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Abstract

Single amino acid variants (SAVs) are one of the main causes of Mendelian

disorders, and play an important role in the development of many complex

diseases. At the same time, they are the most common kind of variation

affecting coding DNA, without generally presenting any damaging effect. With

the advent of next generation sequencing technologies, the detection of these

variants in patients and the general population is easier than ever, but the

characterization of the functional effects of each variant remains an open

challenge.

It is our objective in this work to tackle this problem by developing machine

learning based in silico SAVs pathology predictors. Having the PMut classic

predictor as a starting point, we have rethought the entire supervised learning

pipeline, elaborating new training sets, features and classifiers. PMut2017 is the

first result of these efforts, a new general-purpose predictor based on SwissVar

and trained on 12 different conservation scores. Its performance, evaluated both



by cross-validation and different blind tests, was in line with the best predictors

published to date.

Continuing our efforts in search for more accurate predictors, especially

for those cases were general predictors tend to fail, we developed PMut-S, a

suite of 215 protein-specific predictors. Similar to PMut in nature, PMut-S

introduced the use of co-evolution conservation features and balanced training

sets, and showed improved performance, specially for those proteins that were

more commonly misclassified by PMut. Comparing PMut-S to other specific

predictors we proved that it is possible to train specific predictors using a unique

automated pipeline and match the results of most gene specific predictors

released to date.

The implementation of the machine learning pipeline of both PMut and

PMut-S was released as an open source Python module: PyMut, which bundles

functions implementing the features computation and selection, classifier train-

ing and evaluation, plots drawing, among others. Their predictions were also

made available in a rich web portal, which includes a precomputed repository

with analyses of more than 700 million variants on over 100,000 human pro-

teins, together with relevant contextual information such as 3D visualizations

of protein structures, links to databases, functional annotations, and more.
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1. Introduction





1.1 Human DNA sequence variation and disease

Indeed, it is not intellect, but intuition

which advances humanity. Intuition

tells man his purpose in this life.

Albert Einstein

1.1 Human DNA sequence variation and disease

DNA sequence variation is great: it makes each one of us different, and this

diversity, which is a key component of evolution, strengthens our resiliency as a

species as it does for all life beings (Ellegren and Galtier, 2016; Quintana-Murci

and Clark, 2013).

Compared with the reference genome, a typical human genome diverges in

around 4 to 5 million sites. 99.9% of this variation is caused by single nucleotide

polymorphisms and short indels, whereas the rest is due to structural variants

(such as copy number variations) affecting more than 1 kilobase (Stankiewicz

and Lupski, 2010; The 1000 Genomes Project, 2015). This variation, far from

being randomly distributed along the sequence, follows certain patterns that

help us unveil the origin and function of our DNA.

Most human variation originated millions of years before people first em-

igrated out of Africa between 50,000 and 60,000 years ago (Cavalli-Sforza

and Feldman, 2003). These ancient polymorphisms are shared by all human

populations and account for about 90% of the variation in any person (McClel-

lan and King, 2010). The rest of the variation is much more rare an diverse.
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Introduction

New mutations, which occur at an average rate of 175 per diploid genome

generation (Nachman and Crowell, 2000), prevail due to the exponential growth

of human population since the development of agriculture 10,000 years ago and

urbanization in the last centuries (Coventry et al., 2010). All these recent, rare

mutations collectively represent the vast majority of human variation nowadays

(Tennessen et al., 2012).

Genetic variation is subjected to both positive and negative evolutionary

pressure, which has shaped some of the patterns we mentioned before. For

example, the exome has a mutation rate that is half of the general genome,

with synonymous variants being more prevalent than missense or nonsense

ones (Lek et al., 2016). Even if the median number of SNVs per gene is 24,

this number may range between 0 and more than 700, depending on the gene

(Tennessen et al., 2012). These numbers are influenced by different factors, such

as the biochemical properties of the variant (Cooper and Youssoufian, 1988),

the location in the genome (Vicoso and Charlesworth, 2006), the existence of

related genes (MacArthur et al., 2012) or the ancestry of the individual (Lek

et al., 2016).

The study of DNA variation is fundamental in biomedicine, as almost all

diseases have a genetic component. In the case of Mendelian diseases, the

link between genotype and phenotype is generally easier to establish than

for complex diseases. The latter are generally caused by a combination of

environmental factors and a genetic predisposition in the form of mostly rare

variants in different genes (McClellan and King, 2010; Tennessen et al., 2012).

4



1.1 Human DNA sequence variation and disease

A great deal of our current knowledge on genetics and human DNA variation

comes from recent methodological advancements in sequencing technologies,

those commonly known as next generation sequencing (NGS).

1.1.1 Next generation sequencing

Knowledge on the complete human genome sequence is very recent: the

Human Genome Project published its first draft of the human DNA in 2001

(International Human Genome Sequencing Consortium, 2001) and its final

version in 2004 (International Human Genome Sequencing Consortium, 2004).

This project, with a cost of billions of dollars and based on the Sanger method

for sequencing DNA, set the basis for the development of cheaper and faster

sequencing methods.

The second generation of sequencers, based on improvements of the shotgun

method, in which lots of small DNA fragments are sequenced in parallel, has

fostered a revolution in biomedicine and genomics. Known as next generation

sequencing, these methods are behind the explosion in the number of species

and human genomes sequenced in the past decade.

As an example of the amount of information generated by NGS, we can

see the growth rate of UniRef100 (the reference sequence database used in

this work), which has grown in a 4x factor during the last 5 years (Figure 1.1).

Innovation in sequencing methodology hasn’t stopped, the cost of sequencing a

human genome is nowadays slightly above $1000 (Schwarze et al., 2018), and

a third generation of sequencers is underway, promising even faster and cheaper

DNA analyses (Schadt et al., 2010). This new availability of sequences has

5
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Figure 1.1 Monthly evolution of the number of sequences in the UniRef100
database during the work on this thesis.

shifted the focus of the research community from the sequencing of genomes

to their interpretation (Mardis, 2010; Schrijver et al., 2012).

1.1.2 Large-scale sequencing studies

The first human genome sequence assembled was in fact a combination of

sequences from different volunteer donors. Once this consensus sequence was

released, the bases were established to start studying DNA variation among

the population. The HapMap project (McVean et al., 2005; The International

HapMap Project, 2003) was the first project working towards this goal, its

main objective being the identification of common patterns in DNA sequence

variation. For this purpose, they sequenced DNA samples from 270 unrelated

individuals from 4 different geographic ancestry locations. As a result of this

study, more than one million SNPs (single nucleotide polymorphisms, point

variants with a minor allele frequency of at least 1%) were identified.

6



1.1 Human DNA sequence variation and disease

The next important milestone in the study of DNA variation came from the

1000 Genomes initiative (1000G, The 1000 Genomes Project, 2015), consistent

on the low-coverage study of the whole genome and the deep exome sequencing

of 2,504 healthy individuals from 26 different populations. In the same line

as 1000G, but limited to exomes, are the ESP project (Exome Sequencing

Project, Fu et al., 2013), which sequenced a total of 6,515 exomes, and more

importantly, the ExAC project (Exome Aggregation Consortium, Lek et al.,

2016), which analyzed the exomes of 60,706 humans of varied ancestries.

Different initiatives have also emerged aggregating data from these projects

such as dbSNP (Sherry et al., 2001), the classic database collecting SNPs.

More recently, the Genome aggregation database (gnomAD, Karczewski et al.,

2019) has been released, aggregating variants from 141,456 human exomes and

genomes.

Large-scale sequencing studies have not been limited to the sequencing

of healthy individuals, but are a fundamental means for the study of complex

diseases via Genome Wide Association Studies (GWAS, The Wellcome Trust

Case Control Consortium, 2007). Two flagship projects on cancer such as The

Cancer Genome Atlas (TCGA, The Cancer Genome Atlas Research Network,

2008) and the International Cancer Genome Consortium (ICGC, The Interna-

tional Cancer Genome Consortium, 2010) have also sequenced thousands of

cancer genomes to better understand these diseases.

Sequencing technology is not only limited to DNA: RNA-Seq (Wang et al.,

2009) allows to quantitatively measure the transcriptome, and thus quantify

gene expression. The GTEx project (Genotype-Tissue Expression, The GTEx

Consortium, 2015) is the first large-scale attempt to complement whole genome

7
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sequencing with RNA sequencing from 175 individuals across 43 different

tissues. RNA-Seq data has also been collected in the ICGC and TCGA projects,

and the joint analysis of DNA sequence and gene expression is one of the

current challenges in biomedicine.

1.1.3 Genetic variation and Mendelian disorders

Mendelian disorders, also known as monogenic disorders, are diseases caused

by alterations on a single gene. About 0.4% of newborns present a clinically

recognized Mendelian phenotype (Baird et al., 1988). Mendelian diseases are

usually caused by the inheritance of pathogenic alleles, although they may also

originate from de novo variants (Veltman and Brunner, 2012), being this the

prevalent cause for some rare diseases (Heinzen et al., 2012). The knockout

of any non-redundant protein-coding gene compatible with live is suspected

to cause a Mendelian phenotype, as suggested by studies in mice (Ayadi et al.,

2012).

Research on Mendelian disorders has focused on identifying the links

between genes and diseases. Traditionally, this was done by positional cloning

and candidate-gene approaches (Bamshad et al., 2011; Collins, 1995). In recent

years, whole exome and whole genome sequencing have replaced these methods

and underlie nowadays the vast majority of gene discoveries (Chong et al., 2015;

Ng et al., 2010; Tennessen et al., 2012). Exome sequencing has even proved

valuable for the detection of undiagnosed genetic conditions (Need et al., 2012).

Mendelian phenotypes have clearly been associated with alterations in the

normal coding sequence of proteins, and are not generally caused by synony-

8



1.1 Human DNA sequence variation and disease

mous variants (Botstein and Risch, 2003). In the most extreme case, the gene

may be affected by a loss-of-function (LoF) variant. The loss-of-function of

a gene can be caused by the introduction of a stop codon (nonsense muta-

tion), a SNV disrupting a splice site, insertions or deletions disrupting the

transcript’s reading frame, or large deletions completely removing the first exon

or a large proportion of the protein-coding sequence of the affected transcript.

These kinds of mutations, which can be tolerated if affecting less-conserved

genes with related paralogs, cause a disease if they affect a gene linked with a

Mendelian disease (MacArthur et al., 2012).

There is a middle ground between damaging protein-truncating variants

and harmless synonymous variants: missense variants that cause a change in

the amino acid sequence of the protein. The consequence of these variants can

range from having no effect at all, to the development of a high penetrance

phenotype (Chakravorty and Hegde, 2017). Our work focuses on the distinction

of these cases.

1.1.4 Single amino acid variants and disease

Single amino acid variants are the most common type of variant affecting

protein-coding genes, and their effect can diverge from absolutely innocuous to

completely impeding the protein function.

The substitution of a single residue can hamper the normal function of the

protein by a number of reasons. A mutation in a protein-protein interface can

prevent the formation of multiprotein complexes (Jubb et al., 2017), a substi-

tution in the active site can affect the protein’s biochemical function (Daudé
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et al., 2013), mutations can prevent the folding of the protein to its proper

conformation (Valastyan and Lindquist, 2014), or they can negatively affect the

protein dynamics, eg. by hindering hinges in protein structure (Sayılgan et al.,

2019).

The effects of SAVs on proteins couldn’t be systematically studied until

recently. Experimental advancements now allow for parallel mutagenesis of all

variants in a protein (Kitzman et al., 2015; Starita et al., 2017), which is a great

step forward compared to traditional approaches that targeted only one site at a

time (Kunkel, 1985). These in vitro experiments have been successfully applied

to the mapping of distribution fitness effects of some proteins (Firnberg et al.,

2014), but the number of proteins studied are still a very small fraction of the

human proteome.

The identification of SAVs causing a disease is an arduous task carried out

by hundreds of different researchers and physicians around the world. The

results of these efforts, usually published on research papers, have also been

aggregated over the years in varied databases of annotated variants.

1.1.5 Databases of annotated variants

Different databases exist that collect variants which have been proven to cause

a disease. Even though it has a broader scope, it is necessary to mention the

Online Mendelian Inheritance in Man (OMIM, Amberger et al., 2015), as it

represents the most complete resource of curated genes related to Mendelian

disorders, with comprehensive descriptions on the phenotypes developed, ref-

erences to relevant studies, and also variants known to affect the function of

10



1.1 Human DNA sequence variation and disease

their gene. Having a more specific focus on the aggregation of variants linked

to disease, the three most relevant databases are SwissVar, ClinVar and HGMD.

SwissVar (Yip et al., 2008), also known as Humsavar, is a catalogue of

single amino acid variants in which each variant is labeled as disease-causing,

polymorphism or unclassified. These annotations are derived from literature

reports, and variants are related to dbSNP or OMIM entries when possible.

The database is quite balanced between neutral and disease mutations (40,043

polymorphisms, 30,632 disease variants and 8,100 unclassified; as of July

2019), and it is published under the Creative Commons Attribution License

(CC BY 4.0).

ClinVar (Landrum et al., 2016) is a database with a broader scope in terms

of variation: it collects both germline and somatic variants from any region

of the human genome, and of any length or type: insertions, deletions, copy

number variations, SNPs, cytogenetic rearrangements... In addition to variant

information extracted from published reports, ClinVar also allows for the direct

submission of variants, which account for 40% of its data. A lot of care is taken

on linking annotations and their source, and so its records contain information

about the submitter, the variation, the clinical condition, interpretation and

evidence supporting it.

The Human Gene Mutation Database, (HGMD, Stenson et al., 2017) is

another database collecting more than 200,000 germline gene lesions on 8,000

genes which underlie, or are closely associated with inherited human disease.

These lesions, which include missense, nonsense or splicing substitutions,

deletions, indels, etc. are extracted from scientific literature with the aid of text

mining. It is worth remarking that HGMD does not contain neutral variants,
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its focus is on disease, and it classifies variants as either disease causing or

possibly disease causing, depending on the evidence. HGMD has two versions

of its database: a free version which is 3.5 years outdated, and a complete paid

version.

The databases we have presented so far are mainly focused on germline

mutations (ClinVar also contains somatic mutations, but these represent only

about 1% of its records), and by linking single variants with a disease, they are

mainly focused on monogenic or Mendelian diseases. But these are not the

only mutations than underlie disease: somatic mutations have a prevalent role

in some complex diseases, and specially cancer. Two of the largest databases

collecting cancer mutations are those released by two consortium initiatives we

presented above: the TCGA (The Cancer Genome Atlas) and the ICGC (In-

ternational Cancer Genome Consortium). Their mutations are also aggregated

in COSMIC (Forbes et al., 2015), a database that started in 2004 describing

4 cancer genes, and now contains information from more than 1.4 million

samples, including more than 6 million protein coding variants.

Even though the size of these databases keeps increasing (SwissVar adds

between 1,000 and 2,000 variants every year, and HGMD reports a steady

increase of 17,000 records per annum), we are very far from having a complete

catalogue of disease-causing mutations. As we commented earlier, most of the

human DNA variation is rare and evolutionary recent; this is even more true

for disease-causing variants, especially if they cause early-onset severe illness.

The vast majority of disease causing variants identified in any sequencing assay

will not be previously known or present in any of these databases, and the

experimental determination of pathology is a difficult and costly process; which
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rises the need for a fast and cheap assessment of the pathology of single amino

acid variants.

1.2 Single amino acid variants pathology predic-

tion

In silico SAV’s pathology predictors have been used in research settings for

almost two decades. They provide a fast and cheap analysis of SAVs, enabling

the researchers to prioritize the variants under study and focus their efforts on

the SAVs that are most likely to cause a disease.

Before these methods were developed, the need of a preliminary assessment

of the impact of an amino acid mutation was usually met by comparison of the

physicochemical properties of the wild type and the mutated residue. Grantham

scale (Grantham, 1974), which assigns a similarity score to each pair of amino

acids based on chemical properties and correlated with observed substitution

frequencies, was a relevant method for decades to approximate the impact of

SAVs.

In the early 2000s, the foundations of SAVs pathology prediction were

established in a series of publications which described ways of characterizing

and discerning neutral from damaging mutations: Chasman and Adams (2001);

Ng and Henikoff (2001); Sunyaev et al. (2001); Ferrer-Costa et al. (2002).

Some of the teams behind these studies developed in the following years the

first SAV pathology predictors: PolyPhen1 (Ramensky et al., 2002), SIFT (Ng

and Henikoff, 2003), PMut (Ferrer-Costa et al., 2004). Interestingly, each of

these methods used a different approach to predict the pathogenicity of variants:
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PolyPhen1 is an ad-hoc method, based on expert, experimentally derived rules;

SIFT is based on a sequence conservation; and PMut is a machine learning

method trained on variants previously classified as neutral or pathogenic.

Since then, dozens of predictors have been developed and published. In

the following sections we will present the main paradigms that underlie these

predictors.

1.2.1 Conservation scores

The most crucial insight for assessing the deleteriousness of SAVs is the fact

that disease-causing variants suffer a negative selection pressure, and thus are

depleted from homologous sequences in other organisms. With this central idea

was developed SIFT (Sorting Intolerant From Tolerant, Kumar et al. (2009); Ng

and Henikoff (2003); Sim et al. (2012)), a predictor that assigns a conservation

score to each mutation and labels them as deleterious when this score reaches a

threshold. Despite the age and simplicity of the method, it is still widely used to

predict pathology, to build metapredictors based on its scores, and as a baseline

to compare new methods. Needless to say, the performance of the method is

highly dependent on the multiple sequence alignment (MSA) used to compute

the score.

Leveraging on the Hidden Markov Models (HMM) used to construct

the alignments of the protein families database PANTHER (Protein Analy-

sis Through Evolutionary Relationships, Thomas et al., 2003), the authors used

the position-specific amino acid probabilities in the model as a measure of

conservation, where less likely substitutions are classified as deleterious. This
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same approach was followed to compute the Log.R E-value (Clifford et al.,

2004), using the HMMER (Eddy, 1998) software on the Pfam (Finn et al., 2016)

motifs database. More recently, the FATHMM (Shihab et al., 2012) predictor

applied this concept using newly available sequence data.

Other methods, such as MAPP (Multivariate Analysis of Protein Polymor-

phism, Stone and Sidow, 2005) and PASE (Prediction of AAS Effects, Li et al.,

2013) have opted to dug into the physicochemical properties of amino acids in

order to identify subtler conservation patterns. MAPP measures the deviation

of the mutated amino acid with respect to the aligned position in terms of its

hydropathy, polarity, charge, side-chain volume and free energy in α-helix and

β -sheet formation. PASE relies on the conservation of 7 different physicochem-

ical properties of amino acids: transfer of free energy from octanol to water,

van der Waals volume, isoelectric point, polarity, frequency of turn, frequency

of α-helix and free energy of solution in water.

