to provide rates for each of the 

mitochondrial markers, for any lineage within the avian phylogeny. The results are then 

applied to the genetic analyses of the Arctic shorebirds studied. 
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Chapter 3: In this last chapter, we explore how these Arctic species will fare against 

the next great challenge: the current climate change. It is expected that over the next 

century the Arctic shorebirds will experience changes in their breeding distribution, both 

in terms of range extent and latitudinal distribution. However, given the uneven 

geography of the Arctic region, and learning from previous chapters, we examined 

potential differences in responses between the main geographic regions. we also 

compared the effects of the current climate change in the Arctic with previous climatic 

scenarios. This helps to put the current situation into perspective of their most recent 

evolutionary history as a group, and better comprehend its implications in the 

distribution and conservation of this representative Arctic group. 
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Chapter 1: 

Pleistocene glacial cycles as drivers of allopatric 

differentiation in Arctic shorebirds. 

 

 

Authors: Arcones A., Ponti R., Ferrer X. and Vieites D. 
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Pleistocene glacial cycles as drivers of allopatric differentiation in Arctic 

shorebirds. 

 

Abstract 

During the Pleistocene, the glacial cycles severely altered the ranges of species, 

especially in the boreal and Arctic regions. Such changes could have favoured isolated 

populations that originated the current intraspecific diversity. However, the spatial 

mechanisms that drove this0 diversification in Arctic species are still poorly understood, 

and often explored for individual species only. In this work, we assess the role of the 

glacial and interglacial periods in the diversification and migration of the whole group of 

Arctic shorebirds. If the observed variation within species originated from isolated 

populations during the glacial cycles, we expect to find common patterns of 

fragmentation in the breeding ranges that explain the current subspecies. We also seek 

to clarify whether the long-distance migration was altered or even interrupted during 

glacial periods. We performed species distribution models (SDMs) to explore the 

changes in the breeding and non-breeding ranges of 69 species between the last glacial 

maximum (ca. 21,000 years ago) and the present. We also included independent 

evidence from the fossil record as well as estimations on the potential extension of the 

tundra during glacial periods to validate the results from the SDMs. Our findings show 

that most of the species with subspecies experienced fragmentation of their ranges, 

especially during the glacial periods, while the majority of the monotypic species 

maintained continuous ranges. Moreover, the distribution models and the fossil data 

support an uninterrupted long-distance migration during glacial periods, which could 

even play a role in maintaining populations isolated over multiple glacial cycles. 
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Introduction 

The climate of the Planet during the Pleistocene (the last 2.5 million years) has 

been characterized by cycles of cold glacial and warmer interglacial periods, being more 

intense in the northern hemisphere (Webb & Bartlein, 1992). The duration and intensity 

of these glacial cycles were stable during most of the Pleistocene, but they increased 

during the last 900,000 years, with longer and colder periods of ca. 100,000 years each 

(Alley, 2000; Cohen & Gibbard, 2008). These climatic changes happened fast in a 

geological time-scale, abruptly altering the distribution of multiple organisms and 

causing alternating range contractions, expansions (Webb III & Bartlein, 1992; Hewitt, 

1999) or extinctions. During glacial periods, the cold climate and large extent of ice 

sheets forced many temperate and especially Arctic species to shift their distribution 

ranges southwards, towards climatically suitable areas, usually called refugia. Most of 

these refugia in the Northern Hemisphere were concentrated south of 40°N (Bennett & 

Provan, 2008; Stewart et al., 2010), although many Arctic and boreal species found 

refugia in more northern latitudes (Stewart & Lister, 2001; Provan & Bennett, 2008; 

Stewart et al., 2010). 

These climatic events also left their imprint on the genetic structure of many 

temperate boreal and Arctic species, acting as potential drivers for allopatric 

divergences, expansions and secondary contacts between populations (Avise et al., 

1998; Hewitt, 2000, 2004; Lovette, 2005). Studies on birds, mainly based on 

mitochondrial genetic data (mtDNA), suggested that these cycles also played a key role 

in the diversification of sister species or subspecies during the Pleistocene (Avise & 

Walker, 1998; Johnson & Cicero, 2004; Weir & Schluter, 2004), but some authors argued 

against a higher diversification of bird species during this period (Klicka & Zink, 1997). 

This sparked a debate around the true extent of the effects of the Pleistocene glacial 

cycles in the genetic diversification between and within bird species (Johnson & Cicero, 

2004; Lovette, 2005; Cicero & Johnson, 2006; Zink & Klicka, 2006). While mtDNA has 

been regarded as a reliable indicator of phylogeographic structure (Zink & 

Barrowclough, 2008), it may not be appropriate to determine the processes involved in 

diversification as other nuclear genomic data may do (Edwards & Bensch, 2009). Recent 

works have focused mainly on the resulting spatial genetic patterns in different northern 

bird species (e.g. Jones et al., 2005; Haring et al., 2007; Zink et al., 2008; Klicka et al., 
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2011; van Els et al., 2012; Miller et al., 2015; Leblanc et al., 2017), and a few combined 

them with geographic predictions (e. g. Ruegg et al., 2006; Zhao et al., 2012; Wang et 

al., 2013; Li et al., 2016), yet failing to propose spatially explicit hypotheses on the 

specific role of both the glacial and the interglacial periods in their diversification. Thus, 

there is a necessity of an integrative approach combining genetics, paleo and current 

spatial distribution modelling as well as intraspecific phenotypic variation, to 

disentangle the potential role of glacial cycles in the diversification of Arctic species 

during the Pleistocene. 

The idea of the allopatric isolation during glacial periods as the main factor 

responsible for population diversification was proposed over 70 years ago (Rand, 1948). 

Despite its popularity, only a few posterior studies have dug into the detailed geographic 

processes involved across multiple species (Mengel, 1964; Macpherson, 1965; Ploeger, 

1968; Weir & Schluter, 2004). As an example, in his study on the Arctic species of the 

family Anatidae, Ploeger (1968) proposed a series of areas of isolated refugia that could 

have harboured breeding populations during glacial periods, and directly linked them to 

the distribution, intraspecific variation and the origin of current subspecies. 

Nevertheless, the opposite mechanism is also plausible, as some recent studies 

suggested that the range expansions during inter-glacial periods could have been the 

main promoter of the diversification in some Nearctic birds (Milá et al., 2006, 2007; Friis 

et al., 2016). 

Arctic shorebirds are an appropriate model system to study the impact of current 

and past climate change in the Artic. There are 70 species of shorebirds breeding in the 

Arctic and subarctic, where they are widespread. Many of them present phenotypic and 

genetic variation across their distribution ranges that derived in the recognition of 

subspecies and recent species splits. As a consequence of the strong climatic seasonality 

in the Arctic, with only few months of suitable temperatures but very high productivity 

(Pielou, 1991), shorebirds as well as other species are forced to migrate. Most Arctic 

shorebird species arrive at the breeding grounds in late June and stay between June and 

early August, they migrate back to the non-breeding grounds in temperate to tropical 

latitudes in August-September (Meltofte et al., 2007), being some of the animal groups 

with the longest migrations on Earth. 
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During the Pleistocene glaciations, their current breeding ranges were covered by 

permanent ice, hence all these species were forced to shift their breeding ranges 

southwards. How strong was the impact of glaciations on their non-breeding ranges or 

whether if they lost their migratory condition during glacial periods -as it has been 

proposed for other bird species (Zink & Gardner, 2017)-, has not extensively been 

explored (Buehler et al., 2006). One of the most interesting potential impacts of glacial 

cycles on Arctic species are not only distribution changes but their potential role as a 

driver of morphological and genetic diversification. Many Arctic shorebird species 

present some phenotypic variation across their ranges (Engelmoer & Roselaar, 1998), 

but most species display a shallow genetic diversity and low differentiation between 

lineages or subspecies (Baker et al., 1994; Wenink et al., 1994, 1996; Buehler & Baker, 

2005; Ottvall et al., 2005; Rönkä et al., 2008, 2012; Trimbos et al., 2014; Barisas et al., 

2015; Leblanc et al., 2017; Thies et al., 2018). This pattern has often been attributed to 

the effects of the Pleistocene glacial cycles in their populations (e. g. Wenink et al., 1994; 

Kraaijeveld & Nieboer, 2000; Buehler & Baker, 2005; Pruett & Winker, 2005; Trimbos et 

al., 2014; Thies et al., 2018), but the specific role of the areas of refugia in the allopatric 

differentiation of the subspecies has rarely been addressed. Some areas of refugia in the 

western Palearctic, east Siberia and Beringia have been proposed as the potential origin 

of differentiation for some of the subspecies of Limosa limosa (Trimbos et al., 2014), 

Charadrius hiaticula (Thies et al., 2018) or Calidris canutus (Buehler et al., 2006), 

although without spatially-explicit analyses to support them. Previous works (e.g. 

Ploeger, 1968) manually linked each of the proposed ice-free areas with different 

populations or subspecies within each of the Arctic species of Anatidae (geese, ducks 

and swans). Ploeger (1968) also extended his analyses to some species of Arctic 

shorebirds, finding great similarities in the patterns between both groups, as expected 

by the approach used, but it is the first proposed hypothesis yet to be tested on this link 

between geography, climate and intraspecific diversification. 

In this work, we wanted to assess the potential effects of both the Pleistocene 

glacial and interglacial cycles in shaping the distribution of Arctic species and their 

populations, and how they could have acted as a driver of the phenotypic and genetic 

variation observed today by generating allopatric distribution and colonization patterns. 

We consider four possible competing hypotheses to explain the current phenotypic and 
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genetic patterns observed in Arctic shorebirds: 1) the observed variation predates the 

Pleistocene, hence the Pleistocene glacial cycles did not have any effect on such 

variation (Klicka & Zink, 1997; Zink & Klicka, 2006). 2) The observed variation originated 

during the Pleistocene as a consequence of allopatric isolation but during the interglacial 

periods, as result of the wider geographic space available after the retreat of ice sheets 

(Milá et al., 2006, 2007; Friis et al., 2016). 3) The observed variation originated during 

the Pleistocene by allopatric separation of breeding population species' ranges during 

glacial periods, into different refugia. These isolated refugia populations suffered 

genetic drift with no gene flow between them, driving population differentiation (Rand, 

1948; Weir & Schluter, 2004). The species without observed genetic or phenotypic 

differentiation did not suffer such degree of isolation. 4) The Pleistocene glacial cycles 

caused the observed variation as a combination of allopatric isolation during both glacial 

and interglacial periods. 

Hence, there are two main factors to address the potential role of glacial cycles in 

the observed spatial pattern of geographic variation in Arctic species: the time of 

diversification, to confirm that it happened during the Pleistocene, and the past 

distribution changes during glacial and interglacial periods to determine the potential 

existence of refugia and their connectivity. From a geographic perspective, we can 

expect four different distribution pattern scenarios: A) continuous distribution range 

both during glacial and interglacial cycles; B) continuous range during glacial cycles but 

fragmented during interglacials (corresponding to hypothesis 2); C) opposite to B with 

fragmented ranges during glaciations and continuous during interglacials (hypothesis 3); 

and D) fragmented in both periods (hypothesis 4). In species with current genetic and 

phenotypic variation, we expect to recover a fragmented allopatric distribution during 

the last glacial maximum (LGM) and/or interglacial periods corresponding to extant 

subspecies or morphotypes (scenarios B, C, D), while monotypic species will show mainly 

non-fragmented distributions during both glacial and interglacial cycles (scenario A). We 

followed an integrative approach by combining current and hindcasted species' 

distribution models (SDMs), fossil evidence and the known phenotypic variation within 

the species, to assess which geographic distribution patterns were more common and 

compatible with any of the former spatial hypotheses.  
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Methods 

 

Present species distributions 

Current distribution maps for all Arctic species were obtained from BirdLife 

International and NatureServe (2011) datasets. We included in the analyses 69 out of 70 

species of Arctic and subarctic shorebirds (Chester, 2016). Only Calidris subminuta was 

left out, as its breeding area of occupancy consists on a series of small patches across 

the Palearctic and was therefore impossible to accurately model it. Model performances 

were poor in predicting the wintering distribution of some species, as a consequence of 

being too geographically restricted (Calidris falcinellus, Calidris maritima, Calidris 

pygmaea, Calidris virgata, Numenius tahitiensis, Tringa brevipes) or being mainly pelagic 

(Phalaropus fulicarius), hence were not included as well. 

As BirdLife maps likely over represent species' distributions by including areas with 

unsuitable habitats where species are known to be absent, we pruned them by filtering 

each species' distribution map by the habitats where they are known to occur leaving 

out the unsuitable ones following the same procedure as in Ponti et al. (2018). We built 

habitat maps combining information from layers of land cover from GLOBCOVER 

(Bontemps et al. 2011), water bodies from Global Land Cover Facility (Carroll et al., 2009) 

and altitude from WorldClim 1.4 (Hijmans et al., 2005) at a resolution of ca. 1km2. Within 

those pruned distribution maps, we sampled 10,000 random points for every species in 

each season (breeding vs. non-breeding), data subsequently used as presences for 

modelling species distributions. 

After checking GBIF and eBird datasets, we did not include them as they largely 

lack data across most of the Arctic, especially in northern Russia where there are not 

many observers and records, which resulted in a biased picture of the range of most 

species. Most of these data also correspond to Atlases without precise coordinates, and 

overlapped well with our distribution datasets in the areas where eBird data are 

available.  
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Predictive variables 

We used current climate as a proxy for interglacial periods, and the climate of the 

last glacial maximum (LGM) as a proxy for glacial periods. As predictive variables for 

SDMs we used monthly precipitation and temperature (maximum, minimum and mean) 

as climatic variables. The climate layers for the present were retrieved from WorldClim 

2.0 (Fick & Hijmans, 2017) at 2.5 min resolution (ca. 5x5km). The paleoclimatic maps 

corresponding to the MIROC-ESM simulations for the LGM were retrieved from 

WorldClim 1.4 (Hijmans et al., 2005) at the same resolution, and the mean between 

minimum and maximum temperatures was calculated to generate a mean temperature 

layer. Despite that there are some paleodistribution habitat maps for the last glacial 

maximum based on climate, those are very coarse and need to be confirmed by further 

works. Hence, we decided to only include climatic variables as potential predictors for 

the species' models, as well as for the main breeding biome for Arctic breeding 

shorebirds: the tundra (see below). 

 

Species distribution models 

The use of hindcasted paleodistribution models has been a useful tool to 

reconstruct and explore the potential changes in the distribution of multiple species 

during the LGM (e. g. Fløjgaard et al., 2009; Nogués-Bravo, 2009; Smith et al., 2013; Zink 

& Gardner, 2017). To model the current breeding and non-breeding distribution of Arctic 

shorebirds we used an ensemble approach, applying four different methods: general 

linear model (GLM), polynomial GLM, general additive model (GAM) and BIOCLIM, with 

the use of the R packages dismo (Hijmans et al., 2017) and mgcv (Wood & Wood, 2015). 

We also tested MaxEnt and DOMAIN algorithms but both showed poor performance 

with our data hence they were discarded. We also tested and discarded other options, 

such as support vector machines (SVM) and random forests (RF) due to the bad fit to 

the type of absences and/or the variables used. 

For each species, we trained the models using 60% of the data, and evaluated 

them with the remaining 40%. For the seasonal climatic conditions, we decided not to 

include the climatic values for the whole year. Doing this could introduce noise in the 

analyses since the input would represent climatic conditions not experienced by the 
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species, as they are not present the whole year. This is especially critical in the breeding 

range, where the region is mostly frozen and uninhabitable outside of the breeding 

season. Instead, we employed the average values of temperature and precipitation of 

the months corresponding to their present breeding or wintering season, according to 

del Hoyo et al. (2018), excluding the months where they mainly migrate from breeding 

to wintering areas or vice versa. We then created an ensemble forecast by averaging the 

results of all four models into a single resulting model. This helped reducing the 

uncertainty and potential bias of individual models (Araújo et al., 2005; Araújo and New, 

2006). We then evaluated each model separately, as well as the ensemble, using both 

the Area Under the Curve ROC (AUC) and COR (correlation) approaches. The AUC value 

ranges from 0.5 to 1, where 1 indicates a perfect discrimination between presences and 

absences and 0.5 indicates a random discrimination. If the AUC is lower than 0.5, the 

discrimination is less likely than random (Elith et al., 2006). 

 

To project the breeding distributions into the LGM climate, we took into account 

potential phenological changes, since the current length and timing of the breeding 

seasons could be different from those during the LGM. To do so, we hindcasted each of 

our trained models to the conditions of each month between April and August 

separately. These months covered the entire breeding season of the Arctic and subarctic 

shorebirds (Melofte et al., 2007; del Hoyo et al., 2018). After projecting every trained 

model separately, we merged them obtaining an ensemble forecast for the predicted 

presence probability for each month, and this was translated into presence-absence 

maps (1/0). To do so, we converted into presence (1) all values above a certain 

probability threshold, calculated for each species as the point where the sensibility and 

the specificity of the model intersect (Liu et al., 2005). Having predicted presences (1) 

and absences (0) for each month, we summed all months to obtain the number of 

months where the species could potentially be present in each grid cell. Finally, we 

discarded the areas where species were not predicted for at least two months, which 

represents the minimum duration of a successful breeding season (Meltofte et al., 2007; 

del Hoyo et al., 2018). This approach was followed for the breeding season both in the 

present and during the LGM. 
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This projection month by month was ineffective for the wintering season, since it 

has a longer duration and the average climatic values of the season do not translate well 

when taking into consideration separate months. In particular the precipitation is 

concentrated very unevenly across the wide ranges covered, with different regions 

receiving most of the precipitation in different periods across the season. Thus, we 

projected our models into a period that spanned from October to March, both in the 

present and the LGM, encompassing the main months composing the wintering season 

for all the studied species and avoiding to overlap with the migratory period (del Hoyo 

et al., 2018). Again, we projected each of our trained monthly models into this wintering 

season separately, and then combined them into an ensemble forecast which was 

transformed into presence-absence by applying the probability threshold approach 

described above. 

By combining the maps from all the analysed species, we obtained potential 

richness maps for both seasons (breeding and non-breeding) in the present and the 

LGM. This allowed us to compare and visualize the changes in their distributions during 

the last glacial maximum as a representative of glacial periods, and the present (1970 – 

2000) as a representative of interglacials. 

 

Comparison between spatial scenarios 

We reviewed the results from the SDMs species by species to assign each into one 

of four spatial scenarios considered (A to D in the introduction), based on the changes 

in their breeding ranges between the present and the LGM. We considered a range as 

“fragmented” when a species displayed multiple areas of their distribution in different 

biogeographic regions (e.g. Beringia, north of Siberia, Europe, North America) without 

any predicted connection between them. In the species whose main distributions were 

located in the continent and had a small portion of their range in an island, this gap was 

not considered to represent a fragmented distribution. After assigning each species to a 

representative scenario, we compared the results between monotypic species and 

species with accepted variation (e.g. subspecies), to check for differences in the 

frequencies of each scenario. 
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Analysis of latitudinal data by biogeographic region  

We extracted latitudinal values for the breeding and wintering ranges of each 

species, separately for the Palearctic and Nearctic regions and for the main three 

wintering biogeographic regions (Central and South America, Africa and the 

Mediterranean, and Australasia). In order to explore potential overlaps between 

breeding and wintering seasons through time, we calculated the mean latitude of the 

breeding and wintering ranges of each species in the present and the LGM. We 

performed Mann-Whitney-Wilcoxon paired tests to test the null hypothesis of no 

statistical differences between the mean latitudes in the present and the past for all the 

species in each region. However, in the breeding range, the mean latitude might not 

accurately represent the distribution of species that are spread across multiple refugia 

at different latitudes during the LGM and the difference with their current distribution. 

To better explore these differences, we took four main biogeographic regions within the 

breeding areas: Greenland and the Western Palearctic, the Eastern Palearctic, Beringia, 

and the rest of the Nearctic. In each of those areas, we sampled 3,000 random points 

from both present and past predicted distributions of each occurring species. We took 

the value of the latitude of each point and built a density plot to inspect where did the 

predicted distribution of the species was concentrated (from south to north) in each 

region at both the present and the LGM. 

 

Fossil record 

We revised the available shorebird fossil data for the Pleistocene, mainly focusing 

on the Arctic species, from the literature and two main global databases: the 

Paleobiology database (Peters & McClennen, 2016) (https://paleobiodb.org) and the 

fosFARbase (Böhme & Ilg, 2003) (http://www.wahre-staerke.com/). We gathered all the 

available data for the families Scolopacidae, Charadriidae and Haematopodidae during 

the Pleistocene, and then filtered them to keep only the records corresponding to the 

Arctic shorebird species. We overlapped the distribution of fossils with the main 

predicted breeding and wintering areas during the LGM, to check whether the fossils 

and the SDMs showed spatial congruence. Since the fossil record in the high Arctic for 
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these birds is practically non-existent, comparisons with the interglacial breeding 

distribution offered no information, therefore we compared it only with the predicted 

distributions during the glacial period.  

Predicted extension of the tundra 

Arctic shorebird species reproduce mainly in the Tundra biome. The Köppen – 

Geiger classification system (Köppen, 1900; Köppen & Geiger, 1936) is often used by 

ecologists and climatologists to estimate the location and extension of the main 

ecosystems in the planet based on the characteristics of temperature and/or 

precipitation that define them. Despite recent revisions of this classification (Guetter & 

Kutzbach, 1990; Peel et al., 2007; Belda et al., 2014), the Arctic is still defined as the area 

where the mean temperature of the warmest month does not exceed 10°C. 

Furthermore, when this value is below 0°C it is considered to be polar desert. Therefore, 

the Tundra is defined as the region where the mean temperature of the warmest month 

comprises between 0°C and 10°C. By applying this criterion to the paleoclimatic layers, 

we predicted the extension of the Tundra during the LGM to compare it with the main 

areas of refugia predicted by our SDMs. We also included in this comparison the 

maximum extension of the ice sheets according to Ehlers et al. (2011). 

 

Results 

 

Species' distribution models 

We performed models on 69 Arctic shorebird species (69 breeding and 62 

wintering distributions). 77.8% of the models (102 out of 131) returned AUC values 

above 0.8. Only 3 models had AUC values lower than 0.7, corresponding to the breeding 

season of Actitis hypoleucos (0.63), and the wintering seasons of Tringa flavipes (0.66) 

and Calidris himantopus (0.68). The detailed results for each species are compiled in the 

Appendix 1. 

Shorebird predicted richness maps for the present suggest the co-occurrence of 

over 30 Arctic shorebird species in large areas of both their breeding and wintering 

ranges (Fig. 1). Most species are distributed between 60°N and 80°N latitude during the 



48 
 

breeding season (Fig.1 top panels, Appendix 1), in agreement with their current 

distribution maps. During the LGM, the predicted breeding distributions showed a 

southward displacement and an overall clear wide fragmentation exemplified by the 

areas with the highest richness values (> 20 species) acting as putative refugia. In the 

Nearctic, the areas with the highest species' richness corresponded to Beringia and the 

northern coast of Alaska at high latitudes (over 55° N). There were also some areas with 

high species' richness recovered further south (between 30° N and 40° N), mainly around 

the Rocky Mountains and the Appalachians. Arctic species occurred as far south as 

central Europe (between 30° N and 55° N) in the Western Palearctic. In the Eastern 

Palearctic the areas with the highest richness remained at higher latitudes (over 60° N) 

in two main areas: one in western and central Siberia, between the Ural and Altai 

mountains, and the other in eastern Siberia, Kamchatka and Beringia. 

During the wintering season, current species richness (Fig. 1, bottom panels) 

concentrates around the tropical belt in Africa and Australasia, also extending across 

southern Asia (India and Indochina) and surrounding the Amazonian region in South 

America. Although richness is higher in tropical areas, the wintering ranges of many 

species reach as south as the southernmost parts of South America, Africa and Oceania 

(ca. 35-50° S) and north to the British Islands and northwest USA (ca. 50-55° N). During 

the LGM, the wintering ranges contracted on the southern and northern limits, with 

most species not extending beyond 35° N and 35° S. During these periods, species' 

richness increased around the Equator, especially in Asia and Oceania, where the global 

seal level drop greatly increased the available land surface at those latitudes. Despite all 

these changes, the overall distribution of the wintering ranges during the LGM shows 

great overlap with their current wintering distributions. 
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Comparison between spatial scenarios 

The analysis of the distribution patterns in the present and LGM show that most 

of the monotypic species (>65%) did not experience large breeding range 

fragmentations in either period, with a continuous distribution during the LGM and the 

present (Fig. 2, scenario A). In contrast, the scenarios of fragmentation during the glacial 

period (C and D) were less frequent (30%) for these monotypic species, and in most of 

these cases (21% of all monotypic species) the fragmentation disappeared after the 

glacial period (scenario C). Only one of these species without variation, T. brevipes, 

experienced its breeding range fragmentation in the present from a single breeding area 

in the LGM. 

On the contrary, most of the species with recognised phenotypic and/or genetic 

variation (>80%) showed range fragmentation during the LGM and/or the present into 

multiple isolated areas (scenarios C and D). In 36% of the cases (8 species), the 

fragmentation remained during the current interglacial (scenario D). In total, only 32% 

(7 species) showed no clear potential fragmentation during the glacial period (scenarios 

A and B), and from those the 14% (3 species) experienced range fragmentation in the 

current interglacial (scenario B). 

The species assigned to each scenario, with or without subspecies, can be found 

in the Appendix 2 (Table S1) 
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Figure 2: Percentage of the monotypic species (orange) and species with subspecies (blue) that display 
each general spatial scenario of continuous or fragmented breeding distribution during the LGM (grey 
circles) and the current interglacial (yellow circles). The scenarios represent A) single area of refugium in 
the LGM and continuous current range, B) single area of refugium during LGM but fragmented range in 
the present, C) multiple areas of refugia during the LGM but continuous range in the present, and D) 
multiple areas of refugia during the LGM and fragmented range in the present. 

 

Analysis of latitudinal data by region 

The comparative analysis of the mean latitude of species' ranges within and 

between the present and the LGM is shown in Figure 3. There is no overlap between 

breeding and wintering mean ranges during the LGM in any of the regions. The Mann-

Whitney-Wilcoxon paired tests (V) returned statistical differences in the mean latitude 

between the predicted present and past species' ranges for the breeding season in the 

Palearctic (V = 823, p < 0.0001) and the Nearctic (V = 609, p < 0.0001). For the wintering 

season, the statistical test returned differences between the present and the LGM in the 

Afrotropic (V = 586, p < 0.0001) and Australasian regions (V = 647, p < 0.0001). However, 

no statistically significant differences were detected for the Neotropic mean ranges (V = 

162, p = 0.15). 
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Figure 3: Boxplots representing the distribution of the predicted mean latitudes of the breeding and 

wintering distributions for the studied species (69) in the present and LGM in the main biogeographic 

regions. 

 

The histogram representing the cumulated density of the latitudinal distribution 

of the predicted ranges shows different patterns in each biogeographic region (Fig. 4). 

In the Western Palearctic, most of the current predicted species' ranges occur between 

55° N and 70° N, with also a small peak at ca. 80° N from the species in Svalbard and 

Greenland. During the LGM, the density of the distribution shifted southwards, with 

most of the ranges spanning between 40° N and 55° N, and also around 65° N. In the 

Nearctic the main distribution of the predicted ranges shifted from 60°-75° N in the 

present to 35°-50° N during the LGM. The Eastern Palearctic showed a much smaller 

shift of the distribution of the ranges, with the peak changing from 70° N in the present 

to 65°N during the LGM. In Beringia, the latitude of the ranges during the LGM and in 

the present overlap, both between 50° N and 75° N. 
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Figure 4: Histograms representing the density of the predicted breeding presence of 69 Arctic shorebird 

species in the latitudinal gradient (Y axis) separated in each of the regions considered. Lines represent the 

distribution of the shorebirds in the present (black) and the LGM (light blue). 

 

Fossil record 

Although the bird fossil record during the Pleistocene is uneven, the wetlands 

inhabited by shorebirds provided good conditions for the formation of fossils. After 

retrieving and filtering the available data from the existing databases, we gathered 191 

records covering 53 of the 69 studied species, from 60 localities around the planet. 

These localities are all located between 52° N and 8° S, except for the Dyuktai Cave in 

Russia (59.3° N), and Blanche and Victoria caves in Australia (both at 37° S). Most of the 

localities are in Europe (n = 16, 27%) and North America (n = 30, 50%). On the other 

hand, there are very few localities in Oceania (n = 2), South America (n = 3) Africa (n = 3) 

and Asia (n = 4) for these species, and there are no records in the whole Arctic region. 

The table with all fossilized species present in each locality and the source can be found 

in the Appendix 2 (Table S2) 



54 
 

Predicted extension of the tundra 

The model on the extension of the tundra during the LGM based on the Köppen – 

Geiger classification system is shown in figure 5 (below). The model suggests a 

continuous Tundra distribution across the Palearctic, between 50° N and 75° N in Asia 

and near the southern margin of the ice in Europe between 45° N and 55-60° N. In the 

Nearctic, the tundra also extended from coast to coast near the limit of the ice 

extension, as a narrow belt between 40°N and 50°N. It likely connected with Beringia 

through a narrow corridor along the northwest coast of North America. In some regions, 

the predicted tundra slightly overlapped the area of the maximum ice extension, 

particularly in Europe, North America, Iceland and east Beringia. 
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Discussion 

 

Several works over the past few decades have highlighted the role of Pleistocene 

glacial cycles in the emergence of the current diversity patterns within many bird species 

(see Lovette, 2005). However, the explicit mechanisms of the glacial and interglacial 

periods in shaping their distribution and intraspecific variation remain largely unstudied. 

Our results support that Pleistocene climatic cycles drove the diversification of Arctic 

shorebirds by creating allopatric breeding distributions during glacial, interglacial or 

both periods.  

The majority of species with described morphological and/or genetic variation 

(65%) presented fragmentation of their ranges during the LGM (Fig. 2, geographic 

scenarios C and D and hypotheses 3 and 4), where most of their hindcasted distribution 

areas parallel the described subspecific variation. These scenarios include species with 

clear genetic differentiation between their subspecies, like Calidris alpina (Marthinsen 

et al., 2007), C. hiaticula (Thies et al., 2018) and Limosa limosa (Trimbos et al., 2014). 

Some species with subspecies display a continuous distribution today (scenario C), likely 

the result of secondary contact after population and range expansions during the 

current interglacial. In these species, gene flow after secondary contact likely has been 

limited, while in monotypic species showing a scenario C distribution pattern, the lack 

of genetic and phenotypic differentiation could be the result of incomplete lineage 

sorting with populations not having enough time to differentiate, and/or intense gene 

flow after secondary contact that admixed populations. Moreover, range fragmentation 

during interglacials not necessarily implied isolation between near populations, as some 

species of Arctic shorebirds like Calidris melanotos are known to travel across their 

breeding range in order to mate with multiple partners at different locations 

(Kempenaers & Valcu, 2017), which reduces potential opportunites of genetic 

diversification between populations (D'Urban Jackson et al., 2017). 

 

The lack of range fragmentation during glacial periods seems to work strongly 

against intraspecific diversification, as this is by far the most common scenario found in 

monotypic species (>65%). On the contrary, only three species with subspecies belong 
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to this scenario, all of them with multiple subspecies and with a more temperate 

breeding distribution ranges. Those include Charadrius vociferus with subspecies in the 

Caribbean Islands and Peru, and Tringa totanus and Numenius arquata in the Tibetan 

Plateau. Both T. totanus and N. arquata show similar distribution patterns, where their 

European breeding populations reach the Arctic, while those in Asia remain further 

south in boreal regions. Some monotypic species with fragmented ranges like Pluvialis 

fulva and Phalaropus lobatus show differential phenology between populations (Jukema 

et al., 2015; van Bemmelen et al., 2019) and it is likely that subspecies will be recognized 

in the future (Jukema et al., 2015), which will fit with the fragmentation scenarios as 

drivers of variation. 

Our results suggest a correlation between the diversification of Arctic subspecies 

and LGM range fragmentation, with the result on four-five main refugia where species 

richness likely peaked: Beringia extending to Japan and the Korean Peninsula, central 

North America, Western Europe and central Russia between the Ural and Altai 

Mountains. This is in agreement with the ideas of Ploeger (1968) for Arctic Anatidae 

species, supporting the hypothesis of allopatric differentiation during glacial periods as 

the main driver of diversification in Arctic birds during the Pleistocene (Rand 1946, Weir 

& Schlutter 2004). 

 

Range fragmentation during interglacials also likely contributed to the 

diversification of some species. We recovered three species with subspecies classified 

under the scenario B: Charadrius melodus, Calidris ptilocnemis and C. canutus. All three 

species have shown very little genetic variation between and often unclear distinction 

between lineages in previous studies (Buehler & Baker, 2005; Miller et al., 2010; Pruett 

& Winker, 2005). This role of post-glacial expansion in the diversification of bird species 

has been proposed for other groups (Milá et al., 2000, 2006, 2007; Friis et al., 2016). 

Nearly 40% of the species with subspecies belong to the geographic scenario D, where 

both fragmentation during glacial and interglacial periods are recovered, and more than 

80% of the species show a fragmented distribution in one or two periods, hence wide 

range fragmentation seems the mechanism although the potential quantitative effect 

of one period versus the other cannot be assessed. There is also another aspect that 

needs to be acknowledged which is that scenarios A to D may have changed through 
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time in species. Although we cannot discard this possibility, the recovered distribution 

patterns by our models are in agreement with the observed phenotypic and geographic 

variation found in most species, and this correlation should have been strong enough 

(likely repeated through Pleistocene climatic cycles) for this variation to be generated 

and persist. 

Despite the changes in the climate during the LGM, large areas of steppes and 

tundra were available across the northern hemisphere and likely sustained populations 

of shorebirds and other Arctic birds, as they did with mammals (Dyke, 2005; Kienast et 

al. 2005; Willerslev et al., 2014). The coastal areas at the northernmost part of the 

continents would have become uninhabitable for most species. Many species have their 

current breeding ranges restricted to those areas, but the species breeding at the 

highest latitudes tend to adapt their diet to tundra invertebrates during the breeding 

period, exploiting marine and coastal habitats only during the non-breeding season 

(Piersma, 2003, 2007). We can therefore expect that most or all of those 

“northernmost” species were also displaced to southern areas of tundra, far from the 

coast, during the glacial period. Our predictions on the extension and location of the 

tundra during the LGM, based on the Koppen – Geiger classification system (Köppen, 

1900; Köppen & Geiger, 1936) are congruent with the results from previous studies 

using this approach (Guetter & Kutzbach, 1990; Willmes et al., 2017), as well as with 

other predictions on the extension of the tundra and steppes (Edwards et al., 2000; 

Harrison et al., 2001; Ray & Adams, 2001; Dyke, 2005; Allen et al., 2010). The distribution 

of the tundra during glacial periods parallels well the overall distribution of Arctic 

shorebirds predicted by our SDMs and covers all the areas we recovered with the highest 

values of species richness. Both our predictions for the tundra and the results from the 

SDMs also suggest that potential suitable areas could have been available beyond what 

it is considered the maximum extension of the glacial ice sheets in regions like central 

North America, western Europe and Iceland during the LGM. This could indicate 

potential areas of northern refugia for these birds (Stewart & Lister, 2001; Provan & 

Bennett, 2008), at least for a brief period of time during the summer season. 

Even if suitable tundra habitats were available across the Holarctic, our results 

suggest that different biogeographic regions experienced different degrees of change in 

their climate and habitat during the LGM, which resulted in different distribution 
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patterns during glacial periods and posterior interglacials in each region. For instance, 

Beringia remained mostly ice-free and climatically stable over glacial cycles, acting as a 

large high-latitude refugium (Hultén 1937, Pielou 1991) and playing a key role in the 

diversification and post-glacial recolonization of the Arctic by plants (Abbott & 

Brochmann, 2003; Eidesen et al., 2013), mammals (Hope et al., 2013), and insects (Elias 

et al., 2000; Kleckova et al., 2015). This land connection also allowed the colonization of 

Palearctic fauna into the Nearctic (Davison et al., 2011; Kleckova et al., 2015; Koblmüller 

et al., 2016). During interglacials, sea level rise resulted in a barrier between the Nearctic 

and the Palearctic for land species, and also in the isolation of populations in the Bering 

Sea's islands. This seems to have originated multiple local subspecies within sedentary 

species like Lagopus muta (Holder et al., 2004), but also migratory species like the Arctic 

shorebird C. ptilocnemis (Pruett & Winker, 2005). 

While most Arctic shorebird species in North America retreated to Beringia, some 

species occurred at lower latitudes, in the available territories south of the limit of the 

ice sheet (below 40°N) within the North American continent. This area harboured 

steppes and tundra (Dyke & Gulas, 2002), from which multiple Arctic and boreal species 

expanded to their current ranges following the retreat of the ice (e.g. Macpherson, 

1965; Kurose et al., 2005; Milá et al., 2007; Dupuis & Sperling, 2015). The observed 

pattern in the Neartic is very different from the other biogeographic regions (Fig. 4), 

while in Beringia and the Eastern Palearctic there is a wide overlap between LGM and 

interglacial frequency distributions, and in the Western Palearctic there is certain 

overlap, in the Nearctic there is a clear gap between the peaks of the present and past, 

which likely had consequences on species' phenotypic and genetic variation. These 

different patterns suggest that the impact of Pleistocene glacial cycles on species' 

distributions and their potential diversification has to be studied by biogeographic 

region, and that it should not be extrapolated between regions as the intensity and 

impact of the climate effects were likely very different. 

The available territories in both central North America and Beringia favoured that 

populations of Arctic species became isolated between those regions, which in many 

cases led to the distinct lineages across their current ranges in the Arctic (Macpherson, 

1965; Ploeger, 1968; Sipe & Browne, 2004 Jones et al., 2005). We also recovered this 

pattern in species like Limnodromus griseus and Tringa solitaria. A third species, Actitis 
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macularius, follows a similar pattern, but its subspecies have not been formally 

recognized yet.  

In the Palearctic, the extension of the tundra provided multiple areas of refugia 

for Arctic species from East to West across the continent, with three areas of great 

importance: Europe, central Asia and Beringia. In Europe, where the ice sheets reached 

as far south as 50°N the southern peninsulas served as refugia for temperate species 

(e.g. Bennett & Provan, 2008; Hewitt, 2004). Arctic species, on the other hand, would 

have persisted in more northern refugia near the margins of the ice extension, from the 

British Islands to central Europe and the Baltic region, as well as in mountain ranges 

(Hewitt, 2004; Provan & Bennett, 2008; J. R. Stewart et al., 2010). In comparison, due to 

the lower ice cover, the species in Asia remained at higher latitudes, between 60°N and 

75°N, extending from the Urals to the Altai Mountains in central Siberia (Skrede et al., 

2006; Todisco et al., 2012; Eidesen et al., 2013; Kleckova et al., 2015), as well as in east 

Siberia and Beringia. This array of available refugia also involved multiple routes of 

recolonization during interglacials, especially in Europe, where the northern latitudes 

were recolonized by populations from the south (Hewitt, 1999) as well as from Asia 

(Jaarola et al., 1999; Rueness et al., 2014). This pattern was also found in some genetic 

lineages within Arctic shorebirds' species like C. hiaticula (Thies et al., 2018), C. alpina 

(Marthinsen et al., 2007) and T. totanus (Ottvall et al., 2005). The combination of 

multiple refugia with the recolonization routes likely favoured a greater diversification 

of the populations within species, resulting in multiple subspecies of Arctic shorebirds 

distributed along an East-West axis (Buehler & Baker, 2005; Marthinsen et al., 2008; 

Trimbos et al., 2014), similar to what is found for other Arctic species in the region (e.g. 

