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Abstract 
ovement is a widespread characteristic in the animal 

kingdom —occurring at many spatiotemporal scales— 

with consequences at an individual, population, species, 

and even ecosystem level. It is a very diverse character, with many 

different drivers that stem from the way in which individuals interact 

with their environment. Of these, one of the most important is the 

distribution of resources, particularly for migratory and foraging 

movements. In migration, the search for an optimal environment 

involves movement at large spatiotemporal scales, following seasonal 

changes in resource distribution. In foraging movements, the search for 

resources happens at small spatiotemporal scales, and involves different 

strategies to optimise the search and capture of food, including the 

ability to obtain foraging cues from conspecifics. In seabirds, movement 

—at large and local scales— has deep repercussions in their life-history 

traits, evolutionary history, morphology, physiology and behaviour, 

which makes them a very valuable study group to understand the role, 

the causes and consequences of migratory and foraging movements in 

the ecology of marine top-predators. 

The study of migratory and foraging movements has been revolutionised 

by the development of smaller, cheaper and better tracking devices, 

promoting multi-colony, population and even species approaches to the 

study of animal movement, but which also come with a set of 

methodological challenges that have to be addressed in order to make 

unbiased inferences of space and habitat use at population or species 

level from individual movement data. 
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In this thesis, we develop methods to test the possible biases introduced 

by the use of individual tracking data to infer distribution at a 

population or species level. we then apply these tools to a multi-colony 

dataset of non-breeding locations of Cory’s (Calonectris borealis), 

Scopoli’s (C. diomedea) and Cape Verde (C. edwardsii) shearwaters, to 

study their migratory connectivity and non-breeding habitat segregation 

at the colony, population and species level. Lastly, we apply state-of-

the-art spatial models to study foraging distributions of three 

neighbouring colonies of Cory’s shearwaters, detect the segregation 

among them and unravel the environmental and behavioural drivers of 

this segregation.  

I developed several functions in the R environment aimed at the 

detection of the effects of individual site fidelity and temporal variability 

in the inference of spatial use at a colony or population level, and to 

calculate the degree in which the movements of a single population can 

be representative of those of the entire species. These tools are applicable 

to individual movement data regardless of the species or tracking device. 

we also used these tools to demonstrate the spatial and ecological 

segregation between the non-breeding distributions of three taxa of 

Calonectris shearwaters studied, as well as detecting a stronger degree 

of migratory connectivity at a population than at a colony level, 

indicating that individuals of different colonies within a population mix 

in the non-breeding areas, but birds from different populations do not, 

which has important implications for their population dynamics and for 

their conservation and management. Lastly, we demonstrated 

segregation among the foraging distributions of three neighbouring 

colonies of Cory’s shearwaters, both in the waters surrounding the colony 



 
 

and in distant, foraging grounds, finding evidences of both environmental 

and behavioural drivers behind this segregation, and suggesting a 

mechanism through which transfer of information between individuals 

can be shaping the distributions of foraging seabirds.  

The results of this thesis provide relevant tools for the field of movement 

ecology, as they can be used for analysing movements of mobile species, 

regardless of species, tracking device or spatiotemporal scale. In addition, 

they are relevant for the field of seabird ecology as they provide insights 

into the causes of space and habitat use in long-ranging pelagic seabirds.  

  



 
 

 

  



 
 

Resum 
l moviment és una característica omnipresent en el regne 

animal, a les més diverses escales espacio-temporals i amb 

conseqüències a diferents nivells (individual,. poblacional, 

específic i fins i tot ecosistèmic). La força impulsora del moviment més 

predominant i generalitzada és distribució dels recursos en el medi, 

important tant a gran escala (moviments migratoris) com en els 

moviments diaris de recerca d’aliment a escala petita. En les aus marines 

en particular, el moviment té repercussions profundes en les seves 

característiques morfològiques i de comportament, en la seva història de 

vida, i la seva història evolutiva. El desenvolupament de dispositius de 

seguiment més petits, barats i precisos ha promocionat la proliferació 

d’estudis del moviment animal des d’un punt de vista multi-colònia, de 

població i fins i tot d’espècie. En aquesta tesi, desenvolupo diferents 

funcions per testar els biaixos introduïts en l’estudi del moviment, a 

través de dades de seguiment individual, a nivell de població o espècie. 

Posteriorment, utilitzo aquestes eines per a analitzar la connectivitat 

migratòria i la segregació dels hàbitats d’hivernada, des d’un punt de 

vista multi-colònia, de les baldrigues cendroses de l’Atlàntic (Calonectris 

borealis), del Mediterrani (C. diomedea), i de Cap Verd (C. edwardsii). 

Per últim, aplico un mètode innovador de modelatge espacial per a 

estudiar les distribucions d’alimentació de baldrigues cendroses de 

l’Atlàntic criant en tres colònies veïnes, per detectar-ne la segregació i 

descobrir-ne les causes, tant ambientals com comportamentals, incloent 

com els diferents mecanismes de transferència d’informació entre 

individus poden afectar a aquestes distribucions. Els resultats d’aquesta 
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tesi tenen rellevància per a la ecologia del moviment en general, ja que 

són aplicables a dades de moviment individual de qualsevol espècie, 

independentment de l’aparell de seguiment utilitzat, i en el camp de 

l’ecologia de les aus marines, ja que proporciona nous coneixements sobre 

els diferents factors afectant la distribució i l’ús de l’espai, tant durant 

la cria com durant la hivernada, en aus pelàgiques.  
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Introduction 
 

1.1 Animal movement: an overview 

Movement is a fundamental trait for most animal species, occurring at 

the most diverse spatial and temporal scales. It is driven by processes 

that result from the interaction of individuals with their environment 

(i.e. extrinsic drivers, including biotic and abiotic characteristics), and 

can be modulated by individual preferences (i.e. intrinsic drivers). These 

driving processes can be a response to short-term goals, such as search 

for resources, reproduction, and avoiding risks such as predation, but 

can also be a response to long-term fitness implications such as avoidance 

of inbreeding or long-term population survival (Table 1; Holyoak et al. 

2008, Avgar et al. 2013).  
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Table 1   

Main drivers of animal movement  

 Driver Mechanism(s) Reference 
Extrinsic   
Distribution of 
resources 

Optimisation of resource 
acquisition 
Seasonal migration 

Matthiopoulos 2003, 
Trevail et al. 2019 

Landscape structure Adjustment of search 
behaviour to landscape 
heterogeneity 

Bastille-Rousseau et al. 
2017, Tucker et al. 2019 

Threat distribution Predator avoidance  
Pathogen avoidance  

Guzman et al. 2019,  
Westerdahl et al. 2014 

Presence and 
distribution of 
conspecifics 

Territorialism 
Competition avoidance 
Attraction 
Search of mate for 
reproduction 

Maher and Lott 1995, 
Stillman et al. 2000 

Avoidance of 
inbreeding 

Natal dispersal  Pusey 1987 

Population survival  Metapopulation dynamics 
(emigration/immigration 
among populations) 

Morales et al. 2010 

Intrinsic   
Memory Home range fidelity 

Non-breeding area fidelity  
Fagan et al. 2013, 
Lafontaine et al. 2017 

Personality Exploration – exploitation 
trade-off  

Spiegel et al. 2017, 
Patrick et al. 2017 

Sex Competition avoidance 
Different reproductive 
investment 
Different energetic 
requirements 

Wearmouth and Sims 
2008 

Diet Costs of food acquisition 
and digestion 
Spatial distribution of 
food 

Tucker et al. 2014 

Size Energy requirements and 
interactions with 
neighbours 

Jetz 2004 

Age/experience Learning Riotte-Lambert and 
Weimerskirch 2013 
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Environmental characteristics are one of the main drivers of animal 

movement, and particularly resource distribution can affect movement 

across diverse spatiotemporal scales (from seasonal, long-scale 

migrations to daily, short-range foraging movements within an 

individual home range). Despite being usually studied in two main blocks 

within movement ecology: migration and foraging movements share 

the common driver of the optimisation of resource search, and are 

relevant across species, regardless of sex, age, experience or any other 

intrinsic individual factor. In addition, the two have common impacts 

and repercussions at many levels: (1) in the individual fitness and 

evolutionary processes, (2) in the structuring of communities and 

populations, (3) in the species responses to environmental change, and 

(4) in the ecosystem functioning (Hooten et al. 2017).  

At an individual level, movement can have consequences on fitness since 

it is the mechanism for resource acquisition, and nutrient intake has an 

obvious effect on individual body condition, survival and reproduction 

(Parker et al. 2009). In addition to the proximal effects of movement on 

individual condition, detrimental non-lethal effects of resource 

acquisition in one season can carry over and affect survival or 

reproductive output in the subsequent season (Harrison et al. 2011). At 

a population level, the spatial structure of animal populations can range 

from closed populations (assumed free flow of individuals within a 

population) to structured subpopulations connected among them by 

immigration/emigration, and the degree of connectivity among 

populations (dependent on movement) will have important consequences 

for population dynamics (Hanski and Gaggiotti 2004). At a species level, 

the degree of spatial flexibility of a given species (determined by the 
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mobility of its individuals and the degree of philopatry and spatial 

fidelity they present) will be a key aspect to determine the species ability 

to adapt to an ever-changing environment, therefore, species with 

different degrees of site fidelity and breeding philopatry could respond 

differently to climate change (Ronce 2007; Robinson et al. 2009). Lastly, 

mobile individuals also have an effect on the ecosystems that they 

inhabit: at a landscape level, animals that move across habitats and 

ecosystems can provide important services such as pollination, seed 

dispersal, and movement of nutrients (Lundberg and Moberg 2003; 

Savage 2019). 

Key taxa where both (migratory and foraging) movements are crucial to 

understand are seabirds. They inhabit at the interface of three media: 

they breed on land, fly through the air, but also feed and spend a 

significant part of their lives at sea. Thus, their movements have deep 

repercussions in life history traits, evolutionary history, morphology, 

physiology and behaviour, including here their foraging behaviour 

(Hamer et al. 2002). As most marine top predators, seabirds present 

extreme life-history traits resulting from an adaptation to forage in an 

environment, the ocean, which at fine scales shows a reduced availability 

and low spatiotemporal predictability of resources, but at large scales 

can vary predictably both in space (upwelling areas are almost 

constantly highly productive) and temporally (seasonality). Such 

extreme life-history traits include low reproductive outputs, reducing the 

energetic demands of breeding adults to one or a few chicks per breeding 

season (Lewison et al. 2004); long lifespans and low adult (natural) 

mortalities that increase life-long reproductive success (Weimerskirch 

2002); and deferred maturities that allow immature birds to acquire the 
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ability to find prey at sea by spending the first years of their lives 

exploring the vast ocean and developing their own foraging skills 

(Grecian et al. 2018; Ramos et al. 2019). All these characteristics make 

seabirds a very valuable study group to understand the role, the causes 

and consequences of migratory and foraging movements in marine top-

predators, which remains a key issue in animal ecology. 

1.2  Migratory movements 

1.2.1 Overview of migratory movements 

Defining migration is not an easy task. The most obvious behaviours 

that have traditionally been considered migrations are the “to-and-fro 

movements over dramatic distances between breeding and wintering1 

grounds to secure optimal environmental conditions at all times” 

(Thomson 1926). However, since this definition of migration was 

proposed, many other types of movement have been described which, 

despite not having a return trip or not being seasonal, also fall under the 

function of securing optimal environmental conditions at all times (e.g. 

change of environments in different ontogenic stages of insects and some 

fish; Dingle and Drake 2007). This called for a more general definition 

of migration, which could include a wider range of migratory movements 

but not so wide as to be devoid of ecological meaning. Dingle (1996) 

                                        
1 The areas used by populations outside the breeding season have traditionally been 

called wintering grounds, because the first studied species breed mostly in summer. 

However, these should more accurately be called non-breeding grounds, since not all 

species breed in summer and, even for those species that do, if they cross the Equator to 

reach the non-breeding grounds it will be summer in there too.  
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described migration based on five characteristics, so any migratory 

population should present at least one of these: (1) persistent movement 

between two habitats were resources are available; (2) straightened out 

movement, the direction of which may or may not be decided and 

maintained through navigation behaviours; (3) migrating organisms are 

undistracted by stimuli that would otherwise attract them, like resources 

or favourable habitats, although some birds and insects might feed en 

route to replenish energy reserves and even hold temporary territories; 

(4) behavioural changes before and/or after migration, with pre-

migratory hyperphagia being the most clear and known of these; and (5) 

reallocation of energy specifically to support migration, which implies 

trade-offs with other functions such as reproduction. According to these 

characteristics, migration is a widespread character, present in many 

taxonomic groups from insects, fish and reptiles to birds and mammals, 

and happens in all ways of locomotion (on ground, in water, on air, even 

drifting with currents or “parachuting” through silk threads like some 

spiders do; Hayashi et al. 2015). It also presents many variants that 

complicate its study: from an individual point of view an animal can be 

an obligate migrant (if they can’t skip a migration cycle) or facultative 

migrant (if they can decide whether to migrate based on environmental 

or intrinsic conditions; Chapman et al. 2011), and from a population 

point of view migration can be partial (when only some of the individuals 

of the population migrate, while other stay in either the breeding or non-

breeding grounds; Chapman et al. 2011a), or differential (when only a 

section of the population, e.g. only males, or only immatures, migrate; 

Cristol et al. 1999). The presence of migration in many taxonomic groups 
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and the flexibility and variability of its expression provide some clues 

that explain its evolutionary origin (Box 1). 

Box 1: evolutionary origin and ontogeny of migration 
Migratory behaviour has appeared and disappeared many times in the 
evolutionary history, which hints to the possibility of it appearing 
from the activation and/or regulation of characters that exist, 
dormant, in resident populations. Adaptation to seasonality is one of 
the possible evolutionary drivers of migration: if resources or 
favourable habitats were spatiotemporally unstable, but predictable, 
populations could compensate this seasonal fluctuation by migrating 
to where the resources are (Alerstam et al. 2003).  

Another, more recent explanation proposes that the primary driver of 
seasonal migration is the maintenance of fidelity to breeding sites. In 
this scenario, animals’ movement is primed by the seasonal 
fluctuations of the environment, but what actually drives the 
evolution of migration is their determination to go back to a site where 
they have bred successfully (Winger et al. 2019).  

Although in some species there is a clear genetic predisposition to 
migrate (Chapman et al. 2015; Yoda et al. 2017), many others, such 
as some marine mammals and some birds, acquire migratory 
behaviour through social learning (Palacín et al. 2011; Whitehead 
2017; O’Corry-Crowe et al. 2018), and others follow cues and perform 
complex path integration (Müller and Wehner 2010).  

Migratory species have often a more complicated population structure 

than resident species, which oscillates depending on the degree of 

connectivity between the breeding and non-breeding distributions of the 

species (Bauer et al. 2016). Species with strong migratory connectivity 

maintain the spatial structure of the breeding distribution during the 

non-breeding period, so animals —or populations— that breed in 

proximity spend all the annual cycle close by, and those that are distant 

from each other during breeding will be so too during the non-breeding 
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period, minimising the possibilities for mixing between populations 

(Webster et al. 2002; Marra et al. 2019). Therefore, the degree of 

migratory connectivity of a species has relevance not only for its 

population structure, but also for conservation. For example, species that 

experience a high degree of interpopulation mixing during the non-

breeding season will be globally affected by any perturbations in the non-

breeding grounds. Conversely, if the degree of mixing is low, a local 

perturbation might only affect one breeding population, having less effect 

in the entire species. However, in this case, the risk of local extinction is 

higher than in well-mixed populations (Ponchon et al. 2015). Similarly, 

populations that breed in a concentrated area but spread across the 

entire non-breeding range might be more affected by non-breeding 

habitat shrinkage, while they will be more equipped to deal with habitat 

degradation and loss than populations with low non-breeding spread 

(Finch et al. 2017). 

1.2.2 Migration in seabirds 

Many seabirds are migratory, performing cyclical, seasonal movements 

between breeding and non-breeding grounds (Dingle 1996). Some of the 

most impressive migrations in the world occur at sea, such as the 

migration of the Arctic tern (Sterna paradisaea) which perform the 

longest recorded animal migration, of up to 60,000 km (Egevang et al. 

2010; Alerstam et al. 2019). The seasonal variation of environmental 

conditions is the main proposed driver of seabird migration, which could 

buffer the variation in resource availability by birds tracking optimal 

environmental conditions in an endless summer (Fig. 1; Alerstam et al. 

2003, Shaffer et al. 2005, González-Solís et al. 2007).  
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The study of migration in seabirds was at first hampered by the difficulty 

of obtaining information on the destination of individuals away from 

their breeding colonies. From the first studies using observations from 

Figure 1 

Daily solar energy (cal·cm−2) reaching the Earth at different latitudes and 
times of the year. The thick line represents the trajectory of an Arctic tern 
(Sterna paradisaea) in its migratory trip from the breeding colonies in the 
Arctic to the non-breeding grounds in the Antarctic. (reproduced from 
Alerstam et al. 2003, with permission of The Licensor through PLSclear 
license no 17391)  
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land, boat surveys, and ring recoveries (Camphuysen and Van der Meer 

2001), to the first tracking devices used to follow birds in their migratory 

trips (Weimerskirch and Wilson 2000), the study of migration in seabirds 

has grown into a profusion of long-term (Desprez et al. 2018), multi-

colony (Bogdanova et al. 2017), and even multi-species (Ramos et al. 

2017) studies, facilitated by the development of smaller, more precise 

and cheaper tracking devices. This technological advancement has 

allowed us to gather detailed information at an individual level that, 

when scaled up to higher hierarchical levels (i.e. population, species, 

community), can provide insights into the effects of migrations on 

ecosystems (e.g. Mueller et al. 2014) or population processes (Morales et 

al. 2010), reveal effects of human alteration on animal behaviour (Tucker 

et al. 2018), or provide insights into conservation and management 

(Fraser et al. 2018). Particularly relevant the possibility of tracking 

several populations at once, opening a new venue for studying migratory 

populations from a metapopulation point of view (Fort et al. 2012; 

Ramos et al. 2015), which can reveal large-scale patterns not visible with 

single-colony studies, as well as issues of conservation concern that could 

affect seemingly unrelated populations (Bogdanova et al. 2017; Sherley 

et al. 2017). 

1.3 Foraging movements 

1.3.1 Overview of foraging movements 

The idea that animals restrict their movements to a certain limited area 

is not new and, indeed, it was present as far back as Darwin’s On the 

Origin of Species (Darwin 1861). Later, Burt laid down the definition of 

home range as “that area traversed by an individual in its normal 
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activities of food gathering, mating, and caring for young” (Burt 1943). 

What Burt called “food gathering” is studied now as foraging behaviour. 

Foraging movements are those performed by animals in search of 

resources, which can range in extension from very localised movements 

to wide-ranging movements of several thousand kilometres (Pinsky and 

McCauley 2019). All animals need to allocate energy to survive and 

reproduce, but the search for resources is also energetically costly. 

Natural selection favours the development of behavioural and 

physiological characteristics that contribute to maximising foraging 

efficiency (Trevail, Green, Sharples, Jeffrey A. Polton, et al. 2019), so 

the scale at which this foraging behaviour occurs is determined by the 

energetic requirements of foragers and the spatial distribution of prey 

(Guzman et al. 2019).  

Since resources are rarely uniformly distributed, adaptive characteristics 

will be those that maximise foraging efficiency improving an individual’s 

ability to identify patches suitable for foraging (e.g. following 

environmental cues indicative of high productivity; Hansen et al. 2016), 

to locate resources within those patches (e.g. by sight or smell; Potier et 

al. 2019), and to pursue and catch prey (e.g. plunge diving in certain 

species of seabirds, adaptations to deep-water sprints in pilot whales; 

Aguilar Soto et al. 2008, Thiebault et al. 2016). Among these 

characteristics maximising foraging efficiency, the ability to obtain 

information from their foraging conspecifics will also be a relevant factor, 

with direct effect on the movement patterns at an individual level, but 

also at population and species levels.  
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All the information that an animal obtains by interacting with the 

environment is personal information. This information can be private 

and inaccessible to others (i.e. memory) or non-private, and accessible 

to others through the production of social information (Fig. 2). In 

environments were resources are spatiotemporally variable, cues or 

signals generated from social information might be a key contributor to 

the optimisation of foraging strategies. Animals that forage in groups (or 

at least close to conspecifics) can make use of public (non-private) 

information to improve the fitness of their foraging decisions. This public 

information can be inadvertently generated or produced as a 

communication signal with evolutionary adaptive value (Fig. 2; Danchin 

2004). Obviously, this information transfer can only occur when 

individuals of the same species forage close enough for the cues or signals 

to be transmitted. The fact that foraging in group is a widespread 

behaviour, even in species that are not strictly social, is a proof of its 

influence on fitness at a population level (Ward and Webster 2016). 

 The information can be transferred between individuals at the place 

where the resources occur or at a common location where individuals 

breed, rest, or shelter. When information is transmitted at the resource 

location, we talk about local enhancement, and when it is transmitted 

at a common location, we talk about information centres. 

Local enhancement is based in social attraction among conspecifics 

regardless of mate selection (Kiester 1979). During foraging, the presence 

of individuals in a foraging patch cues conspecifics on the location of the 

patch, particularly in instances when the foraging conspecifics are more 

conspicuous than resources (Buckley 1997). 
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The information centre hypothesis was developed by Ward and 

Zahavi (1972) to define and explain group foraging in birds that breed 

or roost communally. According to this hypothesis, knowledge on the 

location of food or good quality feeding sites is transmitted among 

individuals in common places where birds assemble in large numbers. It 

Figure 2 

From all the information an individual acquires on the environment (green 
box) the non-private information can be transmitted to conspecifics (red 
arrow). If the information is transmitted willingly, we talk about 
communication through signals (black box) and if it is transmitted 
inadvertently, we talk about social information transfer through cues (blue 
box). From Danchin, E. (2004). Public Information: From Nosy Neighbors to 
Cultural Evolution. Science, 305(5683), 487–491. Reprinted with permission 
from AAAS” 
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has been suggested that the benefits of this information transfer have 

been the driving force behind the evolution of the roosting behaviour 

and coloniality in birds (Buckley 1997). Experimental and theoretical 

studies support the existence of information transfer between individuals 

in communal locations, not only for birds but also for mammals and 

fishes (Danchin 2004 and references therein, Agee and Monfils 2018).  

1.2.2 Foraging movements in seabirds 

Since seabirds breed on land but forage at sea, breeding individuals act 

as central place foragers during the breeding period, having to commute 

back and forth between the colony and the foraging areas to attend their 

rearing duties (Orians and Pearson 1979). The size of the colonies is 

determined, rather than by reproductive success or availability of 

breeding sites, by the availability of resources in the nearby waters, and 

thus, colony size often relates positively to the size of foraging area.  

According to the Ashmole’s halo hypothesis, colony sizes are regulated 

by density-dependent effects of competition in reproductive success 

(rather than adult survival; Ashmole 1963). The visible consequence of 

this regulation is a relationship between colony size and foraging area 

size (Furness and Birkhead 1984). Since foraging individuals will deplete 

resources in the waters surrounding the colony, individuals from larger 

colonies will need to travel farther, thus creating a wider “halo” of 

resource depletion around the colony (Jovani et al. 2015; Oppel et al. 

2015). The hinterland model (Cairns 1989) expands Ashmole’s model 

considering the interaction between neighbouring colonies. It proposes 

that, according to optimal foraging theory, birds of a given colony will 

forage only in the surrounding waters closer to their colony of origin than 
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to any other colonies, an area that Cairns referred to as hinterland. By 

this logic, geographic distribution of colonies will determine the size of 

the hinterlands and, thus, the colony sizes. Moreover, Cairns predicted 

that birds from neighbouring colonies would have segregated foraging 

areas, with the line of equidistance between colonies being the boundary 

between foraging areas. The inter-colony segregation predicted by the 

Hinterland model has been later proved for many different species of 

seabirds (reviewed in Bolton et al. 2018).  

In addition to knowing in which direction to leave the colony, seabirds 

need to search and find their prey every foraging trip, since having to go 

back to the colony to attend their rearing duties makes them lose contact 

with the prey  (Thiebault et al. 2014). In this regard, it has been 

suggested that the benefit of using public information might be one of 

the forces behind the evolution of coloniality in seabirds, since breeding 

in large aggregations of conspecifics facilitates the acquisition of 

information (Ward and Zahavi 1972; Buckley 1997). In fact, although 

colonial breeding is present in 13% of all bird species, it is concentrated 

in seabirds, with 96% breeding colonially (Sachs et al. 2007). This is 

another characteristic of foraging in the interface between two 

environments (air and water): birds have to constantly lose sight of their 

resources and consequently they are not able to monopolise them or 

defend them territorially. Thus, based on the principle of information 

transfer, for seabirds a great evolutionary advantage by breeding 

colonially.   

Although this transfer of information is problematic to prove in seabirds, 

several studies, based on gannets and cormorants, have attempted to 
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detect it and even model it. In these species with short foraging ranges, 

the information conveyed by returning individuals, on the direction of 

profitable foraging areas, is used directly by those departing individuals, 

as suggested for Cape gannets (Morus capensis) by Grémillet et al. 2004. 

Using individual based models, first, Wakefield et al. (2013), and later, 

Boyd et al. (2016) proved the importance of information transfer events, 

both by local enhancement and by the transfer of information at the 

colony, to explain the foraging distributions of northern gannets (M. 

bassanus) and Peruvian boobies (Sula variegata), respectively. More 

recently, Jones et al. (2018) analysed departure times and overlap of first 

foraging patches in Australasian gannets (M. serrator) to demonstrate 

the existence of social foraging behaviours. Alternatively, for Guanay 

cormorants (Phalacrocorax bouganvilii), another colony of Australasian 

gannets, and common guillemots (Uria aalge), it has been suggested that 

the transfer of information occurs in the near-colony rafts rather than 

on the colony (Burger 1997; Weimerskirch et al. 2010; Machovsky-

Capuska et al. 2014).  

In the case of seabirds with long foraging ranges, there are now several 

studies reporting segregation of foraging distributions among 

neighbouring colonies, such as shearwaters or albatrosses, which can 

perform foraging trips, lasting several days and spanning hundreds of 

kilometres (Bolton et al. 2018). However, the relevance of social 

behaviours and the transfer of information, either at sea or at the 

colonies or rafts has yet to be proved for any of them.  

Much in the same way as the technological developments of the past 

decades revolutionised the study of seabird migration, the study of 
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seabird foraging distributions has been boosted by the development of 

smaller and less costly GPS tracking devices. This has allowed not only 

to follow the foraging movements of smaller species (Hedd et al. 2018), 

but also to approach the study of foraging distributions and spatial use 

at larger scales. That is, tracking individuals from different colonies 

simultaneously allows us now to address issues that escape the scope of 

single-colony studies, providing insights into inter-colony segregation 

(Wakefield et al. 2013), inter- and intra-specific competition (Wakefield 

et al. 2017), and conservation at a population or species scale (Ramos et 

al. 2013; Lascelles et al. 2016).  

1.4 Methods to study seabird movement 

1.4.1 Overview 

The availability of increasingly detailed information on the 

spatiotemporal movements at an individual level has revolutionised the 

field of seabird movement ecology (Burger and Shaffer 2008). However, 

having larger and more precise datasets is not enough to answer 

ecological questions; we also need to know which questions can be 

answered with each type of data (i.e., the hypotheses we can pose), and 

how to answer them (i.e., the methods to be use). To ask the correct 

questions and obtain the correct answers, statistical methods have to 

evolve together with the data, otherwise we run the risk of —at best— 

underusing all the potential data has to offer and —at worst— misusing 

it and drawing wrong conclusions (Hebblewhite and Haydon 2010). 

Movement can be studied from two perspectives: the Lagrangian 

perspective considers movement from the point of view of the observed 
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animal, focusing on individual movement, while the Eulerian 

perspective considers movement from the point of view of the observer, 

taking a “snapshot” of the position of all individuals in a given area at a 

given moment or period of time. The former perspective is, thus, more 

suitable for studying the consequences of movement at population levels 

(Table 2; Turchin 1998, Phillips et al. 2019), while Eulerian approaches 

to study seabird movement data allow exploring space use (e.g., 

distribution and overlap or segregation among populations) or habitat 

use (e.g. species distribution models).  

For a long time, the only type of spatial data available to seabird 

researchers was that provided by direct observations, boat or plane 

surveys or re-sighting of ringed birds (Camphuysen and Van der Meer 

2001). The irruption of tracking devices providing numerous individual 

positioning data in the seabird ecology arena has boosted the 

development of Lagrangian approaches to infer population and species 

processes from individual movement data (Box 2; Patterson et al. 2017). 

Lagrangian analytical approaches not only consider the location 

coordinates of several individuals, but also, the characteristics of their 

movement (i.e. distance between consecutive movements, heading, or 

turning angle) and they can also incorporate additional data of the 

environment as well as data of the physiological status of the individuals 

to the final model. 

Tracking data, despite being individual based, can also be used to 

analyse population distributions from a Eulerian approach, by grouping 

the locations taken within a given time frame to turn movement data 

into static locations. In this process of inferring higher-level distributions 
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from individual tracking data, it is important to consider the different 

individual preferences can bias the inferred population distribution when 

only a few animals are tracked, and that presence-only data can 

introduce some biases in habitat use models (Table 2; Holdo and Roach 

2013). 
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Box 2: the three most common types of Lagrangian models 

Hidden Markov Models (HMM) and State Space Models (SSM) deal 
with discrete data at regular time intervals. They relate each location 
(observed state) to a hidden (unobserved) behavioural state. Space 
State Models, however, are able to incorporate uncertainty in the 
locations, and for that reason are sometimes used simply to correct 
location data. Diffusion models are less accessible to non-statistician 
users and thus less common, but deal with time as a constant (and 
therefore are able to deal with irregular time interval) to relate it to 
the behavioural states of the individual at each time point (shearwater 
illustration below courtesy of Manel Risa).  
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2 The information gathered by these devices does not depend on resolution of external sources of data, so it is 100% accurate 
3 if all individuals gather in the afternoon, we might think the abundance is higher in the regions we happen to sample in the 
afternoon 

Table 2   
Differences between the Eulerian and Lagrangian approaches to study animal movement 
Approach Eulerian Lagrangian 
Focus Population redistribution Individual movement 
Data collection Surveys / Mass mark recapture Tracking / Individual mark recapture 
Survey area Fixed Depends on species mobility 
Time framework Fixed Depends on device time-life, potentially unlimited 
It measures Location of individuals  

Distribution patterns (aggregation, dispersion) 
Movement characteristics (speed, acceleration).  
It can also measure physiology of individual  

Environmental 
variables 

Can be collected at the same time and place 
presence/abundance is being surveyed 

Can be obtained from remote sensing and matched 
to track with precision depending on spatiotemporal 
resolution of environmental products 
Tracking devices can also sense environmental 
information2. 

Limitations Depends on species or individual detectability 
Possible to confound temporal and spatial 
patterns3 
Does not provide data on breeding status, sex, 
age, or origin of individuals  

Cost and logistical challenges can limit the number 
of individuals tagged or species (size range) that we 
can study. 
Population variability and individual site fidelity 
might complicate inference at higher levels. 
Presence only data might require some 
modifications to be used for habitat modelling 
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1.4.2 The study of space use 

Methods to study space use, at both individual and population level, can 

go from the simple calculation of a minimum convex polygon of all 

positions to the most complex state-of-the-art methods. A minimum 

convex polygon is the smaller polygon that includes all the locations of 

an individual or population, and has been used in the past as a proxy 

for the home range (Ludynia et al. 2012). Its area, however, is very 

dependent on the number of locations and much affected by the presence 

of outliers. When comparing distributions of different individuals or 

populations obtained from tracking data, this can lead to the over-

estimation of the foraging area of the more intensely sampled, producing 

erroneous conclusions with relation to their space use. In addition, a 

minimum convex polygon contains all the locations from an individual, 

negating the home range condition of “areas frequently used by an 

individual” as it contains all areas used, i.e. those used frequently and 

unfrequently. Lastly, a minimum convex polygon does not provide 

information of how animal positions are located inside the polygon, 

whether they are regularly distributed, clustered around a central 

location, or forming different small clusters in different locations. For 

these and other methodological issues, estimation of habitat use through 

minimum convex polygons was in time replaced by kernel density 

estimation (González-Solís et al. 2000; Wood et al. 2000). This 

probabilistic method provides a bivariate probability density function, 

the utilisation distribution (Winkle 1975), describing the probability of 

finding an individual at any location. From the utilisation distributions, 

the 95% contour was quickly adapted as indicator of the home range and 

the 50% contour as an indicator of the core use area. In spite of 
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representing an improvement over previous methods, kernel density 

estimation does not consider the spatial autocorrelation between 

consecutive points. There has been some debate regarding whether that 

constitutes an issue and skews space use estimation (e.g. Börger et al. 

2006), but kernel density estimation continues to be a widely used 

method to estimate space use in movement ecology (Diop et al. 2018; 

Trevail, Green, Sharples, Jeff A. Polton, et al. 2019). However, more 

sophisticated methods for calculating kernel density surfaces have been 

developed and applied to seabird tracking data more recently. 

Movement-based kernel density estimation can incorporate time, 

distance, and habitat into estimates of home range (Walter et al. 2015), 

and therefore, they are particularly suited to study movement paths such 

as migratory corridors (Tracey et al. 2014). Brownian bridge kernels can 

incorporate error in locations, and are thus very well suited to model 

unprecise location data such as that obtained from some satellite 

platforms (e.g., ARGOS) or from geolocators (Kranstauber 2019).  

All these ever-evolving techniques to study and represent space use 

employ individual data to scale up the behaviour of a few individuals to 

the level of population, or even species. However, this inference is not 

straightforward, as there are many biases and sources of variability that 

can greatly affect the results we extract at a higher level, and they should 

be considered from the first stages of study design. First, individuals 

from different colonies might respond differently to the environment or 

have different behaviours and spatial distributions (Young et al. 2009; 

Yamamoto et al. 2012), so we cannot assume that the conclusions 

gathered from a single colony can represent properly the entire 

population or species. Second, despite being based on individual 
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decisions, an animal’s use of space is linked to the optimal use of 

resources, and therefore, affected by the environmental dynamism (Wolf 

and Trillmich 2007). Consequently, the time scale within which we pool 

data must also be considered to avoid introducing spatial variability in 

distribution data (Dias et al. 2011; Paiva et al. 2013). Lastly, if tracks 

from individuals from different populations are available, before pooling 

all tracks together to infer population-level behaviours we should 

consider both colony size and sample size of each population in the 

modelling, to avoid biases due to different relative abundances and 

sampling effort (e.g., Fig. 5 in Ramos et al. 2013).  

1.4.3 The study of habitat use 

The study of habitat use in seabirds has also evolved since the first 

qualitative studies simply plotting seabird locations over maps of 

environmental variables (Cherel and Weimerskirch 1995). Such 

pioneering  studies divided environmental variables into categories and 

used hypothesis testing models (e.g. Mann-Whitney U-tests in Waugh et 

al. 1999) to demonstrate environmental preferences of individuals or 

populations. This approach rather oversimplifies the complex 

relationships of birds with their environment. The increasing quality and 

availability of both environmental and tracking data, as well as the 

improvement in computational power boosted the development of more 

complex models where space was discretised in regular cells and a value 

of one or zero corresponding to presence or absence of tracking data was 

assigned to each cell. Then, a Bernoulli distribution could be assigned to 

this data and used to model it in relation to values of environmental 

variables at each cell. If abundance information for each cell was 

available, instead of presence/absence, a Poisson distribution could be 
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used. In addition, the use of Generalised Linear Models allowed to make 

predictions in unsampled areas if the values of the environmental 

variables in those areas were known. Soon, generalised additive models 

were used to account for non-linear relationships between seabird 

abundance and environmental variables (Wakefield et al. 2012). From 

there, increasingly complex methods have been incorporated to model 

the relationship between seabird abundance/distribution and the 

environment, including approximations borrowed from the information 

theory framework (maximum entropy; Phillips et al. 2006, Elith et al. 

2011) or machine learning algorithms (Humphries et al. 2018).  

When choosing from the wide array of species distribution modelling 

techniques, it is important to consider what the most appropriate 

method is for the data we are modelling (Oppel et al. 2012; Quillfeldt et 

al. 2017), or even take advantage of the increasing current computational 

power to produce ensemble models that average predictions of different 

algorithms  minimising thus the biases introduced by each of them when 

used as stand-alone models (e.g. Pereira et al. 2018).  

Despite the rapid evolution of the species distribution modelling 

methodology, some issues remain to be addressed. Most of these 

methodologies involve the aggregation of data (animal presence and 

environmental information) into pre-defined cells. This makes these 

models scale-dependent, since results can vary depending on the choice 

of cell size (Renner and Warton 2013). In addition, we often lose 

information, since we can only model processes occurring at the scale of 

our cell sizes or larger. Another important methodological issue is that, 

in commonly used species distribution models, animal presence or 
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abundance at each cell is often related to the corresponding values of the 

environmental variables without considering their potential spatial 

autocorrelation (i.e. “everything is related to everything else, but near 

things are more related than distant things”; Tobler 1970). Thus, 

although used to model spatial distribution of species, such models are 

not truly spatial. 

Point pattern models are well known in statistical circles, but have been 

seldom used in the field of ecology because they are complex, 

computationally costly, and most of them have to be fitted in a Bayesian 

framework (Illian and Burslem 2017). However, they can model the 

distribution of points continuously, preserving the spatial correlation 

structure present in the data and avoiding the gridding of the data that 

inevitably causes loss of small-scale information. New statistical 

techniques developed for this type of models have made them easier to 

apply and less computationally costly, which make them now more 

approachable for ecologists (Illian and Burslem 2017). In fact, this type 

of truly spatial models have successfully been applied to Eulerian data 

(Paradinas et al. 2015; Soriano‐Redondo et al. 2019), and could 

eventually be adapted to model Lagrangian data.  

1.5 Uses of tracking data for conservation 

Tracking data can have effect on conservation at different levels, from 

pure scientific pursuits to short-time applied studies; first, through basic 

research which can add to the knowledge on species movements and 

behaviour, and in turn may have long term applications in conservation; 

second, by highlighting the transnationality of animal movement and 

thus the need for international agreements for management; third, 
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through the discovery of migratory pathways or abundance hotspots that 

might be of conservation concern and have an effect on population 

dynamics; and lastly, by providing information relevant to dynamic 

management, such as temporal closures or protection against bycatch in 

marine species (McGowan et al. 2017).  

Particularly in the marine environment, the main driver for developing 

tracking studies is the collection of distribution data otherwise difficult 

to obtain due the impracticality of survey techniques. Year-round 

tracking data has facilitated the study of migratory connectivity, 

providing insights into the drivers of population declines caused by non-

lethal carry over effects that impact the breeding success of the 

subsequent season (e.g. Bogdanova et al. 2017), or lethal anthropogenic 

impacts in the non-breeding distributions and migratory flyways (e.g. 

Sherley et al. 2017) 

1.6  Aims 

The main aims of this dissertation are to provide ecological insights into 

the at-sea distribution of marine top-predators year-round at a multi-

colony scale, and to develop methodological tools for the inference of 

animal distributions of populations and species from individual tracking 

data. Within this general aim, we pursued two specific objectives:  

(1)  To address the different sources of variability introduced by the use 

of individual tracking data in the inference of space and habitat use 

at a colony, multi-colony, population or species level  

o Providing tools to detect the existence of biases and variability 

introduced by different sampling efforts between individuals 
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and populations, and by temporal variability in the 

distributions of mobile species inferred from individual tracking 

data.  

o Demonstrating the applicability of spatially explicit, 

continuously indexed, point pattern models to individual 

tracking data 

(2)  To study the space and habitat use of pelagic seabirds at a multi-

colony level, its drivers, and implications   

o during the non-breeding season, for three closely related taxa of 

pelagic seabirds, tracked from several colonies across the entire 

breeding distribution, to ultimately understand their spatial 

and habitat segregation, as well as their migratory connectivity 

at colony, population and species levels,   

o during the breeding season, for three neighbouring colonies, to 

detect among-colony segregation and to ultimately understand 

the environmental and behavioural drivers of this segregation.  

(3)  To provide tools that confer robustness to studies using individual 

tracking data to define conservation and management strategies of 

mobile species.  

