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Abstract

Ever since the advent of modern technology, major developments have come
hand in hand in Electronics, Photonics, and other areas of Physics and Engi-
neering with miniaturization and speed of operation. A proof of this is pro-
vided by the impressive success of Moore’s law,' which predicted that the
number of transistors per affordable microprocessor would double every two
years, that would not have been possible if transistors kept their initial physical
dimensions. By the end of 2018, MIT and University of Colorado researchers
broke a new record for the smallest 3D transistor yet” with a lateral size of only
2.5nm. As of 2019, there are commercially available 5 nm transistors™“ which
are planned to be shrunk to 3 nm by 2021. Considering these dimensions, it is
then remarkably important to understand and to be able to manipulate ma-
terials at the nanoscale, where they behave in very different ways compared

to macroscopic structures.

Given this context, researchers have put substantial efforts towards find-
ing the explanation of diverse phenomena at the nanoscale, engineering new
nanodevices, and proposing or predicting new mechanisms to achieve the
next generation of chips and integrated circuits. As a matter of fact, the rise of
the so-called low dimensional materials (graphene, transition metal dichalco-
genides, cuprates, hBN, black P, carbon nanotubes, and others), i.e., those
whose atomic planes are bonded by weak van der Waals forces (2D) or whose
atoms are arranged in chains or tubes (1D), has been influenced by the quest
for new more efficient and compact designs. In this thesis we study the opti-
cal properties of some of these materials and how they are modified by the
interaction with electrons that, depending on the specific case, we consider
to be either dopants (added into the material), or impinging in highly-focused

beams, or via tunneling from nearby conductors.

Specifically, we start with a comprehensive analysis of plasmons, the col-

vii



lective oscillations of free electrons coupled to light, in finite highly-doped
carbon nanotubes. Next, we explore how to select the proper plasmon mode
excited by electron beams depending on the orientation and position of the
latter and also how to improve the interaction between two quantum emit-
ters when mediated by the main plasmonic mode in our structures. We pre-
dict record-high Purcell factors of the order of 108, which supports the use of
carbon nanotubes as active plasmonic elements with high potential in opto-

electronics and quantum optics applications.

We then continue with one dimensional systems, but now focusing on
atomic chains to emulate simple solid-like structures where to inspect strong-
field driven electron dynamics in solids. More specially, we tackle several still
pending questions about the role of electron-electron interactions and the
proper choice of material to achieve better high-harmonic generation yields.
After that, we test these findings in more realistic 1D systems: carbon nan-
otubes. Eventually, we find that the addition of a small number of doping
charges to semiconducting systems can enable intraband plasmon excitations
that concentrate the impinging light and boosts the high-harmonic generation

efficiency.

Next, we move to an investigation on how to use two dimensional het-
erostructures (stacks of 2D materials) for new compact ways of generating
plasmons that do not need external light sources. More precisely, we propose
tunneling electrons as plasmon triggers. We thus design a device consisting
of a 1nm-thick sandwich of graphene-hBN-graphene whose activation mecha-
nism would be by an electron that tunnels from one graphene layer to another
losing energy in the process that is invested into exciting plasmons. We pre-
dict a generation efficiency that can reach one plasmon per tunneled electron
and that is robust upon distortions and variations in doping. Additionally, we
complete this study by analyzing graphene-insulator-metal structures, which

are unfortunately less efficient in the generation than their graphene-hBN-
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graphene counterparts.
In summary, the outcomes of this thesis open new paths towards a more
efficient generation of nonlinear processes in solid nanoarchitectures and optics-

free manipulation at the nanoscale for future optoelectronic devices.






Resumen

Desde el advenimiento de la tecnologia moderna, los mayores desarrollos
cientificos en Electrénica, Fotonica y otras ramas de la Fisica han venido de
la mano con la miniaturizacion y la velocidad. Una prueba de esto es el gran
éxito de la Ley de Moore' que predijo que el nimero de transistores por mi-
croprocesador de precio asequible se doblaria cada dos anos y que que no
habria sido posible si los transistores hubiesen mantenido su tamano original.
A finales de 2018 investigadores del MIT y de la Universidad de Colorado ba-
tieron un nuevo récord del transistor mas pequefio hasta la fecha” de tan solo
2.5 nm de tamano. En lo que a 2019 se refiere, ya hay transistores de 5 nm dis-
ponibles en el mercado™“ y cuyo tamano se espera reducir a 3 nm para 2021.
Considerando estas dimensiones, es de vital importancia tanto entender co-
mo poder manipular los materiales en la nanoescala, donde se compartan de

una manera totalmente diferente a cdmo lo hacen macroscépicamente.

Dado este contexto, los investigadores han puesto especial empefio en en-
contrar explicaciones a diversos fenémenos en la nanoescala, en construir y di-
sefiar nuevos nanodispositivos y en proponer o predecir nuevos mecanismos
para lograr las nuevas generaciones de chips y circuitos integrados. De hecho,
el ascenso de los famosos materiales de baja dimensionalidad (grafeno, dical-
cogenuros de metales de transicién, cupratos, hBN, fésforo negro, nanotubos
de carbono y otros), i.e., aquellos cuyos planos atdmicos estan enlazados por
fuerzas débiles de van der Waals (2D) o cuyos atomos estan ordenados en
cadenas o tubos (1D), ha venido influenciado por la constante bisqueda de
nuevos disenos mas compactos y eficientes. En esta tesis, estudiamos las pro-
piedades Opticas de algunos de estos materiales y cémo se modifican debido
alainteraccion con electrones que, dependiendo del caso concreto, dopantes
(afadidos al material) o que inciden en haces de electrones altamente focali-

zados.
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Mas en particular, empezamos con un analisis exhaustivo de plasmones, la
oscilacién colectiva de electrones acoplada a la luz, en nanotubos de carbono
finitos altamente dopados. A continuacién, exploramos cémo seleccionar el
modo del plasmoén adecuado usando haces de electrones ademas de como
mejorar la interaccién entre dos emisores cuanticos cuando el modo plasmé-
nico principal hace de mediador. Predecimos un valor récord de 108 para el
factor de Purcell que respalda el uso de nanotubos de carbono como elemen-
tos plasmoénicos activos de gran potencial para aplicaciones en optoelectroni-

cay Optica cuantica.

Continuamos con sistemas unidimesionales pero esta vez eligiendo cade-
nas atdbmicas para emular estructuras sélidas simples donde examinar la dina-
mica de los electrones cuando estan guiados por campos fuertes. Mas concre-
tamente, abordamos las cuestiones alin pendientes sobre el papel que juegan
las interacciones electron-electron y la eleccion apropiada de material para la
generacion mas eficiente de armoénicos altos, y comprobamos nuestras con-
clusiones en sistemas 1D mas realistas: los nanotubos de carbono. Asi pues,
encontramos que la adicién de una pequefa cantidad de carga dopante puede
producir excitacion de plasmones intrabanda que concentran el campo inci-

dente y fomentan la eficiencia de la generacién de armoénicos altos.

Después, pasamos a investigar cdmo emplear heteroestructuras bidimen-
sionales (pilas de materiales 2D) para desarrollar nuevas formas mas com-
pactas de generar plasmones sin tener que utilizar fuentes externas, es decir,
proponemos usar electrones de efecto tunel como activadores plasmodnicos.
El dispositivo que planteamos es un sandwich de grafeno-hBN-grafeno cuyo
mecanismo de activacion seria por medio de un electron que salta de una la-
mina de grafeno a la otra por efecto tinel, que en el proceso pierde energia
y que ésta es invertida en excitar plasmones. En efecto, predecimos una efi-
ciencia de generacién que puede alcanzar un plasmén por electrén que salta

por efecto tlnel y que se mantiene a pesar de las posibles distorsiones por
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rotacion de las laminas o de los cambios en el dopado. Ademas, completamos
este estudio analizando el caso para estructuras de grafeno-aislante-metal y
comprobamos que, desafortunadamente, son menos eficientes que sus ho-
mologas de grafeno-hBN-grafeno.

Enresumen, los resultados de esta tesis abren la puerta hacia la generacién
de procesos no lineales mas eficientes en nanoarquitecturas sélidas y hacia la
manipulacién en la nanoescala sin elementos 6pticos para futuros nanodispo-

sitivos optoelectroénicos.
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Introduction

em4+1=0

- Euler

The first hints of an emerging area of Physics were envisioned by Richard
Feynman in his lecture There’s Plenty of Room at the Bottom: An Invitation to
Enter a New Field of Physics at the American Physical Society meeting at Cal-
tech in 1959. In this talk, he anticipated that the development of experimen-
tal techniques at the nanoscale would revolutionize science and produce a
huge impactin society. Nevertheless, it was not until 1974 when Norio Taniguchi
coined the word Nanotechnology® for this new field. Ever since that date,
Nanoscience grew exponentially, ignited by two great breakthroughs: the in-
vention of the first scanning tunneling microscope in 1981” that provided un-
matched atomic resolution, and the discovery of fullerenes in 1985° as plat-
forms to build devices with applications in electronics at the nanoscale.

In parallel to the advances in Nanoscience, the emergence of the first
lasers,” ™~ of the low-loss optical fibers, “ and the fabrication of semiconductor

optical devices triggered the rebirth of two other great disciplines, the so-

called Electronics and Photonics. Whereas Electronics involves the control of



charge carriers, Photonics comprises the control of photons. However, both
areas are intertwined enough to often find terms such as Optoelectronics or
Electro-optics that refer to the fact that photons can also control electrons and
vice versa.'” Hence, these fields are widely used to designate the generation,
manipulation, detection, and emission of photons and electrons in vacuum or

matter by signal processing, modulation, sensing, amplification or switching.

The efforts towards speeding up operations and reducing the critical di-
mension of devices pushed research in Optoelectronics down to the nanoscale,
opening up a wide range of new disciplines like Nano-optoelectronics, Na-
noelectronics, Molecular nanotechnology, Nanometrology, and also, the one

where our research is framed in, Nanophotonics.

The focus of this thesis is on finding novel mechanisms to manipulate, use
and generate plasmons, the collective oscillations of free electrons coupled
to light. The glamour of plasmons~~ comes from their outstanding properties
for light concentration and enhancement (even beating the diffraction limit),
as well as, their broadband response that ranges from the THz to the visible-
NIR. This makes plasmons useful for optical sensors, detectors, and modula-

tors.””

Many of these properties are boosted when plasmons are supported by
low dimensional materials, whose atoms are arranged in a plane, in a tube or
lie in a line, thus we focus primarily on carbon allotropes, direct successors
of the fullerenes mentioned above, because of their good performance and

suitable characteristics for our purposes, as we shall see.

More specifically, we start with a comprehensive study of plasmons in fi-
nite highly-doped carbon nanotubes. The axial symmetry of these structures
along with their small transversal sizes in comparison to their lengths and es-
pecially to the plasmon and light wavelengths, make them effectively one-
dimensional. Henceforth, we look into the properties of these plasmons, namely

how to generate them with electron beams and how they interact with quan-



1.1. ELECTRONIC PROPERTIES OF MATERIALS

tum emitters.

We then continue with 1D systems and analyze how the linear and non-
linear response of atomic chains, the fruit flies of material science and con-
densed matter, are effected by plasmons, doping, and electron interactions.
After that, we proceed with more realistic systems and look into these effects
in carbon nanotubes. Ultimately, we move on towards 2D symmetries and ex-
plore the possibilities that tunneling electrons offer to trigger plasmons in 2D
heterostructures.

The theoretical building blocks of our calculations are succinctly introduced
below to provide an overview of the formalism as well as a guide for future

reference.

1.1 Electronic properties of materials

1.1.1 Free electrons
The free-electron model, also called Drude-Sommerfeld model,”* <> describes
the behavior of a Fermi gas: non-interacting electrons that fulfill Pauli’s exclu-
sion principle. This model relies on the following three approximations:

(i) free electrons: ionic cores play no role in the electron dynamics.

(ii) independent electrons: electron-electron interactions are neglected.

(iii) relaxation-time: (a) the electron collision time is independent of the

positions of the electron and (b) thermal equilibrium is achieved only

through these collisions.

Electron dynamics in a Fermi gas is governed by a Hamiltonian that only
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contains the kinetic term

Ho=——> Vj. (1.1)
=1
For one free Fermion under periodic boundary conditions (cubic box of side
L and volume V = L3), we can exactly solve (1.1), retrieve its eigenstates
Ui (r) = ¥ //V, and its eigenenergies
h2k?

Ey(k) = . (1.2)

wherer = (z,y,2), k = (2n/L)(l3,1y,12), lzy. € Zand k = |k|. The
ground state (T = 0) for many free electrons is thus the product of all one-

electron wave functions.

Nevertheless, to calculate any thermodynamic quantity, the number of
electrons, or the density of electronic states, we have to sum over all pos-
siblek, i.e., >, . As every k point is associated with a volume of (27 /L)3, for

continuous functions, these sums transform into integrals as

Now, we can readily evaluate the density of states D, namely, the number

of states available to be occupied per energy interval

2 ‘
D(E) = ok /dsk S|E — Eo(k)] = % omE, (1.3)

where the over all constant 2 accounts for spin degeneracy.

Before determining the density of electrons, we first note that the total
number of electrons N occupies a sphere of radius kg, the wave vector as-

sociated with the energy of the highest occupied electron state Er, as the



1.1. ELECTRONIC PROPERTIES OF MATERIALS

energy of free electrons is proportional to the square of the wave vector (1.2).

Hence, defining the density of electrons asn = N/ we have

2
- (2m)?

where the occupation function is defined as fx = fr = O(kr — k), and O is

3 k’FS
/d k O(kp — k) = (1.4)

32’

the Heaviside step function.

Conversely, from eq. (1.4) we can find expressions for the so-called Fermi
wave vector kr and Fermi energy Er as kp = (372n)'/3 and Fr = h2kp?/(2m),
respectively.

If instead of having T' = 0 we consider finite temperatures, electrons do
not lie in the ground state anymore. Their occupation function smears out
around Er, which for T' # 0 is called Fermi level or chemical potential, fol-
lowing a Fermi-Dirac distribution

1
HE) = 1 @ B GwT)

(1.5)

as predicted by calculating the grand canonical partition function and grand
potential of the system.” Ineq. (1.5), kg = 8.62x 10~° eV/K is the Boltzmann
constant.

The Drude-Sommerfeld model succeeds in describing many properties of
conduction electrons in metals especially for alkali and noble metals, but fails
to assess many other properties such as transport or the behavior at low tem-
perature of the electrical conductivity.

It is then necessary to bring out more accurate models that fix the limita-
tions of the free-electron model. Our attempts will go as follows. First, we
will introduce a periodic potential which will account for the interactions of
the free electrons with the ions of a perfect crystal (our solid). Second, we
will consider the case of electrons tightly bound to their atoms; and finally,

we will adiabatically switch on electron-electron interactions, transforming,
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in this way, our previous Fermi gas into a Fermi liquid.

1.1.2 Bloch’s theorem and tightly bound electrons

Most solid materials are crystalline, i.e., their atoms are arranged in regular
periodic arrays called direct lattices (or Bravais lattices). These lattices are
dim

perfectly traced by the lattice vectors: s = )

i aag, wheren; € N, “dim”

is the dimensionality of the solid (dim = 1, 2, 3), and the a; are the primitive
vectors that connect nearby atoms and span the lattice. Equivalently, we can
also reconstruct the lattice by translating a given volume of space without
overlaps, the so-called unit cell. This perfect assembling from smaller units
implies that the study of the properties of the entire solid can be reduced to

the much simpler study of the unit cell and the primitive vectors.

Given the periodicity of the crystal, it is then natural to define the potential

given by the ions in the solid as also periodicin s
Ulr)=U(r+s).

The insertion of this into the single-electron Hamiltonian H = —(h?/2m) V2+
U (r) renders Bloch functions, that is, plane-wave-like solutions for the eigen-

states

P(r+s) = eiksw(r), (1.6)

where k is now the crystal momentum of the reciprocal lattice, whose prim-
itive vectors b; (j = 1,2, ...,dim) satisfy b; - a; = 270;;, where §;; is the
Kronecker delta. Analogous to the unit cell, the unit of volume in k-space be-
fore the properties repeat again is called the first Brilluoin zone. The relation
(1.6) is known as Bloch’s theorem, which physically means, in words of F. Bloch
himself,”° “that the wave differs from the plane wave of free electrons only by

a periodic modulation”.

As a more sensible scenario of the actual distribution of the electronsin a
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solid, we can model electrons when they are tightly bound to their atoms and
overlap weakly with their neighbors. This description is indeed complemen-
tary to the Bloch waves described above since electrons would be distributed
following Wannier functions, which are simply a set of orthonormal functions
constructed by linear combination of Bloch functions. Accordingly, we can find

the matrix elements of the Hamiltonian of the system in this new basis as
Hrp = 1)t (L+8[+Y [1)n (L], (1.7)
1,0 1

where | 1) is the atomic-site state vector associated to a given Wannier func-
tion, § is the vector pointing from [ to its nearest neighbours, ¢ is the so-called
hopping energy that accounts for the interaction between an electron inl and

another in I + 4, and 7 is the on-site energy.

The Hamiltonian in eq. (1.7) is the so-called tight-binding (TB) Hamiltonian.
Even though it provides a good description of the energy bands in d-shells of
transition metals and the electronic structure of insulators,”” no physical sys-
tem is accurately described by just a TB Hamiltonian.”” In consequence, it is
essential to loosen our restrictions and introduce electron-electron interac-

tions, which have been neglected so far.

1.1.3 Electron-electron interactions

The Hartree approximation~<’ assumes that the electron-electron interac-
tion at the position of a given electron arises from the averaged electrostatic

potential generated by all the other electrons

Uee(r) = €2 / dr’ nf’r),” (1.8)

lr

|2. Hence, we can de-

where the density of electrons is n(r) = >, |¢;(r)
compose the Hamiltonian of the full many body system into single-electron
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Hamiltonians of the form

2
VL v U(r) + Uee(r). (1.9)

2m

Although this approach may seem reasonable and intuitive, it actually does
not satisfy Pauli’s exclusion principle and represents a very drastic approxima-
tion. For this reason, we need to correct U, by adding an exchange potential,
which accounts for the energy spent by electrons when they flip their position
r and r’ at the moment of the interaction.

The new one-electron wave functions depend now on spin o, wj(r, aj),
and can be combined to form many-body electron wave functions like ¥(r) =
IT;4(r,05). In the associated basis, |¥), the matrix elements of the total

Hamiltonian, including exchange, are

* _h2 2 2
(I 10) = Y [ dr b5 e,03) 50 V200,05) + U)o r,0,) P+

ijJ'
1 , €2 2 / 2
+5 dr dr Ty Z [ (r,05)] |¢j’(r70j’)| -
3,3"05,51
— 5 (e, 05)5 (v, 00 )i (', 0 )by (x, ). (110)

The Hamiltonian (1.10) is said to be in the Hartree-Fock (HF) approximation.
Certainly, the HF Hamiltonian does not include the effects of screening or cor-
relations but it works for quantifying some measurable quantities. By solving
eq. (1.10) we can estimate the ground state of electrons reliably, as well as cal-
culate fairly precisely the dipole moment of our system. Incidentally, we can
retrieve the lowest lying excited states which in turn, provide us with an esti-
mation of ionization potentials.

Indeed, some other more accurate theories address the many-body prob-
lem: density functional theory (DFT), time-dependent density functional the-

ory (TDDFT), or quantum Monte Carlo, but these are extremely computation-
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ally demanding. For our purposes, the HF Hamiltonian will be sufficient and

will act as the starting point for our theoretical models.

1.1.4 Free electrons in lower dimensions

Before entering into the optical properties of matter it is worth stepping back
and examining the free electron model for lower dimensions. This will help us
when dealing with 2D solids such as graphene or other van der Waals mate-
rials, with 1D structures such as carbon nanotubes or atomic chains, or even
with OD systems if we cope with a quantum dot. To calculate the different
physical parameters discussed above, we employ the same description that
we report in sec. 1.1.1 but applied to lower dimensions. A comparison of some

of the most relevant quantities is gathered in Tab. 1.1.

Table 1.1: Electronic parameters for free electrons in different dimensions

Parameter Symbol 3D 2D 1D
. Vo2m3E m 1 [m
Density of states D(E) e 3 —\2E
kg kp? k
Density of electrons n oF L M
32 o T
d3k d’k dk
Discrete to continuum zk: V/(27T)3 A/ 7(2702 L -

Note that in OD there is no free motion and as a result, there does not

exist such k-space and the available states exist at discrete energies F 5, i.e.,
D(E) =2) §(E - Ej).
J

The Fermi wave vectors are obtained from the expressions for n and in con-
sequence, the Fermi energy is retrieved straight away by Frp = h2kp2/2m.

Interestingly, the density of states in 2D does not depend on energy and thus,
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there are always available states.

1.2 Optical properties of materials

1.2.1 Maxwell’s equations. Foundations of electromagnetism

Maxwell’s equations describe the interaction of matter immersed in electro-
magnetic (EM) fields.”>>“>“” They provide us with a classical phenomenolog-
ical description that is very useful to describe light-matter interactions since
complicated long-range interactions are effectively comprised within continu-
ous functions such as refractive indeces, surface conductivities, and electron

currents. Macroscopically, these equations are

V. D(r, ) = drp(r, 1),
V x B(r, ) = —%&,B(r,t),
V- -B(r,t) =0,
V x H(r,t) = %j(r,t) + %@D(r,t). (1.11)

Here, E is the electric field, B the magnetic field, D the displacement field, H
the magnetizing field, p the electron charge density, and j the electron current
density. Incidentally, the charge and current densities (sources) are related

through the continuity equation

V- j(r,t) + Op(r,t) = 0. (1.12)

The fields can also be related self-consistently via the constitutive relations.
These do not need from sources but from the permittivity ¢ and the perme-

ability 1 of the material which fully contain (in a single function, often a tensor)

10
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its optical properties

D =¢E =E + 47P, P =xE,
B = uH, j=oE. (1.13)

Now, we have also introduced the macroscopic polarization P, the conductiv-
ity o, and the electric susceptibility x, whose physical meaning we will explain

below.

