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Abstract

This thesis addresses the combination of task and motion planning to deal with different types of
robotic manipulation problems, ranging from single or multiple collaborative mobile robots nav-
igating among movable obstacles to complex higher-dimensional table-top manipulation tasks
carried out by dual-arm robots or mobile manipulators. The combination of task and motion
planning pursues the obtention of a geometrically feasible manipulation plan through a sym-
bolic and geometric search space. It has emerged as a challenging issue as the failures due to
geometric constraints lead robots to dead-end tasks.

Manipulation tasks in which there may be interactions between robots and objects are con-
sidered. To cope with them, task planning is combined with physics-based motion planning and
information about the physics of the environment, allowing to deal with push and pull actions
and also to look for low-cost plans in terms of power. Moreover, some of the proposed task and
motion planning frameworks are enriched with the use of manipulation knowledge in order to
facilitate the planning process and to aid in providing the ways of executing symbolic actions.

Problems with uncertain information (in the initial state of the robot world or in the result
of symbolic actions) and problems where humans and robots interact are also considered. To
deal with such issues, a contingent-based task and motion planner is proposed, which assumes
the availability of a perception system (to evaluate the actual state of the environment) and the
collaboration of the human operator (robots can ask humans for those tasks which are difficult
or infeasible for them).

An implementation framework to combine different types of task and motion planners is
presented. All the required modules and tools are illustrated, including the explanations on the
flow of information between the different languages used, Prolog and C++.
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Chapter 1
Introduction

Increasing complexity of daily manipulation tasks requires a robot to become more capable, ro-
bust, as well as autonomous in order to carry out various manipulation actions in human-like
environments. Towards solving intricate manipulation problems, robotic systems need to apply
Task and Motion Planning (TAMP) which looks for a discrete sequence of symbolic actions along
with a motion plan solution for each of them. The scope of high-level task planning has been
substantially studied in the Artificial Intelligence community. It works well to obtain a symbolic
plan for large state spaces although task planning is not aware of geometric constraints imposed
by the environment. On the other hand, motion planning deals with finding motion solutions or
reporting geometric constraints in the case of failure if any. Therefore, the combination of task
and motion planning is required for conducting robots towards appropriate manipulation solu-
tions in a successful way. Various techniques in combining task and motion planning levels have
been investigated in Robotics and the main challenging issue is the efficient way of interacting
along sharing information between both planning levels.

Basically, generic motion planning is devoted to find collision-free trajectories. However,
some manipulation actions (e.g. pushing objects away) exist involving interactions between
robots and objects and, in this direction, physics-based motion planning have a valuable signifi-
cance in order to allow motion planning strategies to incorporate possible interactions between
rigid bodies, hence permitting the purposeful manipulation of objects.

Moreover, the use of knowledge-based techniques may enhance both task and motion plan-
ning levels by handing over sufficient information to robots. The modelling of knowledge by
means of ontologies make it more flexible the use and the reasoning over the knowledge, provid-
ing fruitful information for the aid of actions selection and the way of their execution regarding
the way to interact with the objects.

The present thesis develops different strategies of combining task and motion planning al-
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gorithms to cope with robotic manipulation tasks of increasing complexity. The strategies used
include interleaved and simultaneously ways of solving task and motion planning. Task planners
used are based on a planning graph technique and heuristic-based state space search. Motion
planners used are based on physics-based or geometry approaches according to the type of ac-
tions. Manipulation knowledge has been introduced to guide action selection process and the
way of actions execution. This thesis addresses the following research problems:

• Navigation among movable obstacles (NAMO): NAMO problems are manipulation prob-
lems in which a mobile robot needs to push some objects away in order to reach the goal
region. The tasks are challenging because of the following reasons:

– NAMO problems where one robot requires to solve the task. There could be some
situations that manipulation actions are infeasible due to geometric constraints from
the environment, so they have to be identified while a robot is looking for a feasible
manipulation plan. Moreover, finding a low-cost manipulation plan in terms of power
can be a challenging issue.

– NAMO problems where multi mobile robots may require to share the task or collab-
orate with each other in order to satisfy the manipulation tasks. Although geomet-
rically feasible and low-cost plan have to be taken into account, the coordination of
sub-tasks becomes challenging. For instance, a robot must be required to push away
some objects to clear the path for another robot to travel to different regions in the
workspace, or the execution of cooperative actions between several robots (the push
of a heavy obstacle may require the use of more than one robot).

• Higher dimensional manipulation problems: They are referred to as manipulation prob-
lems where bi-manual autonomous fixed robots or mobile manipulators require to solve
table-top manipulation tasks in the presence of different challenges which are summarized
as follows:

– Table-top problems may include a bi-manual robot where challenges are subject to
strong geometric constraints (lack of space for placing objects, occlusions). Then,
the choice of geometric values like object placements, grasp poses, or inverse kine-
matic solutions (which may depend on each other) is crucial in order to provide a
geometrically feasible manipulation plan.

– The problems can be even more challenging in human environments where mobile
manipulators are involved and they need human-interactions. Human-interactions
can be viewed in two phases: a) transferring knowledge to the robots when they
have uncertain information about some situations of objects, b) asking an operator
to perform some actions as a cooperator in the case that the robots encounter some
difficulties or objects are located in human-workspace.

• Manipulation knowledge: To provide better information in task and motion planning,
semantic manipulation knowledge is used. For example, a robot may know which actions
are out of its capability using knowledge processing and may be able to identify the way
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of interactions with objects holding manipulation constraints. Accordingly, task and mo-
tion planning components are represented using ontologies and a lightweight reasoning
process is proposed.

1.1 Contributions

The main contributions of the thesis are listed below.

• Semantic manipulation knowledge. The manipulation knowledge framework is presented
in terms of ontology-based modelling and lightweight reasoning process. It enriches the
combination of task and motion planning by providing components of planning process
and semantic information concerning the robot workspace. This framework is also inte-
grated with physics-based motion planning that aims mainly to provide the way of inter-
actions between a robot and objects holding specific manipulation constraints.

• Combining task and motion planning for mobile robots using a planning graph technique.
Two frameworks of combined task and physics-based motion planning are presented using
different combination and reasoning strategies. The semantic manipulation knowledge
are integrated within the planning process. The framework deals with the scope of the
navigation among movable obstacles problems in which mobile robots require to push
manipulatable objects away in order to reach goal regions.

• Heuristic-based task and motion planning for collaborative multiple mobile robots. This ap-
proach solves simultaneously task and physics-based motion planning equipped with the
semantic manipulation knowledge and different type of reasoning processes. The ap-
proach deals with a set of mobile robots in the navigation among movable obstacles prob-
lems where they require to collaborate or share the manipulation tasks with each other
in order to satisfy the goals of the problem. It proposes also physics-based heuristics to
obtain an efficient global manipulation plan for all the robots.

• Efficient heuristic-based task and motion planning method for bi-manual robots. This method
combines task and motion planning simultaneously and offers a set of reasoning processes
to deal with bi-manual robots. The heuristic computation addresses a geometrically re-
laxed problem (reasoning upon objects placements, grasp poses, and inverse kinematics
solutions), and motion paths are evaluated lazily. This reduces the number of calls to a
motion planner, while backtracking is reduced because the heuristic captures most of the
geometric constraints. The method considers Pick and Place manipulation problems with
the extension of Push actions.

• Task and motion planning for human-robot interaction under uncertainty. This approach
relies also on combining simultaneously task and motion planning using a heuristic-based
method. It tackles the type of uncertainty considered at the task level, and also the ne-
cessity of collaborating a mobile robot with human if demanded. Interacting with human
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can be accomplished in two phases: the robot requires human knowledge to determine its
uncertain information and for the robot tasks being difficult or infeasible. So, the robot
needs human collaboration in completing the manipulation tasks.

• Implementation framework for combining task and motion planning. To implement the
aforementioned task and motion planning approaches, an implementation framework is
proposed. The approaches are implemented using either C++ and or the Prolog languages
and need different integration techniques. Hereupon, the implementation framework pro-
vides a flexible way to handle the communication between the languages using mainly
Robotic Operating System shell and the SWI-Prolog library. It enables to visualize manipu-
lation plans in simulation, and moreover to execute them in a real environment.

1.2 Outline of the Thesis

The rest of the thesis is structured below. Chapter 2 summarizes some related work. Chapter 3
illustrates the semantic manipulation knowledge in terms of modelling and reasoning process.
Regarding the navigation among movable obstacles problems, Chapter 4 concentrates on dif-
ferent strategies of combining task and motion planning for mobile robots based on a planning
graph technique and Chapter 5 presents an heuristic-based combination approach to cope with
multiple mobile robots. The approaches apply different set of reasoning processes and use the
semantic manipulation knowledge. Moreover, Chapter 6 represents an efficient heuristic-based
task and motion planning approach for bi-manual robots taking into account efficient geometric
reasoning process. Chapter 7 presents a combined approach to tackle uncertainty and human-
robot interactions. Chapter 8 shows the implementation framework used in combining task and
motion planning using different techniques. Eventually, Chapter 9 sketches the thesis conclu-
sions and comes up with some future works.



1.3. List of Publications 5
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1.4 Publication Note

Chapter 3 covers semantic knowledge presented in (Akbari et al., 2018b) and (Muhayyuddin
et al., 2018). Chapter 4 explains the approaches appearing in (Akbari et al., 2015b) and (Ak-
bari et al., 2015a) regarding mobile manipulation tasks. The approach related to collaborative
manipulation tasks for multiple mobile robots presented in chapter 5 appears in (Akbari et al.,
2018b) and (Akbari et al., 2016a). Chapter 6 develops the task and motion planning approach
for bi-manual robots presented in (Akbari et al., 2018a) and (Rosell et al., 2018). The most
parts of the implementation approach presented in chapter 8 appear in (Akbari et al., 2016b)
and (Rosell et al., 2014).

Joint Works: Two joint works have been done with the collaboration with other research
centers. The first one has been done with the collaboration with the KnowRob group from
Bremen university. The geometric reasoning module proposed for combining task and motion
planning for bi-manual robots has been offered to an ontology knowledge planner developed
by KnowRob group. The result is published in (Beßler et al., 2018). The second one is about
platform-independent benchmarks for task and motion planning which is proposed by some of
the TAMP authors. This is the first attempt to propose some benchmarking problems that some
of them have been tested in the present thesis. The work is published in (Lagriffoul et al., 2018).





Chapter 2
Background

2.1 Task Planning

Task planning is typically devoted to find a discrete sequence of symbolic actions to transition
from a given initial state to a desired goal condition for a given problem. There are different
approaches in Artificial Intelligence (AI) such as classical planning, logic programming, or con-
straint satisfaction which perform task planning under fully observable initial state. They have
been used by robotics researchers to devise TAMP planning approaches.

Planning can be done by searching in plan space, like the GRAPHPLAN task planner (Blum
and Furst, 1997), by iterative expansion of a planning graph. A planning graph is a data-structure
interleaving state-levels and action-levels. Basically, an action has preconditions which is a set
of atoms which must hold for the action to be applied, and also positive and negative effects
which are a set of atoms added and deleted respectively after the action is applied. Each state-
level consists of the union of literals achievable by the actions in the previous level, and each
action-level is the set of actions whose preconditions are present in the previous state-level. The
graph is expanded until goal conditions appear in the last state-level, while mutual exclusion
relations among actions and states are maintained. A plan is then looked for by backtracking
from the last state-level towards the initial state-level taking mutual exclusions into account. If
no plan can be found, the graph is expanded and the procedure is repeated. Regarding mutual
exclusion, different constraints between actions and between literals may exist in the planning
graph. Two actions are constrained when:

• An effect of one action negates an effect of the other action. It is called the inconsistent
effect constraint.

• An effect of one action deletes a precondition of the other action. It is called the interference
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constraint.

• They have mutually exclusive preconditions. It is called the competing needs constraint.

Two literals, moreover, are constrained if:

• All the ways of achieving them are pairwise mutex. It is called the inconsistent support
constraint.

For instance, it is assumed that a robot Rob is going to deliver an object Obj to a new location
using the manipulation actions Move, Pick, and Place shown in Fig. 2.1 with their preconditions
and effects. The initial state is [At(r, A), HandEmpty, In(obj, B)] and the goal condition is [In(obj,
A)]. In this case, the robot must move to the object location in order to pick up the object at its
first location B, and then the robot needs to move back to the location A in order to place the
object in the target location. Therefore, the solution plan will be π = (Move, Pick, Move, Place).

Fig. 2.2 shows the complete levels of the planning graph process for the mentioned prob-
lem and some constraints applied at first levels. State-level and action-level depict necessary
predicates and actions at each level respectively. Each action-level also contains maintenance
actions for predicates to remain unchanged for the next level. The planning graph space starts
with the initial state and looks for actions whose preconditions appear in the present level. At
the state-level 1, there are predicates At(r, A) and ∼At(r, A) that cannot happen at the same
time and because of this reason, their action and maintenance action are constrained at the
action-level 1. This type of constraint is called “inconsistent effect” and acts in such a way that
the effect of one negates the effect of the other. As it can be seen, all the goal conditions are
not satisfied by this level, so the search space grows by one level more. The process is repeated
for the next level, whereas Pick and Move actions are likewise constrained due to “competing
needs” constraint. This constraint is posed because of the actions have mutually exclusive pre-
conditions. The search space is expanded to find the level in which all goal conditions occur that
is the state-level 3. Backtracking search is attempted to find the solution from the the current
level, but it fails because there is no way of satisfying all the constraints. Therefore, the plan-
ning graph is extended one more level. Consequently, the complete solution plan is able to be
extracted from the state-level 4. As represented in the example, the backtracking search must
satisfy all the constraints, so it could be sometimes difficult to find a solution plan from the first
state-level where all the goal conditions appear and the planning graph requires to be expanded
more in order to simply the constraints.

Figure 2.1: Describing action templates in terms of preconditions, positive effects, and negative
effects.
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Figure 2.2: The complete levels of the planning graph search space. Non-labeled rectangles
refer to maintenance actions, dashed arcs refer to the constraints, and the selected actions and
the states are highlighted.

Alternatively, search can be done in state space. In this line, one of the most efficient task
planning approaches is the Fast-Forward (FF) planner (Hoffmann and Nebel, 2001) which per-
forms a heuristic search. The architecture of the planner is represented in Fig. 2.3. It has
two main components: the Enforced Hill Climbing (EHC) module devoted to select the more
promising successor state using the heuristic values, and the Relaxed GRAPHPLAN module that
computes the heuristic value in terms of the estimated number of actions. This later module
also computes the set of helpful actions (i.e. those actions that executed from that state have
a high probability of being in the solution plan), which allows making the exploration more
efficient. The Relaxed GRAPHPLAN module is based on a relaxed version of the planning graph.
The relaxed version of the planning graph (called RPG) ignores the negative lists of the actions,
so mutual exclusion relations do not take effect in the planning phase. From the first state-level
at which all the problem goals appear, a backward search is applied that results in the relaxed
plan composed of the sequence of minimum number of actions connecting the initial state to
the final one. The heuristic value is then computed as the number of actions in the relaxed plan,
and the helpful actions are those actions of the RPG that appear in the first action level. If EHC
fails, everything done so far is skipped and a complete heuristic search is invoked to solve the
task from scratch. This strategy is done using Best-First Search (BFS) that simply expands all
applicable actions and search nodes.

In planning based on the hierarchical structure, the purpose is to incorporate dependency
among actions in the form of hierarchical structure in order to satisfy the task. In principle,
hierarchical-based approaches apply the concept of task networks, that is called Hierarchical Task
Network (HTN) (Erol et al., 1995). In this case, various tasks and constraints between them are



12 CHAPTER 2. Background

Figure 2.3: The Fast-Forward planner architecture (Hoffmann and Nebel, 2001) .

expressed and formed in a task network. Such a network aims to provide possible precondition
of a goal task. HTN-based planning includes three main parts; primitive tasks, compound tasks,
and goal tasks. A primitive task is the action which is directly executed. A sequence of primitive
actions can be merged as a compound task. A goal task is a target condition which has to be
satisfied in planning. The procedure is that a planning problem is given to hierarchical planning,
then tasks are decomposed and grow in a search space. It performs searching until a sequence
of primitive tasks are achieved with respect to satisfying preconditions.

Other task planning approaches exist that use constraint-based techniques. Linear Temporal
Logic (LTL), Satisfiability Modulo Theories (SMT), and Answer Set Programming (ASP) tackle task
planning with logic programming. LTL (Clarke et al., 1999) is a formalism used to specify tasks
by combining logical propositions and temporal operators (LTL formula), for which models are
found using dedicated solvers. SMT (De Moura and Bjørner, 2011) and ASP (Lifschitz, 2002)
are constraint-based languages capable of expressing boolean satisfiability problems combined
with other theories, e.g., integers. SMT problems are solved with constraint programing, while
ASP problems are solved with Satisfiability (SAT) solvers.

Usually, task planning domain is represented by the Planning Domain Definition Language
(PDDL) (Ghallab et al., 1998) whose purpose is to standardize the setup of AI planning prob-
lems. The main components of PDDL are Objects, Predicates, Initial-State, Goal-Specification, and
Actions. Objects are things in the planning world. Predicates are the properties of objects in the
world that can be either true or false. Initial-State is the current state of the word at which
planning begins. Goal-Specification is the target which has to be solved by planning. Actions
are the ways of changing the world state. Planning tasks are structured in two files in PDDL; a
domain file in which Predicates and Actions are defined, and then a problem file where Objects,
Initial-State, and Goal-Specification are represented.
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2.2 Task Planning under Uncertainty

Task planning can be done under incomplete information; therefore, it needs to plan under
uncertainty. Task planning under uncertainty is also a well-established field in AI. There are
various classes of planning in this field like conformant, contingent, or probabilistic planning.

Conformant planning looks for plans under given uncertainty concerning the start state and
the effects of symbolic actions, assuming no sensing capabilities during the execution of the
plan. The plan should be successful regardless of which is the start state. Contingent planning
also considers uncertainty regarding the start state and the effects of actions. However, it has
the ability to provide some sort of observation over a conditional plan in execution. Probabilistic
planning does planning under probabilistic uncertainty regarding the start state and the effects
of actions.

More details on some approaches following conditional-based task planning are commented
next as one of the proposals of this thesis uses that. We are interested in this type of planner
due to its feature of providing observation over a conditional plan. Some conditional task are:
Contingent-FF (Hoffmann and Brafman, 2005), POND (Bryce et al., 2006), and PKS (Petrick
and Bacchus, 2004). They plan in the belief space and compute conditional plans in the offline
mode. Sensing actions are provided in the conditional plans which can be guided by the result
of sensing actions. On the other hand, there are some conditional task planners like K-Planner
(Bonet and Geffner, 2011), SDR (Brafman and Shani, 2012), and HCP (Maliah et al., 2014)
solving conditional plans online. Although these planners can prune some contingency branches
by considering online sensing actions, satisfying the goal of task may not be possible and the
planners may face with dead-end even if there is a solution.

We will propose a planner based on the modified version the Contingent-FF planner which
is detailed next. Basically, the Contingent-FF handles uncertainty in the initial state and for the
nondeterministic actions. The initial state is a belief state represented by Conjunctive Normal
Form (CNF) which expresses formulas as conjunctions of clauses with an AND or OR. Besides,
the normal actions, which have preconditions and effects, and observation actions observing the
value of uncertain facts and may have preconditions are considered. The task planner has two
main components which are a search space and a heuristic computation.

The search space is based on a standard And-Or forward search mechanism in belief space.
It is an And-Or tree whose nodes become alternatively belief states (Or nodes) and actions (And
nodes). The Or children of a belief state associate with applicable actions and the AND children
of an observation action associate with its two different outcomes. Regarding actions without
observation, there is only one child; therefore, the And node trivializes. While the belief space
search is exploring, the sets of known and negatively known facts are computed. Known facts
correspond with those which hold in a world state and negatively known facts are the ones
which do not hold in any world state. The facts which are not neither known and negatively
known are called unknown. The sets of known and negatively known facts are computed in
a belief state using the SAT solver which checks whether the given formula is satisfiable or
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unsatisfiable. Applicable actions are those whose preconditions are all known in a belief state.
A belief state satisfies the goal if all goal conditions become known. From each belief state, the
heuristic function is called to compute the heuristic value and the helpful actions.

For the heuristic computation, the planner uses a modified version of the RPG in the FF plan-
ner that is called CRPG. In the normal RPG process, the state-levels include known facts. They
are extended in CRPG with unknown facts. A reasoning has been introduced about unknown
facts such that they are shifted to known facts when they become known based on the reason-
ing done. The action-layers contain those actions whose preconditions are either achievable or
observable with earlier actions. The RPG graph expansion process terminates from either the
state-level in which the goal condition becomes known, so a relaxed plan can be extracted, or
the graph reaches a fix point, indicating that a relaxed plan does not exist and the correspon-
ding belief state can be skipped. This process is called CRPG. Once CRPG is built successfully,
the backward search is initiated to find a sequence of actions from the known goal facts.

The result of the planning process provides a tree-shaped conditional plans. Such plans may
involve a variety of observation actions whose outcome causing different plan branches. With
respect to the observation binary value of the observation actions, the conditional plans switches
from one plan branch to the other one.

2.3 Motion Planning

Motion planning deals with detecting collision-free paths to convey a robot to a configuration
state. It is mostly done in the configuration space (C-space) (Lozano-Perez, 1983). The C-space
has as many dimensions as degrees of freedom the robot has, and therefore each point represents
a configuration of the robot. The subspace corresponding to collision-free configurations is
called Cfree and the subspace corresponding to collision configurations is called Cobstacle. Motion
planning in C-space consists in finding a path in Cfree between two configurations.

With regard to classical motion planning, researches have investigated how to deal with geo-
metric constraints in planning (they do not impose differential dynamic constraints). Traditional
methods comprise different techniques such as cell decomposition, roadmap-based methods,
and potential fields. In motion planning based on cell decomposition techniques, the first step
is to decompose free space, either in an exact or an approximated way, and represent the set of
cells as a graph. Then, some search algorithms such as A* (Hart et al., 1968) or Dijkstra (Di-
jkstra, 1959) methods can be employed to find a path of minimal cost. The roadmap-based
approaches build a graph to connect the initial and goal states in free space and they usually
find the solution paths based on the shortest distance. Regarding this case, the obstacles in the
C-space are represented as polygons, the visibility graph methods (De Berg et al., 2000) gener-
ates a graph whose nodes are the vertices of the polygons and whose edges are line segments
with no interference of obstacles. The last approach uses the potential fields computed in the
C-space to provide attraction to the goal configuration and repulsion from obstacles (Khatib,
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1986). The drawback of these approaches is that for problems with more than two or three
degrees of freedom, they are hard or impossible to implement and computationally prohibitive
because they require the construction of the Cobstacle in the configuration space.

Recently, much study is centered in sampling-based motion planning to provide efficient
solutions for path planning by avoiding the need to compute the whole C-space. It results in
probabilistic complete planning. The core of sampling-based motion planning is to use random-
based techniques to sample the C-space and to interconnect those collision-free configurations
as roadmaps or trees to capture the connectivity of Cfree. To cope with high dimensional degrees
of freedom, it is found as an appropriate strategy to reduce the complexity of problems. Some
sampling-based motion planners are investigated by (Elbanhawi and Simic, 2014). The most
popular approaches are tree-based techniques, which provide a single query, and roadmap-based
techniques, which provide multiple queries as described below.

If planning is carried out in static environments that remain constant at each manipulation
step, roadmap-based approaches provide better solutions (even though they are costly to be
implemented due to the need of exploring the whole C-space) because they make it possible to
set multiple queries. Path planning based on the Probabilistic Roadmap Method (PRM) (Kavraki
et al., 1996) that works in two phases. The first phase is the construction phase, that spends
a specific amount of time sampling Cfree and interconnecting samples with simple collision-
free paths forming a roadmap. The second phase is the query process, which connects a start
configuration to a goal configuration by using graph search techniques.

In manipulation planning, however, since the status of the environment is altered after ex-
ecuting each action, tree-based algorithms have better solutions because they provide specific
explorations of the C-space, e.g., focused on a given query. In this case, the environment is re-
configured and the C-space must be again explored. Here, some of the well-known single query
sampling-based motion planners are reviewed as they fit better in manipulation problems and
some of them will be used later in this thesis.

Path planning based on the Rapidly Exploring Random Tree (RRT) (LaValle and Kuffner, 2001)
explores the configuration space by expanding several branches of a tree. In the generic RRT
algorithm, a tree is initialized at the root where the initial state is placed and it incrementally
grows towards the goal configuration along random directions biased by the less explored areas.
The RRT-Connect planner (Kuffner and LaValle, 2000) is a variant of RRT. There are two trees
which are based on the RRT data structure, that are rooted at the start and goal configurations
in order to meet each other. In this case, one tree is extended and attempts to connect the closest
node of another tree to the new node in each iteration. Afterwards, the procedure is reversed
for the next attempt by swapping both trees. A greedy heuristic method is applied to convey
two trees. The method provides substantial improvements in the search efficiency. The RRT*
planner (Karaman and Frazzoli, 2011) has been developed that minimizes cost of the returned
solution comparing with the RRT algorithm. After growing the tree as done in the basic RRT
algorithm, the RRT* captures the set neighbor nodes N of each new added nodes to verify if it
can be reached through them with a less cost and, in this case, edges are rewired. Then, this
procedure is repeated for the nodes in N , which may to be rewired accordingly.
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Kinodynamic Motion Planning by Interior-Exterior Cell Exploration (KPIECE) planner is par-
ticularly designed for complex dynamical systems (Şucan and Kavraki, 2009). KPIECE grows a
tree of motions by applying randomly sampled controls for a randomly sampled time duration
from a tree node selected as follows. The state space is projected onto a lower dimensional
space that is partitioned into cells in order to estimate the coverage. As a result of this projec-
tion, each motion will be part of a cell, being each cell classified as an interior or exterior cell
depending on whether the neighboring cells are occupied or not. Then, the selection of the cell
is performance based on the importance parameter that is computed based on: 1) the coverage
(the cells that are less covered are preferred over the others); 2) the selection (the cells that
have been selected less number of time are preferred); 3) the neighbors (the cells that have less
neighbors are preferred); 4) the selection time (recently selected cells are preferred); 5) the
expansion (easily expanded cells are preferred over the cells that expand slowly). The cell that
has maximum importance will be chosen, and a node of one of the motions of the cell will be
randomly selected. The process continues until the tree of motions reaches the goal region.