In the first chapter, we discuss the three main sources of variability in 

multi-colony tracking studies and provide tools to test the effect of these 

variabilities in the spatial distributions at a population level. we then 

test these tools in a multi-colony, multi-species dataset of year-round 

locations of three pelagic species of seabirds.  

In the second chapter, we use this multi-species dataset to study their 

non-breeding distribution from a multi-colony point of view, providing 
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evidences of migratory connectivity and among-species ecological 

segregation.  

In the third chapter, we apply, for the first time, a point pattern 

model within a Bayesian framework to a set of animal tracking data that 

provides a continuous-space approach, avoiding the need to aggregate 

the data in cells and, thus, the loss of information that comes with it. 

With this method, we detect spatial structure within the foraging 

distributions of birds breeding in three neighbouring colonies, providing 

robust insights into the ecological and behavioural drivers of these 

distributions.  
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2 

Detecting recurrent sources of 
variability in animal tracking 
studies 

 

2.1 Abstract 

Over the last decades, the study of animal movement through tracking 

data has grown exponentially, exceeding the expectations of researchers 

in the field of movement ecology. This has posed new challenges in the 

analysis process, specifically when inferring higher-level distributions (i.e. 

colony, population, species) from individual data. Sources of variability 

such as individual site fidelity, environmental stochasticity over time, 

and spatial variability in movement patterns must be considered, and 

their effects identified and corrected for, to produce accurate estimates 

of spatial distribution.  
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We developed a set of procedures to detect the effect of these three 

sources of variability in the distribution of groups of animals when 

inferred from individual tracking data. These procedures are applicable 

to any set of tracking data regardless of the species or tracking technique. 

We validated the applicability of the method on a data set containing 

1,346 year-round migratory trips from 805 individuals of three closely 

related seabird species breeding in 34 different colonies in the 

Mediterranean Sea and in the Atlantic Ocean, sampled during a 10-year 

period.  

Using our newly developed procedure we were able to demonstrate that 

there was no effect of individual site fidelity or environmental 

stochasticity on the at-sea distribution of birds for any of the three 

species we considered. We were also able to identify variability in the 

non-breeding distributions of birds from different colonies, with 

significant effects of the distance to the population’s centre, and of the 

latitude or longitude on the colonies’ representativeness at the species 

level.   

This work provides a useful and much-needed tool for researchers using 

animal tracking data to model species distributions or establish 

conservation measures. Accounting for these sources of variability has 

become essential in the context of the globalisation of science, where 

collaborations and tracking data repositories are making the analysis of 

very large data sets increasingly common.  



49 
 

2.2 Introduction 

Although movement is a widespread characteristic in the animal 

kingdom, the study of movement ecology had not flourished until 

recently, due to the scarcity of available data and difficulties in obtaining 

them (Dingle 1996). In the past decades, the advent of animal-borne 

tracking technology facilitated the acquisition of large amounts of 

individual movement data with increasing precision (Wilmers et al. 

2015). This boosted the development of long-term (Klaassen et al. 2014), 

metapopulation (Ferreras 2001), and even ecosystem-wide (Courbin et 

al. 2014) tracking studies. Such large data sets have outgrown the 

available analysis techniques and revealed sources of variability in the 

estimation of higher-level spatial distributions (i.e. colony, population, 

species) from individual movement data that are yet to be properly 

addressed (Gutowsky et al. 2015). 

There are numerous sources of variability when scaling-up from 

individual tracks to the space use of higher-level groups, and we must 

understand their origins and effects. Among the most important are: the 

presence of individual site fidelity (Spiegel et al. 2017), the temporal 

variability in environmental conditions (Paiva et al. 2013), and the 

spatial variability in the use of space (Frederiksen et al. 2012).  

Fidelity to a geographic area is a well-documented phenomenon, present 

in animal species from three phyla (Switzer 1993), and can be related to 

breeding or foraging behaviour, and to social interactions (Giuggioli and 

Bartumeus 2012). An individual shows fidelity to a site when, based on 

previous experience, it returns to the same area where it had bred 

successfully or found a favourable environment (Schmidt 2004). 
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Although most studies of individual site fidelity refer to the individuals’ 

return to the same breeding area (Baylis et al. 2015), site fidelity also 

occurs outside the breeding period (Robillard et al. 2018). Regardless, 

its effect must be considered when individual tracking data is used for 

inferring a population’s distribution, as it can bias results towards areas 

preferred by the more well-represented animals (Giuggioli and 

Bartumeus 2012; Lascelles et al. 2016).  

Temporal changes in environmental conditions play an important role 

in populations’ distributions. Despite being based on individual 

decisions, an animal’s use of space is linked to the optimal use of 

resources, and therefore, affected by environmental dynamism (Wolf and 

Trillmich 2007). Herds of nomadic herbivores, for instance, move 

following peaks in productivity of grasslands (Aikens et al. 2017), and 

specific route characteristics and non-breeding areas of migratory birds 

can be linked to changing environmental conditions (Dias et al. 2011).  

Failing to consider the entire breeding range of a species when it spans 

a heterogeneous environment can lead to underestimating the space use 

of the species. Individuals from different areas will be exposed to 

different environmental conditions or ecological pressures, and will thus 

exhibit a differential use of space. In fact, it has been shown that the 

size of the home ranges calculated using tracking data can be correlated 

to the size of the study area (Nekolny et al. 2017). Thus, maximising the 

extent of the sampled area as well as the number of animals tracked 

seems necessary to obtain precise space-use estimates (Börger et al. 

2006). In addition, in species with spatially-structured distributions, or 

in migratory species with non-overlapping distributions outside of the 
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breeding season, tracking individuals from only a few breeding 

populations could lead to an erroneous estimation of their non-breeding 

areas (Webster et al. 2002). 

Marine top predators are a particularly useful group to study these 

sources of variability in tracking data since they show geographically 

widespread distributions and diverse movement and migratory patterns 

(Yurkowski et al. 2018). Among them, Calonectris shearwaters are 

medium-sized Procellariformes that perform year-round, long-distance, 

and often trans-equatorial migrations (González-Solís et al. 2007), and 

show remarkable philopatry to the natal colony (Thibault 1994). Three 

of the four extant species breed on the Atlantic and Mediterranean 

coasts, and their non-breeding distributions are composed of discrete 

pelagic areas in the Atlantic and Indian Oceans (González-Solís et al., 

2007; Dias et al., 2011). All of these characteristics make them a suitable 

study group to investigate the effects of the aforementioned sources of 

variability.  

In this work, we aim to provide a set of tools to understand the effects 

that (a) individual site fidelity, (b) environmental variability and (c) the 

extent of sampling effort, have on the distributions of mobile species 

tracked using animal-borne devices, regardless of tracking method, 

habitat or characteristics of the species. To do so, we collated, for the 

first time, a data set of 1,346 year-round tracks from 805 individuals of 

three Calonectris shearwater species breeding in up to 34 colonies. This 

constitutes a robust and diverse data set and provides a relevant 

example to demonstrate the applicability of our method. 
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2.3 Methods  

We describe the procedures to test the effects of individual, temporal 

and spatial variation in a tracking data set. Our method is applicable to 

any set of animal tracking data, as long as it can be split into discrete 

bouts such as foraging trips, migratory cycles, or even days, weeks or 

years. We also provide an example using the non-breeding distributions 

of Calonectris shearwaters tracked with Global Location Sensors (GLS; 

Wilson, Ducamp, Rees, Culik, & Niekamp, 1992).  

2.3.1 Testing for individual site fidelity 

To detect the bias caused by individuals preferring certain areas, we 

propose a method that consists of obtaining an estimate of space use for 

each trip using the Kernel Density Estimate method (KDE, Worton, 

1989). Firstly, for every possible pair of trips regardless of the individual 

that performed them, it calculates their spatial overlap. We selected the 

Bhattacharyya affinity (Bhattacharyya 1943) since most ecologists are 

familiar with it, but the function allows the selection of any other method 

available in the kerneloverlap() function provided in the 

adehabitatHR package in R (Calenge 2006). This produces a square 

matrix containing values of overlap of all pairwise combinations of trips. 

Secondly, from the resulting matrix, the method selects all values 

corresponding to the overlap of two trips from different individuals, and 

groups them into a vector containing “between individual” values. All 

the values corresponding to the overlap of trips from the same individual 

are grouped into a vector of “within individual” values. Thirdly, the two 

vectors are compared through a bootstrap version of the Kolmogorov-

Smirnov (K-S) test (Abadie 2002), from the package Matching (Sekhon 
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2011), which is suitable for non-randomised samples and does not assume 

continuous distributions. The two vectors are indeed not independent, 

as the same trip that is part of a “within individual” overlap can be part 

of a “between individual” overlap. Moreover, the values are not 

continuous as they are restricted from 0 (absence of overlap) to 1 (full 

overlap) with many 0's in both vectors (many instances of no overlap), 

which would cause ties between them. As with the original K-S test, the 

bootstrap version does not assume a Gaussian distribution. Rejecting the 

null hypothesis means that “between individual” and “within individual” 

vectors are samples from different distributions, i.e. have different 

means, standard deviations, and overall shapes.  

2.3.2 Testing for temporal variability 

The aim of this test is not to understand why or how changes in 

distributions occur over time, but only to test for their existence. In the 

present example, we test variability among years, but the user can select 

the temporal unit. The existence of temporal variability can be detected 

with an approach that mimics that used to test the effect of individual 

site fidelity (see above): the aim is to check whether variability in 

individual space use within a year is the same as between years. The 

function is the same as above, but using year as a grouping variable; the 

“between group” values are overlaps of all pairs of trips from the different 

years, while the “within group” values are overlaps of all pairs of trips 

from the same year. In this way, the K-S tests whether “between year” 

overlaps have the same distribution as “within year” overlaps. Rejecting 

the null hypothesis means that the variability is different between 

compared to within years, proving the existence of a temporal effect in 

space use.  
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2.3.3 Testing for spatial differences 

We propose a method to test the representativeness of each spatial unit 

with respect to the entire species in spatially structured populations with 

large spatial ranges. In our example, we use breeding colonies (from now 

on colonies) as spatial units, but this would also apply to populations, 

sub-ranges, or arbitrarily delimited areas of the entire distribution. Our 

method works in two steps.  

In the first step, we generate a simulated distribution for the entire 

species. Since empirical tracking data will have biases related to 

differential sampling efforts and population sizes in all the colonies 

sampled, we first use the data to generate an unbiased simulation of the 

non-breeding distribution of the entire species, using the 

simulateDistribution() function (Table A1). It first calculates, for 

each colony, a colony level KDE by pooling all individual trips. It then 

generates random locations with a spatial distribution proportional to 

the KDE, and in a number that is proportional to the population size of 

the colony (Fig. A1). This is run for every colony and pools the random 

locations from all colonies to generate a simulated data set that mimics 

the non-breeding distribution of the entire species. 

In the second step, we calculate each colony’s representativeness of the 

entire species based on inclusion with the bootstrapColony() function. 

For each colony, it calculates, sequentially, the core areas (50% UDs) of 

an increasing number of trips and then calculates the percentage of 

locations from the simulated species distribution (generated with the 

simulateDistribution() function) that are included in those core 

areas. This is bootstrapped at each sample size. As the number of 
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selected trips increases, the percentage of inclusion increases as well, 

until it stabilises at a point when adding more trips to the data set no 

longer influences the spatial distribution. A non-linear regression model 

calculates the value of this asymptote, the inclusion value at which 

continuing to increase the sample size will not increase inclusion further 

(Fig. A2). We regard this value as the maximum inclusion value (MIV) 

possible for that colony. Because this MIV is calculated based on 50% 

UDs, it ranges between 0 and 0.5 (i.e. even if a sample represents the 

entire species correctly, its 50% UD will only include around 50% of the 

simulated locations). However, values higher than the UD percentage (in 

this case 50%) can occasionally occur, as the UD is calculated based on 

the locations of the colony, but the inclusion is calculated from the 

simulated locations of the entire species. The function then multiples the 

MIV obtained by 100, producing the value of “species 

representativeness”, defined as the percentage of points of the entire 

species that the 50% UD of the sampled colony includes.  

All the developed functions and their arguments are defined and 

explained in the supplementary material (Table A1), and the code can 

be found in Annex 2. 

2.3.4 Empirical application 

We demonstrate the use of these functions on a data set containing year-

round trips from Cory’s (Calonectris borealis), Scopoli’s (C. diomedea) 

and Cape Verde (C. edwardsii) shearwaters obtained between the 

summers of 2007 and 2016, from 34 breeding colonies (Table 3). 

Locations were obtained from GLS (R. P. Wilson, Ducamp, Rees, Culik, 

& Niekamp, 1992), which registers ambient light and provides one or 
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two positions per day deriving longitude from the time of twilight and 

latitude from the length of the light period. The data set contains 

individuals tracked for up to 8 consecutive years, which allows us to also 

test the effect of individual site fidelity. Details of GLS deployment for 

each of the colonies can be found in Table A2.  

2.3.4.1 Data preparation 

The twilight events were calculated from the raw light measurements 

(obtained from the GLS) and visually inspected and adjusted when 

necessary. The locations were obtained using either Intiproc® (Migrate 

Technology, 2012) or Biotrack® (Biotrack Ltd.) software, or the 

GeoLight package in R (Lisovski and Hahn 2012). We discarded 

position data from 20 days before and after each equinox, as latitudes 

cannot be correctly inferred from day length during these periods 

(Ekstrom 2004), and applied a quadratic speed filter following 

McConnell, Chambers, & Fedak (1992) to remove other highly 

inaccurate locations. Phenological states (migrating, breeding, 

wintering) were assigned using custom-made R routines and confirmed 

by visual inspection.  

2.3.4.2 Individual site fidelity 

To test the effect of individual site fidelity on non-breeding distributions, 

we selected, for each species, the colony where more individuals had been 

tracked repeatedly (Table A3). We ran the IndEffectTest() function 

for each colony, using individual as the grouping variable and following 

Lascelles et al. (2016), a Scale of 186 km, which corresponds to the 

average error of the GLS locations (Phillips et al. 2004). We obtained a 

P value for each of them, corresponding to the testing of the H0: the 
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values of “between individual” overlap have the same distribution as the 

values of “within individuals” overlap. We applied a threshold α value of 

0.05 to reject the H0.  

2.3.4.3 Temporal differences 

Since in our data set each of the trips corresponded to a year, and to 

avoid confounding inter-annual differences with individual site fidelity, 

we used a subset of the original data containing only one trip per 

individual, randomly selected but ensuring a similar sample size for each 

year. With the resulting data set (Table 3), we ran the 

IndEffectTest() test for each colony, using year as the grouping 

variable, and obtained a P value for each of them, corresponding to the 

testing of the H0: the values of “between years” overlap have the same 

distribution as the values of “within year” overlap. Again, we rejected 

this hypothesis at an α value of 0.05.  
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Table 3 

number of tracks obtained each year at the 13 colonies of Cory’s shearwaters, 19 colonies of Scopoli’s shearwaters 
and 2 colonies of Cape Verde shearwaters. The bottom row contains the total number of tracks obtained each year, 
and the end column the total number of tracks obtained from each colony. For Veneguera, Pantaleu and Curral 
Velho, in brackets, the number of tracks used for the inter-annual differences test 

Species 
Breeding 
Population 

Breeding 
Colony 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 Total 

Cory's  
shearwater 

East Azores Vila   15 9 30 8 3  4 3 72 

Central Azores 
Faial   8 5 10      23 

Graciosa   8 7 10      25 

Pico     15      15 
West Azores Corvo   6 2 2      10 

Iberian coast 
Berlenga 10     14    13 37 

Sisargas          2 2 
Chafarinas Chafarinas   5   4 2  5  16 
Terreros Terreros         1 1 2 

Canary Islands 
+ Selvagens 

Selvagem 30 28 40 50 43 28     219 

MontañaClara      18 12 15 11  56 

Timanfaya          15 15 

Veneguera  

27 
(12) 

28 
(12) 

27 
(12) 

44 
(15) 

61 
(14) 

31 
(13) 

18 
(10) 

44 
(14) 

29 
(15) 309 

Scopoli's 
shearwater 

Palomas Palomas         18 8 26 
Chafarinas Chafarinas   3   4 3  4 2 16 
Balearic Islands CalaMorell         10 13 23 
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NaForadada          6 6 

NaPobra          9 9 

Pantaleu    

28 
(10) 

26 
(10) 

24 
(10) 6 (6) 9 (8) 

10 
(7)  103 

France 
Porquerolles      7     7 

Riou      27     27 

Frioul      8     8 

Corsica and 
Sardinia 

Giraglia      24     24 

Lavezzi      18     18 

Sicilian Channel 

Filfla       5 7   12 

Malta     1   3  9 13 

Gozo     1  1 2   4 

Linosa    22 27 11 7 17 6  90 

Zembra         13 13 26 
Middle Adriatic Tremiti      7 1    8 
Strofades Strofades    3 2  2 2   9 
Aegean Sea Paximada         8 8 16 

Cape Verde 
shearwater 

Cape Verde 
CurralVelho 

13 
(6) 8 (4) 

11 
(5) 9 (4) 

10 
(5) 5 3 2 

10 
(6)  71 

  Raso 13 9 5 2       29 

    Total 66 72 129 164 221 268 76 75 144 131 1346 
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2.3.4.4. Spatial differences 

Before proceeding with the analysis, we tested the level of local 

representativeness of each colony sampled (Table 4) and selected only 

the colonies with a local representativeness value >80% (Lascelles et al., 

2016). With the remaining colonies, we simulated the distribution of each 

species using the simulatedDistribution() function. We obtained a 

set of simulated locations for each species (Table 4), which was used in 

the following step. Finally, we ran the bootstrap_Colony() function, 

which calculated the species representativeness value for each colony, i.e. 

a measure of how well individual space use for that colony represents 

space use by the entire species.  
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Table 4 

Sample size, local representativeness (in %), number of simulated locations and species representativeness for each colony. Colonies with a 
sample size < 4 or local representativeness < 80.0% (in italics) were considered non-representative and species representativeness was not 
calculated 

Species Population Colony Sample size 
Local 

representativenes  
Simulated 
locations 

Species 
representativeness 

Cory's  
shearwater 

East Azores Vila 71 92.4 79,990 50.9 
Central Azores Faial 22 89.8 57,130 40.3 

Graciosa 24 73.4  
Pico 14 67.0  

West Azores Corvo 9 68.4  
Iberian Coast Berlenga 36 95.7 9,800 39.7 

Sisargas 2  
Alboran Sea Chafarinas 10 77.8  

Terreros 2  
Canary Islands + 
Selvagens 

Selvagem 211 98.5 295,400 38.8 
Montaña Clara 55 94.8 113,750 30.5 
Timanfaya 14 86.2 19,500 21.2 
Veneguera 301 99.0 10,000 26.5 

Scopoli's 
shearwater 

Palomas Palomas 25 91.4 670 36.9 
Chafarinas Chafarinas 5 59.7  
Balearic Islands Cala Morell 22 90.9 10,000 49.5 

Na Foradada 5 56.7  
Na Pobra 8 62.4  
Pantaleu 101 97.5 2,100 49.8 

France Porquerolles 6 61.4  
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Riou 26 94.5 2,800 38.5 
Frioul 7 83.2 700 47.5 

Corsica and Sardinia Giraglia 23 96.3 380 36.0 
Lavezzi 17 93.9 3,000 35.2 

Sicilian Channel Filfla 11 85.0 2,000 47.0 
Malta 12 82.9 15,500 46.5 
Gozo 3 89.8  
Linosa 89 97.4 50,000 51.9 
Zembra 25 93.4 1,137,200 44.3 

Middle Adriatic Tremiti 7 71.3  
Strofades Strofades 8 88.3 69,250 31.3 
Aegean Sea Paximada 15 97.3 12,450 31.4 

Cape Verde 
shearwater 

East Cape Verde Curral Velho 70 99.4 330 49.5 
West Cape Verde Raso 28 97.9 19,599 51.0 
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To further understand possible causes and implications of any differences 

found in representativeness for Cory’s and Scopoli’s shearwater data, we 

used linear models (data from Cape Verde were excluded since we had 

data from only two colonies). To compensate for small sample size, we 

used a robust method to estimate standard errors, provided by the 

package jtools (Long 2019), which is more stable to the effects of highly 

leveraged points than the OLS method provided by the lm() function. 

(Cribari-Neto et al. 2007). Before running the models, we calculated a 

KDE of all known breeding locations for each species (Table A4), 

weighted by their colony size, and then calculated the centroid of the 

95% UD. We took this centroid as being the species centre of mass 

(species centre, hereafter). We calculated the straight-line distance of 

each colony to this species centre as a measure of how centric each colony 

is within the species' breeding range, to include it as a predictor in the 

model. For Scopoli’s shearwaters, we modelled the representativeness 

value against colony latitude and longitude (and their interaction), 

distance to the species centre, sample size, and colony size. Since sample 

size and colony size had a few extreme values, these variables were log-

transformed before being entered into the model. For Cory’s 

shearwaters, we could not include all variables in the full model since 

the number of colonies was smaller than the number of predictors, so we 

ran the full model without the interaction between latitude and 

longitude. For both species, we used variance inflated factor (VIF) 

values of the predictor variables and diagnostic plots to sequentially 

remove variables in order to improve model fit.  
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2.3.4.5 Non-breeding distributions of three species of Calonectris 

shearwaters 

To avoid biases due to different sample sizes from each colony, and due 

to different colony sizes, we used the following procedure for plotting 

distributions: for each colony, we followed the procedure from Lascelles 

et al. (2016) to obtain a rasterised distribution. We obtained 22 raster 

layers, 7 for Cory’s shearwater colonies, 13 for Scopoli’s shearwater 

colonies and 2 for Cape Verde shearwater colonies. We normalised them 

so the sum of all cell values equals one, and multiplied them by the 

corresponding colony size. Finally, for each species, we added them up 

to plot an accurate, unbiased representation of the distribution of the 

species. All analyses were performed in R (R Core Team 2019) version 

3.4.4. 

2.4 Results 

2.4.1 Individual site fidelity effect 

In general, the overlap among non-breeding distributions was much 

higher in Cape Verde shearwaters (equipped on Curral Velho) than in 

the other two species, but the comparison of “between individual” and 

“within individual” overlap values did not show statistically significant 

differences for any of them (Table 5; Fig. A3).  

2.4.2 Inter-annual differences in distribution 

Again, the highest values of overlap were observed in Cape Verde 

shearwaters, but the comparison of “between year” and “within year” 

overlap values showed no significant differences for any of the species 

(Table 5; Fig. A4). 
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Table 5    

Output from the individual site fidelity and year effect tests. For each species, 
median and interquartile ranges are provided, as well as the Kolmogorov-
Smirnov (K-S) statistic and the P value. 

 

 Between 
group overlap 

Within 
group 

overlap 
K-S test 

Mean SD Mean SD D 
P 

value 
Individual 
effect 

Cory's 
shearwater 

0.069 0.116 0.084 0.128 0.064 0.050 

Scopoli's 
shearwater 

0.087 0.144 0.094 0.161 0.074 0.980 

Cape Verde 
shearwater 

0.252 0.130 0.269 0.130 0.114 0.230 

Year 
effect 

Cory's 
shearwater 

0.065 0.115 0.065 0.117 0.014 1.000 

Scopoli's 
shearwater 

0.071 0.132 0.058 0.120 0.056 0.933 

Cape Verde 
shearwater 

0.251 0.132 0.232 0.132 0.107 0.579 

 

2.4.3 Spatial differences in species representativeness 

First, we ran the bootstrap() function from Lascelles et al. (2016) to 

test the representativeness of each sample at a local level. We excluded 

three of the 34 sampled colonies, which had less than four trips. From 

the 31 remaining colonies, we obtained values of local representativeness 

>80% in 22 of them (Table 4). With these, we proceeded to test their 

representativeness at a species level.  

We simulated non-breeding distributions from each breeding colony and 

obtained a data set that contained a total of more than 105 locations for 

Cory’s shearwaters, more than 106 for Scopoli’s shearwaters and more 

than 104 for Cape Verde shearwaters (Table 4).  
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With the colonyBootstrap() function we calculated how well 50% 

UDs of each colony represented the simulated distribution of related 

species. Values of representativeness for Cory’s shearwater colonies 

ranged between 21.2% and 40.3%; for Scopoli’s shearwater colonies from 

31.3% to 51.9%; and for Cape Verde shearwaters from 49.5% to 51.0% 

(Table 4). After running the full linear model for the Cory’s shearwater 

data we first removed longitude due to high VIF values indicating 

collinearity problems. The resulting model showed no collinearity issues, 

but none of the predictors had a significant effect. We dredged the model 

(function dredge() from the package MuMIn, Barton, 2018) and 

averaged all resulting models with ∆AIC < 2.0. The averaged model 

selected only latitude as a predictor, so we reran that model. The 

resulting model had an adjusted R2 of 0.478, and there was a small but 

significant effect of latitude on the representativeness value (Table 6; 

Fig. A5). For Scopoli’s shearwater, after running the full model we 

removed the interaction between latitude and longitude and the distance 

to the geographic centre, as they showed high VIF values. After 

confirming a poor fit of the model by visual inspection of residual plots, 

we also removed the latitude from the model predictors since colonies of 

this species are located along a West-East gradient, and the population 

size, since it is correlated to the distance to the species centre. The 

resulting model had an adjusted R2 of 0.387 (Table 6). Distance to the 

species centre had a small but significant effect on the 

representativeness, with a P value < 0.05 and 95% confidence intervals 

(CI) not overlapping 0 (Table 6; Fig. A5).  
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Table 6 
    

Main parameters from the models obtained from the selected generalised linear 
model. Continuous predictors are mean-centred and scaled by 1 SD. Effects 
with a P value < 0.05 or a CI not overlapping 0 are considered significant and 
highlighted in bold. A parameter of the goodness of fit (adjusted R2) is also 
shown 

Species Effect Estimate P value 95% CI 
Cory's 
shearwater 

Intercept 0.390 0.000 0.290, 0.418 
Latitude 0.075 0.028 0.012, 0.138 

Adjusted R2 0.478   
Scopoli's 
shearwater 

Intercept 0.409 0.000 0.337, 0.442 
Longitude -0.031 0.102 -0.069, 0.007 

Distance to 
species centre -0.041 0.015 -0.072, -0.010 

Sample size -0.027 0.152 -0.012, 0.065 

Adjusted R2 0.387   
 

2.4.4 Non-breeding distributions of three species of Calonectris 

shearwaters 

Tests for individual site fidelity and temporal variability showed they 

had no effect in our data, so we used all tracks from all the individuals, 

and data from all years together, to plot the non-breeding distribution 

of each species. We also plotted, for every species, the non-breeding 

distribution of each of the main breeding areas, to compare them to the 

distribution of the entire species. For Cory’s shearwaters globally, the 

main non-breeding area was off the coast of South Africa, at the 

confluence between the Agulhas and Benguela currents and the Agulhas 

current retroflection (Fig. 3a and A6). In single-area distributions, 

however, we observed that the main non-breeding area for animals 

breeding in the Azores was the Agulhas retroflection, with secondary 

areas in the North and South Central Atlantic (Fig. 3b); for Iberian 
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coast animals the main non-breeding area was the confluence between 

the Agulhas and Benguela currents (Fig. 3c); and for animals from the 

Canary Islands and Selvagens, the main non-breeding area was the 

southern Benguela current, with the Canary current, off the coast of 

Western Sahara and Senegal, as a secondary area (Fig. 3d). For Scopoli’s 

shearwaters, the main non-breeding area was the Canary Current (Fig. 

4a), but the distribution of non-breeding birds changed if we considered 

only animals from the eastern, central, or western colonies (Fig. 4b, 4c 

and 4d). The only non-breeding area of Cape Verde shearwaters was off 

the southern coast of Brazil (Fig. 5). 
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Figure 3 

Non-breeding distributions of Cory’s shearwaters corrected for sample 
effort and weighted by population size. Using data from all representative 
colonies pooled together to represent the species' non-breeding distribution 
(a), and using data only from the representative colonies in (b) Azores, (c) 
the Iberian coast, and (d) Canary Islands and Selvagens. Pink diamonds 
in (a) show the location of all sampled colonies. In (b), (c) and (d), pink 
diamonds show representative colonies for each population. Scales show the 
number of individuals per 0.1*0.1º cell. 
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Figure 4 

Non-breeding distributions of Scopoli’s shearwaters corrected for sample 
effort and weighted by population size. Using data from all representative 
colonies pooled together to represent the species' non-breeding distribution 
(a), and using data only from the representative colonies in (b) the eastern 
Mediterranean, (c) central Mediterranean, and (d) the western 
Mediterranean. Pink diamonds in (a) show the location of all sampled 
colonies. In (b), (c) and (d), pink diamonds show representative colonies 
for each population. Scales show the number of individuals per 0.1*0.1º 
cell. 
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Figure 5  

Non-breeding distributions of Cape Verde shearwaters corrected for sample 
effort and weighted by population size. Using data from all representative 
colonies pooled together to represent the species' non-breeding distribution 
(a), and using data only from the representative colonies in (b) eastern 
Cape Verde and (c) western Cape Verde. Pink diamonds in (a) show the 
location of all sampled colonies. In (b) and (c), pink diamonds show 
representative colonies for each population. Scales show the number of 
individuals per 0.1*0.1º cell.  
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2.5 Discussion 

In this study, we provide a workflow to test the effect of three major 

sources of variability in spatial studies at the species level (individual 

site fidelity, temporal variability, and spatial variability), potentially 

applicable to a wide variety of tracking data sets. The individual site 

fidelity test is useful for data sets with uneven amounts of data for each 

individual. It gives an idea of how much individual site fidelity affects 

the distribution at a population level. It should be noted that the lack 

of an effect does not mean that individuals do not show site fidelity. For 

example, in populations where all animals use the same areas, it would 

be possible to not detect a significant effect of individual site fidelity 

since overlaps are equally high in between- and within-individual 

comparisons. 

The test for inter-annual differences gives a measure of distribution 

variation at the population level. We would expect this test to find a 

significant effect of temporal variability in adaptable species that live in 

predictable environments. Resilient species, or those that live in 

relatively constant environments, would have the same distributions 

year after year, resulting in non-significant effects of temporal variability 

on the distributions.  

The representativeness test calculates how well a population represents 

the entire species distribution. The drawback of this function is that it 

requires a good knowledge of the population distribution to generate a 

simulated location data set against which we can compare our real 

location data. In spatially structured populations, we would expect the 

representativeness value to be low for any of the sub-populations tested. 
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Conversely, in unstructured populations, or in migratory species with 

very low migratory connectivity (i.e., that mix in common non-breeding 

areas), we would expect the representativeness to be relatively high and 

similar for most colonies.  

The application of the proposed method to our data set allowed us to 

demonstrate that there is no effect of individual site fidelity or temporal 

variability in the distributions of any of the three species studied, while 

the level of population representativeness was relatively high, but 

variable, for all 22 breeding colonies that we tested.  

Overlap values were higher in Cape Verde shearwaters than in the other 

two species, as we expected since this species has only one wintering 

area. Neither between nor within group overlaps differed significantly in 

any of the species. Concordantly, evidence suggested a lack of individual 

consistency in the use of foraging areas during breeding and in several 

migratory and non-breeding parameters for both Cory’s and Scopoli’s 

shearwaters (Dias et al., 2011; Müller, Massa, Phillips, & Dell’Omo, 

2014; Courbin et al., 2018, but see Navarro & González-Solís, 2009). At 

a population level, there are studies reporting inter-annual consistency 

in non-breeding distribution and migration phenology of seabirds (Müller 

et al. 2014; Legrand et al. 2016), and our results agreed with these 

findings, showing that between- and within-year overlaps in space use 

were not significantly different for any of the three species.  

In our example with these three phylogenetically close species that share 

non-breeding areas, we indeed found that the species with a most 

restricted breeding and non-breeding distributions (Cape Verde 

shearwater) had the highest representative values. Conversely, the 
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species with more structured breeding distributions, that also spend the 

non-breeding period in several discrete areas, showed the lowest 

representativeness values. For Cory’s shearwaters, the 

representativeness increased with latitude, but the effect of the 

relationship was small. This small effect was probably a by-product of 

the fact that the northernmost colonies in the Azores archipelago hold 

ca. 65% of the estimated world population of the species (Fontaine et al. 

2011). For Scopoli’s shearwaters, representativeness was negatively 

affected by distance to the species centre, showing that colonies closer 

to the centre of mass of the breeding distribution were more 

representative of the entire species. Although the relationship with 

longitude was not significant, we found that birds breeding in the 

easternmost colonies used the northernmost non-breeding areas 

preferentially. This was likely due to the fact that they had to travel 

longer distances to reach any of the non-breeding areas, which made 

their use of the southernmost non-breeding locations less likely (Ramos 

2019). 

These findings have implications for conservation studies. When the aim 

is to define areas where the studied species is most abundant, it would 

be more convenient to concentrate sampling efforts in colonies or 

breeding areas near the centre of mass of the population. However, when 

the aim is to define the entire distribution of a species, i.e. any region in 

which an individual from the studied species can be found, a sampling 

strategy including colonies or areas throughout the range of the species 

would be more appropriate.  

Collaborative data sets, meta-population studies and their applications 
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to predicting distributions of animals from unsampled areas (e.g. 

Wakefield et al., 2017; Péron, Authier, & Grémillet, 2018) and to 

informing conservation and management policies (Hays et al. 2019) are 

becoming common-place in the current scientific context. Thus, 

accounting for these sources of variability has become essential. Our 

method aims to provide an objective protocol for the detection of three 

of the main sources of variability that can be used by movement 

ecologists working with a wide diversity of tracking data types.  
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3 

Migratory connectivity and non-
breeding habitat segregation across 
geographical scales in three closely 
related seabird taxa 

 

3.1 Abstract 

In migratory species, migratory connectivity has relevant consequences 

in population dynamics, conservation and management, and even genetic 

mixing. In colonially breeding species, where the spatial structure is an 

important trait of their populations, a strong migratory connectivity (i.e. 

the spatial structure of the breeding population is maintained during the 

non-breeding period) can promote isolation and ecological divergence 

between populations which, ultimately, can affect the process of lineage 

segregation. Studying the differences in habitat use and environmental 

preferences among colonies, populations, or taxa, can improve our 
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understanding of the ecological segregation among them, and provide 

insights into the geographical structure of a species. We studied the non-

breeding ecological niche and migratory connectivity of 805 birds 

breeding in 34 different colonies of the three Atlantic and Mediterranean 

Calonectris seabird taxa to understand at what geographical scales 

migratory connectivity, wintering habitat segregation, and differences in 

environmental preferences emerge. We calculated the migratory 

connectivity, and modelled their non-breeding ecological niches, at a 

taxa, population, and colony level. At a taxa level, we found a clear 

spatial segregation of non-breeding distributions between Cory’s (C. 

borealis) and Scopoli’s (C. diomedea) shearwaters, and a clear ecological 

segregation between Cory’s and Cape Verde (C. edwardsii) shearwaters. 

At a population level, we found some structure in the migratory 

connectivity and non-breeding environmental preferences that was not 

maintained at a colony level. Our results provide evidences of non-

breeding spatial segregation of Scopoli’s shearwaters non-breeding area 

and that of the other two taxa, and of different environmental 

preferences among Cory’s and Cape Verde shearwaters, despite sharing 

non-breeding grounds. In addition, the presence of migratory 

connectivity at a population level, but not at a colony level, suggests 

that birds from nearby colonies mix in the non-breeding areas among 

them, but not with birds from different populations, which has 

important implications not only for population dynamics but also for 

conservation and management.  
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3.2 Introduction 

Migratory connectivity, or the link between breeding and non-breeding 

distributions in migratory populations, has relevant consequences, 

among others, for individual fitness, population dynamics and genetic 

mixing, as well as for conservation and management (Bauer et al. 2016; 

Finch et al. 2017). Understood as the preservation of the spatial 

structure between the breeding and non-breeding distribution of a 

species, it is usually classified along a continuum from weak to strong 

(Webster et al. 2002). Weak migratory connectivity occurs when the 

geographic structure of populations in the breeding grounds is not 

maintained in the non-breeding grounds (i.e. animals from different 

breeding populations mix during non-breeding periods), while strong 

migratory connectivity occurs when the geographic structure in the non-

breeding grounds mirrors that of the breeding grounds (i.e. animals that 

breed closer to each other also spend the non-breeding period closer to 

each other, and farther from others, Finch et al. 2017). In species with 

weak migratory connectivity there are more opportunities for encounters 

between animals from different breeding populations in the non-breeding 

grounds, which can facilitate a potential change in breeding location, 

potentially leading to gene flow among populations or even hybridization 

and introgression (Tigano et al. 2015; Quillfeldt et al. 2017). Conversely, 

in species with strong migratory connectivity, the opportunities for 

encounters between animals of different populations are reduced, and 

thus the population genetic structure may be stronger (Burg and Croxall 

2001).  
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In colonially breeding species, such as most seabirds, the biogeographical 

structure of their populations can promote the process of ecological 

divergence (Matthiopoulos et al. 2005). In these species of high flying 

capacity, the geographic structure (spatially isolated patches of suitable 

habitat in a continuum of unsuitable habitat, Hanski and Gilpin 1997) 

is mostly maintained by behavioural traits, such as philopatry or 

breeding site fidelity, rather than by distance or physical barriers 

(Matthiopoulos et al. 2005; Friesen et al. 2007). However, in migratory 

species, these behavioural barriers disappear during the non-breeding 

period, when individuals are no longer tethered to the colony by breeding 

duties. This allows them to either disperse randomly without specified 

non-breeding distributions, or migrate to specific non-breeding areas that 

might or might not be shared among colonies, which adds further 

complexity to their population structure (Esler 2000; Friesen 2015).  

In this context, modelling the non-breeding ecological niche of seabirds 

and analysing at what biogeographic scales (i.e. colony, population and 

taxon) connectivity patterns occurs is essential to understand the scale 

of ecological divergence and, ultimately, to provide evidence of lineage 

separation and management units (Raxworthy et al. 2007). This can be 

particularly insightful when dealing with closely related taxa with 

incomplete lineage separation, i.e. when  morphological divergence is 

subtle, reproductive isolation is not absolute or genetic differentiation is 

still small (Rissler and Apodaca 2007; Fišer et al. 2018). This is the case 

of the Calonectris complex, a group of four taxa of pelagic seabirds 

breeding colonially in islands and islets in subtropical waters of the 

Northern Hemisphere (Warham 1996). Three of them have a parapatric 

breeding distribution spanning the North-eastern coast of the Atlantic 
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Ocean, and the Mediterranean Sea, and spend the non-breeding season 

in several discrete areas of the Atlantic and Indian Oceans, with different 

degrees of inter-specific mixing (Reyes-González et al. 2017). Of these 

three, the Cape Verde shearwater (C. edwardsii; CALEDW) diverged 

between 7,000 and 9,000 years ago (Gómez-Díaz et al. 2006), and is 

consensually regarded as a full species (Hazevoet 1995). Cory’s (C. 

borealis; CALBOR) and Scopoli’s (C. diomedea; CALDIO) shearwaters 

have only recently been recognised as separate species (Sangster et al. 

2012), and there is still debate as to whether they should be considered 

as such (Genovart et al. 2013). Despite their mainly parapatric breeding 

distribution, there is a small region around the strait of Gibraltar where 

CALBOR and CALDIO breed in sympatry, with colonies of both taxa 

at a very short distance and even a mixed colony where there have been 

reports of mixed pairs (Gómez-Díaz et al. 2006; Zidat et al. 2017). These 

characteristics make them a unique group to study ecological divergence 

through the analyses of non-breeding distributions and migratory 

connectivity at different hierarchical levels (colony, population, and 

taxon).  

For this work, we have collated a dataset of 1,346 year-round tracks of 

805 birds from these three Calonectris taxa, breeding in 34 different 

colonies spread along the Mediterranean and Atlantic basins that will 

allow us to explore the degree of non-breeding ecological niche 

segregation at different biogeographic scales (i.e. colony, population, 

species/taxon). Differentiation of migratory strategies and segregation in 

habitat and ecological niche should help us detect ecological divergence 

among populations or taxa. First, we expect to find low level of non-

breeding segregation and low migratory connectivity among breeding 
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populations of the same taxon, but high level of segregation and high 

migratory connectivity among different taxa. Second, studying the 

environmental preferences at an intra-taxon and inter-taxa levels, we 

expect higher ecological segregation of the non-breeding ground among 

different taxa than among populations of a given taxon.  