At the borders, these fields further satisfy the renowned boundary condi-

tions

nx (E; —E;) =0, n-(B2—-B1) =0,

R R 4,
n'(Dg—Dl) :47Tps, n x (Hg—Hl) = ?JS, (1.14)

where 1 is a normal unitary vector pointing from medium 1 towards medium
2, and ps and j, are the charge and current densities at the interface, respec-

tively.

In general, the fields that we use to study light-matter interactions are
time-harmonic (monochromatic), i.e., E(r,t) = E(r) e %! + c. c.. For these
fields, Maxwell’s equations (1.11) are accordingly modified by substituting 9; —
—iw. If we further assume that they will be indeed plane waves, E(r,t) =
Eclkr—iwt | ¢ ¢  we can conveniently separate the components of a given
field into two polarizations: one parallel (p) to the plane of incidence and an-
other perpendicular (s) toit, E = E®) + E®). In this manner, we can define
the reflection r and transmission t coefficients at the interface that separates

a medium 1 (e1, p1) from another medium 2 (e, o), for a plane wave of am-

1
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plitude Eq impinging from 1, and for the two different polarizations as

EW =, Eé?% Et(p) =t, Eép), (1.15)
Els) — rsE(()S), Et(s) — tsE(()S), (1.16)

where (- k; =k 5,5 =1,2)

ek —eakio _ 2ek1y H2€1
_ er Akl tp = : (1.17)
ek i1 +ekio ki1 +eakia\ e
_ pekiy — ko _ 2p0k 1o
g = ———————— tg = ———m——— |\ (1.18)
pok 1+ pikyo pok i1+ piklo

after properly applying the boundary conditions (1.14). Incidentally, p-polarized
waves are often called transverse magnetic (TM) modes, whereas s-polarized

are transverse electric (TE) modes.

Finally, another powerful relation that appears after slightly manipulating
the source-free (p = 0 and j = 0) Maxwell’s equations in combination with

the constitutive relations" is

e=1+4r2. (119)
w

In the following, we will mainly focus on describing the optical properties

of metals as these are the materials of interest in this thesis.

1.2.2 Drude model

The Drude model~><""°" accounts for transport of free electrons in metals
when driven by external EM fields at low frequencies and damped by some
averaged frictional force. Accordingly, the classical master equation of motion

(EOM) for the electrons follows

mdtr + mydr = —eE(r)e ", (1.20)

12



1.2. OPTICAL PROPERTIES OF MATERIALS

where m is the effective mass of the electrons, —e is the electron charge and
~ is the damping coefficient, i.e., the inverse of the so-called relaxation time,

T, of the electrons.

Introducing the ansatzr(t) = re~“* and remembering that P(r) = —ner =

(e — 1)E(r)/4m, where n is the electron density, we get

w2

e(w)=1- W”IW (1.21)
The parameter w, = \/m is the plasma frequency of the electrons
oscillating in the bulk and marks the point at which a metal switches from
being reflective to transparent. Frequently, we have to introduce a constant
offset due to d-band contributions and then replace the 1 in eq.(1.21) by a
background permittivity, €.

The Drude model is fairly accurate for energies in the infrared regime (be-
low ~ 2 eV) but starts failing for higher ones. If we need to go beyond and find
a permittivity more suitable for the NIR-visible regime, we need to add the in-
fluence of interband transitions into the EOM (1.20). Basically, we include a
restoring term (ar) and substitute the damping coefficient, +, by the radiative
damping coefficient for bound electrons, I". Defining wg = 4nine?/m as the

plasma frequency of these bound electrons of density n we find

~9
Wh

elw) =1+ (1.22)

wi —w? —iwl’

where wy = /a/m is the resonant frequency of the system in the NIR-visible

part of the spectrum.

The combination of eq. (1.21) and eq. (1.22) gives a precise analytical ex-
pression for the permittivity in metals that works satisfactorily for energies
below ~ 2.4 eV.

13
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1.2.3 Surface plasmons

It is worth having a closer look at these plasma oscillations confined to in-
terfaces, and more specifically to metal-dielectric interfaces. Under the right
conditions, when light impinges upon a metal it can couple to the oscillations
of conduction electrons producing a surface plasmon (SP) that can propagate
along the surface.””“"*°' From a mathematical perspective, SPs are solutions
of the Helmholtz equation, which arises by properly handling the source-free
(p = 0 and j = 0) Maxwell’s equations (1.11) for harmonic fields, in combina-

tion to the constitutive relations (1.13)
V2E(r) = —e—E(r), (1.23)

and equivalently for magnetic fields. Taking the interface to be in the plane at
z = 0, the permittivity is distributed as ¢ = ¢;,,(w) for z < 0 and e = ¢4 for
z > 0 as indicated in Fig. 1.1.

® Q QO Q z
® @@ ® Ny @@

€m

Figure 1.1: Surface plasmon polariton. Metal-dielectric interface with a traveling p-
polarized wave confined at z = 0. The permittivities of the metal and the dielectric
are indicated as ¢, and €4, respectively. The blue and red circles with + and — in-
side represent the collective motion of the electrons whereas the semi-circular lines
entering and leaving the metal correspond to the light coupled to the electron oscil-
lation that propagates along the surface. As the E-field associated to the polariton
decays exponentially from the surface, we illustrate this through the shaded green
areas labeled with | E,|. We denote the wavelength of the incident light as Ay and
the wavelength of the surface plasmon as Agp.

14
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Without losing generality, we can assume that the propagation direction
goes along the x-direction and thus, drop the spatial variation along the y-
axis, that is, k = k:”fc + k,z. Therefore, there would be two possible ansatzes
to solve eq. (1.23) that correspond to plane waves that are either p-polarized
or s-polarized. As it is not possible to excite plasmons with s-polarized light,

we choose the TM mode ansatz

E(r,w) = (E,x + E.2) e %! ¢FI® g75:k=2 (1.24)
H(r,w) = Hyy e Wt gl gmsskaz (1.25)

where s, = sign{z}. Moreover, the momentum parallel to the surface k| is
preserved at both sides of the interface. That is the reason why it is frequently

designated as the propagation constant and indicated as j3.

By inserting the ansatz (1.25) for the magnetic field into the Helmholtz

equation (1.23) we retrieve the relation

(/.)2

2 p2
ki = B — 66—2. (1.26)
Additionally, if we introduce the egs. (1.24) and (1.25) into the source-free Maxwell’s

equations (1.11) we find the governing equations to be

g

E_nc :iSZ —m

H, and E, = Hy. (1.27)

ke
ew/c
Now, applying the corresponding boundary conditions (1.14) for ps = 0, js =
0, n = 2, 1 being the metal (¢ = €,,(w)) and 2 the dielectric (e; = €q), we
find

Ep—En=0 and LB, + -2E,=0,
kzl sz
from which it follows that "
T2 _ 2 (1.28)
k.1 €1

15
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Finally, combining the eqgs. (1.28) and (1.26) we obtain the plasmon dispersion

w €1€9
=—4/ . 1.29
p c\ €1+ e ( )

Note that we have chosen the materials to be a metal and a dielectric on

relation

purpose. In fact, for eq. (1.28) to hold with our choice of positive and real
decay constants k. and k.9, €; and e; must have opposite signs, what is con-
veniently satisfied if medium 2 is a dielectric: e = ¢4 > 0, and medium 1 is a
metal: Re{e1 } = Re{em} < 0.

Interestingly, eq. (1.28) also appears when the denominator of the reflec-
tion coefficient for p-polarized waves (1.17) (taking there k| 1 = k.1 and equiv-
alently for 2) is set to zero. For this reason surface plasmons are frequently
studied by finding the poles of this parameter.

Once we have obtained the dispersion relation, we can characterize an SP
by its propagation length L, = (2Im{3})~}, that is, how far it travels until
the initial field has decreased 1/e, and by its wavelength Ay, = 27 /Re{3}
which is often shortened to A, for clarity but should not be confused with the
wavelength associated to w,.

In Fig. 1.2 we have plotted the dispersion relation (1.29) for an SP propa-
gating along a gold-air interface taking the Au permittivity in the Drude ap-
proximation (1.21). The first point we want to remark is that the lower branch
asymptote for the loss-less limit (v — 0) sets the surface plasmon frequency
to wsp = wp/v/€a + €. In this regime, the mode approaches an electrostatic
character and is said to be a proper surface plasmon. The second is that the
mismatch that we observe between the light line and the SP dispersion makes
the excitation of the latter difficult without the proper momentum matching.
To overcome this, researchers have developed different techniques such as
shining a grating on top of the metal””°* or an AFM-like nanotip,”> °° sending
an electron beam,””"°° placing a quantum dot near the surfaces,”” " or via

electron tunneling.”"”

16
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Figure 1.2: Drude SP dispersion relation. Dispersion relation for SPs at a gold-air
interface according to eq. (1.29). The Drude parameters for Au are hw, = 9.06eV,
hy =Tl meVand e, = 9.5.

1.2.4 Localized plasmons

When we nanostructure our materials, the surface plasmons that we can ex-
cite behave differently. These are called localized plasmons (LPs) and, in con-
trast to SPs, LPs do not propagate but present a dipole behavior that is con-

fined to the nanoparticle that supports them.

As it happens with SPs, mathematically, LPs are also solutions of the Helmholtz
equation (1.23) when we apply the proper boundary conditions. Commonly,
the size of the nanoparticle is much smaller than the wavelength of the im-
pinging light (see Fig. 1.3) hence, the distribution of the electric field of the
incident light is almost constant over the volume of this particle and thus,
the problem is reduced to that of a particle in an electrostatic field.”*°" In
this electrostatic approach, ¢ — oo and the Helmholtz equation acquires the
simpler form of the Laplace equation,””>*" which for the electric potential is
V2® = 0. After solving this equation, we retrieve the electric field distribu-

tion by applying E = -V ®.

17
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polarized
e cloud

Figure 1.3: Localized plasmon. Interaction of a metallic nanoparticle with resonant
light. The EM plane wave (red curved line) produces a polarized electron cloud (in
blue) that oscillates at the frequency of the impinging field.

For the sake of illustration, let us consider the prototypical case of a nanosphere
of radius a and permittivity e; embedded in a medium of permittivity e5 in a
uniform electrostatic field along the z-direction, Eg = Eyz.”®°" Then, we
solve the Laplace equation in spherical coordinates r = (r, 0, ¢) by separa-
tion of variables and find the general solution for the potential to be
0o

O(r,0) = Z {Alrl + Byr~ D] Py(cos ), (1.30)
1=0

where the Pj(cos#) are the Legendre Polynomials of order [. The require-
ments that the potential has to be finite at the origin, has to approach — Eyz =
—FEor cosf for r — oo, and has to satisfy the following boundary conditions
atr=a

OgPin = OpPouy  and €10, Py = €20, Pous, (1.31)

allow us to calculate the coefficients A; and B; to obtain

3€9
Dy, = T 20 Eqgrcosé,
_ 0 .
ot = —Eor cos 6 + a® L Ey sy _ —FEyz + Ly (1.32)
€1+ 262 r2 3

18
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From these expressions, we can see that ®,,,; has two well-differentiated con-
tributions: the external, given by Eyr cos 8, and the induced, given by p-r/r?’,
which as a matter of fact, corresponds to the potential produced by a dipole
with dipole moment p.

Finally, by defining the polarizability, i.e., the parameter that quantifies the
ability of an electric field to form instantaneous dipoles,” as p = oE, we

notice that the polarizability of a nanosphere is

3 €1 — €2
g 1.33
a=a €1 + 2¢ ( )

Now, under the assumption that the particle is small with respect to the
wavelength of an impinging light source, a < )y, the nanoparticle behaves
as an ideal dipole and hence, we can also consider the case of impinging har-
monic fields and neglect spatial retardation. The oscillating dipole then be-
comes p(t) = aEg(r)e !, with « still given by (1.33) which, in turn, will

induce an electric field of the form

eik()?“

+[B3n(n-p)-p (1 - lko> e”“"”} ,
(1.34)

where ky = w/c, and n is a unit vector that points from the dipole position

E(r):l{kg(nxp)xn

€2

to where we measure the electric field.

If the nanosphere is metallic then ¢; = €,,(w), which produces a polariz-
ability (1.33) that will induce a large field enhancement, given by (1.34), in the
surrounding of the particle by direct coupling to the external resonant light
(notice also, that given the finite dimensions of the particle, there is no need
of k-matching). This is true not only for metallic nanospheres but also for any
other shape of a nanoparticle.””>”" Indeed, the polarizability is also a param-
eter through which we can quantify how efficiently nanoparticles absorb and
scatter light.

From an optics perspective, it is often more convenient to measure and
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calculate the corresponding absorption cross section o5 (power dissipated
inside the particle over the intensity of the incident field), and scattering cross
section oy (total radiated power over the intensity of the incident field),

whose general expressions for any given nanoparticle shape or polarizability

are
Srwt
Osct = ?Cj | | 5 (1.35)
Oabs = 477% Im{a}. (1.36)

The total power removed from the incident field is the sum of both cross sec-
tions and is called extinction cross section oext = Tabs + Tsct. FOr nanoparti-
cles, the contribution of the o is negligible as it scales with a®, in comparison

to 0,1, Which scales with a3, and consequently

Oext = Oabs- (1.37)

As a last note, from all these calculations we see that the tunability of lo-
calized plasmons is geometrical, implying that only by changing the shape of

the nanoparticle we will shift its optical response.

1.2.5 Linear response

In contrast to the classical approach that we have gone through above, the
linear response theory™ provides us with a quantum mechanical description
of the optical response of metals as a result of an external perturbation. We
use a density matrix formalism for such microscopic description as often there
is a lack of information to precisely know the state of the system. Thus, we

have to treat it statistically while taking into account collisional broadening.
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The density matrix of a system in its state (1)) representation is given by

p="> iyl (wyl, (1.38)
35’
where the p;;, are matrix elements. Besides, note that the expectation value
of a given observable A is (A) = tr(pA).

The EOM for the density matrix™ is obtained by direct differentiation of
eq. (1.38) in combination with the time-dependent Schrédinger’s equation
ih@tw(r, t) = Hw(r, t)

i

h [Ha p] -7 (p - PO) ) (139)

(9,5,0:—

where we have introduced the collisional broadening via the term preceded
by the phenomenological damping ~y. In addition, H is the Hamiltonian of the

system and pq is the density matrix in the equilibrium.

We can solve eq. (1.39) perturbatively” “® by expanding p into a power

series of harmonics of the impinging continuous wave (CW) illumination
p= Z p(ns) e—iswt. (1.40)
n,s

This depends on the harmonic order s and the perturbation order n, namely,
the power of the incident electric field (Fy)™. The Hamiltonian is now H =
Ho — e¢, where H is the unperturbed part, i.e., a TB-Hamiltonian (1.7), and
¢ = ¢ind + Pext is the total perturbative potential that includes the contri-
bution of the external (ext) field applied to the system and the induced (ind)
contribution arising from self-consistent induced fields. The linear response is

(11)

thus given by truncating the series up to first order p\**/ = p(l) and neglecting

higher orders.

As electrons follow a Fermi-Dirac distribution f; the equilibrium density
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matrix is simply pg.(;? = f;j6;;. By inserting this in eq. (1.39), along with solu-

tions of the unperturbed Hamiltonian in the state representation Ho|vy;) =
hejl1b;), we can solve the EOM to first order for CW illumination [¢ext o d
and find ¢(1)

3y’

—, (1.41)
w—(gj —egj) + iy

e
sz = _ﬁ(fj’ — f3)

where we have taken the total potential ¢ up to first order as well since its

induced part depends linearly on p.

Interesting relations appear when we move to the site representation by
applying pir = > ajla;?,l,pjj/, and equivalently for ¢;;/, where the coeffi-
cients a;; are defined by [1);) = 3", a;i|l). In this representation, the induced
charge density to first order is pi,qg = —erl(ll/), in which the 2 accounts for
spin. In this manner, we find a linear dependence between the induced charge
and the total potential: p;,q = x0¢, where

262 ajla;fl,a;,laj/l/
ol = % P — Jj .
X0, Us fj)w—(é‘j—é‘j')ﬂv

1.42
pa (1.42)

JJ
is the non-interacting susceptibility. Furthermore, if we separate the two con-
tributions of the total potential and remember that ¢;,q = vping with v being

the bare Coulomb interaction, we see that p;,q = X0®Pext + X0 ¥ pind and thus

Pind = (1 - XOU)_1 X0 ¢ext = X¢exta (1.43)

where thisnew x = (1—xov) ! xo is under the random phase approximation
(RPA). The power of the RPA (1.43) lies in that it relates controllable “knowns”
with pivotal “unknowns”. Usually, when studying optical properties of mate-
rials we can only be sure of the type of impinging light (¢cxt), and what the
electronic structure of the material is (o). So, just by knowing these two, we

can manage to predict its optical response (pinq)-
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1.2.6 Nonlinear response

Applying this perturbative approach we can also obtain the nonlinear response
when truncating to higher orders in the series for the density matrix (1.40).
Although the formalism is explained elsewhere,” we reproduce it here for

completeness.

We start by expressing the EOM (1.39) into its state representation

i (0)
Opjy = =3 ) (Hygrpyry = piyHynyr) = (ij’ - ij/)

v

J

o ie 0
= —i(gj —ej) pjjr + & D (Sigpiy = pigndny) = (Pjy Py )
j//
. ie 0
= —i(ej —ej) pjj + i (o1 — ou) ajazm pu — (ij’ - P§-j2) ;

1

J
(1.44)

where we have applied the orthonormality condition for the states Zj a;‘lajl’ =
&y and also the inverse transformation of the density matrix from the site to
the state representation p;;r = >, a;laj/l,p”/. Now, inserting (1.40) into

(1.44) and canceling out the terms with the same e~“*, we find

(¢lns ¢l’ )ajl“j’l’ ), (n9)

= ) ve), 1.45
where
n—1 n/ ¢(ns) — ¢(ns)) a*,ain
(ns) _ € ( ! v 5173 (n—n' s—s')
= , . (146
i h nlzzl S,:Zn, ; swiy— (g5 —ej) (1.46)
and
3" = 761 (85,1 — 8s1) — 2> vwpi), (1.47)

ll
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1.2. OPTICAL PROPERTIES OF MATERIALS

which is the contribution to the harmonic s of the total potential at order n.
By using the identity p§2> = Zm’ aja ,l,p” Z ajiazy fj and changing to
the site representation we find the self-consistent expression for the diagonal

elements of the density matrix to be
Pzz =75 Z Xo, 11'455/ + Zaﬂ“;'l"a(‘?’s), (1.48)
Ji’

where %

a'la-/al/ a’/l/

Gl sy Qg g
) J (1.49)

NOm 2¢ Sy - )
0,1l A = J J Sw—(gj_gj’)“‘i’}/’
that is the non-interaction susceptibility at frequency sw. Finally, the nonlin-

(ns) (ns)

ear induced charge is calculated by p; . = —2ep;; " which leads us to write

the nonlinear polarizability as

2e ns ~
o) == gy 2 R (1.50)

where & points in the direction of the incident E-field.

1.2.7 Interactions with electron beams

As discussed before, SPs are difficult to excite with external light as a result of
the momentum mismatch and hence, new methods are required to generate
plasmons. Electrons are in general good candidates because their dispersion

relation always matches the plasmon momentum.

Let us take as an example a single free electron that interacts with a pho-
ton within the no-recoil approximation. The energy and momentum of the
electron before the interaction are (1/2)muv? and mv, respectively, whereas
for the photon we have Aw and Fk, respectively. As energy and momentum
have to be preserved, mv; = mv + hk and (1/2)mvj2¢ = (1/2)mv? + hw.
By solving this system of equations we find that w = k- v + hk2/2m which
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1.2. OPTICAL PROPERTIES OF MATERIALS

for hw < 1MeV, is approximately w ~ k - v. Thus, electrons have indeed
less momentum than light and can interact with evanescent light fields such
as SPs.

We can quantify this interaction by means of energy-loss decay rates I'
that basically account for the energy that an electron, or a beam of electrons,
loses when it interacts with a system in which an induced field is triggered that
acts back on the electron and somehow affects its trajectory and final energy.
By measuring these energy losses we are able to map the type of phenomena
that the electron beam has excited.”” This technique is called electron energy-
loss spectroscopy (EELS).

From a quantum mechanical perspective, the decay rate of an electron
with energy he; in the electron state |p;) = ), a;|l) that undergoes a transi-
tion to a state |pf) = >, ay|l) with energy he y when it interacts with a sys-
tem (target) described through its density matrix p and that goes from state
|4;7) of energy hwj: to state |1);) with energy hw;, is given to first order by

Fermi’s golden rule™”

2met % 1
h YD apdppaau ’p§jzvll’|25(5f —eitwj —wy) [1— fr] fis
fi 35’

Ly =

(1.51)
where f; = {1+ exp|(hes; — Ery;)/kpT]} " are the Fermi-Dirac distri-
butions for the electrons in the target.