Other elaborate statistical approaches have been used for deriving conserva-

tion scores from multiple sequence alignments, such as LRT (Likelihood Ratio

Test, Chun and Fay, 2009); MutationAssessor (Reva et al., 2011), with its Func-

tional Impact Score, based on entropy measures and subfamilies conservation;

and PROVEAN (Protein Variation Effect Analyzer, Choi and Chan, 2015; Choi

et al., 2012), with the particularity that it is able to score in-frame insertions

and deletions in addition to single amino acid variants.

PANTHER-PSEP (position-specific evolutionary preservation, Tang and

Thomas, 2016) uses a score based on evolutionary preservation (Marini et al.,

2010). Closely related to conservation, preservation measures how long a site

has been in the same state in its ancestors. PANTHER-PSEP uses phylogenetic
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trees and MSAs from the PANTHER database, together with the reconstruction

of common ancestors to give an approximate measure of the time the site has

been preserved through evolution.

Sequence co-variation

Co-variation conservation scores are a natural evolution of point-mutation

scores: they account for variation trends of pairs of amino acids. These methods,

which are more complex and computationally intensive, have thrived thanks to

the availability of more sequences, and have led to great results in the prediction

of amino acid contacts and the modelling of proteins 3D structure (Morcos et al.,

2011; Weigt et al., 2009). They have recently been shown to better reproduce

the experimental fitness landscapes (Cheng et al., 2016; Figliuzzi et al., 2016;

Flynn et al., 2017; Louie et al., 2018), and to improve pathology prediction

(Feinauer and Weigt, 2017; Hopf et al., 2017; Nielsen et al., 2017).

When applied to pathology prediction, co-evolution conservation scores

have the advantage of being able to detect compensated mutations. These

mutations are substitutions that would seem to be deleterious when studied

individually, but which do not cause harm because another mutation on the same

protein compensates that effect (Marín Sala, 2017). Co-evolution conservation

analyses study the conservation patterns of each pair of amino acids in the

protein, and thus are able to recover theses mutations that would be catalogued

as pathogenic by traditional methods.

EVMutation (Hopf et al., 2017) is the first predictor based on co-evolution

conservation or epistatic effect prediction, with promising results, as it compares

well with other machine learning based predictors trained with richer data.
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These methods, however, also have their drawbacks, as they require high quality

alignments, and less conserved parts of protein sequences, or evolutionary

young families may lack the data required for these methods to succeed.

1.2.2 Supervised learning

During the last two decades, we have seen a rise of machine learning. The

combination of mathematical developments, tied with the increase in comput-

ing resources, storage capacity and connectivity, has allowed for unseen data

collection and automated learning from this data. Machine learning has been

successfully applied in many fields, and bioinformatics is, of course, one of

them.

Some of the most relevant SAV pathology predictors based on machine

learning methods are, in chronological order: PMut (Ferrer-Costa et al., 2005;

Ferrer-Costa et al., 2004), nsSNPAnalyzer (Bao et al., 2005), LS-SNP (Karchin

et al., 2005), PhD-SNP (Capriotti et al., 2006), SNAP (Screening of non-

acceptable polymorphisms, Bromberg et al., 2008), SeqProfCod (Capriotti et al.,

2008), SNPs&GO (Calabrese et al., 2009), CHASM (Cancer-Specific High-

Throughput Annotation of Somatic Mutations, Carter et al., 2009), MutPred (Li

et al., 2009), PolyPhen2 (Adzhubei et al., 2010), MutationTaster (Schwarz et al.,

2010), MuD (Mutation Detector, Wainreb et al., 2010), CADD (Combined

Annotation-Dependent Depletion (Kircher et al., 2014)), PON-P2 (Niroula

et al., 2015), VIPUR (Variant Interpretation and Prediction Using Rosetta,

Baugh et al., 2016), DEOGEN (Raimondi et al., 2016), PhD-SNPg (Capriotti
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and Fariselli, 2017), PMut2017 (López-Ferrando et al., 2017), DEOGEN2

(Raimondi et al., 2017), Missense3D (Ittisoponpisan et al., 2019).

Some of these predictors are not only limited to SAVs, but are able to

classify short indels (CADD), non-coding variants (FATHMM-MKL, PhD-

SNPg, CADD), synonymous variants (MutationTaster), or can differentiate

gain-of-function and loss-of-function variants (MutPred).

We can better explain the differences between these methods by focusing

on the key components of the supervised learning methodology: the training

set, features and classifier. In the prediction of SAVs pathology, the training

sets are lists of variants annotated as neutral or pathological, the features are

numerical or categorical values that describe these variants, and classifiers are

methods that infer the relationship between the features and the pathogenicity

of variants.

Training set

The choice of a training set for these predictors has been greatly affected by the

public availability of neutral and disease causing variants datasets. For example,

the training of PMut required an exhaustive literature search in order to collect

variants reported as pathological. The later publication of the SwissVar, HGMD,

Clinvar or COSMIC databases (see section 1.1.5) has greatly eased this process,

and most of the previous predictors rely on one of these databases as their

training set.

About a decade ago, it was easier to find pathological variants for training

than neutral variants because they were clinically more relevant and thus more

studied. To balance the training sets, some predictors such as PolyPhen2,
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derived neutral variants by homology: amino acids found in the same position

in homologous sequences were added to the training set as neutral variants.

The recent availability of sequences from large-scale sequencing studies

such as ExAC has turned the situation around, and now many more neutral

variants are available compared to deleterious ones. CADD adapted to this new

circumstances and it is trained on a dataset of 14.7 million neutral variants from

public variation datasets, and 14.7 million de novo simulated variants that are

expected to have a more damaging effect, as they have not suffered selective

pressure.

Features describing mutations

Features are a determining part of any predictor. By capturing the relevant

information needed to discriminate neutral from pathological variants, they

allow the classifier to implement this differentiation. Each of the previously

named predictors uses a different set of features, but we can identify similar

principles underlying all of them. We can group all features used in these

categories: conservation scores, structural properties, functional and gene

ontology annotations, physicochemical measures and protein-protein interaction

information.

Almost all predictors rely on sequence conservation measures as part of

their features (MuD is an exception, as it is solely based on structural features).

These scores are generally computed following the methodologies already

described in section 1.2.1, but sometimes a well-known score, such as SIFT, is

directly used as a feature, as does nsSNPAnalyzer.
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Structural properties, usually derived from manual annotation, but also

from predictions when they are not available, are other common features.

These include solvent accessibility, environmental polarity, secondary structure,

flexibility, transmembrane helices, coiled-coil structures, stability, B-factor,

intrinsic disorder..., some of which are used, for example, by nsSNPAnalyzer

and LS-SNP. VIPUR predictor goes one step further and uses the Rosetta

(Leaver-Fay et al., 2011) simulator to characterize the differences between the

original and mutated proteins, as does Missense3D using the Phyre2 modelling

software (Kelley et al., 2015).

In a similar fashion, functional annotation of amino acids or functional

site predictions are used by some of these predictors. These features include:

DNA-binding residues, catalytic residues, calmodulin-binding targets, phos-

phorylation sites, methylation sites, etc. In addition to functional annotations,

Gene Ontology annotations are other common features used, for example, by

SNPs&GO and PON-P2.

Predictors have also relied on the physicochemical properties of the wild

type and the mutated residues. Some of these features such as hydropathy,

polarity, charge and volume are used, for instance, in PON-P2, LS-SNP or

classic PMut.

Finally, interaction network properties, such as the number of protein-

protein interactions, or the protein’s role in the interactome measured as the

centrality or other graph metrics, are additional features that have been used in

pathology prediction. For example, DEOGEN2 uses annotations on the protein

residues known to participate in interactions as features for its training.
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Oftentimes, the decision for choosing the features is done a priori, with

some specific goal in mind. For example, some researchers decide to use

structural features of the proteins, reducing the number of proteins on which

the predictor can be applied, but hoping to capture information that is missing

in the sequence. In other cases, authors decide to use manual annotations on

protein function in order to boost the predictor performance, but accepting the

performance will presumably worsen when applied to less studied proteins.

Feature selection Feature selection, that is, the selection of a subset of all

computed features to train the predictor, is a key part of the design of a predictor.

For example, PON-P2 is a predictor which uses 8 features, selected from a total

of 622 computed features, to train a random forest classifier. The computation

of lots of features and the selection of the most informative ones, allows for

the best features to emerge in a less biased way. Selecting a small number of

features has different advantages such as the prevention of overfitting and the

obtaining of more efficient predictors (Hawkins, 2004).

Classifiers

The predictors we have named use a variety of methods as classifiers. The

classifier choice is probably the least determining of the decisions when devel-

oping a pathology predictor; with the appropriate selection of features, typical

classifiers behave with similar performance.

Nevertheless, different methods have been used, such as simple naive

bayes classifiers (PolyPhen2, MutationTaster), shallow neural networks (PMut,

SNAP), support vector machines (LS-SNP, SeqProfCod, CADD, Phd-SNP),
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and random forests (PON-P2, MutPred, MuD, nsSNPAnalyzer, CHASM). Each

of these methods uses a different algorithmic approach to find the link between

features and labels; check section 3.3 for a brief summary of these and other

classifiers.

1.2.3 Meta-predictors

Given the variety and number of methods available, it is just natural that

some meta-predictors have been developed, combining the predictions of other

methods and trying to take advantage of their complementarity.

The first of such methods was CanPredict (Kaminker et al., 2007a,b), a

method aimed at the distinction of driver and passenger mutations in cancer,

which combined SIFT conservation scores, Log.R E-values from Pfam and

Gene Ontology similarity scores using a random forest classifier.

Condel, (Consensus Deleteriousness, González-Pérez and López-Bigas,

2011), derives a consensus score combining the output of five popular predictors

(MAPP, MutationAssessor, PolyPhen2, SIFT and PFam’s Log.R E-value),

which can then be used to classify variants as deleterious or neutral, and also to

quantify the impact of the mutation.

Similar to CanPredict, MetaSNP (Capriotti et al., 2013) uses a random

forest classifier based on the output of PANTHER, PhD-SNP, SIFT and SNAP;

PredictSNP (Bendl et al., 2014) bases its prediction on a majority vote between

6 predictors: MAPP, PolyPhen1, PolyPhen2, SIFT, SNAP and Phd-SNP; and

MetaSVM (Dong et al., 2015a) combines the output of up to 18 different

predictors using a support vector machine.
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Finally, M-CAP (Mendelian Clinically Applicable Pathogenicity, Jagadeesh

et al., 2016), which is probably the most outstanding meta-predictor to date,

focuses on the clinical application of its predictions, and so tries to reduce the

number of pathological mutations that are classified as benign. With variants

from HGMD and ExAC as a training set, it uses a gradient boosting tree

classifier to combine the output of 9 predictors, 7 conservation scores, and 298

features derived from multiple sequence alignments.

1.2.4 Specific predictors

The predictors we have described so far target all human proteins in general,

although some of them have a special focus on certain diseases, such as Can-

Predict and CHASM, which target cancer-related proteins. Even though they

are general-purpose predictors, their performance on certain protein families

is diverse (Leong et al., 2015; Li et al., 2014). In fact, we have shown that

for some specific families, most of these predictors consistently report a bad

performance (see Results section 4.1.5).

To improve the variant pathology prediction in some of these cases, several

specific predictors have been developed, targeting specific proteins, genes or

protein families. Typically developed by research groups with a special focus

on a given disease, and with more training data than that publicly available,

these predictors have shown their ability to improve the performance of other

general predictors by detecting singular functional trends (Crockett et al., 2012;

Riera et al., 2016; Torkamani and Schork, 2007).
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As expected, sequence conservation plays a key role in all specific predictors.

This is the case of SAVER (Single Amino Acid Variant Evaluator, Adebali et al.,

2016), an ad-hoc method for classifying mutations related to Niemann-Pick

disease. It is based on the manual analysis of multiple sequence alignments and

phylogenetic trees, from which rules are derived to classify variants.

As in general-purpose predictors, supervised-learning methods are the most

popular approach for building specific predictors, heavily relying on conserva-

tion features enriched with additional, often manual, annotations. Some exam-

ples are KvSNP (Stead et al., 2011), based on random forests and specialized

on mutations in voltage-gated potassium channels; HApredictor (Hamasaki-

Katagiri et al., 2013), a decision tree predictor for Coagulation Factor VII

mutations causing Hemophilia A disease; MutaCYP (Fechter and Porollo,

2014), a neural network predictor for variants in Cytochrome P450 proteins;

wKinMut-2 (Vazquez et al., 2015, an evolution of KinMut, Izarzugaza et al.,

2012), a random forest predictor targeting protein kinases mutations; and the

neural network based predictor built by Riera et al. (2015) for Fabry disease

related variants.

We also find an example of meta-prediction in the work of Leong et al.

(2015), who combine the output of 5 popular predictors (SIFT, PoplyPhen2,

PROVEAN, SNPs&GO and SNAP) to create a meta-predictor targeting Long

QT syndrome related genes.
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1.2.5 Estimating the performance of predictors

Estimating the accuracy of predictors is still a big challenge. The metrics used

to evaluate predictors are clear (see Materials and methods section 3.4.2), but

having a fair comparison of methods is not straightforward.

Newer methods always have the advantage of having more data available.

In the case of conservation scores, this means larger sequence databases, and

in the case of supervised learning predictors, larger training sets. Rarely old

methods are evaluated using newer data in order to get a fair comparison. In

the case of machine learning predictors, it is also difficult to find blind test sets

disjoint with the training set of each predictor, even more if we want these test

sets to be big enough as to not be biased.

Recent initiatives such as the CAGI (Hoskins et al., 2017) challenges are

a great opportunity to create a level playing field for comparing predictors.

Similar to well established initiatives like CAPRI (Janin et al., 2003) in the

protein-protein interactions field, CAGI proposes challenges to the research

community related to the prediction of variants effects on function. These

effects, which are privately studied by the organizers in experimental assays,

allow for a fair ranking of the predictions submitted to the challenge.
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The main objective of this work is to contribute to the understanding of the

functional implications of single amino acid variants (SAVs) in proteins, with

specific interest in their influence in the development of disease. Part of the

work is based in our previous experience in developing PMut, a well known

predictor of the pathological consequences of SAVs.

To progress in such general objective we shall address the following specific

questions.

1. Building, a new, revised and more powerful version of the classic PMut

predictor. It is our goal to update the machine learning training data set

and methods with presently available data and state-of-the-art algorithms.

Automation of the training and validation process is essential, as it allows

the generation of tailor-made classifiers, and opens the possibility to

explore other scenarios like cancer, not previously available in PMut.

2. Development of protein-specific predictors and assessment if this is a

valid approach to improve the predictions of general-purpose predictors

like PMut. We want to build them using an automated standard pipeline

which should allow us to target as many proteins as possible.

3. Creation of a new PMut web portal, making the new predictor accessible

as a general-purpose single amino acid variant analyzer, putting in place

the previous achievements. The website must include a training facility

to prepare specific classifiers and a complete repository of precomputed

data including human sequences and their known variants. To smooth

user experience, compatibility and integration with common formats and

tools should be provided.
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3.1 Training sets

Essentially, all models are wrong, but

some are useful.

George E. P. Box

The PMut2017 mutation pathology predictor and PMut-S (Specific PMut),

a suite of protein-specific predictors, are two of the main results of this thesis.

We have approached the prediction of pathology in single amino acid variants

as a supervised learning problem. As such, it consists of the typical steps of a

machine learning pipeline: the training data set collection, feature computation

and selection, classifier training, evaluation and comparison to other predictors.

In this chapter we present the materials and methods that underlie each of these

steps. Then, we explain the technologies used to bundle and release all this

methodology as a Python software module (PyMut) and made it accessible

through a web interface: the PMut web portal.

3.1 Training sets

Our main source of annotated variants (as either neutral or pathological) is

SwissVar (Yip et al., 2008). For the PMut2017 predictor training we used

the October 2016 release, which included 27,203 disease and 38,078 neutral

mutations on 12,141 proteins. For the training of PMut-S predictors we used

the release from April 2018, which contained 28,790 disease and 38,490 neutral

mutations on 12,234 proteins.
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Protein-specific training sets

Mutations in SwissVar are not evenly distributed among all proteins. In fact,

only 1,000 proteins account for more than 90% of all the pathological variants,

and most of the neutral variants belong to thousands of other proteins, of which

no disease-causing variant is reported.

For training PMut-S, it was necessary to have a significant amount of

variants on a single protein, and it was desirable that the number of neutral and

deleterious variants be balanced, to obtain more robust predictors. We decided

to select proteins with more than 30 disease causing variants in SwissVar (215

in total), and balance this training set with variants reported in ExAC (Lek et al.,

2016) —which we considered neutral—, picking the most common variants

first until they matched the number of pathological mutations.

Blind test sets

We performed two different blind tests on PMut2017. First, by training the

predictor with an older release of SwissVar (December 2015), and evaluating it

on variants reported in a newer release (December 2016), that is, a total of 3,166

variants (1,656 pathological and 1,510 neutral) on 762 proteins. Second, we

used ClinVar’s (Landrum et al., 2016) variants that were missing in SwissVar,

20,308 in total.
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3.2 Features

After collecting a training set, the next step of building a predictor is the calcu-

lation of features that describe the variants. The machine learning classifier will

try to differentiate neutral from pathological variants by identifying particular

feature trends. Set to build a powerful predictor, we decided to compute a

wide variety of features (215 in total), and then design and apply an automated

feature selection algorithm to choose the most relevant ones.

The decision was made not to use categorical annotations from databases

(such as Gene Ontology or functional annotations from UniProt) as a way

of building a more general predictor avoiding a bias towards better-known

proteins.

The first 8 features we computed account for physicochemical properties

of the amino acids. We computed the absolute and relative change in volume

(Chothia, 1975), hydrophobicity (Wimley and White, 1996), free energy transfer

octanol-water (Fauchère et al., 1988) and Kyte-Doolittle hydropathy index

(Kyte and Doolittle, 1982). Additionally, we took the amino acid position in

the protein sequence as another feature.

Second, we used 5 different substitution matrix scores for the mutation,

taken from the matrices BLOSUM50, BLOSUM62, BLOSUM80 (Henikoff

and Henikoff, 1992), PAM60 (Dayhoff et al., 1978) and Miyata (Miyata et al.,

1979).

Third, we added 6 descriptors of the protein in the interactome graph (pro-

vided by Patrick Aloy’s Structural Bioinformatics and Network Biology group

in the Institute for Research in Biomedicine). These features were the degree
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(number of interactions), and five measures of graph centrality: betweenness,

cross-clique, closeness, eigenvector centrality and degree centrality.

Finally, 196 other features account for sequence conservation, which we

describe in the following section.

3.2.1 Conservation features

Sequence conservation features are the most informative descriptors available to

predict the pathology of protein mutations. Virtually every predictor published

relies directly or indirectly in protein sequence conservation data. Being it

so important, we decided to calculate sequence conservation using different

methods in order to get as much as possible out of it.