Jaarola & Searle, 2002; Kohli et al., 2015; Horreo et al., 2018). 

In the western Palearctic, many subspecies are distributed in islands such as 

Iceland, Faeroes and Svalbard. All these islands remained isolated from the main areas 

of refugia in southern Europe during the LGM, either by sea or by ice sheets. 

Nevertheless, these territories were almost completely covered by ice during the last 

glacial maximum, and the availability of refugia is a subject of debate. For instance, it 

was generally considered that ice covered virtually all the land surface of Iceland during 

the LGM, rendering it uninhabitable until the end of the glacial period, when 

recolonization took place. This is usually called the tabula rasa hypothesis (see 
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Gabrielsen et al., 2007). But some studies suggest a potential survival of some plants 

and animals in ice-free refugia and nunataks during the LGM (Ploeger, 1968; Rundgren 

& Ingolfsson, 1999), and it has been hypothesized the presence of breeding populations 

of migratory geese species during that period (Ploeger, 1968; Pujolar et al., 2017). 

However, recent phylogeographic studies on Arctic shorebirds opt for the hypothesis of 

post-glacial colonization and rapid diversification of the subspecies of L. l. islandica 

(Trimbos et al., 2014) and C. h. psammodromus (Thies et al., 2018), as suggested for 

other local species of plants and animals (e.g. Gabrielsen et al., 2007, Bolotov et al., 

2017). 

Our results support the hypothesis that some species could have kept suitable 

breeding grounds over the summer in reduced coastal areas of Iceland, Faeroes, 

Svalbard and Greenland during the LGM. On the other hand, most of the subspecies in 

these islands are also present in the continent and/or the British Islands, and only two 

are completely endemic of one or more of those islands (G. g. faeroensis and L. l. 

islandica). Therefore, we are unable to fully resolve whether these subspecies 

recolonized the islands from the continent after the LGM and quickly diversified, or if on 

the contrary, they managed to sustain isolated breeding populations that expanded 

from glacial refugia, hence further studies are needed to confirm this hypothesis. In this 

aspect, the search for fossil data of breeding bird communities across the Arctic and 

especially in the North Atlantic Islands (Iceland, Faeroes, Greenland, Svalbard) should be 

of paramount importance to shed light on this topic. 

 

The available fossil record of the studied species showed great congruence with 

the breeding and wintering ranges predicted by our SDMs during the LGM. The use of 

the fossil record provides an independent and alternative line of evidence to evaluate 

and complement the predictions on species ranges when using SDMs (Gavin et al., 

2014). Although classification of the fossil record as belonging to either breeding or 

wintering seasons is somewhat tentative, the rich fossil record of shorebirds found in 

Olduvai Gorge in Tanzania (Prassack, 2010, 2014; Prassack et al., 2018) provides valuable 

information on this topic. In this locality, the fossils assigned to Scolopacidae species, 

mainly Calidris sp., were examined for the presence or absence of medullary bone, a 

bone structure present only in birds during reproduction (Matthiesen, 1990a). While 
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fossils of birds from other clades showed presence of medullary bone, this was absent 

in all the samples from Calidris, which combined with a lack of fossils of juvenile 

specimens from this group indicate that they were not breeding, hence supporting that 

migration happened during the Pleistocene. Considering the presence of other 

shorebird species in Pleistocene fossil deposits across the southern hemisphere (e.g. 

Churcher & Smith, 1972; Campbell, 1976, 1979; Matthiesen 1990b; Meijer et al., 2013; 

Val, 2016), the confirmation from Olduvai that they were not breeding, and the 

predicted southern non-breeding distributions of our models, all support as the simplest 

and most likely hypothesis that migration did not stop during glacial periods. 

There is no clear evidence about when and how the so-called bird flyways were 

originated. The fragmentation and isolation of populations during glacial periods could 

have been reinforced by the differential use of flyways by these species (Buehler et al., 

2006; Piersma, 2011). During interglacial periods, populations separated in different 

flyways could result not only in different recolonization routes (Buehler et al., 2006; 

Ruegg et al., 2006), but also mismatches in aspects such as stopover times, arrival dates 

at breeding grounds and mating (Piersma, 2011), reinforcing the gap between 

populations or subspecies even when they overlap in their breeding or wintering 

territories (Wennerberg, 2001; Boulet et al., 2006). This potential role of the migratory 

flyways in the intraspecific diversification (or lack of it) and phylogeographic histories of 

long-distance migratory bird species needs to be assessed in future studies. 

In conclusion, our results show that the fragmentation of the breeding ranges 

determined and promoted the intraspecific diversification of the Arctic shorebirds 

during the glacial cycles of the Pleistocene. Despite severe changes in their ranges, their 

migratory behaviour remained largely unaltered, and likely contributed maintain the 

isolation between populations and their differentiation. Our study reveals the 

importance of the different processes involved in this diversification, and also the 

differences between the different regions of the Arctic. Overall, our work provides a 

spatial-explicit scenario for the diversification of Arctic shorebirds during the 

Pleistocene, which presumably reflects the evolution of other Arctic taxa, especially 

birds. 
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New mitochondrial DNA substitution rates reveal patterns of recent 

diversification in Arctic shorebirds linked to longer glacial cycles. 

 

Abstract 

 

The Pleistocene glacial cycles are usually considered as the origin of many of the 

current intraspecific diversity in Arctic shorebirds. The geographic changes in the 

breeding ranges between glacial and interglacial periods support this process of 

diversification across this clade. However, this needs to be confirmed with genetic data, 

to evaluate if the patterns and timing of diversification support the Pleistocene origin. 

Dating divergence times from DNA data requires the use of reliable and specific 

substitution rates. In the case of mitochondrial DNA (mtDNA), such rates are often 

unavailable and analyses are based on “universal” rates from other taxa or DNA sources. 

To avoid the error induced from those rates, we performed a novel calibration of the 

molecular clock rates for each of the mtDNA genes across the bird phylogenetic tree. 

The obtained rates, specific for each gene and lineage in the tree, allowed us to explore 

the diversification within 10 species of Arctic shorebirds. Using phylogenetic and 

coalescent methods, we confirmed that most of the intraspecific diversification in Arctic 

shorebirds developed during the Pleistocene, and especially during the Middle and Late 

Pleistocene, coinciding with longer and more intense glacial periods. The patterns of 

diversification show parallelisms between shorebird species that experienced similar 

changes of their breeding ranges during glacial and interglacial periods. Species with a 

higher degree of isolation of their populations, especially during glacial periods, display 

older and better-defined lineages than those from areas more affected by the glaciation 

or that became isolated during the interglacial. The diversification patterns found in 

Arctic shorebirds also show great parallelism with previous results in some Arctic 

species, highlighting the importance of integrating different evolutionary histories to 

understand the origin of Arctic biodiversity. 
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Introduction 

 

Pleistocene glacial cycles have been suggested as potential drivers of 

diversification in Arctic species (see Chapter 1). To confirm this hypothesis, there are 

two main factors to explore the potential role of glacial cycles in the observed patterns 

of geographic variation in Arctic species: the time of diversification, to confirm that it 

happened during the Pleistocene, and the past distribution changes during glacial and 

interglacial periods to determine the potential existence of refugia and their 

connectivity, or lack of, in parallel to the observed genetic and phenotypic variation in 

species. 

 

From a geographic perspective, seminal papers (Rand, 1948; Macpherson, 1965; 

Ploeger, 1968; Greenwood, 1986) proposed the retreat into isolated refugia during cold 

glacial periods as the potential cause of geographic isolation and diversification, which 

correlated to the actual observed variation in Arctic species, like geese and shorebirds 

(Ploeger, 1968). However, interglacial periods could have also affected the genetic and 

phenotypic variation of Arctic species as they expanded their ranges back to northern 

latitudes, an alternative hypothesis that has been neglected so far. In the Chapter 1 of 

this thesis, we performed explicit analyses that show that range fragmentation into large 

biogeographic regions driven by glacial climatic cycles parallel the observed intraspecific 

variation in shorebirds. The majority of species with recognized subspecific variation 

presented fragmentation of their ranges during glacial, interglacial or both periods, and 

the fragmentation of their ranges overlaps with their subspecies distributions. Hence, 

both glacial and interglacial periods seem to have played an important role in the 

diversification of Arctic species. Genetic data constitute an independent dataset to 

confirm this hypothesis as, in order to be true, the origin and divergence of extant 

subspecies had to happen during the last 2.5 million years (My). The expansions and 

contractions of ranges, often involving fragmentation, left genetic signatures in species 

(Avise & Walker, 1998; Hewitt, 1996, 2000, 2004), including population demographic 

changes (Jaarola et al., 1999; Hewitt, 2000; Flagstad & Røed, 2003; Buehler & Baker, 



79 
 

2005; Jones et al., 2005; Milá et al., 2007), although those does not necessarily have to 

be related to the origin of the subspecies. 

 

Another interesting aspect to explore is the potential scenario of simultaneous 

temporal diversification of Arctic species or whether each species diversified 

independently. The Pleistocene was characterized by an alternation of cold glacial and 

warm interglacial periods, some of which were longer and more intense than others 

(EPICA community members, 2004; Lisiecki & Raymo, 2005; Cohen & Gibbard, 2008; 

Jouzel et al., 2007). It may be possible that some of these periods had a more profound 

impact on the genetic and phenotypic variation of Arctic species, hence they diverged 

at the same time. Many works have provided coalescent and Bayesian time estimates 

of the origin of subspecies of Arctic species (Abbott & Comes, 2004; Weir & Schluter, 

2004; Buehler & Baker, 2005; Todisco et al., 2012; Eidesen et al., 2013; Hope et al., 2012; 

Kleckova et al., 2015), but the confidence intervals of such estimates are very large. Also, 

so far there has not been a comparative study that analysed multiple species at the same 

time with the same approach and methods to test this hypothesis on Arctic species. 

Using shorebirds as a model, here we want to test if the observed intraspecific genetic 

variation observed in Arctic shorebird species originated during the Pleistocene, if there 

is an overlap in time in such diversification, and if the diversification correlates with a 

particular period.  

 

As confidence intervals in divergence time estimates are expected to be larger 

than the duration of any particular glacial or interglacial period, we consider two main 

periods in the Pleistocene based on the length of Milankovitch cycles. Since the 

beginning of the Pleistocene, glacials and interglacials gained in duration and intensity, 

but since around 900,000 years ago, the Milankovitch cycles showed much larger 

amplitudes and durations until the last glacial maximum about 22,000 years ago (EPICA 

community members, 2004; Lisiecki & Raymo, 2005; Jouzel et al., 2007). We hypothesize 

that most Arctic species where more affected during this last period and consequently 

their diversification peaked during the last 900,000 years.  
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A proper testing of those hypotheses relies on robust coalescent or phylogenetic 

estimates of divergence times. Fossils can be used to calibrate divergence times of 

particular nodes on a phylogeny, but the fossil record is scarce in the Arctic (Peters & 

McClennen, 2016), and fossils are unlikely assigned to particular subspecies. Hence, 

when performing analyses on intraspecific divergences, they have to rely on mutation 

rates for the loci of interest (Lovette, 2004; Pereira & Baker, 2006). Mitochondrial DNA 

(mtDNA) is generally regarded as a useful resource to assess recent evolutionary 

histories and especially in phylogeographic studies on bird species (Zink & 

Barrowclough, 2008). For years, many of these studies estimated divergence times 

based on the “universal” molecular clock rate of 2% divergence per million years, which 

translates to approximately 0.01 substitutions per site per lineage per million years 

(s/s/l/My). This rate was originally estimated based on data from humans and 

chimpanzees (Brown et al., 1979) and was supported by similar rates obtained for other 

vertebrates (Wilson et al., 1985) and a couple genera of geese (Shields & Wilson, 1987), 

and more recently in a reanalysis extended to birds in general (Weir & Schluter, 2008). 

But the validity of this universal molecular clock for any mtDNA loci in any bird species 

has been heavily criticized (Garcia-moreno, 2004; Lovette, 2004) and all the large 

mitogenomic analyses performed over the past 15 years reflect a lack of “standard” 

rates across the avian tree of life and between the different mtDNA markers (Pereira & 

Baker, 2006; Pacheco et al., 2011; Nabholz et al., 2016). However, the results of these 

studies have high variation between them, and more importantly, they often fail to 

provide rates that are specific for the mtDNA gene in the actual taxonomic group of 

interest. To overcome this problem, we here performed our own mitogenomic 

calibration of the avian molecular clock for each mtDNA gene in each lineage within the 

tree, including several shorebirds, and then applied those resulting rates to the dating 

of the diversification in our studied species. 

Although phylogenetic molecular clock analyses are the most common approach 

to estimate divergence times, the use of other complementary statistical methods can 

enhance the validation of results. Coalescent-based methods have become a powerful 

tool to infer evolutionary histories under more complex scenarios, incorporating 

demographic changes into the model (Hickerson et al., 2007, 2010; Beaumont et al., 

2010). One of these methods is approximate Bayesian computation (ABC), which allows 
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testing between alternative hypotheses in order evaluate which evolutionary scenario 

fits the data better (Csilléry et al., 2010). This has often been used to infer the 

phylogeography and timing of diversification events between lineages during the 

Pleistocene in relation to changes in the climate (e.g. Shafer et al., 2010; Zigouris et al., 

2013; Fasanella et al., 2014; Castellanos-Morales et al., 2016). 

 

Here we used Arctic shorebirds as a model group, because it harbours species with 

suitable characteristics to test the proposed hypotheses. Arctic and subarctic shorebirds 

are one of the most migratory groups of organisms on Earth. They comprise 70 species 

belonging to 18 genera (Chester, 2016), spanning throughout the Arctic and subarctic 

regions during reproduction, performing long migrations to Eurasia, Africa, Australasia 

or South America (del Hoyo, 2018). Some species occur throughout the Arctic, while 

others are restricted to smaller areas. Widespread species can show no intraspecific 

phenotypic variation and genetic uniformity or have several well-defined morphological 

subspecies (Engelmoer & Roselaar, 1998) with or without genetic differentiation. 

Previous works hypothesized that their diversification may be related to Pleistocene 

glaciations (Buehler & Baker, 2005; Buehler et al., 2006; Piersma & Drent, 2003; Wenink 

et al., 1993, 1996), and in the first chapter we provided explicit spatial scenarios 

suggesting that range fragmentation caused by glacial cycles correlate to the observed 

spatial differentiation. 

There are not many species of Arctic shorebirds for which genetic data are 

available across their distribution ranges. For some with such data, Pleistocene vicariant 

events, when populations were fragmented in different refugia not connected between 

them, together with a strong philopatry have been advocated to explain the genetic 

structure within species or the genetic differentiation between subspecies [e.g. Calidris 

alpina, (Buehler & Baker, 2005; Wenink et al., 1993, 1994, 1996); Calidris canutus (Baker 

et al., 1994; Buehler & Baker, 2005); Calidris maritima (Barisas et al., 2015; Leblanc et 

al., 2017), Calidris ptilocnemis (Pruett & Winker, 2005); Limosa limosa, (Höglund et al., 

2009; Trimbos et al., 2014)]. In other species, like Arenaria interpres (Wenink et al., 

1994), Calidris fuscicollis (Wennerberg et al., 2002) or Tringa totanus (Ottvall et al., 

2005) there is no signature of population genetic structure across their ranges, 

suggesting that different species may have experienced different historical processes 
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within the Arctic. A comparative analysis with multiple species to assess their potential 

parallel diversification through time is lacking.  

 

We here provide novel estimates of mutation rates across birds, including Arctic 

shorebirds, that were used to estimate their intraspecific diversification and origin of 

subspecies, test their potential overlap in time, and perform explicit coalescent 

hypothesis testing of different time scenarios. Those analyses constitute an independent 

line of evidence to the geographic and climatic scenarios, to support the hypothesis of 

glacial cycles as the main drivers of the diversification in Arctic species. 

 

Methods 

 

Complete mitochondrial genomes 

We assembled the most comprehensive dataset available so far of complete bird 

mitochondrial genomes from Genbank. To retrieve the genomes, we modified the 

Mitobank script (Abascal et al., 2007) in BioPerl, providing complete or nearly complete 

bird genomes for 622 species representing 33 modern bird orders, including some 

extinct species. Of these 622 species sampled, including some that are now extinct, 17 

belonged to palaeognaths (Ostrich, tinamous and allies), 94 to the Galloanserae clade 

(chickens, quails, geese, fowls and allies) and 511 to the Neoaves (all other avian groups) 

clade, of which 259 were Passeriformes (Accession Numbers: see Appendix 3). Only 5 

orders were left unrepresented due to the lack of species' mtgenome data available: 

Mesitornithiformes (Mesites), Pterocliformes (Sandgrouses and allies), 

Opisthocomiformes (Hoatzin), Leptosomiformes (Cuckoo rollers) and Cariamiformes 

(Seriemas and allies). 

In two cases, there were some missing data for some species that were completed 

from different individuals: Psittacus erithacus for ND6 (accession number KM611474) 

and Accipiter gularis for ND1 (EU583261). 
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After excluding the D-loop and the tRNAs, the result was a combined dataset of 

12950 base pairs. Alignments were done gene by gene as global alignments are not 

possible because of gene rearrangements and complexity of the genomes (Mueller & 

Boore, 2005). Alignment was performed using the software Genious v.9 

(https://www.geneious.com). Due to the high variability of some regions of the 

mitochondrial DNA, and especially in 3rd codon positions, we applied a translation 

alignment. This implies translating the sequences into aminoacids for the alignment, and 

then returning to the original nucleotide sequence. The genes were then concatenated 

into a single sequence per species. 

We computed a phylogenetic tree using RaxML (Stamatakis, 2014) as a test to 

detect troublesome sequences that could be introducing error in the process. This 

resulted in the exclusion of Larus vegae (GenBank accession number: NC_029383) from 

the following analyses, after a clearly wrong placement in the obtained tree. 

 

Fossil time constraints 

In order to accurately determine divergence times and evolutionary rates, 

analyses must include a number of independent fossil constraints to time-calibrate the 

phylogenetic tree ( Near & Sanderson, 2004; Benton & Donoghue, 2007; Magallón et al., 

2013). In our case, these calibrations are based on the fossil record. In accordance with 

recent recommendations (Ho & Duchêne, 2014; Zheng & Wiens, 2015), we aimed to 

include the higher number of calibrations as possible across the tree to maximize the 

accuracy of our results. 

After a thorough review of the bibliography, we studied 77 reliable fossil reliable 

calibrations. Out of these 77, 25 were included into the analyses based on their 

informative value and compatibility with our dataset (Fig. 1). Following the 

recommendations from Parham et al. (2012) and Fourment & Holmes (2014), we used 

a conservative minimum age based on the chronostratigraphic evidence of each fossil, 

and we did not impose any hard maximum ages. 
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Figure 1: Cladogram summarizing the relationships between orders used for the analyse, with the 25 fossil 

calibrations in the corresponding nodes indicated by yellow circles (numbers are detailed in the text). 
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1) Split Corvus / Urocissa - Miocitta galbreathi 

The minimum time constraint for the split between Corvus and Urocissa (Scofield 

et al., 2017) can be inferred by Miocitta galbreathi, which is identified as a corvid from 

the late Miocene (15.97–13.6Mya) of North America. This fossil has been reported from 

the Pawnee Creek formation associated with Kennesaw local fauna [Upper Miocene 

(Galbreath, 1953)], in Colorado USA (Brodkorb, 1972; Becker, 1987a). Jønsson et al. 

(2016) suggested that M. galbreathi is more closely related to the genus Corvus than 

Urocissa/Cissa magpies; hence, we used the minimum constraint of 13.6 Mya on the 

divergence of Corvus and Urocissa genus.  

 

2) Split Psittaciformes / Passeriformes -Pulchrapollia gracilis 

The fossil Pulchrapollia gracilis was recovered from the London Clay Formation at 

Walton on the Naze, England. The Walton Member is related to the 14 upper part of 

Chron C24r and to calcareous plankton zone NP10-11 (Rhodes et al., 1999). Given the 

difficulty to precise dating Chron C24r, Ksepka and Clarke (2015) suggest selecting the 

youngest estimate for the top of C24r (53.5 Mya). P. gracilis presented unique 

morphological similarities with extant parrots, sitting this fossil as a stem position of 

Psittaciformes. Here we use P. gracilis to calibrate the node in the split of Psittaciformes 

and Passeriformes with a minimum time constraint of 53.5 Mya.  

 

3) Crown Meleagridinae + Tetraoninae - Rhegminornis calobates 

When Rhegminornis was described, it was assigned to the order Charadriiformes 

(Wetmore, 1943). Olson and Farrand (1974) restudied this fossil placing it to Galliformes. 

They described it as a Meleagridae species and it has been used as calibration constraint 

between Meleagris and the grouse and ptarmigan (Pearson et al., 2016; Stein et al., 

2015). It was found in the Lower Miocene deposits at Thomas Farm, 8 miles north of 

Bell, Gilchrist County, Florida. If we consider the minimum age of the lower Miocene, we 

would use 16 Mya as minimum time constraint for this node. 
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4) Crown Galliformes - Gallinuloides wyomingensis 

Both Gallinuloides (Mayr, 2004) and Paraortygoides (Dyke and Gulas, 2002) fossils 

are valid for the calibration constraint of the stem Galliformes, as they are sister taxa 

(Ksepka, 2009). Several authors (van Tuinen et al., 2004; Chen et al., 2015; Kan et al., 

2010; Pereira et al., 2006) used Gallinuloides as calibration for the stem Numididae - 

Phasianidae based in Dyke (2003), but Mayr and Weidig (2004) placed this fossil at the 

base of Galliformes.  

The holotype of Gallinuloides was found in the Fossil Butte Member of the Green 

River Formation, Kemmerer, Wyoming, USA (Mayr and Weidig, 2004). Smith et al. (2008) 

dated with 40Ar/39Ar method the Fossil Butte Member assigning an age of (51.66 ± 0.09 

Mya). We used the minimum age of the strata for our calibrations (51.57 Mya). 

 

5) Crown Cracide + Numididae + Phasianidae - Procrax 

Procrax fossil was described by Tordov 1957, from fresh-water limestone at the 

top of the Chadron formation from the lower Oligocene, NE 1/4 Sec. 4, T1S, R17E, in 

Pennington County, South Dakota. Van Tionen and Dyke (2004) used this fossil as 

calibration constraint; although, Ksepka (2009) remarked that there is not a 

phylogenetic analysis with this fossil that confirmed its correct placement. We used the 

minimum age of the lower Oligocene for our calibrations (33.9 Mya). 

 

6) Crown Gallus + Coturnix - Schaubortyx 

The fossil Schaubortyx has been considered as the most recent common ancestor 

of Gallus and Coturnix (Eastman, 1905). This fossil has been described from the 

freshwater limestone of Armissan, near Narbonne (Aude) (Eastman, 1905) assigned to 

the Chattian geological period (28 - 23.03 Mya) (Aguilar and Michaux, 1977). Several 

papers attributed a time constraint for divergence time analyses to this split around 32 

to 38 Mya (Kan et al., 2010; Chen et al., 2015; Pereira et al., 2006; van Tuinen & Dyke, 

2004; Li et al., 2015; Pereira & Baker, 2006). Although these papers refer to the Chattian 

period, they use ages corresponding to the Bartonian to Ruppelian. Here, we use a 

conservative age corresponding to the late Chattian as a minimum time constraint of 
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23.03 Mya. There is not a phylogenetic analysis confirming the position of Schaubortyx 

taxon as the ancestor of crown Gallus and Coturnix (Ksepka, 2009), but its placement 

this position seems not to be controversial. 

 

7) Crown Anatidae - Vegavis iaai 

This fossil was described by Clarke et al. (2005), from the Sandwich Bluff Member 

of the Lopez de Bertodano Formation at Sandwich Bluff, Vega Island, Antarctica. 

According to Ksepka & Clarke (2015), the fossil was found near a deposit that lies 50 

below the K-Pg boundary, and was dated to be 67 Mya on the base and about 66 on the 

top, when taking 65.5 Mya as a reference for de K-Pg boundary. Since the new reference 

is 66My, then the top part of the biozone of Vegavis is 66.5 Mya, making this the 

youngest possible age, and thus the minimum age for this node. 

 

8. Split Apodidae / Trochilidae - Eocypselus vincenti 

Eocypselus vincenti is considered as the most recent common ancestor of the 

Apodiformes. This fossil was described by Harrison in 1984 from the lower Eocene 

(Ypresian) (Division A, London Clay. Walton on the Naze, Essex (England). We did not 

find the age of the strata. According to Ericson et al. (2016), we used the age from the 

Ypresian in the lower Eocene, around 53 Mya. 

 

9) Crown Trochilidae - Eurotrochilus inexpectatus  

Eurotrochilus inexpectatus is considered the oldest modern-type hummingbird, 

described by Mayr (2004). It was found in Frauenweiler south of Wiesloch (Baden-

Württemberg, Germany). The fossil was recovered from clay pit of the Bott-Eder GmbH 

(“Grube Unterfeld”), corresponding to the early Oligocene, Rupelian period (30 to 34 

Mya). We used 30 Mya as a minimum time constraint to calibrate the crown of 

hummingbirds, considering the minimum age from the Rupelian to be conservative 

(Ornelas et al., 2014). 
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10) Split Charadriiformes / sister taxa - Charadriiformes incertae 

The minimum time constraint from the Order Charadriiformes and its sister taxa 

is defined by a fossil with genus and species unknown, described by Mayr (2000a). Mayr 

(2000a) referred the fossil to Charadriiformes based on some apomorphies of the 

coracoid, humerus and carpometacarpos. However, the relationships of this fossil within 

the Order Charadriiformes are unclear. The fossil was recovered in “Grube Messel”, 

located near Darmstadt in Hessen, Germany. The deposits from Messel originated in the 

Lower Middle Eocene. According with 40Ar/39Ar methods, the igneous rocks were 

dated to 47.8 ± 0.2 Mya, corresponding to the biostratigraphic reference level MP11 

(the Geiseltalian European Land Mammal Age, estimated at 47.5-46.5 Mya) (Mertz and 

Renne, 2005; Smith, 2015). We used the inferior limit of the Geiseltalian (46.5 Mya) as 

minimum time constraint to calibrate the split of Charadriiformes from its sister taxa. 

 

11) Crown Laromorphae (Laridae, Sternidae and allies) - Laricola elegans 

Laricola fossil remains were recovered from Saint-Gérand-le-Puy (Early Miocene) 

and Billy-Créchy (Late Oligocene) in France. Although different Laricola species were 

found, only Laricola elegans was complete enough to be considered as potential 

calibration taxon, and included in phylogenetic analyses. The unresolved phylogenetic 

analyses from De Pietri (2011), suggest positioning this taxon as calibration point of the 

base of Laromorphae (Smith, 2015). The strata where Laricola remains were found in 

Créchy corresponds to the Miocene-Oligocene boundary, Paleogene mammalian zones 

MP25-M30, with an estimated age of 24.1-23.6 Mya (Hugueney et al., 2003). 

Considering a conservative approach, we used the 23.6 Mya as minimum time constraint 

to calibrate the base of Laromorphae. 

 

12) Split Jacanidae / other Scolopacidae – Nupharanassa bulotorum 

Nupharanassa bolutorum, as well as other jacanas were recovered from the 

Quarry M, Fayum Province, in Egypt. The strata corresponded to the upper sequence of 

the Jebel Qatrani Formation from the Lower Oligocene, dated as 33-30 Mya. Those fossil 

remains were assigned to the family Jacanidae given their tarsometatarsi, distinctive in 
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having the huge distal doramen, broad tendinal groove and flattened shaft (Rasmussen 

et al., 1987). Although the species Nupharanassa tolutaria has been considered older 

than Nupharanassa bolutorum, no phylogenetic studies have been conducted with this 

species (Smith, 2015). Thus, N. bolutorum is considered as a good calibration point to 

calibrate de divergence of the family Jacanidae from other scolopacids. We used 30 Mya 

as minimum time constraint for this node. 

 

13) Split Pan-Alcidae / Stercorariidae - Pan-Alcidae incertae sedis 

A Pan-Alcidae incertae sedis fossil was recovered from the locality of Hardie Mine 

in Georgia, USA (Chandler and Parmley, 2002). This fossil was placed in the group of pan-

alcids given the apomorphic dorsoventrally flattened shaft and proximally extended 

dorsal supracondylar process of the humeri, that differs from other charadriiforms 

(Smith, 2011). The sediments exposed in Hardie Mine corresponded to the Clinchfield 

Formation. The sediments together with the fauna recovered in these strata as rays, 

sharks, mammals, snakes and dinocysts support the age of Late Eocene of this species. 

Other dinocyst assemblage from Georgia and South Carolina were placed in calcareus 

nannofosil zone NP19/20, that was dated 36-34.2 Mya (Smith, 2015). Therefore, the 

conservative age used for the divergence of Pan-Alcidae and Stercorariidae was 34.2 

Mya. 

 

14) Crown Calidrinae (Calidris and allies) - Mirolia brevirostrata 

The specimens of Mirolia brevirostrata were placed in the subfamilie Calidridinae 

based on the apomorphies of the cranium and postcranium (Ballmann, 2004). These 

remains have been recoved from Nördlinger Ries basin, in Bavaria, Germany. This basin 

is an impact crater and has been dated as 14.8 ± 0.7 Mya. However, using the fossil fauna 

of the crater, the age has been dated in the Middle Miocene (Astaracian, MN 6) 16-11Ma 

(Smith, 2015). As the age of the fauna is not exact, the Serravallian-Tortonian boundary 

age is recommended to date the remains (11.62 Mya) (Smith, 2015); then we used 11.62 

Mya as minimum time constraint for the basal node of Calidrinae. 
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15) Split Phoenicopteriformes / Podicipediformes - Adelalopus hoogbutseliensis 

Adelalopus hoosbutseliensis presents singular morphological features in the 

coracoid, furcula and trochlea metatarsi that place it to the family Palaelodidae. This 

family is known from the Oligocene to the Pliocene of Europe, America and Australia 

(Olson and Feduccia, 1980) within the Order Phoenicopteriformes. Adelalopus 

hoosbutseliensis is the oldest known Phoenicopteriform species found in Hoogbutsel 

near Boutersem, in Brabant, Belgium. The remains were found in the strata MP 21 that 

corresponds to the Lower Oligocene (Mayr and Smith, 2002). We used this fossil to 

calibrate the node corresponding to the divergence of Phoenicopteriformes from its 

sister taxa (Podicipediformes) with a minimum time constraint of 27.8 Mya. 

 

16) Split Fregatidae / Suloidea - Limnofregata hasegawai 

The especies Limnofregata azygosternon was described by Olson (1977) and 

assigned to the genus Limnofregata, within the family Fregatidae. Further phylogenetic 

analyses recovered this genus as the base of the family Fregatidae based on 

synapomorphies that include the cranial, axial and pectoral characters (Smith 2010). 

These remains were collected near Kemmerer in Lincoln County, Wyoming; however, 

the exact place is unknown. Several specimens from another species from the genus 

Limnofregata, L. haseqawais were collected from a more precise locality. Those remains 

were found in F-2 Facies in the middle unit of the Fossil Butte Member of the Green 

River Formation. Multicrystal analyses from a K-feldspar tuff (FQ-1) at the top of the 

middle unit of the Fossil Butte Member, from Fossil-Fowkes Basin have determined that 

the deposits are late early Eocene, with and age of 51.97 ± 0.16 (Smith and Ksepka, 

2015). We used the minimum age (51.8 Mya) as constraint for the divergence of 

Fregatidae and Suloidea. 

 

17) Split Phalacrocoracidae / Anhingidae - ?Borvocarbo stoeffelensis 

?Borvocarbo stoeffelensis fossil remains were found in Lagerstätte Enspel, near 

Bad Marienberg in Westerwald, Rheinland-Pfalz, Germany. This species was placed 

together with Phalacrocoracidae clade given three synamoporphies represented in the 
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mandible and the pes of the skeleton (Smith, 2010). The deposits from Enspel 

correspond to the upper Oligocene mammal Paleogene, in the level 28 (Mertz et al., 

2007; Smith and Ksepka, 2015). The Enspel lacustrine deposits were dated using laser 

fusion 40Ar/39Ar radiometric dating of volcanic feldspars from the lower and upper 

basaltic flows, yielding ages of 24.56 ± 0.04 to 24.79 ± 0.05 Mya (Mertz et al., 2007). 

Therefore, the conservative age used for the divergence of Phalacrocoracidae and 

Anhingidae was 24.5 Mya. Similarly, the species ?Oligocorax described in Mayr (2001) 

and placed within the family Phalacrocoracidae and also found in the deposits from 

Lagerstätte Enspel, in the level 28, could also serve as a calibration for this split. 

 

18) Crown Balaenicipitidae - Goliathia andrewsi 

Goliathia andrewsi was found in Faym Province, lower sequence, in the Jebel 

Qatrani Formation (Rasmussen et al., 1987). This species was assigned to the family 

Balaenicipitidae given its distinctive flattened shafand. G. andewsi is the oldest fossil 

found of this family (Smith, 2013). The remains were found in the horizon Quarry M, 

upper sequence, dated by Seiffert (2006) as Early Oligocene. Hence, we used 30 Mya as 

the minimum time constraint to calibrate the crown group of Balaenicipitidae.  

 

19) Split Sphenisciformes / Procellariiformes - Waimanu manneringi 

The holotype of Waimanu manneringi (Slack et al., 2006) was placed within 

Spheniciformes given distinct characters: as some thoracic vertebrae that are not 

heterocoelous, synsacrum has 11–12 ankylosed vertebrae, not well developed 

hypotarsal crests and grooves of the tarsometatarsus. Multiple analyses using 

morphology and molecular data place Waimanu as the most basal penguin taxon (Slack 

et al., 2006; Ksepka and Clarke, 2010). This specimen was collected from the basal 

Waipara Greensand, Waipara River in New Zealand (Slack et al., 2006). The top of the 

Waipara Greensand corresponds to the Paleocene-Eocene boundary given the 

calcareous nannofossils 61.6 – 60.5 Mya (Cooper, 2004, Kepska and Clarke, 2015). The 

youngest possible age (60.5 Mya) is used as a hard-minimum age for the divergence 

between Sphenisciformes and Procellariiformes.  
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20) Split Spheniscus / Eudyptula - Spheniscus muizoni 

According to Göhlich (2007), Spheniscus muizoni is the oldest fossil record of the 

extant penguin genus Spheniscus. This specimen was found in Cerro La Bruja, in the 

Department of Ica (Peru). The remains were from Pisco Formation, latest middle/earliest 

late Miocene, ca. 13 –11 Mya (Muizon, 1988). Postcranial bones of this species 

recovered from Pisco Formation presented osteological features that allow assigning 

them to the genus Spheniscus. Hence, we considered 11 Mya as the minimum age for 

the calibration between Spheniscus and Eudyptula.  

 

21) Crown Uppupidae + Phoeniculidae - Messelirrisor grandis/Messelirrisor 

halcyrostris 

The taxa Messelirrisor grandis was described by Mayr (2000b). The fossil remains 

were recovered from Messel near Darmstadt, Germany. The deposits of Messel 

originated in a deep crater lake about 49 Mya in the Lower Middle Eocene. Phylogenetic 

analyses based in morphological characters were performed by Mayr (2006), placing this 

taxon as the sister species of all Bucerotiformes (stem of Upupidae and Phoeniculidae). 

Ksepka and Clarke (2015) choose the other species of the genus (Messelirrisor 

halcyrostris) from the same strata as fossil for calibrations. The age of the strata was 

calculated by incorporating the dating of the deposits below (40Ar/39Ar age of the 

basalt chimney below Lake Messel) where the fossil was found (ca. 47.8) and the 

estimated time of the deposition of the lacustrine sediments above the basalt chimney 

(1My after) (Mertz et al., 2004). We used as a minimum age constraint 46.6 Mya. 

 

22) Trogoniformes - Primotrogon ? pumilio 

Mayr (2005) described Primotrogon ? pumilio as the oldest species of 

Trogoniformes. This fossil was discovered in Messel, near Darmstadt, Hessen, Germany 

originated in a lake of tectonic or volcanic origin, from the Lower Middle Eocene dated 

as 49 Mya. This species shares with modern trogons the heterodactyl feet, which is a 

distinctive character only known for trogons. As previously said in the explanation of 
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Messelirrisor halcyrostris, the estimated time of deposits of the lacustrine sediments 

above the basalt chimney is 46.6 Mya (Mertz et al., 2004). We used 49 Mya as minimum 

time constraint to calibrate the node corresponding to the split of the lineage of 

Trogoniformes from the sister taxa. 

 

23) Split Falconidae/Polynorinae - Pediohierax ramenta 

Pediohierax ramenta was described by Wetmore (1936) as Falco ramenta, while 

Becker (1987b) revised its taxonomic position moving it to the genus Pediohierax. This 

fossil represents the first known species of Falconidae and the most recent common 

ancestor of the subfamily Falconinae. 

The holotype of P. ramenta was found at the "Merychippus Quarry, Dawes Co., 

Nebraska. However, other specimens were found at Boulder Quarry, Echo Quarry, 

Thomson Quarry and Observation Quarry. Excluding the Observation Quarry, all 

specimens are from Sheep Creek or Olcott Formations, Sioux Co., Nebraska. Based on 

the dating of a vitric tuff on top of one of the localities, Thomson quarry (late 

Hemingfordian, ca. 16.3Mya), the minimum age of P. ramenta is approximately 16.5 ± 

0.6 Mya (Becker, 1987b). We used 15.9Ma as the minimum time constraint to calibrate 

the split between Falconidae and Polynorinae. 

 

24) Crown Columbiformes - Gerandia calcaria 

Gerandia calcaria is the earliest dove known, from the early Miocene (Aquitanian) 

of France between 23 – 20.4 Mya (Gradstein & Ogg, 2004). It was described as Columba 

calcaria from a single humérus; and renamed later as Gerandia (Olson 1985). We use 

the minimum age of the Aquitanian, 20.3 Mya, as a minimum time constraint for the 

basal node of Columbiformes.  

 

25) Split Casuarius / Dromaius - Emuarius gidju 

Emuarius gidju was firstly described as Dromaius gidju by Patterson and Rich 

(1987), from the Miocene Kutjamarpu local fauna of central Australia. The type of the 
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fossil was recovered from the Wipajiri Formation, Lake Ngapakaldi, Etadunna Station, 

eastern Lake Eyre basin, South Australia. However, given the similarity of hindlimb 

characters to both cassowaries and emus, Boles (1992) assigned this fossil to the genus 

Emuarius. Other specimens assigned to this species were found from the Oligocene and 

Miocene in Riversleigh deposits, northwestern Queensland. Those deposits are 

considered closer to the Lower Miocene or even Upper Oligocene (25 Mya) (Boles, 1992; 

Archer et al., 1989). We consider as a minimum age of this taxon around 23 Mya to 

calibrate the divergence between Casuarius and Dromaius. 

 

Rate estimates 

We performed Bayesian analyses as implemented in BEAST2 v.2.4.7 (Bouckaert et 

al., 2014) to estimate the substitution rate per locus. The choice of this software was 

based on its capability to accommodate different parameters into the analysis (such as 

substitution models for each codon position and multiple options of relaxed molecular 

clock), as well as the capability of recovering a rate for each gene in all the nodes of the 

tree. 