Synergistic Combination of Layers of Planning (SyCLoP) planner (Plaku et al., 2010) is a meta
approach that considers motion planning as a search problem in a hybrid space (of a contin-
uous and a discrete layer) for efficiently solving the problem under kinodynamical constraints
(Plaku et al., 2010). The continuous layer is represented by the state space (that is explored
by a sampling-based motion planner like RRT) and the discrete layer is determined by the de-
composition of the workspace. The decomposition is used to compute a cost parameter called
lead that guides the motion planner towards the goal. SyCLoP works based on the following
steps lead computation and region selection. The lead is computed based on the coverage and
the frequency of the selection. The former is obtained by the sampling based motion planner
(continuous layer) and the latter is computed by determining how many times a cell has been
selected from discrete space. The selection of the region will be performed based on the avail-
able free volume of the region (high free volume regions are preferred for the exploration). The
process continues until the planner finds a sample in the goal region. SyCLoP could be recalled
SyCLoP-RRT based on the planner used in the continuous layer.

2.4 Manipulation Planning

The limitation of generic motion planning emerges when a robot requires to displace objects
when there is no feasible path between two robot configurations due to task constraints. Ac-
cordingly, various versions of motion planning have been enhanced and applied for solving a
manipulation problem. Manipulation problems are referred to as problems in which robots ma-
nipulate objects using a set of primitives, e.g., pushing, picking, or placing. One manipulation
approach is called physics-based motion planning and considers dynamic interactions between
rigid bodies. Physics-based motion planning has been applied in manipulation problems where
pushing actions are required, for instance (Muhayyudin et al., 2015).

A more general manipulation planning approach using several PRMs has been developed by
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(Siméon et al., 2004) that considers multiple possible grasps (that can be used for re-grasping
the objects) and stable placements of the movable objects to solve the problem. The manip-
ulation problem of Navigation Among Movable Obstacles (NAMO), at which a robot needs to
manipulate some objects in the workspace in order to reach its goal region, has been addressed
by in (Stilman et al., 2007) and (Stilman and Kuffner, 2008) using a backward search algorithm
from the goal in order to move the objects occluding the way between two robot configurations.
The works in (Hauser et al., 2010) and (Hauser and Latombe, 2010) have investigated multi-
modal motion planning for the application of climbing robots and push-planning by a humanoid
robot, respectively, without consideration of causal reasoning. The work in (Hauser, 2014) deals
with the Minimum Constraint Removal (MCR) problem while searching for a motion path. The
algorithm incrementally grows a PRM for estimating the connectivity of the configuration space,
and results in a path that violates the fewest object-collision constraints.

In the related field of grasp planning, (Azizi et al., 2017) propose a geometric approach
based on detecting a complete set of object subsurfaces in a cluttered scene, which allows the
end-effector to safely approach and grasp the object. In a similar vein, (Hertle and Nebel, 2017)
present techniques for sampling appropriate geometric configurations for object placements,
grasping poses, or robot positions, in order to perform a specific action. And recently, a method
for grasp planning in cluttered environments (Muhayyudin et al., 2018) has been proposed,
which uses randomized physics-based motion planning to account for robot-object and object-
object interactions. This allows a robot to push obstructing objects away while reaching a target
grasp pose.

The reviewed works much concentrate on geometry challenges in manipulation with no
high-level reasoning, while there are other manipulation problems which require to search in a
symbolic search space to find a sequence of actions. The approaches, furthermore, lack from un-
derlying discrete symbolic relations (e.g. among robots and objects) which can break down the
complexity of the problem. Therefore, combining task and motion planning makes a significant
role to deal with different challenges of manipulation problems for robots.

2.5 Knowledge Representation and Reasoning Process

Knowledge-based representation techniques, like ontologies, can enhance manipulation plan-
ning by providing informative data with respect to the robot’s world. Ontologies are one of the
best techniques to represent knowledge because they are able to integrate semantic information
(concluded by a set of rules defined by semantic languages for objects) that facilitates a better
task reasoning process. By finding and relating facts in an ontology, robots can understand a
task in a similar way a human does and answer questions such as “should this task be performed
or not?”.

Several projects have pursued ontological modelling in robotics. The work in (Tosello et al.,
2015) presents a semantic knowledge base that can be adopted as an information resource for
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autonomous cognitive robots performing manipulation tasks. The working group on ontologies
for robotics and automation (ORA WG), sponsored by the IEEE Robotics & Automation Society,
proposed standardized ways of representing knowledge for service, industrial and autonomous
robots (Schlenoff et al., 2012a). ORA WG has proposed the Core Ontology for Robotics and
Automation (CORA) (Prestes et al., 2013), a conceptual structure to be used and integrated
within other specific ontologies developed for the robotics and automation domain, i.e., with
a main focus on reusability. The structure of CORA is based on the Suggested Upper Merged
Ontology (SUMO) (Niles and Pease, 2001), that is a top-level ontology that aims to define the
main ontological categories describing the world. Later, in order to provide the more generalized
concepts of the robotic domain, CORA was extended by incorporating CORAX (Fiorini et al.,
2015), RPARTS (robot parts) and POS (position) (Schlenoff et al., 2012b). CORAX is an ontology
that defines the concepts not explicitly or completely covered by SUMO and CORA, such as robot
motion (that categorizes the motion of the robot according to its type such as robot rolling or
walking). RPARTS provides a general information of robot parts, also defining the attached parts
on the robot such as robot sensing parts. POS captures general information about position and
orientation.

The application of the knowledge has been used in different domains. In the navigation
area, some works such as (Lim et al., 2011) and (Gemignani et al., 2016) use a metric map and
a topological map to define the robot environment. The metric map is used for the geometrical
representation of the robot workspace in terms of free and occupied areas, while the topological
map is used to capture the topology of the workspace. Moreover, knowledge concerning house-
work activities was elaborated in (Tenorth and Beetz, 2009) and (Tenorth and Beetz, 2012)
describing and reasoning over the knowledge in order to, e.g., reason about ontological actions
effects and to know how to perform the actions. The work by (Beetz et al., 2011) presented an
experiment in which robots retrieved a simple instruction for a meal preparation task from the
web.

Ontological knowledge has also been integrated within task and motion planning frame-
work. The works of (Di Marco et al., 2013; Freitas et al., 2014) apply the use of knowledge in
HTN-based planning. In principle, the works represent the planning domain knowledge (such as
goal or actions description) in a semantically expressive way using the OWL for the purpose of
task specifications. The knowledge also encoded inside a high-level planning that combines FF
with HTN task planning (Klusch et al., 2005). The work also proposed the conversation model
to map information between the PDDL action description and the OWL information.

Most of reviewed approaches focus on various manipulation activities for robots. However,
action feasibility and how a robot can interact with an object, that can be addressed using
knowledge processing, has not been covered yet. In this thesis, semantic knowledge using the
ontology method is provided in terms of modelling and reasoning process to facilitate manipu-
lation planning process. It will be focused mainly to represent and reason over robot capability,
objects type, and the way of manipulation with objects which hold various features and con-
straints. For instance, regarding robot capability, a robot is asked to pick a heavy object, but it
cannot do it due to the weight of the object or some objects are manipulated using more than
one robot. Also, planning components in terms of action description and query conditions will
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be represented in the ontology.

2.6 Combining Task and Motion Planning

In general, combination of task and motion planning needs to search in symbolic and geometric
space. A task plan, including a sequence of symbolic actions, does not promise that actions
become feasible in terms of geometry conditions. This requires the combined search and mo-
tivates the researchers to investigate efficient ways of the combination at both levels in order
to acquire a feasible plan. Combining task and motion planning is an active research area in
Robotics and AI. This section explains different strategies employed to combine task and motion
planning with respect to different types of applications where the initial state and action effects
are fully observable. Different studies have dealt with various strategies to combine TAMP with
the aim of finding a feasible plan to solve a given task.

One way of the combination method is to consider a generic interface between symbolic
and geometric planning levels to determine whether a collision-free motion for symbolic actions
exists or not. The work in (Dornhege et al., 2012) introduces semantic attachments, which are
external reasoners called when the preconditions of actions are evaluated (a motion planner in
this case). Other approaches like (Erdem et al., 2011) and (Srivastava et al., 2014) a symbolic
plan is computed first, and then geometric constraints are evaluated afterwards. This is done by
calling a motion planner for each symbolic action in the plan obtained by the task planner. In
the case of failure, obstructing objects are identified and the state of the task planner is updated
with no-good constraints referring to these objects. The process is resumed and repeated until
a feasible manipulation plan is found.

Moreover, there are two main ways of combining task and motion planning information:
simultaneously or interleaved. The simultaneously approach accounts for geometric information
by calling a motion planner while task planning is being pursued. The manipulation plan is
then available after the task planning process is terminated. On the contrary, the interleaved
approach decouples motion planning from the task planning part. Task planning is first done,
and then call a motion planner to evaluate the feasibility of the plan. Upon failure, geometric
constraints are fed back to the task planner and the process resumes. This can be repeated
several times until a feasible manipulation plan is achieved. The study of (Erdem et al., 2016)
investigated different combination methods between task and motion planning, focusing on
when and how feasibility checks should be performed. Computational benefits and drawbacks
of different method are systematically compared. A similar analysis was done by (Lagriffoul
et al., 2013), in which various degrees of postponing feasibility checks are mathematically and
empirically compared. Both studies point out the importance of the type of problem considered
for choosing an appropriate method, e.g., large task spaces are not amenable to pre-computation
or, geometrically constrained problems benefit from tight task-motion integration because it
allows early pruning. Next, the TAMP approaches are presented in which task planning and
geometric reasoning are more tightly intertwined based on the proposed ways of combination.
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FF-based TAMP. In this line, these studies are based on the simultaneously combination
method. The study in (Cambon et al., 2009) presents an algorithm which interleaves search
at symbolic and geometric levels, where a PRM motion planner calls the task planner to guide
roadmap sampling. Upon failure of a selected action, the PRM is left for further exploration
(thus keeping the probabilistic completeness of sampling-based motion planners). Guidance is
provided by a heuristic value based on the symbolic distance to the goal. On the other hand, the
work in (Garrett et al., 2015) proposed an approach, called FFRob, which computes the heuristic
value by analyzing the feasibility of actions with a Conditional Reachability Graph (CRG) based
on a modification of PRM planner. It requires a pre-processing step to initialize the CRG by
sampling objects poses and robot configurations, and determining conditions under which these
samples are reachable or not.

Hierarchical-based TAMP. The works in this direction follow the simultaneously strategy. The
work in (de Silva et al., 2013) focuses on a combination based on the HTN planner. It facili-
tates backtracking at different levels, also including an interleaved backtracking procedure. The
application of combining hierarchical task and motion planning has been used by (Alami et al.,
2014) and (Alili et al., 2010) for a teammate robot and robotic assistant. They use different
geometric reasoning processes to find out a feasible plan. Moreover, the hierarchical model has
also been presented for task and motion planning by introducing the concept of planning in the
now (Kaelbling and Lozano-Pérez, 2011a). The main idea is to make a plan in the abstract level,
commit to it, and provide recursive plan to execute actions without making the rest of the plan
in detail. It also implements the RRT motion planner for primitive actions.

LTL-based TAMP. The work in (He et al., 2015) applied TAMP using the LTL task planner.
This approach is done following the interleaved approach. Motion planning evaluation launches
after a task plan is provided. In the case of failure, task planning input can be updated by a set
of constraints in order to find another plan. The authors claim the planner is capable enough in
moving away objects that block desired executions without requiring backtracking.

Constraint-based TAMP. In this direction, all the approaches are based on the interleaved
combination method. The work in (Lagriffoul et al., 2012) and (Lagriffoul et al., 2014) intro-
duce the concept of geometric backtracking, which denotes the systematic search process in the
space of grasps and placements when instantiating a symbolic plan. They use linear constraints
generated from symbolic actions and the kinematic model of the robot in order to prune the
space of grasps and placements. The work in (Dantam et al., 2016) proposed the Iteratively
Deepened Task and Motion Planning method using the Satisfiability Modulo Theories (SMT). It
incrementally detects constraints and keeps dynamically adding or eliminating a number of task
constrains based on the feedback obtained from the RRT-Connect motion planner. The approach
is able to find an alternative plan when an unfeasible one is identified. It first finds the task
plan, and then motion planning is employed to evaluate its feasibility. The work presented by
(Lagriffoul and Andres, 2016) addresses TAMP by solving a culprit detection problem. In the
case of failure at the geometric level, a logical explanation is computed. This explanation is fed
back to the Answer Set Programming (ASP) task planner, which prunes entire families of plans
leading to similar failures. The cycle repeats until a feasible plan is found.
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The main focus of this thesis will be to propose different ways of combining task and motion
planning levels with respect to various geometric challenges arising in manipulation problems.

2.7 Combining Task and Motion Planning under Uncertainty

Recently, some approaches have studied how to plan for task and motion levels under uncer-
tainty. A number of strategies has been considered in high-level planning that cope with finding
the feasible manipulation plan according to two types of uncertainty, which may arise from the
geometry information or the task information, considered.

There are some approaches focusing on uncertainty about the geometry information. The
concept of uncertainty in Solving Simultaneous Task and Motion Planning (STAMP) was intro-
duced in (Şucan and Kavraki, 2012). The study aims to manage uncertain information (which
propagates from motion planning to task planning). Therefore, the Markov Decision Processes
technique is applied to cope with sequences of actions based on the simultaneously TAMP strat-
egy. A probability of feasible plans is reported by a motion planner, which computes and eval-
uates a trajectory according to its uncertainty with the purpose of action selection. As a re-
sult, choosing a path connecting the initial state to the goal state of a robot is performed by
comparing probability of action’s outcomes. The concept of hierarchical belief-space task and
motion planning has been motivated by (Kaelbling and Lozano-Pérez, 2011b) and (Kaelbling
and Lozano-Pérez, 2013). They recommend the search space for planning to determine nodes
costs (at the task level) based on a probability distribution technique to select the best candidate
in order to pursue planning. The proposed search space is not a part of hierarchical planning
and this is an external module that can be integrated to the hierarchical structure. Moreover,
at required steps, the robot obtains an observation to update its information and estimate the
position of the object to perform an executable task.

On the other hand, there are other approaches following the contingent-based task and mo-
tion planning to tackle uncertainty about the task information. The work in (Gaschler et al.,
2013) has considered incomplete information using the Planning with Knowledge and Sensing
(PKS) planner and perform contingent planning. The approach considers two main scenarios,
namely a force sensing and visual sensing. The work in (Nouman et al., 2016) has introduced
offline-based hybrid conditional task and motion planning, i.e., task planning is foremost per-
formed, and then geometric evaluation is considered. So, the approach incorporates low-level
feasibility checks inside conditional planning. It is assumed that actuation actions are determin-
istic.

Following the direction of contingent-based task and motion planning under uncertainty, this
thesis also develops an approach for manipulation problems at which human interactions may
be required to complete a manipulation task.





Chapter 3
Semantic Manipulation Knowledge

3.1 Introduction

This chapter introduces semantic manipulation knowledge for robotics system in terms of mod-
elling and reasoning processes. The use of abstract knowledge can enhance the planning capa-
bilities and give more autonomy to the robots to perform tasks. Many approaches exist for the
representation of knowledge and one of them is ontology which is used to well structure the
knowledge in terms of concepts and relations. Reasoning process over semantic knowledge can
be then applied in order that robots infer the particular situation in their workspace. The use
of ontologies for robotic manipulation is considered here in combination with task and motion
planning (Akbari et al., 2018b) and (Akbari et al., 2015a), and also for physics-based motion
planning (Muhayyuddin et al., 2018) and (Muhayyudin et al., 2015).

3.2 Knowledge Representation using Ontologies

In the main, an ontology tackles the concern about reality of things existence and categorizes
conceptual knowledge regarding objects in the world upon a particular domain. Ontologies have
emerged as a notable technique to explicitly expose knowledge in the artificial intelligence field
at expressing the abstract knowledge in the form of concepts along relations. They are able to
be encoded and stored in the Web Ontology Language (OWL) (Dean and Schreiber, 2002), with
the intention to collect and organize ontology information on a world wide accessible database.
The OWL Language has been allocated to process available information on an ontology model
(e.g. connecting individuals or classes together according to relations components) as a useful
interpreter, besides being good at representing such information to humans. Ontology models
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can be done using Protégé tool1, which is a free open-source platform providing an editor to
develop domain models and knowledge-based applications. The editor has a good interface
to arrange the whole ontology information and classify it into ontology components. It allows
to assign numeric values with a specific data type to ontology properties (like object poses)
although these values can be alternatively stored in a data base and can be accessed when
required. Protégé has the capability to reason about ontology information.

OWL enables the structure of knowledge representation by proposing classes, individuals,
and object properties:

• Classes are collections of various objects sharing common properties.

• Individuals are allocated to describe particular instances of classes.

• Object properties determine how individuals can be related with each other.

3.3 Manipulation Ontology Components

This section describes abstract semantic knowledge considered for the mobile robots manipula-
tion purposes. The proposed manipulation ontology model, developed with the Protégé editor
in terms of OWL, entails two main classes called ManipulationWorld and ManipulationPlanning2,
that are represented by Kw and Kp respectively. Class ManipulationWorld, illustrated in Fig. 3.1,
is structured in the following subclasses:

• Obstacles: Class that retains necessary information with respect to all the obstacles in the
robot workspace. The information included comprises geometry and physical properties
like objects masses, friction coefficients, etc. The type of obstacles ObstacleType is classified
into two categories: FixedObstacle, for those obstacles with which a robot must avoid
collisions, and ManipulatableObstacle for those with which a robot can interact. Class
ObstaclePose includes information on the obstacle pose coded as a transformation matrix
composed of orientation and translation values for each object.

• Path: Class representing predefined symbolic paths between different regions in the workspace.
• Regions: Class used to represent various regions. Subclasses InitialRegion and GoalRegion

are used to represent the initial and the goal regions of the robots, respectively. The
subclass ManipulatableRegion is used to represent the region associated to manipulatable
obstacles where the robot must be placed in order to perform push/pull actions.

• Robots: Class used to represent the robots and their properties. Geometric parameters
of the robots are stored by the subclass KinematicProperties; differential properties of the
robot such as bounds on forces, torques, velocities, and accelerations (global properties

1http://protege.stanford.edu/
2OWL files are accessible at: https://sir.upc.edu/projects/ontologies/.
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Figure 3.1: The taxonomy of the class ManipulationWorld
.

that condition the maximum capacity of the robot) are stored by the subclass Dynam-
icProperties.
The access to the ontological knowledge can be done using Description Logic (DL). For
instance, the following DL description represents the relations for robot instances Robot
explaining that each robot has dynamics properties which involve force bounds, velocity
bounds, and acceleration bounds.

Class Robots := Robot
∃hasSuperclass(Robot,ManipulationWorld),
∧∃hasDynamicProperties(Robot,DynamicProperties),
∧∃isDynamicProperties(ForceBounds,DynamicProperties),
∧∃isDynamicProperties(V elocityBounds,DynamicProperties),
∧∃isDynamicProperties(AccelerationBounds,DynamicProperties).

where ∧ and ∃ represent conjunction and exist, respectively.
In a similar way, the next DL description illustrates the dimension of each sphere-like robot,
the response to gravity, the friction, mass, and color values, respectively.

Class Robots := Robot
∃hasRadius(Robot, V alue),
∧∃hasHeight(Robot, V alue),
∧∃hasResponseToGravity(Robot, V alue),
∧∃hasFriction(Robot, V alue),
∧∃hasMass(Robot, V alue),
∧∃hasColor(Robot, V alue).
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In a similar way, the information of manipulatable obstacles is classified in the ontology. As
an example, the semantic properties of the car-like object stored in the OWL are depicted by
Fig. 3.2, including the manipulation constraint, the dimensions, and physical attributes such as
mass, friction, and the effect of gravity on the object.

Figure 3.2: Screen shot of the Protégé editor showing the semantic properties of a car-like
object.

On the other hand, class ManipulationPlanning, also illustrated in Fig. 3.3, is structured in
the following subclasses:

• ProblemQueryConditions: Class that uses the information of InitialState and GoalState
classes regarding the locations of the robots at the initial and goal states, respectively.

• ActionProperties: Class used to define the different actions templates and bind them with
their preconditions and side effects.

• Predicates: Class that represents the predicates like At which contains where a robot is
located.

3.4 Reasoning Process on Manipulation Knowledge

Reasoning over the OWL knowledge is done using the KnowRob tool (Tenorth and Beetz, 2009),
a potent knowledge processing tool that enables a flexible access to the OWL knowledge and the
SWI-Prolog library (Wielemaker et al., 2012). It is mainly developed in the Prolog language and
provides fundamental predicates to fetch knowledge, e.g., the query owl_subclass_of(?SubClass,
?Class) explores all available subclasses of a class, owl_individual_of(?Indv, ?Class) seeks to list
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Figure 3.3: The taxonomy of the class ManipulationPlanning.

all individuals of a class, and class_properties(?Class, ?Properties, ?Value) determines the value
of a class under particular properties. The tool has been extended with more predicates tailored
to extract the necessary information. Some of them are defined as follows:

• object_classification(?Obj, ?ObjType, ?Const): Given an object Obj returns the type of the
associated object ObjType and the constraints may hold by evaluating its category and
manipulation features. Those manipulatable objects that are too heavy for the robot to be
manipulated are set to fixed.

• manipulatable_region(?Obj, ?ManipRgns): Given a manipulatable object Obj computes the
set of associated manipulatable regions ManipRgns taking into account the manipulation
constraints, if any.

• object_properties(?Obj, ?PhysicalProps, ?Dimension): Given an object Obj returns its phys-
ical properties PhysicalProps, including mass and friction values, as well as gravitational
effect and the dimension Dimension of the object.

• robot_properties(?DynamicsProps, ?KinematicProps): Returns the dynamics properties of
the robot (forces and velocities limits) in DynamicsProps, and the kinematic properties
(joint limits) in KinematicProps.

• action_feasibility(?Rob, ?Obj, ?Action): Given a robot Rob and a manipulatable object Obj
returns the corresponding feasible actions with respect to robot capabilities and object
features.
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3.5 Applications of Semantic Knowledge in Manipulation Planning

The proposed ontological knowledge has been used to enrich the combination of task and mo-
tion planning, and also to enhance physics-based motion planning to address different sort of
manipulation problems. For the combination of task and motion planning, the usage will be
discussed in details in Chapters 4 and 5, for physics-based motion planning, which is not the
main scope of the thesis, it is briefly commented next.

Regarding applying semantic knowledge in motion planning, a simple scenario presented
in (Muhayyudin et al., 2015) has been implemented that concentrates on how physics-based
motion planning makes use of the ontological knowledge to manage a situation involving a
single manipulatable obstacle. It consists of: a) the walls of a room which are defined as fixed
bodies; b) a spherical shaped robot with two degrees of freedom; and c) a car-like manipulatable
object which is defined as a constraint-oriented manipulatable body that can only be moved in
the forward and backward directions. Using the knowledge-based reasoning over the physical
properties of the car, the robot knows how much force it needs to apply when it is going to
manipulate the car. The goal region Qgoal is occupied by the car-like object, so no collision-free
path exists, i.e., the robot needs to push the car-like manipulatable object away in order to reach
Qgoal. This examples uses a physics-based motion planner based on KPIECE. The sequence of
snapshots of the solution is represented in Fig. 3.4.

3.6 Conclusions

This chapter represented semantic manipulation knowledge by modelling it using ontologies
and proposed a reasoning process over the ontologies in order to provide better information for
manipulation planning. The proposed framework has been applied in the combined task and
motion planning approach introduced in this thesis, and the usage will be discussed in Chapters
4 and 5. Out of the scope of this thesis, it has been used also in physics-based motion planning
where a robot needs to interact with objects in workspace.
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Figure 3.4: Simulation results of a physics-based motion planner using knowledge.





Chapter 4
GraphPlan-based Task and Motion
Planning for Mobile Robots

4.1 Introduction

This chapter copes with the combination of task planning and physics-based motion planning
levels using ontological knowledge for mobile robots in the scope of NAMO problems. Daily
manipulation tasks require a robot to become more capable, robust, as well as autonomous in
order to carry out various manipulation actions, e.g., pushing different sort of objects holding
unique characteristics in human-like environments. In solving a given manipulation problem,
task (high-level) beside motion (low-level) planning are required, and their combination plays
a crucial role in realizing a solution plan in terms of finding a sequence of actions and a way
of execution them. Manipulation actions comprise contacts between a robot and manipulatable
objects, so motion planning has to be aware of the possible interaction among rigid bodies. To
deal with this issue, a physics-based reasoning engine is employed that enables the access to
such information aiming to evaluate feasibility or effect of actions.

Contributions. Two type of combinations of task and physics-based motion planning using the
ontological knowledge are proposed that have been presented in the research articles (Akbari
et al., 2015b) and (Akbari et al., 2015a). The task planner used is based on modified versions
of the GRAPHPLAN algorithm. The prior work focuses on solving task first with different plans,
and then calling a physics-based motion planner to analyze the manipulation plan in order to
obtain the best one in terms of power. On the contrary, the latter one presents an approach that
interleaves physics-based motion planning within the task planner simultaneously.
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4.2 Problem Formulation

Consider the NAMO manipulation problems where there is no direct collision-free path between
the initial and the goal state of the robot and it needs to push some objects away. Mobile
robots are considered that can perform two types of actions: to move around freely and to push
manipulatable obstacles. Then, the problem to be tackled is to find a feasible sequence of actions
to bring the robot, among fixed and manipulatable obstacles, from an initial region towards a
goal one, such that it has a good behavior in terms of power. Collisions with fixed obstacles
are not allowed while, if necessary, manipulatable obstacles can be pushed away. The following
regions in the workspace, available in the knowledge Kw, are considered:

• Initial region: It is the region where a robot is initially located.

• Goal region: It is the region where a robot is going to be located eventually.

• Connection region: There could be different zones, which can be different rooms or par-
ticular regions, in the robot workspace. So, connection region is the region in which two
separated zones are connected to each other, e.g., if the robot is located in the zone one,
it can travel to the zone two through this region.

• Manipulatable region: It is the region in which a robot must be located in order to interact
with a manipulatable object.

Those regions which are occupied by some objects are called critical regions. It is assumed
that there is a path between two regions located in the same zone and it is activated if the
region is not critical region. Otherwise, a push action is required to make it activated. The
literals assumed here are summarized below:

• HasAccess(Robot, Path): Holds true if the Robot has access to Path.

• At(Robot, Region, Path): Holds true if the Robot is located at Region through Path.

• In(Obj, CriticalRegion): Holds true if a manipulatable object Obj is positioned in a critical
region CriticalRegion.

The following symbolic action templates are considered to deal with the NAMO problems:

• Move(Robot, Region, ThroughPath, FromRegion, FromPath):

Precondition: HasAccess(Robot, ThroughPath), At(Robot, FromRegion, FromPath)

Add: At(Robot, Region, ThroughPath)

Delete: At(Robot, FromRegion, FromPath)
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• Push(Robot, Obj, ManipRegion, CriticalRegion, ToAccessPath, ThroughPath):

Precondition: In(Obj, CriticalRegion), At(Robot, ManipRegion, ThroughPath)

Add: HasAccess(Robot, ToAccessPath)

Delete: In(Obj, CriticalRegion)

It is worth noting that all the literals and actions along their conditions are modelled in the
manipulation ontology and can be accessible during planning when required.

