
 

 

 

 

 

 

 

 
OPTOELECTRONIC PROPERTIES OF QUANTUM DOTS FOR BIOMEDICINE AND 

ENERGY-TO-LIGHT CONVERSION 
 

Sofia Paulo Mirasol 

 
 

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets 

de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials 
d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual 
(RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En 
qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la 
persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació 
efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc 
s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de 
drets afecta tant als continguts de la tesi com als seus resums i índexs. 
 
 
ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los 

derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en 
actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto 
Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización 
previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá 
indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral. No se 
autoriza su reproducción u otras formas de explotación efectuadas con fines lucrativos ni su comunicación 
pública desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentación de su contenido en una 
ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de la tesis como 
a sus resúmenes e índices. 
 
 
WARNING. Access to the contents of this doctoral thesis and its use must respect the rights of the author. It 

can be used for reference or private study, as well as research and learning activities or materials in the 
terms established by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and 
previous authorization of the author is required for any other uses. In any case, when using its content, full 
name of the author and title of the thesis must be clearly indicated. Reproduction or other forms of for profit 
use or public communication from outside TDX service is not allowed. Presentation of its content in a window 
or frame external to TDX (framing) is not authorized either. These rights affect both the content of the thesis 
and its abstracts and indexes. 



 
 
 
 
 
 

 

 

Optoelectronics properties of Quantum dots for 
biomedicine and energy-to-light conversion. 

 

Sofia Paulo Mirasol 

Doctoral Thesis 
 

 
 

 
 
 

Supervised by, 
 

Dra. Eugenia Martínez Ferrero 
Prof. Emilio José Palomares Gil 

 
Tarragona,2019 

UNIVERSITAT ROVIRA I VIRGILI 
OPTOELECTRONIC PROPERTIES OF QUANTUM DOTS FOR BIOMEDICINE AND ENERGY-TO-LIGHT CONVERSION 
Sofia Paulo Mirasol 
 



UNIVERSITAT ROVIRA I VIRGILI 
OPTOELECTRONIC PROPERTIES OF QUANTUM DOTS FOR BIOMEDICINE AND ENERGY-TO-LIGHT CONVERSION 
Sofia Paulo Mirasol 
 



  

UNIVERSITAT ROVIRA I VIRGILI 
OPTOELECTRONIC PROPERTIES OF QUANTUM DOTS FOR BIOMEDICINE AND ENERGY-TO-LIGHT CONVERSION 
Sofia Paulo Mirasol 
 



Sofia Paulo Mirasol 

 

Optoelectronics properties of 

Quantum dots for biomedicine 

and energy-to-light conversion 

 

Doctoral Thesis 

 

Supervised by Prof. Emilio Palomares Gil and 

Dra. Eugenia Martínez Ferrero 

 

Institut Català d’Investigació Química- 

Universitat Rovira i Virgili- Eurecat Centre 

Tecnològic de Catalunya 

 

 

 

Tarragona June 2019 

UNIVERSITAT ROVIRA I VIRGILI 
OPTOELECTRONIC PROPERTIES OF QUANTUM DOTS FOR BIOMEDICINE AND ENERGY-TO-LIGHT CONVERSION 
Sofia Paulo Mirasol 
 



  

UNIVERSITAT ROVIRA I VIRGILI 
OPTOELECTRONIC PROPERTIES OF QUANTUM DOTS FOR BIOMEDICINE AND ENERGY-TO-LIGHT CONVERSION 
Sofia Paulo Mirasol 
 



Emilio Palomares Gil, Group Leader at the Institute of Chemical Research of 

Catalonia (ICIQ) in Tarragona, and Research and Advanced Studies (ICREA) 

in Barcelona. 

Eugenia Martínez Ferrero, Head of the Photonics Line in Centre Tecnològic de 

Catalunya Eurecat in Barcelona.  

 

CERTIFY: 

 
That the present research study, entitled “Optoelectronics properties of 

Quantum dots for biomedicine and energy-to-light conversion” 

presented by Sofia Paulo Mirasol for the award of the degree of doctor 

has been carried out under our supervision in ICIQ and Eurecat.  

 

Tarragona, June 2019 

 

 

                  

 

Dra. Eugenia Martínez-Ferrero                           Prof. Emilio Palomares Gil 

 

 

 

           

 

UNIVERSITAT ROVIRA I VIRGILI 
OPTOELECTRONIC PROPERTIES OF QUANTUM DOTS FOR BIOMEDICINE AND ENERGY-TO-LIGHT CONVERSION 
Sofia Paulo Mirasol 
 



  

UNIVERSITAT ROVIRA I VIRGILI 
OPTOELECTRONIC PROPERTIES OF QUANTUM DOTS FOR BIOMEDICINE AND ENERGY-TO-LIGHT CONVERSION 
Sofia Paulo Mirasol 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“Trial and error” 

 

UNIVERSITAT ROVIRA I VIRGILI 
OPTOELECTRONIC PROPERTIES OF QUANTUM DOTS FOR BIOMEDICINE AND ENERGY-TO-LIGHT CONVERSION 
Sofia Paulo Mirasol 
 



 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
OPTOELECTRONIC PROPERTIES OF QUANTUM DOTS FOR BIOMEDICINE AND ENERGY-TO-LIGHT CONVERSION 
Sofia Paulo Mirasol 
 



I 
 

Agraïments 

 

Després de quatre anys em trobo aquí escrivint uns agraïments. Això vol dir 

que l’aventura s’està acabant i una nova segurament m’està esperant. Per això 

abans de que l’obra de teatre baixi el teló m’agradaria donar les gràcies a tots 

aquells que d’alguna manera o altra hagin format part d’aquest espectacle. 

Les dues primers persones a les que m’agradaria agrair aquesta tesis són els 

meus dos directors: Dra Eugenia Martínez Ferrero i Prof. Emilio Palomares, pel 

suport, la paciència, l’energia i per acompanyar-me durant aquests quatre 

anys. En especial, a l’Eugenia per la seva immensa paciència i per saber 

escoltar i reforçar-me en els pitjors moments d’aquesta travessia i a l’Emilio per 

donar-me l’oportunitat de poder fer la tesis amb ell i per donar-nos la llibertat 

de poder marxar-nos d’estància i deixar que provéssim coses en el laboratori 

encara que sabies que no funcionarien.  

Als meus companys del laboratori de l’ICIQ pels “tuppers share”, calçotades i 

paelles a la platja Llarga. Especialment a Santiaguín per ser el meu 

company/marit de laboratori, sense ell la meitat d’aquesta tesis no existiria. I a 

la Lydia perquè durant el temps que vam coincidir juntes va ser una gran 

recolzament per a mi. Ens veiem aviat a Grenoble! També m’agradaria agrair 

aquesta tesis als companys de Eurecat per tractar-me com una més i ajudar-

me durant el temps que vaig estar allà. I finalment a tots els companys que al 

llarg d’aquest quatre anys hem compartit ciència, riures, treball dur i moltes 

moltes hores al laboratori ja sigui al Japó o Grècia.  

A les companyes de la Chirigota: “¡Pon pa’ un lao la capa que la liamos y no 

hay secador!” “¡Heroinas hasta el final!”. Ha estat màgic compartir aquests  

mesos de riures, assajos y molt de “cante”. A l’Andrea y  al Daniel por ser “mis 

soles de Tarragona”. Nos seguiremos encontrando por el mundo, estoy 

segurísima.  

A les meves noies de Coitus Interruptus! Bárbara, y tanto que nos quedaba 

pista y la que nos queda aún por recorrer. Irene, has sido para mi un gran 

descubrimiento y me siento muy agradecida de saber que te tengo como amiga 

UNIVERSITAT ROVIRA I VIRGILI 
OPTOELECTRONIC PROPERTIES OF QUANTUM DOTS FOR BIOMEDICINE AND ENERGY-TO-LIGHT CONVERSION 
Sofia Paulo Mirasol 
 



II 
 

y compañera de batalla. Cristina compañera de laboratorio y amiga, lo que 

Palomares ha unido que no lo separe los futuros jefes! De veritat, és un plaer 

poder parlar amb vosaltres de política, feminisme i coses lleugeres en general, 

jejeje. El món és un lloc almenys més divertit i comprensiu des de que formeu 

part de la meva vida.  

Als amics de la universitat: Irene, Marcs, Anna, Ivan, Elena i Marta pels riures 

i els sopars anuals. ¿Qui ho anava a dir, ehh? Em sento molt afortunada de 

haver-vos trobat a primer de carrera i que després de 13 anys seguim 

compartint la passió per viure i gaudir dels bon moments.  

A les meves nenes de Barcelona i London que han estat allà des del principi 

dels temps... literalment! 25 anys d’amistat, sou un membre més de la família. 

Només puc dir-vos que gràcies, pels bons moments, pels sopars, viatges, 

birres, riures i plors.  Encara que visquem en països o ciutats diferents que 

trobem sempre moments per poder veure’ns i riure’ns de la vida. 

A la meva família: papes, abueli i tata, sense ells això no hauria estat possible. 

“I pensar que volia deixar la carrera al primer any….” Gràcies al meus pares 

per haver-nos inculcat a ser independents i a pensar per una mateixa sense 

deixar-nos influenciar per ningú. Us estimo moltíssim. A l’abueli perquè encara 

que ara necessites un bastó per caminar, ets la dona més forta del món. A la 

meva germana, només puc dir-li una cosa: gràcies per tot, de veritat. Ets la 

millor tata que es pot tenir. Et trobo molt a faltar però sé que a San Francisco 

estàs molt bé.  

I finalment, m’agradaria agrair-li a la meva nova família que de moment consta 

de dos gats: Ratafia, Currupipi i un veronès. Ilario company de vida, amic, i 

amant. Ets el millor company de vida que he trobat en aquest món i saber que 

encara ens queda tant de camí per omplir-ho de viatges, discussions i molt de 

riure i amor... No sé on acabarem en aquest món però el que sí que sé és que 

ho farem junts.  

 

“I vet aquí un gat, vet aquí un gos, aquest conte ja s’ha fos.” 

 

UNIVERSITAT ROVIRA I VIRGILI 
OPTOELECTRONIC PROPERTIES OF QUANTUM DOTS FOR BIOMEDICINE AND ENERGY-TO-LIGHT CONVERSION 
Sofia Paulo Mirasol 
 



III 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A la meva família, a la iaia i a l’Ilario. 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
OPTOELECTRONIC PROPERTIES OF QUANTUM DOTS FOR BIOMEDICINE AND ENERGY-TO-LIGHT CONVERSION 
Sofia Paulo Mirasol 
 



IV 
 

  

UNIVERSITAT ROVIRA I VIRGILI 
OPTOELECTRONIC PROPERTIES OF QUANTUM DOTS FOR BIOMEDICINE AND ENERGY-TO-LIGHT CONVERSION 
Sofia Paulo Mirasol 
 



V 
 

 

Table of contents 

 

Acknowledgments. 

List of abbreviations. 

Abstract.  

Contribution to the scientific community. 

 

Chapter 1. Introduction on Quantum dots and their applications as biosensor 

and active layer in light emitting diodes. ………………………………………....1 

Chapter 2. Motivation and aim of this thesis……………………………………37 

Chapter 3. Methods and experimental systems………………………………..42 

Chapter 4. Nanophotonic biosensor for detection and quantification of enzymes 

in biological samples………………………………………………………………69 

Chapter 5. Cadmium based quantum dots as Emissive layer in LEDs………105 

Chapter 6. Synthesis and fabrication of Perovskite Light Emitting Diodes…141 

Chapter 7. Carbon quantum dots in the emissive layer in LEDs……………177 

Chapter 8. Carbon quantum dots as selective contact for LEDs……………215 

Chapter 9. Carbon quantum dots as hole transport material in perovskites solar 

cells………………………………………………………………………………...273 

Chapter 10. Summary and general conclusions………………………………295 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
OPTOELECTRONIC PROPERTIES OF QUANTUM DOTS FOR BIOMEDICINE AND ENERGY-TO-LIGHT CONVERSION 
Sofia Paulo Mirasol 
 



VI 
 

 

  

UNIVERSITAT ROVIRA I VIRGILI 
OPTOELECTRONIC PROPERTIES OF QUANTUM DOTS FOR BIOMEDICINE AND ENERGY-TO-LIGHT CONVERSION 
Sofia Paulo Mirasol 
 



VII 
 

List of abbreviations 

 

A Ampere 

a.u. Arbitrary units 

Abs Absorbance 

CB Conduction Band 

Cd Candela 

CIE 

CQDs Carbon Quantum dots 

CV Cycle Voltammetry 

DLS Dynamic light scattering 

DMF Dimethylformamide  

DMSO  Dimethylsulfoxide 

EDA ethylendiamine 

EL Electroluminescence 

EL Electroluminescence  

EtOH Ethanol 

F8BT Poly(9,9'-dioctylfluorene-co-benzothiadiazole) 

FT-IR Fourier transform infrared spectroscopy  

FTO Fluorine-doped tin oxide 

FWHM Full width at half maximum  

h Hours 

HDA 1-hexadecylamine 

HOMO Highest occupied molecular orbital 

HTL Hole Transport Layer 

HTM hole transport material 

hν Photon light 

I Current density 

UNIVERSITAT ROVIRA I VIRGILI 
OPTOELECTRONIC PROPERTIES OF QUANTUM DOTS FOR BIOMEDICINE AND ENERGY-TO-LIGHT CONVERSION 
Sofia Paulo Mirasol 
 



VIII 
 

IPA 2-propanol 

ITO  

LED Light-emitting diode  

LEDs Light-emitting diode  

LUMO Lowest unoccupied molecular orbital 

mA/cm2 milliamp per square centimeter  

MA+ methylamonium cation 

MABr methylamonium bromide 

NPs Nanoparticle  

OA Oleic acid  

ODE octadecene 

OLA Oleyamine 

PBS solution buffer phosphate 

PEDOT-PSS Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate  

PeLED Perovskite light-emitting diode  

PL Photoluminescence  

PPD p-phenyldiamine 

PVK Poly (9-vinylcarbazole) 

QDs Quantum Dots  

QLED Quantum dot light-emitting diode  

QY Quantum yield 

RPM Revolutions per time 

s second 

SEM Scanning electron microscopy  

SWV Square wave voltammetry 

TCSPC Time correlated single photon-counting 

TEM Transmission electron microscopy  

TiO2 titanium dioxide 

TMPyPB 5,10,15,20-Tetrakis(1-methyl-4-pyridinio)porphyrin 

UNIVERSITAT ROVIRA I VIRGILI 
OPTOELECTRONIC PROPERTIES OF QUANTUM DOTS FOR BIOMEDICINE AND ENERGY-TO-LIGHT CONVERSION 
Sofia Paulo Mirasol 
 



IX 
 

UV-vis Ultraviolet-visible spectroscopy  

ZnO Zinc oxide 

SnO2 Tin dioxide 

V Voltage 

VB Valence band 

XRD X-ray diffraction 
λ wavelength  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

UNIVERSITAT ROVIRA I VIRGILI 
OPTOELECTRONIC PROPERTIES OF QUANTUM DOTS FOR BIOMEDICINE AND ENERGY-TO-LIGHT CONVERSION 
Sofia Paulo Mirasol 
 



X 
 

Abstract 

 

In the last decade, nanoscience has emerged as a novel technology due to its 

versatility to be employed in many research areas. Nanoscience studies the 

structures and materials on the nanometers scale. One of the most promising 

nanomaterials, colloidal quantum dots have been deeply studied in the last 

decades for their extraordinary optoelectronic properties and their versatility in 

order to use in different fields, such as bioimaging, sensor, optoelectronic 

devices, etc.   

Colloidal quantum dots technologies have burst in both academic and industrial 

field. Quantum dots are defined as nanometer scale semiconductor crystal with 

a physical size smaller than exciton Bohr radius, and as consequence quantum 

confinement. This means that their bandgap changes according to their size. 

Regarding the optical properties, they show broad absorption, narrow emission 

and color purity, especially when compared to organic semiconductors. 

The present thesis is focused on the synthesis of different quantum dots as well 

as their use in LEDs, perovskites solar cells and sensors. Three different 

Quantum Dots have been synthetized: cadmium, perovskites and carbon 

based quantum dots. The first two material present a high quantum yield and 

narrow emission band. However their high toxicity is an important weakness. In 

order to avoid the use of those material we synthetized carbon quantum dots. 

Their low toxicity and biocompatibility is a good alternative to heavy metal-

containing nanomaterials. In addition, carbon based material can be prepared 

using ordinary products as sugar or orange juice and solved in non-chloro 

solvents such as ethanol or water. 

Quantum dots LEDs (QLEDs) have emerged in the last year as new LEDs 

generation due to better color definition over the entire visible spectrum. 

Basically, the structure consists of a sandwiched layer of emissive quantum 

dots between electron and hole transport layers, so when a bias is applied hole 

and electrons are radiatively recombined in the quantum dot layer emitting light. 
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The second application we worked on during this thesis was perovskites solar 

cells. Converting solar energy efficiently into either electrical or fuel sources 

remains one of mankind’s biggest challenges. Despite the rapid progress that 

has been made in recent years in research into third generation solar cells, 

silicon is still the biggest and most important player in the PV industry. Such 

new technologies, as mixed halide perovskite solar cells are quickly catching-

up efficiency (the current record of efficiency is above 22% at 1 sun). The 

synthetized and tested CQDs as hole transport material in order to replace the 

actual on, Spiro-OMeTAD because of the high production cost.  

Finally,a different application of QDs has been explored, two different 

biosensors have fabricated in order to detect and quantify elastase in human 

samples. We fabricated two different sensors: an Optical and an 

electrochemical sensors. Both sensors present better properties such as low 

cost, real-time and high sensitivity and specificity comparing with the 

conventional analytical techniques. 

The work discussed in this thesis was carried out at Institute of Chemical 

Research of Catalonia (ICIQ) and Eurecat, the technological center of 

Catalonia, between March 2015 and March 2019.  
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Resum 

 

En la darrera dècada, la nanociència ha sorgit com una nova tecnologia a 

causa de la seva versatilitat per ser emprada en moltes àrees de recerca. La 

nanociència estudia les estructures i els materials a escala de nanòmetres. Un 

dels nanomaterials més prometedors, els punts quàntics han estat 

profundament estudiats per les seves propietats optoelectròniques i la seva 

versatilitat per utilitzar-los en diferents camps, com ara bioimaging, sensor, 

dispositius optoelectrònics, etc. 

Els punts quàntics es defineixen com a cristalls semiconductors a escala 

nanomètrica amb una grandària física menor que el radi exciton de Bohr i, com 

a conseqüència, presenten confinament quàntic. Això significa que el seu 

bandgap canvia segons la mida de la partícula. Pel que fa a les propietats 

òptiques, mostren una àmplia absorció, una emissió estreta i una puresa de 

color, especialment si es compara amb semiconductors orgànics. 

Aquesta tesis doctoral es centra en la síntesis i caracterització de diferents 

punts quàntics, així com en el seu ús en LEDs, cèl·les solars perovskites i 

sensors. S'han sintetitzat tres punts quàntics diferents: cadmi, perovskites i 

punts quàntics basats en carboni. Els dos primers materials presenten una 

banda de emissions reduïdes de rendiment quàntic elevat. No obstant, la seva 

alta toxicitat és un inconvenient que s’ha de tenir en comte . Com alternativa al 

seu ús, hem sintetitzat punts quàntics fets de carboni. Gràcies a la seva baixa 

toxicitat i biocompatibilitat els punts quàntics fer de carboni es presenten com  

una bona alternativa als nanomaterials que contenen metalls pesants. A més, 

els punts quàntics fets de carboni es pot preparar amb productes normals com 

sucre o suc de taronja i resolt en dissolvents no clorats com ara l’etanol o 

l’aigua. 
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Quantum Dots LEDs (QLEDs) es van produir durant el darrer any com a nova 

generació de LEDs a causa d'una millor definició de color a tot l'espectre 

visible. Bàsicament, l’estructura consisteix en una capa intercalada de punts 

quàntics emissius entre les capes de transport d’electrons i forats, de manera 

que quan s’aplica un biaix el forat i els electrons es recombinen radiativament 

a la capa quàntica que emet la llum 

Quantum Dots (QLEDs) han sorgit en els últims anys com una nova generació 

de LEDs a causa de les seves propietats. Bàsicament, l’estructura consisteix 

en una capa intercalada de punts quàntics emissius entre capes de materials 

transportadors d’electrons i forats, de manera que quan s’aplica un biaix el forat 

i els electrons es recombinen radiativament a la capa quàntica que emet la 

llum. 

La segona aplicació que hem treballar durant el desenvolupament d’aquesta 

tesis van ser amb cel·les solars de Perovskites. La conversió de l’energia solar 

de manera eficient en fonts elèctriques o de combustible continua sent un dels 

grans reptes de la humanitat. Malgrat els avenços ràpids realitzats en els 

darrers anys en la investigació de cèl·les solars de tercera generació, el silici 

continua sent el qui presenta millor eficiències. Les noves tecnologies, com les 

cèl·les solars de perovskites es presenten com una bona alternativa a la 

tecnologia actual pel seu baix cost de fabricació i per la seva eficiència (l’actual 

registre d’eficiència és superior al 22% ). Vam sintetitzar punts quàntics de 

carboni i els vam testar com a transportador de forats per reemplaçar l’actual, 

Spiro-OMeTAD pel seu elevat cost de producció. 

Finalment, s'han fabricat dos biosensors per detectar i quantificar l'elastasa en 

mostres humanes. Hem fabricat dos sensors diferents: un òptic i un sensor 

electroquímic. Els dos presenten característiques com  baix cost de producció, 

mesures en temps real i també presenten una alta sensibilitat i especificitat en 

comparació amb les tècniques analítiques convencionals. 

El treball tractat en aquesta tesis es va desenvolupar en l'Institut d'Investigació 

Química de Catalunya (ICIQ) i en el centre tecnològic de Catalunya (Eurecat), 

entre març de 2015 i març de 2019. 
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1 

Introduction 

During the last decades, colloidal quantum dots (QDs) have been extensively 

studied due to their optoelectronic properties and their potential for 

applications in electronic and biological systems. In this chapter, we will 

describe  the synthesis of colloidal quantum dots and their applications in Light 

Emitting Diodes (LEDs), perovskites solar cells and biological applications. 
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1.1 Quantum dots: Introduction and general 

properties. 

 

In 1856, Faraday reported the first study of how material properties can vary 

with size describing the optical properties of nanoparticles of gold 1. Since their 

discovery in the early 1980’s, Colloidal Quantum dots (QDs) have been 

extensively studied due to their optoelectronic properties in various application 

areas. In 1981, the Russian solid state physicist Alexey I. Ekimov Link, working 

at the Vavilov State Optical Institute in St. Petersburg discovered quantum dots 

in a glass matrix. Later, an American chemist Louis E. Brus working at AT&T 

Bell Laboratories synthesized quantum dots in a colloidal solution 2. However, 

it was not until the early 1990’s when appeared the first paper written by Murray, 

Norris and Bawendi, which described the hot injection synthesis for colloidal 

quantum dots 3,4.  

Nanoparticles can be divided depending on the size, shape and composition 4. 

In this thesis, we worked with metal oxide nanoparticles (ZnO NPs) and three 

quantum dots made of different materials: cadmium, carbon and perovskites 

based Quantum Dots.   

Colloidal Quantum Dots are zero dimensional semiconductor nanoparticles, 

which are composed of an inorganic core with an organic capping. The 

electronic structure of colloidal QDs, typically from 2 nm to 12 nm in diameter, 

which is generally smaller than the exciton Bohr radius (the diameter of the 

particle is in the same order of magnitude than the wavelength of the electron), 

present quantum confinement 5. This Quantum confinement effect is 

responsible of the increase of energy difference between energy states and 

band gap. The band gap generally refers to the energy difference (in electron 

volts) between the top of the valence band and the bottom of the conduction 

band in insulators and semiconductors. This effect is more remarkable in 

semiconductors material because they have a conduction and valence band3. 

Such effect is important because as consequence, Colloidal Quantum Dots 

possess optical and electronic properties that differ from large particles, such 
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as wide absorption, narrow band emission, color tunability and long 

fluorescence lifetime. 

 

 

 

Figure 1. 1 Quantum confinement schema. 

 

Colloidal Quantum Dots (QDs) have an intrinsic energy band gap that depends 

on the size of the nanoparticle and influences the absorption and emission 

spectra. The color emission band of a Colloidal Quantum Dots is directly related 

to its size, the smallest QDs produce shorter wavelength and bluer color light, 

while the biggest particles produce red color light.  

Typically, QDs present a narrow emission Full Width at Half Maximum (FWHM) 

around 20 nm due to their quantum confinement, thus they give more 

advantages than conventional organic dyes. The emission spectra of QD can 

be tuned varying the size distribution, in comparison with dyes whose broader 

emission band cannot. This is a very important advantage because in order to 

identify different emission peaks, we can modulate them avoiding the 

overlapping bands. 

In addition, QDs present better advantages compared with the conventional 

dyes as broader absorption, narrower emission spectra, major resistance 
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photobleaching, long luminescence decay time and a large stoke shift, which is 

the energy difference between the maximum of the first absorption band and 

the maximum of the fluorescence spectrum 6,7.  

 

1.1.1 Types of Quantum Dots.  
 

A wide range of quantum dot materials have been fabricated for investigation 

and use in various applications, including CdS, CdSe, ZnS, PbS, SnS, SnSe, 

PbTe, PbSe, InAs, GaAs, InP, Carbon Quantum dots and halide perovskites.  

Under simplistic point of view, QDs are formed by an inorganic core and organic 

ligand. Due to the inorganic semiconductor cores, QDs have a higher stability 

than organic dyes to degradation caused by effects such as photobleaching. 

The organic ligands give to the quantum dot stability against the aggregation.  

In this thesis, we focused in the synthesis and test of optoelectronic properties 

of QDs made of the following materials: cadmium, carbon and perovskites 

quantum dots, all of them deposited onto ZnO nanoparticles (ZnO NPs).   

 

1.1.1.1 Cadmium based quantum dots. 
 

Cadmium based Quantum Dots is the most deeply studied nanomaterial due to 

their high quantum yield, and have been tested in many applications 8, 9, 10, 11.  

The most common way to synthesize cadmium based quantum dots achieving 

high quantum yield was via hot injection method. This synthesis was described 

by Murray et al 3 in 1993. Briefly, the synthesis of Cd-based QDs is carried out 

using metal chalcogenide precursors, organic ligands in order to avoid the 

aggregation and a high boiling point inert solvent to homogenize the solution. 

The temperature during the synthesis must be high enough to promote the 

crystals formation. The ligand used must be ambipolar because the polar heads 

must bind in the surface of QDs while the non-polar part control the diffusion of 

the precursor and solubilizes it.  
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Figure 1. 2. Size dependent fluorescence spectra of cadmium based quantum 

dots. From the left to right, the particles diameters are 2.1 nm, 2.5 nm, 4.7 nm and 
7.5 nm. Ref A. M. Smith and S. Nie, Analyst, 2004, 129, 672–677.12 

 

In the case of Cadmium based quantum dots the bandgap tunability can be 

modified during the reaction time12. Figure 1.3 shows a picture of different 

aliquots that we took during the synthesis of CdSe QDs. We can observe the 

emission color shift from green to red.  

 

 

Figure 1. 3. Pictures of different aliquots of the same synthesis of CdSe QDs. 
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Since the surface-to-volume ratio of QDs is high, their surface has to be 

protected in order to obtain high photoluminescence intensity. 13. The growth of 

a second material on top of a inorganic core has a powerful advantage in order 

to improve their photoluminescence quantum efficiency and protecting against 

the oxidation and trap formations 14.  

Two heterostructures can be divided depending on the core/shell. Figure 1.4 

show the diagram of both heterostructures. In type-I, the conduction band of 

the shell is lower in energy than the core’s one and both carriers are confined 

in the core as CdSe@ZnS, InP@ZnS. In type-II, one carrier is confined in the 

shell and the other in the core it means that the electron and hole wave 

functions are centered in different materials, and thus in different segments of 

the hetero-NC (e.g., CdSe/ZnTe, CdSe/CdTe).It means that the emission can 

be tuned modifying the size of the core and the shell. However, they present 

longer radiative lifetimes due to the slow electron-hole recombination, an as 

consequence these structures present a poor PLQY. 

 

 

Figure 1. 4. Diagram of core/Shell heterostructures 13. 

 

In this thesis, we synthetized two types of cadmium based quantum dots: CdSe 

passivated with ZnS 15. In Figure 1.5 shows an example of PL spectra of CdSe 

capping with ZnS. This improvement of the PL intensity is caused because the 
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ZnS coating suppresses deep trap emissions by passivating the vacancies and 

trap sites on the crystallite surface.  
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Figure 1. 5. PL spectra of CdSe QDs and CdSe@ZnS QDs solved in chloroform 

at room temperature, after excitation at 480 nm. 

 

1.1.1.2 Perovskites based quantum dots.  
 

Perovskites (named after the Russian mineralogist Lev Perovski who discover 

them in 1839) are any class of materials with a similar structure as calcium 

titanium oxide mineral (CaTiO3), so the general chemical formula of perovskites 

is ABX3. Where A= CH3NH3, CH5N2, Cs; B= Pb, Sn; X= Cl, Br, I. Perovskites 

are considered the most promising nanomaterial to be used in solar cells and 

other optoelectronic devices such as electric vehicle batteries, displays, 

sensors, lasers.  
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Figure 1. 6. The structure of organic-lead trihalide perovskites ABX3. 

 

Their optoelectronic properties such as high absorption coefficient, tunable 

optical band gaps, low exciton binding energy, have been explored for new 

applications for instance, solar cells and light emitting diodes. The most studied 

application is the use of this material as active layer in solar cells, although 

others applications have been reported. For instance, Nikolaou and coworkers 

immobilized perovskite on top of Graphite/SiO2 hybrid electrodes as 

electrochemical sensor to detect an antihypertensive drug 16. Regarding solar 

cells, the current record efficiency is above 20 % at 1 sun 17. 

In addition, this material can be solved in many organic solvents, which means 

that can be deposited using different techniques such as roll-to-roll or inkjet 

printing 18, this is very important under the scale up point of view 19.  

As we mentioned previously, Nanomaterials size and shape can be controlled 

by changing the reaction time, surfactant and temperature reaction. In this 

thesis, we worked with perovskites thin film and perovskites nanoparticles. 

Perovskites Quantum Dots have gained significant attention for research and 

commercial applications for their potential in many applications 20, 21, 22.  

This material presents remarkable tunable emission wavelength over the entire 

spectra of 410-700 nm, changing the anion ratio 23 (See Figure 1.7).  This 

property differ from other quantum dots whose band gap tuneability can be 

modified with the reaction time or doping with heteroatom such as nitrogen or 

phosphor 24.  
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Figure 1. 7. Schematic emission band of cesium lead halide perovskite 25. 

