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Resumen

Desde hace más de una década, se viene reconociendo cada vez más la necesidad
de los Sistemas de Posicionamiento en Interiores (IPS, por sus siglas en inglés). No
existe una tecnología actual capaz de proporcionar estimaciones precisas y confiables
de posición para entornos de interior que sea aplicable a la mayoría de los entornos y
aplicaciones. Como consecuencia, se han propuesto muchas soluciones que se basan
en una tecnología específica y están destinadas a entornos y aplicaciones específicas.
Entre las soluciones más populares están las basadas en fingerprinting, principalmente
usando las señales de puntos de acceso WiFi y balizas Bluetooth Low Energy (BLE).
En la implantación de un IPS basado en fingerprinting existen tres etapas: Descripción
del entorno, ajuste del modelo, y evaluación del sistema.

Esta tesis se enfoca principalmente en las etapas de descripción del modelo y eval-
uación para sistemas basados en fingerprinting, aunque algunas de sus aportaciones
son aplicables a otros sistemas. La primera aportación de la tesis es un meta-review
que sirve como introducción a los sistemas de posicionamiento en interiores, el estado
actual del arte, y una evaluación crítica sobre el impacto de las publicaciones sobre
IPS. El meta-review es una revisión sistemática de surveys que tratan sistemas de
posicionamiento aplicados a entornos interiores publicados en los últimos cinco años.
La segunda aportación es dos datasets abiertos de mediciones de RSS de WiFi y
BLE RSS recolectadas para fomentar la experimentación y la reproducibilidad en las
soluciones para el posicionamiento en interiores. La tercera es un conjunto de guías
y métodos para mejorar la recolección de muestras de señales WiFi y BLE. Las guías
se enfocan en las herramientas y metodologías para llevar a cabo la recolección y
la selección de posiciones. Los métodos permiten determinar la posición de puntos
de acceso WiFi y usar una regresión que brinda mejores estimaciones de intensidad
que otros modelos. La cuarta aportación de la tesis es un método de selección de
posiciones para actualizar la caracterización del entorno. La quinta aportación de la
tesis es un conjunto de guías y un procedimiento para realizar la evaluación de IPS.
Las guías son resultado de experiencias en la evaluación de IPS en competiciones.
El método proporciona una forma de medir el error de posicionamiento en la que la
magnitud del error es medida como la distancia de la ruta que une la posición real y
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la posición estimada. Además, se analiza la localidad del error asociado a un IPS.



Abstract

The need for Indoor Positioning Systems (IPS) has been increasingly recognized for
more than a decade. There is no current technology capable of providing accurate
and reliable position estimates for indoor environments that applies to most environ-
ments and applications. As a consequence, many solutions have been proposed that
are based on a specific technology and are intended for specific environments and
applications. Among the most popular solutions are those based on fingerprinting,
mainly using signals from WiFi access points and Bluetooth Low Energy (BLE) bea-
cons. In the implementation of an IPS based on fingerprinting, there are three stages:
Environment description, model setup, and evaluation.

This dissertation focuses mainly on the stages of model description and evalua-
tion for fingerprinting-based IPS, although some of its contributions apply to other
systems. The first contribution of the dissertation is a meta-review that serves as
an introduction to indoor positioning systems, the current state of the art, and a
critical evaluation of the impact of IPS publications. The meta-review is the result of
a systematic review of surveys that dealt with positioning systems applied to indoor
settings in the last five years. The second contribution is two open datasets of WiFi
and BLE RSS measurements intended to foster experimentation and reproducibility
of indoor positioning solutions. The third contribution is a set of guides and methods
to improve the collection of samples of WiFi and BLE signals. The guides focus on
the tools and methodologies to carry out the collection and selection of positions. The
methods allow determining the position of WiFi access points and provide a regres-
sion that produces better signal intensity estimates than other models. The fourth
contribution of the dissertation is a method for selecting the positions the collection
should be carried out to update the characterization of the environment. The fifth
contribution of the dissertation is a set of guides and a procedure to perform the
IPS evaluation. The guides are the result of experiences in the evaluation of IPS
in competitions. The procedure provides a way to measure the positioning error in
which the magnitude of the error is measured as the distance of the route between the
actual position and the estimated position. Also, the locality of the error associated
with an IPS is analyzed.
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Chapter 1

Introduction

The first positioning system that we humans had was our mind, which works based
on the information gathered first by our senses – mainly sight – and later by repre-
sentations and devices created by ourselves. The information for that system comes
from experience, either by traveling through the environment or by receiving instruc-
tions from, e.g., another person or a book [7]. Pieces of the information – landmarks,
routes, and regions – are given some relevance and learned, and relations are estab-
lished among them. The learned information, considering the invariant character of
the sites and boundaries is used in conjunction to our heading – our facing direction
– to get a sense of direction and position [4].

Our capacity to accurately determine our position at increasingly larger scales
improved alongside technological advancements to quantify and describe our envi-
ronment. We developed the ability to measure distance, angles and time and the
mathematical tools to support them, like trigonometry. We improved landmarks
recognition using lighthouses and telescopes. We built devices that helped us relating
landmarks and measures, like the compass or the sextant. We created representa-
tions of the landmarks relation, like the maps. But despite those advancements, the
only known positioning system was still our mind. The great leap came with the
development of radio systems.

Experiments performed by Heinrich Hertz in 1888 discovered that it was possi-
ble to discover the source of a radio emission. Hertz also determined several other
characteristics of radio propagation, including its propagation speed. The radio di-
rection finder systems appeared along the 20𝑡ℎ century, as electronic circuits and time
measurement systems improved. Eventually, position determination systems based
on fixed terrestrial radio beacons appeared and provided different capabilities and
accuracies. Examples of such systems include the British Decca Navigator System,
the Russian CHAYKA, the USA LORAN, and the multinational Omega [15]. All of
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them were gradually replaced by GPS, mainly after the “Selective Availabilit” that
degraded accuracy for civilian applications, was discontinued from GPS in 2000. The
ground-based fixed beacons were mostly replaced by a constellation of precisely-timed
satellites that provided global positioning and navigational services.

It is difficult to imagine our lives without a positioning system giving us support.
GPS or similar GNNS constellations have shaped our modern life. Many current
activities, like transportation and large engineering projects, could not be possible
without positioning systems. But beyond large-scale activities, our daily activities
are also shaped by our automatically determined position. From direction indications
in a tourism trip to personalized advertisements, many of us enjoy the benefits of the
development of Location-Based Services (LBS).

LBS are defined as computer applications that provide their goal content adapted
to the position and context of the device and the user [3, 12]. Apart from GNNS
services, LBS has been boosted by smartphones popularity. An increasing number
of the world’s population owns a smartphone and has Internet connectivity. For
some people, a smartphone is the first and the last device with which we interact
every day – apart perhaps from the glasses to read their screens. People want their
services provided in their smartphones, everything from guidance, banking and office
tools to shopping, social networking, and entertainment. Furthermore, as we have
our smartphones next to us at almost all times, they create excellent possibilities to
deliver LBS. The global market knows that, and it is why LBS and their supporting
technologies draw a lot of interest and investment [9, 1].

While the 20th century saw the success of the global positioning systems, the
21st century will see the success of Indoor Positioning Systems (IPSs) [6, 5, 16]. In
developed countries, people spend most of their time indoors [8, 14]. As the whole
world develops, this tendency will expand to other countries. However, position
estimation indoors still lack a generally applicable, low-cost solution that allows LBS
tailored for indoor scenarios.

1.1 Motivation

The position estimation of mobile application users in indoor environments is the
subject of lots of works in academia, ranging from bachelor projects to doctoral
dissertations to well-funded cross-national projects. The amount of publications on
the subject, of varying quality and in a variety of media, is so large that it is difficult
to fully survey them all. It is also difficult to find all the reasons behind this thirst
for publishing about indoor positioning. Some likely answers may include a general
urge for publication in academia; a variety of new publication media; the ease of
implementing a simple and cheap positioning system, thus encouraging its further
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research and publication; the elusiveness of a system that is accurate, cheap and
applicable to many indoor environments at the same time; and the promise from
industry of rapid adoption and billionaire investments for such golden system.

The golden IPS should ideally be used in the way that GNSS currently is for
smartphones outdoors, but adapted to indoor requirement and challenges. It would
be a technology, a technique, a method or their combination that feature a set of
traits that can be inferred from the goal of obtaining the capabilities of GNNS for
smartphones and from several common evaluation metrics for IPS [2, 13, 17, 18, 19],
later presented in Chapter 2. The set of desirable traits is:

1. It can be used smoothly, without diverting the user main focus. The user would
not need to switch to another activity for receiving position estimates.

2. It uses only sensors in current smartphones or at least in smartphones foreseen
in a very near future (e.g., support for 5G).

3. It does not requires the deployment of devices whose acquisition or maintenance
cost rivals with expected positioning benefits, even when the system is scaled
up.

4. It achieves an accuracy in the order of tens of centimeters.

5. It has context-related accuracy predictability. For example, it is expected to
obtain large positioning errors from a GNNS-based receiver inside a tunnel.

6. The privacy compromises may not become a high concern for users. Users
feeling that their positions are shared with others may be reluctant to use a
positioning service.

In the pursuit of the golden IPS, several technologies have been used to build
system proposals that tried to achieve and sometimes achieved, some of the previous
traits. Technologies like (visible or infrared) light, (ultra or audible) sound, (Earth or
artificial) magnetic fields, computer vision, UWB, WiFi, BLE, RFID, NFC, Zigbee,
GSM, have been used to build solutions that highly varied in complexity and cost as
well as in accuracy and coverage. The iconic accuracy and coverage chart from the
habilitation thesis by Mautz [10] from seven years ago still holds true.

The combination of all the previous traits sets the bar high for any proposal. The
fist trait rules out proposals based on technologies like NFC or computer vision. The
second trait discards those based on technologies that require signal direction mea-
surement, like light-based or sound-based approaches. The third trait may exclude
those based on technologies like pseudolites, UWB or artificial magnetic fields. The
fourth trait rejects current proposals based on technologies like WiFi, BLE, RFID,
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GSM or Zigbee. Although the last two are rather related to system characterization
or design restrictions, the first four traits are enough to support the idea that cur-
rent proposals are not definitive solutions for indoor positioning and research should
continue until new disruptive technology may finally arrive, much like GPS did for
outdoors.

Until the breakthrough may finally arrive, the technologies used in current pro-
posals so far have margins for improvements. Of that many agree and though those
achievable improvements may not be enough for the ultimate IPS, they may approach
to the requirements of many LBS applications which, for example, do not require ac-
curacies as low as stated by the accuracy trait. Among the proposed IPS, those
based on the measured signal strength (RSS) from WiFi access points have been par-
ticularly popular. Apart from the accuracy trait, those proposals have complied to
several degrees with the other traits. The smartphone-based WiFi RSS-based IPS
have typical accuracies of 4 m to 7m [11], which is enough for some applications that
require positioning in large indoor areas.

Much like with the positioning process performed in our mind, an (indoor) po-
sitioning system required previous information of the environment to then compute
position estimates. In the case of systems based on radio frequencies, that knowledge
is the position and characteristics of the emitters or the characterization of how the
emitters’ signals are perceived across an environment. Once the features of the envi-
ronment are known, a system needs to be trained for the environment. The model that
translates feature indications to position estimation needs to be discovered or tuned.
Finally, the system needs to be assessed, so that corrective actions may be taken
if necessary. Therefore, an WiFi-based IPS construction may transit through three
well-differentiated stages: Environment Characterization, Model Setup, and Evalu-
ation. This dissertation focuses on the first and third stages, mainly for the case
of smartphone-based WiFi RSS-based IPS, which typically apply the fingerprinting
technique.

1.2 Contributions

Many studies in IPS focus on the application of data analysis and machine learning to
use the hardware already present in modern indoor environments, instead of develop-
ing radical new technologies. Such focus is in part a result of the current development
and high interest in data processing techniques. This dissertation is part of that flow,
but it states boundaries on what may be expected from current indoor positioning
systems while describing solutions that allow achieving practical implementations of
indoor positioning systems. This dissertation provides an end-to-end overview of a
smartphone-based WiFi RSS-based IPS, showing practical improvements across the
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Environment Characterization and Evaluation stages of the construction of such IPS
to enforce the thesis that the IPS improvement is an integrative process of multiple
refinements. Therefore, refinements that improve upon the state of the art across the
three stages are part of the contributions of this thesis. In particular, the contribu-
tions are:

1. [Chapter 2]A meta-review of IPS research, sharing insights on the abundance,
significance and the provided actual improvement of academic publications.
Also, the most prominent of the found works are highlighted and a general
overview of IPS is provided.

2. [Chapter 3]Two RSS datasets, one from WiFi measurements and the other from
BLE measurements. The datasets, which are freely and openly available, were
collected, curated and described to foster IPS development and evaluation.

3. [Chapter 4]Refinements to the environment characterization for WiFi finger-
printing to reduce the effort required for radiomap creation. The effort reduc-
tion is addressed from tools that ease the collection, the selection of reference
points and the enrichment of radio-maps using regression methods.

4. [Chapter 5]Refinements to robustness to changes in the environment. The ro-
bustness is dealt with the selection of survey points for radio-map update and
the identification of the non-nominal situations that affects positioning.

5. [Chapter 6]Refinements to evaluation procedures that ease comparisons among
IPS regarding their accuracy and that improves positioning errors measurement.
The evaluation procedures are addressed regarding insights from experiences of
IPS competition challenges. Also, a novel measurement procedure of positioning
errors and the local analysis of positioning errors are provided.

Chapter 7 ends this dissertation by providing concluding remarks.
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Chapter 2

Positioning Systems for Indoor
Scenarios

An accurate and reliable IPS applicable to most indoor scenarios has been sought
for many years. The number of technologies, techniques, and approaches in general
used in IPS proposals is remarkable. Such diversity, coupled with the lack of strict
and verifiable evaluations, leads to difficulties for appreciating the true value of most
proposals. This chapter first provides an introduction to the different technologies,
techniques and some methods employed for indoor position estimation. Later, it fo-
cuses on WLAN-based fingerprinting, which is the main focus of this dissertation.
The chapter describes the inner workings of WLAN-based fingerprinting, its variants,
and known challenges. Finally, the chapter provides a critical discussion on the cur-
rent state of IPS academic research from the results of a meta-review of 61 surveys
on IPS from the last 5 years.

2.1 The Case of Indoor Positioning

Location and position are sometimes used in an interchangeable manner. Through
this dissertation, however, the terms are given distinct meanings. Positioning is
understood as the action of determining something’s or someone’s position. Position
is the answer to the question “where something/someone is” [108]. For Pérez-Navarro
et al. [101], “position corresponds to the coordinates of a specific point in a coordinate
system”, a definition that is also supported by Brena et al. [16]. The terms position
and coordinate system are widely assumed to be defined with respect to the Earth
surface. They can also be defined locally to cover only a given surface or volume, e.g.,
the floor of a building. The term location [101], or place [16], refers to a specific area
or point that is used as a reference, i.e., a location can give context to a position.
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Despite the term Indoor Location Systems appears largely in the indoor position-
ing literature, this dissertation always refers to Indoor Positioning Systems as its
focus. Another important term is navigation. According to the USA Federal Radio
Navigation Plan [129], navigation is “the process of planning, recording, and control-
ling the movement of a craft or vehicle from one place to another”. This dissertation
prefers to extend the subject of the action to any entity moving between two loca-
tions and explicitly state that the connecting route may have given requirements,
thus favoring the definition from Pérez-Navarro et al. [101].

Positioning systems can be global or local. Global positioning systems can provide
position estimations world-wide. The global positioning systems currently available
are collectively called the Global Navigation Satellite System (GNSS). Each GNSS
(sub)system provides positioning, navigation, and timing determination capabilities
and employs individual constellations of satellites that operate in conjunction with
ground stations [129]. The best-known GNSS system is GPS. GPS has had a great
impact on the development of Location-Based Services (LBS) since it became fully
operational in 1996 [108]. The Russian GLONASS, the European Galileo, and the
Chinese Beidou are currently the other GNSS systems, although their coverage does
not match that of GPS.

The GNSS-based positioning has had large success as a result of its availabil-
ity, coverage, and the existence of receivers that are both cheap and compact-sized.
However, it is not adequate for all scenarios and applications because of accuracy
requirements and the degradation of satellite signals. Local positioning systems are
the ones applied for those specific scenarios and applications where GNNS positioning
is not appropriate. The locality or coverage of those positioning systems varies sig-
nificantly. They range from systems based on networks of pseudolites that can cover
very large areas to light-based systems that are typically applied to rooms. This dis-
sertation focuses on local positioning systems intended to provide position estimation
inside buildings, which are known as Indoor Positioning Systems.

The materials and structures of modern buildings may influence notably on the
signal from GNNS. At indoors, those signals reach receivers with a level of degra-
dation that makes the civilian-graded accuracy of GPS insufficient for many indoor
applications. Furthermore, indoor environments are normally crowded with fixed and
moving obstacles, including people. The obstacles interact in undesirable ways with
the signals, causing reflections and absorption. Given that people are increasingly
spending most of their time indoors [101], the large efforts devoted along the past 15
years to find new solutions to IPS seems reasonable.

Even if GNSS signals were not so significantly degraded by buildings, local posi-
tioning systems will still be needed for indoor LBS applications. Some applications
require positioning accuracies far beyond those GNNS may provide. For example, a
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5m

20m

Figure 2.1: The magnitude of a positioning error matters differently to a person
depending on the context.

robot performing precise operations and whose next move could not be determined
in an off-line planning step will probably require a millimeter accuracy. Furthermore,
the accuracy requirements for pedestrian applications may be related to the size of
the target environment. The comfort thresholds of people regarding the positioning
accuracy can be related to the free space they have around, as depicted in Figure 2.1.
The typical accuracy for a smartphone’s GNSS receptor under open sky conditions
is 4.9m [130], which is fine for someone at a park or wide street. However, that
distance may be misleading in indoor environments. For example, a mean accuracy
of 5m would be insufficient to tell apart consecutive lanes among bookshelves in a
library, which sometimes are less than 1 meter apart from each other. Therefore, an
IPS applicable to most indoors environments and applications would preferably have
mean accuracies around 1m or 2m.

Accuracy is the degree of conformance, or the closeness, between an estimated
or measured position and the true position of a subject or object at a given time
[129]. The above accuracy definition is wide. However, given the significant number
of different existing (indoor) positioning systems, it is difficult to have a narrower
definition or only one metric [57, 102]. Despite accuracy is of utmost importance, it
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is not the only criterion taken into account for assessing an IPS. Coverage, complexity,
robustness, scalability, cost, privacy and power consumption are metrics typically used
for IPS evaluation and comparison [12, 123, 110, 152, 156]:

∙ Coverage refers to the range of the signals from the technology that supports
an IPS [12]. A high coverage can translate into the IPS’ applicability to large
areas using a low number of emitters [156].

∙ Complexity refers to the efforts required for the construction, deployment or
configuration of the hardware and software of the IPS [123, 152, 110].

∙ Robustness is the system’s resilience to conditions beyond those that are con-
sidered nominal [123].

∙ Scalability relates to the system’s ability to provide positioning for a large num-
ber of users in large spaces [123, 156].

∙ Cost refers to any kind of cost related to the positioning devices or the required
infrastructure [12, 123].

∙ Privacy is related to system restrictions that avoid the collection of information
that may be used to identify or track the users [12, 110, 152].

∙ Finally, the lower the power requirements, the better. In user devices, a low
power requirement translates into a low battery drain. For the IPS infrastruc-
ture, a low power consumption may translate into that only small efforts are
required for the maintenance of, e.g., battery-powered devices [12, 156].

2.2 An Overview of IPS Solutions

The high demand for IPS has driven an increasing number of research works along
the past 15 years or more. The number of IPS proposals found in this period is
very large, which is reflected in the number of references of recent IPS-related survey
works. Some IPS-related reviews have over 200 references [17, 51, 122, 65, 71, 109]
or even over 300 references [94]. The insights presented in the rest of this chapter are
mainly based on 61 IPS-related survey works [1, 48, 54, 60, 84, 89, 116, 119, 150, 153,
3, 13, 17, 19, 73, 25, 26, 51, 70, 91, 83, 99, 118, 122, 132, 143, 12, 16, 21, 22, 32, 65, 80,
87, 95, 98, 110, 121, 123, 142, 152, 47, 71, 90, 94, 111, 112, 128, 140, 159, 161, 2, 58,
64, 72, 78, 23, 101, 109, 131, 134, 156] published between 2015 and 2019. Of them, 47
were published in periodic publication journals. Figure 2.2 presents the main details
of the steps followed to identify the 61 survey works. Additionally, Table 2.1 shows
the number of the selected surveys that were published each year.
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IPS IPR ILRILS

23k 24k 21k 18k

Inclusion criteria

Exclusion criteria

120

61

Search engine:

Google Scholar, with the settings:
• Search in the whole document.
• Results ordered by relevance.
• Year filtering set to after 2014.

Query terms:

Four separate search terms, formed each by 
three of the words:
• Indoor (I)
• Positioning (P) or Localization (L)
• Survey (S) or Review (R).

Inclusion Criteria

• Among the first 100 results.
• The Title and Abstract or only the 

Abstract indicate that it is a survey or 
review work.

Exclusion criteria

• Year < 2015.
• Not in English. 
• No DOI.
• It does not largely deals with indoor 

positioning works.
• Number of references ≤ 15.
• Non-peer-reviewed publication.
• Number of pages ≤ 5.

Figure 2.2: Surveys identification process followed for this work. The numbers inside
the ellipses indicate the number of works obtained at each step.

Table 2.1: Publication year distribution of the selected surveys.

Year 2015 2016 2017 2018 2019
Number 12 16 13 13 7

The notable number of surveys has driven them into narrow focuses. However,
some of them have addressed a broad spectrum of solutions applicable to indoor posi-
tioning [143, 12, 16, 21, 110, 152, 123, 47, 156]. There is not a clear consensus among
this “general”, or other, surveys on a strict taxonomy for IPS. The most commonly
found classification attends to the underlying technology. The technology then de-
termines which physical quantities the system can measure. The physical quantities
are also used for IPS classification and are commonly addressed as the applied tech-
niques. On top of technologies and techniques, there is a myriad of methods that,
from the measured quantities, create position estimations. The methods also tend
to be classified into range-based or range-free methods, depending on whether they
estimate distances or angles to known landmarks like, e.g., the signal emitters.

The following list briefly introduces the most common techniques employed with
technologies used in IPS. They are addressed in almost all of the selected surveys and
they are often mentioned in the rest of this section. General surveys [83, 123, 94]
include explanation and usages of other techniques like Received Signal Phase (RSF),
Roundtrip Time of Flight (RTF) or Channel State Information (CSI).

∙ Time of Arrival (TOA). It measures the time of arrival of the signal from an
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emitter, as recorded by the receiver. It is used for estimating the distance to
each emitter, as the propagation speed of the signal (sound, radio frequencies)
is known for the transmission medium (air).

∙ Time Difference of Arrival (TDOA). It is similar to TOA. It measures the dif-
ferences in the time of arrival of signals from different emitters. It is used for
estimating differences in distances to each emitter.

∙ Angle of Arrival (AOA). It refers to the angle at which the signal reaches the
sensor. Angles are then used to obtain a position fix.

∙ Received Signal Strength (RSS). It is the intensity at which the signal from
an emitter is measured. The signal strength decreases as the distance to the
emitter increases, although their relation may be affected by attenuation and
interference.

Some methods employed for position determination use the above techniques. For
them, the technique employed for a solution determines how the position is estimated.
They include the lateration, angulation and fingerprinting methods. Other methods
do not depend on measuring signals from an emitter, like the hop count and vision
analysis methods. The following list briefly describes the above mentioned position
determination methods:

∙ Lateration. TOA, TDOA, and RSS are used for estimating distances to signal
emitters. The estimated distances to a set of emitters are then used in what is
called lateration to find the position estimate that best fit the set of distances
(see Figure 2.3a). Lateration is called trilateration if three distances are used,
while it is called multilateration if more than three are used.

∙ Angulation. The angles obtained in AoA are used to compute a likely fix on
the target position, as shown in Figure 2.3b, in what is known as angulation.

∙ Fingerprinting. Sometimes called scene analysis, the fingerprinting encompasses
two stages. In the first stage, also known as offline stage, the signal quantity of
each detected emitter at a given time and position (a fingerprint) is measured at
several places in the target scenario and stored to create a characterization of the
signals in that scenario as comprehensive as possible. The collected database is
called the training database. If the measured signals are radio frequencies (RF),
it is also called radio map. The collection process of the database is called site
survey, war-driving, radio map creation or training fingerprints collection. In
the second stage, also known as online stage, the position corresponding to
new measured signal quantities is estimated using the positions associated to
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(a) Lateration (b) Angulation (c) Fingerprinting

Figure 2.3: Most common methods used in IPS.

the stored fingerprints that are the most similar when compared to the new
measurements (see Figure 2.3c).

∙ Hop Count. A hop occurs when a packet passes from a network segment to the
next one. The number of hops from known nodes is then used for (coarse) dis-
tance estimations [122] or to infer positions through a graph embedding problem
[71].

∙ Vision Analysis. Vision analysis refers to the application of computer vision
approaches to images gathered using some imaging technique like, e.g., cameras.
The analyses detect relevant features in the scene that allow the estimation of
the positions of entities in the scene or the position of the recording imaging
device [6].

Both lateration and angulation are commonly classified as range-based – or rang-
ing – methods, and they require the previous knowledge of the positions of the emit-
ters. Fingerprinting, hop count and vision analysis are considered range-free methods.

Another relevant high-level classification is device-based or device-free positioning
[143]. In the former, there is a positioning device that acts as an active agent of
the positioning process by measuring or emitting a signal. The positioning device is
normally a portable device like a smartphone or a tag. Device-based solutions are
the most commonly addressed in surveys and IPS literature in general. Device-free
positioning is found mainly in the form of presence detection or radar-like systems.
The importance of the device-based vs device-free division is supported by the fact
that one of the driven forces for the growth of LBS is the widespread usage of smart-
phones. Some surveys explicitly focus on IPS solutions applicable to smartphones [83,
22] and others on device-free positioning [95, 121]. The distinction on whether an IPS
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is applicable to smartphones or not is necessary given that even modern smartphones
have a limited number of sensory capabilities.

Another classification is whether the solution requires the deployment of dedicated
infrastructure or not, being the former called an infrastructure-based solution and the
later an infrastructure-free solution [101].

The underlying technology does matter and its particularities should be taken
into account when creating an IPS. This section proceeds by providing a review of
the technologies most commonly applied for IPS solutions. In each case, relevant
references to the applied techniques and the applicability to range-based vs range-
free or device-based vs device-free classification will be mentioned. The following
subsections will comment on each of the most popular technologies used for IPS.

2.2.1 Light

Among the reviewed surveys, six of them specifically dealt with Visible Light Com-
munication (VLC) IPS solutions [48, 25, 73, 80, 161, 2], which mainly considered
LEDs as light sources. In addition, infrared – which could also be LED-based – is
mentioned in general surveys [109, 16]. VLC IPS appear as device-based solutions,
while infrared IPS may appear both as device-based or device-free (passive) solutions.

The VLC-based IPS rely on the idea that LED lighting is increasingly popular
and LEDs can switch the intensity level in a way that is fast and imperceptible to the
human eye. The intensity level switches are then used to encode information. Settings
that have several LEDs emitters use a multiplexing protocol, either by frequency or
time. The receiver is commonly equipped with a photodiode array that captures
signal properties like RSS, TDOA, and AOA, or with a camera that takes images of
the transmitters. For the former, positioning approaches like lateration, angulation
or fingerprinting can be applied. For the later, the coordinates that the LEDs have
in the image are translated into coordinates of the environment, usually using several
images and additional support hardware like accelerometers. The mean accuracies
reported by VLC-based IPS are measured in centimeters, with many of them under
the 30 cm [25, 161, 2]. However, as stated by Do and Yoo [25], the reported results
should be taken with caution as the test scenarios and conditions vary significantly
among these solutions. Also, challenges like emitters time synchronization [48] and
robustness to solar light [25] remain.

Infrared signals have been also used as light-based IPS, either as device-based
or device-free solutions. A notable example of the former is the pioneering work of
the Active Badge Location System [135], where a tag emitted a code carried by an
infrared signal that was captured by a network of sensors. Examples of the later
are Passive infrared (PIR) solutions, which could use infrared cameras for imaging or
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thermopile arrays that provide AoA measurements [143, 16, 121, 109]. According to
the performed searches for this work, there is no infrared-based IPS survey and the
number of such system proposals is low when compared to other IPS technologies,
which may be motivated by the LOS requirement of infrared-based solutions.

2.2.2 Computer Vision

Apart from their support in VLC-based or infrared-based positioning, vision tech-
niques are also used in camera-based IPS without any supporting light framework
apart from those common to any modern building. One [6] of the found surveys
deals with visual odometry, although three of the general surveys [16, 123, 110] and a
SLAM survey [17] also address vision-based IPS. Despite Simultaneous Localization
and Mapping (SLAM) is mainly based on cameras for sensory input nowadays, one
should not enclose SLAM into vision-based methods. SLAM is possible using, for
example, laser scanners, sonars or odometric data provided by wheel encoders [17].

For device-based solutions, one of the most straightforward solutions is based on
markers like, e.g., printed QR codes. Marker-based IPS may even provide continuous
estimations if the markers are processed in a stream of images (video) of the scene
and perspective is used for refinement [110]. Visual odometry is commonly applied
to the input from one or several cameras. The cameras can be monocular, stereo or
omnidirectional, to estimating the position positioning subject. The cameras motion
and subject speed are usually determined by applying methods like feature tracking or
optical flow [6, 17]. Visual odometry surpasses other odometry technologies regarding
cost and accuracy [6] and is supported by modern computer vision techniques and
the computation power found in robots and mobile devices, like in the applications
of Google’s ARcore [40].

For device-free solutions, it is common that several cameras are installed in the
target environment. The collection of images is then used to identify the targets in
conjunction with environment details recorded for the target scenario [123].

2.2.3 Sound

Only one [128] of the survey works was specific to acoustic signals applied to IPS.
Three general reviews, however, provide some details on device-based sound-based IPS
[143, 16, 110]. Those four surveys make a distinction between systems operating on
ultrasound – frequencies beyond 20 KHz – and those using audible frequencies. They
reference as pioneering works the “Active Bat” [136], “Cricket” [103] and “Dolphin”
[36] systems for ultrasound, and the “BeepBeep” system [100] for audible frequen-
cies. The ultrasound-based IPS generally use TOA or TDOA to perform lateration,
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although RSS has also been used [16, 109], even for fingerprinting [143]. To improve
the accuracy, the ultrasound pulses are complemented with RF pulses [103] or BLE
advertisements [74].

Despite the acoustic solutions have reported accuracies of less than 30 cm [152],
they present notable changes as sound speed is affected by temperature and humidity.
Furthermore, they suffer from interference of bouncing pulses and, in the case of
ultrasonic systems, they require specialized hardware that is expensive to deploy
[128, 156]. Most of the acoustic IPS presented in the surveys refer mainly to device-
based IPS. There are examples of device-free IPS in the form of audible sound source
positioning, and as ultrasonic radars [123], although they face strong challenges due
to noises, echoes, and multiple sound sources [95].

2.2.4 Magnetic Fields

The work of Pasku et al. [98] is the one survey found that focus on the magnetic fields
IPS. It classifies the solutions into those that use the natural Earth magnetic field,
those that use DC (static) artificial magnetic fields, and those that use AC (time-
varying) artificial magnetic fields. Other general surveys, like Zafari, Gkelias, and
Leung [156], do not make such distinction, while others like Brena et al. [16] do make
the distinction but concentrates on those that only use the Earth magnetic field, as
a result of considering that it is the approach followed by most modern solutions.
Indeed, the selection made by [16] is supported by the facts that such systems do not
incur in deployment costs, they are readily applicable to smartphones [22], and their
reported accuracies are in the range of a few meters.

Magnetic IPS use strength variations in the measured magnetic field to infer a
position estimate. In the case of the ambient (Earth) magnetic field, such variations
are usually caused by steel structures in the target indoor scenario, requiring the
creation of a database with the recorded variations of the magnetic field strength
[101]. The created database is later used by a fingerprinting method to compute
position estimations. One of the most known works using this approach is Magicol
[120], which is referred by three surveys [22, 98, 123].

IPS based on the Earth magnetic field require a collection effort and typically have
lower accuracies than those based on artificially generated magnetic fields. However,
they have a low cost, a low system complexity, and a large operating range [22].
Those based on artificial fields require coil-based systems that are power hungry and
operate at short ranges but they are able to produce accuracies in the range of several
centimeters [98]. All magnetic-based IPS are device-based IPS solutions, to the best
of this work’s knowledge.
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2.2.5 Dead Reckoning

Dead Reckoning (DR) is applied to device-based IPS. Among the found surveys,
three of them [150, 140, 23] focus on DR, one [21] focuses on its combination with
wireless positioning, and one [131] focuses on step length estimation, a major part
of pedestrian Dead Reckoning (PDR). Other general surveys also address PDR [110,
123]. Dead Reckoning refers to the estimation of the current position of a target based
on a previously known position (a fix) of it and measurements of quantities that are
used to describe its movement, e.g., heading and speed [110]. Such measurements
are commonly obtained using accelerometers that sense translations, i.e., provide the
acceleration magnitude at each of the three axes; gyroscopes that sense rotations, i.e.,
provide roll, pitch and yaw measurements; and magnetometers (compasses, which are
not inertial sensors) that give orientation regarding the Earth magnetic poles, i.e.,
provide field strength measurement along three axes.

