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Abstract

Global Navigation Satellite Systems (GNSS) have become an indispensable tool in dif-

ferent areas in our modern society for positioning purposes using radio-frequency ranging

signals. Some application examples are the positioning and navigation in ground, mar-

itime and aviation environments, as well as their use in agriculture, surveying and precise

timing and synchronization in communication systems and finances. The tracking stage

is one of the core tasks within a GNSS receiver to keep aligned with the satellites and,

to date, most receivers equip conventional tracking techniques with ease of implementa-

tion that suffice to operate in environments with favorable working conditions. However,

in the recent years, the success of GNSS in open-sky environments has led to the emer-

gence of applications that expand toward scenarios with harsher conditions, such as urban

canyons and soft-indoor environments. The trend is to provide user mobile terminals such

as smartphones with positioning capabilities in scenarios where receivers face new tech-

nological challenges owing to the abounding propagation impairments. In this sense, the

so-called ionospheric scintillation is one of the issues degrading the performance of GNSS

receivers, particularly in equatorial regions and at high latitudes. It introduces rapid

carrier phase and signal power variations, and has a detrimental effect particularly onto

the tracking stage.

The objective of this thesis is to design and develop new techniques for the robust

tracking of GNSS signals affected by ionospheric scintillation disturbances. The presented

approach is based on the use of Kalman filtering techniques, and the main contributions

of the thesis are three. First, the analysis of ionospheric scintillation and the tracking of

carrier dynamics despite the presence of the former. We design a Kalman filter with a hy-

brid formulation that allows the robust monitoring of both contributions separately. This

arises from carrying out a detailed analysis of ionospheric scintillation which concludes

that scintillation phase variations can be characterized through autoregressive processes,

and thus be dealt with within the Kalman filter in a natural manner. Second, the design

of adaptive Kalman filter-based techniques that allow self-adjusting their loop bandwidth
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to the actual scintillation conditions, which are rather time-varying in practice. This

part includes a scintillation detector, a real-time estimator of the autoregressive model

parameters, and an implementation to address the problem of non-linear signal amplitude

attenuation introduced by scintillation itself. The goodness of the proposed techniques

is later validated by carrying out an extensive simulation campaign using both synthetic

data and real scintillation time series, and the outperformance region with respect to

conventional tracking techniques is quantified. Third, a novel method for the deriva-

tion of expressions for the termed Bayesian Cramér-Rao bound (BCRB), which allow

characterizing the behavior of Kalman filters in a closed-form manner, thus becoming a

contribution to the literature of practical usefulness to design Kalman filters for any kind

of application.



Resumen

Las tecnoloǵıas de posicionamiento por satélite (GNSS, del inglés global navigation

satellite systems) se han convertido en una herramienta indispensable en diferentes

ámbitos de nuestra sociedad moderna. Algunos ejemplos de aplicaciones son el posi-

cionamiento y la navegación en entornos terrestre, maŕıtimo y aéreo, aśı como usos desti-

nados a la agricultura, topograf́ıa o aplicaciones de sincronización precisa en sistemas de

telecomunicaciones o finanzas. El módulo de tracking es una de las etapas centrales para

mantener los receptores alineados con los satélites, y hasta ahora se han empleado técnicas

de tracking convencionales de fácil implementación que son suficientes para operar en es-

cenarios con unas condiciones de trabajo favorables. Sin embargo, en los últimos años, el

éxito de GNSS en entornos a cielo abierto ha propiciado su expansión hacia aplicaciones en

escenarios más exigentes, tales como cañones urbanos o interiores. La tendencia es dotar

a los terminales móviles (smartphones) de capacidades de posicionamiento en entornos en

donde se enfrentan a nuevos retos tecnológicos dados por los problemas de propagación

que abundan. En este sentido, el centelleo ionosférico (ionospheric scintillation en inglés),

es uno de los problemas que degradan las prestaciones de los receptores, particularmente

en zonas equatoriales y a altas latitudes. Es un efecto que introduce rápidas variaciones

aleatorias en la fase y la potencia de la señal, y tiene un efecto perjudicial precisamente

en la etapa de tracking del receptor.

El objetivo de esta tesis es diseñar y desarrollar nuevas técnicas para el tracking ro-

busto de señales GNSS afectadas por el efecto de centelleo ionosférico. La propuesta que se

presenta está basada en el uso de técnicas de filtrado de Kalman, y las contribuciones prin-

cipales de esta tesis son tres. En primer lugar se estudia el efecto de centelleo ionosférico

y el tracking de la dinámica del receptor a pesar de su presencia. Diseñamos un filtro

de Kalman con una formulación h́ıbrida que permite monitorizar ambas contribuciones

por separado de manera robusta. Esto surge de realizar un análisis detallado del centelleo

ionosférico en el que se concluye que las variaciones de fase se pueden caracterizar a través

de procesos autoregresivos, los cuales se pueden tratar mediante el filtro de Kalman de
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manera natural. En segundo lugar se diseñan técnicas de filtrado de Kalman adaptativas

que permiten ajustar su ancho de banda en función de las condiciones de centelleo, las

cuales suelen ser variantes en el tiempo en la práctica. Esta parte incluye un detector de

presencia de centelleo, un estimador en tiempo real de los parámetros del modelo autore-

gresivo, y una implementación para lidiar con las atenuaciones no lineales introducidas

por el mismo centelleo. El funcionamiento de las técnicas propuestas se valida posterior-

mente mediante una campaña extensiva de simulaciones utilizando tanto datos sintéticos

como datos reales de centelleo ionosférico, y se cuantifica la región de ganancia respecto a

las técnicas convencionales. Por último se propone un innovador método para derivar ex-

presiones para la denominada cota Bayesiana de Cramér-Rao (BCRB, del inglés Bayesian

Cramér-Rao bound) que permiten caracterizar el comportamiento de los filtros de Kalman

de manera cerrada. Esto supone una contribución a la literatura de gran interés práctico

para diseñar filtros de Kalman para cualquier tipo de aplicación.



Agradecimientos
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∆ñ
σ2
wÓ

c
.
� pñ
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Notation

In the sequel, matrices are indicated by uppercase boldface letters, vectors are

indicated by lowercase boldface letters, and scalars are indicated by italic letters. Other

specific notation has been introduced as follows:

|a| Absolute value of scalar a.

||a|| Norm 2 of vector a.

� Approximately equal to.

.
� Defined as.

A�, AT , AH , A�1 Complex conjugate, transpose, conjugate transpose (Hermitian)

and inverse of matrix A, respectively.

rasi, rAsi,j , Ai,j ith element of vector a, and element from ith row, jth column of

matrix A, respectively.

In Identity matrix with dimension m.

an, An Vector a and matrix A whose dimensions depend on the scalar n

with unspecified value.

apnq, Apnq Vector a and matrix A whose values depend on the scalar n.

E ras, E rAs Expectation operation on vector a and matrix A, respectively.

Tr pAq Trace of matrix A as the sum of the diagonal elements.

diag pAq Vector containing the diagonal elements of matrix A.

1 Vector of ones.

0r�c Matrix of zeros with r rows ans c columns.
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Chapter 1

Thesis Introduction

1.1 Motivation

In the recent years, Global Navigation Satellite Systems (GNSS) have become an in-

dispensable tool in our modern society to provide a real-time estimation of one’s position

using ranging radio-frequency signals. Nowadays, the use of GNSS ranges from scientific

applications such as surveying and geodesy, to agriculture or precise timing in finances,

to safety-critical applications such as aviation and maritime navigation, just to mention

a few. One of the core tasks performed within GNSS receivers is signal tracking, which

is carried out by the so-called tracking stage. It is in charge of keeping the receiver syn-

chronized with the signals received from different satellites orbiting around the Earth, as

well as precisely monitoring any variation in the dynamics observed between these and

the receiver. In this sense, an upward trend is to employ the carrier phase measurements

instead of pseudorange ones, as they are of better quality and provide ultra-precise posi-

tioning information, and thus their exploitation by means of carrier tracking becomes of

paramount importance for high-accuracy positioning applications, and the computation

of navigation and integrity data for GNSS ground segments [Mac12].

The most mature and widespread GNSS is the American Global Positioning System

(GPS). The initial user receiving equipments date from the mid-1970s and were originally

devoted to military applications; they were large, bulky and heavy [Kap05], designed to

operate in open-sky environments with clear visibility of the satellites. For this reason,

most of the existing GNSS receivers implement carrier tracking using a very simple tech-

nique, the well-known phase-locked loop (PLL), which provides good performance in these

1
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environments with ease of implementation. It is a closed-loop architecture that compares

a local replica with the received signal and drives the resulting error to zero by adjusting

the phase of the local oscillator. However, technology trends in component miniaturiza-

tion, low-power consumption and large-scale manufacturing have led current and future

GNSS receivers to be compact, light and low-cost. As a matter of fact, current GNSS

receivers are embedded in many of the items we use in our daily lives, such as smartphones

and automobiles, which are considered to be the next-generation GNSS receivers thanks

to their growing computational capabilities. Indeed, smartphones account for almost 80%

of the global installed base of GNSS devices, and the number of units in use is expected

to exceed 9 bilion by 2025 [GSA17]. Therefore, there exists a commercial push for pro-

viding user mobile terminals with ubiquitous positioning capabilities that has led to the

emergence of a new era of GNSS applications taking place in scenarios very different from

those for which GNSS was originally conceived [Mis06]. A clear example is autonomous

vehicle navigation, or automatic guidance and airplane landing, and we are referring to the

urban and soft-indoor arena, where propagation impairments and time-varying working

conditions abound.

On the other hand, the expansion of GNSS in emerging countries has unveiled the

need to cope with the so-called ionospheric scintillation effect [Kin07]. The ionosphere is

the upper Earth’s atmosphere ionized by solar radiation, and has a significant influence

on transionospheric radio wave propagation. The ionospheric electron density irregular-

ities introduce rapid random amplitude and phase fluctuations onto GNSS signals when

crossing the ionosphere, as illustrated in Figure 1.1, thus hampering the proper determi-

nation of the receiver synchronization parameters. The effect of ionospheric scintillation

is known to be highly dependent on the solar activity and the location on the Earth,

as illustrated in Figure 1.2. For instance, at high latitudes (i.e. auroral and polar re-

gions), phase scintillations are more frequent than amplitude scintillations [Jia13, Sko05].

At mid latitudes ionospheric scintillation is observed particularly after intense magnetic

storms originated from solar eruptions [Mac12]. However, the effects are more prominent

at low-latitude/equatorial regions, where scintillation events are found to be more intense

in both amplitude and phase [Kin09, Jia15, Seo09], thus posing serious concerns to the

widespread deployment of GNSS in those areas.

The weak link in GNSS receivers under the presence of scintillation disturbances is

the carrier tracking loop, especially the conventional PLL architecture [Lee17], which is

known to experience serious trouble to deal with such impairment. This motivates the

research and development of new signal processing techniques for robust carrier tracking
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Figure 1.1: Illustrative example of signal amplitude (left) and phase variations (right)

introduced by ionospheric scintillation.

Figure 1.2: Scintillation map showing the frequency of ionospheric disturbances onto the

different regions of the Earth [Kin09].

to deal with the challenges to be faced by next generation GNSS receivers, with special

emphasis on ionospheric scintillation. Indeed, this necessity has been identified by the

European Space Agency (ESA) and materialized in form of the ”Robust Carrier Phase

Tracking” (ROCAT) project, within whose framework this thesis has been developed, as

an opportunity to enhance the positioning accuracy of GNSS receivers under the presence

of scintillation disturbances.
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1.2 Objectives

Ionospheric scintillation is certainly a critical challenge having a detrimental impact

in conventional GNSS receivers. In order to deal with it at the tracking stage, this thesis

tackles the carrier tracking problem through the use of Kalman filter-based techniques,

as a result of considering the general framework of optimal minimum mean squared error

(MMSE) estimation. The main contribution of this thesis is the design of Kalman filter-

based techniques to deal with scintillation disturbances in a natural manner. In GNSS

positioning applications, the idea is to estimate carrier dynamics and ionospheric scintil-

lation separately, so that the latter can be virtually eliminated from the input signal and

thus clean scintillation-free carrier phase measurements can be provided. Notwithstand-

ing, it is worth noting that the problem could also be seen the other way around. That

is, to estimate scintillation in the presence of carrier dynamics, so that the latter can be

virtually eliminated and clean scintillation estimates can eventually be provided. There-

fore, the proposed approach could ultimately be used for scientific applications relying on

ionospheric scintillation monitoring (ISM).

On the other hand, from the practical standpoint, during the design of Kalman filters it

is often interesting to determine the best achievable performance and predict its behavior

before implementation. This is usually addressed by means of the so-called Bayesian

Cramér-Rao bound (BCRB) which, unfortunately, does not present a solution in closed-

form, thus hampering the analysis of the filter in practice. This thesis also tackles this

limitation by proposing a novel method for the derivation of closed-form expressions in

order to characterize the performance of Kalman filters in a straightforward manner. To

the best of the author’s knowledge, the proposed approach is a novel contribution to the

literature with great practical interest for any kind of application.

Based on the above observations, the main objectives of this thesis are to:

1. Following the recent trends, present the Kalman filter as the natural improvement

to conventional PLLs in order to deal with the technological challenges to be faced

by next-generation receivers.

2. Propose a method for the derivation of closed-form expressions for the BCRB of

Kalman filters, which provide a better understanding on the Kalman filter behavior

without having to solve for the BCRB by means of numerical evaluations.

3. Perform a thorough characterization of ionospheric scintillation disturbances. Ex-
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plore the feasibility of modeling scintillation phase variations through a linear Gaus-

sian model, so that it can be encompassed by Kalman filter-based techniques in a

natural manner. Analyze the impact of thermal noise onto the scintillation modeling

process for a better characterization in realistic scenarios.

4. Propose a Kalman filter-based architecture to estimate scintillation phase variations,

with the aim of subtracting them from the input signal and thus be able to provide

accurate scintillation-free carrier phase measurements.

5. Design and develop adaptive implementations to deal with the time-varying nature

of ionospheric scintillation and provide optimal performance in these conditions.

6. Carry out an extensive simulation campaign using synthetic scintillation data, and

evaluate the performance of the different proposed techniques. Quantify their out-

performance with respect to that of conventional PLLs. Validate the results ob-

tained with synthetic data using real scintillation time series.

1.3 Thesis Outline and Publications

This section provides a summary of the content of this dissertation. The work in this

thesis has led to a number of international conference and journal publications, which are

also listed below.

Chapter 2 presents the basic notions of GNSS technologies. The space and ground de-

ployments are briefly described, and the positioning principle is explained, which mainly

consists in measuring the distance from the receiver to several satellites. Then, the dif-

ferent stages of GNSS receivers are presented, placing special emphasis onto the tracking

stage. The aim is to provide fine estimates of the parameters used to keep synchronized

with the satellites. To this end, the carrier and code loops are employed, and the solutions

adopted in conventional receivers are described. Then, the mathematics for the position

determination are explained, where some guidelines for positioning in high-sensitivity

receivers are also provided.

Chapter 3 introduces the fundamentals of the Kalman filtering problem. Some guidelines

for the set-up and tuning of the filter are provided, and the formulation for the particu-

lar problem of GNSS carrier dynamics tracking is presented. The main contribution of

this chapter is the derivation of closed-form expressions for the BCRB characterizing the
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Kalman filter performance. On the one side, an approximate upper bound for the conver-

gence time of Kalman filters encompassing second-order kinematic models with nonzero

process noise, as well as approximate lower bounds for the performance in steady state.

On the other side, an extension of the aforementioned convergence time upper bound to

Kalman filters encompassing a kinematic model with any nonrestricted order. These two

contributions have led to the publication of two journal papers, respectively:

• S. Locubiche-Serra, G. Seco-Granados, J. A. López-Salcedo, “Closed-Form Approx-

imation for the Steady-State Performance of Second-Order Kalman Filters”, IEEE

Signal Processing Letters, vol. 25, no. 2, pp. 268-272, Feb 2018.

• S. Locubiche-Serra, G. Seco-Granados, J. A. López-Salcedo, ”Closed-Form Approx-

imation for the Convergence Time of pth-order Kalman Filters”, IEEE Signal Pro-

cessing Letters, vol. 25, no. 10, pp. 1505-1509, Oct 2018.

Chapter 4 provides a detailed characterization of random phase variations introduced

by ionospheric scintillation. The key observation is that these can be modeled through a

process with some correlated Gaussian distribution. In that sense, this chapter presents

the class of autoregressive processes as the proposed way to model scintillation phase

variations. To do so, the problem of autoregressive fitting is presented as that of finding

the set of model parameters that best fit a given scintillation time series. To this end,

two equivalent methods are proposed, namely the Yule-Walker equations and the Least-

Squares method. Then, several preliminary tests using both synthetic data and real

scintillation time series are carried out to confirm the fitting of autoregressive processes

to scintillation phase. This is done by comparing the power spectral density of the actual

data to that which the estimated model parameters lead to. Finally, the problem of

autoregressive model order selection is addressed. A brief literature review on the most

common criteria for optimal order determination of a random process is provided. Among

them, a consistent criterion is presented as the choice in this thesis, namely the minimum

description length. Some test results are provided to confirm those of the power spectral

densities.

Chapter 5 presents the core of a novel Kalman filter with an augmented state-space

formulation that hybridizes separate kinematic and autoregressive models. The idea is

to deal with both carrier dynamics and ionospheric scintillation phase variations, respec-

tively, in the presence of one another but in a decoupled manner. In general terms, we

will denote this technique as the hybrid autoregressive Kalman filter. This chapter also

introduces a qualitative analysis of the BCRB for this kind of techniques. In this sense,
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in the same way as in Chapter 3, this thesis also contributes with the derivation of novel

closed-form expressions for the performance characterization of autoregressive Kalman

filter-based techniques. The contribution is twofold. On the one hand, closed-form ex-

pressions for the convergence time of a KF-AR encompassing a second-order kinematic

and a first-order AR models. On the other hand, closed-form expressions for the steady-

state performance of pure first- and second-order autoregressive Kalman filters. This

chapter also proposes some adaptive implementations for the hybrid Kalman filter to self

adapt to the actual scintillation conditions, which are rather time-varying in practice.

Two implementations are proposed. The first one is a technique implementing online es-

timators of the autoregressive model parameters and order. At this point, an analysis on

how the presence of thermal noise may hinder the proper detection of the autoregressive

parameters is carried out. Moreover, a novel adaptive hard-limiting implementation is

also proposed in order to deal with the nonlinear signal amplitude fades introduced by

scintillation. Then, a second implementation is proposed, consisting in a semi-adaptive

technique that preserves the adaptive hard limit, while the Kalman filter employs fixed

autoregressive parameters and order, instead of computing them in an online manner.

In addition, it includes a scintillation detector in order to commute to a dynamics-only

Kalman filter when scintillation is absent and the hybrid autoregressive one when it is

present. The rationale of this second implementation is to provide optimal performance

regardless of the nature of the input signal, at a significantly smaller computational cost.

The contributions in this chapter on the closed-form expressions for the BCRB have

led to the preparation of two journal publications, respectively:

• S. Locubiche-Serra, G. Seco-Granados, J. A. López-Salcedo, ”Closed-Form Approx-

imations for the Convergence time of Hybrid Autoregressive Kalman Filters”, sub-

mitted to IEEE Signal Processing Letters, in review progress.

• S. Locubiche-Serra, G. Seco-Granados, J. A. López-Salcedo, ”Closed-Form Lower

Bounds for the Steady-State Performance of Autoregressive Kalman Filters”, to be

submitted to IEEE Signal Processing Letters.

Chapter 6 presents the experimental results of the Kalman filter implementations pro-

posed in Chapter 5. These arise from an extensive simulation campaign by using a GNSS

carrier tracking simulator implemented in MATLAB. Two different cases of input scintil-

lation are considered, namely for synthetic and real scintillation time series, both based on

GPS L1 C/A signals (i.e. with binary phase shift keying modulation, BPSK). The simula-

tions are divided into three categories. First, a set of simulations with stationary synthetic
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scintillation. The idea is to test the performance of fixed KF-AR configurations and com-

pare them to that provided by the solutions adopted in conventional GNSS receivers. In

addition, the BCRB is employed as a tool to check on the optimality of the proposed

techniques. Second, simulations considering time-varying scintillation conditions. The

objective is twofold. On the one hand, to evaluate the agility of the adaptive implemen-

tations to self-adapt when the working conditions change, and their ability to provide

optimal performance. On the other hand, to compare their convergence and steady-state

performance to that of fixed techniques. Third, simulations considering real scintillation

time series obtained from ESA’s scintillation monitoring network. The objective here is

to test the performance of the proposed fixed and adaptive techniques and to validate the

goodness and performance obtained with synthetic data. Finally, this chapter culminates

with the determination of the region within which the hybrid autoregressive Kalman filter

does provide an advantage with respect to the approach adopted in conventional receivers.

The limits of this region are quantified in terms of both signal-to-noise ratio and input

dynamics tracking capabilities.

As already mentioned in Section 1.1, the work presented in Chapters 4 to 6 has been

performed within the framework of the ROCAT project funded by ESA, and has led to

the following conference publication, and the preparation of a journal manuscript that is

to be submitted shortly:

• S. Locubiche-Serra, G. Seco-Granados, J. A. López-Salcedo, ”Doubly-Adaptive Au-

toregressive Kalman Filter for GNSS Carrier Tracking under Scintillation Condi-

tions”, Proc. International Conference on Localization and GNSS (ICL-GNSS),

Jun 28 2016.

• S. Locubiche-Serra, G. Seco-Granados, J. A. López-Salcedo, ”Robust GNSS Carrier

Tracking under Ionospheric Scintillation using Semi-Adaptive Hybrid Autoregressive

Kalman Filter”, to be submitted to GPS Solutions.

Other contributions

Even though remaining out of the scope of this dissertation, efforts for improving

the acquisition stage of high-sensitivity snapshot GNSS receivers have additionally been

made during this thesis. In harsh environments such as urban canyons, the presence of

propagation impairments such as high signal attenuation, non-line-of-sight (NLOS) issues,

multipath and near-far severely hampers the proper satellite acquisition. Among these,

multipath and near-far are certainly one of the most limiting effects, the former having
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been recently addressed using the framework of quickest detection [Ege15, Ege17]. As for

the latter, it is defined as the situation in which a strong signal captures the receiver and

consequently impedes the acquisition of weaker signals, thus posing a serious concern to

GNSS service availability [Rap02]. Near-far is caused by the different attenuation losses

incurred in the different propagation paths, and it is thence an impairment abounding

in the above scenarios, where the presence of obstacles and tall buildings may lead the

difference in power among signals to exceed 30 dB. The underlying idea is that the or-

thogonality property of the spreading codes on which individual satellite detection and

identification relies is not fully fulfilled. The practical consequence is that the autocorre-

lation of a given satellite with the corresponding local replica becomes hindered by the

cross-correlation with other satellites with stronger received signal power [Mor03].

In that sense, we have developed different techniques to address the problem of near-far

detection and mitigation. Near-far detection becomes of paramount importance to discard

those unreliable satellites that may introduce an error of several meters in the positioning

solution. To this end, the common approach in the literature is to simply observe whether

the autocorrelation function (ACF) presents fluctuations over time. However, since this

phenomenon is not necessarily caused by near-far, we proposed a different approach based

on observing the ACF from the statistical point of view, and do a statistical hypothesis

testing analysis [Alb14]. That is, when near-far is absent, the squared ACF follows a

chi-square distribution, χ2. When near-far is present, the squared ACF departs from a χ2

distribution. The proposed techniques exploit this phenomenon by measuring the distance

of the actual CAF to a χ2 distribution, and these are mainly the chi-square goodness of

fit (GoF), the Kullback-Leibler divergence [Mac03], which has been rarely used in GNSS

[Pin13], and the threshold-surpassing method. The application of these techniques to the

problem of near-far detection is a novel contribution of this work, and simulations with

synthetic Galileo E1BC signals have shown promising results: statistical techniques have

been found to outperform conventional ones based on mere ACF observation, with a slight

advantage of the threshold-surpassing method.

The problem of near-far mitigation has also been addressed. The aim is to cancel the

cross-correlation effect of strong signals onto weak ones, in such a way that the latter

can be acquired and further enabled for positioning. To this end, we have proposed the

subspace projection technique, which is based on dissociating the received signal into two

separate contributions, one for the strong signals and another one for the weak ones.

These form the strong and weak signal subspaces, respectively. The interfering signals

are identified and a local version of the strong signal subspace is constructed within
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the receiver. Then, by using projection operations, the local reconstruction is employed

to obtain an interference-free signal that is orthogonal to the subspace spanned by the

strong signals. Simulation results have shown the technique to successfully achieve this

goal, providing an additional protection against near-far beyond that already provided by

spreading codes, thus enhancing the GNSS service availability in harsh environments.

This work has been developed within the framework of the ”Techniques for High-

Sensitivity GNSS Receivers” (HISENS) project funded by the European Space Agency

(ESA), and has led to the following conference publications:

• S. Locubiche-Serra, J. A. López-Salcedo, G. Seco-Granados, ”Statistical Near-Far

Detection Techniques for GNSS Snapshot Receivers”, Proc. IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), Mar 20 2016.

• S. Locubiche-Serra, J. A. López-Salcedo, G. Seco-Granados, ”Sensitivity of

Projection-Based Near-Far Mitigation Techniques in High-Sensitivity GNSS Soft-

ware Receivers”, Proc. Seventh International Conference on Indoor Positioning

and Indoor Navigation (IPIN), Oct 04 2016.

• E. Domı́nguez, A. Pousinho, P. Boto, D. Gómez-Casco, S. Locubiche-Serra, G.

Seco-Granados, J. A. López-Salcedo, H. Fragner, F. Zangerl, O. Peña, D. Jiménez-

Baños, ”Performance Evaluation of High-Sensitivity GNSS Techniques in Indoor,

Urban and Space Environments”, Proc. ION GNSS+, Sep 12 2016.

Research Stay at ESTEC (ESA)

During this thesis the author has also performed a research stay at the European Space

Research and Technology Center (ESTEC), at ESA in The Netherlands from January to

July 2016. Several tasks have been carried out. On the one hand, to give support

in the development and implementation of a high-sensitivity software GNSS receiver in

MATLAB. The software was initially devoted to the acquisition and tracking of high-

order BOC signals, and the first task has been to extend its applicability to BPSK and

low-order BOC signals. On the other hand, to implement a fully-operative module to

estimate the receiver’s position in high-sensitivity conditions. This implies that a reliable

decoding of the navigation message embedded within the received signals may not be

feasible due to low signal power. Therefore, the positioning module has been implemented

so as to solve for the position without requiring to decode the navigation message, by

using orbital parameters downloaded from an external source and estimating the satellite
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transmit time as part of the navigation solution. In addition, the module has also been

implemented so as to combine measurements coming from satellites belonging to different

GNSS constellations. This is often termed multi-constellation hybridization, and implies

that the module provide a positioning solution using signals with BPSK, low- and high-

order BOC modulations indistinctly. The aim was to enhance the positioning accuracy

with respect to that of conventional GNSS receivers. GPS and Galileo satellites have

been mainly used, and the time offset between both constellations is usually embedded

into the navigation messages. However, since it is such time offset has also been treated

as a new unknown in the navigation solution. Then, the implemented software has been

tested by processing real signals captured at ESTEC by handling a 3-meter directive dish

antenna and lab equipment such as USRPs and spectrum analyzers.

The work performed during the research stay at ESTEC has led to the following

conference publication:

• S. Locubiche-Serra, D. Gómez-Casco, A. Gusi-Amigó, J. A. López-Salcedo, G. Seco-

Granados, J. A. Garćıa-Molina, ”Positioning Performance analysis of High-Order

BOC Signals in Advanced Multi-Constellation High-Sensitivity GNSS Receivers”,

Proc. 6th International Colloquium on Scientific and Fundamental Aspects of GNSS

/ Galileo, Oct 2017.





Chapter 2

Fundamentals of GNSS

2.1 Introduction

One of the recurrent concerns in human history has been that of determining the geo-

graphical position of a given subject [Kar07]. In ancient civilizations, this was originally

carried out by observing celestial bodies. However, the problem is nowadays addressed

by the use of radio-frequency signals [For08] emitted from different satellites orbiting

around the Earth, leading to the so-called global navigation satellite systems (GNSS).

Their global coverage, technological maturity, deployment cost, user privacy and excel-

lent accuracy in open-sky environments [Par96a, Van02] have led GNSS to become the

quintessential enabling technology for positioning and precise timing applications, being

nowadays an indispensable tool in our modern society.

The most known GNSS technology is the American global positioning system (GPS),

which originated back in the 1970s from the interest of United States governmental insti-

tutions to develop a positioning system for military purposes. However, the use of GPS

rapidly spread to commercial applications, and its success motivated the deployment of

similar systems (i.e. satellite constellations) by European and Asian institutions to pro-

vide location-based services (LBS) without having to depend on GPS [Mis06]. This is the

case of GLONASS, managed by the Russian government, or Compass-BeiDou, managed

by the Chinese one. In Europe, the corresponding GNSS is the so-called Galileo, a GNSS

that is fully compatible with GPS but can also provide global positioning coverage in a

standalone manner (i.e. independently from GPS).

Any GNSS technology is based on the same principle, which is that of receiving the

13



14 Chapter 2. Fundamentals of GNSS

signals emitted by several satellites and process them to compute the receiver’s position.

In that sense, this chapter presents the fundamentals of operation of GNSS technologies.

We start Section 2.2 by presenting the basic concepts on the deployment and operation

principle of GNSS technologies, including a brief description on the employed signal mod-

ulations. Next, Section 2.3 explains the general architecture of GNSS receivers, which

consists of four consecutive stages, namely the receiver’s front-end, acquisition, tracking,

and the position-velocity-time (PVT) module. The elements conforming each of these

stages are detailed, particularly those within the tracking and PVT modules. In the lat-

ter, the foundations to compute the user’s position by hybridizing measurements from

different satellite constellations, particularly GPS and Galileo, are provided. Finally,

Section 2.4 draws the conclusions.

2.2 GNSS Foundations

The main purpose of GNSS is to estimate the user PVT solution. In that sense, this

section provides a brief introduction to the basic GNSS concepts related to the deployment

and the main principle of GNSS operation for PVT determination. The foundations

explained below are based on the following references: [Kap05, Mis06, Par96a, Par96b,

Ló12], to which the reader is encouraged to refer for a more in-depth explanation.

2.2.1 GNSS Deployment

The deployment of any GNSS technology is generally divided into three segments: the

space segment, the ground control segment, and the user segment.

Space Segment

The space segment (SS) is formed by the satellite constellation, which is the set of

satellites orbiting around the Earth that provide signals with data messages that are used

to eventually compute the navigation solution. These signals are referred to as ranging

signals, and include information about the satellite position at a given time instant, as

well as clock and atmospheric (i.e. tropospheric, ionospheric) corrections.

As previously explained, there exist four main satellite constellations in operation

at the time of this writing: GPS, Galileo, GLONASS and COMPASS-BeiDou. The
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common feature is that they consist of around 30 satellites orbiting at MEO (medium-

Earth orbit) at an altitude in the order of 20000 km. The satellites within a constellation

are strategically placed so that at least four satellites (i.e. the minimum needed for

PVT determination) are in the receiver’s line of sight (LOS) anytime and anywhere, thus

allowing to provide a worldwide service. The main characteristics of the above-mentioned

constellations are summarized in Table 2.1 [ESA11a, ESA11c, ESA17, USG19].

GPS Galileo GLONASS COMPASS-BeiDou

Owner USA Europe Russia China

Altitude (km) 20200 23222 19100
27878 MEO

42164 GEO

Period 11h 58min 14h 7min 11h 15min 12h 38min

# Orbital planes 6 3

# SV 24 30 24
27 MEO

5 GEO

Table 2.1: Main characteristics of current existing GNSS satellite constellations.

Ground Control Segment

In general terms, the ground control segment (GCS) is formed by stations on the

Earth’s surface that track the satellites in space and monitor their proper functioning:

health, signal integrity and orbital configuration maintenance. In the latter, the stations

send maneuvering signals to the satellites in order to adjust their orbital position. On the

other hand, the GCS also tracks and updates a number of parameters that are crucial to

perform navigation, such as satellite clock corrections, almanac and ephemerides, which

are updated at least once per day. The ephemerides refer to the complete set of param-

eters needed for PVT determination, while the almanac is a reduced-precision subset of

the ephemeris parameters that is usually employed to predict the approximate satellite

position and aid in satellite signal acquisition. In order to determine the above-mentioned

parameters, pseudorange and carrier phase measurements are collected at the monitoring

stations.

To accomplish these functions, the GCS is formed by the following elements:

• Master control station (MCS), in charge for processing the information com-
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ing from the monitoring stations, and tracking the system status: health of satel-

lites, satellite orbits, and synchronization of system timing service. Furthermore, it

predicts satellite ephemerides and clock parameters, while also generating satellite

maneuvering commands and the navigation messages.

• Monitoring stations at L band, consisting of dual-frequency receivers that collect

satellite ranging and status data, and local meteorological data. They are usually

located at sites near the Earth equator for coverage maximization.

• Ground uplink antennae at S band, used for satellite commanding and data

transmission of the correction information processed by the MCS. In addition, they

receive satellite telemetry data that is forwarded to the MCS.

User Segment

The user segment (US) consists of the GNSS receivers in ground, marine, air and

space applications. The main purpose of GNSS receivers is to process the downlink

signals received from the different satellites at L band and decode the navigation message

to determine their PVT.

The set of GNSS receivers that form the user segment can be classified into two main

categories:

• Type of user: can be civilian or military. In the former, open-service (OS) but

accuracy-limited signals are employed. This is the case of GPS L1 C/A and Galileo

E1BC signals. On the other hand, a military use refers to restricted-access signals

that are thought to provide an enhanced accuracy. This is the case of GPS L2-P

and Galileo-PRS codes.