 

Some papers have published an anion exchange via post-synthetic reactions. 

For instance, Akkerman et al.26 reported an easy post-synthesis using different 

routes depending on the desired emission wavelength. They demonstrated that 

the anion exchange did not affect to the final crystal structure. In the last years, 

many synthesis approach changing the anion and the cation of perovskites 

materials have been published 27. The reasons were because of the poor 

ambient stability and the thermal stability of the material as well as to increase 

their efficiency in both solar cells and LEDs.  

There are some approaches to obtain perovskites nanoparticles depending on 

the desired size and shape 28.  

 

1. LARP synthesis. 

The synthesis of perovskites was carried out in air conditions at room 

temperature. The colloidal NPs were synthetized preparing a solution of 

methylamonium lead halide precursors solved in DMF. Then, part of this 

solution was dropped in toluene in the presence of a long alkyl chain such as 

oleic acid, oleyamine, etc. In the LARP method, the particles presented different 

size and shape distributions. Schmidt and coworkers synthetized colloidal 
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solutions of CH3NH3PbX3 nanoparticles with sizes below 10 nm 29. CH3NH3Br 

with a long chain alkyl was reacted with PbBr2 in the presence of oleic acid and 

octadecene. The ammonium ions act as capping ligand while alkyl chains 

control the stability of perovskites against the aggregation.  

 

1. Hot injection method. 

This method is carried out in inert conditions. In a three neck round bottom 

flask, a mixture of the lead halide with a high boiling point solvents is mixed. 

Then, a solution of cesium-oleate is injected. For this growth, a high initial 

temperature is needed and the addition of the precursor in order to control the 

nanoparticle nucleation. This method allows to obtain high quantum yield 

material (up 80 %) and narrow band-width emission (10-40 nm) although it is 

needed to work in inert conditions. Furthermore, the size of quantum dot can 

be modified but changing the anion ration and the temperature.   

 

2. Other approaches. 

There are other examples of perovskites nanoparticles synthesis in air 

conditions. For instance, Akkerman et al.30 reported the synthesis of 

perovskites nanoparticles tuning their emission wavelength changing the ratio 

of isopropanol (IPA) and hexane. Two solutions are prepared at room 

temperature: 1) A solution of cesium carbonate is solved in propionic acid at 

room temperature, 2) lead bromide is solved in a mixture of butylamine, 

isopropanol and acid propionic (PrAc). Then, both solutions are dropped to a 

solution of hexane/IPA. The quantum yield of some of the solutions is up to 

70%. 
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Figure 1. 8. Perovskite solution with different ratio of hexane/IPrOH under UV-vis 

lamp excitation. 

 

Other example was reported by Schmidt and coworkers 29. They synthetized 

6 nm of methylamnonium or octylammonium lead bromide nanoparticles at 

room temperature. The nanoparticles were synthesized using a simple 

preparation method in which a mixture of CH3NH3Br with long chain alkyl 

ammonium bromide was reacted with PbBr2 in the presence of oleic acid and -

1-octadecene. These nanoparticles were solved in aprotic, moderate polarity, 

organic solvent with a stability of three months. The narrow band-width was 

20  nm and the quantum yield 17%.  

 

1.1.1.3 Carbon quantum dots. 
 

Since their discovery in early 2000s, carbon-based quantum dots have been 

the focus of intensive research because of their excellent luminescent 

properties, good solubility and biocompatibility 31.This research effort increased 

exponentially after the Nobel Prize awarded to Novoselov and Geim for 

discovering graphene and describing its properties 32. By definition, carbon 

quantum dots (CQDs) are quasi-spherical nanoparticles less than 10 nm in 

diameter, formed by crystalline sp2 graphite cores, or amorphous aggregations, 

which have a quantum confinement effect. 
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Many papers describing synthetic procedures to prepare carbon quantum dots 

can be classified in two main approaches: bottom-up and top-down. 

Specifically, the bottom up route builds nanostructures from small organic 

molecular precursors by pyrolysis, combustion or hydrothermal methods while 

the top-down approach is based in cutting small sheets via physical, chemical 

or electrochemical techniques until reaching the required size. In both cases, 

post treatment is done to purify or modify the surface functionalization to 

improve the performance of the CQDs. 

For example, the quantum yield increases after surface passivation of CQDs or 

functionalization due to the disappearance of the emissive traps on the surface. 

On the other hand, doping with heteroatoms such as nitrogen, phosphor or 

metals such as Au or Mg improve the electrical conductivity and solubility of 

CQDs and GDs, as well 33.  

 

 

Figure 1. 9 Schematic figure of top-down, bottom-up approach to synthetize 

CQDs34.  

 

 

Bottom-up approach. 

1. Hydrothermal/solvothermal synthesis 

The hydrothermal synthesis is a wide-spread procedure that consists in one-

step synthetic procedure where an organic precursor is heated in a Teflon line 
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to achieve high temperature and pressure. Using different organic precursors 

and modifying the temperature, the optoelectronic properties of the dots are 

tuned. It is, thus, a low cost, non-toxic method. In addition, hydrothermal 

methods lead to dots of 10 nm of diameter that are bigger than dots produced 

by other techniques such as electrochemical preparations (3-5 nm). For 

instance, Zhang et al.35 prepared the CQDs from citric acid and ethylendiamine 

in aqueous solution heated for 10 h at 250 °C obtaining uniform 1–2 nm size 

particles , whereas Liu et al.36 synthesized the CQDs combining polystyrene-

co-maleic and ethylendiamine dissolved in DMF at 200°C for 5 h. Both papers 

described the use of CQDs as electron transport layer improving the charge 

carriers in organic solar cells.   

Some papers have described different application to use these materials. 

Pioneering work by Mirtchev and coworkers introduced the use of carbon 

quantum dots as sensitizers in dye-sensitized solar cells (DSSC) prepared by 

dehydrating G-butyrolactone 37. 

 

2. Microwave irradiation synthesis 

As well as the speed of the synthesis, another important advantage that 

microwave synthetic methods have over hydrothermal synthesis is that they 

can be used at lower temperatures. Dao et al. 38 obtained high quality CDs by 

this synthetic approach. They mixed citric acid and urea in distilled water and 

the solution was then heated in a microwave oven at 700 W for 4 min. The 

supernatant was neutralized with sodium bicarbonate and cleaned with distilled 

water. The resulting dots were doped with Au by chemical reduction of HAuCl4 

with formic acid to prepare three dimensional raspberry-like particles with a 

diameter of 200 nm formed by gold branches that originated high surface areas. 

In addition, Tsai and coworkers synthesized water soluble CQDs by microwave 

irradiation using glucose as carbon source and water as solvent heating at 

700  W for 11 min. The CQDs measured 3.4 nm measured by TEM 39. 
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Top-down approach 

1. Electrochemical methods 

Electrochemical methods allows the fine tunning of carbon nanostructures by 

controlling the voltage/current applied. For instance, appliying a controlled bias 

to a bulk of carbon precursors leads to electrochemical corrosion reactions over 

the carbon reactants and subsequently to carbon nanostructure 40. It is 

important to notice that this particular technique does not require of high 

temperatures, is easy to scale-up and can proceed under aqueous or non-

aqueous solution, being one of the fastest routes to prepare Graphene 

sheets  41.  

2. Acidic oxidation or chemical ablation  

In essence, this two-step procedure consists in the exfoliation of graphite 

powder using concentrated mineral acids and oxidizing agents under refluxing 

conditions. This approach, also known as Hummers method, is one of the most 

popular procedures described to obtain graphite oxide. The first step is often 

followed by further chemical reduction to prepare the quantum dots.  

1.2 Applications.  
 

As we explained previously, Quantum Dots have a great potential due to their 

optoelectronic properties to use in many research field 42. The thesis aimed to 

synthetize different Quantum Dots for using them in applications in lighting, 

photovoltaics and biological sensor. These applications are discussed in more 

detail below.  

 

1.2.1 Biosensor applications.  
 

In 1962, Clark and Lyons published the first biosensors 43. They presented an 

electrode that monitored the glucose in blood.  From that moment, the variety 

of applications using this kind of sensors has increased. Under simplistic point 

of view, a biosensor can be defined as a device used for the detection of an 
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analyte, that combines a biological structure such as peptide , enzyme, RNA, 

with a physicochemical detector 44, 45, 46,47. The first enzyme sensor was 

reported by Updike and Hicks in 1967 48. Inside the clinical research, the use of 

biomarkers to detect and diagnose disease is one of the most studied fields, 

because of their high specificity and selectivity. The working principle of a 

biosensor depends on the type of transducer used, which is selected according 

to the analysis required. In addition, biosensors have received attention for the 

rapid detection, low cost and portability. 

In this thesis two different sensors have been tested using the optoelectronic 

properties of Quantum Dots. Figure 1.10 shows a schema of both sensors that 

we used during this thesis.  

 

 

 

 

 

 

 

 

 

Figure 1. 10. Schema of two sensors fabricated during the thesis. 

 

In 1998, Bruchez et al. 49 published the synthesis of CdSe covered with ZnS or 

CdS encapsulated in silica shell to use label fibroblast cells. From that 

publication, plenty of papers have been published using quantum dots as 

bioimaging, labeling in a cells. The possibility of an easy post-synthesis 

modification of the surface has allowed to immobilize organic molecules on the 

surface of Quantum dots. Different techniques have been studied to immobilize 

for example, enzymes, peptides or aptamers onto the support 50.  
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There are many ways to immobilize our biological receptor on top of the 

electrode such as entrapment within self-assembled monolayers, using a 

permeable membrane, polymeric matric or covalent bonding. We used the 

covalent bonding of receptors onto Nanospheres surface or in the surface of 

carbon quantum dots, using glutaraldehyde. 

 

1.2.1.1. Optical sensor. 
 

Optical biosensors use the interaction between light and matter to report the 

presence of the analyte. Amongst optical biosensors, the most common one 

use fluorescence as the detection technique, which involves the absorption of 

one photon and the emission of a second photon of lower energy. The 

fluorescence signal is isolated and collected using a detector. In this thesis, we 

took advantage of the outstanding emission properties of quantum dots.  

Regarding the electro-optical properties of QDs used as sensing system, there 

are different energy transfers processes: fluorescence resonance energy 

transfer (FRET) bioluminescence and chemiluminescence resonance energy 

transfer (BRET and CRET) 51, charge transfer (CT) and 

electrochemiluminescence (ECL).  

In this work, we have designed optical sensors that use FRET for detection of 

biological analyte. FRET is a physical phenomenon that shifts energy from an 

electronically excited molecule (donor) to a neighboring molecule (acceptor). 

To allow this process to happen, two requisites are necessary: 1) the donor 

emission band has to partially overlap to the acceptor absorption band, and 2) 

the acceptor and the donor must be close to each other 52. 

Many literature examples reported the use of both fluorescence optical sensors, 

taking profit of the emission properties of QDs. The most studied sensor 

application was glucose detection 53  , but other examples can be found; Lowe 

and coworkers reported a sensor to detect at the same time two enzymes, 

proteases and kinases. They attached a specific enzyme onto gold 

nanoparticles. 54. Algar et. al. presented another sensor based on FRET 
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process between quantum dot an enzyme.55 They anchored directly two 

enzymes onto the surface of QDs. 

 

1.2.1.2. Electrochemical sensor. 

 

Electrochemical sensors are the most common commercially available sensor 

devices, due to their low cost, high sensitivity and specificity. An 

electrochemical sensor can be defined as a device which can measure the 

concentration of an analyte that is present in the environment because of the 

current change of the cell.   

The electrochemical sensor is formed by three electrodes: the working 

electrode, the auxiliary and reference electrode. When the analyte gets in 

contact with the sensor, an oxidation or reduction reaction occurs. In this 

reaction, a charge transfer between the analyte and the electrode happens and, 

as a consequence, an electric current is generated in the system. An 

electrochemical sensor provides a rapid and specific response for a specific 

analyte. Electrochemical sensors are the most versatile and highly developed 

chemical sensors, and can be divided in several types depending on the 

electrical response they measure: potentiometric (voltage), amperometric 

(current) or conductometric (conductivity).  

In our case, we fabricated an electrochemical sensor based on amperometric 

measurements, where adsorbed molecules on the surface cause a change in 

current intensity.  Different materials can be used in this type of sensors such 

as conducting polymers, organic semiconductors and metal oxide 

semiconductors.  

We used the surface of CQDs to anchor a specific peptide to recognize a 

specific enzyme. The modification of the quantum dots surface opened a new 

technology based nanomaterials. The easily surface tunable of quantum dots 

allow to achieve high selectivity and sensitivity.  
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1.2.2. Light emitting diodes (LEDs). 
 

Incandescent light bulb was invented in XIX century and became the most 

popular light source. The emission of light is caused by heating a filament, but 

this emission is not efficient since 95% of energy supplied to the lamp is lost as 

heating. Thomas Edison is considered the inventor of the light bulb, which on 

October of 1878 registered his first patent for “Improvement in Electric Lights”. 

Although, there were a number of people who invented some prototypes before 

him. One of those was a physicist Joseph Wilson Swan who received the first 

patent for a complete incandescent light bulb with a carbon filament in 1879. 

Furthermore, Swan’s house was the first to light up with an incandescent bulb.  

The average rated life for this kind of bulb are between 750-2000 hours 56. 

In 1896 a new technology of fluorescent light sources appeared. An electric 

current in the gas excited the mercury vape, which produces short-wave 

ultraviolet light that then excites a phosphor coating on the inside of the lamp. 

There are three types of fluorescent lamps: cold cathode, hot cathode and 

electroluminescent. They all use phosphors excited by electrons to create light. 

The efficiency was improved considerately due to its narrowband emission 

concentrated in the visible part of the spectra. Another advantage is their longer 

startup time, around 10.000-20.000 hours. Some weaknesses of these light 

sources are the use of mercury and other environmentally unfriendly materials. 

In addition, the color is limited by the narrowband emission.  

LEDs work on the electroluminescent principle. They present advantages such 

as low energy consumption, small size, longer lifetime and faster switching than 

incandescence lamps. 

In 1961, Gary Pittman and Bob Biard found that gallium-arsenide diode emits 

infrared light accidentally while they were working on laser diodes. It was not 

until 1962, when Nick Holonyak invented the first LED that could produce visible 

red light using the semiconductor gallium arsenide. In LEDs, the current is used 

to inject electrons and holes from the cathode and anode to the active 

semiconductor material. Due to radiative recombination, light is emitted in a 

narrow band, allowing higher efficiencies compared with the conventional 
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bulbs. In 2014 Akasaki, Amano & Nakamura received the Nobel Prize in 

Physics for the invention of efficient blue light emitting diodes1.  

Organic light emitting diodes (OLEDs) are promising candidates for general 

illumination since they offer the possibility to realize large area light sources, 

which can even be transparent and flexible. The advantages of using LEDs 

instead of incandescent light source are the lower energy consumption, longer 

lifetime, improved physical robustness, smaller size, and faster switching. An 

OLED is a solid-state device based on an organic compounds that emits light 

from an active layer which is sandwiched between the cathode and the anode, 

all deposited on top of a substrate. In order to improve the efficiency, OLEDs 

can be fabricated with two or more materials as active layer. OLED technology 

has been incorporated in many applications such as, display for mobile phones, 

TV, etc. 

 

 

Figure 1. 11. Example of OLEDs fabricated in ICIQ. 

 

In order to integrate metal oxides into devices that give robustness against the 

degradation of the devices, a new type of hybrid organic light emitting diodes 

have developed in the last decades. Hybrid organic/inorganic light-emitting 

diodes combine thin, metal oxide layers together with light-emitting organic 

semiconductors to create devices that are more resistant to ambient conditions 

than standard devices 57. The electron injection takes place from ITO through 

the metal oxide conduction band to the LUMO of the organic material.  

UNIVERSITAT ROVIRA I VIRGILI 
OPTOELECTRONIC PROPERTIES OF QUANTUM DOTS FOR BIOMEDICINE AND ENERGY-TO-LIGHT CONVERSION 
Sofia Paulo Mirasol 
 



Introduction 

 

23 
 

Different materials can be used as emissive layer in both arquitectures. The 

most used were small molecules and polymers 58,59. However, since the 

discovery of quantum dots, the use of this materials as active layers in LEDs 

have increased. As we mentioned previously their optoelectronic properties as 

narrow emission, high color purity, high brightness with low turn/on voltage. 

QLEDs have become one of the most hotspots in display field for their large-

are production, solution progress fabrication and high color saturation. 

 

 

Figure 1. 12. Example of hybrid organic LEDs fabricated in ICIQ. 

 

1.2.2.1. Device measurements. 
 

Current density-voltage (J-V) measurements are used to evaluate the 

performance of the fabricated diodes. From this measurements some important 

parameters can be extracted, such as turn-on voltage, maximum luminance 

and luminous current efficiency. Figure 1.13 shows an example of the IV curve 

of LEDs fabricated in our group using F8BT as emissive layer and ZnO NPs as 

electron transport layer.  

From these curves, some parameters related to LEDs performance can be 

obtained, as described below.  
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Turn-on voltage (Von) is defined as the voltage at which the Luminance 

achieved at 0.1 Cd/m2.  

Maximum Luminance (Lmax). It is defined as the amount of light that passes 

through, is emitted or reflected from a particular area, and falls within a given 

solid angle. The SI unit for luminance is candela per square meter (Cd/m2). 

Luminous current efficiency (ƞL) is used to quantify the emission properties of 

LEDs. The luminous efficiency is defined as the ratio between the luminous 

intensity and the current intensity. The SI unit is candela per Ampere (Cd/A). 

𝜂𝐿 =
Α 𝑥 𝐿

𝐼 
   (

𝐶𝑑

𝐴
) 

Where A is the area (m2), L the luminance of the diode (Cd/m2) and I is the 

current (I). 

The electroluminescence is a good technique in order to understand the 

characteristics of the emitted photons on the radiative centers inside the 

devices. The electrical injection (holes/electrons) move from the anode or 

cathode until the active layers where these carriers recombine emitting a 

photon.  
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Figure 1. 13. Current density (orange line) and luminance (yellow line) versus 

applied voltage of the HyLED using F8BT as emissive layer and ZnO NPs as 
electron transport layer.   
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1.2.2.2 Emissive color measurement (CIE). 
 

There are different ways to characterize LEDs, and from an industrial point of 

view, there are some standards that we have obey, such as color consistency, 

and color and lumen maintenance. Traditional lights are classified by brightness 

and warm or cold white color. LEDs are measured by their luminous flux and 

their chromaticity. For that, there are two different ways to measure the optical 

properties: correlated color temperature (CCT), color rendering index (CRI) or 

(CIE).  

CCT is to classify the color between warm and cold color meanwhile the CRI 

represents the quality of the light that a source emits. The CRI compares light 

sources measured at the same temperature, against a reference source. The 

last one, CIE, is the standard color rendering which give us information about 

the optical properties of LEDs. This method to characterize the LEDs color was 

described by David MacAdam in the mid-20th century. The emissive color was 

measured using Ocean Optics spectrometers, where an integrating sphere 

captured all the flux that the LED emitted. Then, the saturated colors can be 

localized in the perimeter of the paraboloid and the white color in the center 

(Figure 1. 14). 
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Figure 1. 14.Chromaticity diagram. 

 

1.2.3 Perovskites solar cells. 
 

In 1839, Alexader Edmond Becquerel observed the photovoltaic effect via the 

absorption of the light by a conductive material creating electrical voltage. From 

that date, the study and the development of solar cell technology have been 

studied by several scientists such as Charles Fritts which created the first solar 

cell by coating selenium with a layer of gold at 1883 or Heinrich Hertz who 

observed the photoelectric effect for the first time at 1887 60. 

In 1954, Bell Laboratories discovered and started to sell silicon PV technologies 

with a 6% of efficient based on p-n junction. To date, the efficiency of silicon PV 

is 42.3 % for certain multijunction solar cells. Certain disadvantages, including 

toxicity and high costs because of the high needed purity of silicon wafers, have 

led researchers to seek for a low-cost and environmentally friendly solar cell 

technology. Several semiconductors materials have been tested in order to 

achieve better efficiency and low-cost procedures compared with silicon PV. 

The most remarkable ones are dye sensitized solar cells (DSSC), inorganic 

solar cells, organic solar cells (OPV), and perovskite solar cells 11.  
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DSSCs are a regenerative photoelectrochemical cells based on the 

sensitization of a semiconductor such as titanium dioxide with a dye which 

absorbs a wide range of the spectrum, invented in 1991 by Professor Michael 

Graetzel and Dr. Brian O’Regan. The light-sensitive dye is responsible for 

converting photons into electrons61.  

Inorganic solar cells are formed by a p-n junction of inorganic materials 62. 

Different materials such as, doped monocrystalline, polycrystalline or 

amorphous silicon have been tested in solar cells achieving a efficiency of 

25 %, 20 % and 13 %, respectively. Although, this technology has not been 

able to produce flexible substrates, which limited their used to rigid flat surfaces 

and large-scale production.  

The organic photovoltaics (OPV) combined the use of two organic materials as 

either hole transport layer or electron transport layer sandwiched between two 

metals. The first OPV presented was at 1986 by Tang 63 with a power 

conversion of 1 %. This technology present advantages compared with 

inorganic solar cells or silicon PV such as ease of fabrication, flexibility and low 

cost fabrication.  

Perovskites solar cells have attracted interest since 2009, Miyasaka et al. 

applied methylamonium lead iodide (MAPbI3) and methylamonium lead 

bromide (MAPbBr3) as sensitizers in dye-sensitized solar cells 64. Since this 

new photovoltaic technology has emerged in the field, halide perovskites have 

demonstrated exceptional progress in PV cell performance, from 3.8% in 2009 

to a certified 22% in 2016, a value that is highly competitive in comparison with 

silicon solar cells. Due to their broad spectral absorption and conducting 

properties, perovskite- based solar cells have recently attracted the research 

community. However, MAPbI3 presented a poor stability and they suffer from 

degradation caused by moisture or oxygen. In order to give more robustness to 

the materials against the moisture and give stability to the final, some 

researchers have used  perovskites with mixed cations or halides 65. For 

instance, Saliba et. al. has demonstrated that the mixture of cesium, 

methylammonium and formanidium provides stability and high power 

conversion efficiency (PCE) 66.  
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Depending on the final structure, perovskite solar cells can be divided in 

conventional (n-i-p) or inverted (p-i-n) 67. In this thesis, we worked with 

conventional perovskite solar cells where, TiO2 worked as electron transport 

layer, and Spiro-OMeTAD as hole transport layer.  

 

1.2.3.1 Device measurements. 
 

J-V curveis the most used measurement performed to a solar cell. The cell is 

illuminated with a calibrated lamp, with the appropriate set of filters for the 

correct simulation of the 1.5 AM G solar spectrum. While the cell is illuminated 

the current versus voltage is recorded. Figure 1.15 shows an example of one 

of the perovskites solar cells fabricated in the Palomares Group.  
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Figure 1. 15. Example of JV curve of Perovskites/OMeTAD solar cell. 

 

From these curves, some parameters related to solar cells parameters can be 

taken. The description of each one is described below.  

Power conversion Efficiency (PCE) is calculated by the following equation: 

𝑃𝐶𝐸 = 𝐹𝐹 
𝐽𝑆𝐶𝑉𝑂𝐶

𝑃𝑖𝑛
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Where FF is the fill factor, Jsc is the short circuit current, Voc is the open circuit 

voltage.  

Open Circuit Voltage (Voc). The open circuit voltage occurs when there is no 

current passing through the cell. In an ideal solar cell, Voc is independent of 

the illumination intensity. 

Fill Factor (FF).  Fill factor is the measure of the quality of the solar cells. It 

gives information about the shape of the J-V curve.  

𝐹𝐹 =
𝐽𝑚 ∙ 𝑉𝑚

𝐽𝐶𝑆 ∙ 𝑉𝑂𝐶
 

 

Short Circuit Current Density (Jsc). The short Circuit Density corresponds to 

the short circuit condition when the voltage is 0. Dividing this current by the area 

of the solar cell under test, we can obtain the current density, Jsc (mA/cm2). 
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Since the first scientific publication of gold nanoparticles (Au NP) solution by 

Michael Faraday in 1857, the usage of this new materials has exponentially 

increased and studied as Nanomaterials represent an active area of research 

due to their physical, chemical and biological applications. In the last few 

decades, the investigation of semiconductor fluorescent materials has been 

a hot topic because of their advantages and their multidisciplinary use.  

The principal objective of this thesis is to study the optoelectronic properties 

of colloidal quantum dots in order to apply them in different fields such as 

solar cells, bioimaging and light emitting diodes. During the development of 

this thesis, three types of colloidal quantum: Cadmium, perovskites and 

carbon-based quantum dots, have been  synthesized using different methods 

reported in the bibliography with some modifications. After that, all the 

materials have been tested in light emitting devices, solar cells or as 

biosensors. Consequently, this thesis is organized in nine chapters divided 

into three main blocks based on the different application given to the 

Quantum dots. The research has been developed at two institutions: Institute 

of Chemical Research of Catalonia (ICIQ) and Eurecat, the technological 

center of Catalonia, between March 2015 and March 2019.  

In the next section, a summary and main objective of each chapter is provided  

 

In Chapter 1  describe an overview of the fundamentals properties of 

Quantum dots and of each of the applications given in this thesis. The main 

goal is to describe and discuss the fundamentals and relevance of each 

application that we worked with. The description of the synthesis of Carbon 

Quantum dots and their applications in solar cells was published in 2016: S. 

Paulo-Mirasol, E. Palomares, E. Martinez-Ferrero, Graphene and Carbon 

Quantum Dot-Based Materials in Photovoltaic Devices: From Synthesis to 

Applications. Nanomaterials. 6 (2016), p. 157. 

 

In Chapter 3 all the techniques used during the thesis to characterize the 

materials and LEDs are described. In addition, the synthesis and 
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characterization of ZnO NPs is also included, since we used it during the 

fabrication of the LEDs described in several chapters. 

  

In Chapter 4, two different sensors are described. First, we started 

developing a biosensor based on the encapsulation of two cadmium-based 

quantum dots in a silica nanosphere to detect and quantify the enzyme 

elastase  in human stool. Due to the low reproducibility of the method, we 

decided to search for an alternative. Therefore, we fabricated an 

electrochemical sensor based on carbon quantum dots (CQDs) to detect the 

same enzyme. The fabrication of these electrochemical sensors started 

during my short stay at the University of Patras under the supervision of Dr. 

Emmanuel Topoglidis.  We were not able to finish the project although the 

preliminary results are very interesting. We plan to finish this project in the 

near future. This chapter was also done with the collaboration of Santi Genè.  

 

In Chapter 5 I show the synthesis and characterization of three different 

cadmium based Quantum dots that are appliedin the emissive layer in LEDs. 

The synthesis of Cadmium based quantum dots was done in inert conditions 

and the fabrication was performed under air conditions. This chapter was 

mainly focused on optimizing the inverted structure of LEDs and it was the 

starting point of the use of differents Quantum dots as an active layer in LEDs.  

 

In Chapter 6, a similar study was performed but in this case using 

Perovskites materials as the emissive layer in LEDs. This project was started 

during my international internship  in National Institure of Materials in Science 

(NIMS) in Japan under the supervision of Dr. Masatoshi Yanagida during 

three months.  

 

From Chapter 7 to Chapter 9, we describe the synthesis and use of Carbon 

based quantum dots as either active material in the hole transport layer or 

emissive layer in LEDs and perovskite solar cells.   
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In Chapter 7 the synthesis of CQDs was carried out in order to use them as 

an unique emissive layer in LEDs to obtain white light emission. The different 

fabrication steps were carried out in air conditions although the synthesis was 

done in inert conditions. The project was recently submitted to Nanoscale 

Journal:  S.Paulo-Mirasol, E. Martinez-Ferrero, E. Palomares, Direct White 

Light Emission from Carbon Nanodots in solution processed Light Emitting 

diodes, Nanoscale.   

 

In the case of Chapter 8, carbon quantum dots capped with different  ligands 

were synthesized to use them as the hole transport layer (HTL) in LEDs using 

F8BT as emissive layer and ZnO NPs as the electron transport layer. The 

aim of this project was to study how the capping ligand, as well as the hole 

mobility and energy alignment, influence the optoelectronic properties of the 

devices. CQDs were compared with the most widely used HTM in LEDs, 

MoO3 and PEDOT: PSS.  

 

To end up this section, Chapter 9 described the use of CQDs as HTL in 

perovskites solar cells. This project was published in 2016: S. Paulo-Mirasol, 

G. Stoica, W. Cambarau, E. Martinez-Ferrero, E. Palomares, Carbon 

quantum dots as new hole transport material for perovskite solar cells. Synth. 

Met. 222, 17–22 (2016).  

 

Finally, Chapter 10 presents a brief summary of all the results obtained 

during the development of this thesis, as well as the main conclusions and 

perspectives.  
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Methods and experimental 
systems. 

In this chapter, all the techniques used in this thesis to characterize the materials as 

well as the device fabrication are explained. The facilities are accessible in the Institute 

of Chemical Research of Catalonia (ICIQ), Eurecat-Technological Center of Catalonia 

and Servei de Recursos Científics i Tècnics at University Rovira and Virgili. 
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3.1 Introduction.  
 

In this chapter, general information about experimental procedures that were 

used during the synthesis and device preparation are explained. The specific 

syntheses of the different materials that we used during the thesis are described 

more deeply in each chapter as well as the fabrication conditions of the devices. 

The synthesis and characterization of zinc oxide nanoparticles (NPs) are 

described here because is a commom material in all the LEDs devices. However, 

all the information related to solar cell preparation is adequately explained in 

Chapter 9. 

3.2 Materials characterization. 
 

3.2.1 Absorbance and emission measurements. 
 

Both absorbance and emission measurements are widely used to characterize 

optoelectronic materials because they are non-destructive techniques that 

provide information about the optical and electronic structure.  

UV-vis absorption spectra were measured on a Shimadzu UV-1700PC 

spectrophotometer equipped with a photomultiplier detector, double beam optics, 

and D2 and W light source for both films and solutions using 1 cm cuvette at room 

temperature. The spectra profile were obtained in transmission mode using a 

cuvette with the same solvent than the sample as reference to give the 

absorbance (Abs). 

Αbs = −𝑙𝑜𝑔 (
%𝑇

100
)   Equation 3.1 

Where %T is Transmitance recorded as a percentatge.  

Photoluminescence measurements of both films and solutions were carried out 

in a Fluorolog Horiba Jobin Ivon spectrophotometer at room temperature in air 

conditions.  
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From these measurements, we have estimated the photoluminescence quantum 

efficiency that is defined as the total photons emitted per total photons absorbed 

(equation 3.2).  