Following ref. we find a relation between the density matrix of the
target and the screened Coulomb interaction, which is often more convenient

and easier to calculate

2
e
Im {Wy} = 5 Z |p§?vur\2 S(wj — wj — w), (1.52)
33’

where w is the transferred frequency. Hence, eq. (1.51) can be spectrally re-
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1.3. THE SPECIAL CASE OF GRAPHENE

solved through T = [ dwI'(w) with

2¢? . %
Ly (w) = e Z apaypagap Im{—Wy} 6(ep — i +w) [1 = fy] fi.
fi
(1.53)

Finally, for completeness, the function version of eq. (1.53) is

2¢?
[(w) =— Er [ &t pp(r)o}(x')¢ (r)pi(r') x
h ;/ / d

x Im {-W(r,r',w)}(ef —ei +w) [L — fr(hey)] fi(he;). (1.54)

1.3 The special case of graphene

A material that deserves its own full section in the introduction of this thesis is
graphene, the monolayer of carbon atoms tightly packed into a honey-comb

lattice. Graphene was the first two-dimensional (2D) material that was
properly isolated and characterized. These findings in 2004°° " brought An-
dre Geim and Konstantin Novosolev the Nobel Prize in Physics in 2010 and
opened up the path to a full new area of research on optics and electronics of

2D materials and their corresponding applications.

1.3.1 Electronic properties of graphene

The special properties of graphene come as a result of its band structure. Its
direct hexagonal lattice [see Fig. 1.4(a)] lies in the R = (x,y) plane and is
composed of two sublattices A and B that are generated by the 2D vectors
a; = (ac/2)(3,v3) and az = (ac/2)(3, —V/3), where ac = 1.421 A is the
carbon-carbon atomic distance. These carbon atoms remain together in the

(x, y) plane thanks to strong o-bonds whereas in the out-of-plane (z) direction
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1.3. THE SPECIAL CASE OF GRAPHENE

the 2p, orbitals of the carbon atoms hybridize to form 7-bonds. These -
bonds make graphene sheets stack together (or to other 2D materials) via van

der Waals forces in an A on top of B configuration.

The associated reciprocal lattice [see Fig. 1.4(b)] is spanned by the vectors
by = (2m/3ac)(1,v/3) and by = (27/3ac)(1, —/3), albeit probably the
reciprocal vectors with more importance regarding the electronic properties
of graphene are the high-symmetry points K = (27/3ac)(1,1/+/3) and
K’ = (27/3ac)(1, —1/+/3), which are also called Dirac points [see Fig. 1.4(d)]
for reasons that we shall see below.

We can retrieve the band structure of graphene by applying a TB Hamilto-
nian (1.7) to nearest neighbors with a phenomenological hopping parameter

t = —2.8eV.”° After some algebra we find
Ei(k) = £t[/3 + f(kz, ky) (1.55)

f(k) = 2cos(v3kyac) + 4 cos (?kyac> cos <2kzac> ,

where the + is for the upper band (also called 7* band) whereas the — is for
the lower one (or 7 band) and k = (&, k) is the momentum vector. These
bands are plotted in Fig. 1.4(c).

Now, if we define k = K + Q and expand up to first order the band struc-
ture around the K point, assuming ) < K, we have F1(Q) ~ +hupQ,
where vp = 3tac/2h =~ ¢/300 is the Fermi velocity of graphene. In conse-
quence, the bands are conical under ~ 3 eV [see Fig. 1.4(d)] and consequently,
the effective mass of these electrons is zero near the K point. This is the rea-
son why electrons in graphene are said to be massless and must be described

through the Dirac equation.

Lastly, when solving the 2D Dirac equation we find that the wave function

(actually a spinor as a result of the two sublattices) associated to the momen-

27



1.3. THE SPECIAL CASE OF GRAPHENE

tum Q around the K point is

1 . efi¢/2
= — IQR
oy (ﬂcew’ﬂ)’ (+56)

where A is the area of the graphene sheet, the + is for electrons, the — for

holes and ¢ is the azimuthal angle between Q and K.

Ei (eV)

kyac

o o N
L

5 ° 8
Ey (eV)

(c) kyac ) kyac
(b) keac

Figure 1.4: Lattices and band structure of graphene. (a) Direct lattice. (b) Reciprocal
lattice. (c) Band structure of graphene. (d) Conical bands close to the Dirac points.

As reported in Tab. 1.1, electrons in the two valleys (K and K’) in the re-
ciprocal space occupy disks of area wkr? and hence, the density of electrons
isn = kp2/7r with kp = Er/hur being the Fermi wave vector of graphene.
This square root dependence of n on kr indicates that, under small variations
of additional free charge carriers, graphene can be easily turned from a zero
band gap semiconductor into a conductor. A property that, as we will see be-

low, makes plasmons in graphene be electrically tunable.

1.3.2 Plasmons in graphene

In extended graphene, we can find the plasmon dispersion of SPs in a way

analogous to that of sec.1.2.3. Let us consider the configuration shown in
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1.3. THE SPECIAL CASE OF GRAPHENE

Fig. 1.5(a). Here the boundary conditions become

Ex2 - E:cl - 07

4o

EQEZQ — 61E31 = 471'/)5 = 47r(—i/w)VR : (O'E) = 7 k”Exl

By replacing the E-fields by the corresponding governing equations (1.27) we

find the plasmon dispersion relation

€9 €1 4rioc

k.o k21 w

= 0. (1.57)

This method is basically equivalent to finding the dispersion relation by
calculating the poles of the effective reflection coefficient for TM modes for
the configuration in Fig. 1.5(a)

€okz1 — e1kzo + %k ko

T, = 4 , (1.58)
P eoka + erkan + %k, 1 ko

which in the electrostatic limit (¢ — oo and thus, k,1 = k.2 = kH) and for

symmetric environments (e; = e5 = ¢) reduces to

rp=———— (1.59)

From these equations, we see that it is indeed the conductivity of graphene
what determines its optical response. Generally, we can compute this conduc-
tivity in the framework of linear response theory within the RPA via Kubo’s
formula,”” > °%°" which in the local limit (neglecting the spatial dispersion,
k:H — 0) can be divided into two contributions, one for intraband transitions

and the other for the interband ones, 0 = gintra + Tinter, that at T' = 0K (or
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1.3. THE SPECIAL CASE OF GRAPHENE

at least for Ep > kgT) are

62 lEF
Jintra(w) = m w1t i’)/, (160)
e? i |hw—2Ep
inter = - —2F —In|—— . 1.61
Tinter (W) P O (hw F)+7Tnhw+2EF] (1.61)

For energies fiw < 2Ew the interband contribution to the conductivity (1.61)
is negligible as a consequence of Pauli blocking. Hence, for terahertz and
mid-infrared frequencies the intraband conductivity dominates even at room
temperature. Additionally, eq. (1.60) is often called the Drude conductivity of
graphene.

For the sake of comparison, in Fig. 1.5(b) we plot the plasmon dispersion re-
lation for a graphene sheet embedded in air and doped to Er = 0.5 eV, from
the poles of (1.59) for both a Drude conductivity without losses (v = 0) and a
conductivity in the RPA. The redshift of the latter with respect to the former

is due to the attractive polarization associated with interband transitions.

2 1
m -
. ~ &6?, .
3 o ~
e D
B 14 o
2 graphene o I da E
R 17
€1
0 — 0
(a) by O 0.6 1.2
k‘H/k:F

Figure 1.5: Dispersion relation for SPs in graphene. (a) Configuration for a graphene
sheet lying on an interface between two materials with permittivities €; and €. (b)
Dispersion relation for SPs in extended graphene doped to Er = 0.5 eV, embedded on
air in the electrostatic limit [from the poles of (1.59)] for a loss-less Drude conductivity
(blue dashes) and a conductivity within the RPA (black contour).
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Optical properties of finite carbon nanotubes

See the rays of light dance in hurricanes

- Epica

We study the potential of highly-doped finite carbon nanotubes to serve
as plasmonic elements that mediate the interaction between quantum emit-
ters. Similar to graphene, nanotubes support intense plasmons that can be
modulated by varying their level of electrical doping. These excitations exhibit
large interaction with light and electron beams, as revealed upon examina-
tion of the corresponding light extinction cross-section and electron energy-
loss spectra. We show that quantum emitters experience record-high Purcell
factors, while they undergo strong mutual interaction mediated by their cou-
pling to the tube plasmons. Our results show the potential of doped finite

nanotubes as tunable plasmonic materials for quantum optics applications.
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2.1. INTRODUCTION

2.1 Introduction

Plasmons, the collective oscillations of electrons in conducting media, have
generated great expectations due to their ability to manipulate optical fields
on deep subwavelength scales, thus enabling exciting possibilities for future
nanophotonic devices. Traditionally, plasmons have been studied in noble
metal nanostructures, where their resonance frequencies and optical cou-
pling strengths are determined by the material intrinsic properties, the mor-
phology of the structure, and the dielectric environment.®=~°" Graphene, the
atomically thin carbon layer, has emerged as a promising alternative to no-
ble metals for nanoplasmonic applications due to its ability to support elec-
trically tunable plasmon resonances that interact strongly with light.”"

The appealing properties of graphene plasmons are now inspiring research

on other two-dimensional van der Waals materials,®’°® as well as on carbon-
based molecules.””"”Y Currently explored applications of plasmons, includ-
ing sensing,”~’* photodetection,’”~’® wave guiding,”” °" photovoltaics,”' and

medicine,”” could benefit from the identification of new types of actively tun-

able plasmonic materials with lower inelastic losses.

In a related context, significant advances in quantum information have
been gained through the study of coupling between quantum emitters (QEs)

and surface plasmons (SPs) supported by noble metals or graphitic nanos-
tructures.””°’ In particular, carbon nanotubes (CNTs), which are 1D carbon
structures formed upon cylindrical wrapping of a graphene sheet, could serve
as conduits in plasmonic circuits,”® while their plasmons have been predicted

to undergo ultra-efficient coupling with QEs. Although numerous stud-
ies on the appealing structural, electrical, and optical properties of CNTs in-
dicate their suitability as components in nanophotonic devices,”® """ 7> the
tunable, low-energy plasmons supported by these structures when they are

doped are only now beginning to be explored.
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2.2. PLASMONS IN DOPED CARBON NANOTUBES

In this chapter, we investigate the optical response associated with the
plasmons of highly-doped finite CNTs, described either by classical electro-
dynamic or quantum-mechanical (QM) simulations, and discuss their poten-
tial ability to mediate quantum optical interactions on the nanoscale. While
plasmons in large-scale graphene nanostructures are currently limited to mid-
infrared and lower frequencies, a reduction in their size to the limit repre-
sented by polycyclic aromatic hydrocarbons (PAH) can blue-shift resonances
toward the visible regime.®”"’Y We envision finite CNTs as an intermediate sit-
uation between large-scale graphitic structures and PAH molecules, and there-
fore as good candidates to extend the robustness and tunability of graphene
plasmons toward the visible and near-infrared parts of the spectrum. We also
demonstrate that plasmons in finite CNTs can interact strongly with a neigh-
boring QE, while interactions between emitters can be enhanced when they

are mediated by 1D plasmons.

2.2 Plasmons in doped carbon nanotubes

We first adopt a classical electromagnetic description of doped CNTs by treat-
ing them as rolled-up sheets of thickness ¢t and diameter D, taking their sur-
face conductivity as that of extended graphene. We describe the level of dop-
ing through the change in Fermi energy Er relative to the neutrality point.
Then by studying the linear optical response while moving toward the t — 0
limit, we observe converged resonances for ¢ ~ 0.3 nm, which is similar to
the interlayer separation of graphite. For finite CNTs of length L larger than
the Fermi wavelength \p = 27hvp/Er (e.3., Ar ~ 4nm for Ep = 1eV),
the conductivity can be approximated in the local limit. In particular, start-
ing from the random-phase approximation (RPA),”” we reach the so-called

local-RPA surface conductivity, which reduces to the Drude model o(w) =
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Figure 2.1: Plasmon dispersion relation in a CNT. (a) Comparison of the plasmon dis-
persion relation for finite and infinite single-wall CNTs. We describe the tubes classi-
cally by assuming that the wall responds with the same local 2D surface conductivity
o as graphene. Two different models for o are considered (Drude and local-RPA, see
labels). The (10,10) CNTs under consideration have a small diameter ~ 1.35 nm that
only allows the efficient excitation of axially symmetric modes. The plasmon disper-
sion for infinite tubes is obtained from eq. (2.1) (curves). We consider capped and
uncapped finite tubes of length L, which display modes of different order n domi-
nated by a wave vector n /L (symbols). (b) Extinction cross-section for capped (solid
curves) and uncapped (dashes curves) CNTs described with the local-RPA conductivity.
(c) Overview of the extinction spectrum for the L = 10 nm CNT, along with near-field
plots for the different plasmon modes. The Fermi energy is 1eV and the damping is
10 meV in all cases.

34



2.2. PLASMONS IN DOPED CARBON NANOTUBES

ie? Ep /mh?(w + it ~!) for photon energies smaller than 2FEk. (i.e., below the

threshold for interband transitions).

For simplicity, we concentrate on (10,10) armchair nanotubes (diameter
D = 1.35nm) and limit our study to the axially symmetric modes (azimuthal
number m = 0), as higher-order plasmons are too tightly confined, and there-
fore, we expect them to have a weak interaction with incident light and QEs.
As areference, we first simulate CNTs of infinite length, whose plasmon bands
are determined by the poles of their reflection coefficient toward cylindrical

waves,”” which yield the dispersion relation

w 9
m = —47r1k;Han(k:”a)Ko(k:”a). (2.1)
Here a = D/2 is the tube radius and I (Kj) is the modified Bessel function
of the first (second) kind. We plot in Fig. 2.1(a) the resulting m = 0 band,
assuming either the Drude model or the local-RPA conductivity. The latter is
observed to be redshifted relative to the former, presumably as a result of

attractive polarization associated with virtual interband transitions.

In finite CNTs, the plasmon modes can be understood as Fabry-Perot (FP)
resonances involving successive reflections at the tube edges. We investi-
gate finite tubes by taking the incident electric field along the symmetry axis
and simulating their classical electromagnetic response using the boundary-
element method.”” The resulting extinction spectra are shown in Fig. 2.1(b),
as obtained by using the local-RPA conductivity as obtained by using the local-
RPA for either capped (solid curves) or uncapped (broken curves) CNTs of dif-
ferent lengths. As expected from the FP character of the plasmon resonances,
the mode frequencies are observed to decrease with increasing length. Addi-
tionally, the spectral widths are inherited from the phenomenological lifetime
T &~ 66fs (i.e., hr—1 = 10 meV) that we incorporate in the conductivity, as

radiative losses are negligibly small because L is much smaller than the light
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2.2. PLASMONS IN DOPED CARBON NANOTUBES

wavelength. As the external field is polarized along the tube axes, only odd-
order modes are excited. This is clearly illustrated in Fig. 2.1(c), which shows
an overview of the extinction spectrum of the L = 10 nm tube for a wide fre-
guency range, where multiple resonances are observed, labeled by the num-
ber of nodes in their near-electric-field intensity distributions, n = 1,3, ...
[see insets to Fig. 2.1(c)]. The reduction in the maximum cross-section asso-
ciated with each of the resonances for increasing n is understood from the
sign cancellations occurring in their respective induced charges. Noticing that
the mode intensity appears to have a maximum at the tube edges, we can ap-
proximate the reflection of an m = 0 plasmon propagating along the tube as
1(i.e., neglecting losses and assuming zero phase change). Then, the plasmon
parallel wave-vector k” must satisfy the condition k” = nm/Linthe FP model.
The resulting combinations of mode energy and k| observed for different n's
with various tube lengths are represented in Fig. 2.1(a), in good agreement
with the plasmon dispersion relation of the infinite tube, thus corroborating

the validity of the FP model to qualitatively understand these plasmons.

We now compare these results with those obtained from a QM simulation
of the CNTs. Specifically, we use linear response theory within the RPA using
electronic states described by a nearest-neighbors tight-binding model with
the same parameters as in previous studies of graphene”°”:"° (i.e., a single p
orbital per carbon site with a hopping energy of 2.8 eV). As shown in Fig. 2.1(a),
the obtained results are similar to those of the classical description, including
the frequency increase associated with larger wave vectors (i.e., smaller L),
as well as the blue shift in the plasmons of capped tubes compared with un-
capped tubes. However, the QM model predicts slightly higher-energy plas-
mons, presumably as a result of quantum confinement, in agreement with

previous results for graphene nanodisks.

We quantify the strength of the modes by the area of the plasmon fea-
tures in the extinction spectrum through the f-sum rule, f0°° dw o™t (w) =
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2122 N, /(mc).”” Typically, in either classical or QM simulations, we observe
that the first mode carries most of the spectral weight (over 80%), except for
the smallest CNT considered (length L = 5 nm), in which the first mode takes
~ 65% of the total area.

As we work in the nonretarded regime, we construct the optical response
for CNTs from the electrostatic potential. This allows us to perform an expan-
sion in the eigen-modes of the electric field,”” from which we find a scaling

law for the polarizability by designating the diameter D as the characteristic
size of a CNT:
a(w) = D? Z
J

In the above expression, 7 = io(w) /wD, while A; and n; are size- and material-

(2.2)

4
1

1_ 1
noon

independent fitting parameters which follow the sum rules Z]‘ Aj = A/D?
and —>_.n;A4; = oo/ D3, where A = LD is the cross-sectional area of
the tube and « is the polarizability of a perfect-conductor cylinder with the
same shape as the CNT (i.e., length L and diameter D). Through the optical
theorem ot (w) = 47 (w/c)Im{a(w)}, we find an expression to fit the res-
onances shown in Fig. 2.1(b), from which we obtain values for A; and n; as a
function of both thickness and length (see Fig. 2.2).

2.3 Interaction with focused electron beams

We now shift our attention to the interaction of CNT plasmons with ener-
getic electrons as a means to investigate their spatial and spectral character-
istics. Indeed, many of the properties of plasmons have been revealed by
electron-microscope spectroscopies,”” which are better suited than optics-
based methods to probe these deep-subwavelength excitations. In particular,

electron energy-loss spectroscopy (EELS) appears to be an ideal technique to
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Figure 2.2: Scaling law parameters. (a) CNT-thickness dependence of the scaling law
parameters (2.2). Dark (light) colors with squares (circles) correspond to capped (un-
capped) CNTs. (b) CNT-length dependence.

study the strongly confined plasmons of CNTs. We thus present in Fig. 2.3 re-
sults for 10 keV electrons passing near a CNT along the two trajectories shown
in the insets. We find that different plasmon modes are excited with different
strength, also depending on the orientation of the trajectory. For example,
high-order modes (i.e., above the energy range shown in Fig. 2.3) are more
easily excited in the trajectory that runs parallel to the tube, while the per-
pendicular trajectory is more efficient at exciting the lowest-order ~ 0.65 eV
mode. In particular, the dipolar plasmon has its field concentrated near the
tube ends, thus favoring the interaction with the perpendicular trajectory un-
der consideration.

Our choice of a 1nm beam-CNT separation is not critical, as we find the
EELS probability for excitation of the dipolar plasmon to decay exponentially
with a characteristic distance ~ L /27 (see Fig. 2.4). This result can be under-
stood as follows: from the above FP model, the plasmon wave vector must be
~ 7/ L along the tube; as the plasmon evolves in the quasistatic limit, its wave
vector along the perpendicular direction must be ~ im/L; consequently, we

find a dependence  exp(—2mz/L) of the electric-field intensity associated
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with the plasmon on the distance to the tube z, which is directly inherited
by the EELS probability. In general, plasmons of order n should decay with a
characteristic transversal distance ~ L/27mn.

Remarkably, the peak probability reaches high values, comparable to or
larger than those typically encountered in EELS studies of larger metal nanopar-
ticles. We find that the number of plasmons excited per electron (i.e., the inte-
grated peak area, which should be roughly independent of 7) can reach 0.1%,
although this number scales as ~ 1/v? with electron velocity v for small ob-
jects (cf. v/c = 0.19 for the 10 keV electrons here considered and v/c = 0.55
for 100 keV).

2.4 Interaction with quantum emitters

Light can be confined to extremely small regions of space through the excita-
tion of localized surface plasmons, thus presenting an opportunity to achieve
strong coupling between a QE and optical fields. Here we assess the strength
of a QE coupling to the local electromagnetic fields of CNT plasmons through
quantitative analysis of the enhancement in its radiative decay rate. In what
follows, we represent a QE as a two-level system characterized by its transition
dipole moment d. If a single QE is placed in close proximity to a CNT, it induces
a field EM from the CNT that acts back on the emitter, thereby modifying its
decay rate according to

FU(UJ) = Fo(w) + %Im{d* . Eind} y (23)

where ['g(w) = 4w3|d|?/3hc? is the decay rate in free space. If we now con-
sider two such QEs that are placed at opposite ends of the CNT (see inset to
Fig. 2.5), we can quantify their interaction mediated by the CNT by studying
the radiative decay rate enhancement of the first QE (e.g., the QE at position
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Figure 2.3: Plasmon excitation with electron beams. (a) Electron energy-loss prob-
ability for a 10keV electron passing near a L = 10nm capped (10,10) CNT along
two different trajectories (see inset). Classical local-RPA calculations (solid curves)
are compared with quantum RPA simulations (broken curves). (b) Same as (a) for an
uncapped tube.
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Figure 2.4: Dependence of the EELS probability on electron-beam-CNT distance. We
show classical local-RPA (left panels) and quantum-mechanical (right panels, tight
binding plus RPA) calculations of the EELS probability under the same conditions as in
Fig. 2.3 with different electron-beam-CNT separations for capped (upper panels) and
uncapped (lower panels) CNTs.
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1) due to the induced electric field E15 produced on it by the second QE (e.g.,
the QE at position 2) as

Tya(w) = %Im{d’{ B} . (2.4)

We remark that under the conditions considered here our results indicate that
the natural decay rate I' is much smaller than the enhanced decay rate (see
below). Then, assuming for simplicity that the QEs are identical, the symmetry
of the CNT and its plasmon modes allows us to approximate I'1; ~ I'12 when
the QEs are placed on opposite ends of the carbon structure.