• Frequency capabilities. Single-frequency receivers are standard receivers op-

erating at one single frequency band. In contrast, dual (or multiple)-frequency

receivers can process signals obtained from different frequency bands. Their main

advantage is the ability to compensate for ionospheric, geometry and carrier-phase

ambiguity effects by combining measurements obtained at different bands, and thus

improve the estimation of the user’s position [San13].
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2.2.2 GNSS Signal Structure and Frequency Bands

GNSS signals fall into a broad category of signals known as direct-sequence spread-

spectrum (DSSS) signals. This type of signals is based on using (nearly-) orthogonal codes,

where the orthogonality property is achieved by employing the so-called cyclic pseudo-

random noise (PRN) sequences. The rationale of this nomenclature is that the cross-

correlation between two different PRN codes is (nearly) zero, while the auto-correlation

of a given code results in a high peak when aligned with itself, and ideally zero cross-

correlation otherwise, thus resembling the behavior of white noise. Within a given GNSS

constellation, each satellite transmits a different pseudo-random code, meaning that the

satellites can be uniquely identified by their corresponding code. As will be explained in

Section 2.3.2, this concept is the basis to dissociate among satellites, detect their presence

individually and measure the different propagation times to the receiver.

DSSS are signals that employ all the available communication channel bandwidth,

and are transmitted simultaneously without interfering with each other. That is, they all

share the same time and frequency slots (i.e. no multiplexing), and are uniquely identified

by the PRN codes thanks to their orthogonality property. This type of communication is

referred to as code-division multiple access (CDMA) and is widely employed in wireless

mobile communications systems. Except for the Glonass constellation, which employs

frequency-division multiple access (FDMA) [Reu11, Wan11], GNSS utilize CDMA, which

provides the following advantages:

• PRN codes allow obtaining precise range measurements.

• PRN codes cause the signal energy to distribute along a broader spectrum, which

enhances the robustness against narrowband interferences.

The signals employed in GNSS are characterized by the following four elements:

• A suitable carrier frequency onto which the signal can be transmitted through

the propagation path. In GPS and Galileo, different bands are employed: L1/E1

(1575.42 MHz), L2 (1227.60 MHz), L5/E5a (1176.45 MHz) and E6 (1278.75 MHz).

• The navigation data: a binary-coded message containing information about the

satellites status, ephemeris, clock bias and parameters to compute atmospheric cor-

rections.
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• The ranging code: the PRN code that statistically behaves as white noise, as

stated above, and allows dissociating among the different satellites. In GPS L1

C/A, the PRN sequences are formed by 1023 bits termed chips that repeat with

a period of 1 ms and thus transmit at a chip rate of fref � 1.023 MHz. In open-

service (OS) Galileo E1BC, the number of chips carrying the navigation data is 4092

repeating with a period of 4 ms. Each of them is then multiplied by one bit of a

secondary code, the latter consisting in a 25-bit known sequence that repeats in a

cyclic manner, thus leading to a total duration of 100 ms.

• The modulation. GPS L1 C/A employs a simple BPSK modulation, whereas

Galileo E1BC employs BOC modulations. The latter are based on multiplying a

pseudo-random code with a sub-carrier fsc with frequency equal to or higher than the

chip rate. This allows widening the signal spectrum (i.e. Gabor bandwidth) with

respect to that of BPSK, which ultimately translates into a sharper autocorrelation

peak and enhanced positioning accuracy. However, the drawback is the occurrence

of secondary peaks that may hamper the proper capture of the main one. A BOC-

modulated signal is usually denoted as BOC(m,n), with m
.
� fsc{fref, n

.
� fc{fref

and fc is the modulated chip frequency. Galileo E1BC employs BOC(1,1) modula-

tions. However, more advanced Galileo signals are implementing higher-order BOC

modulations, namely BOC(15, 2.5), which further exploit the above phenomenon

at the expense of severely aggravating the problem of false locks. These concepts

will be further detailed when introducing the principle of GNSS satellite detection

in the acquisition stage in Section 2.3.2.

2.2.3 GNSS Positioning Principle

GNSS positioning is based on computing range estimates obtained by measuring the

so-called time-of-arrival (TOA) as the propagation delay between each visible satellite

and the receiver. To this end, each satellite transmits a signal with a time stamp tk that

refers to the time instant at which the signal leaves the kth satellite. When the receiver

captures the signal, it decodes the time stamp tk after synchronizing a local replica of the

PRN code under study to the received one1, while at the very same moment it measures

the time of reception tr by reading its internal clock [Mis06, Ch. 5]. The propagation

time is then computed as the difference between both measurements, τk � tk� tr, and the

1This will be the main function of the acquisition and tracking stages presented next in Sections 2.3.2

and 2.3.3, respectively.
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distance between the satellite and the receiver is determined using the speed of light c as

dk � cτk. The presented approach for position estimation based on distance measurements

is referred to as trilateration [Fre96].

The position of a satellite at a given time instant can be determined by employing the

ephemerides transmitted by the satellite itself. Hence, the estimated distance provides

the radius of the spherical surface centered at the satellite and containing the user’s

location. This is graphically described by the straight circles in Figure 2.1. However,

the time measurement tr is referred to the receiver’s internal clock, which may present

some unknown offset with respect to the time reference shared by all satellites of a given

constellation, the latter referred to as GNSS time which varies from one constellation to

another [Mou05]. As a consequence, the measurements from all satellites are shifted by a

common offset δtu owing to the receiver running an independent clock. This phenomenon

can be observed in the dotted circles in Figure 2.1, and must be compensated for to

determine the correct user’s position.

The key point underlying GNSS positioning is that the three dotted circumferences in

Figure 2.1 share a unique intersection point for an appropriate value of δtu [Sec12]. This

is considered to be the user’s position, and this means that measurements from at least

four satellites are needed to determine the solution. In that sense, the unknowns are the

position coordinates in Earth-centered Earth-fixed (ECEF) system (i.e. X, Y and Z with

origin the center of the Earth), plus the receiver clock offset δtu. It is worth noting that,

by estimating the latter, the receiver can be synchronized to the GNSS time scale, and

since satellites equip high-precision atomic clocks on board, this is what opens the door

to applying GNSS for precise timing applications.

2.3 Architecture of GNSS Receivers

This section aims at providing the details of the modules that form a GNSS receiver.

These are namely the receiver’s front-end, the acquisition and tracking stages, and the

PVT module which ultimately determines the user’s position using the information coming

from the previous stages. The general scheme of the modules of a GNSS receiver is shown

in Figure 2.2.
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Figure 2.1: Illustration of the GNSS positioning principle, and effect of receiver clock

offset [Sec12].

Figure 2.2: General box diagram of a GNSS receiver [Sec12].

2.3.1 Receiver’s Front-End

The receiver’s front-end is in charge of the analog processing of the signal. That

is, the conversion of the captured bandpass signal to baseband. The main operations

include low-noise amplification (LNA), filtering, frequency down-conversion to baseband

[ESA11b] and analog-to-digital (ADC) conversion. Once the signal has been conditioned

and converted, the subsequent stages of the receiver are based on digital signal processing.

2.3.2 Acquisition stage

The acquisition stage of a GNSS receiver consists in detecting the satellites that are

present in the received signal. These will serve as anchor nodes from which the receiver
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will determine its position by measuring the propagation time from the different satellites

to the receiver, based on the starting point of the cyclic PRN codes.

Satellite detection must be carried out, though, in the presence of a residual frequency

that still remains after down-conversion in the receiver’s front-end. That is, the PRN code

of each satellite is received with some Doppler shift caused by the relative motion between

the satellite under study and the receiver: either both the satellite and the receiver are

in movement, or the receiver is static, in which case it still sees the satellite movement.

In addition, the possible misaccuracy of the receiver’s oscillator may also introduce some

residual frequency shift.

In that sense, the signal at the ADC output can be written as the sum of L signals

coming from L different satellites with their respective Doppler shifts, plus some white

noise (considered additive white Gaussian, AWGN):

rpnq �

Ļ

k�1

a

PkpnqDkpn� τk � δtuqCkpn� τk � δtuqe
j
p

2πfd,kn�θkq
� wpnq (2.1)

where Pkpnq is the power of the received kth satellite at time instant n, Dkpnq is the

navigation message, Ckpnq is the PRN sequence, pτk � δtuq is the propagation time from

the kth satellite to the receiver including the receiver clock offset, fd,k is the Doppler shift,

θk is some carrier phase offset owing to the propagation path, and wpnq is the noise term.

The presence of an unknown code delay and Doppler shift forces to perform the detection

of the kth satellite in a two-dimensional search (i.e. in time and frequency). To this end,

the orthogonality property of PRN codes is exploited: the received signal is correlated

with a local replica of the PRN code under analysis generated with trial values of both

code delay and Doppler shift. The process is repeated for several trial values until the

cross-correlation exceeds some detection threshold, which occurs for a given combination

of code delay and Doppler shift that makes the local replica to be aligned with the code

in the received signal. In this situation the satellite is declared to be present, while the

tentative values of code delay and Doppler shift at which the signal of interest is located

is also provided.

An example of the acquisition architecture of a generic GNSS receiver is shown in

Figure 2.3. The cross-correlation is carried out by multiplying the received signal with

the local replica, plus a coherent integration with length Tcode (or Nscode, the PRN code

duration in samples) through the integrate and dump (I&D) block. Notwithstanding,

in harsh environments with LOS difficulties, the correlation peak usually suffers from

severe attenuation and may become imperceptible. In this situation, it is necessary to
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Figure 2.3: Example of acquisition architecture for a GNSS receiver, which incorporates

non-coherent integrations to extend the correlation time (i.e. high-sensitivity GNSS re-

ceiver) [Sec12].

implement high-sensitivity detection techniques. Their underlying principle is that the

signal component of a few consecutive correlations is strongly correlated, whereas the

noise component is completely uncorrelated. Therefore, the addition of several CAFs

allows the receiver to accumulate enough energy to detect the signal. As can be observed

in Figure 2.3, these techniques are implemented by extending the coherent correlation

time Nc times (thus leading to a total coherent integration time of NcTcode). However,

it cannot be extended without bound due to the presence of Doppler shift, navigation

data bits and phase noise. Thence, coherent integrations are complemented by adding NI

of them in a non-coherent manner (i.e. using some non-linear function) [Van02, Lac04].

These are generally named post-detection integration (PDI) techniques, a good overview

of which can be found in [Gó16].

The 3-D representation of the cross-correlation above for all the possible combina-

tions of trial values is the so-called cross-ambiguity function (CAF). Figures 2.4, 2.5 and

2.6 show the CAF for BPSK, BOCsinp1, 1q and BOCcosp15, 2.5q modulations presented in

Section 2.2.2, respectively, as well as their projection onto the frequency and time do-

mains. The three modulations differ in the latter domain. The use of BOC modulations

allows reducing the width of the main triangle and sharpening the main peak of interest,

thus improving the accuracy of the measured code delay and, consequently, the user’s

position. However, secondary peaks at each side of the main one do conversely appear.

Even though this may not be problematic for BOCsinp1, 1q, it becomes a serious issue for

BOCcosp15, 2.5q: the presence of secondary lobes that are very little apart from the main

correlation peak and present similar amplitude poses serious difficulties to distinguish the

main peak, particularly in scenarios with low carrier-to-noise ratio (C{N0). This leads

to the problem of false locks : due to the ambiguity in the correlation function, the re-

ceiver captures a secondary peak instead of the main correct one, which eventually leads
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to measured pseudoranges with errors of several meters. Dealing with the detection and

mitigation of false locks is a challenging problem, particularly in high-sensitivity GNSS

receivers [Gar14], and several methods can already be found in the literature, namely the

BPSK-like envelope technique [Bur06], bump jumping [Fin99], double estimator [Hod08],

code-subcarrier smoothing [Gal13] and other maximum likelihood (ML)-based techniques

such as the double optimization multi-correlator-based estimator (DOME) [Gar15].

Figure 2.4: CAF for BPSK signal employed in GPS L1 C/A.

Figure 2.5: CAF for BOCsinp1, 1q signal employed in Galileo E1BC [Gó18].

As can be anticipated, the code-delay and Doppler-shift discretization scale of the
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Figure 2.6: CAF for BOCcosp15, 2.5q signal being implemented in the Galileo E1 band

[Gó18].

CAF determines a trade-off between computational load and speed, and accuracy of the

coarse estimates. A way to optimize this aspect is by the use of assisted data, leading

to the concept of assisted GNSS (A-GNSS). That is, to facilitate to the receiver a priori

information about the parameters of interest so that the search scale be focused around the

true values, thus considerably reducing the computational load and enhancing accuracy.

However, assisted data is not always available. In that case, in the efforts made to

optimize the computation of the CAF to date, particularly in high-sensitivity GNSS

receivers, one of the most relevant methods is the termed double-FFT algorithm [Lop06].

It allows implementing the acquisition steps with only simple operations such as additions,

products, circular shifts, and the extensive use of FFT processors [Sec12], and becomes one

of the most efficient methods to perform a time-frequency search in a wide bi-dimensional

region. Moreover, an approach that is coming into vogue at the time of this writing is

the use of cloud computing services [Luc16a, Luc16b]. In these, the receiver only needs to

collect the received samples and send them to the cloud where all the signal processing

is carried out remotely using virtually unlimited resources. In this way, the receiver is

set free from almost any heavy computational load, thus becoming a suitable solution for

handheld receivers where the power supply relies on batteries, such as smartphones.
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2.3.3 Tracking stage

The code-delay and Doppler-shift values provided by the acquisition stage are just

coarse (i.e. rough) estimates that have been obtained by performing a search discretized

with some granularity. Such discretization does usually not provide a GNSS receiver with

enough accuracy; note that an error in the code delay becomes enormously magnified by

the speed of light c � 3 � 108 m/s when converted into meters. Therefore, it is necessary

to refine the estimated synchronization parameters obtained from the acquisition stage,

so that an accurate solution to the user’s position can be provided.

Such refinement can be performed through open-loop and closed-loop architectures,

the latter conforming the so-called tracking stage [Tah12]. Open-loop architectures, also

termed snapshot-based architectures, are usually employed in high-sensitivity GNSS re-

ceivers by computing the CAF from time to time with a narrow search for the Doppler

frequency. They provide robustness advantages in front of signal fading effects versus

closed-loop architectures. However, they present the drawbacks of being only imple-

mentable when the Doppler shift is small, and the estimated parameters are not as ac-

curate as when employing a tracking stage. For these reasons, the latter is the most

commonly used since it is the one allowing to obtain fine estimates of the synchroniza-

tion parameters. Then, techniques to enhance robustness against signal impairments are

designed based on such architecture.

The main objective of the tracking stage is twofold. On the one hand, to refine the

code-delay and Doppler-shift estimates provided by the acquisition stage. On the other

hand, to accurately follow any possible variation that these parameters may present over

time. The underlying idea is to find the set of code-delay and Doppler-shift values so as

to generate a local replica of the signal of interest that keeps aligned with the received

one by recursively driving the resulting error signal to zero when compared with one

another. The estimation is carried out in a joint manner, where each parameter must be

determined in the presence of the other one. An illustrative example of a generic closed-

loop tracking architecture is shown in Figure 2.7 and, as observed, it can be divided into

two parallel sub-architectures: one devoted to carrier tracking, and another one devoted

to code tracking.
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Figure 2.7: General architecture of tracking stage in GNSS receivers [Sec12].

2.3.3.1 Carrier tracking. Phase-Lock Loop

The input signal of the tracking stage for the kth satellite is a baseband signal, with

a carrier frequency owing only to the residual Doppler shift:

xkpnq � ckpn� τk � δtuqe
j2πfd,kn. (2.2)

Therefore, in order to compensate for fd,k, the PLL local replica is a carrier generator

providing a complex exponential with negative phase given by the estimated Doppler shift

at a given time instant n. Then, it is multiplied to the input signal so as to compensate

for the complex exponential in (2.3), thus leading to:

ykpnq � ckpn� τk � δtuqe
j2πfd,kne�j2πf̂d,kn

� cpn� τk � δtuqe
j2π∆fd,kn. (2.3)

with ∆fd,k the possible error in the estimated Doppler shift. The objective is to find the

value of f̂d,k so as to drive ∆fd,k to zero by iterating in the loop. To this end, at iteration n,

the result ykpnq is correlated with a local replica of the code through the so-called prompt

correlator, which centers such local replica at the last code-delay estimate provided by the
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code-tracking loop (see Section 2.3.3.2). Similarly to the acquisition stage, the correlation

is carried out by multiplying both signals and adding them in the I&D block in Figure

2.7. The prompt correlator output is then fed to the PLL discriminator, which provides

at its output a signal that is proportional to the error in the estimated Doppler shift that

still has to be corrected. This result is then filtered through the so-called loop filter in

order to obtain a smoothed version of the correction to be applied, since the discriminator

output is contaminated by the input noise. This is then fed to a numerically-controlled

oscillator (NCO), which accumulates the loop filter output over time in order to provide

the updated Doppler shift to the carrier generator in terms of phase, thus closing the loop.

PLL Discriminators

Carrier disciminators obtain a signal that is proportional to the local replica error to

be corrected by applying some function onto the prompt correlator output, denoted as

yPpτ̂kq, with τ̂k representing the estimated code delay. Based on that, there exist two

main groups of carrier discriminators:

• Pure-PLL discriminators are the most typical ones providing pure phase error

estimates at their output. The pure-PLL discriminator most commonly employed

in practice is the four-quadrant arctangent (ATAN2),

∆θATAN2pθǫq � arctan 2

�

Im ryPpτ̂kqs

Re ryPpτ̂kqs




. (2.4)

• Costas-PLL discriminators are PLL-type discriminators that tolerate the pres-

ence of data modulation on the baseband signal. That is, they are insensitive to

abrupt phase changes owing to the bit modulation in the navigation message. The

most common Costas-PLL discriminator is the two-quadrant arctangent (ATAN),

∆θATANpθǫq � arctan

�

Im ryPpτ̂kqs

Re ryPpτ̂kqs




. (2.5)

Even though they require a high computational burden, pure- and Costas-PLL dis-

criminators have the advantages of presenting a linear response for all input phase values,

and providing pure phase error signals at their outputs. Moreover, they constitute the

optimal (i.e. maximum likelihood) phase estimators at high and low signal-to-noise ratio

(SNR). Between both discriminators, an important inconvenient of the Costas ones is that

there is a 180-degree ambiguity causing that the detected data bit stream may be normal

or inverted. This ambiguity has to be solved, in contrast to pure-PLL discriminators,
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thus making the latter the most convenient ones to be employed. Their advantage is that

their pull-in range is twice the one for the ATAN. However, the drawback is that they can

only be applied on dataless signals, or signals that have undergone some data wipe-off

preprocessing. The presence of data bits is usually unavoidable, particularly in GPS L1

C/A. Notwithstanding, it is important to note that all modernized GNSS signals make

provisions for dataless carrier tracking in addition to providing data. This is the case,

for instance, of Galileo E1BC, which employs a pilot signal (i.e. the known secondary

code) used purely for signal processing purposes, plus the data channel from which the

navigation message is obtained once the signal is captured. In this way, a pure PLL

discriminator can eventually be employed.

Although pure- and Costas-PLL discriminators provide the most accurate response,

they present the inconvenient of being sensitive to dynamic stress. In that sense, there

actually exists a third type of carrier discriminators, the so-called frequency lock loop

(FLL) discriminators, which present the advantage of being more robust in front of rapid

dynamics. However, they monitor the frequency error instead of the phase error, which

could eventually be obtained by integrating the former, but again there exists a carrier

phase ambiguity that has to be solved afterwards. In addition, when detecting the data

bits, they present higher bit error rate (BER) than PLL-based discriminators. FLLs are

usually employed during initial signal acquisition, where it is easier to maintain frequency

lock than phase lock while performing bit synchronization. Nonetheless, when tracking

is in steady state, pure-PLL discriminators are more often used since they produce the

most accurate measurements [Kap05].

Third-order loop filters

The input signal of the tracking stage is affected by the thermal noise introduced by

the receiver, and thus so is the discriminator output. For this reason, the latter must

go through some filtering process in order to remove signal instabilities. As mentioned

earlier, this is achieved by the loop filter, which employs a set of gains and integrators in

charge for smoothing the noisy signal.

In the carrier loop, a third-order loop filter is usually employed. That is, a filter that

is able to track a signal whose dynamics presents a constant non-zero second derivative.

This is so because filters with higher order than three are known to suffer from instability

issues. The structure of a third-order loop filter is depicted in Figure 2.8. As will be shown

in the next section, the filtering performance of a loop filter is determined through the
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Figure 2.8: Block diagram of third-order loop filter.

filter gains by the so-called equivalent loop bandwidth, which becomes a trade-off between

noise filtering and dynamics tracking capabilities. That is, the larger the bandwidth,

the more reactive to variations in the input dynamics the filter is, but the noise filtering

capability degrades in contrast. In practice, a balance between both properties is sought,

and the chosen value becomes then reflected onto the filter gains as follows.

Let BL be the equivalent loop bandwidth in Hz. The natural frequency of a third-order

loop filter can be expressed as,

ωp3qn �

4pbc � 1q

bc2 � b2 � c
(2.6)

where b � 1.1, c � 2.4 [Kap05], and the superscript p3q denotes a filter with third order.

The filter gains are then given by,

α
p3q
1 � c

�

ωp3qn Ts

�

(2.7)

α
p3q
2 � b

�

ωp3qn Ts

�2
(2.8)

α
p3q
3 �

�

ωp3qn Ts

�3
(2.9)

with Ts the sampling time in seconds.

Tracking Threshold and PLL Performance Bounds

The dominant sources of phase error in a GNSS receiver PLL are phase jitter and

dynamic stress errors [Kap05]:

• Jitter owing to thermal noise. It is sometimes treated as the only source of carrier

tracking error, since the other sources of PLL jitter may be either transient or
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negligible. For the ATAN2 discriminator and assuming AWGN reception conditions,

it can be computed in dimensions of radians in one-sigma terms as:

σθAWGN
�

d

BL

C{N0

�

1�
1

2C{N0Ts




(2.10)

with the C{N0 in linear scale. The jitter in (2.10) can be understood as the perfor-

mance lower bound (as far as thermal noise is concerned) that a PLL can achieve in

terms of mean squared error (MSE) for a given loop bandwidth and C{N0. When

designing PLLs, the statement in the opposite direction is often taken. That is, for

a given C{N0, expression (2.10) can be employed to determine the required loop

bandwidth to achieve a given target performance. Expression (2.10) also manifests

that, in order to keep a target performance when the C{N0 varies, the loop band-

width must also vary accordingly to counteract the former effect. The lower C{N0,

the smaller bandwidth, and viceversa. As will be seen next, this is at odds with the

jitter owing to dynamic stress.

• Jitter owing to dynamic stress. In a loop filter, the loop order is sensitive to the

same order of dynamics [Kap05]. However, the input signal may present higher-

order dynamics that exceeds the loop order, and the fact that this is not being

accounted for in the filter set-up may also introduce some jitter if its magnitude is

considerable. In that sense, for a third-order PLL, the jitter contribution owing to

dynamic stress is computed as:

θ
p3q
d � 0.4808

δ3R
δt3

B3
L

(2.11)

where δ3R
δt3

refers to the higher-order dynamics that exceed the PLL loop order,

and has dimensions of degrees. For the GNSS tracking problem, this term refers

to the doppler jerk (i.e. the third derivative of phase). In expression (2.11) it is

observed that the loop bandwidth is inversely proportional to the jitter. That is,

the smaller the bandwidth, the larger the dynamic stress error. This manifests that

the loop bandwidth must be wide enough to accommodate the signal (higher-order)

dynamics, which becomes at odds with the case for the thermal noise jitter, where

the loop bandwidth must be reduced for better noise filtering, as explained above.

Therefore, the selection of the PLL loop bandwidth becomes a trade-off between

noise filtering and dynamics tracking capabilities; the bandwidth must be as small

as possible for better noise filtering, but simultaneously wide enough to be able to

track dynamics. Since the dynamic stress jitter is also sensitive to the loop order
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(i.e. a higher order leads to better dynamic-stress performance), some strategies to

find the optimal loop bandwidth rely on increasing the loop order and reducing the

noise bandwidth, thus allowing to compensate for both effects simultaneously.

The sources of error affecting the PLL performance are then employed to determine if

the estimation error is below the tracking threshold. In practice, under AWGN reception

conditions, a conservative rule of thumb for the tracking threshold is that the 3-sigma

jitter comprising both thermal noise and dynamic stress contributions must not exceed

one fourth of the pull-in range of the PLL discriminator. For the ATAN one used when

there is data modulation, the pull-in range equals to π radians. Therefore, the 3-sigma

rule must satisfy:

3σ
p3q
PLL � 3σ

p3q
θAWGN

� θ
p3q
d ¤

π

4
rad. (2.12)

On the other hand, for the ATAN2 discriminator used when the signal is dataless, the

pull-in range equals to 2π radians. Therefore, the 3-sigma rule must satisfy:

3σ
p3q
PLL � 3σ

p3q
θAWGN

� θ
p3q
d ¤

π

2
rad. (2.13)

From (2.12) and (2.13), it is observed that the total PLL jitter can be expressed as:

σ
p3q
PLL � σ

p3q
θAWGN

�

θ
p3q
d

3
(2.14)

and, as mentioned above, it can be used for design purposes.

2.3.3.2 Code Tracking. Delay-Lock Loop

Once the residual Doppler shift at a given time instant is compensated, the code-

tracking loop is in charge of determining the code delay that keeps the local replica aligned

with the received signal in the time domain. To this end, the procedure is analogous to the

carrier-tracking loop. Notwithstanding, the code loop employs two additional correlators

besides the prompt one, the so-called early and late correlators. These are centered at

the code delay of interest plus some shift at each side:

yE pτkq � yP

�

τk �
∆τE�L

2




(2.15)

yL pτkq � yP

�

τk �
∆τE�L

2




(2.16)

with ∆τE�L the early-late distance which typically corresponds to one chip, and they are

employed to facilitate the identification of the main correlation peak. The rest of the loop
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remains as in carrier tracking: the correlation results are fed into the DLL discriminator

and further smoothed by the loop filter, which indicates to the NCO the corrections to be

applied by the PRN code generator for the local replica at the next iteration, thus closing

the loop.

It is worth noting that the code tracking loop shown in the previous Figure 2.7 im-

plements the possibility of extending the integration time by combining coherent and

non-coherent integrations, in a similar way as in the acquisition stage in Figure 2.3.

DLL Discriminators

Code disciminators obtain a signal that is proportional to the local replica error

to be corrected by applying some function of the early, prompt and late correlators,

tyEpτkq, yPpτkq, yLpτkqu. Code discriminators can be divided into two main groups:

• Coherent discriminators. They assume that the carrier frequency is perfectly

known. The most common coherent discriminator is the early-minus-late, where

the output error signal is the difference between the early and late correlators,

∆τE-L,cpτkq �
1

2
ryEpτkq � yLpτkqs . (2.17)

• Non-coherent discriminators. They are employed when the assumption that

the carrier frequency is perfectly known is not true, and thus the prompt correlator

output is affected by some carrier phase error. This is the most common situation

in practice, and thus we will focus on non-coherent discriminators. There exist

several of them in this group: the non-coherent early-minus-late operates on the

signal envelope instead of the carrier phase error; the normalized-envelope early-

minus-late includes a normalizing term to reduce the discriminator sensitivity to

changes in the signal amplitude, at the expense of higher computational cost; the

quasi-coherent dot-product discriminator avoids using the non-linearity of raising

the correlator output to the second power, while requiring low computational load.

The main advantage of the early-minus-late coherent discriminator is that its response

to input code delays is linear. In that sense, the non-coherent discriminator resembling the

coherent behavior the most is the termed coherent dot-product, which can be employed

when the carrier loop is in lock and presents low computational load. In practice, a

normalized version is usually employed, the termed coherent dot-product normalized to
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the power of the prompt correlator output,

∆τE-L,normDotProdpτǫq �
1

4
Re

�

yEpτkq � yLpτkq

yPpτkq

�

(2.18)

which is the one providing the most accurate code measurements [Kap05].

Second-order loop filters

In contrast to the third-order loop filter employed in the carrier loop, the code loop

usually implements a second-order loop filter, thanks to the use of carrier aiding which

allows the order of DLL loop filters to be smaller than that of PLL ones, as will be

explained next in Section 2.3.3.3. The structure of a second-order loop filter is depicted

in Figure 2.9. In this case, the natural frequency of the filter can be expressed as,

ωp2qn �

4a

BL

(2.19)

with a �
?

2, and BL is expressed in Hz. From this, the filter gains are given by,

α
p2q
1 � a

�

ωp2qn Ts

�

(2.20)

α
p2q
2 �

�

ωp2qn Ts

�2
. (2.21)

Figure 2.9: Block diagram of second-order loop filter.

DLL Performance Bounds

Similarly to the PLL, the dominant sources of phase error in a GNSS receiver DLL

are the delay jitter and dynamic stress errors.
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• Jitter owing to thermal noise. For the normalized dot-product discriminator, it

can be expressed for a second-order DLL as,

σp2qτAWGN
�

d

BL∆τE�L

2C{N0

�

1�
2

C{N0Ts




(2.22)

with dimensions of chips.

• Jitter owing to dynamic stress. For a second-order DLL, it is determined by,

τ
p2q
d �

δ2R
δt2

ω
p2q
n

(2.23)

where δ2R
δt2

refers to the higher-order dynamics exceeding the DLL loop order, and

has dimensions of chips. For the GNSS tracking problem, this term refers to the

delay jerk (i.e. the second derivative of code delay).

In reality, though, the use of carrier-aided code is practically a universal design practice

that effectively removes the code dynamics, as will be explained in the next section. As

a consequence, the DLL jitter owing to the dynamic stress is usually negligible with

respect to the one owing to thermal noise, and the total DLL jitter becomes practically

σ
p2q
DLL � σ

p2q
τAWGN .

2.3.3.3 Carrier Aiding of Code Loop

As already explained, GNSS receivers base their position estimation on the observed

distance to the different satellites in terms of transmission time. However, such observa-

tions are distorted by the presence of residual dynamics, which is a physical magnitude

that affects both code and carrier measurements and must be compensated for.

In that sense, the concept of carrier aiding is based on the fact that carrier phase

measurements are much less noisy than code delay measurements [Kap05] in about an

order of magnitude [Mit13], and thus present much better quality. The idea of carrier

aiding is to take advantage of this feature by providing the information about the esti-

mated carrier dynamics to the code-delay estimation, as a priori information, in such a

way that the dynamics contribution onto the code delay can be virtually eliminated. This

allows the DLL to significantly reduce its order and loop bandwidth, so that it presents

an enhanced robustness and the effect of noise onto the code-delay measurements can be

further reduced.
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Carrier aiding was already devised in the previous Figure 2.7, where the output of

the PLL loop filter was added to the output of the DLL discriminator. In order to apply

the concept in the tracking stage, though, it must be noted that the effect of residual

dynamics is not the same in both carrier-phase and code-delay measurements. This is

due to the fact that the chip rate is much smaller than the carrier frequency. For the case

of GPS L1 C/A and Galileo E1BC, the spreading code chip rate equals to Rchip � 1.023

Mchips/s, which can be understood as a chip frequency of 1.023 MHz. On the other

hand, the carrier frequency equals to fc � 1575.42 MHz. As a consequence, the carrier

dynamics is a factor of,

β
.
�

fc

Rchip

�

1575.42 MHz

1.023 MHz
� 1540 (2.24)

times faster than code-delay dynamics. Therefore, for the particular case of GPS L1 C/A

and Galileo E1BC, the Doppler aiding to be introduced to the DLL corresponds to the

estimated carrier dynamics (i.e. the frequency shift at the output of the PLL loop filter)

divided by the constant factor β in (2.24).

2.3.4 PVT Module

The PVT module is in charge of determining the user’s position by making use of the

information coming from the tracking stage. As already explained, the process is based

on measuring the propagation time of a given point within the signals (i.e. a given chip)

since they leave from the different satellites, until reaching the receiver. For each satellite,

such propagation time can be determined by reading the time stamp in the signal, and

also the receiver clock at the very same time instant. In the former, the information

coming from the tracking stage is employed to keep the receiver synchronized with the

received signal to then successfully decode the navigation message and retrieve the time

stamp, a process that requires a time to first fix (TTFF) of around 6 seconds to be carried

out [Mut12]. In terms of PVT, such time stamp is also referred to as the time-of-week

(TOW). Then, by multiplying the difference of both time measurements by the speed of

light, one obtains the distance between the satellite under study and the receiver, the

so-called range, which for the kth satellite equals to the geometric distance:

rk � ||rk � ru|| �

b

pxk � xuq
2
� pyk � yuq

2
� pzk � zuq

2 (2.25)

where txk, yk, zku and txu, yu, zuu are respectively the satellite and user positions in ECEF

coordinates. In practice, though, the obtained measurements present a bias δtu due to
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the receiver clock offset with respect to the GNSS time, as previously explained, plus

additional error sources such as the delay introduced when propagating through the iono-

sphere and troposphere. As a consequence, the measured distances are not absolute

distance measurements, and they are therefore referred to as pseudoranges, and can be

expressed as follows,

ρk � rk � cδtu � Ik � Tk � ǫk (2.26)

where Ik and Tk are the ionospheric and tropospheric propagation delays from the kth

satellite to the receiver, and ǫk refers to other effects that may remain unmodeled (i.e.

additional measurement errors).

Expression (2.26) is the basis for computing the user’s position. In practice, the

navigation messages usually include correction parameters to compensate ionospheric and

tropospheric effects. This means that atmospheric corrections are readily subtracted from

the pseudorange equation in (2.26),

ρ̃k
.
� rk � cδtu � ǫk (2.27)

and the positioning problem mainly boils down to finding the set of txu, yu, zuu parameters

in (2.25), plus the receiver clock offset δtu. That is, 4 unknowns that have thus to be

solved using at least 4 measurements of the form in (2.26), leading to the following system:
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which is nonlinear due to the norm operator within rk.

There exist two main families of approaches to solve for the nonlinear problem in

(2.28):

• Linearization-based methods. They are based on the linearization with respect

to the position solution, ru
.
� rxu, yu, zus

T . They are iterative methods that require

an approximate value of the receiver’s position to start operating.