3.3 Methods 

3.3.1 Studied taxa and sampling design 

Calonectris shearwaters are medium-sized Procellariforms, with long life 

span, high reproductive investment and low reproductive output 

(Navarro and González-Solís 2007; Ramos et al. 2012), strongly 

philopatric, and faithful to the breeding colonies (Mougin et al. 1999). 

Females lay a single egg per season, and incubation and chick-rearing 

duties are shared by both parents (Thibault et al. 1997; Granadeiro et 

al. 2006). CALBOR breeds mainly on Macaronesian islands (except Cape 

Verde) and off the West coast of the Iberian Peninsula and spends the 

non-breeding season in different areas of the Atlantic and Indian Oceans, 

off the coasts of Africa and South America as well as two oceanic areas 

of the Atlantic, one below the Labrador Peninsula and another in the 

South Atlantic over the mid-oceanic ridge (González-Solís et al. 2007; 

Dias et al. 2011). CALDIO breeds inside the Mediterranean and spends 

the non-breeding season in the Atlantic Ocean off the West coast of 

Africa and East coast of South America (see Figures X1, X2 and X3 in 

Chapter 1), and CALEDW breeds in the Cape Verde islands and spends 

the non-breeding season off the East coast of South America (Birdlife 

International 2019). The three taxa have similar phenology, arriving at 

the colonies for breeding in late February – early March. Laying occurs 
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around the second half of May, and the hatching period is around mid 

to late July. In late October or early November, chicks fledge and 

abandon the colony, not to return to breed until they reach about 6 

years of age (Thibault et al. 1997; Warham 1997; Granadeiro et al. 1999; 

Mougin et al. 2000; Paiva et al. 2015).  

Our dataset comprises year-round at-sea positions of adult birds 

breeding in 13 CALBOR colonies, 19 CALDIO colonies, and two 

CALEDW colonies, representing the entire breeding distribution of the 

three taxa, and obtained between the summers of 2006 and 2016 (Fig. 

6).  

3.3.2 Tracking data 

Positions were obtained with Global Location Sensors (GLS; Wilson et 

al. 1992), which provide one or two positions per day, using daylight to 

calculate longitude from the time of twilight and latitude from the length 

of the day (light period). Detailed deployment information for each 

colony can be found in Table A2. Twilight events calculated from the 

light measurements were visually inspected and corrected when 

interferences near the twilights were detected. Locations were obtained 

from the light data using either Intiproc® (Migrate Technology Ltd.) 

or Biotrack® (Biotrack Ltd.) software, or the GeoLight package in R 

(Lisovski and Hahn 2012). To eliminate biases due to incorrect latitude 

estimations during or near equinoxes (Ekstrom 2004) we removed 

position data from 20 days before and after the equinoxes. In addition, 

we removed unrealistic positions by applying a quadratic speed filter 

following McConnell et al. (1992). 
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We visually inspected tracks to assign a phenological state to each 

position. Based on the distance between consecutive positions and 

directionality of movement we classified periods as “residency” when for 

at least four days the distance between consecutive positions was short 

and the movement non-directional. The residency periods during the 

breeding season and around the breeding colonies were classified as 

breeding. The residency periods outside the breeding season were 

classified as main non-breeding (the longest) and staging (the rest of 

them). Movement periods (long distances between consecutive locations 

and directionality) were classified as migration. For our analysis we used 

only residency periods during non-breeding. Since our dataset contains 

individuals tracked for up to eight consecutive years, and along a 10-

year period, we followed the methodology developed in Chapter 1 to 

check for the effect of individual site fidelity and temporal variability in 

the spatial distribution of each of the taxa.  

3.3.3 Migratory connectivity 

We divided the non-breeding distribution of the individuals using the 

Marine Ecoregions Of the World system (Spalding et al. 2007). These 

Figure 6 (previous page)  

Breeding distribution and potential non-breeding areas of the three 
Calonectris shearwaters studied: a) known breeding locations of Cory’s 
shearwaters (in blue), Scopoli’s shearwaters (in orange) and Cape Verde 
shearwaters (in purple). The size of the coloured circle is proportional to 
the breeding population estimated for each colony (not linearly) and the 
colonies with black full circles inside are the ones where we have tracked 
birds. Notice that a mixed colony of CALBOR and CALDIO occurs in 
Chafarinas Islands, in the area of the Strait of Gibraltar. The black, 
continuous line represents the Almería – Orán oceanographic front 
(AOOF). b) Non-breeding areas of the three Palearctic Calonectris species 
as used for the analyses of this work. Adapted from Spalding et al. 2007; 
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regions extend only to 200 nautical miles offshore or to the 200-m isobath 

(whichever occurs first). Since Calonectris shearwaters can spend the 

non-breeding season farther from the coast, we extended these areas 

offshore to include most of the non-breeding positions but maintaining 

the limits between regions (Fig. 6). In addition, since this division does 

not include offshore areas, but some adult shearwaters do spend their 

non-breeding periods in the middle of the Atlantic Ocean, we generated 

three areas de novo: North Atlantic (55º W – 19º W, 30º N – 21º N), 

Equatorial Atlantic (52º W – 0º W, 6º S – 20º N), and central South 

Atlantic (46º W – 6º W, 48º S – 30º S; Fig. 6). To assign a non-breeding 

region to each individual trip we calculated, with the package 

adehabitatHR (Calenge 2011), the 5% kernel density utilisation 

distribution (UD, Worton 1989) of the non-breeding positions and 

assigned as non-breeding region the one occupied by the centroid of this 

kernel.  

To group the breeding colonies of each taxon in populations, we created 

a buffer of 100 km around each colony, sampled and un-sampled (Table 

A4) using the function gBuffer() (package rgeos, Bivand and Rundel 

2019). and considered those colonies whose buffers overlapped as one 

population.  

We estimated the migratory connectivity following Cohen et al. (2017), 

which improves on the classical migratory connectivity method 

(Ambrosini et al. 2009). The method uses transition probabilities 

between specific breeding and non-breeding sites and can consider 

uneven sampling and different abundances. The resulting Migratory 

Connectivity value (MC) can take values between -1 and 1. MC close to 

1 indicates that populations that breed close-by also spend the non-
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breeding period close-by (strong migratory connectivity); MC close to -

1 indicates that populations that breed close together spend the non-

breeding period farther apart and MC close to 0 indicates that the 

relationship between breeding and non-breeding distances is no different 

from what expected at random (weak migratory connectivity). We 

calculated MC for each taxon taking first colony and then population 

(defined as all colonies with overlapping 100 km buffers, see above) as 

breeding sites, and then taking taxon as the breeding site. MC estimates 

are reported as median values (95% confidence interval, CI) along the 

manuscript. The functions developed by Cohen et al. (2017) are 

implemented in the package MigConnectivity (Hostetler and Hallworth 

2018). We used the function estMC(), designed to estimate the value of 

MC taking into account differences in population size among origins, 

different sampling efforts, and the position error associated to the GLS 

data, with estimates of bias and variance obtained from modelling 

ground-truthing GLS data. For each combination of origin (breeding 

site) and destination (non-breeding site) we ran the estMC() function 

with 1,000 simulations (value recommended for GLS data) and 1,000 

samples, with a number of maximum tries of 300 (more details can be 

obtained in Cohen et al. 2017).  

To visually represent the migratory connectivity we constructed circular 

plots with the package circlize (Gu et al. 2014). To accurately represent 

how breeding and non-breeding distributions are connected, the widths 

of the sectors were calculated to be proportional to the population size, 

and the width of the links to be proportional to the number of individuals 

going from each origin to each destination, corrected by origin 

population size and sampling effort. 
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3.3.4 Environmental data and ecological niche modelling 

To model the habitat preferences of shearwaters we considered 

environmental variables known to affect seabird distributions (Wakefield 

et al. 2009; Louzao et al. 2011). Sources of the environmental variables, 

units, and processing details can be found in Table 7. After checking 

pairwise correlations between all covariates, bathymetry (m, BAT) and 

sea floor slope (%, SLO) were included as static variables, and 

chlorophyll-A concentration (mg·m-3, CHLA), CHLA temporal 

variability (mg·m-3, CHLA_var), sea surface temperature (ºC, SST), 

SST spatial gradient (%, SST_grad), and salinity (g·kg-1, SAL) were 

included as dynamic environmental variables. Latitude and longitude 

were also included as variables to capture the spatial structure of the 

data and avoid the effects of spatial autocorrelation (Segurado et al. 

2006). All environmental variables were scaled to have mean zero and 

standard deviation of one before entering the models, and the CHLA 

was back transformed after the analysis to retrieve original values. 
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Table 7      
Environmental variables used as predictors in the ensemble models, their resolution, processing to final product and source 
where they were obtained. The variables retained after checking Spearman correlations are highlighted in bold. 

Variable Units 
Original 
resolution 

Final 
resolution Processing  Source 

Bathymetry m 1 arcmin 0.5º 
 

doi:10.7289/V5C8276M 
Slope rad 1 arcmin 0.5º Calculated with raster::terrain   
ChlA 
concentration 

mg·m-3 4 km 0.5º log transformed to normalize 
values 

https://bit.ly/2mqYiN9 

ChlA gradient mad 4 km  0.5º Calculated with raster::terrain   
ChlA  temporal 
variability 

% 4 km 0.5º  𝑚𝑚𝑚𝑚𝑚𝑚(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)−𝑚𝑚𝑚𝑚𝑚𝑚(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)
𝑚𝑚𝑚𝑚𝑚𝑚(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)

× 100 Oppel et al. 2012 

Sea surface 
temperature 

ºC 1/12º  0.5º 
 

https://bit.ly/2mpaldQ 

SST Gradient ºC 1/12º  0.5º Calculated with raster::terrain   
Salinity PSU 1/12º   0.5º   https://bit.ly/2mpaldQ 
SS Height  m 1/12º  0.5º   https://bit.ly/2mpaldQ 
Ekman transport 
intensity 

m·s-1 0.25º  0.5º   doi:10.1002/2014GL0617
73 

Mixed Layer 
Thickness  

m 1/12º 0.5º Calculated from ChlA gradient https://bit.ly/2mpaldQ 

Net Primary 
Productivity  

mg·m-

3·day-1 
0.25º  0.5º   https://bit.ly/2lZmiqt 

Phytoplancton 
concentration 

Mmol·m-

3 
0.25º 0.5º  https://bit.ly/2lZmiqt 
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Habitat preferences were evaluated through ensemble species 

distribution models (Marmion et al. 2009; Thuiller et al. 2009) using the 

function ensemble_modelling() from the package SSDM (Schmitt et al. 

2017). Due to different sampling efforts, the numbers of at-sea locations 

for each colony in our dataset were not proportional to the respective 

colony sizes. For all models except at colony level, to ensure our at-sea 

locations data accurately represented the real proportions of birds from 

each colony found at sea, we simulated a number of non-breeding 

locations proportional to colony size using the locations obtained from 

the GLS data of each colony (following the methodology developed in 

Chapter 1). From this process we obtained a set of non-breeding 

simulated locations for each of the colonies of the three taxa. We 

modelled the non-breeding distributions at four different levels: we 

performed 25 models at a colony level (nine CALBOR colonies, 14 

CALDIO colonies, and two CALEDW colonies); 17 models at a 

population level (seven CALBOR populations, eight CALDIO 

populations, and two CALEDW populations) pooling the non-breeding 

simulated data of the corresponding colonies; three models at a taxon 

level (CALBOR, CALDIO and CALEDW) pooling the non-breeding 

simulated data of all the colonies within each taxon; and one model at a 

supra-taxon level (the three taxa together) pooling the simulated non-

breeding distributions of all the colonies. For each of these models we 

selected 2,000 presence data points from that pooled dataset, to speed 

up computation and to avoid differences in model fit caused by different 

number of presences (i.e. the models at a taxa or supra-taxa level would 

have more presences than any of the models at a population level). To 

perform this selection randomly we used the function rthin() from the 
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package spatstat (Baddeley et al. 2015). The function performs 

independent random thinning, producing a point pattern with the same 

relative density as the original one but a smaller number of points. These 

2,000 randomly selected presences were the ones used to perform each of 

the environmental niche models.  

To generate the ensemble models, from all the available modelling 

algorithms, we excluded generalised linear models because it has been 

reported to perform poorly with spatially structured data (Segurado et 

al. 2006). Thus, we used generalised additive models, multivariate 

regression splines, generalised boosted regressions models, classification 

tree analyses, random forests, maximum entropy, artificial neural 

networks, and support vector machines. Each model was validated by 

holdout cross-validation, using 70% of the dataset as training data, and 

we ran every algorithm 5 times and selected the best model from each 

of them. The participation of each algorithm to the final ensemble model 

was weighted by its AUC (Area Under the Curve, Fielding and Bell 

1997) value, and only models with AUC > 0.80 were selected for the 

ensemble (except in the supra-taxon level model, where the AUC 

threshold to include models in the ensemble had to be lowered to 0.7 

since no model had an AUC > 0.8). Variable importance was calculated 

as the score (1-r)·100 where r is the Pearson correlation of the full model 

prediction and the prediction of the model without the evaluated 

variable. Thus, the higher the value the more important the variable is 

for the model.  

To measure similarity between non-breeding habitats of colonies within 

each taxa, (CALBOR and CALDIO, we excluded CALEDW because 

there are only two sampled colonies), we calculated pairwise Pearson 
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correlations between all possible pairs of model projections, as well as 

distances among colonies. We then used linear models (lm() function in 

R) to calculate the relationship among pairwise distances between 

colonies and pairwise Pearson correlations between corresponding model 

projections. All analyses were performed in R (version 3.6.0, R Core 

Team 2019)  

3.4 Results 

3.4.1 Migratory connectivity 

Table 8    
MC values (median and 95% CI) estimated at a species level (for the three 
taxa together), and at a population and colony levels for each species. For 
Cape Verde shearwater there is only analysis at a colony level because the 
two studied colonies belong to the same population.  
Aggregation level Species Median  (95% CI) 
Taxon 
 

CALBOR 
CALDIO 
CALEDW 

0.455 
 

(0.418 – 0.494)  
 

Population CALBOR 0.186 (0.097 – 0.375) 
Population CALDIO 0.318 (0.246 – 0.496) 
Colony CALBOR 0.045 (0.006 – 0.101) 
Colony CALDIO 0.062 (0.022 – 0.161) 
Colony CALEDW 0.006 (-0.006 – 0.040) 
    
Firstly, we estimated the migratory connectivity (MC) at a taxon level, 

i.e., grouping all individuals by taxon and estimating the migratory 

connectivity taking the three taxa as the three only possible origins, and 

all the non-breeding regions as possible destinations. From the 17 non-

breeding regions available, CALBOR used a total of 15, of which it 

shares nine with either of the other two taxa (60.0%). CALDIO used a 

total of nine, of which seven were shared with at least one of the other 

two taxa (77.8%) and CALEDW shearwaters used a total of three non-
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breeding regions, all of them shared (Fig. 7). Overall MC was 0.45 (0.42 

– 0.49; Table 8 & Fig. A7). 

 

Figure 7. 

Circular plot showing the links between each taxon (top half) and non-breeding area 
(bottom half). The widths of the sectors and links are proportional to the number of 
individuals from each taxon travelling to each of the non-breeding areas, after correcting 
for the different sampling effort in each colony and accounting for different population 
sizes. 

Non-breeding areas: (1) Eastern Brazil, (2) Northern Brazil current – South-eastern 
Brazil, (3) South Brazil current, (4) Uruguay – Buenos Aires shelf, (5) Patagonian shelf, 
(6) North Atlantic, (7) Central-southern Atlantic (8) Agulhas current, (9) Agulhas – 
Benguela confluence, (10) Namaqua, (11) Namib, (12) Angolan current, (13) Central gulf 
of Guinea, (14) West gulf of Guinea, (15) Equatorial Atlantic, (16) Sahelian upwelling 
and (17) Saharan upwelling. 
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Within CALBOR, MC was 0.19 (0.10 – 0.37) at a population level and 

0.04 (0.01 – 0.10) at a colony level (Table 8 & Fig. A7). Birds from the 

colony of Veneguera (West Canary Islands), Montaña Clara (East 

Canary Islands) and Selvagem (Salvages Islands) used most of the non-

breeding regions (13, 12 and 12, respectively, out of 17). The Namaqua 

coast and the Agulhas – Benguela confluence non-breeding regions were 

used by all colonies from all populations, while the central coast of the 

Gulf of Guinea was only used by birds from Chafarinas (Fig. 8).  

Within CALDIO, MC was 0.32 (0.25 – 0.50) at a population level and 

0.06 (0.02 – 0.16) at a colony level (Table 8 & Fig. A7). The colonies of 

Pantaleu (Balearic Islands) and Palomas (South-east Spain) used most 

of the non-breeding areas (seven and eight, respectively), while 

Paximada (Aegean Sea) and Strofades (Eastern Ionian Sea) use only 

three of them. Of the non-breeding regions, the Agulhas current is 

exclusive to birds from Palomas, and used only by one individual, and 

the Northern Brazil current is used only by birds from two colonies, 

Frioul (France) and Lavezzi (Corsica – Sardinia). Conversely, the 

Sahelian coast was used by birds breeding in all colonies from all 

populations, while the Equatorial Atlantic was used by birds of all 

populations, and all colonies but Frioul (Fig. 9). 

Within CALEDW, as each of the two colonies represented one 

population, there is only one measure of MC. The median MC value was 

0.01 (-0.01 – 0.04; Table 8 & Fig. A7). The three non-breeding regions 

were used in a similar proportion by birds from the two colonies (Fig. 

10) 

 



99 
 

 

 

 

 

 

Figure 8 

Circular plot showing the links between each colony (top half) and non-
breeding area (bottom half) for CALBOR colonies (a) and populations (b). 
The width of the sectors and links are proportional to the number of 
individuals from each colony travelling to each of the non-breeding areas, 
after correcting for the different sampling effort in each colony and 
accounting for different population sizes.  

Colonies: (A) Faial, (B) Graciosa, (C) Vila, (D) Chafarinas, (E) Berlenga, 
(F) Selvagem, (G) Montaña Clara, (H) Timanfaya and (I) Veneguera. 

Populations: (A + B) Central Azores, (C) East Azores, (D) Chafarinas, 
(E) Berlengas, (F) Selvagem, (G + H) East Canary Islands, (I) West 
Canary Islands 

Non-breeding areas: (1) Eastern Brasil, (2) Northern Brasil Current – 
South-eastern Brasil, (3) South Brasil Current, (4) Uruguay – Buenos Aires 
shelf, (5) Patagonian shelf, (6) North Atlantic, (7) Central-southern 
Atlantic (8) Agulhas current, (9) Agulhas – Benguela confluence, (10) 
Namaqua, (11) Namib, (12) Angolan current, (13) Gulf of Guinea Central, 
(16) Sahelian upwelling and (17) Saharan upwelling 
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Figure 9 

Circular plot showing the links between each colony (top half) and non-
breeding area (bottom half) for CALDIO colonies (a) and populations (b). 
The width of the sectors and links are proportional to the number of 
individuals from each colony travelling to each of the non-breeding areas, 
after correcting for the different sampling effort in each colony and 
accounting for different population sizes.  

Colonies: (J) Palomas, (K) Pantaleu, (L) Cala Morell, (M) Riou, (N) 
Frioul, (O) Giraglia, (P) Lavezzi, (R) Zembra, (S) Linosa, (T) Filfla, (U) 
Malta, (V) Tremiti, (W) Strofades, (X) Paximada.  

Populations: (J) Palomas, (K + L) Balearic Islands, (M + N) France, (O 
+ P) Corsica and Sardinia, (R + S + T + U) Sicilian Channel, (V) Middle 
Adriatic, (W) Strofades, (X) Aegean Sea 
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3.4.2 Ecological niche modelling 

From the ensembled models we obtained predicted non-breeding 

distributions at three levels: population, taxon and supra-taxon. At a 

population level all models for CALBOR had lower AUC (range 0.82 – 

0.87) than any of the CALDIO (range 0.88 – 0.95) and CALEDW models 

(range 0.98 – 0.99). At a taxon level, once more, the worst fit was for 

CALBOR (AUC = 0.81) and the best for CALEDW (AUC = 0.98). For 

CALBOR, the taxon-level had a worse fit than any of the population-

Figure 10 

Circular plot showing the links between each colony (top half) and non-
breeding area (bottom half) for CALEDW. The width of the sectors and 
links are proportional to the number of individuals from each colony 
travelling to each of the non-breeding areas, after correcting for the 
different sampling effort in each colony and accounting for different 
population sizes. 

Colonies: (Y) Curral Velho, (Z) Raso. 

Non-breeding areas: (2) Northern Brasil Current – South-eastern Brasil, 
(3) South Brasil Current, (4) Uruguay – Buenos Aires shelf. 
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level or colony-level models. For CALDIO the taxon-level model had a 

worse fit (AUC = 0.90) than all but three (out of eight) population-level 

models. For CALEDW the model fit at a population and taxon level 

were very similar. The model with the lowest AUC was the supra-taxon 

level model (AUC = 0.78; Table 9).  

From the ensembled models we obtained importance scores that allowed 

us to know which environmental variables were more influential in the 

distribution of birds (Table 9). For the supra-taxa model the most 

important variable was CHLA (importance score 18.5). SST was the 

most important variable for CALBOR at a taxon level, but with an 

importance score (11.0) very similar to that of CHLA (10.3) and 

SST_grad (10.1). At population level, SST was the most important 

variable for three of the populations, while CHLA was the most 

important for the other four. For CALDIO the two most important 

variables at a taxon level were also CHLA and SST with similar 

importance scores (14.6 and 11.1 respectively). At a population level, 

CHLA was the most important variable for four populations, and SST 

for three. Only for one population (Aegean Sea) the most important 

variable was CHLA_var (11.8).  

For CALEDW the most important variable was SST for all models. For 

the CALEDW models, although CHLA was the most important variable 

for both populations, at a taxon level the most important variable was 

SST. Nevertheless, the importance scores of both variables were very 

similar for all three models.  
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Table 9 
         

Model evaluation parameters (AUC and variable importance ratio) for each of the models at a population, taxa and supra-
taxa level. AUC ranges between 0 (worst fit) and 1 (best fit), and variable importance ratios range between 0 (least important) 
and 100 (most important). The most important environmental variable for each model is shown in bold, and the least important 
in italics 

 Group Population AUC BAT SLO SST CHLA SAL CHLA var SST grad 
CALBOR Central Azores Is.  0.85 4.6 4.0 5.1 10.8 9.8 5.3 4.6 

East Azores Is.  0.82 4.7 4.5 7.8 13.9 9.1 7.8 6.1 
Chafarinas Is.  0.87 6.0 4.6 7.1 9.2 6.7 4.8 5.4 
Berlengas Is.  0.84 6.0 5.0 14.4 13.3 5.8 7.0 5.8 
Salvages Is.  0.84 5.3 5.0 16.0 13.1 7.7 6.7 8.9 
East Canary Is. 0.87 7.7 5.0 21.0 12.3 7.0 8.4 7.0 
West Canary Is.  0.86 12.4 4.6 11.1 19.3 5.4 7.9 5.6 

Taxon level model 0.81 6.4 6.5 11.0 10.3 9.9 7.0 10.1 
CALDIO Palomas 0.90 5.5 5.1 9.0 12.9 5.9 5.3 7.6 

Balearic Is. 0.90 4.2 3.9 6.8 10.7 6.1 4.3 8.7 
France 0.88 3.8 4.7 15.1 14.6 5.4 11.0 5.7 
Corsica – Sardinia 0.90 4.8 4.3 15.2 13.2 6.3 9.0 8.9 
Sicilian Channel 0.89 4.1 3.9 13.8 12.1 5.7 4.3 5.1 
Middle Adriatic 0.88 3.8 4.0 8.7 11.4 6.5 4.4 8.3 
Eastern Ionian Sea 0.95 4.3 3.3 9.6 13.3 3.7 5.2 4.0 
Aegean Sea 0.90 6.3 5.4 5.1 7.2 7.8 11.8 11.6 

Taxon level model 0.90 4.1 3.8 11.1 14.6 5.3 4.1 4.1 
CALEDW East Cape Verde 0.98 3.6 3.3 5.5 7.2 4.2 5.7 3.6 

West Cape Verde 0.99 3.1 3.5 5.2 6.5 5.5 4.9 4.5 
Taxon level model 0.98 3.2 3.7 6.8 5.6 4.3 3.9 4.1 

Supra-taxon  0.78 4.8 4.2 9.1 18.5 6.5 4.9 7.2 
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To compare environmental preferences at a supra-taxon, taxon and 

population level we extracted the original value of the most important 

environmental variables at the presence points. At the supra-taxon 

model the most important variable was CHLA (median = 0.30 mg·m-3, 

CI = 0.08 – 2.78). At a taxon level, CALBOR preferred the lowest SST 

(19.4 ºC [11.2 – 24.0]), while CALEDW chose more temperate values 

(22.0 ºC [17.8 – 24.9]). For CALDIO the most important variable was 

CHLA, choosing lower values than the other two taxa (0.23 mg·m-3 [0.10 

– 2.83]; Table 10; Fig. A8). At a population level, CHLA and SST were 

identified as the most important variables in the model in all but one 

model (for the Aegean Sea population, for which CHLA_var was most 

important). Median values of SST were similar for all CALBOR and 

CALEDW populations, all within a 2.1 ºC and 0.1 ºC range respectively, 

while there was more variability among the CALDIO populations (range 

of 4.1 ºC). Within these, the Eastern Ionian Sea population selected the 

highest values (27.2 ºC [2.4 – 28.8]) and Palomas the lowest (23.1 ºC 

[18.1 – 28.0]). (Table 10 & Fig. A9). The selected CHLA values were in 

a range of 0.1 mg·m-3 for CALBOR, a range of 0.3 mg·m-3 for CALDIO 

and 0.2 mg·m-3 for CALEDW. Again, the maximum variability is among 

the CALDIO populations, with the minimum values selected by the 

Eastern Ionian Sea population (0.22 mg·m-3 [0.12 – 1.14]) and the 

maximum by the Palomas population (0.49 mg·m-3 [0.09 – 5.00]). The 

Aegean Sea population selected the highest value of CHLA_var (88.9% 

[20.1 – 97.6]; Table 10 & Fig. A9). 

Pairwise correlations (representing similarity) among colony-level 

projections ranged between -0.08 and 0.90 for CALBOR and between 

0.37 and 0.94 for CALDIO. The linear models showed that the similarity 
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between model projections was negatively related to distance between 

colonies for the two taxa, with significant correlations for both, and R-

squared values of 0.57 and 0.40 respectively (Fig. 11).  

 

 

Figure 11 

correlation of pairwise distances between colonies and 
similarity between respective non-breeding habitat model 
projections for CALBOR (a) and CALDIO (b). adjusted R-
squared values of 0.57 and 0.40 respectively 
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Table 10     

Median and 95% confidence interval (CI) of the values selected for each variable for each of the models at a colony, 
population and species level. Only the variables that appear as most important in at least one of the models are shown, 
and the most important environmental variable for each model is shown in bold 

   SST CHLA  CHLA_var 
Group Population Median 95% CI Median 95% CI Median 95% CI 
CALBOR Central Azores Is.  19.4  11.2 - 24.0 0.35 0.08 - 0.87 40.8 20.5 - 76.1 
  East Azores Is.  19.1 6.7 - 25.8 0.31 0.05 - 1.06 55.1 20.4 - 85.2 
  Chafarinas Is.  21.2 12.4 - 28.7 0.38 0.08 - 4.76 59.7 22.1 - 97.3 
  Berlengas Is.  19.3 11.3 - 25.2 0.39 0.09 - 2.05 43.5 19.9 - 83.9 
  Salvages Is.  19.8 11.2 - 25.7 0.40 0.09 - 2.18 42.8 19.9 - 85.8 
  East Canary Is. 21.0 15.2 - 27.8 0.38 0.08 - 2.90 47.5 20.2 - 90.4 
  West Canary Is.  20.5 16.0 - 27.4 0.36 0.07 - 3.39 45.4 20.3 - 87.9 
  Taxon level model 19.4 9.6 - 25.8 0.35 0.07 - 1.45 43.7 20.4 - 82.0 
CALDIO Palomas 23.1 18.1 - 28.0 0.49 0.09 - 5.00 76.9 24.4 - 97.5 
  Balearic Is. 23.3 17.4 - 28.7 0.32 0.08 - 4.36 71.9 25.8 - 97.2 
  France 25.1 18.4 - 28.8 0.26 0.06 - 2.62 77.7 30.0 - 97.5 
  Corsica – Sardinia 24.9 18.3 - 28.8 0.28 0.10 - 2.94 79.1 31.2 - 97.2 
  Sicilian Channel 25.7 17.3 - 28.8 0.23 0.08 - 4.64 67.0 20.7 - 97.2 
  Middle Adriatic 23.1 15.8 - 28.6 0.34 0.09 - 4.31 71.9 22.0 - 97.4 
  Eastern Ionian Sea 27.2 22.4 - 28.8 0.22 0.12 - 1.14 72.3 21.0 - 97.6 
  Aegean Sea 23.3 10.3 - 28.5 0.33 0.08 - 5.71 88.9 20.1 - 97.6 
  Taxon level model 26.4 19.0 - 28.8 0.23 0.10 - 2.83 69.3 22.1 - 97.2 
CALEDW East Cape Verde 22.1 18.9 - 24.7 0.86 0.18 - 5.33 69.3 47.0 - 86.3 
  West Cape Verde 22.2 19.1 - 24.8 1.08 0.18 - 6.67 69.5 43.6 - 86.3 
  Taxon level model 22.0 17.8 - 24.9 0.59 0.16 - 5.33 63.5 40.7 - 86.3 
Supra-taxon  21.7 44.4 - 28.6 0.30 0.08 - 2.78 55.0 20.6 - 96.6 
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3.5 Discussion 

In this study we use migratory connectivity and ecological niche 

modelling (ENM) to analyse ecological divergence between three closely 

related taxa. Through the migratory connectivity analysis, we detected 

structure at a population level within each taxon, which was confirmed 

through the ENM, in both spatial distribution and environmental 

preferences. In addition, our results showed a clear spatial and ecological 

segregation in the non-breeding distributions of the three taxa. These 

results have important implications for population dynamics and 

structure, as well as management and conservation.   

3.5.1 Ecological segregation  

Migratory connectivity and ENM results, showed a clear segregation 

among the three taxa: CALBOR and CALDIO clearly selected different 

non-breeding areas, which was reflected in the relatively high MC at a 

taxon level and visible in the geographical projections of the ENM. While 

optimal habitat for CALDIO was mainly between the 30ºN and 30ºS, 

with a clear tropical distribution, CALBOR had most of its optimal 

habitat outside these limits, with a clear sub-tropical distribution (Fig. 

12). Although CALEDW shared non-breeding areas with CALBOR, the 

two segregated environmentally, with CALEDW using warmer, but also 

more productive and dynamic waters, which suggested ecological 

segregation between them, rather than a spatial segregation. 
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Despite the clear non-breeding allopatry between CALBOR and 

CALDIO, there were a few “contact zones” between them: in the main 

non-breeding grounds, both taxa co-occurred in the transition area 

between the Sahelian and Saharan upwellings as well as along the Namib 

coast. In addition, CALDIO also frequented subtropical regions of the 

Brazil current and the North Atlantic region during their migratory 

movements, sharing them with CALBOR. The existence of these 

“contact zones” favours potential events of dispersion: a bird of one 

population following in the return migration from common non-breeding 

grounds a bird of another population from the same or a different taxon 

(Friesen et al. 2007). Indeed, there are records of CALBOR individuals 

Figure 12 

Spatial projection of the habitat 
suitability obtained from the ENM 
at a species level for (a) Cory’s, (b) 
Scopoli’s and (c) Cape Verde 
shearwaters. Suitability values range 
from 0 (not suitable habitat) to 1 
(most suitable habitat). Pink 
symbols represent the locations of 
the breeding colonies represented in 
the model. 
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ringed as chicks in Atlantic colonies and found years later breeding in 

Mediterranean colonies (Lo Valvo and Massa 1988; Thibault and 

Bretagnolle 1998; Gómez-Díaz et al. 2009; Gabirot et al. 2016) including 

some cases of successful inter-taxa pairing (Martínez-Abraín et al. 2002, 

J. Navarro pers. comm.). In contrast to the occasional dispersal of 

CALBOR individuals to CALDIO breeding sites, there are no reported 

dispersal events in the opposite direction (CALDIO birds breeding in 

CALBOR sites), and although CALEDW and CALBOR completely 

overlapped in their non-breeding areas, there are only a handful of 

documented cases of CALEDW individuals seen in CALBOR colonies, 

all of them in the Canary and Salvagem Islands (Fagundes et al. 2012; 

Copete et al. 2015; Gil-Velasco et al. 2018), but none of them with 

confirmed breeding. Finally, when we modelled the non-breeding 

distribution of the three taxa together, the model had a worse fit than 

when modelled separately. This is an indication that the three taxa 

occupied different ecological niches with little overlap among them, 

which made any attempt at modelling the ecological niche of the three 

species together less accurate, which can be interpreted as an evidence 

of linage divergence (Raxworthy et al. 2007).  

The Almería – Orán oceanographic front (AOOF; Fig. 6), which serves 

as ecological divide between Atlantic and Mediterranean distributions of 

many marine taxa (Pascual et al. 2017), also appears to be the divide 

between CALBOR and CALDIO breeding distributions, with CALBOR 

breeding in the Atlantic, West of the front, and CALDIO breeding inside 

the Mediterranean, East of the front (Gómez-Díaz et al. 2009). However, 

colonies of both taxa are located nearby in both sides of AOOF, with at 

least one mixed colony (Gómez-Díaz et al. 2006; Zidat et al. 2017). This 
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partial sympatry, together with the breeding synchrony between the two 

taxa, opens the possibility of hybridization and introgression producing 

gene flow among them (Brown et al. 2015), which suggests that 

reproductive isolation might not yet be complete. Indeed, genetic studies 

in the mixed colony of Chafarinas, based on both mitochondrial DNA 

(mtDNA, Gómez-Díaz et al. 2009) and microsatellites (Zidat et al. 2017), 

reported the existence of introgressed individuals which could indicate 

relatively-recent hybridisation events. Our study includes tracks from 

three colonies in the AOOF area: Terreros, Palomas, and Chafarinas. 

Projections of the non-breeding habitat for CALDIO from Palomas and 

CALBOR from Chafarinas (Figs. A10 & A11) showed that the optimal 

habitat for individuals breeding in these two colonies included areas of 

suitable habitat for both taxa. Unfortunately, the non-breeding habitat 

for CALBOR from Terreros and the CALDIO from Chafarinas could not 

be modelled because of our small sample size (see Chapter 1). However, 

most of the non-breeding locations of CALBOR from Terreros fell within 

the Sahelian and Saharan upwellings (Fig. A13), which are 

predominantly used by CALDIO populations (Fig. 7). The non-breeding 

locations of CALDIO from Chafarinas occupied mainly tropical non-

breeding areas of the Eastern Atlantic coast, typical of their taxon, but 

also the Brazil coast and North Atlantic pelagic area, which are mainly 

used by CALBOR populations. Although the small sample size for these 

two colonies, makes it difficult to make proper inference, these results 

suggest that, although the two taxa have clearly segregated non-breeding 

ecological niches, there is some locally-restricted genetic mixture in the 

small area of the AOOF, where both taxa still breed in sympatry (as 

had already been reported in Gómez-Díaz et al. 2006, Flood and 
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Gutiérrez 2019), producing an intermediate phenotype between that of 

CALBOR and CALDIO for individuals breeding in this area.  

Our results suggested that the three Calonectris taxa adapted to local 

ecological niches in both the non-breeding and breeding distribution. 

Even though the three taxa breed synchronically, local adaptation 

coupled with the strong philopatry and breeding site fidelity possibly 

resulted in a process of ecological divergence, together with the 

divergence of other traits previously reported in other studies 

(morphology, vocalisations, odour, Zidat et al. 2017) conducive to species 

differentiation. 

3.5.2 Spatial structure (within a given taxon) 

The differences in migratory connectivity at a colony and population 

levels for the three taxa evidenced that, while there was a high degree of 

spread and mixing between colonies (Finch et al. 2017), birds from a 

given population of CALBOR or CALDIO selected a subset of non-

breeding areas among all those used for all populations of each taxon, 

thus pointing out some degree of population structuring along the 

colonies within each taxa. Unfortunately, since we have only sampled 

one colony of CALEDW in each of its two breeding populations, we 

could not study its non-breeding distribution structure at the level of 

population.  

Our results have structured CALBOR populations in three main groups 

according to common non-breeding areas: (1) Salvages and Berlengas 

populations, (2) the Azorean populations, and (3) the Canarian 

populations (Figs. 8 & A10). For CALDIO, our results showed that non-

breeding habitat from the Eastern populations differed from that of 
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Central and Western populations in that they used almost exclusively 

the northernmost non-breeding areas (Figs. 9 & A11). For CALEDW, 

although we only had data from one colony from each population, the 

use of non-breeding areas of the two sampled colonies was almost 

identical, hinting to a lack of structure in non-breeding distributions 

(Figs. Y5 & A12). There are studies showing a size gradient within 

CALBOR populations, with a slight increase in size with latitude, 

(Gómez-Díaz et al. 2006; Gómez-Díaz et al. 2009), and within CALDIO 

populations, with a more substantial decrease in size with longitude 

(Massa and Lo Valvo 1986; Gómez-Díaz et al. 2006), but no structure 

has been found in any other phenotypical markers for neither of them 

(e.g., acoustic and chemical markers; Bretagnolle and Lequette 1990, 

Gabirot et al. 2016). Although there is genetic structure defined for 

CALBOR, the results suggest a different spatial population structure to 

the one we reported here (Genovart et al. 2013; Munilla et al. 2016). For 

CALDIO, Gómez-Díaz et al. (2009) found that genetic structure among 

colonies indicated divergence between Eastern and Western 

Mediterranean populations Although no genetic evidences are available 

for CALEDW, since there are no phenotypical differences between 

colonies (neither in morphology and foraging areas [González-Solís pers. 

comm.], nor choice of non-breeding area, nor preferred environmental 

variables) it seems reasonable to assume that there is no population 

structuring in this locally-restricted taxon endemic of Cape Verde.  

The presence of structure (i.e., high MC) at a population level but not 

at a colony level demonstrated that the spatial structure in the breeding 

distributions of CALBOR and CALDIO is maintained during the non-

breeding distribution only at a population level. This has obvious 
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implications in population dynamics, but also in conservation (Esler 

2000). Populations were defined as groups of colonies with overlapping 

100 km radius buffers, which hints to the possibility of a distance-based 

structure (i.e., neighbouring colonies have more similar behaviour than 

distant colonies because there is more gene flow among them). The 

negative correlation between pairwise similarity of non-breeding habitat 

and between-colony distance provides further support for this theory, 

since it demonstrates that non-breeding habitat is more similar the closer 

the corresponding breeding colonies are. This “isolation by distance” 

model had already been proposed as driver of the differentiation between 

CALBOR and CALDIO, and as a possible driver of population structure 

within CALDIO (Gómez-Díaz et al. 2009). Certainly, understanding 

what constitutes a population, and how they relate to each other 

demographically and genetically is key to quantify the effect that local 

(nest availability, predation at colony) or global (climate change, food 

availability) perturbations in the breeding distribution might have on 

the population dynamics (Matthiopoulos et al. 2005). In addition, 

understanding the degree of migratory connectivity among populations 

can also advance our understanding of the effects of perturbations in the 

non-breeding distribution: in situations of low migratory connectivity 

(high mixing among populations and high population spread), any 

perturbation in a given non-breeding region is likely to cause a global 

effect to the entire species, while the effect would be more localised in a 

species with high connectivity. Finally, the degree of intra-population 

spread in the non-breeding distribution can affect the ability of the 

population to respond to non-breeding range shifts and reductions in a 

context of climate change (Finch et al. 2017).  
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3.5.3 Concluding remarks 

To our knowledge, this is the first time that non-breeding distributions 

have been used to identify the degree of ecological divergence in a species 

complex of migratory birds, extending the previous attempts of applying 

ENM to support linage divergence in resident species (Raxworthy et al. 