 

𝜂 =
Σ(𝑒𝑚𝑖𝑡𝑡𝑒𝑑)

Σ(𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑)
     Equation 3.2 

 

Figure 3.1 shows an example of the absorbance and emission spectra of CdSe 

QDs synthetized in ICIQ. CdSe QDs presents a maximum emission peak at 

570nm with a FWHM of 20nm. The absorbance shows a band at 550nm and 

smaller shoulders at 450nm. 
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Figure 3.1. Experimental UV-vis absorption and photoluminescence emission 

spectra of CdSe QDs in chloroform after excitation at 440 nm at room temperature. 
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3.2.2 Quantum yield calculation.  
 

The definition of quantum yield by the IUPAC is “the number of defined events 

occurring per photon absorbed by the system”. In this thesis we have used the 

relative quantum yield that is calculated using a standard fluorophore as a 

reference.  Table 3.1 shows the fluorophores used as references to calculate the 

quantum yield of our materials in this thesis 1.  

 

Table 3.1. Characteristics of the Fluorophores solved in ethanol at room 

temperature. 

dye Qyref(urel) excitation range (nm) emission range (nm) 

C-102 0.764 (±0.039) 340-420 430-530 

C-153 0.544 (±0.028) 360-470 485-635 

Rh-101 0.913 (±0.046) 515-565 585-665 

 

The quantum yield was obtained by using the following equation: 

𝑄𝑌 = 𝑄𝑌𝑟𝑒𝑓 (
𝐼𝑒𝑚 𝑠𝑎𝑚𝑝𝑙𝑒

𝐼𝑒𝑚 𝑟𝑒𝑓
) · (

𝐴𝑏𝑠𝑟𝑒𝑓

𝐴𝑏𝑠𝑠𝑎𝑚𝑝𝑙𝑒
) · (

𝑛𝑠𝑎𝑚𝑝𝑙𝑒

𝑛𝑟𝑒𝑓
)

2

Equation 3.3 

 

Where QYref is the quantum yield of the fluorophore used as reference, QYref is 

the quantum yield of the dye, Iem is the area of the emission band, Abs is the 

absorbance excitation wavelength and n is the refractive index. 

 

3.2.3 Time Correlated Single Photon-Counting. 
 

Time correlated single photon-counting (TCSPC) is a technique to measure the 

fluorescence lifetime. The measurement is based on the detection of single 

photons and their arrival times in respect to a reference signal, which is a short-

laser pulse. The signal is fitted by exponential equations that permit to estimate 

the decay lifetime of the different processes. 
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𝑃𝐿(𝑡) = 𝐴1𝑒−(
𝑡

𝜏1
) + 𝐴2𝑒−(

𝑡

𝜏2
)
 Equation 4 

The fluorescence lifetime was recorded by using an Edinburgh Instruments 

LifeSpec II spectrometer based on the time-correlated single photon counting 

technique, equipped with PMT detectors, double subtractive monochromator, 

and picosecond pulsed diode lasers sources.  

Figure 3.2 shows a TCSPC example of CsPbBr3 QDs synthesized at ICIQ. The 

lifetime decay fits to a biexponential equation due to the presence of two different 

radiative processes.  
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Figure 3. 2 . Experimental fluorescence-decay curve of CsPbBr3 QDs solved in 

hexane measured after excitation at 405 nm at room temperature. 

 

3.2.4 Infrared spectroscopy. 
 

Infrared spectroscopy (FT-IR) is a technique to characterize the structure of the 

material and their functional groups through the analysis of the peaks originated 

by the absorption of certain frequencies that match the vibrational frequency of 
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the bonds. The working ranges are in the middle region range between 400 cm-1 

and 4000 cm-1. The sample were measured using single reflection Attenuated 

total reflection (ATR) accessory. This allows us to record the solid or liquid sample 

directly without any pre-treatment or without dispersing in any matrix.  ATR uses 

the attenuated total reflection by measuring the changes that occur in a totally 

internally reflected infrared beam, when it comes into contact the sample.  Figure 

3.3 shows an example of ATR-FTIR measurements of carbon quantum dots 

doped with Yb and Er.  
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Figure 3.3. Experimental FT-IR of CQDs doped with Yb and Er. 

 

3.2.5 Transmission Electronic Microscopy. 
 

Transmission Electronic Microscopy (TEM) was used to estimate the size and 

the shape of our materials. TEM is a technique in which the beam of electrons 

are transmitted through a sample to form an image. The image is created from 

the interaccions between the electrons and the sample. TEM images were 

captured using a JEOL 1011 microscope. Figure 3.4 shows some of materials 

prepared during the thesis.  
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Figure 3.4. TEM image of a) Carbon Quantum dots doped with Yb and Er. b) 

Silica Nanospheres filled with two types of cadmium based quantum dots, c) 

MAPbBr3 QDs. 
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3.2.6 Electrochemical characterization.  
 

There are different electrochemical approaches in order to characterize and 

understand the basic the electrochemical of a substance. During the thesis, we 

used cyclic voltammetry (CV) and the square-wave voltammetry (SWV) to 

calculate the energy of the valence band (VB) and conduction band (CB) of 

carbon quantum dots in solution and in film. If the material presents reversible 

oxidation or reduction bands the CB and VB can be calculated using CV. In the 

case that the oxidation/reduction process are irreversible SWV was used instead.  

 

3.2.6.1 Cyclic Voltammetry. 
 

The Cyclic Voltammetry (CV) was measured by a PARSTAT 2273 (Princeton 

Applied Research) in 0.1 M of tetrabutylammonium hexafluorophosphate as a 

supporting electrolite solved in the same organic solvent than our sample. We 

used a commercial Ag/AgCl non-aqueous Ag/Ag+ reference electrode, a platinum 

wire as a counter electrode and a platinum disc as working electrode. All the 

solutions were desgassed bubling nitrogen and the CV spectra were recorded in 

the presence and absence of Ferrocene/Ferrocene+ as internal standard. 
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Figure 3.5. Cyclic voltammetry of CQDs solved in dichloromethane recorded in 

0.1M tetrabutylammonium hexafluorophosphate at a scan rate of 10 mV s-1 at 
room temperature.  

 

CV is recorded in order to estimate the energy level of the highest occupied 

molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) 

levels in organic compounds and the valence and conduction band (VB/CB) in 

inorganic semiconductors. One of the important process inside optoelectronic 

devices is the charge injection. The level alignment between the electrodes and 

the HOMO and LUMO or VB and CB levels of active layers determine how the 

electron and hole can easily move through the devices. The following Equations 

describe how we calculate the energetic levels in solutions.  

Ε𝐻𝑂𝑀𝑂 = −(𝐸𝑂𝑋 + 4.8)   Equation 3.5 

Ε𝐿𝑈𝑀𝑂 = Ε𝐻𝑂𝑀𝑂 + Ε𝜊−𝜊   Equation 3.6 

Ε𝜊−𝜊 = ℎ ·
𝑐

𝜆
                            Equation 3.7 

Eox is the oxidation potential from the CV, Eo-o is the band gap and λ is the 

wavelength resulting of the intersection between the absorbance and the 
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emission band, h is the Planck constant 6.62607004·10-34 m2 kg / s and c is the 

speed of the light 3·108 m/s. 

 

3.2.6.2 Square wave voltammetry. 
 

Square wave voltammetry (SWV) is one of the most used pulsed voltammetry 

techniques. During the recording of a SWV both forward and reverse pulses are 

measured giving a similar information than that obtained in cyclic voltammeter. 

This technique was used in the cases where the oxidation or reduction processes 

are irreversible.  

The equations to calculate the energetic levels and the electrodes used to 

measure the SWV are the same that the ones described in the cyclic voltammetry 

section. Figure 3.6 shows an example of a SWV measure using the same 

material as CV example (Figure 3.5).  
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Figure 3.6. SWV of CQDs solved in dichloromethane. The working parameters for 

CV experiments were chosen as: initial potential 0V, final potential 1.6V and scan 

rate 10 mV s-1. 
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3.2.7 Dynamic light scattering. 
 

Dynamic light scattering technique is one of the most useful techniques to 

determine the average size of particles. The measurements were carried out in a 

Malvern Zetasizer (Nano-ZS) instrument at room temperature. It is a non-invasive 

technique and requires only small quantities of sample. In addition, this technique 

allows us to detect amount of traces.  DLS measures the diffusion behavior of 

particles or molecules in solution. The sample is exposed to a monochromatic 

wave of light, the scattering and the diffusion of the particles, which interact with 

the wave of light, is detected measuring the size. The relationship between those 

parameters determine the size of the particles.2 In Figure 3.7 shows an example 

of DLS measurement of CQDs. The average size of CQDs using oleyamine as 

capping ligand is 1 nm.  Each curve belongs to the measure of the sample. The 

Figure 3.7 shows an example of a DLS, where the sample was measured three 

time. The DLS displayed a unique size of particles of 1 nm.  

 

 

Figure 3.7. Experimental DLS signal of CQDs-OLA solved in hexane measured in 

air conditions. 
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3.3 Fabrication of films and devices. 
 

In this section, the preparation of films as well as light emitting diodes and solar 

cells devices are described. The devices fabrication have done in a Class C clean 

room (ISOE) environment and in a nitrogen atmosphere glovebox (<0.1 ppm of 

O2 and H2O). 

 

3.3.1 Synthesis of ZnO NPs. 
 

ZnO NPs were synthesized modifying the method reported by Krebs et. al.3 

Firstly, 11.89 g of zinc acetate were dissolved in 500 mL of methanol while 6 g 

potassium hydroxide were dissolved in 250 mL of methanol too. Both solutions 

were heated at 67 ºC. Then the potassium hydroxide solution was added to the 

zinc acetate solution and was heated up between 65 ºC and 67 ºC during 3 hours 

to obtain a white solid. The solution was cooled down to room temperature, 

transferred to a bottle filled with nitrogen and left during 3 hours until all the white 

solid was decanted at the bottom of the bottle. Then, the supernatant was 

discarded and the white solid was transferred to smaller bottle and more 

methanol was added to the flask and kept overnight. The solid must not be dried 

during the cleaning/washing process. Finally, the supernatant was removed and 

we added methanol, according to the desired concentration.  

To improve the stability of ZnO NPs in methanol, small amounts of 2-[2-(2-

Methoxyethoxy)ethoxy]acetic acid (MEA) were added in the zinc oxide solution 

and sonicated in a ultrasound bath until the solution became colorless. The 

amount of MEA must not be higher than 16%w/w with respect to the final 

concentration. 

The main chemical reactions occurring during the ZnO growth process are 

described below: 

Zn(CH3COO)2 ↔  Zn2+ + 2 CH3COO- 

Zn+2 + 2OH- ↔ ZnO+H2O 
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3.3.2 Physicochemical characterization of ZnO NPs. 

 
Different physicochemical techniques were used to characterize zinc oxide 

nanoparticles. Spectroscopy techniques are good to give us information related 

to the structure and atomic composition of the material. In addition, TEM analysis 

was performed in order to measure the size of the nanoparticles, the XRD to 

identify the crystal structure and the dynamic light scattering to measure the 

average particle size. 
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Figure 3.8. Experimental FTIR of ZnO NPs powder. 

 

FT-IR technique provides good information related to the structure and the 

composition of nanoparticles, due to its good approach to identify the functional 

groups. Figure 8 shows the infrared spectra of ZnO NPs, where three 

predominant peaks appear in the spectrum. There are two vibration bands at  –

OH stretching and 1490cm-1 Zn-O vibrations. 
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Figure 3.9. Experimental X-ray diffraction pattern of ZnO nanoparticles. 

 

XRD analysis is also a good technique to identify the crystal structure of the 

materials. The XRD analysis of ZnO NPs (Figure 9) powder showed three peaks 

between 30 and 40 degrees belonging to wurtzite ZnO structure. The XRD 

sample was compared with wurzite ZnO standard diffraction data based 4. 

𝜆 = 2𝑑 sin 𝜃 Equation 3.8 

Dynamic light scattering was performed to measure the average particle size. 

Figure 3.10 shows the experimental DLS of ZnO NPs with approximate size of 

10 nm. The sample was measuring three times.  
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Figure 3.10. Experimental DLS signal of ZnO NPs solved in methanol. Size 

distribution by volume. 

 

Figure 3.11 shows that the average size of ZnO determined by Transition 

electronic microscope was 7 ± 1 nm.  

    

 

Figure 3.11. TEM images of ZnO NPs with an average particle size of 7 ± 0.9 nm. 
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3.3.3 Substrate cleaning. 
 

The devices were fabricated onto 15x15 mm2 or 30x30 mm2 (10 Ώ/square) glass 

substrates coated with ~150 nm thick ITO in the center. Substrates were cleaned 

in acetone and isopropanol and sonicated during 20 min. When using 

PEDOT:PSS as hole transport layer, the substrates were exposed to an ozone 

containing atmosphere during 30 min to improve the wettability between ITO and 

PEDOT:PSS.  

 

3.3.4 Device assembly. 
 

Spin coating is the most common laboratory deposition technique for thin films 

on flat substrates. Few drops of our active materials were deposited on the center 

of substrates, then the substrates were rotated under a speed and acceleration 

conditions during a specific time. The angular speed of rotation and acceleration 

parameters determine the final thickness. After that, the substrate was heated up 

at a temperature, depending on the solvent boiling point to dry the film.  

 

 

Figure 3.12. Graphical description of the thin film deposition by using spin coating 

technique. 
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The metal electrode such as gold, silver and aluminum as well as charge 

transport layers such as molybdenum oxide and lithium fluoride were deposited 

via thermal evaporation under high vacuum (1·10-6 mbar) through a metal mask.  

 

                   

Figure 3.13. Picture of real devices used for the preparation of LEDs with two 

different active areas (the active area is 25 mm2 on the left and 9 mm2 on the 

right). 

 

3.4 Device characterization. 
 

3.4.1 Current voltage and luminance characterization. 
 

During my thesis, I worked with two different set-ups in order to characterize 

LEDs. 

In ICIQ, the current intensity versus voltage was recorded using Keithley 2400 

while the luminance versus applied voltage was measured using a Konica Minolta 

LS100 luminance meter. The camera has a photo-detector fixed at a known 

distance above the diode to measure the emission intensities.  

Figure 11 shown an example of a diode characterization using ZnO NPs as 

electron transport layer and F8BT as active layer.  
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Figure 3.14. Luminance current versus voltage (green line), current density versus  

voltage (blue) characteristic (top) and current efficiency versus voltage 
characteristic (bottom).The device structure was: ITO/ZnO/F8BT/MoO3/Au 
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In Eurecat, both the current intensity and photogenerated current versus voltage 

is recorded using a Keithley 2400 in combination with a photodiode.   

 

Due to the way that the human eye can perceive the radiometric units, we have 

to convert radiometric (watts) units in a photometric units (candela/m2). Candelas 

are correlated to watts through the comparison of the electroluminescence 

spectrum of the sample with the standard luminosity function, which represents 

the human eye’s sensitivity to the light at a given wavelength.  

 

3.4.3 Calculations of the Hole mobility. 
 

This device consist of two contacts that are only hole-injecting, meaning that the 

current–voltage curve of these devices is not determined by the recombination of 

electrons and holes. 5 If to a device with hole injecting contacts was applied a 

certain range of voltage, the current-voltage in that range would depend on 

mobility and concentration of holes. In the space charge limited domain, the 

current is dominated by charge carriers injected from the contacts and the 

current-voltage characteristics becomes quadratic (I~V2). The current density 

dependence with applied voltage can be fitted by the Space charge limited 

current (SCLC) model. 

 

3.4.3.1 Fabrication of hole-only devices. 
 

Clean ITO coated glass was treated with UV ozone during 20 min to improve its 

hydrophilicity. PEDOT:PSS (Clevios P VP Al 4083) previously filtered with a 0.45 

µm cellulose acetate filter, was spin coated on top of cleaned ITO using two 

different spin-coating steps: 1) 4500 RPM during 30 s and 2) 3500 RPM during 

30 s, followed by an annealing at 120 ºC during 20 min. Different CQDs were spin 

coated on top of PEDOT:PSS using the same conditions described in 7.3 Device 

fabrication. Finally, 120nm of gold was thermally evaporated on top of CQDs 

under a pressure of 10-6 mbar. 
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Figure 3.15. Schema of a hole-only device. 
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Figure 3.16. Photocurrent - voltage measurements for hole mobility using SCLC 

method.  

 

Hole mobilities were measured to study the charge transport and the hole mobility 

using the Space charge-limited current (SCLC) model. The curves were fitted 

using the Mott-Gurney law, (equation 9) 6. 
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𝐽𝑆𝐶𝐿 =
9

8
∈0∈𝑅 𝜇ℎ

𝑉1
2

𝐿1
3    Equation 3.9 

 

Where, ∈0 is the permittivity of free space, ∈𝑅  is the dielectric constant and L is 

the thickness of the active material. In figure 16 appears one example of the hole 

mobility of CQDs using p-phenyldiamine as capping ligand. 

 

 

  

UNIVERSITAT ROVIRA I VIRGILI 
OPTOELECTRONIC PROPERTIES OF QUANTUM DOTS FOR BIOMEDICINE AND ENERGY-TO-LIGHT CONVERSION 
Sofia Paulo Mirasol 
 



Methods and experimental systems. 

 

67 
 

3.5 References. 
 

1.  K. Rurack, M. Spieles. Fluorescence Quantum Yields of a Series of Red 

and Near-Infrared Dyes Emitting at 600−1000 nm. Anal. Chem. 2011, 83 

(4), 1232–1242. 

2.  J. Stetefeld, S.A. McKenna, T.R. Patel. Dynamic light scattering: a 

practical guide and applications in biomedical sciences. Biophys. Rev. 

2016, 8 (4), 409–427. 

3.  F.C.K. and Y.T. and R.T. and J.W. Andreasen. A simple nanostructured 

polymer/ZnO hybrid solar cell—preparation and operation in air. 

Nanotechnology 2008, 19 (42), 424013. 

4.  E.H. Kisi, M.M. Elcombe. Parameters for the wurtzite structure of ZnS and 

ZnO using powder neutron diffraction. Acta Crystallogr. Sect. C 1989, 45 

(12), 1867–1870. 

5.  T. Kirchartz. Influence of diffusion on space-charge-limited current 

measurements in organic semiconductors. Beilstein J. Nanotechnol. 

2013, 4, 180–188. 

6.  P.N. Murgatroyd. Theory of space-charge-limited current enhanced by 

Frenkel effect. J. Phys. D. Appl. Phys. 1970, 3 (2), 151. 

 

 

 

 

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
OPTOELECTRONIC PROPERTIES OF QUANTUM DOTS FOR BIOMEDICINE AND ENERGY-TO-LIGHT CONVERSION 
Sofia Paulo Mirasol 
 



Chapter 3 

 

68 
 

 

UNIVERSITAT ROVIRA I VIRGILI 
OPTOELECTRONIC PROPERTIES OF QUANTUM DOTS FOR BIOMEDICINE AND ENERGY-TO-LIGHT CONVERSION 
Sofia Paulo Mirasol 
 



 

  

4 

Nanophotonic biosensor for 
detection and quantification 
of elastase. 

In this chapter, we present an optical and an electrochemical biosensor based on 

quantum dots to detect and quantify elastase in human stool samples.This project 

was developped in two different centers: ICIQ and Univeristy of Patras. The optical 

biosensor was fabricated and characterized in ICIQ with the collaboration of Santi 

Genè. The electrochemical one was developped during my stay in the University of 

Patras under the supervision of Dr. Emmanuel Topoglidis The human samples were 

collected in Hospital Parc Taulí in Terrasa.  
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4.1 Introduction.  
 

The research of new sensors has been developed in response to the need for 

real-time analytical measurements in healthcare, environmental and 

biotechnology industry. Biosensors are directly related to new diagnosis 

methods of diseases via detection and quantification of biomolecules such as 

enzyme, aptamer, etc. A biosensor is a physical or chemical signal which can 

be related to a biological recognition process. There are different kinds of 

biosensor: optical, electrochemical, thermometric, magnetic and piezoelectric. 

 

In this chapter, we show the results of detection and quantification of the 

elastase enzyme in human stool samples. Elastase enzyme has been used as 

a biomarker to evaluate pancreas function related to pancreatic insufficiency 

(PEI). PEI is a reduction of the activity of pancreatic enzymes that is inadequate 

to maintain normal digestive processes, resulting in malabsorption of nutrients, 

diarrhea, weight loss, and other symptoms. The early diagnosis is one of the 

main goals in order to improve the quality of life of patients.  

 

To detect it, we fabricated two different biosensors: an optical and an 

electrochemical biosensors. This chapter starts with the optical biosensor 

section, for which CdTe quantum dots were employed, and continues with the 

electrochemical-based sensor, which uses carbon quantum dots. The second 

sensor was fabricated in order to solve the scale-up problems of the optical 

sensor that we found during the project development. The electrochemical 

biosensor was done with the collaboration of Dr. Emmanuel Topoglidis in the 

University of Patras (Greece). This project is still in its preliminary steps, 

nonetheless, the results obtained are very promising.   

 

Electrochemical sensors have attracted considerable attention due to their 

intrinsic advantages, such as easy use, rapid response, low-cost and 

inexpensive instrumentation. Signal amplification strategies have also been 

applied to improve the sensitivity and selectivity of electrochemical methods by 
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the use of nano-/micro- materials 1. Moreover, Carbon quantum dots have 

gained considerable interest due to their properties, such as water solubility, 

biocompatibility, tunable surface functionalities, good conductivity and good 

photostability 2. In addition, their photoluminescence properties allow their use 

as optical sensors and makes them easy to monitor by absorbance or 

photoluminescence techniques.  

On the other hand, optical biosensors are one of the most studied sensors since 

they present some advantages compared with conventional analytical 

techniques such as real-time, label-free detection, high sensitivity, specificity 

and cost-effectiveness3, 4, 5.  

 

We fabricated an optical sensor starting with the synthesis and functionalization 

of mesoporous silica nanoparticles with colloidal cadmium-based quantum 

dots. Silica nanoparticle is one the most promising material due to their 

biocompatibility, low-cost procedure, and easy surface functionalization. 6 7 8. 

Silica nanospheres present less aggregation than polymer nanoparticles. 

Additionally, the quantum dots trapped inside the nanoparticles are protected 

from the degradation and the aggregation 9. There are two approaches to 

prepare silica Nanospheres based on the reaction media,i..e the Stöber 

process 10 and the microemulsion method 11.  

 

Colloidal quantum dots (QDs) have been extensively studied due to their 

optoelectronic properties such as narrow emission, color tuneability and their 

potential for applications in electronic and biological systems 12. We worked 

with two types of cadmium-based quantum dots. This platform is based in a 

ratiometric relation between a quantum dot and a dye anchored to the 

nanoparticles surface. The ratiometric method has been proven to be a good 

choice to improve the practical applications of sensors because it reduces the 

environmental influence and provides a more accurate signal through their self-

referencing capability.  

 

In our case, we used quantum dots as a detector to determine the elastase 

concentration of human stool samples. In this purpose, two different emitting 

cadmium-based quantum dots were encapsulated in silica nanospheres. Then, 
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a short peptide marked with a 5’-TAMRA dye (5’-

Carboxytetramethylrhodamine, with a fluorescence band at 550 nm) is attached 

to the surface of the nanosphere. The mechanism of our system is quite easy, 

each quantum has a function: red quantum dots works as a control, meaning 

that their emission band must remain constant during all the procedure, 

meanwhile, the blue quantum dot emission decreases depending on the 

amount of elastase present in the sample. When blue quantum dots are 

relaxed, after being excited with a lamp, radiative and nonradiative 

recombination processes happen.  Some of this energy is transferred to the 

photosensitizer dye by FRET (Förster Resonance Energy Transfer). This 

phenomenon is noticed because the emission band of quantum dots 

decreases. To allow this process to happen, two requisites are necessary: 1) 

the donor emission band has to partially overlap to the acceptor absorption 

band, and 2) the acceptor and the donor must be closer to each other. In our 

case, the FRET approach is used to detect and quantify elastase. This 

approach was previously used for the ratiometric detection of trypsine enzyme 

involved in pancreatic diseases.   

 

The pancreatic function can be classified in three different groups: normal, >200 

μg E1/g stool; moderate exocrine pancreatic insufficiency, 100-200 μg E1/g 

stool; and severe exocrine pancreatic insufficiency, <100 μg E1/g stool 13. 

 

Finally, we present a test to evaluate the pancreatic function from the human 

stool samples with the aim of developing a point-of-care device. The platform 

tested 14 samples from patients from Hospital Parc Taulí.  
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4.2 Material and synthesis. 
 

Reagents. 

The following materials were used as received: phosphate buffer solution( PBS, 

Sigma-Aldrich), Pancreatic elastase (Sigma-Aldrich,) peptide 5`-TAMRA-Ala-

Ala-Ala-Cys (Biotrend, >95%), Acetone (Sigma-Aldrich), Trilite ™ Blue- 

Carboxyl CdSeS@ZnS Core Nanocrystals.  

 

4.2.1 Synthesis and fabrication of silica nanosphere.  
 

4.2.1.1 Synthesis of CdTe QDs. 
 

CdTe QDs were prepared via hot injection using TOPO and ODPA as capping 

ligands reported in the bibliography14. In a three-neck flask, 0.234 g of CdCl2, 

132 µL of MPA were solved in 100mL of H2O. The pH mixture was adjusted to 

11 by adding dropwise sodium hydroxide solution and heated up until 100 ºC 

in inert conditions. When the solution became colorless, a solution of 0.0252 g 

of Te with 0.140 g of NaBH4 dissolved in 1.5 mL of H2O was injected into the 

reaction mixture under a nitrogen atmosphere. The reaction was running for 10 

min to achieve the desired quantum dots size without any purification steps and 

cool at room temperature.  

 

4.2.1.2 Fabrication of Dual QDs coated silica nanosphere and 
their surface functionalization.  
 

The silica nanospheres were synthesized using a multistep procedure, which 

involved the formation of the silica sphere followed by functionalization of their 

surface adding APTMS 15. The function of silica nanospheres is to protect the 

quantum dots from the degradation and from their high toxicity as well as to 

help to put in contact both the quantum dot with the fluorophore.  
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The nanospheres were synthesized using two different procedures: reverse 

microemulsion and layer by layer method. To assemble them, we stirred 15 mL 

cyclohexane, 3.6 mL of n-hexanol, 3,6 mL of Triton X-100 and 2 ml of CdTe 

QDs during 15 min. Then, we added 120 µL of TEOS and mixed during 30 min, 

then we added 100µL of NH3 and 40µL of APTMS to the microemulsion system 

and stirred during 24 h in dark conditions at room temperature. To stop the 

reaction, 15 mL of acetone was added to the microemulsion. The sample was 

centrifuged and cleaned two times with ethanol and water to remove the excess 

of reactants. 

 

The second step of the reaction was to add blue quantum dots to the system 

using the layer-by-layer method. To do that, we added first 150 µL APTMS and 

500 µL CdSeS QDs and we mixed it during 60 min to allow building the first 

layer. Then, we centrifuged and cleaned two times with H2O to remove the 

excess of reactants. Finally, we added 150 µL APTMS to the mixture and we 

stirred 30 min to create the second positive layer, where the 5-TAMRA dye will 

be anchored. 

 

To functionalize, the sample was blended in 20 mL of water and 250 µL of 

glutaraldehyde was added. The sample was stirred during 4 hours at 37 ºC in 

dark conditions. Then we centrifuged and cleaned it with H2O two times. Then, 

the sample was redispersed in 20 mL PBS and 800 µL of TAMRA-labelled 

peptide was added and stirred at 4 ºC 20 hours. The sample was centrifuged 

and cleaned two times with PBS. The solid was dissolved in 45 mL of PBS. 
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Figure 4. 1. Description of the nanoparticles with cadmium-based quantum dots 
with the peptide anchored on the surface.  

4.2.1.3 Sample preparation. 
 

The pancreatic elastase does not get degraded during intestinal transit; this 

makes fecal sample a perfect non-invasive probe of pancreatic function. 

However, the complexity of fecal sample such as morphology must be taken 

into account in order to optimize the elastase assay16 ,17. To further assess the 

specificity of the proposed method, we performed different experiments to 

choose the best relative concentration of the faecal sample.  

 

500 mg of human stool was dissolved in 14 ml of PBS. Then, samples were 

centrifuged to remove the excess of solid. After that, 50 µL of supernatant was 

added in 1 ml of 2-nanoSi and brought to 2 ml with PBS.  

 

4.2.2 Fabrication of film-based sensor.  
 

The synthesis and characterization of CQDs-ethylenediamine (CQDs-EDA) are 

described in Chapter 7. The fabrication of films was done following the paper 

reported in the bibliography with some modifications18.Fluorine-doped tin oxide 

(FTO) conducting glass substrate was cleaned with a detergent solution and 2-

propanol (IPA). SnO2 was screen printed onto FTO. The resulting film was 

heated at 450 ºC under airflow for 20 min. CQDs were deposit onto SnO2 by 

spin coating at 1000 RPM for 30 min and heated at 110 ºC during 10 min. Then 

the film was cleaned with PBS to remove the CQDs that was not absorbed by 

UNIVERSITAT ROVIRA I VIRGILI 
OPTOELECTRONIC PROPERTIES OF QUANTUM DOTS FOR BIOMEDICINE AND ENERGY-TO-LIGHT CONVERSION 
Sofia Paulo Mirasol 
 



Nanophotonic biosensor for detection and quantification of elastase  

 

 

 

79 
 

the SnO2. Glutaraldehyde (GA) dropped cast to CQDs. The peptide was 

dropped cast onto GA overnight.  

 

 

 

Figure 4. 2. Schematic functionalization of CQDs. 

 
 

4.3 Results and discussion.  
 

4.3.1 Physicochemical characterization of quantum dots and 

Nanospheres. 

 

Two different methods were carried out to synthesize the nanosphere: Stöber 

and layer-by-layer approaches. The first step is to prepare the nanosphere filled 

with CdTe QDs, which presents an emission band at 660 nm, in the core of it. 

This method was developed by Stöber in 1968 10. Since its publication, the 

method was modified using different silica sources 19, although the most 

common one is TEOS 20.  

 

The second step was a layer by layer self-assembly based in the electrostatic 

interaction. This method allows coating different biomolecules, cells and other 

materials 21 onto a surface in a simple and versatile way 22. In our sensor, the 

amine functionalization provides negative charges from SiO2- groups which can 

interact with the positive charge of APTMS and CdSeS@ZnS QDs.  
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Figure 4. 3. Techniques in silica nanosphere synthesis. 

 

Figure 4. 4 shows the photoluminescence spectra of nanosilica filled with CdTe 

QD and CdSeS@ZnS QD. The sample was excited at 405 nm, which both 

quantum dots and the 5’-TAMRA dye absorbed. There are three emission band 

at 500 nm, 560 nm and 660 nm, which belong to CdSeS@Zns QDs, TAMRA 

labeled with the peptide and CdTe QDs, respectively. The UV-vis and PL 

spectra of each quantum dots and the 5’TAMRA labeled peptide dye are shown 

in the Annex A4. All the optical measurements were carried out at room 

temperature in air conditions. 
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Figure 4. 4 Emission spectra of nanosphere filled with two cadmium-based 
quantum dot and the peptide anchored to the nanosphere surface.  λexc=405nm. 