Modern smartphones include most of these sensors and also have the computing
capabilities to perform PDR. PDR works have also used units that assemble inertial
sensors, which are called Inertial Measurement Units (IMUs). IMUs are mounted
mainly in feet and legs, although it has been reported also for waist mounts [140,
23]. The shoe-mounted setting has been the most popular, given that mechanics
involving walking process and the foot allow re-calibrations at every step applying
the Zero-velocity UPdaTes (ZUPT) method [23]. Filtering algorithms like (Extended
or Unscented) Kalman Filtering and Particle Filter (PF) that combine all information
are the core of DR [110, 140].

The movement or trajectory is usually estimated using two approaches. The
systems that use the first approach are called Inertial Navigation Systems (INSs),
and they perform the integration of the sensor data. The systems that used the
second approach are called Step and Heading Systems (SHSs), and they detect and
quantify steps and their headings [110, 123, 24, 140]. If possible, other inputs like
maps and constraints are applied using filters to improve the resulting accuracy [140].
PDR has a low cost, it does not require external references, and it has a high accuracy
when new positions are not estimated far apart from the last fix. However, it suffers
from accumulative errors or drifts [110]. That is why PDR is usually used coupled
with other technologies that support IPS and provide periodical estimations that help
in correcting drifts.

2.2.6 Ultra-Wideband (UWB)

UWB is highly acknowledged as an IPS technology. Among the selected surveys,
three of them specifically focused on UWB [119, 3, 87]. Also, UWB is dealt at
different lengths by almost all general or wireless networks-based IPS surveys. The
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three UWB surveys agreed in using the USA Federal Communications Commission
(FCC) definition of UWB, which states that it refers to RF signals whose bandwidth
is greater than 20% of the center carrier frequency, or is greater than 500 MHz.
That large bandwidth is related to a key characteristic that is acknowledged in many
works: UWB works by emitting precisely-timed very short pulses, of ≈ 200 ps (pulse
width), with very low transmission power [92]. The low transmission power avoids
interference to WiFi, BLE or similar. The very short pulse modulation renders UWB
almost immune to multipath issues. Given that the inter-pulse period is large enough
to unambiguously perform multipath resolution, NLOS paths are detected after the
main pulse detection [87]. Also, UWB has penetration capabilities considerably larger
than WiFi and BLE, being LOS situations less relevant for it [3]. Furthermore, the
energy consumption is lower than other WLAN technologies like Bluetooth or WiFi
[87].

UWB device-based positioning requires the deployment of tags, both emitters and
receivers. UWB emitters have been reported either in fixed or mobile configurations,
with tags having different sizes and shapes and being mounted or worn at different
places on the positioning subject, e.g., mounted on the feet or the head [16, 109].
The modern smartphones commonly have no support for UWB. With UWB, the
positioning is performed using any of the RSS, ToA, AoA, or TDoA techniques,
depending on the tags design and their resulting capabilities. Therefore, the reported
methods used for positioning are fingerprinting, lateration or angulation [119, 3, 87].
Given the effort implied in the radio map creation for fingerprinting, it is the least
used method for UWB. The reported accuracies are typically below the 20 cm [87],
which makes UWB attractive for many applications, as long as they can afford the
UWB tags, both in terms of cost and the application requirements. However, the
short nominal range of UWB [87] and the cost of UWB equipment [3] makes the
scalability a severe issue.

For device-free positioning, UWB has been used by applying the principle of radar
[3], which is attractive given the UWB capability of penetrating through walls. In a
room with UWB emitters and receivers, a positioning subject creates reflections of
the signals that, using the TOA and TDOA techniques, can be used to estimate the
subject’s position [110, 123].

2.2.7 WiFi

WiFi, or Wi-Fi, is the IEEE standard 802.11 for WLAN [84]. WiFi-based positioning
is sometimes addressed by the name of WLAN positioning [16, 110, 152], which is
the result of WiFi being the default technology for setting up a WLAN. WiFi is
mentioned as an IPS supporting technology in all selected surveys. What is more, to
the best of this work’s knowledge, it is acknowledged in all published IPS proposals.
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From the selected surveys, one is devoted to time-based WiFi IPS techniques [84],
four are completely devoted to WiFi fingerprinting [13, 51, 65, 142], one focus on
WiFi CSI techniques [64], and one addresses device-free solutions based on WiFi [66].
The remaining surveys address WiFi IPS at varying lengths.

WiFi operates on the bands of 2.4GHz and 5.0GHz [84], with typical channel
widths of 20MHz, 40MHz, and 80MHz. The signals from bands of 2.4GHz travel
farther, while those from bands of 5.0GHz have wider channels and are more robust
to fast fading [28]. Works that report the usage of CSI, ToF and AoA techniques
are not uncommon [156]. However, the main applied technique is RSS, given that is
the technique applicable to many modern smartphones [22]. Despite its popularity,
IPS based on WiFi have many challenges that arise from the alterations that the RF
signals suffer in indoor environments. Also, the WiFi-based proposals use the existing
WiFi networks to achieve a low cost solutions, but those networks are commonly
deployed for communication purposes and not for positioning [156]. Solutions for
WiFi RSS positioning may apply lateration based on a propagation model if the AP
positions are known, which is also known as model-based approach [65]. However,
the most popular approach is fingerprinting [16] because of its consistently better
accuracy results in comparison to lateration. Given their direct applicability to many
smartphones, WiFi-based IPS are mainly device-based solutions.

There are also device-free solutions [66] where WiFi signals are used to estimate the
position of a subject that does not carry a WiFi receiver. Those solutions commonly
perform anomaly or motion detection first and then determine the position of the
entities using techniques like RSS or CSI [143]. Fingerprinting, link-based schemes,
and Radio Tomographic Imaging are among the employed methods [143, 66].

2.2.8 Bluetooth Low Energy (BLE)

To the best of this work’s knowledge, no survey focuses on BLE-based IPS currently,
although surveys covering wider BLE topics do exist [59]. BLE-base positioning is
briefly acknowledged in most of selected surveys. Some of them devoted entire sec-
tions to address BLE-based IPS [122, 12, 16, 22, 110, 156]. BLE follows Bluetooth
classic in the usage of frequency hopping to communicate. The BLE emitters are com-
monly called BLE beacons. They are small, advertisement-emitting devices available
in many configurations that are attractive for IPS given their cost, privacy, and a low
footprint on the smartphones battery and network traffic [28, 22]. BLE advertises
at three channels of 2MHz of width in the 2.4 GHz band [28]. The small channel
width translates into a larger fast fading effect than that seen for WiFi, even for the
2.4GHz band [28]. Nevertheless, BLE is sometimes seen as the most suitable posi-
tioning technology for indoor navigation and tracking currently [12]. Its suitability
is supported by the relatively low cost of BLE emitters, their very low power con-



22 2.2. An Overview of IPS Solutions

sumption that let them run on batteries for months, and a generalized capability of
modern smartphones to read their advertisements [16].

BLE shares many similarities with WiFi at the 2.4GHz band [22], and thus it has
been used for positioning by applying the RSS, AoA, and ToF techniques, being RSS
the most often applied technique [156]. To the best of this work’s knowledge, BLE
has been used only for device-based IPS. BLE has a low detection range, typically
under 20 m [12]. Such a short detection range reduces its applicability to device-
free solutions. The accuracies achievable using BLE are typically higher than that of
WiFi, which is related to the usually higher density of deployed emitters [22]. Despite
BLE beacons are generally cheap, the scalability to large scenarios may be an issue
if dense deployments are required [110].

2.2.9 Radio Frequency Identification (RFID) and Near Field
Communication (NFC)

Only one conference proceedings work of the selected surveys focuses on RFID [118],
although another two general surveys [16, 110] briefly address it. The main com-
ponents of RFID are electronic tags that store some data – usually an ID – and
readers capable of obtaining through RF the data from those tags. The tags can be
passive, active or semi-passive. Passive tags use energy from the reader’s signal to
transmit their data. Active tags have batteries and broadcast their data periodically.
Semi-passive tags broadcast their data only upon the detection of a reader’s signal
[16].

As readers are usually larger and more expensive than tags, one common setting
in RFID-based IPS is to deploy a large number of tags across the environment and
have the readers being part of or carried by the positioning subjects [110, 118]. The
setting where readers are fixed and tags are carried by the positioning targets is more
convenient for supporting large numbers of positioning subjects [16]. The detection
range of the tags depends on whether they are active or passive. For passive tags,
the detection range also depends on the reader’s signal power. The reported accuracy
in RFID varies significantly, and it depends on how dense the deployment of tags or
readers had been, with some works reporting accuracies below 30 cm [16]. Most of
the RFID-based IPS are based on simple proximity or RSS-based lateration [118, 16].

NFC-based IPS have been considered as a variant of RFID-based IPS [16]. NFC
allows two devices, usually smartphones, to communicate while in touch or close
proximity. A few recent IPS proposals [110] have harnessed the NFC capability of
many modern smartphones in combination with the deployment of NFC tags across
an environment. However, such systems have the inconvenience of requiring the active
participation of the positioning subject, who is required to approach the smartphone
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to the tag. Thus, such systems are unable to provide continuous position estimates
[16, 110].

2.2.10 Other Technologies and Particular Cases

Cellular networks, in the form of GSM, LTE, 5G or other, are frequently mentioned
but rarely addressed in detail in the selected surveys. A few surveys [143, 123, 71,
111] cite some works that employed cellular network signals to perform positioning
by applying proximity, RSS fingerprinting, and observed TDOA lateration, but not
necessarily for indoor positioning. Indeed, with reported accuracies that are com-
monly above 50m, there are no IPS that are based solely on cellular networks signals
to the best of this work’s knowledge. Thus, this technology is used as a signal of
opportunity in conjunction with others like WiFi, BLE and, FM.

Basiri et. al. [12] refers to other technologies like high sensitivity GNSS receivers,
pseudolites, and tactile sensors. It explains that the first two are expensive and the
third one is harder to manage in crowded scenarios. The tactile sensors placed on
the floor may have real applications. Their sensing capability is provided by relative
simply technologies like piezoelectric sensors, buttons or capacitive touch surfaces
that can provide high accuracy in an unobtrusive way to the user. Xiao et. al. [143]
comments on the usage of FM radio signals for positioning, being mainly applied
using fingerprinting. Despite Xiao et. al. acknowledges advantages of FM-based
positioning like low power consumption in smartphones and robustness to obstacles,
it cast doubts on FM usage for IPS devoted to smartphones because of the lack of
RSS readings availability.

Wireless Sensor Networks (WSNs) do not constitute a technology upon which
IPS are supported. However, they are commonly mentioned in the selected surveys
as they may be applied to indoor scenarios and network node position determina-
tion is a relevant problem for them. Although the positioning topic in WSN is most
commonly addressed for large outdoor scenarios, there were two [89, 90] of the se-
lected surveys that specifically addressed the topic for indoor environments, while
another two [19, 112] focused significant parts of their contents for the indoor case.
A WSN is a collection of nodes able to communicate among them – or at least to
the nearest neighbors – and perform some sensing task [90]. If the position of some
nodes is unknown, the communication technology or some extra ranging capability
is usually used for determining the nodes’ positions [112]. If a ranging capability is
used, then the TOA, TDOA, AOA and RSS techniques are used with the angulation
and lateration methods, among others. Ranging may be energy prohibitive for some
WNS, which thus mostly rely on interpreting the connectivity information between
the nodes, i.e., using hop count [71].
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Much like WSN, a highly heterogeneous network of devices organized under the
concept of the Internet of Things (IoT) uses the connectivity or ranging capabilities of
their nodes for position determination [156]. However, in IoT, the node’s connectivity
is generally less restrictive than in WSN. Thus, IoT is expected to boost the device-
free positioning to enable applications like smart environments [94]. Of the selected
surveys, three [94, 111, 72] focused indoor positioning and IoT, while another three
[19, 71, 156] addressed the combination of IoT and WSN at various lengths.

Despite it is briefly mentioned in many of the selected surveys, only two of them
[143, 94] provide some details on ZigBee applications to IPS. ZigBee is a standard for
WPAN focused on providing short-range, low power and low data rates communica-
tion. ZigBee is prone to interference from signals operating at the same frequency. It
has been used for device-based IPS using the RSS, TDoA, ToA and AoA techniques
[94]. It has also been used for device-free positioning by analyzing the signal fading
induced by human movement [143].

2.3 WiFi and BLE RSS Fingerprinting for
Smartphone-based IPS

The IPS solutions applied to smartphones normally use technologies that depend
on the propagation of RF signals in indoor environments. The indoor environment,
however, is not benevolent for RF signals. Multipath originates as a consequence of
reflections of the signals on obstacles. The multipath appreciated outdoors at a large
scale is more significant indoor, given that obstacles are abundant and close to each
other. In multipath, a signal pulse reaches a receiver as several components that may
have an additive or subtractive effect on the signal power [129]. The effect of multipath
depends, at least in part, on the bandwidth of the signal pulse. As reviewed in
Section 2.2, UWB is less affected than WiFi, which in turn in less affected than BLE.
Additionally, all measurements are affected by the random noise that results from,
e.g., thermal and circuit noise. Also, the collisions that result from using a shared
medium are common [84]. Furthermore, the human body significantly attenuates
the signals from the 2.4 GHz band [37], which leads to obtaining measurements that
notably differ depending on the receiver device orientation when it is held by a person.

The above challenges, in conjunction with the common difficulty of knowing the
actual position of RF emitters, hinders the obtainment of proper accuracies for lat-
eration methods. Thus, RF RSS fingerprinting has become widely popular among
solutions for smartphone-based IPS, mainly for those using the WiFi or BLE. Fin-
gerprinting is applied using either deterministic, probabilistic or machine learning
approaches [22, 65].
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The deterministic approach commonly refers to the k-Nearest Neighbors (kNN)
method or a variant of it. In kNN, the new fingerprint used for position estimation is
compared for similarity against fingerprint values previously stored in a database. The
positions associated with the k most similar fingerprints are used to infer a position
for new fingerprint. Apart from the k value and the way that the k positions are
combined, the distance metric used for determining similarity among fingerprints is
an important aspect to consider in kNN [125].

In probabilistic approaches, the stored fingerprint values are used to compute the
probability distribution of the signal of each emitter at each point. Those distributions
are used later to select the most likely positions for the new fingerprint using Bayesian
theory based on signal strength. Given the Gaussianity of RSS behavior is commonly
acknowledged, the computation of the probability distribution normally determines
the 𝜇 and 𝜎 parameters of a Gaussian distribution. However, some studies state
that Gaussianity assumption does not necessarily hold [65]. Probabilistic approaches
include Bayesian networks, expectation-maximization, Kullback-Leibler divergence,
Gaussian processes, and conditional random fields [51].

The machine learning approaches harness the development of methods and tools
created in recent years for the field of Artificial Intelligence. The radio map is used to
train Support Vector Machines (SVM), Artificial Neural Network (ANN), among oth-
ers [142], normally in a supervised fashion. Then, the trained models are commonly
used for regression on 2D positions, and classification for floor or building estimates.

It is acknowledged that IPS based solely on WiFi fingerprinting can offer 2m to
3m of mean accuracy, although most common figures show 6m to 7m. BLE can
provide better accuracies than WiFi, in the order of 1m to 2m, but larger values are
also possible [88]. The variations in the previous numbers not only relate to specifics
of the approach applied, but also to the characteristics of the environment and the
collected training fingerprints. Indoor environments are not equally detrimental for
RF fingerprinting, varying significantly in the amount and materials of the obstacles,
influence of electronic equipment and the dynamics of the people moving around.
Also, the number and disposition of the emitters are highly relevant [124, 142]. An
increase in the number of emitters (WiFi AP or BLE beacons) found in a scenario can
improve IPS accuracy [88]. Furthermore, relying only on distant emitters leads to lit-
tle differentiability among fingerprints of distinct reference points, thus deteriorating
the accuracy.

The number and distribution of reference points can also influence the obtained
accuracy. On one hand, large mean errors are expected for sparse collection over
large environments [127], assuming that no densification strategy is used. On the
other hand, the mean error tends to be small in small environments that are densely
surveyed [126]. Additionally, the devices that measure the signals – the chipsets in
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smartphones – have different levels of sensibility [51] and identify the signal strength
in distinct ways [142]. Thus, the strength reported for the same signal may have
distinct values for distinct devices. Furthermore, one device may measure and report
the RSS of a signal while another device may not report any value for the same
signal because the signal strength is beyond its sensibility threshold. The RSS values
measured at a given point are also affected by the device orientation [142], which
is a result of the type and disposition of the antennas in the device and the partial
absorption of the WiFi and BLE signals by the human body.

The previous difficulties have long been known for studies on WiFi, and later BLE,
fingerprinting IPS solutions. To cope with them, the most straightforward strategy
is to collect for the target environment a large database of fingerprints that covers
as much as possible the given scenario, that has as many as possible reference points
and that collects several fingerprints at several directions using distinct devices. How-
ever, such collection is very time consuming. Apart from being cumbersome, it is not
affordable sometimes. Therefore, one of the main challenges for (particularly WiFi)
fingerprinting positioning has been the effort reduction for collecting the training fin-
gerprints. The proposed solutions for alleviating the collection efforts mainly include:

∙ do the collection using crowdsourcing,

∙ apply a propagation model to estimate the expected RSS values, or

∙ perform a small site survey and apply regression techniques to enrich the radio
map,

The crowdsourcing approach harness the potential of the explicit or implicit par-
ticipatory actions of users [65]. In the explicit modality, the users manually tag the
positions of the recorded measurements. The users’ participation can be during the
offline stage or the online stage. During the offline, the participants supply the tags
required to have an operational positioning service [65]. During the online stage, par-
ticipants only supply position tags when the system is unable to provide an estimate
[54]. In the implicit modality, the user is not requested to provide position labels. In-
stead, the labeling is performed by the positioning system whenever is possible using
occasional fixes provided, e.g., by the GNNS receiver. Also, the IPS can infer fixes
using heuristics or learning methods based on the existing radio map and inertial
measurements [54, 65].

The approach of creating the radio map by applying a propagation model is at-
tractive and has been proposed [142]. However, this approach requires either pre-
vious information on the positions and broadcasting parameters of the emitters, or
to estimate that information using a few samples. The radio map densification us-
ing regression has been effectively used in several studies using regressors like linear
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regression, nonlinear Gaussian Process, Gaussian Kernel Learning, and augmented
path-loss model, Support Vector Regression, and Random Forest [41, 52, 65].

Apart from the radio map creation, another acknowledged challenge in WiFi or
BLE fingerprinting based IPS is the energy consumption reduction [101]. WiFi scans
are very energy demanding. BLE scans demand less energy than WiFi scans. Fur-
thermore, the deterministic approaches have to deal with large databases for large
scenarios, which implies performing a large number of comparisons of vectors of po-
tentially large dimensionality. Pérez-Navarro et al. [101] and He et. all. [51] mention
several approaches to deal with the former issue. Khalajmehrabadi et. al. [65]
mention approaches to deal with large fingerprint databases. Those approaches are
mainly based on techniques like clustering by Binary AP Coverage, K-means cluster-
ing, Affinity propagation, and spectral clustering.

Other acknowledged challenges are to detect and adapt to changes in the infras-
tructure that affect the positioning [51], which is also related to radio map construc-
tion; the detection of outliers [65]; the device diversity issue, i.e., the adaptation to
heterogeneous devices [65]; the proper evaluation of IPS proposals [22, 101]; and the
accuracy improvement. Solutions based solely on WiFi or BLE have known accuracy
limitations [101]. Accuracy improvement is the challenge most often addressed. It is
not commonly addressed for approaches based solely on WiFi or BLE, but for solu-
tions that combine several technologies and techniques. For example, WiFi or BLE
is normally combined with PDR, and the estimations are corrected using filters like
Kalman or particles filter [142] and map-matching [71, 101].

2.4 Discussion on IPS Current State

Researchers working in the field of indoor positioning have the notion that one of
the traits of the current status of IPS is that there is no clear prevalent technology
or method for IPS. The variety of environments and applications make it difficult to
find a general solution applicable to most situations. Some surveys include evaluation
metrics to compare the reviewed work and inform the reader about the characteristic
of the most notable works selected by the survey’s authors. Accuracy, cost, and
scalability are among the most common metrics found in the surveys, as mentioned
in Section 2.2.

Another trait of the current status of IPS is the large number of solutions that
have been proposed along the years, while only a few have had large significance. To
deeper explore this trait, this work compiled and linked the publications referenced
by the surveys introduced in Section 2.2. The linkage is based on DOIs [97]. The
idea is to construct an undirected graph that links the surveys and the publications
referenced by them, using the DOI associated with each of them as link information.
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This work acknowledges that this approach does not include every single academic
paper. There are old papers, papers published in low profile conferences, technical
reports, patents, books and online resources that do not have DOIs assigned to them.
During the curation, there were publications [77, 11, 53, 67, 56, 117, 145, 33, 14, 30]
with no DOI that, some of them, were cited 11 times in the selected surveys. Most
of the publications with no DOI were cited two or three times in the surveys. The
DOI approach was followed given that it is relatively simple and allows for automatic
analysis. Furthermore, most recent academic papers published in known resources
are given a DOI.

Figure 2.4: Graph of surveys and their referenced works. The selected surveys are
identified by red (journal-published) and black (conference proceedings-published)
dots. The publications that they referenced are represented by blue (more than 5
citations by the surveys) and dark green (5 or less citations by the surveys) dots.

The curation was performed using automatic and manual means. The automatic
means included web scrapping for the references extraction and DOI discovery using
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the Crossref’s Link References matching tool [104]. After the application of automatic
means, a manual revision was performed to correct inconsistencies produced both by
the web scrapping and by the DOI discovery processes. The processing of the 61
selected surveys resulted in 3,901 unique works, including surveys distinct from the
61 selected. Figure 2.4 shows the resulting graph applied to all surveys, visualized
using a force-directed approach [35]. Some surveys stand apart from others and lie in
the outer parts of the image. Those divergent surveys are those with narrow focuses
like SLAM [17], visual odometry [6], RFID [118], multidimensional scaling techniques
[112], and those published in conference proceedings [90, 153, 60, 1]. It is of relevance
to remark that some conferences apply a strict page limit, which in most of cases make
the author to shorten the list of references to the most relevant ones. The surveys
lying close to the center of the graph are those that reference works that are commonly
referenced by other works. Those surveys mainly address WiFi-based solutions [13,
51], solutions that avoid or reduce the site survey efforts [54, 58], inertial sensors [150],
WLAN-based solutions [65], solutions specific to pedestrians or smartphones [21, 22]
and general surveys [143, 16, 152].

Figure 2.4 indicates with blue dots the works that were cited more than 5 times by
the selected surveys. The number of citations of a work is determined by the degree
of the node that represents it in a graph, i.e., the number of its incident edges. The
number of highlighted works is 75. It is a rather low number compared to the total
number of referenced works, even without taking into account the selected surveys.
Indeed, the mean number of citations of a work without considering the selected
surveys is 1.45. Such low number is significant not only because it hints at that most
publications are cited only once, but also because the considered works also included
surveys – which were published before 2015 and therefore were not among the selected
surveys for this study.

Table 2.2 presents the number of citations of non-survey works, i.e., those that were
not among the selected surveys, they do not include in their title the words “survey”
or “review”, and were not known to be a survey. Most of the referenced publications
are only cited once in the selected surveys, while some of them are cited twice. The
number of works that are cited more than five times is very small. The distribution
in the number of citations might suggest that (1) the surveys tend to be very specific
and barely intersect in content, (2) the proposed solutions quickly get obsolete or (3)
it is hard for surveys in IPS to assess the relevance of the proposed solutions. The
weight of the first conjecture seems to be low, given that despite some of the surveys
are very focused, like Saeed et. al. [109], most of them deal with several techniques,
which should result in a large number of intersecting works. The weight of the second
conjecture seems more significant than the one from the first conjecture. Despite the
obtained accuracies and the acknowledged challenges [101] have remained similar for
several years [54], authors may try to incorporate the latest proposals to add value
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to their surveys, regardless of the actual importance of the proposals. The third
conjecture is supported by works on IPS that plead for better evaluation procedures
and reproducible research [102]. With so many proposed solutions, the value of a
work is not always correctly assessed without a proper evaluation that includes tests
on publicly available data featuring well-known characteristics. The lack of usage of
a common objective evaluation framework may lead to unworthy citations or simply
the dispersion appreciated in Table 2.2 and Figure 2.4.

Table 2.2: Number of citations of non-survey works.

Citations Percentage
1 80.0 %
2 11.3 %
3 3.9 %
4 2.0 %
5 1.1 %
≥6 1.7 %

The works that had the largest number of citations were classics of the IPS lit-
erature: RADAR [10], Horus [155], LANDMARK [93] and Zee [107]. RADAR (27
citations, year 2000) is the best known of the first IPS solutions that applied WiFi-
based fingerprinting, so it is commonly cited when a proposal deals with RSS finger-
printing, mainly for WiFi or BLE. Horus (16 citations, year 2005) is also one of the
best known first applications of WiFi fingerprinting. The difference between RADAR
and Horus is that the former applied a deterministic approach, while the latter used
a probabilistic one. LANDMARK (15 citations, year 2003) is an early IPS based
on RFID. Zee (15 citations, year 2012) is an early solution to the radio construction
effort, which is one of the most acknowledge challenges of fingerprinting. It success-
fully combines PDR with map matching to make the WiFi radiomap to grow with
self-tagged samples. Other works that have more than 10 citations are related to IPS
based on UWB [38]; PDR and map-matching [137]; a combination of light, sound,
WiFi and inertial sensor inputs [9]; WiFi without site survey [18] and [149]; a combi-
nation of WiFi, magnetic, PDR and inertial sensor inputs [133]; visible light [69]; and
RF and ultrasound [103]. Apart from the value of their respective contributions, the
previous works may be highly cited because they were early proposals of IPS using
solutions that were novel at their times.

To analyze the focus of the selected surveys regarding technology, they were as-
signed a category. The selected categories and the number of surveys that belong
to each category are presented in Table 2.3. Despite the data from the table may
suggest that light-based IPS are as popular as WiFi-based IPS, many of the surveys
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Table 2.3: Number of selected survey per technology.

Technology Surveys
Light 6
WiFi 6
PDR 4
UWB 3

Magnetic 1
Sound 1
RFID 1
Vision 1
Several 38

that were classified in the category “Several” do not deal with light-based IPS, either
because they are restricted to network-based technologies or technologies that are
fully supported by smartphones. Furthermore, the category “Several” include surveys
that are not devoted WiFi but focus on topics that are very relevant to WiFi-based
IPS, like crowdsourcing, fingerprinting, radiomap construction, and IPS for smart-
phones. To further explore the focus of the current IPS research, this study extracted
the 53 non-survey works most cited (more than 5 citations) in the selected surveys.
Figure 2.5 shows the result of taking the titles of the extracted works [135, 136, 10,
103, 7, 154, 93, 62, 46, 82, 34, 38, 155, 50, 27, 100, 137, 49, 141, 9, 96, 18, 106, 55,
61, 43, 20, 42, 139, 31, 160, 115, 133, 149, 107, 76, 75, 4, 29, 147, 105, 113, 138, 146,
114, 63, 157, 86, 69, 68, 81, 151, 144] and creating a word cloud that highlights the
occurrence frequency of each word in the titles of the extracted works. Punctuation
signs as well as words non-relevant for comparison like ’indoor’, ’system’ or ’and’ were
removed.

The image presented in Figure 2.5 gives further support to the notion that WiFi
is the technology most prevalent among IPS proposals. WiFi seems to be followed
by light and wireless technologies – in which WiFi is also included. The 53 non-
survey most-cited works were published before the year 2017, and almost half of them
belong to the period 2011-2013. The trend in their publication years was expected
given they are mostly pioneers in the indoor positioning field which have maintained
their research value. It is difficult to forecast how long will they remain valuable.
WiFi, BLE, and light seem to be the front-runners until a new technology – at least
cheaper than UWB – becomes widely available for its use with smartphones. The
chosen reviews that focused on light are from the years 2016-2019, which highlights
the increasing importance that is given to this technology. Regarding WiFi, as long
as smartphones keep being able to perform WiFi scanning at reasonable rates to
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Figure 2.5: Word cloud of the works most cited (more than five citations) by the
selected surveys.

provide near real-time positioning [5], research on WiFi-based IPS will persist given
it is a technology that requires no infrastructure apart from the pervasive AP already
in place. BLE, which provides better estimates than WiFi, will also remain on the
choices for IPS. Indeed, it is popular among IPS provider companies.

The final batch of analyses from this section included the number of citations
of the 53 non-survey most-cited works according to Google Scholar[39]. Figure 2.6
contrast the number of citations according to the selected survey and the number of
citations according to Google Scholar. Also, a Pearson correlation test was applied to
the two citation measures. The correlation results indicate a moderate, positive and
significant correlation between the two citation measures. However, some works with
a small number of citations in the surveys may also have a large number of citations in
Google Scholar. An example is the work of Arulampalam et. al. [7], which provided
a tutorial on particle filters. That work has only 9 citations in the surveys but over
10,000 citations in Google Scholar. Despite its applicability to IPS, it does not focus
on IPS and it is relevant for a broad spectrum of topics related to positioning and
navigation. The work that introduced the RADAR IPS [10] has fewer citations in
Google Scholar that the work of Arulampalam et. al. [7], despite having 27 citations
in the selected surveys.

The trend visible in the scatter plot from Figure 2.6 shows that works with a large
number of citations in the surveys tend to have a large number of citations in Google
Scholar. An additional search for works in indoor positioning was performed in Google
Scholar to find works with a large number of citations that were not referenced in
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Figure 2.6: Number of citations in selected surveys vs citation from Google Scholar
for the 53 non-survey most-cited works. A logarithmic transformation was applied to
the y-axis to reduce the represented distance among data points.

the selected surveys. The search resulted in a few works published before 2011 with
around 200 to 400 citations according to Google Scholar [44, 79, 8, 45, 85, 158, 148,
15]. Numbers of citations of 200 to 400 are not highly significant given that the
median value of Google Scholar citations for the 53 works is almost 400. Thus, a
work that has a large number of citation from surveys is likely to have a large number
of citations in Google Scholar.

Figure 2.7 explores the relation of the number of citations according to the selected
surveys with the years of publication of the extracted works. Figure 2.7 shows that,
regarding the selected surveys, the number of citations of a work does not depend on
the number year since its publication. The works corresponding to data points 35, 39,
40, 41 and 47 [18, 133, 149, 107, 69], published in or after 2010, have more citations
than all other works apart from those corresponding to the data points 8, 19 and 29
[10, 93, 155]. Further analyses regarding the number of citations from Google Scholar
showed a steady decrease in the number of citation along the years. Such decrease
creates difficulties to assess the importance of a published work. Thus, Figure 2.8
presents the mean number of citations per year in Google Scholar. Figure 2.7 and
Figure 2.8 used the same numbers for identifying works. Some works that Figure 2.7
showed to be relevant, like those from data points 8, 19, 39, and 40, are still noticeable
in Figure 2.8. However, the mean number of citations per year seems to decrease along
the years, thus suggesting that the mean number of citation per year for a published
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work may indeed increase every year.
According to analyses presented in this section, the set of IPS-related surveys
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seems to be a good mean to compile the works that had fundamental contributions
to the IPS topic. However, each of them incorporates many works whose appreciated
relevance is not shared among other surveys or even among the IPS literature in
general.

2.5 Conclusions

This chapter provided an introduction to Indoor Positioning Systems and provided a
meta-review of surveys published in recent years. The introduction to IPS and the
meta-review addressed key concepts and the main technologies that currently support
indoor positioning systems, briefly stating the techniques and methods applied in
each of them. The chapter also compiled the most-recognized challenges in indoor
positioning and deepened into positioning based on WiFi and BLE fingerprinting.
The meta-review allowed a discussion on the influence of publications as seen using
citation from the analyzed surveys and Google Scholar. The materials provided in
this chapter allow the reader to use it as a handy collection that provides links to more
specialized surveys. Also, the analyses from the meta-review show that most of the
cited papers within a review are not disruptive. However, 75 works were identified to
have more than 5 citations in the selected surveys, which are considered well-known
or disruptive works.
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Chapter 3

Collected RSS Datasets

Data collected for testing purposes is of utmost importance for the development and
tuning of many systems, included IPS based on WiFi or BLE fingerprinting. Datasets
are also used for credible comparisons among IPS. Thus, it is common that competi-
tion challenges or evaluation platforms include one or several datasets upon which the
IPS are gauged. In recent years, several WiFi and BLE datasets have been collected
and made publicly available [27, 13, 12, 2]. The relevance of a dataset lies in its
usefulness to test specific aspects of an IPS. For example, the UJIIndoorLoc dataset
[27] – used in the Track 3 of the IPIN 2015 competition [24] – and the datasets from
the Track 3 of the 2016 and 2017 IPIN competitions considered large environments,
several collection devices and subjects, with the main goal of making the positioning
a challenge, and challenging their positioning was [24, 26, 25].