2007; Rissler and Apodaca 2007). Our evidence on major habitat 

segregation among the three taxa during the non-breeding period 

increase the list of phenotypical differences supporting the divergence 

between CALBOR and CALDIO that have been documented so far: 

morphological (Gómez-Díaz et al. 2009), acoustic (Bretagnolle and 

Lequette 1990), chemical (Zidat et al. 2017), and now ecological (this 

study). In addition, we showed that although CALBOR and CALEDW 

partly overlap in their non-breeding distribution, their environmental 

preferences differ, which confirms the ecological segregation. We also 

provide evidence of intermediate habitat preferences in the non-breeding 

distributions of birds breeding in the contact zone between CALBOR 

and CALDIO, which is consistent with previous evidences of 

hybridization and introgression (Gómez-Díaz et al. 2009). Finally, our 

analyses of migratory connectivity and modelling of non-breeding 

habitats detected the presence of structure within the CALBOR and 

CALDIO taxa, present at a population level, rather than at a colony 

level, thus calling for a separate management and conservation of these 

populations.  
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4 

Environmental and behavioural 
drivers of foraging segregation in a 
long-range seabird: insights from 
Bayesian spatial models within the 
INLA framework 
 

4.1 Abstract 

The foraging distributions of colonially breeding seabirds performing 

central place foraging depend, among other factors, on the at-sea 

distribution of resources, but also on the presence of conspecifics. At sea, 

prey is usually patchily distributed and inconspicuous from the surface, 

and to find it seabirds are thought to rely on memory and environmental 

cues, but also on information conveyed by conspecifics, either at sea 

(local enhancement) or at the colony (information centre hypothesis). 
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However, these events of information transfer are difficult to detect with 

commonly used modelling techniques. We present an improvement on 

the existent species distribution modelling techniques, based on point 

process modelling through continuously indexed Gaussian random fields 

within the INLA (Integrated Nested Laplace Approximation) 

framework. We use this method to model the segregation of the foraging 

areas of Cory’s shearwaters (Calonectris borealis) GPS-tracked 

simultaneously from three neighbouring breeding colonies in the 

northeast Atlantic. First, an analysis of the overlap of core foraging areas 

found significant segregation among the foraging distributions of the 

three colonies, both in the areas surrounding the colonies and in the 

distant foraging grounds. Then, the point process models provided 

evidences that this segregation was not driven by environmental 

preferences only, detecting small-scale clustering indicative of local 

enhancement events, and a different spatial structure in the distribution 

of each colony that could be indicative of information transfer at the 

colonies shaping the foraging distributions. We provide a powerful and 

flexible modelling tool that had not yet been applied to tracking data, 

and demonstrate, for the first time to our knowledge, the information 

transfer-mediated spatial partitioning of foraging distributions in a long-

ranging pelagic seabird. 

4.2 Introduction 

A fundamental goal in spatial ecology is understanding patterns in 

species distribution and abundance. For highly mobile predators, the 

search for resources is one of the main determinants of movement and, 

thus, of space use and distribution (Matthiopoulos 2003). In central place 
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foragers, the search for resources is highly conditioned by the need to 

commute between foraging areas and the central place (e.g. colony, nest, 

roost or burrow), as opposed to performing random, constant movements 

through the home range (Orians and Pearson 1979). This causes the 

energy costs of foraging to increase with distance between foraging and 

resting places (Papastamatiou et al. 2018), which makes central place 

foragers highly dependent on their prey search capabilities. For this 

reason behavioural and morphological characteristics that optimise 

foraging efficiency are essential, particularly in environments where the 

resources are unpredictable and patchily distributed (Trevail et al. 

2019).  

In the marine environment, while foraging areas at a large and medium 

scale (e.g. continental shelfs, upwellings, oceanographic features) can be 

predictable and thus detectable following cues and memory, small scale 

foraging patches (e.g. schools of fish) are much more unpredictable 

(Boyd et al. 2016). This is particularly true for seabird species feeding 

on small epipelagic fish, which are distributed in spatially and temporally 

dynamic patches, inconspicuous from the surface. In addition to foraging 

in unpredictable environments, seabirds act as central place foragers 

during the breeding which makes foraging mechanisms are crucial for 

their survival (Trevail et al. 2019). At a large scale, birds can rely on 

memory to return to the area where they have previously found food 

(Matthiopoulos 2003, Weimerskirch 2007), and at a medium scale 

information on the location of highly productive areas can be obtained 

from oceanographic features such as sea surface temperature and thermal 

and chlorophyll-a fronts, or from olfactory cues (Dell’Ariccia et al. 2014, 

Scales et al. 2014, van Eeden et al. 2016, Soldatini et al. 2019). In 
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addition, most seabirds breed colonially (96% of the species worldwide; 

Coulson 2002), which suggests that coloniality may have an adaptive 

function: it causes a high number of individuals foraging in common 

grounds, providing the perfect conditions for obtaining foraging cues 

from conspecifics (Buckley 1997). The information transfer can happen 

at sea: if individuals feeding on a food patch (i.e. a school of fish) are 

more conspicuous than the prey itself, they can provide cues for 

conspecifics on the presence of food, generating large foraging groups in 

a short amount of time in a process called local enhancement (Thiebault 

et al. 2014). The information transfer can also happen in the colonies: 

the information centre hypothesis proposes that colonially breeding 

animals can use public information provided by conspecifics, either 

willingly or inadvertently, to locate resources or favourable habitats 

(Ward and Zahavi 1972, Weimerskirch et al. 2010). Despite the 

advantages coloniality might have for information transfer, it also has 

consequences for competition, both within and between colonies. 

According to the hinterland model (Cairns 1989), (1) due to inter-colony 

competition colonies within foraging range of each other will have non-

overlapping foraging areas, and; (2) due to intra-colony competition 

larger colonies will have larger foraging areas, since larger foraging areas 

should indicate more food availability, and thus capacity to sustain a 

large number of breeders. A modification of Cairn’s model (termed 

density dependent hinterland model, DDH; Wakefield et al. 2013), which 

also contemplates the information transfer both at sea and at the 

colonies, has served to develop models and explanations about among 

colony segregations and colony sizes in different seabird species (Oppel 

et al. 2015, Jovani et al. 2015, Bolton et al. 2018). However, it makes 
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three assumptions that, although possibly suitable for seabird species 

with short foraging ranges, are hard to fulfil for long-ranging ones: (1) 

prey is distributed uniformly in the areas surrounding the colony, (2) 

distance is a limiting factor, so the probability of finding a foraging bird 

will decrease linearly with distance, and (3) all colonies at a relevant 

distance are accounted for. Thus, although the transfer of information 

has been proved in short ranging species of sulids and cormorant 

(Weimerskirch et al. 2010, Wakefield et al. 2013, Jones et al. 2018), the 

subject has been scarcely tackled in long ranging pelagic species such as 

shearwaters (but see Ceia et al. 2014, Genovart et al. 2017).  

Understanding the drivers of seabird distributions is not easy, especially 

in long-ranging species, since the resolution at which environmental and 

geographical scales can be a limitation itself, and there is also a trade-

off between the range of the study area and the resolution at which we 

can observe the ecological processes driving the distributions (Fritz et 

al. 2003, Benhamou 2014). Common species distribution modelling 

techniques have usually been employed, which involve summarising the 

location data as presences or counts in grid cells, and then relating each 

cell value to a set of environmental variables. However, the use of this 

methodology has three main drawbacks: first, this type of models are 

scale-dependent, since the results can vary depending on the cell size 

(Renner and Warton 2013); second, the information regarding each 

individual location is lost, since they are aggregated in each cell, which 

makes it impossible to study the clustering or segregation at scales 

smaller than the cell size, a key aspect for models aiming to capture bird 

aggregations caused by local enhancement (Aarts et al. 2012); lastly, the 

value at each cell (presence or count) is related to the values of the 
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environmental variables at the same cell, but the spatial autocorrelation 

is not being taken into account (i.e. “everything is related to everything 

else, but near things are more related than distant things”; Tobler 1970). 

Thus, although used to model spatial distribution of species, these 

models are not truly spatial models, and do not allow a detailed analysis 

of the spatial structure of the data. 

A better framework for modelling spatial presence only data is point 

process methodology (Renner and Warton 2013). Analysing spatial data 

as point processes allows us to model the animal presences themselves, 

instead of aggregating data in cells. In addition, point processes can be 

modelled as a combination of fixed and random covariates, including a 

spatially structured field that can capture any structure in the original 

point pattern that is not explained by covariates. All these 

characteristics make point process methodology a very suitable tool for 

modelling species distributions (Illian and Burslem 2017). However, 

fitting most point process models is not possible in a frequentist 

framework, and Bayesian methods have been developed to fit the most 

complex models (Bakka et al. 2018). The statistical complexity of point 

process methodology, the difficulty of developing the models in the 

Bayesian framework, and their computational cost, have kept this type 

of models outside the ecologists’ toolbox (Illian and Burslem 2017). In 

recent years, the development of the Stochastic Partial Differential 

Equation (SPDE) approach within the Integrated Nested Laplace 

Approximation (INLA; Rue et al. 2009) framework has allowed  to 

efficiently fit point process models in continuous space in a 

computationally efficient and accessible way (for non-experts) through 

the R packages R-INLA (Rue et al. 2009) and inlabru (Bachl et al. 
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2019). These continuously indexed models provide more flexibility and 

avoid the loss of information that is inevitable in the gridded approach 

and, crucially, can incorporate a spatial field able to capture unobserved 

spatial structure in the data, which could aid in the identification 

behavioural drivers of distributions, such as the transfer of information 

(Lindgren et al. 2011). These models have been used successfully to 

model spatial processes in the fields of sociology, economy, and also 

ecology (see examples in Bakka et al. 2018), but to date and to our 

knowledge, it has never been used to model foraging distributions from 

tracking data. 

Calonectris shearwaters perform long, targeted foraging trips to remote 

productive areas, which indicates strong prey detecting capabilities. 

Indeed, it has been proven that they follow environmental (Ramos et al. 

2013, Péron et al. 2018) and chemical cues (Dell’Ariccia et al. 2014) to 

find food. In addition, for both Cory’s (C. borealis) and Scopoli’s (C. 

diomedea) shearwaters, there is some evidence of foraging area 

segregation among nearby colonies (i.e. within foraging range of each 

other) that is unrelated to environmental variables (Ramos et al. 2013, 

Ceia et al. 2014, Reyes-González et al. 2017, Genovart et al. 2018). This 

segregation could be a mechanism to avoid inter-colony competition, and 

could be mediated by the transfer of information between conspecifics at 

the colonies or waters surrounding the colonies (Wakefield et al. 2013), 

although this behaviour is very difficult to prove empirically. 

Combining GPS tracking data with remote sensing environmental data, 

and using continuously indexed point process models within the INLA 

framework, we aim to (1) test the overlap between the foraging areas of 
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Cory’s shearwaters breeding in three neighbouring colonies, and (2) 

disentangle behavioural and environmental drivers of their foraging 

distribution. Similarly to what has been proven for Calonectris 

shearwaters from other colonies, we expect to find the effects of 

information transfer as a higher degree of segregation among the foraging 

distributions of the three species than what would be expected at 

random. In addition, we expect to find that, although environmental 

variables explain the distribution of birds at sea at large scales, smaller-

scale structure to remain unexplained and captured in the spatial field, 

allowing us to detect the effects of information transfer, both at sea and 

at the colony.  

4.3 Methods 

4.3.1 Study species and area 

The Cory’s shearwater is a medium-sized procellariform species that 

breeds colonially in islands and islets of the northeast Atlantic Ocean 

(Reyes-González et al. 2017). Females lay a single egg, and both partners 

share incubation and rearing duties (Thibault et al. 1997). As many 

Procellariforms, chick rearing adults perform short foraging trips around 

the colony for chick-provisioning and fewer, longer trips for self-

provisioning (Granadeiro et al. 1998). The study was conducted on three 

colonies of Cory’s shearwaters in the Canary Islands. The Canary Islands 

are a volcanic archipelago 95 km off the northwest coast of Africa (in its 

nearest point). It holds ca. 14% of the world population of Cory’s 

shearwaters in 13 colonies spread across all its islands and islets (Table 

A4). We sampled birds from breeding colonies on the islet of Montaña 

Clara (29.29º N, 13.53º W), in the Timanfaya National Park (Lanzarote; 
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28.99º N, 13.83º W) and in the Veneguera ravine (Gran Canaria; 27.84º 

N, -15.79ºW) during the chick-rearing period of the 2015 breeding season 

(Table 11). Birds from the three colonies and other neighbouring Cory’s 

shearwater colonies use the nearby waters of the Canary Current as 

foraging grounds (Fig. 13 and Table A4; Ramos et al. 2013), sharing it 

with many other species of seabirds and other top predators (e.g. Valdés 

and Déniz-González 2015, Grecian et al. 2016).  
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Table 11 
       

Summary of main parameters for the three colonies of Montaña Clara, Timanfaya and Veneguera were we tracked breeding Cory's 
shearwaters (C. borealis). There is more than one trip for each bird, the number of positions is indicated in orders of magnitude, and 
the % Foraging indicates the proportion of total positions that are assigned to the foraging behaviour for each trip. Max. distance 
indicates the maximum distance from the colony reached (in km), duration indicates the total duration of the trip from the moment 
the bird leaves the colony until it returns (in hours) and total distance indicates the total distance traveled by the bird in each trip. 

Colony Birds Trips Positions % Foraging Max distance (km)  Duration (hours)  Total distance (km)  
Montaña 
Clara 10 34 ~ 8 × 103  39.3  (30.0, 66.1) 173.6  (23.4, 787.8) 38.2  (12.9, 260.9) 476.5  (80.1, 2645.6) 

Timanfaya 29 171 ~ 3 × 104 38.0  (18.2, 68.8) 121.7  (14.8, 567) 20.5  (10.1, 201.8) 270.7  (42.9, 2182.8) 

Veneguera 30 110 ~ 2 × 104 33.6  (17.4, 65.2) 227.5  (24.7, 456.9) 40.2  (12.9, 156.4) 550  (80.5, 1508.2) 
 

Figure 13 (previous page) 

Foraging tracks of Cory's shearwaters (C. borealis) breeding in the colonies of Montaña Clara, Timanfaya and Veneguera, in the 
Canary Islands obtained by GPS devices during the 2015 chick rearing period. Birds forage mainly in the Canary Current, over 
the continental shelf of the Western Sahara. 

Blue circles in the background map indicate location and breeding population size of all the other colonies foraging in the Canary 
Current according to Ramos et al. 2013 
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4.3.2 Environmental data 

Environmental variables that could have an effect in seabird foraging 

distribution were obtained from the appropriate on-line services as 

monthly means for the months of the chick-rearing season (July – 

September) and the three previous months (April –June), since 

environmental variables affecting marine productivity might have a 

lagged effect on top predators’ foraging distribution (Wakefield et al. 

2009). The monthly means were averaged to obtain one data layer, and 

all layers were rescaled to the coarsest resolution. Sources of all the 

considered variables, units, and processing details can be found in Table 

12. Prior to entering the covariates in the model, we checked their 

pairwise Pearson correlations and retained only variables with a 

correlation < 0.5. Next, we performed preliminary generalised additive 

models (function gam() from mgcv package in R; Wood 2011) to pre-

select the covariates that a priori had an effect on the point intensity. 

After this initial selection, from all variables considered (Table 12) we 

kept slope (º, SLO) and distance to the colony (m, DIST) as static 

variables and sea surface temperature (ºC, SST), SST gradient (%, 

SSTgrad), SST anomaly (ºC, SSTan), Chlorophyll A concentration 

(mg·m-3, CHLA), current velocity (m·s-1, CURR), and wind velocity (m·s-

1, WIN) as dynamic variables (Fig. A14). When necessary, values were 

log-transformed to reduce skewness, and all covariates were scaled to 

have mean 0 and standard deviation of 1 before entering the models.
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Table 12 

Environmental variables considered for the spatial models, their resolution, processing to final product and source were they were 
obtained 

Variable Acronym Units Original 
resolution  

Final 
resolution 

Processing Source 

Bathymetry BAT m 652, 748 (x, y) 
m 

2.6, 2.9 (x, y) 
km 

  doi:10.7289/V5C8276M 

Slope SLO rad 652, 748 (x, y) 
m 

2.6, 2.9 (x, y) 
km 

Calculated with 
raster::terrain   

Distance to shelf 
break (200m) 

DISTshelf m 652, 748 (x, y) 
m 

2.6, 2.9 (x, y) 
km 

Calculated with 
raster::distance 

following Louzao et al 
2009 

Distance to closest 
coastline 

DISTcoast m 652, 748 (x, y) 
m 

2.6, 2.9 (x, y) 
km 

Calculated with 
raster::distance    

Distance to colony DIST m 652, 748 (x, y) 
m 

2.6, 2.9 (x, y) 
km 

Calculated with 
raster::distance   

Sea Surface 
temperature 

SST ºC 1/100, 1/100 (x, 
y) º 

2.6, 2.9 (x, y) 
km 

  https://bit.ly/2mGLJNC 

SST fradient SSTgrad ºC 
1/100, 1/100 (x, 
y) º 

2.6, 2.9 (x, y) 
km 

Calculated from SST 
with raster::terrain and 
log transformed 

  

SST Anomaly SSTan ºC 1/100, 1/100 (x, 
y) º 

2.6, 2.9 (x, y) 
km 

  https://bit.ly/2kZsY7E 

Chlorophyll-A 
concentration 

CHLA mg/m3 4, 4 (x, y) km 2.6, 2.9 (x, y) 
km 

Log transformed https://bit.ly/2mBBWb
M 

http://dx.doi.org/10.7289/V5C8276M
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Variable Acronym Units Original 
resolution  

Final 
resolution 

Processing Source 

CHLA Gradient CHLAgrad rad 4, 4 (x, y) km 
2.6, 2.9 (x, y) 
km 

Calculated from ChlA 
concentration with 
raster::terrain   

Mixed Layer 
Thickness  

MLT m 1/12, 1/12 (x, 
y) º 

2.6, 2.9 (x, y) 
km 

  https://bit.ly/2nb0CIu 

Sea Surface Height  SSH m 1/12, 1/12 (x, 
y) º 

2.6, 2.9 (x, y) 
km 

  https://bit.ly/2nb0CIu 

Wind velocity WINDs m/s 1/4, 1/4 (x, y) º 
2.6, 2.9 (x, y) 
km 

Calculated from the x 
and y components as 
√(x2 + y2) 

https://bit.ly/2lH8Nvw 

Wind direction WINDd º  1/4, 1/4 (x, y) º 2.6, 2.9 (x, y) 
km 

Calculated with 
raster::atan2 

https://bit.ly/2lH8Nvw 

Current velocity CURRs m/s 
1/12, 1/12 (x, 
y) º 

2.6, 2.9 (x, y) 
km 

Calculated from the x 
and y components as 
√(x2 + y2) and log 
transformed 

https://bit.ly/2nb0CIu 

Current direction CURRi º  1/12, 1/12 (x, 
y) º 

2.6, 2.9 (x, y) 
km 

Calculated with 
raster::atan2 

https://bit.ly/2nb0CIu 

Ekman transport 
intensity 

EKM 
Kg·m-

1·s-1 
1, 1 (x, y) º 

2.6, 2.9 (x, y) 
km 

Calculated from the x 
and y components as 
√(x2 + y2) 

https://bit.ly/2mGnMpE 

Salinity SAL g·kg-1 1/12, 1/12 (x, 
y) º 

2.6, 2.9 (x, y) 
km 

  https://bit.ly/2nb0CIu 
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4.3.3 Tracking data 

We deployed GPS data-loggers (Perthold Engineering LCC; 42 × 23 × 

16 mm, 17 g) to adult breeding birds during the chick-rearing phase, 

attached to the mantle feathers with TESA © tape. Deployed loggers 

represented ca. 2.25% of the animals weight (below 4.0%; Passos et al. 

2010). The devices were programmed to store a location every five min. 

Upon downloading, tracks were split in foraging trips, and points on land 

removed using custom-made R routines. We also filtered out all trips of 

a duration shorter than three hours, to remove from the final dataset 

short trips to rest in waters surrounding the colony. Since we had more 

than one trip per individual, we tested the effect of individual site fidelity 

in the spatial distribution of birds following the methods developed in 

chapter one and found a significant effect of the individual site fidelity 

on the foraging distribution of the three colonies. Thus, we randomly 

selected one trip per individual using a custom-made random selection 

function. From the filtered dataset we calculated trip metrics (maximum 

distance from the colony, duration, distance travelled) for each colony. 

Then, we classified at sea locations of birds in four behavioural modes 

(resting, relocating, intensive search and extensive search) using the R 

package EMbC (Garriga et al. 2016), and we performed the rest of the 

analysis only with foraging locations (i.e. intensive and extensive search). 

Even after selecting only foraging positions some correlation remained 

among consecutive locations. To address that issue we used the function 

rthin() from the package spatstat (Baddeley et al. 2016) to perform 

independent random thinning, producing a point pattern with the same 

density surface as the original one but only 10% of the original points. 

With the thinned dataset we constructed one model for each colony. 
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4.3.4 Overlap analysis  

To assess the overlap between the foraging areas of the three colonies 

we used only the foraging positions of the filtered dataset (before 

thinning). First, for each colony, we calculated the average scale of the 

Area Restricted Search (ARS) behaviour with the functions developed 

in Lascelles et al. 2016. Second, we calculate kernel utilisation 

distributions (Worton 1989). We used the function kernelUD() from 

the package adehabitatHR, with the average ARS scale as smoothing 

factor (Lascelles et al. 2016), and a value of 300 for the grid (for more 

information see the package vignettes). Third, we extracted the 50% 

(core area) and 95% (home range) contours and plotted them over the 

study area. Lastly, with the function kerneloverlaphr() we calculated 

pairwise overlaps between the core areas and home ranges of the three 

colonies, using the conditional estimate of the Bhattacharyya affinity 

(BA; Fieberg and Kochanny 2005). This measure goes from 0 (no 

overlap) to 0.5 or 0.95 for core areas and home ranges respectively (total 

overlap).  

To assess whether the overlap among colonies was significantly different 

to what would be expected at random, we created a null distribution of 

BA by randomly reassigning a colony to the 69 trips of the dataset and 

calculating the overlap between core areas and home ranges of these 

randomised groups. We run this 10,000 times, and calculated a p-value 

as the proportion of randomly generated BA values that were smaller 

than the observed BA values. 
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4.3.4 Hierarchical Bayesian modelling 

A spatial point pattern is a dataset containing locations of recorded 

events in space (i.e. animal presences). In this context, points themselves 

are not the subject of the analyses. Instead, we are interested in the 

mechanism, the ecological process that caused the points to be 

distributed in space in the way they are. This underlying mechanism is 

called “point process” and is the subject of point process modelling 

(Baddeley et al. 2016). Point processes are defined by their intensity 

function λ(s), which describes how the points distribute within the study 

area. The Log-Gaussian Cox Processes (LGCP) are a particular type of 

point processes that can be modelled as a Gaussian random field. 

Formally, a random field is a family of random variables Z(x) with values 

at every location x of the study area (Illian et al. 2007). Practically, a 

Gaussian random field can be constructed as a linear combination of 

environmental covariates. In addition, a Gaussian random field may 

include a spatially structured field that can capture any structure in the 

original point pattern that is not explained by the other covariates.     

4.3.4.1 Model definition 

For each colony, the at-sea locations of birds were modelled as a spatial 

LGCP over an area A defined as the convex hull of the locations of the 

three colonies together (for comparability), with a buffer of 50 km 

around it to avoid any location falling too close to the boundary. In these 

models, the number of events (at-sea locations) in the region A is 

characterised by an intensity function λ(s), with the function 

 Λ(A) =  �λ(s)ds
 

A
 (1) 
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where Λ(A) is the expected number of events in the area A and λ(s) ≥ 0 is 

the local intensity at location s (i.e. λ(s) represents the local intensity in 

a small –tending to 0– area around the location s). The particular 

characteristic of LGCP that makes them appropriate for modelling 

events in relation to environmental variables is that their intensity can 

be modelled as a Gaussian model with a log-link, incorporating fixed 

(linear) effects, random (non-linear) effects and, crucially, a spatial 

random effect that can capture any structure in the data not explained 

by the covariates. Thus, the intensity is defined, for each location k, as  

 
log λ(sk) =  β0 + �βixi(sk) + f(u1) + f(u2) + ⋯+ 

+ w(sk) +  ε(sk)

I

i=1

 (2) 

where β0 corresponds to the intercept, xi are the linear effects with their 

corresponding coefficients βi, f(ui) are the non-linear effects, w(sk) is the 

spatially structured random effect, a Gaussian Markov Random field 

(GMRF), and ε(sk) is an unstructured random field or error term (akin 

to the nugget effect in a geostatistical model). Practically, due to 

computational limitations and identifiability problems between the 

structured and unstructured random effects (Sørbye et al. 2019) we could 

not include the unstructured random field in our model. The GMRF is 

defined as  

 w(s) ~ N(0,Σ) (3) 

where Σ is the covariance matrix with a Matérn structure defined as 

 Σ = Cov�w(si), w�sj�� (4) 
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4.3.4.2 Mesh generation 

To efficiently represent the GMRF using the SPDE approach we 

constructed a mesh following the finite element method described in 

Simpson et al. (2011). The mesh was constructed covering all the area A 

and extended outwards in a 200 km buffer to avoid edge effects in our 

model. The minimum edge length of the triangles was 20 km in the inner 

boundary and 50 km in the outer boundary, and the cut-off (minimum 

length of segments forming the border) was set at 10 km. To avoid 

predicting intensity over land we artificially assigned value of 0 to all 

mesh nodes that were not on water. Further details and R code for mesh 

construction can be found in the Annex 3. 

4.3.4.3 Covariates and model selection 

All non-correlated covariates were included in the model as both fixed 

and random, in order to separate linear and non-linear effects for each, 

easing interpretation (Lombardo et al. 2019). The covariates retained 

with both fixed and random components are represented in the results 

as the sum of the fixed component coefficient and the effect of the 

random component: where the median and 95% CI fall above 0 the 

covariate has an overall positive effect on point intensity and, conversely, 

where median and 95% CI fall under 0 the covariate has an overall 

negative effect in point intensity. Due to the random component, this 

effect might be stronger (farther from 0) or weaker (closer to 0) at certain 

covariate values.  

The fixed effect coefficients were assigned the default prior on the 

precision (0 for the intercept and 0.01 for the covariate coefficients), and 

the random effects were modelled as random walks of second order (rw2) 
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grouped into 20 classes, and scaled so the variance equals 1 for all of 

them, for easy interpretation (Sørbye and Rue 2014). This type of models 

has one hyperparameter, the precision, which controls the size of the 

effect, and how much the variable is allowed to deviate from the mean 

(i.e. how wiggly the effect is). INLA allows us to specify a prior on this 

hyperparameter.  

The spatial effect was modelled as an SPDE model with two 

hyperparameters to which we set priors, the range (ρ) and the standard 

deviation (σ). The range represents the distance at which two locations 

are no longer correlated (i.e. the typical distance between peaks and 

troughs), which controls the smoothness of the spatial field; and the 

standard deviation represents how much the spatial field is allowed to 

vary locally (i.e. the magnitude of the peaks and troughs).  

From the full model with all covariates as fixed and random effects and 

the spatially structured random field, we sequentially removed the 

random effects of covariates that appeared to have a linear effect on the 

intensity, and the fixed effects of covariates when the 95% credible 

interval (CI) for the coefficient overlapped zero, until we arrived at the 

most parsimonious model. 

4.3.4.4 Prior values specification 

We set priors for the following hyperparameters of the model: the 

precision of each of the random effects (rw2 models), and the range and 

standard deviation of the spatial field (SPDE model). To facilitate their 

specification we used Penalised Complexity (PC) priors, a newly 

developed framework that allows easily interpretable and controllable 

priors (Simpson et al. 2014). PC priors are weakly informative (allowing 
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the posterior of each hyperparameter to be mainly controlled by the 

data) and penalise model complexity by “pulling” the model towards its 

simplest realisation (the “base” model): for the rw2 models, the base 

model has infinite precision, which would produce a model with no 

random effect, essentially a fixed effect (Simpson et al. 2014). For the 

SPDE models the base model has infinite range and zero standard 

deviation (i.e. a completely flat spatial field, absence of spatial 

structure). To set the priors, we inform the model of “how far it is 

allowed to deviate” from those base models using the following 

specifications:  

- For the rw2 precision the prior is set on the standard deviation 

(σ), which is inverse to the square root of the precision (τ) so: 

σ = 1
√τ

. We provide the upper tail quantile σ0 and the 

probability Pσ so that:  

 Prob(σ >  σ0) = Pσ,         σ0 > 0,           0 <  Pσ < 1 (5) 

which translates to: “the probability that the σ of the model is 

larger than σ0 is Pσ”. For example, if σ0 = 3 and Pσ = 0.01, the 

probability of σ of being larger than 3 is 1%. In this way, we are 

limiting the rw2 model’s σ to stay between 0 and 3 with a 99% 

probability. Since the precision (τ) is inversely related to σ, we 

are basically limiting the precision to values between infinite (the 

base model) and 1
σ2

 

- The prior on the spatial field range (ρ) is set providing the lower 

tail quantile ρ0 and the probability Pρ so that  
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 Prob(ρ >  ρ0) = Pρ,         ρ0 > 0,           0 <  Pρ < 1 (6) 

or “the probability that the true range is smaller than ρ0 is Pρ”. 

For example, if ρ0 = 500 and Pρ = 0.01, the probability of the true 

range of the spatial field being smaller than 500 km is 1%. In this 

way we are limiting the range to values between infinite (the base 

model) and 500, i.e. we are saying that the smaller that the range 

could possibly be is 500 with a probability of 99%.  

- The prior on the spatial field standard deviation is set providing 

the upper tail quantile σ0 and the probability Pσ so that  

 Prob(σ >  σ0) = Pσ,         σ0 > 0,           0 <  Pσ < 1 (7) 

or “the probability that the standard deviation is larger than σ0 

is Pσ”. For example, if σ0 = 0.5 and Pσ = 0.01, the probability of 

the standard deviation of the spatial field being larger than 0.5 

is 1%. In this way, we are effectively limiting the standard 

deviation to values between 0 (the base model) and 0.5 with a 

99% probability.  

Priors have to be carefully specified, but there is no absolute rule for it. 

For that reason, a large part of the modelling process with this type of 

models is deciding the priors to use. Below we outline the decision 

process for each of the priors involved in our model:  

- The rw2 precision prior was originally set to the value of the 

standard deviation of the covariate being modelled. In all cases 

this proved to be too restrictive, giving a random effect that was 

completely flat, so we repeated the model multiplying that value 
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by a sequence of increasing values until we arrived at a 

satisfactory level of non-linearity.  

- The SPDE range prior was chosen according to the following 

process: we began with a value of 20 km (as small as the length 

of the mesh triangles side) to indicate that the range could be 

between the minimum that the model is able to detect and 

infinite, allowing the posterior range to be heavily affected by the 

data. We ran the model with this prior once, without any 

covariate but the spatial effect, and used the median range of the 

posterior of that model as a prior.  

- The SPDE standard deviation prior was initially set as 0.2. 

However, since the priors for the two hyperparameters of the 

spatial effect have a great influence in the posterior of the model, 

we performed a sensitivity test: once we had selected a final 

model, we repeated that model with a series of values for σ and 

range, and compared results to see the differences in the spatial 

effect and the predicted intensity, and from that, we selected the 

most convincing model and used those parameters to run the 

definitive model (Annex 4). The parameters chosen for the 

definitive models are specified in Table 13.  
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Table 13      

Summary of components of all models fitted to GPS location data for each colony. 

    Included 
Priors of the spatial 
effect hyperparameters Non-linear covariates  Linear Covariates 

Montaña 
Clara 

Model 0 Yes ρ0 = 80 km; σ0 = 0.2 No No 

Model 1 No   No CHLA, SLO, SST, DIST  

Model 2 No   CHLA, SST, DIST  CHLA, SLO, SST, DIST  

Model 3 Yes ρ0 = 80 km; σ0 = 0.2 CHLA, SST, DIST  CHLA, SLO, SST, DIST  
Timanfaya Model 0 Yes ρ0 = 90 km; σ0 = 0.3 No No 

Model 1 No   No CHLA, SSTgrad, SLO, DIST, SST 

Model 2 No   CHLA, SSTgrad, DIST CHLA, SSTgrad, SLO, DIST, SST 

Model 3 Yes ρ0 = 90 km; σ0 = 0.3 CHLA, SSTgrad, DIST CHLA, SSTgrad, SLO, DIST, SST 
Veneguera Model 0 Yes ρ0 = 100 km; σ0 = 0.2 No No 

Model 1 No   No CHLA, SLO, SST, DIST  

Model 2 No   CHLA, SST, DIST  CHLA, SLO, SST, DIST  

Model 3 Yes ρ0 = 100 km; σ0 = 0.2 CHLA, SST, DIST  CHLA, SLO, SST, DIST  
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4.3.4.5 Prediction 

To obtain the intensity predicted by the model, we used the 

inla.posterior.sample() function to draw 1,000 posterior samples 

from linear predictor of the model. These posterior samples contain all 

necessary parameters to reconstruct a modelled prediction of the point 

intensity as well as the covariate fixed and random effects and the spatial 

field effect. Code and more information on the process can be found in 

the Annex 5. 

4.3.4.6 Characterization of spatial random effect 

The spatial field captures the spatial autocorrelation structure in the 

point intensity that has not been captured by the covariates. From the 

posterior samples obtained above we can obtain a median value of the 

effect of the spatial field at each mesh node and map it on our study 

area using the functions provided in the R-INLA package (Annex 5). We 

plotted the spatial field in the scale of the predictor (log scale) to obtain 

a surface centred around 0, with peaks of positive values representing 

areas were the observed point intensity was higher than our covariates 

were able to capture (hotspots) and negative troughs representing areas 

were the observed point intensity was lower than our covariates were 

able to capture (coldspots). The median of the spatial field posterior 

range represents the typical distance between this peaks and troughs 

(the smoothness of the surface). 

4.3.4.7 Performance of models  

Since common model validation and evaluation processes (i.e. AIC, cross 

validation) are not appropriate for LGCP models (Baddeley et al. 2005) 

we devised procedures to evaluate the performance of the models. First 
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of all, to assess the benefits of increasing the complexity of the linear 

predictor, we ran three models for each colony: the simplest model only 

with fixed effects (Model 1), a more complex model with fixed and 

random effects, and the most complex model with a spatial field, fixed 

and random effects in the linear predictor (Model 3). Second, to ensure 

the spatial field is not capturing all the structure of the data, 

confounding the effect of the environmental covariates, we ran a null 

model (Model 0) only with an intercept and a spatial field (i.e. without 

covariates), to compare the posterior spatial field of this null model with 

that of Model 3. Third, we calculated the L-function of our observed 

point pattern. The-L function is a second order characteristic of point 

patterns that provides information on the aggregation of points by using 

a measure related to the number of points inside a radius r from the 

focal point (Illian et al. 2007). We simulated 1,000 point patterns from 

our fitted model using the function sample.lgcp() from the package 

inlabru, and generated an envelope (95% interval) with the function 

envelope() from the package spatstat. We then plotted the L-

function of our observed point pattern (Lobs) and the envelope of our 

1,000 simulated patterns. If Lobs is inside the envelope the model from 

which the envelope was generated has captured the structure of the 

observed pattern. If Lobs is above the envelope the observed point pattern 

is more clustered than the model can explain, and if Lobs is below the 

envelope the observed pattern is more dispersed. Lastly, from the 1,000 

simulated point patterns we extracted the median and 95% CI of the 

total number of points simulated for each and compared that to the 

number of points of the observed point pattern, to see how well our 

model can predict the total abundance of our pattern. 
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4.4 Results 

4.4.1 Overlap analysis  

From the original dataset (Table 11), after the process of selecting one 

track per individual, the behavioural classification and the random 

thinning, we obtained point patterns of 153 points for Montaña Clara, 

393 points for Timanfaya and 281 points for Veneguera. For the three 

colonies, there was a core foraging area in the waters surrounding the 

colony (from now on adjacent foraging areas), and several other areas 

not adjacent to the colony, and most of them over the African 

continental shelf (from now on distant foraging areas). The largest core 

area and home range were those of the birds breeding in Montaña Clara, 

and the smallest those of Veneguera (Fig. 14; Table 14).  

Table 14 

Measure of overlap (BA) between core areas (lower diagonal) and home ranges 
(upper diagonal) calculated from the foraging positions of birds breeding in 
the three sampled colonies. In parenthesis, we give the p-value obtained from 
the number of null BA values that were lower than the observed BA value for 
each pairing. Also shown, in italics, the size of the core areas (bottom row) 
and home ranges (left column) for each colony. 

 

Montaña 
Clara Timanfaya Veneguera 

Home range 
size (km2) 

Montaña Clara – 0.64 (0.01) 0.16 (0.00) 54019 

Timanfaya 0.20 (0.02) – 0.83 (0.10) 31369 

Veneguera 0.00 (0.00) 0.13 (0.00) – 42643 
Core area size 
(km2) 8127 5230 6131 – 
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Overall, there was less overlap between core areas than between home 

ranges: the maximum core areas overlap was between Timanfaya and 

Montaña Clara, and the maximum home ranges overlap between 

Timanfaya and Veneguera (Table 14). All overlaps were significantly 

smaller than expected at random (at an α level of 0.05) except for the 

overlap of the home ranges of Veneguera and Timanfaya (Fig. 2; Table 

4).  

4.4.2 Hierarchical Bayesian modelling 

The final models (Model 3) of the three colonies included random and 

fixed effects for the covariates DIST and CHLA. Random effect for 

SSTgrad was included for the Timanfaya and Veneguera models. SLO 

was included with a random effect for the Montaña Clara and Timanfaya 

models, and with a fixed effect for the Veneguera model. SST was 

included as random effect in the Montaña Clara, and as fixed in the 

Timanfaya and Veneguera models (Table 4).  

4.4.3 Model evaluation 

Model fit improved with increasing complexity for the three colonies. 

The predicted intensities reflected the observed point pattern better 

when random effects for the covariates and a spatial field had been 

Figure 14 (previous page) 

Core areas (darker colours) and home ranges (lighter colours) from the 
foraging positions of birds breeding in Montaña Clara (purple), Timanfaya 
(green) and Veneguera (tan). Darker circles mark the location of the 
corresponding colony. The black triangle marks the location of the 
Concepcion Seamount. Also shown are the locations of Cape Juby (a) and 
the Dakhla Penninsula (b). The inset in the middle plot shows a zoom of 
the overlap between the adjacent core areas of the Montaña Clara and 
Timanfaya colonies 
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included as linear predictors (Fig. A15). The L-functions and their 

envelopes also showed a better ability of the models with a spatial field 

to capture clustering of points than the other two models. However, there 

was clustering not captured at scales <10 km even in the spatial model, 

as shown by the observed pattern being represented above the envelope 

(Fig. A16). Contrary to that, the predicted total abundances were less 

accurate in the more complex models for the three species (Table A5). 

This seems a consequence of our models under-estimating the clustering 

of the point pattern, which caused in turn the under-estimation of the 

total abundance of points.  

4.4.4 Environmental covariates 

For the three colonies, comparison of final and null models showed 

differences in relative intensity of the spatial fields, revealing the relevant 

contribution of the covariates to capturing part of the spatial structure 

of the point patterns (Fig. 15). For all three colonies, CHLA and SLO 

had an overall positive effect on point intensity, and DIST and SST had 

a negative effect. The effect of SSTgrad was positive in the Timanfaya 

model, but negative in the Veneguera model (Fig. 16).  

 

 

Figure 15 (next pages) 

Spatial field of the null model and the final model for the GPS locations of 
the birds breeding in Montaña Clara (a, b), Timanfaya (c, d) and 
Veneguera (e, f). The colour scale represents the intensity of the effect in 
the scale of the linear predictor (i. e. in the logarithmic scale). Positive 
values show areas where observed intensity is higher than predicted by the 
covariates, and negative values show areas where observed intensity is 
lower than predicted by the covariates 
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Figure 16 
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Figure 16 

size of the non-linear effects of the covariates for the spatial model (black lines) and non-spatial model (gray lines) for the colony 
of Montaña Clara (left), Timanfaya (centre) and Veneguera (right). The solid line represents the median, and the dashed lines 
the 95% CI. The gray rug represents the values for the covariate at which the effect is evaluated (integration points) and the 
black rug represents the values for the covariate at which there are GPS locations. The slope was included as linear variable for 
the three models, and the SST for the Timanfaya models, but is represented here as well as a constant for clarity. 
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4.4.5 Spatial effects 

Median posterior ranges of the spatial effect were between 103.6 and 

115.8 km, and posterior σ between 1.5 and 1.7 (Table A5). Plots of the 

spatial effect for the three colonies showed some spatial structure that 

had not been captured by the environmental covariates (Fig. 15 b, d &-

f). 