We set independent partitions for every gene to estimate each molecular clock 

rate, and for every codon position to fit the nucleotide substitution models selected. We 

used PartitionFinder (Lanfear et al., 2012) to find the best substitution model for each 

codon position in each gene (Table 1). 

We selected the lognormal relaxed clock implemented in BEAST2. In order to avoid 

misleading results due to the clock selection, we also ran an analysis under a random 

local clock model to compare between results. Due to the fast rate of change in mtDNA, 

saturation becomes an issue affecting the topology at deeper nodes. To minimize this 

problem, we constrained the topology of the tree by grouping species' sequences into 

their corresponding orders, as well as the phylogenetic relationships between orders 

based on the results from Prum et al. (2015). Relationships between Galliformes families 

were also constrained to fit that topology. The phylogenetic tree was computed using 

all genes combined, following a birth-death Yule model. 
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Given the complexity of the analysis, the MCMC chain needed a large number of 

generations in order to reach stability. We ran the chain for 1 billion (1.000 million) 

generations, discarding the first 500 million as pre-burn-in and sampling every 5000 

states. To avoid results based on a local maximum, a second 600 million chain was run 

independently to compare. The random local clock analysis also ran for 500 million 

generations. 

Additionally, we ran an analysis using only the information from the priors, to 

determine whether the posterior probability of the results is driven solely by the priors, 

or if the data are also introducing information into the final results. 

 

GENE POSITION 1 POSITION 2 POSITION 3 

12S TN93+I+G TN93+I+G TN93+I+G 

16S TN93+I+G TN93+I+G TN93+I+G 

ATP6 TN93+I+G TN93+I+G TN93+I+G 

ATP8 TN93+I+G TN93+I+G TN93+I+G 

CO1 TN93+I+G TN93+I+G TN93+I+G 

CO2 TN93+I+G TN93+I+G TN93+I+G 

CO3 TN93+I+G TN93+I+G TN93+I+G 

CYTB TN93+I+G TN93+I+G TN93+G 

ND1 TN93+I+G TN93+I+G TN93+G 

ND2 TN93+I+G TN93+I+G TN93+G 

ND3 HKY+G HKY+G HKY+G 

ND4L TN93+I+G TN93+I+G TN93+I+G 

ND4 TN93+I+G TN93+I+G TN93+I+G 

ND5 TN93+I+G TN93+I+G TN93+G 

ND6 TN93+I+G TN93+I+G TN93+I+G 

Table 1: nucleotide substitution models employed for each partition by locus of the complete 

mitochondrial genomes in the BEAST2 analyses  
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We also ran an aminoacid analysis, using the same specifications as in the main 

analysis, except for the substitution models, where we used MTREV for each of the 

partitioned markers as implemented in BEAST2. Aminoacid sequences are much more 

conserved than nucleotide sequences. Therefore, this allowed us to compare both 

analyses in order to determine the effect of the saturation of mtDNA in the topology 

and divergence time estimates. 

 

Shorebird mtDNA genetic data 

There are no nuclear DNA datasets available for shorebirds covering their full 

range, and fresh tissues were not available to us to generate such datasets. We 

assembled mitochondrial DNA datasets for Arctic shorebird species for which genetic 

data are available. We increased the number of sequences from published datasets 

available in Genbank by incorporating many unpublished data from the BarCodingofLife 

initiative (http://www.boldsystems.org) (accession numbers: Appendix 4). For most 

species there were less than two sequences available for each population to compare, 

often with large parts of their ranges unsampled and/or with different genetic markers 

for different populations. Hence, we considered all Arctic-breeding or boreal-breeding 

species and discarded the ones for which data were incomplete or absent. After this 

filtering, only 10 species had suitable data for analyses: five of them from the family 

Charadriidae (Charadrius hiaticula, Pluvialis squatarola, Pluvialis fulva, Pluvialis apricaria 

and Pluvialis dominica) and five from Scolopacidae (A. interpres, C. alpina, C. canutus, C. 

ptilocnemis and L. limosa). All these species have described morphological subspecies 

with various degrees of differentiation at the genetic level, except for P. fulva and P. 

dominica which are monotypic. All four Pluvialis species were analysed as a single group 

to compare the patterns of intraspecific diversity with the speciation of closely related 

Arctic species. The mitochondrial markers used were the subunit 1 of the cytochrome C 

oxidase (COI) in A.interpres, C. canutus, C. hiaticula, L. limosa, P. apricaria, P. dominica, 

P. fulva and P. squatarola; the Cytochrome B (CytB) in C. alpina; and the subunit 2 of the 

NADH dehydrogenase (ND2) in C. ptilocnemis. 
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Every dataset was aligned using Clustal-Wallis as implemented in Bioedit and 

corrected by eye. We then used PartitionFinder to determine the best substitution 

model for each of them for further analyses. 

 

Molecular clock analyses 

To determine the diversification between and within species, we performed 

divergence time analyses by assembling time-calibrated Bayesian phylogenies for each 

species using the software BEAST2 (v 2.4.4). We applied a strict molecular clock model 

given the low rate variation and genetic diversity expected when working at the 

intraspecific level, as recommended by Ho et al. (2017), as well as by the authors of the 

software (Drummond & Rambaut, 2015). As substitution rate, we used the values 

obtained from the calibration of the mitochondrial molecular clock analyses. We 

considered the rate that specifically belongs to the crown group of each species in each 

corresponding mtDNA marker: for the COI, 0.0013 s/s/l/My in Scolopacidae and 0.0014 

s/s/l/My in Charadriidae; for Cyt b, 0.0015 s/s/l/My (Scolopacidae); and for ND2, 0.0025 

s/s/l/My (Scolopacidae). Following recommendations made by Drummond & Rambaut 

(2014) we set a constant population size tree prior, given the nature of the available 

data and the fact that we are not aiming to explore complex population dynamics. The 

Bayesian analyses were run for 100 million steps, sampling every 2000 steps. We then 

used Tracer v 1.4 to check the stabilization of the MCMC chains and the posterior 

distribution of all estimated parameters. 

 

Genetic diversity and population size changes: 

We used DNAsp v6 (Rozas et al., 2017) to calculate indices of genetic diversity 

(haplotype diversity, nucleotide diversity), as well as the values of Fu´s F (Fu, 1997), Fu 

and Li´s F* and D* (Fu & Li, 1993) and Tajima's D (Tajima, 1989) to measure departures 

from a neutral model of evolution in the form of recent population expansions or 

bottlenecks. We included, for these analyses only, other monotypic species of Arctic 

shorebirds not included in the molecular clock analysis due to uneven sampling and lack 

of representation from all populations across their ranges. We estimated these values 
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from all the available GenBank sequences for C. maritima (Cyt b), Calidris melanotos 

(COI), Phalaropus fulicarius (COI), Tringa erythropus (COI) and Tringa nebularia (COI). 

The inclusion of these monotypic species, whose ranges were potentially fragmented 

during the LGM (see Chapter 1), allowed us to compare potential mismatches in the 

demographic histories between monotypic species and those with subspecies. 

 

ABC coalescent hypothesis testing: 

We used coalescent approximate Bayesian computation (ABC) implemented in 

DIYABC 2.1.0 (Cornuet et al., 2008). This method allows testing different hypothesis by 

defining scenarios of lineage diversification for which different likelihoods are 

calculated. Hence, we defined six non-overlapping scenarios to test hypotheses on 

lineage diversification. From the most recent to the oldest period, we defined scenario 

1 from the end of the Last Glacial maximum to the Present [Holocene, from 11,700 years 

ago (ya) to the present]. Scenario 2 spans from 430,000 to 11,700 ya, a period of multiple 

long (ca. 100 ky) glacial cycles with short (< 30 ky) but warm interglacial periods in 

between (EPICA community members, 2004; Jouzel et al., 2007). Scenario 3 spans from 

940,000 ya to 430,000 ya, a period in the Middle Pleistocene when the duration and ice 

accumulation during glacial periods increased from the previous cycles, reaching the 

100-ky duration (Jouzel et al., 2007). Scenario 4 spans from 1,200,000 to 940,000 ya, a 

transition period between the Early Pleistocene and the Middle Pleistocene where 

glacial and interglacial periods showed lower amplitude than in scenarios 2 and 3 but 

started to gain amplitude and intensity (Lisiecki & Raymo, 2005; Cohen & Gibbard, 

2008). Scenario 5 spans from 2,595,000 ya to 1,200,000 ya in the Early Pleistocene, 

where the climatic cycles were shorter and with a lower amplitude. Scenario 6 

corresponds to the Pliocene, spanning from 5,300,000 ya to 2,595,000 ya and it was 

included to cover the case that some species' diversification predated the Pleistocene. 

We applied this approach to compare intraspecific divergence in species showing 

clear genetic structure in the BEAST analyses, with lineages congruent with their 

described populations or subspecies emerging within or shortly before the Pleistocene: 

in C. alpina between Alaskan and Siberian lineages and between Canadian and European 

lineages; in C. ptilocnemis between C. p. ptilocnemis and the other subspecies from the 
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continental coast and Aleutian Islands; and in L. limosa between L. l. limosa (western 

Palearctic) and L. l. islandica (Iceland). 

 

We used large uniform priors (10 – 2,000,000) for the present and ancestral 

effective population sizes. For the substitutions per generation, we transformed the 

same rates used in the molecular clock analyses, as well as the HKY substitution model. 

We assumed a generation time of 2 years (Kees et al., 2001). For each comparison, we 

simulated datasets of 10 million points. We calculated the posterior probability of each 

scenario using the logistic regression method implemented in DIYABC. 

 

Results 

 

Molecular rate estimates 

Log-normal analyses provided a tree topology with most nodes recovered as 

highly supported (>98% of nodes above 0.9 posterior probability) and fully resolved. The 

Maximum Clade Credibility method implemented in TreeAnnotator forcefully prevents 

polytomies, but no signs of conflict were found in the resolution of any of the nodes of 

the tree. Results from the sample from prior differed from those from the main analyses, 

indicating that the recovered posterior probabilities are not just a product of the priors, 

as the data are also responsible for the obtained results. The random clock analysis 

returned a phylogeny where most of the nodes of the tree were younger than 1 Mya. 

Thus, we considered this method unreliable and discarded it as an alternative. The 

topology of the amino acid tree (not shown) matched the topology obtained from 

nucleotides except minor differences at the position of certain tips, affecting under 5% 

of the species. 

The resulting phylogenetic tree had an overall high support, with over 98% of the 

nodes with a posterior probability above 0.9. We recovered a root age (Palaeognatha / 

Neognatha split) at 88.3Mya (95% CI = 90.9 – 85.4 Mya). The split between Neoaves and 

Galloanserae is recovered at 87.9 Mya (90.7 – 85.3). The divergence between all extant 

avian orders occurred before or around the transition between the Cretaceous and the 
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Paleogene, 66My before present, and most of their diversification took place during the 

Paleogene and Neogene (phylogenetic tree in Appendix 6 Fig. S1). 

In general, the fossil-calibrated nodes returned ages several million years older 

than the minimum age established. The only two exceptions were the calibrations for 

the Sphenisciformes / Procellariiformes split (minimum age = 60.5Mya) and the 

Dromaius / Casuarius split (min. age = 23.03Mya). In both cases, the posterior 

distribution was potentially clipped by the hard minimum bound of the prior, but still 

displayed normal distribution and the mean ages were slightly older than the minimum 

constraint (not shown). 

 

Our approach allowed us to obtain substitution rates for each gene across each 

node of the tree. We found variation in the rates between genes, and to a lesser extent 

between lineages in the tree in each gene. The highly conserved ribosomal genes 12S 

and 16S showed the lowest mean substitution rate over the whole tree (0.00107 and 

0.00043 s/s/l/My, respectively), while ND2, ATP6 and ATP8 returned the highest overall 

rate values (0.00227, 0.00215 and 0.00260 s/s/l/My, respectively) (Fig.1). Overall, the 

rate values in each gene showed very little variation across the branches of the tree (Fig. 

2), and there were no major differences in the overall mitochondrial rates between 

orders (Fig. 3). Only the order Otidiformes showed values distributed mostly below the 

overall average, although this is the only order represented by just a single species, and 

could be affected by a punctual underestimation of the rates. The values of the rates 

per gene for each order can be found in the Appendix 5 (Table S1). 
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Figure 1: Comparison of the mean substitution rate estimates for each mitochondrial gene, between 

previous mitogenomic studies and our results (black line), with the number of species and fossil 

calibrations included in each analysis. 

 

 

Figure 2: boxplot of the substitution rate values (in substitutions / site / lineage / million years) from every 

node of the mitogenomic tree, for each of the 15 mitochondrial genes analysed. 
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Figure 3: boxplot of the average substitution rate values (in substitutions / site / lineage / million years) 

of all 15 mitochondrial genes analysed for each of the orders of birds. 

 

Divergence time analyses of shorebirds  

The molecular clock analyses performed in BEAST2 allowed us to recover the main 

lineages within species, the relationships between them and the timing of the splits. 

Given the wide variety of diversity patterns, some species showed a clear genetic 

diversification, while others do not present genetic structure. 

In C. alpina, we recovered 4 main lineages: north and eastern Russia, Alaska, 

Canada and Europe (Fig. 5). There is also a clear split in the phylogenetic tree, with the 

Russian and Alaskan lineages forming a clade, and those from Europe and Canada as 

another clade. Within the Russian lineage, the samples from the subspecies C. a. actites 

(from the north of the Shakalin Island) constitute a separate clade from all the other 

samples, which comprise C. a. shakalina, C. a. kistchinski and samples from the Taymyr 

region. The Alaskan lineage contains 4 samples identified as C. a. shakalina. No 

distinctive groups or geographical structure were found within this lineage. We 

recovered the separation of both lineages at 5.3 Mya (95% confidence interval = 7.5 – 3 

Mya) (Fig. 5). The most recent common ancestor (MRCA) of all the samples within the 

Russian lineage dates back to 2.5 Mya (CI = 4.1 – 1 Mya), and 3 Mya (CI = 4.9 – 1.5 Mya) 

in the Alaskan lineage (Fig. 6). In the populations from Canada and Europe, there was no 

evidence of further geographic structure. The split between these two lineages in our 
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analysis was recovered at 3 Mya (CI = 5.6 – 1 Mya) (Fig. 5). The MRCAs of the samples 

within each of these lineages are dated at 1.8 Mya in the Canadian population (CI = 3.4 

– 0.5 Mya) and 1.3 in Europe (CI = 2.9 – 0.2 Mya) (Fig. 6). 

In C. ptilocnemis we recovered a lineage formed by C. p. quarta, from the 

Kamchatka peninsula, separated from all the other samples at 1 Mya (CI = 1.7 – 0.6 Mya) 

(Fig. 5), and with a diversification from its MRCA within the population at 0.06 Mya (CI = 

0.2 – 0 Mya) (Fig. 6), although this result represents just 2 samples. Among the remaining 

samples, we recovered two separated lineages: one containing C. p. ptilocnemis (Bering 

Sea islands) and a single C. p. tschuktschorum sample, and the other containing both C. 

p. tschuktschorum (continental Alaska and Siberia) and C. p. couesi (Aleutian Islands). 

The separation between these two populations is dated at 0.6 Mya (CI = 0.96 – 0.28 

Mya) (Fig. 5). The MRCA within the lineage containing C. p. tschuktschorum and C. p. 

couersi is recovered at 0.5 Mya (CI = 0.7 – 0.2 Mya) (Fig. 6). Within C. p. ptilocnemis the 

age of the MRCA is estimated at 0.2 Mya (CI = 0.4 – 0 Mya). 

Within L. limosa we recovered a split between the subspecies from the eastern 

Palearctic (L. l. melanuroides) and all those from the western Palearctic at 6.4 Mya (CI = 

9.9 – 3.2 Mya) (Fig. 5). L. l. limosa forms a paraphyletic group, since it also contains L. l. 

islandica. The separation between L. l. islandica and L. l. limosa is dated at 0.75 Mya (CI 

= 1.44 – 0.25 Mya) (Fig. 5). The ages of the MRCA of each of the subspecies are 1 Mya in 

L. l. limosa (CI = 2 – 0.3 Mya), 0.3 Mya in L. l. melanuroides (CI = 1 – 0 Mya) and 0.1 Mya 

in L. l. islandica (CI = 0.3 – 0 Mya) (Fig. 6). 

In the genus Pluvialis, the estimated divergence times between species trace back 

to the Miocene period (23 – 5.3 Mya) (Fig. 5). The species from the eastern and western 

Palearctic (P. fulva and P. apricaria, respectively) were recovered as sister species, with 

the Nearctic species (P. dominica) as their closest relative. The nearly circumpolar P. 

squatarola diverged from the other 3 species at the basal split of the resulting tree (Fig. 

6).  

Despite the old ages of the species, no geographical structure was recovered within 

them. Only two of the species, P. apricaria and P. squatarola have described 

morphological subspecies, but we found no differentiation between them in the genetic 

analyses. The ages for the MRCA of the samples within each of the species are 0.9 Mya 
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in P. apricaria (CI = 1.8 – 0.3 Mya), 1.2 Mya in P. fulva (CI = 2.2 – 0.3 Mya) and P. dominica 

(CI = 2.6 – 0.3), and 1.8 in P. squatarola (CI = 3 – 0.7 Mya) (Fig. 6). 

A. interpres, C. canutus and C. hiaticula showed no geographic structure (Fig. 5) 

for the mtDNA marker used, despite the fact that all three have described subspecies 

(Engelmoer & Roselaar, 1998; del Hoyo, 2018; Thies et al., 2018). 

 

 

Figure 5: Bayesian phylogenetic chronograms for the studied species. Colours represent the different 

geographically structured lineages recovered. Black bars represent lack of geographic structure in the 

results despite the existence of subspecies in some cases. The red dotted line represents the beginning of 

the Pleistocene period. 
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Genetic diversity and population size changes 

Haplotype diversity in the studied species ranged from 0.8 in C. ptilocnemis (Hd = 

0.878) and C. alpina (Hd = 0.849) to below 0.3 in P. dominica (Hd = 0.295) and P. 

apricaria (0.118) (Table 2). Only three species showed more than five haplotypes: L. 

limosa (h = 7), C. ptilocnemis (h = 13) and C. alpina (h = 29). C. canutus and P. apricaria 

had the lowest values of nucleotide diversity (π = 0.00058 and π =0.00019), 

respectively. None of the studied species with subspecies showed a statistically 

significant deviation from neutrality in the Tajima's D and Fu and Li's F* and D* tests (p 

> 0.10 in all cases). Obtained values of Fu's F were close to 0 in all the species except C. 

alpina (-18.548) and C. ptilocnemis (-4.735) (Table 2). 

Comparatively, the monotypic species analysed showed a similar range of 

haplotype diversity (Hd = 0.02 – 0.7) and overall low nucleotide diversity (π = 0.0004 – 

0.0033) (Table 2). Neutrality tests showed statistically significant deviations with p < 

0.05 in P. fulicarius for both tests and in C. maritima for the Fu and Li's tests. Results 

were non-significant, but with p < 0.10, in the Tajima's D test for C. maritima and for 

both tests in T. erythropus. In all these cases, values for Fu's F, Fu and Li's F* and D*, 

and Tajima's D were negative, indicating an excess of rare alleles (Table 2). 

 

Table 2: DNAsp results for all the analysed species, including number of samples (N), number of 

haplotypes (h), haplotype diversity (Hd) and its variance (var), nucleotide diversity (π) and the neutrality 

tests and their significance. The dashed line separates the species included in the molecular clock analyses 

(above) and those included only in this analysis (below). 

 

Nucleotide divers. Fu's F

Species N h Hd var π F

A. interpres 15 4 0.600 0.012 0.00111 -1.161 -1.138 - -1.081 - -0.764 -

C. alpina 139 29 0.849 0.000 0.00852 -18.548 -1.619 - -1.596 - -0.961 -

C. canutus 20 2 0.337 0.012 0.00058 0.721 0.652 - 0.649 - 0.352 -

C. ptilocnemis 40 13 0.860 0.002 0.00218 -4.735 -0.572 - -0.165 - -1.130 -

C. hiaticula 13 4 0.603 0.017 0.00506 2.132 1.019 - 0.791 - 0.186 -

L. limosa 77 7 0.541 0.004 0.00519 2.986 0.432 - 0.706 - -0.247 -

P. apricaria 17 2 0.118 0.010 0.00019 -0.748 -1.591 - -1.477 - -1.163 -

P. dominica 13 3 0.295 0.024 0.00153 -1.401 -1.922 - -1.776 - -1.468 -

P. fulva 14 3 0.626 0.011 0.00124 0.206 0.911 - 0.935 - 0.415 -

P. squatarola 25 5 0.603 0.006 0.00143 -1.699 -1.820 - -1.850 - -0.865 -

C. maritima 285 17 0.548 0.001 0.00181 -9.203 -2.464 ** -2.356 ** -1.565 *

C. melanotos 23 4 0.605 0.006 0.00134 -0.694 -0.263 - -0.174 - -0.367 -

P. fulicarius 33 5 0.023 0.009 0.0004 -4.611 -3.166 ** -3.074 ** -1.888 **

T. erythropus 9 4 0.583 0.033 0.00151 -1.238 -1.940 * -1.799 * -1.609 *

T. nebularia 12 5 0.727 0.013 0.00339 -0.113 -0.366 - -0.503 - 0.199 -

significance: **  p < 0.05; *p < 0.10; - not significative

Haplotypes Fu and Li's test Tajima's D

F* D* D
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Figure 6: Above, accumulation of lineages through time (LTT) in each of the Bayesian phylogenetic trees. 

The dots represent the estimated MRCA of all the samples within the defined population in each species, 

with colours following the same code as in figure 1. Below, the variation of the temperature during the 

Pleistocene as estimated by Lisiecki & Raymo (2005) and EPICA community members (2004) (black line); 

and Jouzel et al. (2007) (blue line). Colours in the X axis mark the temporal scenarios used in the ABC 

analyses: The Early Pleistocene (dark orange), the transition from Early to Middle Pleistocene (light 

orange), the Middle Pleistocene (yellow), the Late Pleistocene (green) and the Holocene (blue). The grey 

area represents the period of increase in duration and amplitude of the glacial periods. 
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ABC hypothesis testing 

In C. alpina, the ABC analysis assigned the divergence between the Asian and 

Alaskan lineages to the scenario 6 (pre-Pleistocene) as the most likely (probability = 0.40) 

(Fig. 7), while the split between European and North American lineages returns two 

scenarios as the most likely ones for this split: scenario 6 (pre-Pleistocene) (prob. = 0.32) 

or scenario 5 (early Pleistocene, 2.6 – 1.2 Mya) (prob. = 0.31) (Fig. 7).  

In C. ptilocnemis, no ABC analysis was performed on the split of C. p. quarta, as 

only 2 samples represent this subespecies. For the split between the continental 

populations and those from the Bering Sea, ABC analyses returned the scenario 2 (late 

Pleistocene, 460 – 11.7 kya) as the most likely (p = 0.33) (Fig. 7). 

For the split between L. l. limosa and L. l. melanuroides, three temporal scenarios 

had similar high probabilities: scenario 2 (460 – 11.7 kya) (p= 0.23), scenario 3 (940 – 

460 kya) (p = 0.27) and scenario 4 (1.2 Mya – 940 kya) (p = 0.24) (Fig. 7). 

 

Figure 7: Posterior probability of each of the temporal scenarios in the ABC analyses for lineage 

divergence: The Pliocene (red), the Early Pleistocene (dark orange), the transition from Early to Middle 

Pleistocene (light orange), the Middle Pleistocene (yellow), the Late Pleistocene (green) and the 

Holocene (blue). 
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Discussion 

 

Several works explored the phylogeographic variation of Arctic shorebirds and 

their diversification during the Pleistocene, yet there still was a need for an integrative 

comparative analysis including multiple species to address the potential role of 

Pleistocene glacial cycles in their diversification. In the Chapter 1 we tested several 

spatial hypotheses that could explain the observed intraspecific variation as well as 

global biodiversity patterns of Arctic shorebirds, suggesting that the fragmentation of 

their ranges during glacial and / or interglacial periods drove their diversification. To 

confirm that this diversification happened during the Pleistocene in parallel to the 

proposed spatial-climatic mechanisms, we needed a time calibration of these events, 

which is here confirmed with genetic data. The molecular methods used in this chapter, 

analysing species with different distributions and diversity patterns under a common 

framework, allow us to support that the diversification time in most species happened 

during the Pleistocene and mainly overlapping with longer and more intense glacial 

periods. 

 

Shorebird fossils cannot be reliably assigned to subspecies to determine 

intraspecific variation and often they cannot even be assigned to species, as fossil 

remains usually consist in bone fragments instead of full skeletons, and the lack of fossils 

from Arctic regions prevents also ancient DNA molecular studies. Hence, any estimation 

of the times of divergence within or between species relies on mutation rates applied 

to current genetic data. So far, mitochondrial DNA has been widely used to infer 

relationships within and between shorebird species (Baker et al., 1994, 2007; Wenink et 

al., 1996; Pereira et al., 2007; Marthinsen et al., 2008; Pruett & Winker, 2008; Miller et 

al., 2013 Trimbos et al., 2014; Barisas et al., 2015), and mutation rates from other bird 

groups were applied to infer diversification times (Baker et al., 1994; Wenink et al., 

1996; Buehler & Baker, 2005; Barisas et al., 2015). We here addressed this issue by 

compiling a large dataset of mitogenomic data, including several shorebird species, and 

the most comprehensive set of fossils to serve as calibration constraints to infer 

divergences times and mutation rates per locus for each bird species included, which 



109 
 

can then be used in intraspecific analyses. 

Our analyses represent the most comprehensive ones of this type ever performed, 

both in terms of species coverage and fossil calibrations used, and for the first time 

provide lineage-specific rates for each of the mtDNA genes for the main extant bird 

groups. Also, by including several shorebird species, specific mutation rates for 

shorebirds were applied to our intraspecific datasets with confidence. The relationships 

obtained in the avian phylogeny at species, genus and family levels are overall congruent 

with previous large-scale analyses performed with mitochondrial and nuclear DNA data 

(e.g. Brown et al., 2008; Hackett et al., 2008; Pacheco et al., 2011; Claramunt & Cracraft, 

2015). The root age in our tree falls within the interval of the most recent estimations 

for the origin of modern birds (Jarvis et al., 2014; Prum et al., 2015), and support an 

origin of most of the current lineages around the transition from the Cretaceous to the 

Paleogene (Brown et al., 2008; Claramunt & Cracraft, 2015). Although the focus of this 

work is not on the detailed phylogenetic relationships between bird species, our results 

showed slight discrepancies in the placement of Achanthisittidae, which we recovered 

together with the sub-oscines instead of as the sister taxa of all other Passeriformes 

(Barker et al., 2004; Olson et al., 2013; Ericson et al., 2014), and also in the position of 

the Ostrich (Struthio camelus) that recent genomic analyses place at the base of all 

Paleognaths (Mitchell et al. 2014; Yonezawa et al. 2017). Both cases represent isolated 

lineages at the base of old taxonomic groups, where the resolution power of the mtDNA 

is often insufficient to fully clarify these relationships, and have a reduced effect the 

overall topology and dating of the phylogenetic tree. 

Results from previous mitogenomic studies (Pereira & Baker, 2006; Pacheco et al., 

2011; Nabholz et al., 2016) showed significant variances, lacking full agreement in the 

values obtained. But, in all cases, they found lower rates than the so-called “standard” 

molecular clock of 0.01 s/s/l/My (Fig. 1). Our results also do not fully match those from 

previous rate estimations by gene, but nevertheless the obtained values fall within the 

range of the variation between previous works (Fig. 1). Furthermore, the differences in 

mean rate values between genes in our study parallel the values obtained in the most 

recent study on bird mutation rates, which previously was the most taxonomic-rich and 

phylogenetically updated analysis (Nabholz et al., 2016) (Fig. 1, blue line), being our 

mutation rate estimates lower than in Nabholz et al. (2016). 
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Differences in mutation rates can be the consequence of several causes, from the 

inclusion or elimination of third codon positions that are generally saturated at deeper 

phylogenetic levels but not within species, to the impact of hard maximum bounds in 

fossil time constraints that force younger ages in the phylogeny (Ho et al., 2005, 2007, 

2008), and even the choice of software or other specific parameters could be 

introducing variation (Drummond & Rambaut, 2015). Given the variety of 

methodologies that have been used in previous mitogenomic rate estimations for birds 

(Pereira & Baker, 2006; Pacheco et al., 2011; Nabholz et al., 2016), we are unable to 

assess whether the differences between our work and previous studies are caused by 

one or several of the mentioned causes, or by any other cause. In any case, we are 

confident that given our large taxonomic coverage, the amount of reliable fossil 

calibrations and the methodology applied (e.g. no maximum-age constraints, very long 

Bayesian MCMC runs reaching stabilization), our results provide a reliable estimation of 

the molecular clock substitution rates in birds, and as such we applied them in our 

phylogenetic analyses. Furthermore, these results contradict the hypothesis of a 

universal molecular clock for all bird lineages and mitochondrial genes, something in 

which previous mitogenomic analyses also agreed on (Pereira & Baker, 2006; Pacheco 

et al., 2011; Nabholz et al., 2016), but was already criticized (Garcia-moreno, 2004; 

Lovette, 2004). 

According to our results, the variation in rate values between mitochondrial genes 

was much more marked than the variation within each gene between linages of the tree 

(Figs. 2 and 3; Appendix 5). However, the use of general rate values should be avoided, 

in favour of taxon-specific rates from the closest lineage available. Previous divergence 

time estimations within Arctic shorebird lineages using mtDNA were based on the 

standard molecular clock rate (Pruett & Winker, 2005; Rönkä et al., 2012), or in general 

rates for the Control Region across all bird lineages (Wenink et al., 1996; Buehler & 

Baker, 2005; Ottvall et al., 2005). In contrast, we based our analyses on our new rate 

estimations, specific for each marker and the lineage of each species, to obtain more 

accurate estimations that are comparable between them. 

 

The time calibrated genealogies for the 10 species included in this study support a 

Pleistocene diversification within species, except for Calidris alpina that predates the 
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Pleistocene for the main genetic lineages, with subsequent Pleistocene diversification 

of several populations and subspecies. These results were also confirmed with ABC 

hypothesis testing analyses. Most of the observed intraspecific diversification took place 

in the second half of the Pleistocene, especially during the last 900,000 years, coinciding 

with an increased intensity and duration of the glacial periods. Hence, this genetic 

evidence supports the spatial geographic hypotheses presented in Chapter 1, and in 

combination they strongly highlight the Pleistocene climatic cycles as the main driver of 

the current patterns of diversity within these Arctic species. 

We found that despite having morphologically differentiated subspecies, most 

Arctic shorebirds show very little genetic diversity, shallow differentiation between 

populations and no genetic structure in the analysed genetic datasets, something that 

it has also been reported in previous studies (Baker et al., 1994; Wenink et al., 1994; 

Ottvall et al., 2005; Miller et al., 2010; Miller et al., 2013; Barisas et al., 2015). Regarding 

the lack of genetic structure, it is important to acknowledge that the samples used in 

this study were not always collected for this purpose, so not all populations and 

subspecies are properly sampled and this could hinder our ability to identify population 

genetic structure in some species. The Arctic is a vast region with difficult access where 

not many researchers work across it, hence gathering tissues from breeding localities of 

most species and subspecies is very complicated. We are aware that the use of nuclear 

genomic markers would have benefitted this work, but the impossibility to get access to 

tissue samples impeded the generation of such datasets. So far, mitochondrial genetic 

data are the only source of information the community has, and further studies should 

try to incorporate nuclear genomic data to have a more precise picture of the 

diversification of these species. 

The older divergence times and best-defined lineages found in C. alpina and L. 

limosa likely developed from populations isolated by tens of thousands of kilometres 

during glacial periods (see Chapter 1) that, despite secondary contacts, remained acting 

as independent breeding populations over glacial cycles across longer periods of time. 

The opposite would be the cases of C. canutus and A. interpres, whose divergence times 

are very recent. The available mtDNA data did not allow us to recover the described 

subspecies or any degree of genetic structure within these species. In both cases, their 

breeding ranges are constrained to the northernmost parts of the Arctic during the 
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breeding season, in areas that were unavailable during the LGM, and must have been 

colonized very recently via expansion from areas of glacial refugia. This, together with 

our results, point towards a very quick and recent phenotypic diversification of their 

current subspecies without a genetic signal in their mitochondrial DNA. This is in line 

with the findings from previous studies on these species, which agree in the recent origin 

of the populations (Baker et al., 1994; Wenink et al., 1994; Buehler & Baker, 2005) and 

the key role of post glacial expansion in their differentiation (Buehler et al., 2006). 

 

In the case of C. ptilocnemis, both the divergence time and ABC analyses confirm 

that all the lineages diverged from each other and diversified over the last half of the 

Pleistocene. Despite its very recent origin, its genetic structure seems the result of the 

geographic changes in its breeding range in Beringia during this period. Aside from the 

climatic and habitat changes in the region, oscillations in the sea level between glacial 

and interglacial periods significantly altered the available extension of emerged land and 

the connectivity between the islands and the continents. This has been considered a 

main factor in shaping the current diversity of this species (Pruett & Winker, 2005), and 

seems to have some degree of parallelism in other bird species in the region (Holder et 

al., 2004; Pruett & Winker, 2008). 

C. ptilocnemis is another species with a predicted continuous breeding range 

during the LGM. However, as a Beringian endemic species, its populations became 

isolated during the interglacials due to the sea level rise, which over multiple cycles 

shaped the main lineages within the species, as recovered in our results. 

In the Pluvialis genus both monotypic species and species with subspecies lack 

genetic structure. Despite old divergence times between sister species (> 5 Mya) most 

of the diversification within each species took place during the Pleistocene, also peaking 

during the period of longer glacials. 

 

P. apricaria and C. hiaticula have similar distribution patterns of their subspecies 

along the western Palearctic. Although both lack genetic structure, our results suggest 

that their intraspecific diversification happened during the Late Pleistocene. Recent 
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studies employing different DNA markers have successfully recovered some geographic 

structure in C. hiaticula, highlighting the combination of lineages from central Europe 

and west Siberia in the distribution of the subspecies, and the low diversification in the 

Icelandic population (Thies et al., 2018). This mixture of Siberian and European lineages, 

especially in northern Scandinavia, is also found in other Arctic species, and is the result 

of the recolonization process from multiple important areas of Arctic glacial refugia 

during the LGM (Jaarola et al., 1999; Hewitt, 2004). But more remarkably, European 

lineages of Arctic shorebirds are usually younger compared to lineages in Asia or North 

America, as seen in our results from L. limosa, C. alpina and Pluvialis. It could be possible 

that the notable intensity of the LGM and likely other glacial periods in the western 

Palearctic disrupted any possible stabilization of long-lasting lineages in the region 

(especially in Iceland and other Atlantic islands), resulting in younger and less genetically 

structured local subspecies within the Arctic shorebirds. This is also the case of our 

results for the Icelandic populations of C. hiaticula and L. limosa, in line with previous 

findings in those species (Trimbos et al., 2014, Thies et al., 2018), as well as in other 

migratory birds (Holder et al., 2004; Tiedermann et al., 2004; Ruokonen et al. 2005; 

Johnson et al., 2007; Pujolar et al., 2017). This idea however requires a more extensive 

sampling and including other sources of DNA data (nuclear, SNPs) for it to be successfully 

tested in the future across multiple species of Arctic shorebirds and other Arctic birds. 

 

Whether phenotypic variation, including subspecific status, is reflected in 

mitochondrial DNA or not is critical to disentangle the evolutionary and biogeographic 

history of these Arctic species. Humphries & Winker (2011) argued that studying isolated 

parts of the mitochondrial or nuclear genomes could result insufficient to portray the 

recent evolutionary processes in arctic birds. Recent studies combining different types 

of genetic markers with better resolution have proven successful (e.g. Rönkä et al., 2012, 

Trimbos et al., 2014, Thies et al., 2018). Nevertheless, identifying the genetic lineages 

corresponding to phenotypic subspecies or populations in most species remain elusive 

(e.g. Ottvall et al., 2005; Marthinsen et al., 2007; Miller et al., 2013; Leblanc et al., 2017). 

Furthermore, it seems likely that the loci that are involved in phenotypic differentiation 

are not in the mitochondria. The subspecific plumage differences may have arose 

recently by strong disruptive selection of nuclear regions involved in feather coloration, 
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or they have resulted from different responses to environmental conditions across the 

Arctic. Differences in bill length can be achieved in very short evolutionary times as this 

character is controlled by few loci (Abzhanov et al., 2006), and with higher or lower 

expression levels bill lengths can change in few generations and become fixed by 

selective processes.  

 

In summary, our results provide substantial support for an increased 

diversification in Arctic shorebirds during the Pleistocene glacial cycles. Most of their 

intraspecific diversity originated in the second half of the period, as the glacial cycles 

gained in amplitude and duration. By comparing the genetic patterns across multiple 

Arctic shorebird species, we found similarities in the timing and pattern of diversification 

between species with similar distributions, which also parallel previous findings in other 

Arctic taxa, especially birds and mammals. Finally, we provide the most complete 

estimation of the molecular clock rates for the mtDNA in birds. This will allow for more 

precise divergence time estimations in future studies, with specific rates for any study 

group and mitochondrial gene used. 
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Stairway to northern haven? Uneven climate change effects in the ranges 

of Arctic shorebirds between the Nearctic and the Palearctic. 