 
Figure 4. 5 shows the TEM image of the nanoparticles filled with both quantum 

dots. The average size of the nanosphere was 90 nm, CdTe QDs was 4 nm 

and ZnCdSeS@ZnS was 2 nm.  
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Figure 4. 5. TEM image of nanosphere. The average size of the nanosphere 
was 90nm, CdTe QDs was 4 nm and ZnCdSeS@ZnS was 2 nm. 

 

 

4.3.2 Functionalization of silicon dioxide. 
 

The shell modified surface plays a role in different applications such as drug 

delivery, bioimaging, sensors 23. There are different approaches to conjugate 

the nanoparticles to biomolecules such as physical adsorption, cross-link, 

covalent bonding, etc 24. For a specific application, different molecules should 
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be bonded to the nanoparticle surfaces, including drugs, targeting agents, 

fluorescent molecules, permeation enhancers, biocompatible molecules, etc. 

 

Surface modification of silica particles is most easily achieved by reaction with 

an alkoxysilanes/halosilanes. In our case, the surface was modified using 

glutaraldehyde and APTMS. The amine group of the APTMS reacted with the 

silanol groups via a condensation reaction. Then the aldehyde group from the 

glutaraldehyde reacted with the amine groups of 3-(Aminopropyl) 

trimethoxysilane  (APTMS). Using glutaraldehyde (GA), any biomolecule with 

an amine group can be easily immobilized due to the covalent bond between 

the aldehyde group and the amine group. In Figure 4. 6 appear the molecular 

structure of APTMS and GA.  

                          

 

Figure 4. 6.Glutaraldehyde and 3-(aminopropyl) trimethoxysilane molecule. 

 
Nanoparticles were functionalized using two steps: the first one was adding 

glutaraldehyde and APTMS, followed by binding the dye-labeled peptidic chain. 

Figure 4. 7 shows the final structure of the silica coating with the attached 

TAMRA-peptide. The peptide chain is 5’-TAMRA-Ala-Ala-Ala-Cys, the 

substrate for elastase. 
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Figure 4. 7.Molecular covalent immobilization of peptide. 
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4.3.3 Kinetic procedures. 
 

Prior to start the valorization of the platform, the enzyme activity was 

determined by testing the amount of elastase that interacts with the specific 

peptide in order to study their kinetics mechanism and their optimal time. The 

time, concentration and certain compounds that may interact with the sample 

were studied to determine the optimal incubation time. The kinetic 

measurements were performed using a wide range of elastase concentrations 

(0-625 µg/L). Each sample was monitored during 3 hours and the PL spectra 

were recorded each 5minutes. Figure 4. 8 shows the ratio between I496/I660 

using different amounts of elastase at different times. we observed that our 

platform did not work as a common enzyme activity. We thought that at a certain 

point, the system reached equilibrium and the elastase stopped to interact with 

the sample.  
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Figure 4. 8.Kinetics of enzymatic digestion using different concentrations of 
elastase as a function of time. 
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4.3.4 Optimization protocol of the human stool samples.  
 

One of the main issues was that the concentration and morphology of the 

human stool affect significantly the photoluminescence spectra. We realized 

that working with a high concentration of human samples increases the red 

emission peak strength and widens the green emission peak. In Figure 4. 9 is 

shown the PL of different concentrations of human fecal, the lowest 

concentration gave the best photoluminescence profile, while blue and green 

lines showed distorted PL spectra.  

 

Using the higher relative concentration gave incorrect values. One possible 

explanation might be because the fecal solid had some insoluble particles that 

might destroy or interfere in our system. In addition, the consistency of the 

human samples affected significantly the measurements. Two different human 

samples, with a similar estimated elastase value, exhibited different PL spectra. 

Depending on the fecal consistency, the PL spectra showed the green and the 

red peak emission with different width. 
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Figure 4. 9.Photoluminescence spectra of our platform got in contact with 
different human fecal concentrations.180 mg/ml (blue line), 2 mg/mL (green line) 

and 0.89 mg/mL (red line). 
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4.3.5 Validation. 
 

Before validating the method, the presence of FRET approach was need to 

verify between ZnCdS@ZnS and TAMRA dye had to be confirmed. As we 

mentioned in the introduction, there is a FRET transfer between the blue QDs 

and the TAMRA dye is alredy stablished. Two conditons must be matched i) 

the donor emission band has to overlap to the acceptor absorption band; ii) and 

the acceptor and donor must be close each other. To verify it, PL spectra of the 

donor and UV-vis spectra of the acceptar were measured at room temperature. 

Figure A4.4 shows the overlap area between both material confirming the 

energy transfer between them.  

 

As there is an emission dependence between the green emission band and the 

amount of elastase, the ratio between green and red QDs, on one side, and 

elastase concentrations, on the other side, can be modeled according to the 

following linear curves. The photoluminescence spectra of each curve are 

shown in the Annex A4.  

   

I500/I600= 3.81·10-3[elastase] +15.83 

I500/I600=2.96·10-3[elastase] +9.66 

 

Even both sets of nanospheres were synthesized using the same procedure, 

their emission intensity differs. The reason is that we could not control the 

amount of QDs that came into the nanospheres. For that, we needed to control 

via curve calibration the emission intensity of our system. Figure 4.10 shows 

both calibration curve that we used to determine and quantify 14 samples of 

human stool.  

a) 
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Figure 4. 10. Calibration curve fitting the ratio intensity between I500/I660 and 
the elastase concentration.  
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Using the procedure described above, we tested 14 fecal samples from 

different patients to quantify the amount of elastase. The results were 

compared with the reference values from the Parc Taulí hospital. (Table 4.1) 

 

𝑋 
µ𝑔

𝐿
𝑥

2𝑚𝑙

0,05𝑚𝑙
𝑥

14 · 10−3𝐿

𝑃𝑚𝑔
𝑥

1000𝑚𝑔

1𝑔
=  [elastase] (µg/g) 

 

 

 

Table 4.1. Analytical results of elastase determination in fecal samples.  

Where, LD is the limit detection. 

 

Sample [elastase] 

(µg/g) 

Exp 

[elastase] 

(µg/g) 

Hospital 

M1 415 396 

M2 314 846 

M3 424 920 

M4 <L.D <L.D 

M5 115 <L.D 

M6 <L.D <L.D 

M7 <L.D <L.D 

M8 <L.D <L.D 

M9 <L.D <L.D 

M10 174 <L.D 

M11 178 <L.D 

M12 216 <L.D 

M13 <L.D 320 

M14 <L.D 345 

 

Each sample’s PL spectrum is measured three times, then using the formula 

reported above the elastase concentration was calculated. The average of this 
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concentration is the result that appears in Table 4.1. The PL spectrum of each 

sample is shown in the Annex A4.  

 

From these 14 samples, we have calculated the specificity (false positive) and 

selectivity (true positive) of the method. The sensitivity and specificity were 

calculated to validate the clinical tests. Those parameters are independent of 

the population of interest25. .By definition, sensitivity is the ability of the test to 

correctly identify the patients with the disease. The specificity is the ability of 

the test to detect the patients without the disease. The reliability of the method 

was tested on 14 patients, obtaining 90% sensitivity and 70% specificity.  

 

Regarding the promising results, we decided to try to scale-up the process. The 

problem that we found was that the system was not as reproducible as we 

expected. There are a lot of parameters such as peptide anchoring, stabilization 

of nanospheres etc, that it is important to take into account. While we were 

trying to solve this inconvenience, we proceeded to fabricate a new sensor 

which could improve some of the weakness of our system. For that, we 

fabricate an electrochemical sensor based on carbon quantum dots 21, 2. This 

part was done in collaboration with Patras University under the supervision of 

Dr. Topoglidis. 

 

4.3.6 Electrochemical sensor results.  
 

This section is divided into two parts: The first one is dedicated to measuring 

the Cyclic Voltammetry (CV) of CQDs and how the conductivity improved when 

a layer of metal oxides is deposit between FTO and CQDs. In the second one, 

we studied how the CV changed when small amounts of elastase were added 

to the system. 

 

The idea to try CQDs without adding any interlayer was to verify if the CQDs 

could enlarge the surface area to increase the conductivity of the electrode. For 

that purpose, we deposited on top of Indium tin oxide (ITO) 50 L of CQDs by 

spin cast. Unfortunately, we did not observe any anodic or cathodic bands, 

because the layer of CQDs was too thick and they worked as an insulator. To 
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solve this problem, we attempted different strategies: first, we deposit 10 μL on 

the bottom of glassy carbon, since the conductivity of glassy carbon is higher 

than the one of indium tin oxide. Still, we did not observe any band. Then, We 

tried depositing the QDs by spin coating on top of Fluorine doped tin oxide 

(FTO), but the layers that we obtained were not homogeneous due to the low 

wettability between the FTO and CQDs. Finally, we obtained suitable samples 

by depositing a layer of a metal oxide on top of FTO; namely SnO2 and ZnO 

Nanoparticles NPs, and on top of them a layer of CQDs.  
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Figure 4. 11. Cyclic voltamogram of SnO2 deposit on top of FTO at different 
scan rates at pH=7. 
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Figure 4. 12. Cyclic voltamogram of CQDs-EDA deposit on top of SnO2/FTO at 
different scan rates at pH=7. 
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Figure 4. 13.Cyclic voltamogram of ZnO NPs deposit on top of FTO at different 
scan rates at pH=7. 
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Figure 4. 14. Cyclic voltamogram of CQDs-EDA deposit on top of ZnO/FTO at 
different scan rates at pH=7. 

 

 

Once the CQDs were deposited on top of SnO2, the film was soaked into the 

peptide solution overnight. Then, the film was cleaned with water and PBS. 

Figure 4.15 shows the CV scan of the final sensor. We observed three different 

reduction bands at -0.5V, -0.7V and -1.0V. The reduction band at -1.0V is 

attributed to the peptide, confirming that it was covalently bound to the amine 

on the CQDs. The reduction band at -0.5V is attributed to the CQDs.    

 

a) 

UNIVERSITAT ROVIRA I VIRGILI 
OPTOELECTRONIC PROPERTIES OF QUANTUM DOTS FOR BIOMEDICINE AND ENERGY-TO-LIGHT CONVERSION 
Sofia Paulo Mirasol 
 



Chapter 4 

92 
 

-1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2

-4.0x10-4

-3.5x10-4

-3.0x10-4

-2.5x10-4

-2.0x10-4

-1.5x10-4

-1.0x10-4

-5.0x10-5

0.0

5.0x10-5

Peptide on CQDs/SnO2/FTO  in PBS

0.100V/s Scanrates added 130L of elastase

 t=1min

 t=10min

 t=20min

 t=30min

C
u
rr

e
n
t(

A
)

E Ag vs Ag/Cl (V)

 

b) 

-1.2 -1.0

-2.0x10-4

-1.5x10-4

Peptide on CQDs/SnO2/FTO  in PBS

0.100V/s Scanrates added 130L of elastase

 t=1min

 t=10min

 t=20min

 t=30min

C
u
rr

e
n
t(

A
)

E Ag vs Ag/Cl (V)

 

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
OPTOELECTRONIC PROPERTIES OF QUANTUM DOTS FOR BIOMEDICINE AND ENERGY-TO-LIGHT CONVERSION 
Sofia Paulo Mirasol 
 



Nanophotonic biosensor for detection and quantification of elastase  

 

 

 

93 
 

c) 

-0.6 -0.4

-1.0x10-4

Peptide on CQDs/SnO2/FTO  in PBS

0.100V/s Scanrates added 130L of elastase

 t=1min

 t=10min

 t=20min

 t=30min

C
u
rr

e
n
t(

A
)

E Ag vs Ag/Cl (V)

 

Figure 4.15. Schematic functionalization of CQDs. a)CV measurements at 
different time 0.100V/s scan rates. b) A magnification of the first anodic peak 

from Figure (a).  c) A magnification of the second anodic peak from Figure (a).  
 

We added to the electrochemical cell 130μL of elastase, our enzym of interest, 

to cut the peptide, and we recorded the CV at different times. We observed that 

at longer times the reduction bands of peptide decreased, while one of the 

CQDs increased. (See Figure 4.15 middle and Figure 4.15 bottom).  

 

These phenomena could be explained because once the elastase enzyme cuts 

the peptide, the amount of peptide anchored to CQDs surface decreased and 

as a consequence their reduction band as well. The reduction bands attributed 

to CQDs increased because the amount of free CQDs increased  

4.4 Conclusions. 
 

We present an optical biosensor based on encapsulated cadmium-based 

quantum dots to detect and quantify elastase enzyme in human fecal samples. 

The method presents high sensitivity and specificity in identifying patients with 
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cystic fibrosis. The reliability of the method was tested on 14 patients, obtaining 

90% sensitivity and 70% specificity.   

 

The optical properties of QDs such as photostability and long fluorescence time 

compared with organic fluorophores widen the potential applications of this 

material for future applications. Although our system does not present toxicity 

thanks to QDs encapsulation in silica Nanospheres. However, we are working 

trying to replace cadmium-based quantum dots for carbon-based.  

This platform allows us to detect and quantify elastase enzyme in human stool 

to detect pancreatic insufficiency. This pathology is caused by a reduction of 

pancreatic enzyme and as consequence abnormal digestion and malabsorption 

of nutrients. In addition, this new method allows us to bind different peptides 

depending on which enzyme we want to quantify. This proof-of-concept pilot 

study opens new opportunities to detect and quantify biomolecules in a rapid 

and non-invasive way.  

 

As we mentioned previously, the problem that we found was the low 

reproducibility that our platform presented. We tried to increase the robustness 

of the method but the desorption process ocurring in the nanosilica surface, 

blocked the possibility to scale up the process. We studied different approaches 

in order to detect the elastase in human stools using other techniques. We 

started to construct a sensor based on electrochemical measurements. 

Moreover, we replaced the cadmium-based quantum dots for carbon quantum 

dots. We tried to functionalize its surface adding the peptide directly. Even the 

promising results,  this project is still in an early stage and a further and deeply 

studied is needed.  
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A4 ANNEX  

 

A4.1 Supplementary Figure 4.s and tables. 
 

Figure A4. 1 shows the absorbance and photoluminescence spectra of both 

quantum dots that we were working with the fabrication an optimization of the 

biosensor.  
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Figure A4. 1. Absorbance and emission spectra of CdSeS@ZnS QDs which 
present an emission band at 500 nm.  
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Figure A4. 2. Absorbance and emission spectra of CdTe QDs with an emission 
band at 660 nm.(Bottom) 
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Figure A4. 3.Emission spectra of QD500nm (green). 5’TAMRA dye(violet) and 
QD660nm (red). 
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A4.2 Fret calculations. 
 

The FRET efficiency derived from QD quenching using following equations. 

Figure A4. 4 (bottom) shows the overlap spectra between the Green quantum 

dots and the dye absorption26,27.  
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Figure A4. 4. Absorbance spectra of Dye and photoluminesce spectra of 
CdSeS@ZnS measured in solution at room temperatura (top) and the overlap 

spectra area between both materials (bottom).  
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The experimental efficiciency, E is definided by: 

 

𝐸 = (
𝐹𝐷𝐴

𝐹𝐷

) 𝑥100 

Where, 𝐹𝐷 is the fluorescence intensity of donor and 𝐹𝐷𝐴 is the fluorescence 

intensities in presence of the acceptor.  

The FRET efficiency was calculated using the following equation: 

 

𝐸 = 1/[1 + (𝑟/𝑅0)6]  

 

Where 𝑅0 is the Förster distance between the donor-acceptor separation at 

50% energy transfer Efficiency and r is the distance between the donor and 

acceptor pair.  

 

𝑅0 can be expressed as:  

 𝑅0 = 0.211 (𝑘2𝑛𝐷
−4𝑄𝐷𝐽(𝜆))1/6 

 

Where 𝑛𝐷 is the refractive index of the medium Qd is the donor quantum yield 

in the absence of acceptor (50%), J( is the spectral overlap area and 𝑘2is the 

dipole orientation factor (0.66).  

 

 

For our platform, we obtained Ro=7.55 nm,   r= 10 nm and E=15 % 
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A4.3 Calibration curve. 
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Figure A4.5.a) Emission spectra of nanosphere increasing the amount of 
elastase. b) magnification of the first emission band of nanosphere and c) the 

second emission band of nanosphere. 
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Figure A4. 6.a) Emission spectra of nanosphere increasing the amount of 
elastase.b) magnification of the first emission band of nanosphere and c) the 

second emission band of nanosphere. 
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5 

Cadmium based quantum 
dots as emissive layer in 
LEDs. 

Cadmium based quantum dots are the most studied nanomaterial in the emitting 

layer of LEDs. In this chapter, we show the results of using green, red and blue 

light emitting quantum dots in the photoactive layer. 
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5.1 Introduction. 
 

During the last decades, colloidal quantum dots have been extensively studied 

due to their optoelectronic properties and their multiple applications in 

electronic and biological systems1 . Cadmium/ Zinc calchogenides quantum 

dots core-shell have extraordinary optoelectronic properties, such as narrow 

emission and broad absorption that convert them in a very interesting 

nanomaterial to work with. Futhermore, capping a quantum dot with a layer of 

ZnS is a good alternative to suppress deep trap emission by passivating most 

of the vacancies resulting in improved  quantum efficiency 2. In addition, the 

easiness to tune the bandgap with the size of the quantum dot, determined by 

the synthetic procedure, allows the preparation of light emitting diodes from UV-

vis to infrared. This color tunability increases the number of application of the 

QDsLED, for example as photodetector, laser applications or white light 

emitting diodes, combining red, green and blue QDs 3.  

 

In our case, we use colloidal quantum dots as emitter layer or hole conductor 

material in light emitted diodes (LEDs).  

The use of metal oxides in light emitting diodes are nowadays attracting great 

attention due to their intrinsic air stability and solution processability, which 

could result in low-cost, large area, light emitting devices. In addition, the 

inverted charge injection structure reduce the charge carrier injection barrier 

from anode/cathode 4,5.   

 

We fabricated QDLED using ZnO NPs as electron transport layer (ETL), 

Cadmium based Quantum dots as unique emissive layer, poly(9-

vynilcarvazole) (PVK) as hole transport layer (HTL), and polyethylenimine 

ethoxylated (PEIE) as interlayer between ETL and Quandtum dots.  This 

polymer works as a surface modifiers, reducing the work function of electrodes 

including transparents metal oxide, electrode or organic material 6. In our case, 

we deposit a layer of PEIE to reduce the work function of ZnO, helping the 

injection current 7.  
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We fabricated solution-processed QDsLED in air conditions. This conditions 

are relevant in order to try to scale up the process using other printing 

techniques such as ink jetprinting or slot die roll-to-roll printing 8,9 10. All the 

layers were deposited by spin coating in air conditions with the execption of 

MoO3 and gold that were thermal evaporated.  

Three different cadmium based quantum dots were synthetized by hot injection 

method. They were synthetized  in inert conditions using oleic acid (OA) as 

capping ligand to mediate their size and shape and stabilize their dispersion.  

 

This chapter is focused on optimizing the inverted structure using cadmium 

based quantum dots. The aim is to understand how the interface charge traps 

and energy transfer between the active layer and the contact could affect to the 

final device efficiency. In addition it was the starting point to use the inverted 

LEDs to use with other emissive layer like Perovkites nanoparticles or Quantum 

dots or Carbon Quantun dots (CQDs).    

 

 

Figure 5. 1. Molecular structure of PVK (right) and PEIE (left).  

 

5.2 Experimental part. 
 

Cadmium based quantum were synthetized by a hot inject process in inert 

conditions. The synthesis of ZnO NPs is described in Chapter 3.  

 

 

5.2.1Synthesis of  green, red and blue CdSe@ZnS. 
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5.2.1.1 Green ZnCdSe@ZnS QDs. 
 

CdSe@ZnS QDs were syntethized following a procedure reported previously 

in the bibliography 11. Briefly, in 100 ml three-neck flask equipped with a reflux 

condenser and heating mantel, 0.14 mmol Cd(OAc)2, 3.41 mmol ZnO, 7 mL of 

oleic acid and 15 ml of 1-octadecene (ODE) were mixed together and put under 

an argon atmosphere. The mixture was heated up to 150 ⁰C. In another bottom 

flask, 5 mmol of Se, 5 mmol of S was solved in 5 ml of TOP under an argon 

flow. Then the solution was heated up to 190 ⁰C and 0.3 ml of Se/S-TOP 

solution was added as fast was possible. The reaction was heated during 1 

minute. After cooling, we added acetone to precipitate CdSe@ZnS QDs. The 

mixture was centrifuged and the precipitate was washed with 

ethanol/hexane(4:1) three times to achieve pure CdSe@ZnS nanocrystals. 

Finally, CdSe@ZnS were resdispersed in CHCl3 and stored at room 

temperature. 

 

5.2.1.2 Red CdSeS@ZnS QDs. 
 

CdSeS@Zns were prepared via hot injection reported in the bibliography12. In 

10 mL three-neck flask equipped with a reflux condenser and heating mantel,  

0.060 gr CdO, 0.224 gr of octadecylphosphonic (ODPA) and 3 gr 

trioctylphospine oxide (TOPO) was mixed 150 ºC during 30 min under inert 

conditions. After that, the sample was heated up to 305 ºC. A solution of 0.27 

mmol Se, 0.03 mmol S with 0.5 ml of trioctylphosphine was added quickly. The 

reaction was heated during 10 min. The quantum dots were precipitated with 

acetone and purified with a mixture of toluene/acetone(1:4).  

For producing the ZnS shell , 172 mg of QDs were solved in 25 ml ODE and 

heated at 270 ºC at inert conditions. Then, a solution of 2.86 mmol Zn(ac)2·H2O, 

4 ml OA and 1 ml ODE was added to a solution of 6.75 mmol of  Sulphur  with 

3.5 mL of TOP. The reaction was maintained during 10 min at 270 ºC. The 

quantum dots were precipitated with acetone and purified with a mixture of 

toluene/acetone(1:4). 
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5.2.1.3 Blue ZnCdS@ZnS QDs. 
 

ZnCdS@Zns were prepared via hot injection method reported in the 

bibliography12. ZnCdS@ZnS QDs were prepared as follows: 1 mmol of CdO, 

10 mmol ZnO, 7 ml oleic acid (OA) and 15 mL of ODE were mixed at 150 ºC 

during 30 min under inert conditions. The mixture was heated up to 310 ºC until 

the solution lost its color. Then a solution of 1.6 mmol of sulfur diluted with 2.4 

ml of ODE was injected. The reaction was kept during 12 min. Once the reaction 

was at room temperature, an excess of acetone was added to precipitate 

CdZnS QDs. To purify the solid, a mixture of toluene and acetone was added 

and finally stored in toluene.  

For producing the ZnS shell, CdZnS QDS were solved in 25ml ODE and heated 

at 270 ºC at inert conditions. Then, a solution of 2.86 mmol Zn(ac)2·H2O, 4 ml 

OA and 1 ml ODE was added to a solution of 6.75 mmol of Sulphur with 3.5 mL 

of TOP. The reaction was maintained during 10 min at 270 ºC. The quantum 

dots were precipitated with acetone and purified with a mixture of 

toluene/acetone(1:4). 

 

5.3 Device fabrication. 
 

Patterned ITO (Indium doped Tin Oxide) coated glasses (Xinyan Technology, 

resistance 10 Ω/square, 15x15 mm) were cleaned with acetone for 15 minutes 

and 2-propanol for 15 minutes in an ultrasound bath. Cleaned ITO (Indium 

doped tin oxide) substrates were used as anode, on top of ITO a layer of ZnO 

(80mg/ml in methanol) was deposited by spin coating at 5000 RPM 60 seconds 

and heated up 30 minutes at 150 ºC. Polyethylenimine ethoxylated (PEIE 

0.2 %wt 2-methoxyethanol) was spin coated on top at 6000 RPM 60 s and 

annealed at 110 ºC for 30 minutes. After that, the solution of cadmium based 

solved in hexane (the concentration was different depending on the material) 

were deposited on top of PEIE at 1000 RPM 60 s and baked at 110 ºC 10 

minutes. Poly(N-vinyl carbazole) (PVK) dissolved in chlorobenzene (10 mg/ml) 

was deposited on top of Cadmium based quantum dots at 1000 RPM and 2000 
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RPM 60 s and annealed at 110 ºC 10 minutes. Both solutions were filtered with 

a PTFE 0.2 µm filter. Finally, thermal evaporation of 80 nm Au was done at 10-

6 mbar. The final area of the devices is 9 or 25 mm2. 

 

5.4 Results and discussion. 
 

5.4.1 Physicochemical Characterization. 
 

This section is divided in 3 parts, depending on the cadmium based quantum 

dot characterization. The optical and physicochemical characterization were 

done to determine the size and shape of quantum dots as well as their 

maximum emission wavelength and their Quantum Yield (QY), see annex for 

this case. At the end of this section a summary table is shown with all the optical 

parameters of three cadmium based quantum dots. The synthesis and physico-

chemical of ZnO are shown in Chapter 3. 

 

 

 

1.Green ZnCdSe@ZnS  

 

The absorbance and emission spectra were recorded at room temperature in 

air conditions. Figure 5. 2 shows both spectra. The PL displayed a maximum 

wavelength at 540 nm and FWHM 17 nm , after excitation of the sample at 540 

nm.  As we expected ZnCdSe@ZnS presented a narrow emission and broad 

absorption spectra.  
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Figure 5. 2. Absorption and emission spectra of ZnCdSe@ZnS solved in 

chloroform at room temperature. The emission spectra present an unique peak 
at 540nm, the sample was excited at 480nm.  

 
 

TEM images at different scales rate were taken in order to determine the size 

and the shape. The images shows a few groups of quantum dots well dispersed 

(see Figure 5.3). The average particle size was 7.286 ± 0.857 nm.  
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Figure 5. 3. TEM images of ZnCdSe@ZnS at different scales. 

 

 

2. Red CdSeS@ZnS 

The absorbance and emission spectra were recorded at room temperature in 

air conditions. Figure 5.4 shows both spectra. The PL displayed a maximum 

wavelength at 670 nm and FWHM 37 nm , excited the sample 450 nm.  As we 

expected ZnCdSe@ZnS presented a narrow emission and broad absorption 

spectra.  
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Figure 5. 4. Absorption and emission spectra of CdSeS@ZnS solved in 

chloroform at room temperature. The emission spectra present an unique peak 
at 670 nm, the sample was excited at 450 nm.  

 

 
Figure 5.5 shows TEM images of CdSeS@ZnS QDs which average particle 

size was 11.86 ± 1.62 nm.  
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Figure 5. 5. TEM images of CdSSe@ZnS at different scales.  
 

 

3. Blue ZnCdS@ZnS  

 

The absorbance and emission spectra were recorded at room temperature in 

air conditions. Figure 5. 6 shows both spectra. The PL displayed a maximum 

wavelength at 460 nm and FWHM 22 nm , excited the sample 340 nm.  As we 

expected ZnCdSe@ZnS presented a narrow emission and broad absorption 

spectra.  

 

UNIVERSITAT ROVIRA I VIRGILI 
OPTOELECTRONIC PROPERTIES OF QUANTUM DOTS FOR BIOMEDICINE AND ENERGY-TO-LIGHT CONVERSION 
Sofia Paulo Mirasol 
 



Chapter 5 

 
 

 

118 
 

300 400 500 600 700 800

N
o

rm
a

liz
e

d
 P

L
 (

a
.u

.)

N
o

rm
a

liz
e

d
 A

b
s
o

rb
a

n
c
e

 (
a

.u
.)

Wavelength (nm)

 Abs ZnCdS@ZnS QDs

 PL ZnCdS@ZnS QDs

 

Figure 5. 6. Absorption and emission spectra of ZnCdS@ZnS solved in 

chloroform at room temperature. The emission spectra present an unique peak 
at 460 nm, the sample was excited at 340 nm. 

 
TEM images sshowed a well dispersion particles with an average size of 6.86 ± 

0.84 nm (see Figure 5.7).  
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Figure 5. 7. TEM images of ZnCdS@ZnS at different scales.  
 

 

Table 5.1 displayed the summary of the optical properties of Quantum Dots 

that we used to fabricated QLEDs. The samples were solved in hexane or 

chloroform and measure at room temperature. 

 
Table 5. 1. Optical properties of QDs in solution. 

 

Color PL λmax FMWH QY(%) 

Green 540 17 0.78 

Red 670 37 0.25 

Blue 460 22 0.32 
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5.4.2 Device Characterization. 
 

Inverted structure QLEDs were fabricated using ITO-covered glass and ZnO as 

electron transport layer, Cadmiun based quantum dots as emissive layer and 

PVK and MoO3 as hole transport layer (see Figure 5.9). ZnO was fabricated 

using a method described by Frederik et al. 13. Zinc oxide nanoparticles present 

electrical properties such as high electron mobility and lower valence band that 

makes them suitable for electron transport layer while forming compact layers 

that allow flexibility. In this section, we want to explain in detail the optimization 

process that we carried out to fabricate the final device. Briefly, we divided this 

section in three parts in order to examine the role that PEIE and PVK play in 

the sandwiched QDLEDs: 1) The thickness of PEIE, 2) Solvent orthogonality 

and  3) Energy transfer between Quantum dots and PVK.   

 

 

 

Figure 5. 8. Description of the structure. 

 

A layer of Polyethylenimine ethoxylated (PEIE) was deposited between zinc 

oxide and carbon quantum dots. PEIE is a well-known surface modifier which 

can be easily deposited on top of ZnO. Some groups have reported that PEIE 

or PEI thin layer enhances electron injection/transport from the metal oxide and 

also induces uniform surface of the quantum dot layer due to the aliphatic amine 

groups that reduce the work function of ZnO 14,15.  
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We worked with three different relative concentration of PEIE in order to check 

which thickness was the best one because,as reported in the literature, a 

thicker layer of PEIE may work as insulator material 6. We used a mixture of 

PEIE and methanol of1wt%, 0.5 wt% and 0.2 wt%. Figure 5.10 shows the 

current and luminance versus voltage spectra of QDLEDs. Table 5.2 displays 

the results of using differents concentrations of PEIE and the luminance is 

clearly higher when the weigh concentration is lower. We do not show any IV 

curve using PEIE 1%wt because the current was too low and we could not 

record any current and luminance versus voltage spectra. 

 

Table 5.2 Summary of the device performances. Von is the turn-on voltage at 

0.1 Cd/m2. 

 

device PEIE 

 

Turn-on 

voltage 

Von (V) 

Max. 