4.5 Discussion 

Our kernel overlap analysis provides clear evidence of segregation among 

the foraging distributions of Cory’s shearwaters breeding in three nearby 

colonies, both in adjacent and distant areas, and our spatial models 

prove the existence of small-scale clustering positions and different 

spatial structure in the foraging distributions of the three colonies. In 

combination, these results are strongly suggestive of the presence of both 

local enhancement and information transfer at the colony in the colonies 

studied.  

Since the colonies of Montaña Clara and Timanfaya are less than 50 km 

apart, we expected their adjacent foraging areas to overlap substantially. 

However, this overlap was avoided by birds from each colony using 

mostly adjacent areas in opposite directions. That is, birds from 

Montaña Clara used waters to the northeast of the colony and birds 

from Timanfaya waters to the southwest. Although it has been suggested 

that this type of very short scale segregation can be caused by the 

orientation of colonies and the direction birds take when flying out of 

the breeding sites (Ceia et al. 2014), the Montaña Clara colony is 

oriented to the southeast, discarding this possibility. It is possible, 

however, that birds fly northeast after leaving the colony to target the 
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productive waters surrounding the Concepcion Seamount (100 km 

Northeast of Montaña Clara), which is not used by birds of any of the 

other two colonies sampled in this study, but is known to be used by 

birds of the nearby colonies of Alegranza and Salvage islands (Ramos et 

al. 2013). The observed segregation between the adjacent foraging areas 

of the two colonies, thus, could certainly be explained within the 

framework of Wakefield’s DDH model: birds avoided intra-colony 

competition by expanding outwards, and when the foraging areas 

overlapped birds avoided inter-colony competition by searching waters 

with less conspecifics present, causing inter-colony segregation. This 

segregation could be perpetuated and reinforced by inexperienced birds 

following experienced ones to the colony-specific foraging areas. The 

absence of overlap between the adjacent foraging areas of Veneguera and 

the colonies of Montaña Clara and Timanfaya is not surprising, since 

the distance between Veneguera and the other two colonies (~ 200 km) 

is similar to the distance from Veneguera to the continental shelf.  

In the spatial models, distance to the colony had a clear, negative effect 

on point intensity for every colony. Since flight is an energetically 

expensive activity, breeding birds minimise their energy expenditure 

(e.g. foraging distance) while maximising food intake (MacArthur and 

Pianka 1966), which should result in a decrease in the number of foraging 

birds with distance to the colony. However, for the three colonies, and 

particularly for Veneguera, the non-linear component of the covariate 

allowed us to detect that this negative effect was weaker at larger 

distances, reflecting a bird abundance peak far from the colony that 

other covariates could not explain. In addition, the spatial fields for the 

three models showed one common hotspot for the three colonies, between 
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the Dakhla Peninsula and Cap Blanc (Fig. 15 b, d & f). The existence 

of common foraging ground suggests that a geographical or 

environmental driver not included in our modelling is affecting birds of 

the three colonies equally, and it promotes the aggregation of foraging 

birds in that area. In this regard, although bathymetry was not included 

in our models because it was highly correlated with other covariates, the 

shelf off the coast in that area is the widest in the Canary Current, so it 

is conceivable that birds from the three colonies concentrated in such 

highly productive waters (Longhurst et al. 1995).  

At large scales, the distant core foraging areas for the three species were 

distributed over the cold, productive waters of continental shelf and the 

shelf break, between the 22 and 29º N of latitude, well within the area 

of influence of the productive Canary Current upwelling (Longhurst 

1998, Davenport et al. 2002). In our spatial models this was illustrated 

by a positive relationships of point intensity to CHLA and negative to 

SST for all three models, as found in previous studies (Navarro and 

González-Solís 2009, Ramos et al. 2013). However, at medium scales 

birds from Montaña Clara and Timanfaya used mostly waters to the 

North of Cape Juby, while birds from Veneguera used mostly waters to 

the South. Although it could seem that the distant core areas of birds 

from Montaña Clara and Timanfaya occupied the same general area, the 

overlap between them was significantly smaller than expected at 

random. Environmentally, this segregation was reflected by the different 

preferences for the meso-scale features included in the models (SSTgrad 

and slope; Acha et al. 2015). Thus, our models evidence the utility of 

environmental variables to explain large scale foraging distributions of 

seabirds, like their use of the highly productive waters of the Canary 
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Current, although they also underline the need for caution when 

modelling and predicting foraging distributions of these animals at a 

medium scale (e.g., shelf-break and thermal fronts), as the use of 

averaged values of highly dynamic fronts might be inappropriate at these 

smaller scales (Acha et al. 2015). 

Procelariforms, such as Cory’s shearwaters are highly mobile, able to 

forage at >1,000 km (Oppel et al. 2018) At these geographical scales, 

trying to study their distributions in accordance to the DDH model is 

not possible since the assumptions the model make are not met: at such 

scales, prey at sea is not uniformly distributed, but aggregated in highly 

productive areas promoted by certain geographic and environmental 

features (Carroll et al. 2017), which violates assumption 1. This makes 

the relationship of distance to number of foraging birds not linear, also 

violating assumption 2, as it can be seen from our models. Lastly, our 

sampled colonies were far from being the only relevant populations in 

the area, violating assumption 3 from the DDH model: the largest Cory’s 

shearwater colony in the Canary Islands (Alegranza Islet) lays barely 10 

km to the north of Montaña Clara, and the nearby population of 

Salvages Islands holds the largest population of Cory’s shearwaters in 

the world. Birds from all these colonies, together with individuals from 

many other species, are known to also use the Canary Current for 

foraging (Ramos et al. 2013, Grémillet et al. 2015, Grecian et al. 2016). 

In these distant foraging areas, the effects of inter-colony competition 

are expected to be buffered by the increasing foraging costs and the 

elevated productivity of the area, which can explain the ability of this 

area to sustain a large number of foraging individuals (Grecian et al. 

2016, Bolton et al. 2018). Such an elevated number of foraging animals 
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present in the limited area of the Canary Current upwelling could 

influence their foraging distributions through local enhancement. This 

behaviour has been identified in many colonial seabird species including 

shearwaters (Buckley 1997), therefore it is conceivable that local 

enhancement was responsible for some of the small-scale clustering that 

the L-functions and their envelopes evidenced in our data, since it is 

precisely at those short scales that the effects of local enhancement would 

be evident. However, foraging groups formed through local enhancement 

develop quickly and can disappear just as quickly if the number of 

predators is high enough to deplete the prey patch in a short time, or if 

the prey display escape behaviour (Lewis et al 2001). Thus, the 

development of spatiotemporal models able to model distributions at a 

smaller spatial scale could provide further evidences of this type of 

aggregations. 

Another factor that could be affecting at sea distribution of foraging 

birds is public information obtained at the colony. The instances of 

information transfer identified so far in seabird species rely on birds 

obtaining cues from returning individuals, following departing 

individuals, or through “compass rafts” that form near the colony 

(Weimerskirch et al. 2010, Wakefield et al. 2013, Jones et al. 2018). It is 

complicated to prove how information gathered in this way could inform 

the bird’s decision on where to forage in the distant Canary Current, 

but a combination of tracking environmental cues, coupled to the 

different position of each colony with respect to the continental shelf, 

and the avoidance of inter-colony competition, could define different 

optimal foraging areas which maximise foraging efficiency for each 

colony, and these different areas could be reinforced and perpetuated by 
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unexperienced birds from each colony following experienced ones to the 

foraging grounds. Whatever the mechanisms, the spatial fields of the 

models for the three colonies showed hotspots of unexplained point 

intensity (i.e. abundance of birds) in different regions of the study area 

for each of the sampled colonies (Fig. 3 d-f), difficult to explain unless 

there is a transfer of public information.  

4.5.1 Conclusions 

Our results prove the applicability of continuously indexed GMRF 

models to the analysis of animal distribution from tracking data. The 

ability to include covariates as fixed and random effects, and particularly 

the inclusion of a spatial field, provided very significant improvements 

in model fit and predictions. However, there was still some small-scale 

aggregation (at scales <10 km particularly for the Montaña Clara and 

Timanfaya models) that our models did not have enough resolution to 

explain. Future developments within the INLA framework can help 

dealing with this issue by allowing for a second spatial field with a 

smaller mesh and range to be added to the linear predictor, or by 

developing a spatial field model that is able to account for both local 

and large scale variability with a SPDE model (as has already been 

developed for the gridded approach; Sørbye et al. 2019). Despite these 

limitations, we have demonstrated the significant spatial segregation of 

at-sea foraging distributions of birds breeding in three neighbouring 

colonies, both in the waters surrounding the colony and in distant 

foraging grounds, have confirmed the environmental preference of 

foraging shearwaters for the cool productive waters of the canary 

current, and have suggested a mechanism through which the transfer of 
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information, both at sea and in the colony, can shape the distributions 

of foraging long-ranging seabirds. 
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5 

Discussion 
 

In this thesis, we discuss the drawbacks and main sources of variability 

associated with the inference of higher-level (i.e. colony, population and 

species) distributions from individual tracking data, and we provide 

analytical tools to detect this variability as well as to model spatially 

explicit data, and apply them to (a) detect and discuss the implications 

of the migratory connectivity present in three pelagic seabirds, (b) study 

the ecological segregation among the three species in the their non-

breeding season, (c) demonstrate the existence of spatial segregation 

among foraging areas of three neighbouring colonies, and (d) discuss the 

role of information transfer in the at-sea distribution of foraging seabird. 

These results are highly relevant for the fields of spatial and seabird 

ecology and for conservation, since they provide tools applicable to 

individual movement data regardless of species and tracking device and 
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provide insights into the drivers and implications of movement for 

pelagic seabirds.  

5.1 Addressing sources of variability in the 

inference from individual tracking data  

The study of space and habitat use from a multi-colony point of view is 

affected by several sources of bias or variability, introduced by inferring 

the space use of higher levels (population or species) from the individual 

tracks of a few individuals (Giuggioli and Bartumeus 2012). To assess 

the effects of individual site fidelity and environmental variability on the 

inference of space use at higher levels, in chapter one, we developed a 

test, applicable to any individual tracking dataset. Regardless of species 

tracked and type of device used, this test detects either significant effects 

of site fidelity or environmental variability at an individual level in the 

population-level distribution. In addition, when designing multi-colony 

tracking studies, it is important to maximise not only the number of 

animals tracked, but also the extent of the sampled area (in case of 

spatially structured populations such as seabirds, the number of colonies 

sampled), since animals from different areas of the distribution of a given 

species might face different environmental conditions, and thus make a 

different use of space (Börger et al. 2006). To that aim, we developed a 

function to test the ability of each sampled population to properly 

represent the entire distribution of the species. To demonstrate the 

applicability of these three functions, we used a multi-species, multi-

colony dataset of 1,346 year-round tracks from 805 individuals of three 

Calonectris shearwaters breeding in 34 colonies. First, we used the 
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developed functions to demonstrate the lack of effect of both individual 

site fidelity and environmental variability in the distributions at a 

population level. Then, we calculated the species representativity level 

of each population for the three species. The most remarkable result was 

that obtained from the Cory’s shearwater (C. borealis) non-breeding 

distribution (Fig. 17), where single-population distributions always 

underrepresented that of the entire species, providing evidence of the 

need to consider the above-mentioned issues when inferring species space 

use from individual tracking data. In addition, linear models 

demonstrated a spatial gradient in the degree of species 

representativeness of each population for both Cory’s and Scopoli’s 

shearwaters (C. diomedea; Fig. 18). For Cory’s shearwater, the 

relationship with latitude was weak (although significant), and probably 

a by-product of the fact that the largest colonies are those to the north 

of the distribution, holding around 65% of the estimated world 

population (Fontaine et al. 2011): northern colonies were better at 

representing the entire species because they are, in fact, the majority of 

the species. For Scopoli’s shearwaters, however, the relation between 

representativeness and distance to the species centre was strongly 

negative. This shows that colonies closer to the centre of mass of the 

breeding distribution were more representative of the entire species, 

proving that using data from only a small part of the entire breeding 

distribution will lead to an underrepresentation, or even an erroneous 

estimation, of the species non-breeding distribution (Webster et al. 2002) 
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Figure 17 (previous page) 

Non-breeding distributions of Cory’s shearwaters corrected for sample 
effort and weighted by population size. (a) Using data from all 
representative colonies pooled together to represent the species' non-
breeding distribution, and using data only from the representative colonies 
in (b) Azores, (c) the Iberian coast, and (d) Canary and Salvages Islands. 
Pink diamonds in (a) show the location of all sampled colonies. In (b), (c) 
and (d), pink diamonds show representative colonies for each population. 
Scales show the number of individuals per 0.1*0.1º cell. 

According to these results, it is clear that using only individuals tracked 
from the Iberian Coast population would cause a gross underestimation of 
the breeding distribution of the entire species. Using only birds from the 
Azores population would not underestimate the total area so dramatically, 
but would miss the non-breeding area off the Northwest African coast 
entirely. 
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Figure 18  

Species representativeness for each population was calculated as a 
measure of how well the non-breeding distribution of a single colony 
represents that of the entire species. In spatially structured species with 
high migratory connectivity, we would expect representativeness values 
to be relatively low for all colonies, since non-breeding distributions 
would not be shared among colonies. 

Significant relationship between species representativeness values and 
colony latitude for Cory’s shearwater (top), and representativeness 
value and distance to the species centre of mass for Scopoli’s shearwater 
(bottom). The black line represents a linear fit and the grey shaded 
area represents the 95% CI.  
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In addition to the issues addressed in chapter one, the serial correlation 

between consecutive positions inherent to high-resolution tracking data 

can also lead to over- or underestimation of space use when used, for 

example, in species distribution models (Holdo and Roach 2013). In 

chapter three, we addressed this issue by using a spatial random 

thinning technique to subset the data while maintaining the spatial 

structure of the distribution at a population level. Besides serial 

correlation of tracking data, there is, by definition, spatial structure in 

distributional data (i.e. spatial autocorrelation). Although the aim of 

species distribution modelling techniques is to explain all this structure 

using a combination of different environmental variables, certain spatial 

structure usually remains unexplained, which reduces the prediction 

accuracy of any model (Aarts et al. 2008). In chapter three, we applied 

a spatially explicit point pattern model that includes a spatial field in 

the linear predictor, able to capture any spatial structure absent in the 

covariates (Fig 19). This field provides key information on the spatial 

structure of unobserved environmental covariates or behavioural process 

non-included in the final modelling. The information provided by this 

spatial field became essential while evaluating the accuracy of model 

predictions.
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Figure 19 

To be able to appreciate the relevance of the environmental variables in 
the spatial structure of the foraging locations, we ran first a null model, 
that contained no environmental variables and only a spatial field which 
captured all the structure present on the data. Comparing this spatial field 
to the one from the full model, only representing the structure not captured 
by the covariates, allowed us to see were the hotspots of foraging birds 
were explained away by the environmental variables and were those were 
not enough and some structure remained, indicating possible effects of local 
enhancement or the consequences of information transfer at the colony.  

Representation of the spatial field capturing the spatial structure of the 
data in (a) the null model, and (b) in the final model including all the 
relevant covariates. The intensity of the spatial field is closer to 0 all across 
the study area in the final model, demonstrating the spatial structure 
captured by the included covariates. However, some structure remains that 
the covariates could not capture, and with the use of these type of models 
we can obtain an estimation of the shape of the “leftover” structure, which 
can provide information about the unobserved environmental or 
behavioural process that may be causing this structure.  
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5.2 Space and habitat use in pelagic seabirds 

In chapter two, we applied those methods developed in chapter one to 

study the migratory connectivity and non-breeding distributions of the 

three shearwater species from a multi-colony point of view. The analyses 

showed, for Cory’s and Scopoli’s shearwaters, a pattern of population 

structure —indicated by positive values of migratory connectivity— 

present among distance-based groups of colonies (i.e. populations) but 

absent at colony level (Fig. 20). This suggests that, for both species, 

breeding colonies are structured in populations with a low degree of 

among-population mixing but high degree of within-population mixing 

in the non-breeding areas.   
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This structuring in populations has relevant implications in the 

evolutionary history of these species, since it can promote processes of 

ecological divergence (Matthiopoulos et al. 2005). In addition, the 

migratory connectivity among the three closely-related shearwater 

species showed even higher levels than those computed among 

populations within each species, suggesting very little inter-species 

mixing in their non-breeding distributions.  

This among-species segregation was confirmed with ensemble ecological 

niche models (EENM; Fig. 21), where the spatial segregation between 

Cory’s and Scopoli’s shearwaters, and between Cape Verde and 

Scopoli’s shearwaters, were unmistakable, and the environmental 

preferences confirmed an ecological segregation between Cory’s and 

Cape Verde shearwaters even though their non-breeding areas partially 

overlapped (Fig 22). 

Figure 20 (previous page) 

Migratory connectivity (MC) values are a measure of how well the 
structure among breeding populations is maintained in the non-breeding 
distributions. High values of MC indicate that populations that breed 
separated do not mix in the non-breeding areas either, while low values of 
MC indicate low high degree of mixing among populations in the non-
breeding areas. 

MC values at species (CALONECTRIS) level, at a population level for 
Cory’s (CALBOR) and Scopoli’s (CALDIO) shearwater and at a colony 
level for Cory’s, Scopoli’s and Cape Verde (CALEDW) shearwater. Closed 
circles represent median value, and whiskers represent 95% confidence 
interval). 
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Figure 21 

Using ensemble environmental niche models we obtained the non-breeding 
habitat suitability map for the three Calonectris taxa, and from the maps 
calculated the polygons that contain habitat with a suitability value >80%. 
These polygons show no overlap between the non-breeding habitats of 
Cory’s and Scopoli’s shearwaters, and between Cape Verde and Scopoli’s 
shearwaters, and only partial overlap between the non-breeding habitats 
of Cory’s and Cape Verde shearwaters, indicating a clear spatial 
segregation among the non-breeding habits of the three species 

Polygons delimiting the areas with habitat suitability of >80% for Cory’s 
(pink), Scopoli’s (green) and Cape Verde (blue) shearwaters, showing the 
complete segregation between Cory’s and Scopoli’s shearwater, and Cape 
Verde and Scopoli’s shearwaters, and partial segregation of Cory’s and 
Cape Verde shearwaters. Closed circles show the locations of the sampled 
colonies for each species. 
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These results provide evidence of an ecological segregation in the non-

breeding areas/season among the three species, which has been described 

as a signal of divergence in the lineage in migratory seabirds (Friesen et 

Figure 22 

From the EENM we obtained, for the two most important variable, the 
preferred values for each taxa Differences in environmental preferences 
demonstrated an ecological segregation between Cory’s and Scopoli’s 
shearwater, and also between Cory’s and Cape Verde shearwaters. 

Violin plots representing the values selected in the three environmental niche 
models at a taxon level for the three most important variables: (a) SST, (b) 
CHLA. The points represent the value of the environmental variable at each 
of the presences, and the width of the violin represents the density of points.  
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al. 2007; Friesen 2015). Thus, in combination with genetic and genomic 

analyses, our results could provide robust evidences of the divergence 

within the Calonectris complex, and support the identification of these 

taxa as full species, statuses that are still under discussion (Gómez-Díaz 

and González-Solís 2007; Gómez-Díaz et al. 2009; Genovart et al. 2013; 

Zidat et al. 2017). 

In chapter three, using a dataset with a much higher spatiotemporal 

resolution, we demonstrated the existence of spatial segregation in the 

usage of adjacent foraging areas of three neighbouring colonies of Cory’s 

shearwaters (Fig. 23). we also proved the existence of spatial structure 

in the at-sea locations of birds breeding in these colonies that was 

unexplained by the environmental covariates retained in the linear 

predictor. These findings allowed me to discuss potential mechanisms of 

information transfer among long-ranging shearwaters, and, in general, 

the implications that such information transfer might have in the spatial 

distribution and ecology of seabirds. Local enhancement, which happens 

when information is transferred at the foraging places, has already been 

described for many species of seabirds including some shearwaters, but, 

mainly, from an observational point of view (Buckley 1997).
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Figure 23  

Segregation among the foraging distributions of Cory’s shearwaters from three neighbouring colonies. Birds from Montaña Clara 
(purple) and Timanfaya (green) foraged mainly to the north of the colonies and the Canary Current, while birds from the 
Veneguera colony (tan) foraged mainly to the south. This segregation was more intense than what would be expected at random.  

Core areas (darker colours) and home ranges (lighter colours) from the foraging positions of birds breeding in Montaña Clara, 
Timanfaya and Veneguera. Darker circles mark the location of the corresponding colony. The black triangle marks the location of 
the Concepcion Seamount. Also shown are the locations of Cape Juby (a) and the Dakhla Penninsula (b). The inset in the middle 
plot shows a zoom of the overlap between the adjacent core areas of the Montaña Clara and Timanfaya colonies. 
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The spatially-explicit models allowed me to detect clustering of foraging 

locations at short distances (<10 kilometres) through the use of L-

functions and envelopes (Fig 24), but further development of point 

pattern spatiotemporal models should improve the detection of such 

aggregations, since local enhancement has an important temporal 

component that cannot be modelled with static methodologies (Yuan et 

al. 2017).  The information transfer at or near the colonies has been 

formally tested in species with short foraging ranges (e.g. Wakefield et 

al. 2013, Jones et al. 2018), but never in long-ranging ones, although 

some studies demonstrating segregation in foraging areas have cited 

information transfer as a possible driver (reviewed in Bolton et al. 2018). 

The spatial field present in the linear predictor of our spatially-explicit 

models allowed us to detect a spatial structure in at-sea locations not 

captured by environmental covariates, but the improvement of 

spatiotemporal models to jointly model the distributions of different 

colonies (Bakka et al. 2018) will certainly represent a step forward 

towards the detection and formal description of the effects of information 

transfer in foraging distributions. 
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Figure 24 

L-functions and envelopes of spatial models. The observed 
point pattern is represented in a continuous red line, and the 
envelopes (obtained from 1000 simulations from the fitted 
model) are represented by the dashed black lines. When the 
L-function for the observed point pattern is above the 
envelope, there is clustering in the observed point pattern 
not captured by the fitted model. When the L-function of 
the observed point pattern is below the envelope there is 
segregation in the observed point pattern that is not 
captured by the fitted model. 
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5.3 Implications for conservation of the findings of 

this work 

The increasing availability of animal tracking data certainly has an 

impact in management and conservation policies, as it provides useful 

information for combating species decline (Sherley et al. 2017), it helps 

defining the limits of protected areas in an effective way (Hays et al. 

2019), it serves as an indicator of ecosystems health (Kays et al. 2015), 

and has even been used to detect harmful human activities such as illegal 

fishing (Weimerskirch et al. 2017). 

In chapter one, this thesis provides methods to remove biases and 

sources of variability in tracking data, which should contribute to 

increase the robustness and credibility of studies using individual 

tracking data to identify areas of ecological importance, delimit 

protected areas, or use the spatial distribution of mobile species to 

manage human activities that could be threatening biodiversity (e.g. 

temporal fishery closures). In addition, we test these tools in a mutli-

colony dataset spanning the entire breeding distribution of three species 

of pelagic seabirds, providing large-scale evidence of the relevance of 

offshore areas for the conservation of migratory species. 

In chapter two, our findings on the spatial structure in the non-

breeding distributions of Calonectris shearwaters both among and within 

species, obtained from the migratory connectivity and EENM, could not 

only aid in the design of offshore marine protected areas (MPA) in the 

temperate regions the species inhabit, but also offer a case study that 

should aid in the designation of other MPAs elsewhere based on the 
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distributions of other top predators. Results demonstrating population 

structure within species also have relevance in conservation, since they 

contribute to the understanding of how perturbations in the non-

breeding regions can affect specific breeding populations, and what 

implications this can have in their population dynamics, which 

ultimately conditions the species demography. 

Tracks of foraging trips have also contribute to the understanding of the 

effect of off-shore installations, or other anthropogenic impacts, such as 

interactions with fisheries, in different colonies (e.g. Genovart et al. 2018, 

Cook et al. 2018). In addition, this type of data has been used to establish 

the limits of MPAs both in national and internationally managed waters 

(Hays et al. 2019). Methods developed in chapter three, which analyse 

foraging distributions of marine fauna, can aid in the identification of 

marine hotspots, something that is essential in the development of 

management measures of intensely exploited areas such as the Canary 

Current where the studied species forage. In addition, our results proving 

the spatial segregation between the foraging distributions, both in the 

areas surrounding the colony and in the productive waters of the Canary 

Current, represent key insights into what consequences any 

anthropogenic perturbation (e.g. an off-shore wind farm or oil 

installation) could have for each of the sampled colonies. Extending our 

analysis to other breeding colonies with birds also foraging in the Canary 

Current could aid to the understanding of the consequences that these 

perturbations could have not only at a multi-colony level, but also at a 

species level. 
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6 

Conclusions  
 

• About addressing sources of variability in the inference from 

individual tracking data.  

1. In the current scientific context of collaborative, multi-colony 

studies, it is important to understand the effect that sources of 

variability in individual tracking data such as individual site 

fidelity, temporal variability and spatial variability can have in 

the inference of space use at colony, multi-colony, population and 

species level. We have provided a protocol for an objective 

evaluation of these three main sources of variability that can 

affect the inference from individual tracking data to the 

distributions at a multi-colony level.  

2. The development of cheaper, smaller, and more precise tracking 

devices has boosted the use of individual tracking data for species 

distribution modelling. We have shown the applicability of a 
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spatially explicit, continuously indexed point process model to 

model species distributions from tracking data. These improve 

the commonly used species distribution models by removing the 

need to aggregate data in grids and allowing the incorporation of 

non-linear covariates and a spatial field to the linear predictor. 

• About the space and habitat use of pelagic seabirds at a 

multi-colony level.  

3. We have demonstrated the existence of spatial segregation among 

the non-breeding distributions of Cory’s, Scopoli’s, and Cape 

Verde shearwaters. This spatial segregation provides evidence of 

the ecological divergence within the Calonectris complex, further 

supporting the identification of each taxa as a full species. 

4. We have also proved a higher degree of migratory connectivity 

between populations than between colonies, indicating the 

presence of spatial structure at a population level, in Cory’s and 

Scopoli’s shearwaters. 

5. Using tracking data of three neighbouring colonies of Cory’s 

shearwater, We have demonstrated the existence of spatial 

segregation among the foraging distributions of each colony both, 

in adjacent as well as in distant waters. This segregation was 

mediated by environmental drivers and information transfer, 

which occurred both at sea and at the breeding colonies. 

• About the implications for conservation of the findings of 

this work.  

6. Tracking data is being increasingly used to informing 

conservation strategies, such as identifying protected areas, 

defining extractive moratoria or implementing mitigation 
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strategies. The tools developed in this thesis offer robustness to 

studies that, using individual tracking data, aim to define 

conservation and management strategies of highly vagile species. 

7. At a large (ocean) scale, we have shown. the relevance of certain 

pelagic areas for all the populations of Calonectris shearwaters, 

which can aid in the identification and delimitation of offshore 

marine protected areas (MPA) and offer guidelines for the 

identification of other MPAs based on tracking data of other top 

predators.  

8. I have demonstrated the existence of structure both, among and 

within each of the three Calonectris species, in their non-breeding 

distribution, which contribute understanding the impacts 

anthropogenic perturbations could have for each of the 

populations and species.  

9. Lastly, analyses of the foraging distributions of birds from three 

colonies of Cory’s shearwater in the Canary Current provide 

insights into the potential consequences of anthropogenic 

activities, such as fisheries, off-shore wind farm or oil installation, 

may have at colony and population levels. Extending these 

analyses to other breeding colonies with individuals also foraging 

in the Canary Current could aid understanding the consequences 

these perturbations may have not only at a multi-colony level, 

but also at a species level. 
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Table A1 
R functions developed specifically for this paper to test the effects of individual site fidelity, temporal and spatial variability 
in tracking data. The use of the functions and their arguments are described in detail. 

Function name Use Arguments Input format 
indEffectTest() Test the effect 

that individual 
site fidelity has in 
the distribution 
at a population 
level 

Tracks Tracking data. DataFrame (DF) or 
SpatialPolygonsDataFrame (SPDF), containing 
Latitude, Longitude, a unique identifier for each trip 
and all the grouping variables we are interested in 
comparing the within group and between group 
overlap 

tripID Character string, name of the column in the data 
containing the unique identifier for each trip 

GroupVar Character string, name of the column in the data the 
variable to use to group the trips and compare 
“within-group” and “between-group” effects. To test 
the effect of individual site fidelity we use individual 
identity as grouping variable, and to test the inter-
annual differences we use year as grouping variable  

Method Character string, one of the methods of measuring 
similarity between kernels offered by the 
adehabitatHR::kerneloverlap() function.  

Conditional Logical (TRUE/FALSE), from the 
adehabitatHR::kerneloverlap() function. If set to 
TRUE (the default), the overlap is calculated between 
the two incomplete probability surfaces bound by the 
polygons calculated at the percentage indicated by 
UDLev. In this case, the maximum level of overlap 
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Function name Use Arguments Input format 
will be equal to UDLev. If set to false the overlap is 
calculated between the two complete probability 
surfaces, and the UDLev argument becomes 
irrelevant. For more info check 
?adehabitatHR::kerneloverlap() 

UDLev Numeric, Utilisation Distribution Level. Level of the 
KDE to be selected. For example, if 50 is used, the 
overlap is calculated between the smallest areas for 
which the probability to find the animal is equal to 
0.50 (but see explanation for argument "conditional". 
From the adehabitatHR::kerneloverlap() function. 

Scale Numeric, smoothing parameter for the kernel 
Utilisation Distribution calculation. It comes from the 
h argument from adehabitatHR::kerneloverlap(). The 
function uses projected data (projects it to Lambert 
Equal Erea projection centred in the mean values of 
longitude and latitude), so this parameter can have a 
biological interpretation as the spatial scale at which 
we are interested in comparing distributions. Must be 
specified in km since the function will internally 
convert it to meters to match the units of the 
projection used.  

Grid Numeric, size of the grid cells on which the UD will 
be estimated (from the adehabitatHR::kerneloverlap() 
function. 

plotIt Logical (T/F). If TRUE, a boxplot of within and 
between group overlap values will be plotted 
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Function name Use Arguments Input format 
Nboots Numeric, number of iterations for the bootstrap K-S 

test. For more information, check 
?Matching::boot.ks() 

simulateDistribution() simulate 
distribution from 
tracking data, 
avoiding 
differential 
sampling bias and 
correcting for 
different 
population sizes  

Tracks Tracking data. DF or SPDF, containing Latitude, 
Longitude, Species and Population 

PopulationInfo DF containing the name of all sampled populations 
within the study species (named as they appear in the 
tracking data set) and their size estimates (number of 
pairs, the function will multiply it by 2).  

Scale Numeric, in km, the smoothing parameter for the 
estimation of the UD. Note that, whatever the 
projection of the original data, the function will 
reproject to a CRS in m and then multiply the 
"Scale" value by 1000 

Grid Numeric, size of the grid cells on which the UD will 
be estimated (from the adehabitatHR::kerneloverlap() 
function. 

MultiFactor Numeric. Number of points simulated for each 
individual of the colony. If it equals 1, the number of 
points simulated will be equal to the size estimate (i.e. 
from a colony of 100 breeding pairs we will obtain a 
data set of 200 simulated locations). If there are very 
small colonies in our data set, which might be 
inadequate for generating accurate kernel density 
estimates, a higher multiplication factor can be 
specified. However, higher values will generate very 
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Function name Use Arguments Input format 
large data sets, increasing the computation time of 
this function and the next one.  

bootstrapColony() check a 
population's 
representativity 
of the distribution 
of the entire 
species 

Tracks Tracking data. DF or SPDF, containing Latitude, 
Longitude, Species and Population 

SimulatedDistributions DF or SPDF containing the simulated distribution of 
the studied species, with at least the columns 
Longitude, Latitude, Population and Species. Can be 
directly the output of the simulateDistribution() 
function 

UDLev Numeric, Utilisation Distribution Level. Level of the 
KDE to be selected. For example, if 50 is used, the 
overlap is calculated between the smallest areas for 
which the probability to find the animal is equal to 
0.50 (but see explanation for argument "conditional". 
From the adehabitatHR::kerneloverlap() function. 

Scale Numeric, in km, the smoothing parameter for the 
estimation of the UD. Note that, whatever the 
projection of the original data, the function will 
reproject to a CRS in m and then multiply the 
"Scale" value by 1000 

Grid From the kernelUD function. A number giving the 
size of the grid on which the UD should be estimated 
(for more info check ?adehabitatHR::kernelUD) 

Iterations  Numeric, number of iterations for the bootstrap 
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Table A2 
Summary of logger and deployment details for each colony, prior publication of the data used for this study, and permits and 
licences granted for the corresponding fieldwork 
Colony Type of 

logger 
Model Attachment 

method 
Weight 
(in gr) 

% of body 
mass 

Prior 
publication  

Permits/Licences  

Sisargas Migrate 
Technology 

C250 Cable tie to 
leg-mounted 
darvic ring 

2.5 0.33 Unpublished Authorisation from the 
Autonomous Organism of 
National Parks and the 
Galician Regional 
Government (Xunta de 
Galicia) 

Berlenga  Biotrack/ 
BAStrack 

MK5, Mk3  Cable tie to 
leg-mounted 
darvic ring 

2.5 – 3.3 0.33 – 0.44 Missagia et 
al., 2015 

No. 89/2011/CAPT 

Biotrack/ 
BAStrack 

Mk5, Mk7, 
MK3005 

Cable tie to 
metal ring 

3.6 0.48 Catry, Dias, 
Phillips, & 
Granadeiro, 
2011 

107/2006, 116/2007, 
333/2007/CAPT 

Vila  Biotrack/ 
BAStrack 

MK4, Mk18, 
Mk19, 
Mk3005, 
MK4083 

Cable tie to 
leg-mounted 
darvic ring 

1.5 – 2.5  0.20 – 0.33 González-
Solís, Croxall, 
Oro, & Ruiz, 
2007 

Lic. 61/2008/DRA; Lic. 
66/2009/DRA; Lic. 
02/2010/DRA; 
Lic.43/2011/DRA; 
Lic.63/2012/DRA 

Pico Biotrack/ 
BAStrack 

MK4, MK19 Cable tie to 
leg-mounted 
darvic ring 

1.5 – 2.5  0.20 – 0.33 Unpublished Lic. 61/2008/DRA; Lic. 
66/2009/DRA; Lic. 
02/2010/DRA; 
Lic.43/2011/DRA; 
Lic.63/2012/DRA 
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Colony Type of 
logger 

Model Attachment 
method 

Weight 
(in gr) 

% of body 
mass 

Prior 
publication  

Permits/Licences  

Graciosa Biotrack/ 
BAStrack 

MK4, MK19 Cable tie to 
leg-mounted 
darvic ring 

1.5 – 2.5 0.20 – 0.33 Unpublished Lic. 61/2008/DRA; Lic. 
66/2009/DRA; Lic. 
02/2010/DRA; 
Lic.43/2011/DRA; 
Lic.63/2012/DRA 

Faial Biotrack/ 
BAStrack 

MK4, MK19 Cable tie to 
leg-mounted 
darvic ring 

1.5 – 2.5 0.20 – 0.33 Unpublished Lic. 61/2008/DRA; Lic. 
66/2009/DRA; Lic. 
02/2010/DRA; 
Lic.43/2011/DRA; 
Lic.63/2012/DRA 

Corvo Biotrack/ 
BAStrack 

MK4, MK19 Cable tie to 
leg-mounted 
darvic ring 

1.5 – 2.5 0.20 – 0.33 Unpublished Lic. 61/2008/DRA; Lic. 
66/2009/DRA; Lic. 
02/2010/DRA; 
Lic.43/2011/DRA; 
Lic.63/2012/DRA 

Selvagem  Biotrack/ 
BAStrack 

Mk7, Mk19 Cable tie to 
metal ring 

2.6 – 3.6 0.33 – 0.48 Dias, 
Granadeiro, & 
Catry, (2012, 
2013) 

107/2006, 116/2007, 
07/2009S, 
107/2010/CAPT, 4/2011S 

Timanfay
a 

Migrate 
Technology 

C250 Cable tie to 
leg-mounted 
darvic ring 

2.5 0.33 Unpublished RES-AUT 
I03/2015/JACOB 
GONZÁLEZ-SOLÍS 
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Colony Type of 
logger 

Model Attachment 
method 

Weight 
(in gr) 

% of body 
mass 

Prior 
publication  

Permits/Licences  

Montaña 
Clara 

Biotrack/ 
BAStrack 

MK19, 
MK3005 

Cable tie to 
leg-mounted 
darvic ring 

2.5 0.33 Unpublished 2011/0795, 2015/1170 

Migrate 
Technology 

C250, C330 Cable tie to 
leg-mounted 
darvic ring 

2.5 – 3.3 0.33 – 0.45 

Veneguer
a 

Biotrack/ 
BAStrack 

Mk13, Mk18, 
Mk19, 
Mk3005, 
Mk4,Mk9 

Cable tie to 
leg-mounted 
darvic ring 

1.5 – 2.5 0.20 – 0.45 González-
Solís, Croxall, 
Oro, & Ruiz, 
2007 

84/2007, 2011/0795, 
2015/1170 

Migrate 
Technology 

C250,C330 Cable tie to 
leg-mounted 
darvic ring 

2.5 – 3.3 0.33 – 0.45 

Chafarin
as 

Biotrack/ 
BAStrack 

Mk13,Mk19 Cable tie to 
leg-mounted 
darvic ring 

2.5 0.33  Unpublished Ethics Committee of CSIC 
(Spanish Council of 
Scientific Research, 
(REF: 239/2015) Migrate 

Technology 
C250 Cable tie to 

leg-mounted 
darvic ring 

2.5 0.33 

Terreros  Migrate 
Technology 

C330 Cable tie to 
leg-mounted 
darvic ring 

3.3 0.45 Unpublished Lic. date 21/04/2017 from 
Dirección General de 
Gestión del Medio Natural 
(Junta Andalucía)  

Chafarin
as 

Biotrack/ 
BAStrack 

Mk13, Mk19 Cable tie to 
leg-mounted 
darvic ring 

2.5 0.35  Unpublished Ethics Committee of CSIC 
(Spanish Council of 
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Colony Type of 
logger 

Model Attachment 
method 

Weight 
(in gr) 

% of body 
mass 

Prior 
publication  

Permits/Licences  

Migrate 
Technology 

C250 Cable tie to 
leg-mounted 
darvic ring 

2.5 0.35 Scientific Research, 
(REF: 239/2015) 

Palomas Migrate 
Technology 

C250, C330 Cable tie to 
leg-mounted 
darvic ring 

2.5 – 3.3 0.35 – 0.46 Ramos, 2019 A.UP/2016/0083 

Cala 
Morell 

Migrate 
Technology 

C250 – C330 Cable tie to 
leg-mounted 
darvic ring 

2.5 – 3.3 0.35 – 0.46 Ramos, 2019 CEP-24/2015, CEP-
30/2016 

Pantaleu Biotrack/ 
BAStrack 

Mk13, Mk19, 
Mk3005 

Cable tie to 
leg-mounted 
darvic ring 

1.5 – 2.5 0.21 – 0.35 González-
Solís, Croxall, 
Oro, & Ruiz, 
2007 

  X32/2010; I40/2011; 
Q22/2012; P39/2013; 
M52/2014; F08/2015 

Cabrera Migrate 
Technology 

C250 Cable tie to 
leg-mounted 
darvic ring 

2.5 0.35 Unpublished 0160/15 

Porquerol
les 

LOTEK Lat2500 Cable tie to 
leg-mounted 
darvic ring 

3.6 0.50  Unpublished #A34 - 369, #A34 - 505 

Riou LOTEK Lat2500 Cable tie to 
leg-mounted 
darvic ring 

3.6 0.50 Péron & 
Grémillet, 
2013 

#A34 - 369, #A34 - 505 
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Colony Type of 
logger 