There is more to evaluate than the ability of an IPS to deal with large, sparsely
described environments. This chapter addresses two collected datasets to show goals
different from comparing the accuracy of several IPS: (1) the robustness of WiFi-based
IPS to changes in the environment and (2) high accuracy for BLE-based IPS. The
collected datasets not only provided measurements and their collection tags – e.g.,
position and time – but also facilitated the data loading and selection, incorporated
environment descriptors and were shipped with analyses that constituted starting
points into further research on the goals for which the datasets were compiled. This
chapter provides examples of the way that open datasets should be collected and
provided in order to test WiFi-based or BLE-based IPS proposals and to foster their
development.
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3.1 Long-Term WiFi Fingerprinting Dataset

The WiFi long-term dataset [18] was created and made publicly available to ease
the study of long-term and short-term WiFi RSS variations, to spur the creation of
methods able to cope with those variations and to test robust IPS proposals. The
dataset provides sets of WiFi RSS collected by a trained person that assured trust-
worthy position labels. Several fingerprints were collected per each collection point.
The collection process spanned 15 months originally – as published in [19] – but it
was later extended to 25 months. The collection points covered small areas among
the bookshelves from two floors (the 3𝑟𝑑 and 5𝑡ℎ) of the north wing of the UJI’s Li-
brary building (see Figure 3.1a). The combined collection area of both floors covered
308.4m2. The dataset was provided with supporting materials that included descrip-
tions of the environment and the nearby WiFi APs (Figure 3.1b). The collection
was performed following the campaign-based approach and collection software that
Chapter 4 will later describe. The person that performed the collection went through
an ordered list of positions, for which the person had to face a specific direction and
collect a specific number of fingerprints (samples).

(a) Library 3rd floor

k k

k

k
k

k

k

kk
k

k

(b) Wireless network devices

Figure 3.1: Library Environment: (a) a picture of the 3rd floor collection area that
shows the bookshelves and the stairs that connect the two floors; and (b) the network
devices close to the collection area. The red asterisks represent the 3𝑟𝑑 floor’s devices,
and blue asterisks represent 5𝑡ℎ floor’s devices.

The collected data was organized into training and test (Test-01, Test-02, Test-
03, Test-04, and Test-05) sets, being each set the result of performing a collection
campaign. Figure 3.2 shows the collection positions for a floor. The collection was
performed by following two collection series: direct and reverse. The complete order
of samples gathered for a month and a set was (1) direct series 3𝑟𝑑 floor; (2) reverse
series 3𝑟𝑑 floor; (3) direct series 5𝑡ℎ floor; and (4) reverse series 5𝑡ℎ floor. Regarding
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directions, Test-01, Test-02, and Test-03 sets were collected facing the “Up” (direct
series) and “Down” (reverse series) directions. Test-04 and Test-05 sets were collected
facing the “Left” (direct series) and “Right” (reverse series) directions.
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(b) Reverse direction

Figure 3.2: Positions in the direct (a) and reverse (b) collection directions in a floor.
Bookshelves are represented by rectangles. Collection positions of training, Test-01,
and Test-05 sets are represented by blue diamonds. Collection positions of Test-02,
Test-03, and Test-04 sets are represented by while green, pink and red diamonds,
respectively. The numbers indicate the collection order within each set.

The supporting materials also include the coordinates that define the geometries
of the bookshelves. Such supporting information is important for several aspects of
an IPS. In the example presented in Figure 3.3, the bookshelves geometries helped in
ruling out some areas of the scenario for densification of the training dataset through
regression. Those geometries can also be used to correct position estimates toward
valid areas. Furthermore, the high RSS values seen in the left bottom part of the
image can be attributed to LOS conditions, which are inferred because the geometries
indicate that there is a lane free of obstacles between that part of the area and what
appears to be the position of the AP.

The collection of the WiFi dataset is dense and contains several samples in two
opposite directions at each reference point, which allows the study of short-term
variations. Additionally, the analysis of long-term variations is also allowed by a
collection performed across 25 months. The WiFi signals detected in a scenario
constitute a dynamic environment. The signals from the (fixed) APs deployed in a
scenario for connectivity are not the only ones detected. It is possible – and likely –
to detect signals of temporal APs created at smartphones – which have low detection
ranges – and signals of fixed APs from neighboring buildings – which detection ranges
that may be large. In the case of residential areas, APs from neighboring areas may
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Figure 3.3: SVR regression of mean of the six samples corresponding to each position,
with with map mask, for training dataset enrichment.

alternate between off and on states along a day. Therefore, a large variability is to
be expected across the time for detected APs. The detection of new APs is must be
considered nominal, i.e., an IPS should be prepared to handle such cases.

Table 3.1 presents the intermittence found in the collection area in the Library.
The values shown in the table do not account for all APs detected in the dataset, given
that only training sets for the collection Month 1 were used for their computation.
In only 20 days, 182 different APs were detected, a number that is notable given
the size of the collection area. The set number (“Number” column in Table 3.1) also
indicates the order in which the sets were collected. It is significant that even in
the 5𝑡ℎ collection campaign – 14 days after the first campaign – the number of new
detected APs was almost 20. For each campaign, the sum of the number of the APs
no longer seen with respect to the previous campaign (“Gone” column), the number
of APs that started being seen again (“Returned” column) and the number of APs
being gone for a second time (“Re-Gone” column) is always over 15 after collection
campaign number 04, depicting the large intermittence that is to be expected for
similar scenarios.

The APs deployed in a scenario for connectivity (fixed APs) may also have a
dynamic behavior, as presented in Figure 3.4. Figure 3.4 shows some APs that were
only detected in one month, others whose detection was intermittent, and a notable
change in network configuration in Month 12. The MAC or SSID configurations of
some devices changed between Months 11 and 12, which is the reason why some
of the APs consistently seen in most of the months previous to Month 12 were no
longer detected, and new APs were continuously observed onward. The non-detection
during a campaign realization of some fixed APs may be nominal behavior if it is the
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Table 3.1: Statistics of presence of APs, using measurements from the 15 training
datasets for Month 1.

Number Total New Gone Returned Re-Gone Seen Since 1st Day
01 77 77 0 0 0 77 0
02 97 22 2 0 0 99 1
03 118 23 4 2 0 122 5
04 106 9 23 2 0 131 6
05 127 19 12 15 1 150 14
06 119 4 14 8 6 154 14
07 126 5 4 9 3 159 15
08 120 3 6 6 9 162 15
09 112 4 6 8 14 166 18
10 125 6 4 15 4 172 18
11 119 4 7 6 9 176 18
12 115 1 8 16 13 177 18
13 127 4 1 15 6 181 19
14 124 0 4 15 14 181 20
15 119 1 2 9 13 182 20

result of temporal conditions – like the RSS of a far away AP dropping below the
sensor’s sensibility. However, the disappearance of (fixed) APs deployed in a scenario
for connectivity, as seen along the time in a whole area and not at a single position,
is not nominal and an IPS should devise countermeasures to avoid affectation to
position estimates, as Chapter 5 will later explain.

AP Precense in Training Sets
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Figure 3.4: AP ephemerality, as seen using the Training-01 datasets from each month.
The white narrow rectangles indicate the detection of an AP in a month. Some APs
do not appear in this figure because they were are only detected in test datasets.
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3.1.1 IPS Robustness

The long period that spanned the collection makes the Library dataset adequate for
testing the behavior of IPS against network changes and long-term variations of the
WiFi signal environment. To exemplify such analyses, six fingerprinting-based IPS
were selected and tested against the test datasets of each collection month. The
six IPS are positioning methods found in literature and they were selected because
of their popularity and simplicity. The radio-map used for fingerprinting was the
Training-01 dataset. The method’s hyper-parameters – if any – were determined in
simple preliminary experiments, considering the accuracy of the method for the first
month of data. The six tested methods are:

1. Rand: It returns a randomly-chosen position (x, y, floor). It was only pro-
vided as a reference measure of the lower expected accuracy measure and floor
detection rate that an IPS may have.

2. Prob: It is a known probabilistic method [28] that uses as position estimate the
centroid of 𝑘 positions 𝑙 (x, y, floor) from the radiomap. The 𝑘 positions are
those from the samples with the highest values for the probability 𝑃 (𝑙|𝑠), with
𝑠 being the operational fingerprint and with 𝑃 (𝑠|𝑙) =

∏︀
𝑃 (𝑠𝑖|𝑙), where 𝑠𝑖 is the

RSS value of the 𝑖𝑡ℎ detected AP. The computation of 𝑃 (𝑠𝑖|𝑙) followed that of
Berkvens et. al. [3]:

𝑃 (𝑠𝑖|𝑙) =
∫︁ 𝑠𝑖−0.5

𝑠𝑖+0.5

𝒩 (𝜇𝑙, 𝜎
2
𝑙)d𝑟, (3.1)

where 𝑟 refers to a variable in the RSS domain, 𝒩 (𝜇, 𝜎2) is the normal distri-
bution with mean 𝜇 and variance 𝜎2; 𝜇𝑙 and 𝜎2

𝑙 are functions of 𝑙, the position,
and are calculated for each point - position and direction of collection.

3. kNN: It is a known deterministic method [1] that finds the 𝑘 closest samples
in the fingerprint space to the operational fingerprint. It provides as the 2D
position estimate the centroid of the positions (x, y) of those 𝑘 closest samples.
The value used for 𝑘 was 9 and the Euclidean distance was selected as fingerprint
distance.

4. Stg: This method is based on the proposal by Marques et. al. [14]. The method
selects samples in the radio-map whose APs with the 𝑠 strongest RSS are the
same APs in the operational fingerprint with the 𝑠 strongest RSS. The kNN
method explained above is applied to the selected samples. The parameter
values are 𝑠 = 3 and 𝑘 = 5.
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5. CSE: It is based on the method proposed in Hernández et. al. [9], which applies
SVR over the radiomap collected for a floor to enrich it. SVR was used here as
provided by [15], using a Radial Basis Function (RBF) kernel and performing
predictor data standardization. Per each AP and position, the RSS difference
between the radiomap and the operational fingerprint is computed. That RSS
difference is used to compute a score. Positions whose RSS difference is zero
get the highest scores. The score gets smaller as the difference increases, and
it is zero beyond a margin 𝑚 (a value of 4 was used here). The scores of each
AP are summed up to obtain a general score for each position. A map mask is
applied to discard unfeasible positions. Scores are computed independently for
each floor. The position (x, y, floor) with the highest general score is used as
the position estimate. The map mask was computed here using the geometries
of the library bookshelves.

6. Gk: This method is based on the method by Roos et. al. [23], proposed in
the form of a kernel density estimator (KDE). It computes the likelihood of the
RSS at each fingerprint position. It assumes a model that follows a Normal
distribution with the sample mean at each reference point and a constant stan-
dard deviation for all observations. The position estimate is computed as the
centroid of the positions corresponding to the 𝑘 highest likelihood values.
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(b) Floor detection success ratio.

Figure 3.5: Positioning accuracy of each tested IPS.

Figure 3.5 presents the positioning performance results of the tested methods.
Figure 3.5a presents the 2D accuracy, evaluated in terms of the 75𝑡ℎ percentile of Eu-
clidean distance. The Euclidean distance was used for simplicity. The 75𝑡ℎ percentile
was favored over the mean given the optimistic view of the later and the fact that
the 75𝑡ℎ has been adopted as the positioning accuracy metric by the IPIN Track 3
Competitions [26, 25]. Figure 3.5b presents the floor detection success rate. For the
Prob, kNN, Stg and Gk methods, the floor estimate is provided as the mode of the
floors from the closest samples.
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The kNN, Gk and Stg methods provide the best results regarding 2D accuracy
and floor detection success. Despite the kNN method surpasses the Gk method in 2D
accuracy in most months, the Gk method is the most stable along the whole period.
Furthermore, it is the most robust against the changes of the network configuration
that occurred between the collection months 11 and 12. In general, the methods
provided accuracy results that are in line with those reported in the literature for
WiFi-based fingerprinting approaches [8]. Regarding the floor detection success rate,
the kNN, Gk and Stg methods are the best-performing ones. These methods had
little affectation by the changes in the network configuration, being the Stg method
is the least affected. Compared to the other methods, the Prob and CSE performed
poorly regarding both the 2D accuracy and the floor detection rate.

3.2 BLE RSS Dataset

The publicly available BLE RSS dataset [17] was collected for research on RSS-based,
smartphone-based, fine-grained, indoor positioning techniques. The dataset provides
several sets of BLE RSS measurements, which were carefully labeled with their collec-
tion details. The dense BLE beacon deployment in the collection areas allow position-
ing accuracies below 3 m. Besides the BLE RSS measurements, beacon deployment
descriptions and environment information were provided. Also, dataset information
includes a set of MATLAB c○scripts that help in data handling and perform demon-
strative analyses. The analyses are intended to show how the BLE RSS measurements
can be used in indoor positioning research. Also, they highlight important concerns
that may affect BLE RSS-based positioning methods.

The collection of RSS measurements was performed in two zones from the UJI,
in Castellón, Spain. The zone is an area among bookshelves in the Library building
– hereinafter, Library. The other zone is an area of the office space of the Geotec
Research Group – hereinafter, Geotec. Data that describe the environment, the
collection, and the beacon deployment are presented in the Table 3.2. In Table 3.2,
the values presented by the “MDMS” column are the maximum distance from the
position of a collection point to another collection point that is the closest to it in the
space. the values presented by the “MDMB” column are described as the “MDMS”
column, but regarding the position of beacons instead of the position of collection
points.

Twenty two BLE beacons were deployed in the bookshelves of an area in the
Library to support a positioning service for users looking for a book. Figure 3.6a
presents their deployment positions. The beacons were placed inside the enclosed top
of the wooden shelves for security concerns, as presented in Figure 3.6b. Therefore,
there were no line-of-sight situations between beacons and collection points in this
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Table 3.2: General description of each collection zone.

Geotec Library
number of beacons 22 24
number of samples 2652 2100
number of campaigns 1 2
smartphones A5 A5,BQ,S6
involved subjects 1 3
consecutive collection samples 13 6
transmission powers (dBm) −20,−12,−4 −20
area (m2) 151.07 176.02
area covered by tall obstacles (m2) 8.70 68.73
area covered by samples (m2) 137.51 121.65
area covered by beacons (m2) 138.08 172.9
MDMS (m) 2.34 1.79
MDMB (m) 3.07 3.71

environment. The dense beacon deployment assured that the area covered by them
included all bookshelves and the deployed beacons were as far apart from each other
as possible. The shelves height is 2.35m. Given that the ceiling is about 2.60m above
the floor, the beacons were close to it. The collection was divided into two campaigns.
In one of the campaigns, the subjects faced the up or down directions at each position
(blue squares in Figure 3.6a). In the other campaign, the subjects faced the left
or right directions at each position (orange circles in Figure 3.6a). Each collection
campaign was performed three times, each time using a different smartphone and by
a different subject. The smartphones were a BQ Aquaris X5 Plus, a Samsung Galaxy
S6 (SM-G920F) and a Samsung Galaxy A5 2017 (SM-A520F), hereinafter BQ, S6,
and A5, respectively.

Twenty four BLE beacons were deployed in the Geotec zone, in the positions
presented in Figure 3.7a. The beacons were attached to the ceiling tiles, as shown
by Figure 3.7b. Given that the environment contained only four tall furniture pieces,
every collection point had line-of-sight situations with more than three beacons at the
same time, if human-body blockage is not considered. The collection was performed
following one campaign, in which with the subject faced the up or down directions,
using one of the smartphones used for the Library zone. The campaign was performed
three times, each time with the beacons configured for a particular transmission
power.
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Figure 3.6: The 5𝑡ℎ floor Library zone. In (a), green diamonds and the magenta
asterisk represent the position of beacons and the local coordinates origin, respec-
tively. The orange circles and blue squares represent the collection positions where
the subject faced the left-right directions and those where they faced the up-down
directions, respectively. The pale blue rectangles represent bookshelves. In (b), a
shot that shows how beacons were deployed inside the top of bookshelves.

3.2.1 Environment and Device: Signal Intensities and Adver-
tisements Loss

The dense bookshelf placement in the Library environment has a notable influence
is signal strength. There were no line-of-sight situations between beacons and a
smartphone in this zone. As presented in Figure 3.8, the drop in signal strength as
the distance to a beacon increases is more significant in the Library zone than in the
Geotec zone. In the latter, there are only four tall shelves and the height of other
furniture pieces is below the altitude at which a person usually holds a smartphone.
Thus, the furniture in this zone does not significantly influence the reported beacon
RSS.

Table 3.3 shows that the range at which a beacon is detected not only depends
on the transmission power but also depends on the collection smartphone and the
deployment environment. The first row in the table shows the maximum RSS value
detected for a beacon at any collection point. The signals strengths reported by
the S6 smartphone were weaker than those reported by the A5 smartphone in the
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Figure 3.7: Geotec office zone. In (a), green diamonds, orange circles and the ma-
genta asterisk represent the position of beacons, collection positions and the local
coordinates origin, respectively. The blue horizontal-lines-filled rectangles represent
tall furniture that create NLOS situations. In (b), a shot to show how beacons were
deployed in the ceiling tiles.

Library zone. The A5 smartphone could detect stronger signals in the Library than
in Geotec. Despite the non-existence of line-of-sight situations in the Library, the
minimum (3D) distance between collection points and beacons was smaller than in the
Geotec zone. The second row (MDP70) in the table displays the maximum distance at
which a beacon was detected with a signal strength over −70 dBm. The distances are
consistent with the maximum detected RSS values. The third row (MDHT) in the
table presents the maximum distance at which a beacon was consistently detected
in more than half of fingerprints at a collection point. The S6 smartphone was
notably better at detecting beacon advertisements than the A5 smartphone, despite
it registered weaker values of RSS.

Table 3.3: Beacons detection range.

Library (S6) Library (A5) Geotec (A5)
Max detected RSS (dBm) −52 −33 −44

MDP70 (m) 0.47 3.92 2.75
MDHT (m) 4.50 1.47 1.16
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(a) Library Zone (b) Geotec Zone

Figure 3.8: Difference between zones in the RSS values as detected by the A5 smart-
phone, with beacon transmission power set to −12 dBm.

BLE beacons can usually be configured to send advertisements at given time in-
tervals. However, the time spans between two consecutive detections reported by a
smartphone are usually higher than the interval setting configured in the beacons
[10, 7]. It is not only that the receptor do not detect some advertisements when it
is beyond the beacon range, or that the time increases because of some tiny extra
processing delays, but that some smartphones cannot properly detect all advertise-
ments. Figure 3.9a shows the time spans between advertisement detections for the
smartphone A5 and beacon 1 in the Library zone. All beacons were configured to
advertise every 200ms. However, the number of two consecutive advertisements de-
tected with a time difference close to 200ms is very low. Figure 3.9b shows that the
detection capability of the smartphone A5 is low when compared to the BQ and S6
smartphones.

Closer distances to an emitter correlate to higher variance in the reported RSS
values for the 2.4GHz networks. Also, some works stated that close distances to a
beacon correlate to low detection delays [4]. The results of a Pearson correlation test
between detection delays and distance to beacons are presented in Table 3.4 for the A5
smartphone. The correlation was individually tested for each beacon, and only the 𝜌
and 𝑝-value for the beacon with the most interesting values are presented in Table 3.4.
The results are not statistically significant. However, they suggest that the distance
to a beacon is not a key factor in the observed detection delays of advertisements.
Also, given that the consecutive measurements of a point were collected facing the
same direction, orientation is likely to play only a small influence on detection delays,
at least for our settings and analyses.
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Figure 3.9: Times elapsed between two consecutive beacon detections while active
registration of BLE advertisements. Measurements correspond beacon 1 broadcasting
at −12 dBm in the Library zone. In (a), the 𝑡×200 ms (𝑡 ≥ 1) detection delay pattern
is shown. In (b), a comparison of detection capability among the three smartphones
is presented.

Table 3.4: Pearson correlation test between detection delays and distance to a beacon.
Values correspond to the beacon reporting the 𝜌 value farthest from zero, considering
data captured by the A5 smartphone and a −12 dBm beacon power setting).

Zone 𝜌 p-Value Beacon
Geotec −0.14 0.04 2
Library −0.14 0.12 18

3.2.2 Positioning Accuracy

BLE RSS-based positioning methods are commonly affected by factors like the en-
vironment layout, beacon advertisement configuration, beacon deployment positions,
and the user smartphone. Some of the methods found in IPS literature address one or
several of those factors [22]. The Weighted Centroid (WC) and the k-Nearest Neigh-
bors (kNN) methods were tested to explore the previous factors in this work. The WC
is used in BLE-based positioning because the positions of the deployed beacons are
known. The kNN method is commonly used in fingerprinting for indoor positioning,
mainly for WiFi signals.

The WC method was previously addressed for BLE-based positioning, sometimes
with other names [7, 21]. The WC method estimates a 2D position for a BLE opera-
tional fingerprint by computing the mean of the positions of the 1 ≤ 𝑘 ≤ 𝑛 detected
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beacons, being 𝑛 the number of beacons deployed in the target area. The 𝑘 selected
beacons are those with the highest RSS values in the fingerprint. The kNN method
[1], hereinafter FP, is very popular in RSS-based indoor positioning. It requires a
previously collected set of training fingerprints with associated position tags. The
description of this method was previously provided in Section 3.1. The sets used for
training and test purposes in the experiments shown later in this section are those
suggested by the scrips shipped with the BLE measurements.

The accuracy of an RSS-based positioning method is computed in terms of the
positioning errors. In the work presented in this section, the error was computed as
the 2D Euclidean distance between the estimated position and the actual position
where a fingerprint was collected. The accuracy metric mainly used here is the 75
percentile of the positioning error, following the same reasons presented in Section 3.1.
The comparison of plots showing the empirical cumulative distribution functions is
also used.

The positioning error analyzes used the RSS data from the Library zone to ad-
dress the influence of distinct phone models (Figure 3.10a,b). The analyzes that
use the data from the Geotec zone addressed distinct beacon transmission powers
(Figure 3.10c,d).

Considering the WC method, the positioning errors are more noticeable when
using data from A5 than when using data from BQ and S6. However, the errors
are similar among the three phones when the FP method is used. In general, the
smartphone that provided the BLE measurements most suitable for positioning is the
BQ. The effect of the selected transmission power on the accuracy depended on the
position method. Using data captured with the −20 dBm power setting led to better
accuracy for the WC method, and a notably worse accuracy for the FP method, than
when using data of the other two powers. The accuracy obtained when using the data
collected at the −12 dBm transmission power was similar to that obtained for the data
collected at the −4dBm transmission power. Across the explored power configura-
tions and collection smartphones, the WC method had maximum positioning errors
larger than the FP method. However, for percentiles below the 75𝑡ℎ, the WC method
provides positioning errors lower than the FP method. The smartphone employed for
samples collection is likely to have an important impact on the positioning accuracy.
Also, very weak transmission powers should be avoided. The positioning accuracy
for fingerprinting is poor, even below that reported for WiFi in Section 3.1 for the
same environment. BLE signals are more affected by fast fading than WiFi signals –
its known solution is addressed later. Furthermore, the test positions for the dataset
addressed in Section 3.1 included positions closer to the training positions than those
from the BLE data described in this section.

A proper value of the parameter 𝑘 should be found for the WC and FP methods
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Figure 3.10: Positioning accuracy for the WC and the FP methods.. For (a) and (b),
data was captured in the Library zone. For (c) and (d), data was captured in the
Geotec zone.

before assessing their positioning accuracy. In WC, the 𝑘 parameter represents the
number of the beacons most strongly detected in the operational fingerprint whose
positions are use used to compute the position estimate. In FP, 𝑘 is the number of
the training fingerprints most similar to the operational fingerprint whose positions
are used in the estimation. For the WC method in Library zone, the difference on
accuracy among several values of 𝑘 was negligible, as long as the values were greater
than 3. Therefore, and considering the detection delays issue explored in the previous
section, three configurations were tested:

∙ All: all beacons detected in a fingerprint are used. All estimations are used to
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compute the accuracy metric.

∙ K10: 𝑘 = 10. Ten was the 𝑘 value providing the best accuracy. Notice that
the number of beacons detected in a fingerprint can be lower than 10. All
estimations are used to compute the accuracy metric.

∙ KF10: 𝑘 = 10. Estimations for samples with less than 10 detected beacons are
considered unfeasible and thus, not used to compute the accuracy metric.

The results of applying the previous three configurations on the positioning ac-
curacy are shown in Table 3.5. The value of 𝑘 has no significant influence on the
WC’s accuracy for this environment. The layout of the Library zone determined that
there was no beacon in the environment whose detection range was larger than the
detection range of other beacons. The results for the configuration KF10 indicate
that the accuracy for samples with 10 or more detected beacons id better than for
the rest of the samples. The positioning method could be adapted so that it does not
provide estimates for the latter samples. Also, the positioning method may associate
to a position estimate a certainty indicator based on the number of beacons detected
for a sample.

Table 3.5: Influence of the number of detectable beacons in WC accuracy.

A5 BQ S6
Error(m)-All 3.51 1.95 2.01
Error(m)-K10 3.51 1.94 2.00
Error(m)-KF10 2.63 1.88 1.83

Ratio-KF10 0.44 0.82 0.83

The FP method used 𝑘 = 72. For this method, the number of detected beacons is
relevant for both training and operational (test) fingerprints. The values presented in
Table 3.6 help in exploring the relationship between the accuracy in FP and the num-
ber of coincident beacons detected in both the operational and training fingerprints.
The number of coincident beacons was low, or very low in the A5 smartphone, with
an accuracy lower than the one obtained with WC. The last two rows of Table 3.6
present the results of the Pearson correlation test between the positioning error and
the number of coincident beacons for each test sample. The correlation is large and
significant for the BQ and S6 smartphones. It is large but not significant for the A5
smartphone. This correlation may explain why the accuracy for FP is lower than
for WC. Thus, a solution that reduces the negative effect of advertisement detection
delays should be applied to both training and operational fingerprints.

Measurement windows have been proposed as solutions for advertisement detec-
tion delays [7]. As Chapter 4 will later explain, the collection of BLE measurements
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Table 3.6: Influence of the number of detectable beacons in FP accuracy.

A5 BQ S6
Error (m) 4.43 4.61 4.88

Max number of coincident beacons 4 12 11
𝜌 −0.80 −0.95 −0.93

𝑝-value 0.2 ≈ 0 ≈ 0

required to create a fingerprint abstraction. A fingerprint in the BLE dataset is the
result of grouping the measurements collected during a time window. However, that
time window is small (1 s) and all previously seen records are discarded. Table 3.7
presents the effect that applying fixed-size moving windows over the fingerprints that
belong to the same collection point had on the position accuracy. A collection point
is uniquely identified by its 2D position and the direction that the subject faced when
performing the collection. The RSS value that corresponds to a beacon in a window
of fingerprints was computed either as the mean or the last value of the beacon’s RSS
values in those fingerprints. As presented in Table 3.7, the larger the window size,
the better the accuracy. The improvements may be a result of the point-based collec-
tion procedure followed for the BLE RSS dataset. Also, in some cases, the accuracy
difference between the FP and WC decreases.

Table 3.7: Buffering results using data for the A5 phone and power −12 dBm. For
realistic comparisons, position estimation were only computed for test sets in WC.

Mean Last
Library Geotec Library Geotec

Windows size FP WC FP WC FP WC FP WC
none 4.46 3.46 4.16 3.44 4.46 3.46 4.16 3.44

2 3.77 2.58 3.91 2.69 3.85 2.56 3.93 2.69
3 3.43 2.32 3.49 2.59 3.41 2.35 3.52 2.49
4 2.95 2.29 3.38 2.61 3.03 2.31 3.47 2.45
5 2.83 2.28 3.34 2.48 2.87 2.30 3.55 2.37

3.2.3 Beacon Deployment, Estimations Positions and Robust-
ness

A high density of WiFi routers in the target area improves the accuracy of WiFi-based
IPS. A large density of beacons also benefits BLE-based IPS [11]. BLE beacons have
lower costs and are easier to deploy than WiFi routers. However, largely increasing
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the number of beacons for a deployment is usually not practical. The chosen number
of beacons and their placement depends on factors like deployment restrictions in the
target area, the beacon range, the positioning method, and the obstacles found in
the environment. Beacon deployment choice is a known problem that several works
found in the BLE IPS literature have addressed [7, 5, 6], showing the complexity of
the problem and only a few placement guidelines.

The beacon deployments used during the collection of the BLE RSS dataset were
dense in the two zones. The scripts provided with the BLE RSS data allow selecting
several distinct subsets of the deployed beacons. Those sets can be considered alterna-
tive deployments. Figure 3.11 shows the position estimates and their accuracy using
the WC and FP methods for three distinct beacon deployments. The first deployment
(see Figure 3.11a) included all beacons deployed in the Library zone. The positioning
methods used a buffering window of size 2 to improve the results. The estimates were
computed only for test points. Notice that the 𝑘 parameter in the FP method had a
value lower than the one used in previous experiments. The new 𝑘 value provided an
accuracy value worse than the previous 𝑘 value. However, the new 𝑘 value was chosen
to avoid a heavy concentration of the estimates in the center of the target zone. The
second deployment (shown in Figure 3.11b) included only nine beacons. The accuracy
decreased by about 1m in the two methods. Notice that the FP estimated positions
remained clustered in the center of the area. However, the positions estimated by the
WC changed and wide areas appeared near the borders and away from beacons where
the WC method could not place position estimates. The third deployment (presented
in Figure 3.11c) also had only nine beacons. However, no beacon was placed in the
left and right sides of the area. The WC method could not achieve proper position
estimates for samples in areas near the sides. The lack of beacons deployed near the
boundary of the target area did not affect the FP method in these experiments. The
FP accuracy was improved in the third deployment. The new layout decreased the
mean distance between beacons and collection points. Thus, the number of beacons
detected in training and test fingerprints was larger.

The BLE beacons are devices that commonly run on batteries. Thus, unless active
monitoring and fast battery replacement are done, is likely that one or more beacons
are not broadcasting at a given time when the power in their batteries is close to the
exhaustion. The robustness of WC and FP methods to situations where one to six
beacons stop broadcasting is presented in Figure 3.12. The WC method has better
accuracies than the FP method, as previously seen, but it is also more affected than
the FP when the number of active beacons decreases. The largest reported errors
should correspond to cases where the removed beacons are close to the boundaries
of the collection area. The FP method is not heavily affected by the positions of
the removed beacons. Thus, the accuracy changes are not as drastic as for the WC
method.
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Figure 3.11: Estimated positions and accuracy (d–f) for three deployments (a–c)
using the WC (𝑘 = 10) and FP (𝑘 = 12) methods. In the deployment figures,
green diamonds, cyan squares and magenta circles represent the position of beacons,
test and training samples, respectively. In the position estimation figures, red circles
and blue circles represent the estimations provided by the WC and FP methods,
respectively. Data was collected in the Library zone using the S6 smartphone.

3.3 Conclusions

This chapter described two RSS datasets collected to foster BLE and WiFi IPS de-
velopment, credible evaluations and reproducibility. The WiFi dataset allows testing
the robustness of a WiFi IPS to short and long term variations of the WiFi signals.
The BLE dataset allows testing BLE IPS, with the goal of obtaining high positioning
accuracies, using several beacon configurations, environments and collection smart-
phones. The description provided in this chapter exemplifies how open RSS datasets
are collected and how they should be described to highlight the goals of their collec-
tion. Chapter 4 and Chapter 5 use the WiFi dataset described in this chapter.

The materials presented in this chapter are supported by two publications [20,
16].
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Chapter 4

WiFi and BLE Data Collection for
IPS Fingerprinting

The first step to setup an IPS based on fingerprinting is usually the creation of a
training database. This step, in turn, requires additional tasks that may determine
the quality of the resulting database. This chapter addresses the tasks involved in
creating the fingerprint database. First, it addresses the tools and procedures to
perform the collection and the curation of the resulting data. Later, it focuses on the
selection of the reference point where the collection is carried out and the position
determination of APs relevant for positioning. Finally, it addresses the database
enrichment using regression methods.

4.1 Collection Planning, Execution and Curation

The collection of a significant number of WiFi or BLE samples requires a notable
amount of time. The time depends not only on the number of samples but also on
the hardware and the software used for collection. The familiarity that the subject
has with the collection process and the target environment is also a key factor. The
hardware, commonly the smartphone model, determine the speed at which WiFi or
BLE scans are performed. The software normally takes into account the operating
system and the collection application. The operating system, most usually Android
and iOS, may impose timing restrictions on the scan activities of the applications.
The collection application should not impose additional timing restrictions on the col-
lection speed. However, it may ease the collection process by having good usability
and providing relevant indications. Regarding the collection subject, a person unfa-
miliar with a task would perform it slower, and presumably poorer, than a person
that is familiar with it. Also, the process of determining one’s position in a place is
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not trivial for many people. Thus, the subject familiarity can decrease the collection
time.