4.3 Combining Task and Physics-based Motion Planning in Two Phases

In this approach, the combination of task and motion planning is done in two steps, i.e., high-
level plans are first retrieved and physics-based motion planning is used afterwards to evaluate
the symbolic plans.

4.3.1 Retrieval of High-Level Plans

The standard GRAPHPLAN algorithm builds the planning graph until the last state level satisfies
all the goal conditions, and then the backtracking process searches for the sequence of actions
satisfying all the constraints. If found, the solution plan is the shortest sequence of actions that
solve the problem, irrespective of its feasibility or cost (e.g. the solution may content a push
action which cannot be executed due to the weight of the object to be pushed). To allow the
GRAPHPLAN algorithm to retrieve all the possible plans, a lightweight reasoning process has
been implemented to identify all goal conditions (called possible conditions) that should be met
at the initial and the goal states. The possible conditions representing all ways of satisfying the
goal conditions. The planning graph grows until a state level is found that satisfies all possible
conditions and the backward search is then applied from each possible condition in order to find
all alternative plans.

As an example, Fig. 4.1 shows a two-room NAMO scenario with a wall as a fixed obstacle,
three manipulatable obstacles (A, B, and C with associated regions from where they can be
pushed) and an initial and a goal region.

The problem in Fig. 4.1 shows that the initial region has access to two alternative paths, P1
and P3 (i.e. the initial action of a plan may be to move the robot towards object A following
path P1 or alternatively moving towards object C following path P3). Therefore, these paths
become possible conditions for the initial state that can be represented by HasAccess(robot, p1),
HasAccess(robot, p3) in the initial state of the task planner.
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Figure 4.1: A NAMO manipulation problem where a robot must find the best path from an
initial region to a goal one avoiding the fixed wall in the middle and pushing the manipulatable
objects A, B and C, if necessary, to clear the corridors (dashed regions). Here, corridor 1 and
corridor 2 are the connecting regions to connect both rooms together.

A similar procedure can be applied for the goal conditions as well, where it can be seen that
the goal region can be reached through two alternative paths, P4 and P5. Then:

G =[At(robot, goalregion, p4), At(robot, goalregion, p5)]

For the example in Fig. 4.1, some of th information of the resulting planning graph generated
by this variant of GRAPHPLAN is shown in Fig. 4.2. At each state level, predicates are labeled
with numbers, and at each action level actions are labeled with the predicates they connect
(not counting the maintenance action that applies to all the predicates). The search space
provides five state levels. From the last state level, backtracking is done starting at two possible
goal conditions, At(robot, goalregion, p4) and At(robot, goalregion, p5). The states encountered
during backtracking in which the robot plays a role have been highlighted in Fig. 4.2 and the
corresponding symbolic plans are depicted in Fig. 4.3. They are achieved from backtracking
through each goal conditions in the goal layer of the planning graph.

4.3.2 Physics-Based Reasoning on High-Level Plans

A physics-based motion planner will be used to plan both move and push actions, and an associ-
ated cost, detailed in the following subsection, will be set to evaluate the feasibility of a symbolic
plan.

The physics-based reasoning about a high-level plan (composed of a sequence of move and



4.3. Combining Task and Physics-based Motion Planning in Two Phases 35

Figure 4.2: Some of the information of the search space of GRAPHPLAN. Here, some of the
conditions and the first three parameters of the move action are depicted.
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Figure 4.3: Plan A (left) and plan B (right) resulting from the modified GRAPHPLAN algorithm.

push actions) involves the dynamical properties of the robot and of the environment, such as
masses of the objects, required manipulation forces, friction, etc. As discussed in Chapter 3,
dynamical properties for the manipulation task can be queried by Prolog predicates (like ob-
ject_properties or robot_properties) through the ontological knowledge and applied for the mo-
tion planner. The feasibility of a plan will be set according to its cost that will be computed
according to the following cost functions:

• Push cost: It is the total amount of power consumed to complete the push action (i.e. to
clear the region the object is occupying) by applying repetitively the same force:

cp = nfd
∆t , (4.1)

where f represents the force applied by the robot for ∆t duration, d is the corresponding
displacement covered by the object, and n is the number of times the force is applied in
order to complete the push action and clear the region. If the object is too heavy to be
pushed by the robot, then this cost will be set to infinity.

• Move cost: It is the total amount of “action" (i.e. the dynamical attribute of a physical
system that considers the history of moves and that has units of Newton-meter-second):

cm =
n∑
i

|fi|∆ti%i (4.2)

where f1, . . . , fn are the controls (forces) to be applied to follow the path and %i represents
the distance covered when applying force fi. If the motion planner is not able to find a
path, then this cost will be set to infinity.
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Let Cj
p and Cj

m be the total push and move costs of plan j:

Cj
p =

Npj∑
k=1

cj
pk

Cj
m =

Nmj∑
k=1

cj
mk

(4.3)

with Nmj and Npj being the total number of push and move actions of the jth plan, respectively.
Then, based on these costs, a Task-feasibility parameter is defined for each plan as follows:

αj = µ
Cj

p

max∀k∈[1,N ]Ck
p

+ (1− µ) Cj
m

max∀k∈[1,N ]Ck
m

(4.4)

with µ ∈ [0, 1] being a weighting factor and N the number of alternative plans.

The best plan will be the one with the lowest Task-feasibility parameter.

4.3.3 Simulation Results and Discussion

The KPIECE motion planning algorithm (Şucan and Kavraki, 2009) (with the physics-based state
propagator based on ODE) has been used, and some snapshots of the executions of both plans
are illustrated in Fig. 4.4 and Fig. 4.5. Table 4.1 shows the cost of each action and the Task-
feasibility parameter of each plan using µ = 0.5. The total move and push costs of plan A are
lower than those of plan B and result in a lower Task-feasibility parameter. Plan A is, therefore,
the selected one. Note that plan B has less actions and would have been the unique plan found
by the standard GRAPHPLAN algorithm.
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1 2 3

4 5 6

7 8 9

Figure 4.4: Simulation results of the execution of plan A for the example in Fig. 4.1. The solu-
tion can be visualized in https://sir.upc.edu/projects/kautham/videos/efta15_
TaskPlanning.mp4

1 2 3

4 5 6

Figure 4.5: Simulation results of the execution of plan B for the example in Fig. 4.1.

https://sir.upc.edu/projects/kautham/videos/efta15_TaskPlanning.mp4
https://sir.upc.edu/projects/kautham/videos/efta15_TaskPlanning.mp4
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Cost Plan A Total
Move (N·m·s) 0.07903 0.01401 0.03955 0.13259
Push (J/s) 7.46064 9.46279 16.92343
Task-
feasibility
parameter

0.91585

Cost Plan B Total
Move (N·m·s) 0.05736 0.09372 0.15108
Push (J/s) 17.73759 17.73759
Task-
feasibility
parameter

1.0

Table 4.1: Evaluation of cost plans.

According to the way of combining task and motion planning levels, the proposed approach
collects primarily high level symbolic plans, and afterward calls the physics-based motion plan-
ner in order to reason over the plans. Therefore, it could be expensive to check all possible plans
which may have, e.g., some infeasible actions that can be identified while the planning process
is taken place.

4.4 Simultaneous Task and Physics-based Motion Planning using
Reasoning Process

Unlike the previous section, this section presents an approach of combined task and motion
planning using the low-level along the high-level reasoning process in order to prune infeasible
and unnecessary symbolic actions when required. This method may lead to cut-off infeasible
and dispensable task branches while task planning is taken place comparing to the approach
presented in the previous section.

4.4.1 Reasoning Process about Manipulation Actions

The use of reasoning process plays an important role in integrating task and motion planning
in order to find a geometrically feasible manipulation plan. To illustrate this issue, the NAMO
example represented in Fig. 4.6 is assumed in which there are two rooms separated by a corridor
and a mobile manipulator that must traverse to move from the initial to the goal region. Several
paths are also considered among the regions of the robot workspace as follows:

• P1, P2, and P3: Paths that connect the initial region to the regions mD, mA1, and mA2,
respectively.
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Figure 4.6: A NAMO manipulation problem where a robot must find a feasible path to reach
the goal region avoiding the fixed wall. corridor is a connecting region to connect both rooms
together.

• P4 and P5: Paths that connect the region mD to the regions mA1 and mA2, respectively.

• P6 and P7: Paths that connect the region mA1 to the regions mB1 and mC1, respectively.

• P8 and P9: Paths that connect the region mA2 to the regions mB1 and mC1, respectively.

• P10: Path that connect the region mB1 to the goal region when the robot is in room 2.

• P11: Path that connect the region mC1 to the goal region when the robot is in room 2.

To achieve the manipulation goal, the robot needs to push away some objects in order to free
its path towards the goal. The following constraints hold for the manipulatable objects: they can
only be pushed from their manipulatable regions as defined in the knowledge and, according to
them, along the x or y directions. Regarding the possible pushing actions, it can be seen that,
for instance, pushing object A from mA1 becomes an ineffective action because it does not clear
the access to either manipulatable region mB1 or mC1. Thus, such type of actions should be
identified and omitted in the task planning search space.

Therefore, three types of reasoning processes are proposed to evaluate manipulation actions:
essential, feasibility, and geometric reasoning. They are applied while the planning graph is
constructed.

The essential reasoner determines whether an action is relevant or not. The reasoner prunes
those actions which are not relevant for the task to be solved, i.e., those that are inessential
and applied to objects which do not occupy any regions in the workspace. This is done for Push
actions by evaluating, in a given action-layer, whether the post-conditions of a non-maintenance
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action can only lead to actions already found in the action-layer and the corresponding ma-
nipulated object in the action does not occupy any critical regions. If this is the case, the co-
rresponding action is marked as inessential and pruned from the planning graph. Also, the
pre-conditions of the pruned action are deleted, as well as all the maintenance branches lead-
ing to them and they do not appear again. In this way, only fruitful actions are kept and any
dispensable action branch is removed.

The feasibility reasoner evaluates the feasibility of an applicable action by determining whether
the robot is capable or not to perform it using the knowledge about the robot specifications and
manipulated objects using the Prolog predicate action_feasibility and with no call to the motion
planner. It is considered for the push actions. If the robot is not able to perform the task, the
action is considered as infeasible and it is pruned from planning along its branches.

The geometric reasoner calls a physics-based motion planner to check whether the effects of
an action are reachable or not. If the motion planner is not able to find a motion, the action is
considered as unattainable and is pruned from the planning process along its branches.

4.4.2 Planning using Reasoning Process

The proposal of combining task and motion planning using the reasoning process is sketched
in Algorithm 1. It takes the knowledge Kw and Kp concerning the robot workspace and the
planning information and returns the solution plan π.

The core of the computation is to appraise each selected action along the corresponding
effects by the proposed reasoning process in order to prune dispensable actions. This results in a
smaller planning graph, making both the construction phase and the search phase more efficient.
When the reasoning process determines that an action is inessential, infeasible, or unattainable,
then it is pruned. Fig. 4.7 illustrates the constructed planning graph for the example represented
in Fig. 4.6. For the sake of saving space, only the relevant information has been exposed (e.g.
maintenance actions are neglected).

The planning graph is established with the initial state defined in the knowledge (Kp.sinit)
[line 1] and the construction phase procedure is launched until a layer is found that satisfies the
goal constraints [line 26]. Action space A is available on demand from the ontological knowl-
edge. At every iteration i, the set Ai of actions whose pre-conditions appear in the previous
state-level Si-1 is selected [Line 5] and then evaluated [Lines 6-22]. The action is going to be
forwarded to the sequence of reasoning process:

• essentialReasoner(a,Kw) checks whether an action is essential or not [lines 7-10], e.g., the
action PushD from mD becomes inessential regarding the existing actions PushA from mA1
or from mA2 since they can always be done irrespective of performing the PushD action.

• feasibilityReasoner(a,Kw) evaluates the feasibility of an action by determining whether the
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Algorithm 1: Task and motion planning using efficient reasoning
inputs : Kw and Kp

output: The solution plan π
1 S0 ← Kp.sinit
2 Avalid = ∅
3 i← 1
4 while i < m do
5 Ai ← {a ∈ Kp.A | precond(a) ⊆ Si-1}
6 foreach a ∈ Ai AND a 6∈ Avalid do
7 essentialReasoner(a,Kw)
8 if a is inessential then
9 pruneActions(a)

10 continue

11 feasibilityReasoner(a,Kw)
12 if a is infeasible then
13 pruneActions(a)
14 continue

15 geometryReasoner(a,Kw)
16 if e is unattainable then
17 pruneActions(a)
18 continue

19 Avalid ← a

20 Ai ← maintenanceActions(Si-1)
21 Si ← (l | l ∈ effects(Ai))
22 M ← appendMutexes(Ai,Si,Si-1)
23 if goalFound(Kp.sg,Si) then
24 Sg = Si
25 backtrack(Kp.sg,M)
26 if constraintSatisfaction(Sg,S0,M) then
27 π ← extractPlan(Sg,S0,M)
28 return π

29 i← i+ 1
30 return NULL
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Figure 4.7: Some of the information of the constructed planning graph. Pruned actions are
specified in blue. Here, the first three parameters of the move action are depicted.

robot is capable or not to perform it [lines 11-14], e.g., the action PushC is infeasible with
respect to the robot’s capability since it is a very big and heavy object.

• geometryReasoner(a,Kw) checks whether the effects of an action are reached or not [lines
15-18], i.e., the action PushA from mA1 is ineffective because after pushing the object
downward, regions mB1 and mC1 are not freed because the object collides with the wall
and gets stuck over these regions.

The action that is not valid is pruned using function pruneActions(a), that deletes the action
from the planning graph as well as the pre-conditions and all the maintenance branches leading
to them. The actions that are valid are stored in the set Avalid [line 19], in order not to evaluate
them again if the action further appears, and maintenance actions are later added [line 20].
Then the next state-level is created from the set Ai and the constraints between actions and
literals is computed by function appendMutexes(Ai,Si,Si-1) as done in the standard GRAPHPLAN
algorithm.

In the case of goal conditions are met, backtracking is performed. If the initial state-level
S0 is reached in this backtracking process and all the constraints are met the plan is extracted
[lines 25-27].
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4.5 Simulation Results and Discussion

Simulation results corresponding to the scenario represented in Fig. 4.6 are shown in Fig. 4.8 as
a sequence of snapshots. SyCLoP-RRT (Plaku et al., 2010) is used as kinodynamic motion plan-
ner for physics-based planning because recent benchmarking study of the kinodynamic motion
planners for physics based planning (Muhayyuddin et al., 2016) shows that SyCLoP-RRT com-
putes better path in terms of power and smoothness. The solution plan and pruning actions are
found in Fig. 4.7 and the average planning time is about 35 seconds for solving the manipulation
problem.

a b c

d e f

Figure 4.8: Simulation results of the execution for the example in Fig. 4.6.

4.6 Implementation Framework

The proposed framework for task and motion planning, shown in Fig. 4.9, consists of a knowl-
edge module, a task planing module, and a motion planning module. All of them communicate
with each other through a Robot Operation System (ROS, http://www.ros.org/, (Quigley et al.,
2009)) communication layer:

• The knowledge is coded in the form of the OWL ontology and it consists of: a) knowledge
about the world, i.e., information on the type of objects (manipulatable or fixed) and if
manipulatable, on the regions from where they can be pushed (manipulatable regions),
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and their poses (position and orientation); b) physical properties (objects masses, friction
coefficients, minimum manipulation forces, etc.) as represented in Chapter 3.

• The task planning module: it employs high-level reasoning process and uses the variants
of the GRAPHPLAN approach.

• The motion planning module is used to determine the effect of each action in the dynamic
world and to execute the plan. The implementation of this module is performed using The
Kautham Project (Rosell et al., 2014) (https://sir.upc.edu/projects/kautham/
) that is a motion planning tool based on the Open Motion Planning Library (OMPL (Su-
can et al., 2012)) which provides the implementation of many sampling-based planners
like RRT and KPIECE. The dynamic simulations are performed using ODE. As the motion
planner has access to the physical properties of objects through the knowledge, it will be
able find a motion with a low cost.

• The communication layer shares information between different layers. This layer in-
volves ROS (Quigley et al., 2009) to provide the basic communication protocols, and the
KnowRob (Tenorth and Beetz, 2009) and the Json-prolog library (provided by KnowRob)
to enable the access to the ontological knowledge and Prolog predicates through the ROS
communication protocols.

4.7 Conclusions

This chapter has proposed two frameworks to take into account lightweight high-level and
physics-based reasoning for the NAMO manipulation problems. Two modified versions of the
GRAPHPLAN algorithm are proposed. The prior one collects all possible symbolic plans, and,
afterwards a physics-based reasoning process is applied to determine the feasibility of each plan
in terms of the action costs. The latter one is based on simultaneous task and motion planner
that has been computationally more efficient. This is achieved by reasoning over the action and
pruning those that are dispensable. This reasoning process is performed at two levels. A high
level that allows to find those actions that are not relevant and a low-level using a physics-based
motion planner that allows to find those that are either infeasible or unattainable.

The proposals have been implemented and illustrated with some simple examples. The
present proposal considers a mobile robot with move and push action capabilities. The lim-
itation of the current proposals are when the manipulation problems become more complex
in terms of more number of mobile robots or manipulation actions, because then they can be
computationally expensive in terms of number of calls to the motion planner.

(https://sir.upc.edu/projects/kautham/)
(https://sir.upc.edu/projects/kautham/)
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Figure 4.9: Implementation framework for task and motion planning using physics-based rea-
soning



Chapter 5
Heuristic-based Task and Motion
Planning for Collaborative Multiple
Mobile Manipulation

5.1 Introduction

The chapter is going to deal with the NAMO problems in which multiple mobile robots are
required to collaborate or share the tasks with each other in order to satisfy the goals of the
problem. The fulfillment for robotic systems composed of several mobile robots moving in envi-
ronments with fixed and movable obstacles is a great challenge, mainly due to the need to find
a sequence of motions that are feasible, i.e., motions that do not make the robot collide with
fixed obstacles and that if necessary interact with movable obstacles to remove them and clear
the path. If it is assumed that mobile robots can perform Transit, Push, and Pull actions, the
problem can be efficiently tackled if a smart combination of high-level (symbolic) planning and
low-level (geometric and physical) planning is proposed. At the high level, different symbolic
task planners developed by the artificial intelligence community have been proposed. Among
them, the Fast Forward planner, that is a heuristic-based planner, has demonstrated to be very
efficient. At the low level, different motion planners have been proposed. Among them, the
physics-based motion planners allow to plan motions of the robot from an initial configura-
tion to a goal one, being the interaction with some objects possible (and hence permitting the
purposeful manipulation of objects).

The combination of the Fast Forward task planner and a physics-based motion planner is
therefore appealing, and is proposed here. Also, the use of knowledge-based techniques may
enhance both planning levels, e.g., by handing over sufficient information to the robots regard-
ing the way to interact with the obstacles. The coding of knowledge by means of ontologies

47
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make it more flexible the use and the reasoning over the knowledge, providing fruitful informa-
tion for the selection and execution of actions.

When the robotic system is composed of more than one robot, planning is even more chal-
lenging, since in this case the problems require the coordination of sub-tasks (a robot must be
required to push away some obstacle to clear the path for another robot to travel to different
regions in the workspace), or the execution of cooperative actions between several robots (the
push of a heavy obstacle may require the use of more than one robot).

Contributions. This chapter presents a knowledge-oriented task and motion planning method,
called κ-TMP, based on the use of physics-based motion planning and information to compute
the heuristic to search a feasible plan using the Fast-Forward task planner. The proposal is de-
signed to cope with several mobile robots sharing the tasks and collaborating with each other in
order to obtain the most efficient feasible global plan. By incorporating ontological knowledge,
the method offers, together with the physics-based motion planner, off-line and on-line reason-
ing processes on symbolic literals to determine the actions feasibility and side-effects that guide
the search of the plan. As a consequence, the proposed planning approach empowers robots
to be more autonomous and have the capability to accomplish goals in complex scenarios. The
approach is originally presented in articles (Akbari et al., 2016a) and (Akbari et al., 2016b) in-
volving one robot and (Akbari et al., 2018b), considering collaborative tasks for multiple mobile
robots.

This proposal assumes that the information of the configuration space connectivity is avail-
able beforehand, which is feasible for a mobile robot in a 2D workspace, that all the robots
are equal and that they move one at a time. The direct extension of the proposed method to
multiple manipulator robotic systems with high-dimensional configuration spaces is not possible
since the first assumption may not hold, although a variant of the method will be proposed in
Chapter 6.

5.2 Problem Formulation and Solution Overview

5.2.1 Scope and Motivating Example

The scope of the present proposal is to deal with collaborative tasks for the NAMO problems
in which mobile robots may interact with obstacles in the environment (by pushing or pulling
them) in order to fulfill the goal of traveling to their target regions. For this purpose, robots are
required to share the tasks by assisting each other for clearing the path towards the goal or by
executing cooperative actions.

Many task and motion planners cope with manipulation problems involving pick and place
actions, i.e., without considering push/pull actions. Alternatively, some other approaches that
consider those actions are purely based on motion planning, i.e., do not include high-level rea-
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soning. With respect to other approaches, the scope considered here pose challenging situations
(even more when considering several robots) where, on the one hand, the availability of high-
level reasoning is required (like when more than one object may be obstructing the path) and,
on the other, the planning of robot motions with interaction with the obstacles is also necessary
(push actions are required because the robot cannot pick the objects because they are too heavy
or simply because no robotic arm is available).

As a motivation example, it is assumed that several robots are able to execute the following
actions:

• Transit: To travel freely in an indoor environment.
• Push/Pull: To change the position of an obstacle by pushing or pulling it. Depending on

the weight of the object this task must be executed simultaneously by several robots. The
use of those will be constrained to objects whose removal are potentially required to solve
the task (e.g. objects blocking corridors or doors).

An indoor environment cluttered with obstacles is considered. The following classification of
obstacles and regions is established:

• Fixed obstacles: Obstacles whose location cannot be changed by the robots, either because
they are attached to the environment, like walls, or because they are too heavy to be
moved by them. Collisions with fixed obstacles is not allowed.

• Manipulatable obstacles (MObs): Obstacles that can be pushed or pulled by the robot.
Some constraints may exist regarding the directions in which they can be moved.

• Manipulatable regions (MRgn): Regions next to the manipulatable obstacles from where
the robot can interact with them (no collisions are allowed from elsewhere).

• Disjointed configuration space region (Ci): Region of the configuration space such that a
collision-free path exists between any two of its configurations.

• Critical Objects: Those MObs whose removal may connect two disjointed regions together.

Two disjointed configuration space regions Ci and Cj are said to be neighboring regions if the
removal of a critical obstacle makes them connected. It will be assumed that displacing an
obstacle will not end creating a new disjointed configuration space region, i.e., the effect of a
push/pull action will not partition any Ci into two, nor will this happen due to the positioning
of a robot.

As a motivating example, consider the problem shown in Fig. 5.1 where two robots have to
transit from their initial locations towards a goal region. To solve the task, several obstacles shall
be removed since no collision-free paths exist. The set of MObs are labeled from A to M in an
increasing order with respect to their weight, and are also colored according to it (the heavier,
the darker). It is assumed that obstacle M is beyond the capacity of the robots and that obstacle
L can be manipulated only if both robots do it simultaneously, while the other obstacles can be



50
CHAPTER 5. Heuristic-based Task and Motion Planning for Collaborative Multiple Mobile

Manipulation

Figure 5.1: A NAMO manipulation example: two robots (shown as small cylinders) are required
to reach the goal region by pushing or pulling some obstacles in the way (manipulatable obs-
tacles are shown as boxes and are labeled in an increasing order with respect to their weight).
Workspace regions are labelled with the name of the corresponding disjointed configuration
space regions.

manipulated by a single robot. Besides, MObs must be manipulated through the manipulation
regions (highlighted in light blue) where the robot must be located in order to pull or push
them. It must be noted that, on the one hand, the execution of cooperative actions is required
(pushing object L) and, on the other, the coordination of sub-tasks is also a need (obstacle G
must be removed by robot 1 in order to allow robot 2 to move towards the goal).

In the planning phase, a great number of potential actions have to be considered, being their
actual applicability and feasibility under appraisal. It is worth noting that some manipulation
actions do not provide fruitful effects to solve the problem (e.g. there is not enough room to
either push or pull object B in order to connect regions C2 and C4), and that such type of actions
must be detected in advance in order to avoid any dead-end plan. Furthermore, among the set
of feasible solution plans, the least-cost one is the one sought. These aforementioned issues pose
substantial challenges that can be properly handled by considering an efficient combination of
task and physics-based motion planning.

5.2.2 Problem Formulation

A task planning domain D is formalized as 〈R, S,Kw,Kp〉, where:

• R is a graph describing the connectivity of the configuration space of any robot (all are
considered equal and moving one at a time so the graph is unique irrespective of the robot
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used to compute it). The nodes of the graph describe the disjointed regions and the edges
represent the potential connectivity between regions.

• S is a set of states containing both literals and geometric information.

• Kw represents, as an ontology, the semantic knowledge about the robots and the environ-
ment.

• Kp represents, as an ontology, the knowledge about the planning components.

Then, a task planning problem, T , is formally defined by the tuple 〈D, I,G〉 where D is the task
planning domain explained above, I describes the initial state of the manipulation problem and
G the set of goal conditions that have to be satisfied in the final state.

Configuration space information

The connectivity of the configuration space of a mobile robot in a 2D workspace, which can
be obtained using the approach in (Stilman and Kuffner, 2005) for navigation problems, is
represented by a graph R. The nodes of R are the disjointed configuration space regions, and
the edges connecting them are labeled with the name of the critical object(s) whose removal
connects two disjointed regions into a single one. A small circle at the end of an edge illustrates
that the corresponding critical obstacle can be manipulated from there. Fig. 5.2 represents
the graph associated to the example of Fig. 5.1, where the first and second robots are initially
located at C1 and C6, respectively, and their goal region is placed in C8 (workspace regions
are named as the corresponding disjointed configuration space regions). The manipulation of
obstacles may change the connectivity of the configuration space. Nevertheless, the topology of
the graph will remain fixed and this information will be introduced by removing the label on the
corresponding edges. Also, the following functions will be used to retrieve information from R:

• Map(MRgn): Returns the disjointed configuration space region Ci where the configuration
of the robot lies when the robot is placed in the manipulatable region MRgn.