Model Attachment 
method 

Weight 
(in gr) 

% of body 
mass 

Prior 
publication  

Permits/Licences  

Frioul LOTEK Lat2500 Cable tie to 
leg-mounted 
darvic ring 

3.6 0.50  Unpublished #A34 - 369, #A34 - 505 

Giraglia LOTEK Lat2500 Cable tie to 
leg-mounted 
darvic ring 

3.6 0.50  Unpublished #A34 - 369, #A34 - 505 

Lavezzi LOTEK Lat2500 Cable tie to 
leg-mounted 
darvic ring 

3.6 0.50 Péron et al., 
2012 

#A34 - 369, #A34 - 505 

Linosa Biotrack/ 
BAStrack 

Mk3006  Cable tie to 
leg-mounted 
metal ring 

3.6 0.5 Unpublished Prot. 65887 (23/07/2007) 
Prot. 17233 (01/12/2010) 

Gozo Biotrack/ 
BAStrack 

Mk3005 Cable tie to 
leg-mounted 
darvic ring 

2.5 0.35  Unpublished NP16/12 NP20/13, 
NP30/14, NP22/15 

Malta Biotrack/ 
BAStrack 

Mk3005 Cable tie to 
leg-mounted 
darvic ring 

2.5 0.35  Unpublished NP16/12 NP20/13, 
NP30/14, NP22/15 

Filfla Biotrack/ 
BAStrack 

Mk3005 Cable tie to 
leg-mounted 
darvic ring 

2.5 0.35  Unpublished NP16/12 NP20/13, 
NP30/14, NP22/15 

Zembra Migrate 
Technology 

C250 Cable tie to 
leg-mounted 
darvic ring 

2.5 0.35 Ramos, 2019  Authorisation by the 
Agence de Protection et 
d’Aménagement du 
Littoral (APAL) 
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Colony Type of 
logger 

Model Attachment 
method 

Weight 
(in gr) 

% of body 
mass 

Prior 
publication  

Permits/Licences  

Tremiti Biotrack/ 
BAStrack 

Mk3006        Unpublished   

Strofades LOTEK Lat250 Cable tie to 
leg-mounted 
darvic ring 

3.6 0.50  Karris, 2014 2009-2014, Permissions 
from Management Agency 
of the National Marine 
Park of Zakynthos 

Paximad
a 

Migrate 
Technology 

C250 Cable tie to 
leg-mounted 
darvic ring 

2.5 0.35 Ramos, 2019  110553/1398 (19/05/2014)  

Curral 
Velho 

Biotrack/ 
BAStrack 

Mk4, Mk9, 
Mk10, Mk13, 
Mk18, Mk19, 
Mk3005 

Cable tie to 
leg-mounted 
darvic ring 

1.5 – 2.5 0.32 – 0.53 González-Solís 
et al., 2009 
Roscales, 
Gómez-Díaz, 
Neves, & 
González-
Solís, 2011 

01/2009, 002/10, 01/2011, 
01/2012, 04/2013, 
18/2014, 04/2016 

Migrate 
Technology 

C250, C330 Cable tie to 
leg-mounted 
darvic ring 

2.5 – 3.3 0.53 – 0.69 

Raso Biotrack/ 
BAStrack 

Mk4, Mk9, 
Mk13, Mk14, 
Mk19 

Cable tie to 
leg-mounted 
darvic ring 

1.4 – 2.5 0.29 – 0.53 
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Table A3 
Number of individuals tracked repeatedly for each colony. In Veneguera 
and Curral Velho, there are animals tracked for up to 8 consecutive years, 
in Pantaleu up to 3 consecutive years. 
Species Population Colony Consecutive 

years tracked 
No. birds 

Cory’s 
shearwater 

Canary 
Islands and 
Selvagens 

Veneguera 1 49 

2 29 

3 16 

4 6 

5 10 

6 4 

7 2 

8 5 

Scopoli’s 
shearwater 

Balearic Is. Pantaleu 1 23 

2 14 

3 9 

Cape Verde 
shearwater 

East Cape 
Verde 

Curral 
Velho 

1 18 

2 5 

3 3 

4 4 

5 2 

8 1 
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Table A4 
Population estimates from all breeding colonies of Cory’s, Scopoli’s and Cape Verde shearwaters available in the 
published literature. n refers to the number of tracks obtained from each colony, Min. pop. and Max. pop. to 
minimum and maximum population estimates (in number of breeding pairs), and Lon. and Lat. to the longitude and 
latitude of the breeding colonies. 
Species Population Colony N Min. 

pop 
Max. 
pop 

Lon Lat Reference 

Cory’s 
shearwater 

Galicia Sisargas 2 17 21 -8.84 43.36 Munilla, Genovart,  
Paiva, & Velando, 2016 Cíes 

 
21 27 -8.90 42.21 

Coelleira 
 

23 38 -7.63 43.76 

Berlengas Berlenga 37 310 310 -9.51 39.41 Lecoq,  
Geraldes, & Andrade, 2011 Cerro da Velha 

 
25 25 -9.50 39.42 

Estela 
 

10 15 -9.53 39.42 

Estelão 
 

5 5 -9.53 39.42 

Manuel Jorge 
 

5 5 -9.53 39.42 

Farilhão 
Grande 

 
500 550 -9.55 39.48 

Farilhão da 
Cova 

 
100 120 -9.55 39.47 

Farilhão do 
Nordeste 

 
15 20 -9.54 39.48 

Farilão dos 
Olhos 

 
5 10 -9.55 39.47 

Rabo de Asno 
 

5 10 -9.55 39.47 
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Species Population Colony N Min. 
pop 

Max. 
pop 

Lon Lat Reference 

East Azores Vila - Santa 
Maria 

72 400 400 -25.17 36.94 Ramírez, Geraldes, 
Meirinho, Amorim, & Paiva, 2008 

São Miguel 
 

23,826 23,826 -25.44 37.75 

Central 
Azores 

Pico 15 16,000 16,000 -28.54 38.5 

Graciosa 25 277 12,500 -27.96 39.06 

Terceira 
 

10,849 10,849 -27.20 38.73 

Faial 23 5,713 5,713 -28.82 38.58 

São Jorge 
 

33,626 33,626 -28.02 38.64 

West Azores Flores 
 

2,869 33,487 -31.20 39.45 

Corvo 10 33,487 33,487 -31.09 39.70 

Selvagens Selvagem 
grande 

21
9 

29,540 29,540 -15.87 30.14 Granadeiro, Dias, Rebelo,  
Santos, & Catry, 2006 

East Canary 
Islands 

Timanfaya 15 350 4,407 -13.83 28.99 Arcos, Bécares,  
Rodríguez, & Ruiz, 2009 Islote de Lobos 

 
1,000 1,000 -13.82 28.76 

Costa Esquinzo 
 

300 300 -14.01 28.67 

Roque del Este 
 

50 50 -13.34 29.28 Rodríguez, De León, Martín,  
Alonso, & Nogales, 2003 Roque del 

Oeste 

 
25 25 -13.53 29.31 

Alegranza 
 

10,000 12,000 -13.51 29.40 

La Graciosa 
 

300 300 -13.50 29.26 

Montaña Clara 56 1,000 1,500 -13.53 29.29 
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Species Population Colony N Min. 
pop 

Max. 
pop 

Lon Lat Reference 

West 
Canary 
Islands 

Veneguera 30
9 

2,000 2,000 -15.79 27.85 Ramos et al., 2013 

Tenerife 
 

3,000 3,000 -16.92 28.47 

La Gomera 
 

3,000 3,000 -17.10 28.17 

La Palma 
 

3,000 3,000 -17.69 28.75 

El Hierro 
 

2,000 2,000 -17.98 27.71 

Madeira Madeira 
 

1,100 1,900 -16.88 32.80 Geraldes, 2000 

Porto Santo 
 

500 500 -16.34 33.08 Oliveira & Menezes, 2004 

Desertas 
 

1,500 1,500 -16.51 32.53 

Chafarinas Chafarinas 16 85 85 -2.43 35.18 Afán et al., 2014 

Terreros Terreros 2 30 35 -1.65 37.35 Arcos, Bécares,  
Rodríguez, & Ruiz, 2009 

Scopoli’s 
shearwater 

NW Africa Chafarinas 16 765 765 -2.43 35.18 Afán et al., 2014 
Rachgoun 

 
100 150 -1.48 35.32 Defos du Rau et al., 2015 

Habibas 
 

350 500 -1.13 35.72 
Palomas Palomas 26 67 123 -1.04 37.57 Arcos, Bécares,  

Rodríguez, & Ruiz, 2009 Balearic 
Islands 

Cala Morell 23 1,000 6,000 3.88 40.06 
Pantaleu 10

3 
200 200 2.35 39.58 

Na Foradada 6 178 178 2.98 39.21 
Na Pobra 9 178 178 2.97 39.20 
Ibiza and islets 

 
150 275 1.45 38.99 
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Species Population Colony N Min. 
pop 

Max. 
pop 

Lon Lat Reference 

Formentera 
 

85 105 1.44 38.71 
Columbretes 

 
64 64 0.69 39.90 

France Porquerolles 7 180 370 6.22 43.00 Anselme & Durand, 2012 
Riou 27 280 300 5.39 43.18 
Frioul 8 70 70 5.30 43.28 

Corsica - 
Sardinia 

Giannutri 
 

50 200 11.10 42.25 Baccetti et al., 2009 
Isolotto 
d'Ercole 

 
1 30 11.21 42.38 

Argentarola 
 

35 50 11.08 42.42 
Palmaiola 

 
4 10 10.47 42.87 

Cerboli 
 

50 85 10.55 42.86 
Pianosa 

 
30 50 10.07 42.59 

La Scola 
 

60 100 10.11 42.58 
Giraglia 24 38 40 9.41 43.02 Anselme & Durand, 2012 
Lavezzi 18 300 400 9.26 41.34 
Cerbicale 

 
79 115 9.36 41.55 Baccetti et al., 2009 

Capo Figari 
 

3 20 9.66 40.99 
Figarolo 

 
30 100 9.64 40.98 

Tavolara 
 

10 50 9.72 40.91 
Barrettini 

 
50 100 9.40 41.28 

Budelli 
 

40 80 9.35 41.28 
Camere E 

 
40 60 9.59 41.07 
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Species Population Colony N Min. 
pop 

Max. 
pop 

Lon Lat Reference 

Camere W 
 

50 90 9.58 41.06 
Caprera 

 
20 200 9.46 41.18 

Carpa 
 

80 120 9.36 41.29 
Corcelli 

 
2 20 9.40 41.30 

Maddalena 
 

1 50 9.42 41.26 
Mortorio 

 
40 60 9.60 41.07 

Nibani 
 

3 30 9.57 41.13 
Paduleddi 

 
1 5 9.37 41.29 

Razzoli 
 

30 200 9.35 41.30 
Santa Maria 

 
50 200 9.37 41.29 

Spargi 
 

90 150 9.35 41.24 
Spargiotto 

 
120 180 9.32 41.25 

Capo Caccia 
 

300 1,600 8.16 40.56 
Foradada 

 
50 200 8.15 40.57 

Piana di 
Alghero 

 
100 200 8.14 40.60 

Pan di 
Zucchero 

 
300 400 8.40 39.33 

Cavoli 
 

5 30 9.53 39.09 
Isola Rossa di 
Teulada 

 
1 50 8.72 38.91 

Toro 
 

500 1,000 8.41 38.86 
Vacca 

 
1 50 8.45 38.94 
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Species Population Colony N Min. 
pop 

Max. 
pop 

Lon Lat Reference 

Isole 
Ponzane 

Faraglione di 
Calzone Muto 

 
1 5 12.97 40.88 

Gavi 
 

5 10 13.00 40.93 
Palmarola 

 
100 150 12.86 40.93 

Ponza 
 

60 100 12.96 40.90 
Santo Stefano 
Ponziane 

 
5 10 13.45 40.79 

Ventotene 
 

25 40 13.43 40.80 
Zannone 

 
24 30 13.06 40.97 

Isole Eolie Alicudi 
 

9 12 14.35 38.54 
Filicudi 

 
2 20 14.56 38.57 

Lipari 
 

2 20 14.94 38.48 
Panarea 

 
2 20 15.06 38.64 

Salina 
 

10 10 14.84 38.56 
Vulcano 

 
3 6 14.96 38.40 

Ustica 
 

15 20 13.19 38.71 
Sicilian 
channel 

Marettimo 
 

20 50 12.07 37.97 
Favignana 

 
20 50 12.30 37.93 

Levanzo 
 

20 50 12.33 38.00 
Pantelleria 

 
500 5,000 12.00 36.77 

Lampedusa 
 

20 50 12.58 35.51 
Lampione 

 
50 70 12.56 35.51 
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Species Population Colony N Min. 
pop 

Max. 
pop 

Lon Lat Reference 

Linosa 90 5,000 5,000 12.87 35.87 Giacomo Dell'Omo pers. comm.  
Gozo 4 2,300 2,350 14.19 36.05 Anselme & Durand, 2012 
Malta 13 1,550 2,000 14.43 35.83 
Comino 

 
20 25 14.34 36.01 

Filfla 12 200 200 14.41 35.79 
Zembra 26 113,720 176,750 10.80 37.12 Defos du Rau et al., 2015 
la Galite 

 
250 500 8.93 37.52 

East Algeria Sriginia Island 
 

90 130 6.89 36.94 Telailia, Boutabia,  
Bensouilah, & Houhamdi, 2014 

Kef Amor 
 

24 39 7.33 37.08 Samraoui & Samraoui, 2008 
Middle 
Adriatic 

Tremiti 8 100 160 15.51 42.14 Baccetti et al., 2009 
San Domino 

 
200 240 15.49 42.11 

Vis 
 

750 1,050 16.15 43.05 Defos du Rau et al., 2015 
Lastovo 

 
140 175 16.86 42.75 

Diapontia 
Islands 

Diapontia 
 

60 100 19.40 39.86 Fric, Portolou,  
Manolopoulos, & Kastritis, 2012 

Ionian Sea Strofades 9 5,500 5,500 21.00 37.15 Karris, Xirouchakis, Grivas,  
Sfenthourakis, & Giokas, 2017 

West Crete Kythira 
 

10 50 22.98 36.22 Fric, Portolou,  
Manolopoulos, & Kastritis, 2012 Gramvousa 

 
535 1,000 23.58 35.61 

Aegean Sea Fournoi 
 

800 1,000 26.48 37.57 
Mykonos 

 
150 250 25.33 37.45 
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Species Population Colony N Min. 
pop 

Max. 
pop 

Lon Lat Reference 

Paros & 
Antiparos 

 
100 160 25.13 37.07 

Northern 
dodecanese 

 
125 250 26.85 37.14 

Cyclades 
 

165 275 25.61 36.94 
Anafi 

 
400 700 25.76 36.37 

Paximada - 
Dyonisiades 

16 710 1,010 26.18 35.35 

Limnos 
 

50 150 25.21 39.90 
Sporades 

 
30 80 23.89 39.19 

Skyros 
 

81 156 24.56 38.91 

Cape 
Verde  
shearwater 

East Cape 
Verde 

Curral Velho - 
Boavista 

71 33 155 -22.78 15.97 Birdlife International 

Ilhéu Rabo de 
Junco - Sal  

 
20 20 -22.99 16.70 Militão pers comm.  

West Cape 
Verde 

Branco 
 

1,000 1,000 -24.67 16.66 Hazevoet, 1995 

Raso 29 6,500 6,500 -24.59 16.62 Paiva et al., 2015 
Brava 

 
1,000 10,000 -24.73 14.82 Hazevoet, 1994 

 

 

 



21 
 

Table A5 
   

Posterior disttribution of the final model (Model 3) hyperparameters for the three colonies, and observed and predicted 
abundances by the three models, for the three colonies. 
Colony Montaña Clara Timanfaya Veneguera 
    Median CI Median CI Median CI 
Posterior range (km)   88.1 (62.2, 129.7) 118.4 (82.6, 172.5) 132.6 (91.9, 193.7) 
Posterior sigma   1.3 (1.0, 1.6) 1.5 (1.2, 1.8) 1.3 (1.06, 1.65) 
Obs. abundance 153 393 281 
Predicted abundance Model 1  105 (87, 124)  304 (274, 339) 203 (173, 229) 

Model 2 127 (104, 149) 351 (314, 390) 223 (195, 254) 

Model 3 145 (124, 170)  390 (331, 411)  259 (229, 292) 
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Figure A1 

Example illustrating how the simulateDistribution() function works: from 
the wintering positions of all sampled Scopoli’s shearwaters breeding in 
Strofades Island, Grece, (a) it generates the Kernel Density Estimate 
(KDE, b). Then it simulates one location per individual breeding in 
Strofades (since we have selected MultiFactor = 1) generated from the 
KDE of the tracking data (c). 

a) 

c) 

b) 
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Figure A2  

Example illustrating how the colonyBootstrap() function works: from a 
subsample of a sequentially increasing number of tracks (sample size, x 
axis) the function calculates the KDE. Then, it calculates the % of points 
from the simulated Cory’s shearwater distribution that are included in the 
50% UD, for each sample size (Inclusion, y axis). This process is repeated 
100 times for each sample size, with the tracks selected at random from 
the total available tracks of the colony. Each of the 100 results is 
represented as a grey circle. A non-linear regression model is fitted to this 
data (solid black line) and the value of inclusion at which the asymptote 
is reached is calculated. The grey area indicates the 95% confidence interval 
(CI) of the non-linear model.   
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Figure A3:  

Between (pink) and within (blue) individual overlap for the three tested 
colonies. Boxes indicate interquartile range, and the horizontal line 
represents the median. The whiskers represent the 25 and 75% quantiles 
and the closed circles represent values outside those quantiles. 

Figure A4:  

Between (pink) and within (blue) year overlap for the three tested colonies. 
Boxes indicate interquartile range, and the horizontal line represents the 
median. The whiskers represent the 25 and 75% quantiles and the closed 
circles represent values outside those quantiles. 
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Figure A5  

Significant relationship between species representativeness values and colony 
latitude for Cory’s shearwater (top), and representativeness value and distance 
to the species centre of mass for Scopoli’s shearwater (bottom). The black 
line represents a linear fit and the grey shaded area represents the 95% CI.  
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Figure A6  

Schematic image of the main currents exploited by Cory’s and Scopoli’s 
shearwaters around the African continent. Dark red arrows indicate 
warm currents and dark blue arrows indicate cold currents. The arrow tip 
indicates the direction of the flow. 
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Figure A7 

Migratory connectivity (MC) values at a species level, at a population level 
for Cory’s and Scopoli’s shearwater and at a colony level for Cory’s, 
Scopoli’s and Cape Verde shearwater. Closed circles represent median 
value, and whiskers represent 95% confidence interval). 
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Figure A8 

Violin plots representing the values selected in the three ENM at a taxon 
level for the three most important variables: (a) SST, (b) CHLA. The 
points represent the value of the environmental variable at each of the 
presences, and the width of the violin represents the density of points.  

Figure A9 (next page) 

Violin plots representing the values selected for all the variables reported 
as most important in at least one of the population-level ENM: (a) SST, 
(b) CHLA and (c) CHLA_var. The points represent the value of the 
environmental variable at each of the presences, and the width of the violin 
represents the density of points. 
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Figure A10  

Spatial projection of the habitat suitability obtained from the ENM for the 
CALBOR populations: East Azores (a), Central Azores (b), Berlengas (c), 
Chafarinas (d), Selvagens (e), East Canary Islands (f) and West Canary 
Islands (g). Suitability values range from 0 (not suitable habitat) to 1 (most 
suitable habitat).  

Figure A11 (next page) 

Spatial projections for the CALDIO populations: Palomas (a), Balearic 
Islands (b), France (c), Corsica - Sardinia (d), Sicilian Channel (e), Middle 
Adriatic Sea (f) Strofades (g), and the Aegean Sea (h). Suitability values 
range from 0 (not suitable habitat) to 1 (most suitable habitat). Pink 
symbols represent the locations of the breeding colonies represented in the 
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Figure A12  

Spatial projection of the habitat suitability obtained from the ENM for 
the CALEDW populations: West Cape Verde (a), East Cape Verde (b). 
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Figure A13  

Non-breeding locations (green circles) of birds tracked from the Cory’s 
shearwater colony of Terreros (a) and the Scopoli’s shearwater colony of 
Chafarinas (b). Pink diamonds show the locations of the colonies.  The 
background colour shows SST (ªC). 

Figure A14 (next page) 

Average values of the July – September monthly means for the covariates 
that had significant effect in at least one of the three models: Chlorophyll 
A concentration, sea surface temperature, slope and sea surface 
temperature gradient. The open triangle indicates the location of the 
Concepcion bank, and the open circles the location of the colonies: Montaña 
Clara (purple), Timanfaya (green), and Veneguera (yellow). Also indicated 
the positions of Cape Juby (a) and the Dakhla peninsula (b) 
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Figure A15 

Intensity predicted by the linear (Model 1), non-linear (Model 2), and 
spatial (Model 3), models for the Montaña Clara (a), Timanfaya (b) and 
Veneguera (c) colonies.  
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Figure A16 

L-functions and envelopes of linear (Model 1) non-linear (Model 2) and 
spatial (Model 3) models for Montaña Clara (a), Timanfaya (b) and 
Veneguera (c). The observed point pattern is represented in a continuous 
red line, and the envelopes (obtained from 1000 simulations from the 
fitted model) are represented by the dashed black lines. When the L-
function for the observed point pattern is above the envelope, there is 
clustering in the observed point pattern not captured by the fitted model. 
When the L-function of the observed point pattern is below the envelope 
there is segregation in the observed point pattern that is not captured by 
the fitted model. 
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Multi-colony approaches to study migratory and foraging strategies
in pelagic seabirds
Virginia Morera Pujol
September 2019

IndEffectTest
Written by Virginia Morera (2018), adapted from varianceTest() written by Phil Taylor and Mark Miller
(2012)

Changes by Martin Beal (2019): - set default UDLev value to 50 - Remove default Scale parameter of 186km
(user must input) - made it so the Matching Package doesn’t print a message when the function is run
(i.e. ’quietly) - Allow for input of SPDF (projected or un-projected) instead of just dataframe - added a
snippet dealing with projecting data that crosses the dataline - Changed Grouping_var name to GroupVar -
Added inGroupVar argument (i.e. within Grouping Variable, variable) this is the variable over which overlaps
will be calculated - Small changes to allow for subsetting by inGroupVar, rather than “ID” column.

ver3 - add argument conditional from function kerneloverlap with defalut = T - change argument name from
inGroupVar to tripID

ARGUMENTS TO THE FUNCTION

Tracks: must be a dataframe or SpatialPointsDataFrame with at least following fields: - Latitude - Longitude
- tripID: it can have any other name, the user will specify it in the tripID argument, but it must have a unique
identifier for each trip - GroupVar: it can have any other name, and there can be as many as necessary,
the user will specify it in the GroupVar argument. Variable to make the within-group vs. between group
comparison (Year, Bird, etc.) * If it is a dataframe it must be unprojected (lonlat). If it’s a SPDF it can be
in any projection but it must be specified in the proj4string slot

method: character, one of the options from the adehabitatHR::kerneloverlap function to calculate overlap
conditional: logical. if TRUE the function sets to 0 the pixels of the grid over which the UD is estimated,
outside the home range of the animal estimated at a level of probability equal to UDLev. Practically, if
TRUE the maximum overlap will be equal to ~UDLev, if FALSE the maximum overlap will be equal to 1.
UDLev: numeric, value containing the % of the UD at which to calculate home-range (irrelevant if conditional
is set to FALSE) Scale is the smoothing factor to be used in the Kernel Density Estimation (in Km) grid is a
number giving the size of the grid on which the UD should be estimated.
IndEffectTest <- function(Tracks, tripID, GroupVar, plotIt = F, #own arguments

method = c("HR", "PHR", "VI", "BA", "UDOI", "HD"),
conditional = TRUE, UDLev=50, Scale,
Grid = 500, #from adehabitat::kerneloverlap
nboots = 1000) #from Matching::ks.boot

{
# Tracks <- ind_data_list[[1]]
# packages
require(sp)
require(adehabitatHR)
require(Matching, quietly = T)
require(tidyverse)

# initial chceks
if (!"Latitude" %in% names(Tracks)) stop("Latitude field does not exist")
if (!"Longitude" %in% names(Tracks)) stop("Longitude field does not exist")

1



if (!(tripID) %in% names(Tracks)) stop("Within-group field does not exist")
if (!GroupVar %in% names(Tracks)) stop("Group field does not exist")

# MB # Added this section which converts Tracks to spatial dataframe and projects it
# (and if already is SPDF it accepts this)
if (class(Tracks) != "SpatialPointsDataFrame") ## convert to SpatialPointsDF & project
{

## filter DF to the minimum fields that are needed
CleanTracks <- Tracks %>%

dplyr::select(GroupVar, tripID, Latitude, Longitude)
mid_point <- data.frame(centroid(cbind(CleanTracks$Longitude, CleanTracks$Latitude)))

### PREVENT PROJECTION PROBLEMS FOR DATA SPANNING DATELINE
if (min(CleanTracks$Longitude) < -170 & max(CleanTracks$Longitude) > 170) {

longs = ifelse(CleanTracks$Longitude < 0,CleanTracks$Longitude + 360,
CleanTracks$Longitude)

mid_point$lon <- ifelse(median(longs) > 180,median(longs) - 360,median(longs))}

Tracks.Wgs <- SpatialPoints(data.frame(CleanTracks$Longitude, CleanTracks$Latitude),
proj4string = CRS("+proj=longlat + datum=wgs84"))

proj.UTM <- CRS(paste("+proj=laea +lon_0=", mid_point$lon, " +lat_0=",
mid_point$lat, sep = ""))

Tracks.Projected <- spTransform(Tracks.Wgs, CRS = proj.UTM )
TracksSpatial <- SpatialPointsDataFrame(Tracks.Projected, data = CleanTracks)
TracksSpatial@data <- TracksSpatial@data %>% dplyr::select(GroupVar, tripID,

Latitude, Longitude)
Tracks.Wgs <- NULL
Tracks.Projected <- NULL

}else {## if data are already in a SpatialPointsDataFrame then check for projection
if (is.projected(Tracks)) {

if ("trip_id" %in% names(Tracks@data)) {
TracksSpatial <- Tracks }

TracksSpatial@data <- TracksSpatial@data %>% dplyr::select(GroupVar, tripID,
Latitude, Longitude)

}else {## project data to UTM if not projected
mid_point <- data.frame(centroid(cbind(Tracks@data$Longitude, Tracks@data$Latitude)))

### MB This part prevents projection problems around the DATELINE
if (min(Tracks@data$Longitude) < -170 & max(Tracks@data$Longitude) > 170) {

longs = ifelse(Tracks@data$Longitude < 0, Tracks@data$Longitude + 360,
Tracks@data$Longitude)

mid_point$lon <- ifelse(median(longs) > 180, median(longs) - 360, median(longs))}

proj.UTM <- CRS(paste("+proj=laea +lon_0=", mid_point$lon, " +lat_0=", mid_point$lat,
sep = ""))

TracksSpatial <- spTransform(Tracks, CRS = proj.UTM)
TracksSpatial@data <- TracksSpatial@data %>% dplyr::select(GroupVar, tripID,

Latitude, Longitude)
}

}
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# remove tripID tracks with < 6 points as they can't be used to calculate kernel
# MB edit # Changed this step to happen after SPDF set-up. Also added tripID column.
UIDs <- names(which(table(TracksSpatial@data[, tripID]) > 5))
TracksSpatial <- TracksSpatial[TracksSpatial@data[, tripID] %in% UIDs, ]
TracksSpatial@data[ ,tripID] <- droplevels(as.factor(TracksSpatial@data[ ,tripID]))

# create vector with value of GroupVar for each trip
gid <- TracksSpatial@data[!duplicated(TracksSpatial@data[, tripID]), ][[GroupVar]]

# calculate overlap between tracks
X <- kerneloverlap(xy = TracksSpatial[, tripID], method = method, percent = UDLev,

conditional = conditional, h = Scale*1000, grid = Grid)
X[lower.tri(X, diag = T)] <- NA

# assign value of GroupVar to rows and columns
rownames(X) <- colnames(X) <- gid

# separate within (WI) and between (BW) group overlaps
WI <- NULL
BW <- NULL
for (i in seq_along(rownames(X))) {

# i = 1
x1 <- X[i,]
x2 <- x1[which(names(x1) == rownames(X)[i])]
x3 <- x1[which(names(x1) != rownames(X)[i])]
WI <- c(WI, x2)
BW <- c(BW, x3)

}
BW <- BW[!is.na(BW)]
WI <- WI[!is.na(WI)]

## VMP commented this out since the ks.boot function is robust to ties.
## Was leftover from when using stats::ks.test function
# BW <- BW[BW != 0]
# WI <- WI[WI != 0]

# organize values in a dataframe for plotting
Overlaps <- data.frame(Overlap = c(WI, BW), Type = c(rep("Within", l

ength(WI)), rep("Between",
length(BW))))

# plot boxplot
if (plotIt) {
print(ggplot(data = Overlaps, aes(x = Type, y = Overlap, fill = Type)) +

geom_boxplot(notch = F) + theme_classic())

# run KS test
ks <- Matching::ks.boot(WI, BW,

alternative = "two.sided",
nboots = nboots) # more indicated when data don't come

# from continuous distr (ours have many 0s)

# Organise output
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Result <- list()
Result[1] <- list(X) # overlaps matrix
Result[2] <- list(Overlaps) # df with overlap values (long format)
Result[3] <- list(ks) # output from the ks.boot function
names(Result) <- c("Overlap Matrix", "Overlaps", "Kolmogorov-Smirnov")
return(Result)
}

}

simulate distribution
Tracks must be a data frame or SPDF with at least Longitude and Latitude (not projected), Sp and Colony
fields PopulationInfo must be a data frame with at least Colony, Sp and Pairs Scale is the smoothing factor
to be used in the Kernel Density Estimation (in Km) Grid is a number giving the size of the grid on which
the UD should be estimated. multi_factor is the number by which we want to multiply each population
(i.e. simulate that number of positions from each animal). The higher the number, the larger the resulting
point pattern
simulateDistribution <- function(Tracks, PopulationInfo, Scale, Grid = 500,

MultiFactor = 5){

# Tracks <- colony_boot_list[[2]] #this can be used for testing if something goes wrong
require(adehabitatHR)
require(sp)
require(spatstat, quietly = T)
require(geosphere)

if (!"Latitude" %in% names(Tracks)) stop("Latitude field does not exist")
if (!"Longitude" %in% names(Tracks)) stop("Longitude field does not exist")
if (!"Species" %in% names(Tracks)) stop("Species field does not exist")
if (!"Population" %in% names(Tracks)) stop("Population field does not exist")

# Convert Tracks to spatial dataframe and project them, or check projection if already
# SPDF (and if already is SPDF it accepts this)
if (class(Tracks) != "SpatialPointsDataFrame") ## convert to SpatialPointsDF & project
{

## filter DF to the minimum fields that are needed
CleanTracks <- Tracks %>%

dplyr::select(Species, Population, Latitude, Longitude)
mid_point <- data.frame(centroid(cbind(CleanTracks$Longitude, CleanTracks$Latitude)))

### PREVENT PROJECTION PROBLEMS FOR DATA SPANNING DATELINE
if (min(CleanTracks$Longitude) < -170 & max(CleanTracks$Longitude) > 170) {

longs = ifelse(CleanTracks$Longitude < 0,CleanTracks$Longitude + 360,CleanTracks$Longitude)
mid_point$lon <- ifelse(median(longs) > 180,median(longs) - 360,median(longs))}

Tracks.Wgs <- SpatialPoints(data.frame(CleanTracks$Longitude, CleanTracks$Latitude),
proj4string = CRS("+proj=longlat + datum=wgs84"))

proj.UTM <- CRS(paste("+proj=laea +lon_0=", mid_point$lon, " +lat_0=",
mid_point$lat, sep = ""))

Tracks.Projected <- spTransform(Tracks.Wgs, CRS = proj.UTM )
TracksSpatial <- SpatialPointsDataFrame(Tracks.Projected, data = CleanTracks)
TracksSpatial@data <- TracksSpatial@data %>% dplyr::select(Species, Population,

Latitude, Longitude)
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Tracks.Wgs <- NULL
Tracks.Projected <- NULL

}else {## if data are already in a SpatialPointsDataFrame then check for projection

if (is.na(Tracks@proj4string))
stop("proj4string slot can't be NA. Assign the correct CRS object")

if (is.projected(Tracks)) {
TracksSpatial@data <- TracksSpatial@data %>% dplyr::select(Species, Population,

Latitude, Longitude)
}else {## project data to UTM if not projected

mid_point <- data.frame(centroid(cbind(Tracks@data$Longitude, Tracks@data$Latitude)))

### MB This part prevents projection problems around the DATELINE
if (min(Tracks@data$Longitude) < -170 & max(Tracks@data$Longitude) > 170) {

longs = ifelse(Tracks@data$Longitude < 0, Tracks@data$Longitude + 360,
Tracks@data$Longitude)

mid_point$lon <- ifelse(median(longs) > 180, median(longs) - 360, median(longs))}

proj.UTM <- CRS(paste("+proj=laea +lon_0=", mid_point$lon, " +lat_0=",
mid_point$lat, sep = ""))

TracksSpatial <- spTransform(Tracks, CRS = proj.UTM)
TracksSpatial@data <- TracksSpatial@data %>% dplyr::select(GroupVar, tripID,

Latitude, Longitude)
}

}

map <- rworldmap::getMap(resolution = "coarse")
map <- spTransform(map, TracksSpatial@proj4string)
# generate kernel
Kernel.est <- kernelUD(TracksSpatial, h = Scale*1000, grid = Grid)

# convert to pixel image
r <- raster(as(Kernel.est, "SpatialPixelsDataFrame"))
# raster.as.im function from Jeffrey Evans answer here: https://bit.ly/2TI0FXB
raster.as.im <- function(im) {

r <- raster::res(im)
orig <- sp::bbox(im)[, 1] + 0.5 * r
dm <- dim(im)[2:1]
xx <- unname(orig[1] + cumsum(c(0, rep(r[1], dm[1] - 1))))
yy <- unname(orig[2] + cumsum(c(0, rep(r[2], dm[2] - 1))))
return(spatstat::im(matrix(raster::values(im), ncol = dm[1],

nrow = dm[2], byrow = TRUE)[dm[2]:1, ],
xcol = xx, yrow = yy))

}
kernel.im <- raster.as.im(r)

# select colony size info
SPopulation <- as.character(unique(Tracks$Population))
SSpecies <- as.character(unique(Tracks$Species))
Pop.size <- PopulationInfo[PopulationInfo$Species == SSpecies &

PopulationInfo$Population == SPopulation,]$Pairs*2
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# we're going to simulate a nº of points equal to the pop size * multi_factor
SimulateN <- Pop.size*MultiFactor

# this simulates the points as ppp
SimPoints <- rpoint(SimulateN, kernel.im)

# convert to dataframe, and from there to Spatial points
SimPoints.df <- as.data.frame(SimPoints)
SimPoints.sp <- SimPoints.df
coordinates(SimPoints.sp) <- ~ x+y

# plot to see everything has worked
par(mfrow = c(1,2))
plot(kernel.im, main = SPopulation, xlim = SimPoints.sp@bbox[1,],

ylim = SimPoints.sp@bbox[2,])
plot(map, add = T, border = "white")
# plot(kernel.im, main = SPopulation)
plot(SimPoints.sp, pch = 20, col = "#ff000030", cex = 0.3)
plot(map, add = T, border = "black")

par(mfrow = c(1,1))

# prepare output
SimPoints.sp <- SpatialPointsDataFrame(coords = SimPoints.sp@coords,

data = data.frame(Population = rep(SPopulation,
length(SimPoints.sp)),

Species = rep(SSpecies,
length(SimPoints.sp))),

proj4string = proj.UTM)
SimPoints.sp <- spTransform(SimPoints.sp, CRS(projections$WGS84))
return(SimPoints.sp)

}

bootstrap colony effect
Tracks: Tracking data. DF or SPDF, containing Latitude, Longitude, Species and Population SimulatedDistri-
butions: DF or SPDF containing the simulated distribution of the studied species, with at least the columns
Longitude, Latitude, Population and Species. Can be directly the output of the simulateDistribution()
function tripID: unique identifier for each trip UDLev: Numeric, Utilisation Distribution Level. Level of the
KDE to be selected. For example, if 50 is used, the overlap is calculated between the smallest areas for which
the probability to find the animal is equal to 0.50 (but see explanation for argument “conditional”. From
the adehabitatHR::kerneloverlap() function. Scale is the smoothing factor to be used in the Kernel Density
Estimation (in Km) Grid is a number giving the size of the grid on which the UD should be estimated.
Iterations: Numeric, number of iterations for the bootstrap
bootstrapColony <- function(Tracks, SimulatedDistributions, tripID, UDLev = 50, Scale,

Grid = 500, Iterations = 50){
require(sp)
require(geosphere)
require(rgdal)
require(adehabitatHR)
require(foreach)
require(doParallel)
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require(parallel)

Tracks$tripID <- Tracks[,tripID]
if (!"Latitude" %in% names(Tracks)) stop("Latitude field does not exist")
if (!"Longitude" %in% names(Tracks)) stop("Longitude field does not exist")
if (!"tripID" %in% names(Tracks)) stop("tripID field does not exist")
if (!"Population" %in% names(Tracks)) stop("Population field does not exist")
if (!"Species" %in% names(Tracks)) stop("Sp field does not exist")

# select species corresponding to the Tracking data
SimulatedDistributions <- SimulatedDistributions[SimulatedDistributions$Species == unique(Tracks$Species),]

# Converts SimulatedDistributions to spatial dataframe and projects it
# (and if already is SPDF check projection)
if (class(SimulatedDistributions) != "SpatialPointsDataFrame") ## convert to SpatialPointsDataFrame and project
{

## filter DF to the minimum fields that are needed
CleanSimulatedDistributions <- SimulatedDistributions %>%

dplyr::select(Species, Population, Longitude, Latitude)
mid_point <- data.frame(centroid(cbind(CleanSimulatedDistributions$Longitude, CleanSimulatedDistributions$Latitude)))

### PREVENT PROJECTION PROBLEMS FOR DATA SPANNING DATELINE
if (min(CleanSimulatedDistributions$Longitude) < -170 &

max(CleanSimulatedDistributions$Longitude) > 170) {
longs = ifelse(CleanSimulatedDistributions$Longitude < 0,

CleanSimulatedDistributions$Longitude + 360,
CleanSimulatedDistributions$Longitude)

mid_point$lon <- ifelse(median(longs) > 180,median(longs) - 360,median(longs))}

SimulatedDistributions.Wgs <- SpatialPoints(data.frame(
CleanSimulatedDistributions$Longitude,
CleanSimulatedDistributions$Latitude),
proj4string = CRS("+proj=longlat + datum=wgs84"))

proj.Sim <- CRS(paste("+proj=laea +lon_0=", mid_point$lon, " +lat_0=",
mid_point$lat, sep = ""))

SimulatedDistributions.Projected <- spTransform(SimulatedDistributions.Wgs,
CRS = proj.Sim)

SimulatedDistributionsSpatial <- SpatialPointsDataFrame(SimulatedDistributions.Projected,
data = CleanSimulatedDistributions)

SimulatedDistributionsSpatial@data <- SimulatedDistributionsSpatial@data %>%
dplyr::select(Species, Population)

SimulatedDistributions.Wgs <- NULL
SimulatedDistributions.Projected <- NULL

} else {## if data are already in a SpatialPointsDataFrame then check for projection
if (is.na(SimulatedDistributions@proj4string))

stop("The proj4string slot of SimulatedDistributions can't be empty.
Check and assign projection and re-run")

if (!is.projected(SimulatedDistributions)) { # if it's not projected
# (lonlat) project to laea around midpoint

mid_point <- data.frame(centroid(cbind(SimulatedDistributions@coords[,1], SimulatedDistributions@coords[,2])))
proj.Sim <- CRS(paste("+proj=laea +lon_0=", mid_point$lon, " +lat_0=",

mid_point$lat, sep = ""))
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### MB This part prevents projection problems around the DATELINE
if (min(SimulatedDistributions@coords[,1]) < -170 &

max(SimulatedDistributions@coords[1,]) > 170) {
longs = ifelse(SimulatedDistributions@coords[,1] < 0,