In Fig. 2.5(a) we show I';; /Ty (i, 5 = 1,2) for two QEs, each located at a
distance of one nanometer from either ends of a 10 nm-long (10,10) CNT (red
curves correspond to uncapped CNTs and black curves to capped CNTs). Re-
markably, we observe an enhancement of the order of ~ 108, which is several
orders of magnitude higher than predicted for graphene disks.™" This strong
interaction is a consequence of the fact that the emitter decays with close to
unity probability into the CNT plasmon (instead of into other inelastic decay
channels such as electron-hole pairs), even when placed at such a short dis-
tance from the tube, as previously shown for extended CNTs.”~ Additionally,
these results do not depend critically on the exact positioning of the QEs: we
expect their interaction to roughly scale with the product of the plasmon field
amplitudes at the position of the emitters; this amplitude decays exponen-
tially over a distance of several nanometers (see the above discussion on the
distance dependence of the EELS probability). This intuition is corroborated
by Fig. 2.6.

Now, invoking the Jaynes-Cummings model,~ such high Purcell factors
should enable quantum entanglement between the emitters, > '~ as well as
the implementation of logical gates,”” thus providing further motivation for
the application of doped CNTs in nanoscale quantum devices.

Additionally, the real part of the interaction between the QE and the in-
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Figure 2.5: Interaction with quantum emitters. (a,b) Emission-energy dependence
of the imaginary (a) and real (b) parts of the QE interactions, normalized to the free-
space emission rate I'y. We consider identical, axially polarized QEs placed 1nm away
from the surface of a 10-nm-long (10,10) CNT with either capped (black) and uncapped
(red) ends. The Purcell factor T’ i /T cannot be separated from the interemitter inter-
action T'15 /Ty on the scale of the plot. We compare classical local-RPA (solid curves)
and quantum RPA (broken curves) calculations for a Fermi energy of 1eV and a damp-
ing of 10 meV. (b) Dependence of the interemitter interaction on the plasmon relax-
ation time 7. Solid black (open red) symbols account for maxima of the Purcell factor
given by a capped (uncapped) CNT. Classical local-RPA (quantum-mechanical) calcu-
lations correspond to the circles (squares). The equivalent mobility 1 = Tev% /Er
within the Drude model is shown in the upper horizontal scale.
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Figure 2.6: Distance dependence of the interaction with QEs. We compare the cou-
pling coefficients shown in Fig. 2.5(a), and reproduced in panel (a) of this figure for
convenience, with those obtained by moving the QEs away from the tube ends, either
in asymmetric (b) or symmetric (c) configurations.

duced field of the CNT yields the energy splitting of the QE states [Fig. 2.5(b)],
which is quantified by

Gis(w) = %Re{df By} (2.5)

where i, = 1,2 indicate the QE positions. This interaction is a few times
lower in magnitude thanI';;, therefore indicating that one could reach aregime
in which the decay rate of fast emitters (GHz) is made close to their optical fre-

quency (PHz), with a small fractional correction in emission frequency.

Figure 2.5(c) shows the dependence of the Purcell factor on the electron
mobility, which enters both the classical and QM models through the phe-
nomenological relaxation rate 7. Even for extremely low plasmon lifetimes 7
of the order of ~ 10fs, doped CNTs are predicted to enable Purcell factors
~ 107, while we observe a linear dependence of such factors on 7. These re-
sults are very similar within both classical and quantum-mechanical models,
thus corroborating once more the validity of the former to cope with struc-

tures that contain only several thousand atoms.
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2.5 Conclusion

We have demonstrated that highly-doped finite CNTs exhibit intense plasmon
resonances that can mediate the interaction between quantum emitters placed
in their proximity. In particular, CNT plasmons are found to produce optical
extinction cross-sections exceeding the CNT projected areas, with Purcell fac-
tors for proximal quantum emitters reaching ~ 10%, enabling strong interac-
tion between emitters located at opposite ends of a CNT. These plasmons lie in
the near-infrared part of the spectrum for realistic tube dimensions, thus hold-
ing potential for their use in technological applications within that frequency
range. We introduce a classical electromagnetic description of the CNT opti-
cal response that predicts plasmon energies and coupling strengths in good
agreement with those obtained from an atomistic model (tight-binding de-
scription of the electronic states combined with RPA linear response) both in
the case of capped and uncapped CNTs. Our results indicate a strong potential
for highly-doped CNTs as robust, actively tunable plasmonic elements that are

well-suited for nanophotonic and quantum-optics applications.
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Strong-field-driven dynamics and high

harmonic generation in 1D systems

hello, world
- Brian Kernighan

The observation of high-order harmonic generation (HHG) from bulk crys-
tals is stimulating substantial efforts to understand the involved mechanisms
and their analogue to the intuitive three-step recollision model of gas phase
HHG. On the technological side, efficient solid-state HHG is anticipated to en-
able compact attosecond and ultraviolet light sources that could unveil elec-
tron dynamics in chemical reactions and provide sharper tomographic imag-
ing of molecular orbitals. In this chapter we explore the roles of electronic
band structure and Coulomb interactions in solid-state HHG by studying the
optical response of linear atomic chains and carbon nanotubes to intense ul-
trashort pulses. Specifically, we simulate electron dynamics by solving the
single-particle density matrix equation of motion in the presence of intense
ultrafast optical fields, incorporating tight-binding electronic states and a self-
consistent electron-electron interaction. While linear atomic chains consti-

tute an idealized system, our realistic 1D model readily provides insight on
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the temporal evolution of electronic states in reciprocal space, both in the
absence or presence of electron interactions, which we demonstrate to play
an important role in the HHG yield. This model further predicts that doped
semiconductors generate high harmonics more efficiently than their metallic
counterparts. To complement this idealized system we also show results for
HHG in more realistic quasi-1D structures such as carbon nanotubes, the be-
havior of which is found to be in good qualitative agreement with the atomic
chains. Our findings apply directly to extreme nonlinear optical phenomenain
atoms on surfaces, carbon-based structures, linear arrays of dopant atoms in
semiconductors, and linear molecules, such as polycyclic aromatic hydrocar-
bon chains, and can be straightforwardly extended to optimize existing plat-

forms for HHG or identify new solid-state alternatives.

3.1 Introduction

High-harmonic generation (HHG) is perhaps the most striking example of a
nonlinear optical process and its ability to spectrally and temporally disperse
intense laser light."”> '“° Initial reports of HHG from atomic gases'”’ revealed
a light emission intensity plateau extending over many integer multiples of
the fundamental exciting laser frequency and characterized by an abrupt drop
at a specific cutoff energy. Concise theoretical explanations of the underly-
ing physics were developed shortly thereafter, culminating in the celebrated
three-step model of an atom interacting with a single cycle of an intense im-
pinging optical field: tunnel ionization triggered by the driving electric field
liberates an electron from the atom that gains additional kinetic energy as it
is driven away from and back towards the parent nucleus, ultimately emitting,
upon recollision (through coherent interactions of the electron wave function

with itself), light at high harmonic orders of the fundamental frequency.
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This extreme nonlinear optical phenomenon is a source of coherent high-
frequency electromagnetic radiation, which can be processed to produce at-
tosecond optical pulses, thus garnering significant attention as the means to
develop micron-scale XUV-light sources'" (i.e., the equivalent of table-top syn-
chrotrons) and perform quantum logic operations at optical clock rates,

while enabling visualization of electronic band structures,'>"'* monitoring
electron-hole recollisions in real time, '~ resolving subfemtosecond processes
governing chemical reactions,''° and recording electron dynamics in molecu-

lar orbitals.

Despite the numerous fascinating advances in science and technology that
have resulted from atomic HHG, the expense and delicacy of the associated
experimental set-ups renders their use hardly practical outside of specialized
laboratory facilities. In contrast, recent observations of HHG from solids
are establishing new paths for attosecond science and strong-field physics, po-
tentially leading towards XUV and attosecond light sources in compact solid-
state devices. While the three-step recollision model'““ offers an intuitive
understanding of HHG from atoms in the gas phase, the picture is less clear
for solid-state HHG. Early theoretical proposals considered a three-step-like
model in which an electron undergoes Bloch oscillations within an electronic
band (either valence or conduction after interband tunneling) as a consequence
of the change in direction of acceleration after half an optical cycle of the
driving electric field; ="~'“> subsequently the excited electron scatters within
its band (i.e., intraband HHG) or recombines with the parent hole or ion (i.e.,
interband HHG), and finally, it recollides with the first- and second-nearest
holes or ions. However, this simplified description does not explain the role
of electron-electron correlations, and furthermore, available experiments and
numerical simulations often do not elucidate the specific origin of generated
harmonics (e.g., from interband or intraband charge-carrier motion); the gen-

eration of even-order harmonics, the existence of atto-chirps, the formation
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of a well-defined high-energy cutoff, and numerous aspects of the electronic

band structure still remain underexplored in the context of solid-state HHG.

Further insight into the aforementioned open questions in HHG from
condensed-matter systems can be gathered by analyzing one of the simplest
models in solid-state physics: the Su-Schrieffer-Heeger (SSH) chain,*”~'%* con-
sisting of a dimerized linear chain of atoms described in the tight-binding ap-
proximation, with alternating hopping energies assigned to each of the two
neighboring atoms on side of any given atom [Fig. 3.1(a)]. As we discuss be-
low, the SSH model is a convenient system to explore electronic band structure
effects in the optical response of materials, as appropriate choices of hopping
energies reveal either metallic, insulating, or topologically insulating behav-
ior. To explore the effect of topology on HHG, recent works'”*'** have em-
ployed the SSH tight-binding model and its analogue in more rigorous time-
dependent density functional theory (TDDFT) simulations of atomic chains,
predicting improved harmonic yields associated with the topolotical insula-
tor (TI) phases for sub-band-gap photon energies that are robust under dis-
tortions, continuous phase transitions, and choice of on-site potentials.”*> In
a related study, ~° the transition from atomic-like systems to solid-state bulk
materials was analyzed in the context of HHG, emphasizing the evolution in
cutoff energy as the chain length increases, and concluding that a chain of six
atoms constitutes the optimal length for this transition to occur as a conse-

quence of changes in the state density.

Seeking to optimize HHG yields in condensed-matter systems, we explore
the synergy between electronic band structure and optical resonances in fi-
nite SSH chains, which constitute a convenient, computationally inexpensive
model that has already been demonstrated to qualitatively describe HHG pre-
dicted in the more rigorous TDDFT simulations of related 1D systems.

We augment the SSH tight-binding Hamiltonian with a term accounting for

electron-electron interactions, incorporating a single-electron density matrix
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description of the optical response and introducing the effect of inelastic charge-
carrier scattering through a phenomenological damping rate; this prescrip-
tion allows us to systematically explore the dependence of HHG yield on the
spectral characteristics of the impinging optical pulse and identify frequencies
at which HHG is enhanced by optical resonances associated with the elec-
tronic band gap or collective electron motion (i.e., plasmons) in SSH chains.
We further explore the effect of electrical doping on HHG by populating the
electronic bands with additional charge carriers; the added charges can Pauli-
block specific electronic transitions and introduce collective resonances, thus
facilitating explorations of both. In order to verify the qualitative predictions
based on the SSH model in a more realistic condensed-matter platform, we
investigate HHG in finite carbon nanotubes (CNTs) of various chiralities that
produce similar electronic band features and also display different electronic
behavior (metallic, insulating, and topologically insulating). Our findings eluci-
date the roles of these features intrinsic to different solid-state systems, pro-
viding a road map for the identification and engineering of next-generation
solid-state nonlinear optical devices, with a view to producing XUV light and/or

attosecond pulses.

3.2 Electron dynamics

In our SSH model, spin-degenerate electrons occupy the orbitals |/) located
at atomic sites x; = la uniformly spaced with the lattice constant a. Single-
electron states |p;) with associated energy eigenvalues fe; satisfying

hej|¢;) = Ho|gj) are then obtained by expanding in the site basis according
to|p;) = >, aji |l), where aj; are real-valued expansion coefficients. Follow-
ing the formalism introduced elsewhere to simulate the optical response of

graphene nanoislands,” "° the electron dynamics is described by the single-
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particle density matrix p = >, pu |1} (I'| constructed from time-dependent
matrix elements p;;» and governed by the equation of motion

i
pP=—7

+ [Ho — ed, p] - % (p—0"), (3.1)

where pO denotes the equilibrium density matrix to which the system relaxes
at a phenomenological rate iy = 50 meV (i.e., a relaxation time 7 = vy~ ~
13.2fs) and ¢ = ¢t + ¢4 is the electrostatic potential, which includes con-
tributions from both the impinging light electric field, gi)th = —x;E(t), and
the electron-electron (e-e) interaction, ¢i" = >, vy pird; the latter quan-
tity renders the equation of motion self-consistent through its dependence
on the induced charge pi™ = —2e(py — p})) (the factor of 2 accounts for
spin degeneracy) mediated by the spatial dependence of the Coulomb inter-
action vy between atoms [ and I/, for which we choose parameters associated
with carbon 2p orbitals.”® In Fig. 3.1(b) we plot the employed Coulomb inter-
action compared to that of a point-like charge. The equilibrium density matrix
is constructed in the state representation according to p?j, = 0;; fj, where
[j is the occupation factor of state |¢;) according to the Fermi-Dirac statis-

tics (we assume zero temperature), and transformed to site representation

through pyr = ij, ajia;iypig -

Incidentally, linear response theory [obtained by replacing the [¢, p] term
by [#, p°] in eq. (3.1)] yields a solution to eq. (3.1) for a monochromatic external
electric field E<te~%t 4 ¢.c. of frequency w in the form of the harmonic den-
sity matrix component p(!) e=*; the induced charge density p'"d = —2ep§ll,)
(with a factor of 2 for spin degeneracy) is then self-consistently computed in

the so-called random-phase approximation”>'*” (RPA) as p'"d = y(0) ¢, where

(0) . 26
X = n (fj’ -
Ji’

) ajlaj/lajl/aj/l/
J

w+iv/2— (g — gj) (32
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is the non-interacting RPA susceptibility. The poles of X(O) are related to in-
dividual electron-hole (e-h) pair excitations, so that omission of the induced
charge by taking ¢ — ¢°*! yields a response comprised of Lorentzian peaks
at the energies h(e; — ;/); including the self-consistent potential, we iso-
late the induced charge as p™d = y¢*<t, where the response function y =
O [1 = x O] ~introduces new poles associated with collective charge car-
rier excitations through the Coulomb interaction. For simplicity, we neglect

exchange interaction and spin effects.

Going beyond linear response, we solve the equation of motion through
either of two complementary approaches that allow us to investigate the non-
linear optical response in different regimes. In the first method we resort to
direct numerical integration of eq. (3.1) in the time domain (TD) to obtain the

induced dipole moment
p(t) = —2¢Y  p"a (3.3)
1

produced by various types of external fields F(t) [e.g., continuous wave (CW)
illumination or ultrashort pulses], from which Fourier transformation of p(t)
reveals its spectral decomposition and characterizes the optical response. The
TD approach does not impose any limit on the strength or type of impinging
field, thus enabling the study of the intensity-dependent optical response, in-
cluding simultaneously the effects of saturable absorption and high-order har-
monic generation. As we are primarily interested in the latter phenomenon,
we quantify the radiation emitted from the SSH chain by the dipole accelera-

tion, ji(w) = |w?p(w)|?.

In the second approach, we assume monochromatic illumination (as in the

RPA) and perturbatively expand the density matrix entering eq. (3.1) according
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to
oo n
p= Z Z pnselswt’
n=0s=—n
wheren = 1,2, ... denotes the perturbation order and s the harmonic index,
such that p"¢ is defined only when |s| < n. We then obtain the polarizabilities
(n)

Qg as
2e

(n) _ =~ ns
Ay = E Pu i, (3.4)
(EO)n l i

where p™* is computed following the prescription in ref. 48 that constitutes
an extension of the linear RPA to higher perturbation orders. We employ this
method to calculate the nonlinear polarizabilities afug) (i.e., the leading non-
linear contribution to the response at the fundamental frequency, which is

associated with the Kerr nonlinearity and two-photon absorption).

3.3 Su-Schrieffer-Heeger model

Originally introduced to describe p, electrons in CH monomer chains (poly-
acetylene), the Su-Schrieffer-Heeger (SSH) model describes a 1D dimerized
chain of N atoms through a tight-binding (TB) Hamiltonian, ** and constitutes
a simple yet powerful tool to explore non-trivial topological electronic band
structure. We consider an SSH chain that contains N /2 unit cells with two
sites per cell occupied by one atom from either sublattice A or B [Fig. 3.1(a)].

Also, we denote the intracell and intercell hoppings as t1 and to, respectively.
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Figure 3.1: Characterizing the linear and nonlinear optical response of SSH chains.
(a) Schematic representation of the SSH chain comprised of atoms A and B in the unit
cell, with intracell (intercell) hopping t, (t»), and uniform interatomic spacing a. (b)
Coulomb interaction of the SSH chain v(x) compared to 1/x. (c-e) Band structure of
SSH chains containing N = 50 atoms, fixing the intercell hopping to to = —2.8eV
and varying the intracell hopping t1; depending on the choice of t1 the system is (c)
metallic (t; = to = —2.8eV, black curves), (d) insulating (t; = —3.3 eV, red curves),
and (e) a topological insulator (TI) (t; = —2.3 eV, blue curves). (f-h) Normalized ab-
sorption cross section with electron-electron interactions switched on (e-e on) and off
(e-e off) for the metal (f), the insulator (g), and the Tl (h). (i-k) Harmonic generation,
quantified through the dipole acceleration j(w) = |w?p(w)|? (where p(w) denotes
the w component of the induced dipole), produced by pulses of 1012 W/m? peak in-
tensity, 100 fs FWHM duration, and carrier frequency wq, with the latter quantities in
each panel indicated by the color-coded legends and arrows in (f-h). (I-n) Same as (i-k)
but for a fixed pulse carrier energy of 0.2 eV, away from the resonances appearing in

(f-h).
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The TB Hamiltonian describing the chain is

N/2

Hy=t1» (II,B){l, Al +h.c.)
=1
N/2—-1

+ty Y (l+1,4)(I,B|+he.), (3.5)
=1

which, expressed in a purely spatial representation, takes the form of a tridi-
agonal N x N matrix containing zeros along the diagonal and hoppings just

above and below:

0 &7 0 O 0 0
t1 0 22 O 0 0
ta 0 #©; 0 0
Hy = 0 t1 O 0 O (3.6)
0 ©
t1 O

The choice of hopping parameters determines the phase of the chain:”” the

band structure becomes metallicwhen |t1| = |t2 ,and

,insulating if [t1] > |2

a Tl (i.e., insulating in the bulk and with a edge states in the gap) when |¢1| <
|t2]."”” Throughout this study we consider a chain with N' = 50 atoms located
at the sites x; = la and having fixed intercell hopping to = t(, choosing values
a = 0.1421nm and tyg = —2.8 eV inspired by graphene. From the metallic
chain (t; = to = tg), we perturb t; = t5+0.5 eV to enter an insulating phase,
whereas t; = ¢ty — 0.5 eV yields the band structure of a Tl. Diagonalization of
Hy reveals single-electron states characterized by the coefficients a;; (i.e., the
amount of wavefunction | j) within the orbital at x;) and energies he ;; we plot

the electronic energies he; obtained for each of the three phases in Fig. 3.1(c-
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Figure 3.2: Effect of doping in the linear response of SSH chains. Normalized ab-
sorption cross section as a function of frequency (vertical axis) and additional charge
carriers @Q (horizontal axis) for the (a) metallic, (b) insulating, and (c) topologically
insulating chains considered in Fig. 3.1.

e). With the chosen parameters, a band gap of energy £, = 1.17 eV emerges
when [t1] # |to
the band gap when |t1| < |t2| [Fig. 3.1(d)], corresponding to the edge states
of the chain and giving the insulator its topological character.

, with two quasi-degenerate states appearing in the middle of

3.4 Self-consistent interactions in the optical response of
SSH chains

Optical resonances, and plasmons in particular, are widely exploited in nano-
optics to intensify local electromagnetic fields for a variety of applications,
some of which involve the enhancement of nonlinear optical processes.

Here, we explore the ability of optical resonances in the three phases of the
SSH model to drive HHG. In Fig. 3.1(f-h) we identify through the linear absorp-
tion cross-section the available optical resonances in the metallic, insulating,
and Tl phases, both in situations when the self-consistent electron-electron

(e-e) interaction is omitted and included. Neglecting e-e interactions, peaks in
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the absorption spectrum are associated with the energies of individual single-
electron transitions (see discussion in sec. 3.1), with amplitudes determined
by their transition dipole moments. In contrast, if we include e-e interactions,
the dominant transitions undergo large spectral blueshifts in all three phases.
In Figs. 3.1(f-h) we show the absorption cross section of the SSH chains, which
we calculate through the optical theorem o, = 47r(w/c)1m{a£,1)}. We nor-
malize the cross section to roughly the geometrical in-plane projection of the
chain, Na?. Incidentally, the edge states of the Tl [Fig. 3.1(h)] give rise to a
low-energy resonance that does not appear for the insulator.