 

Abstract 

 

The Arctic is among the most threatened regions of the planet under the pressure 

of the current climate change. Arctic species have persisted over multiple warm and cold 

periods during the Pleistocene and Holocene, but the fast rate of the current changes 

represent an unprecedented scenario. In this work we explore the potential changes in 

the breeding ranges of the Arctic shorebirds under different scenarios of climate change 

for the current century. Arctic shorebirds are one of the best representatives of the 

Arctic avifauna, and their distribution and diversity have been shaped by the extreme 

changes in the climate of the region in the last 2.5 million years. Species' distribution 

models for 69 species show an overall northward shift of their breeding ranges, 

combined with a severe reduction at the southern margins. However, these effects 

greatly vary between biogeographic regions. In the Palearctic, species display greater 

signs of future range reduction and fragmentation given the lack of available land at 

more northern latitudes to extend their ranges. Meanwhile in the Nearctic, the Arctic 

Archipelago potentially provides an opportunity for the species to avoid loss of their 

breeding range extent. But even if these species have available northern territories to 

overcome increasing temperatures, as it likely happened in the Arctic in recent periods, 

the speed of the current changes greatly exceeds previous climatic oscillations. Even 

under the most optimistic climate change scenarios, the capacity of these species and 

their habitats to adapt or move in time to the new situation will be critical for their 

survival and the conservation of the diversity generated during the glacial cycles. 
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Introduction 

 

Current climate change has proven to be a major threat for global biodiversity 

(Butchart et al., 2010; Bellard et al., 2012; Urban, 2015), and its effects are predicted to 

keep developing throughout this century and beyond (Sala et al., 2000; Pereira et al., 

2010;). These effects include habitat loss, population declines, fragmentation of the 

distribution ranges, and alteration of the behavioural and physiological ecology of 

species (Crick, 2004; Hickling et al., 2006; Parmesan, 2006; Chen et al., 2011; Bellard et 

al., 2012; Urban, 2015). Among vertebrates, birds can be prone to suffer global change 

effects depending on their distribution, migratory condition, population sizes and 

human-made habitat changes in their breeding and wintering ranges (Crick, 2004; La 

Sorte & Jetz, 2010; Saino et al., 2011). Many species are displaying some of the clearest 

responses to climate change, especially in the form of changes in their distribution 

ranges and phenology (Crick, 2004; Jetz et al., 2007; Huntley et al., 2008; Gregory et al., 

2009; Barbet-Massin et al., 2012; Brommer et al., 2012). At higher latitudes, in the 

boreal and Arctic regions, climate change may be disproportionately threatening species 

distributed across these northern latitudes (Loarie et al., 2009; Laaksonen & Lehikoinen, 

2013; Virkkala & Lehikoinen, 2017) while the populations of those with primarily 

temperate and tropical distributions seem to be increasing (Virkkala & Rajasärkkä, 

2011a, 2011b) 

The Arctic region is one of the most pristine areas in the planet, mainly because 

its climatic conditions hinder the establishment of humans and the development that 

accompanies them. This region extends around the north pole and spans beyond the 

Arctic Circle (ca. 66.5°N) with a classic limit around the 10°C isotherm (Köppen, 1900; 

Köppen & Geiger, 1936), and its environment includes the polar desert, the tundra and 

the northern limit of the taiga/boreal forests. Climatic conditions are extreme, with a 

very strong seasonality changing from brief cool summers (3-12°C), to long and very cold 

winters with temperatures below -30°C (Pielou, 1991). Many species have evolved 

adaptations to cope with this extreme physical and climatic environment year-round, 

while others follow different life-history strategies like short or long-distance migration 

to southern latitudes, mainly birds and mammals in land. Furthermore, these species 

have overcome multiple cycles of glacial periods and warm interglacials during the 
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Pleistocene, especially over the last 900,000 years (EPICA community members, 2004; 

Jouzel et al., 2007). During these cycles, the species experienced successive expansions 

and contractions of their range and their populations, which determined their 

distribution and actual diversity (Hulten, 1937; Rand, 1948; Macpherson, 1965; Ploeger, 

1968; Hewitt, 2000, 2004). The current global warming is driving very fast changes in the 

Arctic region (Pearson et al., 2013; Hobbie et al., 2017), heading towards a climate 

similar to what the Earth experienced more than 30 million years ago (Mya), during 

periods where the Arctic polar cap was reduced (Burke et al., 2018). 

 

In this chapter we explored the potential consequences of the current climate 

change in the future distribution and conservation of the Arctic land avifauna. To do so, 

we focused our study in one of the most representative groups of Arctic birds, the 

shorebirds, which are among the most important in the region in terms of both number 

of species and population sizes. As seen in the Chapters 1 and 2, the diversity within 

these species is linked to changes in the climate, especially those that affect their 

breeding territories. Under the current climate change, Arctic species that diversified 

over multiple glacial cycles could face an unprecedented fragmentation of their ranges 

and decrease of their populations, threatening their diversity and conservation of many 

subspecies and populations (Lagerholm et al., 2017). 

In their Arctic breeding grounds, Arctic shorebirds are already facing changes in 

their ecology, phenology and habitat availability (Rehfisch & Crick, 2003; Meltofte et al., 

2007; Galbraith et al., 2014). Over the next century, these effects could even be more 

pronounced, leading to an increasing extinction risk (Galbraith et al., 2014). In addition, 

as long-distance migrants, their distribution and conservation status provide key insights 

on world-wide effects of climate change (Piersma & Lindström, 2004; Galbraith et al., 

2014). Both migratory birds and other northern latitude species have been identified as 

two of the most vulnerable targets to the impacts of climate change (Both et al., 2006; 

Huntley et al., 2006; Virkkala et al., 2008; Laaksonen & Lehikoinen, 2013).  

 

In this work, we aim to assess the potential impacts of climate change in the future 

distribution of the Arctic shorebirds over the 21st century, and the implications in their 
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diversity and conservation, using Species Distribution Models (SDMs). The SDMs have 

proven to be an useful tool when examining the potential effects of potential changes 

in the distribution ranges of species due to climate change (Thuiller, 2004; Araújo & 

Peterson, 2012; Barbet-Massin et al., 2012). Traditional views of climatic changes during 

the Pleistocene and for the near future usually consider the entire northern hemisphere 

as a common region. Studies on the distribution of birds are usually focus on a single 

continent (e.g Huntley et al., 2008; Barbet-Massin et al., 2012) or regions within them 

(Saalfeld, et al., 2013; Gillings et al., 2015; Stralberg et al., 2016). However, the Arctic 

have experienced different effects in different regions over recent climatic cycles (see 

Chapter 1). Therefore, we explore here the changes in the ranges of the shorebirds 

across the Arctic, but with a focus on whether potential differences exist between the 

two main biogeographic regions involved, the Palearctic and the Nearctic, and what 

effects can this have in their worldwide conservation. 

Furthermore, we seek to put the current changes in the Arctic into a historical 

context, comparing the expected future scenarios with past warm and cold periods 

during the Late Quaternary. The goal for this is to measure how the extension and 

composition of the Arctic responded during recent climatic cycles, and how the current 

change compares to them. We expect that, over the 21st century, the Arctic could 

decrease drastically reaching extensions similar to those experienced during the 

warmest periods of the Late Quaternary, or even beyond. And although Arctic species 

survived those periods, we also try to take into an account how current climate change 

is driving those changes in much shorter periods of time, and what implications can this 

have for the Arctic shorebirds and the Arctic avifauna in general. 

Methods 

 

Spatio-temporal evolution of Arctic environments 

We used the Koppen – Geiger classification system (Köppen, 1900; Köppen & 

Geiger, 1936) to estimate the potential extension of the Arctic and its different 

ecosystems over different time periods. This classification system is very popular among 

climatologists and ecologists to define the boundaries of the different macroclimates 

and their associated biomes around the globe, based solely on certain climatic variables 
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that define them. This allows to study past and future biome changes at a global scale 

(Guetter & Kutzbach, 1990; Rubel & Kottek, 2010; Feng et al., 2012; Chen & Chen, 2013; 

Willmes et al., 2017). Despite recent revisions of the classification (Guetter & Kutzbach, 

1990; Peel et al., 2007; Belda et al., 2014), the Arctic remains defined as the region 

where the mean temperature of the warmest month is below 10°C. Within this 

definition of the Arctic, the temperature values between 0°C and 10°C correspond to 

the tundra and below 0°C represent the polar desert and ice-covered areas. 

We applied this classification to evaluate the extent of the Arctic in seven different 

time periods: the last interglacial period (LIG), around 130,000 years ago (ya); the Last 

Glacial Maximum (LGM), around 21,000 ya; the Mid-Holocene warm period, around 

6,000 ya, the pre-industrial period, between 1750 – 1800; the present, between 1970 – 

2000; and the periods around 2050 (2040 – 2060) and 2070 (2060 – 2080). We used the 

available climatic raster layers at a resolution of 5x5 km for each period (Hijmans et al., 

2005; Otto-Bliesner et al., 2006; Lima-Ribeiro et al., 2015; Fick & Hijmans, 2017). We 

estimated the extension of the tundra and polar desert based on the mean temperature 

values of July or August, selecting whichever was higher on each pixel. We then 

compared the extension, measured as number of pixels, of the tundra and polar desert 

separately, as well as the Arctic as a whole on each period; and compared them using 

the pre-industrial period as the reference. We also estimated the rate of change of the 

Arctic surface over time using as a measure the percentage of gain/loss per century, 

again using the values of Arctic extent during the preindustrial period as the baseline to 

compare with. 

 

Species presence data 

We analysed migratory shorebird species with breeding distribution ranges 

comprising all or most Arctic and subarctic regions. After testing 70 species matching 

that criterion, we included 69 in the final analyses (see Chapter 1). According to the IUCN 

Red List (IUCN, 2018), 12 species are considered as Near Threatened (NT) (Calidris 

canutus, Calidris ferruginea, Calidris pusilla, Calidris ruficollis, Calidris subruficollis, 

Charadrius melodus, Gallinago media, Haematopus ostralegus, Limosa lapponica, 

Limosa limosa, Numenius arquata and Tringa brevipes), 1 as Vulnerable (VU) (Numenius 
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tahitiensis), 2 as Endangered (EN) (Calidris tenuirostris and Numenius madagascariensis) 

and 1 as Critically Endangered (CR) (Calidris pygmaea). 

The distribution ranges obtained from BirdLife International and NatureServe 

(2011) andfiltered by habitat following the process described in Chapter 1. We sampled 

10,000 random points across the distribution of each species to use as presence points. 

 

Climatic variables 

We used macroclimate variables to predict the distribution of species, due to its 

proven effectiveness in large spatial scale studies (Barbet-Massin et al., 2012; Jiménez-

Valverde et al., 2011; Pigot et al., 2010). We retrieved monthly precipitation and 

temperature (minimum, maximum and mean) maps from WorldClim 2.0 (Fick & 

Hijmans, 2017) for the present period (1970 – 2000). For the future, we considered three 

different scenarios based on the Representative Concentration Pathways (RCPs) of 

greenhouse gases proposed by the fifth Intergovernmental Panel on Climate Change 

(IPCC, 2014): RCP 2.6, assuming the emissions reaching its peak by around 2020 and 

decline thereafter; RCP 4.5, which represents emissions peaking by 2040 and a 

stabilization afterwards; and RCP 8.5, which assumes that emissions keep increasing at 

the current rate throughout the 21st century. For this, we averaged all the models 

available in WorldClim 1.4 (Hijmans et al. 2005) for two future periods: the years 2050 

(average for 2041 – 2060) and 2070 (2061 – 2080). Since only minimum and maximum 

temperature values are available, we calculated mean temperature as the average 

between them. Both sets of climatic layers, present and future, were retrieved at a 

resolution of 2.5 minutes (ca. 5 x 5 km). 

 

Niche modelling and forecasting 

We applied four different SDM methods: general linear model (GLM), polynomial 

GLM, general additive model (GAM) and BIOCLIM algorithm, as implemented in the R 

packages dismo (Hijmans et al., 2017) and mgcv (Wood & Wood, 2015). We also tested 

MaxEnt, DOMAIN, support vector machine (SVM) and random forest (RF) algorithms, 

but they all showed poor performance with our data and were discarded. 
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Each species was modelled independently, using 60% of the presence data for the 

training and 40% to evaluate the models. Since the species only stay in their breeding 

range for a short available period over the year, we only included the climatic variables 

corresponding to the breeding season. We trained each model with the average monthly 

values of each species' breeding season, according to the phenological information in 

del Hoyo et al. (2018). We combined the results of the four models by averaging them 

into an ensemble forecast, to reduce the potential uncertainty introduced by individual 

models in certain cases (Araújo et al., 2005; Araújo and New, 2006). We evaluated the 

discrimination of each of the models and the ensemble forecast based on the values of 

the Area Under the Curve ROC (AUC) and COR (correlation). We expected models to 

return values of AUC higher than 0.5 (random discrimination of the model) (Elith et al., 

2006), and ideally over 0.7 (good discrimination). 

Changes in the climate could potentially cause changes in the timing and length of 

available breeding grounds of these Arctic species. To take this into account, we applied 

the same methodology of month-by-month hindcasting as in the Chapter 1. We 

combined all the species' potential distributions to obtain richness maps for the present 

and each of the future scenarios.  

 

Changes in species' distributions 

For each species' predicted distribution, we calculated values of mean latitude and 

extent size (in number of pixels) to estimate the changes between the present and each 

of the future scenarios. We estimated the number of species in each region that 

experiences changes greater than 10% (increase or decrease) in their extent size by 2070 

in each climate change scenario. Additionally, we sampled the latitude of 2,000 random 

points from each species in each of the forecasts (present and future). We combined the 

data from all the species into a density plot, which represents how the set of species is 

distributed along a latitudinal gradient. All these analyses were done separately for the 

Palearctic (including eastern Greenland) and the Nearctic. The goal for this was to 

discern potential differences between continents in the potential changes experienced 

by the Arctic shorebirds, since each region has different geographical constraints at high 

latitudes. 
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Results 

 

Changes in the extent of the Arctic 

The predicted extension of the Arctic and its environments is predicted to change 

substantially between the examined periods (Figs. 1 & 2). The LIG, around 120,000 ya, 

represents the warmest of all the past periods (Fig. 1), where the estimated size of the 

Arctic is only 60% of the extension calculated for the preindustrial period, and with only 

38% of the polar desert extent in comparison. The LGM represents the coldest period of 

the series (Fig. 1). The Arctic extent in this period is four times greater than during the 

preindustrial period (Fig. 2, top), with more than twice the extension of tundra and over 

six times the extension of polar desert (not shown in Fig. 2). After the LGM, in the 

Holocene, the Arctic experienced another warm period in the Mid-Holocene (Fig. 1), 

where the total extent was 71% of the size compared to the preindustrial period. The 

following scenarios show a decrease over the past two centuries, from the preindustrial 

period to the present with a 9% reduction. The forecasts for the 21st century suggest 

that this trend further accentuates in all climate change scenarios, with reductions 

between 18% (RCP 2.6) and 38% (RCP 8.5) by 2070 (Fig. 2). Despite the reduction in the 

extension of the Arctic, our results show that the areas of polar desert (ice and barren 

areas) switch to tundra as the climate becomes warmer (Fig. 1). This translates in a 

greater reduction of the polar desert (between 47% and 64% by 2070) than the tundra 

(between 2% and 24%). The climate change predictions for the extension of the Arctic 

by the late 21st century are comparable to the scenarios recovered for previous periods 

like the LIG and the Mid-Holocene warm periods. However, the changes in the 

temperature leading to those warm periods happened over thousands of years (Fig. 1). 

We recovered that the decrease in size of the Arctic from the preindustrial period to the 

present and over the next century greatly exceeds previous events like the post-glacial 

warming (Table 2). Furthermore, this rate of reduction in the extent of the Arctic 

(measured in percentage points per 100 years compared to the preindustrial) increases 

significantly over time. It reaches its highest values in the period from the present to the 

end of the next century (between 10-34% /100y). 
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Figure 1: Estimated extension of the Arctic in different periods over the last 300,000 years and for the 

next century (circles), along with historical and future predicted changes in global temperature (bottom 

graph). Past temperatures from EPICA community members (2004) (blue); North Greenland Ice Core 

Project members (2004) (clear blue); Lisiecki & Raymo (2005) (black) and Marcott et al., (2013) (orange). 

Future temperature forecasts from IPCC (2014). 
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Figure 2: Changes in the predicted extension of the whole Arctic region (top) and its environments 

(bottom) in the studied periods, following the same X axis (time) as in Fig. 1., with future trends according 

to each RCP model. 

 

 

 

Table 1: Rates of change in the extension of the Arctic, the tundra and the polar desert between historical 

(H) and future (RCPs) scenarios, measured as percentage points increased (positive) or decreased 

(negative) per 100 years, considering the preindustrial period as the reference. 

 

 

 

 

 

Transition Scenario Arctic Tundra Polar desert

LGM to Mid-Holocene H -2.2 % / 100y -1.1 % / 100y -4 % / 100y

Mid-Holocene to preindustrial H 0.52 % / 100y 0.5 % / 100y 0.4 % / 100y

Preindustrial to present H -4.3 % / 100y -1.4 % / 100y -9.5 % / 100y

RCP 2.6 -6.13 % / 100y -0.7 % / 100y -15.9 % / 100y

RCP 8.5 -12.9 % / 100y -8.1 % / 100y -21.7 % / 100y

RCP 2.6 -10.6 % / 100y 1.2 % / 100y -31.8 % / 100y

RCP 8.5 -34.11 % / 100y -24.7 % / 100y -51.8 % / 100y

Preindustrial to 2070

Present to 2070
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Species' distribution models 

Over 84% (58 out of 69) of the ensemble forecasts for the breeding distributions 

returned and AUC higher than 0.8. Only Actitis hypoleucos (0.62) showed AUC values 

lower than 0.7. 

The resulting shorebird species' richness maps show values of up to 36 co-

occurring species in the Arctic in the present (Fig. 3). This region of high-predicted 

species richness (over 20 species) covers the whole northern part of the Palearctic as a 

continuous band mainly between 65°N and 75°N. In the Nearctic it covers the coast of 

Alaska and the Canadian Arctic, except for the northernmost islands where the species 

richness is lower (below 15 species). The climatic change predictions show that the high-

richness areas will become a narrower band that is restricted to the coast in both the 

Palearctic and the Nearctic, and some discontinuities will appear. 

By 2050 the high-richness areas of the east and central Siberia will no longer be 

connected under any scenario, as the species richness in the coasts of the East Siberian 

Sea decreases below 15 species, except around the mouth of the Kolyma River. Similarly, 

the models predict high-richness areas in the future along the north and west coasts of 

Alaska, at the same time that species richness in southern areas of the region will 

decrease. In addition, under higher-emission scenarios the species richness will 

decrease below 15 species in continental Canada, remaining above those values only in 

the Arctic Archipelago, and the north of the Northwest Territories and Labrador 

Peninsula. In the western Palearctic, only the north of Scandinavia will maintain richness 

values of over 20 species in all future scenarios, declining below 15 species everywhere 

else in the region. 
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Figure 3: Predicted species' richness maps for the present and each of the climate change scenarios (RCPs) 

by 2050 and 2070. 
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Changes in species' ranges 

On average, the mean latitude of the species' predicted range by 2070 will 

increase between 2 and 2.5 degrees in the Nearctic, and between 1.5 and 2 degrees in 

the Palearctic. However, these results do not properly reflect the changes at the 

northern and southern margins of their distributions. The distribution of the random 

samples from the species' ranges provides a better indicator of the latitudes at which 

they concentrate. In the histogram (Fig. 4), the density peaks between 68°N and 70°N in 

the Nearctic and the Palearctic both for the present and all future scenarios. Comparing 

the predicted changes above and below the Arctic Polar Circle returns a general trend 

increase of density of distributions in the north and decrease in the south. This change 

is more pronounced in the Nearctic, with up to 24% decrease in density of species' 

distributions below the Arctic Polar Circle and 10.5% increase above, by 2070. In 

contrast, in the Palearctic the density decreases 12% below the Arctic Polar Circle by 

2070, increasing only 3% above it.  

Figure 4: Density of the predicted distribution of the Arctic shorebird species across a latitudinal gradient 

(Y axis) in the periods round year 2050 (left) and 2070 (right) compared to the present gradient (black 

line), in the Nearctic (top) and Palearctic (bottom). Colours represent different IPCC climate change 

scenarios (RCPs). Arrows indicate an increase (orange) or decrease (blue) in the density above or below 

the Arctic Polar Circle (dashed line), with the percentage of change. 
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We recovered that, by 2070, 50% of the species in the Palearctic reduced (over 

20% change) their predicted area under the scenario RCP 2.6, compared to the present 

extent. This percentage increases to 77% under scenario RCP 8.5 (Fig. 5). Comparatively, 

very few species (<10%) showed signs of potential future expansions greater than 20% 

in extent in all three scenarios. The percentage of species in this region with less than 

20% of gain or loss in range extent between now and 2070 will drop from 43% of the 

species when considering RCP 2.6, to only 13% of the species with the scenario RCP 8.5. 

In this region, the species with the greatest reduction in range extent by 2070 are 

Charadrius mongolus, Calidris alpina and Calidris ptilocnemis, all with an estimated 

decrease between 50-70% in all climate change scenarios. On the other hand, Limosa 

limosa is predicted to increase its range between 30% and 50%, and Numenius phaeopus 

only increases under scenarios RCP 4.5 (69% increase) and RCP 8.5 (54%). 

In the Nearctic, a lower proportion of species will show a reduction of their extent 

compared to the Palearctic, between 27% and 36% of the species depending on the 

climate change scenario (Fig. 5). In this region, there is a higher percentage of species 

potentially remaining stable than in the Palearctic, ranging between 44% and 50% of the 

species. The percentage of species potentially increasing their range extent is 22% under 

the scenarios RCP 2.6 and RCP 4.5, but drops to 16% under scenario RCP 8.5. The 

Nearctic species with the greater expected range reduction by 2070 are Numenius 

tahitiensis, Calidris himantopus, Calidris alba and Calidris mauri, with reductions of over 

50% of their ranges in all scenarios and over 80% in some cases. In contrast, Gallinago 

delicata, Charadrius vociferus, Limnodromus scolopaceus and Numenius americanus will 

increase their predicted ranges by over 50%, and over 80% in some scenarios. 
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Figure 5: Percentage of species that will experience changes in their predicted extent size by 2070 in the 

Nearctic (left) and Palearctic (right) under the three different IPCC climate change scenarios (RCPs). 

Colours represent type of change: over 20% decrease (red), over 20% increase (green); or no change 

greater than 20% (blue). 

 

 

Discussion 

 

Our results show that climate change is altering the distribution of Arctic 

shorebirds, and even in the most optimistic scenarios it represents a major threat to 

their conservation. The main predicted consequences are the loss of the current 

distribution ranges in many species, changes in the richness at high latitudes and 

potential loss of local diversity of subspecies. This situation is recovered across the 

whole Arctic region, although there are notable differences in the responses of the two 

main biogeographic regions, as the Nearctic could offer better future conditions for the 

conservation of Arctic shorebird species than the Palearctic. 

 

Overall, Arctic shorebirds seem to be gradually shifting their breeding ranges 

towards higher latitudes in parallel to climatic changes. Such poleward shift in the ranges 

of bird species has been regarded as one of the most notable effects derived from 

climate change (Huntley et al., 2008; Barbet-Massin et al., 2012; Brommer et al., 2012; 
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Virkkala & Lehikoinen, 2014, 2017). However, our results also suggest that this 

displacement involves not only an expansion to the north, but must importantly 

disappearances at the southern margin of their distribution. This trend has been 

previously suggested for other northern bird species in northern Europe (Virkkala & 

Rajasärkkä, 2011a, 2011b; Brommer et al., 2012; Kujala et al., 2013; Virkkala & 

Lehikoinen, 2014, 2017), but our results show that it is extensible to the whole Arctic 

region. The loss of the southern margin in northern species is also related to the 

poleward expansion of temperate species in those areas, in detriment of the more 

vulnerable northern migratory species (Virkkala et al., 2008; Laaksonen & Lehikoinen, 

2013). 

However, our results suggest that the derived effects from these poleward shifts 

in the distribution vary greatly between the Palearctic and Nearctic regions. In the 

Palearctic, where the northernmost limit of the continent with the Arctic ocean acts as 

a hard boundary, the species will be unable to expand further north as the climatic 

conditions change, as there is no more available land. We recovered very low increases 

in the density of species' ranges above the Arctic Polar Circle in this region, which is 

congruent with the fact that most Arctic species are already distributed at the 

northernmost part of the continent, leaving them more vulnerable to range reductions 

without chances to expand any further (Virkkala et al., 2008). Moreover, the percentage 

of species that experience severe (>20%) range reduction in the Palearctic (between 

50% and 77%) greatly exceeds the percentage predicted for the Nearctic (between 27% 

and 36%). 

 

Despite a greater expected reduction at the southern margins of species' ranges 

in this region (up to 12%), the availability of large extensions of land at high latitudes (70 

- 80°N) seems to be a benefit for Nearctic species. Currently, some species of shorebirds 

like the Turnstone (Arenaria interpres), the Red Knot (Calidris canutus) and the 

Sanderling (C. alba) inhabit those northern areas of the Nearctic in the Arctic 

Archipelago, but their presence is mostly restricted to the rocky areas in the coastline, 

since most of the inland areas are mainly barren land (Walker et al., 2005). However, 

climate change is quicky altering the vegetation of this region, by often causing an 

increase in shrubslands (Sturm et al., 2001; Forbes et al., 2010), but also by quickly 
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expanding the tundra into areas where vegetation was previously sparse or even absent 

(Jia et al., 2003; Pearson et al., 2013; Keenan & Riley, 2018). As a result, if the northward 

expansion of the habitat matched the rapid changes in the Arctic climate, the Nearctic 

could provide better opportunities for the Arctic shorebirds to cope with the effects of 

global warming at a continental scale. Otherwise, the mismatch between climate and 

habitat could result in a dramatic reduction of available breeding sites, and consequently 

of population sizes, well beyond current predictions. Furthermore, all the species that 

are predicted to suffer the greatest range reductions now have very restricted ranges, 

either occurring only in small areas (like N. tahitiensis and C. mauri in the Nearctic, C. 

ptilocnemis and C. mongolus in the Palearctic) or at the northernmost latitudes (C. alba 

in the Nearctic, C. alpina in the Palearctic). On the contrary, species that are predicted 

to expand their ranges tend to have large distributions across temperate and sub-Arctic 

regions, like N. americanus, C. vociferus and G. delicata in the Nearctic and L. limosa in 

the Palearctic. This supports the idea of a future scenario where the temperate 

widespread species will be the “winners” over the more restricted northern species 

(Virkkala et al., 2008; Tayleur et al., 2016). 

 

But even if expected scenarios for the next century show a severe reduction of the 

Arctic habitat, these species experienced similar conditions over their recent 

evolutionary history. During the previous interglacial, and even during the Mid-

Holocene, warm periods led to a subsequent reduction of the environments in the Arctic 

(McFarlin et al., 2018). These glacial – interglacial cycles during the Pleistocene, as seen 

in the previous chapters, had a key role in the diversification of their populations. The 

fragmentation of ranges in areas of refugia due to changes in the climate led to the 

current diversity of subspecies and populations. While the fragmentation (or lack of it) 

during glacial periods was the most important factor to explain the diversity within most 

species, the interglacials also contributed to the isolation of the Arctic populations. 

Regarding refugia, most of the literature is focused more on the Late Quaternary than 

in the current climate change (Keppel et al., 2012). These potential future refugia are of 

great importance in terms of identifying key areas in the conservation of the species 

(Araújo et al., 2004; Pyke & Fischer, 2005; Hannah et al., 2007), and some of the areas 
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highlighted in this work, like the north coast of Alaska, are already gathering attention 

(Fuller et al., 2008; Saalfeld et al., 2013).  

 

However, while in previous occasions the warmer and colder periods took 

thousands of years of gradual change to develop, the current climatic change is 

concentrating the same amount of change in just a few centuries. By the end of the 21st 

century, the Arctic would reach previously experienced conditions but at a rate never 

experienced before in the Late Quaternary (IPCC, 2014). Our results suggest that the 

current rate of reduction in Arctic size is well over the experienced during the post-

glacial warming since the LGM. Furthermore, this rate has increased in the last years and 

will double over the next decades, even in the most optimistic scenarios. Should the 

trend continue, and over the following century the climate of the planet would resemble 

that of the Pliocene or the Eocene in the worst scenario (Burke et al., 2018). This high 

velocity of climate change is a major concern in the conservation of species, especially 

for those whose low dispersal ability limits their capacity to occupy suitable areas 

(Williams & Blois, 2018). With few exceptions, Arctic-breeding shorebirds are long 

distance migrants, and it is assumed that dispersal ability would not be an obstacle in 

reaching suitable areas. But beyond habitat availability, climate change poses many 

other challenges for this group of birds (Rehfisch & Crick, 2003; Meltofte et al., 2007; 

Galbraith et al., 2014). Changes in synchronicity with the peak of food resources in the 

migratory stopovers and the breeding sites demand that the migratory shorebirds adapt 

their phenology to a quickly changing global scenario (Tulp & Schekkerman, 2007; 

McGowan et al., 2011; McKinnon et al., 2012; Galbraith et al., 2014; Saalfeld et al., 

2019). Although some populations seem to be succesfully profiting from these changes 

(Alves et al., 2019), most of the evidence suggest an overall declining trend of 

populations in Europe (Lindström et al., 2015) and North America (Bart et al., 2007). 

Furthermore, expected sea-level rise of up to 80cm by 2100 (Church et al., 2013) will 

cause the disappearance of intertidal areas that are key for fuelling during migrations as 

well as in breeding and wintering areas (Galbraith et al., 2002). All these factors could 

have a deep impact on the Arctic shorebird populations, reducing their presence in the 

Arctic beyond the predictions from the models. 
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Our results highlight that climate change represents a major threat for the 

conservation of Arctic shorebirds and other northern and migratory bird species across 

the planet, especially in the Palearctic region. The changes in the ranges of these species 

are an already ongoing process, and their consequences will likely be greatly aggravated 

in the scenarios resulting from higher emissions. Despite the ability of these birds to 

overcome severe climatic changes, the current trend greatly surpasses the rate of 

previous events. The result of this extreme and sudden warming challenges the 

capability of these Arctic species to quickly adapt their distribution and phenology 

beyond anything they have experienced in their recent evolutionary history. This 

remarks the need for immediate measures to reduce these emissions in order to 

minimize the negative impacts on the already vulnerable Arctic ecosystem. 
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Integrative discussion 

 

In this thesis we have explored the effects of the Pleistocene glacial cycles in the 

diversity, distribution and migration of Arctic shorebirds. By using an integrative 

approach, combining spatial-explicit scenarios and genetic analyses for multiple species, 

we show that the fragmentation of the breeding distribution during these cycles 

promoted species' intraspecific diversification, especially during the Pleistocene period 

when glacial periods increased in intensity and duration. Our results show that past 

climatic changes have played a key role in shaping the diversity and distribution of these 

birds, driving quick changes over short periods of time. This allows us to better 

understand the potential impacts of the climate change in these representative Arctic 

species. 

 

The role of the Pleistocene glacial cycles in the diversification of plant and animal 

species is a topic that has gathered substantial interest (Hewitt, 1996, 1999, 2000; Avise 

& Walker, 1998). It has even been argued against an increased diversification during this 

period, using Nearctic birds as study group (Klicka & Zink, 1997; Zink & Klicka, 2006). 

However, further reanalyses supported a recent timing for many events of inter- and 

intraspecific diversification (Johnson & Cicero, 2004; Lovette, 2005; Cicero & Johnson, 

2006). Moreover, this process seems to be especially important in the diversification of 

species at higher latitudes, whose ranges were more in contact with the areas affected 

by the expansion of ice sheets (Weir & Schluter, 2004; Pruett & Winker, 2008; van Els et 

al., 2012; Weir et al., 2016). 

Arctic shorebirds have received considerable attention when studying species' 

diversification at high latitudes. Previous works on different species reported an overall 

very shallow genetic diversity and recent diversification (Wenink et al., 1994, 1996; 

Wennerberg, et al., 2002; Buehler & Baker, 2005; Ottvall et al., 2005; Trimbos et al., 

2014; Barisas et al., 2015 Thies et al., 2018). 
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This pattern has often been attributed to the effects of the fragmented breeding 

populations and population bottlenecks in the areas of refugia during glacial cycles, and 

a posterior recovery during interglacials (Buehler & Baker, 2005; Pruett & Winker, 2005, 

2008; Trimbos et al., 2014; Leblanc et al., 2017; Thies et al., 2018). But these processes 

are not necessarily exclusive of glacial periods, as some species can also have 

fragmented distributions during interglacials (Kraaijeveld & Nieboer, 2000; Stewart & 

Dalén, 2008). Frequently, the geographic details of the species' putative Arctic refugia 

are omitted in the literature. Studies assume their existence but oversee key aspects 

such as their location, the number of available independent breeding areas and the 

changes between periods (e. g. Buehler & Baker, 2005; Pruett & Winker, 2005; Trimbos 

et al., 2014). These result in inferences based solely from the patterns provided by 

genetic data, ignoring the spatial mechanisms involved, and usually focused on 

individual species. Early studies on the potential distribution of species during the Last 

Glacial Maximum (LGM), highlighted a correlation between areas of refugia and the 

origin of subspecies in certain Arctic shorebirds (Greenwood, 1986; Ploeger, 1968), 

which had some parallelism with Arctic geese and ducks (Ploeger, 1968). 

In the Chapter 1, we highlighted the importance of the different distribution 

patterns during both glacial and interglacial periods in the intraspecific diversification of 

Arctic shorebirds. The results show that the majority of species with subspecies 

experienced potential fragmentation of their breeding ranges during glacial and/or 

interglacial periods. On the other hand, monotypic species predominantly displayed a 

continuous range during both periods, with retreat to a single refugium during the LGM. 

This is in agreement with the original hypothesis of the Pleistocene glacial cycles as the 

main driver of diversification though isolation of breeding populations (Rand, 1948; 

Ploeger, 1968). But our work also extended it further. First, we showed that in many 

species the glacial cycles prevented their diversification by keeping all their populations 

together. Furthermore, while the glacial refugia seemed to be the main source of 

allopatric differentiation, the post-glacial expansions would have still played a role in the 

diversification of certain species. This fits the previous findings in northern bird species 

where fragmentation during glacial periods is the most common suggested process 

(Rand, 1948; Mengel, 1964; Ploeger, 1968; Weir & Schluter, 2004), but post-glacial 

expansions and interglacial climate also contributed to the isolation and recent 
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diversification in some species (Kraaijeveld & Nieboer, 2000; Milá, et al., 2006, 2007; 

Friis et al., 2016) 

 

Our results also show that, despite changes in the breeding distribution, almost all 

species of Arctic shorebirds maintained their long-distance migration during the LGM. 

This contradicts the generality of the glaciations as a “migratory switch”, proposed for 

some migratory birds in North America (Zink & Gardner, 2017). The predicted non-

breeding ranges remained stable during that period, especially around tropical areas, 

and in general the overlap between breeding and non-breeding ranges was predicted to 

be minimal or non-existent. Additionally, the studies on the fossils specimens of Calidris 

in Olduvai Gorge (Tanzania) across the Pleistocene showed a lack of medullary bone, 

which is a structure only present during the breeding period, and absence of juveniles. 

This indicates that the same non-breeding areas where occupied during the Pleistocene 

to the present, and therefore supports that Arctic shorebirds remained migrating even 

during glacial periods. 

It is possible that the different flyways used by species and subspecies are linked 

to their areas of refugia. However, we cannot conclude whether the different flyways 

promoted the geographic fragmentation or if it was the other way around. In any case, 

it is likely that the parallel migratory routes for different populations reinforced the 

divergence between them. This is especially important upon post-glacial expansions, 

where different populations expanded north maintaining their main migratory routes 

(Ruegg & Smith, 2002; Buehler et al., 2006; Ruegg et al., 2006). Even with secondary 

contacts, breeding populations from different flyways can remain acting as independent 

units, as different migration routes often involve different phenological timings and 

morphological traits (Buehler et al., 2006; Meltofte et al., 2007; Maley & Winker, 2010; 

Jukema et al., 2015). 

 

Validation of the spatial mechanisms of diversification proposed in Chapter 1 

required the use of genetic data. Previous analyses of divergence times in Arctic 

shorebirds were performed for individual species, and based on mitochondrial mutation 

rates generalised from other sources (e. g. Buehler & Baker, 2005; Ottvall et al., 2005; 
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Pruett & Winker, 2005; Rönkä et al., 2012). The use of these “universal” rates for any 

studied taxa or any mitochondrial gene, has been very criticized (Garcia-moreno, 2004; 

Lovette, 2004; Pereira & Baker, 2006). Furthermore, estimations of the rates based on 

the analysis of complete mitochondrial genomes argued against the universality of such 

rates between different genes or lineages (Pereira & Baker, 2006; Pacheco et al., 2011; 

Nabholz et al., 2016). The estimation of the rates performed in this thesis represents the 

largest analysis of this type ever done so far, both in number of species included (621) 

and reliable fossil calibrations used (25). The results, as in previous studies, contradict 

the generality of the mutation rate values (Pereira & Baker, 2006; Pacheco et al., 2011; 

Nabholz et al., 2016). We therefore advise against the use of the “standard molecular 

clock” rate, or any form of “universal” rates. Instead, we here provide specific rate 

estimations for every mitochondrial gene, for many lineages of the avian phylogenetic 

tree. This allowed us to apply rates that were more specific for the lineages of shorebirds 

studied and the mitochondrial genes used in our analyses of divergence times. 

The molecular clock and coalescent analyses, performed simultaneously for 

multiple species with different patterns of diversity, support an overall recent 

diversification of Arctic shorebirds during the Pleistocene. The divergence time 

recovered between some species (Pluvialis sp.) or subspecies (in Calidris alpina and 

Limosa limosa) predate the Pleistocene period, which is still in agreement with previous 

works (Johnson & Cicero, 2004; Weir & Schluter, 2004; Lovette, 2005; Cicero & Johnson, 

2006). However, most of the intraspecific diversification in all the studied species took 

place within the Pleistocene, and especially during the last 900,000 years. This period is 

known for an increase in the intensity and duration of the glacial cycles, where longer 

glacial periods (~100,000 years) with greater ice accumulation were only interrupted by 

shorter warm interglacials (~30,000 years) (EPICA community members, 2004; Lisiecki & 

Raymo, 2005; Jouzel et al., 2007).  

The species with greater isolation between their main populations during both 

glacial and interglacial periods, like L. limosa and C. alpina shower older and better-

defined genetic lineages, which is consistent with previous findings (Buehler & Baker, 

2005; Trimbos et al., 2014). On the other hand, some species showed little or no genetic 

structure, and a very recent overall diversification. These species tend to show similar 

distribution patterns during both glacial and interglacial periods, like Charadrius 
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hiaticula and Pluvialis apricaria in Europe, or Calidris canutus and Arenaria interpres 

across the high Arctic. These species likely experienced severe contractions of their 

ranges into very few areas of refugia, and quick post-glacial expansions from those 

areas. Furthermore, some subspecies restricted to high latitudes likely experienced the 

main fragmentation and reduction of their populations during the interglacials, resulting 

in a very recent and shallow diversity in their current areas of “warm refugia” 

(Kraaijeveld & Nieboer, 2000), which was yet enough to originate the observed 

phenotypic variation in a short period of time. 

When considered together, Chapter 1 and Chapter 2 provide a spatial and 

temporal confirmation of the mechanisms of intraspecific diversification in this group of 

birds during the glacial cycles. The fragmentation of the breeding ranges, especially 

during glacial periods, provided a favourable scenario for allopatric speciation. As these 

periods increased its duration and intensity, this process of diversification increased 

substantially, resulting in the different diversity and distribution patterns we find today. 

This likely applies to many other species of the Arctic fauna and flora. Certain areas of 

glacial refugia, like Beringia or the mountain ranges below the ice cover, strongly 

determined the diversity patterns across different Arctic taxa (Skrede et al., 2006; 

Todisco et al., 2012; Eidesen et al., 2013; Kleckova et al., 2015). This results in a recent 

diversification of the subspecies across an east-west axis, found across different taxa 

with varying degrees of dispersal ability: from plants (e. g. Eidesen et al., 2013) to 

mammals (e. g. Jaarola & Searle, 2002; Flagstad & Røed, 2003; Zigouris et al., 2013) and 

even migratory birds (e.g. Ploeger, 1968; Jones et al., 2005; Pruett & Winker, 2008; 

Pujolar et al., 2017). Moreover, our findings agree with previous studies highlighting that 

most of the intraspecific diversity in high-latitude bird species occurred during this 

period of glacial cycles (Weir & Schluter, 2004; Lovette, 2005; van Els et al., 2012; Weir 

et al., 2016). 

 

Arctic shorebirds have shown to be very capable of coping with extreme climatic 

oscillations. However, current climate change represents a completely different 

scenario than the glacial periods. Animal and plants species worldwide are experiencing 

a poleward shift due to the current changes in the global climate, and this trend is 

expected to continue and increase over the next decades. This also includes birds, in 
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which the northern and migratory species are considered among the most endangered. 