SimulatedDistributions@coords[,1] + 360,
SimulatedDistributions@coords[,1])

mid_point$lon <- ifelse(median(longs) > 180, median(longs) - 360,
median(longs))}

SimulatedDistributionsSpatial <- spTransform(SimulatedDistributions, proj.Sim)
SimulatedDistributionsSpatial@data <- SimulatedDistributionsSpatial@data %>%

dplyr::select(Species, Population)
} else { ## if projected, "unproject" to WGS to project laea around midpoint

SimulatedDistributions.WGS <- spTransform(SimulatedDistributions,
CRS("+proj=longlat + datum=wgs84"))

mid_point <- data.frame(centroid(
cbind(SimulatedDistributions.WGS@coords[,1],

SimulatedDistributions.WGS@coords[,2])))

### MB This part prevents projection problems around the DATELINE
if (min(SimulatedDistributions.WGS@coords[,1]) < -170 &

max(SimulatedDistributions.WGS@coords[1,]) > 170) {
longs = ifelse(SimulatedDistributions@coords[,1] < 0,

SimulatedDistributions@coords[,1] + 360,
SimulatedDistributions@coords[,1])

mid_point$lon <- ifelse(median(longs) > 180, median(longs) - 360, median(longs))}

proj.Sim <- CRS(paste("+proj=laea +lon_0=", mid_point$lon, " +lat_0=",
mid_point$lat, sep = ""))

SimulatedDistributionsSpatial <- spTransform(SimulatedDistributions.WGS,
CRS = proj.Sim)

SimulatedDistributionsSpatial@data <- SimulatedDistributionsSpatial@data %>%
dplyr::select(Species, Population)

}
}

# Converts Tracks to spatial dataframe and projects it
# (and if already is SPDF check projection)
if (class(Tracks) != "SpatialPointsDataFrame") # convert to SpatialPointsDF & project
{

## filter DF to the minimum fields that are needed
CleanTracks <- Tracks %>%

dplyr::select(Species, Population, tripID, Latitude, Longitude)

Tracks.Wgs <- SpatialPoints(data.frame(CleanTracks$Longitude, CleanTracks$Latitude),
proj4string = CRS("+proj=longlat + datum=wgs84"))

Tracks.Projected <- spTransform(Tracks.Wgs,
CRS = SimulatedDistributionsSpatial@proj4string)

TracksSpatial <- SpatialPointsDataFrame(Tracks.Projected, data = CleanTracks)
TracksSpatial@data <- TracksSpatial@data %>% dplyr::select(Species, Population, tripID)
Tracks.Wgs <- NULL
Tracks.Projected <- NULL

} else {## if data are already in a SpatialPointsDataFrame then check for projection
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if (is.na(Tracks@proj4string)) stop("The proj4string slot of Tracks can't be empty.
Check and assign projection and re-run")

TracksSpatial <- spTransform(Tracks, CRS = SimulatedDistributionsSpatial@proj4string)
TracksSpatial@data <- TracksSpatial@data %>% dplyr::select(Species, Population, tripID)

}

# remove tripID tracks with < 6 points as they can't be used to calculate kernel
UIDs <- names(which(table(TracksSpatial@data[, tripID]) > 6))
TracksSpatial <- TracksSpatial[TracksSpatial@data[, tripID] %in% UIDs, ]
TracksSpatial@data[ ,tripID] <- droplevels(as.factor(TracksSpatial@data[ ,tripID]))

TracksSpatial$X <- TracksSpatial@coords[,1]
TracksSpatial$Y <- TracksSpatial@coords[,2]

UIDs <- as.character(unique(TracksSpatial$tripID))
Ntrips <- length(UIDs)
Nloop <- seq(1,(Ntrips - 1),ifelse(Ntrips > 100,10,1))
DoubleLoop <- data.frame(SampleSize = rep(Nloop,each = Iterations), Iteration = rep(seq(1:Iterations),length(Nloop)))
LoopNr <- seq(1:dim(DoubleLoop)[1])
UDLev <- UDLev

#setup parallel backend to use 4 processors
cl <- makeCluster(detectCores(), outfile = "")
registerDoParallel(cl)
Result <- data.frame()

Result <- foreach(LoopN = LoopNr, .combine = rbind, .packages = c("sp","adehabitatHR","geosphere","rgdal")) %dopar% {
# output_list <- list()
# for (j in seq_along(LoopNr)) {
# j = 20
# LoopN <- LoopNr[j]
N <- DoubleLoop$SampleSize[LoopN]
i <- DoubleLoop$Iteration[LoopN]
# Coverage <- NULL
# Inclusion <- NULL
# History <- NULL

Output <- data.frame(SampleSize = N, InclusionMean = 0,Iteration = i)
# set.seed(123)
RanNum <- sample(UIDs, N, replace = F)
sink("D:/selected_ids_colony_bootstrap.txt", append = TRUE)
cat(RanNum, "\n", "\n")
sink()
SelectedCoords <- TracksSpatial[TracksSpatial@data[,tripID] %in% RanNum,]
# Ext <- (min(SelectedCoords@coords[,1]) + 3 * diff(range(SelectedCoords@coords[,1])))
# if(Ext < (Scale * 1000 * 2)) {
# BExt <- ceiling((Scale * 1000 * 3)/(diff(range(SelectedCoords@coords[,1]))))
# #} else {BExt <- 3}
KDE.Surface <- kernelUD(SelectedCoords, h = Scale*1000, grid = 500, same4all = FALSE)
try(KDE.UD <- getverticeshr(KDE.Surface, percent = UDLev))
if (isTRUE(class(KDE.UD) == "try-error")) {

sink("errors.txt", append = T)
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cat(paste("Failed in iteration", i, "with sample", RanNum, sep = " "))
sink()} else {

KDE.UD@proj4string <- SimulatedDistributionsSpatial@proj4string
Overlain <- over(SimulatedDistributionsSpatial, KDE.UD)$area
Output$InclusionMean <-

length(Overlain[!is.na(Overlain)])/nrow(SimulatedDistributionsSpatial@data)
return(Output)
# output_list[j] <- list(Output)

}
}

## stop the cluster
stopCluster(cl)
closeAllConnections()

par(mfrow = c(1,1), mai = c(1,1,1,1))
#Result <- Output[1:nrow(Output) - 1,]
Result$Population <- unique(TracksSpatial$Population)
M1 <- try(nls(Result$InclusionMean ~ (a*Result$SampleSize)/(1+b*Result$SampleSize),

data = Result, start = list(a = 1,b = 0.1)), silent = TRUE)
if (class(M1) != "try-error") { ### run this only if nls was successful

Result$pred <- predict(M1)
P2 <- aggregate(pred ~ SampleSize, Result, FUN = mean)
P2$sd <- aggregate(InclusionMean ~ SampleSize, Result, FUN = sd)[,2]
plot(InclusionMean ~ SampleSize, data = Result,

pch = 16, cex = 0.2, col = "darkgray", ylim = c(0, 1),
ylab = "Inclusion", xlab = "Sample Size",
main = paste(unique(TracksSpatial$Population), "UDLev", UDLev, sep = "_"))

yTemp <- c((P2[,2] + P2[,3]), rev(P2[,2] - P2[,3]))
xTemp <- c(P2[,1], rev(P2[,1]))
polygon(x = xTemp, y = yTemp, col = "gray93", border = F)
points(InclusionMean ~ SampleSize, data = Result, pch = 16, cex = 0.2, col = "darkgray")
lines(P2, lty = 1,lwd = 2)
Asymptote <- (summary(M1)$coefficients[1]/summary(M1)$coefficients[2])
RepresentativeValue <- max(P2$pred)/Asymptote*100
Result$RepresentativeValue <- RepresentativeValue
print(RepresentativeValue)
text(x = 2.5, y = 0.9,paste(round(RepresentativeValue,2),

"%", sep = ""), cex = 2, col = "gray45", adj = 0)
} else{RepresentativeValue <- mean(Result$InclusionMean[

Result$SampleSize == max(Result$SampleSize)])
### if nls is unsuccessful then use mean output for largest sample size

Result$RepresentativeValue <- (RepresentativeValue/(UDLev/100))*100
Result$pred <- NA}# added by Jono Handley to convert to same scale as nls output

Result$Asymptote <- Asymptote
write.table(Result, paste(unique(TracksSpatial$Population), "UDLEv", UDLev, "bootout_temp.csv", sep = "_"), row.names = F, sep = ",")
return(Result)

}
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Annex 3

Multi-colony approaches to study migratory and foraging strategies
in pelagic seabirds
Virginia Morera Pujol
September 2019

With this script we generate the boundaries and mesh that we’ll use for the INLA models. From our data
(ds2) as SpatialPointsDataframe we obtain a spatstats ppp object to define a convex hull around them that
will be our study area boundary
ds.ppp <- ppp(ds2@coords[,1], ds2@coords[,2], ds2@bbox[1,], ds2@bbox[2,],

marks = ds2@data$marks)
w <- convexhull(ds.ppp)
Window(ds.ppp) <- w
boundary <- spoly(data.frame(w)) # turn window object into spatial polygon

We buffer 50 km around this polygon to keep points away from the edge
boundary@proj4string <- CRS(projections$LambertKM)
boundary <- rgeos::gBuffer(boundary, width = 50)
# plot(boundary)
# points(ds2, pch = 1, col = factor(ds2$Colony))

We now load a map of the world to intersect the boundary with the coastline and islands and exclude “land”
from our boundary. We also simplify the lines, as the boundaries in inla can’t be very complicated (can’t
have more resolution than the edge length of the triangles) or it will cause problems. Further, we save it as
shapefile because we need to fix some problems (loops, inland “lakes”), in ArcGis as I don’t know how to fix
that in R, and then re-load it to continue to work with it
wrld <- rworldmap::getMap(resolution = "high")
wrld <- wrld[wrld$NAME %in% c("Spain", "Morocco", "W. Sahara", "Algeria", "Mauritania"),]
#just to reduce extent to the area we need
wrld2 <- spTransform(wrld, CRS(projections$LambertKM))
wrld2 <- gBuffer(wrld2, width = 0) # open the borders!
wrld3 <- gSimplify(wrld2, tol = 10)
# plot(boundary)
# plot(wrld3, add = T)
b_in <- gDifference(boundary, wrld3, byid = F, drop_lower_td = F)
# plot(b_in)
b_in2 <- rgeos::gBuffer(b_in, width = 5)
# plot(b_in2)
# points(ds2, pch = 20, col = factor(ds2$Colony))
bound <- SpatialPolygonsDataFrame(b_in2, data.frame(ID = "buffer"), match.ID = F)
# save(bound, file = "data/new_bound_chick.Rdata")
# load("data/new_bound_chick.Rdata")

We now need to generate an outer boundary, that will be used to avoid boundary effects. For that, we
generate a 200 km buffer from the boundary we already have. Finally we plot everything to check that
nothing has gone terribly wrong, and assign projection to everything (just in case, although we’ll remove
them for the modelling)
boundary2 <- rgeos::gBuffer(bound, width = 300) # 300 km between inner and outer boundaries

# plot(boundary2)

1



# plot(bound, add = T)
# plot(ds2, add = T, pch = ".", col = factor(ds2$Colony))

bound@proj4string <- CRS(projections$LambertKM)
boundary2@proj4string <- CRS(projections$LambertKM)
ds2@proj4string <- CRS(projections$LambertKM)

Now, finally, with these two boundaries we can generate the mesh. First we need to convert the two boundaries
into “inla segments”. Then, we use the inla.mesh.2d function, pass to it the two boundaries, and values for
the edges of the triangles (smaller for the inner boundary, larger for the outer boundary), and the cutoff
(segments can’t be smaller than this value, this is why we’ve had to simplify the boundary earlier), and assign
the same crs as the boundary.

We are going to generate a mesh for each colony, as the location of the points plays a part in defining the
mesh triangles and the points are different for every colony

By colony
boundary_in <- inla.sp2segment(bound)
boundary_out <- inla.sp2segment(boundary2)
V_data <- ds2[ds2$Colony == "Veneguera",]
meshV <- inla.mesh.2d(loc = V_data, boundary = list(boundary_in, boundary_out),

max.edge = c(20, 50), cutoff = 10, crs = bound@proj4string)
plot(meshV)
# save(meshV, file = "data/definitive_mesh_Veneguera.Rdata")

M_data <- ds2[ds2$Colony == "MClara",]
meshM <- inla.mesh.2d(loc = M_data, boundary = list(boundary_in, boundary_out),

max.edge = c(20, 50), cutoff = 10, crs = bound@proj4string)
# plot(meshM)
# save(meshM, file = "data/definitive_mesh_MClara.Rdata")

T_data <- ds2[ds2$Colony == "Timanfaya",]
meshT <- inla.mesh.2d(loc = T_data, boundary = list(boundary_in, boundary_out),

max.edge = c(20, 50), cutoff = 10, crs = bound@proj4string)
# plot(meshT)
# save(meshT, file = "data/definitive_mesh_Timanfaya.Rdata")

We will now generate a “mask” that will hide the outer boundary for the plots. (The model will make
predictions and fit covariates in the outer boundary as well, but we’re not interested in that, so we want to
hide it for the plots)

This code is taken from Haakon Bakka’s barrier model from the website https://haakonbakka.bitbucket.io/
btopic107.html#4_barrier_models
mesh <- meshT
tl = length(mesh$graph$tv[,1]) # Number of triangles of the mesh
posTri = matrix(0, tl, 2) # matrix containing the coordinates of each triangle's

# we fill it with the vertex "coordinates here
for (t in 1:tl) {

# Take the vertex of triangles
temp = mesh$loc[mesh$graph$tv[t, ], ]
# Compute barycenter which sintetize the triangle
posTri[t,] = colMeans(temp)[c(1,2)]

}
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#transform it in Spatial Points
posTri = SpatialPoints(posTri)
posTri@proj4string <- bound@proj4string

normal = over(bound, posTri, returnList = T) # this are the polygons contained
# in the inner boundary, the "good" ones

normal = unlist(normal)
barrier.triangles = setdiff(1:tl, normal) # this are the polygons of the outer boundary,

# the ones we want to hide

# build a polygon that contains all polygons that are outer boundary and not inner.
poly.barrier = inla.barrier.polygon(mesh, barrier.triangles)
# plot(poly.barrier)
# save(poly.barrier, file = "data/barrier.Rdata")
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Annex 4

Multi-colony approaches to study migratory and foraging strategies
in pelagic seabirds
Virginia Morera Pujol
September 2019

Sensitivity test for SPDE prior range and sigma

Load all necessary data
# load data
load("definitive_datasets/ALLth_chick.Rdata")
load("data/projections.Rdata")
load("data/new_bound_chick.Rdata")
load("data/definitive_mesh_Veneguera.Rdata")
load("data/definitive_mesh_Timanfaya.Rdata")
load("data/barrier.Rdata")

# make sure everything has the same CRS (i.e. none)
proj4string(bound) = inla.CRS()
proj4string(ds2) = inla.CRS()
proj4string(poly.barrier) = inla.CRS()
meshV$crs <- NULL
V_data <- ds2[ds2$Colony == "Veneguera",]
ds.ppp <- ppp(V_data@coords[,1], V_data@coords[,2],

bound@bbox[1,], bound@bbox[2,]) # first generate the ppp from our data

wrld <- rworldmap::getMap(resolution = "high")
wrld <- spTransform(wrld, CRS(projections$LambertKM))
wrld <- rgeos::gBuffer(wrld, width = 0)

Prepare all elements of the model (better explained in supplementary material
4)

# prepare response
(nv <- meshV$n) # number of mesh nodes
(n <- nrow(V_data)) # number of data points

# calculate weights for each meshnode depending on whether they are inside or
# outside the boundary (outside weight is 0)
dmesh <- inla.mesh.dual(meshV) ##? Extracted from the SPDE manual, not sure what it does

sum(w <- sapply(1:length(dmesh), function(i) {
if (gIntersects(dmesh[i,], bound))

return(gArea(gIntersection(dmesh[i,], bound)))
else return(0)

}))

table(w > 0) # false = nodes with weight 0 (outside the boundary)
# true = nodes with some weight (inside the boundary)
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length(y.pp <- rep(0:1, c(nv, n))) # response (0 for all meshnodes,
# 1 for all data points)

summary(y.pp) # all 0 and 1

length(e.pp <- c(w, rep(0, n)))
summary(e.pp) # different values

# a matrix
lmat <- inla.spde.make.A(meshV, V_data@coords)
imat <- Diagonal(nv, rep(1, nv))
A.pp <- rbind(imat, lmat)

# prepare covariates
load("data/cov_list_Ve_normalised.Rdata")

covars <- do.call(cbind.data.frame, cov_list)

new_names <- list() # generate new names for the grouped covariates,
# with the original name and "LEV" (for "levels")

grouped_covars <- list()
for (i in seq_along(names(covars))) {

# i = 1
new_names[i] <- list(paste0(names(covars)[i], "LEV"))
grouped_covars[i] <- list(inla.group(covars[,i],

n = 20)) # 20 groups to begin with. If
# it's too wiggly you can reduce the
# number of groups (cheating,
# but it works)

}

# add the grouped covars to the dataframe of original covars
new_covars <- do.call(cbind.data.frame, grouped_covars)
names(new_covars) <- unlist(new_names)
covars <- cbind(covars, new_covars)
covars$b0 <- 1 # add intercept

# formula
frml3V <- y ~ -1 + b0 +

log_ChlA +
# log_current_strength +
log_SST_Gradient +
slope +
SST +
SST_Anomaly +
Veneguera_dist +
f(log_ChlALEV, model = 'rw2', scale.model = T,

hyper = list(theta = list(prior = "pc.prec",
param = c(sd(covars$log_ChlALEV)*2.5, 0.01)))) +

# f(log_current_strengthLEV, model = 'rw2', scale.model = T,
# hyper = list(theta = list(prior = "pc.prec",
# param = c(sd(covars$log_current_strengthLEV)*10, 0.01)))) +
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f(log_SST_GradientLEV, model = 'rw2', scale.model = T,
hyper = list(theta = list(prior = "pc.prec",

param = c(sd(covars$log_SST_GradientLEV)*50, 0.01)))) +
# f(slopeLEV, model = 'rw2', scale.model = T,
# hyper = list(theta = list(prior = "pc.prec",
# param = c(sd(covars$slopeLEV)*50, 0.01)))) +
# f(SSTLEV, model = 'rw2', scale.model = T,
# hyper = list(theta = list(prior = "pc.prec",
# param = c(sd(covars$SSTLEV)*10, 0.01)))) +
# f(SST_AnomalyLEV, model = 'rw2', scale.model = T,
# hyper = list(theta = list(prior = "pc.prec",
# param = c(sd(covars$SST_AnomalyLEV)*10, 0.01)))) +
f(Veneguera_distLEV, model = 'rw2', scale.model = T,

hyper = list(theta = list(prior = "pc.prec",
param = c(sd(covars$Veneguera_distLEV)*50, 0.01)))) +

f(sp_rdm, model = spde) +
# f(iidx, model="iid", hyper=hyper.iid) +
NULL

Loop along sigma and range values

range_vector <- c(20, 50, 100, 150, 200, 250, 300)
sigma_vector <- c(0.05, 0.10, 0.15, 0.20, 0.50, 1, 2)

different_range_V_models <- list()
for (i in 1:7) {

# i = 1
range <- range_vector[i]
different_sigma_V_models <- list()
for (j in 1:7) {

# j = 1
sigma_hyp <- sigma_vector[j]
print(paste("model", i*j, "of 49, range of", range, "and sigma of", sigma_hyp))
# spatial field (start loop here)
spde <- inla.spde2.pcmatern(mesh = meshV, alpha = 3/2,# mesh and smoothness parameter

prior.range = c(range,
0.01), # P(practic.range<50) = 0.01 = 1%

prior.sigma = c(sigma_hyp,
0.01)) # P(sigma > 0.2) = 0.01 = 1%

field.indices <- inla.spde.make.index("sp_rdm", n.spde = spde$n.spde)

# stack
stack.spat <- inla.stack(data = list(y = y.pp, e = e.pp),

A = list(A.pp, # for the spatial effect
# 1, # for the rw and linear
1), # for the iid model

tag = 'dat',
effects = list(field.indices,

covars))
mdl3V <- inla(frml3V,

family = "poisson",
data = inla.stack.data(stack.spat),
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control.predictor = list(A = inla.stack.A(stack.spat),
compute = TRUE, link = 1),

E = inla.stack.data(stack.spat)$e,
control.compute = list(dic = T, waic = T, config = T),
# control.fixed = list(prec = 0.5, prec.intercept = 0.5,
# mean.intercept = 0),
control.inla = list(int.strategy = "eb"),
verbose = F)

different_sigma_V_models[j] <- list(mdl3V)
names(different_sigma_V_models)[j] <- paste("range", range_vector[i],

"sigma", sigma_vector[j], sep = "_")
}
different_range_V_models[i] <- list(different_sigma_V_models)

}
beepr::beep(sound = 8)

save(different_range_V_models, file = "sensitivity_tests_V.Rdata")

Plot posterior distributions of range and sigma

# plot ranges
# pdf("outputs/V_ranges.pdf", width = 3*10)
par(mfrow = c(7,7), mar = c(2, 2, 0, 0))
for (i in 1:7) {

for (j in 1:7) {
plot(different_range_V_models[[i]][[j]]$marginals.hyperpar$`Stdev for sp_rdm`,

type = 'l', xlab = '', ylab = '') #, xlim = c(0, 5))
}

}

# pdf("outputs/V_sigma.pdf", width = 3*10)
par(mfrow = c(7,7), mar = c(2, 2, 0, 0))
for (i in 1:7) {

for (j in 1:7) {
plot(different_range_V_models[[i]][[j]]$marginals.hyperpar$`Stdev for sp_rdm`,

type = 'l', xlab = '', ylab = '', xlim = c(0, 5))
}

}

Obtain posterior samples from all models

posterior_samples_1 <- list()
posterior_samples_2 <- list()
for (i in 1:7) {

for (j in 1:7) {
print(paste("i =", i, "and j =", j))
mdl3M.posterior.sample <- inla.posterior.sample(n = 1000,

result = different_range_V_models[[i]][[j]],
use.improved.mean = T)

posterior_samples_1[j] <- list(mdl3M.posterior.sample)
names(posterior_samples_1)[j] <- paste("range", range_vector[i], "sigma",
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sigma_vector[j], sep = "_")
}
posterior_samples_2[i] <- list(posterior_samples_1)

}

Plotting specifications

(contents <- mdl3V$misc$configs$contents) # check the contents
effect <- "sp_rdm" # select the effect we want to sample
id.effect <- which(contents$tag == effect) # the numerical id of the effect
ind.effect <- contents$start[id.effect] - 1 +

(1:contents$length[id.effect]) # all the indices for the effect

pltt <- RColorBrewer::brewer.pal(11, "RdYlBu")
sp_fld_pallete <- colorRampPalette(rev(pltt))

projV = inla.mesh.projector(meshV,
xlim = poly.barrier@bbox[1,], ylim = poly.barrier@bbox[2,],
dims = c(280*2, 245*2)) #this is the dimensions of the covars

#rasters/10. For definitive plots make
#with more resolution (*2)

Plot spatial fields of all models

spatial_rdm_1 <- list()
spatial_rdm_2 <- list()
for (i in 1:7) {

for (j in 1:7) {
# i = 1
# j = 1
sp_sample3V <- lapply(posterior_samples_2[[i]][[j]],

function(x) x$latent[ind.effect]) # extract this part of the
# posterior from all the
# 1000 samples

spLog3V <- matrix(unlist(sp_sample3V), byrow = T, nrow = 1000) #prediction in
# the log scale

spResponse3V <- exp(matrix(unlist(sp_sample3V), byrow = T,
nrow = 1000)) #prediction in the response scale

# calculate mean and sd from previous matrix
mean_spResponse3V <- (colMeans(spResponse3V))[1:nv]
mean_spLog3V <- (colMeans(spLog3V))[1:nv]
lim <- max(abs(range(mean_spLog3V)))
lo_lim <- -lim
hi_lim <- lim
sp.mean3V <- my.levelplot(projV, mean_spLog3V, col.regions = sp_fld_pallete(100),

at = seq(lo_lim, hi_lim, length.out = 100),
xlab = "", ylab = "",
scales = list(draw = F), contour = F) +

latticeExtra::layer(sp.polygons(wrld, lwd = 1, col = "black", fill = "gray")) +
latticeExtra::layer(sp.points(V_data, pch = 1, cex = 0.5, col = "#000000"))
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spatial_rdm_1[j] <- list(sp.mean3V)
names(spatial_rdm_1)[j] <- names(posterior_samples_2[[i]])[j]

}
spatial_rdm_2[i] <- list(spatial_rdm_1)

}

plots <- do.call(c, spatial_rdm_2)

lay = rbind(c(1, 2, 3, 4, 5, 6, 7),
c(8, 9, 10, 11, 12, 13, 14),
c(15, 16, 17, 18, 19, 20, 21),
c(22, 23, 24, 25, 26, 27, 28),
c(29, 30, 31, 32, 33, 34, 35),
c(36, 37, 38, 39, 40, 41, 42),
c(43, 44, 45, 46, 47, 48, 49))

grStr <- arrangeGrob(grobs = plots, layout_matrix = lay)

# pdf("outputs/V_rdm_effects.pdf", width = 3*10)
grid.draw(grStr)
# dev.off()

6



Annex 5

Multi-colony approaches to study migratory and foraging strategies
in pelagic seabirds
Virginia Morera Pujol
September 2019

####SPDE - INLA modelling for tracking data with fixed, random and spatial effect

We first load the dataset, the object with the projections, the mesh, the boundary polygon and the polygon
to cover the outer boundary.
load("definitive_datasets/ALLth_chick.Rdata") # point data
load("data/new_bound_chick.Rdata")
load("data/definitive_mesh_MClara.Rdata") # mesh
load("data/barrier.Rdata") # mask for outer boundary
load("data/new_bound_chick.Rdata") #boundary of the study area

# make sure everything has the same CRS (i.e. none)
proj4string(bound) = inla.CRS()
proj4string(ds2) = inla.CRS()
proj4string(poly.barrier) = inla.CRS()
meshM$crs <- NULL
M_data <- ds2[ds2$Colony == "MClara",]
ds.ppp <- ppp(M_data@coords[,1], M_data@coords[,2],

bound@bbox[1,], bound@bbox[2,]) # generate the ppp from our data

wrld <- rworldmap::getMap(resolution = "high")
wrld <- spTransform(wrld,

CRS("+proj=aea +lat_1=20 +lat_2=60 +lat_0=40 +lon_0=-96\n
+x_0=0 +y_0=0 +ellps=GRS80 +datum=NAD83 +units=km +no_defs"))

1 Prepare the response vector
First of all, we need to prepare the response for the model, the y. For that, we will calculate a weight for
each mesh node, that is related to the number of points present in each triangle (so, related to the intenisty).
However, we need to specify that the weight is 0 in the nodes of the outer boundary, because we don’t want
to model intensity in the outer boundary. The code has been extracted from the chapter 4 of the spde manual
here: http://inla.r-inla-download.org/r-inla.org/tutorials/spde/spde-tutorial.pdf
(nv <- meshM$n) # number of mesh nodes
(n <- nrow(M_data)) # number of data points

# calculate weights for each meshnode depending on whether they are inside
# or outside the boundary (outside weight is 0)

dmesh <- inla.mesh.dual(meshM) # ? More info https://doi.org/10.1093/biomet/asv064

sum(w <- sapply(1:length(dmesh), function(i) {
if (gIntersects(dmesh[i,], bound))

return(gArea(gIntersection(dmesh[i,], bound)))
else return(0)

}))
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table(w > 0) # false = nodes with weight 0 (outside the boundary)
# true = nodes with some weight (inside the boundary)

There are two response vectors, the y that has 1 for every data point and 0 for every mesh node (i.e. pres-
ence/absence), and the e or expected values, that has 0 for every data point and the weight at the node for
every node. It is important that in both the order is the same: values corresponding to the meshnodes first,
values corresponding to the data later.
length(y.pp <- rep(0:1, c(nv, n))) # response (0 for all meshnodes, 1 for all data points)
summary(y.pp) # all 0 and 1

length(e.pp <- c(w, rep(0, n)))
summary(e.pp) # different values

2 Prepare the covariates
From the original set of ~20 covariates, the ones used here have been selected taking into accoun colinearity
between them (Pearson correlation coefficients) and their effect on the data assessed elsewhere.

We’ll model the covariates with a random walk model of order 2 (rw2), which needs the covariate values to be
grouped in equidistant classes. This model is useful for capturing potential non-linear effects of the covariate
(for more info, type inla.doc("rw2")). For that, we’ll load the geographical and environmental covariates
as rasters, extract the value at the mesh nodes and data points, scale them to mean = 0 and sd = 1 with the
function scale() and then group each of the covariate vectors using the function inla.group(). All these
will be done inside loops for all the covariates at the same time, and needs to be done for each model (each
colony) as the data points will be different so the value of the covariates at each point must be extracted for
each.
# load rasters
env_layers <- load_var(

path = "env_vars",
files = c("log_ChlA.tif", "log_current_strength.tif", "log_SST_Gradient.tif",

"slope.tif", "SST.tif", "SST_anomaly.tif", "MClara_dist.tif",
"wind_strength.tif"),

format = ".tif", Norm = T)

raster_env <- stack()
for (i in 1:nlayers(env_layers)) {

raster_env <- stack(raster_env, env_layers[[i]])}

# extract covariate values at presences for rug of random effect plots
for_rug <- list()
for (i in 1:nlayers(raster_env)) {

# i = 1
cov <- raster::extract(raster_env[[i]], M_data)
for_rug[i] <- list(cov)

}
names(for_rug) <- names(raster_env)

# convert mesh nodes into spatial points to extract covariates
mshpts2D <- SpatialPoints(coords = cbind(meshM$loc[,1], meshM$loc[,2]))

# extract covariate values at mesh points and datapoints
cov_list <- list()
for (i in 1:(nlayers(env_layers))) {
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# i = 2
cov <- env_layers[[i]]
covariate <- c(raster::extract(cov, mshpts2D),

raster::extract(cov, M_data)) # order is important!
covariate[is.na(covariate)] <- mean(covariate, na.rm = T)
cov_list[i] <- list(covariate)

}
names(cov_list) <- names(env_layers)

## do the same with original values for plotting covar effects
env_layers_orig <- load_var(

path = "env_vars",
files = c("log_ChlA.tif", "log_current_strength.tif", "log_SST_Gradient.tif",

"slope.tif", "SST.tif", "SST_anomaly.tif", "MClara_dist.tif",
"wind_strength.tif"),

format = ".tif", Norm = F)

raster_env_orig <- stack()
for (i in 1:nlayers(env_layers_orig)) {

raster_env_orig <- stack(raster_env_orig, env_layers_orig[[i]])}

# extract covariate values at mesh points and datapoints
cov_list_orig <- list()
for (i in 1:(nlayers(raster_env_orig))) {

# i = 2
cov <- raster_env_orig[[i]]
covariate <- c(raster::extract(cov, mshpts2D), raster::extract(cov, M_data))
covariate[is.na(covariate)] <- mean(covariate, na.rm = T)
cov_list_orig[i] <- list(covariate)

}

names(cov_list_orig) <- names(raster_env_orig)

covars <- do.call(cbind.data.frame, cov_list)
# covars is now a df with covars in the columns and as many rows
# as meshpoints + datapoints

# generate new names for the grouped covariates, with the original name
# and "LEV" (for "levels")
new_names <- list()
grouped_covars <- list()
for (i in seq_along(names(covars))) {

# i = 1
new_names[i] <- list(paste0(names(covars)[i], "LEV"))
grouped_covars[i] <- list(inla.group(covars[,i],

n = 20)) # 20 groups to begin with. If it's too
# wiggly you can reduce the
# number of groups
# ("cheating", but it works)

}

# add the grouped covars to the dataframe of original covars
new_covars <- do.call(cbind.data.frame, grouped_covars)
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names(new_covars) <- unlist(new_names)
covars <- cbind(covars, new_covars)
covars$b0 <- 1 # add intercept
names(covars)

3 Spatial models
3.a Construct A matrix

We need to construct a projector matrix (A) to connect the mesh nodes to our data points. The following lines
are taken from the spde tutorial http://inla.r-inla-download.org/r-inla.org/tutorials/spde/spde-tutorial.pdf
lmat <- inla.spde.make.A(meshM, M_data@coords)
imat <- Diagonal(nv, rep(1, nv))
A.pp <- rbind(imat, lmat)

3.b Create projector matrix

Don’t ask. Just. . . do it, it works.
projM = inla.mesh.projector(meshM,

xlim = poly.barrier@bbox[1,], ylim = poly.barrier@bbox[2,],
dims = c(280*2, 245*2)) # this is the dimensions of the covars

# rasters/10. For definitive plots
# make with more resolution (*2)

3.c Define spatial random effect model

For more info in the matérn model try inla.doc("matern") and ?inla.spde2.pcmatern for an explanation
on the use of pc priors for the matérn model. The alpha for the spde model is set to 3/2 following Finn’s
suggestion here https://groups.google.com/forum/#!searchin/r-inla-discussion-group/overfitting$20spde%
7Csort:date/r-inla-discussion-group/ZhZVu8YPI8I/jUIOjfFDBQAJ

We begin with a small range, as small as the mesh’s triangle side length, so it is the smaller resolution the spa-
tial effect can detect, as per Hakoon’s suggestion here https://groups.google.com/forum/embed/?parenturl=
http%3A%2F%2Fwww.r-inla.org%2Fcomments-1&service=jotspot&ul=1&theme=default&place=forum%
2Fr-inla-discussion-group&showpopout=true&showsearch=true#!searchin/r-inla-discussion-group/
long$20tail$20range$20spde$20random$20effect/r-inla-discussion-group/ZhZVu8YPI8I/xB9xWHkHCQAJ.

After trying different values for the sigma, we settle for 0.2

However, we are going to performa sensitivity test for both these parameters (in another script)
spde <- inla.spde2.pcmatern(mesh = meshM, alpha = 3/2, ### mesh and smoothness parameter

prior.range = c(80, 0.01), ### P(practic.range < 50)
prior.sigma = c(0.2, 0.01)) ### P(sigma > 0.2)

field.indices <- inla.spde.make.index("sp_rdm", n.spde = spde$n.spde)

3.d Define priors for unstructured random effect (for now, we’re not using this, because it
keeps causing trouble)

Now we define the priors for the unstructured (iid) random effect. inla.doc("iid") for more info

We are not doing this in the end, as it was counfounding with the covariates and spatial random effect
and capturing all the variability of the data. Probably would be ideal to find a spde version of this paper:
https://doi.org/10.1111/rssc.12321
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hyper.iid <- list(prec = list(prior = 'pc.prec',
param = c(0.1, 0.01))) # half the sigma of the spde

3.e Stack

Now we can stack everything (the parts of the stack corresponding to the iid random effect are commented
out)
stack.spat <- inla.stack(data = list(y = y.pp, e = e.pp),

A = list(A.pp, #, # for the spatial effect
# 1, # for the iid model
1), # for the rw and linear

tag = 'dat',
effects = list(field.indices, #,

covars))
# iidx = 1:length(y.pp))) #

3.f Null model

We first run the model only with spatial effect, to compare the spde posterior to that of the model with
covariates and see that the covariates “make a difference”
frml0M <- y ~ -1 + b0 +

f(sp_rdm, model = spde) +
# f(iidx, model="iid", hyper=hyper.iid) +
NULL

mdl0M <- inla(frml0M,
family = "poisson",
data = inla.stack.data(stack.spat),
control.predictor = list(A = inla.stack.A(stack.spat),

compute = TRUE, link = 1),
E = inla.stack.data(stack.spat)$e,
control.compute = list(dic = T, waic = T, config = T),
# control.fixed = list(prec = 0.5, prec.intercept = 0.5, mean.intercept= 0),
# control.inla = list(int.strategy = "eb", strategy = "gaussian"),
verbose = T)

3.g Formula

We now specify the formula, where we remove the default intercept (-1) because we have added it to our
covars as a new column of 1s (b0). We specify all linear and non linear effects and will comment them out in
successive steps as we discard them. We also specify the random effect, and the iid effect (even if we comment
it out for now). The last NULL row is there so we can comment in and out the lines of the formula without
worrying about adding or removing the “+” sign at the end of the formula.

We add all the covariates as linear AND non-linear following the example in Lombardo et al. 2018,
https://link.springer.com/article/10.1007/s00477-018-1518-0.