Given their importance in the linear response, it is expected that self- con-
sistent e-e interactions also play a leading role in the nonlinear response. Figs.
3.1(i-n) show normalized high harmonic spectra (quantified via dipole acceler-
ations) produced by Gaussian pulses of 10 W/m? peak intensity and 100 fs
full-width-at-half-maximum (FWHM) duration with central frequencies wy (i)
targeting the dominant resonances in the linear spectra [Figs. 3.1(i-k); see color-
coded arrows indicating the energy of fiwg] and (ii) off-resonance, with a fre-
quency arbitrarily fixed to 0.2 eV (i.e., away from optical resonances) in all
cases [Figs. 3.1(I-n)]. Resonant excitation of the metallic chain yields lower
HHG when e-e interactions are included, presumably because charge screen-
ing in the metal damps the electron motion, while this effect is less impor-
tant in the gapped systems. The number of observable harmonics is typically
larger for lower-energy excitation and associated with more efficient inter-
band generation, where the maximum cutoff energy in the non-interacting
case is indicated by the largest available single-electron transition energy. In-
cidentally, the height of the first harmonic can vary widely from on-resonant

to off-resonant conditions (e.g., by a factor up to 10* in metallic chains).

In addition, note that e-e interactions lead to collective optical resonances
of higher strength compared with single-electron transitions, thus allowing

us to reach HHG with significantly reduced intensity compared with previous
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studies that neglect those interactions.

Plasmons are associated with the motion of free electrons, and thus do
not emerge in pristine semiconducting materials. However, in the 50-atom
SSH chains that we consider here, the addition of only a few electron charges
is sufficient to dramatically change the optical response; this phenomenon is
explored in Fig. 3.2, where we study the linear response in the RPA as a func-
tion of the doping charge () in all three SSH phases. Note that the charge is
added in such a way that the free electrons equally populate available degen-
erate states. In contrast to the almost negligible electrical tuning for the metal-
lic chain [Fig. 3.2(a)], the insulating chains present overall a blueshift with in-
creasing charge carrier density in the low-energy spectral features, which tend
to coalesce into a prominent peak associated with intense optical absorption

and a concentration of electromagnetic energy within the material.

In particular, at Q = 2 in Fig. 3.2(b) we observe a sharp feature that corre-
sponds to the filling of the lowest unoccupied molecular orbital (LUMO); that
is, the insulator gets free carriers in the conduction band and starts behav-
ing as a metal (we note that a () = 2 doping corresponds to a Fermi level of
~ 0.81 eV, which is larger than the energy of the LUMO, Er,umo = E4/2 =
0.59 eV). For this reason, for (J > 2 the main resonant feature begins to
stabilize and by Q = 5 (Ep ~ 1.11eV, where Ey here corresponds to the
highest-filled state) it has coalesced in a prominent dipolar plasmon mode of
frequency similar to that of the metallic chain because of the similar value of
the density of states at the Fermi level in both cases. In contrast, for the TI
chain [Fig. 3.1(j)] we observe that quasi-degenerate edge states in the middle
of the band gap produce a slight redshift of the main resonance and damp
the strength of the absorption cross section, particularly at the LUMO energy
(Q = 2o0r BEp ~ 0.63eV). At Q = 4 the main resonance starts growing and
by Q = 5 the response is dominated by the plasmon.
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3.5 Intensity-dependent absorption

The realization of HHG in solid-state systems necessitates optical pulses with
peak intensities that cannot be sustained for long duration, lest the material
be destroyed in the process. However, the interaction of extended pulses or
CW fields with matter is appealing for technological applications relying on
saturable absorption, an extreme nonlinear optical phenomenon that arises
in all photonic materials and, like HHG, cannot be described in a perturbative

framework.

The enhanced light-matter interaction provided by optical resonances pro-
duces a more measurable absorption signal that facilitates detection of changes
in the dielectric environment or the impinging light intensity; the latter effect
is intensified by the concentration of electromagnetic energy in the material,
which in turn can enhance its nonlinear optical response. Following this ap-
proach for HHG, we explore the nonlinear response associated with optical
resonances of SSH chains by considering their interaction with intense imping-
ing CW light, characterizing the optical response by the induced dipole mo-
ment at the fundamental frequency. Specifically, we extract the effective po-
larizability o, by computing the induced dipole p(t) in response to a monochro-
matic field E(t) = Epe™ ! + c.c. of intensity I®** = (¢/27)|Fy|. We then

Fourier transform p(t) over a single optical cycle to obtain

w tcw .

o= / p(t)e wat, (3.7)
27TE0 tow —2m/w

where tcw > T corresponds to a time at which the system has entered a

steady state regime.

In Fig. 3.3 we study the dependence on pulse intensity of the main reso-
nances in the absorption spectra (upper rows) of the different SSH chains in

relation to their corresponding Kerr polarizabilities af’), that is, with pertur-
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bation order n = 3 and harmonic index s = 1 (lower rows), for three differ-
ent dopings: undoped [Figs. 3.3(a-f)], LUMO doping (i.e., with two additional
electrons, ) = 2) [Figs. 3.3(g-1)], and plasmonic-regime doping (i.e., with five

additional electrons, Q = 5).

Independent of doping, the absorption cross section of metallic chains re-
mains relatively unchanged by increasing the optical intensity, an observation
compatible with their consistently smaller nonlinear polarizabilities. In con-
trast, the effective polarizabilities of the insulating phases offer a larger non-
linear response, where in particular Figs. 3.3(c), (h), and (n) present strong
saturation and also shifting of the peak energy, which eventually should tran-
sition towards a bistable regime. This behavior is corroborated by the large
corresponding Kerr polarizabilities [Figs. 3.3(f), (k) and (qg), respectively], with
the real part determining the peak shift strength and direction (e.g., red- vs
blue-shift), while the imaginary part governs its saturation. Within the range
of parameters considered here, we conclude that the Tl is the most nonlinear
material without doping, while the population of its edge states and subse-
quent Pauli blocking through doping renders its nonlinearity comparable to

that of the insulator.

3.6 High-harmonic generation in SSH chains

We further study the optical response of SSH chains to strong ultrashort laser
pulses. In Figs. 3.4 and 3.5 we plot the induced dipole acceleration p nor-
malized to the maximum dipole acceleration .« for each input frequency
win considering Gaussian pulses of 100 fs FWHM duration and peak intensity
I = 10" W/m?2, with the horizontal pulse carrier frequency given on the hor-
izontal axes and the frequency component of j indicated on the vertical axes;

each contour plot of p is supplemented by the associated linear optical re-
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Figure 3.3: Intensity-dependent nonlinear absorption in SSH chains. (a-c) Normal-
ized absorption cross-section o,1,s /N a? simulated in the time domain for monochro-
matic CW illumination of increasing intensity near the optical resonances of undoped
(a) metallic, (b) insulating, and (c) topologically insulating SSH chains. (d-f) Perturba-
tive solutions of the third-order polarizabilities associated with the optical Kerr nonlin-
earity af’), presented in atomic units for the corresponding SSH chains in (a-c), with
real and imaginary parts indicated by green and orange curves, respectively. (g-l)
Same as (a-f) but for SSH chains doped with 2 additional electrons (Q = 2). (m-r)
Same as (g-1) but for SSH chains doped with 5 additional electrons () = 5).
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Figure 3.4: High harmonic generation in undoped SSH chains. (a-c) Induced dipole
acceleration p in undoped SSH chains as a function of the output frequency w, as
generated by a Gaussian pulse of peak intensity 1012 W/m?, 100 fs FWHM duration,
and central frequency ws,, for the (a) metal, (b) insulator, and (c) topological insulator
50-atom SSH chains. The inset above each panel shows the respective linear response
of the chain, while the vertical dashed lines mark the band gap energy E, and its half-
value E; /2.

sponse of the system under consideration (upper panels). In the insulating
phases we use white vertical dashed lines to indicate the electronic band gap
energy I, and E, /2, with the latter quantity indicating the edge-state-to-
LUMO transition energy for the TI.

In Fig. 3.4 we consider undoped SSH chains, which present prominent fea-
tures along the w = swyy, curves, where s is an odd integer (i.e., harmonic gen-
eration for s > 1). In all cases we observe that strong HHG is produced where
the optical resonances intersect with the impinging light frequency, particu-
larly in the low-energy feature observed in the absorption spectrum of the Tl
[see Fig. 3.4(c)] lying below its band gap and associated with its topologically
protected states, for which more high-order harmonics can couple to inter-
band transitions.

In Fig. 3.5 we study HHG in LUMO-doped [Fig. 3.5(a-d)] and plasmonic-
regime-doped [Fig. 3.2(e-h)] chains. As in the case of monochromatic excita-

tion, we once again observe that the metal nonlinear response remains rela-
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tively unaffected by doping, while the insulator and the Tl present higher HHG
yields. In panels (d) and (h) of Fig. 3.5 we compare p at the dominant optical
resonance of each SSH [a frequency denoted wyg, see arrows in the upper pan-
els of Figs. 3.5(a-c) and (e-g)]. For Q = 2 [Fig. 3.5(d)] the insulator presents the
best harmonic yield, producing sizable peaks up to ~ 25w, with harmonics
exhibiting a slight blueshift associated with the pulse self-interaction involv-
ing the out-of-equilibrium electrons that it excites.”” In contrast, at ) = 5
doping the insulator and Tl produce very similar HHG yields that extend up to
~ 21wg, with the harmonics produced by the insulator slightly redshifted for
w > 9wy.

3.7 Beyond the SSH model: High harmonic generation in
carbon nanotubes

To validate the predictive capabilities of the SSH model, we turn now to a more
realistic 1D system in which to study HHG. Carbon nanotubes (CNTs) constitute
a material platform that can behave as a metal, insulator, or Tl, depending on
chirality, and furthermore, like graphene, their electronic properties can be
reasonably well-described by a tight-binding Hamiltonian. CNTs themselves
hold great potential for diverse applications'** because of their excellent me-
chanical, electronic, and optical properties, exemplified through the recent
demonstration of a functioning CNT-based transistor. "~ In the field of nano-
optics, recent experimental studies have explored the low-energy plasmons
supported by CNTs when they are electrically doped,”® '“>'*/ similar to the
collective excitations in highly doped graphene, “® motivating their applica-
tion for nanophotonic devices. From a theoretical perspective, plasmons in
CNTs have been extensively studied using both ab initio methods"~">" and

also semi-classical approaches”””" °“ based on the RPA™’ to calculate their
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Figure 3.5: High harmonic generation in doped SSH chains. Same as Fig. 3.4 when
the chain is doped with either 2 (a-c) or 5 (e-g) electrons. Panels (d) and (h) show
the normalized induced dipole at the resonances pointed by the arrows in the linear
response for the metal (black), the insulator (red), and the topological insulator (blue)

in (a-c) and (e-g), respectively.
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optical conductivities. Incidentally, it has been experimentally proven that
electrons in CNTs behave as Luttinger liquids, > °“ which have special rele-
vance at low temperatures and are qualitatively corroborated by our meth-

ods.

CNTs are constructed by wrapping a graphene layer into a cylindrical sur-
face; a carbon atom at the origin is then identified with one at the graphene
lattice position na; + masg, where a1 and ay are the conventional graphene
lattice vectors, while the pair of integers (n, m) determine the chirality of the
tube. Theresulting CNT diameter (innm)is™° d ~ 78.3x1073v/n2 + m2 + nm.
We can additionally classify CNTs depending on their topology, which inciden-
tally is determined by n and m: when n = m the CNT is metallic,if n = m+1
we have an insulator, and otherwise the CNT is a TI."°°*/ To explore 1D-like
structures more similar to SSH chains, we choose extremely thin CNTs exper-
imentally reported with different chiralities.”°~'°" Also, to facilitate the com-
parison with our 50-atom SSH chains, we take them to be roughly 7 nm long.
In particular, we consider CNTs with chiralities (3,3), (4,3), and (5,1), which have
diameters of 0.41nm, 0.48 nm, and 0.44 nm, and correspond to a metal, an
insulator, and a topological insulator, respectively. In Fig. 3.6 we show the
band structures of these three CNTs calculated through a tight-binding model
with a phenomenological nearest-neighbors hopping of 2.8 eV, °° revealing
E, = 1.80eV for the Tland E,; = 1.68 eV for the insulator.

Strong-field driven electron dynamics in CNTs is simulated once again by in-
serting a tight-binding Hamiltonian into the equation of motion (3.1), adopting
a phenomenological damping rate of v = 50 meV, and applying 100 fs FWHM
laser pulses of intensity I = 10'3W/m? to excite high harmonics in these
structures. In Fig. 3.7 we compare the HHG vyields of undoped [Fig. 3.7(a-c)]
and doped (Er = 1eV) CNTs [Fig. 3.7(d-g)], again supplementing contour
plots of p with linear absorption spectra (upper panels). For undoped CNTs

we observe weaker HHG for both the insulator and the TI, only exciting up to
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Figure 3.6: Band structure of CNTs. Single-electron energies for CNTs with chiral-
ities (3,3), (4,3), and (5,1), corresponding to a metal (black squares), insulator (red
diamonds), and topological insulator (blue circles), respectively. The inset shows the
region near zero energy (indicated by the dashed horizontal line) in more detail.

the 7" order, in contrast to the metallic tube, exhibiting a distinctly higher
HHG vyield, particularly when the impinging light energy coincides with the
dominant optical resonance near 0.9 eV.

The HHG yield is strongly enhanced by doping the CNTs to a Fermi energy
Er = 1eV [Fig. 3.7(d-g)], which introduces localized plasmon resonances. By
inspecting the high harmonics generated at resonant frequencies when ex-
cited at optical resonances [Fig. 3.7(g)] we see that both the insulator and the
Tl have higher yields, that their harmonics are quite strongly redshifted be-
yond the 7t order, and that their cutoff is at the 215t harmonic; this behavior

was qualitative predicted by the simpler SSH model.
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Figure 3.7: High harmonic generation in CNTs. (a-c) Dipole acceleration p as a
function of the output frequency w generated by a Gaussian pulse of peak intensity
I = 10'3 W/mZ, 100 fs FWHM duration, and central frequency wi,. The insets above
each panel indicate the associated linear response for the (a) metallic, (b) insulating,
and (c) topological insulating undoped CNTs. We have marked with white vertical
dotted lines both the energy of the band gap E, and half the energy of the band gap
E, /2. (d-f) Same as (a-c) but for 1eV-doped CNTs. The arrows indicate the resonant
input frequency wq of the Gaussian pulse at which there is a boost in HHG. (g) Normal-
ized dipole acceleration at the resonances pointed by arrows in the linear response on

top of panels (d-f).
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3.8 Conclusions

Despite the impressive pace at which the field of solid-state HHG is develop-
ing in both experiment and theory, the ideal material platform in which to
realize this extreme nonlinear optical process has yet to be identified. Op-
tical resonances supported by materials with intrinsically different types of
electronic structure constitute an underexplored possibility to enhance the
electric fields driving HHG, which we address here through the use of an in-
tuitive model that contains much of the relevant physics. More precisely, our
conclusions based on the model SSH 1D chain are corroborated in their more
realistic carbon-based analogues. In metals or doped semiconductors, where
free electrons are present, self-consistent electron interactions become ex-
tremely important in both the linear and nonlinear response, and not only
when dealing with optical resonances. While HHG appears to be most efficient
in semiconductors for harmonics generated below the band gap, the addition
of a small amount of doping charge can produce an intraband plasmon exci-
tation that falls in this regime, concentrating the impinging electromagnetic
fields and boosting the HHG efficiency; this finding suggests the exploration
of highly doped semiconducting materials as a promising platform for solid-
state HHG. Our results pave the way for further investigation on the effects
of electron-electron interactions in solid-state HHG, elucidating the involved
microscopic mechanism and the relation between electronic band structure
and the HHG vyield, thus supporting its application towards, nonlinear plas-
monics, topological optoelectronics, and all-optical time-resolved probing of

topological phases.
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Plasmon generation through electron

tunneling

WT: This is either madness... or brilliance.
JS: It’s remarkable how often those two traits coincide.

— Pirates of the Caribbean

The generation of highly confined plasmons through far-field optical illu-
mination appears to be impractical for technological applications due to their
large energy-momentum mismatch with external light. Electrical generation
of plasmons offers a possible solution to this problem, although its perfor-
mance depends on a careful choice of material and geometrical parameters.
Here we theoretically investigate graphene-based structures and show in par-
ticular the very different performances between (i) two layers of graphene
separated by a dielectric and (ii) metal/insulator/graphene sandwiches as gen-
erators of propagating plasmons assisted by inelastic electron tunneling. For
double-layer graphene, we predict plasmon generation rates of ~ 1012 —
10 /s over an area of the squared plasmon wavelength for realistic values of
the spacing and bias voltage, while the yield (plasmons per tunneled electron)

has unity order. Furthermore, we study the dependence on the relative tilt an-
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gle between the two sheets and show that the plasmon generation efficiency
for 4° twist angle drops to ~20% from its maximum for perfect stacking. For
metal/insulator/graphene sandwiches, the inelastic tunneling efficiency drops
by several orders of magnitude relative to double-layer graphene, regardless
of doping level, metal/graphene separation, choice of metal, and direction of
tunneling (metal to or from graphene), a result that we attribute to the small
fraction of the surface-projected metal Brillouin zone covered by the graphene
Dirac cone. Our results reveal a reasonable tolerance to graphene lattice mis-
alignment and a poor performance of structures involving metals and thus
supporting electrical excitation of graphene plasmons in tunneling devices as
a viable mechanism for the development of optics-free ultrathin plasmonic

devices.

4.1 Introduction

Plasmons offer the means to concentrate optical fields down to nanometer-
sized regions and enhance the intensity of externally incident light by several
orders of magnitude.'®" These properties have been extensively investi-
gated to develop applications in areas as diverse as optical sensing,
medical diagnosis and treatment, °°~'°° nonlinear optics, °” /" catalysis,

and photovoltaics.®” '/~ In this context, plasmons in high-quality graphene of-
fer the advantages of being electrically,”” % "% V= magnetically,”” " and
optically>™ '°' tunable, while exhibiting short wavelengths and long lifetimes.
Graphene plasmons are highly customizable through lateral patterning, stack-
ing of 2D-crystal atomic layers, and coupling to the dielectric environment,
enabling applications such as light modulation,”’-'°* control of thermal emis-
sion, ©°7'°¢ spectral photometry, ©”> " and optical sensing.”” ""'='"* While these

phenomena and applications have been mainly explored at mid-infrared and
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lower frequencies, prospects for their extension to the visible and near-infrared
spectral regions look promising.”> Actually, there is no fundamental reason
that limits the existence of graphene plasmons at such high frequencies, al-
though in practice they require large doping (e.g., an attainable Ep ~ 1eV
Fermi energy'”") and small lateral size < 10 nm. Although the latter is chal-
lenging using top-down lithography, exciting possibilities are opened by bottom-
up approaches to the synthesis of nanographenes with only a few nanome-
tersin lateral size,' "> 7 while recent experiments on self-assembled graphene
nanodisks already reveal plasmons close to the near-infrared.”” Infact, plasmon-
like resonances have been measured in small aromatic hydrocarbons,”””~ which

can be considered as molecular versions of graphene.

The strong confinement of graphene plasmons is clearly indicated by the
ratio of plasmon-to-light wavelengths for a self-standing carbon monolayer,
Ap/A = 20(Fp/hw) < 1, where @ ~ 1/137 is the fine structure con-
stant and w is the light frequency. This relation implies that graphene plas-
mons can be described in the quasistatic limit. Unfortunately, it also means
that their in/out-coupling to propagating light is weak. Let us emphasize that
far-field coupling in homogeneous graphene is forbidden because plasmons
are evanescent surface waves with energy and momentum outside the light
cone; however, we refer here to the limited ability of graphene nanostruc-
tures to produce in/out plasmon coupling, which is neatly illustrated by their
optical extinction and elastic-scattering cross-sections. Indeed, a simple ex-
tension of previous analytical theory”> based on the Drude conductivity in-
dicates that the radiative decay rate of a low-order plasmon in a graphene
structure (e.g., a disk) is x, ~ cAEF/)\3Ep, which for a plasmon energy E,,
comparable with the Fermi energy Er, a graphene area A ~ A2 ~ 107 4\2,
and a characteristic photon wavelength of 2 um, leads to x, ~ 0.1/ns. This is
orders of magnitude smaller than the total plasmon decay rate . Now, even

for an unrealistically optimistic value x = 1/ps, the on-resonance plasmon-
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driven extinction (c®* = (3\2/27)k,/k ~ 107*)\?) and elastic-scattering
(05 = (K, /K)ot ~ 1078 )\2) cross-sections are small, thus rendering plas-
mon coupling to propagating light as a mere retardation correction. In order to
circumvent this limitation, many experimental studies in this field have relied
on near-field nanoscopy, " which is based on the use of sharp tips to enhance
this coupling.””°°'®" However, more compact devices for the generation and
detection of graphene plasmons are needed in order to enable the design and

development of applications in integrated architectures.

A promising approach consists in exploiting inelastic electron transitions
to excite and detect plasmons. Understandably, focused beams in electron
microscopes have been the probe of choice to excite and map plasmons with
nanometer spatial resolution via the recorded electron energy-loss and cathodo-
luminescence signals.”” Electron tunneling has been considered for a long
time as a mechanism for the excitation of plasmons,"””~="” while electron in-
jection by tunneling from conducting tips into metallic structures has been
also demonstrated to produce efficient plasmon excitation.”<"°*“"" More
dedicated designs have incorporated emitting devices in which the generated
light directly couples to the plasmon near-field.”'* A recent theoretical
study has shown that plasmons can boost tunneling across an insulator sepa-
rating two graphene layers,”” with potential use as a plasmon-gain device,
while a similar structure has been experimentally used for the electrical gen-
eration of THz radiation.”'° Additionally, evidence of radiative gap-plasmon
decay has been experimentally obtained associated with hot electron tunnel-

ing under external illumination.