Once the signal measurements have been collected, the data should be extracted
from the collection devices and errors or inconsistencies should be eliminated. Finally
the collected data is transformed to the format desired for the training database of
an IPS or a public database. In the latter case, meta-data should be also created.

This section describes a set of campaigns-based planning, collection, and pro-
cessing tools created to ease the gathering of WiFi and BLE samples. The tools
help to reduce the effort required to have the training database for WiFi or BLE
fingerprinting-based IPS. Also, this section shares brief insights into the data cura-
tion for fingerprinting.

4.1.1 Campaign-based WiFi and BLE Collection

Samples collection for fingerprinting is carried out by IPS users, volunteers or IPS
creators/deployers. In the latter case, the subject’s goal is to gather data with ac-
curate position tags and at positions previously determined to be the most relevant
for a proper signal characterization of the environment. Having too many positions
would require too much effort; while too few positions may lead to a poor positioning
accuracy.

The collection may be point-based or route-based:

∙ In a point-based collection, the subject walks to a position, starts the measure-
ment process for that position, and when the measurement is done, the subject
repeats the process for the reaming positions.

∙ In a route-based collection, the measurement process starts at the first position
and only stops at the last position.

Even for point-based collections, the positions should normally be visited in a
specific order. Also, the direction at which the subject has to face when recording a
fingerprint is relevant.

The predefined plan of the collection is called here a campaign. The plan contains
instructions on how to conduct the collection. Performing the collection following a
campaign is also useful for volunteers that help crowdsource the measurements. As
it happens with the citizen science approach [45], some factors affect the quality and
quantity of the contributions. Because the data collection tasks for WiFi-based or
BLE-based positioning are relatively simple, the main challenge for them is the tag
quality assurance. The process of taking WiFi sample is not error-free even when
performed by trained subjects. Thus, the web and smartphone applications that this
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section presents ease the signal measurement collection not only to reduce the required
time but also the tagging errors. The tools allow the steps of planning, gathering,
and processing of campaign-based, point-based collections of WiFi and BLE samples.

The workflow to perform a collection with the tools is as follows:

1. A user creates a campaign using the planning tool.

2. That campaign is then used to guide the collection process using the collection
tools.

3. Once the collection for a campaign is completed, the data can be uploaded
using the collection app, thus becoming available for its revision, formatting,
and download in the visualization tool.

The planning tool is a web application that let registered users define all the
properties that a collection campaign has. The campaign is defined using a JSON
text, which is supplied to the web application. Figure 4.1a shows part of the data
included in a campaign definition. The most important part of a campaign definition
is the list of points where the collection is to be carried out. Apart from where it
should be collected, the definition of each reference point contains information that
would help the subject in performing the collection. The point information includes
general data like the point id and description. Also, the information includes the
direction at which the subject will have to face to perform the collection, and the
center, zoom, and rotation that the app will set when the subject selects the point.
The most laborious part of the campaign JSON construction is the specification of the
point positions. This step can be done with a part of the web application (presented
in Figure 4.1b) that allows users to put points on a map, keeping the record of the
point order. Once the points are located on the map, their positions and orders can
be exported to later incorporate them into the campaign’s description.

For WiFi samples collection, a campaign definition is enough for setting up the
collection. However, BLE collections are assumed to be linked to a previous BLE
beacon deployment. Thus, the collector app can be instructed to only gather ad-
vertisements from the managed BLE devices. Figure 4.1c shows the interface for
defining a new deployment. The required information includes beacon ids, positions,
advertising parameters, and map-based information.

Once a campaign has been defined, a subject may select the campaign in the
collection tools and carry out the campaign. The collection tools are two Android
smartphone apps with interfaces very similar to each other. One of them is devoted to
the collection of BLE measurements, while the other is intended for the collection of
WiFi samples. The apps were used to collect the WiFi and BLE databases described
in Chapter 3.
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(a) Campaign definition data (c) BLE beacon deployment definition

(b) Point positions definition (d) Campaign definition interface

Figure 4.1: Screen shots of the web tools for deployment and campaign definition.

In the case of BLE, Android provides two ways of notifying BLE advertisements:
anytime an advertisement is received, or when a batch of advertisements is collected.
Tests performed during the application development suggested that the batch ap-
proach leads to the detection of fewer advertisements. Thus, the former approach
was chosen. Giving that the advertisement collection was not batch-driven, a fin-
gerprint abstraction was created, so that all measurements received in a window of
1 s were placed into a fingerprint. If a beacon was detected more than once in a
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(a) Capture in progress (b) Measurement deletion

Figure 4.2: Scree shots of the Wi-Fi campaign-based application.

fingerprint’s window time, only its mean RSS value was recorded.
In the case of WiFi, Android only allows the batch approach. Apart from vary-

ing scanning times in different smartphone models and Android versions, the test
performed during the application development showed two important concerns. The
first concern is that an initiated WiFi scan may be delayed or interrupted when a
smartphone has an active WiFi connection and the connection switches from one AP
to another. The second concern is that for some smartphones and Android versions
the buffering is so aggressive that the system returns almost instantly a previously
buffered fingerprint when a scan is requested. The two concerns were solved using
time protection mechanisms and by giving the apps the ability to work offline. The
time protection mechanisms are based on timers that control the maximum and mini-
mum times allowed for a collecting a batch of fingerprints. Figure 4.2 shows examples
of the usage of the WiFi samples collection app.

The collection apps made the collection process less cumbersome, more accurate
and faster by showing collection instructions to the subject. The application let the
subject choose which of the available campaign to work with. The subjects did not
have to carry hard-copy instructions to follow a well-planned campaign. They just
needed to focus on the map and instructions from the applications. They could finish
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one campaign and then switch to another one, and upload the campaigns’ data at
the time of their choosing.

The subjects that perform a collection may mainly include two types of position
tagging errors:

∙ They may place themselves at wrong positions.

∙ They may wrongly indicate their current position on the map for collection
applications that require indications from the users.

With the two collection apps shown in this work, the second kind of error is no
longer present because subjects are not required to indicate their current floor or
tap their position on the application’s map. The application’s design reduces the
likeliness of the first kind of error by:

∙ Map’s zoom and orientation adjustments at each position.

∙ Indications of the facing direction at each position.

∙ Actions for traversing the list of positions and deleting the captures that the
user may consider erroneous.

∙ Indication of the point that follows the current one in the capture process.

As confirmed with the collection of the Library WiFi database described in Chap-
ter 3, the collection apps let employ most of the collection time to fingerprint capture.
For example, for a campaign having 96 fingerprint batches, each batch composed of
six fingerprints, the mean time to complete the campaign was 50 minutes. As the
mean time for capturing one batch was 30 seconds, a mean of only 2 minutes was
used for displacements, orientation, and other tasks. Among the factors influencing
the efficient time utilization are:

∙ Capture positions corresponding to the same floor were close to each other,

∙ The user did not have to check hard copy instructions nor indicate the current
capture position or the floor to the application,

∙ An indication of the following position to capture was provided, which let sub-
jects use the batch capture time in spatially locating themselves on the following
destination and help them to stay focused on the task, and

∙ The termination of the batch capture process was announced by sound and
vibration actions in order to regain the subject’s attention.



Chapter 4. WiFi and BLE Data Collection for IPS Fingerprinting 85

The value of the campaign-driven applications lies not only in improving the col-
lection experience and reducing the errors but also in its potentials for crowdsourcing.
Assisting the subject when collecting samples is also useful since the subjects have
only to go to the places shown on the map. The responsibility of selecting the refer-
ence points may require additional time and produce stress in the people that collect
the data. For the Library WiFi dataset, no samples had to be discarded after a cam-
paign was completed. In comparison, the curators of the UJIIndoorLoc dataset [52]
had to discard 6% fingerprints of its training set and edit 15% of them. The changes
to the collected fingerprints were results from errors acknowledged by subjects and
inconsistencies in the order of temporal marks.

Figure 4.3: Web tool for samples visualization. The point clustering changes with
the zoom dynamically.

Once the collection of a campaign is complete, the subjects may upload the col-
lected data. The uploaded measurements are then available at the data downloading
and visualization tool. The data is stored in JSON and can be downloaded in JSON
or CSV formats. Before downloading the data, the web application presents the user
with a visualization of where the samples were collected (see Figure 4.3). The tool
also allows reviewing the attributes of each sample, like the signal intensities and the
subject who performed the collection.

4.1.2 Data Curation

Once the data of WiFi or BLE samples are collected, the process of creating the
radio for an IPS or a public database for sharing goes beyond a quick review of
where the collection was performed. In the IPS context, fingerprint data curation
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involves transforming the data a specific format, apply cleaning operations, and cor-
rect inconsistencies. The format transformation can be done using automatic means.
However, the cleaning and inconsistencies correction operations should be performed
under careful supervision.

Android allows filtering the advertisements of BLE beacons that will be reported.
For example, in the case of the iBeacon protocol, the UUID code can be used as a
filter. The BLE collection app previously described linked a campaign to a specific
BLE deployment. Thus, it performed additional filtering using the minor and major
characteristics from the iBeacon protocol.

However, Android does not incorporate a filtering capability for WiFi scans. Fur-
thermore, it is commonly difficult to know in advance all the fixed AP that will be
seen in a scenario. Therefore, the collected data could be cleaned from WiFi APs that
are not known to be deployed in the target scenario or whose behavior may affect the
IPS performance. For example, in the UJI WiFi dataset presented in Chapter 3, a
significant number of the APs detected along the collection time showed large vari-
ability in their detection. Those APs with large variability could be filtered out. The
filtering can also be done using the MAC or SSID of the detected APs if they fol-
low some pattern for the target scenario. For example, in the case of UJI, the AP
deployed by the university’s IT service broadcast with SSIDs that include either the
string “Eduroam” or “UJI”.

The buffering that Android smartphones commonly perform of WiFi signals can
be a difficulty for positioning. The RSS values that Android report corresponds to
measurements performed in previous instants. The times that those instants corre-
spond to depend on the smartphone model and Android version. The UJI long-term
WiFi dataset, which was addressed in Chapter 3, provided the opportunity to ana-
lyze such issue. The dataset was created through a point-based collection. Table 4.1
presents the mean point-wise RSS difference value among pairs of samples taken for
each point. The sample pair 1–2 has the largest difference (1 dBm more than the
others), which indicates that the first sample may be buffered measurements taken
by smartphone’s software before the subject arrived at the collection position. In the
UJI long-term WiFi, six samples were collected for each position and direction. If the
dataset is to be used as a radio map for an IPS, the first sample could be dropped,
thus reducing the buffering artifacts.

The inconsistencies in the data are commonly the result of position tagging errors.
For example, two samples collected in positions only a few meters away from each
other should be similar. They should share, at least, a few of the APs that each
sample detected. Also, the collection is commonly performed following an order,
mainly if the subject follows a campaign-based approach. Thus, changes in the order,
mainly those showing large divergences, should be verified with the subject. Order
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Table 4.1: Point-wise mean RSS difference between pairs of samples in the WiFi
dataset presented in Chapter 3. The measurement correspond to AP 7, 3𝑟𝑑 floor,
Month 15, “direct” direction from sets Test01, Test02, Test03 and Test04.

Sample Pair 1–2 2–3 3–4 4–5 5–6
Mean Difference (dBm) 3.19 2.06 1.82 1.74 1.95

changes may even invalidate a complete collection for a campaign if the timing order
was relevant.

4.2 Reference Point Selection

Samples collection is known as one of the main challenges of WiFi fingerprinting.
It requires a significant effort to collect a representative radio map for large areas
like, for example, several buildings in a university campus. Chapter 2 mentioned the
solutions for reducing the required collection effort. Recalling, these solutions are (1)
crowdsource the collection to volunteers, (2) apply a propagation model to estimate
the expected RSS values, or collect samples at a reduced number of reference points
and then apply a regression technique that densifies the radio map.

Crowdsourced signal data is very valuable and is the only affordable option for
some cases. However, the reliability of position tags and the poor distribution of sam-
ple positions are usual concerns. The application of a propagation model to estimate
the expected RSS values may provide high-quality data for the radiomap. However,
the model setup requires very precise information on obstacles in the environment
and the broadcasting parameters of the emitters. Furthermore, the RSS estimations
may fail to account for variations caused by presence of people or the effect that the
body of the collection subject has on the RSS.

An alternative to avoid this drawback is performing a quality collection at only a
few reference points. Samples with reliable position tags are valuable for IPS tuning
and evaluation. Some previous works addressed the reference point position deter-
mination. In Kanaris et al. [18], the authors proposed an algorithm that suggested
a collection’s sample size given a small preliminary set of measurements. They sug-
gested the definition of a grid of locations in a target area and randomly choose
locations in the amount determined by the sample size calculation. Jung, Moon, and
Han [17] analyzed placement in under assumptions of specific positions of test samples
and using simulations.

This section focuses on determining the positions of reference points most conve-
nient for WiFi fingerprint collection. The distribution analyses take into account the
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environment geometries and the experiments are performed using the data from two
publicly available datasets. The experiments show how the distribution of training
fingerprints, the environment structure and the detected intensities of the APs affect
the positioning and the regressions used the reduce the collection efforts.

4.2.1 Materials

The two datasets used in the experiments are denoted in this section the Library
and the Mannheim datasets. The Library dataset is a subset of the dataset [37]
that was collected in two floors of the UJI’s Library building during 25 cumulative
months. Six fingerprints were collected per each reference point and each of the two
directions at which the collection subject was facing. The subset contains only one
training set and test sets that correspond to the first collection month. Also, as the
data contained information about a 620 AP, a selection of the 48 most relevant APs
was performed (as done in [53]) to ease the analyses and reduce the noise created by
many intermittent APs. The collection area is a relatively small environment that
covered about 15 × 10m2. The average distance between reference points is about
2m. Chapter 3 provided more details about this dataset.

The Mannheim dataset [21] was collected in the Mannheim University. The col-
lection area comprises a medium-scale environment, covering about 50 × 36m2 of
corridors of a university department. The fingerprints are on a 1.5m grid [20] and
the positions of 11 APs are known. The data contained 110 fingerprints per reference
point. Out of 110 samples, 10 were randomly selected to ease the analyzes and have a
number of samples that is closer to that of the Library dataset. Both the Mannheim
and the Library datasets provided their position tags using a local coordinates system
that allow distance computation using the Euclidean distance.

Figure 4.4 shows the environments where the two datasets were collected. The
representations of structural barrier were created from floor plans. In those represen-
tations, thicker barriers that are usually more opaque to WiFi signals were drawn in
black color, while lighter shades of gray were used to draw thinner and less opaque
to WiFi signals barriers. Figure 4.4 also presents the distribution of training and test
reference points, as well as the position of some known APs close to the collection
area.

4.2.2 Experiments

The experiments studied the influence that the distribution of collection points and
the AP strength in an environment have on the accuracy of an IPS and the quality
of regressions used to reduce collection efforts.
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Figure 4.4: Environments for analyses of reference point selection. Blue and magenta
squares represent training and test reference points, respectively. Known AP positions
are identified by numbered orange circles.

Influence of Position Distribution on Positioning Accuracy

The goal of sample collection in WiFi fingerprinting is to achieve a proper signal
characterization of the target environment. The number and distribution of the col-
lected samples are strongly related to the quality of that characterization and thus
to the accuracy of the target IPS, as shown in Figure 4.5 for the two addressed en-
vironments. The experiments for Figure 4.5 addressed one of the environments and
used a percentage of the original training points for the selected environment. They
were repeated 400 times. A kNN method computed position estimations for all test
positions, with 𝑘 set to the best performing value for the experiment data. Each dot
in the figure represents the 75𝑡ℎ percentile (𝑄3) value of the positioning error and the
convex hull’s area of the used training points. Recall that the training points for an
experiment are a subset (percentage) of the original training points. The error for
an estimate was computed as the Euclidean distance between the estimate and the
ground truth positions. The area was computed for the convex hull, intersected with
the concave hull for the original set of training point, to avoid considering non-valid
zones like, e.g., positions out of the buildings.

The kNN method can provide position estimates only within the convex hull of the
training reference points. Thus, the larger the area covered by the subset of training
points, the better the chances that the test points lie inside the convex hull of the
training points, and thus the better the chances that the kNN can provide feasible
estimates for all test points. Fingerprinting rests on the notion that samples taken
at positions close to each other should have RSS values more similar to each other
than to the RSS values of samples taken farther away. Thus, and as widely shown
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Figure 4.5: Relation between positioning accuracy and the area covered by training
points. The colors of the dots represent the percentage of the original training points
used for an experiment.

by previous studies[14], increasing the density of training reference points may lead
to a better IPS accuracy. However, Figure 4.5 shows that, besides the point density
and the covered area, the layout of points is highly relevant. Apart from the 100%
case of training points, the positioning accuracy can vary from almost 1m to more
than 2m for the same density and covered area in the two environments. The largest
differences are observed for the lowest point densities.

Placing training reference points close to the inner boundary of the collection area
would maximize the covered area and assure that test positions are located inside
the convex of the training positions. Finding the positions that define the boundary
shape is a trivial task and automatic procedures like computing an alpha-shape exist
[8]. The density and distribution of reference points depend on the environment and
the collection effort that can be afforded. The collection is only possible at feasible
locations. It is impossible to collect samples inside a wall. The feasible positions
determine the pool where reference points are selected from. Depending on the effort
afforded for collection, the radio map may need to be enriched. The estimation of
fingerprint values for the remaining positions in the pool can be done using regression.

One strategy for creating the set of reference points is to first add reference points
lying close to environment boundary and later add a number of points 𝑚𝑝 that maxi-
mize the mean minimum distance among the points in the set. In kNN, the estimated
position is commonly computed as the centroid of the positions of the most similar
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samples in the training dataset. Thus, maximizing the minimum distance among
the training reference points reduces the areas without position estimates produced
by kNN. Such an even distribution of point also benefits regressions as it provides
intermediate positions that help explain non-linear behaviors. The value of 𝑚𝑝 may
be dictated by the affordable collection effort. For low values of 𝑚𝑝 – like those below
20 – a brute force approach may be applied to determine the 𝑚𝑝 positions of the
reference points. For large 𝑚𝑝 values, a Monte Carlo approach [41] can be used. This
work used an optimization approach based on agents moving under repulsion forces
[7].

To explore the convenience of using the previous training points distribution, a
Pearson correlation test was applied between the mean minimum distance and the
positioning accuracy for several distributions of training points. The tests were per-
formed separately for each of the two environments. The tests used 400 random sets
of training reference points that had the same number of points and included the
shape boundary points. The position estimations were obtained with the kNN, using
the best k for the training set, and all test samples. Table 4.2 presents the correla-
tion results. The negative correlation between the mean minimum distance and the
positioning accuracy is not statistically significant. For the Library environment, the
negative weak to moderate correlation appears only for large sets, and it is statisti-
cally significant for them. The correlation is consistently negative for all set sizes in
the Mannheim environment. However, its statistical significance does not show a clear
pattern. The results from Table 4.2 suggest that the distribution of the inner reference
points proposed above is beneficial for environments that are large or have relatively
dense collections. Despite it is desirable to avoid the existence of non-positionable
zones, alternative distributions may be preferable for other environments.

Influence of AP Strength on Positioning Accuracy

It is known that the signal strength decreases as the distance to the emitter increases
[11]. The decrease follows a logarithmic behavior. Thus, the signals from an emitter
vary more in the area close to the emitter. A good radio map should grasp as much
as the signal variations in the environment as possible, and a set of reference points
that includes points close to the emitter might incorporate much of those variations.
To test the importance of incorporating such points in the training points, the corre-
lation between the positioning accuracy and the closeness to the seen APs of a set of
points was performed. The ideal way to measure closeness to a seen AP would be by
determining the distance to it. However, such distance determination is a process that
requires to know the actual position of the AP. The position estimation of an AP is
normally error-prone. Thus, the closeness was considered using the RSS values. It is
expected that the closer an AP, the higher the RSS values. Therefore, the maximum



92 4.2. Reference Point Selection

Table 4.2: Correlation between the mean minimum distance between training points
and the 𝑄3 value of positioning accuracy.

Library Mannheim
% mean k rho pval Q3 acc mean k rho pval Q3 acc

0.25 2 0.004 0.932 4.740 3 -0.144 0.004 3.898
0.30 2 0.075 0.135 4.480 3 -0.069 0.167 3.562
0.35 2 0.122 0.015 4.390 3 -0.120 0.016 3.403
0.40 2 0.091 0.068 4.171 3 -0.086 0.086 3.319
0.45 2 0.024 0.628 3.971 3 -0.146 0.003 3.193
0.50 2 0.060 0.233 3.661 3 -0.131 0.009 3.146
0.55 2 0.036 0.470 3.576 3 -0.130 0.010 3.071
0.60 3 -0.036 0.471 3.576 3 -0.077 0.122 2.990
0.65 3 -0.124 0.013 3.505 3 -0.085 0.088 2.966
0.70 3 -0.200 0.000 3.466 3 -0.075 0.134 2.926
0.75 4 -0.313 0.000 3.428 4 -0.152 0.002 2.900
0.80 4 -0.395 0.000 3.390 4 -0.138 0.006 2.874
0.85 4 -0.302 0.000 3.322 4 -0.056 0.267 2.864
0.90 4 -0.279 0.000 3.318 4 -0.131 0.009 2.833

RSS value of each AP in a set of training points was computed. Then, the closeness
value for a set of training points was the 𝑄2 value of the previous set of maximum
AP RSS values. The accuracy value of a set of training points was the 𝑄3 value of
positioning errors.

The closeness and accuracy values were computed for 400 random sets of training
reference points obtained in the same way that those used in previous experiments
of this section. The number of reference points of each set was 25% of the number
of points in the original training set. The correlation between closeness and accu-
racy values was separately computed for each environment. The correlation results,
presented in Table 4.3, were statistically significant. The low to moderate negative
correlation indicates that the higher accuracies tend to be associated with distribu-
tions of training points with large closeness values. Thus, the results suggest the
convenience of distributing some training reference points in zones of the collection
area that are close to the APs.

As presented in Figure 4.5, the training sets considering only 25% of available
training reference points did not achieve the positioning accuracies achieved by sets
that considered larger percentages of reference points. While a reduction in the num-
ber of reference points to only 25% is desirable, the reduction in the positioning
accuracy is not. To deal with such (expected) reduction, it is common to apply a
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Table 4.3: Correlation between between the median maximum RSS across training
points and the 𝑄3 value of positioning accuracy. Training random sets contained 25%
of the available training points.

Library Mannheim
rho pval rho pval

-0.37 ≈ 0 -0.28 ≈ 0

regression or interpolation technique that densifies the radio map. The notions of
previous experiments regarding the placement of sampling points in the environment
boundaries and the maximization of the mean minimum distance among sampling
points also benefit the regression or interpolation results. Interpolation is the most
benefit from having sets of sampling points whose convex hull covers most of the envi-
ronment. Also, regression and interpolations may benefit from the even distributions
created by the maximization of the mean minimum distance among sampling points,
because it provides intermediate positions that help in creating non-linear models.

Influence of AP Strength on RSS Regressions

The following experiments addressed the notion of the convenience of having more
reference points close to nearby APs in order to improve the RSS regression or inter-
polation results. The goodness of a regression or an interpolation applied to radio map
densification is normally assessed by the difference between the estimated RSS and
their actual values. The interpolation methods used in the experiments were Natu-
ral Neighbours [48], (Bi)Cubic Interpolation [58, 56] and Inverse Distance Weighting
[47]. Natural Neighbours and Cubic Interpolation are interpolations based on tri-
angulation and the implementation used here was that provided in MATLAB [34].
An implementation of Inverse Distance Weighting was developed for this work. The
regression methods used in the experiments were SVM [54], Gaussian Process [57],
Generalized Linear Models [44], Decision Trees [2] and Ensembles of Decision Trees
[10]. The implementations for all regression methods were those provided by MAT-
LAB [32, 31, 29, 33, 30]. The interpolation and regression methods, hereinafter only
called regression methods, were applied using training point to fit the model and test
point to computed RSS estimates. The mean RSS value for an AP and a reference
point was used to train the regression model for an AP and to later compute the
regression residuals. The residuals are the AP-wise absolute difference between RSS
estimates provided by the regression and the actual RSS used for training.

Let 𝑆𝑗 = {𝑠1, . . . , 𝑠𝑛} and 𝑅𝑗 = {𝑟𝑗,1, . . . , 𝑟𝑗,𝑛} be two sets, where 𝑛 is the number
of APs detected in an environment. The value 𝑠𝑖 was computed as the mean RSS
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value of the 𝑖𝑡ℎ AP in the environment, considering all reference points. The value
𝑟𝑗,𝑖 was computed as the mean of the residual values obtained for the 𝑖𝑡ℎ AP applying
the 𝑗𝑡ℎ regression method in the environment. The values for the signal strength
and regression residuals used for the correlation test in an environment are the sets
𝑆 = {𝑆1 + . . .+ 𝑆𝑚} and 𝑅 = {𝑅1 + . . .+𝑅𝑚}, where 𝑚 is the number of regression
methods and the + operator performs the orderly concatenation of the sets. 𝑆𝑖 = 𝑆𝑗

for all 𝑖 and 𝑗.
Table 4.4 shows the correlation values between signal strength and regression

residuals for each environment. The correlation is statistically significant for the two
environments. The correlation magnitude is weak for the Mannheim environment
but notable for the Library environment. The higher the median value of the signal
strength in the environment, the larger the residuals of the regressions. The correla-
tion difference between the two environments is a likely result of the dimensions of
the environments. The Mannheim environment is large, and thus the detected signal
intensities for an AP can be very strong in some areas and very weak at some other
areas. Very strong and very weak signal intensities are not detected for the same AP
in the Library environment.

Table 4.4: Correlation between mean values of signal strength in the environment
and mean values of regression residuals.

Environment 𝜌 𝑝-value
Library 0.88 ≈ 0

Mannheim 0.24 ≈ 0

Figure 4.6 presents a further test of the relation between the strength with which
an AP is seen in an environment and the regression goodness. The exploration was
performed for two APs in the Library environment. One of the APs was detected
only with weak RSS values, while in the other strong RSS values were detected. The
charts presented for each AP include the median value for the RSS values of the
AP at each reference point and the median value of the regression residuals at each
reference point. Figure 4.6a shows regression residuals of moderate values for the
weak AP, while Figure 4.6b shows regression residuals for the strong AP that are
not only notably larger than those for the weak AP but also mainly situated in a
specific zone of the environment. The charts suggest that for weak (presumably far
away APs) the regression precise only a few samples to train a model, as the APs
signals are only weakly affected by the environment. However, the strength values of
signals from APs near the target environment heavily depend on the LOS and NLOS
situations.

Table 4.5 presents the spatial auto-correlation test as obtained by Morans’i [42] for
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Figure 4.6: Mean value of residuals distribution compared to mean value of RSS for
the Library environment.

the two antennas addressed in Figure 4.6. The table suggests that for APs strongly
seen across the environment the distribution of regression residuals is not random
and tends to organize in clusters; while for APs weakly seen in the environment
the distribution of residuals is likely random. As stated in the literature [11], the
environment influence is less significant for weak than for strong signals. Furthermore,
the signal in free space follows a logarithmic decay, i.e., the farther from the AP the
slower the decay rate. The tested regression models fail to account for a spatial
process induced by the environment for strong signals. Thus, samples are required in
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zones of LOS and NLOS with respect to strong (and thus nearby) APs, given that
the RSS values in those two situations can be significantly different.

Table 4.5: Spatial auto-correlation (Morans’i) of regression residuals.

Behavior 𝑄2 of RSS 𝑄2 of residuals 𝑧-score 𝑝-value
Weak AP -83 4 0.920 0.357
Strong AP -74 6 7.702 ≈ 0

Given the moderate correlation obtained in some of the analyses, and that the
experiments were only performed in two environments, a reference point position
determination method is not proposed. However, such determination method may
have the following steps:

1. Place some reference points in the boundaries.

2. Distribute the rest of point maximizing the mean minimum distance among
reference points.

3. Adjust the distribution to have some points closer to nearby APs.

4. Tend to LOS situations, assuring to place points in LOS and NLOS situations.

This work recommends the previous method steps as a set of guidelines that
follow after the results of the analyses provided in this section. The most common
approach of placing the reference points on a grid does not take into account the
environment characteristics. The guidelines suggest adapting the sampling positions
to the environment and highlight the importance of knowing the position of nearby
antennas. Thus, the following section addresses the AP position determination.

4.3 AP Position Estimation

As seen in Section 4.2, the knowledge of the WiFi AP positions may be relevant for
deciding where to collect samples for creating a fingerprinting database. Also, for the
proximity and lateration techniques, the position of emitters is a fundamental piece
of information. Discovering the WiFi AP position is also important for management
tasks, such as detecting rogue APs. The knowledge of AP positions, however, may be
unknown for IPS managers. APs may be hidden inside inaccessible places, and their
positions or broadcasting parameters may be difficult to obtain the IT service of the
target institution.



Chapter 4. WiFi and BLE Data Collection for IPS Fingerprinting 97

Several research works have proposed the AP position determination based on
its RSS measurements [4, 1, 13, 22, 23, 61, 6, 5, 24, 16, 55, 43, 62]. Some of those
methods have reported AP positioning accuracies from 2 m to 15 m [13, 24, 16, 62].
This section describes the proposal of a WiFi AP positioning method as well as
experiments that assessed the accuracy of the proposed method and other methods
known in the literature. Given the low accuracy that in general is possible to obtain for
AP position determination, this section also presents a method proposal that qualifies
whether the proposed AP positioning method is providing a good estimation. The
later method is called the Situation Goodness method.

4.3.1 Materials

The WiFi dataset collected at the GEOTEC’s laboratory [51] was used to perform
the experiments. The dataset was collected in two separate moments by two sub-
jects using a Samsung S3 (Android 4.3) smartphone and a G Spirit (Android 5.0.1)
smartphone, respectively. The Samsung S3 smartphone detected 2.4 GHz and 5.0GHz
networks, while the G Spirit was only able to detect those at 2.4GHz. The laboratory
is a typical office working environment that includes wooden and metallic furniture,
working computers, typical office equipment, people working and moving. The labo-
ratory was not intentionally prepared in any way for WiFi-related experiments. Also,
the lab occupies 260m2. The dataset is composed of two sets. One of them contains
samples meant to be used for training a model, while the other was collected for test
purposes. The dataset used in the experiments was created using the two set by
applying the following steps:

1. Combine the training and validation sets. The sets were combined in order to
have a large number of samples to work with.

2. Select samples corresponding to APs whose positions were known. The selected
APs are the ones located inside the GEOTEC’s lab and knowing their positions
was mandatory for the evaluation of the AP positioning methods.

3. Use only the samples taken using the Samsung S3 smartphone. The G Spirit
smartphone did not detect 5.0GHz networks. Thus, its samples were ruled out
to have numbers of samples similar for each AP.

The new dataset, hereinafter called the root dataset, was in turn used to create new
datasets by applying uniform random elimination in order to create different sampling
alternatives. This strategy led to obtain 10 datasets D10, D20, . . . , D100 that contain
10, 20, . . . , 100 percent of the root dataset samples, respectively. Figure 4.7a shows
the root dataset and Figure 4.7b shows an example of a dataset containing only 10%
of the root dataset samples.
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(a) 100% (b) 10%

Figure 4.7: Examples of dataset used in the experiments. The encircled numbers
represent the number of samples at a position or very close to it.

4.3.2 WiFi AP positioning methods

The experiments on WiFi AP positioning tested five methods: the Weighted Centroid
(WC), the Interpolation Contours Centroid (Interpolation), and the method proposed
by Koo & Cha [23] (Linear), by Ji et al. [16] (Monte Carlo), and by Zhao et al. [62]
(Gradient). The first two methods were the implementation of a well-known method
and method proposed by this work. The last three methods were selected from
literature given their claimed accuracy.

Weighted Centroid

The WC method is intuitive and it has been used as a baseline method for comparison
with new AP position determination proposals [4, 1, 13, 23, 61, 6, 16, 25, 62]. The
reasons behind its popularity include its simplicity, its low computational complexity,
and its relatively low AP positioning error in some known situations.

For a set of 𝑛 AP’s signal strengths measurements with known positions, the
weighted centroid method estimates the AP position using Equation 4.1.

𝑃𝑎 =

∑︀𝑛
𝑖=1 𝑃𝑖𝑊𝑖∑︀𝑛
𝑖=1𝑊𝑖

(4.1)

𝑃𝑖 and 𝑊𝑖 represent the position and the calculated weight of the 𝑖𝑡ℎ measurement.
𝑃𝑎 denotes the resulting AP position. The weights represent the importance of each
measurement position. It is calculated based on known or estimated distances, or
directly from the RSS value so that the highest weights correspond to the strongest
RSS values. The weight calculation used in this work was presented in Lohan et
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al. [26] and it is shown in Equation 4.2, where 𝑅𝑖 denotes the RSS value of the 𝑖𝑡ℎ
measurement.

𝑊𝑖 = 10
𝑅𝑖
10 (4.2)

-37 to -42 dBm

-43 to -49 dBm
-50 to -56 dBm

-57 to -62 dBm
-63 to -69 dBm

-70 to -76 dBm

Figure 4.8: AP position estimated using the WC method. The AP position estima-
tion, the black point, is closest to the strongest RSS values. The blue star represents
the real AP position.