• Closed-form methods. They are based on the Bancroft algorithm [Ban85] and

have the advantage of providing the solution in closed form, thus not being iterative

methods and not requiring an initial estimate of the user’s position.
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In this section we will focus on the linearization-based methods, since very few itera-

tions are actually needed in practice, and they provide better accuracy than closed-form

methods [Ló12]. The geometric distance rk is linearized around a tentative value of the

user’s position, ru,0
.
� rxu,0, yu,0, zu,0s

T , by keeping the first-order term of the Taylor series

expansion:

rk � ||rk � ru|| � ||rk � ru,0||�
prk � ru,0q

T

||rk � ru,0||
∆ru (2.29)

where ∆ru
.
� ru � ru,0, and rk

.
� rxk, yk, zks

T is the position of the kth satellite, which

can be determined using the ephemerides decoded from the navigation message. For

convenience, we define the following parameters that will be used to build the system of

equations to be solved:

αx,k
.
�

xk � xu,0

||rk � ru,0||
(2.30)

αy,k
.
�

yk � yu,0

||rk � ru,0||
(2.31)

αz,k
.
�

zk � zu,0

||rk � ru,0||
. (2.32)

Now, using the approximation above and collecting the measurements from all L satellites,

the system to be solved is as follows:

∆ρ � H∆u� ǫ (2.33)

where,

∆ρ
.
�

�

ρ̃1 � r1, ρ̃2 � r2, � � � ρ̃L � rL

�T

(2.34)

H
.
�

�

�

�

�

�

�

�

�

αx,1 αy,1 αz,1 1

αx,2 αy,2 αz,2 1
...

...
...

...

αx,L αy,L αz,L 1

�

�

�

�

�

�

�

�

(2.35)

∆u
.
�

�

�

∆ru

c∆tu

�

�

�

�

�

�

�

�

�

�

�

xu � xu,0

yu � yu,0

zu � zu,0

c pδtu � δtu,0q

�

�

�

�

�

�

�

�

(2.36)

ǫ
.
�

�

ǫ1, ǫ2, � � � ǫL

�T

. (2.37)
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In order to minimize the impact of the latter, the system in (2.33) is solved through a

weighted least-squares (WLS) approach,

y∆uWLS �
�

HTWH
�

�1
HTW∆ρ (2.38)

where W is a positive-definite weighting matrix that introduces weighting factors to give

more or less importance to each of the measurements according to some criterion. For

instance, they can be used to emphasize the contributions of those osbervables that are

deemed to be more reliable [Kay93]. On the other hand, note that the obtained solution

refers to the corrections to be applied onto the tentative user position ru,0. This process

is iterated again, until the estimated corrections are close to zero.

For simplicity, the standard least-squares (LS) solution to the problem in (2.33) is

often employed:

y∆uLS �
�

HTH
�

�1
HT∆ρ (2.39)

which is nothing but the WLS solution in (2.38) substituting the weighting matrix W by

an identity matrix. Notwithstanding, the WLS is found to provide better performance

when it is known that some measurements are of better quality than others. Several

criteria to quantify the quality of GNSS measurements can be found in the literature.

Some works [Kap05] base the weights on the elevation angle of the satellite as seen by the

receiver, as a measurement related to multipath and tropospheric errors. The lower the

elevation angle, the more prone to suffer from these effects the receiver is. Other works

base the weights on the measured C{N0 [Li11, Wez14] as a global parameter encompassing

the overall quality of signals. More advanced efforts combine the two previous criteria

into one single way to compute an overall set of weights [Tay13].

Positioning Solutions for High-Sensitivity GNSS Receivers

As explained above, the receiver decodes the navigation message coming from the

satellites in order to retrieve the TOW at which signals have been sent. This approach

is sometimes referred to as fine-time positioning. Notwithstanding, in high-sensitivity

receivers, the low C{N0 poses a serious concern in decoding the navigation message. That

is, the navigation message cannot be decoded reliably, and the orbital parameters must

therefore be downloaded from some external source. As a consequence, the satellites

transmit time is also unknown, thus hampering the operation of GNSS receivers since

pseudoranges cannot be built.

In short, when the navigation message from the received signal cannot be used, the

receiver must rely on external assistance data to compute a reliable position fix, and
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sometimes only coarse data is available, particularly the TOW. In this situation, the

mostly-adopted solution is to fine-estimate the TOW as part of the navigation solution

[Ako02, Ako09]. That is, by introducing an additional unknown to the system in (2.33).

This approach presents some inconvenients, such as the need for one more satellite mea-

surement, a more precise tentative user position ru,0, an approximate TOW accurate to

within a few seconds, and requiring to solve for integer millisecond ambiguity and to

correct integer-millisecond rollovers [Van09]. However, estimating the TOW presents suc-

culent advantages even for non-high-sensitivity receivers, such as faster TTFF (i.e. the

6-second transient period is eliminated), and the ability to obtain a position fix with-

out having to decode the navigation message even in harsh environments, which leads to

energy saving in handheld receivers.

The solution presented above is referred to as coarse-time positioning, and it relies on

computing the radial velocity of the different satellites, or pseudorange rates. That is, for

the kth satellite, the pseudorange rate or radial velocity is determined as,

vk �
fd,k

fc
c (2.40)

where fd,k is the Doppler shift for the kth satellite provided by the tracking stage. Then,

the system in (2.33) remains as is, but a new element is introduced into matrices H and

∆u,

H
.
�

�

�

�

�

�

�

�

�

αx,1 αy,1 αz,1 1 v1

αx,2 αy,2 αz,2 1 v2
...

...
...

...
...

αx,L αy,L αz,L 1 vN

�

�

�

�

�

�

�

�

(2.41)

∆u
.
�

�

�

�

�

�

�

�

�

�

�

�

�

xu � xu,0

yu � yu,0

zu � zu,0

c pδtu � δtu,0q

c pτs � τs,0q

�

�

�

�

�

�

�

�

�

�

�

�

(2.42)

with τs the TOW to be fine-estimated, thus manifesting that at least 5 measurements are

needed for PVT computation. In this way, high-sensitivity GNSS receivers can compute

their position without decoding the navigation message, as long as the initial tentative

TOW is located in the vicinity of the true TOW.
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Multi-Constellation Hybridization

The advent of new GNSS constellations operating complementarily to GPS opens the

door to multi-constellation positioning. That is, the determination of the user position

by simultaneously combining measurements coming from satellites belonging to different

constellations. This has been already done by the author of this thesis during his research

stay at ESA-ESTEC in [Loc17], and the main advantage comes in terms of enhanced

positioning availability owing to the increased number of operative satellites, as well as

enhanced accuracy particularly when using Galileo BOC signals.

We will now explain the notions of multi-constellation positioning by combining open

service measurements from GPS and Galileo. The main aspect to be taken into account

is that GPS measurements are referenced to the GPS time (GPST), whereas the ones for

Galileo are referenced to the Galileo system time (GST). GPST and GST are not equal

time references, and hence there exists an additional time offset between GPS and Galileo

measurements, known in the literature as the GPS-Galileo time offset (GGTO) [Van07],

which must be accounted for to successfully determine the PVT.

There are two main ways to determine the GGTO:

• Determination at system level. The GGTO information is comprised within the

navigation message, and can thus be retrieved from the received signal if decoding

is possible. The main advantage is that no additional measurements are required,

but it presents the inconvenient of requiring a minimum acceptable C{N0.

• Determination at user level. Similarly to the TOW, the GGTO can be estimated

as part of the navigation solution by considering an additional unknown into the

system in (2.33). This has the advantage of enabling PVT computation when the

navigation message cannot be decoded, but the main drawback is that one more

measurement is required.

To estimate the GGTO as part of the navigation solution, it is enough to think that the

GGTO is nothing but a time offset between GPS and Galileo measurements. Therefore,

it suffices to select either GPST or GST as the reference time scale, and indicate in the

system in (2.33) whether the corresponding measurements are either from GPS or Galileo.
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That is, an additional unknown is introduced as follows:

H
.
�

�

�

�

�

�

�

�

�

αx,1 αy,1 αz,1 1 v1 φ1

αx,2 αy,2 αz,2 1 v2 φ2

...
...

...
...

...
...

αx,L αy,L αz,L 1 vL φL

�

�

�

�

�

�

�

�

(2.43)

∆u
.
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

xu � xu,0

yu � yu,0

zu � zu,0

c pδtu � δtu,0q

c pτs � τs,0q

c pτGGTO � τGGTO,0q

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

(2.44)

with τGGTO the GGTO to be estimated, and φk equals either 1 or 0 depending on the

chosen time scale. If GPST has been selected, those φk corresponding to Galileo satellites

are set to 1, whereas those corresponding to GPS are set to 0. If GST has been selected,

the opposite applies.

2.4 Conclusions

This chapter has introduced the foundations on GNSS operation and the principles for

finding one’s position using ranging signals coming from different satellites orbiting around

the Earth. A description of the three main segments conforming a GNSS deployment has

been provided, and the basic concepts regarding the structure of the employed signals

have been presented, placing the main focus on GPS and Galileo OS signals. Then, the

different stages that GNSS receivers implement to process the satellite signals have been

widely described. These are mainly the receiver’s front-end for analog-to-digital signal

processing, the acquisition and tracking stages, and the PVT module. The latter is the

one that determines the navigation solution using the information processed in the previ-

ous modules, and with a look into the future of GNSS, some practical strategies to enable

GNSS positioning under harsh environments and by using multi-constellation measure-

ments have been explained. These are namely the estimation of the inter-constellation
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time offset and the TOW as part of the navigation solution, the latter opening the door

to positioning without decoding the navigation message.

Once the fundamental concepts of GNSS have been introduced, the main focus of

this dissertation is on the tracking stage. It is in charge of refining the code delay and

frequency shift estimates provided by the acquisition stage, and tracking any possible

variations of these parameters over time using a closed-loop architecture. A fine esti-

mation of these parameters is indispensable to provide a positioning solution with high

accuracy. In that sense, the tracking stage is divided into two sub-functions, namely the

carrier- and code-delay tracking loops. Both are based on the same idea: to find the

synchronization parameters that keep the local replica aligned with the received signal.

To this end, the discriminators provide signals that are functions of the synchronization

errors that still have to be corrected. These signals are usually noisy, and thus they are

then filtered through the PLL and DLL loop filters. However, this conventional solution

is known to experience serious robustness troubles when operating in harsh environments,

while in addition, the presence of ionospheric scintillation has a detrimental effect onto

the received measurements, thus severely hampering the proper determination of the syn-

chronization parameters. Therefore, it is necessary to deal with the above phenomena

and provide clean estimates of the synchronization parameters in spite of the presence

of ionospheric scintillation, in order to ultimately provide a high-accuracy positioning

solution. This dissertation addresses this problem at the tracking stage throughout the

remaining chapters by means of Kalman filter-based techniques.



Chapter 3

Kalman Filter-Based Techniques for

GNSS Carrier Tracking

3.1 Motivation

Carrier tracking is one of the core tasks carried out within a GNSS receiver, with the

aim of determining the synchronization parameters that keep the receiver aligned with the

measured signal, and tracking any possible variation over time of these parameters. To

this end, conventional GNSS receivers equip the PLL architecture presented in Chapter 2

with a loop filter, which is an easy-to-implement structure that suffices to properly operate

in open-sky environments for which GNSS was originally conceived. Notwithstanding, the

extension of GNSS toward environments with harsher working conditions poses a serious

concern to the operation of conventional PLLs, which are known to experience serious

trouble owing to propagation impairments and rapidly-time-varying channel conditions.

A way to circumvent the above limitation is to reformulate the problem of carrier

tracking by making use of the general framework of optimal minimum mean squared

error (MMSE) estimation. For stationary signal and noise, the solution to this problem

is known to be given by the Wiener filter. As a matter of fact, a generalization of

this filter is available for the case of signals whose parameters evolve according to some

state-space model. Interestingly, this is the case of carrier phase (and its successive

derivatives) in GNSS systems. Such a generalization is the so-called Kalman filter [Kal60],

which estimates the parameters of interest in a sequential (i.e. sample-by-sample) manner

[Kay93].

43
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There exists a tight and natural link between Kalman filtering and conventional PLL-

based tracking, since the latter can be proven to be nothing but a particular case of the

Kalman filter with constant gains [Pol73, Pat99]. Notwithstanding, the key advantage

of the Kalman filter is that it can keep on with the estimation process even if the signal

dynamics assumed in the model does not coincide exactly with the actual signal one,

thus adding a very valuable degree of robustness. This is certainly the main reason why

Kalman filter architectures are widely being proposed for robust carrier tracking in the

existing literature [Cas80, Hin88, Hae89, Cla93, Zha08b, Zha08a, Del10]. The Kalman

filter fits very well into the closed-loop architecture of the tracking stage in GNSS receivers,

thus becoming the optimal way to perform GNSS carrier tracking owing to the reasons

above. The use of Kalman filters can thus be understood as the natural improvement to

conventional PLLs.

This chapter presents the foundations of linear Kalman filtering. First, the under-

lying idea is introduced, as well as the formulation of the state-space and observation

models. The recursive equations for parameter estimation are presented, and the basic

guidelines for the filter set-up and tuning are provided. Then, the formulation of the

Kalman filter for the particular problem of GNSS carrier tracking is presented, leading

to the carrier-dynamics Kalman filter denoted henceforth as KF, for which the theoreti-

cal bounds that allow predicting the filter performance are then described as well. Such

bounds are typically expressions that are solved by numerical or recusive evaluation. In

this sense, in Section 3.5 we propose the derivation of an approximation for the conver-

gence time of kinematic Kalman filters with any order in form of a closed-form upper

bound. In the same line, in Section 3.7 we propose the derivation of an approximation

for the steady-state performance of second-order kinematic Kalman filters in form of a

closed-form lower bound.

3.2 Fundamentals of Kalman Filtering

The basic idea of the Kalman filter can be described using the representation shown

in Figure 3.1. There is a given system whose behavior as a function of time is internally

controlled by a set of parameters, denoted henceforth as states, which are stacked into the

so-called state vector xpnq. The objective of the Kalman filter is to provide an estimate of

xpnq. However, a direct access to the system state vector is unfortunately not available.

Instead, the system provides a set of outputs that are stacked into the vector ypnq and are

related to the system states through some function. In addition, the system outputs are



3.2. Fundamentals of Kalman Filtering 45

Figure 3.1: Schematic model describing the fundamental idea of the Kalman filter.

usually corrupted by some measurement noise wpnq, thus giving rise to the measurements

zpnq which are actually the ones the observer can work with.

In this context, the aim of the Kalman filter is to provide an estimate of the state

vector xpnq at every time instant n based on observing the set of noisy measurements

zpnq.

3.2.1 State-Space and Observation Models

The Kalman estimation problem is an iterative process based on propagating two

signal models over time: one describing the time evolution of the system parameters and

one for the noisy measurements that are obtained from such system.

• State-space model. The time evolution of the system parameters is governed by

some function that is modeled within the Kalman filter using a given state-space

model. That is, the propagation from xpn � 1q to xpnq follows a signal model

that, in the linear case, corresponds to a linear transformation given by the so-

called transition matrix Fpnq. When the Kalman model does not fully match the

actual model of the system parameters, some model mismatch errors appear in

addition. The latter are modeled through the so-called process noise qpnq, which is

usually zero-mean with covariance matrix Vpnq. The process noise propagates to

the Kalman states through a state-weighting matrix Gpnq.

With these observations, the so-called Kalman state transition equation is built:

xpnq � Fpn� 1qxpn� 1q �Gpn � 1qqpn� 1q (3.1)

where the overall process noise covariance matrix becomes Qpnq
.
�

E
�

GpnqqpnqqH
pnqGH

pnq
�

.
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• Observation model. As explained above, the observed measurements consist of

the system outputs corrupted by some measurement noise wpnq, which is usually

modeled as a zero-mean Gaussian process with covariance matrix Rpnq. The sys-

tem outputs are related to the system states through some function. Thus, in the

linear case, the system outputs can be expressed as a linear transformation of the

states given by the so-called observation matrix Hpnq. This leads to the following

measurement equation:

zpnq � Hpnqxpnq �wpnq (3.2)

3.2.2 The Kalman Filter Recursion

In the Kalman filtering problem, the optimal estimate of xpnq under the MMSE cri-

terion can be formulated as the mean value conditioned to the available information,

x̂pnq � E rxpnq|zp0q, zp1q, ..., zpnqs . (3.3)

which is the estimated state vector at time instant n, with associated state estimation

covariance matrix,

Σxpnq
.
� E

�

px̂pnq � xpnqq px̂pnq � xpnqqH
�

. (3.4)

The solution to this MMSE estimation problem can be iteratively computed (i.e. in a

sequential manner), and considering (3.3) as the starting point, leads to the following

recursion [Kay93, Sim06]:

1. State propagation. Generate a prediction of the state vector for time instant n

based on the measurements up to time instant n � 1. To do so, apply the optimal

MMSE estimate of xpnq in (3.1) according to (3.4):

E rxpnqs � E rFpn � 1qxpn� 1qs � E rGpn� 1qwpn� 1qs � Fpn � 1qE rxpn� 1qs

(3.5)

where the zero-mean property of wpnq has been employed, eventually leading to,

x̂pn|n� 1q � Fpn� 1qx̂pn � 1q. (3.6)

The associated state prediction covariance matrix is given by,

Σxpn|n� 1q � Fpn � 1qΣxpn� 1qFH
pn � 1q �Qpn� 1q (3.7)

where the transition matrix Fpnq is used to propagate the matrix in a similar way

as in the state vector.
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2. Measurement propagation. Generate a prediction of the measurement for time

instant n based on the predicted state vector in (3.6). This is done similarly to the

state vector prediction, in the sense that the optimal MMSE estimate for zpnq is

the expected value of (3.2):

ẑpnq � E rzpnqs � E rHpnqxpnqs � E rwpnqs � HpnqE rxpnqs (3.8)

where the zero-mean property of wpnq has been employed, eventually leading to,

ẑpnq � Hpnqx̂pn|n� 1q. (3.9)

This is then subtracted from the actual input measurement zpnq, thus giving an

error as a result that is usually denoted as the innovation sequence:

epnq
.
� zpnq � ẑpnq (3.10)

3. State correction. Employ the information provided by the new observable (con-

tained within the innovation sequence) to correct the predicted state using the

Kalman gains at time instant n:

x̂pnq � x̂pn|n� 1q �Kpnqepnq (3.11)

where the Kalman gains can be computed using the predicted state covariance

matrix as follows,

Kpnq � Σxpn|n� 1qHH
pnq

�

Rpnq �HpnqΣxpn|n� 1qHH
pnq
�

�1
. (3.12)

Associated to (3.11) is the corrected state covariance matrix Σxpnq, which reduces

the variance of the state prediction and can also be computed as a correction onto

the predicted state covariance matrix using the Kalman gains in (3.12),

Σxpnq � pI�KpnqHpnqqΣxpn|n� 1q. (3.13)

With this, the loop is closed and the algorithm starts over at step 1 for the next

time instant.

The steps above implementing the recursive Kalman filter are depicted in a more visual

manner in Figure 3.2.
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Figure 3.2: Block diagram of the Kalman filter closed-loop (i.e. recursive) architecture.

3.2.3 Kalman Filter Set-Up and Tuning

The Kalman filter performance is driven by the Kalman gains. In that sense, according

to (3.12), there are other matrices apart from Fpnq and Hpnq that also play a key role in

the estimation performance. These are namely the initial state, measurement noise and

process noise covariance matrices.

The interesting point about these matrices is that they allow providing the Kalman

filter with some a priori information about the parameters to be estimated, or the actual

working conditions, which helps the Kalman throughout the estimation process. This is

indeed a differential feature of the Kalman filter with respect to the PLL, and the way to

set-up or tune these matrices to optimize performance is explained next.

Measurement Noise Covariance Matrix

The measurement noise covariance matrix Rpnq depends directly on the noise of the

Kalman input measurements. Typically, this information can be estimated during opera-

tion of the Kalman filter, or even known in advance, and thus it can be readily provided

to the Kalman filter so as to be aware of the actual working conditions. For the problem

at hand, the measurement noise variance corresponds to the phase noise power, which

can easily be obtained by estimating the C{N0 at the GNSS receiver and thus leads to a

scalar variance Rpnq, as will be shown in Section 3.3.

Process Noise Covariance Matrix

The process noise covariance matrix Qpnq is in charge for covering the possible mis-

match between the state-space model used within the Kalman filter, and the model that

the system parameters of interest truly follow. In the recursion in Section 3.2.2, this
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is used when sequentially updating the state covariance matrix Σxpnq. Therefore, such

mismatch is internally modeled by increasing the uncertainties (i.e. variances) of the

Kalman estimates through Σxpnq. This effect denotes that model discrepancies incur into

some degradation in the estimation performance, introducing a lower saturation effect

(i.e. steady state) as will be shown in Section 3.4, as well as it makes the Kalman more

or less reactive to possible variations in the input signal.

The process noise covariance matrix is usually modeled as Qpnq
.
�

E
�

GpnqqpnqqH
pnqGH

pnq
�

, where Gpnq is typically a known matrix. Hence, Qpnq

is adjusted by properly setting the power of the mismatch errors through Vpnq. However,

in many practical applications such as GNSS carrier tracking, the mismatch errors turn

out to be a scalar zero-mean random process vpnq with variance σ2
v . Therefore, the

problem boils down to properly setting σ2
v .

Initial State Covariance Matrix

Intuitively, the state covariance matrix denotes the quality of the estimates that its

elements refer to. That is, it contains the variances of the estimated states. The lower the

variances, the more accurate the estimates. Due to the recursive nature of this matrix,

as previously shown, some initial value must be set before running the very first iteration

of the Kalman filter. We refer to Σxp0q, which reflects the initial uncertainty about the

parameters to be estimated.

In that sense, when no a priori information about the parameters of interest is avail-

able, it is possible to set Σxp0q Ñ 8 to inform the Kalman about the complete lack of

knowledge. In contrast, when some a priori information is available, this can be informed

to the Kalman through Σxp0q in order to speed up convergence. For instance, if a Kalman

state is known to be comprised within a given range of values, we can set the state initial

variance to that of a uniformly-distributed random process within such range. As will be

seen in Section 3.3, this is actually the case of carrier phase, which is already known to

be comprised within r�π, πs radians, and the corresponding initial uncertainty can thus

be delimited from the beginning.

It must be noted that for systems with an imperfect state-space model (i.e. Qpnq � 0),

the impact of Σxp0q is only perceivable during the transient stage of the filter, causing the

filter to reduce the convergence time towards the steady state. Once the steady state is

reached, the performance of the Kalman filter does no longer depend on the initialization

of the filter, but only on the process noise that lower-saturates the estimation performance,
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as explained above. This point will be further developed in Section 3.4.1.

3.3 Kalman Filter State-Space and Observation

Models for GNSS Carrier Tracking

For the problem of GNSS carrier tracking, the carrier phase can be considered to evolve

according to the carrier dynamics, which originates from the relative motion between the

satellites and the receiver. In that sense, we will assume that the discrete-time evolution

of the carrier phase coming from the discriminator output for the prompt correlator,

denoted herein as θpnq, follows a third-order dynamic model, also referred to as kinematic

[Bar04] or Newtonian [Sim06] model, that can be approximated by a third-order Taylor

series expansion:

θpnq � θpn� 1q � Ts
9θpn � 1q �

T 2
s

2!
:θpn� 1q �

T 3
s

3!
;θpn� 1q (3.14)

in radians, where Ts is the sampling time, and 9θpnq, :θpnq and ;θpnq are the first, second

and third derivatives of θpnq over Ts. For the problem at hand, these correspond to carrier

frequency, frequency rate and frequency jerk, respectively.

For a third-order Kalman filter, we are interested in tracking the carrier phase, fre-

quency and frequency rate. The discrete-time evolution of the two latter can be derived

from (3.14) as,

9θpnq � 9θpn� 1q � Ts
:θpn� 1q �

T 2
s

2!
;θpn � 1q (3.15)

:θpnq � :θpn� 1q � Ts
;θpn� 1q (3.16)

Eqs. (3.14), (3.15) and (3.16) can be jointly written to form the following state-space

model, in normalized matrix notation:
�

�

�

�

�

θpnq

Ts
9θpnq

T 2
s
:θpnq

�

�

�

�

�

�

�

�

�

�

�

1 1 1{2

0 1 1

0 0 1

�

�

�

�

�

�

�

�

�

�

θpn� 1q

Ts
9θpn� 1q

T 2
s
:θpn� 1q

�

�

�

�

�

�

�

�

�

�

�

1{6

1{2

1

�

�

�

�

�

T 3
s
;θpn� 1q (3.17)

where Ts
9θpnq and T 2

s
:θpnq are the carrier frequency and frequency rate normalized to

dimensions of radians through Ts. Equation (3.17) the role of the Kalman state transition

equation, based on (3.1),

xθpnq � Fθxθpn � 1q �Gθvpn� 1q (3.18)
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with xθpnq
.
�

�

θpnq Ts
9θ
pnq T 2

s
:θ
pnq

�T

the three-dimensional state vector at time instant

n, and vpnq
.
� T 3

s
;θpnq the process noise intended to cover the missing higher-order terms in

(3.14), which is usually modeled as a zero-mean random process with variance σ2
v � T 6

s σ
2
;θ

normalized to radians, with σ2
;θ
the variance of the jerk dynamics in (rad/s3)2. We have

omitted the time index as we will henceforth consider that σ2
v remains fixed. The p3� 3q

and p3� 1q transition and process noise weighting matrices are identified as the following

constant matrices,

Fθ
.
�

�

�

�

�

�

1 1 1{2

0 1 1

0 0 1

�

�

�

�

�

(3.19)

Gθ
.
�

�

1{6 1{2 1

�T

(3.20)

the latter leading to the constant process noise covariance matrix Qθ
.
� σ2

vGθG
T
θ .

On the other hand, after extracting the phase from the complex prompt correlator

output samples, we are typically provided with carrier phase measurements:

zθpnq � Hθxθpnq � wpnq � θpnq � wpnq (3.21)

which can be understood as a linear transformation of the state vector xθpnq through the

constant observation matrix Hθ
.
�

�

1 0 0
�

.

For the problem under analysis, the measurement noise wpnq corrupting the observa-

tions in (3.21) is a scalar corresponding to the phase noise at the discriminator output,

with zero mean and variance σ2
wpnq. We will henceforth consider the four-quadrant arc-

tangent discriminator (ATAN2) presented in Chapter 2, as it is the optimal ML phase

extractor at high carrier-to-noise ratio (C{N0) [Pro01]. Assuming that the output of the

prompt correlator is normalized to unit mean power, the variance of wpnq turns out to be

a scalar that depends on the instantaneous C{N0,

σ2
wpnq � Rpnq

.
�

1

2Ts
C
N0
pnq

�

1�
1

2Ts
C
N0
pnq

�

(3.22)

in rad2, where the second term inside the brackets on the right-hand side accounts for the

nonlinear behavior of the ATAN2 discriminator at low C{N0 [Cur12].
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3.4 Performance Bounds

3.4.1 Bayesian Cramér-Rao Bound

The particularity of Kalman filtering is that it addresses the problem of Bayesian

filtering. That is, the objective is to track a vector of random parameters that evolve

according to some prior statistics. This is in contrast to conventional (i.e. non-Bayesian)

filtering, where the parameters to be estimated are deterministic unknowns.

In Bayesian filtering, the covariance matrix Σxpnq of any estimator x̂pzpnq, nq is lower-

bounded by the inverse of the Bayesian information matrix (BIM), J�1
B pnq, leading to the

so-called Bayesian Cramér-Rao bound (BCRB) [Tre07], or posterior CRB [Tre68]:

Σxpnq
.
� E

�

px̂pnq � xpnqq px̂pnq � xpnqqH
�

¥ J�1
B pnq

.
� BCRBpxpnqq. (3.23)

The BIM can be expressed as the sum of two matrices,

JBpnq � JPpnq � JDpnq (3.24)

where JPpnq and JDpnq are the contributions owing to the prior information and the

observations, respectively. As a matter of fact, the latter represents the Fisher information

matrix (FIM), JFpnq, widely adopted in non-Bayesian estimation theory,

J�1
D pnq � pE rJFpnqsq

�1 .
� CRBpxpnqq (3.25)

thus linking the observation contribution to the well-known Cramér-Rao bound (CRB).

From the mathematical standpoint, the BCRB has the form of a discrete algebraic

Riccati equation (DARE) that is usually evaluated using numerical methods. However, an

interesting observation is that the BCRB can be computed in a recursive manner [Tic98].

That is, for the particular case of the Kalman filter, the covariance matrix Σxpnq can

recursively be computed according to (3.13) using the recursion given by Eqs. (3.7) and

(3.12). Therefore, the recursive version of the BIM, denoted as JBrec
pnq turns out to be

given by,

JBrec
pnq

.
� Σ�1

x
pnq (3.26)

and can thus be computed using the aforementioned covariance matrix recursion as

[Tre07],

JBrec
pn� 1q �

�

Qpnq � FpnqJ�1
Brec

pnqFT
pnq
�

�1
�HT

pnqR�1
pnqHpnq (3.27)
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where the first term corresponds to the contribution due to the process prediction, and

the second term corresponds to the measurement update. The recursive version of the

BCRB is then given by the inverse of (3.27):

J�1
Brec

pn� 1q �
�

�

Qpnq � FpnqJ�1
Brec

pnqFT
pnq
�

�1
�HT

pnqR�1
pnqHpnq

�

�1

(3.28)

with all the terms in normalized notation to preserve the generality of (3.28).

3.4.2 Link between BCRB and CRB

The differential characteristic between the CRB and BCRB is given by the Bayesian

feature of the latter. The link between both bounds can be made explicit by removing

the Bayesian information, which for the problem at hand is given by the system process

noise through Qpnq. By doing so, the Kalman state-space model becomes deterministic,

and therefore conventional (i.e. non-Bayesian) performance lower bounds can be applied.

More precisely, the CRB given by J�1
D pnq can be computed in a recursive manner by

considering Qpnq � 0 in Eq. (3.28), which we denote as J�1
Drec

pnq:

J�1
Drec

pn� 1q �
�

�

FpnqJ�1
Drec

pnqFT
pnq
�

�1
�HT

pnqR�1
pnqHpnq

�

�1

. (3.29)

In order to illustrate the link between the BCRB and the CRB, we consider the

example of joint carrier phase and frequency estimation from a snapshot of N noisy

measurements. This example is based on the case of GNSS carrier tracking introduced

in Section 3.3 but simplified to a second-order dynamic model for simplicity purposes,

thus neglecting the effect of frequency rate. For this particular case, the CRB for each

magnitude is given by [Kay93, Mor02],

CRBpθq �
2N � 1

NpN � 1qTsC{N0
(3.30)

CRBp 9θq �
6

NpN2
� 1qTsC{N0

. (3.31)

both with dimensions of rad2. For a C{N0 of 45 dB-Hz, Figure 3.3 compares the CRB

given by (3.30) and (3.31) to the recursive CRB in (3.29) and the recursive BCRB in

(3.28). We have considered Ts � 20 ms as the sampling time employed in the whole

document owing to the real scintillation time series that will be analysed later on. As

expected, the closed-form expressions for the CRB coincide with the recursive CRB, which

decrease without bound. The latter is explained by the fact that the Kalman state-space
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Figure 3.3: Comparison of CRB, recursive CRB (i.e. recursive BCRB when Q � 0) and

recursive BCRB (i.e. when Q � 0).

model perfectly matches that of the input signal, and the Kalman filter can thus employ

all the measurements in the data record (i.e. infinite memory). As a consequence, the

filter can gradually improve the estimation performance as the data record increases over

time. On the other hand, the BCRB is found to introduce a floor effect that, in contrast

to the CRB, limits the estimation performance. This is a well-known phenomenon that

is due to the presence of nonzero process noise [Tre07]; the Kalman state-space model

does not perfectly match that of the input signal, and the Kalman filter must employ

a limited-length data record (i.e. limited memory), thus causing the filter to eventually

saturate to a steady-state region after some convergence (i.e. transient) period. These

observations are the basis for the derivation of closed-form expressions for the BCRB up

next in Sections 3.5 and 3.7.

3.5 Batch-Mode Formulation of the Kalman Filter

The main inconvenient of the BCRB is that, in general, it does not present a solution in

closed form. This often hampers the analysis and tuning of the Kalman filter in practice,

thus forcing the designer to resort to numerical evaluations or extensive simulations.

A number of works aiming at circumventing this limitation can be found in the liter-



3.5. Batch-Mode Formulation of the Kalman Filter 55

ature; however, many of them rely on assumptions that are often unrealistic in practice.

For instance, this is the case of [Qia09, Ros11], where the results are conditioned upon the

availability of an accurate prior. Other works provide simplified versions of the BCRB, yet

still require some numerical evaluations [Bay08] or eigendecompositions [Vau70, Ham83].

One last example is the adoption of low-order model restrictions to simplify the mathe-

matical complexity of the problem and provide results that are easily tractable [Shu13].

Therefore, deriving expressions in closed form that facilitate the analysis and tuning of

the Kalman filter still remains a difficult task.

In this regard, this section presents an alternative way of formulating the Kalman filter

equations that will serve us to derive closed-form expressions for both the convergence

time and steady-state performance of kinematic Kalman filters in Sections 3.6 and 3.7,

respectively. More precisely, the approach is based on reformulating the Kalman filtering

problem in batch mode, thus leaving the estimates at a given time instant n as a function

of all past measurements in the data record. After that, it exploits the fact that, when

assuming a linear Gaussian model and a diffuse initialization of the Kalman filter (i.e. non-

informative prior), a parallelism between the KF and the best linear unbiased estimator

(BLUE) can be made.