In arelated context, efforts to realize electrical detection of plasmons have
relied on near-field coupling to structures consisting of organic diodes,”'® su-
perconductors,”” nanowire semiconductors,”” “=' Schottky barriers,
and 2D semiconductors.““> Thermoelectric detection has been recently demon-

strated in graphene, ”” while a nanoscale detector has been proposed based
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on changes produced in the conductivity of graphene nanojunctions.'®” These
technologies should benefit from advances in the design, nanofabrication,

and theoretical modeling of transistors made from 2D material sandwiches.

In this chapter, we theoretically investigate a simple structure in which
two closely spaced graphene sheets serve both as gates to produce electron
tunneling and as plasmon-supporting elements. We predict a generation ef-
ficiency that approaches one plasmon per tunneled electron. Considering at-
tainable doping conditions and bias voltages applied to the graphene layers,
we find a generation rate of ~ 10 — 10!* plasmons per second over an
area of a squared plasmon wavelength for a 1 nm inter-graphene spacing filled
with hexagonal boron nitride (hBN). This type of structure provides a key ele-
ment for future optics-free integrated devices and could also be operated in

reversed mode to detect plasmons by decay into tunneled electrons.

Also, we present a comprehensive study of the plasmon-emission efficiency
associated with inelastic tunneling between two graphene layers in addition
to comparing the results with the emission in metal/insulator/graphene (MIG)
configurations. For double layer graphene (DLG), we assess the dependence
of the emission efficiency on the relative graphene twisting angle and find a
substantial reduction in the efficiency when the K points in the two layers are
misaligned by more than a few degrees. For MIG configurations, we find plas-

mon generation rates way below those of DLG.

4.2 Methods. The spectrally resolved inelastic tunneling cur-
rent

The large plasmon confinement and small thickness compared with the light

wavelength in the structures under consideration allow us to work within the

quasistatic limit. We thus calculate the probability for an electron to inelasti-
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cally tunnel between initial and final states ¢; and 1) ¢, while transferring an
amount of energy hw to the materials (e.g., a plasmon), by using the frequency-
resolved screened interaction W (r,r’, w), which describes the potential cre-
ated at r by a point charge placed at r’ and oscillating with frequency w. More

precisely, the probability can be written as™

o2
Iw) :4% ;/dSr/d?’r’ wj(r) -wf(r)w}(r’) b (r')x
X Im{—W (r,r',w)}d(cf — &; + w) fi(he:) [1 — fr(hey)], (4.9)

where the leading factor of 4 accounts for spin and valley degeneracies in
graphene (the transition probability must be independent of these degen-
eracies). This factor is the same for DLG and MIG structures, as they involve
at least one graphene layer. Electrons undergo transitions from initial occu-
pied states to final empty states of energies he; and hey, respectively. The
occupation of these levels follows the Fermi-Dirac distributions f; s (he; ) =
1/{1 + exp|(hej; — Eris)/kBT]}, where Er; and Er are the correspond-
ing Fermi energies in the emitting and receiving materials, referenced to a
common origin of energies. We work here in the T' = 0 limit, for which
these distributions become step functions f;(he;) = ©(Fp; — he;) and 1 —
ff(hey) = ©(hey — Ery) and the chemical potentials reduce to the corre-
sponding Fermi energies. For initial or final states in graphene, we recast the
sum over electron states as 3, ; — (2m)2A [ d*Qyy, while for metals it
becomes 3, — (2m) 73V [ d*k;|s, where A and V' are the corresponding
normalization area and volume, respectively. In the evaluation of eq. (4.1), we
separate the electron wave functions into parallel and perpendicular compo-
nentsas ) (r) = ¢l (R)p*(2), wherer = (R, z) and R = (z, %) arein-plane
coordinates. Finally, we present some results below for the loss probability
normalized per unit of film surface area J(w) = I'(w)/A (i.e., the spectrally

resolved inelastic tunneling current).
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Figure 4.1: Electron tunneling in double-layer graphene. (a) We consider a
graphene-hBN-graphene sandwich structure consisting of two crystallographically-
aligned monolayer graphene sheets separated by an hBN film of thickness d. Elec-
tron tunneling takes place upon application of a bias voltage V},. The graphene lay-
ers are described through their wave-vector- and frequency-dependent conductivities
o1(k),w) and o3 (kj,w). The electric-field intensity associated with the symmetric
optical plasmon sustained by this structure is plotted schematically. (b) High symme-
try points in the graphene reciprocal lattice. (c) We show the electronic bands of the
graphene layers and their relative energy positions due to the bias. The Fermi ener-
gies Epq1 and Ery and the work function ® are indicated. The electron wave functions
have a dependence along the film normal direction modeled through two quantum
wells (blue profile), while Dirac fermions describe their dependence on parallel di-
rections (red cones and parallel electron wave vector Q). Electron tunneling (wiggly
arrow) is limited by parallel momentum conservation.
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4.3 Plasmon generation in double layer graphene tunnel-
ing structures

The structure under consideration [Fig. 4.1(a)] consists of two perfectly stacked
graphene layers separated by a hBN film of thickness d ~ 1 nm (about three
atomic layers of hBN), which is maintained throughout this work unless indi-
cated. The graphene sheets are placed at different Fermi energies Er; and
Ero with conductivities o1 (bottom) and o (top), respectively. Upon applica-
tion of a bias voltage V3, between the two carbon layers, electrons can tunnel
from one to the other, assisted by the excitation of a propagating plasmon
(inelastic tunneling). We schematically depict the profile of a symmetric plas-
mon superimposed on the scheme (i.e., an excitation to which the tunneling

electrons couple with high efficiency, see below).

Elastic tunneling (i.e., direct tunneling of electrons from one layer to the
other) is forbidden due to the vertical displacement of their respective Dirac
cones associated with the bias, which introduces a mismatch of parallel wave
vectors for all electron energies [see Fig. 4.1(c)]. In contrast, the creation of a
plasmon (wiggly arrow) can break this mismatch and enable inelastic tunnel-
ing of the electron. Nonetheless, this process involves only a specific energy
in the graphene electron bands for each inelastic frequency w, which is con-
trolled through the applied bias voltage and the Fermi energies of the two
carbon layers. The theoretical investigation of plasmon excitation during elec-
tron tunneling has been pioneered in the context of junctions between semi-
conductors using the self-energy.~”“ A recent theoretical study~'“ discusses
in great detail plasmon generation associated with electron tunneling using
a second-quantization formalism. We follow instead a more direct approach
based upon methods borrowed from the analysis of electron energy-loss spec-

troscopy.

As briefly discussed above, the elements involved in the theoretical de-
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scription of inelastic electron tunneling are (i) the conduction electron wave
functions; (ii) the screened Coulomb potential W that mediates the interac-
tion between those electrons; and (iii) the evaluation of the transition prob-
ability through a well-established linear-response formalism.”” We present a
self-contained derivation below, under the assumption of crystallographically
aligned graphene sheets (i.e., their Dirac cones are on top of each other in 2D
momentum space) and also considering electrons tunneling between conduc-
tion bands. Remember electrons are assumed to have their wave functions
factorized as the product of components parallel (Dirac fermions®®) and per-
pendicular to the surface, ¥ (r) = QD!U(R)(PJ_Z'U(Z)' The latter accounts
for the transversal confinement to the graphene layers, which we describe
through a simple potential-well model [blue profile in Fig. 4.1(c)], with param-
eters fitted to match the work function and electron spill out of p, orbitals
in the material (see Appendix 4.A). Actually, spill out is a crucial element be-
cause it determines the overlap of electronic wave functions between the two

graphene layers.

For simplicity, we neglect the repulsive electron potential in the hBN re-
gion, which should produce a correction to this overlap. The inelastic tun-
neling current density is then expressed as an integral over parallel electron
wave vectors [see eq. (4.4)], which involves the Fermi-Dirac occupation distri-
butions of the graphene bands in the two layers (we assume a temperature of
0K). The screened Coulomb interaction enters this integral and incorporates
the optical responses of the graphene layers (i.e., the corresponding conduc-
tivities) and the hBN film (see Appendix 4.C). We use the random-phase ap-
proximation”-°"“°" (RPA) to describe the frequency- and wave-vector- depen-
dence of the graphene conductivities, thus incorporating nonlocal effects that
are important because both interlayer dielectric coupling and electron tunnel-
ing involve large values of the transferred parallel momentum for the short

separations under consideration. The conductivities depend on the Fermi en-
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ergies of the graphene layers, as well as on the electron lifetime, which we set
to a conservative value 7 = 66 fs. We remark that our results for the integral
of the tunneling current over the plasmon widths (~ 71) is rather indepen-
dent of the choice of 7 (i.e., this property is inherited from the negligible de-
pendence of the frequency integral of the screened interaction Im{¥} over
the plasmon width).

Now, we break down each of the aforementioned elements that we need

to evaluate eq. (4.1):

e Screened interaction. We use an analytical expression for the screened
interaction describing the graphene/hBN/graphene sandwich given in
Appendix 4.C for an asymmetric environment. This expression incor-
porates the anisotropy of hBN through its parametrized dielectric func-
tion*"' for in- and out-of-plane directions, which accounts for optical

phonons in this material.

e Parallel electron wave functions. We can express the electron wave
functions as spinors with two components, each of them associated
with one of the two carbon atoms in the unit cell.”® Consequently, we
use a Dirac-fermion description of the in-plane graphene electron wave

functions as
. ii5/2 N
[ 1 iQ, ;R © iK-R
PR = pg <e‘i¢i'f/2>e ’ 2

where ¢;) ; is the azimuthal angle of Q; ; and K is the wave vector at the
K point relative to the I" point. The first Brillouin zone of the graphene
reciprocal lattice is schematically plotted in Fig. 4.1(b). We disregard
inter-valley scattering, so each of the two inequivalent K points in the

first Brillouin zone produces an identical contribution.

e Perpendicular electron wave functions. We describe the evolution of
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the electron along z through a one-dimensional wave function trapped
in the graphene layers by potential wells, which are vertically offset due
to V4. Full details of this wave function are given for graphene in Ap-
pendix 4.A and are common to all conduction electrons, so we can write
ot.(2) = p*(2) for initial states in layer 1, centered at z = 0, and
@Lf(z) = ¢ (z — d) for final states in layer 2, centered at z = d. The
explicit expressions for metals are offered in Appendix 4.B by treating

the surface in the one-electron step-potential approximation.

Additionally, because of translational invariance, the integrand inside fd?’r
should be independent of R, so we can replace fdzR — A. Now, we express

the screened interaction as
W(r,r',w) = (2m) 72 /d2k|| explik| - (R — R W (ky, 2,7, w)

(see Appendix 4.C), which allows us to carry out the integral over R’ analyti-
cally to yield a §-function for conservation of parallel momentum 6(Q s — Q; +
kH). This, in turn, can be used to perform the integral over Q ;. Putting these
elements together, eq. (4.1) for tunneling between electron-doped conduction

bands becomes

) ) igi/ 2
F(w) 82A /d2k”/d2Q —idys/2 e1¢f/2) . (ee_i(m;) (4.3)
X fi(hvp@;) [1 — f2(ﬁvF\Qz — k)]
/dz/dz ot —d)pt(Z)et (2 —d) Im {-W(ky, 2,7 w)}

x 0(vr(|1Qi — k| — Qi) + (B — Erz2)/h— eV /R + w).

Notice that the Fermi-Dirac distributions are referred to the Dirac point of

their respective graphene layers. However, the electron energy in layer 2 is
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shifted by the bias energy Er; — Epy — €V}, relative to layer 1 (last term inside
the ¢ function). We also note that the spinor product yields

|1+ expli(gi — ¢y)]|* = 2 1+Qi (Q; — kH)Qi_l|Qi — Xk |7!], where we
have expressed the angle between Q; and Q; = Q; — k| in terms of the in-
ner product of these two vectors. Then, inserting the latter expression into eq.
(4.3), and noticing that the result is independent of the direction of kH once
the Q; integral has been carried out, we can make the substitution fd¢k“ —
27 for the azimuthal integral to readily obtain the transition rate I' which
can be separated as I' = [ “dw [;° dky T'(k,w). We next divide it by the
sandwich area A to obtain the spectrally resolved inelastic tunneling current
J =T/A, thatis

e k‘” 9 Qz : (QZ - kH)
Ty ) = /d Q < Qi |Q;i — K > @
x fi(hvp@;) [1 — f2(hor|Qi — Ky )]
/dz/dz ot —d)pt(Z)et (2 —d) Im {-W(ky, 27 w)}

x 0(vr(|Qi — k| — Qi) + (Er1 — Ep2)/h — eV /I + w),

where vp ~ 106 m/sis the graphene Fermi velocity. Moreover, the §-function
imposes energy conservation and limits the spectral range for which J(k:” ,w)
isnonzeroto (e}, — Ep1+Er2) /h—vrk) < w < (eV,—Er1+Er2)/h+vrk.
eq. (4.4) is the expression that we use in our numerical simulations of the spec-
trally resolved tunneling current, in which the azimuthal ¢; integral is carried
out analytically by using the relation 0[F'(¢;)] = 3, 6(¢i — q;)/|F"(q;)| for
the d-function (notice that the poles of F'(¢;) are of first order).

4.3.1 Mapping the inelastic tunneling probability with plasmons

The optical response of the sandwich structure in Fig. 4.1(a) is dominated by

graphene plasmons and optical phonons of hBN. The interaction between
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Figure 4.2: Energy- and momentum-resolved electron tunneling. (a) Optical disper-
sion diagram of a graphene-hBN-graphene structure [Fig. 4.1(a)], plotted through the
imaginary part of the Fresnel reflection coefficient for p-polarization and incidence on
layer 1as a function of optical energy w and parallel wave-vector k). The upper inset
shows the electric intensity profiles associated with acoustic and optical plasmons at
the energies plotted in (c). The energy and wave-vector axes are normalized to the
Fermi energy and wave vector of layer 1, Exy and kg, = Ew/hvr, respectively. (b)
Contribution of different points in the dispersion diagram to inelastic electron tunnel-
ing J(k|,w) [eq.(4.4)]. (c) Frequency-dependent momentum-integrated tunneling
probability per unit area (horizontal scale) as a function of inelastically transferred
energy hw (vertical scale). We consider a graphene spacing d = 1 nm, Fermi energies
FEr1 = 1eVand Exry = 0.5eV, and a bias eV}, = 1.2eV in all cases. The graphene
conductivity is modeled in the RPA.
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plasmons in the two neighboring layers produces a characteristic hybridiza-
tion scheme, leading to two plasmon branches: optical and acoustic. Acoustic
plasmons have lower energy, and their out-of-plane electric-field profile looks
symmetric. In contrast, optical plasmons possess higher energy and antisym-
metric field profiles, so they are generally easier to excite and manipulate and

therefore are more suitable for photonic applications.

The frequency- and wave-vector-dependence of these excitations is illus-
trated in the dispersion diagram of Fig. 4.2(a), which shows the imaginary part
of the Fresnel coefficient for p-polarization and incidence from layer 1 [see
eq. (4.17)] with a representative choice of interlayer distance d = 1 nm and
graphene Fermi energies Ep1 = 1eVand Ery = 0.5 eV. Given the small thick-
ness of the structure, the s-polarization coefficient (not shown) takes negligi-
ble values, further confirming the quasistatic behavior of the system. We con-
sider asymmetric doping of the graphene layers, which consequently display
two different plasmon bands. Similar to the hybridization observed for the
surface plasmons on either side of a thin metal film,””* these bands interact
and repel each other, thus pushing the upper (optical) plasmon toward higher
energies and the lower (acoustic) one further down. Interestingly, nonlocal-
ity has a strong influence on the the optical response of this system: the shift
produced by hybridization is limited by repulsion from the region of intraband
electron-hole-pair transitions [area below the diagonal of the main plot in Fig.
4.2(a)]. As aresult of this, the acoustic plasmon stays slightly above this region

and exhibits nearly linear dispersion.

The gap regions free from both intra- and interband transitions [triangles
defined by the downward straight lines and the main diagonal in Fig. 4.2(a)]
are different for the two graphene layers because Er; # Ers. In the smaller
gap region (1eV maximum energy), the optical and acoustic plasmons are
both well defined, with their lifetimes roughly equal to the assumed intrin-

sic value of 7 (see above). The acoustic plasmon then fades away when its

82



4.3. PLASMON GENERATION IN DOUBLE LAYER GRAPHENE TUNNELING
STRUCTURES

o |J(k,w)| (arb. units) 4
[

eVp =1.1eV eVp =1.4eV |

02 06 1.0 0.2 0.6 1.0 0.2 0.6 1.0
Ky /ke1 Ky / ke Ky / ke

Figure 4.3: Dispersion diagram of tunneling current components. Contribution of
different points in the dispersion diagram to the inelastic electron tunneling J (k:H ,w)
[eq. (4.4)], plotted in linear scale for different bias voltages Vi, (see labels) under the
same conditions as in Fig. 4.2 (d = 1nm, Ex1 = 1 eV, and Ero = 0.5eV). Panel (c) is
a replot of Fig. 4.2(b) in linear scale.

energy increases and it enters the region of interband transitions of the low-
doping layer (Landau damping). A similar behavior is observed for the optical
plasmons, although the described interband absorption effect is significantly
weaker. Examination of the field intensity profiles associated with both plas-
mons explains this different behavior [Fig. 4.2(a), upper inset]: the acoustic
plasmon has larger weight on the low-doping layer (2, at = = d), while the
optical plasmon receives substantial contributions from both layers; there-
fore, the effect of interband Landau damping produced by layer 1 (at z = 0)
acts more strongly on the acoustic plasmon. Additionally, optical plasmons
have larger Drude weights than acoustic plasmons (i.e., they are compara-
tively more weighted on layer 1, which has higher doping electron density),
and this contributes to reduce the relative effect produced by coupling to the

interband transitions of layer 2.

We find that J(k:H,w) [eq. (4.4)] exhibits features that follow the hybrid
modes of the system [cf. Fig. 4.2(a) and 4.2(b)]. The relative strengths of the
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different excitations obviously depend on the applied bias voltage. Addition-
ally, the plot of J(k),w) is dominated by the condition imposed by energy
and momentum conservation, which renders a zero contribution outside the
region (—Er1 + Era)/h+eVy, /h+vpk <w < (=Er1+ Era)/h+eVy, /h—
vrky|. This is more clearly illustrated in Fig. 4.3, where we show |J (k| w)| for
different bias voltages, plotted now in linear scale. The momentum-integrated
spectral decomposition of the tunneling current J(w) = [ dky J (k|,w)
[Fig. 4.2(c)] is thus peaked at frequencies fiiw ~ —Fwr1 + Ewpy + eV}, — hvpk”
for values of k” determined by the dispersion relations of the hBN phonon

and the graphene plasmons.

4.3.2 Dependence on bias voltage

The above analysis indicates that the peak frequency of the excited plasmons
can be controlled through the applied voltage. This is corroborated by Fig.
4.4(a), in which the peak intensities are in excellent agreement with the com-
bination of threshold and mode dispersion relations, as we argue above. Im-
portantly, the bias also affects the magnitude of the tunneling current [Fig.
4.4(a)].

We are interested in producing a substantial tunneling current, but ulti-
mately, we need that a sizable fraction of the tunneled electrons really gener-
ate plasmons. With a suitable choice of the bias voltage, the tunneling current
is dominated by the production of either acoustic or optical plasmons [see Fig.
4.4(d)]. As expected, for small voltages, below the thresholds for generation of
both acoustic and optical plasmons, phonons dominate the inelastic current,
while for large voltages the plasmon contribution becomes small compared
with other channels of inelastic tunneling associated with interband electron
transitions. Therefore, there is an optimum voltage range in which the gen-
eration yield (plasmons per electron) has unity order; tunneling in that range

is actually dominated by the excitation of optical plasmons (see region near
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Figure 4.4: Probability of plasmon-generation by electron tunneling. (a) Spectrally
resolved inelastic tunneling probability for different bias voltages. (b) Plasmon life-
times (solid curves, left scale, assuming an intrinsic RPA input lifetime of 66 fs) and
fractions of the plasmon weight in layer 2 (dashed curves, right scale, showing the
fraction of squared plasmon-induced charge density in that layer). (c) Contribution of
the hBN main optical phonon (A), the acoustic graphene plasmon (B), and the optical
graphene plasmon (C) to the total tunneling current density (black curve), correspond-
ing to the spectral features labeled in (a), plotted per square nanometer. (d) Bias volt-
age dependence of the total inelastic tunneling current density for various graphene
spacings (see labels), multiplied by the indicated factors for the sake of clarity. We
consider Fermi energies of 1eV and 0.5eV for the graphene layers 1and 2 in all cases,
while the graphene spacing and bias voltage are indicated by axis labels and text in-
sets.
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eVp, ~ Ep; = 1eVinFig. 4.4(d).

Additionally, we are interested in producing long-lived plasmons. Under
the conditions of Fig. 4.4, the lifetimes are boosted when the plasmons enter
the gap region of the low-doping graphene layer 2 [Fig. 4.4(c)], where they
reach values of the order of the assumed intrinsic lifetime 7, which depends
on material quality and is ultimately limited by acoustic phonons.

In order to place the calculated tunneling current densities in context, it is
pertinent to consider the current produced over an area of a squared plasmon
wavelength. This quantity reaches values of ~ 10'2 — 10'4/s for a realistic
graphene spacing of 1 nm, corresponding to roughly three hBN atomic layers.
In this respect, the maximum applied voltage before breakdown takes place is
an important factor to consider, as well as the threshold voltage for plasmon
generation, which depends on the Fermi energies of the two graphene layers.
It is important to stress that the generation efficiency reaches one plasmon
per tunneled electron, which should enable the generation of single and few

plasmons when combined with quantum electron transport setups.

4.3.3 Dependence on doping level

Once we have seen the suitability of our device for plasmon generation we
want to test how robust it is with respect to changes on the doping level of

the two graphene layers.
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Figure 4.5: Continued on the next page.