The distribution of the samples in relation to the AP position may heavily affect
the accuracy of the method. If there are measurement taken around the real AP
position or they are close to the AP, the method can provide high accuracies, as in
the case shown in Figure 4.8. However, if the measurements were taken only towards
one side of the AP, and none of them is close to the AP, the position estimate is
poor. Despite those facts, many studies have used the weighted centroid method as a
baseline method for comparisons in situations where the collection positions are not
favorable for the method to provide good results.

Interpolation Contours Centroid

Interpolation and extrapolation methods have already been used in the enrichment of
WiFi radio map for RSS-based indoor positioning [9, 49, 15]. Interpolation methods
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normally produce better estimates than the extrapolation ones [49]. The method
proposed here uses interpolation results to spot regions of the target area where the
signal intensities are the highest. Later, the method uses these regions to estimate
the position of the AP. This method, however, can only estimate the position of an
AP inside the collection area. Interpolations only provide function value estimates
for within the convex hull of the original set of positions. The regions selected in
this method are those with the highest intensity, i.e., the ones closest to AP position.
Thus, they can be used to get AP position estimates similar to the WC method for
cases where this method perform the best, and better results than it for other cases.
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Figure 4.9: AP position estimation using the interpolation contours centroid method.
The AP position estimation (red contours’ centroid) is shown using the black point
and the real AP position using a blue star.

This work has used for the proposed method the Natural Neighbor interpolation
[48]. The steps of the proposed method are the following:

1. Calculate an interpolated grid of positions using Natural Neighbor interpolation.

2. Choose three intensity levels – high, medium and low – that split RSS values
into 4 equally spaced intervals.

3. Compute the contours corresponding to the highest intensity level. Contours
are calculated using the Marching Squares algorithm [27], as implemented in
MATLAB [28].
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4. The estimated position of the AP is the centroid of the points from the contours
determined in the third step.

Figure 4.9 shows the result of estimating an AP position using the proposed
method on a set of RSS values. This method is more computationally complex than
the WC. Is complexity depends on the number of interpolated points.

Methods from Literature

Linear: The method presented in Koo & Cha [23] uses an equation system that
relates distances to an AP and its measured intensities at several positions. Each
equation is originally based on the path loss model. The equations are transformed
to linear equations based on the transformations proposed by Savvides et al. [46].
The resulting system of linear equations only depends on the measurements’ positions
and intensities, and on one linearization coefficient that does not affect the final AP
position estimate. The authors tested their method through simulations and the error
estimates they presented were higher than 5m.

Monte Carlo: In Ji et al. [16], a simulation-like (Monte Carlo test) approach is
used to test a set of possible positions of an AP to find the one that better fits the
measured RSS for the AP. For each possible AP position, and based on measured RSS
values, the path-loss model parameters are estimated by solving a system of linear
equations. Those parameters are in turn used to obtain an estimated RSS value at
each measurement point. The difference between the expected RSS and the measured
RSS values is then used as a metric to evaluate the explored position for the AP. The
authors tested their method using simulations, achieving an accuracy below 10m in
95% of cases. With the real samples, the method achieved an accuracy below 12m
in 90% of cases.

Gradient: The authors in Zhao et al. [62] proposed a method for AP positioning
based on determining RSS gradients on a rectangular grid of positions. The gradient
direction for each position was determined using discrete derivative masks using the
four neighbors of each point. The authors then applied k-means clustering on the
computed gradients. The head of the cluster with the highest number of collection
points was used as the estimate position of AP. Also, the clustering results were
used to identify and remove gradient outliers. Their method had a 1.5 m mean AP
positioning error on experimentally collected data, outperforming the WC algorithm
and the gradient approach without clustering.
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AP positioning method evaluation

Each positioning experiment consisted in applying one of the five AP positioning
methods to one dataset. As that strategy involves random elimination, the evaluation
for a method proceeded as follows:

1. Repeat 50 times:

(a) Create the datasets D10, D20, . . . , D100 according to the elimination
strategy.

(b) Run the chosen method against each dataset and store the positioning
error results (distance from the estimated position to the real one for each
antenna) in E10, E20, . . . , E100, respectively.

(c) Store the results from the previous step into Ac10, Ac20, . . . , Ac100, re-
spectively.

2. Calculate the mean values M10, M20, . . . , M100 from values accumulated in
the previous step.

Table 4.6 describes the results obtained by applying the above steps. Despite the
evaluation process considered to repeat 50 times the same experiment to take into
account some random value selections – like in the elimination strategy or the Monte
Carlo method – the mean error presented in Table 4.6 does not steadily increase as
the number of measurement points decreases. Although experiments with a higher
number of repetitions can be performed, it can be inferred that the above fact means
that none of this method is heavily affected by the sampling density, as long as the
point’s distribution remains practically the same. However, considering the overall
mean error, the best two are the WC and Interpolation methods. If we consider the
overall variance for these two methods, the WC is better.

Table 4.7 deepens into the fact that the WC method provide better position-
ing results when fingerprints have been collected around the target AP. The column
“Centroid (surrounded)” presents the mean positioning error for such cases, i.e., con-
sidering only APs for which there are fingerprints taken around them. The overall
positioning error, which consider all datasets, for the “surrounded” cases is 3m better
than in the “non-surrounded” cases.

4.3.3 Situation Goodness method

The Situation Goodness method combines the Interpolation method and the WC
method. The proposed method explores the distribution of the highest intensity level
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Table 4.6: Mean estimation error of the selected AP positioning methods. OME state
for Overall Mean Error and OV for Overall Variance.

Dataset Centroid Monte Carlo Linear Interpolation Gradient
D10 3.833 8.185 7.529 3.457 11.937
D20 4.697 8.059 7.260 3.962 13.030
D30 4.447 8.119 7.266 4.310 13.636
D40 4.232 8.011 7.159 2.943 13.998
D50 3.749 7.962 7.198 3.595 14.256
D60 3.823 8.002 7.109 3.910 14.415
D70 3.978 7.886 7.078 3.381 14.605
D80 4.254 7.812 7.098 3.296 14.420
D90 4.115 7.776 7.102 3.446 14.391
D100 3.988 7.742 7.057 2.826 14.555
OME 4.112 7.955 7.186 3.513 13.924
OV 0.091 0.022 0.020 0.208 0.724

Table 4.7: Differences in mean AP positioning error for the WC method. In the
column headers,“surrounded” indicates cases where there are samples taken around
the AP, and “non-surrounded” cases where no samples are taken around the AP. OME
states for Overall Mean Error.

Dataset Centroid
(surrounded)

Centroid (non-
surrounded)

D10 2.170 5.164
D20 2.751 6.254
D30 1.972 6.427
D40 2.567 5.564
D50 1.278 5.725
D60 2.059 5.235
D70 2.277 5.339
D80 2.036 6.027
D90 1.922 5.869
D100 1.924 5.639
OME 2.095 5.724

contours computed in the Interpolation method. Specifically, the method tests for an
even distribution of contours around the AP position estimated by the WC method.
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Figure 4.10 presents two examples of the contours distribution with respect to an
estimated AP position. Figure 4.10a presents an example where the measurements
do not surround the AP – which is located at the bottom, outside the convex hull
of the sample positions. For that example, the highest-level regions lie on one side
of the AP position estimated by the WC method. In Figure 4.10b, the highest-level
contours the AP estimated position. In this example, the WC estimate is very close
to the real WiFi device position that broadcasts the AP.

The distribution of the highest-level contours in relation to an AP position is ex-
plored using geometric analyses. The analyses output a likelihood value that indicates
whether the WC method provides a solution that is close to the actual AP position.
The method performs the following steps:

1. Calculate the weighted centroid (WC) AP position estimation 𝑝𝑤𝑐 = (𝑥𝑤𝑐, 𝑦𝑤𝑐).

2. Calculate the highest level regions contours, as set of points 𝐶 = 𝐶1, . . . , 𝐶𝑛,
where 𝐶𝑖 = 𝑐𝑖1 = (𝑥𝑖1, 𝑦𝑖1), . . . , 𝑐𝑖𝑚 = (𝑥𝑖𝑚, 𝑦𝑖𝑚).

3. Calculate the directions (angles) of all contour points in 𝐶, taking 𝑝𝑤𝑐 as origin,
as well as the distances to 𝑝𝑤𝑐. The direction of the contour point 𝑐𝑖𝑗 = (𝑥𝑖𝑗, 𝑦𝑖𝑗),
which is the 𝑗𝑡ℎ point of 𝑖𝑡ℎ contour, is calculated as 𝑣𝑖𝑗 = tan−1((𝑦𝑤𝑐−𝑦𝑖𝑗)/(𝑥𝑤𝑐−
𝑥𝑖𝑗)). The distance associated to 𝑐𝑖𝑗 is calculated as the Euclidean distance
between 𝑐𝑖𝑗 and 𝑝𝑤𝑐.

4. Group the contours’ points according to their directions in windows with a small
size (𝜋/60).

5. For each pair of opposing windows (𝑊𝑓 ,𝑊𝑏), e.g., 𝑊𝑓 = [0, 𝜋/60] and 𝑊𝑏 =
[𝜋, 𝜋 + 𝜋/60], do:

(a) Calculate 𝑠𝑤𝑓 and 𝑠𝑤𝑏 as the sum of all distances (calculated in step 3) of
points in 𝑊𝑓 and 𝑊𝑏, respectively.

(b) Determine the dominance 𝑑𝑤𝑓 and 𝑑𝑤𝑏 of windows 𝑊𝑓 and 𝑊𝑏, respectively,
as follows:

i. When (𝑠𝑤𝑓/𝑠𝑤𝑏) > 2, 𝑑𝑤𝑓 = 1 and 𝑑𝑤𝑏 = 0.
ii. When (𝑠𝑤𝑓/𝑠𝑤𝑏) < 0.5, 𝑑𝑤𝑓 = 0 and 𝑑𝑤𝑏 = 1.
iii. When 0.5 ≤ (𝑠𝑤𝑓/𝑠𝑤𝑏) ≥ 2, 𝑑𝑤𝑓 = 1 and 𝑑𝑤𝑏 = 1.

6. Fill the dominance gaps. When two windows whose dominance is 1 are sep-
arated by no more than 3 (grace gap) windows whose dominance is 0 (gap
windows), set the dominance of the separating windows to 1.
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(b) Measures around an AP

Figure 4.10: Examples of intensity level contours. The highest-level contours are
drawn in red. The black dots represent the AP position estimation provided by the
WC. The real AP position is shown by blue stars.

7. Set 𝑢 as the number of opposing windows whose dominance is different and 𝑡
as the total number of windows whose dominance is 1.

8. Provide the output likelihood as: 𝑝𝑟𝑜𝑏 = 1− 𝑢/𝑡.
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The descriptions previously provided for the WC and Interpolation methods in-
dicate how the results from steps (1) and (2) are to be computed, respectively. The
angles and distances obtained in the step (3) are used to determine how balanced is
the distribution of the points in the highest-level contours wit respect to the AP posi-
tion estimated by the WC method. For the analyses, the contour points are grouped
into fixed-size windows in step (4). The window’s size presented in that step, (𝜋/60),
was chosen because it is relatively small and round. Values smaller than (𝜋/60) were
also tested and provided equally good results.

Figure 4.11: Examples of opposing windows and the meaning of dominance. Triangles
of equal color represent opposing windows. None of the two blue windows is dominant,
but one of the orange ones is.

The step (5) associates values called dominances to each window. Each of these
values indicates, for a particular pair of opposing windows (opposing sets of direc-
tions), towards where the highest level areas are located (see Figure 4.11). To de-
termine the winning window, the sum of distances from the window’s points to the
centroid position is computed. If the sum of a window is twice or more the opposing
window’s sum, the first window is the dominant one.

The contours can be very irregular. Thus, step (6) fills the gaps between dominant
windows that are close to each other, i.e., the windows corresponding to those gaps
are made dominant. The value determining the maximum size of gaps is called grace
gap. This value is directly related to the window size. The grace gap value of 3 was
found to work well for a window size of (𝜋/60).
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Step (7) uses dominance values to find unbalanced situations. The unbalanced
situations are those where one window is dominant and the opposing one is not. The
count of unbalanced situations is used in step 8 to determine the intended likelihood.

Situation Goodness method evaluation

The evaluation for the Situation Goodness method followed an approach similar to
that used for the evaluation of AP positioning methods. In particular, the evaluation
used the following steps:

1. Repeat 50 times:

(a) Create the datasets D10, D20, . . . , D100 according to the elimination
strategy.

(b) Run the method against each dataset and store the probability results in
P10, P20, . . . , P100, respectively.

(c) Accumulate the results from the previous step into Ac10, Ac 20, . . . , Ac100,
respectively.

2. Calculate the mean values M10, M20, . . . , M100, and variance values V10, V20,
. . . , V100 from values accumulated in the previous step.

The evaluation results are presented in Table 4.8 and Table 4.9. Hereinafter, we
call “surrounded cases” the cases in which the WC method provides a good AP position
estimation – as a result of the existence of measurements taken around the AP. The
other cases are called here “non-surrounded cases”. In Table 4.8 and Table 4.9, the
column “WCG” indicates the surrounded cases with a “yes” value and non-surrounded
cases with a “no” value.

Table 4.8 shows that the Situation Goodness method provides likelihood values
that are always below or equal to 0.3 for non-surrounded cases. The lowest likelihood
values correspond to the datasets with the highest number of measurements. The like-
lihood values are almost always above 0.3 for the surrounded cases. For datasets from
D20 to D100, it is always above 0.3. However, if the dataset has a very low number
of samples, the likelihood value is not conclusive for identifying the surrounded cases.
The largest likelihood values for the surrounded cases correspond to the datasets with
the highest number of measurements.

The mean likelihood values for APs 70, 74, 80 and 84 are similar. Those APs
are likely broadcast from a single device. Two of them are broadcast at 2.4GHz and
the other two at 5.0GHz. Considering the surrounded cases, the antenna 68 is the
one with lower likelihood value for the largest dataset. Antennas 95, 96 and 97 are
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Table 4.8: Mean values of the likelihood provided by the Situation Goodness method.
The column ID represents the ID of the AP. Column WCG indicates whether the
WC estimate was a good solution.

ID D10 D20 D30 D40 D50 D60 D70 D80 D90 D100 WCG
67 0.19 0.29 0.27 0.28 0.30 0.24 0.22 0.28 0.26 0.13 no
68 0.18 0.36 0.42 0.43 0.42 0.44 0.50 0.53 0.52 0.52 yes
70 0.14 0.22 0.15 0.19 0.09 0.13 0.13 0.09 0.08 0.00 no
74 0.14 0.17 0.21 0.21 0.15 0.20 0.19 0.11 0.19 0.00 no
80 0.15 0.20 0.17 0.17 0.12 0.13 0.14 0.10 0.10 0.00 no
84 0.16 0.17 0.18 0.15 0.11 0.11 0.14 0.10 0.12 0.00 no
95 0.42 0.54 0.59 0.53 0.62 0.63 0.70 0.71 0.66 0.85 yes
96 0.17 0.31 0.36 0.40 0.43 0.48 0.42 0.46 0.51 0.66 yes
97 0.46 0.65 0.71 0.71 0.79 0.82 0.82 0.86 0.83 0.91 yes

placed on top of desks, while antenna 68 is attached to the ceiling. The antenna 67
is located inside of a room adjacent to the collection area.

Table 4.9: Variance values of the likelihood provided by the Situation Goodness
method. The column ID represents the ID of the AP. Column WCG indicates whether
the WC estimate was a good solution.

ID D10 D20 D30 D40 D50 D60 D70 D80 D90 D100 WCG
67 0.08 0.08 0.08 0.06 0.07 0.06 0.04 0.05 0.04 0.00 no
68 0.05 0.08 0.07 0.06 0.07 0.05 0.02 0.02 0.02 0.00 yes
70 0.04 0.07 0.05 0.06 0.01 0.02 0.02 0.01 0.01 0.00 no
74 0.06 0.07 0.08 0.10 0.04 0.07 0.07 0.04 0.06 0.00 no
80 0.05 0.06 0.06 0.06 0.02 0.02 0.03 0.01 0.01 0.00 no
84 0.06 0.06 0.07 0.06 0.03 0.03 0.06 0.03 0.04 0.00 no
95 0.11 0.11 0.08 0.08 0.07 0.05 0.04 0.04 0.06 0.00 yes
96 0.05 0.05 0.04 0.05 0.05 0.04 0.04 0.02 0.03 0.00 yes
97 0.12 0.08 0.06 0.07 0.02 0.02 0.01 0.01 0.02 0.00 yes

Table 4.9 presents the variability of the likelihood values obtained through 50
experiment repetitions. No variation was found for the dataset D100 because no
sample elimination was performed on it. The variance values are no higher than 0.07
for datasets D50 to D90. Also, the mean likelihood values for those datasets (see
Table 4.8) were consistently above 0.3 for surrounded cases and consistently below or
equal to 0.3 for non-surrounded cases. Thus, the threshold value of 0.3 can be used
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to tell apart surrounded cases from non-surrounded cases in this environment.

Table 4.10: Positioning mean errors on dataset D100 when the Situation Goodness
method is applied to combine the Linear and WC methods.

ID Linear W.C.-Linear WCG
67 15.021 15.021 no
68 7.778 5.202 yes
70 5.677 5.677 no
74 5.766 5.766 no
80 5.592 5.592 no
84 5.847 5.847 no
95 3.483 0.640 yes
96 10.212 0.808 yes
97 4.135 1.045 yes

This work used the Situation Goodness method to combine the WC method with
another AP positioning method. Given a set of AP RSS measurements, if the like-
lihood given by the Situation Goodness method is lower than 0.31, use the main
method. The main was either Monte Carlo, Linear, Interpolation or Gradient. Oth-
erwise, use the WC method. Table 4.10 presents the positioning errors when the
above combination of methods is applied to dataset D100. The WC method was
combined with the Linear method. The likelihood provided by the Situation Good-
ness method was correctly used to identify the surrounded cases for an AP. The AP
position estimate provided by the WC was used instead of the one provided by the
Linear method.

Table 4.11 presents the positioning errors when the AP positioning evaluation is
performed using the method combination explained above. When compared with
the data presented in Table 4.6, Table 4.11 shows that for the Interpolation method,
the mean positioning error did not change significantly. However, the mean error is
greatly reduced for the Monte Carlo, Linear and Gradient methods, which have poor
performance on the tested datasets.

4.4 Regressions

Section 4.2 showed that regression goodness is affected by whether the estimates are
computed for a strongly or weakly seen AP, i.e. if the AP is nearby the target scenario
or not. Section 4.2 also showed that the selection of positions for samples collection
should tend to the position of the AP. Thus, the knowledge of the AP position for
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Table 4.11: Positioning mean errors on dataset D100 when the Situation Goodness
method is applied to combine the Linear and WC methods. OME state for Overall
Mean Error and OV for Overall Variance.

Dataset WC WC – Monte
Carlo

WC – Lin-
ear

WC – Inter-
polation

WC – Gra-
dient

D10 4.681 6.510 6.220 4.455 8.280
D20 4.417 5.865 5.800 3.873 9.228
D30 4.196 5.245 5.622 3.755 9.134
D40 4.183 5.300 5.385 3.590 9.936
D50 4.028 5.031 5.460 3.507 9.895
D60 4.033 4.839 5.220 3.461 10.202
D70 4.116 4.808 5.119 3.415 9.756
D80 4.131 4.748 5.354 3.304 10.321
D90 4.097 4.755 5.223 3.158 10.372
D100 3.988 4.278 5.066 2.799 11.092
OME 4.187 5.138 5.447 3.532 9.822
OV 0.045 0.411 0.124 0.197 0.615

creating a radio map is useful. Section 4.3 addressed the position estimation for an
AP based on signal measurements. The section explored several methods in an envi-
ronment in which all APs were relatively close or inside to the environment. Despite
the benevolent environment characteristics and the dense considered collection, the
AP positioning errors were above 3m. Thus, Section 4.3 explored the detection of
whether an AP was inside or very close to the collection area, which is the case where
the Weighted Centroid method provides its best results.

This section builds on the results from Section 4.2 and Section 4.3, to provide
better regression results from samples collected at only a few reference points. The
analyses explained in this section harness the guides provided by Section 4.2. Also,
the analyses harness the possibility of knowing whether the AP is close to or inside
to the collection area provided by Section 4.3 and a map representation of the target
environment.

Regressions or interpolations are important solutions for reducing the RSS col-
lection effort. The radio map densification using regression has been effectively used
in several studies using regressors like linear regression, nonlinear Gaussian Process,
Gaussian Kernel Learning, Support Vector Regression, and Random Forest [12, 15,
19]. Regressions have also been combined with the path loss model [59]. Furthermore,
studies of several interpolation and extrapolation methods applied to radio maps exist
[49].
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4.4.1 Materials

The experiments of this section were performed using the materials from the Library
environment already described in Section 4.2. Recall that the Library environment
was the environment whose RSS values were the most correlated with positioning
errors and regression residuals. Specifically, the residuals were particularly large for
APs that, according to their RSS values, were inside or close to the collection area.
Furthermore, the spatial distribution of those residuals was not random, suggesting
that the positions of the reference points were insufficient to fully model the collected
RSS values.

Figure 4.12: Environment and regression estimates positions. Black and white pixels
indicate free space and obstacles, respectively. The green small dots represent the
positions where the RSS values of an AP were estimated using regression.

This section uses map information to achieve a better model for the Library en-
vironment, as presented in Figure 4.12. The image represents all boundaries and
obstacles found inside the scenario. The image was created with a low level of details.
However, its map scale and pixel density allow the direct transformation from pixel
distance to real-world distance. The image only contains two values (zero or 255)
that represent either free space or obstacles. The white rectangles in the center of the
image are bookshelves. The WiFi RSS for the Library environment were collected
among those bookshelves. The green dots indicate the positions where regressions
are applied in the new analyses in order to create regression visualizations.

Map gathering and map transformation imply extra efforts. However, they are
important for the collection, as explained in Section 4.1); for radio-map enrichment
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[15]; for estimation corrections using map matching [60]; and for IPS evaluation, as
Chapter 3 addressed. Furthermore, the user applications that employ a positioning
service normally display a map that provides context to the position.

The experiments of Section 4.2 followed the division in training and test sets
suggested by the Library dataset. This section combines all sets used in Section 4.2
into a single one.

4.4.2 Experiments

Table 4.4 from Section 4.2 depicted a strong correlation between the signal strength
of an AP in the Library environment and the regression residuals. Table 4.12 presents
here the regression residuals of the experiment performed for Table 4.4 for each AP
and regression method. The values presented in the table are for the Natural Neigh-
bors (NAT) interpolation, Cubic (CUB) interpolation, Inverse Distance Weighting
(IDW) interpolation, Support Vector Machine (SVM ) regression, Gaussian Process
regression (GPR), Generalized Linear Models (GLM) regression, Decision Trees re-
gression (DTR), and Ensembles (ENS) of Decision Trees regression.

The APs whose mean RSS values are stronger than −80 dBm have large mean
residuals. In particular, the AP 49 is the one with the strongest mean RSS value and
the largest mean residual values. The APs with the IDs 33, 34, and 53 are the ones
with the lowest mean residual values. Despite they are not the APs with the lowest
mean RSS values, their mean RSS values are −88.6 dBm, −88.4 dBm, and −87.7 dBm,
respectively, which are close to the minimum value of −89.6 dBm. Thus, most of
the tested methods seem to be appropriate for regression on RSS values for weakly
detected APs. However, careful attention is required for APs strongly detected in the
target environment. Considering all APs, Natural Neighbors interpolation, Support
Vector regression, and Gaussian Process regression provide, as a mean, better results
than the other methods. However, if only the APs strongly seen in the environment
are considered, it is difficult to choose a proper regression method. The Natural
and Cubic interpolation methods and the Gaussian Process regression share the best
results among the strong APs. The Support Vector regression provides low mean
residual results for some strong APs.

Given the results from Table 4.12, the new regression model was intended to
either made use of the Gaussian Process regression and Support Vector regression.
Regression goes beyond interpolation in their prediction capability. They can cope
with models more complex than an interpolation and provide estimations for positions
beyond the convex hull of training positions. Natural Neighbors interpolation was
chosen over the Cubic interpolation as the baseline method for comparisons given
that the former provided lower mean residuals than the latter considering all APs.
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Table 4.12: Mean value of regression residuals by AP and regression method for the
Library environment. The RSS values are the mean value detected for the AP. The
highlighted rows corresponds to APs strongly seen in the environment.

AP ID RSS NAT CUB SVR IDW GPR GLM DTR ENS
01 -80.5 3.4 3.5 3.3 3.5 3.3 3.2 3.8 3.4
02 -83.8 3.8 3.8 3.6 3.7 4.2 4.2 3.9 5.2
03 -82.4 2.9 3.0 2.8 3.2 2.8 2.8 2.8 2.8
04 -81.6 3.9 4.0 3.8 4.0 3.7 3.7 4.2 4.2
06 -80.3 3.5 3.7 3.6 3.6 3.2 3.2 4.2 3.5
07 -82.2 2.8 3.0 2.9 2.8 2.6 2.6 2.9 2.9
08 -81.5 4.0 4.3 3.7 4.1 3.6 3.6 3.9 4.1
09 -84.1 4.7 4.2 4.1 4.0 4.3 4.3 4.1 5.1
11 -84.4 3.1 3.0 3.0 2.8 2.9 2.9 3.2 3.1
12 -84.5 2.9 2.9 2.7 2.6 2.9 2.9 3.2 2.7
15 -71.6 4.3 4.5 4.9 4.6 4.4 4.9 4.9 5.3
17 -71.7 4.3 4.6 4.6 4.8 4.2 5.0 4.8 5.3
19 -86.5 2.4 2.2 2.1 2.2 2.7 2.8 2.9 2.9
22 -86.8 2.3 2.2 2.3 2.2 2.7 2.7 2.3 2.3
25 -82.7 3.3 3.4 3.2 3.3 3.1 3.1 3.4 3.2
27 -85.1 2.8 2.9 2.6 2.8 2.6 2.6 2.8 3.2
28 -82.9 3.4 3.4 3.2 3.2 3.3 3.2 3.2 3.4
30 -85.8 3.1 3.4 2.8 3.3 2.8 2.8 3.4 3.5
33 -88.6 1.8 1.7 1.6 1.8 1.7 1.7 2.0 1.8
34 -88.4 1.8 1.8 1.7 1.8 1.7 1.7 2.1 1.9
41 -89.7 2.5 2.6 1.9 2.6 2.0 2.0 2.8 2.4
42 -89.6 2.4 2.5 2.1 2.5 2.1 2.1 2.7 2.4
47 -86.9 1.7 1.7 2.0 1.6 2.1 2.1 2.0 2.0
48 -86.6 1.9 1.8 1.8 1.7 2.1 2.1 2.2 2.2
49 -70.2 5.3 5.5 6.0 5.6 5.3 5.6 5.5 6.1
50 -87.9 2.0 1.9 2.0 2.0 1.9 2.0 2.3 2.3
51 -71.1 5.1 5.2 5.1 5.4 5.1 5.3 5.5 5.7
52 -71.2 5.5 5.2 5.6 5.2 5.2 5.5 5.9 5.6
53 -87.7 1.8 1.9 1.6 1.8 1.9 1.9 1.8 1.8
54 -71.5 6.7 6.6 7.7 6.2 7.1 7.1 6.5 6.7
63 -84.0 2.4 2.3 2.6 2.5 2.4 2.4 3.0 2.4
64 -84.1 2.3 2.2 2.3 2.8 2.4 2.4 3.0 2.9
69 -73.0 4.4 4.5 4.4 5.5 4.1 6.1 5.8 5.2
71 -74.7 5.0 4.7 4.7 5.1 4.5 5.9 5.4 4.9

mean – 3.33 3.35 3.30 3.38 3.26 3.42 3.60 3.61

Also, the mean residual value of the Natural Neighbors interpolation was lower than
the one for the Cubic interpolation for more than half of the strong APs.

The regression model presented in this section uses information on the AP posi-
tion and a map from the target environment. This section relaxes the goal of finding
a position estimate for an AP presented in Section 4.3. Instead, the new goal is to
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have a reference position. The reference position is used as a raw indication of where
the AP is. The position of APs inside or very close to the collection area can be
determined with relatively high accuracy. Either the Weighted Centroid method or
the Interpolation method presented in Section 4.3 can be used in such cases. Fur-
thermore, a quick walk in the target environment carrying a smartphone with an AP
strength measurement application could suggest an approximate position of an AP.

The accuracy of AP positioning method is low for APs that are away from the
collection area. Thus, an indication of the direction of the AP in relation to the
collection area is preferred. Determining whether an AP is within the collection area
could be done using the Situation Goodness test presented in Section 4.3 if a relatively
dense sample collection is available. If a dense collection effort is not affordable, a
sparse collection effort can be followed by a quick walk in the target environment
carrying a phone can again be a useful strategy. APs away from the collection area
are typically detected with maximum intensities weaker than −60 dBm. The reference
AP position can be placed a few meters away from the center of environment limits
where the AP is most strongly detected.

Figure 4.13 presents three examples of reference AP positions, along with mean
RSS values per reference point of the AP. The APs shown in Figure 4.13 will later
be used to show the application of the proposed regression model. The APs with
IDs 15 and 49 are inside the collection area. Their positions shown in the figure are
about half a meter and more than a meter away from the actual device positions,
respectively. The position of the device that emitted the AP with ID 8 was unknown.
The position shown in the figure is a raw approximation of the direction where the
AP is. Nevertheless, such reference position is useful, as later analyses will show.

In the regressions used for Table 4.4, the predictor variables were the components
of a position and the response variable was the RSS value associated with that po-
sition. In the model that this section proposes, the predictor variables include the
position components but also variables whose values depend on the reference posi-
tion of the AP and the environment map information. Moreover, the values of the
response variable are determined as log10(−𝑅𝑆𝑆). If 𝑒𝑠𝑡 is an estimate provided by
the regression model, the RSS estimate is computed as −(10𝑒𝑠𝑡). The positions of
points used for training and testing the model are expressed in the coordinate system
of the Library dataset. Thus, their coordinates had to be transformed into image
coordinates before applying the proposed model. The following definitions assume
that the positions are expressed in image coordinates.

Let 𝑟𝑝 = (𝑟𝑝𝑥; 𝑟𝑝𝑦) be the position of a reference point used for training the
model. Let 𝑎𝑝 = (𝑎𝑝𝑥; 𝑎𝑝𝑦) be the position of the AP targeted for regression. Let
𝐵𝑟𝑝 = {(𝑥1, 𝑦1), . . . , (𝑥𝑘, 𝑦𝑘)} be the line that connects 𝑟𝑝 and 𝑎𝑝. The cell positions
that constitute the line are determined using the Bresenham’s line algorithm [3].The
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(b) AP ID 49
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(c) AP ID 8

Figure 4.13: Mean RSS values per reference point and device reference positions of
three APs. The position of the AP’s device is indicated with a star. Circles highlight
the reference points whose values where used to train regression models.

values of predictor variables for 𝑟𝑝 are:

𝑃𝑟𝑝 = {𝑟𝑝𝑥, 𝑟𝑝𝑦,
𝑑𝑟𝑝 + 1

2
, 𝐹𝑟𝑝}, (4.3)
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where 𝑑𝑟𝑝 is the Euclidean distance between 𝑟𝑝 and 𝑎𝑝 and 𝐹𝑟𝑝 = {𝑓1, . . . , 𝑓𝑘, . . . , 𝑓𝑛}.
The value 𝑓𝑖 is computed as:

𝑓𝑖 =

{︃
log2(2 + 255− 𝐼𝑚(𝑥𝑖, 𝑦𝑖)) for 1 ≤ 𝑖 ≤ 𝑘

0 for k < 𝑖 ≤ 𝑛
(4.4)

where 𝑥𝑖 and 𝑦𝑖 are the position components of the 𝑖𝑡ℎ point in 𝐵𝑟𝑝, 𝐼𝑚 is the
image representation of the environment, and 𝐼𝑚(𝑥𝑖, 𝑦𝑖) is the cell value in the image
𝐼𝑚 whose position is (𝑥𝑖, 𝑦𝑖). The value of 𝑛 is the maximum number of points that
may have a line connecting the positions of the AP and a point in the environment
representation. If 𝑎𝑝 lies beyond the environment represented by 𝐼𝑚, the image is
enlarge applying a padding of zeros. In other words, 𝐼𝑚(𝑥, 𝑦) = 0 for all (𝑥, 𝑦) that
lies beyond the environment representation.

The set 𝐹𝑟𝑝 in Equation 4.3 is a representation of the obstacles between 𝑟𝑝 and
𝑎𝑝. Thus, the model is trained to learn their influence in the signal propagation. This
work did not differentiate among distinct types of obstacle materials for simplicity.
However, Equation 4.4 allows for obstacle values representation from 1 to 255. Setting
appropriate values that describe the opaqueness of each material to WiFi signals
requires careful consideration and possible experimental measurements. Equation 4.3
includes half of the distance between 𝑟𝑝 and 𝑎𝑝. Using the actual value of the distance
significantly decreased the obstacles influences in the model. The number of variables
presented in Equation 4.3 depends on the environment and the AP position.