Our results in Chapter 3 agree with the displacement of the ranges of bird species 

towards higher latitudes, especially in northern species (Huntley et al., 2008; Virkkala & 

Rajasärkkä, 2011; Barbet-Massin et al., 2012). However, since many Arctic shorebirds 

species are already at the northernmost edges of the continents, we found that the 

process involves a loss of the southern part of their distributions more than an expansion 

to the north. This represents a major threat, especially for species confined to very high 

latitudes with very restricted distributions, while the species that inhabit temperate 

areas have greater margin of expansion. This process also shows a great asymmetry in 

geographic terms, as the Palearctic and Nearctic regions showed clearly different trends. 

In the Palearctic, the potential ranges of most species show significant reductions under 

all future climate change scenarios. On the other hand, in the Nearctic, the Canadian 

Archipelago provides such northern suitable areas for the species to maintain or even 

expand their ranges. But such possibility should be considered with great care, as this 

process is extremely dependant on the response of the ecosystems in the breeding and 

stopover sites, as well as on the phenology of the species (Meltofte et al., 2007; 

McGowan et al., 2011; Galbraith et al., 2014; Alves et al., 2019). 

The changes in the breeding distribution of the Arctic shorebirds due to the 

current climate change could lead to new refugia, with all the implications seen in the 

first chapters. However, our results do not allow us to fully determine where the 

predicted areas of refugia will persist, or if the climate change will overwrite the diversity 

originated during glacial cycles, beyond the disappearance of certain species or 

subspecies in critical areas. Our results on the changes in the Arctic during the last 

120,000 years show that the shorebirds have overcame other warm periods in the 

region recently, which likely contributed to establish their current diversity (Kraaijeveld 

& Nieboer, 2000). But as opposed to those periods, which developed over thousands of 

years, the current climate change is severely reducing the Arctic and altering its 

ecosystems in a few hundred years, or even decades. Furthermore, over the next 

century the climate of the planet will be analogue to past climates never experienced by 

current species (Burke et al., 2018). The increased rate of the changes in the climate and 

ecosystems makes it difficult for the migratory species to adapt their phenology, diet 

and distribution in time (Crick, 2004; Newson et al., 2009; Saino et al., 2011). This is 
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already translating into severe population declines and habitat loss in Arctic shorebirds 

and other northern species (Gilg et al., 2012; Lindström et al., 2015; Stralberg et al., 

2015; Tayleur et al., 2016). 

 

In conclusion, this thesis shows that climatic changes have determined the recent 

diversification of this group of Arctic birds, splitting the breeding ranges during the 

glacial cycles of the Pleistocene. Our study links the spatial and temporal components 

of this climate-driven diversification, highlighting the different processes experienced in 

different regions and for different species. This integrative approach sheds light in the 

evolution of Arctic species during periods of climatic oscillations. Moreover, our results 

suggest that the current climate represents an unprecedented challenge for the survival 

of many of these species. Our work provides key insights on the potential response of 

the Arctic biodiversity to climate change and the differences between regions. 
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Conclusions 

 

1. The fragmentation of the breeding distribution of Arctic shorebirds during the 

glacial cycles promoted their current intraspecific diversity. Most of the species 

with described subspecies showed fragmented breeding ranges during glacial 

and/or interglacial periods. In contrast, the breeding ranges of almost all 

monotypic species remained continuous during both periods. 

2. The species' distribution models and the fossil record support that the long-

distance migratory behaviour was not interrupted during glacial periods. The 

migratory routes and the fragmentation of the breeding range could have acted 

together to reinforce and maintain the diversification between populations. 

3. The calibration of the molecular clock rates for the mitochondrial genes in birds, 

the most comprehensive to date, contradicts the validity of the standard 

molecular clock or other generalized rates. Our results provide reliable rate 

estimations for each mitochondrial gene in a large number of avian lineages, 

which allows to better estimate divergence times and phylogeographic histories 

within and between bird species. 

4. Genetic data supports a recent diversification within multiple Arctic shorebird 

species, especially over the Middle and Late Pleistocene, coinciding with longer 

and more intense glacial periods. Species with similar patterns of distribution, 

both now and during the LGM, show parallelism in their divergence time and 

degree of genetic differentiation. 

5. Genetic and biogeographic data support a Pleistocene origin of the current 

diversity within the Arctic shorebird species. Together, they provide a spatial and 

temporal mechanism of diversification based on climate-driven allopatric 

differentiation. Fragmentation of the breeding range during glacial cycles 

favoured the diversification of subspecies, especially when these cycles 

increased in amplitude and duration. 

6. Due to climate change, the breeding ranges of the Arctic shorebirds are expected 

to displace northwards over the next decades. However, many species are 

already restricted to the northernmost available territories, and they will 

experience the most severe range reductions as the southern margin of their 

distribution is lost. 

7. The proportion of Arctic shorebird species experiencing severe range reduction 

is greater in the Palearctic than in the Nearctic, given the availability of high-

latitude territories that could become suitable in the future. However, this relies 

heavily on the ability of the ecosystems and associated communities to colonize 

those territories in time. 
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8. The current climate change is altering the Arctic much faster than in previous 

climatic oscillations, which greatly challenges the possibilities of the species to 

quickly adapt to the new scenario and threatens their conservation. Following 

the current trend, the climate of the Arctic could transform beyond what the 

Arctic species have experienced in their evolutionary history. 

9. Climate has played a key role in the diversification of Arctic shorebirds and other 

Arctic species during the Pleistocene, by promoting the differentiation of 

isolated populations during unsuitable periods. Current climate change can lead 

to a new scenario of reduced and fragmented populations that would deeply 

affect the diversity and conservation of the Arctic species. 
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Appendix 1: Species' distribution maps (present and LGM)  

 

Map 1: Common Sandpiper (Actitis hypoleucos) predicted distributions for the breeding (yellow) and 

wintering (blue) ranges, and their overlap (green), in the present and the LGM. Dots represent fossil 

localities for the species in the Pleistocene, diamonds represent fossil localities both in the Pleistocene 

and the Holocene. Black line represents the extension of the main ice sheets during the LGM, simplified 

from Ehlers et al. (2011). 

Common Sandpiper, Actitis hypoleucos (map 1). Breeding distribution is widespread 

across the Palearctic, from the Iberian Peninsula to Kamchatka, reaching the Arctic 

latitudes in Scandinavia and Siberia. No variation described. The SDM for the present 

returned a range that fits the distribution range (del Hoyo et al., 2018), with slight over 

predictions at the northern part. LGM hindcast shows a major range reduction, with just 
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low latitude patches (between 30N and 50N), mostly in the Mediterranean region, 

central and eastern Europe and eastern Asia. The wintering range covers most of Africa 

(except the Sahara Desert), Madagascar, southern Asia, New Guinea and Australia. The 

SDM fits this wintering range, failing to predict presence only in the Arabian Peninsula. 

In the LGM, the wintering range remains fairly stable, with slight reductions on the 

northern and southern margins, although still present in the Sahel region. This species 

is classified under scenario C. 

 

Map 2: Spotted Sandpiper (Actitis macularius) predicted distribution. Caption as in map 1. 
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Spotted Sandpiper, Actitis macularius (map 2). Breeds in temperate and artic areas in 

North America, from Alaska to the Labrador Peninsula (del Hoyo et al., 2018). No 

subspecies (A. m. rava not considered as valid). The SDM fits the known current range, 

with some under-predictions at lower latitudes and over-predictions at the Canadian 

Arctic. LGM models show a split of the range into two main areas: a large one in Beringia, 

and a group of smaller ones at around 40N in what is now the USA. Wintering 

distribution covers from southern USA to the north of Argentina and Chile. The models 

from the present return a wintering predicted distribution similar to the real one, 

although not as a continuous extent. Models for the LGM show very little variation in 

the wintering range between past and present. This species is classified under scenario 

C. 

Ruddy Turnstone, Arenaria interpres (map 3). Circumpolar coastal species, only absent 

in south and southeast Greenland and between Labrador Peninsula and Yukon. Two 

recognized subspecies, A. i. interpres, distributed across the Palearctic, northwest 

Alaska, north Canadian Arctic and Greenland; and A. i. morinella, in east Alaska and most 

of the Canadian Arctic (del Hoyo et al., 2018). Our SDM fits well the breeding distribution 

of the species, only over-predicting in some parts of Canada, Svalbard and some small 

regions in central Asia. The LGM model predicts a disappearance of all the current 

breeding range of A. i. morinella, with the closest predicted areas located in southern 

latitudes in inland territories of North America (therefore unlikely). The remaining range 

of the species is very fragmented, with large predicted areas in Beringia, northeast 

Siberia and Kamchatka, and north central Asia. Smaller predicted areas appear in central 

Europe and both eastern and western coasts of Greenland. The wintering distribution 

extends from Europe and North America to South America, the whole African coastline, 

south Asia and Oceania. The SDM for the wintering fits the known range, but also 

predicts large inland areas. In the LGM the wintering range remains stable, with 

reduction of the northern and southern parts of the distribution, especially in southern 

Asia and North America. This species is classified under scenario C. 
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Map 3: Ruddy Turnstone (Arenaria interpres) predicted distribution. Caption as in map 1. 
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Map 4: Black Turnstone (Arenaria melanocephala) predicted distribution. Caption as in map 1. 

Black Turnstone, Arenaria melanocephala (map 4). Coastal species breeding in the east 

coast of Alaska and Aleutian Islands. No variation described. The current SDM model 

over-predicts in north Alaska, Yukon and Banks Island. In the LGM, the model predicts 

the species to maintain a similar breeding range in the emerged lands of Beringia, as 

well as north Alaska. The current wintering range, along the western coast of North 

America, is well predicted by the SDM model for the present, although with a smaller 

extent size. The models show no major changes in the wintering range during the LGM. 

This species is classified under scenario A. 
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Map 5: Upland Sandpiper (Bartramia longicauda) predicted distribution. Caption as in map 1. 

Upland Sandpiper, Bartramia longicauda (map 5). Monotypic species breeding in two 

main separated areas: temperate region of central North America, and subarctic region 

in central Alaska, Yukon and British Columbia. The current SDM returns a continuous 

breeding distribution, with over-predictions around the Hudson Bay, Labrador 

Peninsula, Manitoba, Alberta and Northwest Territories. The models predict a significant 

reduction in the breeding range during the LGM, with predicted presence only in two 

separated regions: one in southern Beringia, and the other at lower latitudes (30-40N) 

in inland North America. The wintering distribution is in South America, covering Bolivia, 

Paraguay, south Brazil and northern half or Argentina (del Hoyo et al., 2018). Our model 
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fits this range, but also shows some over-predictions in the northern part of South 

America, up to Central America. No major changes are predicted in the wintering 

distribution during the LGM. This species is classified under scenario D. 

Sharp-tailed Sandpiper, Calidris acuminata (map 6). Monotypic Arctic species that 

breeds in north-eastern coast of Siberia, between the Lena and Kolyma rivers. The model 

predicts a slightly wider breeding range, reaching from Taymyr to the north of Chukotka. 

During the LGM, a series of sparse areas of potential breeding refugia are predicted in 

Beringia, Kamchatka and central Siberia. The wintering range of the species covers all 

the coast of Australia as well inland areas specially in the eastern part of the continent. 

It is also distributed in New Guinea and New Zealand. Our models predict the wintering 

distribution in Australia, although with over predictions inland and under predictions in 

the east coast. It also fails to predict the presence in New Guinea and New Zealand. The 

LGM model shows that the wintering range would have remained stable during the 

glacial period. This species is classified under scenario A 

Sanderling, Calidris alba (map 7). Breeding distribution across the Arctic, although non-

continuous. It is present across the Palearctic in Svalbard, Severnaya Zemlya Island, 

Taymyr Peninsula, the mouth of Lena River and New Siberian Islands, and from northern 

Alaska to British Columbia, northern Canada, Ellesmere Island and the coast of 

Greenland near it, as well as a small area in the eastern coast. There a two recognized 

subspecies: C. a. alba that occurs in the areas of eastern Greenland, Ellesmere, Svalbard 

and Taymyr; while C. a. rubidus breeds in Alaska and Canada, and likely in the Lena River 

delta and New Siberian Islands. Our SDM over-predicts the breeding range in northern 

Fennoscandia, northern Greenland and some parts of the Siberian coast, but overall fits 

the fragmented distribution of the species. For the LGM it predicts major breeding range 

reduction for C. a. alba in the Canadian high Arctic and Greenland, but a larger suitable 

area southern from Taymyr. This predicted breeding area extends north and contacts 

with the potential distribution of C. a. rubidus in northeast Siberia and Beringia. The 

Canadian populations of these subspecies seem to disappear due to the advance of the 

ice, and only a small predicted area in western North America remains. The species 

spends the wintering season along the coasts of North America, South America, western 

Europe, Africa, southeast Asia and Oceania. This range is well predicted by the model, 
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with over-predictions in inland areas, and is not predicted to have experienced major 

changes during the LGM. This species is classified under scenario D. 

 

Map 6: Sharp-tailed Sandpiper (Calidris acuminata) predicted distribution. Caption as in map 1. 
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Map 7: Sanderling (Calidris alba) predicted distribution. Caption as in map 1. 

 
 
 
Dunlin, Calidris alpina (map 8). An Arctic and temperate breeding species. Continuous 

breeding distribution from Britain to Siberia and Kamchatka; and in the Nearctic in 

Alaska, Beaufort Sea coast and central Canada to Nunavut and Newfoundland. It is 

absent from Arctic Canadian islands. It breeds in southern and eastern Greenland as well 

as Iceland. Up to ten subspecies recognized based on morphology (Engelmoer and 

Roselaar, 1998), but only five main DNA genetic lineages (Buehler & Baker, 2005; 

Marthinsen et al., 2007; Miller et al., 2015): C. a. alpina in the western Palearctic, C. a. 

centralis in Siberia overlapping in eastern Siberia with C. a. sakhalina. C. a. pacifica 
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occurs in Alaska and C. a. hudsonia in northern Canada to Newfoundland. Phenotypic 

variation supports ten subspecies that include (sensu Engelmoer and Roselaar 1998): C. 

a. arctica breeds in east Greenland; C. a. schinzii breeds in Iceland, the Faeroes and 

British islands, western Europe, the Baltic, south Scandinavia and south and southeast 

Greenland; C. a. alpina breeds in nothern Fennoscandia; C. a. centralis breeds in central 

Siberia from the Taymyr peninsula east to the Indigirka river; C. a. actites breeds on 

north Sakhalin island; C. a. kistchinski breeds on the southwest part of the Koryak 

highland, the northeast coast of the Ochotsk sea, the Kamchatka peninsula and the 

northern Kuril islands; C. a. sakhalina breeds on Wrangel Island, the Chukotka Peninsula 

and at Anadyr; C. a. arcticola breeds north of the Brooks range in Alaska; C. a. pacifica 

breeds in Alaska south of 65N; and C. a. hudsonia breeds in the Northwest Territories 

of Canada. The SDM covers all the species' breeding distribution, over-predicting in 

central and southern parts of Europe and Asia. During the LGM, the model predicts 

major breeding range reductions for almost every genetic subspecies: C. a. hudsonia 

disappearing from the Canadian Arctic, C. a. centralis would have been reduced to an 

area in northern Asia near Taymyr, C. a. alpina restricted to a series of isolated refugia 

in central and eastern Europe, and C. a. shakalina being displaced towards Kamchatka 

and Beringia, where it overlaps with C. a. pacifica. Very small available areas are 

predicted in the ranges of the morphological subspecies C. a. arctica and C. a. schinzii. 

The wintering range is entirely located in the northern hemisphere, across coastal areas 

of North America, south and central Europe, north Africa and south Asia. Our SDM fits 

this distribution but over-predicts in areas of South America and central Africa. The LGM 

is predicted to have displaced this wintering range towards the equator, expanding to 

areas in the Southern Hemisphere in America and Africa. This species is classified under 

scenario C. 
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Map 8: Dunlin (Calidris alpina) predicted distribution. Caption as in map 1. 

 

 

Baird's Sandpiper, Calidris bairdii (map 9). A monotypic species that mainly occurs in 

Alaska and the Canadian high Arctic up to Ellesmere Island, and in the Chukotka 

peninsula in Siberia. The current model fits the breeding distribution, over-predicting 

only in Newfoundland. LGM model predicts a reduction of this range in the Canadian 

high Arctic, concentrating most of the breeding distribution of the species in Beringia, 

with only small predicted areas in central and eastern North America. The wintering 

range is located in the southern part of South America and some areas in Central 
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America, as it is also predicted by the current SDM. This wintering range is not predicted 

to have experienced significant changes during the LGM. This species is classified under 

scenario A. 

 

 

Map 9: Baird´s Sandpiper (Calidris bairdii) predicted distribution. Caption as in map 1. 

 

 

Red knot, Calidris canutus (map 10). Arctic species with a fragmented breeding 

distribution, corresponding to several subspecies not connected between them. Five 
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subspecies are currently recognized based on morphology (Engelmoer & Roselaar 1998): 

C. c. canutus breeds in Northern Taymyr; C. c. islandica shows a wider distribution, 

breeding in northeast Canada to Ellesmere, most of the northern and eastern coast of 

Greenland, and Svalbard; C. c. rufa breeds in low Arctic Canada and Victoria and Prince 

Patrick islands limiting with C. a. islandica in Prince of Wales island; C. c. rogersi breeds 

in New Siberian Islands; C. c. roselaari breeds in Wrangel island and Beringia, including 

the Chukotka peninsula and the western Alaskan populations likely belong to this 

subspecies. From the genetic point of view these subspecies are genetically very similar 

(Baker et al., 1994; Buehler & Baker, 2005), but clearly distinguishable phenotypically. 

The SDM successfully predicts all the breeding areas where the species occurs, but there 

are also some over-predictions, which may suggest that the species could occur in many 

more areas than where it actually does. Over-predictions return a continuous breeding 

distribution from Fennoscandia to Chukotka and Alaska to Greenland, Iceland and 

Svalbard islands where it does not breed. The model also over-predicts the species in 

the boreal forests of north America and southern Alaska to Newfoundland, and central 

Asia as well as Kamchatka. The model for the LGM predict a wide continuous breeding 

distribution from east Europe to Beringia and Alaska, with no distinguishable areas 

associated with the fragments of the current distribution. The subspecies C. c. islandica 

is predicted to have lost most or all of its range in the Canadian high Arctic, but remained 

in suitable areas in Greenland and Svalbard. The range of C. c. rufa is restricted to small 

coastal areas around the Labrador Peninsula. Some predictions at lower latitudes (40N 

- 50N) in eastern North America and western Europe are close to current wintering 

areas. Other wintering areas include most of the coast of North America, South America, 

India, Australia, New Zealand and the west coast of Africa. Most of these areas are well 

predicted by the SDM, with over-predictions inlands in equatorial Africa and the east 

coast, as well as in Indochina and southeast China. This predicted wintering distribution 

shifted slightly towards the equator during the LGM. This species is classified under 

scenario B. 
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Map 10: Red Knot (Calidris canutus) predicted distribution. Caption as in map 1. 

 

 

Broad-billed Sandpiper, Calidris falcinellus (map 11). Palearctic species, breeding 

distribution is in Scandinavia and northwest Russia, the Taymyr Peninsula and the deltas 

of the rivers Lena and Kolyma (del Hoyo et al., 2018). Two subspecies recognized, C. f. 

falcinellus in the Scandinavian part, and C. f. sibirica in the Siberian areas. The SDM 

predicts a potential breeding range that is almost continuous from the British Islands 

and north France to northeast Siberia, without any major gaps. Under the LGM 
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conditions, the model predicts a series of breeding areas across northern Siberia, 

reaching east to Kamchatka, and also an isolated area in western Europe. The wintering 

range consist of isolated coastal areas in east Africa, the Arabian Peninsula, India, 

Myanmar, Indonesia, New Guinea and the north of Australia. This is well predicted by 

our model, over-predicting in Madagascar. During the LGM, the predicted wintering 

range remained stable. This species is classified under scenario D 

 

Map 11: Broad-billed Sandpiper (Calidris falcinellus) predicted distribution. Caption as in map 1. 
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Curlew Sandpiper, Calidris ferruginea (map 12). Arctic species breeding from the Obi 

River in west Siberia eastwards to the Chukotka peninsula (del Hoyo et al., 2018). No 

variation described. The current SDM model fits well the breeding distribution of the 

species, over-predicting slightly to the west into Yuzhny island and south to Kamtchatka 

and Shakalin island. The LGM model shows two clearly separated breeding areas, one in 

northwest Siberia, between the Ural Mountains and southern Taymyr, and the other 

one in northeast Siberia and Kamchatka. The wintering range extends through most of 

eastern and southern Africa, from Ethiopia to South Africa; below the Sahara from 

Ethiopia to Mali; and the western and northern coasts of the continent. It is also present 

in coastal areas of Madagascar, the Arabian Peninsula, south Asia, Indochina, Indonesia, 

New Guinea and Australia. The SDM predicts well most of this wintering range, with 

over-predictions in inland territories of central Africa and south Asia. The LGM model 

predicts a slight reduction of the northern part of the non- breeding range, with no 

major changes in the other areas. This species is classified under scenario C. 

 

White-rumped Sandpiper, Calidris fuscicollis (map 13). Breeds in the Arctic in Alaska 

and north Canada islands reaching Baffin Island in the East. It shows a distribution gap 

the north of Yukon. The SDM over-predicts the breeding range of the species in the 

north up to Ellesmere Island, and under-predicts the range in the south, failing to predict 

the species in continental Canada, north Alaska and the southern half of Baffin Island. In 

the LGM model, most of its breeding range in the high Canadian Arctic is predicted to 

disappear, with very few coastal localities remaining. Most of the predicted breeding 

range during the LGM is in the area of Beringia and Alaska, with some areas in southern 

latitudes. The wintering distribution covers the south and southeast coast of South 

America, from south Brazil to Patagonia; and the Falkland Islands. All this range is 

predicted by the SDM, which also predicts areas along the west coast of South America. 

During the LGM, the models predict a reduction of the southern part of the wintering 

distribution, and the emergence of potential areas in tropical regions in the western part 

of the continent. This species is classified under scenario A. 
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Map 12: Curlew Sandpiper (Calidris ferruginea) predicted distribution. Caption as in map 1. 
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Map 13: White-rumped Sandpiper (Calidris fuscicollis) predicted distribution. Caption as in map 1. 

 

Stilt Sandpiper, Calidris himantopus (map 14). Breeding distribution is almost 

continuous from Wainwrights in north Alaska to Melbourne and Victoria islands, with a 

separated breeding population in west Hudson Bay (del Hoyo et al., 2018). The species 

is monotypic. The SDM fits the species' current breeding distribution, but under-predicts 

the Hudson Bay population, and shows over-predictions in the Canadian high Arctic up 

to Ellesmere Island where it does not occur. The LGM model predicts a loss of the 

breeding range in the Canadian Arctic, with populations only in the northern part of 

Beringia. The wintering range covers most of Central America and the northern and 
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central parts of South America, as well as the Caribbean Islands. This is well predicted 

by the SDM model for current conditions, and has a similar prediction during the LGM. 

This species is classified under scenario A 

 

 

Map 14: Stilt Sandpiper (Calidris himantopus) predicted distribution. Caption as in map 1. 
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Purple Sandpiper, Calidris maritima (map 15). Arctic species breeding in Taymyr, 

Novaya Zemlya, Franz Joseph Land, Scandinavia, Iceland, Svalbard, Greenland, Baffin 

and Ellesmere Islands and locally in other islands of Nunavut. Despite considerable 

geographical variation in size, and the proposal of some subspecies (e.g. Engelmoer & 

Roselar, 1998; Barisas et al., 2015), none have been yet recognized (del Hoyo et al., 

2018). The model correctly predicts the breeding distribution of the species in all of the 

areas of its distribution, with a larger range in Nunavut and Greenland, and over-

predictions in the coast of the East Siberian Sea, Chukotka Peninsula and Alaska. The 

LGM model shows remaining suitable breeding areas matching the current range in 

Iceland, Greenland, Svalbard and south of Taymyr. There are also predicted areas in 

western and central Europe near Scandinavia, and at lower latitudes in central North 

America. There is also a predicted breeding area around Beringia, from northeast Siberia 

to British Columbia and Yukon, that is probably an expansion of the over-prediction of 

the model for the present region The wintering range cover high latitudes very near the 

breeding range, distributed around local areas of western Europe, Scandinavia, Iceland, 

south of Greenland, east coast of USA and Newfoundland, therefore the model could 

not correctly perform and the results were discarded. This species is classified under 

scenario D. 

Western Sandpiper, Calidris mauri (map 16). Breeds in the western and northern coast 

of Alaska, and the eastern tip of the Chukotka peninsula. No variation described. The 

SDM models covers its current breeding range, but also over-predicts in the northern 

parts of Yukon and Northwest Territories, as well as into British Columbia. During the 

LGM the predicted breeding range is restricted to Beringia. The wintering distribution 

covers the west coast of America, from California to Peru, and also some parts of the 

east coast, from New Jersey to French Guayana, including the Gulf of Mexico and the 

Caribbean Islands (del Hoyo et al., 2018). The model under the current conditions fits 

the wintering distribution of the species, although it does not predict the presence in 

the west coast of North America, and over-predicts to the south in eastern and western 

South America. During the LGM, the model predicts a similar wintering range, but with 

less available areas in North America. This species is classified under scenario A. 
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Map 15: Purple Sandpiper (Calidris maritima) predicted distribution. Caption as in map 1. 
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Map 16: Western Sandpiper (Calidris mauri) predicted distribution. Caption as in map 1. 

Pectoral Sandpiper, Calidris melanotos (map 17). Monotypic species that breeds across 

north Siberia, from the Yamal Peninsula to Chukotka Peninsula, and in the Nearctic from 

east and north Alaska to the west of Hudson Bay, including Victoria, Banks Prince of 

Wales, Devon and Baffin Islands. The SDM model predicts all the breeding range of the 

species, with some over-predictions in south Alaska and part of British Columbia, and 

also in the north reaching Ellesmere Island, where it is not expected to breed (del Hoyo 

et al., 2018). The models for the LGM show a breeding distribution fragmented into 

three main areas: one in northwest Siberia, reaching the Ural Mountains; another in the 

north of north Siberia, probably between the Lena and Indigirka rivers; and a third area 
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covering northeast Siberia, Kamchatka, Beringia and Alaska. The species wintering range 

is in the southern half of South America, as well as in south-eastern Australia, Tasmania 

and New Zealand. The predictions from the model fit this wintering distribution well, 

with some predictions also in the northwest part of South America. During the LGM, the 

model predicts almost no change in the wintering range in Oceania, while in South 

America it shifts slightly towards the equator. This species is classified under scenario C. 

 

Map 17: Pectoral Sandpiper (Calidris melanotos) predicted distribution. Caption as in map 1. 
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Map 18: Little Stint (Calidris minuta) predicted distribution. Caption as in map 1. 

 

Little Stint, Calidris minuta (map 18). Arctic bird breeding in the Palearctic, from 

northern Fennoscandia to New Siberian Islands and the river Yana (del Hoyo et al., 

2018). No subspecies described. The SDM model fits the current breeding range well, 

over-predicting only in Svalbard and northwest Siberia. During the LGM, the model 

predicts a fragmentation of the breeding distribution, with several suitable areas: 

northwest Siberia (between Taymyr and the Ural Mountains), near the Lena and Yana 

rivers, Kamchatka and northeast Siberia, and some small localities in western Europe. 

The wintering distribution covers most of Africa below the Sahara, as well as the 
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northern coast; Madagascar, the Mediterranean basin, the Arabian Peninsula and south 

Asia, from Pakistan to Myanmar. The model under current conditions however only 

predicts the species' wintering range in some parts of central and southern Africa, as 

well as in Madagascar and some areas in India. Despite a reduction in available, the 

models do not predict latitudinal changes during the LGM in the wintering range. This 

species is classified under scenario C. 

 

Map 19: Least Sandpiper (Calidris minutilla) predicted distribution. Caption as in map 1. 
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Least Sandpiper, Calidris minutilla (map 19). Monotypic species that breeds in the 

Nearctic, from Alaska and the Aleutian Islands, through north Canada to the Labrador 

Peninsula and Newfoundland. The SDM current model predicts the breeding range of 

the species in Alaska, but under-predicts in the southern part of the Canadian range, and 

over-predicts to the north though Nunavut up to Ellesmere Island. During the LGM, the 

species's breeding range is predicted in large areas in Beringia and northeast Alaska. The 

wintering range extends from the southern part of USA to the northern third of South 

America. The predictions from the model fit well the wintering distribution, and only 

over-predict in some southern areas in South America, around Argentina and Chile. The 

wintering range is not predicted to have suffered major changes during the LGM. This 

species is classified under scenario A. 

Rock Sandpiper, Calidris ptilocnemis (map 20). Beringian species, breeding around the 

Bering Sea in west Alaska, the Aleutian Islands, St. Lawrence Island and Kamchatka. Four 

subspecies recognized (del Hoyo et al., 2018), although mitochondrial DNA analyses do 

not fully support the distinctiveness of all them (Pruett & Winker, 2005): C. p. quarta in 

south Kamchatka, C. p. tschuktschorum in Chukotka Peninsula, St. Lawrence and west 

Alaska, C. p. couersi in the Aleutian Islands and C. p. ptilocnemis in the smaller island of 

the Bering Sea. Our Model predicts the breeding range of the species in all of its current 

distribution, also expanding the potential breeding range to the north of Alaska and 

Yukon to Northwest Territories, in British Columbia and along the coast of the New 

Siberian Sea. The LGM model predicts that the species remained breeding in south and 

central Beringia during the glacial period. The restricted, high-latitude wintering range 

(along the coast from north California to south Alaska) did not allowed for a proper 

performance of the model and the results were discarded. This species is classified 

under scenario B. 



199 
 

 

Map 20: Rock Sandpiper (Calidris ptilocnemis) predicted distribution. Caption as in map 1. 

 

Ruff, Calidris pugnax (map 21). Breeds across all the Palearctic, from Scandinavia and 

Denmark to the Chukotka Peninsula through Siberia without described morphological 

variation. The model predicts the breeding range of the species well, over-predicting in 

north Taymyr, Novaya Zemlya and the British Islands (where it spends the winter). The 

species' breeding is predicted in areas of central and west Siberia and central Europe, as 

well as in east Siberia and Beringia during the LGM. The wintering range covers from 

sub-Saharan Africa to the south of the continent, south Asia, Indonesia and Philippines. 

There are also local wintering areas in west and southern Europe. Our model fits all the 
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wintering range except the areas in Europe, and also extends the prediction into 

Oceania. Overall the wintering range shows no significant change during the LGM. This 

species is classified under scenario A. 

 

Map 21: Ruff (Calidris pugnax) predicted distribution. Caption as in map 1. 
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Map 22: Semipalmated Sandpiper (Calidris pusilla) predicted distribution. Caption as in map 1. 

Semipalmated Sandpiper, Calidris pusilla (map 22). Nearctic species, breeding from 

west and north Alaska to the Labrador Peninsula, and recently expanded to Chukotka 

Peninsula (del Hoyo et al., 2018). The SDM model fits the breeding distribution range, 

with potential predicted areas in Ellesmere Island too. During the LGM, the model 

predicts a main breeding area in Beringia and Alaska. The wintering distribution covers 

coastal zones of the Caribbean and the northern part of South America. Our model 

correctly predicts this wintering range, with a reduction of available area extent during 

the LGM but no latitudinal shift. This species is classified under scenario A. 
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Map 23: Spoon-billed Sandpiper (Calidris pygmaea) predicted distribution. Caption as in map 1. 

 

Spoon-billed Sandpiper, Calidris pygmaea (map 23). Critically endangered species with 

a small distribution reduced to the Chukotka Peninsula and northern Kamchatka. No 

subspecies described. The SDM predicts the breeding range of the species well, with 

potential areas also in the coast of the East Siberian Sea. During the LGM, the model 

predicts that the species displayed a similar breeding range, even extending into south 

Beringia. The full wintering range of the species is not well known (del Hoyo et al., 2018), 

and the available data cover an area too small to perform reliable models. This species 

is classified under scenario A. 
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Red-necked Stint, Calidris ruficollis (map 24). Fragmented breeding distribution, 

present in Taymyr, the Lena river delta and from the Kolyma River to the Chukotka 

Peninsula. No variation described. The SDM model returns a breeding distribution 

covering all those areas but as a continuous range. During the LGM is predicted to 

remain breeding at high latitudes in central and northwest Siberia, as well as in Beringia, 

with no clearly isolated regions. The wintering distribution covers from east India to 

southeast China, extending through Indonesia, New Guinea, Australia and New Zealand. 

This wintering range is predicted well by the model using current conditions, except for 

the southern coast of Australia and in New Zealand. For the LGM it shows a decrease in 

available area of the wintering distribution, but remaining in the same latitudes, except 

in Australia, where it only is predicted in the north. This species is classified under 

scenario A. 

Buff-breasted Sandpiper, Calidris subrufcollis (map 25). Arctic species breeding in the 

north of Alaska and Northwest Territories, and in Nunavut. No variation described. The 

model correctly predicts the breeding distribution of the species, with some over-

predictions in Ellesmere Island where it does not breed. During the LGM, the species is 

predicted to breed in Beringia, Alaska, and potentially in the coasts of the Beauffort Sea 

and the Baffin Bay. Potentially suitable breeding areas are also predicted in western 

North America. The wintering range is located in South America, between Paraguay, 

Uruguay, north Argentina and south Brazil. The model correctly predicts this wintering 

range, as well as other potential areas in the north of the continent. The prediction for 

the LGM shows a decrease in the current wintering range of the species, but an increase 

in extent of the over-predicted areas in the north. This species is classified under 

scenario A. 
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Map 23: Red-necked Sandpiper (Calidris ruficollis) predicted distribution. Caption as in map 1. 
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Map 25: Buff-breasted Sandpiper (Calidris subruficollis) predicted distribution. Caption as in map 1. 

Temminck's Stint, Calidris temminckii (map 26). Breeds in the Palearctic, from 

Scandinavia to the Chukotka Peninsula in Siberia, including New Siberian Islands. It is 

absent in the northern part of Taymyr and in Novaya Zemlya. No variation described. 

Our SDM model covers all of the breeding distribution, predicting also in the northern 

part of Taymyr, Novaya Zemlya and Svalbard, as well as in some small areas of 

Kamchatka and around the Himalayas. The predictions in the British Island are 

congruent with occasional breeding there (del Hoyo et al., 2018). The LGM model 

predicts a similar but fragmented breeding distribution, with a large area between the 

Lena River and the Ural Mountains, further extending west in a narrow band towards 
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lower latitudes in central Europe; and another area in northwest Siberia and Beringia, 

reaching east to Alaska. Both areas are separated by a distribution gap between the Lena 

and Indigirka rivers. Wintering distribution is in the Mediterranean, around the Equator 

in Africa, and in India, Indochina and Indonesia. Except for the Mediterranean part of 

the range, the SDM fits the wintering distribution. During the LGM, the model predicts 

a similar wintering distribution but with a reduction in extent across the range. This 

species is classified under scenario A. 

 

Map 26: Temminck's Stint (Calidris temminckii) predicted distribution. Caption as in map 1. 
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Map 27: Great Knot (Calidris tenuirostris) predicted distribution. Caption as in map 1. 

Great Knot, Calidris tenuirostris (map 27). Endangered species restricted to northeast 

Siberia, between the Verkhoyansk Mountains and the Chukotka Peninsula. No variation 

described. Due to this restricted distribution, the current model only predicts the 

breeding distribution in the coastal areas of northeast Siberia, but it is difficult to 

evaluate this prediction since even the real breeding distribution is poorly known (del 

Hoyo et al., 2018). Model for the LGM predicts suitable breeding areas between 

northeast Siberia and Alaska, including Beringia. The wintering range is very fragmented, 

with local areas of presence in the Arabian Peninsula, India, Myanmar and Australia, and 

the coast of Indonesia and New Guinea. The model for the present conditions covers 
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most of the wintering range, although with very few predicted areas in Australia and the 

Arabian Peninsula, and some over-prediction in Indochina and southeast China. The 

southernmost parts of the wintering distribution in Australia disappear in the model for 

the LGM conditions, as well as most of the areas in continental Asia, remaining mostly 

in the emerge land between the islands of Indonesia and New Guinea. This species is 

classified under scenario A. 

 

 

Map 28: Surfbird (Calidris virgata) predicted distribution. Caption as in map 1. 
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Surfbird, Calidris virgata (map 28). Breeding distribution restricted to in Alaska, with no 

described variation. Current SDM shows over-predictions on the Canadian Arctic islands 

(Victoria and Banks). The LGM models predict that the species' breeding was restricted 

in Beringia during the glacial period. The current wintering range is restricted to the 

coastal areas along the whole western coast of the American continent, which resulted 

in problematic results in the SDM and was discarded. This species is classified under 

scenario A. 

 

Map 29: Common Ringed Plover (Charadrius hiaticula) predicted distribution. Caption as in map 1. 
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Common Ringed Plover, Charadrius hiaticula (map 28). Arctic and temperate breeding 

species with three recognized subspecies based on the moult (Engelmoer & Roselaar, 

1998). C. h. psammodromus breeds in northeast Canada (Ellesmere and Baffin Islands), 

Greenland, Svalbard, Iceland and Faeroes. C. h. hiaticula covers the south of Scandinavia, 

British Islands and northwest France. C. h. tundrae extends from northern Scandinavia 

to the Chukotka Peninsula, across all the north of Russia. All the breeding areas are 

predicted by our SDM, except for the distribution in France. During the LGM the model 

predicts a fragmented breeding distribution, although compatible with the persistence 

of the subspecies. C. h. psammodromus has suitable breeding predicted areas across 

most of its distribution in Greenland, Iceland and Svalbard. C. h. hiaticula is predicted to 

have suitable areas in western Europe, and also a large area in central and eastern 

Europe that could be assigned to either this subspecies or C. h. tundrae. This subspecies 

also is predicted to persist in northern Siberia near the river Ob, and also in northeast 

Siberia and Beringia. The wintering covers most of Africa (except the Sahara), 

Madagascar, southern and western Europe and south Asia. Most of this range is 

predicted by the SDM, except in Europe. The LGM is not predicted to have caused major 

changes in the wintering range. This species is classified under scenario C. 

Piping Plover, Charadrius melodus (map 30). Subarctic and temperate breeding species 

with two subspecies based on genetic analyses (Miller et al., 2010). C. m. melodus breeds 

in the east coast of North America, up to Newfoundland; and C. m. circumcinctus 

extends over the Great Plains of central North America, between USA and Canada. The 

SDM however predicts a much larger potential breeding range, extending from Alaska 

and British Columbia on the west, to the Northwest Territories and Labrador Peninsula. 

However, breeding distribution of the species during the LGM is virtually inexistent. The 

wintering range, which covers most of the Gulf of Mexico and some Caribbean Islands, 

potentially remained stable during the LGM. This species is classified under scenario B. 
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Map 30: Piping Plover (Charadrius melodus) predicted distribution. Caption as in map 1. 