Similar sequences search

To characterize sequence conservation, first we need to find sequences similar

to the one of interest. We did this by searching the UniRef100 and UniRef90

cluster databases (Suzek et al., 2015) using PSI-BLAST (Position-specific

iterated BLAST, Altschul et al., 1997) with a limit of 10,000 results and an

E-value of 10−5. Even though doing two searches may seem redundant, we

found that due to the huge size of current sequence databases, many searches

on UniRef100 reach the 10,000 sequences limit, and it was useful to search

also UniRef90 in order to find a wider variety of similar proteins.
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Multiple sequence alignments

The previous searches are local (small chunks of the original protein are found

in other proteins) and matched pairwise. To get more relevant evolutionary

conservation information, we retrieved the full sequences of each protein found

in the search, and built a multiple sequence alignment. We used Kalign2 (Lass-

mann and Sonnhammer, 2005) for this purpose, as we found it best to handle

big alignments after evaluating MUSCLE (multiple sequence comparison by

log-expectation, Edgar, 2004), T-Coffee (tree-based consistency objective func-

tion for alignment evaluation, Notredame et al., 2000), and MAFFT (multiple

alignment using fast Fourier transform, Katoh and Standley, 2013).

Sequences filtering

At this point, we had 4 different alignments —one local search, one MSA, over

UniRef90 and UniRef100. Still, we believed we could get more out of them if

we filtered each of these alignments following different criteria.

As we said before, we often hit the 10,000 sequences limit, specially when

searching UniRef100. This means that in some cases we would only compare

our protein to other very similar proteins, and in other cases we would compare

it to farther evolutionary relatives. To have a more consistent comparison, we

chose two E-value thresholds (10−75 for UniRef100 and 10−45 for UniRef90),

which reduced the size of the alignments and kept most of them under the

10,000 limit.

In another vein, we also filtered alignments to either keep only human

proteins, or to reject all human proteins. By rejecting human proteins we
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can get rid of paralogs, which may not share the same function of our target

protein and thus not reflect the desired conservation we want to capture. On the

other hand, by keeping only human proteins we may keep sequences that are

evolutionarily closer.

Column features

In the end, given an aligned column of amino acids coming from any of the

previous alignments, we need to compute some numerical feature to describe

the feasibility of the substitution. We computed:

1. The number of sequences in the alignment.

2. The number of amino acids in the aligned position (number of sequences

minus gaps in the column).

3. The total and relative number of wild type amino acids in the aligned

position.

4. The total and relative number of mutated amino acids in the aligned

position.

5. The Position Weight Matrix score, defined in Eq. 3.1, where Freq[mt] and

Freq[wt] are the relative presence of the mutated and the wild type amino

acids in the complete Swiss-Prot (Boeckmann et al., 2003) database.

PWMwt→mt = log
(

number of mt
Freq[mt]

)
− log

(
number of wt

Freq[wt]

)
(3.1)
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Finally, each of these 5 values was computed as is and in a weighted fashion.

When weighted, we gave more importance to sequences which are more similar

to the original sequence. In the case of PSI-BLAST searches, we weighted each

value by the bit score of the match, and for multiple sequence alignments we

weighted them by sequence similarity.

3.2.2 Features selection

Not all 215 features described above were used in the final PMut2017 model,

only 12 of them were selected by running an automated feature selection

algorithm, described in length in the Results section 4.1.2.

3.2.3 PMut-S features

We used 11 out of 12 features from PMut to train PMut-S (we discarded 1

feature that had the same value for all variants in the same protein), and we

also added 4 features from the EVmutation model (Hopf et al., 2017), which is

based on multiple sequence alignments of Pfam domains (Finn et al., 2016).

These 4 EVmutation features consist of a classic column conservation mea-

sure, the frequency of the substitution, the effect according to an independent

conservation model and the predicted effect by an epistatic model, which adds

pairwise epistatis to the estimation of the substitution effect. These features

were only available for 51% of the variants used for PMut-S training, with the

rest of the variants lying in parts of the sequence that were not covered by the

Pfam alignments.
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3.3 Classifiers

We did not have any preference a priori on which classifier to use, so different

machine learning methods were considered for powering our predictors:

Gaussian naive Bayes Simple classifier based on the Bayes Theorem under

the assumption that features are independent and follow a Gaussian

distribution. A simple and fast predictor that can perform well in some

cases but is usually used as a baseline to compare to other methods.

Decision tree The prediction of the label associated with a given sample is

decided by traveling a tree from the root to a leaf, choosing the child

of each node based on some splitting rules. Some popular algorithms

are CART (classification and regression tree, Leo et al. (1984)), ID3

(Iterative Dichotomiser 3, Quinlan (1986)) and its successors C4.5 and

C5.0.

Logistic regression Linear model based on the composition of a linear function

with the logistic function, a sigmoid or S-shaped function with many

convenient properties.

Stochastic Gradient Descent (Robbins and Monro, 1951) Linear model that is

fitted by minimizing the loss function iteratively, following at each step a

randomly chosen subgradient of this function.

AdaBoost (Freund and Schapire, 1997) Short for adaptative boosting, Ad-

aBoost is a meta-estimator that starts fitting a classifier (previously cited
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3.3 Classifiers

CART, in our case). Then, it iteratively fits additional copies of the clas-

sifier, giving more importance at each step to the training samples that

were incorrectly classified in previous iterations.

Random forest (Breiman, 2001) Collection of independent decision trees in

which the prediction is decided by a majority vote on the trees’ output.

We describe them with more detail in the next section.

Extremely randomized trees (Geurts et al., 2006) Similar to random forest,

it consists on a set of decision trees where a randomly chosen subset

of features is used at each split in the trees. Instead of using the most

discriminative threshold, the threshold chosen is the best from a random

sample.

3.3.1 Random forests

As we will see in section 4.1.1, random forest was the classifier chosen to

implement the PMut2017 and PMut-S predictors. It is thus interesting to

describe in more detail how this method works.

A random forest predictor trains an ensemble of trees, and chooses its

prediction by performing a majority vote on the output of each tree (Figure 3.1).

Trees are different from each other due to two randomization steps in their

construction:

1. The training set of each tree is a randomized sample (with replacement)

of the original training set, and of the same size as the original set. This

process is usually named bootstrapping.
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Sample

Tree 1
⇓

Class A

Tree 2
⇓

Class B

Tree n
⇓

Class A

Σ

Output

Figure 3.1 Random forest algorithm run scheme. The output is decided by a
majority vote on the predictions of several decision trees.
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2. At each node of the tree, only a random subsample of all the features are

considered for choosing the split.

Each tree is built using the same algorithm, CART (classification and

regression tree) in our case. This algorithm builds a tree, recursively splitting

the sample in two, until the tree reaches a maximum depth or the number of

samples in a node goes below a certain threshold.

At each node, the best split is chosen in a greedy fashion: by trying all

possible splits for each of the features sampled. The quality of each split is

measured by the Gini impurity measure (Gini, 1912), which is 0 in case of a

pure sample (all elements have the same label), and 0.5 in the worst case (half

the elements have one label, and the other half have the other).

For any given set of samples, the Gini index is measured as:

G = 1−P[x = Disease]2 −P[x = Neutral]2 (3.2)

The best split minimizes the weighted sum of the impurity of the two splits

it generates.

3.3.2 Hyper-parametrization tuning

Each of the previously described methods depends on a set of parameters, which

can greatly affect their performance. For example, the number of iterations in

AdaBoost or logistic regression, the trees depth in random forests or extremely

randomized trees, the loss function used in stochastic gradient descent, etc.

We did a randomized search on the parameter space of each of these predic-

tors, performing a k-fold cross-validation (later explained) for each parametriza-
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tion, and keeping the best for each classifier. This way, we were able to compare

which classifier gave better predictions when performing at their best.

3.4 Model evaluation

When training a predictor it is as important to quantify the quality of the models

as it is to build them. In this section we will discuss what strategies we followed

to evaluate the models, and which metrics help us understand the performance

of our predictors.

3.4.1 Cross-validation

The classic and most straightforward way of evaluating a predictor is by k-fold

cross-validation (Figure 3.2), typically with k ∈ [3,10]. This process consists

in splitting the training set in k disjoint sets; then, each of the folds is predicted

using a predictor trained with the other k−1 folds. Finally, the metrics that are

computed for each fold (such as accuracy or sensitivity), are averaged. To make

sure the evaluation is robust it is interesting to compute the standard deviation

of the metrics across folds, as a big variance might signal undesired random

behavior of the predictor.

In the case of unbalanced datasets, such as training sets with more neu-

tral variants than pathological ones, we have used stratified cross-validation,

which preserves the classes proportion across folds, yielding a more consistent

evaluation.

To evaluate the PMut2017 predictor we used stratified cross-validation, but

keeping a 50% sequence identity exclusion between folds, i.e., mutations on
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Experiment 1 · · ·
Experiment 2 · · ·
Experiment 3 · · ·

· · ·
Experiment k · · ·

Training set

Train

Test

Figure 3.2 k-fold cross-validation. The training set is divided in k subsets; then,
in k different experiments, a predictor is trained using all subsets except one,
and the predictor is used to predict the labels for that missing subset.

similar proteins are grouped in the same fold. This way, we evaluated how the

predictor performs when faced with variants from proteins families unknown

to it, which is a stricter evaluation but closer to a real scenario.

In the case of PMut-S, where specific predictors are trained with only tens

or hundreds of mutations, we resorted to leave-one-out cross-validation (Kearns

and Ron, 1999), in which a predictor is trained for each variant using all variants

except that one, and used to get that single prediction. The same methodology

was applied to PMut2017 on these variants in order to get a fair comparison of

the two predictors.

3.4.2 Model evaluation metrics

Here we present the metrics we used to evaluate our binary classification

models. Dividing our samples by their label and their prediction, we can build
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Actual
value

Prediction outcome

p n total

p′ True Positive
(T P)

False Negative
(FN)

P

n′ False Positive
(FP)

True Negative
(T N)

N

Figure 3.3 Confusion matrix of a binary prediction model. Across all this work
we have used the convention of considering pathological mutations as positives,
and neutral mutations as negatives.

a confusion matrix (Figure 3.3). We will define most of our metrics based on

P,N,T P,T N,FP and FN.

The simplest metric is accuracy (Eq. 3.3), which is the proportion of pre-

dictions that are correct —either positives or negatives.

Accuracy =
T P+T N

P+N
=

T P+T N
T P+FN +T N +FN

(3.3)

Although accuracy is a very easy to grasp metric, it is also a limited one.

For example, given a training set with 50% positives and negatives, a predictor

that classified all samples as positives and another one that predicted all as

negatives, would both have a 50% accuracy but be very different in nature.

Even more, if the training set were unbalanced, with 90% positives and 10%

negatives, a trivial predictor classifying all samples as positives would reach a

90% accuracy, giving the false impression of good performance.
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These problems can be addressed computing sensitivity (also known as re-

call or True Positive Rate, Eq. 3.4) and specificity (False Positive Rate, Eq. 3.5).

A high sensitivity predictor will be able to detect most of the positives correctly.

A highly specific predictor will detect most of the negatives correctly.

Sensitivity =
T P
P

=
T P

T P+FN
(3.4)

Specificity =
T N
N

=
T N

T N +FP
(3.5)

In our case, we are interested in a predictor that has both high sensitivity and

high specificity. This is better captured by the Matthews correlation coefficient

(Equation 3.6), the most commonly used metric in the field, which favors this

balance between TPR and FPR.

MCC =
T P×T N −FP×FN√

(T P+FP)(T P+FN)(T N +FP)(T N +FN)
(3.6)

Two other metrics of interest are the positive predictive value (PPV, also

named precision, Eq. 3.7) and the false predictive value. The PPV is the

proportion of samples predicted as positives which are effectively positive, and

the NPV is the negative counterpart. We will use these metrics when evaluating

the reliability of PMut2017’s predictions (see section 4.1.3).

Positive predictive value =
T P

T P+FP
(3.7)

Negative predictive value =
T N

T N +FN
(3.8)
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Figure 3.4 Receiver operating characteristic (ROC) curve. At different thresh-
olds of the predictor, it plots the TPR with respect to the FPR. A random
predictor would draw a line near y = x; the bigger the area under the ROC
curve, the more accurate is the predictor.

Apart from these numerical metrics, we will also draw receiver operating

characteristic (ROC) curves to compare models. A ROC curve plots the true

positive rate in the y axis against the false positive rate at various threshold

settings (Fig. 3.4). The higher the area under this curve, the better the predic-

tions will be, and so the area under the curve (AUC) is another commonly used

metric to evaluate predictors.

Although not a metric itself, we will often mention coverage when evaluat-

ing or comparing models. Coverage is the percentage of samples for which the

predictor outputs a verdict.
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3.5 PyMut Python module

Table 3.1 PyMut software dependencies.

Python module Version URL Description

NumPy 1.10 numpy.org Fast numerical computing library.

SciPy 0.17 scipy.org Scientific computing library.

Pandas 0.17 pandas.pydata.org Python data analysis library.

Matplotlib 1.5 matplotlib.org Python plotting library.

Seaborn 0.8 seaborn.pydata.org Statistical data visualization library.

Scikit-learn 0.17 scikit-learn.org Machine learning methods.

These dependencies are documented in the official repository package
(https://pypi.org/project/pymut) and are installed automatically by the stan-
dard Python package manager (pip).

3.5 PyMut Python module

The PyMut Python module is a software framework that provides all the func-

tionality needed to train, evaluate and predict the pathology of protein mutations.

It is based on the standard Python scientific stack, and Table 3.1 holds a list of

all the dependencies and versions used. The full list of functions exported by

the module is detailed in the Results section 4.3.

3.6 PMut web portal

PMut’s predictions were made available via a rich web interface. This web por-

tal is developed in Python, based on the Django (djangoproject.com) framework.

Django, which embraces the Model-View-Controller pattern, helped us build a
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modular web application, where View components (HTML, CSS, JavaScript)

are separate from the Controller (URL routing, form data processing...) and

have an isolated Model, mapped to a MySQL relational database, implementing

the bulk of the business logic. Being based in Python, the web portal could

directly integrate all PyMut functionality, and use it to parse user input, generate

plots and make calculations.

Figure 3.5 shows an overview of the software architecture powering the

web portal. The web application runs on a virtual server, which uses Nginx to

serve static assets and proxy dynamic pages to uWSGI, a supervisor that keeps

a pool of processes running the Django application. The MySQL database used

to store the jobs and user information runs in the same server.

A precomputed repository with millions of predicted variants is stored

in a No-SQL MongoDB database running in another cluster of servers (the

Results section 4.4.1 contains the details on the computation and contents of

this repository). Finally, user submitted jobs are handled by a Sun Grid Engine

job queue with three worker servers.

3.7 Other predictors

At different times in this work we have compared our predictions to those

of other published predictors. When possible, we have accessed them via

a web service, and have also relied on ANNOVAR (Wang et al., 2010), a

database containing lots of precomputed predictions. Table 3.2 contains a list

of the predictors we have evaluated and the source we used to retrieve their

predictions.
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Figure 3.5 PMut web portal architecture. In a virtual server, the web application
runs behind NGINX and uses a local MySQL database to store user and job
information. It accesses precomputed repository data from a MongoDB cluster
and send jobs to a job queue running on other virtual servers.
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Table 3.2 External predictors.

Predictor Reference Source

Polyphen-2 Adzhubei et al. (2010) genetics.bwh.harvard.edu/pph2/

PROVEAN Choi and Chan (2015) provean.jcvi.org

FATHMM Shihab et al. (2012) fathmm.biocompute.org.uk

PON-P2 Niroula et al. (2015) structure.bmc.lu.se/PON-P2/

CADD Kircher et al. (2014) cadd.gs.washington.edu

M-CAP Jagadeesh et al. (2016) bejerano.stanford.edu/mcap/

Condel González-Pérez and López-Bigas
(2011)

bbglab.irbbarcelona.org/fannsdb/

SIFT Ng and Henikoff (2003) ANNOVAR

LRT Chun and Fay (2009) ANNOVAR

MutationAssessor Reva et al. (2011) ANNOVAR

MetaSVM Dong et al. (2015a) ANNOVAR

MetaLR Dong et al. (2015a) ANNOVAR

MutationTaster Schwarz et al. (2010) ANNOVAR

List of predictors we have used to compare our models and source from where
we obtained them.
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4.1 PMut2017 predictor

We have divided the results chapter of this thesis in four sections. First, we

describe PMut2017, an up-to-date general-purpose predictor, analyse what con-

forms the method and evaluate its performance. Second, we present PMut-S, the

set of protein-specific predictors that complements PMut2017 and introduces

new methods that improve the predictions. In the third section we describe

PyMut, the Python module that is the computational foundation of all our work.

Finally, we present the PMut web portal, which gives access to all the previous

predictions in a handy and contextualized manner.

4.1 PMut2017 predictor

In this section we will detail how the PMut2017 predictor is built, the methods

that conform the final model, evaluate its performance and compare it to other

popular predictors.

4.1.1 Classifier choice

Once we settled on SwissVar as the training set for our predictor, and had 215

features describing these mutations, the next choice we had to make when

developing PMut2017 was the machine learning method it would be based

on. We evaluated many methods (described in section 3.3), and compared

them using a classic 10-fold cross-validation. This comparison led to the

comparisons in Figure 4.1 and Table 4.1. Each of these predictors was optimized

using randomized hyper-parametrization tuning, and we compared the best

performance of each of them.
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Table 4.1 Performance comparison of classifiers for PMut2017.

Classifier Accuracy Sens. Spec. AUC MCC

Random forest 0.81 0.75 0.86 0.81 0.62

AdaBoost 0.81 0.75 0.86 0.80 0.61

Extremely randomized trees 0.80 0.72 0.86 0.79 0.59

Logistic regression 0.77 0.70 0.83 0.76 0.53

Stochastic gradient descent 0.77 0.69 0.82 0.76 0.52

Gaussian naive Bayes 0.67 0.91 0.49 0.70 0.42

In this comparison we observed that the two predictors with better perfor-

mance were AdaBoost and random forest. Both predictors are very similar in

nature, as they both are ensemble methods based on decision trees. However,

AdaBoost required a total of 258 trees to achieve these results, while only 13

trees were needed for the random forest. This difference made the random

forest classifier the most efficient and convenient and was therefore chosen as

the predictor for PMut2017.

4.1.2 Feature selection

The previous random forest predictor was trained with all 215 computed features

(described in the Materials and methods section 3.2). Although we validated

that the random forest classifier is resilient to overfitting, we were interested in

reducing the number of features: the classifiers would be faster and we could

save time by skipping the computation of uninformative features.
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Figure 4.1 ROC curves comparison of classifiers for PMut2017. Random forest
presents the best performance, closely followed by AdaBoost.

Table 4.2 PMut2017 random forest parameters.

Parameter Value

Tree max depth 9

Number of features in split 50%

Minimum samples in leaf 10

Number of trees 13

Split criterion Gini index
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Most of our features were very correlated —specially all the conservation

ones—, and we suspected that the boost in predictive power would come from

subtleties from different alignments, rather than by choosing the least correlated

features, as it is often done. For this reason we devised a simple iterative

algorithm, described in Figure 4.2, which adds one feature at a time until the

maximum performance is reached.