• Path(Ci, Cj): Returns true if either Ci = Cj or a path inR exists between nodes Ci and Cj

and the edges in the path have no labels (i.e. the critical objects associated to the edges in
this path have been removed). Otherwise it returns false.

• Neigh(MObs,i) with i = 1, 2: Returns one of the two disjointed neighboring regions sepa-
rated by the critical object MObs.

States

A state S is represented by the tuple S = 〈L,W〉 containing a conjunction of literals L formed
based on predicates applied to arguments and that are true in the state, and the geometric
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Figure 5.2: GraphR representing the connectivity of the configuration space for the example in
Fig. 5.1. The nodes are labeled with the disjointed configuration space regions; the edges with
the critical obstacles.

information of the workspace W representing the obstacles location and the configuration of
the robots. The following set of literals are considered:

• At(Robot, Region): Holds true if the Robot is in Region.
• IsCrit(MObs): Holds true if MObs is a critical manipulatable obstacle.
• HasAcc(MRgni, MRgnj): Holds true if the function Path(Map(MRgni), Map(MRgnj)) re-

turns true, informing that a path exists to move the robot from MRgni to MRgnj .

A finite set of states is considered, i.e., each geometric information corresponds with one
literal. For example, if there is is a literal At(Rob1, Rinit1), a unique transformation representing
the robot position is assigned to that literal in the corresponding state.

Knowledge about the world

Kw encodes knowledge referring to obstacles (their geometry, pose and physical properties)
and robots (the capability and the constraints). Two literals are defined whose truth values are
evaluated using a lightweight reasoning process over the knowledge:

• IsManp(MObs, Robot): Holds true if MObs can be manipulated by Robot according to its
capability.

• IsManpMRob(MObs, RobotA, RobotB): Holds true if MObs can be manipulated simultane-
ously by RobotA and RobotB according to their capability, but cannot be displaced by any
of them separately.

The information in Kw regarding the poses of the obstacles, manipulatable regions, and their
geometry is used to build the connectivity graph R.
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Knowledge about the planning components

Kp encodes the information regarding the initial state and the goal conditions to be met, as well
as the action space A describing the actions. Namely, an action a is defined by a tuple 〈name(a),
pre(a), effect+(a), effect−(a), Q〉 where:

• name(a) is a symbolic name for the action.
• pre(a) is the set of preconditions of the action defined as a conjunction of literals which

must hold for the action to be performed.
• effect+(a) is the set of positive effects defined as a conjunction of literals to be added as a

result of applying an action.
• effect−(a) is the set of negative effects defined as a conjunction of literals to be deleted

after the action is performed.
• Q is a query to a physics-based motion planner acting onW, that computes a path and its

actual cost, and returns the new state of the workspace.

To map the current state sc to the new one sn using a given action a, the successor literals are:

sn.L = {(sc.L ∪ effect+(a))\effect−(a)},

and, when required, the geometric information of the workspace (sn.W) is updated by Q, i.e.,
sn.W = Q(sc.W).

Five actions are defined: Transit, Push, Pull, PushM, and PullM, the last two introduced for
the manipulation actions with multiple robots (to be applied when a single robot is not capable
enough to displace the obstacle).

Since the manipulation world is represented using an ontology, it is convenient to represent
the manipulation domain in the same way following the manner how actions and their condi-
tions are defined in PDDL. The use of ontologies provides a well structured way of representing
explicit formal specifications and gives more flexibility to describe sets of rules for different
classes of objects. The actions along their preconditions, and positive and negative effects are:

Transit(Rob, FRgn, TRgn):

Pre: At(Rob, FRgn), HasAcc(FRgn, TRgn)
Add: At(Rob, TRgn)
Delete: At(Rob, FRgn)

Push/Pull(Rob, MObs, MRgn):

Pre: At(Rob, MRgn), IsManp(MObs, Rob), IsCrit(MObs)
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Add: HasAcc(Ra,Rb) ∀Ra, Rb|Map(Ra)=Neigh(MObs, 1) and Map(Rb)=Neigh(MObs, 2)
Delete: IsCrit(MObs)

PushM/PullM(Rob1, Rob2, MObs, MRgn):

Pre: At(Rob1, MRgn), At(Rob2, MRgn), IsCrit(MObs), IsManpMRob(MObs, Rob1, Rob2)
Add: HasAcc(Ra,Rb) ∀Ra, Rb|Map(Ra)=Neigh(MObs, 1) and Map(Rb)=Neigh(MObs, 2)
Delete: IsCrit(MObs)

Note that push/pull actions are constrained to critical obstacles only, because it is their dis-
placement that may change the connectivity of the configuration space. Note also that tran-
sit actions are always feasible provided that the preconditions hold, whereas the feasibility of
push/pull actions will need to be checked.

5.2.3 Solution Overview

A knowledge-oriented task and motion planning method, called κ-TMP, for solving collaborative
manipulation tasks is proposed. It is an enhanced version of the original Fast-Forward task
planner as it has been explained in Chapter 2. The new version (sketched in Fig. 5.3) uses
the OWL knowledge, reasoning processes and a physics-based motion planner to determine
the actions feasibility and applicability during the computation of the heuristic that guides the
search.

Manipulation Knowledge

The manipulation knowledge, comprising Kw and Kp, will be coded as an ontology using the
Ontology Web Language (OWL) and will be accessed during the planning phase as shown in
Chapter 3.

Reasoning Process on Symbolic Literals

A reasoning process on symbolic literals is proposed to allow the robot reasoning upon actions.
This reasoning process, detailed in Section 5.3, will allow pruning unnecessary or unfeasible
actions and making better decisions during the planning phase. Offline and online reasoning
processes are proposed, which are executed before and during planning, respectively:

• The offline reasoning process is responsible of using the manipulation knowledge to build
the graph R and to set the planning problem T .
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line 5

line 6

line 11

line 13 / line 8

line 3

Figure 5.3: The κ-TMP planner architecture (indicated lines correspond to Algorithm 2).

• The online reasoning process consists of high-level and low-level modules: The high-level
module determines the side effects of actions by taking into account R; the low-level
module evaluates the feasibility of actions using a physics-based motion planner.

Simultaneous Task and Motion Planning

The proposed task and motion planner is composed of the two main components of the Fast For-
ward method: the Relaxed Planning Graph (RPG) and the State Space Search with the following
features.

• The Relaxed Planning Graph is the responsible of computing the heuristic value and the
helpful actions. We propose a technique to compute the heuristic value regarding the
physics-based information of the actions, in contrast to the original FF that computes the
heuristic value based on the number of symbolic actions in the relaxed plan. The module
constructs the RPG considering a cost for the push/pull actions determined by the physi-
cal properties of the obstacles, and extracts the RPG plan. Afterwards, the physics-based
motion planner is called for the push/pull actions of the plan, in order to evaluate their
feasibility as well as their actual cost, that is used to determine the heuristic value of the
cost to reach the goal. Upon failure, the cause is fed back to the current state (if a new
manipulatable obstacle is occluding the connectivity) or to the relaxation planning process
(if there is no enough room for the push/pull action to remove the obstacle), and then the
planning process resumes. Finally, the helpful actions, which are the actions that appear
in the first-level of the RPG plan, are extracted.

• The State Space Search uses the heuristic values to select the next state, in the same way
as the original FF procedure does.
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5.3 Reasoning Process on Symbolic Literals

The reasoning process enables the robotic system to efficiently carry out the evaluation of sym-
bolic literals required in high-level planning. The reasoning is done over the OWL knowledge,
as well as over the graph R representing the connectivity of the configuration space and the
queries answered by the motion planner. The reasoning process comprises an offline step per-
formed before planning, and an online step performed while planning.

5.3.1 Offline Reasoning Process

The offline reasoning process primarily constructs the graph R, and requests the query con-
ditions of the problem from Kp, in order to acquire I and G. Furthermore, the process is re-
sponsible to reason on action preconditions according to R and Kw, leading to the assertion of
predicates that hold at the initial state:

• IsCrit is asserted for the obstacles that label the edges of R.
• IsManp is asserted for the critical obstacles according to the robots capabilities and the

features of the obstacles. This process is done through the knowledge-based reasoning
process. The process computes the force which the robot requires to assert using physical
properties of an obstacle in order to displace an obstacle. It also knows the maximum
force that each robot can apply in the environment. If the computed force is under the
maximum robot force, IsManp is asserted for the requested obstacle.

• IsManpMRob is asserted for the critical obstacles according to the capability of the robots
and the physical properties of the obstacles. It is also computed using the knowledge-based
reasoning process.

• At is asserted for each robot regarding the initial regions where they are located.
• HasAcc is asserted for any two regions of the same Ci where the robots are initially located,

like HasAcc(init1, MRgnC) or HasAcc(init2, MRgnC).

5.3.2 Online Reasoning Process

The online reasoning process contains a high-level reasoning module and a low-level reasoning
module, as shown in Fig. 5.4, to reason on the effects of actions during the computation of
the heuristics. The modules are responsible of the following. On the one hand, the high-level
reasoning module uses the information in R to assert the effects of push/pull actions while
constructing the RPG. On the other, the low-level reasoning module uses the motion planner
to evaluate the feasibility of push/pull actions selected for the plan extracted form the RPG.
In case a push/pull action is infeasible due to a collision with a fixed obstacle (condition 1 in
Fig. 5.4), then the cost of this action is increased and the search of an alternative relaxation
plan is launched. If otherwise the infeasibility is due to a collision with a manipulatable obstacle
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line 21line 17

line 13

line 7

line 10

line 23line 22

lines 1-9

Figure 5.4: Information flow between the relaxed planning process and the online reasoning
process, corresponding to the module ‘Relaxed Planning Graph’ in Fig. 5.3. Indicated lines cor-
respond to Algorithm 3.

(condition 2 in Fig. 5.4), then the state must be updated by adding this obstacle as a critical
obstacle, the graphRmust be updated accordingly, and the RPG construction must be restarted.
The modules are detailed next.

The high-level module computes the positive effect of the push/pull actions, that consists
in asserting the predicates HasAcc(Ra,Rb) between any two regions such that they belong to
the neighboring disjointed configuration space regions that become connected by the removal
of the critical object that makes them disconnected, i.e.: HasAcc(Ra,Rb) ∀Ra, Rb|Map(Ra) =
Neigh(MObs, 1) and Map(Rb) = Neigh(MObs, 2). For instance, consider two disjointed confi-
guration space regions, Ci and Cj blocked by an obstacle A, and two robots initially located
at Rinit1 ∈ Map(Ci) and Rinit2 ∈ Map(Ci), respectively, and willing to travel to Rgoal1 ∈
Map(Cj) and Rgoal2 ∈ Map(Cj). Upon removal of A, the high-level reasoning process asserts
HasAcc(Rinit1,Rgoal1), HasAcc(Rinit1,Rgoal2), HasAcc(Rinit2,Rgoal1), and HasAcc(Rinit2,Rgoal2) show-
ing that both robots have access to the goal regions. The same process can be applied to any
number of robots.

The low-level module evaluates the push/pull actions that appear in the relaxed plan, by call-
ing the motion planner. Let two disjointed configuration space regions, Ci and Cj , be disjointed
due to the presence of a critical obstacle A, i.e., the graph R has an edge labelled with A bet-
ween nodes Ci and Cj . Then, the evaluation of the feasibility of the push/pull action applied
over A is done in two interleaved queries. The first, called Qd, displaces A a given predefined
small distance (with one or two robots depending on the type of push/pull action being ana-
lyzed); the second, called Qtr, appraises whether there is a path for the robot between any two
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arbitrary regions Ra and Rb such that Ra ∈ Map(Ci) and Rb ∈ Map(Cj). The two steps are
repeated until a path for the Qtr query is found or a collision occurs between A and another
obstacle in the environment, or between the robot and another obstacle in the environment.
Then:

• If the collided obstacle is a fixed obstacle, it means that the action is not feasible. There-
fore, the RPG construction must be restarted and an alternative plan has to be searched by
setting the cost of the action at a high value in the RPG in order not to select it.

• If the collided obstacle is a manipulatable obstacle, e.g., B, it means that it should be
removed before trying to move A. Therefore:

1. The state that was being explored must be updated by asserting B as a critical obsta-
cle.

2. The graph R must be updated by modifying the edge labelled with A with a label
including both A and B, which expresses the fact that in order to make Ci and Cj

connected, it is necessary to remove first B and then A.

3. The RPG construction must be restarted.

For the feasible actions, the motion solutions returned by Qd as well as their associated cost,
computed as follows, are stored to be retrieved if these actions appear in the final plan. The cost
for any transit or any push/pull action solved by the motion planner is computed according to
the power consumed. The motion planner returns a trajectory as a sequence of controls, where
each control is a force to be applied during a time interval. Then, the power consumed for a
robot is:

C =
n∑
j

fj · dj

∆tj
, (5.1)

where n is the number of controls of the trajectory, fj and ∆tj the force and time interval
corresponding to the j-th control, and dj the resultant displacement. If the action involves more
than one robot, the power consumed is the sum of the individual values for each one.

5.4 Knowledge-based Task and Motion Planning

The κ-TMP approach integrates the components of reasoning process and the ontological knowl-
edge, altogether, with the modified version of FF. This section details the algorithms for the state
space search module and of the relaxed planning graph module, as graphically introduced in
Fig. 5.3.
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5.4.1 State Space Search

Algorithm 2 outlines the procedure to obtain the final manipulation plan. The first step is the
offline reasoning process, performed in function offlineProcess [line 3], that provides the initial
state of the manipulation world S0, the goal condition G, and the connectivity graph R. Then,
the standard Enhanced Hill Climbing (EHC) technique proposed in FF is used to find the successor
state in the plan [lines 4-11]: At each iteration, the RPG function is first called to obtain the
helpful actions H(Si) and the heuristic value h(Si) that predicts the cost distance from the state
Si to the goal state [line 5] (this function is detailed in the next subsection). Then, using the
helpful actions, the selectAction function [line 6] performs a search based on EHC for a successor
state Sj such that h(Sj) < h(Si) (successor states are also evaluated using the RPG function).
If such helpful action is not found [line 7], the algorithm fails and the search stops [line 8].
Otherwise, the helpful action leading to Sj is added to the plan π [line 10] and Sj is added as
the next state in the plan, Si+1 [line 11]. The loop continues until G is satisfied and the plan π is
returned, which is a sequence of push/pull and transit actions. If the EHC search fails, the Best-
First Search (BFS) is considered as the original FF planner does. The motions corresponding to
the push/pull actions are already known because the motion planner has been called to evaluate
their feasibility. Nevertheless, the motions corresponding to the transit actions have to be found
by calling now the motion planner [line 12] (no feasibility problems may arise since for these
actions the satisfaction of the preconditions assures it).

Algorithm 2: κ-TMP
inputs : Kp, Kw

output: The feasible plan π
1 i← 0
2 π ← ∅
3 {S0,G,R} ← offlineProcess(Kp,Kw)
4 while G 6⊆ Si do
5 {h(Si), H(Si})← RPG(Si,G,Kp,Kw,R)
6 {H ′(Si))} ← selectAction(H(Si), h(Si))
7 if H ′(Si).empty() then
8 return fail
9 else

10 π.append(H ′(Si))
11 Si+1 ← Succ(Si, H

′(Si))

12 motionPlanning(π)
13 return π

5.4.2 The Relaxed Geometric Reasoning Process

The RPG is used to compute the heuristic value that estimates the cost to reach the goal state
from the state being explored. The standard FF procedure does it in terms of number of actions.
The κ-TMP, however, proposes to take into account the different costs of actions:



60
CHAPTER 5. Heuristic-based Task and Motion Planning for Collaborative Multiple Mobile

Manipulation

• Regarding the RPG construction and the extraction of the relaxed plan, κ-TMP proposes to
consider, for the push/pull actions, an approximate cost according to the physical proper-
ties of the obstacles, and the unitary cost for the transit actions (the cost of maintenance
actions that keep literals unchanged in the next state-level is set to zero). In this way, the
RPG takes into account that the costs of actions may be different, but without the need of
calling the motion planner to compute their actual cost. In particular, any push and pull
action cost is set greater that the transit actions cost, and with a value that depends on the
object mass:

cost(transit) = 1 (5.2)

cost(push/pull) = mi/mj (5.3)

where mi is the mass of the critical object being pushed/pulled and mj is the mass of the
lightest one.
The cost of each literal l in a state-level is set from the cost of the action ai that generates
it plus the cost of the action preconditions pre(ai). Since several actions can generate the
same literal, the minimum cost is selected:

cost(l) = min∀ai | l∈effect+(ai){cost(ai) +
∑

cost(pre(ai))} (5.4)

Note that ai is any of the actions introduced in Sec.5.2.2 and therefore may refer to either
one or two robots.

• Regarding the computation of the heuristic value, a more exact cost of actions is used by
applying Eq. (5.1): The cost of the push/pull actions is already known because, as detailed
in the previous section, the motion planner has been called to evaluate the feasibility of
the push/pull actions appearing in the relaxed plan. This is not the case for the transit
actions, and the proposal is to estimate it by approximating the travelled distance by the
Euclidean distance and assuming the use of the minimum force all along the path. The
heuristic value of a RPG plan with n actions will be computed as:

h =
n∑
i

Ci (5.5)

The RPG construction procedure of the standard FF is terminated at the first state-level where
G is satisfied. In the current proposal, however, the procedure keeps growing the relaxed plan-
ning graph some levels further (within a predefined maximum number of levels) until the cost
of goal literals remains stable. By not stopping the growing procedure at the first state-level
where the goal conditions are met, a lower cost value of goal literals can be possibly obtained.
Then, the backward search for the relaxed plan is eventually performed from these conditions,
yielding to the cheapest actions sequence.

Algorithm 3 sketches the computation of the modified RPG integrated with the online rea-
soning process, used to obtain the physics-based heuristic value and the feasible helpful actions.
Its graphical flow was shown in Fig. 5.4. Its key points are as follows:
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Algorithm 3: RPG(S,G,Kp,Kw,R)
1 S0 ← S
2 i← 0
3 while i <MaxLevels do
4 i← i+ 1
5 Ai ← {a ∈ Kp.A | pre(a) ⊆ Si-1}
6 Ai ← append(maintActions(Si-1))
7 Si ← {l | l ∈ effect+(Ai)}
8 compCost(Si)
9 if G ⊆ Si AND checkCost() then

10 π′ ←RPGPlan()
11 h← 0
12 for each {a ∈ π′} {a ∈ π′ | a.name 6= Transit} do
13 {f.response, ColObj} ← feasibilityChecker(a,Kw)
14 if f.response = infeasible then
15 if ColObj 6= MObs then
16 setHighCost(a)
17 GOTO 4 //Cond. 1 in Figure 5.4
18 else
19 updateR()
20 updateState()
21 GOTO 1 //Cond. 2 in Figure 5.4

22 h← heuristicValue()
23 H(S)← helpfulActions()
24 return {h,H(S)}

25 return {∞, ∅}
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• Computing action-levels and state-levels [lines 1-8]: The initial state-level S0 is created with
respect to the information of the state S from where the RPG is to be computed [line 1].
Afterwards, action-levels Ai and state-level Si are iteratively computed [lines 4-7]. At
each level i, for the construction of Ai, a is added if the preconditions appear in the level
i − 1 [line 5]; and any maintenance action is added too [line 6]. Then, the state-level
Si is constructed according to the effect+ added by any action appearing in Ai [line 7]
(negative effects are neglected since the relaxed version of the planning graph is being
computed). Finally, the cost of literals is computed in compCost function based on Eq. (5.4)
[line 8].

• Terminating condition [lines 3, 9]: The RPG construction ends and the plan extraction
starts when both a state-level satisfies G and the function checkCost returns true (this latter
condition happens when at the previous state-level the goal conditions were also satisfied
and the cost value of goal literals has not changed up to some more levels). The extracted
plan is used to compute the heuristic value and the helpful actions that are returned by
the algorithm, if the RPG reaches a given maximum number of levels (MaxLevels) with-
out satisfying G, the algorithm terminates and returns the infinity heuristic value and the
empty set of helpful action.

• Relaxed plan computation and feasibility evaluation [lines 10-23]: The RPGPlan function
extracts the potential relaxed plan π′ [line 10], and the included push/pull actions are
forwarded to feasibilityChecker for the feasibility check [lines 12-13] (upon equal costs, pull
actions are selected during the extraction of π′). This function calls the motion planner
and returns whether the action is feasible or not, and in this latter case the obstacle that
precluded it to be feasible. Infeasibility may be due to a collision with a fixed obstacle
[lines 15-17] or with a MObs [lines 18-21]. In the first case, the cost of the action is set to
high by setHighCost and the RPG construction is restarted in order to extract an alternative
relaxed plan. In the second case, R and the current state are updated by the updateR
and updateState functions, respectively, and the RPG construction is restarted. In this way
dead-end plans are avoided.

• The computation of heuristic value and helpful actions [lines 25-26]: When all evaluated
actions are feasible, the heuristic value h is extracted by the heuristicValue function that
computes the costs of the actions appearing in the relaxed plan as detailed above using
Eq. (5.5). The helpful actions are extracted by helpfulActions.

5.5 Implementation and Results

5.5.1 Implementation

The proposed framework implementation consists of three major layers as depicted in Fig. 5.5:
the ontological knowledge, task-level, and motion-level layers. The knowledge layer is coded
in the form of an OWL ontology as detailed in Chapter 3. The task-level layer embraces the
Heuristic task planner which is a modified version of the FF planner implemented using the Prolog
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language, and the Action reasoning process whose purpose is to determine actions conditions by
calling online along offline reasoning processes. The motion-level layer comprises The Kautham
Project (Rosell et al., 2014) (https://sir.upc.edu/projects/kautham/) that enables
to plan under kinodynamic and physics-based constraints. It uses the Open Motion Planning
Library (OMPL) (Sucan et al., 2012) as its core of planning algorithms, and is integrated with
the Open Dynamic Engine (ODE) for the dynamic simulations. Although any kinodynamic motion
planner can be selected, KPIECE (Şucan and Kavraki, 2010) has been used in the experiments
because in a comparative study (Muhayyuddin et al., 2016) it showed the highest success rate
and the best time-optimal solution as compared to other state-of-the-art kinodynamic planners.
This planner does not minimize the distance and therefore the paths found will not be the
shortest ones.

The task-level layer accesses the OWL knowledge using the KnowRob software (Tenorth
and Beetz, 2009), a potent knowledge processing tool that enables a flexible access to the
OWL knowledge. It is mainly developed in the Prolog language and provides fundamental
predicates to fetch knowledge, e.g., the query owl_subclass_of(?SubClass, ?Class) explores all
available subclasses of a class, owl_individual_of(?Indv, ?Class) seeks to list all individuals of
a class, and class_properties(?Class, ?Properties, ?Value) determines the value of a class under
particular properties. The communication between the task and motion layers is done using
Robot Operation System (ROS, http://www.ros.org/, (Quigley et al., 2009)). The motion plan-
ner is encapsulated as a ROS service and the task planner as a ROS client (using the SWI-Prolog
library (Wielemaker et al., 2012)).

5.5.2 Results and Discussion

The proposal has been first tested for a NAMO manipulation problem including one robot. Con-
sider the task shown in Fig. 5.6 in which the robot is located in the initial region and must
move towards the goal one. The initial and goal configurations of the robot do not belong to the
same connected region of Cfree, and therefore some manipulatable objects, labeled from A to H,
must be moved away. These objects must be manipulated through a handle that determines the
motion direction, as well as the manipulation region (highlighted in dark red) where the robot
must be located in order to pull or push them. Moreover, these objects have different physical
features and some of them, like object A, may be beyond the robot manipulation capacity.

The simulation result for the example in Fig. 5.6 and the sequence of actions for the ex-
ecution of the plan is depicted in Fig. 5.7. KPIECE is used as kinodynamic motion planner
for the physics-based planning since it has the highest success rate and computes the time-
optimal solution as compared to other state-of-the-art kinodynamic planners such as RRT and
EST (Muhayyuddin et al., 2016). While manipulation planning is performed, some potential ac-
tions are found in RPG plans, being their feasibility under investigation by the online reasoning
process. It has been observed, for instance, that when RPG planning process is taking place, it
confronts with several potential parallel actions like Push/PullE and Push/PullF, and the one of
least cost is selected, in this case actions involving object F which is lighter than object E. Online

(https://sir.upc.edu/projects/kautham/)
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Figure 5.5: The proposed framework

reasoning process is then responsible to evaluate RPG plans and reject those ones containing in-
feasible actions (such as PushC, PullF, and PushG) because their effects cannot be satisfied. The
simulation was run on an Intel Core i7-4500U 1.80GHz CPU with 16 GB memory and average
planning time to compute the final manipulation plan was 89 s including several calls to the
motion planner.

The problem posed in Fig. 5.1 where two robots are required to share a task and collaborate
with each other for obtaining a global manipulation plan, has been solved using the κ-TMP
approach. The example illustrates the challenges that appear in the navigation of robots among
movable obstacles, that can be handled by the inclusion of a reasoning process (counting motion
planning) within the computation of the heuristic that guides the state-space search of the FF
task planner. This guiding allows to find a feasible sequence of actions, i.e., a sequence of
actions that can be executed without colliding with the environment and taking into account
the capability of the robots. Moreover, the problem posed makes it evident that the cooperation
between robots is necessary.

The solution sequence of executive actions for the final plan, illustrated in Fig. 5.8, is:

a1: Rob1 transits from Init to MRgn of MObs C.
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Figure 5.6: Manipulation problem: the robot (green sphere) has to move from the initial to
the goal region among fixed and manipulatable obstacles (labeled according to their weight in a
decreasing order). Workspace regions are labeled with the names of the associated configuration
space being disconnected regions.

a2: Rob2 transits from Init to MRgn of MObs I.
a3: Rob2 pulls MObs I.
a4: Rob2 transits to MRgn of MObs H.
a5: Rob2 pulls MObs H.
a6: Rob1 pulls MObs C.
a7: Rob1 transits to MRgn of MObs D.
a8: Rob1 pushes MObs D.
a9: Rob1 transits to MRgn of MObs G.

a10: Rob1 pulls MObs G.
a11: Rob1 transits to MRgn of MObs E.
a12: Rob1 pushes MObs E.
a13: Rob1 transits to MRgn of MObs F.
a14: Rob1 pushes MObs F.
a15: Rob2 transits to MRgn of MObs L.
a16: Rob1 transits to MRgn of MObs L.
a17: Rob1 and Rob2 pull MObs L.
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1 2 3

4 5 6

7 8 9

Figure 5.7: Snapshots of the task execution that involves the following actions: 1) transit to C,
2) pull C, 3) transit to B, 4) pull B, 5) transit to F, 6) push F, 7) transit to G, 8) pull G, 9) transit
to Goal (The solution can be visualized in https://sir.upc.edu/projects/kautham/
videos/manip.mp4).

a18: Rob2 transits to Goal.
a19: Rob1 transits to Goal.