 

Lesser Sandplover, Charadrius mongolus (map 31). Arctic and subarctic species that 

also breeds in around the Himalayas and the Tibetan Plateau. Five described subspecies, 

with three of them (C. m. palmirensis, C. m. atrifrons and C. m. schaeferi) breeding in 

central Asia and the Tibetan Plateau. Of the other two, C. m. mongolus occupies some 

sparse areas the east of Russia, and C. m. stegmanni breeds across the Chukotka 

Peninsula and Kamchatka. Although the fragmented and sparse areas are very difficult 

to model with total accuracy, the SDM correctly predicts the breeding distribution of the 

species in the Tibetan Plateau and in northeast Siberia. There are some under 
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predictions in the breeding areas of eastern Russia, and some small over predicted areas 

in northern and central Siberia. During the LGM, the model predicts a much larger 

breeding distribution that potentially extended between central and eastern Siberia, 

and south into central Asia. The wintering range covers from south continental Asia to 

Australia and some parts of the African coast. The SDM does fit this wintering 

distribution well, and it is predicted to have remained stable during the LGM. This 

species is classified under scenario D. 

 

Map 31: Lesser Sandplover (Charadrius mongolus) predicted distribution. Caption as in map 1. 
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Map 32: Semipalmated Plover (Charadrius semipalmatus) predicted distribution. Caption as in map 1. 

Semipalmated Plover, Charadrius semipalmatus (map 32). Nearctic species with no 

variation described. Breeding range covers from Alaska and the Aleutian Islands in the 

west, to Hudson Bay and Newfoundland in east. In the north reaches Baffin, Victoria and 

Bank Islands. The SDM fits well this breeding distribution, with over-predictions in the 

Chukotka and Labrador Peninsulas, Ellesmere Island and western Greenland. During the 

LGM, the species' breeding range is predicted mainly in Beringia and north Alaska, with 

some scarce predictions at lower latitudes in North America and east of Labrador 

Peninsula. The wintering range extends along the east and west coast of North America, 

Central America and most of South America, as well as in the Caribbean. The model 
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under current conditions predicts all those wintering areas, and over-predicts in the 

southern tip of South America. This over-prediction disappears under the LGM 

conditions, but the rest of the wintering range is predicted to remain stable, except for 

the northernmost parts in North America. This species is classified under scenario A. 

 

Map 33: Killdeer (Charadrius vociferus) predicted distribution. Caption as in map 1. 

 

Killdeer, Charadrius vociferus (map 33). Subarctic and temperate species that breeds 

though most of central North America and up to the Hudson Bay, British Columbia and 

east Alaska. It is also resident year-round in the southern half of North America, the 
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Caribbean and the coast of Peru, and Ecuador. There are three recognized subspecies 

(del Hoyo et al., 2018), two of which are non-migratory: C. v. ternomoniatus, in the 

Caribbean, and C. v. peruvianus, in Ecuador and Peru. The other subspecies, C. v. 

vociferus, occupies the remainder of the range. The SDM predicts well most of the 

breeding range in temperate areas, but with a smaller extension in British Columbia and 

Alaska. The species' breeding range is predicted exclusively in lower latitudes during the 

LGM, occupying the southern areas of North America as well as Central America and the 

Caribbean. All of those predicted breeding areas correspond to where the species is 

resident today. The wintering range, from the east and west coasts of North America to 

the northern half of South America, is well predicted by our model, and the LGM model 

shows a similar wintering distribution, with no major changes. This species is classified 

under scenario A. 

Eurasian Sotterel, Eudromias morinellus (map 34). Monotypic species breeding across 

the Palearctic in northern Britain, Scandinavia, some areas of central Asia, and in 

northern Siberia from the Ural Mountains and Novaya Zemlya to the Chukotka Peninsula 

and even northwest Alaska. Our model correctly predicts the breeding range, with some 

over-predictions in Svalbard and New Siberian Islands. During the LGM the model 

predicts suitable breeding areas at high latitudes (>50° N) in northeast Siberia, and a 

separated area covers most of central and eastern Siberia and extends to and central 

and western Europe. The wintering range is very fragmented and covers most of the 

southern coast of the Mediterranean, and also the east of the Arabian Peninsula. The 

SDM returns a prediction similar to the current wintering range, with potential areas 

also in the south of Europe. In the LGM model the wintering range is fragmented and 

restricted to the south of the Mediterranean, which highly resembles the current 

wintering distribution of the species in the present. This species is classified under 

scenario D. 
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Map 34: Eurasian Dotterel (Eudromias morinellus) predicted distribution. Caption as in map 1. 

 

Wilson's Snipe, Gallinago delicata (map 35). Monotypic species that breeds from Alaska 

and the Aleutian Islands to the Labrador Peninsula and Newfoundland, reaching the 

Northwest Territories on the north. It is resident all year in the northwest of the USA. 

Breeding range is well predicted by the SDM. The LGM model predicts two main 

breeding areas for the species, one in Beringia and the other at lower latitudes in North 

America, similar to the area where the species is resident in the present. A coastal area 

in British Columbia connects both predicted breeding areas. The wintering range covers 

the southern half of North America, (overlapping with the southwest part of the 
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breeding distribution), Central America, the Caribbean, Colombia and Venezuela. The 

model under current conditions fits that wintering area well, even the overlapping part 

with the breeding distribution. This predicted wintering range showed no major changes 

in the LGM. This species is classified under scenario C 

 

Map 35: Wilson's Snipe (Gallinago delicata) predicted distribution. Caption as in map 1. 
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Map 36: Common Snipe (Gallinago gallinago) predicted distribution. Caption as in map 1. 

 

Common Snipe, Gallinago gallinago (map 36). Palearctic species that breeds from 

Arctic to temperate areas. The breeding distribution is continuous and very wide, 

covering from Iceland and western Europe (where it is resident) to northeast Siberia and 

Kamchatka, between 30° N to 70° N. Two species are recognized, G. g. faeroeensis in 

Iceland and Faeroes, and G. g. gallinago in the remainder of the range. The prediction 

of the model for the present fits the known breeding distribution of the species. During 

the LGM the breeding range is predicted as a continuous area from east Siberia to 

western Europe. The breeding range of G. g. faeroeensis remained stable with predicted 
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available areas in some parts of Iceland and the Faeroes Islands, which due to changes 

in the coastline due to sea-level drop, are closer to the predicted areas in Britain and 

northwest France, where the species is now resident all year. The wintering distribution 

of the species is located in the Mediterranean, central and the south of Asia. The model 

for the present predicts the wintering range well, even the overlap with the breeding 

range in western Europe and the British Islands. Most of this wintering range is 

conserved in the model under the LGM conditions, decreasing only the overlap area in 

Europe, where it is predicted only as breeding area. This species is classified under 

scenario D. 

Great Snipe, Gallinago media (map 37). Arctic and temperate species breeding in the 

western Palearctic, from Scandinavia to western Russia near the Yenisei River (del Hoyo 

et al., 2018). No described subspecies. The SDM under-predicts the southern part of the 

breeding range in favour of the Arctic distribution. Also, it does not predict the range to 

abruptly stop in western Russia, and instead extends the prediction to the East reaching 

northeast Siberia. The LGM model show a reduction of all the breeding range, with the 

species predicted in a series of localities across southern and western Europe and 

western Asia. The wintering range covers most of sub-Saharan Africa. The model for the 

present predicts that wintering distribution correctly, over-predicting a little to the 

south and in Madagascar, bur overall showing a good fit. During the LGM the species is 

predicted to be present in a similar wintering range, although with less available areas, 

mostly at lower latitudes in both hemispheres. This species is classified under scenario 

A. 

Pintail Snipe, Gallinago stenura (map 38). The breeding range extends from the Ural 

Mountains to northeast Siberia, and also south to central Asia. No subspecies described. 

The SDM for the present predicts most of the breeding range of the species, but also 

over-predicts potential suitable areas in the western Palearctic. During the LGM, the 

species is predicted to have retained most of its breeding range in Asia, at slightly lower 

latitudes, and with an almost total reduction in northeast Siberia. The wintering range 

covers from southern continental Asia to southern Indonesia. The model fits that 

wintering distribution, and also predicts the species to potentially be present in New 

Guinea and Australia. During the LGM, the model predicts a reduction of the wintering 
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range in India and Indochina, and an increase in the emerged land between the 

Indonesian Islands. This species is classified under scenario A. 

 

 

Map 37: Great Snipe (Gallinago media) predicted distribution. Caption as in map 1. 
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Map 38: Pintail Snipe (Gallinago stenura) predicted distribution. Caption as in map 1. 

 

 

Eurasian Oystercatcher, Haematopus ostralegus (map 39). Arctic and temperate 

species with four subspecies recognized (del Hoyo et al., 2018), three of them breeding 

across the Palearctic: H. o. ostralegus in Iceland, Scandinavia and extreme northwest 

Russia, the British Islands and northwest France; H. o. longipes in western Russia up 

north to Siberia, and the Black, Caspian and Aral seas; and H. o. osculans in the coastal 

regions of east Asia, from northeast China to Kamchatka. There is a fourth subspecies, 
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H. o. finschi, which is endemic of New Zealand and its breeding distribution is not 

considered for the models. Due to the wide breeding range and the discontinuities of 

the distribution, the results of the model do not completely fit the breeding distribution 

of the species in all the areas. The model predicts the breeding range in western Europe, 

with some over-predictions in the south, and under-predicts in Iceland and parts of 

Scandinavia. It also over-predicts in central and northeast Asia, while under-predicting 

in the coastal regions of east Asia. However, the LGM model clearly shows three 

breeding areas, two in the western Palearctic and one in the eastern part, matching 

potential refugia for each of the subspecies. In the west, there is a predicted available 

area in southern Europe around the western Mediterranean, where H. o. ostralegus 

currently has some isolated breeding populations. The other predicted breeding area is 

around the Black and Caspian Seas, overlapping with the current distribution of H. o. 

longipes. Finally, a third available area is predicted in far east Asia, isolated from the 

other areas, similarly to the present isolation of H. o. osculans from the other two 

Palearctic species. The wintering range covers most of the coasts of the northern half of 

Africa, western Europe, the Arabian Peninsula and south Asia to the Korean Peninsula. 

The SDM fits this wintering distribution, even the parts in Europe where it overlaps with 

the breeding distribution, and it only over-predicts in some inland areas of Africa and 

Asia. The predicted wintering remained stable during the LGM period, only decreasing 

in the northern part of western Europe. This species is classified under scenario D. 

 

Short-billed Dowitcher, Limnodromus griseus (map 40). Nearctic species with three 

subspecies recognized: L. g. caurinus breeding from south Alaska to northwest British 

Columbia, L. g. hendersoni in central Canada to south Nunavut and L. g. griseus in 

western Labrador. The model predicts the breeding range as continuous, without 

distribution gaps between subspecies. In the LGM model however the model shows 

isolated breeding areas in south Beringia, near the current range of L. g. caurinus, and 

at lower latitudes in the east and west of North America, but without a clear correlation 

with the subspecies. The wintering grounds extend along the east and west coasts of 

America, from California to Peru and from North Carolina to central Brazil, and the 

Caribbean Islands. The SDM fits this wintering distribution well. During the LGM, the 
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model predicts a reduction of the wintering range in North America, remaining similar 

in Central America and South America. This species is classified under scenario C. 

 

 

Map 39: Eurasian Oystercatcher (Haematopus ostralegus) predicted distribution. Caption as in map 1. 
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Map 40: Shot-billed Dowitcher (Limnodromus griseus) predicted distribution. Caption as in map 1. 

 

Long-billed Dowitcher, Limnodromus scolopaceus (map 41). Monotypic species with 

breeding distribution in the Palearctic, from Yana River to Chukotka Peninsula, and in 

the Nearctic, in west and north Alaska and north Yukon. The SDM fits the breeding range 

of the species well, also extending the potential distribution into the Northwest 

Territories, Nunavut and Labrador Peninsula. The breeding distribution during the LGM 

is predicted to be greatly reduced, with the species remaining only in small areas of 

Beringia and the Sea of Okhotsk. The wintering range covers the southern part of USA 

and all of Mexico except for the Yucatan Peninsula. The SDM fit this wintering range 
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well, predicting also the presence in the Caribbean Islands and the north of South 

America. During the LGM, the predictions show a reduction in the northern part of the 

wintering range, and an increase in the south covering all of Central America and a larger 

area in the north of South America. This species is classified under scenario A. 

 

Map 41: Long-billed Dowitcher (Limnodromus scolopaceus) predicted distribution. Caption as in map 1. 
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Map 42: Hudsonian Godwit (Limosa haemastica) predicted distribution. Caption as in map 1. 

 

Hudsonian Godwit, Limosa haemastica (map 42). Nearctic breeder with a distribution 

fragmented into multiple isolated areas. It is present in west and south Alaska, north 

Yukon and Northwest Territories, northwest British Columbia, central Canada and the 

Hudson Bay. The predictions from the SDM cover most of the species' breeding range, 

but as a continuous range and with over-predictions of potential areas across Nunavut. 

The dispersion and small size of the patches of presence hinder the performance of the 

model and affect the accuracy of the predictions. The LGM model predicts only some 

small available breeding areas for the species in Beringia and northwest North America, 
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with a considerable breeding range reduction from the predicted present range. The 

wintering distribution extends across most of the southern cone of South America, 

especially in the east part of the continent. This wintering range is correctly predicted 

by the model, which also shows potential wintering areas in the west coast reaching up 

to Colombia. The LGM model shows a severe reduction of the available suitable 

wintering area in the southern part of the distribution, and predicts a wintering range 

that is very different from the present range, occupying large areas of east and north 

South America. This species is classified under scenario A. 

Bar-tailed Godwit, Limosa lapponica (map 43). Arctic species breeding across the 

northern Palearctic, but with gaps in the distribution and isolated areas. Subspecies L. l. 

lapponica breeds in Scandinavia, L. l. taymyrensis extends between Yamal Peninsula and 

east of Taymyr Peninsula, L. l. baueri from the Lena River to Chukotka Peninsula, and L. 

l. anadyrensis in eastern Siberia. All of these breeding areas are predicted well by the 

model, although it also predicts in Novaya Zemlya and Svalbard. The LGM model shows 

four areas of breeding distribution that resemble the current distribution of subspecies: 

L. l. lapponica potentially distributed in some fragmented breeding areas in western 

Europe and the British Islands, similar to the current wintering range of the species; L. l. 

taymyrensis in a large breeding area between the Ural Mountains and the south of 

Taymyr, L. l. baueri in small breeding area in Siberia near the Lena River; and L. l. 

anadyrensis in northeast Siberia, Kamchatka and southern Beringia. The wintering 

distribution covers western Europe, west coast of Africa and from southern Asia to 

Australia and New Zealand. The model predicted well all this wintering range, with over-

predictions in inland areas of central Africa and Indochina. During the LGM, the model 

predicts that most of the wintering distribution would have remained stable, with the 

exception of Europe, where the species is predicted to reduce its wintering range. This 

species is classified under scenario D. 
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Map 42: Bar-tailed Godwit (Limosa lapponica) predicted distribution. Caption as in map 1. 

Black-tailed Godwit, Limosa limosa (map 44). Subarctic to temperate species with a 

fragmented distribution across the Palearctic. Subspecies L. l. limosa breeds from 

western and central Europe and east Russia to the Yenisei River. L. l. islandica is in 

Iceland, Faeroes and Lofoten Islands. Subspecies L. l. melanuroides is isolated in 

breeding localities across far east Asia and northeast Siberia. The SDM covers the 

breeding range of the species in the western Palearctic, but over-predicts the breeding 

range into central Asia and southern Europe, and fails to predict the presence in Iceland 

and Siberia. The LGM model shows a series of small breeding areas distributed in the 

east and west regions of the Palearctic, with a large gap in between. The species winters 
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in the Mediterranean, south of the British Islands, sub-Saharan Africa, the Arabic 

Peninsula, and from south continental Asia to Australia. This wintering range is well 

predicted by our model, with predictions also in Madagascar and New Zealand. The 

northern part of the wintering range, especially in the Mediterranean, is reduced or 

disappears under the LGM, as well as in south Australia. In that period, most of the 

wintering range is predicted to be concentrated around inter-tropical Africa and in the 

emerged land between Asia and Australia. This species is classified under scenario D. 

 

Map 44: Black-tailed Godwit (Limosa limosa) predicted distribution. Caption as in map 1. 
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Map 45: Jack Snipe (Lymnocryptes minimus) predicted distribution. Caption as in map 1. 

Jack Snipe, Lymnocryptes minimus (map 45). Monotypic species breeding in Arctic and 

subarctic latitudes of the Palearctic, from Scandinavia and west Russia to east Siberia. 

The predictions of the model cover all this breeding range, but also predict the species 

to reach higher latitudes in northern Russia (e.g. Taymyr, Novaya Zemlya) than its 

current breeding range suggest. It also under-predicts in the southern part of the 

breeding range. During the LGM, the model predicts that the species could have 

occupied suitable breeding areas in southwest Europe and around the Black Sea, in 

north Siberia near Taymyr, and in northeast Siberia and Kamchatka. The wintering range 

covers most of western Europe, sub-Saharan Africa and south of Asia. The model fits the 
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wintering distribution, and during the LGM no significant changes are predicted in this 

range, except for a decrease in Europe. This species is classified under scenario C. 

 

Map 46: Long-billed Curlew (Numenius americanus) predicted distribution. Caption as in map 1. 

Long-billed Curlew, Numenius americanus (map 46). Subarctic and temperate species, 

breeds in the western half of USA and southwest Canada. Subspecies are not widely 

recognized. The model predicts all the breeding range correctly, and extends it to areas 

in Yukon and Alaska. During the LGM, the model predicts low latitude (30N - 40N) 

breeding areas in western North America. The wintering range covers from California to 

the south of Mexico. The predictions from the model fit that wintering distribution, and 

also predict suitable areas in Florida and Central America to north of South America. The 
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predicted wintering range of the species decreased in the northern part and increase 

towards Central America and South America during the LGM. This species is classified 

under scenario A. 

 

 

Map 47: Eurasian Curlew (Numenius arquata) predicted distribution. Caption as in map 1. 

 

Eurasian Curlew, Numenius arquata (map 47). Palearctic species breeding from 

Scandinavia, the British Islands and western Europe to far east Asia, across Kazakhstan 

and south Russia. Three identified subspecies: N. a. arquata from western Europe to the 
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Ural Mountains, N. a. suschkini between the Urals and Kazakhstan, and N. a. orientalis 

from central Siberia to east Russia. The model predicts a more Arctic breeding 

distribution, also covering the Palearctic from East to West but at higher latitudes across 

Siberia to Chukotka and Kamchatka Peninsulas. The prediction in the western Palearctic 

does fit the breeding distribution correctly, over-predicting only in southern Europe. The 

LGM model resembles better the current lower-latitude breeding distribution, although 

the species is predicted to be absent in northern Europe and Scandinavia. As in the 

current breeding distribution, there is no recognizable separation between the areas of 

the subspecies during the LGM. The wintering distribution extends though west and 

southern Europe, Africa, all southern Asia and Indonesia. Our model's predictions fit that 

wintering distribution, also predicting potential areas in Australia. During the LGM, the 

wintering range of the species remained similar to the predictions for the present. This 

species is classified under scenario A. 

Far Eastern Curlew, Numenius madagascariensis (map 48). Subarctic species, breeds in 

east Russia, reaching north to northeast Siberia and Kamchatka. No subspecies 

described. The model predicts the current breeding range correctly, and also some areas 

of potential breeding distribution in central Asia. According to the SDM, the species kept 

its current breeding range during the LGM. The wintering range covers the Philippines, 

Indonesia, New Guinea, Australia and New Zealand. All of these wintering areas are 

predicted by the model under current conditions, and no major changes are recovered 

under LGM conditions. This species is classified under scenario A. 
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Map 48: Far Eastern Curlew (Numenius madagascariensis) predicted distribution. Caption as in map 1. 

 

Little Curlew, Numenius minutus (map 49). Breeds in the eastern Palearctic, in a 

restricted range from the Kolyma River, west beyond the Lena River. No subspecies 

described. The model predicts not only the breeding distribution of the species, a much 

larger potential range under current conditions across the whole northern Palearctic. 

Aside from over predictions in central and western Palearctic, the LGM model predicts 

large suitable breeding areas in north and east Beringia, which suggest that the species 

would remained near its current breeding range during the glacial period. The species 

has its wintering grounds in north Australia, as it is well predicted by the model. During 
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the LGM, the species would have retained most of that wintering range, also expanding 

towards emerged land in Indonesia and New Guinea. This species is classified under 

scenario D. 

 

Map 49: Little Curlew (Numenius minutus) predicted distribution. Caption as in map 1. 

 

 

 

Whimbrel, Numenius phaeopus (map 50). Arctic and subarctic species from the 

Nearctic and the Palearctic. The breeding range is fragmented into several separated 
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areas and covers Iceland, locally in Greenland, Faeroes and British Islands, Scandinavia 

and northwest Russia to the Yenisei River, several patches in north and northeast Siberia 

to Anadyr, Alaska and north of Yukon and Northwest Territories, and the western coast 

of the Hudson Bay. There are up to seven subspecies described (del Hoyo et al., 2018), 

but recent studies propose a separation of the Nearctic subspecies into its own species, 

the American whimbrel or Hudsonian Whimbrel, Numenius hudsonicus (Humphries et 

al., 2011; Sangster et al., 2011). The species of N. hudsonicus comprises the two Nearctic 

subspecies: N. h. rufiventris in Alaska and northwest Canada, and N. h. hudsonicus in the 

coast of the Hudson Bay. In the Palearctic, the subspecies N. p. islandicus breeds in 

Iceland and Greenland, N. p. phaeopus in Scandinavia, N. p. alboaxilaris in the north of 

the Caspian Sea, N. p. rogachevae in central Siberia and N. p. variegatus in east Siberia 

to Anadyr. The SDM predicts all the breeding range of the species, without gaps between 

populations, and over-predicting in central Europe, north Canada up to Ellesmere west 

Greenland, and Labrador Peninsula. The LGM model shows a fragmentation of the 

breeding distribution, with predicted breeding areas in the Palearctic in Iceland, west 

and south Europe, west Siberia between the Ural Mountains and south of Taymyr, and 

east Siberia and Kamchatka. The model also predicts potential breeding presence in 

Beringia, where N. phaeopus and N. hudsonicus would overlap. The wintering range 

extends from central North America to the southern tip of South America (except the 

east coast of the Southern Cone), most of Africa, the Iberian Peninsula, southern Asia 

and Oceania. Most of that wintering range is predicted by the SDM, although with over 

predictions in inland areas. During the LGM, the model predicts reductions of the 

northern and southern margins of the wintering distribution across all continents, 

maintaining most of its wintering range between the tropics. This species is classified 

under scenario D. 
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Map 50: Whimbrel (Numenius phaeopus) predicted distribution. Caption as in map 1. 

 

Bristle-thighed Curlew, Numenius tahitiensis (map 51). Very restricted breeding 

distribution, just present in the delta of the Yukon River and Seward Peninsula. The SDM 

predicts breeding localities in the area, although very scarce. It was not possible to 

predict distinguishable breeding areas under the LGM conditions beyond isolated pixels 

in Beringia. Wintering range is located in island in the Pacific, and we were unable to 

successfully train a model to predict its distribution. This species is classified under 

scenario A. 
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Map 51: Bristle-thighed Curlew (Numenius tahitiensis) predicted distribution. Caption as in map 1. 

 

Red Phalarope, Phalaropus fulicarius (map 52). Monotypic Arctic breeder that extends 

from Taymyr to Chukotka Peninsula, from west Alaska to Labrador and Ellesmere Island, 

and also present in the west coast of Greenland, Svalbard, Novaya Zemlya and New 

Siberian Islands. The prediction from the SDM fits the breeding range of the species, also 

predicting in Iceland, north and east coast of Greenland and north Scandinavia. The 

model for the LGM returns a breeding distribution around eastern Siberia, Beringia and 

the coast of the Beaufort Sea. The breeding areas predicted in west Siberia and Europe 

are considered as probable over-predictions The wintering range is pelagic and was 
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therefore suitable to be included in the models. This species is classified under scenario 

A. 

Map 52: Red Phalarope (Phalaropus fulicarius) predicted distribution. Caption as in map 1. 
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Map 53: Red-necked Phalarope (Phalaropus lobatus) predicted distribution. Caption as in map 1. 

 

Red-necked Phalarope, Phalaropus lobatus (map 53). Circumpolar species that covers 

from Alaska to Labrador, including Baffin and Victoria Islands; south of Greenland, 

Iceland, British Islands, and from Scandinavia to east Siberia and Kamchatka. No 

variation described. The model fits all the breeding distribution of the species, over-

predicting in the Canadian high Arctic, northern Greenland, Svalbard, Novaya Zemlya 

and Taymyr. During the LGM, the model shows isolated suitable breeding areas across 

the whole range. In Greenland and Iceland, the species retains most of its current range. 

In the western Palearctic, it is absent from Scandinavia, but potentially present across 

Europe, extending northeast to west and central Siberia, and also in northeast Siberia, 

Kamchatka and Beringia. In the Nearctic the model predicts breeding areas in north 
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Yukon and also around 40° N in North America. Most of the wintering range is pelagic in 

tropical oceanic regions, but the SDM managed to successfully predict the species 

wintering range in the coasts of the Arabian Peninsula, Indonesia and New Guinea, and 

also predicting coastal areas of India, Indochina and Australia, and failing to predict in 

the Pacific coast of America. The LGM wintering range is predicted in the same regions 

but considerably reduced. This species is classified under scenario C. 

 

Map 54: Eurasian Golden Plover (Pluvialis apricaria) predicted distribution. Caption as in map 1. 

Eurasian Golden Plover, Pluvialis apricaria (map 54). Breeding distribution from 

Scandinavia to Taymyr, and also in the British Islands, Faeroes, Iceland and east 

Greenland. The SDM covers this breeding range and extends the prediction to east 
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Siberia. Subspecies P. a. altifrons covers from Greenland to north Scandinavia, and P. a. 

apricaria the remainder of the continental breeding distribution, as well as the British 

Islands. The LGM model shows potentially suitable breeding areas in central and 

western Europe near the breeding range of P. a. apricaria, while Iceland and Faeroes 

retain most of the area currently inhabited by P. a. altifrons. The wintering range is very 

close to the breeding distribution, extending through the Mediterranean and western 

Europe. The model fits this wintering distribution well, even the overlap of breeding and 

wintering distributions in the British Islands, where the species is present all year. The 

wintering distribution remains stable in the LGM conditions, with still some overlap with 

the breeding distribution in the west of the continent. This species is classified under 

scenario C. 

American Golden Plover, Pluvialis dominica (map 55). Nearctic species, breeds from 

Alaska to Baffin Island. The model predicts this breeding distribution, also reaching 

Labrador and Ellesmere Island. No variation described. During the LGM the species' 

breeding range is predicted in Beringia, although some predictions appeared in the east 

coast of the Canadian Arctic and in central North America. The wintering distribution is 

in south America, between south Brazil and north Argentina. The model predicts this 

wintering area, and includes some over-predictions in the east, west and north coasts 

of the northern part of South America. During the LGM the wintering range of the 

species is not predicted to change, except for increases in the extent of the over-

predicted areas in the model for the present. This species is classified under scenario A. 
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Map 55: American Golden Plover (Pluvialis dominica) predicted distribution. Caption as in map 1. 

 

Pacific Golden Plover, Pluvialis fulva (map 56). Monotypic species, breeds in the north 

of the Palearctic from Yamal Peninsula to Chukotka and Kamchatka Peninsulas. The 

model fits the breeding distribution of the species, with an over-prediction in Novaya 

Zemlya. During the LGM, the model shows that the species retains most of its current 

breeding range, shifting slightly to the south. The predicted distribution during the 

glacial period however is not continuous, as a gap is predicted leaving the eastern part 

of the distribution isolated in northeast Siberia and Beringia. The wintering distribution 

is mainly in the south of Asia, Indonesia, Philippines, New Guinea, Australia and New 
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Zealand. All those wintering areas were predicted by the model. There is a small 

wintering area in east Africa, that the model fails to predict, although it does predict 

presence a little more to the south in Mozambique and Madagascar. Most of the 

wintering range remains unchained in the LGM model, except for decreases in New 

Zealand, south Australia and India. This species is classified under scenario C. 

 

Map 56: Pacific Golden Plover (Pluvialis fulva) predicted distribution. Caption as in map 1. 

 

Gray Plover, Pluvialis squatarola (map 57). Arctic species distributed along the 

Palearctic and the Nearctic. In the Palearctic it breeds from northwest Russia and Yamal 
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Peninsula to Chukotka Peninsula. In the Nearctic it covers east and north Alaska, and 

most of Nunavut including Victoria and Baffin Islands. Three subspecies recognized: P. 

s. squatarola breeding in the continental area of the Palearctic and Alaska, P. s. 

tomkovichi in Wrangel Island, and P. s. cynosurae in the coast and islands of the 

Canadian Arctic (del Hoyo et al., 2018). While the model under current conditions 

correctly predicts this breedingrange, it also over-predicts some areas where the species 

is not known to be present, such as Ellesmere Island, Greenland, Iceland, British Islands, 

Svalbard, northern Scandinavia and Novaya Zemlya. During the LGM the main predicted 

breeding areas are west Siberia, Kamchatka, Beringia, all of them within the range of P. 

s. squatarola. Very few breeding areas are predicted in central America or near the 

range of P. s. cynosurae. Predictions in western Palearctic and Iceland are likely over-

predictions of the model with no informative value. 

The species' wintering range extends across coastal areas of North America, Central 

America, the Caribbean, most of South America (except the southernmost part), Africa, 

southern and western Europe, southern Asia and Oceania. The model for the current 

conditions fit this wintering range, with over predictions in the southern tip of South 

America, New Zealand and inland areas of Africa and Asia. The model for the LGM shows 

a slight reduction of the northern and southern margins of the wintering range, but 

overall it remains stable. This species is classified under scenario C. 

Eurasian Woodcock, Scolopax rusticola (map 58). Subarctic and temperate species 

breeding in the Palearctic, from the British Islands, western Europe and Scandinavia to 

east Russia and Japan. No variation described. The model predicts a similar breeding 

range, although over-predicting in the north across Siberia, and under-predicting in the 

southern part of the distribution, resulting in a more Arctic distribution than the current 

range. The model under the conditions of the LGM returns a predicted breeding range 

much more similar to the current range, except in Scandinavia and northern Europe, 

where the range of the species is predicted to decrease, and in the south of Europe, 

where the species shows a potential expansion during this period. The wintering range 

overlaps the breeding range in western Europe and British Islands, and also cover the 

Mediterranean, India, Thailand, Myanmar, the south of China, Taiwan, Korea and Japan. 

The SDM fits this wintering distribution, even predicting the areas of overlap between 

periods. Under the LGM conditions, the species' wintering range remain near the 
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breeding range in Europe, and expands southwards in Asia, towards Indonesia and 

Philippines. This species is classified under scenario A 

 

 

Map 57: Gray Plover (Pluvialis squatarola) predicted distribution. Caption as in map 1. 
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Map 58: Eurasian Woodcock (Scolopax rusticola) predicted distribution. Caption as in map 1. 

 

Wilson's Phalarope, Steganopus tricolor (map 59). Subarctic species breeding from 

northwest USA to Alberta and British Columbia, and also around the Great Lakes. No 

subspecies. The SDM fits the current breeding range and also predicts areas in the 

Labrador Peninsula and Yukon. Although the LGM predicts a small suitable breeding area 

in Beringia, most of the distribution of the species is located between 30° N and 40° N 

across North America, where the species probably found suitable breeding areas during 

the glacial period. The wintering range covers the southern half of South America, 

reaching north to Ecuador in the west coast. The model partly predicts this wintering 
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range, under-predicting in some areas, and extends the prediction to the east coast and 

also into Central America. These over-predictions increase under the LGM conditions, 

with the species almost completely disappearing from the southern part of the wintering 

distribution. This species is classified under scenario A. 

 

Map 59: Wilson's Phalarope (Steganopus tricolor) predicted distribution. Caption as in map 1. 

 



249 
 

 

Map 60: Gray-tailed Tattler (Tringa brevipes) predicted distribution. Caption as in map 1. 

 

Gray-tailed Tattler, Tringa brevipes (map 60). Monotypic species, breeds in northeast 

Siberia and Kamchatka, and also in south of Taymyr isolated from the rest of the 

distribution. The SDM predicts all the breeding distribution of the species but as a 

continuous range, over-predicting in the north of Taymyr and the northern coast of 

Siberia, as well as in some areas of central Asia. The breeding range is predicted at lower 

latitudes (between 40° N – 65° N) under the LGM conditions, but still covering a large 

area of Siberia, reaching Kamchatka in the east. The wintering range is distributed along 

the coast of Indonesia, New Guinea and Australia. The SDM fits this  wintering range, 
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although with few predictions in Australia, and potential areas in Indochina. The 

wintering range, although with a smaller amount of available area, is predicted to 

remain stable under the LGM conditions. This species is classified under scenario B. 

 

Map 61: Spotted Redshank (Tringa erythropus) predicted distribution. Caption as in map 1. 

 

Spotted Redshank, Tringa erythropus (map 61). Palearctic species breeding from 

Scandinavia to northeast Siberia except in the north of Taymyr. No subspecies described. 

The SDM fits the breeding distribution of the species, with over-predictions in Svalbard, 

Novaya Zemlya, north of Taymyr, New Siberian Islands and Kamchatka Breeding range 
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predictions also extend to central Europe and the British Islands, coinciding with some 

areas where the species is present during the non – breeding season. The model under 

LGM conditions predicted disconnected breeding areas in western Europe and the 

Mediterranean coast (where the species is currently present during the winter), central 

Siberia, around the Kamchatka Peninsula and in Beringia. The wintering range covers 

most of south Asia, the Arabian Peninsula and sub-Saharan Africa and the northern 

Coast, and locally in south and west Europe. The model predicts all of these wintering 

areas except for those around the Mediterranean and Europe, which are actually 

predicted by the breeding model. The LGM model showed no significant changes in the 

wintering range during that period. This species is classified under scenario C. 

Lesser Yellowlegs, Tringa flavipes (map 62). Monotypic species breeding in the 

Nearctic, from Alaska to central Canada and the Hudson Bay. The model under current 

conditions fits the breeding distribution of the species, over-predicting in south 

Nunavut, including Victoria and Baffin Islands. The LGM model predicts that the species' 

breeding distribution was restricted almost entirely to central Beringia. During the 

wintering season, the species is present in South America, Central America, the 

Caribbean and the south of North America. The model predicts all these wintering areas 

correctly, under-predicting in the Amazonian region and the Andes. During the LGM, the 

model predicts a reduction of the species wintering range in the northern and southern 

margins, remaining stable in Central America and the northern half of South America. 

This species is classified under scenario A. 

Wood Sandpiper, Tringa glareola (map 63). Palearctic species breeding from the British 

Islands and Scandinavia to northeast Siberia and Kamchatka, not reaching the 

northernmost part of central Siberia. No variation described. Our model predicts all the 

breeding range of the species, and also over-predicts in central and western Europe, 

Taymyr, Chukotka Peninsula and north of Japan. During the LGM, the species' predicted 

breeding range covers wide range across the Palearctic, below 60° N in Siberia. In the 

western Palearctic, the breeding range is predicted in central Europe and the 

Mediterranean, matching areas where the species is currently wintering. The wintering 

range also covers most of Africa, Madagascar and from the south of Asia to Australia. All 

the wintering range is well predicted by the model, except for the Mediterranean small 

areas. Under LGM conditions, the model shows very little change in the predicted 
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wintering range of the species, decreasing mostly in the southern half of Africa but 

remaining stable overall. This species is classified under scenario A. 

 

Map 62: Lesser Yellowlegs (Tringa flavipes) predicted distribution. Caption as in map 1. 
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Map 63: Wood Sandpiper (Tringa glareola) predicted distribution. Caption as in map 1. 

 

Wandering Tattler, Tringa incana (map 64). Arctic and subarctic species, the breeding 

grounds are across Alaska, part of British Columbia and Yukon, and the Chukotka 

Peninsula. No variation described. The SDM model fits the breeding distribution, but 

over-predicts in the northern part of Alaska and extends the potential breeding range 

towards the Northwest Territories, the north of Labrador and south of Baffin Island. 

During the LGM, the species breeding distribution is predicted in the area of Beringia, 

although some predictions recovered in central North America. The wintering range 

extends strictly along the west coast of America, from California to north Chile. Our 
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model, however, predicts the potential wintering range to extend further south, 

reaching Patagonia, and also along the east coast of Central America and South America 

to Brazil. The LGM model shows a reduction of the predicted wintering area in the 

southernmost part of South America, but remains overall stable especially in the area 

that fits the current distribution. This species is classified under scenario A. 

 

Map 64: Wandering Tattler (Tringa incana) predicted distribution. Caption as in map 1. 
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Map 65: Common Greenshank (Tringa nebularia) predicted distribution. Caption as in map 1. 

 

Common Greenshank, Tringa nebularia (map 65). Palearctic species, its breeding 

distribution covers from the British Islands and Scandinavia to east Russia and 

Kamchatka. No subspecies described, and the race glottoides proposed for the eastern 

populations had not been accepted (del Hoyo et al., 2018). The SDM predicts a potential 

breeding range occupying higher latitudes in Siberia, reaching Taymyr and the East 

Siberian Sea, and under-predicts the southern part of the range in Asia. The LGM model 

shows two isolated breeding areas: one in the western Palearctic across west and south 

Europe and the Black Sea, and another in the eastern Palearctic around the Sea of 
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Okhotsk and Kamchatka. The wintering range covers western Europe, the 

Mediterranean region, all of sub-Saharan Africa, and from the south of Asia to Oceania. 

The model correctly predicts these wintering areas, and shows no significant changes 

under the LGM conditions. This species is classified under scenario C. 

 

Map 66: Green Sandpiper (Tringa ochropus) predicted distribution. Caption as in map 1. 

 

Green Sandpiper, Tringa ochropus (map 66). Monotypic species breeding in the 

Palearctic, from central Europe and Scandinavia to far east Russia across central Asia 

and south Siberia. The SDM covers all this breeding range and extends it in northeast 
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Siberia, and also predicts presence in western Europe and the British Islands, where the 

species occurs now during the wintering season. The LGM model predicts a decrease of 

the northern part of the breeding range, especially in the western Palearctic, but 

remaining overall stable during this period. The wintering range covers the mentioned 

parts of Europe, as well as the Mediterranean basin, sub-Saharan and inter-tropical 

Africa, south of Asia, Indonesia and Philippines. The model fits this wintering 

distribution, with over-predictions in Madagascar and New Guinea. Under the LGM 

conditions the wintering area decreases in the Mediterranean, which is occupied by 

predicted breeding distribution, but remains stable everywhere else, expanding into the 

emerged land between the islands of Indonesia. This species is classified under scenario 

A. 

Solitary Sandpiper, Tringa solitaria (map 67). Nearctic species, breeding range covers 

from Alaska to the Labrador Peninsula across Yukon, British Columbia, Northwest 

Territories and south Canada. Two recognized species, T. s. cinnamomea in Alaska and 

northwest Canada, and T. s. solitaria in south Canada, from south British Columbia to 

Labrador Peninsula. The SDM fits well the breeding distribution of the species, although 

with less area predicted in west Alaska and central Canada. Under the LGM conditions, 

the SDM show a clear split of the breeding distribution, with a predicted area in Beringia 

near the current range of T. s. cinnamomea, another in the west coast of North America, 

reaching north up to British Columbia, and a third one in central north America at around 

40N, the latter two being a potentially southern refugia for T. s. solitaria. The wintering 

range covers the centre and north of South America, all of Central America, the 

Caribbean and the south of North America. This wintering range is also well predicted 

by the SDM, which shows a slight decrease in North America during the LGM period. 