3.5.1 Batch Formulation

The formulation in batch mode of the Kalman filtering problem relies on stacking the

measurements in (3.2) for all time instants up to n into an pn� 1q vector,

zn
.
�

�

zp1q zp2q � � � zpnq

�T

(3.32)

whose elements are to be computed as a function of the state vector at a given time

instant n, xppnq
1. To this end, we first start by rewriting the Kalman state transition

equation in (3.1) in terms of xppnq as a function of xppn� 1q as follows,

xppnq � F�1
p rxppn� 1q �Gpvpnqs (3.33)

where Fp is assumed to be nonsingular, and therefore the problem is well posed for state

estimation2. Substituting (3.33) into the measurement equation in (3.2) leads to,

zpnq � HpF
�1
p rxppn � 1q �Gpvpnqs � wpnq. (3.34)

1Note the subscript p indicating that the dimension of the Kalman filter is not specified to any

particular value.
2This makes the system reachable, so there exists a finite sequence of vpnq for n � t0, 1, . . . , n1

u such

that any initial state vector xpp0q can be transferred to any final state xppn
1

� 1q [Hen08].
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By evaluating (3.34) for different values of n we have,

zpn � 3q � HpF
�1
p rxppn � 2q �Gpvpn� 3qs � wpn� 3q (3.35)

zpn � 2q � HpF
�1
p rxppn � 1q �Gpvpn� 2qs � wpn� 2q (3.36)

zpn � 1q � HpF
�1
p rxppnq �Gpvpn� 1qs � wpn� 1q (3.37)

zpnq � Hpxppnq � wpnq (3.38)

Equations (3.35)-(3.45) stand for the measurements in the data record up to time instant

n. In order to formulate the Kalman filtering problem in batch mode, it is of interest

that all measurements refer to the state vector at time instant n, xppnq. In the example

above, this affects equations (3.35) and (3.36). From (3.33) we have that,

xppn � 1q � F�1
p rxppnq �Gpvpn� 1qs (3.39)

xppn � 2q � F�1
p rxppn� 1q �Gpvpn� 2qs . (3.40)

Then, substituting (3.39) into (3.40) leads the latter to become,

xppn� 2q � F�2
p rxppnq �Gpvpn� 1qs � F�1

p Gpvpn� 2q. (3.41)

By substituting (3.39) and (3.41) respectively into (3.36) and (3.35), the set of equations

(3.35)-(3.45) becomes,

zpn � 3q � HpF
�3
p xppnq �HpF

�3
p Gpvpn� 1q �HpF

�2
p Gpvpn� 2q �HpF

�1
p Gpvpn� 3q

� wpn� 3q

(3.42)

zpn � 2q � HpF
�2
p xppnq �HpF

�2
p Gpvpn� 1q �HpF

�1
p Gpvpn� 2q � wpn� 2q (3.43)

zpn � 1q � HpF
�1
p xppnq �HpF

�1
p Gpvpn� 1q � wpn� 1q (3.44)

zpnq � Hpxppnq � wpnq. (3.45)

In view of this recursion, the measurement model at any pn� τq, with τ
.
� t1, 2, . . . , pn�

1qu, can be written as follows,

zpn � τq � HpF
�τ
p xppnq �

τ̧

l�1

HpF
�pτ�l�1q
p Gpvpn� lq � wpn� τq (3.46)

thus leading to the following batch-mode signal model as a function of the Kalman state

vector at time n, xppnq. That is,

zn � An,pxppnq �Bn,pun (3.47)
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where An,p, Bn,p and un are pn � pq, pn� p2n� 1qq and pp2n� 1q � 1q matrices given by,

An,p
.
�

�

HpF
�pn�1q
p ; HpF

�pn�2q
p ; � � � ; Hp

�

(3.48)

Bn,p
.
�

�

�

�

�

�

�

�

�

�

�

�

�

In,

�

�

�

�

�

�

�

�

�

�

�

�

�HpF
�1
p Gp � � � �HpF

�pn�1q
p Gp

0 � � � �HpF
�pn�2q
p Gp

...
. . .

...

0 � � � �HpF
�1
p Gp

0 � � � 0

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

(3.49)

un
.
�

�

wp1q wp2q � � � wpnq vp1q vp2q � � � vpn� 1q
�T

(3.50)

with In the pn� nq identity matrix.

The performance of the Kalman filter in providing an estimate of xppnq is given by the

estimation covariance matrix Σxp
pnq, which is lower bounded by the BCRB as explained

in Section 3.4.1. Notwithstanding, when considering a diffuse initialization of the Kalman

filter, the problem in (3.47) can be reinterpreted as that of estimating a vector of unknown

deterministic parameters xppnq from Gaussian measurements zn � N pAn,pxppnq,Σznq,

with (n � n) covariance matrix,

Σzn

.
� E

�

Bn,punu
H
n B

H
n,p

�

� Bn,pΣun
BH

n,p (3.51)

where Σun

.
� diag

��

σ
2
w,p1�nq σ

2
v,p1�pn�1qq

�	

is a diagonal matrix encompassing both the

measurement and process noise variances for all time instants. Given the linear Gaussian

nature of the problem, the optimal batch-mode estimator of the state vector xppnq is given

by the BLUE [Kay93],

x̂ppnq �
�

AH
n,pΣ

�1
zn
An,p

�

�1
AH

n,pΣ
�1
zn
zn (3.52)

which is also the MVU estimator, thus attaining the corresponding (p� p) FIM,

Σxp
pnq ¥ J�1

pnq �
�

AH
n,pΣ

�1
zn
An,p

�

�1
. (3.53)

In the absence of a priori information, both the Bayesian and the frequentist ap-

proaches coincide [Kay93], thus leading to JBpnq � Jpnq. Therefore, one can make use of

(3.71) to extract the information about the Kalman filter performance when it operates

under a diffuse initialization.
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3.5.2 Inner Structure of the FIM

In order to determine the behavior of the Kalman filter, we must exploit the knowledge

of Bn,p and Σun
to get some insight into the inner structure of the covariance matrix Σzn

in the FIM in (3.53). By evaluating Σzn for different values of n, the matrix is found to

be decomposed into two terms,

Σzn � σ2
vMn � σ2

wIn (3.54)

with Mn a nonnegative pn�nq symmetric matrix whose constituent elements are formed

by cross-products of Hp, Fp and Gp. On the one hand, the diagonal elements of Mn are

found to be driven by the following expression,

rMnsk,k �

n�ķ

m�1

�

HpF
�m
p Gp

�2
(3.55)

with k
.
� r1. . ns, whereas obtaining a closed-form expression as a function of n for the

off-diagonal elements becomes quite a mathematical challenge. As a matter of fact, the

knowledge of (3.55) is already sufficient to derive closed-form expressions for the Kalman

filter performance, as will be shown in the upcoming sections.

3.6 Convergence Time

This section aims at deriving a closed-form upper bound for the convergence time

of Kalman filters encompassing kinematic models such as the one presented in Section

3.3, with any non-restricted order. To this end, the KF batch formulation presented in

Section 3.5 is employed. In particular, the proposed approach is based on exploiting the

knowledge of (3.54) and (3.55). More precisely, we observe the evolution of the trace of

Σzn in (3.54) over n. For p � 2, this is graphed in Figure 3.4, which also includes the

evolution of the two separate components given by σ2
vTr pΣznq and σ2

wn, with σ2
v � 10�8

and σ2
w � 10�5 as values for mere illustrative purposes3. It is observed that, for small n,

Tr pΣznq is dominated by the contribution of the measurement noise σ2
w filtered by the

Kalman. At a given time instant, a change of state is produced, in which Tr pΣznq starts

being dominated by the contribution of the process noise σ2
v , a situation that remains

then for nÑ8. This can be understood as the point at which the BCRB becomes lower-

saturated by nonzero process noise. Therefore, the intersection point of both components

3Note that we employ normalized (i.e. unitless) notation in these derivations in order to preserve the

generality of the proposed approach
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is considered to determine the time instant at which the Kalman enters the steady state,

and thus the point of interest in this section. This point can be found as the solution for

n to the equality,

σ2
vTr pMnq � σ2

wn. (3.56)

n
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Figure 3.4: Asymptotic evolution of TrpΣznq versus the constituent elements of Σzn in

(3.54).

The problem of solving (3.56) requires determining the trace of Mn in closed form.

To this end, we fortunately have expression (3.55) to work with. From this, Tr pMnq can

be computed as,

Tr pMnq �

ņ

k�1

rMnsk,k �

ņ

k�1

n�ķ

m�1

�

HpF
�m
p Gp

�2
. (3.57)

Substituting the matrices Hp, Fp and Gp with those for a kinematic model such as the

Taylor series expansion in (3.14), and evaluating for different model orders p, it is found

that (3.57) can be rewritten as a polynomial with degree 2p,

Tr pMnq �

2p̧

q�1

β 1qn
q (3.58)

with tβ 1qu
2p
q�1 a set of coefficients whose value is not relevant at this point, but their

absolute value is known to be less than one. This latter information will be of great use

for the derivation of a closed-form approximation in Section 3.6.1. By substituting (3.58)
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into (3.56), the latter can be rewritten as,

σ2
v

2p̧

q�1

β 1qn
q
� σ2

wn. (3.59)

where a factor of n can be compensated at both sides of the equal sign. By doing so, one

finds that the convergence time of a pth-order Kalman filter, denoted henceforth as n
ppq
c ,

can be obtained as the real positive root of the following polynomial with degree p2p�1q,

fcpn, pq � β0 �

2p�1̧

q�1

βqn
q (3.60)

with βq
.
� β 1q�1, and β0 is the independent term defined as,

β0
.
� β 11 �

σ2
w

σ2
v

. (3.61)

Deriving a closed-form solution for the real root of (3.60) may become a rather cum-

bersome mathematical problem when models with sufficiently high order are considered.

For this reason, in Section 3.6.1 we formulate an approximation for n
ppq
c that considerably

reduces the complexity of the problem.

3.6.1 Derivation of Closed-Form Approximation

In order to derive a closed-form approximation for n
ppq
c , it is assumed that σ2

w " σ2
v , as

widely considered in many practical applications such as the radar/sonar tracking problem

[Tre07], and the one in which the potential of the Kalman filter can mostly be exploited.

In this situation, the Kalman estimates the parameters of interest by sequentially filtering

the input measurement noise, down until reaching the floor saturation imposed by nonzero

process noise. Such floor effect tends to disappear when σ2
v Ñ 0, causing the BCRB to

decrease without bound and never attain a steady state (i.e. as in the CRB), leading to

n
ppq
c Ñ 8. On the contrary, the floor becomes more stringent when gradually increasing

σ2
v , causing the convergence time to reduce. When σ2

v is such that the condition σ2
w "

σ2
v is not fulfilled, the Kalman is left with no margin to filter the measurement noise.

Consequently, the process noise becomes rapidly the dominating effect in this situation,

thus leading the Kalman filter to saturate at the very first iteration, that is, n
ppq
c Ñ 1.

Therefore, as a general rule, the Kalman convergence time is comprised within the

range 1 ¤ n
ppq
c   8. In this way, a closed-form approximation of n

ppq
c can be derived
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through asymptotic analysis as follows. If σ2
v is considered small compared to σ2

w, one

can claim from the reasoning above that n
ppq
c ¡ 1. This value of n

ppq
c is raised to different

powers in the polynomial in (3.60), resulting in differences of some orders of magnitude

between consecutive terms. As a consequence, the polynomial becomes rapidly dominated

by the highest-order term, namely the one raised to p2p� 1q,

fcpn, pq � β2p�1n
2p�1

� β0. (3.62)

In addition, the assumption of σ2
w " σ2

v and the fact that |β 11|   1 as previously stated,

allow the independent term in (3.61) to be approximated by,

β0 � �

σ2
w

σ2
v

. (3.63)

By substituting (3.63) into (3.62) and equating the latter to zero, an approximation for

n
ppq
c can be provided as,

nppqc �

�

β�1
2p�1

σ2
w

σ2
v

� α

�

1
2p�1 .

� ñppqc (3.64)

where an additional parameter α has been incorporated to provide a valid solution for

the convergence time in case the condition σ2
w " σ2

v is not fulfilled. More precisely, the

rationale of α is to lower-saturate the approximation in (3.64) and avoid the meaningless

result ñ
ppq
c � 0 when σ2

w{σ
2
v Ñ 0. Given that the convergence time fulfills n

ppq
c ¥ 1, the

value of α can be computed by forcing the asymptotic of (3.64) to become,

lim
σ2
w

σ2
v
Ñ0

�

β�1
2p�1

σ2
w

σ2
v

� α

�

1
2p�1

� 1 (3.65)

which leads to α � 1.

Even though the complexity of solving n
ppq
c for (3.60) has been considerably reduced,

the result in (3.64) still lacks the knowledge of β2p�1 to become a truly closed-form expres-

sion for the Kalman filter convergence time. As a matter of fact, β2p�1 is the coefficient of

the highest-order term of Tr pMnq in (3.58), that is, β2p�1 � β 12p, for which an expression

can interestingly be obtained in closed form through (3.57) using matrices Hp, Fp and Gp.

To this end, we proceed by computing the highest-order term of (3.57) in a step-by-step

basis. First, by evaluating the polynomial
�

HpF
�m
p Gp

�2
for different values of p, it is

found that,
�

�

HpF
�m
p Gp

�2
�

HO
�

m2pp�1q

rpp� 1q!s2
(3.66)



62 Chapter 3. Kalman Filter-Based Techniques for GNSS Carrier Tracking

with the subscript HO on the left-hand side denoting the highest-order term. Then, the

result in (3.66) is integrated through the inner summatory,

�

n�ķ

m�1

m2pp�1q

rpp� 1q!s2

�

HO

�

pn� kq2p�1

p2p� 1q rpp� 1q!s2
(3.67)

whose result is then integrated again through the outer summatory in (3.57),

�

ņ

k�1

pn � kq2p�1

p2p� 1q rpp� 1q!s2

�

HO

�

n2p

2pp2p� 1q rpp� 1q!s2
. (3.68)

From (3.68) the coefficient of interest can be extracted,

β2p�1 �
1

2pp2p� 1q rpp� 1q!s2
(3.69)

which substituted into (3.64), eventually leads to the following closed-form approximation

for the convergence time of a pth-order Kalman filter,

ñppqc �

�

2pp2p� 1q rpp� 1q!s2
σ2
w

σ2
v

� 1

�

1
2p�1

. (3.70)

It is worth recalling that the result in (3.70) has been obtained by considering a

diffuse initialization of the Kalman filter. This means that no a priori information about

the parameters of interest is available to help the Kalman filter converge more rapidly

to the steady state. The filter operates with absolute initial uncertainty, thus causing

the convergence time to be maximum. Therefore, the result derived in (3.70) can be

understood as an upper bound on the Kalman filter convergence time.

3.6.2 Goodness of Approximation

This section aims at illustrating the goodness of the approximation for the Kalman

filter convergence time proposed in (3.70) for a broad range of values of σ2
w and σ2

v . To this

end, two different plots are analyzed. On the one hand, the top plots of Figures 3.5 and

3.6 show a comparison of the proposed result ñ
ppq
c in (3.70), to the exact solution n

ppq
c given

by the real root of (3.60), for p � 3 and p � 4, respectively. A very tight match between

both lines can be observed for practically all values of σ2
w and σ2

v , even though small

discrepancies predictably appear when moving away from the design region (i.e. when

the assumption σ2
w " σ2

v is not fulfilled). In order to provide a unique real solution for

n
ppq
c , the polynomial in (3.60) is required to have only one real root. This is found to occur
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when the process and measurement noise variances meet the condition σ2
w{σ

2
v ¥ 101�p.

For ratios below this value, the polynomial presents multiple real roots, which hinders the

distinction of the correct solution for n
ppq
c . In this situation, the proposed approximation

is lower-saturated to ñ
ppq
c � 1 as intuitively explained in Section 3.6.1 for large σ2

v . These

results confirm that the applicability of (3.70) can safely be extended to all values of σ2
w

and σ2
v .

On the other hand, the bottom plots of Figures 3.5 and 3.6 show the goodness of ñ
ppq
c

in terms of the BCRB steady-state completion percentage, measured through the ratio

γ
.
�

r

J
�1
Brec

p8q

s

1,1

L

r

J
�1
Brec

pñ
ppq
c q

s

1,1
. The value of γ is desired to be as close to 100% as possible.

It is observed that the smaller σ2
v , the tighter the matching of

r

J
�1
Brec

pñ
ppq
c q

s

1,1
to
r

J
�1
Brec

p8q

s

1,1
,

and hence the better the approximation in (3.70), leading to γ Ñ 100%. As σ2
v gradually

increases and the assumption σ2
w " σ2

v gets compromised, γ worsens, but just slightly

below 80% and 70% according to Figures 3.5 and 3.6, respectively. This manifests the

limited operation range of the proposed approach, even though an acceptable result can

still be provided. When σ2
v is too large and σ2

w " σ2
v no longer holds, the lower-saturation

in (3.65) comes into action, and interestingly γ Ñ 100% again. Note that a too large

process noise, though, indicates that the Kalman filter state-space model does not quite

well fit the incoming measurements, thus causing the former to become ill-posed and

consequently not to be able to perform filtering. The result of γ above confirms that in

this situation, there is no point in iterating the BCRB further than the very first iteration,

as it provides reasonably no benefit in terms of performance enhancement.

3.7 Steady-State Region

Once the convergence region of a pth-order kinematic Kalman filter has been char-

acterized, it remains to evaluate the steady-state region of the filter. In that sense, this

section aims at deriving a lower bound for the steady-state performance of Kalman filters

in closed form. Similarly to Section 3.6, the result is presented in form of an approxi-

mation based on the reasonings and derivations introduced in that section. Even though

the approach can eventually be applied to Kalman filters with any model order p, the

derivations in this section are restricted to second-order Kalman filters, as shown next.

Recalling from Section 3.5.1, when considering a diffuse initialization of the Kalman

filter, the filter performance is lower-bounded by the inverse of the FIM Jpnq,

Σxpnq ¥ J�1
pnq �

�

AH
n,pΣ

�1
zn
An,p

�

�1
(3.71)
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Figure 3.6: Same as Fig. 3.5, but with p � 4.

where Jpnq has dimensions pp� pq. This means that finding a closed-form expression for

the steady-state performance of the Kalman filter translates into finding a closed-form

expression of the pp � pq inverse of Jpnq. This problem becomes practically intractable
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from the mathematical standpoint for sufficiently high model orders (i.e. p ¡ 2). This

is the reason why the derivations presented in this section are restricted to second-order

Kalman filters (i.e. p � 2), leaving higher model orders out of the scope of this thesis.

In that sense, a second-order kinematic model, which can be understood as a random

walk with a random-walk drift, adopts the following state-space model:
�

�

θpnq

9θpnq

�

�

�

�

�

1 1

0 1

�

�

�

�

θpn� 1q

9θpn� 1q

�

�

�

�

�

1{2

1

�

� vpnq (3.72)

where the state vector is defined as xpnq
.
�

�

θpnq 9θpnq

�T

, and the transition and pro-

cess noise propagation matrices become F
.
�

�

�

1 1

0 1

�

� and G
.
�

�

1{2 1

�T

. The input

measurements remain as in (3.21), being the measurement matrix H
.
�

�

1 0
�

for the

two-dimensional case.

3.7.1 Determination of Kalman Filter Steady-State Perfor-

mance

Let us define the p2� 2q FIM for the problem at hand as,

Jpnq �

�

�

rJpnqs1,1 rJpnqs1,2

rJpnqs2,1 rJpnqs2,2

�

� (3.73)

which is a symmetric matrix, and thus rJpnqs1,2 � rJpnqs2,1. As stated before, we are

interested in finding a closed-form expression for the elements of the inverse FIM. As a

matter of fact, when the dimensions are p2� 2q, the computation is straightforward,

J�1
pnq �

1

rJpnqs1,1rJpnqs2,2 � rJpnqs21,2

�

�

rJpnqs2,2 �rJpnqs1,2

�rJpnqs1,2 rJpnqs1,1

�

� . (3.74)

By inspection of (3.71) through the matrices An,p and Σzn , which depend on the

matrices Hp, Fp and Gp for p � 2, the entries of the FIM are given by,

rJpnqs1,1 � 1TΣ�1
zn
1 (3.75)

rJpnqs1,2 � �η
T
nΣ

�1
zn
1 (3.76)

rJpnqs2,2 � η
T
nΣ

�1
zn
ηn (3.77)
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where rJpnqs1,2 � rJpnqs2,1, and ηn

.
� rpn � 1q, pn � 2q, . . . , 0sT . By substituting these

elements into (3.74), the estimation performance of the Kalman filter at hand is found to

be lower-bounded by,

J�1
pnq �

1

1TΣ�1
zn
1ηT

nΣ
�1
zn
ηn �

�

�ηT
nΣ

�1
zn
1
�2

�

�

η
T
nΣ

�1
zn
ηn η

T
nΣ

�1
zn
1

η
T
nΣ

�1
zn
1 1TΣ�1

zn
1

�

� (3.78)

The expressions above manifest that Jpnq in (3.71) requires computing the inverse

matrix of Σzn. For the purpose at hand, it is of interest to compute Σ�1
zn

using a closed-

form expression that avoids the inverse operation as such. However, we face again the

problem that finding a closed-form expression for the inverse of an pn�nq matrix becomes

quite a mathematical challenge, since n can take any integer value. For this reason, an

approximation that considerably simplifies the complexity of the problem is proposed in

Section 3.7.2.

3.7.2 Derivation of Closed-Form Approximation

By taking advantage of the knowledge of Mn, the following approximation for Σzn is

proposed:

rΣzn

.
� σ2

v
�Mn � σ2

wIn (3.79)

where �Mn
.
� dMn

dH
Mn

is defined herein as an approximated version of Mn with dMn

.
�

a

diagpMnq the (n � 1) vector containing the diagonal elements of Mn found in Section

3.5.2, Eq. (3.55),

rMnsk,k �

n�ķ

m�1

�

HpF
�m
p Gp

�2
(3.80)

We proceed by finding an expression driving the elements in (3.55) as a function of k for

the problem at hand. Substituting the matrices Hp, Fp and Gp by those in (3.72) for a

second-order kinematic model, it is found that,

HF�mG �

1

2
�m ùñ

�

HF�mG
�2
� m2

� 2m� 1. (3.81)

Then, the summatory in (3.55) is applied to the result in (3.81), and after some mathe-

matical manipulations, it is found that,

rMns
pn�kq,pn�kq �

k

12

�

4k2
� 1
�

ùñ rdMn
sn�k �



k

12
p4k2

� 1q. (3.82)
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In Figure 3.7 we evaluate the tightness of the approximation above employing the

same values of σ2
w and σ2

v as in Figure 3.4 consistently with the assumption that σ2
w " σ2

v .

Figure 3.7 depicts the BCRB for rJ�1
B pnqs1,1 compared to rJ�1

pnqs1,1 under the approxi-

mated version of Mn and also when neglecting Mn in Σzn (i.e. zero process-noise). The

approximation is seen to provide a tight match with the BCRB while the Kalman filter

is in its transient stage and also at the starting region of the steady state. In contrast,

when neglecting Mn, such steady state is never reached. This observation supports the

importance of Mn and its proposed approximation.

n
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Figure 3.7: Comparison between recursive BCRB for rJ�1
B pnqs1,1 and CRB for rJ�1

pnqs1,1

with different versions of Mn.

The advantage of the proposed approximation is that it allows finding the correspond-

ing inverse of Σzn in a straightforward manner. The Woodbury’s identity matrix (i.e.

matrix inversion lemma) can be applied on the inverse of (3.79) to obtain,

rΣ�1
zn
�

1

σ2
w

�

In �
6σ2

v

24σ2
w � γpnqσ2

v

dMn
dT
Mn




. (3.83)

Replacing the matrix Σ�1
zn

in (3.78) with the approximated version in (3.83), the following

closed-form approximation for the inverse FIM is obtained,

rJ�1
pnq �

1

1T
rΣ�1

zn
1ηT

n
rΣ�1

zn
ηn �

�

�ηT
n
rΣ�1

zn
1
	2

�

�

η
T
n
rΣ�1

zn
ηn η

T
n
rΣ�1

zn
1

η
T
n
rΣ�1

zn
1 1T

rΣ�1
zn
1

�

� . (3.84)
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At this point, it must be recalled that this approximation can be applied up to the be-

ginning of the steady state, n � nc, whereas it loses its validity when nÑ8. Therefore,

the performance lower bounds for the parameters of interest in steady state can be ap-

proximated by,

lim
nÑ8

�

J�1
B pnq

�

1,1
�

�

rJ�1
pncq

�

1,1
�

η
T
nc

rΣ�1
znc

ηnc

1T
rΣ�1

znc
1ηT

nc

rΣ�1
znc

ηnc
�

�

�ηT
nc

rΣ�1
znc

1
	2

lim
nÑ8

�

J�1
B pnq

�

2,2
�

�

rJ�1
pncq

�

2,2
�

1T
rΣ�1

znc
1

1T
rΣ�1

znc
1ηT

nc

rΣ�1
znc

ηnc
�

�

�ηT
nc

rΣ�1
znc

1
	2

(3.85)

(3.86)

where nc can be computed using the result in Section 3.6.1, Eq. (3.70) for the Kalman

filter convergence time using p � 2.

3.7.3 Goodness of Approximation

This section aims at illustrating the applicability of the result in (3.85) and (3.86)

for a broad range of values of σ2
w and σ2

v , under the condition σ2
w " σ2

v . To this end,

some simulation results are provided in Figure 3.8. The experimental performance of

the Kalman filter given by the variance of rx̂ pnqs1 in steady state is compared to the

approximation of rJ�1
pnqs1,1 in (3.85) using ñ

p2q
c in (3.70). A tight match between the exact

result and the proposed approach can be drawn in the central operating region. Some

discrepancies appear when σ2
v Ñ 0, but this is consistent with the fact that the proposed

method is applicable on the performance floor of the Kalman filter, which appears under

the steady-state regime whenever σ2
v � 0. It is for this reason that mismatches tend to

attenuate when σ2
v departs from zero, as observed in the figure. With this, we can confirm

the effectiveness of the proposed approach for low-medium (i.e. σ2
v � 10�10) to high σ2

v ,

up to the point where the condition σ2
w " σ2

v no longer holds.

3.8 Conclusions

An interesting feature of the Kalman filter is that the BCRB tool allows predicting its

estimation performance without resorting to the implementation of the filter and running

several Montecarlo realizations. Since numerical or recursive evaluations are still required

to solve for the BCRB, the main contribution of this chapter has been the derivation
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Figure 3.8: Comparison between steady state estimation performance and proposed ap-

proximation for rJ�1
pnqs1,1 in (3.85).

of closed-form approximations to the convergence time of any-order kinematic Kalman

filters through asymptotic analysis, and to the steady-state performance of second-order

kinematic ones. In both cases, this has been done by reformulating the Kalman filter in

batch mode and analyzing the problem using the tools from classical estimation theory.

Simulation results have validated the goodness of the proposed approaches under the

design assumption that the measurement noise is much larger than the process noise,

which is actually the common situation in practice.

To obtain the results above, in the first part of this chapter the fundamental concepts

of the Kalman filter have been introduced. The state-space model has been presented as

the way to propagate and track the parameters of interest, and the observation model has

been presented as the interaction between the Kalman states and the data provided at the

system output. In addition, the Kalman recursive equations have been presented as the

way for updating the Kalman gains as a function of the parameters of the problem. The

main guidelines for the set-up and tuning of the Kalman filter have been provided, with

special emphasis on the process noise covariance matrix, which ultimately determines the

transient and steady-state performance by introducing a floor effect in the latter.

Then, in the second part of this chapter, the Kalman filter formulation has been partic-

ularized for the problem of GNSS carrier tracking, detailing the corresponding state-space
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and observation models to deal with carrier phase measurements whose evolution is as-

sumed to follow a kinematic model approximated by a third-order Taylor series expansion.

The information provided in this chapter constitutes the baseline from which the hybrid

autoregressive Kalman filter will be designed in the subsequent chapters.



Chapter 4

Autoregressive Modeling of

Ionospheric Scintillation

4.1 Motivation

Ionospheric scintillation is a disturbance caused by electron density irregularities that

introduce rapidly time-varying amplitude fades and random phase fluctuations into GNSS

signals when propagating through the ionosphere. This severely degrades the operation

of GNSS receivers, which are prone to suffer from severe carrier phase jitter and to fall

into frequent losses of lock when affected by ionospheric scintillation.

Scintillation presents a random nature. As a consequence, it can be modeled us-

ing a random process following some probability function. For the amplitude, a corre-

lated Nakagami-M distribution may provide a good match with empirical measurements

[Heg01], whereas at the phase level a correlated Gaussian distribution is often considered

as a first-order approximation [Hum10b]. This latter observation is of particular interest

for scintillation to be encompassed by Kalman filter-based techniques and thus take ad-

vantage of their optimality properties under Gaussian disturbances. This opens the door

to the possibility of modeling scintillation phase variations using a linear-model random

process, which can be embedded into the linear Kalman filter formulation in such a way

that they can be dealt with in a natural manner. An example of random processes fol-

lowing a linear model is the class of autoregressive (AR) processes, which have already

been employed in other applications such as modeling signal strength measurements in

wireless links [How92] or pseudorange variations caused by multipath [De-11].

71
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Therefore, the aim of this chapter is to evaluate how well scintillation phase variations

can be modeled using AR processes. To this end, Section 4.2 presents the signal model of

an AR process, as well as two equivalent methods to determine the parameters defining

such model. The problem of scintillation phase AR fitting is then addressed in Section

4.3. To do so, we will consider two different cases of input scintillation, namely synthetic

data using the Cornell scintillation model, and a sample of captured data containing real

scintillation time series.

4.2 AR Signal Model and Parameter Determination

Let ϕpnq be a unitless autoregressive time series at time instant n with order p, denoted

henceforth as AR(p). Its time-domain representation is given by [Kay93],

ϕpnq �

p̧

k�1

βkϕpn� kq � sppnq (4.1)

where tβku
p
k�1 is the set of AR coefficients, and sppnq is the so-called AR driving noise

for a given pth order, which is usually modeled as a zero-mean Gaussian process with

variance σ2
sp
, that is, sppnq � N

�

0, σ2
sp

	

. These parameters are the ones determining the

all-pole frequency response, or power spectral density (PSD), of an AR(p) process:

Sϕ

�

ejω
�

�

σ2
sp

|1�
°p

k�1 βke�jω
|

2
. (4.2)

Eqs. (4.1) and (4.2) manifest that the problem of AR modeling boils down to deter-

mining the set of AR coefficients and driving noise variance. To this end, two equivalent

approaches are usually employed, namely the Yule-Walker equations and the least squares

method.

4.2.1 The Yule-Walker Equations

The Yule-Walker (YW) method relies on the fact that the autocorrelation function

(ACF) of an AR(p) process can be related to the AR coefficients according to the following

recursion [Kay93]:

rϕrks �

$

&

%

°p

m�1 βmrϕrk �ms k ¥ 1
°p

m�1 βmrϕrms � σ2
sp

k � 0
(4.3)
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which is termed the YW equations. In matrix form, these become,

�

�

�

�

�

�

�

�

rϕr0s rϕr1s � � � rϕrp� 1s

rϕr0s rϕr0s � � � rϕr0s
...

...
. . .

...

rϕrp� 1s rϕrp� 2s � � � rϕr0s

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

β1

β2

...

βp

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

rϕr1s

rϕr2s
...

rϕrps

�

�

�

�

�

�

�

�

(4.4)

where the matrix at the left-hand side is the autocorrelation matrix of ϕpnq, Rϕ. We

denote (4.4) in vector notation as follows,

Rϕβ � rϕ. (4.5)

On the other hand, in view of the second case in (4.3), the AR driving noise variance can

be expressed as,

σ2
sp
� rϕr0s �

p̧

k�1

βkrϕrks. (4.6)

The YW method consists in solving the YW equations in (4.4), (4.5) for the AR

coefficients β, and then use the result to obtain the AR driving noise variance in (4.6).

To this end, the approach adopted in practice is to obtain an estimated version of the

ACF from the available data using either the unbiased or the biased ACF estimators in

(4.7) and (4.8), respectively [Sto97]:

r̂ϕ,unbiasedrks
.
�

1

N � k

N�1̧

m�0

ϕpk �mqϕ�pmq (4.7)

r̂ϕ,biasedrks
.
�

1

N

N�1̧

m�0

ϕpk �mqϕ�pmq (4.8)

with N the number of data samples. However, the most commonly used ACF estimator

is the biased one. The reason is twofold:

• Whereas the two estimators behave similarly for small k, the biased one provides

better accuracy for large k. This is because the ACF decays rapidly with k for

most stationary signals. In this sense, the unbiased estimator may provide large

and erratic values for large k owing to the small averaging (for instance, only one

product for k � N � 1), whereas the biased estimator provides small values.

• The biased estimator is guaranteed to be positive semidefinite, while it is not in the

unbiased one, which may thus lead to negative spectral estimates.
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It is for these reasons that we employ the biased ACF estimator, which we will hence-

forth denote as simply r̂ϕrks for convenience. By replacing the ACFs in (4.3) with their

estimated versions, and isolating β, the AR coefficients are obtained as,

β̂ � R̂�1
ϕ r̂ϕ (4.9)

and the AR driving noise variance can therefore be estimated as,

σ̂2
sp
� r̂xp0q �

p̧

k�1

β̂kr̂xpkq � r̂xp0q � β̂
T
r̂x. (4.10)

4.2.2 The Least-Squares Approach

The least squares (LS) approach relies on the fact that the recursion in (4.1) can be

written as follows:

sppnq � ϕpnq � ϕ̂pnq (4.11)

where we define ϕ̂pnq
.
�

°p
k�1 βkϕpn � kq. The objective of the least squares approach is

to find the coefficients tβku
p
k�1 that minimize the power of the error in (4.11). That is,

those that make ϕ̂pnq as close to ϕpnq as possible. Therefore, ϕ̂pnq can be understood as

an estimation or prediction of ϕpnq by means of a linear combination of previous values

of ϕpnq in the interval rn� p, n� 1s. For this reason, the least squares approach for AR

parameter estimation is also referred to as a linear prediction problem, where tβku
p
k�1 are

the linear prediction coefficients and sppnq is the linear prediction error with power,

σ2
sp
� E

�

|ϕpnq � ϕ̂pnq|2
�

. (4.12)

The linear prediction coefficients are obtained as those tβku
p
k�1 that minimize the

linear prediction error power. The LS solution to this problem is that which minimizes

the following cost function,

J pβkq �

N�1̧

n�0

�

�

�

�

�

ϕpnq �

p̧

k�1

βkϕpn� kq

�

�

�

�

�

2

(4.13)

which is based on a given segment of ϕpnq with length N samples. By defining,

ϕ
.
�

�

ϕp0q ϕp1q � � � ϕpN � 1q

�T

(4.14)

Φ
.
�

�

�

�

�

�

�

�

�

ϕp�1q ϕp�2q � � � ϕp�pq

ϕp0q ϕp�1q � � � ϕp�p� 1q
...

...
. . .

...