The regression model is applied using a regression method. Support Vector and
Gaussian Process regressions were tested. Support Vector regression, using a linear
kernel function, provided the lowest regression residuals. The regression model was
tested using for training only the reference points that defined the boundary of the
collection area. Figure 4.13 showed the positions of those reference points using
black circles. They represent less than 8% of all available reference points and allow
the application of an interpolation method as a baseline method for comparisons.
The remaining reference points were used as test points, i.e., to compute regression
residuals. The experiments only included APs that had measurements for all reference
points. Most of them were APs strongly detected in the environment.

Figure 4.14 presents the regression estimates for the AP 15 provided by a method
that combines Natural Neighbour interpolation and Gradient Extrapolation (Base-
line), as provided by MATLAB [35], and by Support Vector Machine regression using
the proposed regression model. The points used for training were those presented in
Figure 4.13a. Given the small number of training points, the two regressions per-
formed remarkably well for the considered AP and the environment. However, the
proposed regression (Model) represents LOS situations better. Also, as depicted in
Figure 4.14c, the proposed regression can capture the influence of bookshelves in the
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Figure 4.14: Regression results for AP ID 15.

environment. The images presented in Figure 4.14b and Figure 4.14c were smoothed
using 9 pixels square windows convolution. The device that broadcast the AP was
inside the collection area.
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Figure 4.15: Regression results for AP ID 49.

Figure 4.15 presents the regression estimates for the AP 49. The device of this AP
was also inside the collection area. The points used for training were those presented
in Figure 4.13b. The reference position of the AP was farther away from the training
points than for AP 15. Thus, the model predicted for the reference AP position an
RSS value weaker than the actual value. Also, the model predicted values too strong
for the right top corner of the image. However, the improvement in estimates that
correspond to LOS situations surpasses the accuracy losses near the AP and in the
right top corner.



118 4.4. Regressions

-105

-100

-95

-90

-85

-80

-75

-70

-65

-60

-55

-50

dB
m

(a) Baseline
-105

-100

-95

-90

-85

-80

-75

-70

-65

-60

-55

-50

dB
m

(b) Model
-105

-100

-95

-90

-85

-80

-75

-70

-65

-60

-55

-50

dB
m

(c) Model and obstacles

Figure 4.16: Regression results for AP ID 8.

Figure 4.16 presents the regression estimates for the AP 8. The device of this AP
was outside the collection zone and had a mean RSS of −81.5 dBm in Table 4.12.
Thus, the reference AP position was placed a few meters away from the collection
area, as presented in Figure 4.13c. The difference between Baseline and Model regres-
sion is not as significant as it was for the previous two analyzed APs. Position-based
regression models like those used for Table 4.12 already provided low regression resid-
uals for weakly detected APs. As explained before, the environment has less effect
on the propagation of weak AP signals than on strong AP signals. The proposed
model captures such behavior, and thus its estimates depend more on training point
positions and the distance to the AP than on the obstacles’ influence.
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Figure 4.17: CDF plot of regression residuals from baseline and model. The red series
represent the baseline method and blue series the proposed model.

Figure 4.17 presents the regression residuals obtained using the proposed model
and the baseline method on the test reference points for the APs 15, 49 and 8. The
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residuals obtained for the proposed model are consistently better than those from
the baseline. For AP 15, the maximum residual value was about 10 dBm smaller in
the proposed model than in the baseline. For AP 49, the maximum residual values
were similar for the two approaches. However, the proposed model performed notably
better than the baseline regarding percentiles between the 25𝑡ℎ and 75𝑡ℎ. For AP 8,
the difference in residual values is less notable than for the previous two AP, which
is in part a result of notably lower residual values.

Table 4.13: 75𝑡ℎ percentile of regression residuals.

AP ID 1 6 8 15 17 49 51 52 54 69
Model 6.7 6.8 4.7 8.8 8.0 7.8 9.5 8.4 8.5 11.5

Baseline 10.7 10.3 6.6 13.6 13.2 12.2 13.2 10.1 11.2 16.2

Table 4.13 present the 75𝑡ℎ percentile of regression residuals for the proposed
model and the baseline method. The results are provided for some APs. The APs
were those that had measurements available for all (106) reference points. The APs
included all the APs strongly detected in the environment but the AP 71 (which had
measurements for 105 points) and one weakly seen AP (AP 8). The three APs used
for the previous analyses are included in this table. The proposed method performs
better than the baseline for all selected APs.

The proposed regression model is recommended for regression on AP strongly seen
in the target environment, though it could also be applied to weaker APs as long as
their collected signal samples may indicate a likely direction of the position of the
AP. Further research is still needed to test the proposed method in larger and more
complex environments. Furthermore, its performance should be assessed in a large
environment where the AP lies in the center of the collection area.

4.5 Conclusions

This chapter presented tools, guides, and methods to perform the collection of BLE
or WiFi samples for fingerprinting. The chapter first addressed a methodology of
performing collection organized in campaigns, presenting the tools that improve the
collection and insights gained during their development and usage. The chapter then
discussed the selection of positions for WiFi samples collection, presenting guides that
were supported by experimental results. In addition, the chapter provided methods
to estimate the position of a WiFi AP and to evaluate whether the AP is likely
inside the area where a set of samples was collected. Finally, the chapter described
a regression model that reduce residuals in the case of strongly detected AP. The
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materials presented in this chapter represent valuable contributions that can be used
in a collective or individual manner to reduce the collection efforts, which is one of
the main challenges of fingerprinting.

Some materials presented in this chapter are supported by four publications [40,
39, 38, 36]. Other materials from this chapter were used as contributions in one
publication [50].
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Chapter 5

WiFi Radio Map Maintenance

The solutions for updating the radio map for WiFi fingerprinting are sometimes
treated as part of the solutions for radio map construction. The reason for placing
both steps into one set of solutions is that for some IPS the radio map continuously
evolves, getting either enriched or updated as new measurements are available. Usu-
ally, such continuous updates are performed using crowdsourcing. However, for other
IPS, the update or maintenance of the radio map is a well-differentiated step. For
them, periodic radio map updates are usually required, ideally only where they are
needed. This chapter is devoted to finding the set of positions most convenient to per-
form periodic radio map updates under nominal situations. The chapter also briefly
addresses when changes in the environment are to be considered nominal or not.

5.1 Periodic Radio Map Update

The crowdsourcing approach has been praised for radio map collection and update.
However, some WiFi fingerprinting IPS prefer collections or updates that assure the
quality of position tags and an even distribution of the samples collected across the
target environment. There is still a solution for reducing the collection or update
efforts for these systems: to collect measurements only at some positions and then
use regression to estimate measurements for the remaining positions. The regression
methods have been used for reducing the calibration effort in fingerprinting for more
than 15 years [12, 14]. The proposals found in IPS literature include Linear inter-
polation [26]; Radial Basis interpolation [12, 5]; Gaussian Process regression [29];
and Support Vector Machine regression (SVR) [8]. Some studies particularly focused
on the spatial relations of measurements and the spatial characteristics of the envi-
ronment for regression. They included methods widely used in spatial analysis like
Inverse Distance Weighting (IDW) and Kriging [14, 16, 9]; Voronoi Tessellation [13];
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Sparsity Rank Singular Value Decomposition (SRSVD) [7]; and particular heuristics
[3].

The studies that have proposed regression approaches generally show that the
estimates made by their proposals can be used instead of a significant percentage of
the actual measurements. To test the benefit of their approaches, they specify elimi-
nation procedures to drop some of the original positions. However, those elimination
procedures are not intended as suggested strategies for determining collection posi-
tions. Using random positions for collection is a common approach [1], despite the
distribution of the positions is very important [15] for radio map construction. The
importance of the collection positions is intuitive and acknowledged in other topics for
other phenomena. Specifically, several works address the optimal (or quasi-optimal)
placement of sensors that best measure a given phenomenon [24, 10]. A set of WiFi
measurements collected at known positions by a subject can also be understood as a
set of sensor measurements. Therefore, choosing the best positions where a subject
should collect the WiFi measurements can be considered as a placement optimization
for a set of sensors.

This section merges the notions of sensor placement and regression applied to
WiFi samples in a method that helps in deciding the positioning where new samples
for a radio map should be collected. The section addresses sensor placement as an
optimization problem.

5.1.1 Positions Set Determination for Radio Map Update

The experiments that demonstrate regression proposals commonly transform a rela-
tively dense dataset of RSS measurements into sparser new datasets through elim-
ination strategies. The regression proposals are then applied to the new datasets
to obtain RSS estimates for the positions of the samples that were removed. The
goodness of a regression is usually evaluated considering two measures. The first
measure is the regression residuals. Residuals are the absolute AP-wise difference in
RSS values between the removed measurements and their corresponding estimates.
The second measure is the difference in the accuracy metric between when an IPS
is trained using the original dataset and when it is trained using a dataset with a
high percentage of removed samples. The elimination strategy is an important factor
in the results obtained in regression evaluations [26]. The regression performance
reported in the literature varies significantly, from discrete but reasonably results of
50% samples reduction [5] to impressive results of 5% samples reduction [7] with very
small regression residuals or very little affectation to positioning accuracy.

Most of the regression proposals found in IPS literature indicate how much they
can reduce the number of required collection positions. However, they do not com-
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monly provide a methodology for determining the number of distinct collection posi-
tions for a given environment. Furthermore, they do not state how to determine where
those positions should be. An intuitive approach is to choose the number of collection
points as a function of the target area size and randomly determine their positions
in that area. Some studies have used similar approaches. In Kanaris et al. [11], the
authors determined the sample size given a small preliminary set of measurements.
They suggested to randomly choose positions from a grid in the number determined
by the sample size calculation. Specifically, for the case of a radio map update, col-
lecting measurements at random positions in a target area is a common approach [1].
Indeed, depending on the update frequency, the crowdsource approaches can be also
considered a strategy of collecting update measurements at random positions.

Regarding the elimination strategies, the work of Krumm and Platt [12] proposed
an elimination strategy consisting of running a k-means clustering algorithm, and
selecting only the 𝑘 positions nearest the 𝑘 cluster centroids. Other studies have re-
sembled in their proposed elimination strategies the types of positions absences that
may happen in regular collection processes, like random isolated absent points, zones
with a higher or lower percentage of elimination than others [5] or random blocks of
absent points [26]. These approaches, however, have some drawbacks that are experi-
mentally shown later in this section. It is almost intuitive that neither the number of
reference points selected for radio map collection nor their actual distribution should
be chosen randomly without any restriction. Besides, a distribution of uniformly
spaced positions does not account for the environment and its influence on the WiFi
signals. Deciding the number and distribution of the collection positions for WiFi
fingerprinting is not a trivial task.

The problem of sensor placement, related to sensor selection or activation, is
a well-known problem for wireless sensor networks. The sensor selection problem
can be stated as choosing a set of 𝑘 measurements from a set of 𝑚 possible sensor
measurements, which minimizes the error in the estimation of some parameters [10].
The approaches to deal with the sensor placement/selection problem vary depending
on the usage of the sensor measurements [24]. Specifically, some studies have proposed
approaches for the case of using the sensor measurements for estimating a field of
values [10, 23, 25]. It is unfeasible to explore the whole solution space of possible
positions given the combinatorial nature of the problem [10]. If there is a set of
24 possible positions in the target environment, and measurements are to be taken
at 12 of those positions, the number of different possible sets of positions is

(︀
24
12

)︀
=

2, 704, 156. If the number of measurement positions is not already decided, the number
of possible combinations rises to 224 = 16, 777, 216.

This work suggests that the solutions for the sensor placement problem can also
be applied to finding the set of 𝑘 positions from 𝑚 possible ones, where the WiFi
measurements will be collected. The 𝑘 positions are the best ones to use for training
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a regression model that will be later used for estimating the signal intensities for the
remaining positions. What is more, this work does not consider a fixed number of
positions and instead obtains a compromise between the number of positions and
the goodness of the regression. Instead of harnessing some property of the target
problem or forcing some form for the solution for the sensor placement problem [10,
23, 25], this work uses an optimization strategy based on genetic algorithms. Sensor
placement optimization has already been addressed using genetic algorithms [28, 17],
even for indoor acoustic positioning [17].

Genetic Programming for Position Set Determination

The approach proposed in this study uses a genetic optimization algorithm to find a
set of positions that includes only a small number of positions without compromising
the regression quality. The explanation presented here for genetic algorithms, as well
as the implementation used in the experiments, are based on Mitchell [22].

The genetic algorithms try to efficiently find solutions to problems that have huge
spaces of candidate solutions. Each candidate solution for a problem is called an indi-
vidual. Commonly, an individual is encoded as a bit string, where each bit represents
the presence (“1”) or absence (“0”) of a trait. These algorithms start with a population
of random individuals, and iteratively evolve it. The population of each iteration is
called a generation. Each generation is the result of applying genetic operators on
the previous generation. The selection operator selects pairs of individuals whose
traits are combined using a crossover operator to produce offspring. A fitness value is
computed for every individual in a generation. Individuals with higher fitness values
are more likely to be chosen by the selection operator. A mutation operator is applied
to the offspring to produce subtle changes in the resulting traits. Some of the new
individuals can be randomly discarded, but the population size is maintained.

In this work’s proposal, the set of all positions 𝐿 = {𝑙1, ..., 𝑙𝑛} from an initial,
dense collection represents the possible traits that each individual may have. The set
of positions 𝐿 has associated WiFi RSS measurements 𝐷 = {𝑟𝑖𝑗𝑘}. Assume a function
𝑓𝑚𝑎𝑝(𝐴,𝐵) → 𝐶 so that A is a set of RSS values, B is a set of positions and C is
the set of RSS values in A associated to positions in B. Then, 𝐷𝑙𝑝 = 𝑓𝑚𝑎𝑝(𝐷, {𝑙𝑝})
= {𝑟𝑝𝑗𝑘} are the RSS measurements associated to the position 𝑙𝑝. An individual
represents a subset 𝐿𝐼 of 𝐿. The size of the population, as well as the number of
generations considered for population evolution, are parameters of the algorithm that
are presented in the description of the experiments. The fitness value calculation of
an individual was designed so to penalize large subsets and large differences between
actual and estimated RSS values. Specifically, the fitness computation steps are:

1. Fit regressions 𝑓𝑎, for every detected AP 𝑎, using 𝐿𝐼 and their associated mea-
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surements 𝑓𝑚𝑎𝑝(𝐷,𝐿𝐼).

2. Use regressions 𝑓𝑎 to estimate RSS values 𝐸 = {𝑟𝑖𝑎} for positions of 𝐿𝐼 = 𝐿−𝐿𝐼 .

3. Compute the AP-wise and position-wise RSS absolute differences between 𝐸
and 𝑓𝑚𝑎𝑝(𝐷,𝐿𝐼). Let 𝑀𝑅𝐷 be the maximum value of those differences.

4. The individual’s fitness is (𝑀𝑅𝐷+2𝑀𝑅𝐷 𝑎𝑏
𝑡𝑏
)−1, where 𝑎𝑏 and 𝑡𝑏 are the number

of “1” bits and the total number of bits, respectively. If for some reason the
target number of positions is already predefined, say 𝑘, the individual’s fitness
can become (𝑀𝑅𝐷 + 2𝑀𝑅𝐷|𝑎𝑏− 𝑘|)−1.

After a given number of generations, the individual with the highest fitness value,
called the elite individual, could be chosen as the set of positions where WiFi samples
should be collected. The elite individual represents the set that has so far achieved
the best compromise between a small number of positions and little degradation of
the regression goodness. The genetic algorithm does not guarantee that the elite
individual would be the optimal solution for a given problem but is a fair alternative
to an exhaustive search given the combinatorial nature of the problem.

This work’s main goal is determining the suitable positions for conducting periodic
WiFi radio map updates. The elite individual may represent a solution that is over-
fitted for the initial measurements. Therefore, in this work, the selected positions are
those whose occurrence frequency is above a threshold in the final population. The
resulting set of position is called here the solution set. Figure 5.1 shows an example
of the position’s frequency for a population of (200) evaluated sets of positions after
200 iterations. The number of traits, i.e., the number of positions in the initial, dense
collection is 24. The bit frequency represents how often a position is found in sets
of positions. If a high frequency threshold of 0.9 is chosen, the solution set would be
{1, 2, 3, 18, 19, 21, 22, 23}.

In summary, the steps needed for selecting the positions where the periodic update
measurements are to be collected are:

1. Collect a relatively dense WiFi RSS training database.

2. Use a genetic algorithm, such as the one described in pages eight and nine
of Mitchell [22], using the fitness function described above in this section to
determine the positions’ frequency in the population of sets of positions.

3. Choose as the solution set the positions with frequencies above a certain thresh-
old.
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Figure 5.1: Positions (bits) frequency. The blue dots represent how often a position
has been included in individuals of generation 200. The blue line represents the
frequency threshold.

Besides suggesting a good placement for the measurement positions, the proposed
approach can be also used for testing the performance of regression methods. By
computing an individual’s fitness as 𝑀𝑅𝐷 + 2𝑀𝑅𝐷 𝑎𝑏

𝑡𝑏
, the genetic algorithm would

determine a compromise between a large number of positions and a high RSS absolute
difference. The set resulting from choosing the 𝑛 highest fitness sets of positions can
be used as a challenging test for evaluating the performance of regression models.

5.1.2 Experiments

The proposed approach was tested on a subset of the Library dataset [21]. The
Library dataset that collected in two floors of the UJI’s Library building during 25
cumulative months. Six fingerprints were collected per each position and each of the
two directions that the collection subject faced. The subset contains only one training
set and the test sets that correspond to the 3𝑟𝑑 floor of the first ten collection months,
which were the data available by the time of realization of the work presented in
this section. The collection area is a relatively small environment that covered about
15 × 10m. Chapter 3 provided more details about the Library dataset.

Most of the experiments presented in this section used only the training sets (24
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positions). The test sets were only used for the evaluation using the kNN fingerprint-
ing presented at the end of this section. For data dimensionality reduction, the APs
detected in less than 5% of the fingerprints were removed.

The set determination method was defined without establishing any explicit re-
striction for the regression to use. However, the regression method should enable both
interpolation and extrapolation, because there may be target measurement positions
lying outside the convex hull of the positions in the solution set. This implicit restric-
tion is also important because the extrapolation usage is mandatory for environments
that, at collection time, contain areas where measurements cannot be taken – e.g.,
because of a meeting in an office.

Providing recommendations on regression methods for WiFi fingerprinting was
not among the goals of this section (for recommendations see Chapter 4). Thus, only
a few regression methods were tested: Inverse Distance Weighting (interpolation and
extrapolation); Radial Basis function interpolations like those in Ezpeleta et. al. [5],
combinations of Linear, Nearest Neighbors, and Natural Neighbors interpolation with
Linear and Gradient extrapolation as provided by MATLAB [18]; and Support Vector
Machine regression (SVR) as provided MATLAB [19]. The chosen regression method
was SVR, using a Radial Basis Function (RBF) kernel and performing predictor data
standardization. SVR provided the best results regarding regression residuals and
because it has been successfully used in previous studies [8]. A regression method
evaluation for a given environment is suggested before making a choice.

For evaluating the goodness of each set of positions regarding regression estimates,
a metric that quantifies the RSS estimation error was defined. The metric is the
maximum value of the regression residuals. The maximum value was preferred over
other measures – e.g., the mean – that may mask high RSS differences that are
significant for distance-based techniques like kNN-based fingerprinting.

Evaluation for the Initial Month

The experiments considered three strategies for the selection of collection positions.
The strategies were applied to the training set corresponding to the first month of
the WiFi RSS dataset. The strategies are:

1. Random Sets of Points,

2. Manually-defined Sets of Points,

3. Optimized Set of Points.

The first approach considers differently sized sets of random positions. The second
approach uses sets manually defined by an expert. The third approach finds a set
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of positions that establishes a compromise between the set’s size and the regression
goodness. The following subsections provide more details about each approach and
its evaluation.

Selecting a random set of positions is an intuitive approach. The algorithm pro-
posed in Kanaris et. al. [11] may allow determining the number of measurement
positions. This work instead explored several numbers of positions, ranging from 6 to
18 points, which accounts for 25% to 75% of the 24 total positions in the target area,
and they represent reasonable effort reductions. Table 5.1 presents the maximum
and minimum of the RSS error metric previously defined. The experiment for each
number of points was repeated 200 times.

Table 5.1: Minimum and maximum values of RSS error metric for sets of randomly
chosen positions.

Set Size Metric Min (dBm) Metric Max (dBm)
6 19.13 44.74
8 15.71 43.01
10 12.12 41.35
12 11.18 42.10
14 11.99 35.58
16 10.52 35.22
18 9.56 28.59

Table 5.1 shows two main facts. First, the more points are used for fitting the
regression, the better the estimates are. Second, and more importantly, the RSS esti-
mation quality heavily depends on the distribution of the randomly chosen positions,
as absolute differences between the maximum and minimum metric values are up to
30.92 dBm.

Selecting random points creates much uncertainty in the quality of the RSS esti-
mations. An alternative is to manually define the set of positions. The distribution of
positions should take into account the extent of the collection positions and the influ-
ence of the obstacles. In this work, six alternative sets were considered likely manual
choices that could provide fine RSS estimations through regression. The process of
determining the tentative sets of positions is time-consuming, and it is especially
cumbersome due to the large number of alternatives for each set’s size. Table 5.2
presents the value of the RSS error metric for each alternative set. The ID of each set
indicates its amount of positions. Figure 5.2 shows the position distribution of each
set.

The results presented in Table 5.2 reinforce the importance of the distribution
of the collection positions. The estimation quality does not strictly improve as the
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Table 5.2: Values for RSS error metric for manually defined sets of positions.

Set ID Metric (dBm)
6A 21.39
8A 23.45
8B 19.63
12A 23.13
12B 11.90
14A 12.20

number of positions used for regression fit rises, as seen when comparing the set 6A
with set 8A, set 8B with set 12A, and set 12B with set 14A. In each of those pairs
of sets, the value of the RSS error metric is larger for the set with more points. The
distribution of positions of each set, as shown in Figure 5.2, sheds some light on the
previous fact. The convex hulls of sets 6A and 8B include more of the target area
than those of sets 8A and 12A, respectively. Nevertheless, the convex hulls of sets 12B
and 14A are equal, and the set 12B provide better estimations than set 14A despite
having a smaller number of positions. Thus, even a well-designed set of positions may
not be the best choice. Additionally, a set of positions that is optimal for a given
environment may not be optimal for another one, a fact that that is left unproven
because is beyond the focus of this section.

It is possible to search for fine positions for fitting the regression with the opti-
mization strategy based on a genetic algorithm. Specifically, the genetic algorithm
implementation provided in Burjorjee [4], which is in turn based on Mitchell [22] was
used for the experiments. The population size was composed of 200 individuals. The
genetic algorithm used the fitness function previously proposed and it was run for 100
generations. After testing several values, the numbers of 200 and 100 for population
size and algorithm generations were the ones that provided higher stability (repro-
ducibility) in the outputted solution. The obtained elite individual and the solution
set using a higher frequency threshold of 0.9, are depicted in Figure 5.3. The value
of the RSS error metric for the elite set (11 positions) was 8.85 dBm, which is lower
than any of the values obtained using the previous two strategies. The metric value
for the solution set (eight positions) is 11.18 dBm, which is still lower than most of
the values obtained using the previous two strategies.

Figure 5.3 shows two important facts. First, all target positions are contained
in the convex hull of both optimized sets, which avoids the usage of extrapolation.
Second, and more importantly, the distribution of positions in the optimized sets do
not resemble those of the manual choice strategies, nor they are intuitive. Therefore,
the positions chosen for fitting a regression should not be random, and determining a
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Figure 5.2: Manually chosen sets of positions.

small set of positions that provides good estimations when used for fitting a regression
is not a trivial problem.
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Figure 5.3: Set of positions obtained through optimization using a genetic algorithm.

Usage of the Solution Set for RSS Radio Map Update

The following experiments explored the goodness of the proposed position selection
approach for WiFi radio map updates along 9 months (month 2 to 10) in the Library
dataset. The goodness is evaluated in terms of regression residuals and the accuracy
of a fingerprinting-based IPS.

Regarding regression residuals, the experiments tested three sets of positions and
three RSS difference metrics. Table 5.3 shows the results of these experiments. Each
table header indicates the usage of a particular set of positions and a specific RSS
difference metric.

To explore the suitability of a set of positions for each month, a regression was fit
using their associated measurements of the training set from the first month. Besides
the solution set (GA), the sets 8A and 8B were also used for regression fitting. The
sets 8A and 8B, previously introduced, are now used for baseline comparisons. As
RSS difference metrics, the experiments used:

1. MRD: The MRD value previously introduced for the fitness function definition.

2. Mean: Its value is computed in a way similar to MRD, but the mean value is
used instead of the maximum. This metric is included because it is frequently
used in the literature for evaluation of WiFi RSS regression methods.

3. MeanP: It is calculated as: Compute the AP-wise regression residuals. Compute
per each position the mean of those residuals. Take the maximum of those mean
values. This metric is included because indicates how much the RSS difference
may affect a RSS distance-based method like kNN.
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Table 5.3: Values for RSS differences (dBm) according to metrics MRD, Mean and
MeanP for sets 8A, 8B and GA.

Month
Metric Set 2 3 4 5 6 7 8 9 10
MRD 8A 21.1 19.9 20.5 19.7 23.9 21.5 26.5 22.9 23.7
MRD 8B 21.2 20.8 21.0 23.8 21.8 24.9 30.0 25.4 22.0
MRD GA 19.4 16.9 18.7 17.2 21.9 26.6 18.9 20.2 18.0
Mean 8A 1.8 1.6 1.7 1.5 1.6 1.5 1.6 1.5 1.8
Mean 8B 1.5 1.4 1.5 1.3 1.4 1.4 1.4 1.3 1.6
Mean GA 1.7 1.5 1.5 1.3 1.5 1.5 1.4 1.2 1.6

MeanP 8A 5.2 5.3 4.6 4.9 4.7 4.8 5.0 4.5 5.3
MeanP 8B 3.7 3.7 3.8 4.6 3.6 4.2 4.3 3.4 4.3
MeanP GA 3.8 3.0 3.0 2.9 3.7 3.3 3.5 3.3 4.1

The results presented in Table 5.3 indicate that the solution set obtained using
proposed method is a better choice than the other two sets as a set of collection
positions for periodical updates. Regarding the MRD metric, the solution set provides
the best result for most months. It is noticeable that for month number seven, the
value for the solution set is 5.1 dBm worse than the one for the set 8A. Some insights on
that behavior will be later provided when analyzing the set effects on fingerprinting-
based IPS accuracy. Regarding the Mean metric, the solution set is consistently
better than the set 8A and slightly worse than the set 8B for some months. As for
the MeanP metric, the solution set is much better than the 8A set. In comparison
with the set 8B, the solution set is notably better for five of the months, and only
slightly worse for two of them.

The experiments also explored the impact of the proposed update approach on
the positioning accuracy of an IPS. A kNN fingerprinting approach was used for the
experiments. Given a training set of fingerprints with known position labels, a query
fingerprint, and two parameters specified by the value of 𝑘 and a similarity metric
on the fingerprint space, the kNN method finds the 𝑘 fingerprints in the training set
that are the most similar to the query fingerprint. The position label is estimated as
the centroid of the position labels of the selected 𝑘 closest fingerprints.

To measure the accuracy of an IPS, a test set of query fingerprints is usually used.
The position labels are also known for the test set fingerprints, so that, for each fin-
gerprint, the position estimation provided by the IPS and its original position label
are used to compute a positioning error distance. In this section, the positioning dis-
tance has been calculated using the Euclidean distance and the positioning accuracy
has been explored using the 75𝑡ℎ percentile of the computed distances for the test set.

The tested kNN used the RSS Euclidean distance as the fingerprint similarity
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metric. The 𝑘 parameter value was experimentally determined using the training
and test sets of the first month of the WiFi Library dataset. Figure 5.4 shows the
resulting positioning accuracies. The value of 𝑘 that provides the best metric value
is nine, and it is the one used for kNN in the remaining experiments. This value may
appear large, but it is a reasonable value given that 12 fingerprints were taken at each
position and no aggregation operation was performed for fingerprints with the same
position label.
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Figure 5.4: 75 percentile of positioning error using kNN for the first month.

For comparisons, the experiments included an evaluation of the radio map update
at each month using all the training measurements collected at that month. Two up-
dates strategies were tested: Replacement and addition. With the replacement strat-
egy, all training fingerprints collected at one month replaced all fingerprints from the
previous month in the WiFi radio map. With the addition strategy, the fingerprints
of each month were added without any replacement or deletion from the previous
months’ fingerprints. The kNN method was used to estimate, for each month, the
positions associated with the fingerprints of the test set of that month. Figure 5.5
shows the behavior of each update strategy along the time.

The strategy of addition provides values for the positioning error metric that are
smaller and smoother than those provided by the replacement strategy. The metric
values for the strategy of addition range from 2.84 m to 3.25m. For the replacement
strategy, however, the positioning error metric range from 4.10m to 3.14m. The
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Figure 5.5: Comparison of the strategies of replacement (red) and addition (blue).
Measurements for all positions are available.

months six and seven have the highest metric values, which may indicate that the
training values for those months were not as good (representative) as they were for
other months.

The evaluation of using the solution set for a radio map update was conducted
as follows. For each month, the solution set was used to fit a regression, and the
RSS values were estimated for the rest of the positions – i.e., the rest of the reference
points. The estimation provides one fingerprint per position. However, the training
and test sets in the database contain 12 fingerprints per position. Furthermore, the 𝑘
value determined above for the kNN fingerprinting is the best under the assumption
that there are 12 fingerprints per point. Therefore, 12 fingerprints per position were
created using the one fingerprint per position obtained through regression estimation
and adding a random value. In the training set from the first month, the AP-wise
standard deviations values were less than 6 dBm in 80% of cases. The added random
value is then uniformly chosen in the interval [-6;6]. The random value addition is
specific to the evaluation presented in this study and will not be needed for an IPS
radio map update, for which it may be desirable to collect only one fingerprint per
point. The fingerprints newly estimated for each month were considered for radio
map update following the strategies of replacement and addition described above.
Figure 5.6 presents the positioning accuracy metric values for both strategies.



Chapter 5. WiFi Radio Map Maintenance 141

1 2 3 4 5 6 7 8 9 10

month

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

e
rr

o
r 

(m
)

Figure 5.6: Comparison of the strategies of replacement (red) and addition (blue).
Measurements are available only for the solution set.

The results obtained using the strategy of addition and the RSS estimations from
the solution set are very similar to those using that strategy and the measurements
available for all positions. The positioning error metric for the strategy of addition
ranges from 3.25m to 2.81m, which is the same interval obtained when using the
RSS measurements for all positions. The strategy of replacement showed larger metric
values with higher variations than the addition strategy. When compared to using the
same strategy and the measurements from all positions, the usage of the estimations
from the solution set caused larger variability, with the metric values ranging from
4.45m to 3.06m, having a steeper variation for month six.

The above results suggest that the usage of the solution set as collection positions
for WiFi radio map update is a reasonable choice for the tested environment. The
approach of determining the solution set is automatic. Thus, the specialized and cum-
bersome task of manually determining a proper set of collections positions is avoided.
The MeanP value, i.e, the maximum of the position-wise mean RSS differences be-
tween estimations and measurements, was lower than the detected AP-wise standard
deviation for all months. Additionally, the accuracy of the tested kNN using mea-
surements from all position and estimations had a behavior similar to the accuracy
achieved when the estimates from a regression based on the solution set were used.

The previous results have been obtained for an initial radio map collection month
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and across nine months of radio map updates. During the ten months, no drastic
changes in the presence or power configuration of the APs were observed, apart from
wireless networks with very low presence in the data. Therefore, the usage of this
section’s proposal is advised for environments that allow an initial relatively dense
collection and as long as no drastic (non-nominal) change happens to the detected
APs. The required initial collection is costly, but if the cost is assumed, the knowledge
of the positions for performing periodic updates could translate into a better IPS
performance. The following sections briefly addresses the nominality of changes.

5.2 Nominality of Environment Changes

A nominal situation for an IPS is one that corresponds with the initial setup of the
IPS. Changes in the environment are to be considered nominal situations if they do
not significantly decrease the positioning accuracy below the one that is expected
for an IPS. A fingerprinting-based IPS is expected to keep its normal functioning if
newly detected signal intensities are still similar to the signal characterization of the
environment portrayed by the IPS’ radio map. The boundaries for such similarity in
WiFi fingerprinting, to the best of this work’s knowledge, has not been established
yet. It is known that WiFi signals are affected by fast fading [6]. It is common to
model WiFi signals with a Gaussian variation of less than 5 dBm [2]. However, the
signals may be subject to more drastic variations in real environments.