The run of this algorithm is summarized in Figure 4.3: compared to the

predictor using all 215 features (in green), we see the increasing performance

of the new model (in blue), when it is trained on 1,2,3... features. Finally,

when using 12 features, the predictor matched the performance of the predictor

trained using all features.

Table 4.3 holds an account of the 12 features that were selected for the

final model. Except for the Miyata substitution matrix score, all the features

were derived from various alignments described in detail in section 3.2.1. The

most important features were based on UniRef100 searches and alignments

(78.4% importance in total), but 4 UniRef90-derived features, with a relative

importance of 20.6%, were also selected. Also, we see that a variety of our

different filtering criteria (such as limiting alignments by the BLAST E-value,

or taking only human sequences) was automatically selected.

The distribution of these features is plotted in Figure 4.4, where it is clear

that the most important features for the model are those that better separate

neutral variants from disease causing ones.
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Add each remaining feature separately 
and evaluate using cross-validation.

Select the feature that leads to better 
predictions.

n selected features

n+2 selected features

Remove the feature with less importance 
according to the classifier.

n+1 selected features

2 ×

Did the 
predictions get 

better?

Yes

No

Start with zero selected features

Figure 4.2 Iterative feature selection algorithm. Features are added to the
selected set until the performance increase in terms of the Matthews correlation
coefficient is negligible. At each step, the two features that increase the MCC
the most are added and then the least important feature is removed. This second
step is designed to skip local minima in performance.
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Figure 4.3 Feature selection algorithm run for the PMut2017 classifier. The
predictor performance increased with each feature added to the selection, and
it matched the performance of the predictor using all 215 features with 12
selected features. Note that the variation of the target MCC at each step is
due to changes in the cross-validation folds, which are different and randomly
chosen at each step.
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Table 4.3 List of PMut2017 selected features sorted by importance.

# Importance Feature

1 24.9% Position Weight Matrix score in the MSA over UniRef100
(weighted by sequence similarity).

2 24.1% PWM score in the PSI-BLAST search over UniRef100
with E-value < 1075 (weighted by E-value).

3 12.9% Number of wild-type amino acids in the MSA over
UniRef100 (weighted by sequence similarity).

4 11.2% Number of wild-type amino acids in the aligned position of
a MSA over UniRef90 (weighted by sequence similarity).

5 5.4% Ratio of wild-type amino acids in the PSI-BLAST search
over UniRef100 with E-value < 1075.

6 4.5% Number of sequences in the MSA alignment over
UniRef100 search results.

7 4.2% Number of amino acids in the aligned position of a PSI-
BLAST search over UniRef100 with E-value < 1075.

8 3.5%
Number of amino acids of human sequences in the aligned
position of a MSA over UniRef90 (weighted by sequence
similarity.

9 2.9% Number of amino acids in the aligned position of a MSA
over UniRef90 (weighted by sequence similarity).

10 2.9% Number of amino acids in the aligned position of a PSI-
BLAST search over UniRef90 with E-value < 1045.

11 2.4% Number of amino acids of human sequences in the MSA
over UniRef100 search results.

12 1.0% Miyata substitution matrix score.
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Figure 4.4 Distribution plots of the 12 features that configure the PMut2017
model for the 65,281 SwissVar variants used to train the model. The features are
sorted by importance, and it is evident that the first 4 features (with a cumulative
importance of 74.3%) are the ones more clearly separating neutral variants from
pathological ones. See Table 4.3 for a description of the features.
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Figure 4.5 Reliability score regression for PMut2017. We plot the Negative
Predictive Value (left), and the Precision or Positive Predictive Value (right) for
different thresholds of the random forest score. Metrics are obtained from a
10-fold cross-validation with 50% sequence identity exclusion.

4.1.3 Prediction reliability score

The random forest classifier we have trained does not only provide a binary

classification output, but a score in the range [0,1], where scores < 0.5 are

neutral predictions and scores > 0.5 are pathological predictions. We wanted

to see if we could map this score to some statistical measure of the reliability

of the predictions, as this is very convenient when using predictors to prioritize

further analysis of mutations.

We tackled this problem by analyzing the PPV and NPV (Positive/Negative

Predictive Value) for different thresholds of the random forest score. The PPV

(NPV) is the probability that a Positive (Negative) prediction is correct; if we

saw that the PPV is higher when random forest scores are higher, we could

output the PPV as a reliability measure of the prediction.
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In Figure 4.5 we see the confirmation of this link between PPV/NPV and

random forest score, which we mapped using an univariate spline regression.

Later on, when we evaluate PMut2017 predictions, we will filter predictions

with a reliability >85% or >90% and see how by limiting the coverage we can

obtain more accurate predictions.

4.1.4 Performance evaluation

Once we had chosen our model —a random forest classifier trained with

SwissVar mutations described by the 12 features from Table 4.3— we were

ready to quantify the quality of its predictions and compare it to other methods.

Cross-validation

Our first evaluation was a 10-fold cross-validation, with each fold having

a 50% sequence identity exclusion, that is, with similar proteins belonging

on the same fold and the predictor being evaluated on proteins significantly

different from the training ones. The numerical results of this evaluation are

summarized in Table 4.5, where we also separate predictions with a higher

reliability score. Figure 4.6 shows the ROC curves of this evaluation when

we reduced the coverage of the predictor to the two thirds and one third more

reliable predictions.

With the same cross-validation technique we also drew a learning curve

(Figure 4.7), which shows us the improvement in accuracy we can expect by

adding more variants to the training set. The training score in the plot, which is

the MCC obtained when predicting the whole training set, is an upper bound of

the MCC of the predictor.
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Table 4.5 PMut2017 performance metrics in a 10-fold cross-validation.

Confidence Coverage Accuracy Sensitivity Specificity AUC MCC

All 100 0.82 0.76 0.86 0.81 0.62

> 85%* 85.9 0.85 0.75 0.92 0.83 0.69

> 90%* 64.9 0.90 0.80 0.95 0.87 0.77

* Only predictions with higher reliability scores were considered (see
Figure 4.5).
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Figure 4.6 ROC curves for the PMut2017 10-fold cross-validation. No se-
quence in the validation set has more than 50% identity with sequences in the
training set. Additional curves correspond to subsets with greater confidence in
the predictions.
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Figure 4.7 PMut2017 learning curve. Evaluation of the predictor for increasing
training set sizes. The red line (training score) is the MCC obtained when
evaluating the predictor on its own training set, and the green line is the average
MCC in a 10-fold cross-validation. Colored areas around the lines are the
standard deviation on these measures.
The training score represents an upper-bound on the performance of the pre-
dictor, and both lines serve as an indication of the improvement we can expect
from expanding the training set.
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4.1 PMut2017 predictor

Comparison to other predictors

The second evaluation performed was a blind test based on new SwissVar

variants. We trained a predictor using the SwissVar database as of December

2015, and evaluated this predictor on the entries added to SwissVar during

2016. The results are shown in Table 4.6, where we also compare PMut to 13

other predictors. PMut showed one of the best performances (MCC = 0.42),

slightly surpassed by LRT (MCC = 0.45) and PON-P2 (MCC = 0.47, but with

a much lower coverage of 42.4%). In this evaluation we confirmed that PMut

predictions with higher reliability score, effectively present better predictions.

This evaluation has special interest because by using recently added variants to

SwissVar we minimize the odds that these variants had been used for training

the other methods in the comparison.

ClinVar blind test

We carried out a third evaluation on PMut2017, based on ClinVar mutations

that are not present in SwissVar, a total of 20,308 variants (see Table 4.7). In

this evaluation, PMut2017 reports an MCC of 0.49, which lies between the 0.42

and 0.62 that we obtained in the blind SwissVar test and the cross-validation,

respectively.

4.1.5 Comparison on selected genes

To this point, PMut’s performance was evaluated globally, but we are also

interested in seeing how the predictor performs in specific cases. We evaluated
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Table 4.6 PMut2017 comparison on SwissVar blind test.

Method Coverage Acc. Spec. Sens. AUC MCC

SIFT 89.6 0.61 0.33 0.88 0.60 0.25

Polyphen2 92.1 0.64 0.35 0.91 0.63 0.32

PROVEAN 91.5 0.64 0.41 0.87 0.64 0.31

FATHMM 90.5 0.55 0.45 0.64 0.55 0.09

PON-P2 42.4 0.72 0.52 0.9 0.71 0.45

CADD 95.0 0.65 0.33 0.94 0.64 0.35

M-CAP 91.5 0.60 0.19 0.95 0.57 0.22

Condel 91.0 0.63 0.40 0.84 0.62 0.26

LRT 95.1 0.73 0.58 0.87 0.73 0.47

MutationAssessor 95.1 0.63 0.46 0.78 0.62 0.26

MetaSVM 95.1 0.63 0.51 0.74 0.62 0.26

MetaLR 95.1 0.6 0.46 0.73 0.60 0.20

MutationTaster 95.1 0.65 0.31 0.96 0.64 0.36

PMut 100.0 0.71 0.65 0.76 0.71 0.42

PMut (85%)* 81.0 0.76 0.76 0.77 0.76 0.53

PMut (90%)* 51.2 0.81 0.78 0.84 0.81 0.62

Blind validation based on new variants added to SwissVar during 2016 (3,166
variants), CADD predictor has been evaluated using a threshold of 20.
*Analysis restricted to most reliable PMut predictions (reliability level in paren-
theses).

68



4.1 PMut2017 predictor

Table 4.7 PMut2017 blind test on ClinVar.

Coverage Accuracy Specificity Sensitivity AUC MCC

100% 0.73 0.88 0.85 0.75 0.49

the predictor on 27 different genes, and compared PMut’s performance to other

predictors (Table 4.8).

This comparison showed how PMut’s performance is not equal across

different genes, as its MCC varies uniformly from 0.86 to 0.12, and even more

interestingly, we observe that this trend holds for all the compared predictors.

This was the result that boosted our interest on specific predictors and the

development of PMut-S.

4.1.6 CAGI 5 participation

PMut2017’s predictions were submitted to the CAGI 5 (Critical Assessment

of Genome Interpretation) Annotate all missense challenge, which consisted

on the pathology prediction of the 81,084,849 variants from dbNSFP. The

evaluation of this challenge is still in progress; the predictions submitted will be

assessed by comparing them with experimental annotations that will be added

in the future on an ongoing basis.
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4.2 PMut-S

4.2 PMut-S

The second result we present in this section is PMut-S (Specific PMut), a

collection of 215 protein-specific predictors. We will start presenting the

features that form these predictors, to then compare their performance to other

specific and general-purpose predictors. We will complete this analysis by

checking the predictions of common variants from healthy people.

4.2.1 Training sets

Each of the predictors in PMut-S is based on a training set derived from Swiss-

Var. We selected those proteins having more than 30 disease variants reported

there, and complemented each training set with neutral variants extracted from

ExAC (see section 3.1 for more details).

4.2.2 Features

As commented in the Materials and methods section 3.2.3, PMut-S is based

on 11 features from PMut2017 (Table 4.3) and 4 additional features from

EVmutation (Hopf et al., 2017). In Table 4.9 we describe these features, sorted

by descending importance.

It is important to note that EVmutation’s features are only available for

51% of the variants, and still they are very relevant. Interestingly, the most

important of EVmutation’s feature is the epistatic model prediction, the one

that a priori seemed more promising as it involves a richer model than simple

column conservation.
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Table 4.9 List of PMut-S features sorted by importance.

# Importance∗ Source Feature description

1 10.0% PMut Number of wild-type amino acids in the MSA over
UniRef100 (weighted by sequence similarity).

2 10.0% PMut
Number of wild-type amino acids in the aligned posi-
tion of a MSA over UniRef90 (weighted by sequence
similarity).

3 9.5% PMut PWM score in the PSI-BLAST search over UniRef100
with E-value < 1075 (weighted by E-value).

4 9.3% PMut Position Weight Matrix score in the MSA over UniRef100
(weighted by sequence similarity).

5 8.6% PMut Ratio of wild-type amino acids in the PSI-BLAST search
over UniRef100 with E-value < 1075.

6 6.5% PMut Number of amino acids in the aligned position of a PSI-
BLAST search over UniRef90 with E-value < 1045.

7 6.4% EVmutation Epistatic model prediction.

8 6.3% PMut Number of amino acids in the aligned position of a PSI-
BLAST search over UniRef100 with E-value < 1075.

9 5.9% PMut Number of amino acids in the MSA over UniRef90
(weighted by sequence similarity).

10 5.4% EVmutation Independent conservation model prediction

11 5.2% EVmutation Frequency of the substitution.

12 4.3% PMut Miyata substitution matrix score.

13 4.2% EVmutation Column conservation.

14 3.9% PMut
Number of amino acids of human sequences in the
aligned position of a MSA over UniRef90 (weighted by
sequence similarity.

15 3.8% PMut Number of amino acids of human sequences in the
aligned position of a PSI-BLAST search over UniRef100.

∗ The importance is the average importance that each of the 215 predictors assigns to each
feature.
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4.2 PMut-S

4.2.3 PMut-S versus PMut

We started our analysis of PMut-S performance by comparing it to PMut. This

comparison was specially interesting because we could evaluate PMut using

the same leave-one-out methodology and were able to capture the improvement

that came from using specific predictors.

Figure 4.8A plots the average MCC for each of the 215 genes under study;

Figure 4.8B summarizes this same plot in a boxplot and shows how, in average,

PMut-S improved by 0.1 points PMut’s MCC. It is to be noted that this im-

provement is not evenly distributed; Figure 4.8C shows how this improvement

is more important for those proteins that are commonly misclassified by PMut.

It was interesting to analyse which factor was responsible for this boost in

accuracy between PMut and PMut-S. We can identify three differences between

the two predictors:

1. The addition of common variants from ExAC as neutral variants to

balance the training set.

2. The use of 4 features from EVmutation, including one epistatic effect

estimation.

3. The training of protein-specific predictors, instead of a single, general-

purpose one.

Figure 4.9 summarizes the contribution of each of these additions. Compar-

ing the two first boxplots we conclude that adding ExAC variants to PMut does

not improve its predictive power. This is probably due to the fact that PMut
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Figure 4.8 PMut-S compared to PMut. A. Per-protein Matthews correlation
coefficient (MCC) comparison between PMut and PMut-S (plotted in increas-
ing PMut score). B. Summary of the PMut and PMut-S per-protein MCC
distribution in a boxplot. C. Boxplots split in PMut-S’ MCC terciles; we can
appreciate that PMut-S improvement over PMut-S is much more relevant in the
first tercile, that is, PMut-S improves PMut predictions specially in the cases
where PMut performs worse.
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Figure 4.9 Comparison of per-protein MCC distribution using
1) general-purpose PMut predictor,
2) PMut predictor trained with the addition of neutral variants form ExAC,
3) PMut predictor with the addition of neutral ExAC variants and trained using
co-evolution model features from EVmutation,
4) specific predictors trained with neutral variants from ExAC and classic PMut
features,
5) PMut-S, protein-specific predictors using balanced datasets and co-evolution
related features.
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was already trained using a balanced training set, whereas for PMut-S this was

a necessary step, as it lacked neutral variants.

The addition of epistatic effect predictions to PMut improves slightly its

accuracy, as seen in the third boxplot, which confirms that co-variation conser-

vation models add valuable information. It is important to note that PMut is

based on 12 features selected from a total of 215 computed features; to improve

its performance by simply adding one feature is a remarkable accomplishment.

Moving to specific predictors, the 4th boxplot shows that specific predictors

trained with balanced datasets already improve the performance of our general-

purpose predictors. Finally, PMut-S, trained with co-variation features from

EVmutation achieves the highest performance in this detailed comparison with

PMut, even though for the majority of these proteins, less than half their variants

have co-evolution features computed.

4.2.4 PMut-S versus other general-purpose predictors

The initial insight that brought us to build PMut-S was the realization that many

general-purpose predictors consistently performed badly for some genes. We

can now compare PMut-S with 12 other predictors (Figure 4.10A), and see that

it outperforms all of them. It is to note that this is a conservative comparison,

as there is no guarantee that any of these predictors wasn’t trained with variants

that we are now evaluating (in fact we have the certainty that this is the case for

some of them).

This same comparison, limited to the 100 proteins with worse average MCC,

is done in Figure 4.10B, where we confirm the results we obtained comparing
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Figure 4.10 PMut-S compared to general-purpose predictors.
A. Per-protein MCC comparison between PMut-S (red), PMut (blue), and
twelve other general-purpose predictors (gray);
B. Same analysis but limiting the comparison to the 100 proteins with worse
predictions in general.
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to PMut: PMut-S is even more powerful, compared to other predictors, when

targeting the proteins commonly misclassified.

Another interesting consideration we can derive from this comparison is

that, in general, unsupervised approaches such as those of conservation scores

(SIFT, MutationAssessor, PROVEAN), are more consistent than supervised

learning ones, specially in the case of meta-predictors (M-CAP, MetaLR, Con-

del, MetaSVM).

4.2.5 PMut-S versus other specific predictors

We have compared PMut-S’ performance on a set of genes for which different

specific predictors have been developed. Table 4.11 contains the complete

comparison of PMut-S to 8 other predictors that we will now comment.

We start our comparison with maturity-onset diabetes of the young re-

lated genes. We evaluated PMut-S over 5 MODY genes (GCK, HNF1A, INS,

ABCC8, KCNJ11 —namely MODY2, MODY3, MODY10, MODY12 and

MODY13). We compared our results to those reported in Li et al. (2014),

where eleven general-purpose pathology predictors were evaluated, being Radi-

alSVM (Dong et al., 2015b) the most accurate predicting pathology in MODY

genes. Overall, PMut-S has a better MCC (0.595) compared to RadialSVM’s

(0.474), and yields more accurate predictions for 4 of the 5 genes. This is a

clear example in which a specific predictor is able to outperform all the general

predictors.
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In a recent study, Leong et al. (2015), evaluate five general-purpose pre-

dictors on the three main Long QT syndrome (LQTS) related genes: KCNQ1,

KCNH2 and SCN5A. They propose a consensus method based on the best

combination of these predictors. As seen in Table 4.11, PMut-S achieved a

similar performance for each of these genes, and improved the overall MCC

score. The case of SCN5A, for which PMut-S’ MCC is the lowest in the table,

is relevant to be discussed. This gene can be the cause of two different diseases:

when affected by loss-of-function mutations, it causes LQTS, but if it has a

gain-of-function mutation, Brugada syndrome may develop. This is a classic

example where predictors such as PMut-S show their limits, as they generally

tend to consider gain-of-function mutations as neutral mutations.

In a study of mutations in voltage-gated potassium (Kv) channels genes,

which can also cause LQTS, Stead et al. (2011) present KvSNP, a random forest

predictor trained on conservation, physicochemical and structural features.

KvSNP was shown to improve the performance of general-purpose predictors,

performing with an MCC of 0.7, which is a slightly higher value than PMut-S’

MCC of 0.65.