Luminance 

(Cd/m2)a 

Current       

Efficiency 

(Cd/A) 

1 0.5 wt% 7.6 12 8.0·10-2 

2 0.2 wt% 5.6 400 1.2·10-2 

3 1 wt% -- -- -- 

 

As shown in Figure 5.9, an increase of PEIE thickness in devices fabrication 

decreases the current density of the device getting lower luminance as well. As 

we mentioned previously, thicker layer of PEIE can work as an insulator.  
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Figure 5. 9. Current density (top) and luminance (bottom) versus applied voltage 

of the QDLED using CdSe@ZnS QDs as unique emissive layer. 
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One of the aim of this project was to fabricate a solution-processing QDLEDs. 

It means that all the layers are deposited via spin coating conditions from 

solutions with the exception of MoO3 and Au that are deposited by thermal 

evaporation.  For that reason, it is necessary to work with orthogonal solvents 

to avoid the damage between the layers.  The problem that we observed was 

that the majority of solvent used to dissolve the PVK degrade the layer of 

quantum dots, and when we deposited PVK over quantum dot layer, part of it 

is removed. It can be seen in Figure 5.10 where we prepared three different 

films deposited layer after layer. The quantum dot emission band decreases 

significantly after deposition of the PVK layer that may decrease the 

electroluminescence efficiency.  
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Figure 5. 10. PL spectra of three different films. λexc=360nm at room 

temperature. 

 

PVK is one of the most useful hole transport layer due to their strong hole 

properties and weak electron properties in addition, it is important to stress 

because PVK can also be used as emitting layer. We observed that depending 

on the PVK thickness the recombination may occur in the polymer instead of 

quantum dots. It could be caused by two possible explanation: i) the poor hole 

mobility of PVK compared with the high electron mobility of ZnO 16, ii) the 
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valence band of QDs and LUMO level of PVK are closer,and some charges can 

move from the emissive layer to PVK.  

Figure 5.11 shows two pictures of a diode applying a bias. As can be seen , in 

the first picture both material emits at the same time. The violet color belongs 

to PVK and the yellow one belongs to CdSe@ZnS. As the voltage was 

increased, the violet intensity increased while the yellow one decreased. Some 

possible solutions may be to change the organic polymer for other which has a 

higher LUMO or decrease the thickness film of the hole transport material. The 

problem of decreasing the thickness of PVK would be the poor layer coverage 

of the polymer on top of QDs layers, allowing short circuits inside the diode. 

 

 

 

 

Figure 5. 2. Two different images of a QDLED using cadmium based quantum 

dots as emissive layer. The applied voltage increases from 5 (left) to 9 (right). 

 

Once we established the optimal thickness of PVK and PEIE, we fabricated 

QDLEDs, which the final active area was 25 mm2, using green, red and blue 

cadmium based quantum as unique emissive layer in air conditions. The IV 

curves were measured in air conditions using a Keithley described in Chapter 

3. Figure 5.12 shows the current and luminance versus voltage of Green-

QLEDs measured in air conditions.   
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Figure 5. 3. Current density (dark green line) and luminance (light green line) 

versus applied voltage of the QDLED using ZnCdSe@ZnS QDs as unique 
emissive layer. The inset  displays the light emission of green QLEDs.   

 

Figure 5.13 shows the  electroluminescence spectra of QLEDs using 

CdSe@ZnS as emissive layer. The λmax of emission is at 540 nm whereas 

CIE color coordinates are (0.287,0.691).  
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Figure 5. 13.  Electroluminescence of 

ITO/ZnO/PEIE/ZnCdSe@ZnS/PVK/MoO3/Au at room temperature (top) CIE 
color coordinates of QLEDs with QDs as emissive layer (bottom).  
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The current and luminance versus voltage of red-QLEDs are shown in Figure 

5.14. All the devices were measured in air conditions without any 

encapsulation.  
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Figure 5. 44. Current density (dark red) and luminance (ligth red) versus applied 

voltage of the QDLED. Inset: light emission of red QLEDs. 

 

Figure 5.15 shows the  electroluminescence spectra of QLEDs using 

CdSe@ZnS as emissive layer. The λmax of emission is at 650nm whereas CIE 

color coordinates area at (0.320 , 0.362).  
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Figure 5. 5. Electroluminescence of ITO/ZnO/PEIE/CdSeS@ZnS/PVK/MoO3/Au 

at room temperature (top) CIE color coordinates of QLEDs with QDs as emissive 
layer (bottom).  
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The current and luminance versus voltage of blue-QLEDs is shown in Figure 

5.16.The devices were measured in air conditions.  
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Figure 5. 16. Current density (dark blue) and luminance (ligth blue) versus 

applied voltage of the QDLED. Inset  displays the light emission of blue QLEDs. 
 

 

Figure 5.17 shows the  electroluminescence spectra of QLEDs using 

CdSe@ZnS as emissive layer. The λmax of emission is at 540nm whereas CIE 

color coordinates are at (0.287,0.691). As the electroluminescence spectra was 

not as good as photoluminescence spectra we calculated the CIE using the PL 

spectra.  
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Figure 5. 6. Electroluminescence of ITO/ZnO/PEIE/ZnCdS@ZnS/PVK/MoO3/Au 

at room temperature (top) CIE color coordinates of QLEDs with QDs as emissive 
layer (bottom). 
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To sum up the optoelectronics results,  Table 5.3 displays the final results using 

green, red and bluen cadmium based quantum dots as emissive layer. The 

most remarkable results are the lower turn on voltage using red and blue 

QDsLEDs. However, the luminace was not as we expected since the reported 

values in the literature are higher and further optimization is needed.Using 

green quantum dots as emissive layer shows an average luminance of 1736 

cd/m2 and a current efficiency of 2.36 cd/A. Using CdSeS@ZnS QDs as unique 

emissive layer present an average luminance of 275 cd/m2,, turn-on voltage of 

3 V and a Current Efficiency 0.19 cd/A.  

 

Table 5. 2. Summary of the electrical Properties QLEDs. 

 

Color Von (V)a Luminance 

(cd/m2)a 

Current 

Efficiency 

(cd/A) 

CIE index 

(x,y) 

Green 6.62 (6.74) 2199 (1736) 2.36  (0.287,0.691) 

Red 2.69 (3.00) 291 (275) 0.19  (0.320,0.362) 

Blue 2.46 (2.79) 12 (11) 5·10-3 (0.131,0.075) 

a The average turn on voltage and Luminance repored in round brackets. Va is 

the turn-on voltage at 0.1 Cd/m2.  

 

5.5 Conclusions. 
 

We synthetized three Core-shell cadmium/ zinc calchogenides quantum dots, 

synthetized by one-step method in inert conditions to use as unique emissive 

layer in QLEDs. Then we fabricated and characterized red, green and blue 

solution processed QLEDs in air conditions.  

 

We used PEIE as surface modifiers that allow easy low cost 

fabrication.Regarding the results, we observed the important role that PEIE as 

interlayer plays inside the sandwiched structure in order to control the charges 

inside the diode. Futhermore, we observed how the thickness of PEIE can drop 
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the injection current. It is remarkable that the poor hole mobility of PVK 

compared with the high electron mobility of ZnO as well as the closer energy 

alignment between the valence band of QDs and the LUMO level of PVK can 

assist that the charges recombine in the PVK instead of QDs layer.  

 

To summarize, this chapter reflects the first approach to fabricate devices with 

quantum dot in the emissive layer by solution processing in order to  replace 

the cadmium based emissive layers for others emissive as CQDs and 

Perovkistes based nanoparticles. As we highlighted previously the aim was to 

learn to deposit all the materials by solution processing, observe the 

interactions at the interface and stablish the optimum conditions to set the first 

step for scaling-up in future projects.  
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A5 Annex  
 

Quantum yield calculation. 
 

The quantum yield of CQDs was calculated using Couramine 102 and 

Couramine 153 as reference dye applying the following equation.  

 

𝑄𝑌 = 𝑄𝑌𝑟𝑒𝑓 (
𝐼𝑒𝑚 𝑠𝑎𝑚𝑝𝑙𝑒

𝐼𝑒𝑚 𝑟𝑒𝑓
) · (

𝐴𝑏𝑠𝑟𝑒𝑓

𝐴𝑏𝑠𝑠𝑎𝑚𝑝𝑙𝑒
) · (

𝑛𝑠𝑎𝑚𝑝𝑙𝑒

𝑛𝑟𝑒𝑓
)

2

 Equation A5.1 

Where QYref is the reference quantum yield, Iem is the area of the emission band, 

Abs is the absorbance excitation wavelength and η is the refractive index. 
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Figure A5. 1. Absorbance spectra of Rodhamine (violet line) and CdSeS@ZnS 

(dark red line) at room temperature. 
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Figure A5. 2. Emission spectra of ZnCdSe@ZnS (top) and Rodhamine (bottom) 

measured at λexc=420 nm at room temperature. 
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Figure A5. 3. Absorbance spectra of Rodhamine (violet line) and CdSeS@ZnS 

(dark red line) at room temperature. 
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Figure A5. 4. Emission spectra of CdSeS@ZnS (top) and Rodhamine (bottom) 

measured at λexc=540 nm at room temperature. 
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Figure A5. 5. Absorbance spectra of Couramine (light blue line) and 

ZnCdS@ZnS (dark blue line) at room temperature. 
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Figure A5. 6. Emission spectra of ZnCdS@ZnS (top) and Couramine (bottom) 
measured at λexc=380 nm at room temperature . 
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6 

Synthesis and fabrication of 
Perovskite Light Emitting 
Diodes (PeLEDs). 

This project was about the synthesis and characterization of perovskites halides 

nanoparticles for light devices, studying their intrinsic properties as high 

photoluminescence, color tuneability, high absorption coefficient to apply in the field of 

optoelectronic. This project was done during my stay in the National Institute for Materials 

Science (NIMS) in Japan under the supervision of Doctor Masatoshi Yanagida. 
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6.1 Introduction. 
 

Interest in hybrid perovskites have increased due to their optoelectronic 

properties suitable for a variety of applications like solar cells1, 2, light emitting 

diodes3 and detectors4. In 1989 Goto et al.5 published a paper describing this 

material as active layer in LEDs but it was not since 2014 when researchers 

started to study further perovskite emitters for LEDs again. In 2015 Friend et 

al.6 published that the electroluminescence emission peak brightness from 

trihalide organic-inorganic (CH3NH3PbI3–xClx) perovskite-based LED was 300 

cd/m2. Zeng and coworkers reported the synthesis of CsPbX3 quantum dots 

and its application for PeLEDs 3. To date, the number of papers describing 

solution synthesis of perovskite and their applications as active layer in light 

emitting diodes has increased significantly 7. 

 

 

 

Figure 6.1. Trend of LED papers7. 

 

Trihalide perovskites have the general formula AMX3 where A is the cation, 

which can be organic such as methylamonium, formamidinium, or inorganic as 

cesium. M2+ is the metal that can be Pb2+, Sn2+, Ge2+ and X- is the halide 

compound as Cl-, Br-, I-. This material gained interest due to its narrow emission 

and color purity compared with other materials such as inorganic quantum dots 
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emitters and organics emitters. Depending on the anion of CsPbX3, the 

emission of perovskite could be tuned over the entire visible spectrum.  

 
Reviewing the literature, there are two ways to obtain the CsPbX3 perovskites: 

thin film and nanoparticles (NPs). Both materials have been used as solar cells 

and LEDs 8. In the case of thin film, one-step spin coating is still the simplest 

and most widely used fabrication method to date. As published in the 

bibliography, a smoother films achieved is via a two-step method in which 

precursor were deposit, dropping a non-solvent on top of perovskite films during 

the spin-coating deposition9.  

 

On the other hand, perovskite NPs can be divided into two groups depending 

on their size: perovskite quantum dots and perovskite nanocrystals 2. The 

synthesis of perovskite quantum dots must be carried on in inert conditions, 

although the synthesis of nanocrystals can be performed in air conditions 10.  

 

The emission wavelength of perovskite can be tuned across the whole visible 

spectrum, depending on the halide anion (X= Cl, Br, I). Changing the ratio anion 

halide, the emission band can be tuned to blue (Cl-), green (Br- ) or red (I-) 

wavelength regions. However, one of the main problems of working with CsPbI3 

or MAPbI3 is their instability in air conditions and in polar solvents 11,12. 

 

The aim of this project was to synthetize different perovskite nanoparticles to 

use as emissive layer in LEDs. Furthermore, a secondary goal was to use these 

nanoparticles for both solar cells and LEDs. Regarding in the literature, there 

are some examples of the use of these materials in both applications. For 

instance, Swarnkar et al.13 published a synthesis of CsPbI3 QDs. Their energy 

alignment was suitable for both applications. The most important issue was the 

low stability in air conditions, and the high difficulty to obtain them. Different 

approaches were used to synthetize this material, for instance the anion 

exchange from cesium lead bromide nanoparticles or the direct synthesis by 

hot injection method.  
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This chapter is divided in two sections. The first one describes the synthesis of 

different perovskite materials that we carried out during the thesis as well as 

the study of their optoelectronic properties. The second one is the device 

fabrication of two types of perovskites LEDs (PeLEDs). As we mentioned in the 

abstract, this project was done during my three months stay in the National 

Institute for Materials Science (NIMS) in Japan under the supervision of Doctor 

Masatoshi Yanagida. 

6.2 Synthesis of Perovskite materials.  
 

In this section, some of the synthesis that we performed to construct LEDs are 

described. The aim of this project was to use these nanoparticles in 

optoelectronic devices: solar cells and LEDs. The best perovskite composition 

for both devices was CsPbI3 due to its molecular levels, but this material has a 

lot of problems of stability in air. For that reason, we started synthesizing 

CsPbBr3 nanoparticles which have better stability and then the anion was 

exchanged.  

 

 

6.2.1 Synthesis of CsPbBr3 NPs. 
 

The synthesis  was described previously in the bibliography by Du et al.14. The 

precursor solution was prepared mixing 3.45 mmol of cesium bromide (CsBr), 

4.6 mmol lead bromide (PbBr2) and 115 L n-octylamine in 5 mL 

dimethylformamide (DMF). Then, 1 mL of precursor solution was dropped into 

5 mL of a toluene solution containing 100 μL of oleic acid (OA), with vigorous 

stirring. Adjusting the amount of oleic acid, the size of nanoparticles can be 

tuned. The solution changed from colourless to a yellow-green color 

immediately upon mixing. The dispersion was centrifuged at 3000 RPM for 10 

minutes to remove the largest particles. 
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6.2.2 Synthesis of CsMAPbBr3 thin film. 
 

To fabricate perovskite thin film we need to prepare two solutions, firstly 234 

mg of CsBr and 183.5 mg of PbBr2 were dissolved in 2 mL of dimethyl sulfoxide 

(DMSO), then 1.96 mg of methylamonium bromide (MABr) in 2 mL DMSO. Both 

solutions were stirred all the night at 30 C in a nitrogen filled glovebox. Finally, 

500 µL of first solution and 50 µL of second one were mixed and stirred 

together. Perovskite solution was spin coated with a two-step sequence: a first 

step at 3000 RPM during 100 s and a second step at 4000 RPM during 10 s. 

Prior to the end of the second step 70 µl of toluene were poured onto the 

spinning samples to obtain uniform pin-hole-free perovskite films and with 

smaller grain size. Finally, devices were annealed at 100 C for 20 min.  

 

6.2.3 Synthesis of CsPbI3 QDs.  
 

The synthesis of CsPbI3 was done using a method described in the 

bibliography15. Briefly, 435 mg lead iodide (PbI2), 2.5 mL oleylamine (OLA) and 

2.5 mL oleic acid (OA) were solved in 25 mL of 1-octadecene (ODE). The 

solution was stirred in a three-neck flask under vacuum during 1hour at 120 ºC. 

Then, the solution was heated up to 150 ºC. After that, 2 mL of Cs-oleate 

solution (0.125 M in ODE) was injected. After 5 seconds, the solution was 

immediately cooled at room temperature. The solution was centrifuged at 4500 

RPM during 20 min to discard the supernatant. Then the solid was solved in 

1.5 mL in hexane and centrifuged again. After a second centrifugation, the solid 

was discarded to avoid the biggest particles and 3 ml of hexane was added to 

the supernatant and centrifuged again to discard the precipitate.  

6.3 Devices fabrication. 
 

6.3.1 Fabrication of PeLEDs with a CsMAPbBr3 thin film as 
emissive layer. 
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Indium tin oxide patterned glasses were treated with UV ozone 20 min. 

PEDOT:PSS was spin coated on top of ITO at 3000 RPM 45 s and heated at 

120 C 30 min. Poly (9-vinylcarbazole) (PVK) (10 mg/mL) was spin-coated on 

top of PEDOT:PSS at 3000 RPM 45 s and baked 120 C 20 min. To fabricate 

the perovskite thin film, two solutions were previously prepared: first, 234 mg of 

CsBr and 183.5 mg PbBr2 were dissolved in 2 mL of dimethyl sulfoxide 

(DMSO), then 1.96 mg of methylamonium bromide in 2 mL DMSO. Both 

solutions were stirred overnight at 30 C in a nitrogen filled glovebox. Finally, 

500 µL of first solution and 50 µL of second one were mixed and stirred 

together. Perovskite solution was spin coated with a two-step sequence: a first 

step at 3000 RPM during 100 s and a second step at 4000 RPM during 10 s. 

Prior to the end of the second step 40 µl of toluene were poured onto the 

spinning samples to obtain uniform pin-hole-free perovskite film with small grain 

size13,14. Then, devices were annealed at 100 C for 20 min under inert 

conditions. Finally, 1,3,5-Tri(m-pyridin-3-ylphenyl)benzene,1,3,5-Tris(3-pyridyl-

3-phenyl)benzene,3,3′-[5′-[3-(3-pyridinyl)phenyl][1,1′:3′,1′′-terphenyl]-3,3′′-diyl] 

bispyridine (TmPYP) (10 mg/mL and 20 mg/mL solved in chloroform) was spin 

coated at 3000 RPM 45 s and baked at 90 C for 10 min. To deposit perovskite 

thin film and TmPYP all the samples were transferred into a nitrogen filled 

glovebox. Lithium fluoride and aluminum were thermally evaporated in a high 

vacuum (110-6 mbar). 

 

6.3.2 Fabrication of CsPbI3 QDs LEDs. 
 

Fluorine doped Tin Oxide (FTO) coated glasses (resistance of 8 Ω/cm2) were 

cleaned for 15 min in an ultrasound bath with deionized water with Hellmax 

soap, with deionized water and finally with ethanol. The substrates were dried 

and an UV/Ozone treatment was performed for 20 min. TiO2 was prepared by 

mixing 0.65 mL of Ti (IV) isopropoxide, 0.38 mL of acetylacetone and 5 mL 

EtOH. The sol-gel TiO2 was spin-cast at 3000 RPM 60 s and then calcined at 

500 ºC for 30 min. CsPbI3 QDs (63 mg/mL) was deposited at 2000, 3000 and 

5000 RPM, then annealed at 80ºC during 45 min. 72.3 mg of Spiro-OMeTAD 

UNIVERSITAT ROVIRA I VIRGILI 
OPTOELECTRONIC PROPERTIES OF QUANTUM DOTS FOR BIOMEDICINE AND ENERGY-TO-LIGHT CONVERSION 
Sofia Paulo Mirasol 
 



Chapter 6 

 
 

 

150 
 

(1-Material) were dissolved in 1 mL chlorobenzene with the addition of 28.8 mL 

tert-butylpyridine and 17.5 mL of lithium bis-trifluoromethanesulfonimide 

solution in acetonitrile (520 mg/mL). The resulting solution was spun (80 µL) 

onto the perovskite at 2000 RPM for 60 s. Finally, 15 nm of MoO3 and 100 nm 

of Ag were deposited via thermal evaporation under 1·10-6 mbar.  

 

6.4 Results and discussion. 
 

This section is divided in three parts. The first is the physic-chemical 

characterization of perovskite films and nanoparticles, the second part the 

description and characterization of exchange anion of perovskites and finally, 

the third part the results of final devices is shown. 

 

 

 

6.4.1 Perovskite characterization.  
 

6.4.1.1 CsMAPbBr3 thin film.  
 

We fabricated CsMAPbBr3 films deposited by spin coating on glass and under 

inert conditions. The purpose was to verify how the stability of perovskite thin 

film can be influenced by the air or the moisture. We prepared a binary cation 

mixed perovskites, because as some groups reported, the addition of MA+ ions 

are helpful to control the crystal growth to allow better grain formation16. Figure 

6.2 shows the emission spectra of CsMAPbBr3 films excited at two different 

excitation wavelength and deposited at two different speeds. The most 

interesting observation was how the thickness of CsMAPbBr3 could influence 

directly to the emission intensity. The thinner the perovskite layer, the higher 

the expected emission intensity.  
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Figure 6.2. PL spectra of CsMAPbBr3 thin film prepared at different spins 

measured at room temperature after excitation at different wavelength.  

 
In addition, as it can be seen it in Figure 6.3, those devices which were 

fabricated inside the glovebox, they presented a better homogeneous layer.  

 

     

 

Figure 6.3. Thin films of CsMAPbBr3 deposited on glass and these same films 

under UV-vis light.  
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One-step solvent exchange was performed during spin coating by dropping 

toluene onto the sample in order to reduce the grain size and improve the 

roughness of the film 9. The morphology of perovskite thin films was studied by 

the scanning electron microscope (SEM) images. As presented in Figure 6.4, 

we observed that the film presented pin-holes and big grains.  

 

 

 

 

 

 

Figure 6.4. View SEM images of a CsMAPbBr3 thin film on glass substrate at 

different magnification scales. 
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6.4.1.2 CsPbBr3 NPs. 
 

The photoluminescence spectra of CsPbBr3 solved in chloroform were recorded 

at room temperature. Figure 6.5 displays the PL spectra of CsPbBr3 NPs 

deposited either in one or five layers in a glass film.  
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Figure 6.5. PL spectra of CsPbBr3 NPs. Inset image: Perovskite NPs solved in 

chloroform under UV light. 

 
We can observe that when we increased the thickness of the active layer, the 

PL intensity increased as well.  The PL spectra presented a shift between the 

CsPbBr3 thin film deposited on glass by spin coating in inert conditions and the 

CsPbBr3 NPs solved in chloroform. (Figure 6.6). The perovskite thin film 

presented an emission at 521 nm while the perovskite solution at 512 nm. This 

shift was attributed to a change in the local strain of the NCs 2.  
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Figure 6.6.Normalized PL of CsPbBr3 in toluene and in thin film. 

 

A top view image of CsPbBr3 NCs is shown in Figure 6.7. We observed big 

clusters around throughout the film and pinholes. The low quality of the film 

could be one of the reasons for explaining that when we prepared devices we 

did not obtain any good result. 

  

 

Figure 6.7. Top view SEM image of CsPbBr3 NCs deposited on glass.  
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Comparing CsPbBr3 NCs with CsMAPbBr3 thin film (see Figure 6.4), this latter 

presented a better grain formation and smother film. Therefore, we could 

confirming that adding little amount of methylamonium (MA+) helps with the 

smoothness of the film.  

 

Transmission Electron Microscopy (TEM) was used to determine the size and 

composition of halide perovskite nanoparticles. TEM images (Figure 6.8) shows 

some spherical nanoparticles with a diameter lower than 10 nm in both cases. 

Comparing our TEM images with the paper already reported, we did not 

observe significant differences in their size and shape 17. 

 

 

 

 

 

Figure 6.8.TEM images of CsPbBr3 NPs with a size average of 2.1 ± 0.5  nm. 
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6.4.2.3 CsPbI3 QDs 
 

The absorption and the photoluminescence (PL) spectra of CsPbI3 QDs solved 

in hexane were recorded at room temperature and under air conditions (Figure 

6.9). As we expected, the emission spectrum presented a unique narrow peak 

at 670 nm with a 25 nm of FWMH. The absorption shows a shoulder at 340nm, 

400 nm and 485 nm. The quantum yield of CsPbI3 was 50%.  
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Figure 6.9. UV-vis absorption and photoluminescence spectra of CsPbI3 QDs 

solved in hexane and recorded at room temperature.  

 
TEM images were recorded to verify the size and shape of CsPbI3 QDs (see 

Figure 6.10). CsPbI3 QDs presented a cubic shape with an average size of 12 

nm, in agreement with the papers which described this synthesis.  
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Figure 6.10. TEM images of CsPbI3 QDs taken at different magnification scales 

with a size average of 12.42 ± 1.8 nm. 

 

6.4.2 Exchange anion  
 

The instability of cubic phase at room temperature is the main problem when 

working with CsPbI3 NCs. There are many publications trying to protect 

perovskite nanomaterial against degradation. For instance, Kamat et al.18 

published an halide exchange reaction procedure from CsPbBr3 to CsPbI3 

under air conditions. The exchange solution was made heating 68 mg of PbI2 , 

0.6 mL oleyamine, 0.4 mL oleic acid and 20 mL of ODE at 100 C until PbI2 

dissolved. First, we deposited 3 cycles of CsPbBr3 waiting 5 minutes before 

each deposition. Then, the film was soaked in the PbI2 solution to anion 

UNIVERSITAT ROVIRA I VIRGILI 
OPTOELECTRONIC PROPERTIES OF QUANTUM DOTS FOR BIOMEDICINE AND ENERGY-TO-LIGHT CONVERSION 
Sofia Paulo Mirasol 
 



Chapter 6 

 
 

 

158 
 

exchange during 5 s and heated at 120 C. Finally, PL spectra were obtained 

for all the films in order to corroborate if the anion exchange was successfully 

done. 

 

 

 

 

 

Figure 6.11. Films of CsPbBr3 and CsPbI3 during the anion exchange in air (top) 

and under UV lamp (bottom).  
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Figure 6.92. Normalized PL spectra of CsPbBr3 and CsPbI3 in thin films. The  

samples were excited at 410 nm and 450 nm respectively.                               

The λem(CsPbBr3 film) = 522 nm ; λem(CsPbI3 film) = 664 nm. 

 
As shown in Figure 6.12, the emission band of perovskite NCs changed from 

green to red region so indicating that the anion exchange was successfully 

performed. Nevertheless, as it can be seen in Figure 6.11, the films obtained 

were not homogeneous. Therefore, to solve this problem the anion exchange 

was done in solution instead of in film. We followed different strategies to 

exchange anion in solution and in air conditions. The optimal exchange solution 

was made heating 17 mg of PbI2 in 0.15 mL oleyamine, 0.1 mL oleic acid and 

5 mL of ODE at 100 C until PbI2 dissolved. This solution was added to 

CsPbBr3  NPs solution.  

 

From the emission band observed in the PL spectrum, the exchange anion was  

also successfully performed (Figure 6.13). However, the emission intensity 

decreased significantly and the emission band was broader in comparison to 

CsPbBr3. This could be due to instability of CsPbI3 NCs in air conditions. 
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Figure 6. 103. PL spectra of CsPbBr3 NCs and CsPbI3 NCs after excitation at 

330 nm and 380 nm respectively. 

 

Figure 6.14 shows top view SEM images of CsPbBr3 (Figure 6.14 top) and 

CsPbI3 (Figure 6.14 bottom) thin film deposited on glass substrates. Comparing 

both images, CsPbI3 presented a better film deposition and lower number of pin 

holes than CsPbBr3 films, after a few days the CsPbI3 films stopped to emit due 

to their instability in air.  
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Figure 6.114. SEM images of CsPbBr3 (top) and CsPbI3 (bottom). 

 

The following reaction may explain the perovskite NCs decomposition process:  

 

CsPbI3  CsI + PbI2 

2.5 CsPbBrxI1-x  CsPbBr3 + 1.5 CsI + 1.5 PbI2 

 

TEM images of CsPbI3 (Figure 6.15) showed different particle shapes.   
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Figure 6.15. TEM images of CsPbI3. 

 

In order to increase the stability of the CsPbI3 NPs, it has been described the 

possibility to replace oleic acid and oleyamine for phosphoric alkyl acid as 

passivating ligand because in previous works reported improved stability of 

colloidal CsPbX3 perovskite nanocrystals19. Also with this ligand, the anion 

exchange worked correctly because PL spectrum showed just one emission 

peak. However, when working with phosphoric alkyl acid as ligand, the PL 

intensity obtained was lower than with oleic acid (see Figure 6.16). Both 

capping layers were tried only once for anion exchange, so more tests should 

be carried out to confirm these preliminary results. 
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Figure 6.16. PL spectra of CsPbBr3 and CsPbI3 NCs passivated with two 

different capping ligands after excitation at 330 nm (CsPbBr3 NCs) and 380nm 

(CsPbI3-OA and CsPbI3-PA). 

 

 

To summarize this section, anion exchange through different methods was 

performed as an alternative of the direct CsPbI3 QDs synthesis. Due to the poor 

stability once the anion was exchanged, we decided to synthetize directly 

CsPbI3 NCs.  

 

6.4.3 Device results. 
 

Two different devices fabrication were performed to test perovskite based on 

the materials described: CsMAPbBr3 and CsPbI3. 

 

One of the devices fabricated in this work was a PeLED. It consisted in the 

fabrication of CsMAPbBr3 thin film sandwiched between a combination of a 

double hole transport layer and one electron transport layer. In Figure 6.17 a 

schematic illustration of the energy levels of the layers is reported 20. 
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PEDOT:PSS and PVK were used as hole-transporting layer and electron 

blocking layer and TmPYP as electron transport layer improving the electron 

injection from the cathode 21.  

 

 

Figure 6.17. Energy level diagram of the PeLED structure 20.  

 

 
The perovskite composition used for the thin film fabrication consisted of mixing 

two cations: cesium and methylammonium bromide. The addition of small 

amounts of CH3NH3
+ (MA) into the precursor solution decreased the number of 

the pinholes in the final film 16. 

Once the thin film was deposited, 40 μL of toluene was dropped  by spin-coating 

on top of the film to improve the roughness 22.  

Current density-luminance-voltage are shown in Figure 6.17. The maximum 

peak luminance was 35 Cd/m2 and the turn-on voltage 6.6 V.  

 

UNIVERSITAT ROVIRA I VIRGILI 
OPTOELECTRONIC PROPERTIES OF QUANTUM DOTS FOR BIOMEDICINE AND ENERGY-TO-LIGHT CONVERSION 
Sofia Paulo Mirasol 
 



Perovskites light emitting diodes 

 

 

 

165 
 

0 2 4 6 8 10
1E-5

1E-4

0.001

0.01

0.1

1

10

100

Voltage (V)

J
 (

A
/m

2
)

0.1

1

10

L
u

m
in

a
n

c
e

 (
c
d

/m
2
)

 

Figure 6.18. Current density (dark green line) and luminance (light green line) 

versus applied voltage of the PeLED using CsMAPbBr3 thin film as unique 

emissive layer. 