The experiments presented in this section used subsets of the Library dataset
[21]. The Library dataset was also used in Section 5.1 and Chapter 3 provided more
details about it. The subset used in the first experiment considered the data from
Month 15 corresponding to samples from the 3𝑟𝑑 floor of the Test01 and Test05 sets.
This subset contained 24 positions, 4 collection directions per position, and 6 samples
per each position and collection direction. For the experiment, the first sample was
dropped. As shown in Chapter 4, the first sample tends to an RSS value that is the
most different of the six samples consecutively collected for a position and direction.

Figure 5.7 shows the counts for differences between maximum and minimum RSS
values of the 20 samples of each position, considering the RSS values of AP 7. The
AP 7 was strongly seen in the collection area (3𝑟𝑑 floor), with a mean detected in-
tensity of −72.9 dBm. The histogram shows differences that are notably higher that
the variations commonly used in WiFi models. Though variations above the 20 dBm
were found only for two positions, 15 positions (more than half of the positions) had
variations from 11 dBm to 18 dBm. The large variations are a result of the AP sig-
nal intensity in the area, the considered collection directions, and the environment
characteristics. As explained in Chapter 4, signal variations are higher for strongly
detected APs than for weak, far away APs. One of the collection directions faced the
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Figure 5.7: Histogram of differences between maximum and minimum RSS values per
each position.

device emitting the AP, while other direction faced the opposite direction. Further-
more, the collection was performed at narrow lanes among bookshelves in the Library.
If one or two Library user got close while the subject performed the collection, their
bodies may have likely obstructed the AP signals. Thus, notable changes of over
20 dBm for the received signals from an AP can still be considered nominal. Drastic
changes in the signal intensity of an AP measured in an area may also be a result
of non-nominal situations. For example, the position where the device emitting an
AP is deployed may change. It is also possible that a new fixed obstacle may appear
in the environment. If the obstacle is very thick or includes metallic materials, the
change in intensity may be significant.

An extreme situation of change in the detected signal from an AP is the non-
detection case. The non-detection may occur because the signal strength is below the
detection sensitivity of the receptor – usually a smartphone – or because the AP is
no longer being broadcast. The former case is a nominal situation while the latter
is not. The nominal non-detection cases are very common for APs that are already
detected with weak intensities in the target environment. Figure 5.8 shows how the
non-detection relates to the mean intensity value for an AP in the Library. The chart
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Figure 5.8: Mean number of times an AP was not detected for a position and direction.

results from an experiment that used a subset of the Library dataset. The subset
included data from Training01 sets from the first 15 months. An AP filtering was
performed to assure that the APs selected for the experiment had not been modified,
i.e., their devices were not changed or switched off. The selected (48) APs were the
same APs selected for experiments in the Library environment in Chapter 4.

The experiment harnesses the fact that there are six samples per each position and
direction collection in the dataset. In the experiment, the maximum RSS value and
the number of non-detection cases were computed for each month, AP, position and
collection direction. Only cases where there was at least one detection of the AP in the
five samples (the first one is removed) were considered. The numbers of non-detection
cases were grouped by the maximum RSS values. The chart of Figure 5.8 shows the
mean value of the numbers of non-detection cases associated with each maximum RSS
value. As presented by the figure, the nominal non-detection situations occur mainly
for APs weakly detected in an environment. The non-detection is very common for
positions where an AP was detected with signals weaker than −90 dBm. However,
non-detection cases also appeared in positions where an AP was detected with signals
stronger than −50 dBm. Thus, the nominality of non-detection cases results not only
from the number of those cases but also from whether the AP is strongly seen in the
target area. Such APs are commonly close to the target area and very relevant for
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positioning.
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Figure 5.9: Distance from the operational fingerprint to the most similar fingerprint
in the radio map along several months.

Non-detection cases that are non-nominal situations may drastically affect the
positioning accuracy of an IPS. During the collection of samples for Month 11 in
the Library dataset, some WiFi devices were changed. As presented in Chapter 3,
some APs stopped being detected while others appeared, thus hinting at changes at
the broadcasting parameters of the WiFi devices. Those changes modified the radio
characteristics of the environment, thus affecting the similarity between fingerprints.
Figure 5.9 depicts the changes that appeared in the fingerprint similarity as a result
of the device modification in the Library environment.

The experiment for Figure 5.9 considered the set Training01 corresponding to
the first month as training dataset and all test sets from each month. For each
operational fingerprint of each test set, its most similar fingerprint in the training
set was determined. The similarity was computed as the Euclidean distance in the
fingerprint space. The changes in the WiFi devices occurred in Month 11 led to a
drastic increase in the similarity distances. The increase is seen across the whole
range of values, including the minimum, median and maximum values. The changes
in fingerprint similarity can be used to detect non-nominal situations, as presented in
Torres-Sospedra et. al. [27].
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Changes are part of any environment and thus an IPS and its maintainers should
be able to detect and adapt to them. Position estimations could be used to detect
them [27]. Also, periodic updates to the radio map can be used to detect the changes
if the positioning errors or the fingerprint similarities for the collected positions raise
in drastic ways.

5.3 Conclusions

This chapter has addressed the WiFi radio map maintenance. The initial signal
characterization of an environment is likely to need updates as a consequence of
changes in obstacles from the environment or the devices that broadcast the APs.
The chapter first addressed a method that guides the updates when the changes
in the environment are not too drastic. The method chooses the positions in the
environment where new samples are to be collected. The suggested positions are the
set that is found to be the best compromise between a small number of collection
positions and a good training set for a regression. The regression is used to estimate
signal intensities for other positions in the environment. The chapter finally provided
a brief characterization of the nominality of changes in an environment. The changes
were explained through experiments that addressed changes in the RSS values and
non-detection situations of an AP.

Some materials presented in this chapter are supported by one publication [20].

References

[1] Muhammad Usman Ali, Soojung Hur, and Yongwan Park. “LOCALI:
Calibration-Free Systematic Localization Approach for Indoor Positioning”.
In: Sensors 17.6 (2017). issn: 1424-8220. doi: 10.3390/s17061213.

[2] Rafael Berkvens, Herbert Peremans, and Maarten Weyn. “Conditional entropy
and location error in indoor localization using probabilistic Wi-Fi fingerprint-
ing”. In: Sensors 16.10 (2016), p. 1636.

[3] Wonsun Bong and Yong Cheol Kim. “Fingerprint Wi-Fi radio map interpo-
lated by discontinuity preserving smoothing”. In: International Conference on
Hybrid Information Technology. Springer. 2012, pp. 138–145.

[4] Keki M. Burjorjee. SpeedyGA: A Fast Simple Genetic Algorithm. 2009. url:
https : / / es . mathworks . com / matlabcentral / fileexchange / 15164 -
speedyga--a-fast-simple-genetic-algorithm (visited on ).



Chapter 5. WiFi Radio Map Maintenance 147

[5] Santiago Ezpeleta et al. “RF-based location using interpolation functions to
reduce fingerprint mapping”. In: Sensors 15.10 (2015), pp. 27322–27340. issn:
1424-8220.

[6] Ramsey M. Faragher and Robert K. Harle. “Towards an Efficient, Intelligent,
Opportunistic Smartphone Indoor Positioning System”. In: Navigation 62.1
(Mar. 2015), pp. 55–72. doi: 10.1002/navi.76. url: https://doi.org/10.
1002/navi.76.

[7] Zhuan Gu et al. “Reducing fingerprint collection for indoor localization”. In:
Computer Communications. Vol. 83. 2016, pp. 56–63. doi: 10 . 1016 / j .
comcom.2015.09.022.

[8] Noelia Hernández et al. “Continuous Space Estimation: Increasing WiFi-Based
Indoor Localization Resolution without Increasing the Site-Survey Effort”. In:
Sensors 17.1 (2017).

[9] Shau-Shiun Jan, Shuo-Ju Yeh, and Ya-Wen Liu. “Received Signal Strength
Database Interpolation by Kriging for a Wi-Fi Indoor Positioning System”.
In: Sensors 15.9 (2015), pp. 21377–21393. issn: 1424-8220. doi: 10.3390/
s150921377.

[10] Siddharth Joshi and Stephen Boyd. “Sensor selection via convex optimization”.
In: IEEE Transactions on Signal Processing 57.2 (2009), pp. 451–462.

[11] Loizos Kanaris et al. “Sample Size Determination Algorithm for fingerprint-
based indoor localization systems”. In: Computer Networks 101 (2016),
pp. 169–177. issn: 1389-1286. doi: http://dx.doi.org/10.1016/j.comnet.
2015.12.015.

[12] John Krumm and John Platt. “Minimizing calibration effort for an indoor
802.11 device location measurement system”. In: Microsoft Research, November
(2003).

[13] M. Lee and D. Han. “Voronoi Tessellation Based Interpolation Method for Wi-
Fi Radio Map Construction”. In: IEEE Communications Letters 16.3 (Mar.
2012), pp. 404–407. issn: 1089-7798. doi: 10.1109/LCOMM.2012.020212.
111992.

[14] B. Li et al. “Method for yielding a database of location fingerprints in WLAN”.
In: IEE Proceedings - Communications 152.5 (Oct. 2005), pp. 580–586. issn:
1350-2425. doi: 10.1049/ip-com:20050078.



148 References

[15] Liqun Li et al. “Experiencing and Handling the Diversity in Data Density
and Environmental Locality in an Indoor Positioning Service”. In: Proceedings
of the 20th Annual International Conference on Mobile Computing and Net-
working. MobiCom ’14. Maui, Hawaii, USA: ACM, 2014, pp. 459–470. isbn:
978-1-4503-2783-1. doi: 10.1145/2639108.2639118. url: http://doi.acm.
org/10.1145/2639108.2639118.

[16] C. Liu et al. “A Kriging algorithm for location fingerprinting based on received
signal strength”. In: 2015 Sensor Data Fusion: Trends, Solutions, Applications
(SDF). Oct. 2015, pp. 1–6. doi: 10.1109/SDF.2015.7347695.

[17] R. Macho-Pedroso et al. “Optimal microphone placement for indoor acoustic
localization using evolutionary optimization”. In: 2016 International Confer-
ence on Indoor Positioning and Indoor Navigation (IPIN). Oct. 2016, pp. 1–8.
doi: 10.1109/IPIN.2016.7743609.

[18] MathWorks R○. Extrapolating Scattered Data, in MATLAB R○ R2017b. 2017.
url: https://es.mathworks.com/help/matlab/math/scattered-data-
extrapolation.html (visited on ).

[19] MathWorks R○. Support Vector Machine Regression, in MATLAB R○ R2017b
and Statistics and Machine Learning ToolboxTM. 2017. url: https://es.
mathworks.com/help/stats/support-vector-machine-regression.html
(visited on ).

[20] Germán M Mendoza-Silva, Joaquín Torres-Sospedra, and Joaquín Huerta. “Lo-
cations selection for periodic radio map update in wifi fingerprinting”. In: LBS
2018: 14th International Conference on Location Based Services. Springer.
2018, pp. 3–24.

[21] Germán Martín Mendoza-Silva et al. Long-Term Wi-Fi fingerprinting dataset
and supporting material. Nov. 2017. doi: 10.5281/zenodo.1066041. url:
https://doi.org/10.5281/zenodo.1066041.

[22] Melanie Mitchell. An introduction to genetic algorithms. MIT press, 1998.

[23] Juri Ranieri, Amina Chebira, and Martin Vetterli. “Near-optimal sensor place-
ment for linear inverse problems”. In: IEEE Transactions on signal processing
62.5 (2014), pp. 1135–1146.

[24] Hosam Rowaihy et al. “A survey of sensor selection schemes in wireless sensor
networks”. In: Proc. SPIE. Vol. 6562. 2007, A1–A13.

[25] Venkat Roy, Andrea Simonetto, and Geert Leus. “Spatio-temporal sensor man-
agement for environmental field estimation”. In: Signal Processing 128 (2016),
pp. 369–381.



Chapter 5. WiFi Radio Map Maintenance 149

[26] J. Talvitie, M. Renfors, and E. S. Lohan. “Distance-Based Interpolation and
Extrapolation Methods for RSS-Based Localization With Indoor Wireless
Signals”. In: IEEE Transactions on Vehicular Technology 64.4 (Apr. 2015),
pp. 1340–1353. issn: 0018-9545. doi: 10.1109/TVT.2015.2397598.

[27] J. Torres-Sospedra et al. “Characterising the Alteration in the AP Distribution
with the RSS Distance and the Position Estimates”. In: 2018 International
Conference on Indoor Positioning and Indoor Navigation (IPIN). Sept. 2018,
pp. 1–8. doi: 10.1109/IPIN.2018.8533791.

[28] Leehter Yao, William A Sethares, and Daniel C Kammer. “Sensor placement
for on-orbit modal identification via a genetic algorithm”. In: AIAA journal
31.10 (1993), pp. 1922–1928.

[29] Simon Yiu et al. “Wireless RSSI fingerprinting localization”. In: Signal Pro-
cessing 131 (2017), pp. 235–244.





Chapter 6

Fingerprinting-based IPS Evaluation

Errors in position estimations are common to (indoor) positioning systems. Despite
those errors may range from within only a few centimeters for technologies like UWB
or Ultrasound, the most often used IPS have error ranges of several meters. The
scenario where the positioning is performed may determine the significance of the
magnitude of errors. Also, the scenario usually influences the behavior of the IPS,
as they usually rely on measurements of a signal – e.g., WiFi or BLE RSS values –
that are heavily affected by the characteristics of the indoor environment. Moreover,
the scenario is highly relevant given that, commonly, the position is determined for
a person using a smartphone. Therefore, IPS evaluation is not only important for
performing straightforward comparisons to determine which solution is the most ad-
equate for a given application, but also because IPS evaluation is an integral part
of the development of an IPS. As acknowledged in Chapter 2, the proper evaluation
of IPS proposals is one of the main challenges for indoor positioning, and it is the
subject of this chapter.

This chapter first addresses the evaluation within the context of IPS competi-
tion challenges and reproducible research, i.e., the chapter first provides insights into
how to make the offline evaluation of IPS possible. Later, the chapter focuses on
the measurement procedure of positioning errors, describing the proposal of using
the pedestrian path length as a magnitude of the positioning error that effectively
deals with obstacles, building, and floor miss-identifications. Finally, the chapter de-
scribes a local-level analysis of positioning errors, which study the variance of position
estimates provided for the same test point and its behavior across an environment.
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6.1 Offline Evaluation

Offline platforms for IPS evaluation [26] and IPS competitions [37, 36] have been
among the proposed solutions for the IPS evaluation challenge. The offline evaluation
is attractive because it does not incur in hardware deployment costs and provides IPS
testers or challenge competitors with significant time to configure their positioning
methods. Offline evaluation is particularly suitable for the evaluation of smartphone-
based IPS, given that for collecting the data one just needs a smartphone with the
required collection software. In the case of evaluation platforms, despite they may
start providing services with some evaluation datasets in their stock, they mainly rely
on the wiliness of their users to provided more datasets. Although the general target
of all datasets may be IPS evaluation, their specific goals and related characteristics
may vary significantly. Regardless of the goal of a dataset, and following approaches
typically used in machine learning, the dataset should contain enough data to fit
the model for an IPS to a specific environment – training set – and to perform the
unbiased evaluation of a model fit and the hyper-parameter tuning – validation set.
Also, a set is required for the unbiased evaluation of a final fit – test set – and its
data should preferably be distinct from those used for training and validation.

Competitions are normally held at a specific date, and the data collection and
curation should be completed well in advance to that date. For example, for the 2016
and 2017 IPIN conferences, the call for competition for the Track 3 – the track corre-
sponding to smartphone-based offline evaluation – was published a few months before
the competition date [37, 36]. Those periods are required to grant competitors enough
time to calibrate and evaluate their proposals. For those competitions, collection was
performed using several modern smartphones and a dedicated Android application
named GetSensorData [16]. The data consisted of WiFi RSS, inertial data, magnetic
field, GPS, and pressure measures, among others. The competition of 2017 also in-
cluded BLE RSS measures. In the case of the offline evaluation in IPS competitions,
the data provided to competitors and used to evaluate them try to reflect an IPS
usage by people as realistic as possible. Therefore, the collection is performed by a
person moving as natural as possible across a predefined set of waypoints. Also, the
person holds the phone in natural ways, either at chest level simulating common in-
teractions with apps or with the arm relaxed and stretched down performing natural
swings. Apart from the signal measurement data and the position tags, additional
information like floor plan maps, map-based reference trajectories, and videos were
also provided in the hope to help the competitors achieve better position estimations.

For the offline evaluation in IPS competitions, other challenges exist apart from
depicting IPS conditions as realistic as possible. It is not trivial to choose the col-
lection reference points or waypoints that properly characterize the environment but
still keep a challenging character for the evaluation set. For example, in the 2017
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IPIN Track 3 competition, the training and validation routes for the UJIUB building
alone included 460 waypoints across five floors, and a large number – not to be dis-
closed – of waypoints for test routes. As consecutive waypoints were separated by a
few meters, training and validation routes described much of the environment. Thus,
test routes had to be chosen carefully to avoid repeating large patches of other routes.
Performing the position – and time – tagging as accurate as the available means allow
requires a committed and careful work. The subject performing the collection task
has to become familiar with the environment, has to have clear means to follow the
plan, and landmarks or waypoints have to be made easily identifiable. Furthermore,
the collected data should be carefully reviewed to find any inconsistency. Finally,
providing a final ranking of competitors as agreeable – “fair” – as possible by all peo-
ple involved in the competition requires tact and compromise. The competition rules
should be properly described well in advance to the date when it is held.

Offline evaluation is not the ultimate solution for the challenge of IPS evaluation.
There are IPS with hardware interactions unable to be tested offline. Furthermore, the
offline evaluation allows conveniences like computationally heavy procedures, setting
up completely different IPS for different scenarios, manual reviews of position esti-
mates or several estimation attempts that are not normally applicable to real deployed
systems or their online evaluation. Nevertheless, offline evaluation is acknowledged
as very valuable [26, 31] and it will be even more valuable as new, relevant evaluation
datasets become publicly available.

6.2 Error Measurement as Pedestrian Path Dis-
tances

Errors in IPS are commonly measured as the Euclidean distance between the true
position, which is also called ground truth in some machine learning contexts, and the
position estimated by an IPS. The Euclidean distance is easy and fast to compute,
and the scenario should not matter if error ranges are very small – within centimeters
– or the targeted scenario is free of relevant obstacles. However, the error ranges are
not small for the most often used IPS. Also, the walls that divide indoor spaces and
the floors that separate stories in a building, among others, are relevant obstacles for
people.

The ISO/IEC 18305:2016 International Standard [21] describes the methodology
suggested for generic IPS evaluation. It defines the tests for an IPS under several
evaluation scenarios and types of entities to be positioned. The standard provides
suggestions about the density, disposition, and surveying accuracy of the test points.
It also defines that the positioning error should be computed as the Euclidean distance
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(𝑙2 norm) between the actual and the estimated positions. The resulting distances
are later resumed using several statistics. Despite the existence of the standard,
the evaluation of IPS is still an open challenge, as stated by Potortì et al. [32]. In
Potortì et al. [32], the authors provide a critical reading of the standard, refining
which statistics should be used – percentile values – and highlighting the complexity
of error measurement in environments distinct from single-floor open spaces. They
suggest three alternatives for error measurement:

1. 3D Euclidean distance, as defined in the standard. It is widely applied in IPS
academic works and it is very easy to compute. However, it over- or underesti-
mates the importance of floor or building estimation errors.

2. 2D Euclidean distance with floor and building penalties, as used in several
IPS competitions [37, 36]. It is also very easy to compute, and the over- or
underestimation of the importance of floor or building estimation error is less
significant.

3. Real distance, as proposed by a preliminary work of this section [25]. It is not
easy to compute as it requires the application of pathfinding methods based on
map information. However, it provides an approximate distance of the path
that a pedestrian would walk.

The precise map information may not exist for a given scenario. However, its
confection would be valuable not only for IPS evaluation but also for other stages
of the IPS realization. The map information may be employed during radio-map
creation for collection campaigns and radio-map enrichment [19] or IPS estimates
corrections using map matching [43]. Furthermore, the real distance computation
requires pathfinding in the indoor scenario, which could be reuse to provide navigation
services, i.e., directions, to the IPS users.

The following two subsections address the error measurement procedures. In them,
the position estimates from an IPS and their corresponding ground truth positions
are considered the endpoints of paths that a pedestrian would follow. The lengths of
such paths are regarded as the magnitudes of the measured positioning errors. Such
error magnitudes provide a more realistic estimation of distances from the perspective
of a person, or from the perspective of navigable paths for robot-based positioning.
First, Section 6.2.1 chooses and describes three 2D pathfinding methods. Then, Sec-
tion 6.2.2 describes the integration of the 2D pathfinding methods into multi-floor
and multi-building path determination procedures. Also, in Section 6.2.2, the proce-
dures are tested and compared using position estimations from several IPS for a large
environment.
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6.2.1 2D Pathfinding

Pathfinding is an important topic for computer games [15, 7, 1] and robotics [24], and
thus it has been intensively studied. This section describes the three 2D pathfinding
methods chosen for demonstrating the IPS error measurement procedures and briefly
mentions other alternatives. The first two methods are Visibility Graphs (VG) and
Navigation meshes (NM). Both of them are vector-based methods, i.e., they operate
on the polygonal representation of the environment, and create network (graph) rep-
resentations of the input environment. The VG method assures finding the shortest
paths while the NM method creates networks that are simpler than those created by
the VG while also finding paths similar to those found by VG. The third method
is Fast Marching (FM). FM operates on raster (image) representations and provides
paths smoother than those determined by the VG or NM methods.

Visibility Graphs and Navigation Meshes

The VG and NM methods require the representation of the free space of the environ-
ment for performing 2D pathfinding. The free space refers to all positions where the
subject for whom the path is computed can be without colliding with, or trespass-
ing, the boundaries of the environment or the obstacles it contains. The free space
may be obtained from floor plans of the target buildings by doing some processing
using the appropriate tools, as Section 6.2.2 will later describe. The free space is
finally represented using polygons with holes, neither of which are necessarily convex.
Vector-based methods like VG and NM effectively avoid that the computed paths
may trespass boundaries. However, the free space representation is not enough for
avoiding that a real-world subject – which occupies an area larger than zero – may
touch the boundaries while following such paths. To take into consideration the size
of the subject, a concept known as forbidden space is used.

The determination of the forbidden space is as presented by Figure 6.1a. In plain
terms, the limits of the environment – polygon boundaries – are grown inward and the
inner obstacles – polygon holes – are grown outward. The growth should be related
to the size of the subject. In Figure 6.1a, the size of the subject is represented by red
circles. The size of the subject is no longer a concern after computing the forbidden
space, i.e., the new environment representation. The new environment representation
precisely identifies the areas that are valid for path computation. The CAD/CAM
technique known as polygon offsetting [6] has been used in this work. It is adequate
for outer offsets and inner offsets (insets). The magnitude of the growth should be
carefully considered, given that some offsetting operations may block ways that would
otherwise be available for path determination, as presented in Figure 6.1b.

The new environment representation is then directly used to compute VG or NM.
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(a) Offsetting determination.

 

(b) Effect of growth size on path determination.

Figure 6.1: Offsetting and VG path computation examples. Obstacles are represented
in dark gray color and their corresponding offsets in light gray color. The red circles
represent the size of the subject. Black dots indicate the paths’ endpoints. The black
dashed lines, the solid green line and the dashed orange line show arcs of the visibility
graph, the shortest path, and the straight-line (Euclidean) distance, respectively.

Given a set 𝑆 of disjoint polygonal obstacles, the Visibility Graph of 𝑆 has as nodes
the vertices from 𝑆 and an arc connects two nodes 𝑣 and 𝑤 if it does not collide
with any edge from an obstacle or the environment’s limits. Algorithms for the
efficient construction of visibility graphs already exist [24, 28]. The VG can be used
to find the shortest path between two points among obstacles. The shortest path
determination requires to set the arc weights to the actual distance between each pair
of vertices and the usage of a graph searching algorithm like e.g., Dijkstra’s [9] or 𝐴*

[17]. The shortest collision-free path between two points is then composed by arcs of
the visibility graph and by the path endpoints [28].

The paths found with visibility graphs usually have hard turns on the edge’s
vertices. The hard turns are not ideal for describing people movement. Also, the
VG typically have a large number of arcs, which increases the computational cost
of pathfinding. Figure 6.1b presents examples of VG and the determination of the
paths between two endpoints. Notice that graph arcs are included for every pair of
vertices visible to each other, including the endpoints. For the simple environment
of Figure 6.1b, the number of visibility arcs is higher than 30. For the experiments
presented in this chapter, a MATLAB c○implementation for VG construction that
performs brute-force testing of arc eligibility was created. The determination of VG
requires several geometrical operations with varying degrees of complexity, both in
terms of computational cost or implementation difficulty. The most used operations
were point-in-polygon and ray- or segment-to-environment intersection.

A Navigation Mesh [34, 39] subdivide the free space of the environment, or its
representation after offsetting, in as a set of convex polygons. In robotics, the same
concept is called meadow maps [39]. The convex polygons represent spaces where
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movement between two points of the polygon’s boundary is possible without colliding
with an obstacle. A constrained triangulation could be used as an NM. For example,
a navigation mesh can be produced by creating a Delaunay triangulation [8] from
the environment vertices and then removing the triangles that do not belong to the
environment.

Triangles are the simplest convex polygons. Thus, an NM based solely on a
triangulation normally has too many unnecessary divisions of the space. An NM con-
struction can start from a triangulation. Then, the construction iteratively combines
adjacent polygons to remove nonessential edges, thus obtaining new convex polygons
[39]. Several approaches exist for NM construction [41]. The pathfinding algorithm
applied over an NM may consider only the vertices of the NM’s polygons, only the
middle points of the edges of the NM’s polygons, or both vertices and middle points.
Additionally, the resulting path may be smoothed using line-of-sight testing [34]. A
MATLAB c○implementation for NM was created for the experiments presented in
this chapter. The implementation used the construction steps previously mentioned.
It first builds a triangulation and then combines triangles into more complex con-
vex polygons. The path is computed using both vertices and middle points and the
resulting path is smoothed.

In summary, the VG and NM methods are used to compute graphs that represent
an environment. Figure 6.2 presents an example of the resulting graph for a building
(TI) that belongs to the environment where the experiments later presented in this
chapter were performed. Notice that the graph obtained by VG (see Figure 6.2a) has
much more nodes and arcs than the one produced by NM (see Figure 6.2b). The
more complex the resulting graph is, then more time it takes to compute paths on
the graph. Path determination in VG is considerably slower than in NM for complex
environments, despite the NM method performs path smoothing. In both VG and
NM, the resulting graphs have to be temporally modified to account for the path
endpoints. In the case of VG, the pathfinding method first has to add new edges that
connect the endpoints to the environment vertices that are visible from the endpoints.
In the case of NM, for each endpoint, the pathfinding method first has to add new
edges that connect the endpoint to the vertices of the polygon where that endpoint
lies.

The VG and NM methods allow the computation of paths between endpoints that
lie at valid areas, i.e., inside the environment limits but outside the obstacles. If an
endpoint lies outside the valid areas, a correction step is required. The correction
step translates the endpoint to the closest point that is in a valid area. Such point is
the closest point in an edge of the environment translated by a very small distance
inward or outward.
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(a) Visibility Graph (b) Navigation Mesh

Figure 6.2: Pathways representations for the TI building, lowest floor.

Fast Marching

Fast marching [33] is a method that, for a given domain and propagation speeds,
finds the time that a wavefront would reach each point in the domain from given
source points. In the case of images, the domain is the grid cells and the cell values
may define the propagation speeds. The algorithm is similar to Dijkstra’s [9] and
uses the known discrete solution to the Eikonal equation [5] to update cell values
and thus find the time at which the front crosses a point. For pathfinding, the speed
in cells representing obstacles can be set zero. As the algorithm produces no local
minimum [40], a path between source and destination points is determined following
the maximum gradient direction from the initial point. Further improvements to
the original algorithm, like the MultiStencils Fast Marching that solves the Eikonal
equation through several stencils [18], produce smoother paths. The implementation
used in the experiments presented in this chapter is based on MultiStencils [22].

Unlike the VG and NM methods, FM does not create a graph representation of
the environment. Instead, the input image is transformed into a map of speeds. In
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this work, the map of speed was created from a distance transformation applied to
the input image, in which new cell values represent the distance to the nearest cell
that corresponds to a boundary. The distance value of each cell is then transformed
into a speed value using the following formula:

𝑣 = 𝑑. * (𝑑 < 30) + 30 * (𝑑 >= 30) + 0.01, (6.1)

where 𝑑 is the cell distance value and 𝑣 is the resulting speed. Figure 6.3a shows
the resulting transformation for the image of a building. Thus, the computation time
for FM to determine a path depends on the size of the input image, in pixels. The size
of the input image is directly related to the size of the environment and its complexity,
given that low-definition images commonly lose details that may be relevant for path
computations. Also, the endpoint corrections performed in VG and NM is managed
differently in FM. Given that its path determination avoids crossing the environment
boundaries, and areas outside the environment are also considered with the lowest
speed, the correction is intrinsically incorporated into the computed path. Figure 6.3b
presents examples of speed transformation and path determination. In Figure 6.3,
areas outside the building were given white color for better visualization.

(a) Speed transformation. (b) No correction example

Figure 6.3: Fast Marching examples.
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Other alternatives

A network of predefined waypoints, or points of visibility, is commonly used for
pathfinding [15]. Usually, the nodes and edges are set manually or generated us-
ing a grid automatically generated by a GIS tool like ArcGIS c○ indoor [10]. The
resulting network of points is usually simple enough for the path computations using
Dijkstra [9] or 𝐴* [17] to be fast. However, it is not guaranteed to find the shortest
path between two endpoints on a network of waypoints. Also, the manual recreation
of the network if the scenario changes is a very time-consuming task.

Algorithms like Dijkstra or 𝐴* can be directly applied to raster environment rep-
resentations [15]. The raster’s discretization affects the paths that may be found,
which, besides, have unrealistic looks. The 𝑇ℎ𝑒𝑡𝑎* algorithm [27], which does not
constrain paths to grid edges, produce better paths than Dijkstra or 𝐴* in terms of
realistic look and path length.

The map representation can be transformed before the application of a pathfinding
algorithm. Quadtrees [11] are used to reduce the number of nodes that represent the
environments. With them, the whole space is iteratively divided into four new ones
until a subspace does not contain any obstacles or has a minimum size [20]. Skeletons
are also used as a reduced representation of the environment [3, 13]. The skeletons
commonly represent a set of points that have more than one closest point on the
boundary of the polygon. They can be computed either for vector [12, 14] or rater
[23] data.

Finally, it is common to subdivide large environments in map hierarchies. A path
computation with map hierarchies first requires the determination of the involved
scenarios. Then, sub-paths are computed for each of them. Ultimately, the sub-
paths are concatenated to form the output, whole path. If the proper division and
composition techniques are applied, the pathfinding is sped up in map hierarchies
with respect to considering the whole map at once for large scenarios [4, 30].

6.2.2 Position Estimation datasets

This section shows the error measurement procedures using the 2D pathfinding meth-
ods introduced in Section 6.2.1. The measurement procedures were applied to posi-
tion estimates provided by IPS trained and evaluated on data from the UJIIndoorLoc
dataset [38]. The dataset allows the evaluation of WiFi fingerprinting solutions on a
complex environment. The environment encompasses three buildings at the UJI, each
having 4-5 floors (see Figure 6.4). The positioning based on WiFi fingerprinting is
challenging. An AP seen with the strongest intensity is not necessarily the closest one
as a result of intrinsic signal fluctuations and environment-induced variations, includ-
ing absorption by people. The UJIIndoorLoc includes training and validation sets
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that are publicly available and a test set that is kept secret by the dataset curators.
The test set was used in the IPIN 2015 Track 3 competition [35] to evaluate WiFi
fingerprinting solutions. Track 3 of the IPIN 2015 competition allowed the competing
teams up to five sets of position estimates to be submitted. Only the best according
to the mean accuracy was selected for competing in the final ranking. The competing
teams were identified by the names “RTLSUM”, “HFTS”, “ICSL”, and “MOSAIC”. In
total, the teams provided 14 sets of position estimates.

Figure 6.4: 3D areal view, from Google Earth, of the three buildings considered in
this section’s experiments. From left to right, the buildings are identified as TI, TD
and TC.

The intention of this section is only demonstrative, and it does not suggest that the
results of any competition were unfair nor the proposed error measurement procedure
is the definitive, fair way to evaluate competing IPS. Fairness is a very subjective
concept that is not within the focus of this dissertation.

Environment Information Preparation

The pathfinding methods require the compilation of the target environment infor-
mation. The environment is composed of the three university buildings where the
samples of UJIIndoorLoc dataset were collected. The environment information in-
cluded a representation of each building’s floor that depicted the building’s boundaries
and the inner (structural) obstacles. The representation of a floor was either a set of
polygons or an image. Also, the environment information included a representation of
the communications pathways between floors inside a building and between buildings.
In the target environment, floors adjacent to each other communicate through stairs
or elevators. Buildings communicate through outdoor paths between their entrance
doors.
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The environment information was obtained from transformations to CAD and GIS
data. The data were carefully created for previous projects in the university [2]. The
positions for environment representation and the position tags of the UJIIndoorLoc
datasets are represented using the same coordinate system. That coordinate system
allows straight-line distance computation directly using the Euclidean distance.