For the non-linear effects, scale.model = T makes the model scaled to have an average variance of 1. This
makes prior specification much easier, and the effects comparable. Inside hyper, we specify the hyperparameters
for the model. We use PC priors (penalised complexity, Simpson et al. 2015, https://arxiv.org/abs/1403.4630),
for which we only have to specify the precision (inverse of the σ) which controls the wigglyness as it controls
the strenght of the dependency between a value and its neighbours. The problem is that it also controls the
size of the effect, so shrinking it too much renders the effects negligible. For that reason, we should play with
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τ and the number of groups in the covariate to find a compromise between wigglyness and size of the effect
(not statistically ideal, but practical). The specification of the prior is detailed in inla.doc("pc.prec")

The prior for the rw2 models is for the hyperparameter “precision”, but it is actually set to the sigma (inverse).
We initially set the prior as the SD of the covariate, and multiply it by increasing values (2, 5, 10, 20, . . . )
until we achieve a “wigglyness” that makes sense and a posterior precision that is not an absurd value. (very
“heuristic”, I know, but we’ve got nothing better)
names(covars)

frml3M <- y ~ -1 + b0 +
log_ChlA +
# log_current_strength +
# log_SST_Gradient +
slope +
SST +
# SST_Anomaly +
# wind_strength +
MClara_dist +
f(log_ChlALEV, model = 'rw2', scale.model = T,

hyper = list(theta = list(prior = "pc.prec",
param = c(sd(covars$log_ChlALEV)*25, 0.01)))) +

# f(log_current_strengthLEV, model = 'rw2', scale.model = T,
# hyper = list(theta = list(prior = "pc.prec",
# param = c(sd(covars$log_current_strengthLEV)*20, 0.01)))) +
# f(log_SST_GradientLEV, model = 'rw2', scale.model = T,
# hyper = list(theta = list(prior = "pc.prec",
# param = c(sd(covars$log_SST_GradientLEV)*200, 0.01)))) +
# f(slopeLEV, model = 'rw2', scale.model = T,
# hyper = list(theta = list(prior = "pc.prec",
# param = c(sd(covars$slopeLEV)*100, 0.01)))) +
f(SSTLEV, model = 'rw2', scale.model = T,

hyper = list(theta = list(prior = "pc.prec",
param = c(sd(covars$SSTLEV)*70, 0.01)))) +

# f(SST_AnomalyLEV, model = 'rw2', scale.model = T,
# hyper = list(theta = list(prior = "pc.prec",
# param = c(sd(covars$SST_AnomalyLEV)*20, 0.01)))) +
# f(wind_strengthLEV, model = 'rw2', scale.model = T,
# hyper = list(theta = list(prior = "pc.prec",
# param = c(sd(covars$wind_strengthLEV)*50, 0.01)))) +
f(MClara_distLEV, model = 'rw2', scale.model = T,

hyper = list(theta = list(prior = "pc.prec",
param = c(sd(covars$MClara_distLEV)*5, 0.01)))) +

f(sp_rdm, model = spde) +
# f(iidx, model="iid", hyper=hyper.iid) +
NULL

3.h Run the model

And finally we run the spatial model. This might take several minutes
mdl3M <- inla(frml3M,

family = "poisson",
data = inla.stack.data(stack.spat),
control.predictor = list(A = inla.stack.A(stack.spat), compute = TRUE,

link = 1),
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E = inla.stack.data(stack.spat)$e,
control.compute = list(dic = T, waic = T, config = T),
# control.fixed = list(prec = 0.5, prec.intercept = 0.5, mean.intercept= 0),
control.inla = list(int.strategy = "eb",

strategy = "gaussian"), # this speeds up computation
# comment it out for final model

verbose = T) # to check process and output. Only for the brave
beepr::beep(sound = 10)

3.g Output

* Fixed effects

Once more, we extract the coefficients for the linear effects
fxd.effects3M <- cbind(rownames(mdl3M$summary.fixed), mdl3M$summary.fixed)
names(fxd.effects3M) <- c("effect", "mean", "sd", "infCI",

"median", "supCI", "mode", "kld")
fxd.effects3M <- fxd.effects3M[-1,]

median3M <- ggplot(fxd.effects3M, aes(x = effect, y = median)) + #ylim(-1.7, 1.7) +
geom_errorbar(aes(ymin = infCI, ymax = supCI), width = 0.1) +
geom_point() +
geom_hline(yintercept = 0) + ggtitle("spatial model") +
theme_bw() +
theme(axis.text.x = element_text(angle = 30, hjust = 1))

median3M

* Random effects

This shows only the random effect (i.e. the deviations from the mean “fixed effect”). If the deviations are
important we’ll keep both random and fixed, if they are not we’ll keep only the fixed. For final plotting we’ll
add up the fixed and random effect to have a general view of the effect of the covariate
par(mfrow = c(3, 1), mar = c(3,3,1,0.3), mgp = c(2,1,0))
for (i in 1:3) {

# i = 1
cov_name <- substr(names(mdl3M$summary.random)[i], 1,

nchar(names(mdl3M$summary.random)[i]) - 3)
scaled_vals <- cov_list[[cov_name]]
unscaled_vals <- cov_list_orig[[cov_name]]
post <- mdl3M$summary.random[[i]]
ylims <- c(min(post$`0.5quant` - 1),

max(post$`0.5quant` + 1))
lims <- max(abs(ylims))
plot(x = post$ID,

y = post$`0.5quant`,
type = 'l', xlab = cov_name, ylab = '', xaxt = "n", #ylim = c(-10, 20))
ylim = c(-lims, lims))

axis(side = 1, at = seq(from = (min(scaled_vals)),
to = (max(scaled_vals)), length = 6),

labels = round(seq(from = min(unscaled_vals),
to = max(unscaled_vals), length = 6)))

abline(h = 0, lty = 3)

7



lines(x = post$ID,
y = (post$`0.025quant`),
lty = 2)

lines(x = post$ID,
y = (post$`0.975quant`),
lty = 2)

rug(x = covars[,cov_name], ticksize = 0.04, col = "gray")
rug(x = for_rug[[cov_name]], ticksize = 0.02, side = 1)

}
par(mfrow = c(1,1))

* Hyperparameters for covariates
print(round(mdl3M$summary.hyperpar[1:3, ], 2))
par(mfrow = c(3, 1), mar = c(3,3,1,0.3), mgp = c(2,1,0))
for (i in 1:3) {

# i = 5
plot(mdl3M$marginals.hyperpar[[i]], type = 'l',

xlab = names(mdl3M$marginals.hyperpar)[i],
ylab = 'Density', xlim = c(0,100))

}
par(mfrow = c(1,1))

* Sample from posteriors

To predict, we are going to sample from the posterior of the fitted models. We could try to fit the model
again with NA in the response in the places where we want to predict. However, that is problematic, and
produces a lot of integration problems for some reason (Finn dixit), so we sample from the posterior which is
just as good.
mdl0M.posterior.sample <- inla.posterior.sample(n = 1000, result = mdl0M,

use.improved.mean = T)
mdl3M.posterior.sample <- inla.posterior.sample(n = 1000, result = mdl3M,

use.improved.mean = T)

* Plot spatial random effects

We can now plot the spatial random effect. This has captured all the structure in our data that has not been
captured by our covariates. Positive (red) values show areas where there is a clustering of points that is not
captured by our covariates, and negative (blue) values denote areas where there are less points than predicted
by our model. If this effect was flat we could assume that our covariates captured all the structure of our
data. The range of this effect indicates the distance at which two points in this field are no longer correlated,
and it can reflect the scale at which the “unobserved effect” is acting.

The posterior samples contain a lot of information, and are difficult to navigate. We need to extract the
Predictor, and we do it following Haakon’s code in https://haakonbakka.bitbucket.io/btopic112.html#52_
how_to_access_the_right_part_of_$latent
effect <- "sp_rdm" # select the effect we want to sample
(contents3M <- mdl3M$misc$configs$contents) # check the contents
id.effect3M <- which(contents3M$tag == effect) # the numerical id of the effect
ind.effect3M <- contents3M$start[id.effect3M] - 1 +

(1:contents3M$length[id.effect3M]) # all the indices for the effect

(contents0M <- mdl0M$misc$configs$contents) # check the contents
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id.effect0M <- which(contents0M$tag == effect) # the numerical id of the effect
ind.effect0M <- contents0M$start[id.effect0M] - 1 +

(1:contents0M$length[id.effect0M]) # all the indices for the effect

# extract this part of the posterior from all the 1000 samples
spLog3M <- matrix(unlist(lapply(mdl3M.posterior.sample,

function(x) x$latent[ind.effect3M])),
byrow = T, nrow = 1000)

spLog0M <- matrix(unlist(lapply(mdl0M.posterior.sample,
function(x) x$latent[ind.effect0M])),

byrow = T, nrow = 1000)

# palette for plotting
pltt <- RColorBrewer::brewer.pal(11, "RdYlBu")
sp_cols <- colorRampPalette(rev(pltt))

# calculate median from previous matrix.02.3
median_spLog3M <- apply(spLog3M, 2, quantile, probs = c(0.5), na.rm = TRUE)[1:nv]
median_spLog0M <- apply(spLog0M, 2, quantile, probs = c(0.5), na.rm = TRUE)

rr <- range(c(median_spLog0M, median_spLog3M), na.rm = T)
lim <- max(abs(rr))
lo_lim <- -lim
hi_lim <- lim

sp.median0M <- my.levelplot(projM, median_spLog0M, col.regions = sp_cols(100),
at = seq(-6, 7, by = 1),
xlab = "", ylab = "",
scales = list(draw = F), contour = T)

sp.median3M <- my.levelplot(projM, median_spLog3M, col.regions = sp_cols(100),
at = seq(-6, 7, by = 1),
xlab = "", ylab = "",
scales = list(draw = F), contour = T)

sp.median3M <- sp.median3M +
latticeExtra::layer(sp.polygons(poly.barrier, lwd = 1, fill = "white", col = "white")) +
latticeExtra::layer(sp.polygons(wrld, lwd = 1, col = "black", fill = "gray"))

sp.median0M <- sp.median0M +
latticeExtra::layer(sp.polygons(poly.barrier, lwd = 1, fill = "white", col = "white")) +
latticeExtra::layer(sp.polygons(wrld, lwd = 1, col = "black", fill = "gray"))

grid.arrange(sp.median0M, sp.median3M, ncol = 2)

We can also plot the spatial random effect hyperparameters (again, beware of different x axes scale)
print(round(mdl3M$summary.hyperpar[4:5, ], 2))
par(mfrow = c(2,1), mar = c(3,3,1,0.3), mgp = c(2,1,0))
plot(mdl3M$marginals.hyperpar$`Stdev for sp_rdm`, type = 'l',

xlab = expression(sigma^2), ylab = 'Density') #, xlim = c(0, 150))
plot(mdl3M$marginals.hyperpar$`Range for sp_rdm`, type = 'l',

xlab = 'Nominal range', ylab = 'Density')#, xlim = c(0,1000))
par(mfrow = c(1,1))
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* Predict intensity
effect <- "APredictor" # select the effect we want to sample
(contents3M <- mdl3M$misc$configs$contents) # check the contents
id.effect3M <- which(contents3M$tag == effect) # the numerical id of the effect
ind.effect3M <- contents3M$start[id.effect3M] - 1 +

(1:contents3M$length[id.effect3M]) # all the indices for the effect

# extract this part of the posterior from all the 1000 samples
PredResp3M <- exp(matrix(unlist(lapply(mdl3M.posterior.sample,

function(x) x$latent[ind.effect3M])),
byrow = T, nrow = 1000))

PredLog3M <- matrix(unlist(lapply(mdl3M.posterior.sample,
function(x) x$latent[ind.effect3M])),

byrow = T, nrow = 1000)

# palette for plotting
pltt <- RColorBrewer::brewer.pal(9, "YlGnBu")
pred_cols <- colorRampPalette(pltt[3:9])

# calculate median from previous matrix.02.3
median_predLog3M <- apply(PredLog3M, 2, quantile, probs = c(0.5), na.rm = TRUE)[1:nv]
median_predResp3M <- apply(PredResp3M, 2, quantile, probs = c(0.5), na.rm = TRUE)[1:nv]

pred.medianResp3M <- my.levelplot(projM, median_predResp3M, col.regions = pred_cols(100),
at = seq(min(median_predResp3M),

max(median_predResp3M), length.out = 100),
xlab = "", ylab = "",
scales = list(draw = F), contour = F,
main = "Predicted intensity - Response scale")

pred.medianResp3M <- pred.medianResp3M +
latticeExtra::layer(sp.polygons(poly.barrier, lwd = 1, fill = "white", col = "white")) +
latticeExtra::layer(sp.polygons(wrld, lwd = 1, col = "black", fill = "gray")) +
latticeExtra::layer(sp.points(M_data, pch = 1, col = "#00000025"))

pred.medianResp3M

4. Repeat the model without spatial effect to compare outputs
4.a Construct stack

The first step is to construct our linear predictor with the covariates only as linear, and without spatial
random field.

For that, we construct a “stack” with all the covariates, the response vectors and the projector matrix A. A
is 1 in this case as there is no spatial effect.
stack.non_spat <- inla.stack(data = list(y = y.pp, e = e.pp),

A = list(1),
effects = list(covars))
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4.b Formula

frml2M <- y ~ -1 + b0 +
log_ChlA +
# log_current_strength +
# log_SST_Gradient +
slope +
SST +
# SST_Anomaly +
# wind_strength +
MClara_dist +
f(log_ChlALEV, model = 'rw2', scale.model = T,

hyper = list(theta = list(prior = "pc.prec",
param = c(sd(covars$log_ChlALEV)*25, 0.01)))) +

# f(log_current_strengthLEV, model = 'rw2', scale.model = T,
# hyper = list(theta = list(prior = "pc.prec",
# param = c(sd(covars$log_current_strengthLEV)*20, 0.01)))) +
# f(log_SST_GradientLEV, model = 'rw2', scale.model = T,
# hyper = list(theta = list(prior = "pc.prec",
# param = c(sd(covars$log_SST_GradientLEV)*200, 0.01)))) +
# f(slopeLEV, model = 'rw2', scale.model = T,
# hyper = list(theta = list(prior = "pc.prec",
# param = c(sd(covars$slopeLEV)*100, 0.01)))) +
f(SSTLEV, model = 'rw2', scale.model = T,

hyper = list(theta = list(prior = "pc.prec",
param = c(sd(covars$SSTLEV)*70, 0.01)))) +

# f(SST_AnomalyLEV, model = 'rw2', scale.model = T,
# hyper = list(theta = list(prior = "pc.prec",
# param = c(sd(covars$SST_AnomalyLEV)*20, 0.01)))) +
# f(wind_strengthLEV, model = 'rw2', scale.model = T,
# hyper = list(theta = list(prior = "pc.prec",
# param = c(sd(covars$wind_strengthLEV)*50, 0.01)))) +
f(MClara_distLEV, model = 'rw2', scale.model = T,

hyper = list(theta = list(prior = "pc.prec",
param = c(sd(covars$MClara_distLEV)*5, 0.01)))) +

NULL

4.c Model

Now we run the model. The options in the inla call are the same as for the previous model, there will be
changes when we add the spatial random effect
mdl2M <- inla(frml2M,

family = "poisson",
data = inla.stack.data(stack.non_spat),
control.predictor = list(A = inla.stack.A(stack.non_spat), compute = TRUE),
E = inla.stack.data(stack.non_spat)$e,
control.compute = list(dic = T, waic = T, config = T),
control.inla = list(int.strategy = "eb", strategy = "gaussian"),
verbose = T)

summary(mdl2M)

4.d Output

* Fixed effects
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We now extract the coefficients of the linear effects, and compare them with those of the only linear model.
fxd.effects2M <- cbind(rownames(mdl2M$summary.fixed), mdl2M$summary.fixed)
names(fxd.effects2M) <- c("effect", "mean", "sd",

"infCI", "median", "supCI", "mode", "kld")
fxd.effects2M <- fxd.effects2M[-1,]

median2M <- ggplot(fxd.effects2M, aes(x = effect, y = median)) + #ylim(-1.7, 1.7) +
geom_errorbar(aes(ymin = infCI, ymax = supCI), width = 0.1) +
geom_point() +
geom_hline(yintercept = 0) + ggtitle("spatial model") +
theme_bw() +
theme(axis.text.x = element_text(angle = 30, hjust = 1))

fxd.effects3M$model <- "spatial"
fxd.effects2M$model <- "non-linear"
fxd.effects_MC <- rbind(fxd.effects3M, fxd.effects2M)

pd <- 0.4
ggplot(fxd.effects_MC, aes(x = effect, y = median, col = model)) + #ylim(-1.7, 1.7) +

geom_errorbar(aes(ymin = infCI, ymax = supCI), width = 0.1,
position = position_dodge(pd)) +

geom_point( position = position_dodge(pd)) +
geom_hline(yintercept = 0) + ggtitle("non-linear") +
theme_bw() +
theme(axis.text.x = element_text(angle = 30, hjust = 1))

* Random effects

And now we plot the shape of the non-linear effects, to which we add the coefficient of the corresponding
linear effect
par(mfrow = c(3, 1), mar = c(3,3,1,0.3), mgp = c(2,1,0))
for (i in 1:3) {

# i = 1
cov_name <- substr(names(mdl2M$summary.random)[i], 1,

nchar(names(mdl2M$summary.random)[i]) - 3)
scaled_vals <- cov_list[[cov_name]]
unscaled_vals <- cov_list_orig[[cov_name]]
post <- mdl2M$summary.random[[i]]
ylims <- c(min(post$`0.5quant` +

fxd.effects2M[rownames(fxd.effects2M) == cov_name,4] - 1),
max(post$`0.5quant` +

fxd.effects2M[rownames(fxd.effects2M) == cov_name,6] + 1))
lims <- max(abs(ylims))
plot(x = (post$ID),

y = post$`0.5quant` + fxd.effects2M[rownames(fxd.effects2M) == cov_name,5],
type = 'l', xlab = cov_name, ylab = '', xaxt = "n", #ylim = c(-10, 20))
ylim = c(-lims, lims))

axis(side = 1, at = seq(from = (min(scaled_vals)),
to = (max(scaled_vals)), length = 6),

labels = round(seq(from = min(unscaled_vals), to = max(unscaled_vals),
length = 6)))

abline(h = 0, lty = 3)
lines(x = post$ID,
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y = (post$`0.025quant` + fxd.effects2M[rownames(fxd.effects2M) == cov_name,5]),
lty = 2)

lines(x = post$ID,
y = (post$`0.975quant` + fxd.effects2M[rownames(fxd.effects2M) == cov_name,5]),
lty = 2)

rug(x = covars[,cov_name], ticksize = 0.04, col = "gray")
rug(x = for_rug[[cov_name]], ticksize = 0.02, side = 1)

}
par(mfrow = c(1,1))

Compare with random effects of spatial model
par(mfrow = c(2, 2), mar = c(3,3,1,0.3), mgp = c(2,1,0))
for (i in 1:3) {

# i = 1
cov_name <- substr(names(mdl3M$summary.random)[i], 1,

nchar(names(mdl3M$summary.random)[i]) - 3)
scaled_vals <- cov_list[[cov_name]]
unscaled_vals <- cov_list_orig[[cov_name]]
post3 <- mdl3M$summary.random[[i]]

post2 <- mdl2M$summary.random[[i]]
ylims <- c(min(min(post3$`0.5quant` +

fxd.effects3M[rownames(fxd.effects3M) == cov_name,4] - 1),
min(post2$`0.5quant` +

fxd.effects2M[rownames(fxd.effects2M) == cov_name,4] - 1)),
max(max(post3$`0.5quant` +

fxd.effects3M[rownames(fxd.effects3M) == cov_name,6] + 1),
max(post2$`0.5quant` +

fxd.effects2M[rownames(fxd.effects2M) == cov_name,6] + 1)))
lims <- max(abs(ylims))
plot(x = post3$ID,

y = post3$`0.5quant` + fxd.effects3M[rownames(fxd.effects3M) == cov_name,5],
type = 'l', xlab = cov_name, ylab = '', xaxt = "n", #ylim = c(-10, 20))
ylim = c(-lims, lims))

abline(h = 0, lty = 3)
lines(x = post3$ID,

y = (post3$`0.025quant` + fxd.effects3M[rownames(fxd.effects3M) == cov_name,5]),
lty = 2)

lines(x = post3$ID,
y = (post3$`0.975quant` + fxd.effects3M[rownames(fxd.effects3M) == cov_name,5]),
lty = 2)

lines(x = post2$ID,
y = post2$`0.5quant` + fxd.effects2M[rownames(fxd.effects2M) == cov_name,5],
xlab = cov_name, ylab = '', xaxt = "n", #ylim = c(-10, 20))
ylim = c(-lims, lims), col = "gray")

lines(x = post2$ID,
y = (post2$`0.025quant` + fxd.effects2M[rownames(fxd.effects2M) == cov_name,5]),
lty = 2, col = "gray")

lines(x = post2$ID,
y = (post2$`0.975quant` + fxd.effects2M[rownames(fxd.effects2M) == cov_name,5]),
lty = 2, col = "gray")

rug(x = covars[,cov_name], ticksize = 0.04, col = "gray")
rug(x = for_rug[[cov_name]], ticksize = 0.02, side = 1)
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axis(side = 1, at = seq(from = (min(scaled_vals)),
to = (max(scaled_vals)), length = 6),

labels = round(seq(from = min(unscaled_vals), to = max(unscaled_vals),
length = 6)))

}
# add slope (linear)
post_lin3 <- post2
post_lin3$`0.5quant` <- fxd.effects3M[2,5]
post_lin3$`0.025quant` <- fxd.effects3M[2,4]
post_lin3$`0.975quant` <- fxd.effects3M[2,6]
post_lin2 <- post2
post_lin2$`0.5quant` <- fxd.effects2M[2,5]
post_lin2$`0.025quant` <- fxd.effects2M[2,4]
post_lin2$`0.975quant` <- fxd.effects2M[2,6]
ylims <- c(min(post_lin3$`0.025quant`, post_lin2$`0.025quant`) - 0.5,

max(post_lin3$`0.975quant`, post_lin2$`0.975quant`) + 0.5)
lims <- max(abs(ylims))
plot(x = post_lin3$ID,

y = post_lin3$`0.5quant`,
type = 'l', xlab = "Slope", ylab = '', xaxt = "n", #ylim = c(-10, 20))
ylim = c(-lims, lims))

abline(h = 0, lty = 3)
lines(x = post_lin3$ID,

y = post_lin3$`0.025quant`,
lty = 2)

lines(x = post_lin3$ID,
y = post_lin3$`0.975quant`,
lty = 2)

lines(x = post_lin2$ID,
y = post_lin2$`0.5quant`,
xlab = cov_name, ylab = '', xaxt = "n", #ylim = c(-10, 20))
ylim = c(-lims, lims), col = "gray")

lines(x = post_lin2$ID,
y = post_lin2$`0.025quant`,
lty = 2, col = "gray")

lines(x = post_lin2$ID,
y = post_lin2$`0.975quant`,
lty = 2, col = "gray")

rug(x = covars[,"slope"], ticksize = 0.04, col = "gray")
rug(x = for_rug[["slope"]], ticksize = 0.02, side = 1)
axis(side = 1, at = seq(from = min(post_lin3$ID),

to = max(post_lin3$ID), length = 6),
labels = round(seq(from = min(cov_list_orig[["slope"]]),

to = max(cov_list_orig[["slope"]]), length = 6), 2))
par(mfrow = c(1, 1))

We also plot the hyperparameters of the non-linear effects
par(mfrow = c(3, 1), mar = c(3,3,1,0.3), mgp = c(2,1,0))
for (i in 1:3) {

# i = 1
plot(mdl2M$marginals.hyperpar[[i]], type = 'l',

xlab = names(mdl2M$marginals.hyperpar)[i],
ylab = 'Density', xlim = c(0,10))
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}
par(mfrow = c(1,1))

5 Finally, model with all covariates as linear, to compare.
5.a Formula

Next, we construct the formula, wich specifies each of the linear effects and the intercept. In this case, we
can add the covariates without grouping, the grouped covariates will be used for the rw2 models.
frml1M <- y ~ -1 + b0 +

log_ChlA +
# log_current_strength +
# log_SST_Gradient +
slope +
SST +
# SST_Anomaly +
# wind_strength +
MClara_dist +
NULL

5.b Run model

We run the model with the following code, which specifies the family (Poisson, tupe inla.doc("poisson")
for more info), where to take the data from, where to find the A matrix, the expected values, and several
control parameters such as whether to compute dic and waic, and the integration strategy.
mdl1M <- inla(frml1M,

family = "poisson",
data = inla.stack.data(stack.non_spat),
control.predictor = list(A = inla.stack.A(stack.non_spat), compute = TRUE),
E = inla.stack.data(stack.non_spat)$e,
control.compute = list(dic = T, waic = T, config = T),
control.inla = list(int.strategy = "eb", strategy = "gaussian"),
verbose = T)

summary(mdl1M)

5.c Output

From this model we can extract the coefficients of the linear effects, and plot them to see how much they
differ from 0 (i.e. how significant they are)
fxd.effects1M <- cbind(rownames(mdl1M$summary.fixed), mdl1M$summary.fixed)
names(fxd.effects1M) <- c("effect", "mean", "sd",

"infCI", "median", "supCI", "mode", "kld")
fxd.effects1M <- fxd.effects1M[-1,] # remove intercept, we don't want to plot it

median1M <- ggplot(fxd.effects1M, aes(x = effect, y = median)) + #ylim(-1.7, 1.7) +
geom_errorbar(aes(ymin = infCI, ymax = supCI), width = 0.1) +
geom_point() +
geom_hline(yintercept = 0) + ggtitle("spatial model") +
theme_bw() +
theme(axis.text.x = element_text(angle = 30, hjust = 1))

fxd.effects1M$model <- "linear"
fxd.effects_MC <- rbind(fxd.effects_MC, fxd.effects1M)
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pd <- 0.4
fxd_MC <- ggplot(fxd.effects_MC, aes(x = effect, y = median, col = model)) +

geom_errorbar(aes(ymin = infCI, ymax = supCI), width = 0.1,
position = position_dodge(pd)) +

geom_point( position = position_dodge(pd)) +
geom_hline(yintercept = 0) + ggtitle("non-linear") +
theme_bw() +
theme(axis.text.x = element_text(angle = 30, hjust = 1))

fxd_MC

6 Predict from the three models
6.a Sample from the posterior

Now we have the three models, we’ll predict from the three to compare outputs and see if the model has
improved with the addition of non-linear covariates and a spatially structured random effect.
mdl1M.posterior.sample <- inla.posterior.sample(n = 1000, result = mdl1M,

use.improved.mean = T)
mdl2M.posterior.sample <- inla.posterior.sample(n = 1000, result = mdl2M,

use.improved.mean = T)
mdl3M.posterior.sample <- inla.posterior.sample(n = 1000, result = mdl3M,

use.improved.mean = T)

6.b Extract Predictor

These posterior samples contain a lot of information, and are difficult to navigate. We need to extract the
Predictor, and we do it following Haakon’s code in https://haakonbakka.bitbucket.io/btopic112.html#52_
how_to_access_the_right_part_of_$latent
(contents1M <- mdl1M$misc$configs$contents) # check the contents
effect <- "APredictor" # select the effect we want to sample
id.effect <- which(contents1M$tag == effect) # the numerical id of the effect
ind.effect <- contents1M$start[id.effect] - 1 +

(1:contents1M$length[id.effect]) # all the indices for the effect
Predictor_sample1M <- lapply(mdl1M.posterior.sample,

function(x) x$latent[ind.effect]) # extract this part of the
# posterior from all the
# 1000 samples

(contents2M <- mdl2M$misc$configs$contents)
effect <- "APredictor"
id.effect <- which(contents2M$tag == effect)
ind.effect <- contents2M$start[id.effect] - 1 + (1:contents2M$length[id.effect])
Predictor_sample2M <- lapply(mdl2M.posterior.sample,

function(x) x$latent[ind.effect])

(contents3M <- mdl3M$misc$configs$contents)
effect <- "APredictor"
id.effect <- which(contents3M$tag == effect)
ind.effect <- contents3M$start[id.effect] - 1 + (1:contents3M$length[id.effect])
Predictor_sample3M <- lapply(mdl3M.posterior.sample,

function(x) x$latent[ind.effect])
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From these predictor samples, we can extract mean and σ of the posterior at each of the integration points
(nodes of the mesh) and then use the projector matrix to plot it. We can extract the posterior at the response
scale or at the log scale. The response scale is usually easier to interpret, but the log scale is visually clearer.

6.c Project and plot predicted intensity

We now convert the lists that are the output of inla.posterior.sample() into matrices, with one column
for each integration point (mesh node) and one row for each sample. And then we calculate colMeans() and
colSds() and with the custom function my.levelplot()* (I should find out where I found it) and the help
of the projector matrix generated above we plot it.

The function my.levelplot() contains the function inla.mesh.project() that is an important step to this
in combination with inla.mesh.projector() although I’ve long given up on understanding exactly what it
does. It just works.
Pred_Response1M <- exp(matrix(unlist(Predictor_sample1M),

byrow = T, nrow = 1000)) #prediction in the response scale
Pred_Log1M <- matrix(unlist(Predictor_sample1M), byrow = T,

nrow = 1000) #prediction in the log scale
median_PredResp1M <- apply(Pred_Response1M, 2, quantile, probs = c(0.5),

na.rm = TRUE)[1:nv]

# RWIQR: relative width of the interquantile range (https://doi.org/10.1214/17-AOAS1078)
CI_predResp1M <- apply(Pred_Response1M, 2, quantile, probs = c(0.025, 0.975),

na.rm = TRUE)[,1:nv]
RWIQR1M <- abs((CI_predResp1M[2,] - CI_predResp1M[1,])/median_PredResp1M)
Pred_Response2M <- exp(matrix(unlist(Predictor_sample2M),

byrow = T, nrow = 1000)) #prediction in the response scale

Pred_Log2M <- matrix(unlist(Predictor_sample2M), byrow = T,
nrow = 1000) #prediction in the log scale

median_PredResp2M <- apply(Pred_Response2M, 2, quantile, probs = c(0.5),
na.rm = TRUE)[1:nv]

CI_predResp2M <- apply(Pred_Response2M, 2, quantile, probs = c(0.025, 0.975),
na.rm = TRUE)[,1:nv]

RWIQR2M <- abs((CI_predResp2M[2,] - CI_predResp2M[1,])/median_PredResp2M)

Pred_Response3M <- exp(matrix(unlist(Predictor_sample3M),
byrow = T, nrow = 1000)) #prediction in the response scale

Pred_Log3M <- matrix(unlist(Predictor_sample3M), byrow = T,
nrow = 1000) #prediction in the log scale

median_PredResp3M <- apply(Pred_Response3M, 2, quantile, probs = c(0.5),
na.rm = TRUE)[1:nv]

CI_predResp3M <- apply(Pred_Response3M, 2, quantile, probs = c(0.025, 0.975),
na.rm = TRUE)[,1:nv]

RWIQR3M <- abs((CI_predResp3M[2,] - CI_predResp3M[1,])/median_PredResp3M)

pred.median1M <- my.levelplot(projM, median_PredResp1M, col.regions = pred_cols(100),
at = seq(min(median_PredResp1M),

max(median_PredResp1M), length.out = 100),
# at = seq(0, 14, length.out = 100),
xlab = "", ylab = "",
scales = list(draw = F), contour = F) +

latticeExtra::layer(sp.polygons(poly.barrier, lwd = 1, fill = "white", col = "white")) +
latticeExtra::layer(sp.polygons(wrld, lwd = 1, col = "black", fill = "gray")) +
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latticeExtra::layer(sp.points(M_data, pch = 1, col = "#00000050", cex = 0.5))

pred.median2M <- my.levelplot(projM, median_PredResp2M, col.regions = pred_cols(100),
at = seq(min(median_PredResp2M),

max(median_PredResp2M), length.out = 100),
# at = seq(0, 14, length.out = 100),
xlab = "", ylab = "",
scales = list(draw = F), contour = F) +

latticeExtra::layer(sp.polygons(poly.barrier, lwd = 1, fill = "white", col = "white")) +
latticeExtra::layer(sp.polygons(wrld, lwd = 1, col = "black", fill = "gray")) +
latticeExtra::layer(sp.points(M_data, pch = 1, col = "#00000050", cex = 0.5))

pred.median3M <- my.levelplot(projM, median_PredResp3M, col.regions = pred_cols(100),
at = seq(min(median_PredResp3M),

max(median_PredResp3M), length.out = 100),
# at = seq(0, 14, length.out = 100),
xlab = "", ylab = "",
scales = list(draw = F), contour = F) +

latticeExtra::layer(sp.polygons(poly.barrier, lwd = 1, fill = "white", col = "white")) +
latticeExtra::layer(sp.polygons(wrld, lwd = 1, col = "black", fill = "gray")) +
latticeExtra::layer(sp.points(M_data, pch = 1, col = "#00000050", cex = 0.5))

pred.RWIQR3M <- my.levelplot(projM, RWIQR3M, col.regions = pred_cols(100),
at = seq(0, 600, length.out = 100),
# at = seq(0, 14, length.out = 100),
xlab = "", ylab = "",
scales = list(draw = F), contour = F,
main = "RWIQR - Spatial Model") +

latticeExtra::layer(sp.polygons(poly.barrier, lwd = 1, fill = "white", col = "white")) +
latticeExtra::layer(sp.polygons(wrld, lwd = 1, col = "black", fill = "gray")) +
latticeExtra::layer(sp.points(M_data, pch = ".", col = "#00000075"))

pred.RWIQR2M <- my.levelplot(projM, RWIQR2M, col.regions = pred_cols(100),
at = seq(0, 1500, length.out = 100),
# at = seq(0, 14, length.out = 100),
xlab = "", ylab = "",
scales = list(draw = F), contour = F,
main = "RWIQR - Non-linear model") +

latticeExtra::layer(sp.polygons(poly.barrier, lwd = 1, fill = "white", col = "white")) +
latticeExtra::layer(sp.polygons(wrld, lwd = 1, col = "black", fill = "gray")) +
latticeExtra::layer(sp.points(M_data, pch = ".", col = "#00000075"))

pred.RWIQR1M <- my.levelplot(projM, RWIQR1M, col.regions = pred_cols(100),
at = seq(0, 2, length.out = 100),
# at = seq(0, 14, length.out = 100),
xlab = "", ylab = "",
scales = list(draw = F), contour = F,
main = "RWIQR - Linear model") +

latticeExtra::layer(sp.polygons(poly.barrier, lwd = 1, fill = "white", col = "white")) +
latticeExtra::layer(sp.polygons(wrld, lwd = 1, col = "black", fill = "gray")) +
latticeExtra::layer(sp.points(M_data, pch = ".", col = "#00000075"))
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plots <- list(pred.median1M, pred.median2M, pred.median3M,
pred.RWIQR1M, pred.RWIQR2M, pred.RWIQR3M)

lay = rbind(c(1, 2, 3),
c(4, 5, 6))

grStr <- arrangeGrob(grobs = plots, layout_matrix = lay)

grid::grid.draw(grStr)

7 Model validation for the three models
Cross Validation is not possible with point pattern models because the actual data are the points, so if you
split the dataset in two you’ll actually change the structure of the y. Also, dic and waic are not accurate for
these type of models, which leaves us with no “off the shelf” way to validate our models. However, we can
use some summary functions from point patterns that will allow us at least to evaluate how well our models
have captured the structure of our data.

The first thing we need to do is to simulate 1000 point patterns from each of the models. The code is from
Janine’s “model validation” session at the inlabru course (https://www.dropbox.com/s/ok2gimujqfyvq7f/06_
b_mod_valid.html?dl=0). We need to make the simulations from the prediction in the log scale (for some
reason).

7.a Simulate 1000 point patterns from each model

for_sampling1M_median <- apply(Pred_Log1M, 2, quantile, probs = c(0.5),
na.rm = TRUE)[1:nv]

mdl1M.simulations <- lapply(1:1000, function(i) {
spatial.to.ppp(sample.lgcp(meshM, for_sampling1M_median, samplers = bound),

samplers = bound)})

for_sampling2M_median <- apply(Pred_Log2M, 2, quantile, probs = c(0.5),
na.rm = TRUE)[1:nv]

mdl2M.simulations <- lapply(1:1000, function(i) {
spatial.to.ppp(sample.lgcp(meshM, for_sampling2M_median, samplers = bound),

samplers = bound)})

for_sampling3M_median <- apply(Pred_Log3M, 2, quantile, probs = c(0.5),
na.rm = TRUE)[1:nv]

mdl3M.simulations <- lapply(1:1000, function(i) {
spatial.to.ppp(sample.lgcp(meshM, for_sampling3M_median, samplers = bound),

samplers = bound)})

7.b Plot examples to check it worked

We can plot a couple of examples of simulated patterns from each of the models to see it has worked
# par(mfrow = c(3,3), oma = c(0, 0, 2, 0))
par(mfrow = c(1, 3), oma = c(0, 0, 2, 0))
for (i in sample(x = 1:1000, replace = F, size = 3)) {plot(mdl1M.simulations[[i]],

main = "")}
mtext("Model 1", outer = TRUE, cex = 1.5)
par(mfrow = c(1, 1))
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par(mfrow = c(1, 3), oma = c(0, 0, 2, 0))
for (i in sample(x = 1:1000, replace = F, size = 3)) {plot(mdl2M.simulations[[i]],

main = "")}
mtext("Model 2", outer = TRUE, cex = 1.5)
par(mfrow = c(1, 1))

par(mfrow = c(1, 3), oma = c(0, 0, 2, 0))
for (i in sample(x = 1:100, replace = F, size = 3)) {plot(mdl3M.simulations[[i]],

main = "")}
mtext("Model 3", outer = TRUE, cex = 1.5)
par(mfrow = c(1, 1))

# add the observed ppp to compare
par(mfrow = c(1,3))
plot(mdl1M.simulations[[1]], main = "Linear model")
plot(ds.ppp, add = T, col = "red")

plot(mdl2M.simulations[[1]], main = "Non-linear model")
plot(ds.ppp, add = T, col = "red")

plot(mdl3M.simulations[[1]], main = "Spatial model")
plot(ds.ppp, add = T, col = "red")
par(mfrow = c(1,1))

Then, we need to convert our data to a point pattern, to calculate the L Function. This L Function is related
to the number of points inside an area of radius R from each point, and is calculated for several distances
for each point. High values for the L function (a lot of points inside the area of radius r) means the point
pattern is clustered. Low values for the L function (very few points inside the area of radius r) means the
point pattern is dispersed. We will calculate the L function values from the 1000 simulated patterns that
we’ve generated, and plot it for all the distances (r) at which is calculated. This will generate a “ribbon”
or “envelope”, over which we’ll plot the L-function values for our observed pattern. If the observed pattern
falls inside the envelope we can interpret that our model correctly captures the structure of our data. If our
observed pattern is above the envelope, we can interpret that there is some clustering in our data that our
model is not capturing, while if the observed pattern falls below the enevelope we interpret there is some
dispersion in our data that the model has not captured.

To make the plot more visually clear we will substract the r value to the L-function values for plotting. This
should generate a L-function plot more centered around 0.

7.c Calculate and plot L functions for the three models

mdl1M.Lest <- spatstat::envelope(ds.ppp, fun = spatstat::Lest,
simulate = mdl1M.simulations)

H1M <- mdl1M.Lest

H1M$obs <- H1M$obs - H1M$r
H1M$mmean <- H1M$mmean - H1M$r
H1M$lo <- H1M$lo - H1M$r
H1M$hi <- H1M$hi - H1M$r

plot1M <- ggplot(data = H1M) +
theme_bw() +
theme(axis.title.x = element_text(size = 16),
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axis.text.x = element_text(size = 14),
axis.title.y = element_text(size = 16),
axis.text.y = element_text(size = 14),
panel.grid.minor.x = element_blank(), panel.grid.major.x = element_blank(),
panel.grid.minor.y = element_blank(), panel.grid.major.y = element_blank())

env1M <- plot1M + geom_line(aes(x = r, y = obs), col = "red") +
geom_line(aes(x = r, y = lo), col = "Gray20", linetype = 2) +
geom_line(aes(x = r, y = hi), col = "Gray20", linetype = 2) +
ylim(-10, 125) +
xlim(-10, 150) +
geom_vline(xintercept = seq(10, 150, by = 10), lty = 2, col = "lightgray") +
xlab("Radius (km)") +
ylab("L(r) - r")

mdl2M.Lest <- spatstat::envelope(ds.ppp, fun = spatstat::Lest,
simulate = mdl2M.simulations)

H2M <- mdl2M.Lest

H2M$obs <- H2M$obs - H2M$r
H2M$mmean <- H2M$mmean - H2M$r
H2M$lo <- H2M$lo - H2M$r
H2M$hi <- H2M$hi - H2M$r

plot2M <- ggplot(data = H2M) +
theme_bw() +
theme(axis.title.x = element_text(size = 16),

axis.text.x = element_text(size = 14),
axis.title.y = element_text(size = 16),
axis.text.y = element_text(size = 14),
panel.grid.minor.x = element_blank(), panel.grid.major.x = element_blank(),
panel.grid.minor.y = element_blank(), panel.grid.major.y = element_blank())

env2M <- plot2M + geom_line(aes(x = r, y = obs), col = "red") +
geom_line(aes(x = r, y = lo), col = "Gray20", linetype = 2) +
geom_line(aes(x = r, y = hi), col = "Gray20", linetype = 2) +
ylim(-10, 125) +
xlim(-10, 150) +
geom_vline(xintercept = seq(10, 150, by = 10), lty = 2, col = "lightgray") +
xlab("Radius (km)") +
ylab("L(r) - r")

mdl3M.Lest <- spatstat::envelope(ds.ppp, fun = spatstat::Lest,
simulate = mdl3M.simulations)

H3M <- mdl3M.Lest

H3M$obs <- H3M$obs - H3M$r
H3M$mmean <- H3M$mmean - H3M$r
H3M$lo <- H3M$lo - H3M$r
H3M$hi <- H3M$hi - H3M$r
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plot3M <- ggplot(data = H3M) +
theme_bw() +
theme(axis.title.x = element_text(size = 16),

axis.text.x = element_text(size = 14),
axis.title.y = element_text(size = 16),
axis.text.y = element_text(size = 14),
panel.grid.minor.x = element_blank(), panel.grid.major.x = element_blank(),
panel.grid.minor.y = element_blank(), panel.grid.major.y = element_blank())

(env3M <- plot3M + geom_line(aes(x = r, y = obs), col = "red") +
geom_line(aes(x = r, y = lo), col = "Gray20", linetype = 2) +
geom_line(aes(x = r, y = hi), col = "Gray20", linetype = 2) +
ylim(-10, 125) +
xlim(-10, 150) +
geom_vline(xintercept = seq(10, 150, by = 10), lty = 2, col = "lightgray") +
xlab("Radius (km)") +
ylab("L(r) - r"))

grid.arrange(env1M, env2M, env3M, ncol = 1)

7.d Estimate abundance and compare to observed abundance

Lastly, another way to see how well our models fit to our data, we can try to calculate the total abundance
estimated from the model, and compare it to the actual number of observed points. A way to do that is from
the point patterns simulated from each of the models (as we’ve done above). We count the number of points
in each of them, and because we have 1000 simulations we obtain a mean and an sd.
nrow(M_data) #real abundance
Lambda1 <- unlist(lapply(mdl1M.simulations, function(x) x$n))
Lambda2 <- unlist(lapply(mdl2M.simulations, function(x) x$n))
Lambda3 <- unlist(lapply(mdl3M.simulations, function(x) x$n))

mean(Lambda3)
sd(Lambda3)

Lambdas <- cbind(Lambda1, Lambda2, Lambda3)
x <- as.data.frame(apply(Lambdas, 2, quantile, probs = c(0.025, 0.5, 0.975),

na.rm = TRUE))
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