Several challenges arise due to the following constraints regarding the geometry of the problem
and the physical properties of the objects:

1. Robot 2 can transit towards the goal region only if robot 1 displaces the MObs G away.
2. Due to the presence of fixed obstacles (walls), there is not enough room to push/pull

MObs B, or to pull MObs E, or to push MObs H and I.
3. Due to the presence of MObs I the MObs H cannot be pulled.
4. MObs M is too heavy to be moved, and MObs L can only be moved if both robots push/pull

it simultaneously.

These constraints make the combination of task and motion levels a must, e.g., a plan that

https://sir.upc.edu/projects/kautham/videos/manip.mp4
https://sir.upc.edu/projects/kautham/videos/manip.mp4
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(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

Figure 5.8: Snapshots of the task execution: 1) actions a1, a2, and a3; 2) actions a4 and a5;
3) action a6; 4) action a7 and a8; 5) actions a9 and a10; 6) actions a11 and a12; 7) actions a13
and a14; 8) actions a15, a16 and a17; 9) actions a18 and a19. Video: https://sir.upc.edu/
projects/kautham/videos/k-TMP.mp4

includes interactions with MObs M or B is not physically executable. The proposed κ-TMP
planner is able to find a good solution in terms of power in a computationally efficient way due
to the following features:

a) κ-TMP is able to identify infeasible actions like those of item 2 above by calling the motion
planner during the computation of the heuristic and remove them, thus avoiding any
dead-end plan.

b) κ-TMP is also able to identify infeasible actions like that of item 3 and set as critical object
the one whose removal can make the action feasible.

c) During the computation of the heuristic, κ-TMP calls the motion planner only for the
push/pull actions (those that may change the connectivity of the configuration space),
thus avoiding unnecessary calls to the motion planner.

d) The construction of the RPG plan while computing the heuristic does not stop at the first
level where the goal conditions appear but some levels further, thus allowing the possible
extraction of plans with lower cost.

https://sir.upc.edu/projects/kautham/videos/k-TMP.mp4
https://sir.upc.edu/projects/kautham/videos/k-TMP.mp4
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Figure 5.9: Histogram of actions evaluated by the motion planner: the total number of actions,
feasible, infeasible, and selected actions.

e) κ-TMP is able to cope with multi-robot problems, since one of the effects of any push/pull
action is to update the connectivity of the regions, thus potentially allowing the satisfac-
tion of the preconditions of transit actions of other robots. Moreover, by managing the
preconditions of the actions, collaborative tasks naturally arise if needed.

The performance of the present proposal is compared with a simplified version of it. Suppose
that the checkCost function is skipped (in Algorithm 3 line[9]) and all actions are evaluated using
physics-based motion planning instead of just Transit. Let call this modified approach as A-TMP.
In this case, the performance will illustrate the advantages of some of the steps in the proposed
Relaxed Planning Graph computation.

The results show that κ-TMP with respect to A-TMP is computationally more efficient due to
feature c (A-TMP calls the motion planner for all the action in the RPG plan), and it is able to
find a better path in terms of power consumption due to feature d (A-TMP finds a shorter plan
in terms of number of actions by removing MObs K instead of both MObs E and F, but with a
higher cost due to the heavy weight of MObs K).

The simulation was run on an Intel Core i7 2.50 GHz CPU with 16 GB memory for each
planner. The performance of each manipulation planner is represented by Fig. 5.9 and Fig. 5.12.
Fig. 5.9 (a) shows the number of calls to the motion planner. Accordingly, in the case of A-TMP,
planning time has more than two fold increase as shown in Fig. 5.9 (b), but the execution time
is less because it follows a shorter plan in terms of number of actions. Finally, κ-TMP finds the
manipulation plan with less power consumed, approximately 36 (KJ/s), as compared with the
other planner which obtains the plan with the cost approximately 42 (KJ/s).

The approach has been validated with different number of robots and obstacles, although
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Figure 5.10: The initial state of the manipulation problem with five mobile robots.

Figure 5.11: The goals state of the manipulation problem with five mobile robots. Video:
https://sir.upc.edu/projects/kautham/videos/k-TMP-5.mp4

the action space has not been changed, i.e., actions are performed by only one or two robots (as
an example, Fig. 5.10 and Fig. 5.11 show the initial and goals state of a manipulation problem
with five robots respectively). Fig. 5.13 shows the results in terms of planning time, where a
linear increases is detected according to both the number of robots and the number of obstacles.

It is worth noting that the approach uses a probabilistic complete motion planer (i.e. one
that finds a solution if one exists provided enough time is left to the planner). Then, to evaluate
the feasibility of the push/pull actions, if the motion planner times-out, the action is not pruned
but its cost increased in the heuristic phase and the same action can later be tried again by
providing more motion planning time. As a consequence, the proposed task and motion planner
is probabilistic complete.

An interesting extension of the current work is to consider moving obstacles, like done
in (Saha et al., 2014) and (da Silva et al., 2016) that solve mobile robot problems using dif-
ferent versions of task planners, focusing the reasoning in low-level planning problems where
avoidance with moving obstacles is a critical issue. Also, we plan to consider mobile robots
equipped with a manipulator to enhance the manipulation capabilities. In this line, the physics-
based motion planner has already been tested for fixed robot manipulators in (Muhayyudin

Video: https://sir.upc.edu/projects/kautham/videos/k-TMP-5.mp4
Video: https://sir.upc.edu/projects/kautham/videos/k-TMP-5.mp4
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Figure 5.12: Histogram of planning and executive time.

et al., 2015; Muhayyuddin et al., 2018).

5.6 Conclusions

This chapter has presented an approach, called κ-TMP, to interweave task and motion planning
for mobile manipulation problems, where multiple mobile robots are required to collaborate in
order to navigate among movable obstacles. The framework is based on the Fast Forward (FF)
task planner, on a physics-based motion planner, and on the use of knowledge represented with
ontologies, which provide the capabilities required to face the challenges set at different levels.

The main challenge at task planning level is how to incorporate low-level geometric infor-
mation. The proposal uses the FF task planner that does an heuristic search in state space,
and naturally allows the inclusion of geometric reasoning in the heuristic computation. The
main challenge at motion planning level is the capability to plan both collision-free motions
and motions in contact with movable obstacles in order to pull or push them. In the current
proposal, these capabilities are provided by a physics-based motion planner based on the ODE
dynamic engine as state propagator and the KPIECE kinodynamic planner as a search algorithm.
The physics-based motion planner has been mainly interleaved within the heuristic phase of the
planner. Moreover, to provide the robots with the capacity to take good decisions at both task
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Figure 5.13: Experiments with different number of robots and obstacles including 5 obstacles
(Obs-5), 9 obstacles(Obs-9), and 13 obstacles(Obs-13). Some details of problems can be found
in https://sir.upc.es/projects/ontologies/.

and motion levels is also a key challenge. This can be faced using knowledge coded in terms
of ontologies, that allow to well organize the knowledge and get access to it. The ontological
knowledge has been integrated as a plug-in to both task and motion planning levels. Finally, it
is important to highlight that the proposal is able to handle multi-robot systems in a very simple
and direct way. On the one hand, solution plans may include cooperative actions since push/pull
actions have been defined to be carried out simultaneously by two robots. On the other hand,
the actions carried out by different robots are naturally coordinated in the plan because the
heuristic guides the search towards the least cost plan and selects the actions only depending on
the satisfaction of pre-conditions, irrespective of the robot that executes them.

The main contributions of the approach are: a) the integration of high- along low-level
reasoning modules in the relaxed planning process of FF that computes the heuristic that guides
the search; b) the use of a physics-based motion planner as a low level reasoning module; c)
the use of physics-based information in the computation of costs, thus leading to power efficient
solutions; d) the use of knowledge to set the problem and in the high-level reasoning module,
that facilitates the collaboration between robots.

The approach has been implemented and validated for manipulation problems involving
either one robot or several robots required to perform collaborative manipulation tasks. The
results demonstrate the efficiency in the number of calls to the motion planner, the planning
time, and the cost of the final plan.

The current proposal fits with the NAMO manipulation problems where multiple robots col-
laborations are required. Because the approach needs the precomputation of the configuration
space connectivity, it would be computationally expensive to apply it for Pick and Place manip-
ulation problems at which the robotic arms are involved. To overcome this limitation, a new
proposal also on the FF task planner will be introduced in chapter 6.





Chapter 6
Efficient Heuristic-based Task and Motion
planning for Bi-manual Robots

6.1 Introduction

Solving robotic manipulation problems like setting a table with various objects requires a plan-
ning system which is capable of finding a complete sequence of actions along with feasible
paths. Such planning problems becomes more challenging if the actions required to perform
the task are subject to strong geometric constraints from the environment (lack of space for
placing objects, occlusions) and the robot (reachability of objects, kinematic constraints of the
manipulators). Then, the choice of geometric values like object placements, grasp poses, or
inverse kinematic solutions (which may depend on each other) is crucial in order to avoid any
dead-end task or infeasible plan. The problem is even more relevant for bi-manual robots where
the different reachability of each arm has to be accounted for.

To address manipulation planning problems, variants of probabilistic roadmaps have been
proposed, like the manipulation graph by (Siméon et al., 2004), or multimodal motion planning
techniques (Hauser et al., 2010; Hauser and Latombe, 2010). However, roadmap methods do
not cope well with the curse of dimensionality inherent to manipulation problems with many
objects. Task and Motion Planning (TAMP), which looks for a discrete sequence of symbolic
actions along with a motion plan for each of them, is another possible approach. The underlying
discrete structure of manipulation tasks (grasps and placements) is explicitly represented in
the symbolic domain, which breaks down the complexity of the problem. The main difficulty
when using TAMP for constrained manipulation planning problems is to avoid calling the motion
planer for unfeasible actions, which is a challenging issue for efficiently solving manipulation
problems.

73
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There are two main ways of integrating task and motion planning information recently stu-
died: simultaneously or interleaved. Approaches like (Cambon et al., 2009; Akbari et al., 2016a;
Garrett et al., 2015) account for geometric information by calling a motion planner while task
planning is being pursued. Therefore in these approaches, a manipulation plan is available when
the task planning process is terminated. On the contrary, the methods investigated by (Lagrif-
foul and Andres, 2016; Dantam et al., 2016; He et al., 2015; Srivastava et al., 2014) decouple
motion planning from the task planning part. They first do task planning, and then call the
motion planner to evaluate the feasibility of the plan. Upon failure, geometric constraints are
fed back to the task planner and the procedure resumes. This can be repeated several times
until a feasible manipulation plan is found.

The integration of task and motion planning is challenging when the problem is highly cons-
trained in terms of robot kinematics and obstacles’ placement, due to the fact that it may require
many calls to the motion planner while task planning is being pursued, or a large number of
restarts of a task planner which has a high computational cost. These challenges are the subject
of the present chapter.

Consider a manipulation problem including the bi-manual Yumi robot and a set of objects
as depicted in Fig. 6.1. The task is to place objects A, B, and I on the tray and object C inside
shelf 2. Initially, the left arm cannot access objects A, B, I, and H because they are located out
of its reachability space. Therefore, both arms have to collaborate with each other to solve the
task. Objects A and B are not directly accessible due to the critical position of objects I and H
that cause collisions with the robot when their grasp is attempted. In order to allow the robot
to transfer the objects from one side of the table to the other, a tiny region is defined in the
middle of the table to which both arms can have access. Initially, this region is entirely occupied
by object D and we assume that no objects can be stacked on top of it. This situation imposes
a constraint on the placement of any objects in this region. Furthermore, only two objects can
be placed over the tray at most, due to its limited capacity, and the other ones can be piled on
top of each other if needed, i.e., objects A and I can be placed on the tray surface and B on
top of A. The order in which the goals are achieved is a critical issue. For instance, if object
I is located on the tray at first, there is no feasible kinematic solution for transferring object C
within shelf 2 because its entrance would be occluded. Goal ordering is also critical regarding
actions including both arms and the middle region.

It must be noted that the aforementioned challenges do not require reasoning upon the
details of robot motions to be addressed. Most of them can be detected using lightweight geo-
metric reasoning processes with respect to arms inverse kinematic solutions, collision detection
for possible choices of objects placements, performed at initial and final configurations of each
action.

Contributions. The current chapter proposes a simultaneous TAMP approach to efficiently
deal with bi-manual robot manipulation problems in constrained environments. The proposed
approach is a heuristic-based planner, which searches for a plan in state space, and takes into
consideration geometric constraints while computing heuristic values. Two types of geometric
reasoning processes are used: a) geometric reasoning about placements of objects, grasping
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Figure 6.1: A motivating example: the Yumi robot must deliver objects A, B, and I to the tray,
and object C within the shelf 2 in the presence of kinematics and placement constraints.

poses, and inverse kinematic solutions; b) geometric reasoning about motions. The former
involves Spatial, Reachability, and Manipulation reasoning, which are used to account for geo-
metric constraints in heuristic values. The proposed heuristic is able to cover a large range of
tabletop manipulation problems. It figures out and excludes unfeasible motion planning queries
which have kinematic problems or collisions in their start and goal configurations, and guides
state space search. The latter calls a motion planner for validating state transitions and either
returns a path or provides feedback in case of failure. The state of planner is updated by the
constraints which are detected using both geometric reasoning processes. The approach is orig-
inally presented in the research article (Akbari et al., 2018a) for Pick and Place problems and
the extention with Push actions is presented in (Rosell et al., 2018).
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Figure 6.2: The proposed system overview of TAMP.

6.2 Overview of the Proposed Task and Motion Planning

The proposed TAMP extends the basic FF planner in order to consider geometric information
while planning. The approach uses hybrid planning information for representing the effects
of actions in terms of symbolic and geometric information. The architecture of the system is
sketched in Fig. 6.2. It consists of three main parts: Heuristic Computation, State Space Search,
and Action Selection Process.

Heuristic Computation returns a heuristic value and a set of helpful actions for a given state.
The standard RPG is first constructed and the relaxed plan is extracted. The relaxed plan is
then fed into a geometric reasoner which checks it against certain geometric constraints, i.e.,
reachability, collisions, and graspability. If these constraints are satisfied, the heuristic value is
returned along with helpful actions. If a constraint is violated, the state is updated with a set of
literals describing the cause of failure, and an alternative relaxed plan is looked for. Hence the
heuristic function is informative both in terms of symbolic and geometric constraints.

State Space Search keeps the standard search procedure of the FF planner, i.e., enforced hill
climbing (EHC). From each state, the action resulting in the state with lowest heuristic value is
selected. The only difference is that the heuristic value now accounts for geometric constraints.

Action Selection Process attempts to find a motion path for an action. Using information from
geometric reasoning, it is possible to define start and goal configurations for the RRT-Connect
motion planner, and compute a path. If motion planning fails, the current state is updated with
the cause of failure and the search resumes. Otherwise, the action is added to the partial plan
at hand.
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The rest of this chapter is structured as follows. First, Section 6.3 introduces the planning
domains, Section 6.4 describes how the relaxed geometric reasoning process is accomplished for
symbolic actions, and Section 6.5 illustrates the heuristic computation based on the relaxed geo-
metric reasoning. Then, Section 6.6 demonstrates the planning part in the state space, Section
6.7 explains the possibility of the approach with push actions, Section 6.8 discusses implementa-
tion issues and the results of different manipulation problems, and finally Section 6.9 concludes
the work.

6.3 Task and Motion Planning Formulation

6.3.1 Definitions

Definition 1 (Hybrid TAMP Domain). A hybrid TAMP domain D is a tuple 〈A,F ,W, Acc, Sg〉
where:

• A is the action space.

• F a set of ground literals.

• W = (R,O) is a workspace including a set of robots R and a set of movable and fixed
objects O. Acc represents potential accessible workspace regions w.r.t. robot arms, Sg is a
set of predefined grasping poses for objects. Objects are denoted as:

O={Om
1 (pos,fe) . . .Om

j (pos,fe), Of
1 (pos,fe) . . .Of

k (pos,fe)}

where j and k are the number of Movable and Fixed objects respectively, whose initial
position and orientation is denoted by pos, and whose features are denoted by fe. In the
present case, the bi-manual Yumi robot is represented by R = {LArm,RArm}, for left
and right arms respectively, and its configuration (a vector of joint angles) is denoted by
Q.

• Acc = {Accl, Accr, Accm} represent predefined workspace regions which can be kinemat-
ically reachable by the left arm, right arm, and both arms, respectively. In order for the
task planner to assign reachable targets to each arm, configuration symbols are typed by
ConfRobLeft or ConfRobRight, which map to Accl ∪ Accm or Accr ∪ Accm, respectively.
In this way, some unfeasible actions are pruned from the search space of planning. For
example, if an object is located on the left side of a table which is not reachable by the
right arm, task planning applies the move action considering the left arm.

Definition 2 (Hybrid Action). A hybrid action a ∈ A is a tuple 〈name(a), pre(a), effect(a),
coneffect(a), Q(a)〉 where:

• name(a) is the action symbolic name.
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• pre(a) is a set of atoms which must hold for the action to be applied. It includes:

– geometric details: geom(a) is the component and numerical counterparts of pre(a). It
represents geometric values in W, i.e., how object poses and/or robot configuration
should be before executing the action. This information is important for geometric
reasoning and setting a motion planning query.

• effect(a) represents the effects of a on the state it is applied to. It consists of:

– effect+(a), positive effects, i.e., a set of atoms added to the current state;

– effect−(a), negative effects, i.e., a set of atoms deleted from the current state.

– geometric details: geom+(a) and geom−(a) are the components and numerical coun-
terparts of effect+(a) and effect−(a) computed during geometric reasoning. They rep-
resent changes in W, i.e., how object poses and/or robot configuration are modified
by executing the action. For instance, when an object is transferred to a new location,
the new pose is represented in geom+(a). A data-structure is so considered to store
the geometric information such as grasping pose, object pose placement, and robot
configurations.

• coneffect(a) is the set of conditional effects, i.e., pairs 〈con(a), effect(a)〉 such that effect(a)
is applied when the formula con(a) holds.

• Q(a) is a query function to the motion planner which computes a motion between two
robot configurations and stores the solution if any.

Definition 3 (Hybrid Relaxed Action). A hybrid relaxed action a′ ∈ A′ (where A′ denotes the
relaxed action space) is a tuple 〈name(a′), pre(a′), effect(a′), coneffect(a′), ∅〉 where effect(a′)
contains only effect+(a′) and geom+(a′). In other words, a hybrid relaxed action does not incor-
porate any negative effect. A hybrid relaxed domain D′ is a tuple 〈A′,F ,W, Acc, Sg〉.

Definition 4 (Hybrid State). A hybrid state S is a tuple S = 〈P,V〉 where P is a set of ground
literals which hold in that state, and V represents a full geometric description of the scene, i.e.,
configurations of robots and poses of objects. Applying action a to state S1 results in state S2 as
follows:

S2.P = {(S1.P ∪ effect+(a))\effect−(a)}
S2.V = {(S1.V ∪ geom+(a))\geom−(a)}

(6.1)

The hybrid state is required to represent the effects of actions in terms of symbolic and geo-
metric information. A data-structure for storing geometric information is considered to compute
heuristic values (see Sec. 6.5). The data-structure of a state includes information like all poses
of the fixed and manipulatable objects along the configurations of both robotic arms.
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Definition 5 (Hybrid Relaxed State). A hybrid relaxed state is a tuple 〈P ′,V ′〉 where P ′ is a set
of ground atoms which hold in that state, V ′ represents a full geometric description of the scene.
P ′ and V ′ are the result of applying a relaxed action (see Def. 3). Hence, since no negative effects
are considered, applying the relaxed action a′ to state S′1 results in state S′2 as follows:

S′2.P ′ = {S′1.P ′ ∪ effect+(a′)}
S′2.V ′ = {S′1.V ′ ∪ geom+(a′)}

(6.2)

Accordingly, there can be many relaxed worlds depending on the number of geometric details
recorded for each symbol related to objects’ placements and robot configurations, as symbols
can have different values at the same time. For instance, if there is one movable object which
is initially grasped by the robot and it is transferred to a new position (by a relaxed action), the
object will have two geometric placements values, i.e., its initial position and the transferred
position, and the robot will also have two geometric configuration values in this state. The
following two possible worlds exist for the example:

• The object is in the initial position and the robot is in the initial configuration.

• The object is in the final position and the robot is in the final configuration.

This concept allows the planner to evaluate all possible situations when requested.

Definition 6 (Hybrid TAMP Planning Problem ). A hybrid TAMP planning problem T is repre-
sented by a tuple 〈D,S0,G〉 where D is a hybrid domain, S0 consists of a set of ground atoms
representing the initial symbolic state I such that I ⊆ F along their geometric assignments
regarding the initial state of the world W0, and G ⊆ F is the set of symbolic goal conditions.
The solution of a TAMP problem is a hybrid plan, i.e., a sequence of symbolic actions achieving
G, along with a feasible motion for each action, which we denote by π.

Definition 7 (Hybrid Relaxed Planning Problem ). A hybrid relaxed planning problem T ′ is
described as a tuple 〈D′,Si,G〉 where D′ is the hybrid relaxed domain, and Si is the current state
from which the relaxed plan is computed. We denote the relaxed plan by π′.

6.3.2 Manipulation Action Templates

The action template Move(Rob, Q, Q′) is designed to move the robot arm Rob between configura-
tions Q and Q′ without holding any object. The action is applicable if the following preconditions
hold: the robot arm is located at Q, its hand is empty, it can reach configuration Q′ and no mov-
able objects are blocking its way to Q′. The last precondition is represented by fact isCrit(Om

j ,
Q′); objects that make this fact to hold are called Critical Objects. As a result of the action, condi-
tional effects (specified by when), whose purpose is to classify the symbolic configuration space
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for the right arm RArm and the left arm LArm, are specified. When the move action is applied
to RArm, Q′ belongs to the symbolic configurations considered for the right arm, ConfRobRight.
When the move action is applied to LArm, Q′ belongs to symbolic configurations considered for
the left arm, ConfRobLeft.

Move(Rob, Q, Q′):

Pre: At(Rob, Q), HandEmpty(Rob), ∼UnReach(Rob, Q′), ∀Om
j ∼isCrit(Om

j , Q′)
Effect: when (con: Rob = RArm)⇒ {At(Rob, Q′), Q′ ∈ ConfRobRight}, when (con: Rob = LArm)⇒
{At(Rob, Q′), Q′ ∈ ConfRobLeft}, ∼At(Rob, Q)

The action template MoveHolding(Rob, Om
i , Q, Q′, Pos, Pos′) is designed to move the robot

Rob between configurations Q and Q′ while holding object Om
i , changing its pose from Pos to

Pos′ if Pos′ is feasible. The action uses conditional effects like those of the move action.

MoveHolding(Rob, Om
i , Q, Q′, Pos, Pos′):

Pre: At(Rob, Q), Holding(Rob,Om
i , Q, Pos),∼Infeas(Pos′,Om

i ),∼UnReach(Rob, Q′), ∀Om
j ∼isCrit(Om

j ,
Q′)
Effect: when (con: Rob = RArm)⇒ {At(Rob, Q′), Q′ ∈ ConfRobRight}, when (con: Rob = LArm)⇒
{At(Rob, Q′), Q′ ∈ ConfRobLeft}, Holding(Rob, Om

i , Q′, Pos′), ∼At(Rob, Q),
∼Holding(Rob, Om

i , Q, Pos)

The action template PickUp(Rob, Om
i , Q, Pos) is described to pickOm

i by Rob. It is responsible
to attach Om

i to the robot gripper when the robot is located at Q with no attached object, and
Om

i lays on a position Pos on the surface and its top side is free.

PickUp(Rob, Om
i , Q, Pos):

Pre: At(Rob, Q), HandEmpty(Rob), Clear(Om
i ), On-surface(Om

i , Pos, Q)
Effect: Holding(Rob, Om

i , Q, Pos), ∼HandEmpty(Rob), ∼On-surface(Om
i , Pos, Q)

The action template PutDown(Rob, Om
i , Q, Pos) is described to put down Om

i over a surface
at Pos by detaching the object from the robot when Rob holds Om

i in Q. The action is also
responsible to negate isCrit facts for the associated Om

i if any.

PutDown(Rob, Om
i , Q, Pos):

Pre: Holding(Rob, Om
i , Q, Pos)

Effect: HandEmpty(Rob), Clear(Om
i ), On-surface(Om

i , Pos, Q),∼Holding(Rob,Om
i , Q), ∀Q′∼isCrit(Om

i ,
Q′)
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The action template Stack(Rob, Om
i , Om

j , Q, Pos) is used to stack Om
i on the top of Om

j . It is
applicable when Rob is holding Om

i and the top side of Om
j where Om

i is going to be located is
free.

Stack(Rob, Om
i , Om

j , Q, Pos):

Pre: Clear(Om
j ), Holding(Rob, Om

i , Q, Pos)
Effect: HandEmpty(Rob), Clear(Om

i ), On(Om
i , Om

j , Pos), ∼Clear(Om
j ), ∀Q′∼isCrit(Om

i , Q′)

Finally, the action template UnStack(Rob, Om
i , Om

j , Q, Pos) is applied to pick a pilled object
Om

i .

UnStack(Rob, Om
i , Om

j , Q, Pos):

Pre: At(Rob, Q), HandEmpty(Rob), Clear(Om
i ), On(Om

i , Om
j , Pos)

Effect: Clear(Om
j ), Holding(Rob,Om

i , Q, Pos), ∼HandEmpty(Rob),∼On(Om
i ,Om

j , Pos),∼Clear(Om
i )

Basically, to handle an action failure which could be due to blocking objects (Critical Objects),
the condition isCrit underlies within the preconditions of Move and MoveHolding actions, i.e.,
avoiding to move the robot with or without an attached object to the occluded configurations.
Then, the condition is able to be negated using the actions PutDown and Stack.

6.4 Action Evaluation using Relaxed Geometric Reasoning

Relaxed geometric reasoning consists in evaluating geometric conditions of actions without call-
ing a motion planner. It indicates that motion planning is likely to be feasible for the selected
actions if certain task constraints are met.

The reasoning process involves three modules: reachability reasoning which looks for a fea-
sible kinematic solution for the robot regardless of any attached object, spatial reasoning which
determines a valid pose for the manipulated object, and manipulation reasoning which deter-
mines if grasping is possible. They are described in detail next.