Also based on a random forest classifier, wKinMut-2 (Vazquez et al., 2015)

is a predictor specialized in protein kinases family mutations. Its features are

derived from Pfam domains annotations, Gene Ontology terms, physicochemi-

cal properties of residues and sequence conservation. Its overall performance

(MCC of 0.69) is very similar to PMut-S’ (MCC of 0.70). PMut-S’ performance

holds for all three genes (BTK, FGFR1, FGFR1), with MCCs in the 0.65−0.75

range.
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We compared PMut-S’ performance on a set of Cytochrome P450 monooxy-

genases (CYPs) to the specific predictor MutaCYP (Fechter and Porollo, 2014).

CYPs are well suited for specific predictors, as they have singular evolution

patterns such as highly variable regions —substrate recognition sites— that

may be considered unimportant by typical conservation analyses. In this case,

PMut-S obtains an MCC of 0.56, lower than MutaCYP’s MCC of 0.70. This

difference is probably caused by the fact that PMut-S is trained on a smaller

dataset. Because we discarded all the proteins with less than 30 disease variants

were reported —thus keeping only 4 CYPs, whereas MutaCYP is trained using

all variants from 15 CYPs.

Finally, we evaluated PMut-S’ performance when predicting pathology in

three monogenic diseases: Niemann-Pick disorder, caused by mutations on

the NPC1 gene; Hemophilia A, due to a malfunction of Coagulation Factor

VII (F8); and Fabry disease, caused by loss-of-function mutations in Alpha-

galactosidase A (GLA). Regarding NPC1, in Adebali et al. (2016), the gene’s

evolutionary history was derived from carefully crafted multiple sequence

alignments, and the ad-hoc SAVER algorithm was proposed as a specific

pathology predictor for this gene, reporting an MCC of 0.59. PMut-S’ MCC is

0.54, which hints the importance of the multiple sequence alignments quality

for identifying evolutionary trends and pathology, as explained in Adebali

et al. (2016). Compared to HApredictor, the F8-specific decision-tree classifier

presented in Hamasaki-Katagiri et al. (2013), PMut-S obtained sligthly better

results both in terms of sensitivity (0.90 vs. 0.85) and specificity (0.81 vs. 0.79).

On the other hand, PMut-S’ performance didn’t match that of the GLA-specific

neural network predictor described in Riera et al. (2015), which obtains an
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MCC in the range of 0.56−0.72, higher than PMut’S MCC of 0.55. The use

of first hand variation data from clinical settings probably has allowed them to

build a more performant predictor.

In summary, we compared PMut-S to eight other specific predictors and

saw it performed similarly to 4 of them, improved the predictions of 2 others,

and had poorer performance than the other 2. However, it is important to note

that these specific predictors generally relied on larger training sets than those

available in public databases.

Although these studies confirmed the value of predictors relying on expert

knowledge such as hand crafted sequence alignments, functional annotation of

amino acids or the addition of relevant evolutionary information, it is remarkable

that PMut-S, a set of predictors built in an automated and systematic way,

performed at similar or even higher levels of accuracy in most of the cases

analyzed.

4.2.6 Prediction of ExAC variants

As discussed in the Introduction, most of the single amino acid variants found

in healthy humans are neutral variants that do not cause any disease (Kobayashi

et al., 2017). It was interesting then to evaluate the predictions of PMut-S on

ExAC variants, and to compare these predictions to those of PMut.

In Figure 4.11A, we see the PMut score distribution on more than 7 million

variants. The curve is clearly shifted toward the neutral side of the plot, and

shows that PMut correctly classifies most of the variants as neutral.
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Figure 4.11 Score distribution on ExAC variants.
A. Distribution of the PMut score for about 7 million ExAC variants.
B. PMut and PMut-S scores distribution across 137,206 variants from the ExAC
database on the 215 proteins studied (variants used in PMut-S’ training were
excluded from the analysis).
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However, when limiting the analysis to the 215 proteins under study, we

see that the distribution of PMut’s score is almost flat (Figure 4.11B), that is,

it evenly classifies variants as either neutral or pathological. As we discussed

earlier, these 215 proteins are the ones that have more than 30 disease variants

in SwissVar, and don’t have, in general, as many neutral variants in this dataset.

The overrepresentation of disease variants in these proteins is probably the

cause for PMut’s bad performance in this case.

PMut-S, which is trained on a balanced dataset, performs better in this case

(Figure 4.11B), and classifies most of ExAC’s variants as neutral. These results

highlight the importance of using balanced datasets for training.

4.3 PyMut Python module

The PyMut Python module is a software framework based on the standard

Python scientific and machine learning stack that provides functionality to

apply it to the SAV pathology prediction problem.

It consists of about 2,000 lines of Python code, and offers functions that

cover the whole supervised learning process: features computation, analysis

and selection; model training and evaluation; and lots of other helper functions

such as the parsing of several bioinformatics file formats like FASTA, BLAST

XML results, etc.

PyMut is based on Pandas data frames, a matrix-like data structure based

on efficient NumPy arrays and similar to R data frames. All PyMut variants

data frames share a common list of columns (see Table 4.13), and each row
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represents a mutation. This standard data structure is then used by all the

functions in PyMut, either as parameters o return values.

Next we detail a list of the most important variables and functions that this

module exports:

CLASSIFIERS Data structure containing the six available classifiers, including

their default parameters and parameter search space.

FEATURES List of all 215 features that can be computed by PyMut.

PMUT_FEATURES List of the 12 features selected in the PMut2017 predictor.

FOLDS List of different fold generation strategies for cross-validation: k-fold,

stratified k-fold, label-exclusive and leave-one-out.

compute_features Compute all or selected features for a list of variants.

features_distribution Plot feature histograms, distinguishing neutral

(green) and disease mutations (red).

features_selection Run the iterative feature selection algorithm described

in Figure 4.2.

cross_validate Perform a cross-validation with the provided annotated

variants, a classifier and a fold generation strategy.

evaluate Evaluate predictions and compute a complete set of metrics: accu-

racy, precision, sensitivity, specificity, AUC and MCC.

roc_curve Plot a ROC curve given the results of a cross-validation.
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Table 4.13 PyMut variants data frame columns.

Column Type Description

protein_id String Protein identifier (usually UniProt).

sequence String String with the amino acid sequence of the pro-
tein.

position Integer Position of the variant in the sequence (1-based).

wt String Wild type amino acid in the variant position.

mt String Mutated amino acid.

disease Boolean Indication of whether the variant causes a dis-
ease.

feature_* Float Numerical features describing the mutation.

pred_score Float Predicted score in the range [0,1].

pred_disease Boolean Prediction of pathology.

PyMut variants data frames all share this list of columns. Using this same data
structure as input, different PyMut functions allow the user to perform tasks
such as computing features, training a predictor, evaluating the quality of the
predictions, etc.
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train Build a predictor pipeline, which includes an imputer (for handling

empty values), an scaler (to normalize each feature’s distribution) and

the classifier.

predict Predict the pathology of variants using a predictor pipeline.

get_learning_curve Plot learning curve (to estimate how better a predictor

can be expected to get by making the training set bigger).

This software is available in the public Python package repository (https:

//pypi.org/project/pymut/), where it has been downloaded 2,402 times. Its

source code is published in Github (https://github.com/vlopezferrando/pymut)

under the open source MIT license, where it has been starred 6 times and has

been forked in 5 ocasions.

4.4 PMut web portal

The PMut web portal, available at http://mmb.irbbarcelona.org/PMut, is a web

interface that gives access to the PMut2017 predictor, while contextualizing the

predictions with other relevant information from other sources.

The home page (Figure 4.12) summarizes the services offered by the portal,

which we itemize in the following sections.

4.4.1 Precomputed repository

It was clear when we set to develop the PMut web portal that we wanted

PMut2017 predictions to be easily retrievable. Knowing that the vast majority
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Figure 4.12 PMut web portal home page.
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Table 4.15 PMut precomputed repository computations.

Step Compute time Description

1. PSI-BLAST 3,256 days Search of similar sequences over UniRef100
and UniRef90.

2. Search of sequences 184 days Retrieval of complete sequences from previ-
ous PSI-BLAST hits.

3. Kalign2 MSA 2,496 days Multiple sequence alignment using Kalign2.

4. Features and predictions 152 days Computation of features and prediction of
pathology.

5. Protein images 32 days Generation of images with all predictions of
a protein for the repository.

Description of the five steps followed to produce the pre-computed repository.
Compute time is measured for single cores. The computation was done on MareNostrum
III nodes consisting of two 8-core Intel Xeon processors E5-2670 at 2.6 GHz, 20 MB cache
memory, and 8x4 GB DDR3-1600 DIMMS RAM.
It is worth noting that a total of 10,369 computation days were spent doing multiple sequence
alignments using the MUSCLE program (Edgar, 2004), which were later discarded. Some of
the alignments didn’t succeed to finish in less than 72 hours, and others resulted in the program
crashing during its execution. After this setback, we decided to use Kalign2, which was more
stable and fast, at the expense of building less compact MSAs.

of our users would be studying human proteins, we decided to precompute the

features and predictions of all possible mutations in all human proteins known

to that date.

By pre-populating the repository with the features and predictions of

725,596,928 variants on 106,407 human proteins, the PMut web portal is

able to answer most of the users’ queries immediately. The computation of this

repository required huge computational resources, which were provided by the

Barcelona Supercomputing Center as compute time in the MareNostrum III

supercomputer. Table 4.15 shows the steps and time spent for this computation.
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Figure 4.13 PMut web portal repository page, which allows the user to browse
or search on 106,407 human proteins. The search is powered by UniProt’s
search engine.
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Table 4.17 PMut repository statistics.

Proteins (from human UniRef100) 106,407

Analyzed variants 725,596,928

Analyzed variants (> 85% prediction reliability) 586,383,428 (80%)

Analyzed variants (> 90% prediction reliability) 370,444,279 (51%)

The repository can be browsed and searched (Figure 4.13) and each protein

has a page (Figure 4.14) including all possible mutations’ predicted pathology

score. Also, the page offers links to different databases (UniProt, OMIM,

InterPro, Pfam, KEGG, Ensembl, PDB, Interactome3D), highlights known

variants from databases such as COSMIC, dbSNP or SwissVar, lists functional

and structural annotations from UniProt, and maps the pathology scores on the

protein’s 3D structure if it is available in the PDB (protein data bank, Berman

et al., 2003).
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Figure 4.14 PMut web portal protein page. In this page the user can retrieve
the predictions on all possible variants on the protein, find a list on all known
variants, visualize the predictions on the 3D protein structure, and view a list of
annotations from different databases.
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4.4.2 Pathology prediction

The PMut web portal offers the usual functionality of providing the pathology

prediction for a list of variants. If these predictions have already been computed,

the results are retrieved immediately from the repository; if not, a pipeline is

launched to compute the sequence searches, alignments, features computations

and predictions.

The results are shown in an intuitive interface (Figure 4.15), and are also

available to be downloaded in CSV format.

4.4.3 Train your own predictor

One of the most advanced features of the web portal is the possibility for the

users to train their own predictors. We provide a front-end to the PyMut engine,

which allows users to visualize the features’ distributions (Figure 4.16), train

and cross-validate the predictor (Figure 4.17), and then use this predictor to

predict pathology of variants of their choice.

4.4.4 API

Many users require automated access to predictions, either because they are

interested in lots of data for large scale analyses, or because they may use these

predictions as part of an automated pipeline. We ease this kind of use of our

services by offering programatic access to the precomputed repository of the

PMut web portal. These are the URLs available:
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Figure 4.15 PMut web portal analysis results.
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Figure 4.16 Histograms plotting the distribution of features used to train a
custom predictor.

Figure 4.17 Evaluation metrics and ROC curves using different cross-validation
strategies on a custom predictor built in the web.
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/PMut/uniprot/<UniProtID>/?<Position>/?<Mt>/features.csv

Get the features and predictions for variants of a given protein. Optionally,

we can limit our retrieval to a specific position in the sequence or a specific

variant.

/PMut/uniprot/<UniProtID>/?<Position>/?<Mt>.json

Get all the information of a protein (or position or mutation), including

all the links to other databases, annotations and known variants.

The most important data underlying the features computation are the PSI-

BLAST search results and the multiple sequence alignments. This data can be

downloaded from the following URLs:

/PMut/blast/<UniRefID>.<90|100>.xml.gz

PSI-BLAST search results on UniRef90/UniRef100 in XML format.

/PMut/fa/<UniRefID>.<90|100>.fa.gz

Fasta files including the whole sequences of proteins found in the PSI-

BLAST search. This file is the input for the multiple sequence alignment

program.

/PMut/kalign/<UniRefID>.<90|100>.afa.gz

MSA result in Fasta format as generated by Kalign2.

4.4.5 Usage

The web portal has been publicly available since January 2017, and has benefit-

ted since the first day from the users of classic PMut, which were redirected to
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Figure 4.18 PMut web portal monthly visits and jobs submitted since its launch
in January 2017.

the new page. In Figure 4.18 we see the monthly evolution of visits and jobs

submitted.

In the PMut web portal it is not necessary to submit a job in order to

retrieve a prediction, as millions of predictions are directly accessible in the

precomputed repository. In the period between January 2017 and July 2019, and

excluding all bot visits, we have counted 161,557 unique protein page views,

covering 21,278 unique proteins. We have also recorded 110,758 downloads of

CSV files with features and predictions for 19,032 different proteins.

During this period of time, 63 users have registered to the service, which

allows them to save their analyses. Table 4.18 contains a list of the number of

visits per country, which shows that the portal has users from all around the

world.
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Table 4.18 Country breakdown of PMut web portal visits.

Country Number of visits*

United Kingdom 6,048

Spain 1,571

India 1,494

United States of America 1,204

Italy 910

China 483

Brazil 395

Iran 392

Germany 361

Japan 350

Canada 336

Other 4,417

* Number of visits between January 2017 and July 2019.
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5.1 PMut2017 and PMut-S pathology predictors

Science may be described as the art

of systematic over-simplification —

the art of discerning what we may

with advantage omit.

Karl Popper

Science, in the very act of solving

problems, creates more of them.

Abraham Flexner

5.1 PMut2017 and PMut-S pathology predictors

5.1.1 PMut2017, a state-of-the-art pathology predictor

One of the main results of this thesis, the PMut2017 predictor, has proven to be

a state-of-the-art predictor, with a performance comparable to that of the most

accurate predictors published.

The basis of the efficiency of this predictor are its 12 features, selected

from a total of 215, which measure sequence conservation using varied metrics

on different alignments. These 12 features, selected by our automated feature

selection algorithm, combined all the different criteria we had used in the

initial computation of the features (Table 4.3). The choice of a random forest

classifier was a natural one, as it was the best performing predictor (see Figure

4.1 and Table 4.1), offering fast train and prediction times. As we saw in the
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Introduction, random forests are among the most common classifiers chosen to

power SAVs pathology predictors.

One of the most useful features for PMut2017 users is the confidence score

it assigns to each prediction. We measured in cross-validation tests that the

MCC can go up to 0.77 (Table 4.5) for the two thirds more confident predictions,

and from 0.42 to 0.62 for more than half the predictions in the blind test, leaving

the other variants as unclassified. This confidence score can help prioritize the

study of variants and gives a clear notion of the reliability of the prediction.

When studying PMut’s behavior on predicting specific genes, we discovered

that its performance varied greatly, ranging from MCCs of 0.86 to 0.12 (Ta-

ble 4.8), and more interestingly, all the other predictors we evaluated behaved

in a similar way. These results made us think that pathology and sequence

conservation may follow different patterns depending on the gene, which led to

the development of PMut-S, a set of protein-specific predictors.

5.1.2 PMut-S, suite of protein-specific predictors

The second main result of this thesis was PMut-S, a collection of 215 protein-

specific predictors trained using a similar methodology to that of PMut.

With PMut-S we were able to show that specific predictors are able to

improve predictions of general-purpose predictors. In our analyses, we observed

an average improvement of 0.1 points in the MCC between PMut-S and PMut,

enhancement which was identified to be even greater for genes with worse

PMut predictions in general (Figure 4.8). This trend was later confirmed

when compared to other general-purpose predictors (Figure 4.10). Part of the
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improvement in predictions came from the addition of co-evolution features

and the configuration of training sets (Figure 4.9), additions that don’t lead to

such improvements in the case of general-purpose predictors. By comparing

PMut-S to eight other protein-specific predictors we were able to see that it

is possible to build specific predictors in a systematic fashion and achieve a

performance similar those reported in these studies.

PMut-S also presented much better behavior than PMut when predicting

neutral variants from the ExAC database (Figure 4.11). While PMut tended

to evenly label these variants as neutral or pathological, PMut-S correctly

classified most of them as neutrals. This lack of specificity in PMut is most

probably due to biases in its training set, which had an enrichment of disease

causing variants in the genes we evaluated.

5.2 Data, software and web services in Science

5.2.1 Open data and open source software

Reproducibility in science is a major concern (Baker, 2016; Open Science

Collaboration, 2015). In the case of SAVs pathology prediction, the best way to

assure the reproducibility of findings is the open sharing of data and software.

This is starting to become commonplace, and for example M-CAP (Jagadeesh

et al., 2016) and CADD (Kircher et al., 2014) both provide a precomputed

dataset of predictions, which greatly helps to compare their performance to

other methods. CADD authors also released the software implementing the

method, as did EVmutation authors, who also published the MSAs used to fit
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their model. Still, many other predictors, and most of the specific predictors we

compared PMut-S to, lack enough data to correctly assess their performance.

We applaud initiatives such as those promoting the FAIR principles (Find-

ability, Accessibility, Interoperability, and Reusability, Wilkinson et al., 2016).

Some services that conform to this standard, like UniProt (Consortium, 2018),

have been essential for this work in providing protein sequences, variants and

annotations.

Research on variant pathology prediction would greatly benefit from the

adoption of these principles. Only by releasing all data used in the machine

learning process: the training set, the features, the classifier software, and the

predictions, it is possible to successfully reproduce the entire ML pipeline.

5.2.2 Web portals in biomedicine

The PMut web portal was developed having in mind the research community

that uses predictors, rather than the one that develops them. Thousands of users

in two years prove that the web is a great gateway to access SAVs predictions

in a user-friendly manner. However, this accessibility comes at a cost, which is

the effort made in building the web portal, and the non-negligible maintenance

cost.

The nature of web development does not always fit well with research

environments, where students come and go, and responsibilities tend to shift

to others than the authors. I believe these matters are better handled under

the umbrella of projects such as ELIXIR (the European infrastructure for

biological information, Crosswell and Thornton, 2012), which promote the
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creation of the technical infrastructure to fill the gap between researchers

and users. Services like BioTools (Ison et al., 2019, 2015), an aggregator of

bioinformatics programs, or MuGVRE (Multiscale Genomics Virtual Research

Environment, Codó et al., 2019), a web portal that integrates dozens of tools

for working on 3D/4D genomics, are great examples of such initiatives.

5.2.3 Scientific software

It is obvious that software plays a central role in bioinformatics. We have stated

before that it is desirable to publish the code (services like Github make this

extremely easy), but it is important to emphasize that building good software is

fundamental for doing good science. Just like we need to follow good practices

in our assays design, statistical analyses, the plotting of data, and the citation of

bibliography, it is crucial to follow software development good practices when

building our software (Wilson et al., 2014).