87



4.3. PLASMON GENERATION IN DOUBLE LAYER GRAPHENE TUNNELING
STRUCTURES

Figure 4.5: Plasmon generation in double-layer graphene: dependence on doping
level. Asymmetrically doped double-layer graphene (DLG; upper layer at Fermi energy
FEro = 0.3 eV, fixed in this figure, and lower layer at varying Er1) with an intercalated
hBN film (d = 1 nm thickness, corresponding to about 3 atomic layer) and gated with
a bias voltage Vi, = 1.2eV. (a-c) Spectrally resolved inelastic tunneling current for
different values of Erx1 when both graphene sheets have electron doping (see insets).
We show the separate contributions of (a) conduction-to-conduction and (b) valence-
to-conduction transitions, as well as (c) the sum of these two. Optical and acoustic
plasmons are marked with labels in (a), while lower-energy, sharp features are associ-
ated with the excitation of hBN optical phonons. (d) Fermi energy dependence for the
energies (left axis, solid curves) and lifetimes (right axis, dashed curves) of the optical
(green curves) and acoustic (blue curves) plasmon modes in the DLG structure. (e) De-
pendence of the total inelastic tunneling current (black curve) on Eg1, along with the
partial contributions of the optical (green curve) and acoustic (blue curve) plasmons.
(f-h) Spectrally resolved inelastic tunneling current for Erq = 0.9 eV with different
types of doping: (f) electron-hole, (g) hole-electron, and (h) hole-hole. Possible tran-
sitions between the valence and conduction bands of the two graphene sheets are
indicated by arrows in the insets. The contribution of conduction-to-conduction tun-
neling under electron-electron doping is shown for reference [dashed curves, taken

from (a)].
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As tunneling requires V4, # 0 and Ep; # FErpo. We take again Fp; >
FEro, and hence, favor tunneling from layer 1 (bottom) to layer 2 (top). We
explore the effect of varying the doping-level difference between the two
graphene layers by calculating the spectrally resolved inelastic tunneling cur-
rent as shown in Fig. 4.5(a), where we fix Epy = 0.3eV and eV}, = 1.2eV.
Energy splitting due to phonons in the hBN film can be observed at low-energy
transfers (below 0.3 eV), losing strength as the Fermi energy difference AEr =

FEr1 — Epo decreases.

Acoustic plasmons become apparent for AEr > 0.2 eV. These resonances
have an average plasmon lifetime of ~50-70 fs [Fig. 4.5(d), blue-dashed curve]
and undergo a redshift with increasing AEr [Fig. 4.5(d), blue-solid curve]
and undergo a redshift with increasing A Ey [Fig. 4.5(d), blue solid curve].
In contrast, optical plasmons become more pronounced when Epy > 2FEps;
they experience a milder redshift with increasing A Er [Fig. 4.5(d) green-solid
curve], and their lifetime rapidly increases from ~10 fs to ~80 fs [Fig. 4.5(d)

green-dashed curve].

We quantify the fraction of the total inelastic current invested into excit-
ing plasmons by comparing the area under the whole spectrum in Fig. 4.5(e)
for different values of Ep; [Fig. 4.5(e), black curve] to the area under either
the optical (green curve) or acoustic (blue curve) plasmon regions. The av-
erage generation efficiency for the selected values of 14, and Eps lies in the

~20%—60% range for optical plasmons and < 1% for acoustic modes.

4.3.4 Dependence on the twist angle

In practical devices, the alignment of the two graphene layers can be a chal-
lenge, so we examine the effect of a finite twist angle between their respective
lattices. Rotations in real space result in rotations around the I" point in mo-
mentum space. In Fig. 4.6(a) we depict two reciprocal lattices corresponding

to the bottom (1, black) and top (2, red) layers for a finite rotation angle 6.
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Figure 4.6: Plasmon generation in double-layer graphene: dependence on tilt angle.
(a) First Brillouin zones of two graphene layers tilted by an angle 6 (5° in this plot),
along with their respective Fermi surfaces (circular cross sections of their respective
Dirac cones; we plot only one per layer) for Fermi energies of Er1 = 1eVand Ery =
0.5 eV. (b) Spectrally resolved inelastic tunneling current for different tilt angles and
the following choice of parameters: eV}, = 1.2eV, Ep1 = 1eV, Erpy = 0.5eV, and
d = 1nm [see Fig. 4.5(a)]. Optical and acoustic plasmons are marked with labels,
while lower-energy, sharp features are associated with the excitation of hBN optical
phonons. (c) Decay of the partial contribution of optical-plasmon excitation to the
inelastic current at hw =~ 0.61 eV as a function of tilt angle.

The circles surrounding their respective K points represent the projections of
their Fermi surfaces on 2D momentum space for Fermi energies EFp; = 1 eV
and Epy = 0.5eV. Inelastic tunneling requires the two circles to be either
overlapping or closer to each other than the plasmon momentum, which is
small compared with the Fermi momenta (kp = Ey/huvp, i.e., the radii of the

plotted circles), leading to a cutoff angle ~ 10°.

We introduce the twist angle 6 in our formalism through the electron wave
function of the final states, so that we maintain the initial states as in eq. (4.2)

with K = K, but write the final wave function as

) i(pr—0)/2 \ |
[ _ 1 iqrfe K, R
R = O (Camn )N

Notice that K; and K are the K points corresponding to the centers of the
circles in Fig. 4.6(a). The spinor product in eq. (4.1) involving the parallel wave
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functions thus becomes

It I 1T mn . Ry — b i(K;—Ki+Q;—Q;)-(R-RY)
v (R)-¢;(R)pp (R) - 0 (RY) =5 ¢ d

X [14cos(¢i — o5 +0)),

withK; — K; = (27r/3a) (cos 0 —sin/v/3 — 1, sin 6 + cos 0/v/3 — 1/V/3).
Introducing this expression together with the parallel-wave-vector decompo-
sition of W [eq. (4.15)] into eq. (4.1) and performing the R and R/ integrals,
we find the condition k| + Ky — K; + Qf — Q; = 0, which guarantees mo-
mentum conservation. We find it convenient to separate the contribution of

the perpendicular wave functions as
Lk dz [ d2 Lok (2) Tm{W (ky, 2, 2/
||a z < <P ( )L)Of ( ) 2 (Z) Hl{ ( Hvzazaw)}a

where goiL'f are solutions corresponding to the two quantum wells that we
use to model the graphene layers (Appendix 4.A). Putting these elements to-
gether, and considering the initial electron to tunnel from the conduction
band of layer 1, we can write from eq. (4.1) the spectrally resolved tunneling

current density

2
J(w) = ;1’) :ﬁ /dQQ,» /d2k|| Iy (K, w)[1 + cos(¢; — ¢y — 0)]

X (5(h?)pr — hvpQ; + Ep1 — Epo — eV + hw)

X O(Ep1 — hurQ;) O(horQr — Era), (4.6)

where G = K;—K;+k), ¢y = tan™'[(Qyi— Gy )/ (Qzi—G )], and Q =
|Qi — G||. We note that the Dirac §-function ensures energy conservation in
eq. (4.6), limiting the spectral range to —vr G|+ (eVi, + Ep2 — Ep1) /h < w <
vrG| + (eWy, + Era — Er1)/h. For 6 = 0 (no twist), this expression reduces
to eq. (4.4).
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We represent in Fig. 4.6(b) the tunneling current obtained from eq. (4.6)
for different rotation angles when fixing the bias voltage to V}, = 1.2eV and
the Fermi energies to Fr; = 1 eV and Epy = 0.5 eV. When plotting the maxi-
mum of J(w) associated with the optical plasmon (hwgpt ~ (.61 eV), we find
a sharp decay with increasing twist angle [Fig. 4.6(c)], although we still main-
tain ~ 20% of the maximum value for 8 = 4°, further indicating a reasonable
tolerance of this type of device against unintended misalignments below the
1° level.

So far, we have considered electron doping in both of the graphene layers.
We can straightforwardly repeat the above analysis to find expressions that
apply to situations in which one or both of the graphene layers is doped with
holes. Furthermore, for sufficiently high V4, electrons can tunnel from the
valence band of layer 1 even when both layers have electron doping, which
leads to an additional term in the integrand of eq. (4.6); although we give the
resulting expression below these lines, we do not consider such high voltages
in this study. We find

2
J(w):szx/szi/kollfl(’f||aw) A(Qi Ky, w),

where
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A(Qi k), w) =
e-e doping:
= d(hvorQf — horQ; + Ep1 — Epa — Vi, + hw) Oy
x O(Er1 — hwr@;) O(hwrQr — Er2)
+ 6(hvrQy + hwrQ; + Er1 — Epa — ey, + hw)C_ O(hwr Q¢ — Era),

e-h doping:
= §(—hvrQy — horQ; + Ery + Eps — eV, + hw)C_

x O(Ep1 — hupQ;) O(Er2 — hupQy)
+ 6(hvr Q¢ — hwrQ; + Ex1 + Epa — ey, + hw)Cy ©(Er1 — horQ;)
+ 0(—hwrQf + hurQ; + Er1 + Epa — eVi, + hw)Cy. O(Ep2 — hur Q)
+ 6(hvp Q¢ + hwrQ; + Ex1 + Epa — eWg, 4+ hw)C_,

h-e doping:
= 5(thQf + hvpQ; — Ep1 — Epo — eVp + hw)C,
x O(hwpQ; — Ep1) ©(hvrQy — Er2),

h-h doping:
= 0(—hvrQy + vrQ; — Er1 + Er2 — eV}, + hw)Cy
x O(hvpQ; — Ep1) O(Ery — hopQy)
+6(horQyf + hopQ; — By + Epz — eVi, + Tw)C- O (lwpQ; — Er1),

with Cy = 1 + cos(¢; — qS’f — 0). The sign in C (i.e., + for valence-to-

valence or conduction-to-conduction transitions, and — otherwise) originates
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in the change of the sign of one of the components of the spinor in egs. (4.2)
and (4.5) needed to describe Dirac fermions in the lower Dirac cone instead
of the upper one.”® The labels e (electron) and h (hole) indicate the type of
doping in the first and second layers, respectively, and several d-functions ap-
pear in each expression depending on whether the electron originates in the
valence or conduction bands (for electron doping in layer 1) or just in the va-
lence band (for hole doping in layer 1), and whether the electron tunnels to
the valence or conduction bands (for hole doping in layer 2) or just to the
conduction band (for electron doping in layer 2). We define Er; and Egq as
positive quantities, although it is understood that they represent a lowering

of the Fermi energy relative to the Dirac point when doping with holes.

In Figs. 4.5(b) and 4.5(f)-4.5(h) we show results for two perfectly stacked
graphene layers with different combinations of h or e doping. Arrows in the
insets indicate the different tunneling channels. Additionally, we compare the
results to a reference spectrally resolved tunneling probability associated with
conduction-to-conduction transitions in two electron-doped graphene layers,
which we conclude, in fact, to be the most effective configuration to generate

plasmons under the conditions of the figure.

4.4 Plasmon generation in metal/insulator/graphene tun-
neling structures

We now compare the performance of DLG and MIG structures. In the latter,
one of the graphene layers is substituted by a semi-inifinite metal medium.
When the tunneling electrons go from the metal to the graphene sheet, not
all metals can comply with momentum conservation. In Fig. 4.7(a) we rep-
resent the surface projection of the Fermi spheres (assuming for simplicity

an independent-electron description of the metal Fermi sea) of different plas-
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monic metals (Au, Cu, and Al) compared with the first Brillouin zone of graphene,
where we further show the graphene Fermi surface for a doping level E&" =
1 eV. When comparing the Fermi wave vectors of these metals

(kA" = 12.1nm~ 1, k28 = 12.0nm™1, k§* = 13.6nm~ 1, k2 = 17.5nm 1)
with the wave vector at the graphene K point (X = 17.0 nm™!), considering
the small radius of the graphene Fermi circle (k§ = ES /hvp = 1.52nm™1),
we find that only the Al Fermi sea overlaps the graphene Dirac cone, so this
is the only one among the good plasmonic metals in which electrons can tun-
nel to graphene (without the mediation of phonons or defects). Then, it is
reasonable to consider the structure represented in Fig. 4.7(b), consisting of
a graphene layer on top of an aluminum surface coated with a 1nm layer of
oxide (Al/Als03/graphene). A gate voltage is then introduced to make metal
electrons tunnel into the doped graphene sheet and excite plasmons in the
MIG structure.

In contrast, when electrons tunnel from graphene to the metal, the sit-
uation is reversed, so it is favorable to have the occupied Dirac-cone region
outside the projected metal Fermi sea. This situation is encountered with dif-
ferent choices of metal, in particular with gold, separated from graphene by

three atomic layers of hBN, as depicted in Fig. 4.7(c) (Au/hBN/graphene).

For simplicity, we calculate the screened interaction (see Appendix 4.C) as-
similating the metal to a perfect electric conductor (|¢| — oo is a good approx-
imation for Au and Al within plasmonic energy range under consideration).
We further approximate the response of aluminum oxide by using a constant
isotropic permittivity a0, = 3 (the measured permittivity”* only changes by
~ 4% within the energy range under consideration). Finally, we use the RPA
conductivity for graphene®"“° and the anisotropic permittivity described in
Appendix 4.C for hBN.

We calculate the spectrally-resolved tunneling probability using eq. (4.1)

and the formalism described in the methods, with the metal wave functions
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(either as initial or final states, depending on the configuration) described as

1 il r

1 i

qr(r) = ©ire(2, Ky —e if

%\f( ) 901|f( Z\fz)\/z

The perpendicular component of these wave functions depend on the inci-
dent wave vector along z (i.e., ki‘f .) according to the explicit expressions de-
rived in Appendix 4.B under the assumption of a step potential to represent

the metal/insulator interface.

As graphene has two sublattices, a small phase difference eiky ‘@ has to be
introduced to account in the coupling to the metal wave functions, where a =
aXx is the C-C bond vector. Additionally, depending on the applied bias, the
graphene doping level, and the type of doping (i.e., electrons or holes), only
one or the two graphene Dirac cones can be engaged in the tunneling process.
Taking these elements into account, the expression for the inelastic tunneling
current calculated from eq. (4.1) needs to be specified for each of the following

MIG configurations:

e Al — Al,O3 — electron-doped-graphene [see Fig. 4.8(a)]

62
W) = 5 / &’Qy / @k; To(ky, iz, ) © (R = 12K2/2me )
X [1 + cos <qbf + ky : a)] O(hrQs — EY)
x 8 (thQf — eV — BE — h2k2/2me + B + m) ,

(4.7)
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e Al — Al,O3 — hole-doped-graphene [see Fig. 4.8(e)]

62
J(w) = 27T4/cﬁc,zf/cﬁk,- Lok, Kz, ) © (R = 12K2/2m. )
X {5 (—thQf —eVp + E%r - thiQ/zme + Elél + hw)

X [1 — cos (qbf + ky : a)} O(EE — hurQy)
4o (mFQf — Vi + EF — h2K2/2m, + ER + h/,u)

x [1+cos (¢ + k! - a))] }

(4.8)
e electron-doped-graphene — hBN — Au [see Fig. 4.8(f)]
Jw) =5 /dQQZ/d ks I3(ky, kyzow) © (R2kF/2me — ER")
{ —hopQ; — eV, + E& + h2k:]2c/2me — EfY + hw)
X [1 + cos (gf)- + k. a)} O(E% — hvpQ;)
% f F Fs
+0 (hwpQi — eV, + E§ + h?k7/2me — Ep" + hw)
X [1 — cos <¢)z —l—k'} . a)} },
(4.9)
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¢ hole-doped-graphene — hBN — Au [see Fig. 4.8(g)]

62 .
J(w) = Py /d2Qi/d3kf Ig(kH,kfz,w) © (h2k]2”/2me — Elé )
X [1 — CoS (¢>- + k! .aﬂ O(hpQ; — EZ)
g f Fi F
8 (e Qs — oV, — B+ K22 2me — B 4 )
(4.10)

where the arrows indicate the direction of electron tunneling, the parallel

wave vector transfer is kH =K+ Qi|f k|]L| ., and we have defined

Lok, kien ) = /M/Wwﬂzm)(wﬂ)%@&a

x Im {W(k”, z, z’,w)} (4.11)
for metal — graphene tunneling and

Iy b ) /m/Ww 2ot (e kp)or (2 kp) et (2)

x Im {W (ky, z, 2/, w) } (4.12)

for graphene — metal. We note that energy conservation can only be fulfilled
for energies hw < eV4 in all of the these structures.

The contour plots in Fig. 4.7(d) and 4.7(e) portray egs. (4.11) and (4.12) for
fixed values of k;, and ky, in the Al/Al;O3/graphene and Au/hBN/graphene
structures, respectively, with a graphene Fermi energy fixed to E& = 1eV.
They clearly reveal a plasmon mode arising from the poles of the screened
potential W. Additionally, Fig. 4.7(e) shows low-energy features associated
with hBN phonons in the Au/hBN/graphene structure.

In order to quantify the amount of inelastic current associated with plas-

mon generation, we separate the screened interaction W = Wdir  jyref

98



4.4. PLASMON GENERATION IN METAL/INSULATOR/GRAPHENE TUNNELING
STRUCTURES

graphene o
-1 1

dJ ALO, )e‘ dl hBN >e’
1 1

Al Au

graphene o

1.2

0.8

lOg I3(k!|| y UJ)

>
J
2

0.4

/Al,O3/graphene
1
(

Al
0
0
(d k'H nmﬁl) e k” (nmﬁl)

Figure 4.7: Plasmon generation in metal/insulator/graphene tunneling structures.
(a) Projection of the Fermi surface on the space of wave vectors parallel to the
graphene plane for Al (grey), Au (red), and Cu (violet), along with the first Brillouin
zone of graphene and its Fermi surface for Ebgf = 1eV doping (orange circle). (b)
Scheme of the Al/Al,Os/graphene structure gated to a bias voltage Vi,. The thickness
of the oxide layer is d = 1 nm. The tunneling current goes from Al to graphene. (c)
Scheme of the Au/hBN/graphene structure gated to a bias voltage V;,. The thickness
of the hBN layers is also d = 1 nm (about three atomic layers). The tunneling current
goes from graphene to Au. (d) Plasmon dispersion relation given by the poles of the
screened potential for the Al/Al,Os/graphene structure (1eV doping, tunneling from
aluminum to graphene) when the metal is assumed to respond as a perfect conduc-
tor [see eq. (4.11)]. (e) Same as (d) with Au instead of Al, hBN instead of AloO3, and
electrons tunneling from graphene to the metal [see eq. (4.12)].
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into the sum of the external (W9") and reflected (WW"f) components (see Ap-
pendix 4.C). Plasmons arise from the poles of W, originating in a denomi-
nator of the form (k) = 1 + 4rick| /w + & + ¢*1% (é; — 1 — A7iok) /w),
where €2 = /e, €2., ¢ = k“\/m, €9 and eg, are the permittivities
of the insulator (Al;O3 or hBN) along in-plane (x) and out-of-plane (z) direc-
tions, and o is the graphene conductivity. We now isolate this pole and write
wref = p=11Wf I the vicinity of the plasmon pole k| = kp, we can Taylor
expand n(ky) = 0’ (kp) (k| — kp) to first order and approximate the plasmon
contribution to egs. (4.11) and (4.12) as

19y Ky ) = — / dz / 07 o (2 kin) ot (2ot (7)ot (2 i)
x Im M (4.13)
U/(kp)(k\\ - kp) ’ .

T T
I8 (ky kg ) = — / dz / a2 ot (2ot (2, kg ot (2 bt ()

By using either egs. (4.11)-(4.12) or eqs. (4.13)-(4.14) into eqs. (4.7)-(4.10),
we obtain the total spectrally-resolved inelastic tunneling current .J(w) or the

contribution arising from plasmon generation Jp'(w), respectively.

We show the calculated spectrally-resolved currents J(w) and JP(w) in
Figs. 4.8(b) and 4.8(c) for Al — Al,O3 — electron-doped-graphene inelas-
tic tunneling with a bias voltage in the 0.1eV < eV}, < 1.2eV range and
Eff = 1eV. A significant spectral broadening in the total current [Fig. 4.8(b)]
originates in the availability of multiple inelastic channels associated for exam-
ple with electron-hole pair generation in the metal. Indeed, plasmons make a

relatively moderate contribution [see Fig. 4.8(c)], as we conclude by compar-
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Figure 4.8: Overview of plasmon generation via electron tunneling in MIG struc-
tures. (a) Energy bands to scale for the Al/Al;Os/graphene sandwich when graphene
is electron-doped to EF" = 1eV. This Fermi energy is shared by the other config-
urations shown in this figure. (b),(c) Spectrally resolved inelastic tunneling current
for different bias voltages for the system of (a): (b) total current and (c) plasmon-
excitation contribution [using eq. (4.13)]. The value of eV, for each curve coincides
with its spectral cutoff energy hw. (d) Dependence of the total inelastic tunneling
current (black) and partial plasmon contribution (red) on bias voltage after frequency
integration of eq. (4.7) for the system of (a). (e)-(g) Inelastic tunneling currents equiva-
lent to those in (d) for the configurations shown in the lower insets: (e) Al-Al;O3-hole-
doped graphene, (f) Au-hBN-electron-doped graphene, and (g) Au-hBN-hole-doped
graphene, as obtained from the frequency integral of eqs. (4.8), (4.9) and (4.10),
respectively. The graphene work function is ®8° = 4.7eV and we choose a bias
eV, = 0.7 eV in the sketches.
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ing the total to the plasmon-based w-integrated inelastic currents [Fig. 4.8(d)].
The plasmon generation efficiency (number of plasmons per tunneling elec-
tron, obtained from the ratio Jp'/J) varies from < 1076 for 14, < 0.3eV
to 0.1 for voltages close to 1.2 eV, where the plasmon generation rate is ~
1072 nm~2s 1. Fig. 4.8(e)-4.8(g) represents the total and plasmon-based in-
elastic currents for the configurations depicted below the graphs, from which
we conslude that Al — Al,O3 — hole-doped-graphene exhibits better perfor-

—25=1 while for

mance, with plasmon generation rates approaching ~ 1 nm
Au/hBN/graphene structures the currents are 7 orders of magnitude smaller.
Overall, comparing the performance of these MIG systems to DLG, we find the

latter to be much more efficient, with inelastic currents reaching 108 nm—2s—1,

4.5 Outlook

Electrical detection of graphene plasmons can also be accomplished within
the sandwich structures under consideration. A plasmon propagating through
the structure or laterally confined in a finite-size island can decay by transfer-
ring its energy to a tunneling electron under the appropriate bias conditions.
Indeed, using high-quality graphene and considering plasmons of frequency
and momentum in the gap region of both graphene layers, inelastic electron
tunneling should be the dominant channel of plasmon decay, leaving an elec-
tron in the low-potential layer and a hole in the high-potential one. In this
way, charge separation is naturally accomplished, thus facilitating the electri-
cal detection of the plasmon. There are two favorable factors that support this
possibility in graphene: the noted momentum mismatch that prevents direct
elastic tunneling (obviously, graphene quality is an important factor to pre-
vent defect-assisted elastic tunneling); and the high spatial concentration of

the plasmons, which result in large coupling to inelastic transitions compared
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with coupling to photons in tunneling-based inelastic light emission measure-
ments.“”~ As an alternative approach, electrical detection could be performed
by a separate graphene-based structure via thermoelectric measurements

or through thermo-optically activated nanoscale junctions.