Reachability reasoning (Rrch): To move the robot to a location described by a set of potential
pre-grasping poses, it is first required to find a valid goal configuration. This is done by calling
an Inverse Kinematic (IK) solver for each potential pre-grasping pose and evaluating whether
the IK solution is collision-free or not. The reasoning procedure returns the first collision-free
IK solution found, if any, and the corresponding pre-grasping pose. Failure may occur if no
IK solution exists or if no collision-free IK solution exists. In this latter case, the reasoning
procedure reports the collisionable objects, ordered such that those that are manipulatable are
returned first.
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Spatial reasoning (Rsp): It is used to determine a proper placement for an object within a
given region without considering the robot. For the desired object, a pose is sampled such that
the object lies in the surface region and the initial stable posture is maintained. The sampled
object pose is then evaluated by a collision-checking module to determine whether it collides
with other objects. If the sampled pose is feasible, it is recorded in the geometry details of the
action which moves the object. Otherwise, another sample will be tried. If all attempted samples
are unfeasible, the reasoner reports failure and the collisionable objects are returned. Moreover,
some other constraints are taken into consideration while the sample placement is accomplished
with respect to the object features or final placement region limitation, e.g., big or heavy objects
are not allowed to be located on the top of small or light objects.

Manipulation reasoning (Rmnp): It is used to choose the grasp to be used to transfer an
object from its current placement to a valid goal placement (determined by Rsp). From a set
of grasps, the reasoning process uses Rrch reasoning to verify that one of the possible ways to
grasp the object has a collision-free IK solution both at the current and the goal placements, and
it is returned. If there is no grasp satisfying these constraints and the reason is due to collisions
and not to the IK problem, then the collisionable objects are returned. In this work, prismatic
objects are used with the predefined top and side grasps, the latter at different heights according
to the object height.

For instance, in Fig. 6.1, it is supposed that the robot is going to place object C within the
shelf 2. If the object is initially grasped from the top, there will be no valid configuration for
the robot to locate the object due to collision with the shelf. On the contrary, if it grasps the
object from the side, it can find a feasible configuration to position the object on the surface.
Therefore, the reasoning process leads to avoiding or reducing re-grasping operations. This type
of issue can be identified using the manipulation reasoning.

Algorithm 4 describes the relaxed geometric function when applying either the Move or
MoveHolding action to a given worldW (describing the pose of the objects and the configuration
of the robot). Upon success, the positive geometry details of the action are updated with the
robot configuration and the gripper pose. For the MoveHolding action, the pose of the object is
also added. Otherwise, the algorithm returns in CO the set of objects whose collision causes the
failure of the action. This geometric reasoning is not required for other manipulation actions
as they only attach or detach the object to/from the gripper. The evaluation of the Move and
MoveHolding actions is done as follows:

• Reasoning about the Move action [lines 5-8]: the process is done by the function Rrch(W, a)
[line 6], which searches for a feasible robot configuration and stores it in Qrob if it finds
one. In this case, Res is set to True and the geometric information is stored in the geome-
tric details of the action [lines 6-8]. Otherwise, it is set to False and the CO causing the
failure, is returned if any.

• Reasoning about the MoveHolding action [lines 9-16]: the action is appraised by the func-
tions Rsp(W, a) and Rmnp(W, a, Om

i (posgoal)). The function Rsp(W, a) searches for a feasible
object placement, sets Ressp to True if found, and returns Om

j (posgoal). Upon failure, it
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returns False and CO may be returned [line 11]. Then, the function Rmnp(W, a, Om
i (posgoal))

looks for a feasible goal configuration and stores it in Qrob if found. Otherwise, potential
objects causing failure are returned in CO.

Algorithm 4: RelaxGeomReas(W, a)
1 CO ← ∅
2 a.geom+ ← ∅
3 i← 0
4 Res = False
5 if a.name = Move then
6 {Res,Qrob, CO, g} = Rrch(W, a)
7 if Res = True then
8 a.geom+.add(Qrob, g)
9 else if a.name = MoveHolding then

10 while i < Max do
11 {Ressp,Om

j (posgoal), CO} = Rsp(W, a)
12 if Ressp = True then
13 {Res,Qrob, CO, g} = Rmnp(W, a,Om

i (posgoal))
14 if Res = True then
15 a.geom+.add(Qrob,Om

j (posgoal), g)
16 break

17 else
18 // a is not required to be evaluated;
19 Res = True

20 return {a.geom+, Res, CO}

6.5 Heuristic Computation using Relaxed Information

Both the heuristic value and helpful actions are computed using relaxed symbolic information
and relaxed geometric reasoning. The purpose of using relaxed information is to find a relaxed
plan satisfying actions’ conditions in terms of robot kinematics and object placements. Algo-
rithm 5 illustrates (for a given state S and goal G) how the computation of the heuristic and
helpful actions of the standard FF is modified to include geometric information. This is done
in three steps: computing the RPG and the relaxed plan π′, evaluating π′, and computing the
heuristic value along the helpful actions, as detailed next.

Computing the RPG and π′ [lines 1-2]: At the beginning, the RPG graph RPGgr containing
state layers and action layers is constructed by the function RPGConst [line 1]. The function
RPGPlan extracts π′ from that graph [line 2]. This process is done as the standard FF carries out.
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Algorithm 5: RPG(S,G)
1 RPGgr ← RPGConst(G)
2 π′ ← RPGPlan(RPGgr)
3 S′.W ′0 = S.W and S′.F ′ = S.F
4 foreach {a′ ∈ π′} do
5 while True do
6 W ′ = SetRelaxWorld(a′)
7 if W ′ 6= NULL then
8 {a′.geom+, Res, CO}←RelaxGeomReas(W ′, a′)
9 if Res = True then

10 S′ ←NextRelaxState(a′)
11 break

12 else
13 if MaxUpdates(S) < Max then
14 S ← UpdateState(S,CO)
15 return RPG(S,G)
16 else
17 return {∞, ∅}

18 h(S)← HeuristicValue()
19 H(S)← HelpfulActions()
20 return {h,H(S)}
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Evaluating π′ [lines 3-17]: The relaxed state is initiated with the current geometric state
of the world S.W and the symbolic information of the state S.F [line 3]. Actions appearing
in π′ are forwarded to the relaxed geometric reasoning for the feasibility check [line 8]. Upon
success, action a′ is applied to compute the new relaxed state [line 10] according to Eq.(6.2).
The key question is in which relaxed world the corresponding action has to be evaluated because
multiple copies of poses and configurations for objects and robot may exist. This is tackled in
the function SetRelaxWorld [line 6] which chooses one of the feasible relaxed worlds, i.e., with
no collisions and meeting the precondition of the associated relaxed action. At each successive
call, the function returns a different feasible relaxed world and returns NULL if no more exist.
In this latter case, the function MaxUpdates [line 13] evaluates whether a predefined maximum
number of trials to update the current state and find another RPG plan is reached or not. A
new relaxed plan is then required [line 15] after updating the current state by the function
UpdateState [line 14] according to the feedback of the geometric reasoner: in the case of finding
any CO, the ground atom isCrit(CO, Q′) is added to the current state. Otherwise, the literal
UnReach(Rob, Q′) is added to the state regarding the corresponding arm, and also Infeas(Pos′,
Om

i ) is inserted if the evaluated action is of type MoveHolding. Two examples are given below
to illustrate how task constraints (like critical objects) and action details are determined.

Computing The heuristic value along with helpful actions [lines 18-19]: After the relaxed plan
becomes feasible in terms of lightweight geometry information, the heuristic value and the set of
helpful actions of the current state are returned. The function HeuristicValue returns the heuristic
value h(S) [line 18] and the function HelpfulActions extracts helpful actions H(S) [line 19]. This
process is also performed in a similar way to the standard FF.

Example 1: To illustrate the heuristic computation using relaxed information, consider the
scene in Fig. 6.1 and let the goal be to transfer object A to the middle region of the table that
it is occupied by object D. From the initial state of planning, the following relaxed plan is first
extracted 1 :

π′0 = {MoveA, PickUpA, MoveHoldingA, PutDownA} =⇒ h(Sinit) = 4

The selected actions are then forwarded to the relaxed geometric reasoning check. The
action MoveA is first evaluated using Rrch. The reasoner tries to acquire a feasible Q in order to
grasp object A. All attempted samples have collisions with object H and there is not any other
relaxed world such that object H is in another position in order to find a feasible grasping pose
of object A. Then, the constraint isCrit(H, Qa) is asserted to the initial state and the heuristic
computation is restarted again and the following plan is retrieved:

π′1 = {MoveH, PickUpH, MoveHoldingH, PutDownH, π′0} =⇒ h(Sinit) = 8

As it can be seen, the heuristic value is increased. The feasibility of actions are investigated.
The reasoning process is able to find geometric details for the actions Move and MoveHolding

1For the sake of space, here just the name of action along with its associated object are represented. For example,
MoveA is the move action transiting the robot towards the object A and is corresponding with the complete action
parameters Move(RArm, Qinit, QobjA).
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applied to object H. But, the spatial reasoning process is not able to find any valid placement for
object A when the action MoveHoldingA is being evaluated due to collisions with the object D and
there is not any relaxed world where this object is located away from this region. Therefore, the
constraint isCrit(D,Qa) is added to the state. Similarly, the heuristic computation is repeated
and the following relaxed plan is obtained:

π′2 = {MoveD, PickUpD, MoveHoldingD, PutDownD, π′1} =⇒ h(Sinit) = 12

When this relaxed plan is forwarded to the reasoning process, it can find feasible geometric
details for all the relaxed actions. So, the corresponding heuristic value and helpful actions
are achieved. In this way, the integration of the relaxed reasoning process with the heuristic
function leads to provide the informed heuristic value taking into account task constraints.

Example 2: Another advantage of considering geometric evaluation in the heuristic compu-
tation phase is to report failure in the case of selecting invalid geometric values for the actions.
This case avoids the consideration of geometric backtracking which goes to the previous states
in order to reselect their geometric values. Let’s consider the example represented in Fig. 6.3.

The goal is to move the right arm to a feasible grasping configuration of object A. The left
part of the scene shows the initial state and the right side presents one feasible manipulation
relaxed world after applying the MoveHolding relaxed action. The symbolic relaxed solution plan
taking into account geometric constraints is shown as well. The action locates the object in posb2.
When the geometric information of the last relaxed action MoveRA is going to be evaluated, it
figures out there is no feasible world making this action feasible either with object B placed in
position posb1 or posb2. The reasoning process so reports the collisionable object B, and again the
heuristic computation is restarted to find a feasible geometric assignment for locating object B.

6.6 Planning in the State Space

A manipulation plan is found using state space search as in the classical FF algorithm. The
difference lies in the heuristic function which includes geometric reasoning, and the fact that
action selection must be confirmed by the motion planner. The pseudocode of this process
is presented in Algorithm 6. It is worth noting that there is no pre-processing step assigning
geometric details (object placements or robot grasp configurations) to the symbols: geometric
details are resolved during relaxed geometric reasoning. It gets T as input and returns π if
applicable. First, the trials counter trial is initialized [line 1] and the state Si gets the initial
state [line 4]. The function Search implements the standard FF search process using EHC or BFS
[line 6]: it returns the next hybrid state (see Eq.(6.1)) to visit Si+1 along with helpful action(s)
or action(s) with lowest heuristic value HSi . This value is computed with the modified RPG
function (see Algorithm 5), hence taking geometric constraints into account.

If no actions resulting in a state with lower heuristic value [line 7] can be found, the al-
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Figure 6.3: Example of reporting an unfeasible geometric value for the placement of an object.
Blue objects are fixed and the red ones are manipulatable and the labels in the scene involve
the geometric details of objects. The characters L and R show the action applied to the left and
right arms respectively. The goal is to transfer the right arm to object A. The successive relaxed
worlds that result from relaxed actions in π′ that add geometric details are shown.

.
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gorithm tries the whole process again by taking into account previous trials. As long as the
maximum number of iterations is not reached [line 9], the process is repeated with the initial
state updated by the function UpdateInitState [line 11]. This function samples random geometric
states while taking all the constraints identified so far into account. If the maximum number of
trials is reached, the process returns failure [line 14].

With an arbitrarily high value for Max, the probability that all possible object poses and robot
configurations be considered gets close to 1. However, although Search [line 6] is complete and
MotionPlanner [line 16] is probabilistically complete, overall completeness is lost since motion
planning runs with a cut-off time, and it is never queued for further refinement in case of failure
[lines 20-21].

The MotionPlanner function is used to compute a collision-free path for the currently selected
action(s) [line 16]. If a path is found, Res is set to True and the path Q is returned. Then π is
appended with the action(s) [line 18]. Otherwise, Res is false and CO may contain colliding
object(s). If collision(s) are detected, the state is updated with ground atom(s) isCrit(CO, Q′),
otherwise simply with the ground atom UnReach(Rob, Q′), and the algorithm keeps searching
until other HSi are considered.

Algorithm 6: The Proposed TAMP Algorithm
inputs : T =〈D,S0,G〉, D=〈A,F ,W, Acc, Sg〉
output: π

1 trial← 0
2 i← 0
3 π ← ∅
4 Si ← Sinit
5 while G 6⊆ Si do
6 {HSi , Si+1} ← Search(Si,G,A))
7 if HSi = ∅ then
8 trial← trial + 1
9 if trial < Max then

10 i← 0
11 Si ← UpdateInitState()
12 Continue
13 else
14 return fail

15 else
16 {Q, Res, CO} = MotionPlanner(HSi)
17 if Res = True then
18 π.append(HSi)
19 else
20 Si ← UpdateState(CO)
21 Continue

22 i← i+ 1
23 return π
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6.7 Extension with Push Actions

The proposed relaxed geometric reasoning has been also extended to consider feasible geometric
information for push actions. In this case, the spatial reasoner is responsible to find a valid
placement in the same direction in which the requested object is going to be pushed, and then
the reachability reasoner is called to find a feasible configuration. Physics-based motion planning
is here employed as a motion planner that finds a motion, having interaction with the requested
object, between the initial robot configuration and the final one.

To differentiate between Pick and Push actions, the predicates isPickable and isPushable are
required to be considered in the precondition of Pick and Push actions respectively. These pred-
icates can be reasoned over the ontological knowledge processing or can be set by a user in the
initial state of planning. In the symbolic action space, the action template Push(Rob, Om

i , Q, Q′,
Pos, Pos′) is defined as follows:

Push(Rob, Om
i , Q, Q′, Pos, Pos′):

Pre: At(Rob, Q), HandEmpty(Rob), Clear(Om
i ), On-surface(Om

i , Pos, Q), isPushable(Om
i )

Effect: At(Rob, Q′), On-surface(Om
i , Pos′, Q′), ∼On-surface(Om

i , Pos, Q), ∀Q′′∼isCrit(Om
i , Q′′)

6.8 Evaluation

6.8.1 Implementation

The proposed framework implementation consists of three components: task planning, relaxed
geometric reasoning, and motion planning. Task planning is implemented using a modified ver-
sion of the FF planner developed in C++. The action templates and all the symbols (like those
considered for the reachability of robot arms) to solve the pick and place manipulation tasks
are defined using PDDL. Note that PDDL can use ADL (Action Description Language, Pednault
(1989)) which allows us to write operators in a more compact way, using quantifiers and con-
ditional effects. Geometric details of symbolic actions conditions (such as object placements or
robot grasp configurations) are not pre-computed. They are sampled and assigned on demand
during the planning process.

Relaxed geometric reasoning and motion planning use The Kautham Project (Rosell et al.,
2014), a C++ based open-source tool for motion planning, that enables to plan under geo-
metric and kinodynamic constraints. It uses the Open Motion Planning Library (OMPL) (Sucan
et al., 2012) as a core set of sampling-based planning algorithms. In this work, the RRT-Connect
(Kuffner and LaValle, 2000) motion planner is used for motion planning. This planner is one
of the most efficient motion planners, but it does not guarantee optimal motions. The Kautham
Project involves different collision checking modules to detect robot-object and object-object
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collisions, and features a placement sampling mechanism to find feasible object poses in the
work-space. For IK computations, it uses the approach developed by (Zaplana et al., 2018).
Relaxed geometric reasoning uses these modules in order to find feasible sample geometric in-
stances for symbolic actions. The communication between task, relaxed geometric reasoning,
and motion planning modules is done via Robotic Operating System (ROS) (Quigley et al., 2009).

6.8.2 Empirical Results and Discussion

All experiments were run on an Intel Core i7-4790U 4.00 GHz CPU machine with 32 GB memory.
The platform used is the two-arm Yumi robot (with 7 degree-of-freedoms per arm and two finger
grippers). Two different classes of table-top manipulation problems were used for validation:
constrained problems, and cluttered table manipulation problems in which the object to be
grasped is surrounded by many other objects.

Heuristic computation was made more efficient by caching the computation of geometric
details. As there are multiple calls to the heuristic function from each state, geometric values
can be stored and reused for similar relaxed actions in different relaxed plans.

Regarding the first class of manipulation problems, the scenario explained in Fig. 6.1 has
been implemented and validated in simulation. The problem consists of various types of objects
and is non-monotonic, i.e., target objects have to be temporarily placed in regions which are not
specified as goal regions, and occluding objects need to be moved out of their initial pose in order
to free space in these temporary locations. Some snapshots of the execution are displayed in
Fig. 6.4. Detecting various types of task constraints, the appropriate geometric details, as well as
the correct order of actions play an important role in this manipulation problem, which is mostly
done in heuristic computation. The performance of the problem is illustrated in Fig. 6.5 in terms
of average time of total manipulation planning and motion planning, and also the reachability,
spatial, and manipulation reasoning. The solution task plan is composed of 33 actions and the
success rate is 96%. The parameters used are the following: the number of pre-grasping poses
per object used for reachability reasoning is 20; the number of sample poses for spatial reasoning
is 20; the Max threshold is 20 in algorithms 1 and 2, and 5 in algorithm 3.

Regarding the second class of problems, several scenes containing from 15 to 40 objects
have been used and compared with the approach presented in (Srivastava et al., 2014) and
(Muhayyudin et al., 2018). In order to make the problems more challenging, only side-grasps
are used to pick up objects. The clutter table problem for 15 objects is represented in Fig. 6.6
which has been evaluated in simulation and in the real environment. In this type of problems,
it has been observed that both robot arms can collaborate to free the path towards the target
object, like the problem shown in Fig. 6.7. The clutter table problem where the goal is to hold
the red object surrounded by 40 objects is displayed in Fig. 6.8. This problem is in essence
similar to the problems used in (Srivastava et al., 2014) and (Muhayyudin et al., 2018).

Table 6.1 summarizes the comparison between the current proposal (HTAMP) and the work
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(1) (2) (3)

(4) (5) (6)

Figure 6.4: The sequence of the snapshots of the execution for the 3D world problem. Video:
https://sir.upc.es/projects/kautham/videos/HTAMP-3D.mp4

in (Srivastava et al., 2014) (labeled here as Ap1) and the work in (Muhayyudin et al., 2018)
(labeled as Ap2) in terms of success rate and planning time. We observed that the HTAMP ap-
proach has efficiently solved the clutter table problems in both terms as compared with the Ap1
approach. One of the main reasons is that HTAMP detects the task constraints in the heuristic
computation phase and selects carefully the objects placements in advance of calling motion
planning. On the contrary, Ap1 does first symbolic task planning, calling a motion planner that
feeds back constraint to the state. Moreover, Ap1 may require to manipulate the objects more
than once.

The average time of the reachability, spatial, and manipulation reasoning, and also motion
planning for this type of problem is shown in Table 6.2. As it can be seen, the relaxed geometric

Problem Success rate % Av. planning time
Ap1 Ap2 HTAMP Ap1 Ap2 HTAMP

Clutter 15 100 100 100 32 9.1 10.1
Clutter 20 94 100 100 57 16.7 11.8
Clutter 25 90 96 100 69 26 15.3
Clutter 30 84 90 100 77 41.2 18.2
Clutter 35 67 73 95 41 49.6 19.3
Clutter 40 63 60 95 68 71.6 21.8

Table 6.1: Comparison of HTAMP with two different approaches. Ap1 presented in (Srivastava
et al., 2014) and Ap2 presented in (Muhayyudin et al., 2018).

https://sir.upc.es/projects/kautham/videos/HTAMP-3D.mp4
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Figure 6.5: The average time related to total manipulation planning and motion planning, and
also reachability, spatial, and manipulation reasoning for 30 runs.

reasoning time increases according to the difficulty of the problem when the number of objects
increases. This is due to the fact that the relaxed geometric process requires more effort to find
valid geometric details for grasping as well as for placement of objects on the table.

In comparison to Ap2, HTAMP is also able to solve more efficiently cluttered problems with
increasing number of obstacles in the workspace. The approach Ap2 is a randomized physics-
based motion planner designed to plan grasping motions in cluttered environments, when the
exact final placement of the objects is not relevant. The approach does not rely in a combination
of task and motion levels, and no high-level explicit reasoning is done. Instead, robot-object and
object-object interactions are allowed to push away those objects obstructing the way toward
the object to be grasped. We observe that HTAMP scales better with the increasing number of
objects regarding planning time, although the execution time can be worse if many objects have
to be removed.

Moreover, the proposed planner has been evaluated with two other class of challenging
problems which are Tower of Hanoi and Blocks World proposed in (Lagriffoul et al., 2018).
The Tower of Hanoi is a classic problem in AI and it has been extended to robot manipulation.
The base of the robot is fixed. The rods are set in a triangular fashion and the discs are very
thick, so that stacking them on a rod may temporarily create an obstacle and prevent from
picking/placing discs on other rods. We have tested the problem with the Yumi robot. This
problem evaluates the large task space and infeasible task actions criteria. Although the rules are
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(a-1) (a-2) (a-3) (a-4) (a-5) (a-6)

(b-1) (b-3)(b-2) (b-4) (b-5) (b-6)

Figure 6.6: The sequence of the execution snapshots for the cluttered manipulation problem
where the Yumi robot has to grasp the red object among 15 ones in the environment. The
problem has been implemented in simulation (a-1 to a-6) and the real environment (b-1 to b-6).
Video: https://sir.upc.es/projects/kautham/videos/HTAMP-15.mp4

Problem Rch-reas Sp-reas Manip-reas Motion planning
Clutter 15 0.8 0.11 1.01 5.74
Clutter 20 1.12 0.21 1.9 6.41
Clutter 25 1.45 0.32 2.45 8.42
Clutter 30 1.59 0.49 3.6 10.63
Clutter 35 2.17 0.71 3.95 9.81
Clutter 40 3.07 1.05 5.17 10.1

Table 6.2: The average total reachability, spatial, and manipulation reasoning, and also motion
planning time of the cluttered environment problems.

simple, the optimal solution plan for n discs contains 2n − 1 steps, without considering geometry
(large task space). The rules of the game require certain intermediate states, many of which are
geometrically infeasible (infeasible task actions) if the chosen order creates occlusions. The
initial state and the goal state of the problem are sketched in Fig. 6.9. The information about
the planning domain can be found http://tampbenchmark.aass.oru.se.

Blocks World is another classical task planning problem, in which the goal is to stack the
blocks in alphabetical order anywhere it is possible. The base is fixed, only top-grasps can be
used, and hand-over is not allowed. This problem evaluates the infeasible task actions, large
task space, and motion/task trade-off criteria. An obstacle is hovering over the table, such that
the grippers would collide with it if more than two blocks are stacked on the table (infeasible
task actions). Both initial piles need to be unstacked somewhere and re-stacked on one of
the trays. During this process, half of the blocks need to transit from one tray to another,
through the table. This requires many actions (large task space). The region on the table where

https://sir.upc.es/projects/kautham/videos/HTAMP-15.mp4
http://tampbenchmark.aass.oru.se
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(1) (2) (3)

(4) (5) (6)

Figure 6.7: The sequence of the snapshots of the execution for the cluttered manipulation
problem where the Yumi robot has to grasp the red object among 20 ones in the environment.
Video: https://sir.upc.es/projects/kautham/videos/HTAMP-20.mp4

blocks transit has to be reachable by both arms; therefore, its size is limited. One must choose
between few steps and cluttered table, or many steps and uncluttered table (motion/task trade-
off). This has been also tested with the Yumi robot. The initial and the goal states of the
problem are illustrated in Fig. 6.10. The information about the planning domain can be found
http://tampbenchmark.aass.oru.se.

The performance of both examples in terms of planning time and selected number of actions
in the solution plan is summarized in Table 6.3. Tower of Hanoi 3 is the problem where three
disks are involved and Tower of Hanoi 6 is the problem in which six disks are considered. Block
World 4 and Block World 10 are the problems in which four and ten blocks are used.

Besides, we tested our proposal with a manipulation problem which needs Push action as
well as represented in Fig. 6.11. It is a simple manipulation problem where the robot requires
to transfer the cube located on the shelf to the tray. In this scenario, all three levels have been
involved. The relaxed geometric reasoning is able to detect the blue object which is blocking the
way of reaching the cube on the shelf. The predicates isPushable and isPickable are inserted in
the initial state. According to the predicate isPushable(blueObj) found in the state of the planner,

https://sir.upc.es/projects/kautham/videos/HTAMP-20.mp4
http://tampbenchmark.aass.oru.se
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(1) (2) (3)

(4) (5) (6)

Figure 6.8: Some sequence of the snapshots of the execution for the cluttered manipulation
problem where the Yumi robot has to grasp the red object among 40 ones in the environment.
Video: https://sir.upc.es/projects/kautham/videos/HTAMP-40.mp4

the push action is applied using the physics-based motion planner to the blue object in order to
free the access to the cube as the robot is not able to transfer it. transferring the cube to the
tray is not able to be performed by the right arm. Therefore, the left arm collaborates in order
to locate the target object over the tray.

Problem Number of selected actions Planning time
Tower of Hanoi 3 7 71
Tower of Hanoi 6 62 972
Block World 4 8 34
Block World 10 34 547

Table 6.3: The plan length and total planning time of Tower of Hanoi and Block World manipu-
lation problems.

https://sir.upc.es/projects/kautham/videos/HTAMP-40.mp4
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(1) (2)

Figure 6.9: Tower of Hanoi problem: a) shows the initial state and b) shows the final state of
the solution. Video: https://sir.upc.es/projects/ontologies/Hanoi.mp4

6.9 Conclusions

To solve manipulation problems for bi-manual robots, a combined heuristic-based task and mo-
tion planning approach that looks for the plan in the state space has been proposed. The main
challenge was to provide low-level geometric information for guiding the task planner. The pro-
posed idea is to use the FF heuristic state-space task planner, which was modified so that its
heuristic function takes geometric constraints into account through various geometric reasoning
procedures.

During the heuristic computation, a relaxed geometric problem is addressed, which considers
only certain types of task constraints. Therefore, the heuristic function is able to guide state
space search towards geometrically feasible states. Once an action has been selected in the state
space, the motion planner is called to confirm this choice by computing a collision-free path.

Using this technique, the proposed approach is able to find feasible manipulation plans with-
out geometric pre-computation, and without geometric backtracking. The proposed approach
has been validated with various classes of table-top manipulation problems of different com-
plexity, and a thorough comparison with recent approaches is presented. The proposal has been
implemented and evaluated in simulation and through real experiments. The results show that
the approach can solve manipulation tasks efficiently both in terms of planning time and success
rate.