We tried to do this in this work, and the release of PyMut is a result of

this conviction. We published the source code in Github under an open source

license, added it to the standard Python modules repository, and documented a

tutorial in the form of a Jupyter Notebook to walk the user through all of its

functionality (http://mmb.irbbarcelona.org/PMut/PyMut-tutorial).

It was a stretch to convert the programs powering PMut2017 to a generic

prediction library, but this helped us build the PMut-S predictors in a much

faster way.
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Despite the publication of the code and tutorial, and the thousands of

downloads, we are not aware of any use of PyMut in projects other than PMut

or PMut-S.

5.3 Challenges and opportunities in SAVs pathol-

ogy prediction

5.3.1 Training sets of annotated variants

The most important part of a supervised learning based SAVs pathology pre-

dictor is the training set, that is, the list of variants annotated as either neutral

or disease causing that it builds upon. The quality of this dataset limits the

maximum accuracy a predictor can achieve no matter the methodology used.

Wrongly annotated variants are an inevitable burden in mutation databases.

It is common in SwissVar for a few variants to switch from neutral to patho-

logical or vice versa with every release. The best approach to prevent, or

reduce these troubles is the adoption of standard guidelines for the annotation

of variants such as those proposed by MacArthur et al. (2014) and Richards

et al. (2015), which define clear protocols to determine the pathogenicity of

variants.

ClinVar’s decision to pair each variant with information regarding the source,

the level of confidence on the annotation, etc. and to foster a debate between

experts whenever a conflict arises, is the best approach for building a robust

database of variants. This traceability is also provided by SwissVar, which

links each variant with relevant publications or databases used as sources in
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the UniProt web portal. In the case of HGMD, which is another high quality

database of pathological mutations, it has the drawback that it is a private

database, with its public version being 3.5 years outdated. Even if we were

able to use the private database to train our predictors, we wouldn’t be allowed

to publish the full training set, which would hamper the reproducibility of our

findings.

Balancing the training sets

Training sets are the base of any supervised learning predictor, and the lack

of complete and balanced training sets has been a constant struggle for re-

searchers in this field. Traditionally, disease-causing variants from databases

were compensated by variants generated from homology models, considered as

neutrals.

The recent availability of large databases with thousands of sequences from

healthy individuals, such as gnomAD (Karczewski et al., 2019), offers a better

source for neutral variants. We successfully used ExAC (Lek et al., 2016)

variants as neutrals to train our PMut-S predictors, but saw how this addition

didn’t improve, by itself, the performance of the PMut2017 general-purpose

predictor (Figure 4.9).

In contrast, CADD (Kircher et al., 2014) is trained to distinguish 14.7

million high-frequency human-derived variants from 14.7 million simulated

variants. This is a very interesting approach, as it builds on the large data

sets collected in large scale sequencing studies, which confers the method an

unsupervised nature that allows for it to have very fair evaluations against

annotated variants databases.
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5.3.2 General versus specific predictors

The distinction between general and specific predictors is often not so clear.

In predictors based solely on conservation or statistical scores, these scores

are usually derived from a single multiple sequence alignment, which almost

converts them in specific predictors. Even in the case of general supervised-

learning approaches, the training set is general, but the feature computation for

each variant also has a specific nature.

Nevertheless, we have seen with PMut-S that specific predictors, trained

with variants from a single protein, and applicable only to that same protein, can

achieve better accuracies than general-purpose predictors. This improvement

is even greater for proteins that are generally wrongly classified by general

predictors, hinting the presence of particular patterns in the way these proteins

relate to disease.

We have also proved that building a specific predictor is a process that can

be successfully automated. The most important step in this case is the training

set collection and the crafting of high-quality multiple sequence alignments;

the rest of the process can be stream-lined without much complication.

5.3.3 Conservation and co-variation scores

We have repeatedly shown in this work how sequence conservation underlies

all pathology predictors, and the link between conservation and pathogenicity

of a mutation is the most important insight used to tackle this problem. The

sequencing of more organisms creates the opportunity to build richer multiple

sequence alignments and refine conservation scores, but also introduces the
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methodological difficulties of aligning tens of thousands of sequences. This

complexity has sometimes been bypassed by focusing on Pfam domains instead

of whole sequences (Hopf et al., 2017) or using phylogenetic trees (Tang and

Thomas, 2016); however, the calculation of conservation measures from tens or

hundreds of thousands of sequences still poses a challenge.

In line with recent studies (Figliuzzi et al., 2016; Hopf et al., 2017), we

have confirmed with PMut-S that co-variation is able to improve the accuracy

of methods that were already highly optimized. Sequence co-variation analysis

is widely regarded as a key feature for future predictors (Feinauer and Weigt,

2017), but for the moment they can only be considered as complementary to

classic conservation, as the high computational cost of these methods makes

them applicable to a fraction of protein sequences.

5.3.4 Supervised learning in pathology prediction

By reviewing the literature, it is easy to conclude that supervised learning

predictors achieve higher accuracies than conservation scores. Only the new

co-variation score EVmutation was able to match the performance of other

supervised learning methods, but with significant lower coverage. It is obvious,

however, that a supervised learning predictor including EVmutation scores as

features (such as PMut-S) would obtain more accurate predictions, just like

many predictors did by integrating SIFT scores as input features.

Still, it was surprising to find out that simple conservation scores yielded

better results than supervised learning predictors for the genes in the PMut-

113



Discussion

S comparison with general predictors (Figure 4.10). This rises concerns on

overfitting for many supervised learning based predictors.

Machine learning has achieved unprecedented success rates in many fields

in the past years. Deep learning, i.e. multi-layer neural networks, are behind

great advances in speech recognition (Amodei et al., 2016), computer vision

(Szegedy et al., 2016) or chess playing (Silver et al., 2017). There is great

interest in the application of deep learning to genomics (Eraslan et al., 2019),

and it has already been used to infer the natural history of populations (Flagel

et al., 2019) and predict the impact of variants on splicing (Cheng et al., 2019)

or gene expression (Zhou et al., 2018). We are not aware of any application of

deep learning to SAV pathology prediction for the moment, but it will surely be

a method of choice once sequence and variants data are abundant enough.

5.3.5 Predictor evaluation

Predictor evaluation and comparison is still an open problem in the field. We

have seen predictors reporting accuracies of 80−90% and MCCs higher than

0.6 for over a decade, but consistently performing worse when faced with

independent test sets (Riera Ribas, 2016). Even though this also makes it seem

as if we have reached a performance plateau, we can also presume that the

accuracy of many predictors has been often overestimated.

These setbacks, although inevitable to some extent, need to be frontally

addressed through publication of training sets, features, classifiers and predic-

tions, as we mentioned earlier. Databases like dbNSFP (Liu et al., 2011b) or

ANNOVAR (Wang et al., 2010), which contain millions of variants together
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with functional and pathology predictions are perfect evaluation sets to compare

to other predictors.

CAGI challenges (like the Annotate all missense challenge, to which we

submitted the PMut2017 predictions for all dbSNFP variants), are a great initia-

tive to compare, in equal conditions, the performance of different predictors.

These comparisons require the collection of first-hand experimental data, and it

is through collective enterprises that they can succeed.

5.3.6 The future of SAVs pathology prediction

Predictors have succeeded, with almost 90% accuracy, at the prediction of

pathology for SAVs involved in Mendelian diseases. However, many challenges

remain open around pathology predictors.

The application of SAV predictors to complex diseases, for example, is

still a current issue. Predictors have been developed to differentiate between

passenger and driver mutations (Carter et al., 2009), but due to the intricate

nature of this problem, they haven’t reached the accuracies needed for clinical

application. The integration of pathways and interactions will surely help in

the understanding of the relation between variants and complex diseases.

We discussed in the Introduction how coding variants explain the vast

majority of Mendelian phenotypes, but they don’t explain all of them. The

range of effects of in-frame indels on phenotype is as varied as that of SAVs.

It has also been shown that non-coding variants, even far removed from the

coding sequence, can alter gene expression and cause a severe phenotype
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(Makrythanasis and Antonarakis, 2013). Characterizing the effect of all these

kinds of variation is a key step in any DNA analysis pipeline.

For many pathologically classified variants, it remains to be described how

they do cause a disease. There are many mechanisms that can lead a SAV to

cause a loss-of-function of the protein (preventing folding, impeding a protein-

protein interaction...), but it is a much harder problem to describe the effect of

a gain-of-function variant. It would be desirable for predictors to shed some

light on the specific effects of the mutation.

When envisioning an ideal predictor, one can imagine an ensemble of pre-

dictors rather than a single one. Conservation, co-variation, structure, dynamics,

annotations of all kind... all are useful features to characterize variants, but

are unevenly available depending on the protein. A machine learning method

able to use all information available for each protein, but falling back to a

general predictor when needed would probably yield the highest accuracies.

This approach, which is similar to that of many meta-predictors, calls for a

careful implementation, as it is prone to overfitting.

Throughout this work we have revolved around the neutral-pathological

dichotomy of single amino acid variants; which, of course, is a simplification.

Variants can cause a disease with variable penetrance, epigenetic changes and

gene-environment interactions can alter the phenotype for equal genotypes

and variants never occur in isolation. Even if they did, we would still have

trillions of different cells in our bodies. In the end, we need to keep in mind the

complexities of disease, while tackling one problem at a time.
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1. We have built PMut2017, a completely renewed version of the PMut

predictor.

2. PMut2017’s accuracy, evaluated through cross-validation and two blind

tests, is in line —or even greater— than that of the most accurate state-

of-the-art predictors.

3. PMut2017 predictor outputs a reliability score fitted to the task of priori-

tizing mutations that are more likely to be pathological.

4. PMut-S, a suite of 215 protein-specific predictors, validates the hypothe-

sis that specific predictors can reach better accuracies than general ones,

specially for some proteins consistently misclassified by general-purpose

predictors.

5. Epistatic coevolution models have been confirmed to enrich the classic

conservation analysis and improve the accuracy of pathology predictors,

specially in the case of specific predictors.

6. In the new PMut web portal, users can submit the variants they want ana-

lyzed and they can find a precomputed repository with the predictions for

all possible mutations on human proteins, together with 3D visualizations

and sequence annotations related to their proteins of interest.

7. The PyMut Python module encapsulates the functionalities we used in

the machine learning methods of this work. Its source code is publicly

available and can be used to easily train predictors with custom data.
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One of the most rewarding activities that I carried out during my PhD was

giving talks in different high schools as part of the Camins Infinits (Infinite

Paths) project, from the Universistat de Barcelona outreach group (La UB

divulga).

In these talks to students between 12 and 18 years old I introduced them

to bioinformatics, supercomputing and machine learning. This is the list of

centers I visited between November 2015 and February 2018:

• Institut Sant Just Desvern, Sant Just Desvern.

• Institut de Viladecans, Viladecans.

• Institut Badalona VII, Badalona.

• Escola Ntra. Senyora de Montserrat, Rubí.

• CS Jaume Viladoms, Sabadell.

• PFI-PTT de Viladecans, Viladecans.

• Col·legi Urgell, Barcelona.

• Institut Esteve Terradas i Illa, Cornellà de Llobregat.

• Escola Proa, Barcelona.

• IES Sos Baynat, Castelló de la Plana.
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ABSTRACT

We present here a full update of the PMut predic-
tor, active since 2005 and with a large acceptance in
the field of predicting Mendelian pathological muta-
tions. PMut internal engine has been renewed, and
converted into a fully featured standalone training
and prediction engine that not only powers PMut
web portal, but that can generate custom predictors
with alternative training sets or validation schemas.
PMut Web portal allows the user to perform pathol-
ogy predictions, to access a complete repository of
pre-calculated predictions, and to generate and vali-
date new predictors. The default predictor performs
with good quality scores (MCC values of 0.61 on 10-
fold cross validation, and 0.42 on a blind test with
SwissVar 2016 mutations). The PMut portal is freely
accessible at http://mmb.irbbarcelona.org/PMut. A
complete help and tutorial is available at http://mmb.
irbbarcelona.org/PMut/help.

INTRODUCTION

Single nucleotide variants (SNVs) are responsible for ∼90%
of human variability (1). When mapped on coding regions
(single amino acid variants, SAVs) may affect the function
of the transcribed proteins (2), leading to phenotype varia-
tions, and often to pathology. Last generation sequencing
and genotyping techniques are reporting a large amount
of human genetic variation data (3), fueling initiatives to
derive links between genome alterations and pathologies.
Thus, the HapMap consortium (4) is characterizing com-
mon variation and linkage disequilibrium patterns that can
be related to common diseases (5). The Human Varia-
tion Project (6) collects, curates, and makes accessible in-

formation on genetic variations affecting human health.
The 1000 Genomes Project (www.1000genomes.org) is ex-
pected to produce the most complete catalog of genetic
variations in human population (7). Already in 2005, the
Wellcome Trust Case Control Consortium genotyped ∼14
000 patients for seven common diseases performing one of
the largest Genome-Wide Association Study (GWAS) (8)
to date. As a result of these and other projects the db-
SNP database at the NCBI (9) collects, nowadays, ∼20
million of validated human SNPs. The manually curated
SwissVar database (10) reports on the pathological effect of
∼61 000 missense SNPs, the public version of the HGMD
database (11) includes >78 000 missense mutations causing,
or associated with human inherited diseases, plus disease-
associated/functional polymorphisms and ClinVar reports
over 125 000 clinically relevant variants (12). Systematic
sequencing through NGS of cancer patients (projects like
ICGC, www.icgc.org, and TGCA, cancergenome.nih.gov)
expanded the range of mutations in the human genome. For
example, the present public version of ICGC reports ∼520
000 new somatic SAVs.

Despite the amount of data available, the issue of pre-
dicting the functional consequences of SAVs is still open,
and there is a continuous effort in developing more accu-
rate and flexible predictors (13–15). There is no consen-
sus on the type of approach used to obtained predictions.
PMUT (16), one of the oldest and still widely used methods,
uses neural networks, as so does for instance SNAP (17);
SIFT (18), Polyphen (19), PROVEAN (20), LRT (21) and
MutationAssessor (22; Hidden Markov Models are used
in PANTHER (23) and FATHMM (24); Random Forests
are used in PON-P2 (25), CHASM (26), CanPredict (27)
and MuD (28); Support Vector Machines in CADD (29),
SNPs&GO (30), SeqProfCod (31), LS-SNP (32), SNPs3D
(33), MetaSVM (34) and MetaLR (34); Naı̈ve Bayes is used
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in MutationTaster (35), and a gradient boosting tree is used
in M-CAP (36). Also predictors giving consensus predic-
tions like Condel (37), are available. All of them use input
features that represent the change in amino acid sequence,
structure and evolutionary properties resulting from the
amino acid replacement.

PMut (16), first released in 2005, predicted the patholog-
ical nature of a given SAV, and also hot-spot positions on
protein sequences. PMut used a neural network-based clas-
sifier trained by a manually curated dataset extracted from
SwissProt (38), and used sequence conservation and pre-
dicted physico-chemical properties as main features. Here,
we present a major update of the PMut predictor and web
portal. While maintaining the philosophy of the original ap-
plication, the backend classification engine has been com-
pletely renewed and automated, taking advantage of the
increase in the amount of data available for training. The
engine powering PMut is provided as a separate software
package (PyMut) that allows users to prepare their own
predictors for specific families of proteins. The new PMut
web site also provides access to a complete data reposi-
tory, including all possible SAVs on human known proteins.
The web portal is available at http://mmb.irbbarcelona.org/
PMut and has already received more than 900 requests be-
tween 1 January 2017 and 1 April 2017.

PMut PREDICTION ENGINE

PMut prediction engine (PyMut) is prepared as a Python
3 module. PyMut is based on the widely used li-
braries NumPy (www.numpy.org) and Scipy (www.scipy.
org), for fast numerical computing, Pandas (data manage-
ment, pandas.pydata.org), Scikit-learn (machine learning,
scikit-learn.org), Matplotlib (matplotlib.org), and Seaborn
(graphical representation, seaborn.pydata.org). PyMut per-
forms all operations regarding calculation of features, selec-
tion of classifiers, validation and results analysis. It is dis-
tributed as a separate software module that can be down-
loaded and installed locally. Specific functions available are:

• Compute protein features and plot their distribution (see
Supplementary Tables S1 and S2 in the Supplementary
Material for a complete list, and details of the proce-
dures).

• Select the most informative features. Selection of features
is performed in an iterative way, following the improve-
ment of MCC obtained in cross-validation. Supplemen-
tary Figure S1 shows a schema of the algorithm used, and
Supplementary Figure S2 a plot of such MCC evolution.

• Train classifiers, evaluate them using several cross-
validation protocols, and obtain their Receiver Operat-
ing Characteristic (ROC) curves (see Supplementary Ta-
ble S4, and Supplementary Figure S3 for a list of the avail-
able classifiers and its comparative performance).

• Prepare and evaluate a pathology predictor.
• Predict the pathology of mutations.

PyMut module covers all operations required to generate
new predictors in a fully automated way (see Supplementary
Table S5 for a detailed list of software functions, and Sup-
plementary Table S6 for a list of software dependencies),

allowing the user to easily explore alternative datasets, clas-
sifiers or collections of features, enabling to fine tune the
predictor to cover not only pathology, but other structural
or functional characteristics of the proteins. As the mod-
ule can be downloaded and run locally, it allows the user to
analyze private data to derive tailored predictors without
uploading it to a server.

PyMut source code is available at https://github.com/
inab/pymut and in the official Python package repository
(https://pypi.python.org/pypi/pymut), and can be down-
loaded from the PMut Web portal, where a tutorial follow-
ing the main functions of PyMut is also available.

PMut2017 PREDICTOR

PMut2017 default predictor was trained using the manually
curated variation database SwissVar (10) (October 2016 re-
lease), which contains 27 203 disease and 38 078 neutral mu-
tations on 12 141 proteins. Two hundred fifteen numerical
features were first computed for each mutation, account-
ing for (i) physical property differences between wild type
and mutated amino acids, (ii) protein interactome informa-
tion and (iii) amino acid conservation. The conservation
features are derived from local searches over UniRef100
and UniRef90 cluster databases (39), using PSI-Blast (40),
and multiple sequence alignments generated using Kalign2
(41). After evaluation of the different machine learning al-
gorithms (Supplementary Table S4 and Supplementary Fig-
ure S3), the chosen predictor is based on a Random For-
est (42) classifier, trained with only 12 selected features (see
Supplementary Table S3). The classifier outputs a predic-
tion score between 0 and 1; mutations scoring from 0 to 0.5
are classified as neutral, and those scoring from 0.5 to 1 are
classified as pathological. To evaluate the confidence degree
of such score, we have analyzed the accuracy of the predic-
tions based on their score (Supplementary Figure S4). It can
be seen that accuracy increases with extreme score values.
The analysis of these results allows us to qualify the predic-
tion with a statistically meaningful reliability score.