This species is classified under scenario C. 
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Map 67: Solitary Sandpiper (Tringa solitaria) predicted distribution. Caption as in map 1. 
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Map 68: Common Redshank (Tringa totanus) predicted distribution. Caption as in map 1. 

 

Common Redshank, Tringa totanus (map 68). Breeds in Iceland, Scandinavia, all of 

Europe (being a resident all year in the south), south Russia, Kazakhstan, around the 

Tibetan Plateau in Mongolia and China, reaching east to Japan. Up to 6 described 

subspecies across the range (del Hoyo et al., 2018), with the main three being T. t. 

robusta in Iceland and Faeroes, T. t. totanus in Europe and the Mediterranean, and T. t. 

ussuriensis in south Siberia, Mongolia and north China. The distributions of the other 

three subspecies, T. t. terrignotae (northeast China), T. t. craggi (northwest China) and 

T. t. eurhina (north India) are all away from the Arctic and subarctic framework of the 
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study and are not included. The SDM predicts most of the breeding range of the species, 

although it fails to predict the species in Iceland, Faeroes and northern Scandinavia. It 

also predicts the potential breeding range to reach higher latitudes in east Siberia. The 

LGM model shows a reduction of the breeding range in northern Europe, concentrating 

around the Mediterranean, and extending east to the Sea of Japan and Sea of Okhotsk. 

No clear fragmentation is found during this period, although the range is much narrower 

from north to south. The breeding and wintering ranges are very close in Europe, with 

the species being resident all year round in the south. The wintering range also covers 

the north of Africa, as well as areas below the Sahara and around the Arabian Peninsula. 

The model predicts this wintering range, with low overlap with the breeding range in 

Europe and over predictions in the south of Africa and in Madagascar. The model 

predicts that the wintering distribution remained overall stable under the LGM 

conditions, with a reduction of the overlap between breeding and wintering in Europe. 

This species is classified under scenario A 

Terek Sandpiper, Xenus cinereus (map 69). Monotypic species, breeds across the 

Palearctic from the Baltic Sea to northeast Siberia. The model predicts all of the breeding 

range, over-predicting in Scandinavia, western Europe and the Chukotka and Kamchatka 

Peninsulas. Under the LGM conditions, the model shows a decrease in the northern part 

of the breeding distribution, especially in the western Palearctic, where the over-

predicted areas shift towards western Europe and the Mediterranean. Overall the 

breeding range would remain continuous across the Palearctic during this period, similar 

to the current distribution. The wintering range of the species is in the east coast of 

Africa, Madagascar, the Arabian Peninsula and from the south of Asia to Australia. The 

SDM's predictions fit this wintering distribution, also predicting inland areas in east 

Africa and Indochina. In the LGM model, the extent of suitable wintering areas decreases 

in continental Asia and the Arabian Peninsula, and increases in the emerged land 

between the Islands of Indonesia, Philippines and New Guinea. This species is classified 

under scenario A. 
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Map 69: Terek Sandpiper (Xenus cinereus) predicted distribution. Caption as in map 1. 
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Appendix 2: supplementary tables 

 

Monotypic species 

Scenario A Scenario B Scenario C Scenario D 

Arenaria 
melanocephala 

Tringa brevipes Actitis hypoleucos Bartramia 
longicauda 

Calidris acuminata  Actitis macularius Calidris maritima 

Calidris bairdii  Calidris ferruginea Eudromias 
morinellus 

Calidris fuscicollis  Calidris melanotos Numenius minutus 

Calidris himantopus 
 

Calidris minuta  

Calidris mauri 
 

Gallinago delicata  

Calidris minutilla 
 

Lymnocryptes 
minimus 

 

Calidris pugnax 
 

Phalaropus lobatus  

Calidris pusilla 
 

Pluvialis fulva  

Calidris pygmaea 
 

Tringa erythropus  

Calidris ruficollis 
 

Tringa nebularia  

Calidris subruficollis 
 

  

Calidris temminckii 
 

 
 

Calidris tenuirostris 
 

 
 

Calidris virgata 
 

 
 

Charadrius 
semipalmatus 

 
 

 

Gallinago media 
 

 
 

Gallinago stenura 
 

 
 

Limnodromus 
scolopaceus 

   

Limosa haemastica 
   

Numenius 
americanus 

   

Numenius 
madagascariensis 

   

Numenius tahitiensis 
   

Phalaropus lobatus 
   

Pluvialis dominica 
   

Scolopax rusticola 
   

Steganopus tricolor 
   

Tringa flavipes 
   

Tringa glareola 
   

Tringa incana 
   

Tringa ochropus 
   

Xenus cinereus 
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Species with described subspecies 

Scenario A Scenario B Scenario C Scenario D 

Charadrius vociferus Charadrius melodus Arenaria interpres Calidris alba 

Numenius arquata Calidris canutus Calidris alpina Calidris falcinellus 

Tringa totanus Calidris ptilocnemis Charadrius hiaticula Charadrius mongolus 

  Limnodromus griseus Gallinago gallinago 

  Pluvialis apricaria Haematopus 
ostralegus 

  Pluvialis squatarola Limosa lapponica 

  Tringa solitaria Limosa limosa 

   Numenius phaeopus 

 

Table S1: Monotypic species and species with subspecies assigned to each of the four considered 

scenarios, represented in the schematic figure (A = no fragmentation of the breeding range, B = 

fragmentation only in the interglacial, C = fragmentation only during glacial period, D = fragmented 

breeding range in both periods). 
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Table S2: List of fossil records for the studied species. Records are ordered by country and locality, with its coordinates (latitude and longitude), minimum and maximum age 

(Mya), geological stage, source of the data [PB = Paleobiology Database (https://paleobiodb.org); WS = fosFARbase (http://www.wahre-staerke.com)] and the corresponding 

reference. 

Locality 
Species 

Coordinates Age (Mya) Stage 
Source Reference Country Site Lat Long min max Upper Lower 

Australia Blanche Cave, South Australia Pluvialis squatarola -37.0 140.8 0.01 0.13 NA Late Pleistocene PB Reed & Bourne 
(2009) 

Australia Victoria Cave, South Australia Tringa glareola -37.0 140.8 0.13 0.78 NA Middle Pleistocene PB Van Tets & Smith 
(1974) 

Azerbaijan Binagada asphalt lake Actitis hypoleucos 40.5 49.8 0.01 0.13 NA Late Pleistocene PB Gorobets & Yanenko 
(2018) 

Azerbaijan Binagada asphalt lake Calidris minuta 40.5 49.8 0.10 0.13 NA Late Pleistocene PB Gorobets & Yanenko 
(2018) 

Azerbaijan Binagada asphalt lake Calidris falcinellus 40.5 49.8 0.10 0.13 NA Late Pleistocene PB Gorobets & Yanenko 
(2018) 

Azerbaijan Binagada asphalt lake Calidris pugnax 40.5 49.8 0.10 0.13 NA Late Pleistocene PB Gorobets & Yanenko 
(2018) 

Azerbaijan Binagada asphalt lake Gallinago gallinago 40.5 49.8 0.10 0.13 NA Late Pleistocene PB Gorobets & Yanenko 
(2018) 

Azerbaijan Binagada asphalt lake Lymnocryptes 
minimus 

40.5 49.8 0.10 0.13 NA Late Pleistocene PB Gorobets & Yanenko 
(2018) 

Azerbaijan Binagada asphalt lake Tringa erythropus 40.5 49.8 0.10 0.13 NA Late Pleistocene PB Gorobets & Yanenko 
(2018) 

Azerbaijan Binagada asphalt lake Tringa glareola 40.5 49.8 0.10 0.13 NA Late Pleistocene PB Gorobets & Yanenko 
(2018) 

Azerbaijan Binagada asphalt lake Tringa ochropus 40.5 49.8 0.10 0.13 NA Late Pleistocene PB Gorobets & Yanenko 
(2018) 

Bahamas Ficus Pit, San Salvador Island Arenaria interpres 23.9 -74.6 0.00 0.13 Holocene Late Pleistocene PB Olson et al. (1990) 

Bulgaria Devetashka Cave 3 km NW 
Devetaki, Lovech Region 

Actitis hypoleucos 43.2 24.9 0.07 0.08 Upper 
Pleistocene 

Upper Pleistocene WS Boev (2001) 

Bulgaria Devetashka Cave 3 km NW 
Devetaki, Lovech Region 

Calidris alba 43.2 24.9 0.07 0.08 Upper 
Pleistocene 

Upper Pleistocene WS Boev (2001) 

Bulgaria Devetashka Cave 3 km NW 
Devetaki, Lovech Region 

Gallinago gallinago 43.2 24.9 0.07 0.08 Upper 
Pleistocene 

Upper Pleistocene WS Boev (2001) 
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Bulgaria Devetashka Cave 3 km NW 
Devetaki, Lovech Region 

Gallinago media 43.2 24.9 0.07 0.08 Upper 
Pleistocene 

Upper Pleistocene WS Boev (2001) 

Bulgaria Devetashka Cave 3 km NW 
Devetaki, Lovech Region 

Limosa limosa 43.2 24.9 0.07 0.08 Upper 
Pleistocene 

Upper Pleistocene WS Boev (2001) 

Bulgaria Devetashka Cave 3 km NW 
Devetaki, Lovech Region 

Numenius phaeopus 43.2 24.9 0.07 0.08 Upper 
Pleistocene 

Upper Pleistocene WS Boev (2001) 

Bulgaria Devetashka Cave 3 km NW 
Devetaki, Lovech Region 

Philomachus pugnax 43.2 24.9 0.07 0.08 Upper 
Pleistocene 

Upper Pleistocene WS Boev (2001) 

Bulgaria Devetashka Cave 3 km NW 
Devetaki, Lovech Region 

Pluvialis squatarola 43.2 24.9 0.07 0.08 Upper 
Pleistocene 

Upper Pleistocene WS Boev (2001) 

Bulgaria Devetashka Cave 3 km NW 
Devetaki, Lovech Region 

Tringa glareola 43.2 24.9 0.07 0.08 Upper 
Pleistocene 

Upper Pleistocene WS Boev (2001) 

Bulgaria Devetashka Cave 3 km NW 
Devetaki, Lovech Region 

Tringa nebularia 43.2 24.9 0.07 0.08 Upper 
Pleistocene 

Upper Pleistocene WS Boev (2001) 

Bulgaria Devetashka Cave 3 km NW 
Devetaki, Lovech Region 

Tringa ochropus 43.2 24.9 0.07 0.08 Upper 
Pleistocene 

Upper Pleistocene WS Boev (2001) 

Bulgaria Devetashka Cave 3 km NW 
Devetaki, Lovech Region 

Tringa totanus 43.2 24.9 0.07 0.08 Upper 
Pleistocene 

Upper Pleistocene WS Boev (2001) 

Congo Ishango Numenius phaeopus 0.1 29.6 0.00 0.13 Holocene Late Pleistocene PB Peters (1990) 

Ecuador La Carolina, Santa Elena 
Peninsula, near La Libertad 

Arenaria interpres -0.2 -78.5 0.02 0.12 Upper 
Pleistocene 

Upper Pleistocene WS Campbell (1976) 

Ecuador La Carolina, Santa Elena 
Peninsula, near La Libertad 

Bartramia longicauda -0.2 -78.5 0.02 0.12 Upper 
Pleistocene 

Upper Pleistocene WS Campbell (1976) 

Ecuador La Carolina, Santa Elena 
Peninsula, near La Libertad 

Calidris canutus -0.2 -78.5 0.02 0.12 Upper 
Pleistocene 

Upper Pleistocene WS Campbell (1976) 

Ecuador La Carolina, Santa Elena 
Peninsula, near La Libertad 

Calidris mauri -0.2 -78.5 0.02 0.12 Upper 
Pleistocene 

Upper Pleistocene WS Campbell (1976) 

Ecuador La Carolina, Santa Elena 
Peninsula, near La Libertad 

Calidris melanotos -0.2 -78.5 0.02 0.12 Upper 
Pleistocene 

Upper Pleistocene WS Campbell (1976) 

Ecuador La Carolina, Santa Elena 
Peninsula, near La Libertad 

Calidris pusilla -0.2 -78.5 0.02 0.12 Upper 
Pleistocene 

Upper Pleistocene WS Campbell (1976) 

Ecuador La Carolina, Santa Elena 
Peninsula, near La Libertad 

Charadrius 
semipalmatus 

-0.2 -78.5 0.02 0.12 Upper 
Pleistocene 

Upper Pleistocene WS Campbell (1976) 

Ecuador La Carolina, Santa Elena 
Peninsula, near La Libertad 

Charadrius vociferus -0.2 -78.5 0.02 0.12 Upper 
Pleistocene 

Upper Pleistocene WS Campbell (1976) 
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Ecuador La Carolina, Santa Elena 
Peninsula, near La Libertad 

Numenius phaeopus -0.2 -78.5 0.02 0.12 Upper 
Pleistocene 

Upper Pleistocene WS Campbell (1976) 

Ecuador La Carolina, Santa Elena 
Peninsula, near La Libertad 

Pluvialis dominica -0.2 -78.5 0.02 0.12 Upper 
Pleistocene 

Upper Pleistocene WS Campbell (1976) 

Ecuador La Carolina, Santa Elena 
Peninsula, near La Libertad 

Pluvialis squatarola -0.2 -78.5 0.02 0.12 Upper 
Pleistocene 

Upper Pleistocene WS Campbell (1976) 

Ecuador La Carolina, Santa Elena 
Peninsula, near La Libertad 

Tringa flavipes -0.2 -78.5 0.02 0.12 Upper 
Pleistocene 

Upper Pleistocene WS Campbell (1976) 

Ecuador La Carolina, Santa Elena 
Peninsula, near La Libertad 

Tringa solitaria -0.2 -78.5 0.02 0.12 Upper 
Pleistocene 

Upper Pleistocene WS Campbell (1976) 

Ecuador La Carolina, Santa Elena 
Peninsula, near La Libertad 

Calidris himantopus -0.2 -78.5 0.01 0.13 NA Late Pleistocene PB Campbell (1976) 

Ecuador La Carolina, Santa Elena 
Peninsula, near La Libertad 

Phalaropus fulicarius -0.2 -78.5 0.01 0.13 NA Late Pleistocene PB Campbell (1976) 

Ecuador La Carolina, Santa Elena 
Peninsula, near La Libertad 

Phalaropus lobatus -0.2 -78.5 0.01 0.13 NA Late Pleistocene PB Campbell (1976) 

Ecuador La Carolina, Santa Elena 
Peninsula, near La Libertad 

Phalaropus tricolor -0.2 -78.5 0.01 0.13 NA Late Pleistocene PB Campbell (1976) 

Egypt Kom Ombo, Upper Egypt Numenius arquata 24.4 33.0 0.01 2.59 NA Pleistocene PB Churcher (1974) 

France Cantet Cave, Espèche, Haute 
Pyrénées 

Charadrius hiaticula 43.1 0.3 0.01 0.13 Upper 
Pleistocene 

Upper Pleistocene WS Clot (1984) 

Greece Liko Cave bed A, Crete Scolopax rusticola 35.4 24.3 0.01 0.13 NA Late Pleistocene PB Wessie (1988) 

Greece Liko Cave bed A/B, Crete Scolopax rusticola 35.4 24.3 0.01 0.13 NA Late Pleistocene PB Wessie (1988) 

Greece Liko Cave bed B, Crete Scolopax rusticola 35.4 24.3 0.01 0.13 NA Late Pleistocene PB Wessie (1988) 

Greece Liko Cave bed C, Crete Scolopax rusticola 35.4 24.3 0.01 0.13 NA Late Pleistocene PB Wessie (1988) 

Greece Liko Cave bed C/D, Crete Scolopax rusticola 35.4 24.3 0.01 0.13 NA Late Pleistocene PB Wessie (1988) 

Greece Liko Cave bed D, Crete Scolopax rusticola 35.4 24.3 0.01 0.13 NA Late Pleistocene PB Wessie (1988) 

Greece Liko Cave bed Li-O, Crete Scolopax rusticola 35.4 24.3 0.01 0.13 NA Late Pleistocene PB Wessie (1988) 

Greece Liko Cave bed V, Crete Calidris canutus 35.4 24.3 0.01 0.13 NA Late Pleistocene PB Wessie (1988) 

Greece Liko Cave bed V, Crete Scolopax rusticola 35.4 24.3 0.01 0.13 NA Late Pleistocene PB Wessie (1988) 

Indonesia Lian Bua sector XI split 39 Actitis hypoleucos -8.5 120.4 0.01 0.13 NA Late Pleistocene PB Meijer et al. (2013) 

Indonesia Lian Bua sector XI split 41 Actitis hypoleucos -8.5 120.4 0.01 0.13 NA Late Pleistocene PB Meijer et al. (2013) 

Indonesia Lian Bua sector XI split 43 Pluvialis fulva -8.5 120.4 0.01 0.13 NA Late Pleistocene PB Meijer et al. (2013) 

Indonesia Lian Bua sector XI split 45 Pluvialis fulva -8.5 120.4 0.01 0.13 NA Late Pleistocene PB Meijer et al. (2013) 
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Indonesia Lian Bua sector XI split 50 Pluvialis fulva -8.5 120.4 0.01 0.13 NA Late Pleistocene PB Meijer et al. (2013) 

Italy Malagrotta MIS9, Rome Calidris temminckii 41.8 12.2 0.13 0.78 NA Middle Pleistocene PB Cassoli et al. (1982) 

Italy Spinagallo Cave, Siracusa Scolopax rusticola 37.0 15.2 0.13 0.78 NA Middle Pleistocene PB Pavia (1999) 

Japan Minatogawa Fissure, Okinawa Scolopax rusticola 26.1 127.8 0.01 0.13 NA Late Pleistocene PB Matsuoka (2000) 

Mexico Cantera de Jocotepec, 
Chapala-Zacoalco, Jalisco 

Calidris fuscicollis 20.3 -103.5 0.01 1.80 Upper 
Pleistocene 

Lower Pleistocene WS Corona-Martinez 
(2002) 

Mexico Cueva de San Josecito, 8 km 
SE Aramberri, Zaragoza, 
Nuevo León 

Pluvialis sp. 24.0 -99.9 0.01 0.13 Upper 
Pleistocene 

Upper Pleistocene WS Arroyo-Cabrales & 
Johnson (1995) 

Mexico Cueva de San Josecito, 8 km 
SE Aramberri, Zaragoza, 
Nuevo León 

Numenius americanus 24.0 -99.9 0.01 0.13 Upper 
Pleistocene 

Upper Pleistocene WS Miller (1943) 

Monaco Grotte de l'Observatoire Scolopax rusticola 43.7 7.4 0.01 0.78 Late 
Pleistocene 

Middle Pleistocene PB Boule & Villeneuve 
(1927) 

Morocco Ahl al Oughlam (near 
Casablanca) 

Pluvialis sp. 33.6 -7.6 2.50 2.50 Gelasian Gelasian WS Mourer-Chauviré & 
Geraads (2010) 

Peru Talara Tar Seeps, Piura 
Department 

Actitis macularius -4.6 -81.1 0.01 0.01 Upper 
Pleistocene 

Upper Pleistocene WS Campbell (1979) 

Peru Talara Tar Seeps, Piura 
Department 

Arenaria interpres -4.6 -81.1 0.01 0.01 Upper 
Pleistocene 

Upper Pleistocene WS Campbell (1979) 

Peru Talara Tar Seeps, Piura 
Department 

Calidris mauri -4.6 -81.1 0.01 0.01 Upper 
Pleistocene 

Upper Pleistocene WS Campbell (1979) 

Peru Talara Tar Seeps, Piura 
Department 

Calidris melanotos -4.6 -81.1 0.01 0.01 Upper 
Pleistocene 

Upper Pleistocene WS Campbell (1979) 

Peru Talara Tar Seeps, Piura 
Department 

Calidris minutilla -4.6 -81.1 0.01 0.01 Upper 
Pleistocene 

Upper Pleistocene WS Campbell (1979) 

Peru Talara Tar Seeps, Piura 
Department 

Charadrius 
semipalmatus 

-4.6 -81.1 0.01 0.01 Upper 
Pleistocene 

Upper Pleistocene WS Campbell (1979) 

Peru Talara Tar Seeps, Piura 
Department 

Charadrius vociferus -4.6 -81.1 0.01 0.01 Upper 
Pleistocene 

Upper Pleistocene WS Campbell (1979) 

Peru Talara Tar Seeps, Piura 
Department 

Pluvialis dominica -4.6 -81.1 0.01 0.01 Upper 
Pleistocene 

Upper Pleistocene WS Campbell (1979) 

Peru Talara Tar Seeps, Piura 
Department 

Pluvialis squatarola -4.6 -81.1 0.01 0.01 Upper 
Pleistocene 

Upper Pleistocene WS Campbell (1979) 

Peru Talara Tar Seeps, Piura 
Department 

Tringa flavipes -4.6 -81.1 0.01 0.01 Upper 
Pleistocene 

Upper Pleistocene WS Campbell (1979) 
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Peru Talara Tar Seeps, Piura 
Department 

Tringa solitaria -4.6 -81.1 0.01 0.01 Upper 
Pleistocene 

Upper Pleistocene WS Campbell (1979) 

Peru Talara Tar Seeps, Piura 
Department 

Calidris himantopus -4.7 -80.5 0.01 0.13 NA Late Pleistocene PB Campbell (1979) 

Peru Talara Tar Seeps, Piura 
Department 

Phalaropus lobatus -4.7 -80.5 0.01 0.13 NA Late Pleistocene PB Campbell (1979) 

Peru Talara Tar Seeps, Piura 
Department 

Phalaropus tricolor -4.7 -80.5 0.01 0.13 NA Late Pleistocene PB Campbell (1979) 

Poland Bisnik Cave fauna complex II, 
50 km NE Kraków 

Gallinago media 50.4 19.7 0.02 0.03 Upper 
Pleistocene 

Upper Pleistocene WS Tomek et al. (2011) 

Poland Bisnik Cave fauna complex II, 
50 km NE Kraków 

Gallinago media 50.4 19.7 0.02 0.03 Upper 
Pleistocene 

Upper Pleistocene WS Tomek et al. (2011) 

Poland Bisnik Cave fauna complex II, 
50 km NE Kraków 

Limosa limosa 50.4 19.7 0.02 0.03 Upper 
Pleistocene 

Upper Pleistocene WS Tomek et al. (2011) 

Poland Bisnik Cave fauna complex II, 
50 km NE Kraków 

Philomachus pugnax 50.4 19.7 0.02 0.03 Upper 
Pleistocene 

Upper Pleistocene WS Tomek et al. (2011) 

Poland Bisnik Cave fauna complex III, 
50 km NE Kraków 

Arenaria interpres 50.4 19.7 0.04 0.07 Upper 
Pleistocene 

Upper Pleistocene WS Tomek et al. (2011) 

Poland Bisnik Cave fauna complex III, 
50 km NE Kraków 

Philomachus pugnax 50.4 19.7 0.04 0.07 Upper 
Pleistocene 

Upper Pleistocene WS Tomek et al. (2011) 

Poland Bisnik Cave fauna complex IV, 
50 km NE Kraków 

Philomachus pugnax 50.4 19.7 0.05 0.08 Upper 
Pleistocene 

Upper Pleistocene WS Tomek et al. (2011) 

Poland Bisnik Cave fauna complex IV, 
50 km NE Kraków 

Pluvialis squatarola 50.4 19.7 0.05 0.08 Upper 
Pleistocene 

Upper Pleistocene WS Tomek et al. (2011) 

Poland Bisnik Cave fauna complex VI, 
50 km NE Kraków 

Eudromias morinellus 50.4 19.7 0.10 0.16 Upper 
Pleistocene 

Middle Pleistocene WS Tomek et al. (2011) 

Poland Bisnik Cave fauna complex VI, 
50 km NE Kraków 

Philomachus pugnax 50.4 19.7 0.10 0.16 Upper 
Pleistocene 

Middle Pleistocene WS Tomek et al. (2011) 

Poland Bisnik Cave fauna complex VI, 
50 km NE Kraków 

Tringa ochropus 50.4 19.7 0.10 0.16 Upper 
Pleistocene 

Middle Pleistocene WS Tomek et al. (2011) 

Poland Bisnik Cave fauna complex 
VIII, 50 km NE Kraków 

Pluvialis apricaria 50.4 19.7 0.16 0.23 Middle 
Pleistocene 

Middle Pleistocene WS Tomek et al. (2011) 

Russia Dyuktai Cave Calidris pugnax 59.3 132.6 0.01 0.02 Holocene Late Pleistocene PB Zelenkov et al. (2008) 

Russia Dyuktai Cave Gallinago gallinago 59.3 132.6 0.01 0.02 Holocene Late Pleistocene PB Zelenkov et al. (2008) 

Russia Dyuktai Cave Gallinago stenura 59.3 132.6 0.01 0.02 Holocene Late Pleistocene PB Zelenkov et al. (2008) 

Russia Dyuktai Cave Limosa limosa 59.3 132.6 0.01 0.02 Holocene Late Pleistocene PB Zelenkov et al. (2008) 
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Russia Dyuktai Cave Numenius minutus 59.3 132.6 0.01 0.02 Holocene Late Pleistocene PB Zelenkov et al. (2008) 

Russia Dyuktai Cave Numenius phaeopus 59.3 132.6 0.01 0.02 Holocene Late Pleistocene PB Zelenkov et al. (2008) 

Russia Dyuktai Cave Phalaropus fulicarius 59.3 132.6 0.01 0.02 Holocene Late Pleistocene PB Zelenkov et al. (2008) 

Russia Dyuktai Cave Phalaropus lobatus 59.3 132.6 0.01 0.02 Holocene Late Pleistocene PB Zelenkov et al. (2008) 

Russia Dyuktai Cave Pluvialis sp. 59.3 132.6 0.01 0.02 Holocene Late Pleistocene PB Zelenkov et al. (2008) 

Russia Dyuktai Cave Tringa glareola 59.3 132.6 0.01 0.02 Holocene Late Pleistocene PB Zelenkov et al. (2008) 

Russia Dyuktai Cave Tringa nebularia 59.3 132.6 0.01 0.02 Holocene Late Pleistocene PB Zelenkov et al. (2008) 

Russia Dyuktai Cave Tringa ochropus 59.3 132.6 0.01 0.02 Holocene Late Pleistocene PB Zelenkov et al. (2008) 

Russia Dyuktai Cave Xenus cinereus 59.3 132.6 0.01 0.02 Holocene Late Pleistocene PB Zelenkov et al. (2008) 

Spain Atapuerca TD6 Scolopax rusticola 42.4 -3.5 0.78 1.81 NA Calabrian PB Sánchez-Marco 
(1999) 

Spain Gran Dolina TD 6-1+TD 6-2, 
Atapuerca, Burgos 

Limosa limosa 42.3 -3.4 0.85 0.85 Lower 
Pleistocene 

Lower Pleistocene WS Sánchez-Marco 
(1999) 

U.K. Bacon Hole, Wales Arenaria interpres 51.6 -4.1 0.01 0.13 NA Late Pleistocene PB Harrison (1987) 

U.K. Bacon Hole, Wales Calidris alpina 51.6 -4.1 0.01 0.13 NA Late Pleistocene PB Harrison (1987) 

U.K. Bacon Hole, Wales Pluvialis apricaria 51.6 -4.1 0.01 0.13 NA Late Pleistocene PB Harrison (1987) 

U.K. Chudleigh Gorge, Devon Gallinago gallinago 50.6 -3.6 0.01 0.13 NA Late Pleistocene PB Harrison (1980) 

U.K. Minchin Hole, Wales Calidris alpina 51.6 -4.1 0.01 0.13 NA Late Pleistocene PB Harrison (1987) 

U.K. Park Street, Roman Villa Scolopax rusticola 51.7 -0.3 0.01 2.59 NA Pleistocene PB Harrison (1980) 

U.K. Soldier's hole Limosa limosa 51.3 -2.8 0.01 0.13 NA Late Pleistocene PB Harrison (1987) 

U.K. Torbryan Cave, Devon Lymnocryptes 
minimus 

50.5 -3.5 0.01 0.13 NA Late Pleistocene PB Harrison (1980) 

U.K. West Runton Freshwater Bed, 
Norfolk 

Tringa ochropus 52.9 1.2 0.13 0.78 NA Middle Pleistocene PB Harrison (1979) 

U.S.A. Bell Cave, Alabama Bartramia longicauda 34.7 -87.8 0.01 0.13 NA Late Pleistocene PB Parmalee(1992) 

U.S.A. Camp Cady, California Actitis sp. 34.8 -117.0 0.01 0.13 NA Late Pleistocene PB Jefferson (1987) 

U.S.A. Chick Bend Cave, Tennessee Gallinago delicata 35.6 -86.8 0.01 0.13 NA Late Pleistocene PB Parmalee & Klippel 
(1982) 

U.S.A. Clark´s Cave, Virginia Actitis macularius 38.1 -79.7 0.01 0.13 NA Late Pleistocene PB Guilday et al. (1977) 

U.S.A. Clark´s Cave, Virginia Gallinago delicata 38.1 -79.7 0.01 0.13 NA Late Pleistocene PB Guilday et al. (1977) 

U.S.A. Clark´s Cave, Virginia Pluvialis dominica 38.1 -79.7 0.01 0.13 NA Late Pleistocene PB Guilday et al. (1977) 

U.S.A. Clark´s Cave, Virginia Tringa solitaria 38.1 -79.7 0.01 0.13 NA Late Pleistocene PB Guilday et al. (1977) 
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U.S.A. Fossil Lake, Oregon Calidris melanotos 43.3 -120.5 0.01 0.13 NA Late Pleistocene PB Elftman (1931) 

U.S.A. Fossil Lake, Oregon Limnodromus griseus 43.3 -120.5 0.01 0.13 NA Late Pleistocene PB Elftman (1931) 

U.S.A. Fossil Lake, Oregon Numenius americanus 43.3 -120.5 0.01 0.13 NA Late Pleistocene PB Elftman (1931) 

U.S.A. Fossil Lake, Oregon Phalaropus lobatus 43.3 -120.5 0.01 0.13 NA Late Pleistocene PB Elftman (1931) 

U.S.A. Ingleside Site No. 1, Texas Limnodromus sp. 27.9 -97.2 0.01 0.13 NA Late Pleistocene PB Feduccia (1973) 

U.S.A. Inglis 1A, Florida Gallinago delicata 29.0 -82.7 0.78 1.81 NA Calabrian PB Emslie (1998) 

U.S.A. Inglis 1C, Florida Gallinago delicata 29.0 -82.7 0.30 1.80 NA Irvingtonian PB Emslie (1998) 

U.S.A. Kingston Saltpeter Cave, 
Georgia 

Bartramia longicauda 34.2 -84.9 0.01 0.13 NA Late Pleistocene PB Steadman (2005) 

U.S.A. Little Box Elder Cave, 
Wyoming 

Calidris melanotos 42.8 -105.7 0.01 0.13 NA Late Pleistocene PB Emslie (1985) 

U.S.A. Little Box Elder Cave, 
Wyoming 

Charadrius vociferus 42.8 -105.7 0.01 0.13 NA Late Pleistocene PB Emslie (1985) 

U.S.A. Little Box Elder Cave, 
Wyoming 

Gallinago delicata 42.8 -105.7 0.01 0.13 NA Late Pleistocene PB Emslie (1985) 

U.S.A. Little Box Elder Cave, 
Wyoming 

Numenius americanus 42.8 -105.7 0.01 0.13 NA Late Pleistocene PB Emslie (1985) 

U.S.A. Manix Lake W19, California Phalaropus lobatus 33.2 -117.3 0.01 0.13 NA Late Pleistocene PB Howard (1955) 

U.S.A. Moomomi Dunes, Hawaii Numenius tahitiensis 21.2 -157.2 0.01 0.13 NA Late Pleistocene PB Olson & James (1991) 

U.S.A. Natural Chimneys, Virginia Bartramia longicauda 38.4 -79.1 0.01 0.13 NA Late Pleistocene PB Wetmore (1962) 

U.S.A. Natural Chimneys, Virginia Calidris minutilla 38.4 -79.1 0.01 0.13 NA Late Pleistocene PB Wetmore (1962) 

U.S.A. Natural Chimneys, Virginia Charadrius vociferus 38.4 -79.1 0.01 0.13 NA Late Pleistocene PB Wetmore (1962) 

U.S.A. Porcupine Cave, Colorado Phalaropus lobatus 39.5 -105.8 0.30 1.80 NA Irvingtonian PB Emslie (2004) 

U.S.A. Rancho La Brea, California Charadrius vociferus 34.1 -118.3 0.01 0.30 NA Rancholabrean PB Howard (1936) 

U.S.A. Rancho La Brea, California Limnodromus griseus 34.1 -118.3 0.01 0.30 NA Rancholabrean PB Howard (1936) 

U.S.A. Reddick 1A, Florida Charadrius vociferus 29.1 -82.3 0.01 0.30 NA Rancholabrean PB Emslie (1998) 

U.S.A. Reddick 1A, Florida Gallinago delicata 29.1 -82.3 0.01 0.30 NA Rancholabrean PB Emslie (1998) 

U.S.A. Reddick 1A, Florida Tringa flavipes 29.1 -82.3 0.01 0.30 NA Rancholabrean PB Emslie (1998) 

U.S.A. San Miguel Island V-10, 
California 

Calidris alba 34.0 -120.3 0.01 0.13 NA Late Pleistocene PB Guthrie (2005) 

U.S.A. San Miguel Island V-10, 
California 

Charadrius 
semipalmatus 

34.0 -120.3 0.01 0.13 NA Late Pleistocene PB Guthrie (2005) 
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U.S.A. San Miguel Island V-10, 
California 

Pluvialis squatarola 34.0 -120.3 0.01 0.13 NA Late Pleistocene PB Guthrie (2005) 

U.S.A. San Miguel Island V-11, 
California 

Numenius phaeopus 34.0 -120.3 0.01 0.13 NA Late Pleistocene PB Guthrie (2005) 

U.S.A. San Miguel Island V-16, 
California 

Charadrius 
semipalmatus 

34.0 -120.4 0.01 0.13 NA Late Pleistocene PB Guthrie (2005) 

U.S.A. San Miguel Island V-16, 
California 

Numenius phaeopus 34.0 -120.4 0.01 0.13 NA Late Pleistocene PB Guthrie (2005) 

U.S.A. San Miguel Island V-16, 
California 

Phalaropus fulicarius 34.0 -120.4 0.01 0.13 NA Late Pleistocene PB Guthrie (2005) 

U.S.A. San Miguel Island V-16, 
California 

Pluvialis squatarola 34.0 -120.4 0.01 0.13 NA Late Pleistocene PB Guthrie (2005) 

U.S.A. San Miguel Island V-18, 
California 

Arenaria 
melanocephala 

34.0 -120.4 0.01 2.59 NA Pleistocene PB Guthrie (2005) 

U.S.A. San Miguel Island V-6, 
California 

Arenaria 
melanocephala 

34.1 -120.4 0.01 0.13 NA Late Pleistocene PB Guthrie (2005) 

U.S.A. San Miguel Island V-6, 
California 

Phalaropus fulicarius 34.1 -120.4 0.01 0.13 NA Late Pleistocene PB Guthrie (2005) 

U.S.A. San Miguel Island V-7, 
California 

Calidris alba 34.1 -120.4 0.01 0.13 NA Late Pleistocene PB Guthrie (2005) 

U.S.A. San Miguel Island V-7, 
California 

Phalaropus fulicarius 34.1 -120.4 0.01 0.13 NA Late Pleistocene PB Guthrie (2005) 

U.S.A. Silver Lake, Oregon Phalaropus lobatus 43.1 -121.0 0.01 0.13 NA Late Pleistocene PB Shufeldt (1891) 

U.S.A.. Arredondo IIA, Alachua 
County, Florida 

Tringa solitaria 29.6 -82.4 0.01 0.13 Upper 
Pleistocene 

Upper Pleistocene WS Brodkorb (1959) 

U.S.A.. Cutler Hammock Local Fauna, 
Dade County, Florida 

Gallinago delicata 25.4 -80.2 0.01 0.13 Upper 
Pleistocene 

Upper Pleistocene WS Emslie (1998) 

U.S.A.. Cutler Hammock Local Fauna, 
Dade County, Florida 

Limnodromus 
scolopaceus 

25.4 -80.2 0.01 0.13 Upper 
Pleistocene 

Upper Pleistocene WS Emslie (1998) 

U.S.A.. Haile pit 11B (south of Haile), 
Alachua County, Florida 

Actitis macularius 29.8 -82.1 0.01 0.13 Upper 
Pleistocene 

Upper Pleistocene WS Emslie (1998) 

U.S.A.. Haile pit 11B (south of Haile), 
Alachua County, Florida 

Charadrius vociferus 29.8 -82.1 0.01 0.13 Upper 
Pleistocene 

Upper Pleistocene WS Emslie (1998) 

U.S.A.. Haile pit 11B (south of Haile), 
Alachua County, Florida 

Gallinago delicata 29.8 -82.1 0.01 0.13 Upper 
Pleistocene 

Upper Pleistocene WS Emslie (1998) 
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U.S.A.. Haile pit 11B (south of Haile), 
Alachua County, Florida 

Limnodromus sp. 29.8 -82.1 0.01 0.13 Upper 
Pleistocene 

Upper Pleistocene WS Emslie (1998) 

U.S.A.. Haile pit 11B (south of Haile), 
Alachua County, Florida 

Numenius americanus 29.8 -82.1 0.01 0.13 Upper 
Pleistocene 

Upper Pleistocene WS Emslie (1998) 

U.S.A.. Haile pit 16A (south of Haile), 
Alachua County, Florida 

Limnodromus 
scolopaceus 

29.7 -82.6 1.00 1.60 Lower 
Pleistocene 

Lower Pleistocene WS Emslie (1998) 

U.S.A.. Haile pit 7C (south of Haile), 
Alachua County, Florida 

Limnodromus 
scolopaceus 

29.7 -82.6 1.90 2.10 Gelasian Gelasian WS Emslie (1998) 

U.S.A.. Harris´ Pocket, Dry Cave, UTEP 
6; Eddy County, New Mexico 

Charadrius vociferus 32.0 -104.0 0.01 0.02 Upper 
Pleistocene 

Upper Pleistocene WS Harris (1993) 

U.S.A.. Harris´ Pocket, Dry Cave, UTEP 
6; Eddy County, New Mexico 

Numenius americanus 32.0 -104.0 0.01 0.02 Upper 
Pleistocene 

Upper Pleistocene WS Harris (1993) 

U.S.A.. Inglis 1A, Citrus County, 
Florida 

Gallinago delicata 29.0 -82.7 1.90 2.00 Gelasian Gelasian WS Emslie (1998) 

U.S.A.. Inglis 1C, Citrus County, 
Florida 

Gallinago delicata 29.0 -82.7 1.60 1.90 Lower 
Pleistocene 

Gelasian WS Emslie (1998) 

U.S.A.. McKittrick-Asphalto, Kern 
County, California 

Numenius americanus 35.3 -118.5 0.01 0.13 Upper 
Pleistocene 

Upper Pleistocene WS Miller (1935) 

U.S.A.. Reddick IA+B, Marion County, 
Florida 

Gallinago delicata 29.1 -82.3 0.01 0.13 Upper 
Pleistocene 

Upper Pleistocene WS Emslie (1998) 

U.S.A.. Richardson Road Shell Pit, 
Sarasota County, Florida 

Calidris alba 27.4 -82.4 2.00 2.50 Gelasian Gelasian WS Emslie (1998) 