Robotics manipulation problems become more challenging when the robot is required to

https://sir.upc.es/projects/ontologies/Hanoi.mp4
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(1) (2)

Figure 6.10: Block world problem: a) shows the initial state and b) shows the final state of the
solution. Video: https://sir.upc.es/projects/ontologies/Block.mp4

place several objects in limited goal regions where placements of objects are critical. In such
case, a large number of different object pose samples may be needed to determine the best
feasible ones. This could decrease the performance of HTAMP since the number of combinations
can grow very large (as it is the case for packing problems). Therefore, heuristic computation
could be slower, or the planner could have to restart several times if no feasible combination of
object poses is found.

https://sir.upc.es/projects/ontologies/Block.mp4
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1 2 3

4 5 6

Figure 6.11: Some snapshots for the execution of the scenario. Video: https://sir.upc.
es/projects/ontologies/SIMPAR.mp4

https://sir.upc.es/projects/ontologies/SIMPAR.mp4 
https://sir.upc.es/projects/ontologies/SIMPAR.mp4 


Chapter 7
Task and Motion Planning for
Human-Robot Interactions under
Uncertainty

7.1 Introduction

Robotics manipulation tasks become highly challenging when a mobile manipulator is required
to obtain a feasible plan to solve a given problem under potential uncertainties. Uncertainty
shall be viewed in the initial state of the robot environment, e.g., objects may rest in different
positions or some objects features (like color) could be initially unknown for a robot. Uncer-
tainty, moreover, has to be considered in the result of manipulation actions (as nondeterministic
effects) since there could be possible action outcomes. To deal with such uncertainties, robots
generally look for a sequence of actions for satisfying the goal of a task and perform replanning
in the case of action execution failure or uncertain situations. This process may be costly while
a robot requires to repeat expensive replanning.

To tackle those challenging issues, these problems can rely on contingent task planning which
plans in belief space and has the ability to generate conditional plans under uncertainty in terms
of initial state and action effects. Contingent-based task planners are able to provide a tree of
plans rather than a number of executive actions. Therefore, uncertainty is observed during the
plan execution, and accordingly the tree of plan is guided according to the binary observation
values.

In general, task planners do not involve geometric information, so they may result in in-
feasible plans which cannot be executed by the robots due to geometric failures. This is the
reason why geometric reasoning over symbolic actions has to be carried out with the purpose of

99
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identifying geometric constraints if any. For instance, objects may not be reachable directly or
placed in their placement regions because of some geometric constraints in the environment. By
adding a mobile base to a manipulator, the manipulation capabilities of the system are increased
although an extra effort is required in the geometric reasoning in order to also consider the pose
of the base.

There are some demanding or difficult tasks which are either not performable easily by
robots or are out of their capability. In some cases, robots may also need to access some objects
located in the human workspace. In these cases, robot can ask human as a collaborator to do
some actions. Moreover, there could be various situations such that some type of knowledge
about the environment is initially incomplete for the robot. Human can share the knowledge to
the robot so that it is able to solve its task under certain amount of knowledge.

In this chapter, we are going to deal with manipulation tasks carried out by a mobile ma-
nipulator assisted by a human operator. The mobile manipulator will be responsible to execute
the main task, while the human operator will be responsible some difficult actions, to transfer
knowledge to the robot, to open some box-like containers which are not able to be opened by
the robot, and to transfer objects to the robot where they are not reachable. Uncertainty in the
initial state and in some action effects are considered. Some manipulation and sensing actions
are considered in the current proposal which allow to illustrate the approach, which could be
extended to handle a broader set of manipulation tasks. No geometric uncertainty is considered,
e.g., in the robot motion or the object poses.

Contributions: To deal with aforementioned challenges, we propose a contingent-based task
and motion planner based on Contingent-FF that works under uncertainty and considers human-
robot collaboration. The Contingent-FF includes two main components, heuristic evaluation and
search space, and results in a tree-shaped set of plans involving sensing actions. Here, a list of
contributions are summarized that extends the basic Contingent-FF planner:

• Robot action reasoning. Two types of geometric reasoning are proposed: relaxed geome-
tric reasoning and lazy motion evaluation. The former refers to Reachability, Spatial, and
Manipulation reasoning. This reasoning process is embedded within the heuristic compu-
tation of the planner. Motion paths are lazily evaluated when actions are selected by the
space search. If the reasoning processes fails, geometric constraints are fed back to the
planner. This part of computation is done offline and aims to prune infeasible actions due
to geometric constraints and to result in feasible actions in the tree of plans.

• Human-robot collaboration. There are some common actions which can be executed either
by the robot or a human operator. The proposed relaxed geometric reasoning is also
extended to inform the planner about which actions cannot be executed by the robot, and
hand over them to the human operator. Furthermore, several cases may exist in which
the planner decides to select actions required to be performed by a human operator. In
these cases, the geometric world resulting by these actions is simulated and used in our
planning system for further geometric reasoning evaluation.
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• Sensing action observation. To observe the binary values of sensing actions, two modules
are proposed: perception and human knowledge. Perception is used to detect the actual
pose of objects and some objects feature (like color). The robot can also interact with
a human operator to deal with its incomplete information, e.g., a can is filled or which
glasses contain which drinks, etc. This part of computation is done online.

One of the main advantages of the proposed framework is that the offline computation
is valid and works despite the actual values of the uncertainties variables or the actual
outcomes of the executable actions.

7.2 Contingent Task and Motion Planning Framework

This section describes a brief overview about the modifications applied to the Contingent-FF
task planner in order to compute feasible manipulation conditional plans, and accordingly to
consider observations on sensing actions in practice.

7.2.1 Planning Formulation

Our planning system domain D is a tuple 〈A,Ω,F ,W, Sg〉 where A is the action space, Ω is
the sensing action space, F a set of literals, W = (R,O) is a workspace including a mobile
manipulator R (described by the pose of the base Posrob along the arm configuration Qrob) and
a set of movable and fixed objects O, and, Sg is a set of predefined grasping poses for objects.
Objects are denoted as: O={Om

1 (pos,fe) . . .Om
j (pos,fe), Of

1 (pos,fe) . . .Of
k (pos,fe)}, where j and k

are the number of Movable and Fixed objects respectively, whose initial position and orientation
are denoted by pos, and whose features are denoted by fe.

An action a ∈ A is a tuple 〈name(a), pre(a), effect(a), coneffect(a), geom(a), Q(a)〉, where
name(a) is the action symbolic name, pre(a) is a propositional formula which must hold for the
action to be applied, geom(a) is the numerical counterpart of an action containing geometric
information, effect(a) represents the negative and positive effects of a on the state it is applied
to, and Q(a) is a query function to the motion planner which computes a motion between two
robot configurations and stores the solution if any. A relaxed action a′ ∈ A′ (where A′ is the
relaxed action space) is similar to the action despite it does not consider any negative effects.
Actions are executable action and can be done by either the robot or a person. Six actions types
are considered to deal with some examples of mobile robot manipulation as follows:

• Transit: an action done by the robot to travel from one configuration to another one
without an attached object.

• Transfer: an action done by the robot to move an attached object from one pose to another
one.
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• Push: an action done by the robot to push an object from one pose to another one.

• Open: an action done by the robot to open a box-like container (articulated cap with pris-
matic joint is assumed with two positions corresponding to fully closed and fully opened
that will be stored in the containers objects features).

• HumanManipulation: an action done by a person to transfer/push an object to the robot
workspace.

• HumanOpen: an action done by a person to open a box-like container.

Each sensing actions is a tuple 〈pre(a), o(a)〉, where o(a) is a literal having uncertainty. They
are actions that do not involve motion devoted to observe the value of o(a). The observation is
done in run-time. Some sample sensing actions are considered in the proposed planning system.
They are the following:

• SenseColor: a sensing action is done by a perception module to determine the color of an
object.

• SensePose: a sensing action is done by a perception module to determine the pose of an
object.

• CheckContainer: a sensing action is done by a person to evaluate whether a container is
open or not.

• CheckCan: a sensing action is done by a person to evaluate whether can-like objects are
filled or not.

A belief state S is a tuple S = 〈P,V〉 where P includes a set of known literals which hold
in that state and a set of uncertain literals which may hold or not in the state, and V represents
a full geometric description of the scene, i.e., configurations of robots and poses of objects
corresponding to certain and uncertain literals. The executable action from a state S1 results
in a new world state using the transit functions S2.P := S1.P − effect−(a) + effect+(a) and
S2.V := S1.V − geom−(a) + geom+(a). The sensing action splits a belief state and introduces
two branches into the plan marked with o(a), and also ¬o(a).

A belief relaxed state S′ = 〈P ′,V ′〉 is similar to the belief state, where P ′ and V ′ contain the
literals and geometric information of the manipulation workspace updated using the relaxed
transition function (that not consider negative effects) S′2.P ′ := S′1.P ′ + effect+(a′) and S′2.V :=
S′1.V ′ + geom+(a′).

The planning problem T is represented by a tuple 〈D,S0,G〉 where D is a hybrid domain,
S0 consists of a set of literals representing the initial symbolic state I such that I ⊆ F along
their geometric assignments regarding the initial state of the worldW0, and G ⊆ F is the set of
symbolic goal conditions. The solution of a TAMP problem under uncertainty is a hybrid tree-
shaped conditional plan, i.e., a sequence of symbolic actions achieving G, along with a feasible
motion for each action, which we denote by π.
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7.2.2 Geometric Constrains Predicates

Basically, three general predicates are allocated that set constraints, evaluated by geometric
reasoning, to the state of the proposed planner if required: isCrit(Om

j , O′, Pos), infeasByRob(R,
O′, Pos), and assist(Human, O′, Pos). The first predicate indicates there is the blocking object
Om

j which is located towards the target object O′ placed in the pose Pos. The second one shows
the target object cannot be manipulated by the robotR in the corresponding pose Pos. Also, the
last predicate shows the manipulation action with the target object O′ and the corresponding
Pos must be done by a human operator Human.

The proposed predicates are interleaved inside the actions conditions, similarly to the action
templates representation described in chapter 6. Concerning the actions done by the robot,
the predicates ∼isCrit and ∼infeasByRob are inserted within the preconditions of the actions
Transit, Open, Transfer, and Push in order to avoid moving the robot, with or without holding
an object, to any unreachable or infeasible configurations. However, the last two actions are
able to negate the predicate isCrit if any. With respect to the actions performed by human, the
preconditions of the actions HumanTransfer and HumanOpen are integrated with the predicate
assist in order to know when human can collaborate with robot. For instance, the actions Transit
and HumanOpen, considering some of the geometric constraints, are described below.

The action template Transit(R, Om
i , Surface, Pos) is designed to move the robot arm and

base R with no object towards a grasp configuration of a manipulatable object Om
i located in a

surface Surface with the pose Pos. In the final configuration, the robot holds the target object.
The action is applicable if the following preconditions hold: the object is located on a surface,
top of the object is clear, the robot arm is empty, it can reach the grasp configuration if there is no
movable objects blocking its way to Om

i . The last precondition is represented by fact isCrit(Om
j ,

Om
i , Pos); objects that make this fact to hold are called Critical Objects which are the objects

blocking the way of reaching the object. As a result of the action, the robot holds an object.

Transit(R, Om
i , Surface, Pos):

Pre: onSurface(Om
i , Surface, Pos), armEmpty(R), clear(Om

i ), ∼infeasByRob(R, Om
i , Pos),

∀Om
j ∼isCrit(Om

j , Om
i , Pos)

Effect: holding(R, Om
i , Pos), ∼clear(Om

i ), ∼armEmpty(R), ∼onSurface(Om
i , Surface, Pos)

The action template HumanOpen(Human, Om
i , Pos, Closed, Open) is used to open a box-like

container Om
i when it is closed. The action is applicable if the robot needs the assistance from

a human operator that is represented by the assist predicate, and its status is closed shown by
the predicate status. These conditions are within in the action preconditions. As a result of the
action, the corresponding container will be open.
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Figure 7.1: The proposed system overview of contingent task and motion planning using the
extended version of Contingent-FF.

HumanOpen(Human, Om
i , Pos, Closed, Open):

Pre: assist(Human, Om
i , Pos), status(Om

i , Closed)
Effect: status(Om

i , Open), ∼status(Om
i , Closed)

7.2.3 The Proposed Framework System

The proposed task and motion planning under uncertainty framework extends the basic Contingent-
FF planner that aims to incorporate different sort of geometric reasoning, observations on sens-
ing actions, as well as human-robot collaboration within planning. The overview of the system
is sketched in Fig. 7.1. It involves three main parts: Heuristic Computation, Space Search, and
Conditional Plans Evaluation.

Heuristic Computation provides a heuristic value and a set of helpful actions for a given belief
state. The standard CRPG is first constructed (as detailed in Section 2.2) and the corresponding
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relaxed plan is extracted. The relaxed plan is then fed into the relaxed geometric reasoner
which evaluates it versus certain geometric constraints, i.e., reachability, collisions, manipulation
constraints and graspability. As some actions may be considered for a human, the geometric
reasoner simulates the result of those actions, to be used later for evaluation of other actions.
The heuristic value is returned along with helpful actions if such constraints are met. If a
constraint is violated, the associated belief state is updated with facts describing the cause of
failure, and an alternative relaxed plan is looked for. Hence, the heuristic function is informative
both in terms of symbolic and geometric constraints.

Space Search keeps the standard search procedure of the Contingent-FF planner that is based
on the And-Or search strategy. From each belief state, the action resulting in the state with
lowest heuristic value is selected and is a candidate to be added to the conditional plans. The
only difference is that the heuristic value now accounts for geometric constraints.

Conditional Plans Evaluation intents to find a motion solution for a candidate action at first.
Using information from the relaxed geometric reasoning, it is possible to geometrically define
feasible start and goal configurations for the RRT-Connect motion planner and compute a motion.
If motion planning fails, the current belief state is updated with the cause of failure and the
search resumes. Otherwise, the action is added to the tree-shaped conditional plans at hand.
After finding the complete conditional plans, feasible actions are executed by a mobile robot or
human in the real world and sensing actions are observed either using a perception module or
the information provided by a human in run-time. Therefore, the robot plan is able to determine
the correct branch in order to follow up its plan.

In general, the geometric failure could be due to collisionable objects, so the literal isCrit
is added to the belief state. If the failure is because of fixed obstacles blocking the way of
reaching an object, inverse kinematic problems, or motion planning time-out problem, the literal
infeasByRob is added to the state. In such failure, if the type of the evaluated action is either
transit or open, the literal assist is also inserted.

7.3 Relaxed Geometric Reasoning for Mobile Manipulators

Relaxed geometric reasoning is the evaluation of geometric conditions of actions with no call
to motion planning. It indicates that a feasible motion is likely to be obtained for the selected
actions if certain task constraints are satisfied. This is the extended relaxed geometric reasoning
referred in chapter 6 to include mobile manipulation tasks. So, the relaxed geometric reason-
ing process contains three modules: reachability reasoning which looks for a feasible kinematic
solution and pose for the robot to reach an object, spatial reasoning which determines a valid
object placement for the robot or human actions, and manipulation reasoning which looks for a
feasible kinematic solution to manipulate objects. They are explained in details as follows.

Reachability reasoning (Rrch): This reasoning is applied for the transit action. To transit
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the robot to a location described by a set of potential pre-grasping poses, it is first required
to obtain a valid goal configuration and robot pose. A set of robot poses is considered in the
workspace of the robot. From each pose, an Inverse Kinematic (IK) solver is called for each
potential pre-grasping pose, and then evaluating whether the IK solution is collision-free or
not. The reasoning procedure returns the first collision-free IK solution found, if any, and the
associated pre-grasping pose. Failure may occur if no IK solution exists or if no collision-free IK
solution exists through all tested robot poses. In this latter case, the reasoning procedure reports
the collisionable objects, ordered such that those that are manipulatable are returned first.

Spatial reasoning (Rsp): This reasoning is considered for the transfer, push, open, humanOpen,
and humanTransfer actions. It is used to investigate a proper placement for an object within a
given region without considering the robot. For the desired object, a pose is sampled such that
the object lies in the surface region and the initial stable posture is maintained. The sampled
object pose is then evaluated by a collision-checking module to determine whether it collides
with other objects. If the sampled pose is feasible, it is recorded in the geometry details of the
action which moves the object. Otherwise, another sample will be tried. If all attempted samples
are unfeasible, the reasoner reports failure and the collisionable objects are returned. Moreover,
some constraints are taken into consideration while the sample placement is accomplished. For
example, in the case of the push action, the sample is considered in the direction in which the
object has been grasped. In the case of humanOpen and Open, the valid object placement is
extracted from the object feature. In the case of humanTransfer action, some predefined poses
are considered in the robot workspace and the reasoner selects the feasible one.

Manipulation reasoning (Rmnp): This reasoning is used to choose the grasp to be used to
transfer an object from its current placement to a valid goal placement (determined by Rsp).
From a set of grasps, the reasoning process usesRrch reasoning to verify that one of the possible
ways to grasp the object has a collision-free IK solution both at the current and the goal place-
ments, and it is returned. If there is no grasp satisfying these constraints and the reason is due
to collisions and not to the IK problem, then the collisionable objects are returned. In this way,
it is able to obtain the valid robot pose and grasping configuration when the robot manipulates
an object.

Algorithm 7 describes the relaxed geometric function when applying the actions to a given
worldW (describing the pose of the objects and the configuration of the robot). Upon success,
the positive geometry details of the action are updated. Otherwise, the algorithm returns in CO
the set of objects whose collision causes the failure of the action if any. Algorithm is detailed
below:

• Reasoning about the robot actions [lines 5-15]: The transit action calls the reachabil-
ity reasoning by the function Rrch(W, a) [line 6]. The transfer, push and open actions
call the spatial reasoning by the function Rsp(W, a) [line 11], and then call the function
Rmnp(W, a, Om

i (posgoal)) [line 13]. If the reasoning processes are successfully done, the co-
rresponding response is set to feasible and geometric details are appended to the evaluated
action [line 8] and [line 15]. On the contrary, if the failure is due to manipulatable objects,
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the response is set to infeasible-criticalObjects. and the collisionable objects are stored. In
other cases of failure, the response is set to infeasible-infeasByRob that could be because of
collisions with fixed obstacles or the IK module is not able to find a configuration.

• Reasoning and finding the geometric values of the human actions [lines 16-23]: The hu-
manTransfer action calls the spatial reasoning by the function Rsp(W, a) [line 17]. This
function is responsible to find the pose of the object placement for the human action and
inserts it to the action [line 19]. For the humanOpen action, the pose of the container
object being opened is extracted from the object feature by the spatial reasoner function
Rsp(W, a) [line 21] and is stored into the action details [line 23].

Algorithm 7: RelaxGeomReas(W, a)
1 CO ← ∅
2 a.geom+ ← ∅
3 i← 0
4 Res = False
5 if a.name = Transit then
6 {Res,Qrob, Posrob, CO, g} = Rrch(W, a)
7 if Res = feasible then
8 a.geom+.add(Qrob, Posrob, g)
9 else if a.name = Transfer or Push or Open then

10 while i < Max do
11 {Ressp,Om

j (posgoal), CO} = Rsp(W, a)
12 if Ressp = feasible then
13 {Res,Qrob, Posrob, CO, g} = Rmnp(W, a,Om

i (posgoal))
14 if Res = feasible then
15 a.geom+.add(Qrob, Posrob,Om

j (posgoal), g)

16 else if a.name = HumanTransfer then
17 {Res,Om

j (posgoal)} = Rsp(W, a)
18 if Res = feasible then
19 a.geom+.add(Om

j (posgoal))

20 else if a.name = HumanOpen then
21 {Res,Om

j (posopen)} = Rsp(W, a)
22 if Res = feasible then
23 a.geom+.add(Om

j (posopen))

24 else
25 //a is not required to be checked;
26 return Null

27 return {a.geom+, Res, CO}
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7.4 Contingent Heuristic Computation using Relaxed Information

Both the heuristic value and helpful actions are computed using relaxed symbolic information
and relaxed geometric reasoning. The purpose of using relaxed information is to find a relaxed
plan satisfying actions’ conditions in terms of robot kinematics, manipulation with constrained
objects, and object placement. Algorithm 8 illustrates (for a given belief state S and goal G) how
the computation of the heuristic and helpful actions of the standard Contingent-FF is modified to
include geometric information. This is done in three steps: computing the CRPG and the relaxed
plan π′, evaluating π′, and computing the heuristic value along the helpful actions, as detailed
next.

Computing the CRPG and π′ [lines 1-2]: At the beginning, the CRPG graph CRPGgr containing
state layers and action layers is constructed by the function CRPGConst [line 1]. The function
CRPGPlan extracts π′ from that graph [line 2]. This process is done as the standard Contingent-FF
carries out.

Evaluating π′ [lines 3-17]: The relaxed state is initiated with the current geometric state
of the world S.W and the symbolic information of the state S.F [line 3]. Actions appearing
in π′ are forwarded to the relaxed geometric reasoning for the feasibility check [line 8]. Upon
success, action a′ is applied to compute the new relaxed state [line 10] using the relaxed tran-
sition function. The key question is in which relaxed world the corresponding action has to be
evaluated because multiple copies of poses and configurations for objects and robot may exist.
This is tackled in the function SetRelaxWorld [line 6] which chooses one of the feasible relaxed
worlds, i.e., with no collisions and satisfying the precondition of the corresponding relaxed ac-
tion. At each successive call, the function returns a different feasible relaxed world and returns
NULL if no more exist. In this latter case, the function MaxUpdates [line 13] evaluates whether a
predefined maximum number of trials to update the current state and find another CRPG plan
is reached or not. A new relaxed plan is then required [line 15] after updating the current state
by the function UpdateState [line 14] according to the feedback of the geometric reasoner: in the
case of failure due to infeasible-criticalObjects, the literal isCrit(CO, O′, Pos) with critical objects
is added to the current belief state. Otherwise, the failure is because of infeasible-infeasByRob
and the literal infeasByRob(R, O′, Pos) is added to the state. In this case, if the type of action is
either transit or open, the literal assist(Human, O′, Pos) is also added to the state.

Computing the heuristic value along with helpful actions [lines 18-19]: After the relaxed plan
becomes feasible in terms of lightweight geometry information, the heuristic value and the set of
helpful actions of the current state are returned. The function HeuristicValue returns the heuristic
value h(S) [line 18] and the function HelpfulActions extracts helpful actions H(S) [line 19]. This
process is also performed in a similar way to the standard Contingent-FF.
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Algorithm 8: CRPG(S,G)
1 CRPGgr ← CRPGConst(G)
2 π′ ← CRPGPlan(CRPGgr)
3 S′.W ′0 = S.W and S′.P ′ = S.P
4 foreach {a′ ∈ π′} do
5 while True do
6 W ′ = SetRelaxWorld(a′)
7 if W ′ 6= NULL then
8 {a′.geom+, Res, CO}←RelaxGeomReas(W ′, a′)
9 if Res = True then

10 S′ ←NextRelaxState(a′)
11 break

12 else
13 if MaxUpdates(S) < Max then
14 S ← UpdateState(S,Res, CO)
15 return CRPG(S,G)
16 else
17 return {∞, ∅}

18 h(S)← HeuristicValue()
19 H(S)← HelpfulActions()
20 return {h,H(S)}
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7.5 Tree-based Planning using Search Space

A manipulation plan is found using the And-Or state space search as in the Contingent-FF algo-
rithm. The difference lies in the heuristic function which includes geometric reasoning, and the
fact that action selection must be confirmed by the RRT-Connect motion planner. The pseudocode
of this process is presented in Algorithm 9.

Similar to the approach presented in chapter 6, there is no pre-processing step assigning
geometric details (object placements or robot grasp configurations) to the symbols: geometric
details are resolved during relaxed geometric reasoning. The algorithm gets T as input and
returns π if applicable. Initially, the trials counter trial is initialized [line 1] and the state Si

gets the initial belief state [line 4]. The function Search implements the standard Contingent-FF
search process [line 6]: it returns the next state to visit Si+1 along with the selected helpful
action(s) or action(s) with HSi . This value is computed with the modified CRPG function (see
Algorithm 8), by taking geometric constraints into account.

If there is no such HSi action [line 7], the algorithm tries the whole process again by tak-
ing into account previous trials. As long as the maximum number of iterations is not reached
[line 9], the process is repeated with the initial state updated by the function UpdateInitState
[line 11]. This function samples random geometric states while taking all the constraints identi-
fied so far into account. If the maximum number of trials is reached, the process returns failure
[line 14].

For those actions that either do not belong to the set of sensing actions and are not assigned
to human, the MotionPlanner function is used to compute a collision-free path for the currently
selected action(s) [line 17]. If a path is found, Res is set to feasible and the path Q is returned.
Afterwards, π is appended with the sensing, human, or normal action(s) [line 19]. In the case
of failure due to infeasible-criticalObjects, the literal isCrit(CO, O′, Pos) with critical objects is
added to the current belief state. Otherwise, the failure is because of motion planning time-
out problem or collisionable fixed obstacles, the type of failure is infeasible-infeasByRob and the
literal infeasByRob(R, O′, Pos) is added to the state. In this case, if the type of action is either
transit or open, the literal assist(Human, O′, Pos) is also added to the state.

7.6 Manipulation Plan Execution using Sensing and Human Inter-
action

When the manipulation conditional plan is achieved, it will be forwarded to for the execution
module. Algorithm 10 outlines the process of actions execution performed by the robot or hu-
man, and also call to the sensing actions. The conditional plan is initialized from its root [line 1].
For each action of the plan, its type first identified whether it is execution or sensing one. In
the case of execution action, if it has to be executed by human, the function executeByHuman
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Algorithm 9: The Proposed Planning Algorithm
inputs : T =〈D,S0,G〉, D=〈A,Ω,F ,W, Sg〉
output: π

1 trial← 0
2 i← 0
3 π ← ∅
4 Si ← Sinit
5 while G 6⊆ Si do
6 {HSi , Si+1} ← Search(Si,G,A,Ω))
7 if HSi = ∅ then
8 trial← trial + 1
9 if trial < Max then

10 i← 0
11 Si ← UpdateInitState()
12 Continue
13 else
14 return fail

15 else
16 if HSi 6∈ Ω And HSi .name 6= HumanTransfer And HS .name 6= HumanOpen then
17 {Q, Res, CO} = MotionPlanner(HSi)
18 if

HSi ∈ Ω Or HSi .name 6= HumanTransfer Or HS .name = HumanOpen Or Res = feasible
then

19 π.append(HSi)
20 else
21 Si ← UpdateState(Res,CO)
22 Continue

23 i← i+ 1
24 return π
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asks a person to do the corresponding action [line 5]. Otherwise, the action is executed by the
robot [line 7].