ϕpN � 2q ϕpN � 3q � � � ϕpN � 1� pq

�

�

�

�

�

�

�

�

(4.15)
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the LS solution for tβku
p
k�1 is found to be given by,

β̂ �

�

ΦTΦ
�

�1
ΦTϕ (4.16)

while the linear prediction error power can be obtained by resorting to the maximum

likelihood (ML) estimate using β̂ as follows,

σ̂2
sp
�

1

N

∥

∥

∥
ϕ�Φβ̂

∥

∥

∥

2

. (4.17)

The LS approach can be interpreted as an approximation to the Yule-Walker method

by recognizing that the terms Φ
T
Φ and Φ

T
ϕ in (4.16) are, to within a multiplicative

constant, finite-sample estimates of Rϕ and rϕ, respectively. As a matter of fact, when

the data sample length N employed in the least squares method tends to that employed

in the Yule-Walker equations, the terms Φ
T
Φ{N and Φ

T
ϕ{N are exactly the biased

ACF estimates used in the Yule-Walker method [Sto05]. Hence, as the term 1{N cancels

out in (4.16), both methods are asymptotically equivalent approaches for AR parameter

estimation for the problem at hand.

One of the drawbacks of the LS method in contrast to the YW one is that its stability is

not guaranteed for small N . However, such instability is reported to be rather infrequent,

and not a serious issue, being readily circumvented by using a sufficiently large N [Sto05].

As an important advantage, the LS method is more accurate than the YW one. In

addition, the latter presents the drawback of requiring to compute an estimate of the

ACF, which is time- and resource-consuming, plus the inverse of a pp� pq matrix. In

contrast, the LS method requires computing only the latter, thus being a rather simpler

approach. For the above reasons, we will henceforth employ the LS method for estimating

the AR model parameters.

4.3 AR Modeling of Scintillation Phase Variations

4.3.1 Goodness of Scintillation AR Modeling

The methods presented in Sections 4.2.1 and 4.2.2 allow to find the parameters of an

AR process that best fit a given set of measurements. In that sense, we now explore the

feasibility of modeling scintillation phase variations through an AR(p) process as follows.

First, the estimated AR parameters tβ̂, σ̂2
sp
u are employed in (4.2) to compute the power



76 Chapter 4. Autoregressive Modeling of Ionospheric Scintillation

spectral density (PSD) of the resulting AR process as,

Ŝϕpfq �
σ̂2
sp

�

�

�

1�
°p

k�1 β̂k exp p�j2πfkq
�

�

�

2 . (4.18)

This is then compared to the actual PSD of the true scintillation phase. The simplest way

to compute the latter is by means of a non-parametric spectral estimation method. That

is, estimate spectra without making any prior assumption on the underlying structure of

the data under analysis. The most straightforward estimator is the periodogram, defined

in terms of the Fourier transform of the data,

Sϕpfq �
1

N

�

�

�

�

�

N�1̧

n�0

ϕpnq exp p�j2πfnq

�

�

�

�

�

2

. (4.19)

with ϕpnq now in dimensions of radians. This whole process is termed AR model fitting,

and the objective here is to validate how well scintillation phase variations can be modeled

through an AR process. To do so, we will consider AR models with different orders,

namely p � t1, 2, 3u, for both synthetic and real scintillation time series, as shown next.

4.3.1.1 Synthetic Cornell Scintillation Time Series

Ionospheric scintillation can be understood as a multiplicative channel introducing

signal amplitude Aspnq and phase ϕspnq variations to the received baseband signal rpnq:

ǫspnq � Aspnqexp pjϕspnqq rpnq. (4.20)

In that sense, scintillation is usually characterized in the literature though two different

indexes: S4 for amplitude scintillation, and σϕs
for phase scintillation [Van93]. S4 is an

indicator of the scintillation intensity in terms of amplitude, and it is defined as [Hum10a],

S4 �

d

E rA2
spnqs � E rAspnqs

2

E rAspnqs
2 (4.21)

whereas σϕs
is the standard deviation of scintillation phase over a given period of time,

usually one minute. Scintillation is declared present when σϕs
exceeds a given threshold,

typically 0.25 radians [Dub06].

An alternative approach that can also be found in the literature to characterize scintil-

lation is by means of the S4 and τ0 indexes, the latter termed the decorrelation time and

defined as the time lag at which the auto correlation function of a scintillating complex
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Figure 4.1: Example of a realization of Cornell moderate scintillation time series illus-

trating phase variations (top) and signal power fades (bottom).

baseband signal falls off by a factor 1{expp1q [Hum10b]. In the sequel, we will consider

a class of synthetic scintillation data that is generated using the so-called Cornell scin-

tillation model (CSM), as a first approach for synthesizing scintillation time series using

the set of indexes tS4, τ0. As a rule of thumb, the higher S4 and lower τ0, the more se-

vere scintillation. We will distinguish between two different operation regions in terms of

Cornell scintillation intensity: moderate scintillation, with S4 � 0.5 and τ0 � 0.8 seconds

corresponding to σϕs
� 0.3 rad, and severe scintillation, with S4 � 0.8 and τ0 � 0.4

seconds corresponding to σϕs
� 0.8 rad.

An example of a realization of Cornell moderate scintillation is shown in Figure 4.1.

As can be observed, scintillation phase variations are mainly comprised within �1 rad,

while accompanied by power fades that typically do not exceed -10 dB. On the other

hand, Figure 4.2 shows an example of a realization of Cornell severe scintillation. This

is a much more extreme situation where phase variations reach the ATAN2 discriminator

pull-in range of �π rad, and the power fades can readily exceed -30 dB. It is worth noting

that this is quite a critical case, meaning that the working conditions are often slightly

milder. However, we find reasonable to consider this situation, so that the design of the

carrier tracking loop can be pushed to the limits of such a worst-case scenario.

The set of AR parameters tβ, σ2
sp
u that are found to best fit the two above situations

are computed using (4.16) and (4.17), and the results are summarized in Table 4.1 for
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Figure 4.2: Example of a realization of Cornell severe scintillation time series illustrating

phase variations (top) and signal power fades (bottom).

AR model orders up to p � 3, with σ2
sp

now in dimensions of rad2. The results for

the AR model fitting using the values in Table 4.1 are shown in Figures 4.3 and 4.4

for Cornell severe and moderate scintillation, respectively. The former indicates that

severe scintillation can be modeled using any pth-order AR process, owing to the short

decorrelation between adjacent samples. Hence, increasing the order of the AR model

does not provide a major benefit. This suggests that a good model can be obtained for

severe scintillation by just keeping the lowest AR order. As a matter of fact, this result

can already be anticipated by noting in Table 4.1 that the β2 and tβ2, β3u coefficients for

AR(2) and AR(3) processes, respectively, are close to zero, and the AR process is mainly

driven by β1, thus resembling an AR(1) process. On the other hand, Figure 4.4 stands

out the misfit of moderate scintillation with an AR(1) process, thus manifesting the need

to resort to AR models with higher order, namely p ¥ 2. This result is consistent with

the fact that moderate scintillation tends to have a longer correlation between adjacent

samples, an effect that can be simulated by using more coefficients in the AR model. Even

though moderate scintillation can be modeled using either AR(2) or AR(3), the latter is

found to provide a slightly better fit, a fact that can be confirmed by noting in Table 4.1

that AR(3) is the model providing smaller prediction error.
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Moderate scintillation Severe scintillation

β̂ (unitless) σ̂2
sp

(rad2) β̂ (unitless) σ̂2
sp

(rad2)

AR(1) 0.9972 1.6337 � 10�4 0.9631 3.5756 � 10�2

AR(2) [1.9735, -0.9755] 7.9407 � 10�6 [1.0394, -0.0793] 3.5531 � 10�2

AR(3) [2.6243, -2.2921, 0.6672] 4.4066 � 10�6 [1.0373, -0.0515, -0.0267] 3.5506 � 10�2

Table 4.1: Optimal AR parameters for the AR fitting of the CSM.
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Figure 4.3: Periodogram of Cornell severe scintillation versus PSD of optimal AR(1, 2, 3)

processes.

4.3.1.2 Real Scintillation Time Series

Once Cornell synthetic data has been evaluated, we consider now the problem of AR

fitting for real scintillation data. The time series used in this thesis comes from

ESA’s Ionospheric Monitoring Network, which is provided with a number of scintilla-

tion monitoring stations placed at strategic locations worldwide, as shown in Figure 4.5.

However, the obtained data must undergo a data-detrending process prior to processing

ionospheric scintillation, as explained next.
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Figure 4.4: Periodogram of Cornell moderate scintillation versus PSD of optimal AR(1,

2, 3) processes.

Data Detrending

The time series received from ESA’s monitoring network are affected by residual low-

frequency systematic effects such as those from the troposphere, satellite geometry, and

receiver oscillator instabilities, particularly when using TCXO [Van93]. These effects in-

troduce undesired phase fluctuations that add up to the scintillation phase variations and

must therefore be removed beforehand. Such removal process is termed data detrending,

and includes both signal phase and power detrending [Des12]. In general, the errors can

be eliminated by subtracting carrier and IQ phase of a non-scintillating reference channel

from those of scintillating channels. In case all channels are scintillating, the reference

channel is chosen to be that with lowest scintillation power ratio [O’H11].

The process of data detrending is explained in detail in [Des12, For02], and the required

steps are briefly summarized next. In order to obtain detrended phase data:

1. Using carrier phase measurements from different channels, subtract the carrier phase

of a non-scintillating reference channel ϕcrefpnq to the carrier phase of the ith tracking

channel affected by scintillation ϕcipnq:

ϕcpnq
.
� ϕcipnq � ϕcrefpnq. (4.22)

In this way, the common receiver clock errors are canceled out.
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Figure 4.5: Distribution of ESA’s Ionospheric Monitoring stations around the world.

2. Elimination of clock errors is followed by removal of satellite geometry effects. To

this end, subtract a polynomial fit of ϕcpnq, denoted as ϕ̃cpnq, to the original ϕcpnq:

ϕ̃pnq
.
� ϕcpnq � ϕ̃cpnq. (4.23)

3. The high-frequency variations of interest introduced by scintillation are not present

in ϕ̃pnq. In order to recover them, we can exploit the IQ phase data provided by the

receiver, which is defined in terms of the in-phase and quadrature phase components

as arctanpQ{Iq. From this, subtract the IQ phase of the non-scintillating reference

ϕIQref
pnq to the IQ phase of the ith scintillating channel of interest ϕIQi

pnq:

ϕIQpnq
.
� ϕIQi

pnq � ϕIQref
pnq. (4.24)

4. Add the differenced IQ phase ϕIQpnq to the differenced carrier phase ϕ̃pnq:

ϕpnq
.
� ϕ̃pnq � ϕIQpnq. (4.25)
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Figure 4.6: Block diagram summarizing the process of phase data detrending to obtain

real scintillation time series [Des12].

5. Apply a high-pass sixth-order Butterworth filter to ϕpnq to wipe all residual low-

frequency fluctuations not belonging to scintillation, while high-frequency variations

introduced by scintillation do remain [Van01]. In this way, the detrended phase

ϕdetrendedpnq is eventually obtained.

The steps for phase data detrending can be observed in form of a block diagram in Figure

4.6.

On the other hand, for signal power detrending, the following two steps are required:

1. Apply a low-pass sixth-order Butterworth filter to the raw power data
�

I2 �Q2
�

of the ith scintillating channel of interest Pripnq. The low-pass filtered output is

denoted as PLPFi
pnq.

2. Divide Pripnq by the low-pass-filtered version PLPFi
pnq obtained in the previous step:

P pnq �
Pripnq

PLPFi
pnq

(4.26)

thus obtaining as a result the instantaneous power normalized to the mean one.

Once detrended phase and power have been obtained following the steps above, the

resulting is a signal containing only scintillation phase and amplitude effects, which can

now be processed as done for Cornell synthetic data.

AR Fitting for Real Scintillation

As stated in the introduction of this dissertation, scintillation is more prominent in

equatorial regions. Therefore, in order to carry out a representative analysis of real
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scintillation, in this thesis we select the monitoring station placed in Dakar, at a longitude

of 352.623897 degrees and small latitude of 14.764939 degrees. Furthermore, scintillation

is also dependent on the season of the year and the time of the day [Aar82]. More precisely,

scintillation is found to be more intense at the dark times of the day (sunset-midnight)

and year (autumn-winter). Following this idea, in this thesis we analyze a time series

captured on December 1st, 2014, from 22:00 to 23:00 hours, for GPS SV #24. After the

data-detrending process, the look of scintillation phase and power variations is shown in

Figure 4.7 top and bottom, respectively.
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Figure 4.7: Detrended scintillation phase (top) and power (bottom) of

DAK2.2014.335.22.GPS24 real time series from ESA’s Ionospheric Monitoring Net-

work.

Once data has been detrended, the problem of AR fitting can now be evaluated.

In Figure 4.7 it can be noticed that the scintillation intensity is not uniform over the

observation interval, but presents a rather time-varying behavior. That is, starting at

low intensity at the beginning, it gradually increases over time until reaching maximum

activity from TOW 167500s on. This phenomenon also manifests when estimating the

AR fitting parameters, as shown in Figure 4.8, where both the AR coefficient and driving

noise increase until reaching values above the mean one (in black dotted line).

We will hence focus on the time period above TOW 167500s on, so as to work with

a more representative scintillation time series. Using the LS method for AR parameter

estimation previously described in Section 4.2.2, the set of AR parameters tβ, σ2
sp
u that
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Figure 4.8: Time evolution of estimated AR coefficients (top) and driving noise (bottom)

for DAK2.2014.335.22.GPS24 real time series.

are found to best fit the real time series under analysis are summarized in Table 4.2 for

AR model orders up to p � 3.

DAK2.2014.335.22.GPS24

β̂ (unitless) σ̂2
sp

(rad2)

AR(1) 0.9501 2.3223 � 10�3

AR(2) [0.7210, 0.2316] 2.1753 � 10�3

AR(3) [0.7024, 0.1637, 0.0874] 2.1533 � 10�3

Table 4.2: Optimal AR parameters for the AR fitting of DAK2.2014.335.22.GPS24 real

scintillation time series.

The results for the AR model fitting using the values in Table 4.2 are shown in Figure

4.9. As can be observed, real scintillation phase can be modeled using an AR process with

the lowest order, even though higher-order models are found to slightly better fit this data

capture. The latter can actually be noticed from Table 4.2 or the bottom plot of Figure

4.8, where the AR(2) provides smaller prediction error power, while further increasing

the AR model order provides no major benefit. Therefore, real scintillation presents a

behavior in between that of Cornell moderate and severe scintillation analyzed in Section

4.3.1.1.
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Figure 4.9: Periodogram of real scintillation versus PSD of optimal AR(1, 2, 3) processes.

4.3.2 Optimal AR Model Order Selection

It has been shown in Section 4.3.1 that severe scintillation phase variations can actually

be modeled using an AR(1) process, whereas moderate variations are better modeled

using AR processes with higher order (i.e. p ¥ 2). These results manifest the need for

some selection mechanism in order to choose the best model order to be used at every

time instant, or even disable the AR module and switch to the dynamics-only KF in the

absence of scintillation, also referred to as AR(0). This is thought to be a very convenient

approach, as it fits very well into the time-varying behavior of scintillation disturbances

in real environments.

Determining the optimal order of a statistical model is a well-known problem in the

field of signal processing that is often referred to as model-order selection [Sto04]. In that

sense, the statement of the problem is briefly introduced in Section 4.3.2.1 along with

some of the selection criteria typically found in the literature. Then, we will focus on the

criterion employed in this work, termed the minimum description length criterion.

4.3.2.1 Model Order Selectors

Optimal model order selection is a well-known problem that typically arises in AR

spectral estimation, and follows a similar fashion to classical ML estimation, where the
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parameter (i.e. the model order in our case) that has most likely produced a given set

of data is to be chosen. An underestimated model order results in a smoothed spectral

estimate, whereas an overestimated model order introduces statistical instability [Kay88].

For the case of AR scintillation modeling, the problem is addressed as follows.

Recalling the matrix notation of AR processes introduced in Section 4.2.2, the AR

prediction error in (4.11) can be written as,

sppnq � ϕ�Φβ (4.27)

where sppnq
.
�

�

spp0q spp1q � � � sppN � 1q

�

and rϕ, Φs contain time-shifted replicas

of ϕpnq as in (4.14) and (4.15), respectively.

Since we assume the AR driving noise to be Gaussian distributed, the likelihood

function for the problem at hand is given by,

fp

�

ϕ|β, σ2
sp

	

�

1

p2πq
N
2 σN

sp

e
�

1

2σ2
sp

‖ϕ�Φβ‖2

(4.28)

whose compressed log-likelihood becomes,

�2 log
�

fp

�

ϕ|β, σ2
sp

		

� C �N log
�

σ2
sp

	

(4.29)

with some term C. The rationale of such term relies on the fact that, in essence, model

order estimators are based on the estimated prediction power, which is guaranteed to

decrease or stay the same as the model order increases [Kay88]. For this reason, the model

order selection cannot be carried out by monitoring only the decrease in such power, but

must also contemplate some penalty term accounting for the variance enhancement when

increasing p. Such penalty term is indeed given by C.

Once the compressed log-likelihood function is available, different model order selection

criteria can be applied to find the order p that best fits the measurements:

• A common approach is given by the Akaike’s information criterion (AIC)

[Aka74], which seeks the value of p that minimizes the following cost function:

AICppq � N log
�

σ̂2
sp

	

� 2p. (4.30)

However, the AIC presents two drawbacks. First, it tends to overfit when enlarging

the data record. Second, it is not a consistent criterion, understanding by ”consis-

tency” the fact that the probability of estimating the correct model order tends to

1 when increasing N .
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• The corrected AIC [Cav97, Sug78] aims at reducing the overfitting of the AIC by

employing a larger penalty term:

AICcppq � N log
�

σ̂2
sp

	

� 2pCN (4.31)

where CN �

N
N�p�1

. However, the opposite effect to the AIC may occur. That is,

the AICc presents the risk of underfitting.

• The AIC and AICc criteria can actually be grouped in a more general framework,

the so-called generalized information criteria (GIC) [Sto04],

GIC � N log
�

σ̂2
sp

	

� 2pC 1

N (4.32)

which actually equals the AICc when C 1

N � CN and the AIC when C 1

N � 1, and can

often outperform the AIC when setting C 1

N ¡ 1 [Zou13].

• Theminimum description length (MDL) [Ris78], also referred to as the Bayesian

information criterion (BIC) [Sch78, Dju99] is a model order selector that finds the

optimal model order of an AR process as that value of p that minimizes the MDL

cost function:

p̂MDL � arg min
p

JMDLppq (4.33)

with JMDLppq � �2 log
�

fp

�

ϕ|β, σ2
sp

		

� p log pNq which, for the problem at hand,

can be simplified after some mathematical manipulations to,

JMDLppq � N log
�

σ2
sp

	

� p log pNq (4.34)

which is nothing but the compressed log-likelihood function in (4.29) with penalty

term C � p log pNq. Therefore, the optimal MDL model order can be obtained as,

p̂MDL � arg min
p

�

N log
�

σ̂2
sp

	

� p log pNq
	

(4.35)

with σ̂2
sp

the estimated prediction error power of an AR model with given pth order.

The most relevant advantage of the MDL criterion is that, in contrast to the rest of

model order selectors presented in this section, it is a consistent criterion. It is for this

reason that the MDL is the order selector of choice in the remainder of this document.
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4.3.2.2 MDL Test with CSM Time Series

In order to test the MDL criterion for our problem, we first consider the case of

synthetic data; we generate the Cornell scintillation phase in the same way as in Sec-

tion 4.3.1.1. In order to provide reliable results, a simulation with length 10 minutes

is carried out, with a sampling time of 20 ms so as to be consistent with that of the

DAK2.2014.335.22.GPS24 real scintillation capture.

The model order is estimated by using a limited-length set of data in form of a sliding

window that moves forward along the time axis in a sample-by-sample basis. As in

many other signal processing applications, the length of such window becomes a trade-

off between sensitivity to data variations and estimation accuracy. In our case, a long

window preserves the consistency feature of the MDL criterion; a short window is however

desirable so as to be able to monitor rapid variations in the scintillation phase. Therefore,

it is important to select the proper balance between both contributions. As a rule of

thumb, we will henceforth use a window with length 5 seconds.

Simulation results are shown in Figure 4.10 in terms of the percentage of time each

model order is selected, considering up to p � 3. It is observed that the results are in

accordance with the results in Section 4.3.1.1. That is, low-order models are found not to

fit moderate scintillation quite well, and the MDL tends to select high-order AR models,

mainly AR(3). For severe scintillation, the three model orders are indistinctly chosen,

meaning that severe scintillation can already be modeled using an AR(1) process. Even

so, a trend to select high-order models can also be appreciated; an AR(3) is preferable over

an AR(1, 2), meaning that high-order AR models are found to provide slightly smaller

prediction error.

4.3.2.3 MDL Test with Real Scintillation Time Series

We now evaluate the MDL criterion for the DAK2.2014.335.22.GPS24 real scintilla-

tion time series. Figure 4.11 shows the percentage of time each model order is selected,

considering up to p � 3. As can be observed, all three model orders can be selected,

but models with p ¥ 2 are found to be the ones mainly chosen by the MDL, rather than

an AR(1). Both AR(2) and AR(3) are chosen indistinctly, meaning that they provide a

very similar fit to the real scintillation capture with very similar prediction error power as

shown previously in Table 4.2. These results are in accordance with the ones in Section

4.3.1.2.
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Figure 4.10: Percentage of time that each AR model order is selected by the MDL crite-

rion, for Cornell moderate and severe scintillation.
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Figure 4.11: Percentage of time that each AR model order is selected by the MDL crite-

rion, for DAK2.2014.335.22.GPS24 real scintillation time series.

4.4 Conclusions

In this chapter, ionospheric scintillation has been introduced as a disturbance caused

by the time-varying electron density of the Earth’s ionospheric layer. It affects GNSS

signals by introducing rapid signal amplitude fades and random carrier phase variations.
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In that sense, this chapter has contributed with a thorough analysis on exploring the

feasibility of modeling the latter using autoregressive processes. To this end, the problem

of AR model fitting to scintillation phase variations has been addressed. Two different

situations have been considered. First, the fitting to synthetic data using the Cornell

scintillation model. Second, the fitting to a real data capture containing representative

time series of scintillation activity in equatorial regions and at dark times of the day and

year.

The obtained results have shown the goodness of modeling scintillation phase varia-

tions using AR processes. For severe scintillation, the lowest AR model order has been

found to already fit well, whereas higher-order models have been concluded to better fit

moderate scintillation events. The latter has been confirmed by the AR fitting of real

scintillation. For this reason, this chapter has also addressed the problem of model order

fitting in order to determine the optimal AR model order of a given data time series,

placing the main focus on the minimum description length criterion. The test results

have been shown consistent with the statements above.

In view of these conclusions, we are now ready to embed AR signal models into the

Kalman filter formulation to deal with scintillation phase variations.



Chapter 5

Robust Carrier Tracking under

Ionospheric Scintillation Conditions

5.1 Introduction

Chapter 3 introduced the Kalman filter as the natural improvement to conventional

PLLs for GNSS carrier tracking in harsh environments. The carrier dynamics have

been modeled using a third-order kinematic model, while also deriving the corresponding

Kalman state-space model. Chapter 4 introduced ionospheric scintillation as a detrimental

effect onto both signal power and carrier phase measurements. Scintillation phase varia-

tions have been found to be well modeled using AR processes, an observation that becomes

of great interest; since the latter are linear processes with a correlated Gaussian distribu-

tion, we can formulate a state-space model for the Kalman filter to encompass scintilla-

tion in a natural manner and exploit its optimality properties in the presence of Gaussian

disturbances. This can further be combined with the kinematic model for the carrier dy-

namics, giving rise to a novel hybrid formulation: the hybrid autoregressive Kalman filter,

denoted henceforth as the so-called KF-AR or KF-AR(p).

The use of the KF-AR for GNSS carrier tracking under the presence of ionospheric

scintillation has recently started to gain interest in the literature, where early contribu-

tions analyze the performance of such technique encompassing a fixed AR(1) model as

a first approach [Vil13]. Furthermore, the need for continuously estimating and tracking

the optimal AR model parameters for scintillation modeling has been shortly identified

in [Foh18]. Therefore, in this chapter we make a leap forward in the design of KF-AR

91
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techniques by introducing novel adaptive KF-AR implementations to deal with scintilla-

tion disturbances, which are rather time-varying in practice both in the phase and signal

amplitude domains. The idea is to estimate the AR parameters in an online manner

for the Kalman filter to self-adapt to the actual working conditions and provide optimal

performance irrespective of them. In addition, in this chapter we also derive close-form

expressions for the BCRB convergence time and steady-state performance of this kind of

techniques.

This chapter is organized as follows. Section 5.2 presents the core of the KF-AR as a

Kalman filter with an augmented state-space model to track both the carrier dynamics

and scintillation phase variations simultaneously, in the presence of one another but in

a decoupled manner. The aim of this technique is to virtually dissociate scintillation

from carrier dynamics to further provide clean estimates of each of them, focusing on the

latter in navigation and positioning applications. In Section 5.3 we provide a qualitative

evaluation of the performance bounds of the KF-AR, while also deriving closed-form

expressions for characterizing the KF-AR in a straightforward manner. In Section 5.7 the

properties of controllability and observability are presented as a tool for checking on the

filter feasibility and proper operation. Section 5.8 presents the adaptive implementations

mentioned above. A phenomenon that has been so far overlooked is the fact that GNSS

signals entering the Kalman filter are inherently corrupted by some nonzero measurement

noise. In terms of AR parameter identification this is an important problem because, even

if the input is a pure AR process, the presence of AWGN causes the aggregated random

process to depart from a truly AR model. In this sense, during the design of the adaptive

implementations we provide a brief analysis on how the presence of AWGN degrades the

proper determination of AR parameters is also conducted. In addition, we also propose a

novel method to easily deal with non-linear scintillation amplitude fades. Last, in Section

5.9 we present a semi-adaptive version of the KF-AR with the goal of still providing

optimal performance but employing an implementation with reduced complexity that is

less time- and resource-consuming than the fully-adaptive technique.
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5.2 Formulation of Hybrid Autoregressive Kalman

Filter

5.2.1 State-Space Formulation and Measurement Model of AR

Processes

The time-domain representation of an AR(p) time series was given in (4.1) and is

recalled next,

ϕpnq �

p̧

k�1

βkϕpn � kq � sppnq. (5.1)

with ϕpnq henceforth in radians. The linear nature of (5.1) fits very well into the Kalman

filter formulation, and it can be written as the following state-space model,
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which plays the role of the Kalman state transition equation. Therefore, it can be rewrit-

ten as,

xϕpnq � Fϕxϕpn� 1q �Gϕsppnq (5.3)

with xϕpnq
.
�

�

ϕpnq ϕpn� 1q ϕpn� 2q � � � ϕpn� p� 1q

�T

the p-dimensional state

vector at time instant n, and sppnq the AR driving noise playing now the role of the

Kalman process noise. Comparing Eqs. (5.2) and (5.3), the pp � pq and pp � 1q transition

and process noise weighting matrices are identified as,
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Gϕ
.
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1 0 0 � � � 0
�T

(5.5)
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the latter leading to the process noise covariance matrix,

Qϕ
.
� σ2

sp
GϕG

T
ϕ �
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. . .
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�

. (5.6)

Similarly to Section 3.3, after some phase extraction at the prompt correlator output

we are provided with scintillation phase measurements:

zϕpnq � Hϕxϕpnq � wpnq � ϕpnq � wpnq (5.7)

from which the pp� 1q observation matrix is identified as Hϕ
.
�

�

1 0 � � � 0

�

.

5.2.2 KF-AR(p) State-Space and Observation Models

In the sequel we will consider that the carrier phase evolves according to two separate

contributions. On the one hand, the carrier dynamics, which has been modeled as a

third-order kinematic process. On the other hand, the scintillation phase, which has been

modeled using AR(p) processes. This means that our system needs to keep track of θpnq,
9θpnq and :θpnq as for the former, and ϕpn � kq as for the latter, with k

.
� 0..p� 1.

The Kalman state-space and observation models for both contributions have been

presented in Sections 3.3 and 5.2.1, respectively. Interestingly, their linear nature allows

to merge both of them into a single state-space model, and thus formulate an augmented

Kalman filter embedding the two models simultaneously. More precisely, we can think of

a Kalman filter with the following state transition equation:
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� (5.8)

which can be written in compact form as,

xpnq � Fxpn � 1q �Gqpnq (5.9)

thus giving raise to the so-called hybrid autoregressive Kalman filter, KF-AR, with

xpnq
.
�

�

xθpnq xϕpnq

�T

the augmented p3� pq-dimensional state vector, and qpnq
.
�
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�

vpnq sppnq

�T

the process noise. By direct comparison of Eqs. (5.8) and (5.9), the

augmented KF-AR transition and process noise weighting matrices can be identified:

F
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Fθ 03�p

0p�3 Fϕ

�

� (5.10)

G
.
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0p�1 Gϕ
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� (5.11)

while the process noise covariance matrix becomes,

Q
.
� E

�

GqpnqqpnqHGH
�
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Qθ 03�p

0p�3 Qϕ

�

� . (5.12)

On the other hand, the prompt discriminator output provides measurements combin-

ing carrier phase and scintillation phase,

zpnq � Hxpnq � wpnq � zθpnq � ϕpnq � θpnq � ϕpnq � wpnq (5.13)

from which the pp3� pq � 1q observation matrix is identified as H
.
�

�

Hθ Hϕ

�

, and

where the measurement noise wpnq remains a scalar value as in Eq. (3.22).

5.3 Bayesian Cramér-Rao Bound

Once the KF-AR state-space and observation models have been introduced, it is inter-

esting to evaluate the general performance of the KF-AR where, apart from carrier phase,

frequency and frequency rate, the scintillation disturbance ϕpnq is also jointly estimated.

Similarly to Section 3.4.1, the analysis is performed by evaluating the recursive BCRB

introduced in (3.28), which is recalled next:

J�1
Brec

pn� 1q �
�

�

Qpnq � FpnqJ�1
Brec

pnqFT
pnq
�

�1
�HT

pnqR�1
pnqHpnq

�

�1

. (5.14)

For C{N0 � 45 dB-Hz and σ2
v � 4 � 10�16 rad2, Figure 5.1 illustrates the BCRB for

carrier phase in steady state as a function of the AR process noise σ2
sp

using a KF-AR(1)

with different values of β. From the interpretation of an AR process as a linear predic-

tion problem, σ2
sp
Ñ 0 means that the process can perfectly be predicted. That is, the

scintillation disturbance can perfectly be reproduced, and thus the Kalman filter per-

forms as if scintillation is not present. For this reason, the BCRB coincides with that
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Figure 5.1: Recursive BCRB in steady state of KF-AR(1) for C{N0 � 45 dB-Hz and and

σ2
v � 4 � 10�16 rad2, and different values of β as a function of AR prediction error σ2

sp
.

of the KF for very low values of σ2
sp
. However, increasing the AR prediction error σ2

sp

induces a degradation in the BCRB, meaning that the main limiting effect in the KF-AR

estimation performance becomes the scintillation prediction error. That is, errors in the

estimated scintillation hamper the dissociation between carrier dynamics and scintillation

phase variations and propagate to the rest of Kalman states, thus leaving some irrecov-

erable errors onto the estimated phase of interest. As can be observed, this phenomenon

becomes more prominent when scintillation phase samples are more correlated (i.e. larger

β), an observation that goes in the line of moderate scintillation requiring more complex

models than severe scintillation.

This is then the cost of having scintillation to be dealt with and introducing extra states

into the KF to keep track of it, with respect to the case when there is no scintillation.

The performance in the latter case will be obtained when σ2
sp
Ñ 0, or when the C{N0 is so

low that the thermal noise becomes the main limiting effect, leaving scintillation hidden

below the noise floor. This phenomenon is emphasized in Figure 5.2 with fixed β � 0.95

and σ2
sp
� 4 � 10�5 rad2; the top plot shows that, for a C{N0 of 25 dB-Hz, the BCRBs

when in the absence and in the presence of scintillation tend to converge, in contrast to

the bottom plot for C{N0 � 45 dB-Hz.
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Figure 5.2: Recursive BCRB of KF-AR(1) with β � 0.95 and σ2
sp
� 4 � 10�5 rad2 for

C{N0 � 25 dB-Hz (top) and C{N0 � 45 dB-Hz (bottom).

5.4 Batch-Mode Formulation of Hybrid Autoregres-

sive Kalman Filter

Chapter 3 presented the derivation of closed-form expressions for the convergence

time and steady-state performance of Kalman filters following kinematic models with

nonzero process noise. Notwithstanding, the Kalman filter can also be found in plenty of

applications devoted to tracking magnitudes of any kind, such as the case of AR processes,

as shown in this chapter. This is the case of [Kom02, Che04, Sim11], where a Kalman

filter with an AR model is employed for channel estimation and equalization, as well

as for manoeuvring target tracking [Jin15] and signal dereverberation [Bra16]. Another

example is given by [Tat13], where a random-walk model is used within the Kalman

filter to compute the coefficients of an AR process to estimate physiological trembling in

medical robotic applications.

In that sense, this section introduces the formulation of hybrid autoregressive Kalman

filters in batch mode that will serve us to derive closed-form expressions for the conver-

gence time of these kind of techniques. Again, we will exploit the parallelism between

the Kalman filter and the BLUE estimator when considering a diffuse initialization of the

filter and a linear Gaussian model for the input measurements. To illustrate the method,
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the derivation is restricted to a hybrid KF-AR combining a second-order kinematic model

and a first-order AR process. In the sequel, this particular configuration will be referred

to as KF(2)-AR(1). The proposed approach could eventually be extended to any order of

the kinematic and AR models, even though the derivations become rather cumbersome

from the mathematical standpoint and thus remain out of the scope of this thesis.