 
Figure 6.18 shows the electroluminescence spectra of PeLEDs using 

CsMAPbBr3 as emissive layer. The λmax was at 516 nm which agreed well with 

the photoluminescence wavelength. Moreover, as it can be seen in the 

electroluminescence spectra, there was not any emission wavelength shift 

when we applied higher voltage bias. CIE color coordinates were (0.146, 

0.492), see Figure 6.19).  
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Figure 6.19. Electroluminescence of ITO/PEDOT:PSS/PVK/CsMAPbBr3/ 

TmPyP/LiF/Al at room temperature (top) and its corresponding CIE color 

coordinates (bottom). 
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The second structure that we fabricated using CsPbI3 as unique emissive layer, 

TiO2 as electron  layer and Spiro-OMetad and MoO3 and hole transport layer  13. 

The energy levels, taken from the bibliography13, are shown in Figure 6.19.  

 

 

 

 
Figure 6.20. Estimated energy level alignment of the materials used to fabricate 

PeLEDs. 

 
The current and luminance versus voltage of PeLEDs is shown in Figure 6.20. 

Both synthesis and steps fabrications were performed in inert conditions due to 

the low stability of this materials in air conditions. The maximum peak 

luminance was 2 Cd/m2 and the turn-on voltage 3.2 V.  

 

CIE was calculated from the PL spectra instead of electroluminescence 

because we could not record the electroluminescence as the low stability of the 

diodes. CIE color coordinates were (0.716, 0.288) (see Figure 6.22). 
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Figure 6.21. IV (blue line) and luminance (green line) versus voltage curves. 

Inset image: perovskites LED while applying voltage. 

 

 

 

Figure 6.22. CIE of PeLEDs using CsPbI3 as emissive layer.  
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To sum up the optoelectronics results, Table 6.1 displays the final results using 

CsMAPbBr3 and CsPbI3 QDs as unique emissive layer in LEDs. In general the 

results were not as good as the ones reported in the literature 23. However the 

low turn-on voltage that CsPbI3-LEDs exhibited was very promising.  All the 

devices were measured in inert conditions, trying to avoid the device 

degradation.  

 

 

Table 6.1. Summary of the electrical properties of PeLEDs. 

 

Device 

Turn-on 

voltage Von 

(Va) 

Max. 

Luminance 

(Cd/m2) 

Current       

Efficiency 

(Cd/A) 

CsMAPbBr3 6.6 (6.7)a 35 (23)a 2·10-1 

CsPbI3 3.2 2.0 2·10-3 

Va turn on voltage average and luminance reported in the literature. Va is the turn-on 

voltage at 0.1 Cd/m2.  

 

6.5 Conclusions. 
 

Metal halide has emerged as a new luminescent materials, because their 

optoelectronic properties are interesting for many applications. In this chapter, 

we have summarized  the synthesis of materials and fabrication of devices 

performed during this thesis for the fabrication of efficient PeLEDs.  

 

The morphology of perovskite materials is a key parameter to explain their 

optical properties. The grain size and roughness can directly affect the final 

device efficiencies, properties assisted to short circuit insides the LEDs. Two 

strategies to obtain the desired morphology were successfully applied: 1) small 

amounts of CH3NH3Br into the precursor solution decreased the number of the 

pinholes in the case of CsMAPbBr3 films, and 2) small amounts of toluene 

during the spin coating improved the roughness too. 
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CsPbI3 NPs were obtained by using two different ways: 1) direct synthesis by 

hot injection and 2) indirect anion exchange from CsPbBr3 NPs. The aim was 

to fabricate a device which can be used as LEDs. Regarding the results, anion 

exchange was not stable and after few days the perovskites decomposed.  

 

Two PeLEDs using different device arquitecthure were fabricated. The first 

case, we used a double hole transport layer in order to improve the hole 

injection from the cathode to the active layer. We synthetized CsMAPbBr3 thin 

film as emissive layer and TmPyP was used as electron transport layer. The 

maximum luminance was 35 Cd/m2. In the second case, we finally achieved to 

prepare stable CsPbI3 NPs using a hot injection method working in inert 

conditions and we used a different device architecture because of the energy 

alignment of the materials. The luminance was 2 Cd/m2, concluding that a 

deeply devices optimization is needed. 

 

Regarding the final results, we can conclude that a further optimization on both 

synthesis and device fabrication is needed. The stability of the perovskites 

quantum dots is still the main limitation when applied as emissive layers. In 

addition, the spin coating deposition of the materials is still under study due to 

the roughness and the homogeneity of the layer. 

  

However, it is important to remark that this chapter 6 was developed during my 

3 months stay in NIMS (Japan) and consequently the optimization of the final 

device was affected by the lack of time.  
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A6 Annex. 
 

A6.1 Quantum yield. 
 

The quantum yield of CQDs was calculated using Rodhamine 101 as reference 

dye.  

The calculation was done using the following equation: 

𝑄𝑌 = 𝑄𝑌𝑟𝑒𝑓 (
𝐼𝑒𝑚 𝑠𝑎𝑚𝑝𝑙𝑒

𝐼𝑒𝑚 𝑟𝑒𝑓
) · (

𝐴𝑏𝑠𝑟𝑒𝑓

𝐴𝑏𝑠𝑠𝑎𝑚𝑝𝑙𝑒
) · (

𝑛𝑠𝑎𝑚𝑝𝑙𝑒

𝑛𝑟𝑒𝑓
)

2

 Equation A6.1 

 

Where QYref is the reference quantum yield, Iem is the area of the emission band, 

Abs is the absorbance excitation wavelength and η is the refractive index. 
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Figure A6.1. Absorbance spectra of CsPbI3 (dark red line) and Rodhamine 101 

(light red line) at room temperature.  
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Figure A6.2. Emission spectra of Rodhamine 101 (top) and CsPbI3 (bottom) 

measured at λexc=510nm at room temperature. 
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7 

Carbon Quantum dots in the 
emissive layer in LEDs. 

In this chapter, we report a facile synthesis of Carbon Quantum Dots (CQDs) 

using a hot injection method in order to obtain heavy metal free quantum dots. 

CQDs have been used as emissive layer in light emitting diodes obtaining white 

light emission. 
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7.1 Introduction. 
 

Over the past 15 years, technologies based on colloidal quantum dots have burst 

in both the academic and the industrial field 1 ,2. Quantum dots are defined as 

nanometer scale semiconducting crystals with a physical size smaller than the 

radius of the Bohr exciton, that, consequently, show quantum confinement. This 

means that, in general, the bandgap changes according to their size, and thus 

their optical properties.3 In addition, the shape can be tuned to rods, nanowires 

or dots using different capping ligands. Regarding the optical properties, they 

show broad absorption, narrow emission peaks and color purity, especially when 

compared to organic semiconductors. 

 

Due to these interesting optical properties, the nanocrystals have been used in 

optoelectronic devices like quantum dots light emitting diodes (QLEDs) that have 

emerged during the last years as the new LEDs generation due to better color 

definition over the entire visible spectrum 3,4,5. The structure of these devices 

consists of a sandwiched layer of emissive quantum dots between electrodes and 

charge transport layers. When a bias is applied, hole and electrons are injected 

and recombine radiatively in the quantum dot layer, which results in the emission 

of light.  

 

The most studied quantum dots were those composed of III-V elements such as 

GaP, InP or GaN and II-VI elements such as ZnS, CdTe, CdSe whose size 

ranges between 1-10 nm. More recently, perovskites based quantum dots are 

also being intensively studied due their optoelectronic properties similar to 

cadmium based quantum dots such as high quantum yield or narrow 

emission6, 7.To date, the best results are obtained using cadmium based or 

perovskite based quantum dots as emissive layer with a quantum yield higher 

than 80 %8 ,9 10,11 . 

 

However, these materials contain toxic elements such as cadmium, lead, or 

selenium. As an alternative, a new generation of fluorescent quantum dots based 

in carbon has recently emerged. Their low toxicity and biocompatibility is a good 
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alternative to heavy metal-containing nanomaterials. In addition, carbon quantum 

dots (CQDs) can be prepared using ordinary products like sugar or orange juice 

and can be solved in non-halogenated solvents such as ethanol or water12. The 

efforts of the research community have resulted in examples of carbon dots 

applied in bioimaging 13,14, sensors 15, hole transport material in solar cells 16 or 

light emitting diodes17. 

 

However, there are some limitations such as their low quantum yield and the color 

emission tuneability. Despite the efforts to improve the quantum yield, it remains 

lower compared to the cadmium-based quantum dots18,19. In addition, the origin 

of the photoluminescence emission of CQDs is still under study, because the 

reaction time does not modify the band gap and as consequence the emission 

wavelength of the quantum dots19, 20.  

 

In this chapter, we describe the use of carbon quantum dots as emissive layer 

for light emitting diodes. These type of devices combine the robustness given by 

the transition metal oxides in the charge transport layers with the emissive 

properties of the carbon quantum dots. In the literature, there are previous 

examples using carbon dots in organic electroluminescent devices, such as those 

provided by Zhang in 2013 and Wang in 2011,  used 1-hexadecylamine (HDA) 

as passivating ligand of CQDs that are applied as active layer for OLEDs 21,22. 

Other examples of devices using this material can be found in light converting 

phosphors for white LED23,24. 

 

Here we present a structure based on sandwiched device using ZnO as electron 

transport layer and Poly(9-vinylcarbazole) (PVK) in combination with 

molybdenum oxide as hole transport layer. PVK is a widely used polymer in LEDs 

due to its good conductivity and optical properties. We will show our studies with 

1-hexadecylamine as capping ligand with devices prepared by solution 

processing under ambient conditions. To the best of our knowledge, this is the 

first example of inverted device structure using CQDs as emissive layer.  
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7.2 Experimental part. 
 

CQDs were synthesized by a bottom-up approach in inert conditions. The 

synthesis of ZnO NPs is described in Chapter 3.  

 

7.2.1 Synthesis of CQDs. 
 

The synthesis of carbon quantum dots is done in a one-step hot-injection process 

according to the method reported by Fu Wang et al.25 and as it is described in 

Figure 7. 1. Typically, 15 mL of 1-octadecene (ODE) and 1.5 g of 1-hexadecyl 

amine (HDA) were stirred in a three-neck flask under inert conditions during 30 

minutes at room temperature. Then, the solution was heated up to 300 ºC. At this 

point, 1 g of citric acid was added as quickly as possible and the solution was 

stirred during 3 hours. Once the solution was cooled down at room temperature, 

acetone was added to precipitate the carbon quantum dots that were recovered 

after centrifugation at 4500 RPM during 20 minutes. Then, the supernatant was 

discarded and the solid was washed three times with hexane. The final solution 

was solved in hexane for further use.  

 

 
 

 

Figure 7. 1.Schematic illustration of the synthesis of CQDs. 
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7.3 Device fabrication. 
 

Patterned ITO (Indium doped Tin Oxide) coated glasses (Xinyan Technology, 

resistance 10 Ω/square, 15x15 mm) were cleaned with acetone for 15 minutes 

and 2-propanol for 15 minutes in an ultrasound bath. Cleaned ITO (Indium doped 

tin oxide) substrates were used as anode, on top of ITO a layer of ZnO (80 mg/ml 

in methanol) was deposited by spin coating at 5000 RPM 60 s and heated up 30 

minutes at 150 ºC. Polyethylenimine ethoxylated (PEIE 0.2 %wt 2-

methoxyethanol) was spin coated on top at 6000 RPM 60 s and annealed at 110 

ºC for 30 minutes. After that, the solution of carbon quantum dots in hexane with 

different two concentrations was spin coated at 1000 RPM 60 s and baked at 110 

ºC 10 minutes. Poly(N-vinyl carbazole) (PVK) dissolved in chlorobenzene (20 

mg/ml) was deposited on top of CQDs at 1000 RPM or 2000 RPM 60 s and 

annealed at 110 ºC 10 minutes. Both solutions were filtered with a PTFE 0.2 µm 

filter. Finally, thermal evaporation of 80 nm Au was done at 10-6 mbar. The final 

area of the devices is 9 mm2. 

7.4 Results and discussion. 
 

After the synthesis, the CQDs were characterized in solution and film. The 

physicochemical characterization of ZnO NPs is described in Chapter 3.  

 

7.4.1 Physicochemical Characterization. 
 

To analyze the chemical structure of the surface, Fourier Transform infrared 

(FTIR) was used (Figure 7. 2) confirming the presence of stretching vibrations of 

C=C and C=N at 1500-1600 cm-1 that are assigned to passivating HDA 

molecules  26,25. 
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Figure 7. 2. FT-IR spectrum of citric acid (CA), 1-hexadecylamine (HDA) and 

CQDs prepared with HDA. 

 

The size and the morphology of the CQDs were investigated by TEM (Figure 7. 3) 

and Dynamic Light Scattering (DLS) (Figure 7. 4). The average size between 

TEM images and DLS can differ because the DLS cannot distinguish between a 

large particle or an aggregation. The DLS measurement was recorded by 

intensity and by volume. In the first one, the intensity of the population depends 

on the number of particles with similar size in the sample, and the second one 

depends on the space occupied by a nanoparticle. Figure 7. 3 shows three 

different images of CQDs at different scales of magnification. The CQDs present 

a spherical shape and are well dispersed without any aggregation. The average 

size was estimated at 6 ± 1.9 nm.  
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Figure 7. 3. TEM images of CQDs at different magnifications. 
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Regarding dynamic light scattering, the sample was measured two times (red and 

green line), and both graphs displayed the average size distribution by intensity 

and by volume. In the first case, we observed some aggregates with a size of 

100 nm and 900 nm. We do not observe the same in DLS by volume because 

those larger particles are minority in the sample. From the data showed in Figure 

7.4, we estimate that the smaller particles have an average size of 5 nm.  

 

 

 

Figure 7. 4. DLS signal of CQDs-HDA. Size distribution by intensity and by 

volume. 
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The absorption and the photoluminescence (PL) spectra of CQDs in hexane are 

shown on Figure 7. 5. The sample was measured at room temperature. 
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Figure 7. 5. The absorption spectra (top) and emission spectra (bottom) obtained 

after excitation at different wavelength from 310 nm to 450 nm on the left in 20 nm 
increments, respectively at room temperature. 
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The CQDs-HDA show strong exciton absorption bands at 230nm and a shoulder 

at 365 nm in the UV-vis. These two bands are attributed to two different 

processes. The first band belongs to ππ* transition carbonyl group C=C bonds 

and the shoulder is attributed to nπ* transition related to amino-functionalized 

connected to the surface groups 27 ,20. PL emission is excitation dependent and 

thus the emission peak shifts from 496 nm to 548 nm depending on the excitation 

wavelength. This shift is attributed to a different radiative recombination process 

that happens inside the CQDs. Data obtained after excitation at 340 nm shows 

maximum emission at 460 nm with a full width at half maximum (FWHM) of 125 

nm, and PLQY of 44%.  

 

Even the origin of the photoluminescence mechanism in carbon dots is still under 

discussion, different explanations have been developed to explain this excitation 

wavelength dependence. For instance, Jiang et al. published that this 

dependence is correlated to two processes: an emission independent of the 

excitation wavelength from 275 nm to 400 nm and a second dependent emission 

to the excitation from 425 nm to 550 nm. They attributed the dual emission 

mechanism to the presence of organic fluorophore for the excitation- independent 

wavelength and carbogenic cores for the excitation dependent 27. Hu et al 

demonstrated that O-containing groups on sp2-hybridized carbon can induce a 

local distortion and then create different energy levels below the lowest occupied 

molecular orbital (LUMO). When the excitation wavelength is increased, different 

radiative recombination paths occurs. Thus giving rise to excitation dependent 

PL emission from the O-state (see Figure 7. 5)28. In other example, Zhu et al. 20 

explain that there are two photoluminescence mechanism, one from the core and 

other from the surface ligand that can be identified separately 29, 30. From our 

data, we assign the emission at different wavelength to the electronic transitions 

at the C=O groups, that will occur mainly at the core of the CQDs and the 

electronic transition at the C=N groups, which will take place at the surface of the 

CQDs where the surface passivation ligands are covalently attached.  
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To obtain more information about this point, the fluorescence decay lifetime of 

CQDs in solution (Figure 7. 6) was measured after excitation at 270 nm, 405 nm 

and 470nm using a multidimensional time correlated single photon counting 

method (TCSPC). The decay curves of Carbon quantum dots were fitted using a 

biexponential function shown in equation 7.1. The results shows two lifetimes that 

can be related with the two different radiative process: the fastest one was the 

recombination of the carriers at CQDs surface and the slowest was the carrier 

recombination at the CQDs core in good agreement with previous publications  31.  

 

𝑃𝐿(𝑡) = 𝐴1𝑒−(
𝑡

𝜏1
) + 𝐴2𝑒−(

𝑡

𝜏2
)  Equation 7.1 

 

Where A1 and A2 are the amplitude of the radiative lifetime and τ is the lifetime 

values.  
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Figure 7. 6. Experimental Fluorescence-decay curves of CQDs measured in solution 

after excitation at 270 nm, 405 nm and 470 nm at room temperature. The color solid line 

represent the biexponential fitted decay. 
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Table 7.1. CQDs measured lifetimes using TCSPC from the biexponential fittings of the 

decays at different excitation wavelength. 

 

λexc 270 nm 

 
A1 %) τ1 (ns) A2 (%) τ2 (ns) 

CQDs 93.8 4.79 6.2 19.50 

λexc 405nm 

 
A1(%) τ1 (ns) A2 (%) τ2 (ns) 

CQDs 99.5 3.80 3.27 14.82 

λexc 470 nm 

 
A1(%) τ1 (ns) A2 (%) τ2 (ns) 

CQDs 96.7 2.53 3.27 10.33 

 

 

 

It is worth noticing that the energy of the excitation wavelength is related to the 

lifetime of the decays, since longer lifetimes are observed when the excitation 

energy is higher. 

 

Finally, with the aim to determine the valence band and the conduction band of 

the CQDs, electrochemical cyclic voltammetry has been performed. Figure 7.7 

(top) shows the cyclic voltammetry of CQDs performed in dichloromethane 

whereas Figure 7. 7 (bottom) contains the square wave voltammetry. Both have 

been done using Ferrocene/Ferrocene+ (Fc/Fc+) as internal standard for 

electrochemical measurements with a reversible redox bands. As the solvent 

used during the electrochemical measurements was dichloromethane, the 

ferrocene oxidation/reduction bands are at 0.4-0.6 V. As CQDs-HDA present a 

unique oxidation band, we have used SQW in order to calculate the Conduction 

Band (CB) and Valence Band (VB) .The Conduction band was calculated by 

applying equation 7.2 and the valence band using the equation 7.4.  
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Figure 7. 7. Cyclic voltammetry (top) and Square wave voltammetry of CQDs 

using ferrocene (Fc/Fc+) as internal reference (bottom) recorded in 0.1M 
tetrabutylammonium hexafluorophosphate in dichloromethane at room 

temperature.  
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Where, Eox is the oxidation potential from the CV, Eo-o is the band gap and λ is 

the wavelength resulting of the intersection between the absorbance and the 

emission band, h is the Planck constant 6.62607004·10-34 m2 kg / s and c is the 

speed of the light 3·108 m/s.  

 

The redox potentials were estimated from the data shown in Figure 7.7 and 

equation 7.3. Finally, the Valence band and Conduction band levels were 

calculated using equations 7.3 and 7.4. 

 

    𝐸0−0 = h ·
c

λ
           Equation 7.2 

𝐸𝐶𝐵 =  −(𝐸𝑜𝑥 + 4.88)            Equation 7. 3 

𝐸𝑉𝐵 =  𝐸𝐶𝐵 +  𝐸𝑜−𝑜               Equation 7.4 
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Figure 7. 8. The normalized absorption and photoluminescence spectra of 

CQDs.in hexane. The intersection between the absorbance and 
photoluminescence spectra is at λ=480nm. 
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The band gap was calculated combining the data obtained from the 

electrochemical studies and that from the intersection wavelength between the 

absorbance and emission spectra of CQDs (Equation 7.2 and Figure 7.8).  

 

Table 7.2. Electrochemical parameters of CQDs. 

 

 𝐸𝑜−𝑜 𝐸𝑜𝑥 𝐸𝐶𝐵 𝐸𝑉𝐵 

CQDs 2.58 eV 0.86 eV -5.66 eV -3.13 eV 

 

7.4.2 Device characterization  
 

Inverted structure QLEDs were fabricated using ITO-covered glass and ZnO as 

electron transport layer, CQDs as emissive layer and PVK and MoO3 as hole 

transport layer (see Figure 7. 9). ZnO was fabricated using a method described 

by Frederik et al 32. As we mentioned previously, the combination of organic and 

inorganic layer in the devices reduce the problems of instability of OLEDs. Zinc 

oxide nanoparticles present electrical properties such as high electron mobility 

and lower balance band that makes them suitable for electron transport layer 

while forming compact layers that allow flexibility.  

 

Light emission occurs when the electrons from the cathode and the holes from 

the anode recombine radiatively in the emissive layer. Nevertheless the pinholes 

in the films can cause short-circuits, for that, different materials are deposited 

between the emissive layer and the cathode or anode to block the charges and 

avoid direct contact between electrodes. In our case, the zinc oxide is used as 

electron transport layer as well as hole blocking layer. A layer of Polyethylenimine 

ethoxylated (PEIE) was deposited between zinc oxide and carbon quantum dots. 

PEIE is a well-known surface modifier that can be easily deposited on top of ZnO. 

Some groups have reported that PEIE thin layer enhances electron 

injection/transport from the metal oxide and also induces uniform surface of the 

quantum dot layer 33, 34 due to the aliphatic amine groups that reduce the work 

function of ZnO35. PVK was deposited onto CQDs because it is a widely studied 
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hole transport layer showing excellent behaviors in combination with QDs and 

their optoelectronic properties are well known. 36 However, PVK was solved in 

chlorobenzene and deposited on top of the CQDs layer, which is partially soluble 

in this solvent, resulting in the removal of part of the CQDs layer with a direct 

negative impact on the emission of this layer 

 

 

Figure 7. 9. Description of the structure. 

 

 

The energy level alignment of carbon quantum dots is a crucial parameter to take 

into account to get efficient diodes. Figure 7. 10 shows the energy level diagram 

in the constructed devices, including the values for CQDs measured by ourselves 

and the HOMO and LUMO levels of the others materials that were taken from the 

bibliography 35. The fact that the conduction band of CQDs with the LUMO level 

of PVK are closer could be an inconvenience because the electron charges can 

bypass through the emissive layer and the electrons are not, decreasing the 

luminance of the device.  
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Figure 7. 10. Estimated Energy Level alignment of the materials used to fabricate the 

devices. 
 

The thickness of PVK and CQDs were optimized to control the charge injection, 

and improve the luminance efficiency. Figure 7. 11 shows the PL spectra of films 

of CQDs prepared from solutions of 5 mg/mL, 10 mg/mL and 20 mg/mL deposited 

onto a glass at 1000 RPM followed by annealing at 110 ºC 10 min. We observed 

that decreasing the concentration increase the PL intensity. We can explain this 

by considering the self-quenching and molecular packing. During the excited 

state lifetime, different process can occur such as quenching, energy transfer etc. 

These processes can lead to a reduction in fluorescence intensity. By definition, 

self-quenching is the intensity of the fluorescence that depends on the 

concentration of the fluorophores, in our case carbon quantum dots. Self-

quenching occurs when the excited fluorophore contact with an atom or molecule 

that facilitates non-radiative transitions. This transition depends on the 

concentration of the quenchers, in our case the concentration of carbon quantum 

dots. As can be seen in Figure 7.11, the intensity of CQDs emission is directly 

related to the concentration itself. 
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Figure 7. 11. Photoluminescence spectra of different CQDs concentrations 

deposit on top of a glass at λexc= 360 nm at room temperature.  

 

Once established the optimal CQDS concentration, 5 mg/mL, we prepared 

complete devices exploring different concentrations of the PVK layer. The quality 

of the layer of C-Dots onto ZnO/PEIE has been checked by AFM, observing the 

presence of aggregates that do not fully cover the layer underneath (See Annex). 

The deposition of PVK onto the C-Dots results in a homogeneous layer. The 

thickness of PVK was optimized because we observed that thicker PVK layer 

decreased the current density. (See Figure 7. 12 top) 

 

In Table 7.3 appears the optoelectronic parameters of the QDLEDs. As can be 

seen, the turn-on voltage decreased from 12 V to 6 V modifying the thickness of 

PVK. Figure 7. 12 display the current density-luminance voltage characteristics 

of the QDLEDs changing the thickness of PVK. We observed that the thickness 

of the HTL was a key parameter to take into account, because the luminance 

increased drastically when the thickness of the PVK decreased. This happens 

because of the lower series resistance when using a thinner PVK layer that 

balances the charge injection from both electrodes. On the other hand, and as 
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we mentioned before, PVK was solved in chlorobenzene, where CQDs are 

soluble as well. This partial solubilization of the active layer can explain the high 

current densities observed in the devices. On the other hand, and as far as we 

know, the obtained current efficiency values are higher than those reported 

previously in quantum dot LEDs containing C-Dots as single emitter. 
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Figure 7. 12.  Current density (top), luminance versus applied voltage (bottom) as 

a function of the thickness of the PVK layer. Inset picture of a QDLEDs using 
CQDs as emissive layer.  
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Table 7.3 Summary of the device performances. Von is the turn-on voltage at 0.1 

Cd/m2. 
 

device PVK 

Thickness 

Turn-on 

voltage 

Von (V) 

Max. 

Luminance 

(Cd/m2)a 

Current       

Efficiency 

(Cd/A) 

1 30nm 10.5 7(6.5) 0.070 

2 15mn 5 21(17) 0.060 

aThe average Luminance reported in round brackets. 

 

Figure 7.13 shows the electroluminescence spectra (EL) of the as-prepared 

LEDs and the CIE color coordinates of (0.284, 0.291), which is close to the pure 

white light (0.33, 0.33). The emission encompass a broad range of wavelengths 

that result in white light emission. It is worth to mention that white light emitting 

diode are usually constructed by mixing nanoparticles emitting at different 

wavelengths Using these CQDs which present a broad emission band, we are 

able to obtain white light using just one type of nanoparticles. 

 

The origin of the white color using an only emitter is still under discussion. For 

example, Wang and collaborators37 reported that white light emission was 

associated with energy transfer among various emitting centers in the CQDs, 

corresponding to different energy transitions. As we mentioned before, two 

radiative mechanisms in the CQDs involving different energies: one originating in 

the core with slower lifetime and a second process that is faster and originates in 

the surface of CQDs.  
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Figure 7. 13. Electroluminescence of ITO/ZnO:PEIE/CQDs/PVK/MoO3/Au at room 

temperature. The stars points noisy peaks during the measurement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7. 14.  CIE color coordinates of QLEDs with CQDs as emissive layer.   

 

 

UNIVERSITAT ROVIRA I VIRGILI 
OPTOELECTRONIC PROPERTIES OF QUANTUM DOTS FOR BIOMEDICINE AND ENERGY-TO-LIGHT CONVERSION 
Sofia Paulo Mirasol 
 



Carbon Quantum dots in the emissive layer in LEDs 

 

 

 

201 
 

Figure 7.15 shows different pictures taken while the applied voltage increased. It 

can be seen a shift color from green to white while the applied voltage increased.  

As previously mentioned, the photoluminescence decay can be fitted in a 

biexponential curve, concluding that two radiative mechanism happens inside the 

CQDs. Furthermore, there is a change in the color emission and intensity of the 

devices when the injection current increases. This means that the injection 

current controls the activation of the two radiative process that happen inside the 

CQDS. The combined emission from different energy states results in white light 

emission at an adequate current injection.  

 

 

 

Figure 7. 15. Light emission at different applying voltages from the same device 

(from 4 V to 7 V).  

To confirm that CQDs were responsible of the white light emission together with 

PVK, we fabricated a LEDs without CQDs. Figure 7.16 shows an example with 

the structure glass/ITO/ZnO:PEIE/PVK/MoO3/Au and the picture inside shows 

that a diode emitted in a violet color. We used the same spin coating conditions 

to deposit PVK in order to obtain 30 nm of thickness. The turn on voltage was 

11.2 V and the maximum of luminance was 2 Cd/m2. The higher turn-on voltage 

and the lower current density reflected the higher resistance in the device. The 

efficiency using PVK as emissive layer was too low because the device 

fabrications conditions were optimized to work with the final structure: 

ITO/ZnO:PEIE/CQDs/PVK/MoO3/Au. With these results, our hypothesis is 

confirmed, and to obtain white light emission, both PVK and CQDs were needed.  
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Figure 7. 16. Current density (blue line) and luminance (green line) versus applied 

voltage of the HyLED made without CQDs. Inset: HyLED using PVK as emissive 
layer. 

 

To end up this chapter, in the Annex 7.7, there are three examples of diodes 

measured three times with a difference of 2 minutes to check if the luminance is 

still constant. We observed that our devices were not stable and after few voltage 

scans their luminance decreased.   

 
 

7.5 Conclusions. 
 

In summary, the synthesis of carbon dots has been achieved using a bottom up 

process using citric acid as carbon source and 1-hexadecylamine as capping 

ligand. The characterization of the optical and electrochemical characteristics 

indicate that the nanoparticles are great candidates to be used as active layer in 

optoelectronic devices.  
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In this work, we have demonstrated their applicability as a unique emissive layer 

to obtain white light emission without the needed to mix blue, green and red 

quantum dots, which is a great advantage as simplifies further the device 

multilayer structure. It must be noticed that this preliminary results require further 

optimization of the devices in order to reduce the high current density values of 

the devices provoked by an unbalanced charge injection; Also a further 

optimization of the CQDs production protocols will be needed to maximize their 

quantum yield, being both parameters essentials to obtain outstanding QDLEDs 

performances.  

 

Finally, to our knowledge, this is the first example of such device architecture that 

includes carbon dots in the emissive layer. Taking into account the lack of toxic 

elements, the green chemistry procedure for their synthesis and the easy-to-

make device fabrication by solution processing (spin coating) under air 

conditions, highlighting the potential of the method to be up-scaled in roll-to-roll 

devices.   
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A7 Annex 
 

A7.1 Quantum yield 
 

The quantum yield of CQDs was calculated using Couramine 102 as reference 

dye.  
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Figure A7. 1. Absorbance spectra of CQDs-HDA (green line) and Couramine 102 

(blue line) at room temperature.  
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Figure A7. 2. Emission spectra of CQDs-HDA (top) and Couramine 102 (bottom) 

measured at λexc=340nm at room temperature. 
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The calculation was done using the following equation: 

𝑄𝑌 = 𝑄𝑌𝑟𝑒𝑓 (
𝐼𝑒𝑚 𝑠𝑎𝑚𝑝𝑙𝑒

𝐼𝑒𝑚 𝑟𝑒𝑓
) · (

𝐴𝑏𝑠𝑟𝑒𝑓

𝐴𝑏𝑠𝑠𝑎𝑚𝑝𝑙𝑒
) · (

𝑛𝑠𝑎𝑚𝑝𝑙𝑒

𝑛𝑟𝑒𝑓
)

2

 Equation A7.1 

 

Where QYref is the reference quantum yield, Iem is the area of the emission band, 

Abs is the absorbance excitation wavelength and η is the refractive index. 