On the other hand, if the type of action becomes sensing, the function senseAct determines the
binary value of the sensing action which is True or False. Depending on the type of uncertainty,
the function may request to human or activate a sensing module in order to observe the action
value. Regarding the CheckCan or CheckOpen sensing actions, human information is used, while
a sensing module is used for the SensePose and SenseColor sensing actions.

Algorithm 10: Manipulation Plan Execution
inputs : π

1 initializePlan(π)
2 foreach {HS ∈ π} do
3 if HS ∈ A then
4 if HS .name = HumanTransfer Or HumanOpen then
5 executeByHuman(HS)
6 else
7 executeByRob(HS)

8 else
9 Res = senseAct(HS)

10 selectBranch(π,HS , Res)

7.7 Empirical Results and Discussion

This section describes some manipulation problems solved using the proposed framework, and
also the implementation issues. The mobile robot considered is TIAGo. It has 7 degrees of
freedom arm, equipped with a gripper, mounted on a mobile platform through a lift torso.
The scene depicted in Fig. 7.2, called Problem-1, shows the initial belief state of the mobile
manipulation problem. The uncertainty considered for the gray objects and the can, i.e., whether
the containers are open or not, the color of the gray cylinder is red or green, and the can is empty
or filled. The goal is to transfer the cylinder A to either the red or the green tray. Some particular
placements regions allocated for the manipulatable objects if required:

• The green cylinders must be just placed on the green tray.

• The red cylinders have to be only placed over the red tray.

• The blue cylinders must be placed only within the containers.

• The can objects may be optionally placed anywhere over the table.
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Figure 7.2: The manipulation example where the goal is to transfer cylinder A to one of the
trays with respect to its color.

The complete conditional plan is represented in Fig. 7.3. It is briefly discussed how this plan
is obtained. While the planning process is taken place, there are several challenges in terms of
geometric constraints which are captured and handled by the proposed geometry reasoner. To
reach the target object, the reachability reasoning process detects cylinder B and reports that
the object is blocking the way of reaching object A in the heuristic computation. Therefore, the
predicate isCrit(cylinderB, cylinderA, posA) is inserted to the initial belief state of of the planner.
This predicate says that cylinder B blocks the way of reaching cylinder B. Furthermore, when the
robot attempts to find a feasible configuration for opening box 1 in the case that the box is closed,
the reachability reasoner fails due to colliding with the box. Here, it is the case that robot needs
to ask a human operator for collaboration. Accordingly, the reasoner appends the predicates
infeasByRob(tiago, box1, posBox1) and assist(person, box1, posBox1) to the corresponding state.
The humanOpen action then appears.
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Figure 7.3: The conditional plan results from the proposed planning process. The actions
highlighted with the blue color are the ones assigned to the robot or a human operator. Some
important actions parameters are represented. The actions specified by the red color are sensing
actions.

The executive simulated result of the proposed manipulation problem is shown in Fig. 7.4.
We assume that the values of the uncertainty information are provided in run-time in simulation.
So, the executive plan is provided below:

Executive Plan: { Transit-B, CheckContainer-Box1-Open (False), HumanOpen-Box1,
Transfer-B-Box1, Transit-A, SenseColor-A-Red (True), Transfer-A-RedTray }

The states represented in the figure are classified as follows:

• Part(a) is the initial belief state of the robot and environment.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7.4: The simulation results of the executive plan performed by the TIAGo robot: a) is
the initial robot and environment state, b) is the state after Transit action towards cylinder B,
c) is the result of the sensing action CheckContainer-Box1-Open, d) is the state after applying
HumanOpen action, e) is the state after the robot executes the Transfer action for cylinder B, f)
is the state when the robot transits to cylinder A, g) is the state resulting from the sensing action
SenseColor-A-Red, and h) is the state when the robot place cylinder A on the associated tray.

• Part(b) is the state where the robot applied transit action in order to reach cylinder B.

• Part(c) is the state where the result of the sensing action CheckContainer-Box1-Open is
clear.

• Part(d) is the state where the HumanOpen action is executed.

• Part(e) is the state where the robot places cylinder B within box 1.

• Part(f) is the state where the robot transits to cylinder A.

• Part(g) is the state where the result of the sensing action SenseColor-A-Red is clear.

• Part(h) is the state where the robot moves its base and the arm configuration in order to
place cylinder A over the red tray.
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(a) (b)

Figure 7.5: The manipulation example where green and red objects have to be placed in the
green and red regions. The red object is not initially located in the robot workspace. The pink
region is the place where human can transfer objects to the robot workspace. The solution can be
visualized here: https://sir.upc.es/projects/ontologies/GreenRedHuman.mp4.
The solution for the case that the red object is initially located on the table is visualized here:
https://sir.upc.es/projects/ontologies/TiagoRedGreenRob.mp4.

In addition, the proposal has been evaluated for other cluttered problems where the robot
needs to sort objects according to the colors. The problem represented in Fig. 7.5, called
Problem-2, shows the initial and goal states of manipulation where the green and red objects
must be located on the green and red regions respectively. The red object is not initially located
on the table. The pink region is considered on the robot workspace where an operator can
transfer objects. The planning uncertainties are the color of the green object which could be
actually green or red and the location of the red object which could be on the robot table or
in the human workspace. The proposal has been tested for similar problems by increasing the
number of objects and varying color and/or location uncertainties. The problems performance
are represented in Table 7.1 in terms of conditional and executive plan length, and moreover
planning time. Problems-3 includes a cluttered problem where there are nine objects and three
of them need to be sorted. Problem-4 is the one where twelve objects exist and four of them
have to be sorted.

The proposed framework implementation consists of four components: task planning, re-
laxed geometric reasoning, motion planning, and executive module. Task planning is imple-
mented using a modified version of the Contingent-FF planner developed in C++. The action
templates and all the symbols (like those considered for the reachability of robot arms) to solve
the pick and place manipulation tasks are defined using PDDL. Note that PDDL can use ADL
(Action Description Language, Pednault (1989)) which allows us to write operators in a more
compact way, using quantifiers and conditional effects. Geometric details of symbolic actions

https://sir.upc.es/projects/ontologies/GreenRedHuman.mp4
https://sir.upc.es/projects/ontologies/TiagoRedGreenRob.mp4
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Problem Conditional plan Executive plan Planning time
Sensing Executive Sensing Executive

Problem-1 3 10 2 5 35
Problem-2 3 13 2 5 59
Problem-3 3 19 2 8 163
Problem-4 7 41 3 12 449

Table 7.1: The conditional plan and executive plan length in terms of number of sensing and
executive actions and planning time in seconds for the evaluated problems.

conditions (such as object placements or robot grasp configurations) are not pre-computed.
They are sampled and assigned on demand during the planning process.

Relaxed geometric reasoning and motion planning use The Kautham Project (Rosell et al.,
2014), a C++ based open-source tool for motion planning, that enables to plan under geo-
metric and kinodynamic constraints. It uses the Open Motion Planning Library (OMPL) (Sucan
et al., 2012) as a core set of sampling-based planning algorithms. In this work, the RRT-Connect
(Kuffner and LaValle, 2000) motion planner is used for motion planning. This planner is one
of the most efficient motion planners, but it does not guarantee optimal motions. The Kautham
Project involves different collision checking modules to detect robot-object and object-object
collisions, and features a placement sampling mechanism to find feasible object poses in the
work-space. Relaxed geometric reasoning uses these modules in order to find feasible sample
geometric instances for symbolic actions. The executive module uses a sensing module which
uses the 3D camera mounted inside the TIAGo robot, and also some components provided by
PAL Robotics to send a motion path to the robot. The communication between task, relaxed geo-
metric reasoning, motion planning, and executive modules is done via Robotic Operating System
(ROS) (Quigley et al., 2009).

7.8 Conclusions

This chapter has presented a contingent-based task and motion planning approach that is able
to cope with high-dimension mobile manipulation problems in the presence of high-level uncer-
tainty and human-interactions. Human interactions are referred to as sharing knowledge and
collaboration with the robot. A set of geometric reasoning processes have been offered to cap-
ture task constraints imposed in the robot environment while planning is done. So, the proposed
approach results a tree-shaped conditional plan which is geometrically feasible.





Chapter 8
Implementation Framework for
Combining Task and Motion Planning

8.1 Introduction

This chapter presents an implementation framework which makes the possibility of combin-
ing task and motion planning using different information techniques. The main purpose is to
provide detailed information concerning implementation issues, e.g., how the information can
be exchanged between task and motion planning levels although they have been implemented
with different languages. Some parts of the implementation framework have been presented
in (Akbari et al., 2016b) and (Rosell et al., 2014).

8.2 Implementation Framework

The proposed framework of combining task and motion planning levels is represented in Fig. 8.1.
It is composed of 4 main layers: Semantic Manipulation Knowledge, Task Planning, Motion Plan-
ning, and Task Executive. This section is going to summerize the main role of each layer and the
the way of communication among them.
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Figure 8.1: The framework of combining task and motion planning.

8.3 Semantic Manipulation Layer

Basically, the semantic manipulation layer includes the ontologies files related to the knowledge
modelling stored in the cloud and reasoning process over the knowledge. The taxonomy of the
knowledge has been demonstrated in Chapter 3. The knowledge is modelled using the Protégé
editor1which is an open-source platform in terms of OWL. Some details of the OWL information
is represented in Fig. 8.2. This example explains the information stored for three objects, namely
objA, objB, and objC as the OWL individuals under the tag owl:NamedIndividual. Each object has
also a number of tags. has-mRgn and has-seMap, which are object properties in the ontology,
correspond with the associated manipulatable region and semantic map (storing the object pose)
considered for an object respectively. Here, manipulatable regions are the individuals stored

1http://protege.stanford.edu/
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Figure 8.2: Some parts of the ontological knowledge representation.

under the class ManipulatableRegion and semantic maps are the individuals of class ObstaclePose
as depicted in Fig. 3.1. The tags friction and mass display the values considered for the friction
and weight of the corresponding object.

For the reasoning process over the knowledge, the Prolog language is used. It is a logic
programming language that is particularly suited to programs which contain symbolic compu-
tation. For this reason, it is a frequently used language in AI for knowledge-based reasoning
where manipulation of symbols and inference about them is a common task. Prolog consists of
a series of rules and facts. A program is run by presenting some queries and seeing if this can
be proved against these known rules and facts. To access the OWL knowledge from Prolog, the
KnowRob tool (Tenorth and Beetz, 2009) and the SWI-Prolog library (Wielemaker et al., 2012)
which provide flexible access to the knowledge are employed. The reasoning process proposed
in Chapter 3.4 was implemented using these libraries and the Prolog language. Some parts
of the process related to the way of accessing the ontological knowledge is shown in Fig. 8.3
in which physical properties of objects are retrieved using find_physical_attributes and contact
constraints of objects are also found by find_cont_const predicates. The reasoning process about
sorting of the objects type along its manipulation constraints (e.g. an object can be manipu-
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(1) (2)

Figure 8.3: The Prolog predicates describing the accessibility of the knowledge: 1) Retrieves
the physical properties of objects. 2) Finds contacts constraints of manipulatable objects.

Figure 8.4: The Prolog predicate to reason over objects type along its constraints.

lated in x or y direction) is explained in Fig. 8.4. In this case, the predicates find_cont_const
and find_manip_const first compute the contacts constrains and manipulation constraints re-
spectively, if any. In the case of having constraints, the type of constraint is returned; otherwise,
the object is marked as free manipulatable object.

8.4 Task Planning Layer

The task planning algorithms discussed throughout the present thesis, some using the ontologi-
cal knowledge, have been developed either in C++ or the Prolog language.

GraphPlan with Physics-based Reasoning (presented in Chapter 4) is a modified version of the
planning graph algorithm planner. It uses the ontological knowledge and is implemented in Pro-
log. The planner uses the information about the action description, some query conditions, and
also workspace from the knowledge that can be used while planning is processed. Fast-Forward
with Physics-based Heuristic (presented in Chapter 5) is a version of the basic FF planning system
using the knowledge and developed in Prolog as well. In this case, The main reason of using
Prolog language is to facilitate the accessibility of knowledge. The main advantage of the Prolog
language implementation is to perform appropriately symbolic-based reasoning (like reasoning
over the knowledge).

Fast-Forward with Geometry-based Heuristic (presented in Chapter 6) is a modified version
of the original FF planner using PDDL to describe symbolic action, and also the initial state
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and goal conditions. The original software is based on C++ and presented in https://fai.
cs.uni-saarland.de/hoffmann/ff.html. It has been extended to incorporate geome-
tric reasoning process in the heuristic computation and the state space search. Contingent-FF
with Geometry-based Heuristic (presented in Chapter 7) is a modified version of the Contingent-
FF planner using PDDL as well. The original software is available in https://fai.cs.
uni-saarland.de/hoffmann/cff.html developed in C++. The geometric reasoning and
sensing actions have been incorporated in the modified version. The main advantage of C++
implementation is to provide fast and efficient computation.

8.5 Motion Planning Layer

Basically, to perform different type of low-level geometric reasoning and motion planning, The
Kautham Project which is a C++-based open source software is used. It is used for teaching and
research purposes at the Institute of Industrial and Control Engineering (IOC-UPC).

8.5.1 Geometric Reasoning with The Kautham Project

The Kautham Project is mainly applied to develop and demonstrate the motion planning al-
gorithms, which could be based on geometry, control, and physics-based families of motion
planning. Motion planning problems are described using input XML four basic main sections
(see Fig. 8.5). They are robot(s), obstacle(s), controls, and planner. The main parameters pro-
vided for each robot/obstacle are the path to a robot/obstacle description file, the translational
limits of motion if the robot/obstacle has a mobile base, the home location with respect to the
world reference frame. The information for controls which are numbers between zero and one
is optional. In the end, the principle planning parameters provided are the query to be solved
containing initial and goal configurations and the parameters of the planner (like goal bias and
planning time).

A robot is defined as a kinematic tree with optional mobile base, its configuration space is
R = SE(3) × Rn, where n represents the number of joints of the robot. If the base is fixed,
SE(3) part is represented as null. The kinematic structure of the robot is defined using Unified
Robotics Description Format (URDF, http://wiki.ros.org/urdf). It contains the visual
robot model, the collision model, transformations between the links, joints (along with limits)
and dynamic parameters such as damping and masses. The visualization model is defined with
triangular meshes that can be represented in .wrl, .stl, and .dae formats. The collision model can
be represented either by a triangular mesh or by primitive shapes (cylinder, box, and sphere).
Obstacles are also defined as robot data structures, in case of fixed obstacles, none of its degrees
of freedom are actuated.

The main core of The Kautham Project consists of the workspace, the configuration space, and
a set of planners. Once a problem is loaded, it fills the data structures of the workspace (that in-

https://fai.cs.uni-saarland.de/hoffmann/ff.html
https://fai.cs.uni-saarland.de/hoffmann/ff.html
https://fai.cs.uni-saarland.de/hoffmann/cff.html
https://fai.cs.uni-saarland.de/hoffmann/cff.html
http://wiki.ros.org/urdf
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Figure 8.5: XML problem description file that includes information of the robot, the obstacle,
the controls, and the planner.

cludes the robot/obstacle models, their kinematic limits), and of the configuration space. More-
over, it contains the methods for collision checking using PQP (Gottschalk et al., 1999) or FCL
(Pan et al., 2012), and forward kinematics to move the robot to the particular configuration. To
sample the configuration space various state samplers (such as random, Gaussian and Halton)
are included. The project, moreover, contains different inverse kinematics algorithms for differ-
ent robots and the sampling-based planners (such as RRT, PRM, and EST) offered by Open Motion
Planning Library (OMPL (Sucan et al., 2012)). The detailed explanation regarding the imple-
mentation of planners can be found here https://sir.upc.edu/projects/kautham/.

8.5.2 The Kautham Project Extention with Knowledge Processing

The Kautham Project has been extended to fetch the ontological knowledge and reason over that.
Once the problem is loaded, the knowledge processing is carried out through the Prolog engine.
A data structure is considered in the low-level in which the result of knowledge processing
is classified and can be retrieved during the motion planning process. The essential stored
knowledge is summarized in Robot Capability Properties, Object Type, Objects Features, and Object
Physical Properties.

Robot Capability Properties includes knowledge like robots constraints or capabilities (e.g.

https://sir.upc.edu/projects/kautham/
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maximum weight that can be loaded by the robot’s gripper or hands). Object Type embraces the
type of objects (like fixed or manipulatable). Objects Features involves the the features of objects
like color or manipulation constraints (using the predicate find_cont_const as shown in Fig. 8.3).
Object Physical Properties stores the physical properties of objects like mass or friction as shown
in Fig. 8.3 using the predicate find_physical_attributes.

According to the knowledge-based motion planning scope, we have recently proposed some
physics-based motion planners (such as approaches presented in (Muhayyuddin et al., 2018)
and (Muhayyudin et al., 2015)) in solving manipulation problems at which a robot needs to
interact with some manipulatable obstacles in order to find a feasible plan.

8.6 Task Executive Layer

When task and motion planning is successfully terminated, the complete manipulation plan,
stored in the task planning layer, needs to be executed in the real environment or simulation.
The task executive layer is used to deal with executing the plan by a robot, and moreover
the sensing information required to monitor the result of the sensing actions (used in the case
of uncertainty) if any. Regarding perception, the Kinect camera is employed using the ROS
driver (http://wiki.ros.org/kinect). Objects are tagged with the AR tags and the ROS
library (http://wiki.ros.org/ar_track_alvar) is used in order to identify their poses.
In terms of simulation, DrawStuff (a part of Open Dynamic Engine http://www.ode.org/),
The Gazebo simulator (http://gazebosim.org/), Rviz (http://wiki.ros.org/rviz),
as well as The Kautham Viewer are used. The Kautham Viewer is originally implemented in the
The Kautham Project and provides the visualization of the robot model, the collision model and
the visualization of the configuration pace. Its limitation is that it can visualize only the solution
path of a single query, with no consideration of object manipulation. To improve this, it has been
extended to visualize the full manipulation plan with different set of actions (e.g. Pick, Place,
or Push). The snapshots of the plan execution for mobile manipulation and the bi-manual robot
have been accomplished using DrawStuff and The Kautham Viewer respectively in simulation,
and also the mobile manipulator example has been presented using The Kautham Viewer.

8.7 Communication Layer

As different programming languages and libraries are associated with planners and modules, on
of the challenging issues is the question of how task and motion planning levels are negotiating
with each other and other modules.

http://wiki.ros.org/kinect
http://wiki.ros.org/ar_track_alvar
http://www.ode.org/
http://gazebosim.org/
http://wiki.ros.org/rviz
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8.7.1 Communications with The Motion Planning Layer

The main functionalities of the motion planning level such as motion planning query or collision
check between obstacles have been encapsulated as services inside a node and provided in the
ROS shell. In the case of calling motion planning from the task planning level, some of the in-
formation of robot (e.g. robot configurations or pose), workspace (e.g. objects home locations),
query to be solved are filled through the task planning process using the Robot Operating System
(ROS, https://ros.org) communication.

Therefore, the task planners need to define client nodes and call the services for different
geometric reasoning processes.

To grant the access of motion planning to the knowledge and the reasoning process, the
communication layer includes the SWI Prolog library. This library provides the access to the
Prolog queries to the knowledge and the queries defined in the reasoning process module. It
provides an interface to the Prolog language by opening the Prolog engine through C++, and
then the Prolog files can be loaded in order to enable the reasoning process.

8.7.2 Communications with the Task Planning Layer

The Prolog-based task planning approaches are considered to apply knowledge processing within
the planning process. They have been developed in Prolog due to the fact that the knowledge-
based reasoning process is implemented in the Prolog language; therefore, it facilitates to access
the knowledge and the reasoning process. Through KnowRob and the SWI-Prolog library, the
task planners are able to ask queries to the knowledge according to planning domains and ma-
nipulation world where a robot is acting.

The role of KnowRob is to provide advanced predicates to access the ontological knowledge,
and also to call some reasoning modules proposed by them, e.g., spatial reasoning and semantic
map (storing object poses) through the task planning process.

Two types of communications, depending on the language of the task planner algorithms,
are proposed to exchange information between task and motion levels. One is based on the
Prolog and the other one is based on C++ implementation. According to the Prolog implemen-
tation, the task planners can be encapsulated as clients or services using SWI-Prolog and can be
called from an application manager. It communicates with motion planning through the ROS
middleware. The architecture of this process is shown in Fig. 8.6.

In the point of view of implementation, an interface between task and motion planning,
which is called Motion Planner Client, is required to exchange the information. This client is
developed in C++ and uses the SWI-Prolog library providing access to the C++ from the Prolog
environment. Some of the predicate macro considered in the Motion Planner Client file is pre-
sented in Fig. 8.7. Each predicate has two arguments. i.e., the first one shows the name of a Pro-

https://ros.org
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Figure 8.6: Prolog-based task planning as either service or client to communicate with motion
planning.

Figure 8.7: Some predicate macros defined in Motion Planner Client.

log predicate and the second one is the number of arguments for that predicate. For instance, in
Fig. 8.7, the first predicate macro shows the way of initializing the manipulation_planning_client
node from the init predicate and the second one represents the tr predicate which is used to
evaluate Transit actions from Prolog.

The predicate macros, developed in Motion Planner Client, can be called in the task planning
procedure. The detailed information of the task and motion planning communication is exhib-
ited in Fig. 8.8. It is shown that Motion Planner Client is loaded as a foreign library inside task
planning using the predicate load_foreign_library. In this way, the Prolog-based task planners
are able to call motion planning services and wait for their responses.

The communication of the C++-based task planners is straightforward. A client node which
is able to call motion planning services is considered for sending and receiving information. In
this case, as all the involved modules are developed in C++, there is no any issue of transferring
information between the modules. After the task planning process is successfully terminated,
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Figure 8.8: Detailed information about the communication between task and motion planning.

the manipulation plan will be forwarded to the task executive layer. This communication is
fulfilled through the ROS communication.

8.8 Conclusions

This chapter has presented some details on the implementation framework proposed to solve
the combining of task and motion planning. It discussed different task planners tools used
throughout the thesis, The Kautham Project which is a tool to perform motion planning, and the
communication layer among the proposed system that mainly shows how information could be
exchanged from different languages.



Chapter 9
Conclusions and Future Work

9.1 Conclusions

The present thesis has developed a number of combined task and motion planning algorithms
with respect to the increasing challenges of robotic manipulation problems. Different sort of rea-
soning processes have been also proposed inside the framework of combining task and motion
planning levels in order to come up with a feasible manipulation plan. To sum up, the challenges
of robotic manipulation problems considered in the thesis are summarized as follows:

• Mobile manipulation problems: They refer to the problems where there is no direct
solution between the initial and the goal configurations of mobile robot, so they need to
push some objects away in order to reach its goal. In this line, the main challenging task
correspond with finding a geometrically feasible manipulation plan with a low-cost.

• Collaborative multi mobile manipulation problems: They hold the challenge of mobile
manipulation problems although several mobile robots can share a task and collaborate
with each other in order to solve the problem. Therefore, the coordination of sub-tasks
remain challenging.

• Higher dimensional manipulation problems: Such problems are referred to as manip-
ulation where bi-manual robots or mobile manipulators are going to set a table with var-
ious objects or grasping an object in a cluttered environment. These problems are also
very challenging due to the fact that they are subject to strong geometric constraints, e.g.,
occlusions, lack of space in placing objects, objects reachability, or kinematic constraints
of manipulators.

To cope with mobile manipulation problems, physics-based motion planning has been em-
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ployed that mainly considers interactions between mobile robots and objects. This provides
how much push or pull action is required to satisfy the actions conditions if possible and is able
to measure transit actions of the robots in terms of power. Such information can guide task
planning process towards selecting the actions having low-cost.

To enrich the combination of task and motion planning frameworks, manipulation knowl-
edge can be developed and used within the planning process. This aims to facilitate the way
of interaction with objects for the case of action execution, and also reason over some symbolic
actions conditions (like robot capabilities issues) in order to guide the action selection process.

Particularly, this thesis concluded the following points at each section:

• The semantic manipulation knowledge has been presented in terms of representation and
reasoning process. The knowledge is modelled using ontologies. The knowledge is basi-
cally divided in two categories; manipulation world and manipulation planning. The prior
one associates with the information about the limits of the robots and objects features and
properties. The latter one describes the conditions of planning components. Reasoning
over this knowledge aids to evaluate actions and the way of executing each of them.

• To deal with mobile manipulation problems, combined task and physics-based motion plan-
ning using a planning graph technique has bee proposed. This combination provide some
sort of high along low level reasoning to find a low-cost and geometrically feasible manip-
ulation plan.

• In the case of collaborative multi mobile manipulation problems, a heuristic-based task and
physics-based motion planning has been presented. The offered reasoning processes are
able to assign sub-tasks to various mobile robots, and also find a low-cost and feasible
manipulation plan.

• A heuristic-based task and motion planning has been proposed to tackle higher dimensional
manipulation problems. The approach is able to capture most of geometric constraints in
heuristic and assigns geometric choices carefully to symbolic actions. This process reduces
geometric backtracking and a number of call to a motion planner.

• Furthermore, in higher dimensional manipulation problems, there could be the case that
there is imperfect information about the initial state of the robot world and a robot may
be required to interact with human to perform some tasks. Accordingly, a contingent-based
task and motion planning has been presented to cope with these issues.

• Finally, an implementation framework has been illustrated to show the main tools and
the flow of information among modules used to combine task and motion planning levels.
Concerning the robotic systems, we have tested our results with the robots Yumi ABB and
TIAGo PAL.
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9.2 Future Work

Along with the conclusion points stated above, the current thesis, moreover, opens new research
problems that require further consideration in order to achieve the latter objective of combined
task and motion planning that is to deal with geometric uncertainty, the planning system using
learning techniques, and also human-like executing actions of manipulation plans.

This thesis has throughly investigated different combinations of task and motion planning
using only automated planning. Following the direction of task and motion planning under
uncertainty, geometric uncertainty can be also considered inside the combined task and motion
planning framework in order to deal with different execution failures that could be either due
to robot or objects poses uncertainty or unpredicted situations like slipping grasped object from
the robot gripper.

However, a robot can learn and experience about problems and retrieves the useful informa-
tion for similar situations or problems encountered before. In this case, robot is able to learn
from task failure and can handle similar problems which will face in its future tasks. So, one of
the future research directions could be to develop a mechanism to use learning and experience
features in order to facilitate planning process.

The other future research direction could be to use deep learning techniques in assigning
geometric information to symbolic actions. In this case, while selecting, e.g., grasping configu-
rations of object placement poses, robot can select more human-like geometric information for
the task execution. Learning techniques can be also used to detect objects along their physical
properties in unknown environments, and then assert them in an ontology. This way makes
robots capable in order to perform manipulation with unknown objects by reasoning over the
extensible ontological knowledge.
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