These concepts are equally applicable to other van der Waals crystals sup-
porting 2D polaritons (e.g., plasmons in black phosphorous,“°*“°> or even op-
tical phonons in hBN). Then, our formalism can be easily adapted to materials
other than graphene by correcting the electron energies and matrix elements
of eq. (4.4) (e.g., using tight-binding electron wave functions“°°), as well as
the conductivities of eq. (4.16).

4.6 Conclusions

Our simulations reveal the suitability of DLG heterostructures as plasmon sources
since yields can go as high as 1 plasmon per tunneled electron for perfectly
stacked heterostructures. Nevertheless, even under moderately unfavorable
conditions produced by a finite twist angle between the two graphene sheets,
the efficiency is > 70% for a twist angle as large as 4°. Additionally, we find
the relation EFp; = 2ERo between the Fermi energies of the two layers to be
an optimum choice to maximize the plasmon emission rate of both acoustic
and optical plasmons, although the efficiency is still in the > 10% range for
order-unity variations in the Fermi energies. Furthermore, our study of MIG

structures leads to efficiencies that are orders of magnitude lower than DLG.

From an intuitive viewpoint, these conclusions can be understood using
the following argument. We are trying to project electrons from one electrode
into the other, which requires conservation of parallel momentum, differing
by just the plasmon momentum, which is small compared with the size of the

Brillouin zone. For DLG, the matching is most efficient with perfect alignment,
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involving large overlaps of their respective Dirac cones, while the tolerance
against twisting mentioned above can be roughly quantified by the angle re-
quired to produce total mismatch between the Dirac cones, of the order of
a few degrees for doping levels of 0.5-1eV. Unfortunately, when one of the
electrodes is a metal, although the conduction electron density at the sur-
face is two to three orders of magnitude larger than that of charge carriers
in graphene, they are distributed over a larger momentum-space region, ren-
dering the overlap with the Dirac cone smaller; this effect, together with a
weaker plasmon strength in MIG compared with DLG, results in much poorer

plasmon generation rates.

In conclusion, the DLG structure under consideration is convenient for the
design of integrated plasmonic circuitry. We envision plasmon generation and
detection in patches with a lateral size of the order of the plasmon wavelength
(~ 10 —100 nm for the plasmon energies under consideration). The proposed
source generates plasmons peaked at bias-dependent frequencies, but fur-
ther frequency selection could be performed upon transmission of the plas-
mons through engineered waveguides. These elements should grant us access
into optics-free devices, in which plasmons can perform different operations,
for example by interacting with quantum dots and localized molecular exci-
tations, truly relying on their very nature as collective electron excitations,
without the mediation of photons whatsoever. Plasmon-based sensors could
then consist of a plasmon generation stage, a transmission ribbon exposed
to the analyte, and a plasmon detection stage, with some degree of spectral
resolution possibly achieved by playing with the graphene Fermi levels and
the applied bias voltages. The versatility and excellent performance predicted
for the double-graphene sandwich structure opens exciting prospects for the

design of modular integrated devices with multiple functionalities.
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Appendices

4.A Effective quantum-well description of the out-of-plane
graphene electron wave function

We describe the out-of-plane electron wave function of conduction electrons
in graphene as a quantum well state. For simplicity, we assume a square
well potential of depth V; and width a. We focus on the first excited state,
which is antisymmetric along the normal direction z, just like the p. orbital in

graphene, as shown in the scheme shown in Fig. 4.A.1.

Nl

™~ )

—

—a/2 () a/2

Figure 4.A.1: Quantum well of width a and depth V|, with the first antisymmetric ex-
cited state superimposed at an energy —®.

We are therefore interested in the red wave function, which we denote
¢ (z). In this model, the parameters 1}, and a are used to fit (i) the state
binding energy to the graphene work function*’” ® = 4.7 eV; and (ii) the cen-
troid of the electron density outside the z = 0 plane to the value obtained for

the carbon 2p orbital.
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We find the quantum well state goJ‘(Z) by solving the Schrédinger equa-
tion (—h%/2m)d?p*(2)/dz% + [V(2) — Elp*(z) = 0, where V() is the
potential shown in the scheme above. The wave function of the first excited
state can be written A sin(ki, 2) inside the well, with ki, = \/2m(E + Vo) /h,
while it decays evanescently in the outer region as sign(z)Be*kou”Z', with
kout = v —2mE /h. The electron energy E < 0 is referred to the potential
outside the well. The continuity of the wave function and its derivate at the
well boundaries z = +a/2 lead to the condition —kiy, /kous = tan(kina/2),
which determines the discrete energies E' of asymmetric states. Combining
these conditions with normalization ([ dz|pt(2)|? = 1), we find |[A]> =
(a/2 4+ 1/kout) ' and |B|? = |A|? ekout@ sin? (kia/2).

The centroid of the wave function away from the z = 0 plane is calcu-
lated as [dz |z| |t (2)|? and compared with the centroid of the p, orbital of
graphene [dr |z||p,. (r)|*. We approximate the latter by using a tabulated
2p atomic carbon wave function,”™ ¢o,(r) = 23, 8je~*", where the pa-
rameters «; and 3; are expressed in the following table in atomic units:

a; Bi
110539 0.4610
0.61830 0.0134

2.26857 1.5905
5.23303 0.7291

A WO N = |

In the following plot we show the 2p electron probability density integrated

over parallel (z,y) directions ([dz [dy |pa,(r)|?, solid curve), compared

with the fitted well state (|~ (z)|?, dashed curve). The agreement between
the two probability densities is excellent using fitted values V; = 45eV and
a = 0.12 nm (see Fig. 4.A.2).

This value of a is close to (but smaller than) the interlayer spacing in graphite
(0.335nm), which is reasonable due to the spill out of @i outside the well.

Incidentally, the graphene-electron spill-out toward the gap must depend on
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Figure 4.A.2: Probability density of a quantum well (dashed red line) fitted to that of
a 2p orbital (solid blue line).

the details of the electron band structure, which should also vary with the
filling material. In particular, hBN presents a band gap of ~ 6eV,””” so the
jump between its conduction-band bottom and the chemical potential is sim-
ilar to the work function of graphene, and therefore, for simplicity we ignore
band-structure effects in hBN and calculate the tunneling electron states by

assuming a gap potential at the level of the surrounding vacuum.

4.B Electron wave functions in metal/insulator interfaces

We approximate the electron wave functions in the metal along the z-direction
as those of a quantum step-potential, assuming the configuration shown in
the scheme in Fig. 4.B.1 (metal for z < 0 and insulator for z > 0):

The Fermi energies of the metals here considered are E{:“ = 11.7eV and
Efv = 5.53 eV, referred to the bottom of the conduction band. The param-

eter E- accounts for the energy jump of the insulators, for which we take
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Y

Figure 4.B.1: Configuration with a metal for z < 0 and an insulator for z > 0.

Eé'203 = 3.5eV**? and EMBN = 2.6 eV (i.e., half of their gap energies, under
the assumption that their Fermilevels are in the center of the gap, aligned with
that of the metal). Moreover, T} and R; are the transmission and reflection
coefficients at the interface, respectively. By solving the time independent
Schrédinger equation (—h?/2me)d?pt(2)/d2? + V(2)pt(2) = Ept(2)
with V(z) = —Vp0(—=2) and Vj = E¢ + EF, an electron incident on the
interface from the metal side with energy in the insulator gap has the wave

function

1

(eikizz + Rle_ikizz) , z<0
SOzJ_(Z7 klz) =
Tye k22, z>0

Sy

where k;, is the electron wave vector along the interface normal in the metal
side, ko = /2mVo/h2 — k2, R1 = (ki» — ik2)/(ki» + iko) and T} =
2k;./(ki» + ike). These wave functions satisfy the orthonormality condition
[ dzpi(z, kiz)goi“(z, kl.) = 6(kiz, k,). For simplicity, we assume the elec-

tron effective mass to be the same as the free electron mass.
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Figure 4.C.1: Multilayer structure with the permittivities €23 and surface conductiv-
ities 0'1|2.

4.C Screened interaction potential

The screened interaction W (r,r’,w) is defined as the scalar potential pro-
duced at r by a charge placed at r’ and oscillating with frequency w. Because
of the 2D translational invariance of the system, we can write the screened

interaction as

W(r, v, w) = / (d;:)”Q oIk (R-R’) W(ky,z, 2, w) (4.15)
in terms of its parallel wave-vector components. We consider a multilayer
structure with the permittivities €133 and surface conductivities o5 as de-
fined by the scheme in Fig. 4.C.1 which can describe the two configurations
considered in this work: MIG (with on of the o; conductivities set to zero) and
DLG.

So it is natural to work in kH space (i.e., we assume an overall ki (R—R')
dependence). A point charge placed at 2z’ produces a direct scalar potential
(27r/k||)e_k“ =2l in vacuum (i.e., this is the direct Coulomb interaction term

in eq. (3)). Additionally, inside the bulk of an anisotropic dielectric (permit-
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tivity €, along z, and ¢, along x and y), the Poisson equation V - eV¢ = 0
has solutions ¢ = e*1%, where ¢ = kj\/e;/e. and we take the square
root to yield Im{q} > 0; this allows us to write the point-charge potential
as [27/(e.q)]e~4*~#| inside that medium. Now, the induced potential has
the form Ae”I* below the sandwich (z < 0), De*1(4=2) above it (= > d), and
Be % + (e 1(4=2) jnside the dielectric (0 < z < d). Here, the coefficients
A, B, C, and D are used to satisfy the boundary conditions, namely: (1) the
continuity of the potential at each graphene layer j = 1, 2; and (2) the jump
of normal displacement is equal to 47 times the induced charge. From the
continuity equation, the induced charge can be expressed as the divergence
of the current, and this in turn as the product of the conductivity o; times
the in-plane electric field. The jump of normal displacement at layer j is then
given by —47rikﬁoj /w times the potential. Solving the resulting system of four
equations for each position of the external charge 2/, we obtain, after some
tedious but straightforward algebra, the expression for the screened interac-
tion W(k”, z,2' ,w). Alternatively, a more direct Fabry-Perot-like derivation
can be made in terms of the transmission and reflection coefficients of the
dielectric/graphene/vacuum interface defined before.
Now, we generalize here for the asymmetric configuration sketched in

Fig. 4.C.1. First, we separate
Wk, 2 2 \w) = Wdir(k:”,z, 2 w) + Wref(k‘”, 2,2 W), (4.16)

into direct and surface-reflection contributions, where

(1/e)e Filz=2 2,2 <0
. 2 1/ez)e k=1, 2 >d
Wdlr(k”,z,z,w):—ﬁx ( /f3)e / Z, 2
k| (1/&)e 41>, 0<z2 <d
0, otherwise
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4.C. SCREENED INTERACTION POTENTIAL

and

(27T/kH)

f / o
W (ky, 2,2, w) = 1= A Ao 24l

1/6)1:“ (2d—z— z)[A +A,(A2+Bé) —qu]7

(

(1/e3) By eFi(d=2) [e 9(d==') L Al e q(d+z)} 7

(€2/€3€1) By By eF1(d=2+2) o —ad

(1/e3)Bs ok (d—2") [e q(d—z )—f-A/ e—q(d—i—z)]7

(1/€) {A’ e q2+z)+A/ e—a(2d—2—2")
—|—A’A’ [e q(2d+2z— z)_|_e q(2d— z+z’)} }7

(€2/€1€3) By By eF1ld+== Z) —qd,

() By 40 ot 1 e at<1],

(1/€;)ek1z+2) [Ay + AY(A +Bi)e—2qd} :

d< z,
d< z,

d< z,
0<z<d,

0<2z<d,
0<2z<d,
z <0,

d< 2
0<z2 <d
2'<0
d<2

0<2z2 <d
2 <0
d< 2
0<2z2 <d
Z <0

If the material 2 is isotropic, we have ¢ = k| and and €, = €. This ex-

1M

pression is also applicable when the material in medium 2 is anisotropic (e.g.,
hBN) by defining €2 = /ea,€5, as the geometrical average of the in-plane
(x) and out-of-plane (z) permittivities, with the square root chosen to yield

a positive imaginary part. Also, ¢ = k|\/€2:/€e2. (with Re{q} > 0) is the
effective out-of-plane wave vector in that medium, and we have defined the



4.D. FRESNEL'S REFLECTION COEFFICIENT

coefficients

By =2¢1/(e1 + € + B1),
By = (&2/e1)Bu,

By = 2e3/(e3 + €2 + 52),
B) = (é&2/e3)Ba,

A =B 1,

Al =Bj -1,

Bj = dmik)oj/w,

for 5 = 1, 2. In this work, we approximate the permittivity of alumina as a
constant value €; = €ep,0, = 3, we use the perfect-conductor limit for metals
(Je1] — o0), we describe the graphene conductivity in the RPA,°"“*" and we

use the expression

€2(w) & € + Z sti/[wii — wlw + iya)],
i=1,2
for the conductivity of hBN, where e, , = 4.10, 5,1 = 70.8meV, w,; =
97.1meV, 7,1 = 0.99meV, 5,0 = 126 meV, w,o = 187meV, and v,2 =
9.92meV for the z component (¢ = z); and e = 4.95, 5,1 = 232meV,
wz1 = 170meV, and 7,1 = 3.6 meV, so = 43.5meV, w;s = 95.1 meV, and
Ye2 = 4.3 meV for the z component (¢ = z). The latter incorporates hBN

phonons as Lorentzians terms.

4.D Fresnel’s reflection coefficient

Within the quasistatic approximation, the Fresnel reflection coefficient of the

graphene-hBN-graphene sandwich vanishes for s-polarization, whereas it can

12



4.E. ADDITIONAL PLOTS. DEPENDENCE ON INSULATING MATERIAL

be readily extracted from eq. (4.16) for p-polarization. Indeed, considering a
distant point source in the z < 0 region, the external and reflected scalar
potentials below the sandwich are (27r/k||)e’kllz and o< —77p, (27r/k||)ekllz,
which allow us to identify

B Al + Alz(Al + Bi)e_qu

rp = = (4.17)

by comparison to eq. (4.16) for light incident on layer 1.

4.E Additional plots. Dependence on insulating material

0 logyo(Im{rp}) 1 0 logolJ(ky,w)l| (arb. units) 1
[ I 0

d=1nm -

Er1 =1eV
Ers = 0.5eV
eVp =1.2eV
10 10
ky / ke Ky /ke1 J(w) (nm2)

(a) (b) (c)

Figure 4.E.1: Energy- and momentum-resolved electron tunneling with a vacuum
gap. Same as Fig. 4.2 with the hBN film replaced by vacuum at T' = 300 K and with
eV, embedding the Fermi energies of the two layers: eV, + Epy — Ep1 — eVh,.
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4.E. ADDITIONAL PLOTS. DEPENDENCE ON INSULATING MATERIAL

108

d(nm)  scaling

1 1

Electron current (10° s-' nm-)

FEr = 1eV )
1014 F Ep, = 0.5eV L 2 2x10
1 1 1 1 i 1 1 1 1 1
0 0.5 1 1.5 2 0 0.5 1 1.5 2 25
@) hw (eV) (b) Vo (eV)

Figure 4.E.2: Probability of plasmon-generation by electron tunneling with a vac-
uum gap. Same as Figs. 4.4(a,b) with the hBN film replaced by vacuum at T' = 300 K
and with eV}, embedding the Fermi energies of the two layers: eV}, + Ero — Ep1 —
eVb .
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Conclusions and Outlook

Y al cabo, nada os debo; debéisme cuanto he escrito.

- Antonio Machado

We devote the following lines to recapitulate the major findings in this the-
sis, to give an outlook of possible follow-up works and to show their potential
impact.

In chapter 2 we demonstrated that highly-doped finite CNTs exhibit in-
tense plasmon resonances that can mediate the interaction between quan-
tum emitters placed in their proximity. In particular, CNT plasmons are found
to produce optical extinction cross-sections exceeding the CNT projected ar-
eas, with Purcell factors for proximal quantum emitters reaching ~ 108, en-
abling strong interaction between emitters located at opposite ends of a CNT.
These plasmons lie in the near-infrared part of the spectrum for realistic tube
dimensions, thus holding potential for their use in technological applications
within that frequency range. We introduce a classical electromagnetic de-
scription of the CNT optical response that predicts plasmon energies and cou-
pling strengths in good agreement with those obtained from an atomistic model

(tight-binding description of the electronic states combined with RPA linear re-
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sponse) both in the case of capped and uncapped CNTs. Our results indicate a
strong potential for highly-doped CNTs as robust, actively tunable plasmonic
elements that are well-suited for nanophotonic and quantum-optics applica-

tions.

In chapter 3 we found out that optical resonances supported by various
materials constitute an under-explored possibility to enhance the electric fields
driving HHG, which we have demonstrated there through the use of an intu-
itive model that contains much of the relevant physics; our conclusions based
on the SSH 1D chain are corroborated in their carbon-based analogs. Our find-
ings have shown that in the case of metals or doped semiconductors, where
free electrons are present, their interactions become extremely important in
both the linear and nonlinear response, and not only when dealing with opti-
cal resonances. While HHG appears to be most efficient in semiconductors for
harmonics generated below the band gap, the addition of a small amount of
doping charge can produce an intraband plasmon excitation that falls in this
regime, concentrating the impinging electromagnetic fields and boosting the
HHG efficiency; this finding suggests the exploration of highly-doped semicon-
ducting materials as a promising platform for solid-state HHG.

In chapter 4 we showed that the double layer graphene structure under
consideration is suitable as plasmon source since the plasmon yield canreach 1
(per tunneled electron) for perfectly stacked heterostructures. But even under
moderately unfavorable conditions produced by a finite twist angle between
the two graphene sheets, the efficiency is > 70% for a twist angle as large as
4°. Additionally, we find the relation Er; = 2FEwr9 between the Fermi energies
of the two layers to be an optimum choice to maximize the plasmon emission
rate of both acoustic and optical plasmons, although the efficiency is still in the
> 10% range for order-unity variations in the Fermi energies. Furthermore,
our study of metal-insulator-graphene structures leads to efficiencies that are

orders of magnitude lower than double layer graphene.
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These findings make DLG convenient for the design of integrated plasmonic
circuits, as it is moderately robust against twisting of the layers, and plas-
mon generation takes place for broad ranges of doping (i.e., it is also toler-
ant concerning variations in doping). The proposed source generates plas-
mons peaked at bias-dependent frequencies, but further frequency selection
could be performed upon transmission of the plasmons through engineered
waveguides. These elements should grant us access into optics-free devices,
in which plasmons can perform different operations, for example by inter-
acting with quantum dots and localized molecular excitations, truly relying
on their very nature as collective electron excitations, without the media-
tion of photons whatsoever. Plasmon-based sensors could then consist of
a plasmon generation stage, a transmission ribbon exposed to the analyte,
and a plasmon detection stage, with some degree of spectral resolution pos-
sibly achieved by playing with the graphene Fermi levels and the applied bias
voltages. The versatility and excellent performance predicted for the double-
graphene sandwich structure opens exciting prospects for the design of mod-

ular integrated devices with multiple functionalities.
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Abbreviations

AFM atomic force microscope

a.u. arbitrary or atomic unit

BEM boundary element method

CNT carbon nanotube

cw continuous wave

DFT density functional theory

DLG double-layer graphene

EELS electron energy loss spectroscopy
EM electromagnetic

EOM equation of motion

eV electronvolt

FP Fabry-Perot

fs femtosecond

FWHM full-width-at-half-maximum

hBN hexagonal boron nitride

HF Hartree-Fock

LP localized plasmon

MIG metal-insulator-graphene

NIR near infrared

nm nanometer

PAH polycyclic aromatic hydrocarbon
QE quantum emitter

QM guantum mechanics/al

RPA random phase approximation
SP surface plasmon

SSH Su-Schrieffer-Heeger

B tight-binding

TDDFT time-dependent density functional theory
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TE
THz
Tl
™
XUuv

transverse electric
Teraherzt
topological insulator
transverse magnetic

extreme ultraviolet
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