PMut predictor has been validated following several ap-
proaches:

1) A traditional 10-fold cross-validation on protein families
with 50% sequence identity exclusion. No sequence in the
testing set shares >50% sequence identity with any pro-
tein in the training set. Figure 1 shows the correspond-
ing ROC curves. Detailed performance metrics are sum-
marized in Table 1. Restriction of the analysis to most
confident predictions lead to a significant increase in the
performance of the prediction. See Supplementary Fig-
ure S4 for a measured confidence of PMut scores.

2) A blind validation using new SwissVar entries. To perform
this analysis, PMut has been trained using the same pro-
tocol, but limited to the data available at the SwissVar
December 2015 release, and tested with SwissVar 2016
entries (3166 new mutations on 762 proteins. 1656 mu-
tations were tagged as pathological and 1510 as neu-
tral). For comparative purposes, we have also performed
a complete series of analyses of the same test-set using
other prediction methods. Table 2 shows the good per-
formance of PMut when applied to the entire test set.
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Figure 1. ROC Curves corresponding to PMut2017 10-fold cross-validation based on protein families. No sequence in the validation set has more than
50% identity with sequences in the training set. Additional curves correspond to the subsets of prediction with 85% and 90% confidence. AUC: area under
the curve, MCC: Matthews Correlation Coefficient.

Table 1. Summary of performance metrics for PMut2017 predictor

Confidence Coverage Accuracy Sensitivity Specificity AUC MCC

All 100 0.82 0.76 0.86 0.81 0.62
>85% a 85.9 0.85 0.75 0.92 0.83 0.69
>90% a 64.9 0.90 0.80 0.95 0.87 0.77

aOnly predictions with scores corresponding to higher confidence levels are considered (see Supplementary Figure S4).

The new engine used in PMut2017 represents a large im-
provement over the original PMut predictor (MCC 0.03
in the blind validation, data not shown). If predictions
are limited to those cases where more reliable scores are
obtained (PMut 85%), MCC value raises to 0.53, what
puts PMut as the most accurate predictor within the test
performed, covering yet >80% of the mutations. This
can be further improved taking only >90% confidence
scores (MCC 0.62), but in this case predictions can be
obtained only in half of the cases. The availability of Py-
Mut module allows for a seamless update of PMut pre-
dictor when new releases of SwissVar become available.

3) A blind validation using ClinVar entries not included in the
training set. ClinVar (12) is an alternative well known
source for disease related variants. ClinVar includes a
much larger set of variants, although only 34 024 can be
directly mapped to the protein sequences used in PMut.
From those, 13 716 were already present in the SwissVar
training set. To further analyze the performance of the
PMut2017 predictor we have analyzed the variants re-
ported in ClinVar that were not used in the training set
(20 308 variants). Results are shown in Table 2. MCC
value (0.49) is slightly better but comparable with those

obtained in the SwissVar 2016 delta release. This behav-
ior further confirms the prediction power of PMut2017.

4) Comparative test on selected genes. Global validation
schemas provide an averaged estimation of the perfor-
mance of a prediction method. Applying the predictor
to specific protein families may result in a degraded per-
formance due to the individual features of such fam-
ilies. We have selected a number of genes to evaluate
PMut2017 performance in comparison with some other
methods. To avoid a statistical bias, genes have been se-
lected in a way that the number of neutral and patholog-
ical mutations were equilibrated and reasonably large.
Results are reported in Table 3. As expected, MCC val-
ues obtained are specific to the analyzed gene and range
widely around the average value obtained in the global
test. Although some of them show a clearly poorer re-
sult, it can be seen that the behavior is consistent with
the other methods assayed, and shows a good predicting
power. These differences additionally support the need
to develop specific predictors for protein families show-
ing non-standard behavior.
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Table 2. Comparative performance of PMut2017 predictor

Method Coverage (%) Accuracy Specificity Sensitivity AUC MCC

SIFT (18) 89.6 0.61 0.33 0.88 0.60 0.25
Polyphen2 (19) 92.1 0.64 0.35 0.91 0.63 0.32
PROVEAN (20) 91.5 0.64 0.41 0.87 0.64 0.31
FATHMM (24) 90.5 0.55 0.45 0.64 0.55 0.09
PON-P2 (25) 42.4 0.72 0.52 0.9 0.71 0.45
CADD (29) 95.0 0.65 0.33 0.94 0.64 0.35
M-CAP (36) 91.5 0.60 0.19 0.95 0.57 0.22
Condel (37) 91.0 0.63 0.40 0.84 0.62 0.26
LRT (21)a 95.1 0.73 0.58 0.87 0.73 0.47
MutationAssessor (22) a 95.1 0.63 0.46 0.78 0.62 0.26
MetaSVM (34) a 95.1 0.63 0.51 0.74 0.62 0.26
MetaLR (34) a 95.1 0.6 0.46 0.73 0.60 0.20
MutationTaster (35) a 95.1 0.65 0.31 0.96 0.64 0.36
PMut 100.0 0.71 0.65 0.76 0.71 0.42
PMut (85%)b 81.0 0.76 0.76 0.77 0.76 0.53
PMut (90%)b 51.2 0.81 0.78 0.84 0.81 0.62
PMut (ClinVar)c 100.0 0.73 0.88 0.85 0.75 0.49

Blind validation based on new variants added to SwissVar during 2016 (3166 variants), CADD predictor has been evaluated using a threshold of 20. AUC:
area under the ROC curve, MCC: Matthews correlation coefficient.
aAnalysis performed from ANNOVAR data (42).
bAnalysis restricted to most reliable PMut predictions (reliability level in parentheses).
cBlind validation based on variants reported on ClinVar (43), not present in the SwissVar dataset (20,308 variants). Indicated coverage is calculated on
ClinVar dataset.

Table 3. Comparative performance of the PMut2017 predictor on selected genes

Gene Disease #D #N PMut SIFT Polyphen LRT
Mut.
Taster

Mut.
Assessor PROVEAN

MECP2 Rett syndrome 46 22 0.86 0.66 0.85 0.69 0.64 0.41 0.53
COL1A2 Osteogenesis Imperfecta 78 20 0.77 0.74 0.62 0.55 0.55 0.74 0.74
SLC4A1 Distal Renal Tubular Acidosis 38 36 0.69 0.65 0.65 0.54 0.55 0.68 0.60
ADAMTS13 Upshaw-Schulman syndrome 43 17 0.62 0.76 0.46 0.00 0.71 0.54 0.62
ATM Hereditary

cancer-predisposing syndrome
46 54 0.60 0.53 0.57 0.32 0.42 0.48 0.55

ATP7B Wilson disease 195 25 0.48 0.34 0.49 0.37 0.43 0.29 0.52
MLH1+MSH2+MS
H6+PMS2

Lynch syndrome 159 78 0.48 0.32 0.31 0.23 0.16 0.43 0.32

MYOC Primary open angle glaucoma 57 24 0.47 0.37 0.45 0.38 0.50 0.47 0.49
TTC21B Jeune thoracic dystrophy 16 28 0.42 0.20 0.22 0.18 0.16 0.28 0.26
SCN5A Brugada syndrome 154 46 0.40 0.32 0.26 0.43 0.31 0.34 0.34
KCNH2+SCN5A Congenital long QT syndrome 270 54 0.38 0.32 0.28 0.36 0.32 0.30 0.38
ABCA1 Tangier disease 32 31 0.37 0.43 0.31 0.32 0.47 0.43 0.47
PKHD1+PKD1 Polycystic kidney disease 197 96 0.37 0.43 0.37 0.30 0.41 0.36 0.45
FBN1 Marfan syndrome 385 20 0.35 0.31 0.25 0.21 0.33 0.32 0.30
RYR1 Central core disease 147 25 0.34 0.27 0.31 0.00 0.36 0.28 0.34
LDLR Familial hypercholesterolemia 103 23 0.32 0.29 0.08 0.17 0.09 0.26 0.25
DYSF Limb-Girdle Muscular

Dystrophy
48 16 0.31 0.35 0.27 0.15 0.21 0.41 0.39

BRCA2 Breast-ovarian cancer,
familial 2

43 61 0.31 0.10 0.18 0.18 0.14 0.19 0.01

BRCA1 Breast-ovarian cancer,
familial 1

27 36 0.31 0.24 0.20 0.38 0.29 0.30 0.17

WFS1 WFS1-Related Spectrum
Disorders

40 17 0.30 0.25 0.35 0.20 0.18 0.16 0.26

PINK1 Parkinson Disease 23 39 0.25 0.33 0.48 0.40 0.41 0.44 0.30
LRRK2 Parkinson Disease 21 24 0.19 0.06 0.14 0.01 0.13 0.09 0.14
CFTR Cystic fibrosis 146 32 0.15 0.06 0.20 0.21 0.12 0.20 0.27
PROC Thrombophilia 36 28 0.12 -0.15 -0.08 0.07 0.14 0.08 -0.01

MCC values obtained restraining the analysis to variants on the indicated genes. Analysis for non-PMut methods performed from ANNOVAR data (42). #N Neutral mutations,
#D Disease causing mutations.

PMut WEB PORTAL

The access to PMut is possible through a Web por-
tal (http://mmb.irbbarcelona.org/PMut/) which is imple-
mented in Python using the Django Web framework (www.
djangoproject.com). The variants’ features and predictions
are stored in a MongoDB database (www.mongodb.com).
All calculations are performed under the control of a
SGE queuing system configured to deploy additional back-
end workers on peaks of demand. Id mapping and key-

word searches are performed using the appropriate services
at EBI (www.ebi.ac.uk). Sequences, features, variants and
3D structures are obtained from MMB-IRB data repos-
itory (mmb.irbbarcelona.org/api). Most functionalities of
the portal are available anonymously, but the users may reg-
ister to keep records of the activity in the server. After regis-
tering, a private workspace is created with links to the pre-
diction requests, and to their customly trained predictors.

The portal is divided in four sections:
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Figure 2. Partial screenshots of output of Predictor’s training section. (A) Comparative plot of the selected protein features. (B) ROCs curves of performance
evaluation.
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Table 4. Statistics of PMut repository (January 2017)

Proteins available (from human UniRef) 106 407

Analysed variants 725 596 928
Analysed variants (>85% prediction reliability) 586 383 428 (80%)
Analysed variants (>90% prediction reliability) 370 444 279 (51%)

Data repository, which allows the user to access the set of
pre-calculated PMut2017 predictions covering all human
protein sequences in UniRef100. Search options avail-
able include protein name and id (UniprotKB (44) or
PDB (45)), gene id (Ensembl (46)), dbSNP id (9) and free
keywords. Data in the repository can be accessed pro-
grammatically through a REST API. The repository is
continuously updated with new information appearing in
UniRef100 (39). Detailed statistics of the repository can
be found in Table 4.

Pathology prediction, which allows the user to evaluate the
pathological profile of SAVs, input options include pro-
tein id(s), or uploaded sequences. PMut Data Repository
is used to speed up analysis in the case of known pro-
tein sequences. The default predictor is PMut2017, but
Custom Predictors can also be used. In the case of mu-
tations mapping on known sequences all possible single
SAVs are precomputed. The output includes a variety of
graphical and numerical results which are presented in dif-
ferent formats. In all cases, the output combines the in-
formation with known variants and sequence features of
the protein, giving a comprehensive context of the muta-
tions. When 3D structure is available, the mutations are
also mapped onto the structure, using a JsMol visual-
izer (www.jmol.com). Several public databases (Unipro-
tKB (44), PDB (45), PFam (47), InterPro (48) and Inter-
actome3D (49)) are linked to the results card. All inter-
mediate data including alignments and calculated features,
are available for download in the appropriate formats. See
representative screenshots at Help pages on PMut portal,
http://mmb.irbbarcelona.org/PMut/help).

Batch predictions, users requesting larger series of predic-
tions can send them in a single batch. The options avail-
able, and output are equivalent to single requests. The user
is informed when the work is finished and results are stored
in his/her private workspace.

Train you own predictor, this section provides a frontend to
the PyMut engine. Users can specify a training set, select a
classifier and a validation procedure. Figure 2 shows some
screenshots of the output. Available information includes
the original training set, a graphical view of the calculated
features (Figure 2A), and a summary of the evaluation re-
sults (Figure 2B). The newly trained predictor becomes au-
tomatically available in the prediction section of the por-
tal. Please note that the use of trained predictors requires
to log in the personal workspace and is restricted to the
user developing it.

CONCLUSIONS

The 2017 new release of the PMut portal constitutes a novel
approach that largely improves our previous 2005 PMut
server. The new portal offers not only a generally trained
predictor that performs in a competitive manner with cur-

rent available methods, but allows the user to access an
automatic procedure to train new predictors with specific
datasets or features. The possibility of enriching the analysis
with alternative predictors, or training predictors with spe-
cific information of a single protein family, largely increases
the scope of usability of the portal. Overall, the 2017 release
of PMut is a powerful tool to approach the issue of predict-
ing functional consequences of protein sequence variants,
and will surely contribute to improve the quality of the an-
notation of pathological variants. The server and platform
are already available and accessible without restrictions.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Abstract

Motivation: Mutation pathology predictors are a key tool for the interpretation of the ever growing
variation data available. However, the still limited performance of these predictors hampers its use in
clinical settings. It is generally accepted that the use of protein-specific predictors can improve pathology
prediction in well-known protein families. Recent advancements in sequencing technology have fostered
the collection of huge variant catalogs and the newly developed epistatic models offer an opportunity to
test the performance of protein-specific predictors as a more general solution for pathology assessment.
Results: We trained and evaluated 215 protein-specific predictors using PMut-S, a Random Forest
predictor based on 15 features accounting for sequence conservation and co-evolutive models fitness.
PMut-S improves the prediction over 13 general-purpose predictors we compared it to, and greatly
improves the worse predicted proteins in a one-on-one comparison with PMut predictor. Compared to
8 published family specific predictors, we find PMut-S matches their performance in most cases, and
improves their accuracy in some of them. Finally, we show PMut-S behaves better when used to predict
the pathology of common variants from healthy individuals.
Availability: Precomputed predictions for all variants in the 215 studied proteins:
http://mmb.irbbarcelona.org/PMut-S/.
Contact: gelpi@ub.edu

1 Introduction
In silico single amino acid variants (SAVs) pathogenicity predictors have
extensively been used in research, and have become a fundamental tool in
the interpretation of the large amounts of genetic variation data reported
by last generation sequencing techniques. However, their accuracies are
still below the requirements of clinical application (Riera et al., 2014).

Predictors have followed different approaches: starting from rule-
based predictors such as SIFT (Ng and Henikoff, 2003) and PROVEAN
(Choi and Chan, 2015), recent studies have shifted to a supervised learning
paradigm, with predictors such as CADD (Kircher et al., 2014), LRT (Chun
and Fay, 2009), FATHMM (Shihab et al., 2012), M-CAP (Jagadeesh et al.,
2016), MetaSVM (Dong et al., 2015a), MutationAssessor (Reva et al.,
2011), MutationTaster (Schwarz et al., 2010), PolyPhen-2 (Adzhubei
et al., 2010), PON-P2 (Niroula et al., 2015), RadialSVM (Dong et al.,
2015b) and PMut2017 (López-Ferrando et al., 2017). Also, different
meta-predictors, wich derive a consensus score from other predictors’

output have been developed, like Condel (González-Pérez and López-
Bigas, 2011), PredictSNP (Bendl et al., 2014) and MetaSNP (Capriotti
et al., 2013). All these general-purpose predictors have been trained on
wide variantion datasets and are meant to be applied to any human protein.
Since general-purpose predictors target an ideal average protein, their
performance in specific protein families is diverse (Li et al., 2014; Leong
et al., 2015), and it has been found that for some families all of them
consistently performed badly (López-Ferrando et al., 2017).

An alternative approach to variant pathology prediction is the building
of predictors specific for each gene, protein or protein family. Several
studies have confirmed that specific predictors can detect singular
functional trends and perform better than general-purpose predictors (Riera
et al., 2016; Crockett et al., 2012; Torkamani and Schork, 2007). For
example, wKinMut-2 (Vazquez et al., 2015) is a Random Forest (Breiman,
2001) predictor specialized on protein kinases mutations; kvSNP (Stead
et al., 2011) is a predictor aimed at predicting the effect of variants in
voltage-gated potassium channels; MutaCYP (Fechter and Porollo, 2014)
–based on neural networks– specializes in mutations affecting Cytochrome
P450 proteins; also based on neural networks, Riera et al. (2015) build a
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specific predictor targeting Fabry disease related mutations; an ad-hoc
method named SAVER (Adebali et al., 2016) specializes in mutations
related to Niemann-Pick disease; HApredictor (Hamasaki-Katagiri et al.,
2013) is specialized on the Coagulation Factor VII mutations causing
Hemophilia A disease. The generation of such predictors often requires
an extensive analysis of the additional information available and implies a
strong manual effort on data curation.

Most of the previously cited predictors, general or specific, rely
heavily on sequence conservation features, derived from multiple sequence
alignments (MSA). Recent works have shown that statistical models which
consider not only conservation but residue covariation reproduce more
exactly experimental fitness landscapes (Figliuzzi et al., 2016; Cheng et al.,
2016; Hopf et al., 2017; Flynn et al., 2017; Louie et al., 2018) and can
improve the prediction of pathogenicity (Flynn et al., 2017; Nielsen et al.,
2017). The inclusion of covariation data permits to capture non-trivial
dependencies between positions that might be valuable in the prediction
of the mutational effect. For instance, one amino acid may be common
on a protein family in a given position only when a second position is
populated by a specific amino acid, and uncommon otherwise. A key
aspect of these models, first introduced with high success in the context
of three dimensional contact prediction (Weigt et al., 2009; Morcos et al.,
2011), is their ability to minimize the influence of widespread transitive
correlations (Weigt et al., 2009; Morcos et al., 2011). The downside is that
a large number of parameters are required and, thus, these methods are
typically restricted to large protein families for which abundant sequence
data is available (Weigt et al., 2009; Morcos et al., 2011; Hopf et al., 2017).
Still, the information provided by these models can be beneficial when
enough sequence data is available and, therefore, we expect its inclusion
to improve the prediction performance in this range of cases.

In this work, we have explored the usability of protein-specific
predictors generated in a automatic manner (PMut-S), as a replacement for
protein families where general predictors tend to give poor results. Also,
we have evaluated the usefullness of covariation data in this context. PMut-
S is based on a Random Forest classifier, trained using 15 features obtained
from both single amino acid conservation and epistatic effect predictions.
We trained 215 protein-specific predictors using this protocol, compared
them to both general-purpose and specific predictors, and assessed their
behaviour when predicting the pathogenicity of variants identified in large
sequencing studies.

2 Materials and methods

2.1 Datasets

The main source of annotated variants used in the study where taken from
the SwissVar database (Yip et al., 2008, April 2018 release). For the
purpose of this study, we selected all the variants belonging to 215 genes for
which SwissVar contains 30 or more mutations annotated as deleterious
(Li et al., 2014; Fechter and Porollo, 2014). To balance the number of
disease and neutral mutations for each protein family we used variants
reported in ExAC (Lek et al., 2016) as needed to match the number of
pathological mutations already present in the dataset. See Supplementary
Figures 1 and 2 for a detailed description of the dataset.