U.S.A.. Richardson Road Shell Pit, 
Sarasota County, Florida 

Calidris canutus 27.4 -82.4 2.00 2.50 Gelasian Gelasian WS Emslie (1998) 

U.S.A.. Rock Springs, Orange County, 
Florida 

Limnodromus 
scolopaceus 

28.7 -81.5 0.01 0.13 Upper 
Pleistocene 

Upper Pleistocene WS Emslie (1998) 

U.S.A.. Sabertooth Cave, Lecanto 2A, 
Citrus County, Florida 

Calidris pusilla 28.8 -82.2 0.01 0.13 Upper 
Pleistocene 

Upper Pleistocene WS Emslie (1998) 

U.S.A.. White Rock local fauna, 
Republic County, Kansas 

Pluvialis squatarola 39.9 -97.7 1.80 2.20 Gelasian Gelasian WS Eshelman (1975) 

Venezuela Mene de Inciarte Tar Seep, 
Zulia 

Calidris canutus 10.8 -72.2 0.01 0.13 NA Late Pleistocene PB Steadman et al. 
(2015) 

Venezuela Mene de Inciarte Tar Seep, 
Zulia 

Calidris fuscicollis 10.8 -72.2 0.01 0.13 NA Late Pleistocene PB Steadman et al. 
(2015) 

Venezuela Mene de Inciarte Tar Seep, 
Zulia 

Charadrius vociferus 10.8 -72.2 0.01 0.13 NA Late Pleistocene PB Steadman et al. 
(2015) 
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Venezuela Mene de Inciarte Tar Seep, 
Zulia 

Phalaropus lobatus 10.8 -72.2 0.01 0.13 NA Late Pleistocene PB Steadman et al. 
(2015) 

Venezuela Mene de Inciarte Tar Seep, 
Zulia 

Phalaropus tricolor 10.8 -72.2 0.01 0.13 NA Late Pleistocene PB Steadman et al. 
(2015) 

Venezuela Mene de Inciarte Tar Seep, 
Zulia 

Tringa flavipes 10.8 -72.2 0.01 0.13 NA Late Pleistocene PB Steadman et al. 
(2015) 

Venezuela Mene de Inciarte Tar Seep, 
Zulia 

Tringa solitaria 10.8 -72.2 0.01 0.13 NA Late Pleistocene PB Steadman et al. 
(2015) 
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Appendix 3: Genbank accession numbers for the mitochondrial genomes 

(Chapter 2) 

 

Species Accesion number 

Abrornis 
inornata(Phylloscopus) 

NC_024726 

Acanthis flammea NC_027285 

Acanthisitta chloris AY325307 

Accipiter gentilis NC_011818 

Accipiter gularis KX585864 / 
EU583261 

Accipiter nisus NC_025580 

Accipiter soloensis KJ680303 

Accipiter virgatus NC_026082 

Aceros corrugatus HM755883 

Aceros waldeni NC_015085 

Acridotheres 
cristatellus 

NC_015613 

Acridotheres tristis 
(Sturnus) 

NC_015195 

Acrocephalus 
scirpaceus 

NC_010227 

Acryllium vulturinum NC_014180 

Aegithalos bonvaloti NC_024267 

Aegithalos caudatus KF951088 

Aegithalos concinnus KF951092 

Aegithalos fuliginosus NC_024266 

Aegithalos 
glaucogularis 

NC_024268 

Aegotheles cristatus NC_011718 

Aegypius monachus KF682364 

Aepyornis hildebrandti KJ749824 

Aethopyga gouldiae NC_027241 

Agapornis roseicollis NC_011708 

Agelaius phoeniceus NC_018801 

Aix galericulata NC_023969 

Akialoa obscura NC_031349 

Alauda arvensis NC_020425 

Alectoris chukar NC_020585 

Alectura lathami NC_007227 

Amaurornis akool NC_023982 

Amaurornis 
phoenicurus 

NC_024593 

Amazilia versicolor NC_024156 

Amazona barbadensis JX524615 

Amazona ochrocephala NC_027840 

Amblyramphus 
holosericeus 

NC_018802 

Anas acuta NC_024631 

Anas chathamica KF562761 

Anas clypeata NC_028346 

Anas crecca NC_022452 

Anas formosa NC_015482 

Anas platyrhynchos NC_009684 

Anas poecilorhyncha NC_022418 

Anhinga rufa GU071055 

Anomalopteryx 
didiformis 

NC_002779 

Anser albifrons NC_004539 

Anser anser NC_011196 

Anser cygnoides NC_023832 

Anser fabalis NC_016922 

Anser indicus NC_025654 

Anseranas 
semipalmata 

NC_005933 

Anthornis melanura KC545408 

Anthropoides 
paradiseus 

NC_020572 

Anthropoides virgo NC_020573 

Anthus hodgsoni KX189345 

Anthus 
novaeseelandiae 

NC_029137 

Aphrodroma 
brevirostris 

NC_007174 

Aptenodytes forsteri NC_027938 

Apteryx australis KU695537 

Apteryx haastii NC_002782 

Apteryx owenii NC_013806 

Apus apus NC_008540 

Aquila chrysaetos NC_024087 

Ara ararauna NC_029319 

Ara glaucogularis NC_026029 

Ara militaris NC_027839 

Aratinga (Psittaccara) 
mitrata 

JX215256 

Arborophila ardens NC_022683 

Arborophila 
brunneopectus 

NC_022684 

Arborophila gingica FJ752425 

Arborophila rufipectus NC_012453 

Arborophila rufogularis NC_020584 

Archilochus colubris NC_010094 
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Ardea cinerea NC_025900 

Ardea intermedia NC_025918 

Ardea modesta NC_025916 

Ardea novaehollandiae NC_008551 

Ardea purpurea NC_025919 

Ardeola bacchus NC_025921 

Arenaria interpres NC_003712 

Argusianus argus JQ713768 

Arremon aurantiirostris NC_027731 

Asio flammeus NC_027606 

Athene brama KF961185 

Aythya americana NC_000877 

Aythya ferina NC_024602 

Aythya fuligula NC_024595 

Babax lanceolatus KR818090 

Balaeniceps rex GU071053 

Balearica pavonina NC_020570 

Balearica regulorum NC_020569 

Bambusicola fytchii NC_020583 

Bambusicola thoracica NC_011816 

Bombycilla cedrorum KJ909187 

Botaurus stellaris NC_025923 

Branta bernicla KJ680301 

Branta canadensis NC_007011 

Brotogeris cyanoptera NC_015530 

Bubo blakistoni LC099103 

Bubo bubo AB918148 

Bubo flavipes LC099100 

Bubulcus ibis NC_025917 

Bucorvus leadbeateri NC_015199 

Buteo buteo NC_003128 

Buteo hemilasius NC_029377 

Buteo lagopus NC_029189 

Butorides striata NC_025922 

Bycanistes brevis NC_015201 

Cacatua moluccensis NC_020592 

Cacatua pastinator JF414240 

Cairina moschata NC_010965 

Callaeas cinereus NC_031350 

Callipepla squamata NC_029340 

Calliphlox amethystina NC_030286 

Caloperdix oculeus NC_024619 

Calyptorhynchus 
baudinii 

NC_020594 

Calyptorhynchus 
lathami 

NC_020593 

Calyptorhynchus 
latirostris 

NC_020595 

Campephilus 
guatemalensis 

NC_028020 

Campephilus imperialis KU158198 

Campylorhynchus 
brunneicapillus 

NC_029482 

Campylorhynchus 
zonatus 

NC_022840 

Caprimulgus indicus NC_025773 

Cardinalis cardinalis NC_025618 

Carduelis (Spinus) 
psaltria 

NC_025627 

Carduelis (Spinus) 
spinus 

NC_015198 

Carduelis pinus NC_025619 

Carduelis sinica NC_015196 

Carpodacus erythrinus NC_025597 

Carpodacus roseus NC_025607 

Casuarius casuarius NC_002778 

Cathartes aura NC_007628 

Cecropis daurica NC_024107 

Centropus sinensis KT947122 

Ceryle rudis NC_024280 

Chaetura pelagica NC_028545 

Chalcophaps indica HM746789 

Chlorophanes spiza NC_025606 

Chroicocephalus 
ridibundus 

NC_025649 

Chrysolampis 
mosquitus 

NC_025786 

Chrysolophus 
amherstiae 

NC_020590 

Chrysolophus pictus NC_014576 

Chrysomus cyanopus NC_018813 

Chrysomus 
icterocephalus 

NC_018799 

Chrysomus ruficapillus NC_018796 

Chrysomus thilius NC_018807 

Chrysomus 
xanthophthalmus 

NC_018798 

Ciconia boyciana NC_002196 

Ciconia ciconia NC_002197 

Ciconia nigra NC_023946 

Cnemotriccus fuscatus NC_007975 

Coccothraustes 
coccothraustes 

NC_025614 

Colinus virginianus NC_024620 

Columba janthina KM926619 

Columba livia NC_013978 
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Copsychus saularis NC_030603 

Coracopsis vasa NC_027841 

Corvus brachyrhynchos NC_026461 

Corvus cornix NC_024698 

Corvus frugilegus NC_002069 

Corvus hawaiiensis NC_026783 

Corvus macrorhynchos NC_027173 

Corvus moriorum NC_031518 

Corvus splendens NC_024607 

Coturnicops exquisitus NC_012143 

Coturnix chinensis NC_004575 

Coturnix japonica NC_003408 

Crax daubentoni NC_024617 

Crax rubra NC_024618 

Crossoptilon auritum NC_015897 

Crossoptilon 
crossoptilon 

NC_016679 

Crossoptilon harmani NC_026547 

Crossoptilon 
mantchuricum 

NC_026548 

Crotophaga ani HM746794 

Cuculus poliocephalus NC_028414 

Curaeus curaeus NC_018808 

Cyanistes cyanus KX388472 

Cyanopica cyanus NC_015824 

Cyanoptila 
cyanomelana 

NC_015232 

Cygnus atratus NC_012843 

Cygnus columbianus NC_017604 

Cygnus cygnus NC_027095 

Cygnus olor NC_027096 

Dendrocopos leucotos NC_029862 

Dendrocopos major NC_028174 

Dendrocygna javanica NC_012844 

Deroptyus accipitrinus KM611476 

Dinornis giganteus NC_002672 

Diomedea chrysostoma AP009193 

Dives dives NC_018800 

Dromaius 
novaehollandiae 

NC_002784 

Dryocopus pileatus NC_008546 

Dupetor flavicollis NC_024575 

Eclectus roratus NC_027842 

Ectopistes migratorius KC489473 

Egretta eulophotes NC_009736 

Egretta garzetta NC_023981 

Egretta sacra NC_025920 

Emberiza (Schoeniclus) 
elegans 

NC_030368 

Emberiza (Schoeniclus) 
rustica 

NC_024924 

Emberiza (Schoeniclus) 
spodocephala 

NC_021445 

Emberiza aureola 
(Schoeniclus aureolus) 

NC_022150 

Emberiza chrysophrys NC_015233 

Emberiza cioides NC_024524 

Emberiza jankowskii NC_027251 

Emberiza pusilla NC_021408 

Emberiza rutila NC_024925 

Emberiza tristrami NC_015234 

Emeus crassus NC_002673 

Eophona migratoria NC_031374 

Eopsaltria australis NC_019665 

Eopsaltria georgiana NC_027230 

Eopsaltria griseogularis NC_027229 

Epthianura albifrons NC_019664 

Eremopsaltria 
mongolica 

NC_025616 

Eudocimus ruber NC_027504 

Eudromia elegans NC_002772 

Eudynamys taitensis NC_011709 

Eudyptes chrysocome NC_008138 

Eudyptula minor NC_004538 

Eulabeornis 
castaneoventris 

NC_025501 

Euphagus 
cyanocephalus 

NC_018827 

Eupsittula pertinax NC_015197 

Eurynorhynchus 
pygmeus 

NC_027496 

Eurystomus orientalis NC_011716 

Falco cherrug NC_026715 

Falco columbarius NC_025579 

Falco naumanni NC_029846 

Falco peregrinus NC_000878 

Falco rusticolus NC_029359 

Falco sparverius NC_008547 

Falco tinnunculus NC_011307 

Ficedula zanthopygia NC_015802 

Fidecula albicollis NC_021621 

Florisuga fusca NC_030287 

Florisuga mellivora NC_027455 

Forpus modestus HM755882 

Forpus passerinus NC_027843 
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Francolinus 
pintadeanus 

NC_011817 

Fregata sp. AP009192 

Fringilla coelebs NC_025599 

Fringilla montifringilla NC_024048 

Fringilla polatzeki NC_031157 

Fringilla teydea KU705760 

Fulica atra NC_025500 

Gallicolumba luzonica HM746790 

Gallicrex cinerea NC_028408 

Gallinula chloropus NC_015236 

Gallirallus australis KF425525 

Gallirallus okinawae NC_012140 

Gallirallus philippensis NC_025507 

Gallus gallus NC_001323 

Gallus lafayetii NC_007239 

Gallus sonneratii NC_007240 

Gallus varius NC_007238 

Garrulax affinis NC_029402 

Garrulax canorus NC_020429 

Garrulax cineraceus NC_024553 

Garrulax ocellatus NC_027657 

Garrulax perspicillatus NC_026068 

Garrulax 
poecilorhynchus 

NC_028082 

Garrulax sannio NC_028186 

Garrulus glandarius NC_015810 

Gavia pacifica NC_008139 

Gavia stellata NC_007007 

Geococcyx 
californianus 

NC_011711 

Geopelia striata HM746791 

Geospiza fortis KM891730 

Geotrygon violacea NC_015207 

Gerygone igata NC_029139 

Glaucidium brodiei KP684122 

Gnorimopsar chopi NC_018795 

Gorsachius goisagi NC_028194 

Gorsachius magnificus NC_028193 

Gorsachius 
melanolophus 

NC_028195 

Goura cristata LN589994 

Goura scheepmakeri NC_027947 

Goura victoria LN589993 

Gracula religiosa NC_015898 

Grus americana NC_020576 

Grus antigone NC_020581 

Grus canadensis NC_020582 

Grus carunculatus NC_020571 

Grus grus NC_020577 

Grus japonensis NC_020575 

Grus leucogeranus NC_020574 

Grus monacha NC_020578 

Grus nigricollis NC_020579 

Grus rubicunda NC_020580 

Grus vipio NC_021368 

Gymnomystax 
mexicanus 

NC_018812 

Haematopus ater NC_003713 

Haemorhous cassinii NC_025613 

Haemorhous 
mexicanus 

NC_025610 

Halcyon coromanda NC_028177 

Halcyon pileata NC_024198 

Halcyon smyrnensis KT965614 

Heliodoxa aurescens NC_030285 

Heliornis fulica NC_025499 

Hemignathus flavus NC_025608 

Hemignathus parvus NC_025622 

Hemignathus 
stejnegeri 

NC_025624 

Hemignathus virens KM078788 

Hemiphaga 
novaeseelandiae 

NC_013244 

Henicorhina leucosticta NC_024673 

Hesperiphona 
vespertina 

NC_025600 

Heteralocha 
acutirostris 

NC_031351 

Hieraaetus fasciatus NC_029188 

Himatione sanguinea NC_025602 

Hirundo rustica KX398931 

Hyliota flavigaster NC_024868 

Hylocharis cyanus NC_027453 

Ichthyaetus relictus NC_023777 

Icterus mesomelas JX516068 

Ithaginis cruentus NC_018033 

Ixobrychus 
cinnamomeus 

NC_015077 

Ixobrychus eurhythmus NC_025924 

Ixobrychus sinensis NC_025925 

Jacana jacana NC_024069 

Jacana spinosa NC_024068 

Lampropsar tanagrinus JX516057 

Lanius cristatus NC_028333 

Lanius isabellinus NC_027655 

Lanius schach NC_030604 
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Lanius sphenocercus KU884610 

Lanius tephronotus NC_021105 

Larus brunnicephalus NC_018548 

Larus crassirostris NC_025556 

Larus dominicanus NC_007006 

Larus vegae NC_029383 

Leiothrix argentauris NC_015114 

Leiothrix lutea NC_020427 

Lepidothrix coronata KJ909196 

Leptotila verreauxi NC_015190 

Leucocarbo 
(Phalacrocorax) 
chalconotus 

GU071054 

Leucosticte arctoa NC_025615 

Leucosticte brandti NC_025604 

Lewinia muelleri NC_025502 

Lonchura punctulata NC_028036 

Lonchura striata NC_029475 

Lophophanes dichrous KX388477 

Lophophorus lhuysii NC_013979 

Lophophorus sclateri NC_020589 

Lophura ignita NC_010781 

Lophura nycthemera NC_012895 

Lophura swinhoii NC_023779 

Loxia curvirostra NC_025623 

Loxops caeruleirostris NC_025605 

Loxops coccineus NC_025612 

Loxops mana NC_025598 

Luscinia calliope NC_015074 

Luscinia cyanura NC_026067 

Lyrurus tetrix NC_024554 

Machlolophus 
spilonotus 

KX388476 

Macroagelaius 
imthurni 

NC_018810 

Malurus 
melanocephalus 

NC_024873 

Mareca (Anas) falcata NC_023352 

Megalurus pryeri NC_029151 

Megalurus punctatus NC_029138 

Melamprosops 
phaeosoma 

NC_025617 

Meleagris gallopavo NC_010195 

Meleagris ocellata KU094576 

Melophus lathami KX702277 

Melopsittacus 
undulatus 

NC_009134 

Menura 
novaehollandiae 

NC_007883 

Mergus squamatus NC_016723 

Micrastur gilvicollis NC_008548 

Minla ignotincta NC_030588 

Mionectes oleagineus NC_024682 

Moho braccatus NC_031348 

Mohoua 
novaeseelandiae 

KC545409 

Molothrus aeneus NC_018806 

Molothrus badius NC_018811 

Montifringilla adamsi NC_025913 

Montifringilla nivalis NC_025911 

Montifringilla ruficollis NC_022815 

Montifringilla 
taczanowskii 

NC_025914 

Morus serrator GU071056 

Motacilla alba NC_029229 

Motacilla cinerea NC_027933 

Motacilla lugens NC_029703 

Mullerornis agilis KJ749825 

Myadestes 
myadestinus 

NC_031352 

Myiopsitta monachus NC_027844 

Nannopterum 
brasilianus 

NC_029758 

Neophema 
chrysogaster 

NC_019804 

Nesopsar nigerrimus NC_018794 

Nestor notabilis NC_027845 

Netta rufina NC_024922 

Ninox novaeseelandiae NC_005932 

Ninox scutulata NC_029384 

Nipponia nippon NC_008132 

Nisaetus alboniger NC_007599 

Nisaetus nipalensis NC_007598 

Notiomystis cincta NC_029140 

Nucifraga columbiana NC_022839 

Numenius phaeopus NC_030507 

Numida meleagris NC_006382 

Nyctibius grandis EU344977 

Nyctibius griseus HM746792 

Nycticorax nycticorax NC_015807 

Nymphicus hollandicus NC_015192 

Oedistoma iliolophum 
(iliolophus) 

NC_024865 

Oreomystis bairdi NC_025628 

Oreopsar bolivianus NC_018797 

Oreotrochilus 
melanogaster 

NC_027454 

Oriolus chinensis NC_020424 



284 
 

Orthopsittaca manilata NC_029161 

Otis tarda NC_014046 

Otus bakkamoena NC_028163 

Otus scops NC_028162 

Pachyplichas yaldwyni KX369036 

Padda oryzivora NC_028441 

Pandion haliaetus NC_008550 

Paradoxornis fulvifrons NC_028436 

Paradoxornis nipalensis NC_028437 

Paradoxornis 
webbianus 

NC_024539 

Paroreomyza montana NC_025601 

Parus major NC_026293 

Parus monticolus NC_028187 

Parus venustulus NC_026701 

Passer ammodendri NC_029344 

Passer domesticus NC_025611 

Passer montanus NC_024821 

Pavo cristatus NC_024533 

Pavo muticus NC_012897 

Pelagodroma marina KC875856 

Pelecanus 
conspicillatus 

DQ780883 

Penelopides panini NC_015087 

Perdix dauurica NC_020588 

Perdix hodgsoniae NC_023940 

Pericrocotus ethologus NC_024257 

Periparus ater NC_026223 

Petroica australis NC_029141 

Petroica boodang NC_019666 

Petroica goodenovii NC_019667 

Petroica macrocephala NC_029142 

Petroica phoenicea NC_019668 

Phaethon lepturus NC_027275 

Phaethon rubricauda NC_007979 

Phaethornis hispidus KP853098 

Phaethornis malaris NC_030288 

Phalacrocorax carbo NC_027267 

Phalcoboenus australis KP064202 

Phasianus colchicus NC_015526 

Phasianus versicolor NC_010778 

Philesturnus 
carunculatus 

NC_029143 

Phodilus badius NC_023787 

Phoebastria albatrus NC_026190 

Phoebastria 
immutabilis 

NC_026189 

Phoebastria nigripes NC_026188 

Phoenicopterus roseus NC_010089 

Phoenicopterus ruber NC_027934 

Phoenicurus auroreus NC_026066 

Pica pica NC_015200 

Picathartes 
gymnocephalus 

KJ909200 

Picoides pubescens NC_027936 

Pinguinus impennis NC_031347 

Pinicola enucleator NC_025609 

Pipile pipile KU221053 

Pitta nympha NC_027067 

Platalea leucorodia NC_012772 

Platalea minor NC_010962 

Podiceps cristatus NC_008140 

Podoces hendersoni NC_014879 

Poecile atricapilla NC_024867 

Poecile montanus KX388479 

Poecile palustris NC_026911 

Polyplectron 
bicalcaratum 

NC_012900 

Polyplectron germaini NC_023264 

Polyplectron 
napoleonis 

NC_024615 

Pomatorhinus ruficollis NC_029769 

Poospiza cabanisi NC_028038 

Poospiza lateralis NC_028039 

Poospiza thoracica NC_028037 

Porphyrio hochstetteri NC_010092 

Porphyrio porphyrio NC_025508 

Primolius couloni NC_025742 

Primolius maracana NC_029322 

Prioniturus luconensis NC_027846 

Procellaria cinerea AP009191 

Progne chalybea NC_020605 

Prosthemadera 
novaeseelandiae 

NC_029144 

Prunella montanella NC_027284 

Prunella strophiata KU975800 

Psephotellus 
pulcherrimus 

NC_031358 

Pseudoleistes 
guirahuro 

NC_018809 

Pseudoleistes virescens NC_018805 

Pseudonestor 
xanthophrys 

NC_025630 

Pseudopodoces humilis NC_014341 

Psittacara 
acuticaudatus 

NC_020325 

Psittacara brevipes NC_021764 
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Psittacara rubritorquis NC_026042 

Psittacus erithacus NC_027847 / 
KM611474 

Psittirostra psittacea NC_031353 

Psittrichas fulgidus NC_027848 

Pterocnemia pennata NC_002783 

Pteroglossus azara NC_008549 

Ptilopachus petrosus NC_024616 

Pucrasia macrolopha NC_020587 

Pycnonotus 
melanicterus 

NC_024730 

Pycnonotus sinensis NC_013838 

Pycnonotus taivanus NC_013483 

Pycnonotus 
xanthorrhous 

KX129905 

Pygoscelis adeliae NC_021137 

Pygoscelis antarcticus NC_021474 

Pyrgilauda blanfordi NC_025912 

Pyrgilauda davidiana NC_025915 

Pyrrhocorax graculus NC_025927 

Pyrrhocorax 
pyrrhocorax 

NC_025926 

Pyrrhula pyrrhula NC_025625 

Pyrrhura rupicola NC_028404 

Quiscalus quiscula NC_018803 

Rallina eurizonoides NC_012142 

Recurvirostra avosetta NC_027420 

Regulus calendula NC_024866 

Regulus regulus NC_029837 

Remiz consobrinus NC_021641 

Rhea americana NC_000846 

Rhipidura fuliginosa NC_029145 

Rhynchopsitta terrisi NC_021771 

Rhynchortyx cinctus KJ914547 

Rhynochetos jubatus NC_010091 

Sagittarius 
serpentarius 

NC_023788 

Sasia ochracea NC_028019 

Saundersilarus 
saundersi 

NC_017601 

Sceloglaux albifacies KX098448 

Scolopax rusticola NC_025521 

Scytalopus 
magellanicus 

KJ909189 

Serinus albogularis NC_025595 

Serinus canaria NC_023375 

Serinus dorsostriatus NC_025621 

Sitta carolinensis NC_024870 

Smithornis sharpei NC_000879 

Spheniscus demersus NC_022817 

Spilornis cheela NC_015887 

Spizixos semitorques NC_029321 

Stachyris ruficeps NC_030771 

Stercorarius 
maccormicki 

NC_026125 

Sternula albifrons NC_028176 

Streptopelia chinensis NC_026459 

Streptopelia decaocto KX372273 

Streptopelia orientalis NC_031447 

Strigops habroptilus NC_005931 

Strix leptogrammica KC953095 

Struthio camelus NC_002785 

Sturnus cineraceus NC_015237 

Sturnus nigricollis NC_020423 

Sturnus sericeus NC_014455 

Sturnus vulgaris NC_029360 

Sylvia atricapilla NC_010228 

Sylvia crassirostris NC_010229 

Sylviparus modestus NC_026793 

Synthliboramphus 
antiquus 

NC_007978 

Synthliboramphus 
wumizusume 

NC_029328 

Syrmaticus ellioti NC_010771 

Syrmaticus humiae NC_010774 

Syrmaticus reevesii NC_010770 

Syrmaticus 
soemmerringi 

NC_010767 

Tachybaptus 
novaehollandiae 

NC_010095 

Tachybaptus ruficollis NC_024594 

Tachycineta albilinea NC_020601 

Tachycineta albiventer NC_020602 

Tachycineta bicolor NC_020596 

Tachycineta 
cyaneoviridis 

NC_020599 

Tachycineta euchrysea NC_020598 

Tachycineta leucorrhoa NC_020603 

Tachycineta meyeni NC_020604 

Tachycineta stolzmanni NC_020600 

Tachycineta thalassina NC_020597 

Tadorna ferruginea NC_024640 

Tadorna tadorna NC_024750 

Taeniopygia guttata NC_007897 

Tanygnathus 
lucionensis 

KM611480 

Tetraogallus 
himalayensis 

NC_027279 
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Tetraogallus tibetanus NC_023939 

Tetraophasis obscurus NC_018034 

Tetraophasis szechenyii NC_020613 

Tetrastes bonasia NC_020591 

Tetrastes sewerzowi NC_025318 

Thalassarche 
melanophrys 

NC_007172 

Thamnophilus 
nigrocinereus 

KJ909192 

Thraupis episcopus NC_025596 

Threskiornis 
aethiopicus 

NC_013146 

Tinamus guttatus NC_027260 

Tinamus major NC_002781 

Todiramphus sanctus NC_011712 

Tragopan caboti NC_013619 

Tragopan temminckii NC_020586 

Traversia lyalli KX369034 

Tregellasia capito NC_027231 

Tregellasia leucops NC_024871 

Tringa erythropus NC_030585 

Trogon viridis NC_011714 

Turdus eunomus NC_028273 

Turdus hortulorum NC_024552 

Turdus merula NC_028188 

Turdus migratorius NC_024872 

Turdus naumanni KJ834096 

Turdus philomelos NC_029147 

Turdus rufiventris NC_028179 

Turnagra capensis NC_028336 

Turtur tympanistria HM746793 

Tyto alba EU410491 

Tyto longimembris KP893332 

Upupa epops NC_028178 

Uragus sibiricus NC_025594 

Urocissa 
erythrorhyncha 

NC_020426 

Vanellus cinereus NC_025514 

Vanellus vanellus NC_025637 

Vestiaria coccinea NC_025620 

Vidua chalybeata NC_000880 

Vireo olivaceus NC_024869 

Xanthopsar flavus NC_018804 

Xenicus gilviventris KX369033 

Xenicus longipes KX369035 

Yuhina diademata NC_029462 

Zenaida auriculata NC_015203 

Zoothera dauma KT340629 

Zosterops 
erythropleurus 

NC_027942 

Zosterops japonicus KT601061 

Zosterops lateralis NC_029146 
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Appendix 4: Accession numbers for shorebird species’ mitocondrial DNA 

data (Chapter 2) 

 

Arenaria interpres 

Barcode of Life Locality 

BISE200-08 Sweden, Oland 

BISE323-08 Sweden, Oland 

BON092-06 Norway, Finnmark 

BON222-07 Norway, Finnmark 

BOTW060-04 US, Florida 

BROM274-06 Canada, Nunavut 

BROM276-06 Norway, Finnmark 

BROM277-06 Russia, Krasnoyarsk 

BROM711-07 US, Alaska 

HCBR177-04 Canada, Nunavut 

KBPBU194-06 Russia, Chukot 

KBPBU195-06 Russia, Magadan 

KBPBU196-06 Russia, Promorsky Krai 

KBPBU197-06 Russia, Kamchatka Krai 

SWEBI026-11 Sweden, Oeland 

 

Calidris alpina 

GenBank Locality 

L06721 - L06755 See Wenink et al. (1993) 

KP205178 - KP205271 See Miller et al. (2015) 

 

Calidris canutus 

Barcode of Life GenBank Locality 

BROM307-06 
 

Argentina, Tierra del Fuego 

BROM310-06 
 

Australia, Queensland 

BROM308-06 
 

Australia, W Australia 

BROM309-06 
 

Australia, W Australia 

BROM311-06 
 

Canada, Nunavut 

BROM312-06 
 

Canada, Nunavut 

TZBNA133-03 AY666343 Canada, Quebec 

BOTW061-04 DQ432799 US, Florida 

BROM319-06 
 

US, Florida 

BROM314-06 
 

Netherlands, Friesland 

BROM315-06 
 

Netherlands, Friesland 
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BON373-07 GU571299 Norway, Troms 

BON374-07 GU571300 Norway, Troms 

BROM316-06 
 

New Zaeland, North Auckland 

KBPBU218-06 GQ481436 Russia, Chukot 

KBPBU219-06 GQ481437 Russia, Chukot 

BROM317-06 
 

Russia, Krasnoyarsk 

BROM318-06 
 

Russia, Krasnoyarsk 

KBPBU220-06 GQ481435 Russia, Magadan 

BISE180-08 GU571779 Sweden 

BISE378-08 GU571778 Sweden, Ostergotland 

 

Calidris ptilocnemis 

GenBank Subspecies 

AY156153 - AY156154 quarta 

AY156101 - AY156105 couersi 

AY156233 - AY156237 couersi 

AY156247 - AY156251 tschuktschorum 

AY156154 - AY156258 tschuktschorum 

AY156137 - AY156141 tschuktschorum 

AY156143 tschuktschorum 

AY156252 - AY156253 tschuktschorum 

AY156143 - AY156147 ptilocnemis 

AY156148 - AY156152 ptilocnemis 

 

Charadrius hiaticula 

Barcode of Life GenBank Locality 

BISE201-08 GU571812 Sweden, Oland 

BISE327-08 GU571811 Sweden, Oland 

BOTW173-04 DQ432843 UK, Suffolk 

GBIR5698-15 KF946637 Netherlands 

BOTW300-05 DQ432844 Iceland, Sudurnes, Keflavik 

BROM640-07 
 

Iceland, Sudurnes, Keflavik 

BROM735-07 
 

Iceland, Sudurnes, Keflavik 

BROM639-07 
 

South Africa, Western Cape 

BON022-06 GU571330 Norway, Finnmark 

BON218-07 GU571331 Norway, Finnmark 

BROM491-07 
 

Russia, Chukot Autonomus Okrug 

BROM667-07 
 

Finland, Lapland 

BROM668-07 
 

Russia, Yamal-Nenets 

BROM879-08 
 

Russia, Chukot Autonomus Okrug 
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Limosa limosa 

Barcode of Life GenBank Subspecies 
 

JQ657321 islandica 
 

JQ657320 Islándica 
 

JQ657319 Islándica 
 

JQ657318 limosa 
 

JQ657317 limosa 
 

JQ657316 limosa 
 

JQ657315 limosa 
 

JQ657314 limosa 
 

JQ657313 limosa 
 

JQ657312 limosa 
 

JQ657311 limosa 
 

JQ657310 limosa 
 

JQ657309 limosa 
 

JQ657308 limosa 
 

JQ657307 limosa 
 

JQ657306 limosa 
 

JQ657305 limosa 
 

JQ657304 limosa 
 

JQ657303 limosa 
 

JQ657302 limosa 
 

JQ657301 limosa 
 

JQ657300 limosa 
 

JQ657299 limosa 
 

JQ657298 limosa 
 

JQ657297 limosa 
 

JQ657296 limosa 
 

JQ657295 limosa 
 

JQ657294 limosa 
 

JQ657293 limosa 
 

JQ657292 limosa 
 

JQ657291 limosa 
 

JQ657290 limosa 
 

JQ657289 limosa 
 

JQ657288 limosa 
 

JQ657287 limosa 
 

JQ657286 limosa 
 

JQ657285 limosa 
 

JQ657284 limosa 
 

JQ657283 limosa 
 

JQ657282 limosa 
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JQ657281 limosa 

 
JQ657280 limosa 

 
JQ657279 limosa 

 
JQ657278 limosa 

 
JQ657277 limosa 

 
JQ657276 limosa 

 
JQ657275 limosa 

 
JQ657274 limosa 

 
JQ657273 limosa 

 
JQ657272 limosa 

 
JQ657271 limosa 

 
JQ657270 limosa 

 
JQ657269 limosa 

 
JQ657268 limosa 

 
JQ657322 melanuroides 

BROM195-06 
 

islandica 

BROM196-06 
 

islandica 

BROM203-06 
 

limosa 

BROM204-06 
 

limosa 

BROM215-06 
 

melanuroides 

BROM248-06 
 

melanuroides 

BROM817-07 
 

limosa 

BROM818-07 
 

limosa 

BROM819-07 KF009544 islandica 

BROM820-07 
 

melanuroides 

BROM821-07 KF009543 melanuroides 

BROM822-07 
 

melanuroides 

BROM823-07 
 

melanuroides 

BROM905-08 
 

islandica 

BROM906-08 
 

melanuroides 

BROM907-08 
 

melanuroides 

KBPBU152-06 GQ482065 melanuroides 

KBPBU779-06 GQ482064 melanuroides 

KBPBU780-06 GQ482062 melanuroides 

KKB290-05 GQ482063 melanuroides 

KKB728-05 GQ482066 melanuroides 

SWEBI020-11 
 

limosa 
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Pluvialis apricaria 

Barcode of Life GenBank Region 

GBIR5699-15 KF946832 Netherlands 

GBIR5700-15 KF946831 Netherlands 

BROM586-07 
 

Finland, Lapland 

BROM832-07 
 

Finland, Lapland 

BON214-07 GU571580 Norway, Finnmark 

BON220-07 GU571581 Norway, Finnmark 

KBPBU168-06 GQ482505 Russia, Murmansk 

KBPBU169-06 GQ482507 Russia, Murmansk 

BROM656-07 
 

Russia, Yamal-Nenets Autonomous Okrug 

KBPBU170-06 GQ482506 Russia, Yamal-Nenets Autonomous Okrug 

KBPBU171-06 GQ482504 Russia, Yamal-Nenets Autonomous Okrug 

BISE481-08 GU572050 Sweden 

BISE482-08 GU572049 Sweden 

BOTW044-04 JN801365 Sweden, Lappland 

BISE038-07 GU572051 Sweden, Stockholm 

BROM609-07 
 

Netherlands, Friesland 

BROM831-07   Germany, Schleswig-Holstein 

 

Pluvialis dominica 

Barcode of Life GenBank Region 

KB606-04 DQ433964 Canada, Manitoba 

KB607-04 DQ433963 Canada, Manitoba 

KB608-04 DQ433962 Canada, Manitoba 

BROM554-07 
 

Canada, Nunavut 

BROM595-07 
 

Canada, Nunavut 

BROM608-07 
 

Canada, Nunavut 

BROM702-07 
 

Canada, Nunavut 

BROM833-07 
 

Canada, Ontario 

BROM549-07 
 

US, Alaska 

BBB603-13 KM896538 Brazil 

KAARG440-07 FJ028119 Argentina 

BROM548-07 
 

Argentina, Chubut 

TZB136-03 AY666317 US, Texas 

 

Pluvialis fulva 

Barcode of Life GenBank Region 

BROM606-07 
 

Russia, Chukot Autonomous Okrug 

BROM834-07 
 

Russia, Chukot Autonomous Okrug 

KBPBU165-06 GQ482509 Russia, Magadan 
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KBPBU166-06 GQ482508 Russia, Magadan 

KBPBU167-06 GQ482510 Russia, Sakha-Yakutia 

GBIR5346-13 JX297482 - 

BROM598-07 
 

Australia, W Australia 

CDAMH084-05 DQ433122 Singapore 

GBIR475-07 EF515745 South Korea 

KBBI090-07 
 

South Korea, Seoul-si 

SIBHI003-11 JF498890 US, Hawaii 

SIBHI004-11 JF498889 US, Hawaii 

SIBHI077-11 JF498888 US, Hawaii 

BOTW045-04 DQ433123 US, Johnston Atoll 

 

 

Pluvialis squatarola 

Barcode of Life GenBank Region Barcode of Life 

GBIR5702-15 KF946834 Netherlands? squatarola NET1 

GBIR5703-15 KF946833 Netherlands? squatarola NET2 

TZB154-03 AY666203 Canada, Alberta squatarola CAN1 

BROM441-06 
 

Canada, Nunavut squatarola CAN2 

BROM615-07 
 

Canada, Ontario squatarola CAN3 

KBPBU161-06 GQ482514 Russia, Chukot Autonomous Okrug squatarola RUS1 

KBPBU162-06 GQ482511 Russia, Chukot Autonomous Okrug squatarola RUS2 

BROM440-06 
 

Russia, Krasnoyarsk Krai squatarola RUS3 

BROM584-07 
 

Russia, Krasnoyarsk Krai squatarola RUS4 

BROM837-07 
 

Russia, Krasnoyarsk Krai squatarola RUS5 

KBPBU164-06 GQ482513 Russia, Magadan squatarola RUS6 

KBPBU163-06 GQ482512 Russia, Sakha-Yakutia squatarola RUS7 

BISE390-08 GU572052 Sweden, Stockholm squatarola SWE1 

BROM442-06 
 

Netherlands squatarola NET3 

BROM601-07 
 

Australia, W Australia squatarola aus 

BROM839-07 
 

Brazil squatarola bra 

BROM579-07 
 

Guinea-Bissau squatarola guin1 

BROM836-07 
 

Guinea-Bissau squatarola guin2 

GBIR474-07 EF515746 South Korea squatarola kor1 

KBBI181-07 
 

South Korea, Gangwon squatarola kor2 

BOTW046-04 DQ433124 US, Florida squatarola flo1 

BROM665-07 
 

US, Florida squatarola flo2 

BROM838-07 
 

US, Florida squatarola flo3 

BROM840-07 
 

US, Georgia squatarola flo4 

TZB145-03 AY666202 US, Texas squatarola tex 
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Appendix 5: mtDNA molecular clock substitution rates estimations 

 

Appendix 6: Bayesian phylogenetic tree 
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Figure S1 (next pages): Time-calibrated avian phylogenetic tree based on complete 

mitochondrial genomes of from 621 bird species. Orders indicated in different colors. 
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