5.4.1 Batch Formulation

Recall the batch-mode signal model for the input measurements as a function of the

Kalman state vector xpnq,

zn � Anxpnq �Bnun (5.15)

where, for the KF(2)-AR(1), An and Bn are pn� 3q and pn� p3n� 2qq matrices given

by,
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In (5.15), un
.
�

�

wn, vn, sn

�T

is a pp3n� 2q � 1q vector containing the measurement

and process noise samples, with

wn
.
�

�

wp1q wp2q � � � wpnq

�

(5.20)

vn
.
�

�

vp1q vp2q � � � vpn� 1q
�

(5.21)

sn
.
�

�

sp1q sp2q � � � spn� 1q

�

. (5.22)

The FIM associated to the BLUE estimator of xpnq from the measurements zn �

N pAnxpnq,Σznq remains the same as in Section 3.5,

Jpnq � AH
n Σ

�1
zn
An (5.23)

with Σzn the measurements covariance matrix,

Σzn

.
� E

�

Bnunu
H
n B

H
n

�

� BnΣun
BH

n . (5.24)

The FIM in (5.23) coincides with the BIM JBpnq when in the absence of an informative

prior. Therefore, one can exploit the known structure of Σzn within the FIM in (5.23) to

evaluate the performance of the KF(2)-AR(1).

5.4.2 Inner Structure of the FIM

By inspection of (5.24) it is found that Σzn follows the fashion of (3.54), but a new

term σ2
sSn arises owing to the contribution of the AR model,

Σzn � σ2
vMn � σ2

sSn � σ2
wIn (5.25)

with Sn a nonnegative pn � nq symmetric matrix1. The diagonal elements of Mn are

already known to be driven by (5.26), whereas it is easily found that the ones for Sn are

given by (5.27),

rMnsk,k �

n�ķ

m�1

�

HθF
�m
θ Gθ

�2
(5.26)

rSnsk,k �

n�ķ

m�1

β�2m. (5.27)

In Section 3.5, we focused particularly on the diagonal elements of Σzn, since it was the

information from which the convergence time of the Kalman filter could be characterized.

We will follow the same approach for the KF(2)-AR(1), as shown up next.

1Note that we have omitted the subscript p in σ2

s
since it has now a specific value.
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Figure 5.3: Asymptotic evolution of Tr pΣznq versus the constituent elements of Σzn in

(5.25), for σ2
w � t10�7, 1u.

5.5 KF(2)-AR(1) Convergence Time

This section aims at deriving closed-form upper bounds for the convergence time of

the KF(2)-AR(1) by making use of the batch-mode formulation presented in Section 5.4.

Here the results are derived through asymptotic analysis by distinguishing between two

different operating regions, namely for small and large measurement noise (i.e. high and

low C{N0, respectively).

We proceed by again observing the evolution of the trace of Σzn in (5.25) over n.

This is depicted in Figure 5.3, along with the trace of the three separate components.

For illustrative purposes, the values β � 0.9, σ2
s � 10�10 and σ2

v � 10�8 are used2. To

illustrate the approach, we consider σ2
w � 10�7 and σ2

w � 1 for the two different operating

regions of small and large measurement noise, respectively.

2We use again normalized notation to preserve the generality of the approach.
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5.5.1 Closed-Form Approximation for Small Measurement

Noise

For small n, the trace of Σzn is dominated by the contribution of σ2
w. At some point,

a change of roles is produced and the component of σ2
v starts being dominant. In Section

3.5 this point was considered to determine the Kalman convergence time, denoting that

the BCRB entered the steady state imposed by nonzero process noise. However, in the

KF(2)-AR(1) a new change of trend occurs later, in which the new contribution given

by σ2
s becomes the dominating one, a situation that then remains for n Ñ 8. For small

measurement noise, this can thus be understood as the turning point at which the KF(2)-

AR(1) enters the steady-state region. As observed in Figure 5.3, this occurs when the

contributions of σ2
v and σ2

s intersect. Therefore, the convergence time for the KF(2)-AR(1)

with small σ2
w, denoted henceforth as n

σ2
wÓ

c , can be found as the real solution for n to the

following equality,

σ2
vTr pMnq � σ2

sTr pSnq . (5.28)

The problem of solving (5.28) requires determining the traces of Mn and Sn. For a

second-order kinematic model, the former is obtained as,

Tr pMnq �
n

24
pn� 1q

�

2n2
� 2n� 1

�

(5.29)

whereas the latter can be computed by summing the elements in (5.27) for k
.
� r1. . ns,

which results in a set of geometric series that after some mathematical manipulations

equals to,

Tr pSnq � n

�

1

1� β�2
� 1




�

β�2

p1� β�2
q

2

�

1� β�2n
�

. (5.30)

As can be observed, expressions (5.29) and (5.30) as such pose a considerable math-

ematical difficulty for deriving a closed-form solution for n
σ2
wÓ

c using (5.28). For this

reason, we propose an approximation of reduced complexity that relies on the follow-

ing observations. Recalling Section 3.6.1, the convergence time of a Kalman filter meets

1 ¤ n
ppq
c   8. Being this raised to the fourth power in (5.29), the trace of Mn becomes

rapidly dominated by the highest-order term of the polynomial, namely,

Tr pMnq �
n4

12
. (5.31)

In addition, the coefficient β must fulfill |β|   1 for an AR(1) process to be stable. As a

result of both observations, the trace of Sn in (5.30) is empirically found to be dominated
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by the second term on the right-hand side, where one can also resort to p1� β�2n
q �

�β�2n, thus boiling down to,

Tr pSnq �
β�2pn�1q

p1� β�2
q

2 . (5.32)

Substituting (5.31) and (5.32) into (5.28) and solving for n, an approximation for the

KF(2)-AR(1) convergence time with small measurement noise can be provided as,

nσ2
wÓ

c �

2

ln pβq
W

�1

�

�

�

�

3 ln pβq4 β2σ2
s

4σ2
v pβ

4
� 2β2

� 1q

�

1
4

�

 (5.33)

where W
�1 p�q refers to the -1 real branch of the so-called Lambert W function. It is

defined in the interval r�expp�1q, 0q [Cha02]. Therefore, the result in (5.33) provides a

valid solution as long as the following relationship is fulfilled,

0   σ2
s ¤

4σ2
v pβ

4
� 2β2

� 1q

3 ln pβq4 β2expp4q
. (5.34)

After some polynomial fitting analysis, it is found that the W
�1 pxq function can be

approximated by,

W
�1 pxq � 2.4 log10 p�xq � 2.24. (5.35)

Therefore, substituting x by the argument of W
�1 p�q in (5.33), an approximation for n

σ2
wÓ

c

can be provided in closed form as,

nσ2
wÓ

c �

4.8 log10

�

�

3 lnpβq4β2σ2
s

4σ2
vpβ

4
�2β2

�1q

	

1
4




� 4.48

ln pβq
.
� ñσ2

wÓ

c . (5.36)

5.5.2 Closed-Form Approximation for Large Measurement

Noise

When n is small, Tr pΣznq is also dominated by the contribution of σ2
w. Then, a change

of state is produced when intersecting with the contribution of σ2
s , which dominates in the

steady state. This can be observed in Fig. 5.3, where the effect of σ2
v becomes neglected

here, in contrast to the case for small measurement noise. Therefore, the convergence

time for the KF(2)-AR(1) with large measurement noise, denoted henceforth as n
σ2
wÒ

c , can

be found as the real solution for n to the equality,

σ2
sTr pSnq � σ2

wn. (5.37)
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At this point we can take advantage of the approximation for Tr pSnq in (5.32). If this is

substituted into (5.37) and the equation is solved for n, an approximation for ñ
σ2
wÒ

c can

be provided as,

nσ2
wÒ

c �

W
�1

�

2 lnpβqβ2σ2
s

σ2
wpβ

4
�2β2

�1q

	

2 ln pβq
(5.38)

which, since is also given by the �1 real branch of a Lambert W function, provides a

valid solution when,

0   σ2
s ¤

σ2
w p2β

2
� β4

� 1q

2 ln pβqβ2expp1q
. (5.39)

Similarly to the case for small measurement noise, substituting x in (5.35) by the argument

of W
�1 p�q in (5.38), an approximation for n

σ2
wÒ

c can be provided in closed form as,

nσ2
wÒ

c �

1.2 log10

�

2 lnpβqβ2σ2
s

σ2
wp2β

2
�β4

�1q

	

� 1.12

ln pβq
.
� ñσ2

wÒ

c . (5.40)

It is worth noting that, due to the non-dependence of (5.38) with σ2
v , this result also

applies to non-hybrid autoregressive Kalman filters. That is, Kalman filters that are

configured to merely track an AR process, in this case an AR(1). This kind of filters will

be studied with more detail in Section 5.6.

Lastly, as in Section 3.5, the results in (5.36) and (5.40) have been derived

assuming a diffuse initialization of the Kalman filter, meaning that the conver-

gence time is maximum. Therefore, these results can also be understood as

upper bounds on the KF(2)-AR(1) convergence time.

5.5.3 Goodness of Approximations

This section aims at illustrating the goodness of the approximations for the KF(2)-AR(1)

convergence time in (5.36) and (5.40). To this end, Figure 5.4 depicts the matching

of our results with the empirical convergence time nc, measured through the metrics

∆ñ
σ2
wÓ

c
.
� pñ

σ2
wÓ

c � ncq
L

nc and ∆ñ
σ2
wÒ

c
.
� pñ

σ2
wÒ

c � ncq
L

nc. The results are plotted as a

function of σ2
w for different values of σ2

s , while the values of β and σ2
v remain as in Fig-

ure 5.3. The term nc is computed as the time sample for which the BCRB reaches

r

J
�1
Brec

p8q

s

1,1

L

r

J
�1
Brec

pn
ppq
c q

s

1,1
� 0.99, with 0.99 a conservative value. In the figure, positive

values indicate an overestimated convergence time, meaning that the BCRB reached the

steady state some iterations ago. On the contrary, negative values denote an underesti-

mation where the BCRB is still to reach the steady state. A tight match between our
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Figure 5.4: Differences between approximations and empirical convergence time, ∆ñ
σ2
wÓ

c
.
�

pñ
σ2
wÓ

c � ncq
L

nc and ∆ñ
σ2
wÒ

c
.
� pñ

σ2
wÒ

c � ncq
L

nc.

results and the empirical convergence time can be observed, with the previous metrics

surrounding the ideal zero. Some discrepancies appear for small σ2
s or when increasing

σ2
w. This is explained by the fact that the steady-state region tends to disappear when

the AR process noise variance σ2
s gets much smaller than σ2

w. In this situation, it becomes

thus more difficult to properly characterize the convergence time of the KF(2)-AR(1). As

in Section 3.5, our results apply when the presence of the steady-state region is evident.

For this reason, mismatches tend to attenuate for moderate σ2
w and σ2

s . For small σ2
w, the

approximation ñ
σ2
wÓ

c provides very good accuracy. However, when σ2
s and σ2

w fulfill the

condition in (5.39) and ñ
σ2
wÒ

c comes into play, it is seen to provide a benefit over ñ
σ2
wÓ

c ,

with ∆ñ
σ2
wÒ

c closer to zero. These results confirm the validity of our approach when the

conditions in (5.34) and (5.39) are fulfilled.

5.6 Steady-State Region of Non-Hybrid Autoregres-

sive Kalman Filters

This section aims at obtaining expressions in closed form for the performance lower

bounds of non-hybrid autoregressive Kalman filters. These are Kalman filters whose
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state-space models encompass only autoregressive processes with no other disturbances

(i.e. no kinematic models). As introduced in Section 5.4, this kind of techniques can

be found in plenty of applications in practice. For the sake of mathematical complexity,

the derivations in this section are restricted to low-order AR models, namely AR(1) and

AR(2).

This contribution arises from a twofold observation. First, the fact that the Kalman

state covariance matrices introduced in Section 3.2.2 do contain the information of the

BCRB. Second, it can be noticed that the recursion employed to obtain such matrices, see

Eqs. (3.7), (3.12) and (3.13), does actually not depend on the actual input measurements.

This is an interesting point, meaning that such matrices can be computed in an offline

manner.

As a matter of fact, the derivations presented in this section adopt a different approach

to the batch-mode formulation one, based on simply analyzing the abovementioned re-

cursion when the steady state has been reached. As already explained, the presence of

nonzero process noise introduces a floor effect in the BCRB that causes the estimation

performance to saturate at some point, thus remaining in such steady-state region for

n Ñ 8. In this situation, the temporary index of the covariance matrix Σxpnq can thus

be ignored. By doing so, the recursion to obtain such matrix is shown next in Eqs.

(5.41)-(5.43), where we also rename some of the involved matrices for convenience:

1. Predicted covariance matrix:

P
.
� Σxpn|n� 1q|nÑ8

� FCFT
�Q (5.41)

2. Kalman gains:

K
.
� Kpnq|nÑ8

� PHT
�

R�HPHT
�

�1
(5.42)

3. Corrected covariance matrix:

C
.
� Σxpnq|nÑ8

� pI�KHqP. (5.43)

5.6.1 Performance Lower-Bound for AR(1) Kalman Filter

Following the signal model for an AR(p) process introduced in (4.1), an AR(1) process

is driven by,

ϕpnq � βϕpn� 1q � spnq (5.44)
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which, in terms of a Kalman state-space model, F
.
� β and Q

.
� σ2

s are identified as

the transition matrix and process noise covariance matrix. With these, the predicted

covariance matrix in (5.41) can be written as,

PARp1q
� β2CARp1q

� σ2
s (5.45)

where, for the case of an AR(1), PARp1q and CARp1q reduce to scalar values. On the other

hand, the Kalman input measurements are considered to be given by the AR(1) process

ϕpnq, and thus H
.
� 1, whereas R

.
� σ2

w refers to the scalar variance of the input noise.

With this, the Kalman gains in (5.42) can be written as,

KARp1q
�

PARp1q

PARp1q
� σ2

w

. (5.46)

By substituting (5.46) into the corrected covariance matrix in (5.43), the latter becomes,

CARp1q
� PARp1q

�

1�
PARp1q

PARp1q
� σ2

w




. (5.47)

The recursion is closed by introducing the result in (5.47) into the prediction equation

(5.45) again, which leads to,

PARp1q
� β2PARp1q

�

1�
PARp1q

PARp1q
� σ2

w




� σ2
s (5.48)

thus leaving the covariance matrix as a function of itself. By solving for PARp1q in (5.48)

and after some mathematical manipulations, the following closed-form expression for the

steady-state performance of an AR(1) Kalman filter is obtained,

PARp1q
�

σ2
s � σ2

w pβ
2
� 1q �

b

rσ2
w pβ

2
� 1qs2 � 2σ2

wσ
2
s pβ

2
� 1q � σ4

s

2
. (5.49)

5.6.2 Performance Lower-Bounds for AR(2) Kalman Filter

An AR(2) process is given by the following signal model:

ϕpnq � β1ϕpn � 1q � β2ϕpn� 2q � spnq (5.50)

which, in terms of the Kalman state-space model, F
.
�

�

�

β1 β2

1 0

�

� and Q
.
�

�

�

σ2
s 0

0 0

�

�. The

predicted covariance matrix in (5.41) depends on C, which for the AR(2) case corresponds
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to a p2 � 2q symmetric matrix defined as CARp2q .
�

�

�

C
ARp2q
1,1 C

ARp2q
1,2

C
ARp2q
1,2 C

ARp2q
2,2

�

�. With this, after

doing the operation in (5.41), the predicted covariance matrix becomes,

P
ARp2q

�

�

�

β1

�

C
ARp2q
1,1 β1 �C

ARp2q
1,2 β2

	

� β2

�

C
ARp2q
1,2 β1 �C

ARp2q
2,2 β2

	

� σ2
s β1C

ARp2q
1,1 � β2C

ARp2q
1,2

β1C
ARp2q
1,1 � β2C

ARp2q
1,2 C

ARp2q
1,1

�

�

(5.51)

to whose elements we will refer for the moment as PARp2q .
�

�

�

P
ARp2q
1,1 P

ARp2q
1,2

P
ARp2q
1,2 P

ARp2q
2,2

�

�.

Similarly to Section 5.6.1, the input measurements are given by ϕpnq and thus H
.
�

�

1 0

�

, while R
.
� σ2

w remains as the input noise variance. With this, the Kalman gains

in (5.42) can be written as a function of the elements of PARp2q as,

KARp2q
�

�

P
ARp2q
1,1

P
ARp2q
1,1 �σ2

w

P
ARp2q
1,2

P
ARp2q
1,1 �σ2

w

�T

. (5.52)

By substituting (5.52) into the corrected covariance matrix in (5.43), the latter be-

comes,

CARp2q
�

�

�

�

�

P
ARp2q
1,1

�

1�
P

ARp2q
1,1

P
ARp2q
1,1 �σ2

w




P
ARp2q
1,2

�

1�
P

ARp2q
1,1

P
ARp2q
1,1 �σ2

w




P
ARp2q
1,2

�

1�
P

ARp2q
1,1

P
ARp2q
1,1 �σ2

w




P
ARp2q
2,2 �

p

P
ARp2q
1,2 q

2

P
ARp2q
1,1 �σ2

w

�

�

�

�

. (5.53)

The recursion is closed by introducing the result in (5.53) into the prediction equation

(5.51) again. This leads to the covariance matrix being left as a function of its own

elements. By doing so, the following elements are obtained:

P
ARp2q
1,1 � β1

�

�

β1P
ARp2q
1,1 � β2P

ARp2q
1,2

	

�

1�
P

ARp2q
1,1

P
ARp2q
1,1 � σ2

w

��

�

� β2

�

�

�

β1P
ARp2q
1,2

�

1�
P

ARp2q
1,1

P
ARp2q
1,1 � σ2

w

�

� β2

�

�

�

P
ARp2q
2,2 �

�

P
ARp2q
1,2

	2

P
ARp2q
1,1 � σ2

w

�

Æ



�

Æ



� σ2
s (5.54)

P
ARp2q
1,2 �

�

β1P
ARp2q
1,1 � β2P

ARp2q
1,2

	

�

1�
P

ARp2q
1,1

P
ARp2q
1,1 � σ2

w

�

(5.55)

P
ARp2q
2,2 � P

ARp2q
1,1

�

1�
P

ARp2q
1,1

P
ARp2q
1,1 � σ2

w

�

. (5.56)

At this point, it is of interest to write the results for P
ARp2q
1,2 and P

ARp2q
2,2 as a function

of P
ARp2q
1,1 , and then employ these results to solve for P

ARp2q
1,1 in (5.54) and leave it as a
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function of the Kalman parameters. By solving (5.55) for P
ARp2q
1,2 the result is,

P
ARp2q
1,2 �

β1σ
2
wP

ARp2q
1,1

σ2
w p1� β2q �P

ARp2q
1,1

(5.57)

whereas the result for P
ARp2q
2,2 in (5.56) already fulfills this point. With this, solving for

P
ARp2q
1,1 in (5.54) results in a fourth-order polynomial whose coefficients are determined by

the Kalman parameters as follows:

�

P
ARp2q
1,1

	4

�

�

P
ARp2q
1,1

	3
�

σ2
w

�

β2
1 � β2

2 � 2β2 � 3
�

� σ2
s

�

�

�

�

P
ARp2q
1,1

	2
�

σ4
w

�

β2
1β

2
2 � 2β3

2 � 2β2
1 � β2

2 � 4β2 � 3
�

� σ2
wσ

2
s p2β2 � 3q

�

�

� P
ARp2q
1,1

�

σ6
w

�

β2
1β

2
2 � β4

2 � 2β3
2 � β2

1 � 2β2 � 1
�

� σ4
wσ

2
s

�

β2
2 � 4β2 � 3

��

�

� σ6
wσ

2
s

�

β2
2 � 2β2 � 1

�

� 0 (5.58)

thus leaving the first element of the covariance matrix as a function of itself.

As can be anticipated, finding a closed-form solution to the fourth-order polynomial

in (5.58) becomes quite a mathematical challenge. For this reason, a closed-form approx-

imation that considerably reduces the complexity of the problem is presented next.

5.6.3 Derivation of Closed-Form Approximation for AR(2)

Kalman Filter

The proposed closed-form approximation is based on the observation that the estimation

variance is expected to be much smaller than 1, P
ARp2q
1,1 ! 1, as can be concluded from

observing the recursive BCRB in (5.14). This will occur as long as the KF-AR operates

in nominal conditions, that is, σ2
s ! σ2

w. This observation allows the polynomial in (5.58)

to be approximated by the first-order and the independent terms, namely,

P
ARp2q
1,1

�

σ6
w

�

β2
1β

2
2 � β4

2 � 2β3
2 � β2

1 � 2β2 � 1
�

� σ4
wσ

2
s

�

β2
2 � 4β2 � 3

��

�

� σ6
wσ

2
s

�

β2
2 � 2β2 � 1

�

� 0 (5.59)

which, after some mathematical manipulations, leads to the following closed-form approx-

imation for P
ARp2q
1,1 :

P
ARp2q
1,1 �

σ2
wσ

2
s pβ2 � 1q2

σ2
w pβ

2
2 � 1q

�

β2
1 � pβ2 � 1q2

�

� σ2
s pβ2 � 1q pβ2 � 3q

.
� P̃

ARp2q
1,1 (5.60)
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while the elements P
ARp2q
1,2 and P

ARp2q
2,2 can be approximated as a function of P̃

ARp2q
1,1 as

follows,

P
ARp2q
1,2 �

β1σ
2
w

1� σ2
wpβ2�1q

P̃
ARp2q
1,1

.
� P̃

ARp2q
1,2

P
ARp2q
2,2 �

σ2
w

1� σ2
w

P̃
ARp2q
1,1

.
� P̃

ARp2q
2,2 .

(5.61)

(5.62)

5.6.4 Goodness of Approach

The aim of this section is to illustrate the goodness of the closed-form expressions

in (5.49) and (5.60) for the steady-state performance lower bounds of first- and second-

order autoregressive Kalman filters. For the former, Figure 5.5 shows a comparison of

the closed-form expression for PARp1q to the empirical value obtained by iterating over

equations (5.41)-(5.43). As expected, a perfect match between both lines is observed, while

obtaining very similar results for the different values of β since no disturbing dynamics

process noise is present. This result confirms the validity of the derived closed-form

expression in (5.49). On the other hand, Figure 5.6 shows a comparison of the closed-

form approximation P̃
ARp2q
1,1 to the empirical result. A very tight match is observed when

working under nominal conditions, σ2
s ! σ2

w. However, this holds until up to a point in

terms of the ratio σ2
s{σ

2
w beyond which no meaningful results can be provided, where the

blue lines in Figure 5.6 get truncated. This is explained by the fact that, in this region,

the first-order polynomial approximation in (5.59) is no longer applicable, as the neglected

higher-order terms start gaining some importance. This takes place when approaching

the noncompliance of the σ2
s ! σ2

w condition. Notwithstanding, the behavior of P
ARp2q
1,1

is found to be well-defined by the approximation P̃
ARp2q
1,1 when the condition σ2

s ! σ2
w is

fulfilled, thus confirming the validity of the proposed approach in this region.

5.7 Controllability and Observability

The properties of controllability and observability [Jaz70, Gop84] of the Kalman filter

constitute a set of tools of great practical interest to analyze the state transition and

observation equations, and give insights into the filter’s viability during the design stage

[Sou98]. Therefore, they must be checked to confirm the feasibility of the KF-AR.
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Figure 5.5: Empirical PARp1q versus closed-form expression in (5.49).
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1,1 versus closed-form approximation in (5.60).

Controllability

A linear Kalman filter is controllable if for any initial state vector xpn0q and any

given time instant n, there exists a control force driving the initial state to any desired

value of xpnq [Sim06]. That is, an initial state vector can be driven to any desired state
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by the application of any unconstrained control inputs qpnq. A simple test to check the

controllability of a linear system is based on analyzing the so-called controllability matrix :

C
.
�

�

G FG F2G � � � Fk�1G

�

(5.63)

where k is the dimension of the Kalman state vector. With this, the system is controllable

if and only if the controllability matrix C has rank k. Otherwise, the system is said to

be uncontrollable, meaning that some elements in the state vector are not affected by the

control input.

Observability

On the other hand, a linear Kalman filter is observable if for any initial state vector

xpn0q and any given time instant n, the system can be uniquely determined with the

knowledge of the process noise q and the observations zpnq for all n [Sim06]. A simple

way to check the observability of a linear system is based on analyzing the so-called

observability matrix :
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With this, the system is observable if and only if the observability matrix O has rank

k. Otherwise, the system is said to be unobservable, meaning that some elements in

the state vector at a given time instant n may not be determined from examination of

the input observables, regardless of how many measurements are taken. The property

of observability can also be understood as the ability of the Kalman filter to dissociate

among the different parameters to be estimated based on the available set of observables.

By checking Eqs. (5.63) and (5.64) using the defined H, F and G matrices, it is found

that the KF-AR fulfills both controllability and observability properties, thus being well-

posed for carrier dynamics plus scintillation phase tracking.
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5.8 Doubly-Adaptive KF-AR Implementation. The

AHL-KF-A2R(p)

When characterizing the DAK2.2014.335.22.GPS24 real scintillation time series in

Chapter 4, it has been found that ionospheric scintillation presents a rather time-varying

behavior in practice. This means that KF-AR techniques with fixed AR model param-

eters may fail at providing optimal performance when scintillation varies from that for

which they are designed. Therefore, it is reasonable to provide the KF-AR with some

adaptability so that it can nimbly self-adapt to the actual working conditions and per-

form in an optimal manner irrespective of them. In that sense, this section presents a

doubly-adaptive implementation of the KF-AR, the so-called AHL-KF-A2R(p), which

consists of two online adaptive algorithms. On the one hand, an online estimator of the

AR model parameters and order, whose output is fed back to the Kalman filter in order

for the corresponding matrices to match the working conditions at each time instant. On

the other hand, a novel adaptive hard-limiting (AHL) method to deal with the non-linear

signal amplitude fades introduced by scintillation. In order to confirm the reliability of

the above online estimators, we will compare their performance to that obtained offline

(i.e. with no Kalman filter closed-loop architecture involved) considered as the theoret-

ical reference, where we will also see how the presence of AWGN may degrade the AR

estimation, particularly the AR model parameters.

5.8.1 Online Estimation of AR Model Parameters

The parameters of an AR process can be determined by employing either the YW or

the LS methods, as explained in Chapter 4. These rely on a sample data record with some

length. From this observation, the online estimation of AR model parameters consists in

determining the optimal set of tβ, σ2
sp
u to be employed at a given time instant n based

on a record of past data samples in form of a sliding window that moves forward when

gradually increasing n. The block diagram of this implementation is shown in Figure

5.7, where the output of the AR parameter estimation box is correspondingly employed

to adapt the transition matrix F, thus depending on time, Fpnq, and the Kalman gains

through Qpσ̂2
sp
pnq, nq. The key aspect of this implementation is that the scintillation

must be visible without dynamics. That is, it must be applied after correcting dynamics

but before correcting the scintillation phase in the local replica. To this end, Figure 5.7

implements a second carrier discriminator that derives from this in-between point.
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Figure 5.7: Block diagram of KF-AR with adaptive (i.e. online estimation) AR parame-

ters.

In practice, though, the second carrier discriminator in Figure 5.7 observes not only

scintillation, but also the AWGN measurement noise introduced by the receiver, and thus

the resulting random process departs from an AR process. This phenomenon can be

explained by the fact that an AR process is characterized by an all-pole transfer function,

as shown previously in Eq. (4.2). However, AWGN is characterized by a flat PSD in the

form SAWGN pe
jω
q � σ2

AWGN. If both processes are assumed uncorrelated with one another,

the resulting PSD becomes,
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(5.65)

which does not present an AR structure anymore, but the one for an autoregressive moving

average (ARMA) process, with a pole-zero transfer function, thus posing serious concerns

to the AR modeling of the process of interest if the C{N0 is sufficiently low.

5.8.1.1 Estimation of AR(p) Parameters for Moderate CSM under AWGN

When determining the AR model parameters tβ, σ2
sp
u, the key point to be taken into

account is the power of the prediction error that the estimated AR coefficients produce.

For the case of Cornell moderate scintillation, this is shown in Figure 5.8 for AR(1, 2,

3) processes, where we also consider the presence of AWGN through a C{N0 ranging

from 30 to 60 dB-Hz. As can be observed, the online estimation matches very tightly

the theoretical offline one, thus being an indicator of its proper operation. The small

mismatches that can be appreciated are due to the online estimator being involved within

a Kalman filter processing the input samples and applying some corrections to the local
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replica at the same time, thus having some effect on the next samples to be processed.

On the other hand, it is found that the estimated AR coefficients produce a prediction

error that truly departs from the minimum error power when in the presence of AWGN,

and it further degrades when the C{N0 decreases. A very high C{N0 is required in order

to properly identify the AR model parameters under moderate scintillation. However, a

nominal C{N0 around 45-50 dB-Hz is usually observed in practical open-sky conditions,

where the estimated σ2
sp

is degraded by some orders of magnitude. At this point it is

important to note that, similarly to the conventional PLL, the Kalman filter is a closed-

loop architecture that can thus be characterized by some equivalent loop bandwidth, which

indeed depends on σ2
sp

in a direct way [Jwo01]. Since increasing the bandwidth translates

into larger jitter at the filter output, we should therefore expect the presented adaptive

implementation to incur into some performance degradation when estimating moderate

scintillation. However, keep in mind that the advantage of this adaptive implementation

is the agility of the KF-AR to rapidly adapt to the actual working conditions.
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Figure 5.8: Online estimation of AR(1) (top), AR(2) (middle) and AR(3) (bottom) pre-

diction noise power for Cornell moderate scintillation. Comparison to offline estimation

as a function of the C{N0.

5.8.1.2 Estimation of AR(p) Parameters for Severe CSM under AWGN

Figure 5.9 shows the power of the prediction error when estimating the AR(1, 2, 3)

coefficients under severe scintillation, as a function of the C{N0. Again, a very tight match
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between the offline and online estimates is observed. As for the presence of AWGN, the

degradation with respect to the minimum error power is not so critical as in the moderate

case, already obtaining acceptable results for C{N0 above 40 dB-Hz. This is explained by

the fact that, for a given C{N0, the effect of severe scintillation is more prominent than

moderate scintillation, and thus easier to detect and estimate. In nominal conditions (i.e.

45-50 dB-Hz), the estimated AR coefficients introduce an error power that is very close to

the minimum value. Therefore, we should expect the presented adaptive implementation

to successfully estimate severe scintillation events, incurring into very small performance

degradation.
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Figure 5.9: Online estimation of AR(1) (top), AR(2) (middle) and AR(3) (bottom) pre-

diction noise power for Cornell severe scintillation. Comparison to offline estimation as a

function of the C{N0.

5.8.2 Online Estimation of AR Model Order

Similarly to the estimation of the AR model parameters, the MDL can also be imple-

mented in an online manner in order to find the AR model order that best fits the actual

input scintillation phase at a given time instant n. To this end, the same sliding window

feature of Section 5.8.1 can be employed. As a matter of fact, the online MDL estimator

employs the output of the online AR parameter estimator. The block diagram of this

implementation is shown in Figure 5.10. It follows the same rationale as the previous
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Figure 5.7, and the MDL estimator box has been added right after the AR parameter

estimator.

Figure 5.10: Block diagram of KF-AR with adaptive (i.e. online estimation) AR model

order.

5.8.2.1 Estimation of AR Model Order under AWGN

We will now explore the reliability of the online MDL estimator by comparing it to the

reference offline estimator, as well as the impact of AWGN in the estimation of the AR

model order. The first test is that of estimating the order when there is no scintillation,

but only the effect of AWGN. The result is shown in Figure 5.11. As expected, the MDL

mainly selects an AR(0) regardless of the C{N0. This situation corresponds to the KF, the

Kalman filter that only tracks carrier dynamics. This result confirms the capability of the

MDL of disabling the AR module within the Kalman filter when there is no scintillation.

5.8.2.2 Estimation of AR Model Order for Moderate CSM under AWGN

The result of estimating the optimal AR model order for Cornell moderate scintillation is

shown in Figure 5.12 with the C{N0 ranging from 30 to 60 dB-Hz. As can be observed, the

online estimation yields practically the same result as the offline one, thus indicating the

feasibility of the online MDL estimator. As expected, the MDL tends to select AR(2, 3)

models rather than an AR(1), and this occurs irrespective of the C{N0. These results are

in accordance with those from previous Figure 4.10, in which the trend is to choose high
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Figure 5.11: Online estimation of AR model order in the absence of ionospheric scintilla-

tion. Comparison to offline estimation as a function of the C{N0.
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Figure 5.12: Online estimation of AR model order for Cornell moderate scintillation.

Comparison to offline estimation as a function of the C{N0.

AR model orders, whereas AR(1) models are found not to fully fit moderate scintillation

events.
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5.8.2.3 Estimation of AR Model Order for Severe CSM under AWGN

The result of estimating the optimal AR model order for Cornell severe scintillation is

shown in Figure 5.13. Similarly to the case for moderate scintillation, the results for the

online estimation tightly match those for the offline estimation, except for some small

discrepancies. For high C{N0 it is observed that an AR(1) model is selected with a

probability of 30%, whereas higher-order models are selected with a probability of 70%.

These values are also consistent with the results in previous Figure 4.10, where an AR(1)

already fits severe scintillation, although higher-order models are found to provide slightly

smaller prediction errors. When the C{N0 decreases, the AR(1) probability is found to

gradually decrease in the same quantity as the AR(2, 3) probability increases. This is a

known fact where the estimated AR model order tends to overfit when the noise becomes

more dominant, in an attempt to resemble the real ARMA process in (5.65). A more

illustrative example of this claim is given by Figure 5.14, which shows the probability

of AR order selection as a function of the C{N0 for an ideal AR(1) process. As can be

observed, the MDL truly departs from the ideal AR(1) when decreasing the C{N0, as

the selected model order gradually increases. Therefore, the presence of AWGN is shown

to have some impact onto the AR model order determination under severe scintillation.

These observations support the need for the MDL criterion to properly select the AR

model order and estimate scintillation also accounting for the different nominal values the

C{N0 may take.

5.8.3 Adaptive Hard-Limited Measurement Noise Variance

The presence of scintillation disturbances is not limited to random phase variations,

but also introduces deep fades in the signal amplitude. Such fades are often accompanied

by abrupt phase changes. This joint phenomenon is known as canonical fade [Psi07], and

an illustrative example is shown in Figure 5.15, which depicts a realization of Cornell

moderate scintillation plotting the scintillation phase as a function of the scintillation

power. As can be seen, most of the phase deviations caused by scintillation are contained

in the �1-rad region, and they are accompanied by fades ranging from [-10, 0] dB. Nev-

ertheless, when fades on the order of 25-30 dB appear, they are usually accompanied by

abrupt phase jumps close to �π rad.