2.2 Features

A total of 15 numerical features to describe each variant were computed. 11
of these features are column conservation measures derived from sequence
alignments obtained from PSI-Blast (Altschul et al., 1997) searches
over UniRef100 and UniRef90 cluster databases (Suzek et al., 2015),
and multiple sequence alignments computed by Kalign2 (Lassmann and
Sonnhammer, 2005) over the results of the PSI-Blast previous searches.

The alignments are filtered using different criteria such as having a PSI-
Blast e-value below a threshold, or keeping only human sequences, and
thence some features are computed, such as the proportion of wild-type or
mutated amino acids in the column.

The remaining 4 features are derived from the EVmutation model
(Hopf et al., 2017), which is based on Pfam domain alignments (Finn et al.,
2016). These features include classic column conservation, frequency of
the substitution, effect according to a classic independent conservation
model and predicted effect in the novel epistatic model, which incorporates
pairwise epistasis to the estimation of mutation effects.

See Supplementary Table 1 to find the details of all the features
calculated and their average relative importance in the final predictors.

2.3 Predictor

PMut-S (for Specific PMut), encloses a set of predictors (one for each
protein) based on the Random Forest (Breiman, 2001) classifier trained
on the previous data set and features. Building and evaluation of the
predictors was performed with the package pyMut (López-Ferrando et al.,
2017). Random Forest was provided by the scikit-learn Python package
(Pedregosa et al., 2011) and the standard scientific Python stack including
SciPy, NumPy, Pandas, IPython and Matplotlib (Jones et al., 2001; van der
Walt et al., 2011; McKinney, 2010; Pérez and Granger, 2007; Hunter,
2007). The classifier was optimized by searching the parameter space and
the selected parametrization can be found in Supplementary Table 2. The
ouptput of the predictor is a decimal number in the range [0, 1], where
scores < 0.5 are neutral predictions and scores > 0.5 are pathological
predictions.

2.4 Performance assessment

Predictors are evaluated following a leave-one-out approach (Kearns and
Ron, 1999). Assessment metrics include accuracy, specificity, sensitivity,
and the Matthews correlation coefficient (Matthews, 1975). The same
process is executed with the general-purpose PMut2017 predictor(López-
Ferrando et al., 2017), in order to get a consistent comparison using the
same methodology.

For comparison purposes, we obtained predictions for our dataset from
different general-purpose predictors using their respective web services:
PROVEAN (Choi and Chan, 2015), PolyPhen-2 (?), CADD (Kircher
et al., 2014), Condel (González-Pérez and López-Bigas, 2011), M-CAP
(Jagadeesh et al., 2016) and FATHMM (Shihab et al., 2012). Using
ANNOVAR (Wang et al., 2010), which includes a database with functional
annotations of variants, we also obtained predictions from MutationTaster
(Schwarz et al., 2010), LRT (Chun and Fay, 2009), SIFT (Ng and Henikoff,
2003), MutationAssessor (Reva et al., 2011), MetaSVM and MetaLR
(Dong et al., 2015a).

2.5 PMut-S website

The 215 predictors were used to train all possible variants of their respective
protein (a total of 4 035 353 variants). All these predictions, along with the
features that lead to these predictions and the training data are available at
http://mmb.pcb.ub.edu/PMut-S/.

3 Results and discussion
The performance of the PMut-S predictor has been assessed at three
levels: 1) Comparison with the PMut2017 general predictor, following
the same leave-one-out validation strategy; 2) Comparison with PMut-S
to 12 general, and 8 specific predictors; and 3) analyzing PMut-S’ behavior
when predicting SAVs from healthy individuals.
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Fig. 1. A: Per-protein Matthews correlation coefficient (MCC) comparison between PMut and PMut-S (plotted in increasing PMut score). B. Summary of the PMut and PMut-S per-protein
MCC distribution in a boxplot. C. Comparison splited in PMut’S MCC terciles; we can appreciate that PMut-S improvement over PMut-S is much more relevant in the first tercile, that is,
PMut-S improves PMut predictions specially in the cases where PMut performs worse.

3.1 Dataset building

We used the SwissVar database (Yip et al., 2008) as the main source of
annotated variants. SwissVar is comprised of 38,490 neutral and 28,790
disease variants from 12,234 human proteins. The analysis of such variants
shows that they are not evenly distributed among all the proteins. 90% of
the disease causing mutations are concentrated in only 1,000 proteins,
while most of the neutral variants belong to other proteins, of which no
disease causing variant is reported (Supplementary Figure 1A). In order
to maximize the number of valid mutations to be included in the study,
we selected all the variants belonging to 215 genes for which SwissVar
contains 30 or more deleterious mutations (Li et al., 2014; Fechter and
Porollo, 2014). In order to improve the predictor accuracy and also the
robustness of its preformance evaluatoin, it is desirable to have a balanced
number of disease and neutral mutatoins for each protein (He and Garcia,
2009). To make up the lack of neutral mutations in these genes, two main
approaches are usually used: either adding variants found in homologs
with high sequence similarity (Riera et al., 2015; Stead et al., 2011)
or considering common SNPs as neutral mutations (Kobayashi et al.,
2017). The recent availability of large variant databases enables us to
take the second approach. We resorted to ExAC (Lek et al., 2016), a
database containing single amino acid variants found in 60,706 healthy
individuals. As reported by Kobayashi et al. (2017) and confirmed in
Supplementary Figure 2, ExAC variants with higher allele frequency can
be reliably considered neutral. We added as many ExAC variants (the most
common first) as needed to match the number of pathological mutations
in our dataset, hence obtaining the balanced training set we were seeking
(Supplementary Figure 1B).

3.2 PMut-S versus PMut

Figure 1A shows the comparison of PMut versus PMut-S for each of the
215 genes evaluated. In average, we see an improvement of 0.1 in the MCC
for each gene; Figure 1B sumarizes the distribution of these differences
in a boxplot. But this improvement is not evenly distributed; Figure 1C
shows a greater PMut-S’ performance increase in the cases where PMut
shows the worst behaviour (1st tercile).

Three main features in PMut-S can contribute to the enhanced
performance: 1) the addition of neutral variants from the ExAC database, 2)
the use of epistatic effect model features, and 3) the use of protein-specific
predictors.

Figure 2 evaluates the contribution of each addition. The second
boxplot shows that adding neutral variants from ExAC worsens slightly

the performance of PMut. This can be attributed to the fact that PMut
was trained with an already wide and well balanced training set, while
the addition of these variants would make a stronger effect when training
specific predictors due to their lack of balance. The third boxplot indicates
a small improvement to the general-purpose PMut predictor upon the
introduction of epistatic effects.

The fourth boxplot in Figure 2 shows the performance of gene-specific
predictors lacking coevolution features in their training. Finally, the last
boxplot shows that the addition of epistatic effect features to the training
is decisive in the performance improvement shown by PMut-S.

As commented, it is clear that the addition of coevolutive conservation
features enhances the prediction, but it’s important to note that for more
than half of the proteins, less than 50% of their variants have these features
computed. Supplementary Figure 3 shows the same analysis restricted to
proteins with most of their coevolution features available.

3.3 PMut-S versus other general-purpose predictors

We compared the per-protein performance of PMut-S to 12 other general-
purpose predictors (Figure 3A). We observed that PMut-S obtains the best
results in this comparison. It is to be noted that this is a conservative
comparison, as some of these predictors may have been trained using
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Fig. 2. Comparison of per-protein MCC distribution using 1) the general-purpose PMut
predictor, 2) the PMut predictor trained with the addtion of neutral variants form ExAC, 3)
PMut predictor with the addition of neutral ExAC variants and trained using co-evolution
model derived features, and 4) PMut-S, protein-specific predictors using balanced datasets
and co-evolution related features.
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Fig. 3. A. Per-protein MCC comparison between PMut-S (red), PMut (blue), and twelve othe general-purpose predictors (gray); Supplementary Table 3 holds the numerical values of these
boxplots. B. Same analysis but limiting the comparison to the 100 proteins with worse predictions in general.

some of the mutations evaluated and so the benchmark may overestimate
their accuracy (Grimm et al., 2015). We repeated the comparison for those
genes that show poorer predictions in general (Figure 3B) and checked
that in these cases, PMut-S also obtains more accurate predictions than the
rest.

3.4 PMut-S versus other specific predictors

We also evaluated PMut-S’ performance on a set of genes for
which different protein-specific or family-specific predictors have been
developed. In general, we saw that PMut’s MCC, evaluated using the
leave-one-out validation scheme explained before compared well with the
reported MCC of these methods (Table 1).

Our first analysis was on maturity-onset diabetes of the young related
genes. We evaluated PMut-S over 5 MODY genes (GCK, HNF1A, INS,
ABCC8, KCNJ11 –namely MODY2, MODY3, MODY10, MODY12 and
MODY13). We compared the results to those reported in Li et al. (2014),
where eleven general-purpose pathology predictors were compared, and
RadialSVM (Dong et al., 2015b) was found to be the most accurate
predicting pathology in MODY genes. We saw that overall, PMut-S
had a better MCC (0.595) compared to RadialSVM’s (0.474), and also
improved the per-gene MCC in 4 out of 5 cases. This is an example of the
enhancement in accuracy that specific predictors can produce.

In a recent study (Leong et al., 2015), five different general-purpose
predictos were evaluated on the main three Long QT syndrome (LQTS)
related genes: KCNQ1, KCNH2 and SCN5A. A specific consensus method
is proposed for each of these genes by combining some of the 5 predictors’
outputs. As seen in Table 1, PMut-S yielded a very similar performance for
each of these genes, and improved the overall MCC score. Note that in the
case of SCN5A, PMut-S’ MCC is the lowest in the table. This gene has the
particularity of being the cause of two diseases: LQTS when having a loss-
of-function mutation, and the Brugada syndrome when affected by a gain-
of-function mutation. This is a classic example in which most predictors
and also PMut-S might fail, as they may tend to classify gain-of-function
mutations as neutral.

Closely related to the previous LQTS-causing genes, Stead et al.
(2011) studied mutations in voltage-gated potassium (Kv) channels. They
presented KvSNP, a Random Forest predictor based on 5 physicochemical,
structural and conservational features. KvSNP improves the performance
of general-purpose predictors, achieving an MCC of 0.7, slightly higher
than PMut’S MCC of 0.65.

In the same fashion as KvSNP was developed wKinMut-2 (Vazquez
et al., 2015), a predictor specialized in mutations of protein kinases. It is a
Random Forest predictor relying on annotation with Gene Ontology terms
and Pfam domains, physicochemical features of aminoacids and sequence
conservation. wKinMut-2 reports an overall MCC of 0.69, very similar to
PMut-S’ MCC of 0.70. By comparing the MCC for each gene, we see that
PMut-S achieves good performance (MCC in the 0.65-0.75 range) for the
three proteins studied.

We evaluated PMut-S over a set of Cytochrome P450 monooxygenases
(CYPs), and compared its performance to MutaCYP (Fechter and Porollo,
2014). CYPs are a good fit for applying specific predictors, as they
present singular evolution patterns such as important highly variable
regions –substrate recognition sites– thay may pass unnoticed by typical
conservation analyses. Also, methods based on structural features that
consider surface mutations less important may also fail at recognizing
their role in protein-protein interactions and electron transfer from a
redox partner. PMut-S obtains an MCC of 0.56, significantly lower thant
MutaCYP’s MCC of 0.70. This difference can be attributed to the fact that
PMut-S was trained on a smaller dataset, as we discarded all the proteins
for which less than 30 disease variants were reported –keeping only 4,
whereas MutaCYP is trained using all variants from 15 CYPs.

Finally, we evaluated PMut-S’ performance when predicting pathology
in three monogenic diseases: Niemann-Pick disorder, caused by mutations
on the NPC1 gene; Hemophilia A, due to a malfunction of Coagulation
Factor VII (F8); and Fabry disease, caused by loss-of-function mutations
in Alpha-galactosidase A (GLA).

Regarding NPC1, in Adebali et al. (2016), the gene’s evolutionary
history was derived from carefully crafted multiple sequence alignments,
and the ad-hoc SAVER algorithm was proposed as a specific pathology
predictor for this gene, reporting an MCC of 0.59. PMut-S’ MCC is 0.537,
which hints the importance of the multiple sequence alignments quality
for identifying evolutionary trends and pathology, as explained in Adebali
et al. (2016).

Compared to HApredictor, the F8-specific decision-tree classifier
proposed in Hamasaki-Katagiri et al. (2013), Pmut-S’ obtained better
results both in terms of sensitivity (0.90 vs. 0.85) and specificity (0.81
vs. 0.79). On the other hand, PMut-S’ performance didn’t match that of
the GLA-specific neural network based predictor described in Riera et al.
(2015), which obtains an MCC in the range of 0.56 − 0.72, higher than
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Table 1. Performance comparison between PMut-S and eight other specific predictors.

Family
Associated

diseases
Genes

PMut-S Literature

Acc. Sens. Spec. AUC MCC MCC Method References

MODY genes

Maturity-onset

diabetes of

the young

ABCC8 0.74 0.78 0.71 0.74 0.49 0.44

RadialSVM
Li et al. (2014),

Dong et al. (2015b)

GCK 0.86 0.89 0.82 0.86 0.72 0.60

HNF1A 0.75 0.70 0.80 0.75 0.50 0.37

INS 0.70 0.68 0.73 0.70 0.41 0.76

KCNJ11 0.86 0.89 0.83 0.86 0.72 0.57

Overall 0.80 0.82 0.78 0.80 0.60 0.47

Kinase

superfamily

Chronic myelogenous

leukaemia,

gastrointestinal

stromal tumours, etc.

BTK 0.89 0.92 0.80 0.86 0.72

wKinMut-2 Vazquez et al. (2015)
FGFR1 0.82 0.81 0.84 0.82 0.64

FGFR2 0.86 0.83 0.89 0.86 0.72

Overall 0.86 0.86 0.85 0.86 0.71 0.69

LQTS 1-3 genes
Long QT

syndrome

KCNH2 0.81 0.74 0.89 0.81 0.63 0.62

Combination

of 5 predictors
Leong et al. (2015)

KCNQ1 0.80 0.77 0.84 0.80 0.61 0.70

SCN5A 0.69 0.64 0.75 0.69 0.39 0.32

Overall 0.76 0.71 0.82 0.76 0.53 0.44

Voltage-gated

potassium (Kv)

channels

Cardiac

arrhythmogenesis,

LQTS, epilepsy, etc.

KCNH2 0.81 0.74 0.89 0.81 0.63

kvSNP Stead et al. (2011)
KCNQ1 0.80 0.77 0.84 0.80 0.61

KCNQ2 0.94 0.94 0.94 0.94 0.88

Overall 0.82 0.77 0.87 0.82 0.65 0.70

Cytochrome

P450

Congenital adrenal

hyperplassia, etc.

CYP11B1 0.71 0.64 0.78 0.71 0.42

MutaCYP
Fechter and

Porollo (2014)

CYP17A1 0.75 0.81 0.69 0.75 0.50

CYP1B1 0.72 0.68 0.78 0.72 0.45

CYP21A2 0.88 0.88 0.88 0.88 0.76

Overall 0.78 0.76 0.80 0.78 0.56 0.70

NPC1 gene
Niemann-Pick

disorder
NPC1 0.77 0.74 0.79 0.77 0.54 0.59 SAVER Adebali et al. (2016)

Coagulation

Factor VII
Hemophilia A F8 0.85 0.90 0.81 0.85 0.71

Sens. = 0.85

Spec. = 0.79
HApredictor

Hamasaki-Katagiri

et al. (2013)

Alpha-galac-

tosidase A
Fabry disease GLA 0.85 0.95 0.52 0.74 0.55 0.56 − 0.72 V7, V8 Riera et al. (2015)

PMut’S MCC of 0.55. In this case, the use of first hand variation data by
the authors undoubtedly contributes to their improved performance.

In the eight cases that we have evaluated, we saw that PMut-S improves
(with an MCC of at least 0.1 points higher) the performance of two specific
predictors, performs similar to other 4, and performs worse than two
specific predictors. It is important to note, however, that these specific
predictors were generally trained on wider mutation sets, not entirely
contained in current mutations databases such as SwissVar. Even more,
some of these predictors used for their training hand crafted alignments,
functional annotations of amino acids, relevant evolutionary information
and other expert knowledge. It is thus remarkable that PMut-S is able to
match most of these specific predictors’ performance following the same
systematic method ot train the predictors. Although these results confirm
the extraordinary validity of manual-crafted predictors, it is relevant to
note that PMut-s, a set of completely automated predictors, performs at
similar or even higher level in most of the analyzed cases.

3.5 Prediction of ExAC variants

Most of the single amino acid variants (SAVs) found in healthy humans
are neutral variants –not causing any diease (Kobayashi et al., 2017).
It is thus interesting to check how predictors classify these variants.
Figure 4A shows the prediction score distribution of PMut for 7 100 034
variants from ExAC. As expected, most of the variants are predicted
as neutral (score < 0.5). However, when we limit our analysis to the
215 genes of our present study, we see that PMuts score distribution is
almost uniform (Figure 4B), that is, variants are evenly classified as either
neutral or pathological. We believe this abnormal distribution is due to the
overrepresentation of deleterious SAVs in the training of PMut, specially in
the case of these proteins. On the other hand, we also see in Figure 4B that
PMut-S’ scores distribution is shifted towards the neutral side, conforming
with the expected distribution.are This results stress the relevance of using
balanced datasets in the training of this type of predictors.
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Fig. 4. A. Distribution of the PMut score for all ExAC variants. B. PMut and PMut-S scores distribution across 63 339 variants from the ExAC database on the 215 proteins studied (variants
used in PMut-S’ training were excluded from the analysis).

4 Conclusions
In this study we present PMut-S, a set of protein-specific mutation
pathology predictors, which we have evaluated with a set of 4 035 353
variants over 215 proteins. In a thorough comparison with state-of-the-art
general-purpose predictor PMut2017, we observe that PMut-S can achieve
better predictions, specially in the cases where PMut performs worse.

By comparing PMut-S to 12 other popular general predictors, we
confirmed that PMut-S yields more robust predictions overall, especially
with protein families that traditionaly fail. We also evaluated PMut-S on 8
protein families for which specific predictors are available. We found that
our automated approach to train specific predictors obtains significantly
similar results compared to these specific predictors at a fraction of the
time required to prepare them.

We believe this improvement in prediction accuracy is due to two
main factors. First, PMut-S is trained using carefully balanced datasets,
where most of the neutral variants where obtained from recently released
human variation databases. We think this means is more reliable than
traditional homology based neutral variant inference. Second, the addition
of information provided by covariation based models is a key feature that
improved overall prediction performance. The application of these models
in this context is recent, and therefore, methodological improvements are
foreseeable. In addition, given the large amount of sequence data required
by this type of methods, the rapid growth of sequence databases will likely
extend the scope of application and improve the prediction performance.

All the data used in this study, together with the code and a dataset of
5,479,087 precomputed predictions on the 215 proteins studied is available
for the research community in http://mmb.irbbarcelona.org/PMut-S/.
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