 

A7.2 AFM images. 
 

 

 
 

ITO/ZnO/PEIE/CQDs ITO/ZnO/PEIE/CQDs/PVK 

 

Figure A7.3. AFM images of the layers formed by (up) C-Dots onto 

ITO/ZnO/PEIE (phase), and (down) comparison of the morphology of the 

ITO/ZnO/PEIE/C-Dot layer with the PVK onto ITO/ZnO/PEIE/C-Dots at the 

same magnification scale. 
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A7.3 Diodes. 
 

Three different diodes were measured every two minutes to check their lifetime 

and quality of the light emission. As can be seen in the following images, the 

emission intensity was not constant and after 24 hours we did not observe any 

light emission.  

 

In general, we observe that the first measurement gives lower turn-on voltages 

and higher luminance. After some measurements, the turn-on voltage increased 

although the luminance decreased. The variation of the current density with 

applied voltage follow the same trend regardless of the experiment. 
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Sample 1 
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Figure A7. 4. Current density (Top) luminance versus applied voltage (bottom). 

The diode was measured three times with a difference of 2min between each 
measurement.  
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Sample 2 
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Figure A7. 5. Current density (Top) luminance versus applied voltage (bottom)The 

diode was measured three times with a difference of 2min between each 
measurement.  
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Sample 3 
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Figure A7. 6. Current density (Top) luminance versus applied voltage (bottom)The 

diode was measured three times with a difference of 2min between each 
measurement.  
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Carbon Quantum Dots as 
selective contact for LEDs. 

SS AND MoO3.In this chapter, the results of the application of Carbon Quantum 

dots using different capping ligands as hole transport material in LEDs are 

shown. The performance of CQDs is compared to that of the two most widely 

used hole transport layer (HTL), PEDOT:P 
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8.1 Introduction  
 

As we mentioned in Chapter 7, Carbon quantum dots (CQDs) have emerged as 

alternative novel materials to heavy metal based quantum dots for optoelectronic 

applications and bioapplications 1,2. In this chapter, we show the results of using 

CQDs as hole selective contact in HyLEDs.   

 

The most studied applications of CQDs have been as emissive layers, due to 

their luminance properties, in light-emitting diodes (LEDs). For instance, Yuan et 

al. published the synthesis of CQDs emitting from blue to red to fabricate different 

light-emitting diode (LEDs)3. Zhu et al. reported the synthesis of blue, green and 

red CQDs to obtain white light emitting diodes using composite films with 

polyvinylpyrrolidone4. 

 

On the other hand, due to their good carrier mobility values, some authors have 

reported the use of carbon quantum dots as interlayer in LEDs 5 6. For instance, 

Park et al. deposited a thin layer of Nitrogen-Doped Carbon dots to augment the 

carrier injection from the hole transport layer to the emissive layer. They 

deposited a thin layer between PVK (hole transport layer) and the CdSe/CdZnS 

QDs (Emissive layer). They showed that the current density increased, improving 

the luminescence of the QD layer 7. Know et al. described the synthesis and 

application of CQDs capped with different ligands as transport layers in 

transistors relating their charge mobilities to the chain length of the CQDs surface 

ligands 8.  

 

Our aim in this chapter is to test the CQDs as hole transport layer in hybrid light 

emitting diodes (HyLEDs), taking into account their great carrier mobility, the 

solution processability and the versatility of the CQDs. In order to check their 

performance, we have compared these new material based on carbon with two 

of the most widely used hole transport layer (HTL): (1) poly(3,4-

ethylenedioxythiophene): poly(styrene sulfonate) PEDOT:PSS, which is solution 

processed, and (2) MoO3 which can be either evaporated or processed by 

solution. 
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In the case of MoO3, there are many papers describing their strong p-type 

character and their beneficial influence in the performance of HyLEDs9. However, 

the nanoparticles of MoO3 require high annealing temperatures when they are 

deposited by solution-processing to achieve good charge transport properties. 

For example, Girotto et al. reported a solution processed MoO3 to use as HTL in 

organic solar cell. They studied the relation between the annealed temperature 

and the power conversion efficiency PCE (%), concluding that the optimal 

temperature to treat solution-processed MoO3 was 275 ºC 10. 

 

On the other hand, PEDOT:PSS is the most used HTL in optoelectronic devices 

because of its good chemical and physical properties such as high transparency, 

smooth surface morphology, thermal stability, water solubility and solution 

processability, making this polymer widely popular in solution processed 

optoelectronic devices11 12. Nevertheless, PEDOT:PSS presents two main 

drawbacks: 1) their acidic nature that may decrease the stability of the device 

and 2) depending on the device structure, the current injection from the cathode 

and anode may unbalance. One of the solution that some groups have been 

working with is to dope PEDOT:PSS in order to modify its work function to help 

the carrier injection. For instance, Song et al. doped PEDOT:PSS with graphite 

oxide to improve the charge injection balance13. Other examples have been 

reported about doping PEDOT:PSS with metals, such as gold, to increase the 

hole injection and as consequence the External quantum Efficiency (EQE)14. 

 

In this chapter, we report the tests with CQDs in order to expand the research 

into new materials for HTL that fulfill the requirements discussed above such as 

good hole injection balance, lower annealing temperature, environmentally 

friendly processing, and easy processability. In addition, it is a material with a 

great scalability potential in terms of synthesis and deposition as they can be 

adapted to be deposited via inkjet printing and roll-to-roll techniques.  
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We have prepared different sets of carbon quantum dots with capping ligands of 

different nature: urea, ethylendiamine, p-phenyldimamine and 1-hexadecylamine 

(HDA). Surface ligands are an essential component of Quantum Dots since 

variations in the ligand affect QDs aggregation, shape and size. In addition, the 

surface ligands decrease the number of defects once deposited forming the HTL, 

improving the optoelectronic properties of the materials.15 16.  

 

For this study we fabricated an inverted hybrid light emitting diodes using ZnO 

nanoparticles (NPs) as electron transport layer, F8BT (poly(9,9-dioctylfluorene-

alt-benzothiadiazole) as emissive layer and evaporated metal electrodes. ZnO 

NPs are used due to their easy synthesis, formation of transparent films and good 

electron mobility. F8BT is a widely used polymer emitting in the yellow-green 

region with an emission band at 550 nm (Figure 8.1). The annealing temperature 

of F8BT is 155 ºC, which is the transition temperature from the glassy to the 

rubbery state reported in the bibliography17. The metal electrode was gold, which 

is inert in air and permit the performance of the device without encapsulation or 

with the use of mild protecting layers.  

a)                                                                         b) 
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Figure 8. 1. a) Photoluminescence emission spectra of F8BT and b) its molecular 
structure. 

 
 

8.2 Material Synthesis and characterization. 
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The synthesis and characterization of ZnO NPs were described in Chapter 3. 

 

8.2.1 Synthesis of Carbon based quantum dots. 
 

Two approaches for the synthesis of CQDs have been followed: hydrothermal 

and hot injection method. As we mentioned in the Chapter 1 both methods are 

bottom up procedures to obtain CQDs. The selection of the approach depends 

on the capping ligand and the synthesis’s temperature. 

 

 

Figure 8. 2. Molecular structures of the reactants and capping ligands used to 

synthetize the CQDs. 

 

8.2.1.2 Hydrothermal approach 
 

Briefly, 1.051g of citric acid, and 0.541 g of p-phenyldiamine 18 or 335 µL of 

ethylendiamine 19, depending on the desired capping ligand, were dissolved in 

10 mL H2O. The solution was transferred to a poly-(tetrafluoroethylene) Teflon-

lined autoclave (120 mL) and heated at 200 ºC for 5 h with a ramp 5 ºC/min. After 

the reaction, we obtained a brown-black solution. Then, the solution was 
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centrifuged to remove the largest particles at 4500 RPM. Finally, CQDs were 

dispersed in water.  

 

To synthetize CQDs using urea as capping ligand, 20 1.051 g of citric acid and 2 

g of urea were solved in 10mL of dimethylformamide (DMF). The solution was 

transferred to a poly (tetrafluoroethylene) Teflon-lined autoclave (120 mL) and 

heated at 160 ºC for 16 h. The reaction was centrifuged, and washed three times 

at 4500 RPM with a mixture of ether/ethylacetate (1:4). The final solution was 

solved in ethanol 50 mg/mL. 

 

8.2.1.3 Hot injection approach 
 

The synthesis of carbon quantum dots was carried out according to the method 

reported by Fu Wang et al.21 15mL of 1-octadecene (ODE) and 1.5 g of 1-

hexadecylamine (HDA) were stirred in a three neck flask under inert conditions 

during 30 min at room temperature. Then, the solution was heated up to 300 ºC. 

At this temperature, 1 g of citric acid was added as quickly as possible and the 

solution was stirred during 3 hours. Once the solution was cooled down at room 

temperature, acetone was added to precipitate the carbon quantum dots and 

centrifuged 4500 RPM during 20 min. Then, the supernatant was discarded and 

the solid was washed three times with toluene. The CQDs were dispersed in 

hexane.  

8.3 Device fabrication. 
 

Patterned ITO (Indium doped Tin Oxide) coated glasses (Xinyan Technology, 

resistance 10 Ω/square, 15x15 mm) were washed once with acetone and twice 

in isopropanol. ZnO NPs were spin coated onto ITO at 5000 RPM 1min, followed 

by annealing at 150 ºC during 3 hours. Then, F8BT (30 mg/mL p-xylene) was 

deposited on top of the zinc oxide at 2000 RPM during 1 min followed by baking 

at 155 ºC during 30 min. The different CQDs and PEDOT:PSS were deposited 

on top of the F8BT using the following spin coating conditions and annealing 

temperature: 
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 PEDOT:PSS (1:6, H2O/IPA) Clevious P VP Al 4083 v=3000 RPM; t=30 seg ; 

120 ºC 15 min 

 CQDs-p-phenyldiamine (20 mg/mL) (2:1) (H2O/IPA) v=2000 RPM; t=30 seg 

; 120 ºC 30 min. 

 CQDs-ethylendiamine (20 mg/mL) (2:1) (H2O/IPA) v=2000 RPM; t=30 seg ; 

120ºC 30 min. 

 CQDs-hexadecylamine (20 mg/mL) (hexane) v= 2000 RPM ; t=30 seg ; 120 

ºC 30min. 

 CQDs-urea (20 mg/mL) (2:1) (H2O/IPA) v=2000 RPM; t=30 seg; 120 ºC 30 

min. 

  MoO3 (15 nm) was thermally evaporated on top of F8BT.  

Finally, a layer of 100 nm of gold was thermally evaporated under high vacuum 

(1·10-6 bar) on top of the HTL defining an active area of 9 mm2. Figure 8.3 shows 

the final device structure and the thickness of each layer. These values were 

measured with a profilometer as explained in Chapter 3.  

 

 

Figure 8. 3. Description of a multilayer LED indicating the thickness of each layer. 
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8.4 Results and discussion. 
 

This section describes the characterization of the Carbon Quantum Dots, the thin 

films and the complete devices.  

 

8.4.1 Structural characterization of CQDs. 
 

The surface and structural composition of CQDs was studied by FT-IR. The size 

and shape of CQDs were investigated by Transmission electron microscopy 

(TEM) and Dynamic Light Scattering (DLS). The average size between TEM 

images and DLS can differ because the DLS cannot distinguish between a large 

particle or an aggregation and the size of the CQDs are in the quantification limit 

of the DLS. The DLS measurement was recorded by intensity and by volume. In 

the first one, the intensity of the population depends on the number of particle 

with similar size in the sample, and the second one depends on the space that a 

nanoparticle takes up. As a preliminary conclusion, it is clear that the purification 

is the bottleneck during the synthesis of CQDs because all of them present larger 

particles in solution. However, those particles were not the majority and when the 

graph is measured by volume the largest particles were not listed.  

 

a) CQDs-HDA. 

 

The FT-IR analysis of CQDs passivated with 1-hexadecylamine was performed 

at room temperature. Figure 8.4 shows the FT-IR spectrum which presents two 

stretching bands at 1500-1600 cm-1 corresponding to C=C and C=N vibration. 

The two stretching bands at 2900 and 2800 cm-1 belong to C-H vibration.  
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Figure 8. 4. FT-IR spectrum of CQDs-HDA. 

 

We performed dynamic light scattering to measure the average particle size.  

(Figure 8.5). The sample was measured two times (red and green line), and both 

graphs displayed the average size distribution by intensity and by volume. In the 

first case, we observed that the particle size is 1 nm, 100 nm and 900 nm of 

average. We did not observe the same in DLS by volume, because those larger 

particles were minority in the sample. The particles size of 1 nm can be attributed 

to the presence of CQDs in the solution.  
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Figure 8. 5. DLS signal of CQDs-HDA. Size distribution by intensity (top) and by 
volume (bottom). 

 
Transmission electron spectroscopy (TEM) image shows CQDs of 3.6 ± 0.6 nm. 

(Figure 8.6).  
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Figure 8. 6. TEM images of CQDs-HDA at different magnifications. The average 

size was 3.6 ± 0.6 nm. 

 
b)  CQDs-urea. 

 

The FT-IR analysis of CQDs passivated with urea was performed at room 

temperature. Figure 8.7 shows the FT-IR spectrum which present stretching band 

at 3250 cm-1 corresponding to –N-H vibration, vibration of –OH at 3410 cm- 1 and 

C=C at 1600 cm-1. 
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Figure 8. 7. FT-IR spectrum of CQDs-Urea. 
 

 

Figure 8.8 shows the CQDs-urea DLS. The sample was measured twice (red and 

green line) and the measurements were done with the same solution at different 

times. This can modify the final profile graph because when the laser passes 

through the sample, the laser does not to interact with the same particles. We 

observed the same large particles that in the previous case, although those 

particles were not the majority because in the second graph they did not appear. 

The average size of CQDs-urea was estimated at 5 nm.  

 

 

UNIVERSITAT ROVIRA I VIRGILI 
OPTOELECTRONIC PROPERTIES OF QUANTUM DOTS FOR BIOMEDICINE AND ENERGY-TO-LIGHT CONVERSION 
Sofia Paulo Mirasol 
 



Chapter 8 

 
 

 

230 
 

 

 

Figure 8. 8. DLS signal of CQDs-urea. Size distribution by intensity (top) and by 
volume (bottom). 

 

Figure 8.9 displays the average size of CQDs-urea measured by TEM: 45.7 ± 

13.6 and 5.4 ± 1.0 nm. We observed large particle meaning that the CQDs tends 

to aggregate. 
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Figure 8. 9. TEM images of CQDs-urea at different magnifications.  

 

 

c) CQDs-Ethylendiamine. 

 

The FT-IR analysis of CQDs passivated with ethylendiamine was performed at 

room temperature. Figure 8.10 shows the FT-IR spectrum which present a 

stretching band at 3250 cm-1 corresponding to –N-H vibration, a stretching band 

at  410 cm-1 which corresponds to the -OH ,the vibration of C=C at 1600 cm-1 and 

C=O at 1500 cm-1. 
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Figure 8.10. FT-IR spectrum of CQDs-Ethylendiamine. 
 

 

We performed dynamic light scattering to measure the average particle size.  

(Figure 8.11). It was measured twice (red and green line), and both graph 

displayed the average size distribution by intensity and by volume. In the first 

case, we observed some aggregates with a size of 100 nm and 900 nm. We did 

not observe the same in DLS by volume because those larger particles are 

minority. The average particle size was 9 nm. As we mentioned, there may be a 

difference between the TEM analysis and DLS because the size of CQDs are in 

the quantification limit of the instrument.  
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Figure 8. 11. DLS signal of CQDs-ethylendiamine. Size distribution by intensity 
(top) and by volume (bottom). 

 

Figure 8.12 shows the TEM image of CQDs-ethylendiamine. We observed some 

particles bigger than 10 nm because we cannot control the growth of the particles. 

The average size of CQDs-urea was 23.9 ± 5.8nm and 3.3 ± 0.70nm. 
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Figure 8.12. TEM images of CQDs-ethylendiamine at different magnifications.  

 
 
d) CQDs-p-phenyldiamine. 

 

The FT-IR analysis of CQDs passivated with p-phenyldiamine was performed at 

room temperature. Figure 8.13 shows the FT-IR spectrum which present 

stretching band at 3250 cm-1 corresponding to –N-H vibration, vibration of –OH 

at 3410 cm-1 ,C=C at 1600 cm-1 and C=O at 1500cm-1. 
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Figure 8.13. FT-IR spectrum of CQDs-p-phenyldiamine. 

 
We performed dynamic light scattering to measure the average particle size. The 

sample was measured twice (red and green line), and both graphs displayed the 

average size distribution by intensity and by volume (see Figure 8.14). In the first 

case, we observed some aggregates with a size of 100 nm and 900 nm. The 

average size of CQDs-p-phenyldiamine were 20 nm and 500 nm.   
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Figure 8.14. DLS signal of CQDs-p-phenyldiamine. Size distribution by intensity 
(up) and by volume (down). 

 
 

TEM images show the presence of particles bigger than 10 nm because we 

cannot control the growth of the particles. The average size of CQDs-p-

phenyldiamine was 31.7 ± 5.4 nm. (Figure 8.15). 
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Figure 8.15. TEM images of CQDs-p-phenyldiamine at different magnifications.  
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8.4.2 Physicochemical characterization of CQDs. 
 

All measurements were done in solution. Figure 8.16 (top) shows the 

spectroscopic features of the CQDs. According to the literature, absorption bands 

between 300 and 350 nm are related to the intrinsic transitions of carbon core 

20  ,22. The bands that appear from 350 nm to 600 nm, are assigned to the surface-

related states.  

 

CQDs-ethylendiamine present a strong absorption band at 240 nm assigned to 

the carbon core, another strong absorption at 343 nm and a shoulder at 450 nm 

related to the C=N group of surface states. CQDs-p-phenyldiamine present two 

shoulders at 272 nm and 340 nm, which are assigned to carbon core and surface 

state respectively. CQDs-urea present an absorption band located at 245 nm 

attributed to an n-π* transition of C=C and 300 nm is attributed at amino-

functionalized surface of CQDs.5 Finally, CQDs-HDA present an absorption band 

at 230 nm and a shoulder at 345 nm. The first one is assigned to the n-π* carbon 

core and the second one to the surface states.23 
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Figure 8. 16. The absorbance (top) and emission (bottom) spectra of CQDs with 

different capping ligands in solution at room temperature.  

 

The PL spectra is excitation wavelength dependent, as reported in the literature 

and shown in the Annex 8.7.2 In all the cases, the emission peak of CQDs 

presents a red-shift as the excitation wavelength moves from 310 nm to 450 nm. 
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As an example, Figure 8.16 shows the PL spectra of all CQDs in solution 

recorded at room temperature at a specific wavelength. As can be seen, all the 

CQDs present a unique peak with a FMWH of  50 nm. 

 

As it has been explained in Chapter 7, the origin of the photoluminescence is still 

under discussion by the scientific community. However, we should explain in 

brief, and from our point of view, that the origin of the PL could be explained from 

the carriers recombination in the core and in the surface of CQDs.   

 

Table 8.1 shows all the data extracted from the spectroscopic measurements 

under a certain wavelength excitation. The quantum yield was calculated using a 

dye as reference, as reported in Chapter 3. The specific methodology to 

calculate the QY of these samples is showed in the Annex 8.7.1.  

 

Table 8. 1. Optical parameters of CQDs in solution. The quantum yield was 

estimated using Couramine 153 or Couramine 102 as reference dye. 

 

Capping ligand λmax PL 

(nm) 

FMWH 

(nm) 

QY 

(%) 

Ethylendiamine 424 45 43 

p-phenyldiamine 444 63 8 

Hexadecylamine 452 61 40 

Urea 452 47 35 

 

 

The most interesting data that we extract from Table 8.1 is the poor quantum 

yield of CQDs-p-phenyldiamine. It is important to point out how the surface ligand 

is important when we synthetize Quantum dots because they can reduce the non-

radiative recombination mechanism improving the quantum yield. The ligands 

with monodental alkyl chains can cover the CQDs surface creating a more 

compact layer, reducing the number of superficial defects.  
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Carbon quantum dots emission lifetimes were measured by Time-Correlated 

Single Photon Counting (TCSPC) to have a better understanding of the behavior 

of the different radiative processes that can occur in the CQDs after light induced 

excitation (see Figure 8.17).  
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Figure 8. 17. Time-Resolved Photoluminescence (TRPL) decays of CQDs in 
solution. The samples were recorded exciting at λexc= 470 nm at room temperature 

in solution. The color solid line represents the exponential fitted decay. 
 

 

As can be seen in Table 8.2, the profile decays can be fitted by a bi-exponential 

model (equation 8.1) suggesting the presence of two different relaxation 

mechanisms, one originated in the core and the second, that is the fastest, 

originating in the surface. Regarding the results, we observed that those CQDs 

passivated with urea and HDA present the largest life time decays while the ones 

which we used Ethylendiamine present the shortest one. This parameter is 

important to take in account because they can give us information about charge 

dynamics and their influence in the final device performance.  
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𝑃𝐿 𝜏(𝑡) = 𝐴1𝑒−(
𝑡

𝜏1
) + 𝐴2𝑒−(

𝑡

𝜏2
)    Equation 8.1 

 

Where A1 and A2 are the amplitude of the radiative lifetime and 𝜏 represent the 

lifetime values.  

 

Table 8. 2. Time-Resolved Photoluminescence (TRPL) lifetimes obtained by 

fitting the data shown in Figure 8.4 by Equation 8.1. 

 

 

 

 

 

 

 

 

EDA= Ehtylendiamine, PPD=p-phenyldiamine 

 

The energy alignment was measured by electrochemical methods in order to 

determine the valence band (VB) and conduction band (CB) level. As CQDs just 

presented non-reversible processes, square wave voltammetry technique was 

used. The curves are shown in the Annex 8.7.3 whereas the result of the 

calculations are in Table 8.3. 

 

 

 

 

 

 

 

 

 

λexc 470 nm 

 
𝜏1  (ns) 𝜏2   (ns) 

CQDs-EDA 2.40 ± 0.14 5.09 ± 0.10 

CQD-HDA 2.81 ± 0.12 9.25 ± 0.11 

CQDs-Urea 3.30 ± 0.11 9.07 ± 0.13 

CQDs-PPD 1.48 ± 0.04 5.86 ± 0.05 
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Table 8. 3. Electrochemical properties of CQDs measured in dichloromethane 

solution, PEDOT:PSS and MoO3.   

 

HTMs 𝐸0−0 (eV) Valence band/Conduction band 

(eV) 

CQDs-EDA 3.07 -5.52/-2.45 

CQDs-PPD 2.81 -5.12/-2.07 

CQDs HDA 3.36 -5.70/-2.34 

CQDs Urea 2.93 -5.84/-2.90 

PEDOT:PSS 

MoO3 

3.00 

2.80 

-5.20/-2.20 

-9.50/-6.70 

   

Eo-o= Energy for the energy transition between the lowest vibrational ground state 

and the lowest vibrational excited state.  

 

8.4.3 Determination of the Hole mobility 
 

In order to study how CQDs works as solid layer, we measured the hole mobility. 

These hole mobility values will allow the determination of the maximum thickness 

the different layers can achieve until transport losses become relevant and thus 

a limitation in the final performance of the device. Hole mobility values were 

calculated from hole only devices IV curves. The procedure to build hole only 

devices and their measurements is described in Chapter 3. Figure 8.18 shows 

the schema of the hole only devices structure and the measurement of the current 

density versus applied voltage. The data were fitted using the model of space-

charge limited current 24. 

 

𝐽𝑆𝐶𝐿 =
9

8
∈0∈𝑅 𝜇ℎ

𝑉1
2  

𝐿1
3            equation 8.2 
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Figure 8.18. Schema of a hole-only device (top). Current-voltage curves for hole-
only devices prepared with different CQDs (bottom). 

 

The results are listed in Table 8.4, which shows the average values of hole 

mobility of different diodes. Comparing the values obtained for the CQDs with 

PEDOT:PSS and evaporated MoO3, the mobility values are clearly lower. The 

charge transport depends on several factors like the structure, purity of materials, 

the nature of capping ligands etc. Regarding the effect of the chain length, HDA 

shows the higher mobility values while the lower is observed in the p-

phenyldiamine sample8. This result is in agreement with our previous observation 

about the lower QY and lifetime values and reinforces the hypothesis that the 

nature of the ligands affects the superficial defects of CQDs and influences the 

optoelectronic parameters of the CQDs.  
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Table 8. 4. Hole mobilities of CQDs using different amines as capping ligands. 

Carbon quantum dots Hole mobility value (cm2V -1 s -1 ) 

CQDs-urea  2.92E-06 ± 3.28E-07 

CQDs Hexadecylamine 8.54E-05 ± 1.74E-04 

CQDs Ethylendiamine 2.41E-06 ± 5.96E-07 

CQDs p-phenyldiamine 1.50E-06 ± 4.75E-07 

PEDOT:PSS (*) 1.2E-2 

MoO3 evaporated (*) 3E-3 

(*) This values were taken from the bibliography. 
  

 

8.4.5 Device characterization. 
 

Devices were prepared using optimized conditions from reported procedures25. 

The films were deposited by spin coating in air conditions with the exception of 

MoO3·that was deposited by thermal evaporation. The resulting thickness of ZnO 

layer was 100 nm, that of F8BT was 100nm, that of MoO3 was 15nm, and those 

of PEDOT:PSS and CQDs were 20 nm. Figure 8. 19 shows a schematic 

description of the energy levels of the materials that we used to fabricate the 

devices. The energy level alignment between the electrodes and the contacts are 

crucial parameter in order to ensure an optimal charge transfer and get efficient 

diodes. The energy alignment is an important parameter to take in account 

because it is the way to control the balance charge inside the device. The 

unbalanced charge between the cathode and the anode could set off an increase 

of the current and as consequence losing luminance and device stability. 

 

UNIVERSITAT ROVIRA I VIRGILI 
OPTOELECTRONIC PROPERTIES OF QUANTUM DOTS FOR BIOMEDICINE AND ENERGY-TO-LIGHT CONVERSION 
Sofia Paulo Mirasol 
 



Chapter 8 

 
 

 

246 
 

 

 

 

 

Figure 8. 19. Relative energy levels of the HyLED components (top) and picture of 

one working device. Photograph of diode using PEDOT:PSS as HTL applying 5V  
(bottom). 

 

One of the phenomena that we observed during the deposition of hole transport 

layer (HTL) via spin coating was the low compatibility between the HTL and the 

emissive layer. The wettability between the emissive layer and the HTL was one 

of the weak points during the device layer fabrication. To avoid this issue, the 

literature reports the use of solvents such as methanol 26, IPA27 or doping the 

solution with salts such as HAuCl4 6. These tests have been performed in order 

to improve the wettability, stability and to increase the electrical conductivity of 

the deposited layer. In our case, we added different amounts of IPA to the solution 

to increase the hydrophilicity of both PEDOT:PSS and the CQDs. The results of 
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the different experiments carried out to solve these problems are shown in the 

Annex 7.  
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Figure 8. 20. Variation of the current density (top) and luminance (bottom) with 

applied bias for the devices prepared with different CQDs.  

 

UNIVERSITAT ROVIRA I VIRGILI 
OPTOELECTRONIC PROPERTIES OF QUANTUM DOTS FOR BIOMEDICINE AND ENERGY-TO-LIGHT CONVERSION 
Sofia Paulo Mirasol 
 



Chapter 8 

 
 

 

248 
 

The optoelectronic characterization of the optimized devices was carried out by 

measuring the luminance and current density as a function of the applied bias. 

The (I-V) curves and luminescence -voltage curves using different HTM are 

shown in Figure 8.20. The characterization techniques are described in Chapter 

3. The measurements were performed in air conditions and applying gradually 

the voltage in order to polarize the diode slowly.  

 

The results of the device performance are summarized in Table 8.5. These 

results agree with the idea that the use of interfacial layers is the key to improve 

the performance of the device. Accordingly, the device prepared without HTL 

presents the lowest luminance values and current efficiency. The maximum 

luminance of 2600 cd/m2 was achieved with evaporated molybdenum oxide as 

hole transport layer and with turn-on voltage 2.85 V. The PEDOT:PSS doped with 

2-isopropanol (IPA), achieved 2000 Cd/m2 with a turn-on voltage at 6.10 V, this 

decreased voltage, as commented before, appeared due to the wettability issues 

that increase the resistance at the interface as can be seen in the Figure 8. 20 

(top). The devices prepared with CQDs showed modest luminance values 

compared to references but clearly superior than without HTM, validating their 

role as HTM under working conditions. 

 

Regarding the results, CQDs capped with p-phenyldiamine have shorter 

emission lifetime and lower QY and hole mobility values compared with the other 

CQDs-containing devices. This phenomenon was reflected in the efficiency of the 

HyLEDs whose maximum luminance is 13 cd/m2. There are two possible 

explanations: (1) The phenyl groups enhance the charge delocalization, 

hindering the injection of the carriers. (2) The benzene groups may block the 

number of passivating ligand that could be anchored to the carbon dots surface, 

leaving more available trap states at the surface. In addition, it has to be taken 

into account the difficulty to obtain a uniform layer distribution when we deposit 

CQDs on top of F8BT since this material tend to form aggregates allowing the 

circulation of high current densities through the areas where the thickness of 

CQDs has to be thinner due to mobility limitations. 
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CQDs-ethylendiamine has the lowest turn-on voltage, lower even than the 

PEDOT:PSS indicating good charge injection capability due to appropriate 

valence band alignment between the metal electrode and the active polymer, 

high quantum yield and a short lifetime decay. However, the increase in 

luminance is not as high as with urea or hexadecylamine-capped CQDs. It may 

be because we could not find the optimal thickness. These two samples show 

luminance values above 100 cd/m2 and turn-on voltages above 10 V. Both 

presents a VB that can facilitate hole injection charges (the hole mobility values 

are also the highest within the series) and electron blocking within the active 

layer. 

Finally, the slightly lower luminance of the CQDs-urea in comparison with the 

CQDs-HDA can be explained by the subtle variation in charge lifetimes. 

Moreover, the hexadecylamine was solved in hexane, which presented a better 

wettability over the polymer and then a presumably better polymer/HTM interface 

quality.  

 

Table 8.5.Performance results of HyLEDs devices prepared using different HTM. 
Va is the turn-on voltage at 0.1 Cd/m2. 

 
HTM Turn-on 

voltage 

Va (V) 

Max. 