The presence of canonical fades poses a serious concern to the linearity of the arct-

angent operator and may thus become a major source of misbehavior of the KF-AR. In
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Figure 5.13: Online estimation of AR model order for Cornell severe scintillation. Com-

parison to offline estimation as a function of the C{N0.
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Figure 5.14: Example of online estimation of AR model order for ideal AR(1) process.

Comparison to offline estimation as a function of the C{N0.

that sense, this section proposes an adaptive implementation of the measurement noise

covariance matrix of the Kalman filter that mitigates this effect.

Figure 5.16 shows the evolution over time of the C{N0 under the presence of CSM
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Figure 5.15: Example of Cornell moderate scintillation time series, showing scintillation

phase as a function of scintillation power.

moderate and severe scintillation. The variations are given with respect to a nominal

C{N0 of 45 dB-Hz. As can be observed, the effect becomes particularly critical under

severe scintillation, introducing fades that frequently exceed 30 dB. In this situation, the

KF-AR is affected by abnormal measurements that severely degrade the performance and

may even drive the tracking loop to lose lock.

From the Kalman filter perspective, the canonical fades introduced above have a rather

nonlinear nature, and thus it is difficult to deal with them through a linear approach, such

as the one considered for the scintillation phase. In that sense, the proposed approach

consists in an adaptive hard-limiting (AHL) condition that is based on the measured

C{N0. The underlying idea is to exploit the fact that the Kalman equations explicitly

indicate the time dependence of the measurement noise variance Rpnq, thus allowing it to

be dynamically adjusted to match the actual working conditions. This parameter plays

a key role in the Kalman filter performance, as it determines the value of the Kalman

gains [Kay93] and, interestingly, it depends on the instantaneous C{N0 for the problem

at hand, as already shown in (3.22),

Rpnq �
1

2Ts
C
N0
pnq

�

1�
1

2Ts
C
N0
pnq

�

rad2. (5.66)

Therefore, the approach consists in adapting Rpnq in (5.66) based on actual estimates of

the instantaneous C{N0 in order to consistently adjust the Kalman gains, but subject to
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Figure 5.16: Illustrative example of canonical fades introduced by Cornell moderate and

severe scintillation as a function of time, with respect to nominal C{N0 of 45 dB-Hz.

a hard-limiting value such that,

Rpnq �

$

&

%

R̂pnq if Ĉ
N0
pnq ¥ γ

8 otherwise
(5.67)

for some threshold γ, and where R̂pnq refers to the estimated measurement noise variance,

obtained by substituting the instantaneous C{N0 in (5.67) by an estimated version. The

implementation of Eq. (5.67) is shown in Figure 5.17 in form of a block diagram. We can

see a block devoted to the C{N0 estimation and a switching block that commutes between

the weighted innovation sequence when C{N0 ¡ γ and an open-circuit when C{N0   γ. In

the latter, by setting Rpnq � 8 in (5.66), the Kalman gains are driven to zero whenever

the C{N0 drops below γ. In this situation, the Kalman filter is totally isolated from

the carrier discriminator output, and the state propagation relies only on the Kalman

internal state-space model, thus protecting the loop from abnormal measurements when

deep fades occur, and keeping it in lock until the C{N0 recovers to nominal conditions.

This implementation is thought to provide an added robustness to the technique in the

presence of potential outliers introduced by scintillation.

In view of this, the problem of the proposed approach boils down to estimating the

C{N0 so as to adjust the measurement noise covariance matrix R̂pnq. To this end, we

will make use of the so-called narrow-wideband power ratio method [Van96], featured by
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Figure 5.17: Block diagram of KF-AR implementing the adaptive hard-limiting (AHL)

C{N0 estimation.

providing sufficiently good C{N0 estimates with ease of implementation.

Narrow-Wideband Power Ratio Algorithm for C{N0 Estimation

The narrow-wideband power ratio (NWPR) estimator is based on dissociating the noise

power at the prompt correlator output into a narrow and a wide bandwidth components,

NBPpnq �

�

�

�

�

�

M̧

m�1

yPpn�mq

�

�

�

�

�

2

(5.68)

WBPpnq �
M̧

m�1

|yPpn�mq|
2 (5.69)

where yppnq is the prompt correlator output at time sample n. As can be observed,

the NWPR method employs M past samples of yppnq, in the interval rn�M..n � 1s,

to estimate the C{N0 at the current time sample. The value of M becomes a trade-off

between estimation accuracy and agility to C{N0 variations. Thus, it should be chosen

neither too large so as to misdetect spurious deep fades, nor too small to make the Kalman

unstable due to the rapid variations of the estimated C{N0.

The next step is to compute the averaged power ratio using an exponential filter as

follows,

µ̂pnq � α
NBPpnq

WBPpnq
� p1� αqµ̂pn� 1q (5.70)

with α the weighting factor between the new data and past measurements, whose value

determines a trade-off between the convergence speed of (5.70) and the estimation accu-

racy (i.e. variance) in steady state. Expression (5.70) is then used to eventually estimate
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the instantaneous C{N0 as,

Ĉ

N0
pnq �

1

Ts

µ̂pnq � 1

M � µ̂pnq
. (5.71)

5.8.4 Adaptive Hard-Limited KF-AR with Adaptive Autore-

gressive Model. AHL-KF-A2R(p)

On the one hand, Sections 5.8.1 and 5.8.2 have presented a method to estimate the

optimal AR model parameters and order in an online manner, so that the Kalman state-

space model can be self-adapted to match the actual input working conditions. On the

other hand, Section 5.8.3 has presented a way to optimally adapt the Kalman measure-

ment noise variance, subject to a hard-limiting threshold that isolates the filter from

the input measurements when the C{N0 falls below a given value. The latter has been

thought to deal with deep fades introduced by ionospheric scintillation, particularly by

severe scintillation, that cause the C{N0 to drastically drop.

Both of these implementations fit very well into the time-varying nature of scintilla-

tion disturbances, and are found to take place simultaneously in reality. Therefore, it is

natural to think of a single configuration that combines both functionalities. That is, a

configuration that merges both implementations into the same closed-loop architecture.

The result is an augmented KF-AR technique that we denote herein as AHL-KF-A2R(p),

whose block diagram is shown in Figure 5.18.

The GNSS code correlator correlates the incoming signal with a local replica that is

generated using the Kalman predicted phase for time instant n, which is based on the esti-

mated phase at time instant n�1. It contains both user dynamics and scintillation phase,

and hence the phase at the carrier discriminator output contains the difference between

the incoming phase and the Kalman predicted phase. The resulting signal is the Kalman

innovation sequence, or prediction error. On the other hand, the correlator presents a

second output before the local replica is compensated with the estimated scintillation

phase. This is used to implement a second carrier discriminator whose output contains

the difference between the incoming phase and the estimated user dynamics, thus leaving

only the input scintillation phase that is eventually used to apply the MDL to estimate

the optimal AR model order for the current time instant n. The transition matrix is then

updated accordingly, as well as the Kalman gains using the corresponding value of σ2
sp
.

The Kalman filter carries out the state correction, with the AHL commuter isolating the

loop from the Kalman prediction error at low C{N0, and the state prediction for the next



124 Chapter 5. Robust Carrier Tracking under Ionospheric Scintillation Conditions

Figure 5.18: Block diagram of proposed adaptive hard-limited KF-AR with adaptive

autoregressive model, referred to as AHL-KF-A2R(p).

time instant is then computed. The GNSS signal generator takes the predicted Kalman

state as input to further obtain the predicted measurement and update the local replica.

This is then correlated with the input signal, thus closing the loop.

5.9 Semi-Adaptive KF-AR Implementation. The

AHL-KF-AR(0, 1)

One of the drawbacks of the AHL-KF-A2R(p) is the fact of requiring that three esti-

mation modules be operating at each time instant, namely for AR parameter, model order

and C{N0 estimation. This translates into a high resource and computational load that

may become unsuitable for handheld receivers. In this sense, the major contributor to

this effect is the online AR parameter estimator due to the involvement of autocorrelation

or inverse matrix operations at each time instant. On the other hand, there are evidences

in Section 5.8.1 that show the AHL-KF-A2R(p) to underestimate the AR parameters due

to the presence of AWGN, a phenomenon that is expected to incur into some performance

degradation.

With this information, it is natural to think of a simplified technique that circum-

vents the computational limitations posed by the AHL-KF-A2R(p), while attempting to

provide optimal performance without compromising agility. We propose a semi-adaptive
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Figure 5.19: Block diagram of proposed semi-adaptive KF-AR, referred to as AHL-KF-

AR(0, 1).

implementation that uses a fixed set of AR model parameters, while partially preserving

the other estimation modules: the AHL implementation remains as in the AHL-KF-

A2R(p), whereas the MDL is truncated to switch between the KF and a fixed KF-AR.

This semi-adaptive technique will be henceforth termed AHL-KF-AR(0, 1), and its par-

ticular features are described in detail next.

5.9.1 Determination of Optimal AR Model Parameters

In order to avoid the online estimation of the AR model parameters, we must find

a set of fixed parameters with which both moderate and severe scintillation can be si-

multaneously dealt with. The proposed way to do so stems from considering that the

filter must be able to track up to severe scintillation phase variations, understood as the

worst-case scenario (i.e. strongest intensity scintillation can have). From the analysis in

Chapter 4, severe scintillation was found to be mainly fitted by an AR(1) process. Even

when forcing higher-order models, the obtained AR parameters converged to those of an

AR(1) process. That is, β1 was the predominant coefficient, whereas β2 and β3 were very

close to zero. In addition, the AR prediction errors for all model orders were very similar.

Therefore, the semi-adaptive KF-AR must also be able to track moderate scintillation,

subject to the statements above. That is, using an AR(1) model. In Chapter 4, AR(2,

3) models were found to better fit moderate scintillation events. However, an AR(1) can

ultimately be used if noting that σ2
sp

plays a key role in the estimation performance as

follows. Being σ2
sp

the process noise variance for scintillation tracking, it determines the
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Kalman filter equivalent loop bandwidth [Jwo01], as previously stated, and therefore the

trade-off between the measurement noise filtering capabilities and the ability to track

scintillation phase variations.

Using higher-order AR models for moderate scintillation fitting can be understood

as the natural solution since higher-order models present smaller prediction errors, thus

not compromising the KF-AR equivalent loop bandwidth. It is therefore the optimal

solution, the most robust one in terms of noise filtering. However, this phenomenon can

also be interpreted from the KF-AR standpoint as follows. Using the AR(1) parameters

for moderate scintillation in Table 4.1, the KF-AR is not able to perform well because

σ2
sp

is such that the equivalent loop bandwidth is not enough to faithfully track moderate

scintillation variations. Therefore, another solution is to increase the equivalent loop

bandwidth by increasing σ2
sp
. In this way, the KF-AR is expected to track moderate

scintillation using an AR(1) process.

As a matter of fact, this is the solution that must inevitably be adopted by the semi-

adaptive KF-AR implementation, since σ2
sp

is required to increase from the order of 10�6

up to 4 � 10�2 rad2 so as to be able to track severe scintillation. It is though a suboptimal

approach since it requires increasing the KF-AR equivalent loop bandwidth, thus reducing

the noise filtering capabilities under moderate scintillation and the operational range

in terms of C{N0 as a consequence. In contrast, this solution presents the following

advantages:

1. It enables tracking moderate scintillation using an AR(1) model, the least complex

solution in terms of KF-AR state-space formulation.

2. It is expected to perform optimally at high C{N0 regardless of the nature of the

input signal.

At this point, it remains to determine the optimal AR(1) coefficient β. This can be

obtained by simply fixing σ2
sp
� 4�10�2 rad2 as required by severe scintillation, and finding

the value of β that leads to the optimal BCRB. By analysing the recursive BCRB in (5.14)

as a function of β, this requirement is found to be fulfilled for β � 0.9.

Therefore, the optimal AR model parameters are summarized in Table 5.1. These

values will be the ones used in the simulation campaign in Chapter 6.
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AHL-KF-AR(0, 1)

β̂ (unitless) σ̂2
s (rad2)

AR(1) 0.9 4E-2

Table 5.1: Optimal AR parameters to be used by AHL-KF-AR(0, 1) for the AR fitting

of the CSM.

5.9.2 Truncated Online Estimation of AR Model Order

A critical aspect of the AHL-KF-AR(0, 1) to avoid loss of agility is the capability of

disabling the AR part when scintillation is absent (i.e. AR(0)), which must be preserved

for the AR module not to incur into any performance degradation when only AWGN is

present. For this purpose, the AHL-KF-AR(0, 1) utilizes the AR model order selector

from the AHL-KF-A2R(p), but a truncated version that commutes only between an AR(0)

and an AR(1) process in the absence and in the presence of scintillation, respectively.

Therefore, the MDL can be now understood as a scintillation detector, and the problem

can be thought of as a hypothesis testing problem, where H0 corresponds to a scintillation-

free situation, whereas H1 corresponds to a situation where any kind of scintillation is

present.

Hypothesis Testing under AWGN

For a simulation with 10 minutes length, Figure 5.20 shows the percentage of time

either AR(0) or AR(1) is selected in the presence of only AWGN with no scintillation.

As expected, the MDL commuter is fully selecting an AR(0) model for all C{N0, thus

confirming the ability to switch to the non-hybrid KF that only tracks carrier dynamics

when scintillation is absent.

Hypothesis Testing under CSM plus AWGN

The results when in the presence of AWGN plus moderate and severe scintillation

are shown in Figures 5.21 and 5.22, respectively. As can be observed, at low C{N0 the

truncated MDL is reacting as if there were no scintillation. This behavior can be explained

by the fact that, at low C{N0, the noise power is such that it ends up masking scintillation;

the Kalman input measurements are mainly corrupted by AWGN, thus neglecting the

effect of scintillation that is located below the noise floor. For this reason, this phenomenon
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Figure 5.20: Online AR commuting mechanism in the absence of ionospheric scintillation.

Percentage of time either AR(0) or AR(1) models are selected.
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Figure 5.21: Online AR commuting mechanism in the presence of Cornell moderate scin-

tillation. Percentage of time either AR(0) or AR(1) models are selected.

ameliorates when increasing the C{N0. In this situation, the MDL is able to successfully

detect the presence of scintillation, thus confirming the ability to switch to the hybrid

Kalman configuration when needed.
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Figure 5.22: Online AR commuting mechanism in the presence of Cornell severe scintil-

lation. Percentage of time either AR(0) or AR(1) models are selected.

5.10 Conclusions

The main contributions of this chapter have been two. On the one hand, the deriva-

tion of novel closed-form approximations for the convergence time and steady-state per-

formance of autoregressive Kalman filters. Results for both hybrid and non-hybrid au-

toregressive filters have been obtained. To this end, the core of the hybrid formulation

has been presented in the first part of the chapter as a fusion of the carrier dynamics

and scintillation phase state-space models into an embedded setup. Then, a qualitative

evaluation of the KF-AR performance bounds has been provided, highlighting that the

steady-state BCRB tends to increase when scintillation is above the noise floor. It is con-

cluded that, when this occurs, the dynamics and scintillation phase estimates are coupled,

meaning that estimation errors in one of them induce estimation errors in the other.

On the other hand, this chapter has proposed two KF-AR adaptive approaches to self-

adapt to time-varying scintillation and circumvent the limitations of fixed techniques. The

first one is the AHL-KF-A2R(p), a doubly-adaptive technique implementing two separate

estimation modules. First, an online estimator of the AR model parameters and order.

Second, an adaptive estimation of the measurement noise power based on the measured

C{N0 to deal with the nonlinear amplitude fades introduced by scintillation. In order

to test the online estimation under realistic conditions, this chapter has also provided a
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detailed analysis on the problem of AR fitting when in the presence of AWGN. Preliminary

simulation results have shown that the proper identification of the AR model parameters

becomes hindered, particularly under moderate scintillation. Therefore, the AHL-KF-

A2R(p) provides agility of self-adaptation when the working conditions vary, but at the

expense of some performance degradation in the estimated scintillation. As for the AR

order selector, it has been shown to favor higher-order models when decreasing the C{N0,

in an attempt to approximate to the real ARMA process underlying in the input signal.

However, this phenomenon has no direct impact onto the KF-AR estimation performance.

As a consequence, the AHL-KF-AR(0, 1) technique has been proposed in order to

circumvent the limitations of the AHL-KF-A2R(p). It implements the AHL as in the

AHL-KF-A2R(p), whereas the MDL has been reduced to a mere scintillation detector

that commutes between a KF-AR(0) and a KF-AR(1) with fixed parameters. Preliminary

simulation results have shown the MDL to successfully detect the absence and presence

of scintillation for C{N0 above 30 dB-Hz. On the contrary situation, when scintillation

is below the noise floor, the MDL mainly selects an AR(0). The fixed AR(1) parameters

have been designed to provide optimal performance under both moderate and severe

scintillation, and thus no performance degradation is expected with the AHL-KF-AR(0,

1).

At this point we are ready to thoroughly evaluate the performance of the above tech-

niques, which is the aim of Chapter 6 and will include fixed KF-AR techniques and the

AHL-KF-A2R(p) and AHL-KF-AR(0, 1) adaptive implementations under synthetic CSM

and realistic scintillation time series.



Chapter 6

KF-AR Test and Experimental

Results

6.1 Introduction

The main purpose of this chapter is to test the KF-AR implementations proposed in

Chapter 5 and compare their performance to that of conventional PLL architectures. To

this end, an extensive simulation campaing has been carried out by using a GNSS carrier

tracking simulator that has been implemented in MATLAB for GPS L1 C/A signals (i.e.

BPSK modulation). The simulations presented in this chapter are divided into three main

categories:

• Simulations with stationary Cornell scintillation, in order to test the performance of

fixed KF-AR configurations in comparison to conventional PLLs and evaluate the

closeness to the optimal (i.e. expected) performance given by the BCRB.

• Simulations under time-varying Cornell scintillation, aimed at testing the self-

configuring capabilities of the adaptive implementations (i.e. AHL-KF-A2R(p) and

AHL-KF-AR(0, 3)) introduced in Chapter 5 when working conditions change over

time.

• Simulations using real scintillation time series obtained from the ESA scintillation

monitoring network. The objective is to test the performance of KF-AR techniques

using real scintillation measurements and to validate the results obtained for syn-

thetic data.

131
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6.2 Metrics for Performance Evaluation

Root Mean Square Error

The root mean squared error (RMSE) is widely adopted in the field of signal processing

to evaluate the quality of a given estimator. It measures the average root mean squared

deviation of the estimator from the true value [Kay93],

RMSEpnq
.
�

d

E

�

�

θ̂pnq � θpnq
	2
�

(6.1)

which must reach the root BCRB in order to truly conclude that the Kalman filter per-

forms optimally.

The RMSE will be determined by performing several Montecarlo realizations of the

Kalman filter. In this simulation campaign we will run the techniques for 100 Montecarlo

iterations. It is important to note that only those iterations that have not lost lock will

be employed in the computation of the RMSE, in order to obtain a meaningful result.

Otherwise, a distorted RMSE metric would be obtained. Those realizations that have

lost lock will be discarded, and will be treated separately to determine the metric of

probability of loss of lock.

Probability of Loss of Lock

For the problem of GNSS tracking, the loss-of-lock probability (LoL) is the proba-

bility that the tracking loses the lock to the signal, and it is mainly determined by the

given channel working conditions and tracking loop set-up. As stated above, the need

for measuring the LoL is initially motivated by the RMSE computation, where those

out-of-lock realizations have to be discarded to avoid introducing outliers and abnormal

measurements into the RMSE metric. The LoL is computed by looking at the errors of

the Kalman filter estimates along the time, and the method employed in this thesis relies

on the following two considerations.

At first glance, the LoL computation is based on observing whether the instantaneous

phase error measurements exceed the tracking threshold. The latter must be set in such

a way that it allows to clearly detect the presence of abnormal phase errors. To this end,

the rule of thumb is to consider half the pull-in range of the phase discriminator, since this

value is indeed the border that separates two adjacent stable points of the discriminator S-

curve [Ló12]. Thus, it can intuitively be understood as the point that phase errors should
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not exceed. For the ATAN2 discriminator, half the pull-in range equals to a threshold of

�π radians. However, phase errors of this magnitude can never be observed since they

coincide with the edges at which the ATAN2 phase values are wrapped, that is, at r�π, πq

radians. For this reason, the common approach in practice is to take one additional half,

leading to a threshold of �π{2 radians, which is one fourth of the ATAN2 pull-in range.

It can be noticed that this threshold preserves the same notion of ”one fourth of the

pull-in range” as the threshold used for the RMSE, which follows the rule of thumb that

3σθ  
pull-in range

4
[Kap05].

The second consideration to be taken into account is the existence of momentary

instants, such as phase jumps or deep fades introduced by scintillation, where the phase

error may exceed the LoL threshold but the Kalman filter does actually not lose lock;

the error goes below the threshold again after the scintillation peak. This leads us to

think that, in order to declare LoL, not only a single error sample must go beyond the

threshold, but a whole burst of consecutive samples. In this simulation campaign we will

consider a loss-of-lock window of 400 ms.

6.3 Scenario Definition and KF-AR Set-Up

The simulations in this chapter are defined for a static receiver, such as a ground

scintillation monitoring station. Notwithstanding, even though the receiver presents zero

dynamics, there is still some relative motion between the receiver and GNSS satellites

owing to the movement of the latter. This causes the receiver to experience some residual

dynamics, which in the sequel are considered to be given by the values in Table 6.1. The

normalization to radians in the third column has been performed with Ts � 20 ms, so as

to be consistent with the sampling time of the DAK2.2014.335.22.GPS24 real scintillation

time series that will be processed in Section 6.6.

Parameter Value Norm. to rad

Doppler shift 10 Hz 1.25

Doppler rate 1 Hz/s 2.5 � 10�3

Doppler jerk 2 � 10�4 Hz/s2 10�8

Table 6.1: Residual dynamics experienced by static receiver.

For the problem of tracking carrier dynamics, we are considering a third-order Kalman
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filter in charge for tracking carrier phase, Doppler shift and Doppler rate. The Doppler

jerk, also termed Doppler acceleration, is the missing higher-order term that is modeled

through the Kalman process noise vpnq following some random distribution. According

to Section 3.2.3, its variance σ2
v is one of the parameters to be tuned for the filter to

operate. For the simulations in this chapter, a convenient way to do so is to set σ2
v as the

variance of a uniformly-distributed random variable within
�

�

;θmax, ;θmax

�

, with ;θmax the

maximum Doppler jerk. This leads to the following constant,

σ2
v

.
�

∆2

12
�

�

2;θmax

	2

12
� 3.4 � 10�17 rad2. (6.2)

On the other hand, the Kalman filter also requires tuning the measurement noise

variance σ2
wpnq to operate. For the problem at hand, σ2

w refers to the noise power at the

phase discriminator output, the ATAN2 in this case, which is recalled next from (3.22):

Rpnq
.
�

1

2Ts
C
N0
pnq

�

1�
1

2Ts
C
N0
pnq

�

rad2. (6.3)

In the simulations, the receiver is assumed to have clear satellite visibility, and thus it

will be affected by AWGN at a nominal C{N0 of 45 dB-Hz. With these values, the

measurement noise variance results in Rpnq � 8 � 10�4 rad2.

It remains to tune the initial state covariance matrix. The Kalman filter will be forced

to start operating with absolute initial uncertainty about the parameters to be estimated.

For this reason, the following initial state covariance matrix is set:

Σxp0q �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

π2
{3 0 0 0 0 0

0 106 0 0 0 0

0 0 106 0 0 0

0 0 0 π2
{3 0 0

0 0 0 0 π2
{3 0

0 0 0 0 0 π2
{3

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

(6.4)

with π2
{3 the variance in rad2 of a uniformly-distributed random variable within r�π, πs

rad. On the other hand, large initial Doppler shift and rate variances of 106 indicate the

complete lack of knowledge about the true parameter values. Under this configuration,

though, it is recommended to start running the Kalman filter during a silent period where

no scintillation is present in the input samples. Such silent period at the beginning will
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allow the filter to consolidate the estimation of the residual user dynamics. Then, the

Kalman filter will be ready to start operating under the presence of scintillation, and

distinguishing it from carrier dynamics.

It is important to note that, even though the main focus of the simulation campaign

is placed on testing carrier phase tracking, the MATLAB simulator also implements a

DLL for code-delay tracking so that the simulator be realistic and the simulation results

be meaningful. Given that the dynamics KF is of third-order, a second-order DLL has

been implemented following the guidelines in Chapter 2, with a loop bandwidth as small

as 0.1 Hz thanks to the carrier aiding feature presented in Section 2.3.3.3.

Finally, the threshold γ for the AHL implementation must be set. The determination

of γ is based on the tracking threshold in terms of C{N0. For the ATAN2 discriminator

employed herein, the tracking threshold is set as 3σθ  
π
2
radians. As already explained,

the value of σθ is determined by the loop bandwidth and the C{N0,

σθ �

d

BL

C{N0

�

1�
1

2TsC{N0




rad. (6.5)

In GNSS, the loop bandwidth of the PLL loop filter does usually not exceed BL � 15

Hz, in order to remain stable [Kap05]. If this value is employed in (6.5) and Ts � 20

ms, it is found that the C{N0 tracking threshold is located below 20 dB-Hz. With these

observations, the threshold γ will be set at γ � 25 dB-Hz so as to leave some margin and

not push the AHL to the limit imposed by the C{N0 tracking threshold.

6.4 Simulation Results with CSM Time Series

6.4.1 Scenarios with Stationary Scintillation

The aim of this section is twofold. First, to evaluate the estimation performance of

fixed (i.e. non-adaptive) KF-AR configurations using the optimal AR parameters in Table

4.1. Second, to compare the KF-AR performance with the one provided by a conventional

PLL. In this latter, the comparison must be fair (i.e. under equal set-up conditions), so

that the extracted conclusions about the advantages and inconvenients of each technique

be meaningful.
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Technique KF-AR RMSE (rad) PLL equiv. bandwidth (Hz)

KF-AR for moderate scint. 6.8 � 10�3 2

KF-AR for severe scint. 2.5 � 10�3 0.2

Table 6.2: Equivalent loop bandwidth for a PLL to perform equally as the KF-AR under

dynamics plus AWGN only.

6.4.1.1 Equivalent PLL Loop Bandwidth

As explained in Section 2.3.3.1, the PLL performance is determined by its loop band-

width, being this a trade-off between the noise filtering capabilities and the maximum

supported input dynamic stress. As already explained, the Kalman filter can also be un-

derstood as a loop filter with some equivalent loop bandwidth given by a combination of

the tuning parameters σ2
v and σ2

wpnq [Jwo01]
1. Since these have already been set in Sec-

tion 6.3 for the scenario under analysis, the idea is to design a PLL with loop bandwidth

such that its phase jitter equals the steady-state phase MSE of the KF-AR, rΣxs1,1, when

under dynamics plus AWGN only (i.e. no scintillation),

BLeq
�

rΣxs
(AWGN)
1,1 C{N0

1� 1
2C{N0Ts

Hz. (6.6)

The results for the KF-AR(p) optimized for both Cornell moderate and severe scintillation

are shown in Table 6.2.

6.4.1.2 Scenario #1.1. Cornell Moderate Scintillation

This section presents the performance results of the fixed KF-AR techniques versus

conventional PLLs for stationary Cornell moderate scintillation. Figure 6.1 compares the

optimal KF-AR(1) to the conventional PLL in terms of RMSE. The mean steady-state

RMSE values are summarized in Table 6.3, as well as the metric of LoL probability for

each technique. Table 6.3 also shows the normalized computational cost (CPU) of the

different techniques relative to that of the basic KF-AR(p) implementation, which is taken

as the reference. All techniques perform similarly in terms of LoL probability. However,

even though at the expense of higher computational burden, the KF-AR(1) is clearly

outperforming the PLL, particularly in terms of RMSE and stability over time. The

1Note that σ2

v
and σ2

w
pnq also refer to dynamic stress and noise power, respectively, thus linking these

tuning parameters with the concept of equivalent loop bandwidth.
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Figure 6.1: Phase RMSE of optimal KF-AR(1) for Cornell moderate scintillation, versus

PLL with loop bandwidths t2, 5, 15u Hz. Test scenario #1.1.

KF-AR(1) is able to lock during the initial silent period, whereas the 2-Hz PLL is not,

suffering from several cycle slips. For this reason, Figure 6.1 and Table 6.3 also include

the performance metrics for the PLL with 5- and 15-Hz loop bandwidth. Nonetheless it is

found that whereas increasing the PLL loop bandwidth allows to practically eradicate the

cycle slips, it does not provide any major improvement in terms of RMSE. While the KF-

AR(1) provides a steady-state RMSE of around 0.2 rad, it worsens to 0.3 rad for any PLL.

The latter is explained by the fact that the PLL interprets scintillation phase variations

as part of carrier dynamics. That is, when in lock, it tracks both carrier dynamics and

scintillation as a whole, as shown in Figure 6.2. Therefore, when computing the phase

estimation error by subtracting the true carrier dynamics from the estimated phase, the

result is the scintillation phase variations themselves. Given that these have zero mean

(i.e. zero bias), the PLL RMSE equals thus the standard deviation of scintillation time

series, which is around σϕs,mod
� 0.3 rad for the Cornell moderate scintillation under

study.

Even though the PLL is outperformed by the KF-AR(1), Figure 6.1 also shows that

the latter is not reaching the expected performance given by the BCRB in the presence

of scintillation. This manifests that the KF-AR(1) state-space model parameters do not

fully match the input signal model. This is though an expected phenomenon since AR(1)

models with the optimal parameters in Table 4.1 have been found not to well fit moderate
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Figure 6.2: Illustrative example of PLL tracking both carrier dynamics and scintillation

as a whole, thus not being able to dissociate between both components.

scintillation. As explained in Section 5.9, this can be solved in two ways: by either increas-

ing the KF-AR equivalent loop bandwidth by enhancing σ2
spnq, or using higher-order AR

models. The latter is the optimal (i.e. natural) solution, the robust one since it preserves

the KF-AR loop bandwidth. In that sense, Figure 6.3 compares the phase RMSE of the

KF-AR(1) to that of the KF-AR(2, 3) techniques. Higher-order AR models are found to

reach the BCRB, thus confirming their suitability for fitting moderate scintillation events,

while presenting the smallest LoL probability, according to Table 6.3.

Lastly, the AHL implementation is tested. Figure 6.3 also includes the RMSE perfor-

mance of the optimal KF-AR(3) with the AHL enabled. As can be observed, the AHL is

found to provide very similar performance to the non-AHL KF-AR(3), owing to the fact

that moderate scintillation does not introduce major deep fades in the signal amplitude.

However, even though at the expense of higher computational load, the AHL does improve

the KF-AR performance when under severe scintillation as we will see next.

6.4.1.3 Scenario #1.2. Cornell Severe Scintillation

This section presents the performance results of the fixed KF-AR techniques versus

conventional PLLs for stationary Cornell severe scintillation. Figure 6.4 compares the

optimal KF-AR(1) to the conventional PLL in terms of RMSE. The mean steady-state
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Technique RMSE (rad) Prob. LoL (%) CPU (norm.)

2-Hz PLL 0.3535 1

0.55-Hz PLL 0.3081 <1

15-Hz PLL 0.2941 1

KF-AR(1) 0.1816 1

1KF-AR(2) 0.1088 <1

KF-AR(3) 0.0951 <1

AHL-KF-AR(3) 0.0953 <1 1.25

Table 6.3: Performance results of PLL and KF-AR techniques for Cornell moderate scin-

tillation. Test scenario #1.1.
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Figure 6.3: Phase RMSE of optimal KF-AR(1, 2, 3) techniques for Cornell moderate

scintillation. Test scenario #1.1.

RMSE values are summarized in Table 6.4, as well as the LoL probability of each technique

and the relative CPU cost. As can be observed, the KF-AR outperforming the PLL is

more evident than in the case for moderate scintillation. The KF-AR(1) is able to lock

to the loop and reach the BCRB in the absence of scintillation (even though after a

convergence period of more than 100 seconds), whereas the equivalent 0.2-Hz PLL loses

lock in all Montecarlo iterations. Increasing the PLL loop bandwidth allows the filter
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Figure 6.4: Phase RMSE of optimal KF-AR(1) for Cornell severe scintillation, versus PLL

with loop bandwidths t0.2, 2, 5, 15u Hz. Test scenario #1.2.

to lock with significantly smaller LoL probability, around 15-20%. However, the same

conclusions as in the moderate scintillation case apply here, in the sense that the RMSE

of any PLL equals the standard deviation of scintillation time series, which is around

σϕs,sev
� 0.8 rad for the severe case. The KF-AR(1) clearly outperforms these results by

reducing the RMSE by a factor of more than 2 with much smaller LoL probability, around

5%.

As expected, the KF-AR provides very similar performance for any AR model order

p. In the simulations, this phenomenon can be observed in the previous Table 6.4, and

also in Figure 6.5, which depicts the phase RMSE for the KF-AR(1, 2, 3). However, the

KF-AR(p) does not reach the expected performance given by the BCRB in the presence

of scintillation. This manifests a mismatch between the KF-AR configuration and the

actual input measurements. In this case, such mismatch is due to the canonical fades

present in the input signal; the BCRB is computed for a nominal constant C{N0 of 45

dB-Hz, and the amplitude fades introduced by severe scintillation are not accounted for.

This is when the AHL implementation introduced in Section 5.8.3 comes into play in

order to palliate such amplitude fades and prevent them from affecting the KF-AR loop.

In that sense, Figure 6.5 also includes the RMSE performance for the AHL-KF-AR(p).

The AHL further reduces the RMSE down to 0.2 rad, allowing the KF-AR to eventually

reach the BCRB. In addition, it also provides the smallest LoL probability according to
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Technique RMSE (rad) Prob. LoL (%) CPU (norm.)

0.2-Hz PLL N/A >99

0.5
2-Hz PLL 0.7959 17

5-Hz PLL 0.7958 16

15-Hz PLL 0.7311 15

KF-AR(1) 0.3684 4

1KF-AR(2) 0.3599 5

KF-AR(3) 0.3465 4

AHL-KF-AR(p) 0.1968 <1 1.25

Table 6.4: Performance results of PLL and KF-AR techniques for Cornell severe scintil-

lation. Test scenario #1.2.
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Figure 6.5: Phase RMSE of optimal KF-AR(1, 2, 3) techniques for Cornell severe scintil-

lation. Test scenario #1.2.

Table 6.4, where no Montecarlo iteration has lost lock. Even though this comes at the

expense of requiring more CPU resources due to the online estimation of the C{N0, these

results confirm the usefulness of the AHL implementation.
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6.4.2 Scenarios with Time-Varying Scintillation

In this section, two scenarios will be considered in order to simulate realistic time-

varying scintillation conditions:

1. Scenario #2.1 presents an initial silent period where only AWGN is present. Then,

the input signal starts experiencing moderate scintillation events that last for some

time, until they vanish and the signal is again scintillation-free. This is a representa-

tive scenario of a real case where scintillation suddenly appears at a given moment,

and then disappears after a while. The objective here is to evaluate the ability of the

adaptive KF-AR implementations to self-switch between the KF and the KF-AR.

2. Scenario #2.2 also starts with an initial silent period, before the receiver starts ex-

periencing moderate scintillation events. Then, scintillation steps up to severe, and

after some time the intensity decreases back to moderate. This scenario simulates a

real case of how scintillation events evolve during the day time. There is no scintil-

lation during the day, but it starts appearing near sunset. It gradually increases its

intensity until reaching maximum activity at midnight. Then, scintillation gradu-

ally decreases its intensity again when approaching dawn. The goal of this scenario

is to evaluate the robustness of the adaptive KF-AR implementations when dealing

with severe scintillation.

The two test scenarios above have been selected with a twofold objective. First,

to evaluate the agility of adaptive KF-AR implementations to self-configure when the

working conditions change, and the ability to provide optimal performance regardless of

the nature of the input signal. Second, to compare their convergence and steady-state

performance to that of fixed KF-AR techniques.

6.4.2.1 Scenario #2.1. Transition from AWGN to Moderate Scintillation

For scenario #2.1, Figure 6.6 compares the RMSE performance of the adaptive and

semi-adaptive KF-AR implementations (AHL-KF-A2R(p) and AHL-KF-AR(0, 1)) to the

expected one given by the optimal fixed KF-AR(p) techniques. The mean steady-state

RMSE and LoL probability values are summarized in Table 6.5, as well as the relative

CPU cost of the different techniques. While all techniques perform similarly in terms

of LoL probability, the AHL-KF-A2R(p) expectedly provides near-optimal performance,

meaning that there exists some RMSE gap that prevents the performance from fully
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reaching the BCRB. This phenomenon was already anticipated throughout Sections 5.8

and 5.9, where the presence of AWGN causes an underestimation of the AR(p) coefficients

that leads to a divergence of σ2
spnq with respect to its optimal value. In addition, the online

estimation of the AR parameters significantly increases the required CPU load, rising up

to 2.75 times the one needed by fixed KF-AR techniques, see Table 6.5.

Notwithstanding, the main advantage of the AHL-KF-A2R(p) is the agility and flex-

ibility in front of time-varying working conditions. In Figure 6.6 this can be observed in

the initial silent period and when switching from moderate scintillation to AWGN only,

where the AHL-KF-A2R(p) readily reaches the BCRB, in contrast to the fixed imple-

mentations which may take more than 100 seconds to converge since the AR module is

being forced when there is no scintillation. In contrast to the AHL-KF-A2R(p), though,

fixed KF-AR techniques do provide optimal performance when scintillation is present, as

they are designed for that particular situation. The KF-AR for severe scintillation also

supports moderate scintillation, since its configuration only implies an increment of the

KF-AR equivalent loop bandwidth. Notwithstanding, fixed techniques fail at providing

optimal performance when pulled out of their design scenario, either in convergence or

steady state. The clear example is the KF-AR for moderate scintillation, which is not

able to reach the BCRB when scintillation is absent.

These observations give support to the AHL-KF-AR(0, 1), a technique that simply

employs a carrier-dynamics-only KF (i.e. KF-AR(0)) and a KF-AR with fixed AR(1)

model to deal with scintillation when present, and commutes between one another using

the MDL as a scintillation detector. In that sense, Figure 6.6 includes the RMSE per-

formance of the AHL-KF-AR(0, 1), while Figure 6.7 illustrates the scintillation detection

over time for one Montecarlo realization, while also indicating the percentage of time the

AR(0, 1) models are correctly selected throughout all Montecarlo iterations. Both fig-

ures show very promising results. As expected, the technique commutes to the KF-AR(0)

when under AWGN only, and to the fixed KF-AR(1) when in the presence of scintillation,

reaching the BCRB in both cases. Therefore, the AHL-KF-AR(0, 1) is able to provide

optimal performance regardless of the nature of the input signal. Moreover, the agility

of the AHL-KF-A2R(p) when switching between scenarios is preserved. What is more,

since the MDL is employed as a scintillation detector only, the sliding window can be

shortened so as to minimize the transient from moderate scintillation to AWGN only, and

vice versa. By reducing the window from 5 to 2 seconds, this can actually be noticed

in Figure 6.6, thus outperforming the AHL-KF-A2R(p) while considerably reducing the

required CPU load down to 1.75 times the one for the fixed KF-AR, in contrast to the
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Figure 6.6: Phase RMSE of adaptive and semi-adaptive KF-AR implementations (AHL-

KF-A2R(p) and AHL-KF-AR(0, 1)) versus optimal fixed KF-AR(p) techniques for time-

varying scenario #2.1.

RMSE (rad)
LoL prob. (%) CPU (norm.)

No scint. Moderate

AHL-KF-A2R(p) 2.8 � 10�3 0.1976 1 2.75

AHL-KF-AR(0, 1) 2.8 � 10�3 0.1030 <1 1.75

Opt. KF-AR(3) mod. 8.0 � 10�3 0.0989 <1 1

Opt. KF-AR(p) sev. 2.6 � 10�3 0.0951 <1 1

Table 6.5: Performance results of fixed and (semi-)adaptive KF techniques for test scenario

#2.1.

AHL-KF-A2R(p) which requires 2.75 units.

These results confirm the suitability and goodness of the AHL-KF-AR(0, 1) under

moderate scintillation, for which an example of three different Montecarlo realizations on

the scintillation estimation is illustrated in Figure 6.8 to show how well the technique

estimates moderate scintillation in the presence of carrier dynamics.
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Figure 6.7: Scintillation detector of AHL-KF-AR(0, 1) as a function of time for time-

varying scenario #2.1.
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Figure 6.8: Example of three Montecarlo iterations on the estimation of scintillation

provided by the AHL-KF-AR(0, 1) as a function of time for time-varying scenario #2.1.

6.4.2.2 Scenario #2.2. Transition from Moderate to Severe Scintillation

For scenario #2.2, Figure 6.9 compares the RMSE performance of the AHL-KF-

A2R(p) and AHL-KF-AR(0, 1) to the expected one given by the optimal fixed KF-AR(p)
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techniques. The mean steady-state RMSE and LoL probability values are summarized in

Table 6.6. Similar conclusions to those from scenario #2.1 can be drawn. The AHL-KF-

A2R(p) successfully selects an AR(0) during the AWGN-only initial silent period, whereas

it enables the AR part features when scintillation appears. It presents good agility and

flexibility when switching between scenarios, in contrast to fixed KF-AR implementations.

However, whereas the latter do reach the BCRB when scintillation is present, some gap

exists in the AHL-KF-A2R(p), due to the AR parameters being underestimated because

of AWGN. This affects moderate scintillation in particular, where the underestimation of

σ2
spnq was found to be more prominent; given its lower intensity, it becomes more affected

by AWGN than severe scintillation for a given C{N0. This result is confirmed in Fig-

ure 6.6 and Table 6.5, where the RMSE degradation with respect to the BCRB is more

noticeable in the moderate-scintillation regions.

As for the fixed techniques, the optimal AHL-KF-AR(p) for severe scintillation is

expectedly providing optimal performance regardless of the scintillation intensity, whereas

the optimal AHL-KF-AR(p) for moderate scintillation is not working properly. It presents

extremely large LoL probability, around 80%, which explains the RMSE being so noisy in

comparison to the rest of techniques, as a great number of Montecarlo iterations have been

discarded so as not to distort the RMSE metric. As anticipated in Section 5.9, the reason

for this behavior lies in such a small optimal σ2
spnq for moderate scintillation leading to

an equivalent loop bandwidth that is not enough to withstand severe scintillation.

Similarly to scenario #2.1, these drawbacks are overcome by the AHL-KF-AR(0, 1).

As observed in Figure 6.9 and Table 6.6, it is able to provide optimal RMSE performance

regardless of the nature of the input signal, with practically zero LoL probability as no

Montecarlo iteration has lost lock. It successfully detects the presence of scintillation and

commutes between the KF-AR(0) and KF-AR(1) as shown in Figure 6.10. In addition, it

preserves (or even improves) the agility of the AHL-KF-A2R(p) with significantly lower

computational cost. In view of these results, the AHL-KF-AR(0, 1) becomes the optimal

technique to perform tracking in GNSS receivers when affected by ionospheric scintillation

disturbances.

These results confirm the suitability and goodness of the AHL-KF-AR(0, 1) under

severe scintillation, for which an example of three different Montecarlo realizations on

the scintillation estimation is illustrated in Figure 6.11 to show how well the technique

estimates severe scintillation in the presence of carrier dynamics.
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Figure 6.9: Phase RMSE of adaptive and semi-adaptive KF-AR implementations (AHL-

KF-A2R(p) and AHL-KF-AR(0, 1)) versus optimal fixed KF-AR(p) techniques for time-

varying scenario #2.2.

RMSE (rad) LoL prob.

(%)

CPU

(norm.)No scint. Moderate Severe

AHL-KF-A2R(p) 2.8 � 10�3 0.1976 0.2372 1 2.75

AHL-KF-AR(0, 1) 2.8 � 10�3 0.1030 0.2129 <1 1.75

AHL-KF-AR(3) mod. 1.0 � 10�2 0.0989 0.2053 78 1

AHL-KF-AR(p) sev. 2.6 � 10�3 0.0951 0.1908 <1 1

Table 6.6: Performance results of fixed and (semi-)adaptive KF techniques for test scenario

#2.2.

6.5 KF-AR Outperformance Region over PLL

When comparing the performance of KF-AR techniques versus the conventional PLL,

both implementations have to be configured with the same loop bandwidth so as to

provide equal RMSE performance when only dynamics and AWGN are present. In Section

6.4.1.1, the KF-AR state-space formulation was fixed, and the PLL loop bandwidth was

consistently adjusted so as to provide the same performance.
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Figure 6.10: Scintillation detector of AHL-KF-AR(0, 1) as a function of time for time-

varying scenario #2.2.
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Figure 6.11: Example of three Montecarlo iterations on the estimation of scintillation

provided by the AHL-KF-AR(0, 1) as a function of time for time-varying scenario #2.2.

In this section, the analysis is carried out the other way around. That is, by fixing

a PLL loop bandwidth and adjusting the KF-AR equivalent one. Since this must be

done when only carrier dynamics plus AWGN are present, we must focus on tuning the

KF-AR equivalent loop bandwidth through the dynamics process noise variance σ2
v . The
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higher σ2
v , the higher the bandwidth [Jwo01]. This parameter denotes thus the maximum

dynamic stress that the Kalman filter can tolerate, in a similar way to when increasing

the PLL loop bandwidth.

Taking for instance the 5-Hz PLL as a reference, it is found that, for the problem at

hand, the AHL-KF-AR(0, 1) performs equally under carrier dynamics plus AWGN only

when σ2
v � 2 � 10�9 rad2. In that sense, Figure 6.12 compares the corresponding RMSE

performance to that of the PLL when in the absence and in the presence of scintillation.

Interestingly, in the latter the AHL-KF-AR(0, 1) departs from the BCRB and shows very

similar performance to the 5-Hz PLL. It is found that with such a large σ2
v , the Kalman

filter prioritizes the estimation of the carrier-phase dynamics. The AR module becomes

practically neglected, and the Kalman estimates scintillation phase as part of the user

dynamics, thus resembling the behavior of the PLL in the previous sections.
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Figure 6.12: Phase RMSE performance comparison between 5-Hz PLL and AHL-KF-

AR(0, 1) with the same loop bandwidth.

These observations suggest the existence of an upper bound in terms of dynamic stress

beyond which the use of the AHL-KF-AR(0, 1) no longer provides a benefit over a PLL.

In addition, as the loop bandwidth also plays a key role on the noise filtering capabilities,

it is realistic to think that such upper bound may also vary with the C{N0. Therefore, this

section culminates with the quantification of the AHL-KF-AR(0, 1) performance limits as

a function of both the C{N0 and σ2
v below which the technique outperforms conventional

PLLs.
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6.5.1 Outperformance Region for Moderate Scintillation

Figure 6.13 shows a 3D plot of the KF-AR(0, 1) phase RMSE under moderate scin-

tillation. The gray plane stands for the best performance that could be expected from

PLLs. The performance limits are given by the curve originated when both plots inter-

sect, see the plant view in Figure 6.14. Note that since moderate scintillation is found

not to introduce major deep fades, the AHL implementation has been disabled so as to

maximize the outperformance region in terms of C{N0. As anticipated, the intersection

takes place at smaller σ2
v when the C{N0 decreases. The region where the KF-AR(0, 3)

performance lies below the one for the PLL is bounded by a C{N0 around 15 dB-Hz, with

σ2
v restricted to 10�17 rad2, whereas at high C{N0 this can be relaxed up to 10�9 rad2.

The values above can be translated into the maximum Doppler jerk supported by

the KF-AR(0, 3) as a function of the C{N0. With the process noise being uniformly

distributed, it can be computed reverting the operation in (6.2) as follows,

;θmax � �

a

12σ2
v

2T 3
s

rad/s3. (6.7)

Therefore, for the specifications at hand, the Doppler jerk is limited down to �7 �

10�4 rad/s3 for a C{N0 of 15 dB-Hz, whereas under good signal conditions the KF-AR(0,

3) can support up to �7 rad/s3 Doppler jerk. These values can also be expressed in pure

dimensions of Doppler jerk, leading to �10�4 Hz/s2 and �1 Hz/s2, respectively.

Figure 6.13: 3D plot of phase RMSE as a function of C{N0 and σ2
v for Cornell moderate

scintillation.
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Figure 6.14: Plant view of Figure 6.13.

6.5.2 Outperformance Region for Severe Scintillation

For the case of severe scintillation, the results are shown in Figure 6.15 with the AHL

implementation now enabled. The plant view is shown in Figure 6.16. The figure shows

that, as expected, the AHL-KF-AR(0, 1) outperforms the PLL for a C{N0 bounded at 25

dB-Hz, as it is the tracking threshold to which the AHL threshold γ has been set, while

σ2
v is limited to 10�12 rad2. Nonetheless, in this second analysis it must be noted that

the tracking techniques are more prone to suffer from LoL owing to the stronger intensity

of severe scintillation. Therefore, the LoL probability is also a constraining parameter

under severe scintillation that must be taken into account. Figure 6.17 shows a 3D plot of

the LoL probability for both the AHL-KF-AR(0, 1) and the PLL, and the corresponding

plant view in Figure 6.17 confirms that, indeed, the LoL probability is further constraining

the AHL-KF-AR(0, 1) outperformance region. More precisely, the C{N0 is bounded to

around 30 dB-Hz. Above this value, σ2
v is limited to 10�15 rad2, which applying (6.7)

corresponds to a maximum Doppler jerk of �7 � 10�3 rad/s3 � �10�3 Hz/s2.

To conclude Section 6.5, the performance limits of the AHL-KF-AR(0, 1) for both

moderate and severe scintillation are summarized in Table 6.7.
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Figure 6.15: 3D plot of phase RMSE as a function of C{N0 and σ2
v for Cornell severe

scintillation.

Figure 6.16: Plant view of Figure 6.15.

6.6 Results with Real Scintillation Time Series from

ESA Monitoring Network

This section aims at validating the goodness and performance of KF-AR techniques

obtained in the previous sections using real scintillation data. In Chapter 4 we performed

an AR characterization of a representative real scintillation time series obtained from the
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Figure 6.17: 3D plot of LoL probability as a function of C{N0 and σ2
v for Cornell severe

scintillation.

Figure 6.18: Plant view of Figure 6.17.

ESA scintillation monitoring network. That is, the DAK2.2014.335.22.GPS24 capture

obtained from the station in Dakar on December 1st, 2014, from 22:00 to 23:00 hours, for

GPS SV #24. In the sequel, we will employ the same capture.

Figure 6.19 shows the RMSE performance of the adaptive KF-AR implementations,

which is compared to the expected one for fixed KF-AR techniques employing the op-
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Moderate scintillation Severe scintillation

C{N0 (dB-Hz) ;θmax (rad/s3) ;θmax (Hz/s2) C{N0 (dB-Hz) ;θmax (rad/s3) ;θmax (Hz/s2)

15 �7 � 10�4
�10�4

25-30 �7 � 10�3
�10�3

45 �7 �1

Table 6.7: Summary of AHL-KF-AR(0, 1) performance limits.

timal AR parameters obtained in Table 4.2. In addition, the mean steady-state RMSE

and LoL probability values are summarized in Table 6.8. As observed, all techniques

present close-to-zero LoL probability (i.e. no Montecarlo iteration has lost lock), while

also outperforming the RMSE performance that would be obtained with a conventional

PLL, which is also depicted in Figure 6.19. As previously stated, the PLL RMSE equals

the standard deviation of the scintillation time series under study.
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Figure 6.19: Phase RMSE of adaptive and semi-adaptive KF-AR implementations (AHL-

KF-A2R(p) and AHL-KF-AR(0, 1)) versus optimal fixed KF-AR(p) techniques for

DAK2.2014.335.22.GPS24 real scintillation time series.

As expected, the optimal fixed techniques provide practically equal performance, and

are able to fully reach the expected one given by the BCRB, both in the presence of

AWGN only and added scintillation. In the former, though, fixed techniques require a

large transient. As already seen, this is the penalty incurred by forcing a fixed AR module

in the Kalman filter when in the absence of scintillation. This is overcome by the use of
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RMSE (rad)
LoL prob. (%)

No scint. DAK2.2014.335.22.GPS24

Optimal KF-AR(1) 2.6 � 10�3 6.5 � 10�2 <1

Optimal KF-AR(2) 2.7 � 10�3 6.8 � 10�2 <1

Optimal KF-AR(3) 2.7 � 10�3 6.7 � 10�2 <1

AHL-KF-A2R(p) 2.8 � 10�3 1.3 � 10�1 <1

AHL-KF-AR(0, 1) 2.8 � 10�3 6.4 � 10�2 <1

Table 6.8: Performance results of fixed and (semi-)adaptive KF techniques for

DAK2.2014.335.22.GPS24 real scintillation time series.

the AHL-KF-A2R(p), which rapidly detects the absence of scintillation and thus disables

the AR module thanks to its enhanced agility. Notwithstanding, the presence of AWGN

hampers the optimal estimation of the AR parameters, which are online-estimated for

each time instant. Such an underestimation eventually leads to the RMSE performance

being degraded by a factor of 2 with respect to the optimal one, as can be noticed in

Figure 6.19.

In view of these inconvenients, the AHL-KF-AR(0, 1) comes into play. As in previous

sections, it is able to fully reach the BCRB when both in the absence and in the presence

of scintillation, thus providing optimal performance regardless of the working conditions.

The fixed non-AHL techniques reaching the BCRB manifest that the AHL could be

disabled in this simulation. This is explained by the fact that the fades introduced by the

scintillation in the DAK2.2014.335.22.GPS24 capture are not major, and resemble those

for moderate scintillation. Such fades become visible in Figure 6.20 where, for a nominal

C{N0 of 45 dB-Hz, the estimated C{N0 is mainly above the AHL threshold, with only very

few punctual time instants in different Montecarlo iterations exceeding such threshold.

Even so, the AHL implementation is recommended to remain enabled in order to ensure

optimal and robust KF-AR operation in front of the possibility of stronger scintillation

activity.

On the other hand, the AHL-KF-AR(0, 1) preserves the agility of the AHL-KF-A2R(p)

in front of scenario variations since it successfully detects whether scintillation is present

or not. This is depicted in Figure 6.21, which shows the scintillation detection over time,

indicating the percentage of time either AR(0) or AR(1) are correctly selected throughout

all Montecarlo iterations. These observations are similar to those in Section 6.4.2 for
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Figure 6.20: Estimated C{N0 by AHL-KF-AR(0, 1) for all Montecarlo iterations using

DAK2.2014.335.22.GPS24 real scintillation time series.

synthetic time-varying scintillation and confirm the goodness of the AHL-KF-AR(0, 1)

technique.
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Figure 6.21: Scintillation detector of AHL-KF-AR(0, 1) as a function of time for

DAK2.2014.335.22.GPS24 real scintillation time series.

Figure 6.22 shows an example of three different Montecarlo realizations on the esti-

mation of scintillation provided by the AHL-KF-AR(0, 1) technique, and shows how well
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Figure 6.22: Example of three Montecarlo iterations on the estimation of scintillation

provided by the AHL-KF-AR(0, 1) as a function of time for DAK2.2014.335.22.GPS24

real scintillation time series.

it can estimate real scintillation when in the presence of carrier dynamics.

6.7 Conclusions

In this chapter, an extensive simulation campaign to test the KF-AR techniques has

been carried out, and the performance of KF-AR techniques has been compared to that

of conventional PLLs. A first set of simulations using synthetic Cornell scintillation under

stationary conditions has been performed using fixed techniques. The results have shown

that, even though the KF-AR incurs into a higher computational load, it clearly outper-

forms the conventional PLL, particularly under severe scintillation. The PLL estimates

carrier dynamics and scintillation phase variations as a whole, whereas the KF-AR dis-

sociates between both components as desired. For moderate scintillation, the importance

of employing high-order AR processes has been confirmed, reaching the expected RMSE

performance given by the BCRB. The same conclusion applies for severe scintillation in

regard to the AHL implementation, showing no loss-of-lock in any Montecarlo realization,

even though at the expense of requiring more CPU resources.

Then, a set of simulations considering realistic time-varying scintillation conditions
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has been performed to test the adaptive KF-AR implementations and compare their

performance to that of fixed techniques. Both of them actually have advantages and

inconvenients that complement with one another. The AHL-KF-A2R(p) presents the

best agility in front of scintillation variations, rapidly adapting to the actual working

conditions and disabling the Kalman AR module when scintillation disappears. However,

the technique has been found not to fully reach the BCRB when in the presence of

scintillation. This is explained by an underestimation of the optimal AR parameters

owing to the presence of AWGN. In addition, it also incurs into a high computational

burden. On the contrary, the fixed KF-AR(p) is able to reach the BCRB when dealing

with scintillation as it is the scenario for which it has been conceived, while also presenting

the smallest computational cost. However, it fails at providing optimal performance when

pulled out of its design operation, requiring large transients to converge under AWGN

only due to the unnecessary AR module being forced.

In this sense, the AHL-KF-AR(0, 3) has been found to perform as a hybrid implemen-

tation that combines the best of the fixed KF-AR(p) and the AHL-KF-A2R(p). It uses

the MDL criterion as a simple scintillation detector that commutes between a non-AR

Kalman filter and a fixed AHL-KF-AR(1) that can deal with both moderate and severe

scintillation. The technique successfully adapts to the actual working conditions and pro-

vides optimal RMSE and LoL probability performance irrespective of the nature of the

input signal. Furthermore, it preserves the agility of the AHL-KF-A2R(p) and operates

at a significantly reduced computational cost. Then, the advantageous operational region

of the AHL-KF-AR(0, 1) with respect to that of the conventional PLL has been deter-

mined. That is, the region in terms of maximum dynamic stress and noise power within

which the AHL-KF-AR(0, 1) outperforms the PLL has been quantified. As expected, the

operational region has been found smaller under severe scintillation owing to its stronger

intensity.

Finally, the KF-AR techniques have been tested using a representative capture of real

scintillation time series in order to validate the results obtained for synthetic data. The

conclusions above have been confirmed, where fixed techniques provide optimal perfor-

mance when in the presence of scintillation, whereas the AHL-KF-A2R(p) presents the

best agility at the expense of a degraded RMSE performance and enhanced computational

cost. The AHL-KF-AR(0, 1) has been found to overcome the issues of each of the above

implementations, providing the best performance and agility with a significantly reduced

computational complexity. These conclusions confirm the goodness of the AHL-KF-AR(0,

1) implementation.



Chapter 7

Thesis Conclusions and Future Work

This thesis has tackled the problem of robust carrier phase tracking with the aim of

overcoming the technological challenges to be faced by next-generation GNSS receivers.

The focus has been placed on the effect of ionospheric scintillation, which introduces

random amplitude and phase variations to GNSS signals crossing the ionosphere and poses

a serious concern to carrier dynamics tracking. To deal with ionospheric scintillation, a

detailed analysis on modeling scintillation phase variations using autoregressive processes

has been first carried out. The conclusions have led to proposing the hybrid autoregressive

Kalman filter, a promising approach consisting of a linear Kalman filter with a novel

hybrid formulation that allows tracking scintillation and virtually eliminating it, thus

providing clean estimates of the carrier dynamics of interest. In this sense, several adaptive

implementations have been proposed in order to deal with the time-varying behavior of

scintillation and provide optimal estimation performance irrespective of the nature of the

input measurements. Such adaptive implementations include a hard-limiting technique

based on the measured signal power that is thought to provide an added robustness in

front of the signal amplitude fades introduced by scintillation. In addition, this thesis

has also contributed with the derivation of closed-form expressions for the performance

characterization of non-hybrid and hybrid Kalman filters. This has arisen from the lack

of a closed-form solution for the Bayesian Cramér-Rao bound, thus hampering the tuning

of the Kalman filter. The obtained derivations include results for both the transient and

steady-state regimes of the filter, and are thought to be a tool of great practical interest

during the design stage of the problem.

The main conclusions of this work are drawn next, as well as some possible future

research lines are also proposed.
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7.1 Thesis Conclusions

Chapter 2 has introduced the fundamentals of GNSS technologies. The GNSS trilat-

eration positioning principle has been presented, and the generic architecture of GNSS

receivers has been explained. It consists mainly of the front end, acquisition, tracking

and PVT stages. In the latter, some guidelines for multi-constellation hybridization in

high-sensitivity receivers have been provided, mainly consisting in determining the user’s

position without having to decode the navigation message. As a matter of fact, this is

related to the tasks performed by the author during his research stay at ESTEC. This

chapter has though provided a more detailed description of the tracking stage, since it is

the main scope of this dissertation. The well-known phase- and delay-locked loops have

been presented as the solutions adopted by conventional GNSS receivers.

In Chapter 3 the problem of GNSS carrier tracking has been revisited by making use

of the general framework of optimal minimum mean squared error estimation. In that

sense, the Kalman filter has been presented as the natural improvement to conventional

phase-locked loops to perform precise carrier tracking in the presence of propagation

disturbances. The basic notions of the Kalman filter have been explained, and the formu-

lation has then been particularized to the problem of GNSS carrier tracking. Some useful

guidelines for the tuning of the filter have also been provided. At this point, this the-

sis has contributed with the derivation of novel closed-form expressions for the Bayesian

Cramér-Rao bound: an upper bound for the convergence time and a lower bound for the

steady-state performance of kinematic Kalman filters. To this end, the BCRB has been

presented as a tool of practical interest to predict the Kalman filter performance, linking

it to the classical Cramér-Rao bound when in the absence of process noise. The proposed

approach has been based on reformulating the filtering problem in batch mode and ana-

lyzing the resulting matrices when a diffuse initialization of the filter is considered. A set

of simulation results has been provided that confirms the applicability of the proposed

approach.

Chapter 4 has tackled the characterization of scintillation disturbances, particularly

the random phase variations. The class of autoregressive processes has been proposed,

and the problem of autoregressive fitting has been addressed. Two equivalent approaches

for the determination of the model parameters have been introduced, namely the Yule-

Walker equations and the Least Squares method, the latter presenting slightly smaller

computational load. The fitting of autoregressive processes has been carried out by means

of two different types of scintillation time series. On the one hand, synthetic data using the
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Cornell scintillation model. On the other hand, real scintillation data obtained from ESA’s

scintillation monitoring network, for which a detrending algorithm has been explained.

The main outcome here is the confirmation that scintillation phase variations can actually

be modeled using autoregressive processes. For strong scintillation events, a simple first-

order model suffices, whereas higher-order models have been found to better fit events

that are more correlated. In view of these conclusions, the problem of optimal model order

selection has been addressed. A literature review on the most commonly used criteria has

been provided, with the advantages and drawbacks of each of them. Then, the minimum

description length criterion has been presented as the chosen one in this thesis, since it

is a consistent criterion that reduces its estimation error as the length of the employed

data record increases. The above synthetic and real scintillation time series have been

employed to test the order selection, and the obtained results have confirmed those for

the problem of scintillation autoregressive fitting.

Chapter 4 has led to interesting conclusions, in the sense that the modeling of scintilla-

tion phase variations using a linear Gaussian process has opened the door to encompassing

them within the linear Kalman filter in a natural manner, and take advantage of its Gaus-

sianity optimality properties. This has been the main goal of Chapter 5: to formulate an

augmented Kalman filter with a novel hybrid formulation to track dynamics and scintil-

lation separately, in the presence of one another. The underlying idea of this approach

is to estimate scintillation phase variations so that they can be virtually removed and

clean estimates of the carrier dynamics can be provided. The proposed technique has

been termed hybrid autoregressive Kalman filter, KF-AR(p). An analysis of the Bayesian

Cramér-Rao bound for this technique has been carried out, concluding that the scintilla-

tion power above the noise floor induces a slight performance degradation in the carrier

dynamics estimates caused by the possible errors in the estimation of scintillation. Here,

this thesis has contributed with the derivation of novel closed-form expressions for the con-

vergence time and steady-state performances of hybrid and pure autoregressive Kalman

filters. A set of simulation results has been provided that confirms the applicability of the

proposed approach. Then, in this chapter we have made a leap forward to dealing with

the time-varying nature of scintillation: we have proposed adaptive implementations in

order for the KF-AR to nimbly self-tune to the actual scintillation conditions and provide

optimal performance in time-varying scenarios. First, the fully-adaptive implementation

AHL-KF-A2R(p) has consisted of an online estimator of the autoregressive model param-

eters and order. At this point we have also considered the presence of thermal noise, as

an approach to realistic working conditions. After some analysis it has been found that

thermal noise causes the input signal to depart from an autoregressive process, partic-
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ularly under moderate scintillation. Therefore, we have derived an adaptive technique

thought to be agile and flexible in front of time-varying working conditions, even though

at the expense of some performance degradation owing to the underestimation of autore-

gressive parameters. To circumvent this drawback, we have derived the semi-adaptive

approach AHL-KF-AR(0, 1) that employs a first-order autoregressive process with fixed

parameters designed to deal with any kind of scintillation intensity. Moreover, the MDL

criterion has been employed as a mere scintillation detector with the ability to commute

to a dynamics-only Kalman filter when scintillation is absent. This semi-adaptive tech-

nique has been thought to provide optimal performance while preserving the agility of

the fully-adaptive approach at a significantly reduced computational cost. In addition,

a hard-limiting threshold has been also implemented in order to deal with the nonlinear

signal amplitude fades introduced by severe scintillation, particularly, thus providing an

added degree of robustness to the KF-AR.

In Chapter 6 the KF-AR techniques proposed in Chapter 5 have been tested by means

of an extensive simulation campaign. Very promising results have been obtained, with

the proposed approaches clearly outperforming conventional PLLs. The hard-limiting

threshold has been found to provide an additional gain particularly under the presence

of severe scintillation, reaching the expected performance given by the BCRB. In time-

varying scenarios, fixed KF-AR techniques have failed at providing optimal performance.

In this sense, the AHL-KF-A2R(p) has shown to be fully agile when the working conditions

change, even though at the expense of some performance degradation in the presence

of scintillation and significant computational cost. The AHL-KF-AR(0, 1) has shown

to successfully overcome these limitations while preserving the agility of the AHL-KF-

A2R(p). This chapter has also contributed with the determination of the limits in terms of

thermal noise and input dynamic stress below which the proposed technique does provide

a gain over conventional PLLs. These bounds are thought to become useful guidelines for

the application of the AHL-KF-AR(0, 1) in practice. The results obtained with Cornell

synthetic data have been validated by processing real data measurements. Therefore,

we can conclude on the goodness and applicability of the proposed AHL-KF-AR(0, 1) for

next-generation GNSS receivers to obtain accurate carrier phase estimates in the presence

of scintillation disturbances.
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7.2 Future Research Lines

From the work presented in this dissertation, the following future research lines can

be derived:

• Research on the accurate estimation of autoregressive parameters in the presence of

AWGN. In the AHL-KF-AR(0, 1), a large loop bandwidth is employed to cope with

up to severe scintillation, thus limiting the operational range of the technique under

moderate scintillation, particularly. By properly estimating the AR parameters in

the AHL-KF-A2R(p), a smaller loop bandwidth could be employed, thus improving

the noise filtering capabilities, and the maximum dynamic stress may be expected

to increase at low C{N0. Some of the baseline techniques that can be found in the

literature are the unbiased least squares method, the modified Yule-Walker equations

and the use of two interacting Kalman filters.

• Extend the problem to the arena of multi-frequency GNSS receivers, and evaluate

the proposed techniques for the case of multi-frequency carrier phase measurements.

• Evaluate the gain of determining scintillation amplitude variations by means of

a tracking stage, as done herein with the carrier phase, and employ an extended

Kalman filter (EKF) for tracking both amplitude and phase.

• Evaluate whether the parameters tS4, σϕs
u can be exploited to extract additional

information; for instance, use S4 as an indicator on the presence of scintillation.

• Perform a thorough analysis on scintillation phase fitting using more complex signal

models, such as autoregressive integrated moving average (ARIMA) and ARMA.
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[Gó18] David Gómez-Casco, Non-coherent acquisition techniques for high-sensitivity
GNSS receivers, PhD dissertation, PhD Thesis, Universitat Autònoma de
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