Luminance 

(Cd/m2) 

Current       

Efficiency 

(Cd/A) 

PEDOT:PSS 6.10 2000 6·10-1 

Ethylendiamine 4.90 70 2·10-3 

p-phenyldiamine 10.18 13 9·10-4 

Hexadecylamine 14.50 174 8·10-4 

Urea 9.60 146 2·10-3 

No HTM 15.20 2 5·10-4 

MoO3 2.85 2600 7·10-1 
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8.5 Conclusions. 
 

Carbon Quantum Dots functionalized with different capping ligands were 

synthetized in order to use them as hole transport layer (HTL) in HyLEDs. Our 

aim was to replace the most common HTL by the promising materials that can 

be processed in solution.  

 

In this work, four different capping ligands for the CQDs have been tested, in 

order to explore the relationship between the nature of the ligand and the energy 

levels of valence/conduction bands and the hole mobility with the efficiency of the 

devices. We observed that the nature of the capping ligand influences directly the 

optoelectronic properties of CQDs, being Urea, EDA and HDA the most suitable 

ligands in terms of enhanced charge injection due to a better energy alignment 

with the polymer resulting in a higher maximum luminance. In the case of p-

phenyldiamine ligand, the steric hindering avoids a complete coverage 

compromising the quality of the interface and combined with the poorer quantum 

yield (5 times inferior than the others) the devices obtained using this ligand show 

the lowest current efficiency and the lowest luminance respectively. We can 

determine that in the case of CQDs-p-phenyldiamine, we measured the presence 

of a wider particle size distribution (as observed by TEM and DSL) that negatively 

affect the efficiency of the device creating a non-homogeneous CQDs layer. The 

use of CQDs-EDA as HTL resulted in a turn-on voltage of 4.90 V. Despite the 

luminance was 70 cd/m2, we can conclude that this CQDs can be used as hole 

transport layer although a further optimization of the device is required to get 

higher luminance.  

 

To sum up, we have prepared for the first time proof-of- concept devices using 

CQDs as HTL in light emitting devices. The use of CQDs as HTL contributes to 

the injection current from the cathode to the active layer, although further 

optimization is required. Finally, we have achieved three of the five layers by 

printing techniques closing the gap for the pre-industrialization of the materials.  
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A8 ANNEX 
 

A8.1 Quantum yield calculation. 
 

The quantum yield of CQDs was calculated using Couramine 102 and Couramine 

153 as reference dye applying the following equation.  

 

𝑄𝑌 = 𝑄𝑌𝑟𝑒𝑓 (
𝐼𝑒𝑚 𝑠𝑎𝑚𝑝𝑙𝑒

𝐼𝑒𝑚 𝑟𝑒𝑓

) · (
𝐴𝑏𝑠𝑟𝑒𝑓

𝐴𝑏𝑠𝑠𝑎𝑚𝑝𝑙𝑒

) · (
𝑛𝑠𝑎𝑚𝑝𝑙𝑒

𝑛𝑟𝑒𝑓

)

2

 

Where QYref is the reference quantum yield, Iem is the area of the emission band, 

Abs is the absorbance excitation wavelength and η is the refractive index. 
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Figure A8. 1. Absorbance spectra of CQDs-HDA (green line) and Couramine 102 
(blue line) at room temperature. 
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Figure A8. 2. Emission spectra of CQDs-HDA (top) and Couramine 102 (bottom) 
measured at λexc=340nm at room temperature. 
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2) CQDs-urea 
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Figure A8. 3. Absorbance spectra of CQDs-Urea (green line) and Couramine 153 
(blue line) at room temperature. 
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Figure A8. 4. Emission spectra of CQDs-urea (top) and Couramine 153 (bottom) 
measured at λexc=420nm at room temperature. 
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3) CQDs-p-phenyldiamine 
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Figure A8. 5. Absorbance spectra of CQDs-Urea (green line) and Coumarine 153 
(blue line) at room temperature. 
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Figure A8. 6. Emission spectra of CQDs-p-phenyldiamine(top) and Couramine 
102 (bottom) measured at λexc=370nm at room temperature. 
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4) CQDs- Ethylendiamine 
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Figure A8.7. Absorbance spectra of CQDs-Ethylendiamine (green line) and 

Couramine 153 (blue line) at room temperature. 
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Figure A8. 8. Emission spectra of CQDs-ethylendiamine (top) and Couramine 102 
(bottom) measured at λexc=370nm at room temperature. 
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A8.2 Emission spectra of CQDs at different excitation 
wavelengths. 
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Figure A8. 9. Emission spectra of CQDs-HDA obtained after excitation at different 
wavelength from 310 nm to 450 nm every 20 nm at room temperature. 

500 550 600 650 700

P
L

 i
n

te
n

s
it
y
(a

.u
.)

Wavelength (nm)

 310 nm

 330 nm

 350 nm

 370 nm

 390 nm

 410 nm

 430 nm

 450 nm

 

Figure A8. 10. Emission spectra of CQDs-Ethylendiamine obtained after excitation 

at different wavelength from 310 nm to 450 nm every 20 nm at room temperature. 
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Figure A8. 11. Emission spectra of CQDs-p-phenyldiamine obtained after 
excitation at different wavelength from 310 nm to 450 nm every 2 0nm at room 

temperature. 
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Figure A8. 12. Emission spectra of CQDs-urea obtained after excitation at 

different wavelength from 310 nm to 450 nm every 2 0nm at room temperature. 
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A8.3 Cyclic voltammetry and Square wave voltammetry plots. 
 

The equations employed to estimate the conduction and valence bands are the 

following 

Ε𝐶𝐵 = −(𝐸𝑂𝑋 + 4.8)   Equation 8.5 

Ε𝑉𝐵 = Ε𝐶𝐵 + Ε𝜊−𝜊   Equation 8.6 

Ε𝜊−𝜊 = ℎ ·
𝑐

𝜆
                            Equation 8.7 

Eox is the oxidation potential from the CV, Eo-o is the band gap and λ is the 

wavelength resulting of the intersection between the absorbance and the 

emission band, h is the Planck constant 6.62607004·10-34 m2 kg / s and c is the 

speed of the light 3·108 m/s.  

The oxidation potential of the CQDs has been obtained by measuring cyclic 

voltammetry or square wave voltammetry in solution. The results are shown in 

the following figures. 
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Figure A8. 13. a) Cyclic voltammetry of CQDs solved in dichloromethane recorded 
in 0.1M tetrabutylammonium hexafluorophosphate in dichloromethane at room 

temperature. 
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Figure A8. 14. a) Cyclic voltammetry and b) Square wave voltammetry of CQDs 

solved in dichloromethane recorded in 0.1M tetrabutylammonium 
hexafluorophosphate in dichloromethane at room temperature. 
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Figure A8.15. a) Cyclic voltammetry and b) Square wave voltammetry of CQDs 
solved in dichloromethane recorded in 0.1M tetrabutylammonium 

hexafluorophosphate in dichloromethane at room temperature. 
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Figure A8. 16. a) Cyclic voltammetry and b) Square wave voltammetry of CQDs 

solved in dichloromethane recorded in 0.1M tetrabutylammonium 
hexafluorophosphate in dichloromethane at room temperature. 
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A8.4 Device optimization. 
 

A8.4.1 CQDs in the HTL 
 

The devices were optimized through testing different velocities during the spin 

coating processing. Moreover, a major problem during the preparation of the HTL 

onto the hydrophobic surface of the polymer was the wettability of materials 

employed for the solution processing of the HTL that were prepared in polar 

solvents such as ethanol, methanol or water. For that, p-phenyldiamine was used 

as model to optimize the best proportion water/IPA to achieve the best results. 

Once we obtained the best combination, we applied the same conditions to 

deposit the other CQDs with the exception of CQDs-HDA that was solved in 

hexane.  

 

Table A1 display the results of the optimization, showing the evolution of the 

current density an luminance with applied bias, while varying the thickness of the 

layer  and adding small amounts of IPA.  

 

 

Table A8. 1. Device results as a result to modify the thickness and adding small 

amounts of IPA for CQDs-p-phenyldiamine. 

 
Spin coating 

conditions 

Turn-on 

voltage Va 

(V) 

Max. 

Luminance 

(Cd/m2) 

Aq/500 RPM 15.29 2.47 

Aq/1000 RPM 13.90 6.00 

Aq/3000 RPM 17.89 3.66 

Aq/IPA 2000 RPM 10.18 13.00 
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Figure A8. 17. Variation of the current density (top) and luminance (bottom) with 
applied bias of HyLEDs prepared with different spin coating conditions to deposit 

CQDs p-phenyldiamine. 
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A8.4.2 PEDOT:PSS as HTL 
 

The spin coating conditions were 2000 RPM 1 min followed by a temperature 

treatment at 120ºC during 20min in air conditions. However, there were problems 

of wettability so we carried out tests to optimize the deposition of the layer. For 

that, different solution of PEDOT:PSS with different ratio of aq/IPA were tested. . 

Figure 8. A14 shows the current versus voltage and luminance versus voltage 

with different velocity of deposition of CQDs. Regarding the turn-on voltages and 

luminance, the values changed with the ratio of IPA.  

 

Table A8.2.  Devices characteristic using different proportions of water/IPA to 
improve the wettability of the PEDOT:PSS. 

 
Proportions of 

Aq/IPA 

Turn-on 

voltage Va 

(V) 

Max. 

Luminance 

(Cd/m2) 

Aq/IPA (1:6) 6.1 2000 

Aq/IPA (1:3) 5.1 1600 

Aq/IPA (1:1) 3.4 26 
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Figure A8. 14. Variation of the current density (top) and luminance (bottom) with 
applied bias of HyLEDs prepared with different spin coating conditions  
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9 

Carbon quantum dots as hole 
transport layer in Perovskites 
solar cells. 

The use of carbon quantum dots (CQDs) in photovoltaic devices has not yet been fully 

explored. Herein, we report the use of CQDs in MAPI (methyl ammonium lead iodide) 

perovskite solar cells to implement this material in photovoltaic applications. 
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In Chapter 7 and 8, we have focused on the use of Carbon Quantum Dots (CQDs) 

in light emitting diodes. In this chapter, we aim  to employ a solution processed 

layer of CQDs as hole transport material (HTM) in solar cells. The idea of the 

project was to find new material in order to replace the expensive spiro-OMeTAD, 

which is right now the most used HTM in perovskite solar cells. 

 

Since 2010, when the Nobel Prize in physics was awarded to A. Geim and K. 

Novoselov for their work on 2D material graphene, many researchers have 

proposed its use in solar energy application such as hybrid and organic solar cells 

1, light emitting diodes 2 or photodetectors 3,4,5 . CQDs presents extraordinary 

optoelectronics properties such as water solubility, low toxicity (especially 

compared with their inorganic counterpart QDs like PbS or CdSe), stability 

against photobleaching and better biocompatibility.   

 

We synthesized and tested CQDs capping with p-phenyldiamine. The amine 

molecules play a dual role as n-doping precursors and as passivating agent, 

which is finally translated into improved photoluminescence. Heteroatom doping 

(N, F, S, P, Gd) is a commonly used approach to fine-tune or obtain 

increase??photoluminescence (PL) and other physicochemical properties of 

photoluminescent materials 6. Furthermore, co-doping strategies by combining 

Mg/N, P/N, and S/N were found to dramatically improve the photoluminescent 

emission, in addition to luminescence stability, high solubility, low toxicity, and 

excellent biocompatibility. 

 

On the other hand, the organic-inorganic halide perovskite solar cells (PSCs) 

have attracted a great deal of attention of solar cell research due to an incredible 

device efficiency improvement from 3.8% in 2009 to 22.1% in 2018 7. The 

perovskite gained much attention as a potential replacement of the silicon 

photovoltaic (PV) devices, which is still the best solar cells device in the market 

with record efficiency of about 26%, although tandem solar cells of silicon and 

perovskite has achieved efficiencies of 25?% (Afegir referència)  In these years, 

a lot of effort has been put to improve the stability of the devices either by 

developing alternative ways to form the perovskite layer (absorber) 8,5,9,10  or 

employing new materials to facilitate charge transport through the device 
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(selective contacts) 11. The latter pathway is usually focused on testing and 

develop new HTMs, like polymers or small molecules, to be deposited via solution 

processes on top of the perovskite layer, being the titanium dioxide (TiO2) the 

most employed material as an electron transport material (ETM) 12,13. 

 

Herein, we want to explore the potential applications of the carbon Dots as hole 

transport layer in perovskite-based solar cells in accordance with Chapter 7, 

where these properties were further explored for the fabrication of light emitting 

diodes. It should be notices that, this project was the starting point to study of 

CQDs as hole contact in optoelectronic devices. The results have been published 

in S. Paulo, G. Stoica, W. Cambarau, E. Martinez-Ferrero, E. Palomares, Carbon 

quantum dots as new hole transport material for perovskite solar cells. Synth. 

Met. 222, 17–22 (2016).   

.2 Material Synthesis and characterization. 

 

9.2.1 Synthesis of CQDs. 
 

The synthesis was carried out via a hydrothermal approach. 1.0507 g of citric 

acid and 0.541 g of p-phenylenediamine were well dissolved in 10 mL of 

deionized water 14. The solution was transferred to a poly (tetrafluoroethylene) 

(Teflon)-lined autoclave (120 mL) and heated at 200 ºC for 5 h, with a heating 

ramp of 5 ºC / min. After the reaction, a brown-black solution was obtained. Then, 

the solution was centrifuged thrice at 4500 RPM and the CQDs were dispersed 

in deionized water or isopropanol 

 

 

Figure 9.1. Schematic illustration of the synthesis of CQDs. 
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9.3 Device Fabrication. 
 

Fluorine doped Tin Oxide (FTO) coated glasses (resistance of 8 Ω/cm2) were 

etched using Zn powder (Alfa Aesar 98%) and a 2 M solution of HCl according to 

the desired pattern. Afterwards, the substrates were cleaned for 15 min in an 

ultrasound bath with deionized water with Hellmax soap, with deionized water 

and finally with ethanol. The substrates were dried and an UV/Ozone treatment 

was performed for 20 min. 

 

0.65 mL of Ti (IV) isopropoxide (Sigma Aldrich 97 %) and 0.38 mL of 

acetylacetone (Sigma Aldrich) were mixed in 5 mL of ethanol. This solution was 

deposited by spin coating at 3000 RPM for 60 seconds on top of the FTO. 

Substrates were calcined at 500 ºC for 30 min to obtain the TiO2 dense layer (d-

TiO2) having a thickness of around 50 nm. Afterwards, titanium oxide-coated 

substrates were immersed in a 40 mM TiCl4 solution at 70 ºC for 30 min. Then, 

the substrates were cleaned with water and ethanol and heated at 390 ºC for 20 

min. 

A mixture of TiO2 paste (18 NR-T Dyesol) and ethanol 2:7 (w/w) was spun at 

5000 RPM for 30 seconds. The substrates were heated at 500 ºC for 30 min to 

form a mesoporous layer (mp-TiO2) of around 350 nm. 

 

The methylammonium iodide was synthesized as described previously 15. The 

MAPI solution consists of a mixture of 3:1 (molar ratio) of methylammonium 

iodide and PbCl2 (Sigma Aldrich 98%) in DMF 10. 80 µL of this solution were spun 

above the mp-TiO2 layer at 2000 RPM for 60 seconds. The as deposited 

substrates were heated at 100 ºC for 1 h. 

In order to avoid perovskite destruction, the water dispersed carbon quantum 

dots were redissolved in isopropanol (CQDs-IPA) to obtain a 2.5 mg / mL 

solution. 80 µL of CQDs-IPA were spun at 1000 RPM for 90 seconds.  

72.3 mg of spiro-OMeTAD were dissolved in 1 mL chlorobenzene with the 

addition of 28.8 µL tert-butylpyridin and 17.5 µL of lithium bis-

trifluoromethanesulfonimide solution in acetonitrile (520 mg / mL). The resulting 

solution was spun (80 µL) onto the perovskite at 2000 RPM for 60 seconds. 
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Finally, a layer of 80 nm of gold was deposited as the anode by thermal 

evaporation at a pressure not higher than 1 10-6 mbar. 

All the steps for MAPI and HTM deposition were carried out inside a nitrogen 

filled glove box to avoid the excess of humidity ([O2] < 100 ppm and [H2O] < 0.1 

ppm). 

9.4 Results and discussion. 
 

9.4.1 Physicochemical characterization of CQDs. 
 

UV-visible and emission spectra of CQDs in water and isopropanol are shown in 

Figure 9.1. The UV-Vis spectrum of the CQDs aqueous solution present two 

shoulder at 272 nm and 340 nm, while 

<sup>16</sup><sup>16</sup><sup>16</sup>the shoulder located at 272 nm 

is attributed to π-π* transition carbonyl groups in the core of CQDs. The shoulder 

at 340nm is attributed to n-π transition of amines groups from functionalized 

surface groups of the CQDs.  

 

The corresponding PL spectra of both samples were recorded upon excitation at 

380 nm (see Figure 9.2). CQDs aqueous solution displayed an emission centered 

at 515 nm, the PL emission of CQDs IPA experienced a blue shift of 60 nm with 

a maximum at 455 nm. We observed a similar solvent-depend PL emissions that 

other groups have been previously reported as Zhu et al.17, investigating 

graphene quantum dots. The authors registered a PL red shift from 515 nm to 

575 nm when dissolving the carbon nanoparticles in solvents with different 

polarities (THF, acetone, DMF, water), as a consequence of the solvent 

attachment or different emissive traps on the surface of quantum dots. 
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Figure 9.2. Absorbance (top) and emission (Bottom) spectra of CQDs-aq (blue 

line) λems=514 nm and CQDs-IPA (green line) λems = 452 nm. 
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The fluorescence decay lifetime was measured after the excitation at 405nm. As 

can be seen, the profile decay can be fitted bi-exponential model (equation 1). 

This means that we observed two different relaxations mechanism. 

𝜏(𝑡) = 𝐴1𝑒
−(

𝑡

𝜏1
) + 𝐴2𝑒

−(
𝑡

𝜏2
)
 equation 9.1 

Where A1 and A2 are the amplitude of the radiative lifetime and 𝜏 is represent 

the time constant.  

 

Figure 9.3 represents the luminescence decay profile of both the aqueous and 

isopropanol solutions of CQDs, respectively. Both decays can be fitted by a 

biexponential equation. 
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Figure 9.3. PL lifetime decay of CQDs in water (blue line) and isopropanol (green  

line). λexc = 405 nm at room temperature. The color solid line represent the 
exponential fitted decay. 
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Table 9.1.  TRPL lifetimes obtained by fitting the data shown in Figure 9.3 by 

Equation.1. 

Sample 𝜏 1 (ns) 𝜏 2 (ns)  𝜏𝐴𝑉(ns) 

CQDaq 1.32 ± 0.02 3.68 ± 0.06 3.61 

CQDiso 1.72 ± 0.04 10.07 ± 0.11 12.38 

 

 

The average lifetime was calculated to be 3.61 ns for the CQDs aqueous solution 

and 12.38 ns for the CQDs in isopropanol pointing to the influence of the solvent 

on the lifetime, in line with the PL fluorescence behavior (See Table 9.1). This 

effect was more pronounced on the slow component which is attributed the 

surface., while the fast component, attributed to the carrier recombination at the 

CQDs core,hardly changed. Similar results have been reported for 

mercaptopropionic acid-capped CdTe quantum dots which displayed a 

significantly longer lifetime in methanol than in water 17. From these we concluded 

that the solvents affect not only the PL emission but also the lifetime of the QD 

nanoparticles, with emphasis on the polarity and the interaction between the 

functional groups on the nanoparticle surface and the solvent, respectively 18. 

 

The electrochemical cyclic voltammetry was performed for determining the 

valence band and conduction band of CQDs in solution. Figure 9.5 shows the 

cyclic voltammogram of CQDs solution in dichloromethane (DCM).  The CV has 

been done using Ferrocene/Ferrocene+ as internal standard. The CV indicates 

that the oxidation potential of the CQDs is at 0.6 V.  

 

Ε𝑉𝐵 = −(𝐸𝑂𝑋 + 4.8)   equation 9.2 

Ε𝐶𝐵 =Ε𝐻𝑂𝑀𝑂+Ε𝜊−𝜊   equation 9.3 

Ε𝜊−𝜊 = ℎ ·
𝑐

𝜆
                            equation 9.4 

Eox is the oxidation potential from the CV, Eo-o is the band gap and λ is the 

wavelength resulting of the intersection between the absorbance and the 
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emission band (Figure 9.4), h is the Planck constant 6.62607004·10-34 m2 kg / s 

and c is the speed of the light 3·108 m/s. 
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Figure 9.4. The normalized absorption and photoluminescence spectra of CQDS 

in DCM. The intersection between the absorbance and photoluminescence spectra 
is at λ=440 nm. 
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Figure 9.5. Cyclic voltammetry of CQDs solved in dichloromethane recorded in 

0.1M tetrabutylammonium hexafluorophosphate in dichloromethane at room 
temperature. 
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9.4.2 Device Characterization. 
 

The HOMO energy value is above the MAPI perovskite valence band (VB) energy 

(-5.5 eV), which ensures efficient hole transfer from the perovskite to CQDs (Fig. 

9.6). For comparison purposes,the HOMO LUMO levels of spiro-OMeTAD are 

also shown. 

 

 

Figure 9.6. Relative energy levels of the materials employed in this chapter to 

prepare perovskites solar cell. 

 

Photovoltaic devices were fabricated to evaluate the performance of the CQDs 

as HTM in comparison with spiro-OMeTAD. The J-V characteristics shown in 

Figure 9.7, demonstrate the evidence that the CQDs layer introduces a benefit 

with respect to the absence of an HTM in the device, although the reference cell 

with spiro-OMeTAD performs much better in terms of short circuit current density 

(Jsc), open-circuit voltage (Voc) and, thus, in power conversion efficiency (PCE). 
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Numeric values for reverse voltage scan (see SI for both forward and reverse) 

are summarized in Table 9.2.  

 

As can been seen it in Figure 9.7, the curve of each material are clearly different 

depending on forward/reverse scans. The difference between the forward and 

reverser scan is the direction of the applying voltage. In forward scans the started 

from lower to higher voltage and reverse vice versa. The phenomena that we 

observed during this measurement called hysteresis. There are many possible 

explanation about this process, although there is still under discussion. (ref) This 

difference between forward and reverse scans is directly related to transient 

carrier collection at a given voltage during the forward and reverse scans. It is 

known that a reverse scans measures higher current than forward scan.  
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Figure 9.7. Current density-voltages of MAPI devices using CQDs or OMETAD as 

HTM. 

 

Table 9.2 shows the champion performance results of MAPI device. As can be 

seen, the efficiency is lower than the reported cells in the literature. The most 

interesting observation was Voc extracted from the data. The value of Voc using 
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OMeTAD or CQDs were similar, whereas the current was remarkable lower when 

CQDs was used as HTM.  

 

Table 9.2. Summary of the device performance of MAPI solar cells.   

 

HTM 
Scan 

direction 
Jsc (mA/cm2) Voc (V) FF (%) PCE (%) 

CQDs 
Forward 8.72 0.60 46 2.41 

Reverse 7.83 0.52 74 3.00 

OMeTAD 
Forward 17.26 0.69 58 6.87 

Reverse 17.08 0.72 66 8.06 

NO HTM 
Forward 7.33 0.10 33 0.25 

Reverse 7.58 0.223 42 0.71 

 

In order to understand the poor results that we obtained, ESEM images and EDX 

analysis were performed. The images shows representative top view ESEM 

images of a device fabricated with CQDs, together with the spiro-OMeTAD 

reference solar cell. In both cases, by simple optical evaluation of the images, it 

can be observed that their surface was not fully covered by the perovskite layer. 

Indeed, an image treatment with the ImageJ software revealed poor perovskite 

coverage over the mp-TiO2 surface, i.e. around 60% for the spiro-OMeTAD cell 

and 50% for the CQDs device, respectively (see Figure 9.8). The relative poor 

coverage of the HTM could be responsible for the low efficiencies of the devices 

compared to ones reported in the literature as indicated previously by other 

groups 19. 
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Figure 9.8. Top view ESEM images of a CQDs device (left) and colour threshold 

filtered image to evaluate perovskite coverage (right) which is around 55 %. 

 

 

Figure 9.9. Top view ESEM images of a spiro-OMeTAD device (left) and colour 

threshold filtered image to evaluate perovskite coverage (right) which is around 65 
%. 

 

The spectrum profile of the elemental mapping by EDX clearly shows the 

presence of Pb and I, while Cl was not detected in either of the devices (See 

Annex 9). The quantitative analysis revealed a molar ratio of Pb/I = 3.45 for the 

CQDs and Pb/I = 3.7 for the spiro-OMeTAD, respectively, which is slightly higher 

than the theoretical ratio of the MAPI solar cells (Pb/I = 3). These results 

demonstrate that the perovskite was successfully formed during the synthesis 

step. 
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Figure 9.10. Elemental mapping with EDX of FTO/d-TiO2/mp-TiO2/MAPI/HTM/Au 

devices, where HTM is spiro-OMeTAD (Spectrum 1) and CQDs (Spectrum 2). 

 

Summing up all the results, the solar cells contain well-formed perovskite layer 

that do not fully cover the mesoporus titania layer. In addition, the HTM have bad 

compatibility with the perovskite layer resulting in partial film formation. Both 

effects account for the lower photocurrent generation and efficiency. Since the 

film formed by the CQDs are of lower quality than those formed by the 

spiroOMeTAd, the final efficiency is lower, however, the material has showed its 

potential as charge carrier in optoelectronic devices. 
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9.5 Conclusions. 
 

In conclusion, the synthesis and optical and electrochemical characterization of 

CQDs have been extensively described. The cyclic voltammetry measurements 

revealed that the CB and VB energy values of the CQDs are appropriate to 

ensure both efficient hole transfer and electron blocking capability from the 

perovskite to CQDs. Preliminary photovoltaic devices based on CQDs as HTM 

have been fabricated for the first time and a power conversion efficiency as high 

as 3 % has been achieved. A known limitation like poor perovskite coverage over 

the mp-TiO2 surface, revealed by ESEM analysis of the devices, could be a 

possible reason for the relatively low performance of the solar cell. Taking this 

fact into account, we believe that further optimizations in the device fabrication 

together with a finer tuning of the CQDs properties could promote a brand new 

type of HTM with very high potential for perovskite solar cells. Regarding the 

results we can concluded that the CQDs have demonstrated its potential as 

interlayer helping in the carrier injection as well.  
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9.7 Annex. 
 

 

 

 

Figure A9.1 TEM images of CQDs-p-phenyldiamine at different magnifications. 

We observed different particles size. The average size were 31.7± 5.4 nm. 
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This principle goal of the thesis was to synthetize different quantum dots to use 

them as active material  in three applications: LEDs, perovskites solar cells and 

sensors with the ultimate objective to develop a procedure in order to  scale up 

afterwards. For that we tried to use lower cost, solution processing and more 

environmentally friendly methods of fabrication of optoelectronic devices. In 

addition, the most part of fabrication steps of LEDs was performed in air 

conditions. Unfortunately, in order to obtain Quantum dots with a higher 

quantum yield, the synthesis was needed to perform in inert conditions.  

Here, a summary of the main conclusions of each experimental chapter are 

described below: 

Chapter 4 described the design and fabrication of two biosensors in order to 

detect and quantify elastase in human stools. This project was performed with 

the collaboration of Santi Gene. Firstly, we fabricated a biosensor based on 

silica Nanospheres filled with cadmium based quantum dots. Then, a specific 

peptide was covalently anchored on the Nanospheres surface. The realibility of 

the method was tested on 14 patients, obtaining 90 % of sensitivity and 70% of 

specificity.Since the result obtained at lab scale were very promising, we tried 

to scale up the process. During the scaling process, we found that the peptide 

can be unanchored from the Nanospheres surface.  

Thus, in order to solve the problem an electrochemical sensor was fabricated, 

but in this case we replaced cadmium quantum dots by carbon quantum dots. 

The idea was to work with an environmentally friendly method. This part of the 

project was performed during my short stay in the University of Patras under 

the supervision of Dr. Emanuel Topoglidis. We could not finish the project, but 

we obtained promising results, and we are still working on it. The most relevant 

results was that after adding to the system the specific enzyme the reduction 

band of the peptide decreased, confirming that the peptide was covantly 

bonding on to surface of CQDs.   

Chapter 5 focused on the synthesis of green, red and blue emitting cadmium 

based quantum described in the bibliography as emissive layer in LEDs. All the 

optimization of the devices is presented with the finals results. This is the 

starting point of LEDs fabrication, for that a deep study of how each material 
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might influence the final devices is described. The fabrication steps were 

performed in air conditions with the exceptions of MoO3 and Au that were 

thermally deposited in inert conditions. ZnO nanoparticles were used as 

electron transport layer and PVK and MoO3 as hole transport layer. The use of 

metal oxides are attracting due to their air stability, solution processability which 

could result in low-cost, large area, light emitting devices. Regarding the 

results, we can concluded that the PEIE can be used as surface modifiers 

helping to the injection charges from the cathode to the active layer increasing 

the luminance of the LEDs.  

Chapter 6 described the synthesis and characterization of different perovskites 

nanoparticles using different procedures. This project was started during my 

internship in NIMS under the supervision of Dr. Masatoshi Yanagida. We 

fabricated two different LEDs structure that gave green and red emission color. 

The poor results and the low stability that our devices had, made us to conclude 

that further optimization of how we can synthetize and deposit by solution 

processed is needed.  

Chapter 7 described the synthesis of carbon quantum dots capping with 1-

hexadecylamine using a bottom up process. The fabrication of device was 

carried out by solution processing (spin coating) under air conditions. The use 

of CQDs as unique emitter in light emitting devices gives rise to white light 

emission at room temperature without the need of encapsulation. To the best 

of our knowledge, this is the first example of inverted QLEDs using CQDs as 

single emitter and component in the active layer. 

Chapter 8 and 9 described the synthesis of different CQDs using citric acid as 

carbon source and different amine alkyl chain as capping ligands. These 

materials were used as hole transport layer in LEDs and Perovskites solar cells.  

In Chapter 8 four different CQDs were tested as HTL comparing the final 

results with the most widely used HTL: PEDOT:PSS and MoO3. We concluded 

that CQDs as hole transport layer cannot be used because their hole mobility 

is too low compared with PEDOT:PSS and MoO3. However, carbon quantum 

dots capped with ethylendiamine presented a lower turn-on voltage compared 

with the rest of CQDs tested. 
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In Chapter 9 a synthesis of CQDs using p-phenyldiamine as capping ligand 

was tested to use as HTL in Perovskites solar cells. The cyclic voltammetry 

measurements revealed that the CB and VB energy values of the CQDs are 

appropriate to ensure both efficient hole transfer and electron blocking 

capability from the perovskite to CQDs. Titania dioxide was used as electron 

transport layer and metilammonium lead iodide as active layer. The results 

were lower compared with the average using this architecture. Although we can 

concluded that the CQDs have demonstrated it potential as interlayer helping 

in the carrier injection. 
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