Figure 6.5: Geometric data of a building representing the free space (white spaces).

To create the representation of each floor from each building, room’s doors and
similar barriers were removed to obtain a continuous free space upon which pedestrian
path could be computed – after offsetting, if needed. Figure 6.5 shows the resulting
free space representation for the first floor of each of the three buildings. In such
representation, a path may span from any two point where a subject is allowed to
roam.

Polygon simplification was performed to reduce the number of vertices and edges.
In the case of polygonal representations, the simplification is highly relevant if the ge-
ometries include curves. For example, in the case of circular pillars, the simplification
reduced the number of vertices by a factor of 5, from about 40 to 8 vertices. Also,
the polygonal representation required the offsetting process described in Section 6.2.1
before the application of the VG and NM methods. The images created for raster
representations used a map scale and a pixel density that allowed the direct trans-
formation from pixel distance to real-world distance. Besides, the symbology used to
represent lines allowed thin but continuous edges representations.

The inter-floor (vertical) and inter-building communication ways were represented
as static information in the form of triplets. The triplets contained two endpoint tags
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Table 6.1: General characteristics of environment’s buildings.

Building Area (𝑚2) Floors Vert. Comm. Ext. Doors
TI ≈ 15, 600 4 18 7
TD ≈ 37, 150 4 37 8
TC ≈ 27, 100 5 24 4

and the distance between the two endpoints. The endpoint tags contained a 2D posi-
tion, the building and floor that the endpoint belonged to, and an endpoint ID. The
distances were measured using a GIS tool as fixed pedestrian paths. Such paths went
through stairs and elevators for inter-floor ways and through pedestrian routes that
communicated building doors for inter-building ways. Table 6.1 presents the num-
bers of vertical and inter-building ways along with other building information. The
compiled vertical and inter-building ways data considered any vertical way between
two adjacent floors from the same building and one route for any pair of doors from
two buildings. The integration of vertical and inter-building links information to the
2D pathfinding is explained in the following section. The ways that connect floors
and buildings were manually compiled for this work. Despite automatic methods for
topology extraction or features identification from floor plans or other indoor models
exist [42, 29], this work favored the manual extraction to assure the accuracy of the
data.

IPS Error Measurement Procedures

Let 𝑎 and 𝑏 be endpoints for which a path is to be determined. Without loss of gen-
erality, let 𝑎 be the origin and 𝑏 the destination of the path. If 𝑎 and 𝑏 are located on
distinct floors or buildings, determining the path that connects them requires finding
inter-floor (vertical) and inter-building (outdoor) path segments. Those segments,
when orderly concatenated together, transits from the floor-building of the origin to
the floor-building of the destination. Let 𝐼𝑎,𝑏 = {𝑖1, ..., 𝑖𝑛} be the result of concate-
nating such segments, where 𝑖𝑗 is a segment endpoint. Each 𝑖𝑗 is either an endpoint
of a vertical communication way or an endpoint of an inter-building route. For the
test environments, the full path is the concatenation of the 2D path between 𝑎 and
𝑖1, the path represented by the 𝐼𝑎,𝑏, and 2D path between 𝑖𝑛 and 𝑏. In Figure 6.6,
𝐼𝑎,𝑏 is represented by the green and blue segments. Notice that the green segments
are known in advance. A blue segment represents a connection between an endpoint
of a vertical way and an endpoint of an inter-building route. The blue segments are
2D paths that have to be dynamically determined. The 2D path determination, i.e.,
inside the floor of a building, is performed using either of the VG, NM or FM 2D



164 6.2. Error Measurement as Pedestrian Path Distances

pathfinding methods. If 𝑎 and 𝑏 belong to the same floor and building, then 𝐼𝑎,𝑏 = ∅.

Figure 6.6: Shortest distance path between two endpoints located in distinct buildings
and floors.

It is difficult to determine in advance the set 𝐼𝑎,𝑏 that would provide the shortest
path between 𝑎 and 𝑏. The usage of heuristics like, e.g., choosing the two doors
from the origin and destination buildings which are the closest among them, does not
guarantee to obtain the shortest path. Therefore, to assure to find the shortest path
and to enable the exploration of longer paths, the basic path determination algorithm
in this work follows the approach of determining all possible sets 𝐼𝑎,𝑏 that are always-
forward alternatives. Always-forward alternatives are those where floor changes are
made only if they represent a floor-wise or building-wise advancement towards the
destination. Paths longer than the shortest distance ones are possible choices for a
pedestrian unfamiliar with the environment.

The previous approach is directly applicable to any of the VG, NM or FM meth-
ods. However, the number of all possible always-forward sets 𝐼𝑎,𝑏 is large and expo-
nentially related to the number of vertical and inter-building links in the environment.
Given that the VG and NM methods produce representations of the environments as
undirected graphs, it was also tested a variant of the basic algorithm in which the
individual 2D graphs produced for each floor by VG and NM are connected to repre-
sent vertical and inter-building communication ways. This variant produces a single
graph and avoids the determination of the sets 𝐼𝑎,𝑏. Such 3D graph is the classical
representation used for navigation services in indoor environments [10].

Algorithm 1 presents the basic path determination algorithm, which is hereinafter
called the EE variant. Algorithm 2 presents the variant that creates a single 3D
graph, which is hereinafter called the SM variant. Apart from the environment repre-
sentation, the algorithms require endpoints as an input. The endpoints are organized
into separated datasets, which in turn are composed of sets of endpoints. Recall that
the endpoints of a path represent a position estimate and its corresponding ground
truth position. The position estimates were provided by teams that participated in
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Input: Environment Data Representation, Endpoints
Output: Paths between endpoints

1 Floor model creation
2 for each endpoints dataset do
3 for each endpoints set do
4 Endpoints expansion
5 Endpoints correction
6 Paths computation
7 Endpoints contraction
8 end
9 end
Algorithm 1: Path determination steps. EE (Endpoints Expansion) variant.

Input: Environment Data Representation, Endpoints
Output: Paths between endpoints

1 Floor model creation
2 Single model integration
3 for each endpoints dataset do
4 for each endpoints set do
5 Endpoints correction
6 Paths computation
7 end
8 end

Algorithm 2: Path determination steps. SM (Single Model) variant.

the Track 3 of the 2015 IPIN competition. Each team was able to provide up to 5
sets of estimations. Thus, an endpoint dataset is associated with all the estimations
that a team provided, and a set of endpoints is associated with a particular set of
estimations of a team. The explanation of the steps for Algorithm 1 is as follows:

∙ Floor model creation: This step loads the environment data, i.e., the polygonal
representations or images of each floor plan and the vertical and inter-building
connection information. For the VG and NM methods, the step computes
the 2D graph representation. For the FM method, it performs an image pre-
processing - e.g., image binarization and speed transformation.

∙ Endpoints expansion: This step transforms the endpoint data - formed by pairs
(𝑎, 𝑏) - to account for paths between different floors or buildings. After deter-
mining the all always-forward sets 𝐼𝑎,𝑏, the endpoint data is transformed by
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removing the endpoint pair (𝑎, 𝑏), and by adding (𝑎, 𝑖1) and (𝑖𝑛, 𝑏) for every
𝐼𝑎,𝑏. If a segment (𝑖𝑘, 𝑖𝑘+1) ⊂ 𝐼𝑎,𝑏 ∧ 𝑘 ≤ |𝐼𝑎,𝑏| is such that the (𝑖𝑘 and 𝑖𝑘+1)
endpoints are one an endpoint of a vertical way and the other an endpoint of an
inter-building route, the endpoint pair (𝑖𝑘, 𝑖𝑘+1) is also added. The performed
transformations are tracked for the Endpoints contraction step.

∙ Endpoints correction: For VG and NM methods, it corrects endpoints lying out-
side the environment to the closest point inside the building. The FM method
does not requires this step.

∙ Path computation: For VG and NM methods, this step computes shortest path
among endpoints pairs using the graph representation of the environment and
the 𝐴* algorithm. In the case of FM, the MultiStencils Fast Marching method
is applied upon the pre-processed floor images for the endpoint pairs.

∙ Endpoints contraction: The track of the endpoint transformations performed in
the Endpoints expansion step is used for path concatenation, i.e., to construct
paths connecting the original endpoint pairs (𝑎, 𝑏).

Algorithm 2 performs the Floor model creation and Path computation steps ex-
plained for Algorithm 1. Algorithm 2 perform the Single model integration step,
which avoids the Endpoints expansion and Endpoints contraction steps found in Al-
gorithm 1. The Single Model Integration step links together into a single graph the
graphs created for each floor of each building by the NM and VG methods. The
graphs are linked attending to the vertical and inter-building connections. Each con-
nection represents a new arc that is added to the graph. Each endpoint of a newly
added arc is joined to the graph of its corresponding floor by adding new connecting
arcs to the graph. The new connecting arcs are determined using the same approach
used in the path computation for attaching the origin and destination points to the
environment. For VG, the connecting arcs are the visibility arcs that irradiate from
the endpoint. For NM, the connecting arcs are segments that connect the endpoint
to the vertices of the (convex) polygon that contains the endpoint.

The output of Algorithm 1 and Algorithm 2 are the paths that connect their
inputted endpoints. The application of Algorithm 1 or Algorithm 2 with any of the
proposed 2D pathfinding methods is hereinafter called measurement procedure. Five
measurement procedures are addressed:

∙ VG-EE : Applies Algorithm 1 using VG for 2D pathfinding.

∙ VG-SM : Applies Algorithm 2 using VG for 2D pathfinding.

∙ NM-EE : Applies Algorithm 1 using NM for 2D pathfinding.
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∙ NM-SM : Applies Algorithm 2 using NM for 2D pathfinding.

∙ FM : Applies Algorithm 1 using FM for 2D pathfinding.

The procedures VG-SM and NM-SM apply 𝐴* over the entire (3D) graph and
produce only the shortest distance paths. The procedures VG-EE, NM-EE, and
FM, however, produce several alternative paths for each pair of endpoints lying on
different floors or buildings. The shortest distance path has to be sought among all
those alternatives. Other measurement alternatives could have been used instead
of the shortest distance. One example is the path that includes the nearest floor
connection or the nearest building door to the origin endpoint. The measurement
alternatives to the shortest distance are useful for pedestrian navigation. However,
they are not addressed here because they are unlikely to be chosen by non-human
subjects (robots) or people who are familiar with the environment.

The outputs of the measurement procedures vary not only on the paths they
produce but also on the time they take to first prepare their models and then to
compute the paths. All the results presented in this section were obtained from
experiments carried out in a Desktop Computer with Intel(R) Core(TM) i7-8700
CPU @ 3.2GHz, 16GB of RAM memory, running MATLAB c○R2019a on a MX
Linux 18.2 Continuum. The implementation of the procedures was performed in the
MATLAB c○language, favoring correctness over efficiency. Also, the measured times
were not the result of many repetitions. Therefore, the measured times are only
presented to grasp a general idea of computation time requirements.

Table 6.2: Measured computation times for steps from Algorithm 1. The steps are
Floor model creation (FMS), Endpoints expansion (EES), Endpoints correction (ECS)
and Paths computation (PCS). FMC reports total time, EES reports mean time per
endpoint set, ECS reports mean time per endpoint, and PCS reports mean time per
computed path.

Step VG-EE NM-EE FM
FMC Σ (s) 53.33 123.47 1.30
EES 𝜇± 𝜙(s) 22.48± 55.09 26.68± 65.69 22.58± 55.43
ECS 𝜇 (s) 1.5× 10−3 1.6× 10−3 𝑁𝐴
PCS 𝜇± 𝜙 (s) 0.21± 0.04 0.03± 0.01 2.51± 0.12

Table 6.2 presents the measured times for some steps of Algorithm 1. The Floor
Model Creation step is performed by all procedures. Though the time this step takes
is not negligible, it is not significant given that it takes less than 3min to complete
for all approaches. Furthermore, the step is to be executed only once and the created
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graphs or processed images can be stored for their later usage. The stored information
can be later used indistinctly by procedures based on Algorithm 1 or Algorithm 2
to perform as many path computations as required. The times for the Endpoints
expansion step are small for all procedures when compared to the time employed in
the Paths computation step. However, they are not negligible and only one order of
magnitude lower than the time of the Paths computation step for the FM procedure.
Their 𝜙 values were not reported as their were close to zero.

The 𝜙 values are larger than 𝜇 for the Endpoints expansion step because the time
measurements for teams RTLSUM, HFTS, and ICSL were small – taking 0.84± 0.32
– and the two corresponding the MOSAIC team were large – 183.17 and 180.28. In
the EE variants, several paths are computed for some endpoint pairs. The number
of such alternative paths may be significantly large depending on the amount of floor
and building miss-identifications in the estimates of the evaluated IPS. As a mean,
the number of path computations processed using this modality was 5.83 times larger
than the number of position estimates. Thus, the total path processing time in for NM
and VG methods in the EE variants was almost 6 times larger than in the SM variant
counterparts. The largest increase in the number of computed paths was 26.70 and
corresponded to one of the estimation sets of the team MOSAIC. Furthermore, the EE
variants demand a lot of memory resources, mainly because of the path information
is kept for later analysis.

The times for the Paths computation step are the most important measures pre-
sented in Table 6.2. The times for the NM-EE procedure are small and thus affordable
for evaluation purposes – which is typically an offline procedure – using most modern
desktop computers, even for large IPS evaluation sets. The times for the VG-EE
procedure are about seven times larger than those for NM-EE. Nevertheless, time
affordability should not be a hard concern in most scenarios for VG-EE. The FM
procedure, however, uses more than 2 s as a mean to run a single path computation.
Such large time implies that it could take weeks to complete the paths computation
for large evaluation sets. Large evaluation sets are indeed possible: The one used
in the experiments of this section accounted for more than 70,000 evaluation pairs
considering all teams’ sets. The FM procedure can be applied for small evaluation
sets using modern computers if it is desirable to obtain paths with fewer hard turns
than those provided by the VG-EE and NM-EE procedures.

Table 6.3 presents the measured times for some steps of Algorithm 2. The times
for the Floor model creation step are omitted in Table 6.3 as they are equal to those
shown in Table 6.2. The Single model integration step is performed only once. The
NM-SM runs significantly faster than the VG-SM in this step because the floor graphs
produced by NM are significantly less complex than those produced by VG. The
times for the Endpoints correction step are smaller in Table 6.3 than those presented
in Table 6.2. Endpoints requiring correction may get repeated in the Endpoints
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Table 6.3: Measured computation times for steps from Algorithm 2. The steps are
Single model integration (SMS), Endpoints correction (ECS) and Paths computation
(PCS). SMS reports total time, ECS reports mean time per endpoint, and PCS reports
mean time per computed path.

Step VG-SM NM-SM
SMS Σ (s) 32.21 0.94
ECS 𝜇 (s) 1.0× 10−4 1.2× 10−4

PCS 𝜇± 𝜙 (s) 0.22± 0.01 0.02± 0.00

expansion step of Algorithm 1, thus driving up the mean times. The times of Paths
computation step are similar between Table 6.2 and Table 6.3.

Table 6.4: Complexity of the environment representation. The numbers of nodes and
arcs are the totals resulting from summing up the respective numbers from the graph
of each floor from each building.

VG 2.3× 104 nodes – 3.2× 105 arcs
NM 2.3× 104 nodes – 7.7× 104 arcs
FM 13 floor images of 2, 971× 2, 101 pixels

The times presented for the Paths computation steps both in Table 6.3 and Ta-
ble 6.2 can be directly related to the complexity of the environment upon which the
2D pathfinding methods is applied. As seen in Section 6.2.1, VG produces graph rep-
resentations that are more complex than those obtained using NM. Table 6.4 shows
the complexity of the graphs produced by VG and NM. Despite the number of nodes
is roughly the same, the number of arcs for VG is four times larger than for NM.
The FM method computes the paths directly from image transformation whose sizes
match those of the original images of the environment. The images used in the ex-
periments are large. Each of them contained over 6 million pixels, which is a result
of large and complex environment representations.

The evaluation time, while important, matters only for time affordability, and thus
it is a secondary aspect of the proposed procedures. The main aspect is the error
magnitudes as measured by the procedures. To set those magnitudes in the context
of IPS evaluation, Figure 6.7 presents comparisons between the errors as measured by
the VG or FM procedures and as measured by the EvAAL procedure. The EvAAL
procedure determined error magnitudes as the 2D Euclidean distance between the
positions of the ground truth and estimated positions, with penalties added for floor
error and building error of 4m and 50 m, respectively:
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Figure 6.7: Examples of error measurement differences. Green and gray dots represent
cases for which ground truths and estimations were in the same floor, with or without
applying corrections, respectively. Blue and red dots represent cases of floor and
building miss-identification, respectively.

𝑒𝑟𝑟𝑜𝑟 =𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑙𝑎𝑡,𝑙𝑜𝑛(𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑, 𝑟𝑒𝑎𝑙)

+ 4 * 𝑎𝑏𝑠(𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝑓𝑙𝑜𝑜𝑟 − 𝑟𝑒𝑎𝑙𝑓𝑙𝑜𝑜𝑟)

+ 50 * (𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔! = 𝑟𝑒𝑎𝑙𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔) (6.2)

The figure provides color codes that allow the identification of specific types of
paths used for error measurement. Positions correctly estimated in the target floor
and building by an IPS are identified by gray and green dots and tend to have EvAAL
error magnitudes similar to those from the proposed procedures. Notice that gray and
green dots lie near the diagonal reference lines in the plots. The green dots addition-
ally identify cases for which the position estimates had to be corrected because it lied
outside the evaluation area, i.e., outside a building or inside an obstacle. The green
dots never appear in the plots lying over the reference lines. Notice that Figure 6.7c
does not have green dots, which is a result of the fact that the FM procedure does
not make estimate corrections before computing the paths. The dots that represent
larger differences in the error magnitudes between VG or FM procedures and the
EvAAL procedure are those in blue or red colors. The blue dots represent paths that
accounted for a floor, but not building, miss-identification, with or without applied
corrections.

The different-floor same-building cases always reflect an error underestimation for
the EvAAL procedure. The error underestimation is large for some samples. The
4m floor penalty of the EvAAL procedure approximately reflected the height differ-
ence between two adjacent floors. However, 4 m is a value too small to consider the
displacements required for an actual subject to change floors. The red dots, only
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shown in Figure 6.7b, represent building miss-identifications with or without floor
miss-identification or estimation correction. The position estimates with building
miss-identifications have the largest errors, and they were only provided by the MO-
SAIC team. The EvAAL procedure heavily underestimated the error magnitudes
for some estimations, while for others it overestimated their magnitudes. The 50m
building penalty was too large for cases where the estimations and the ground truth
lied in nearby positions at the ground floors of adjacent buildings. Also, such penalty
was far too small for other cases that required changing floors at both buildings, as
previously shown by Figure 6.6. In general, when compared to pathfinding-based al-
ternatives, the EvAAL procedure mostly underestimated the magnitude of the error
for the evaluated environment and estimation sets.

Table 6.5: Team evaluation results, using best set of estimations according to the
mean value of EvAAL error.

Team EvAAL Mean (m) VG Mean (m) NM Mean (m) FM Mean (m)
RTLSUM 6.20 7.24 7.25 8.28
ICSL 7.67 9.61 9.63 10.96
HFTS 8.49 9.48 9.49 10.80
MOSAIC 11.64 13.25 13.28 15.16

The magnitude of the error is the main evaluation aspect of an IPS. A metric
like the mean or the 75𝑡ℎ percentile is commonly applied over the set of determined
magnitudes to create a rank of the competing IPS. Recall that, in the case of the
Track 3 of 2015 IPIN competition, each competing team provided several estimation
sets. For each set, its mean error value was computed. The lowest mean value of
a team was then used to rank the team. The values in Table 6.5 were computed
using only the estimation set of each team that provided the best mean value of the
EvAAL errors. Thus, values from distinct procedures can be compared. Notice that
the table does not make the distinction between the variants EE or SM given that
they produce the same measurement results either for VG or NM procedures, which
is a result of using the best distance as error magnitude quantity.

According to Table 6.5, the team HFTS consistently performs better than the
ICSL in the VG, NM and FM procedures, thus ranking 2nd if a new ranking was
possible. The team HFTS had a floor detection rate notably better than the ICSL
team [35]. As previously seen, the EvAAL procedure mostly underestimated the error
in comparison to the proposed procedures. Furthermore, EvAAL error underestima-
tion was notable for many estimates that miss-identified the floor. The MOSAIC
and RTLSUM teams would keep ranking last and first, respectively, using any of the
addressed procedures. For all teams, the value obtained using the EvAAL procedure
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was lower than the one obtained using the VG procedure. In turn, the value obtained
using the VG procedure was slightly lower than the one obtained using NM. The
procedure FM produced the largest values in all cases.

Table 6.6: Team evaluation results, using best set of estimations according to the 75𝑡ℎ
percentile of the EvAAL error.

Team EvAAL 75𝑡ℎ (m) VG 75𝑡ℎ (m) NM 75𝑡ℎ (m) FM 75𝑡ℎ (m)
RTLSUM 8.34 8.96 8.96 10.46
ICSL 10.87 13.26 13.26 14.50
HFTS 11.60 12.57 12.57 14.08
MOSAIC 10.65 12.16 12.18 14.25

To assess the teams’ ranking using a new metric, the values in Table 6.6 were
computed using only the estimation set of each team that provided the best 75𝑡ℎ per-
centile value of the EvAAL errors. The 75𝑡ℎ percentile has been used in competitions
after the 2015 IPIN competition [37, 36]. The usage of 75𝑡ℎ percentile drastically
changed the ranking of teams, even for the EvAAL procedure. Notice that the 75𝑡ℎ

percentile values are lower than the mean values for the MOSAIC team. The team
MOSAIC has a few very-large positioning errors, as a consequence of building miss-
identification, which severely affected the mean positioning error. It was the only
team to have such errors. According to the 75𝑡ℎ percentile, the team MOSAIC would
rank second for the EvAAL, VG and NM procedures. Table 6.6 supports the order
that Table 6.5 showed for teams HFTS and ICSL and the proposed procedures. The
team HFTS performed better than the team ICSL according to the 75𝑡ℎ percentile
and the VG, NM, and FM procedures. The RTLSUM would keep in any case the
top place in a ranking. The team provided remarkably good position estimates. The
closer the position estimations to the ground truth, the lesser the chances that the
path that joins them has to avoid obstacles.

Apart from the change in the ranking induced by using a particular error mea-
surement procedure or metric shown in Table 6.5 and Table 6.6, it is notable the
similarity between the metric values provided by the VG and NM procedures. Fig-
ure 6.8 exemplifies the reason between this similarity. Notice that the path provided
by the VG procedure is almost identical to that provided by the NM procedure. The
path initially found by the NM method is later smoothed using line-of-sight testing.
The smoothing removes non-essential vertices, often creating visibility edges as those
used in the VG method. The FM method, instead, actively avoids boundaries, which
create smooth but sinuous paths that divert from the shortest distance paths found
by the VG method or their approximation provided by the NM method.
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(a) Visibility Graphs (b) Navigation Meshes (c) Fast Marching

Figure 6.8: Examples of computed paths using the three proposed 2D pathfinding
methods.

Having the building and floor correctly predicted is of utmost importance for an
IPS. The proposed measurement procedures can correctly penalize floor and building
miss-identifications, and thus avoid over or underestimations. The NM method pro-
duces path estimations that are a good approximation to the shortest distance paths
while also keeping a moderate consumption of the computing resources.

The proposed measurement procedures focused on error measurement at indoors.
The indoor character influenced aspects of procedures, like the endpoint correction.
In general, a positioning system that has building (map) information should validate
the position estimations to avoid non-accessible areas like, for example, obstacles. A
position estimate should be corrected by, e.g., computing the position in the valid
areas which is the closest to the original estimate. If the estimates should strictly
lie indoors, then outside areas can be considered non-accessible and the correction
procedure should be applied. However, there are local positioning systems that work
smoothly between indoor and outdoor areas, and no correction is required for them.

6.3 Local Effects of Position Estimations

Section 6.2.1 showed that the 75𝑡ℎ percentile and the mean values may provide distinct
rankings of competing IPS. Thus, the selection of the accuracy metric for evaluation
is very important. One popular option for characterizing the accuracy of an IPS is
a CDF plot. CDF plots are very useful and recommended [32] for determining the
variability of the positioning errors of an IPS. Also, they allow an easy determination
of the number, or percentage, of position measurements that are below a given error.
However, the CDF and related metrics like the mean, percentiles and ranges are broad
descriptions for a large environment. It is difficult to directly translate that broad
description to a smaller area given that IPS are commonly affected by the (local)
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environment characteristics.
The ISO/IEC 18305:2016 International Standard [21] defines two metrics to mea-

sure IPS accuracy at a more local level than that provided by the CDF plot: the
circular error 95 and the coverage. The circular error 95 indicates the radius of the
circle that, given a center position, contains 95% of position estimates. Instead of
considering a whole environment, it can be applied individually to separate areas or
individually to each test point if they contain several samples. The coverage metric
indicates the ratio of evaluation points that meet a minimum performance require-
ment. The performance requirement is met for a test point having several samples
if the maximum value of the error measurements for that point is below or equal to
some non-negative value defined for the IPS.

This section addresses local analyses of errors measured for IPS. The IPS are
those also used in Section 6.2.2. For the analyses, fingerprints and position estimates
corresponding to some target reference points in the test set were selected. The
targeted reference points are those where 5 or more fingerprints were collected. The
targeted reference points accounted for 654 out of the 723 unique positions found
in the private test set of the UJIIndoorLoc dataset. The circular error 95 was not
computed given that the amount of samples per reference point may be as low as 5
samples, i.e., a selection for 95% of estimates would mean a selection for the 100% of
estimates. The computation of the coverage metric followed an adaptation from the
definition of the ISO/IEC 18305:2016 to consider the black box, off-line evaluation
procedure followed in Section 6.2.2.

The number of reference points that have exactly five samples account for less
than half of the total reference points, as presented in Figure 6.9. Thus, instead of
using exactly five samples per point, five or more were used to increase the number
of reference points available for the analysis and to avoid sampling randomness. The
metric and measurement procedure used here are the 75𝑡ℎ percentile and the EvAAL,
respectively. The EvAAL was chosen because from the measurement procedures
addressed in Section 6.2.2 it is the one that provides the most optimistic perspective.
The minimum performance requirement was chosen to be 10m because it is the round
number closest to the 75𝑡ℎ percentile of the EvAAL-measured errors for all teams.
Only one of the estimation sets that each team submitted was used. The selected set
was the one used for ranking in the Track 3 of the 2015 IPIN competition.

Table 6.7 shows the results of computing the coverage metric for each team. In
general, the coverage indicates the presence of large errors in about half of the refer-
ence points for most teams. The team RTLSUM is appreciatively the best performing
according to coverage. The team HFTS performed better than the ICSL, which is in
line with the analyses presented in Section 6.2.2. The visualization of the coverage
metric results can provide insights into the areas which insufficient IPS performance.
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Figure 6.9: Histogram of samples per reference point in the private test set of the
UJIIndoorLoc dataset.

Such visualization, despite it is recommended, is not provided here to maintain the
private character of the UJIIndoorLoc’s test set.

Table 6.7: Coverage metric adapted to the black box, off-line evaluation, considering
10m as the minimum performance requirement.

RTLSUM ICSL HFTS MOSAIC
0.62 0.50 0.58 0.46

The coverage metric exposed that a notable number of reference points have large
errors. Such fact is significant given that almost 75% of errors should be lower than
the chosen value for the minimum performance requirement. Thus, uncertainty in
positioning accuracy should exist for many reference points. The uncertainty in mea-
surements is sometimes addressed using sensibility analysis. WiFi fingerprinting mod-
els have a large number of input variables. Also, for large environments, some of the
variables may strongly influence the position measurement in an area while being
unimportant for other areas. Thus, the sensibility analysis should be done at a local
scale, i.e., individually at small areas or each reference point. However, the black
box, offline evaluation approach addressed in this section imposes hard constraints
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upon the IPS responses for the input variables. The addressed evaluation approach
rules out the possibility of getting new position estimates for selected variations in
the fingerprints.

Thus, instead of performing a sensibility analysis, the relation between the varia-
tion of error magnitudes and the variation of the RSS was studied. The variation of
error magnitudes was computed as the standard deviation of errors at each reference
point. The variation of the RSS (input signals) was computed as the maximum value
of the distances among the fingerprints from each reference point. The chosen distance
between two fingerprints was the Euclidean distance in the fingerprint space, which is
a measure that is commonly applied as a similarity metric for WiFi or BLE determin-
istic fingerprinting. The maximum fingerprint distance at each reference point ranged
from 4.24 dBm to 163.8 dBm. The latter value is indicative of large variability in the
input signals. The standard deviation of errors at each reference point ranged from
0 to 224.57 meters. The former value suggest a consistent estimation while the latter
is indicative of very large and very low errors provided for the same reference point.
Table 6.8 shows the 𝑟ℎ𝑜 values of the Pearson correlation test applied to the previous
two measures. The p-values were not shown as they were significant (𝑝 < 0.05) for
the team RTLSUM and very significant (𝑝 ≪ 0.05) for the other teams.

Table 6.8: Pearson correlation rho values between standard deviation of errors and
maximum fingerprint distance.

RTLSUM ICSL HFTS MOSAIC
0.16 0.37 0.24 0.16

The correlation between the standard deviation of errors and maximum fingerprint
distance is always positive, i.e., the larger the fingerprint distances, the larger the
error standard deviations. Also, despite the correlation is weak for the RTLSUM and
MOSAIC teams, it is notable for the ICSL team. The ICSL team has a low floor
detection rate [35]. A large correlation may hint at a large susceptibility of a given
IPS to variations in the input signals.

To further study the effect of variations of fingerprint distances on the position
estimates, the standard deviation of error magnitudes was computed and later pre-
sented in Table 6.9 for two cases. The first case was called “All RPs”. In this case,
the standard deviation of error magnitudes of all reference points was considered.
Table 6.9 presents the median of those values. The second case was called “Sel RPs”.
In this case, only the values from selected references points are considered. The se-
lection is performed attending to maximum fingerprint distance computed for each
reference point. A reference point was selected if its maximum fingerprint distance
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Table 6.9: Standard deviation of error magnitudes when considering all reference
points (All RP) and when considering only those with large – above the median –
standard deviation values of fingerprint distance (Sel RP).

Selection RTLSUM ICSL HFTS MOSAIC
All RPs 1.46 1.95 0.97 0.78
Sel RPs 1.67 2.43 1.19 1.87

was above a threshold value. The threshold was set as the median of the maximum
fingerprint distances of all reference points. The values presented for the case “Sel
RPs” are consistently larger than those for the case “All RPs”. The increase is par-
ticularly notable for the MOSAIC team, having increases larger than twice of those
of the “All RPs” case. A likely reason for the MOSAIC team’s notable increase is
that the selected reference points should be those where building miss-identification
occurred, which are the ones that have the largest estimation errors. The second
most notable increase corresponds to the ICSL team, which is the team that showed
a larger correlation in Table 6.8. The team with the least increase is RTLSUM, which
had the smallest correlation in Table 6.8 and which was the one that provided best
overall results across the error accuracy and coverage metrics.

The results from Table 6.8 and Table 6.9 suggest that the IPS from RTLSUM
team may be more robust to nominal changes in the input signals, i.e., changes
related to short-term signal variations resulting from multipath, device movement, or
collection orientation, for example. Also, the results support a notion that is known
for WiFi or BLE fingerprinting positioning: estimates corresponding to the same
ground truth usually jump around its positions. Also, the results indicate that the
instability of those jumps – random error and not bias – is related to distances among
the operational fingerprints.

Reducing the magnitude of errors leads an IPS to perform better in any of the
analyses explored in this section, as showed for the RTLSUM team. However, general
metrics, like percentiles or their related CDF plot may hide local behaviors and are
insufficient for analysing the robustness of a system. The ISO/IEC 18305:2016 defines
several conditions on the collection of test points for IPS evaluation, including for
example the number or reference points. However, none of those recommendations
can assure to cover the whole spectrum of nominal cases of signal readings, at least
for fingerprinting-based systems. Therefore, further research efforts on IPS evaluation
may dig into conditions on the evaluation data like, e.g., signal variations bounds
applicable for a given environment and application. A dataset meeting such conditions
may be used for evaluation instead of lots of other test data.
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6.4 Conclusions

This chapter addressed the evaluation of IPS. The evaluation was first explained
through insights gained from competition challenges. Furthermore, the chapter de-
scribed a measurement procedure of positioning errors. The procedure proposed the
measurement of errors as the length of pedestrian paths. The application of the pro-
cedure to several IPS in a large environment was also provided. Finally, the chapter
presented local-level analysis of positioning errors that studied the variance of position
estimates provided for the same test point and its behavior across an environment.

Some materials presented in this chapter are supported by one publication [25].
Other materials from this chapter were used as contributions in other publications
[31, 37, 36].
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Chapter 7

Conclusions

A reliable and accurate positioning at indoor environments is a necessity yet to be
satisfied. The necessity is created by the success of smartphones and a pervasive desire
of as many as possible services provided through them. In many cases, the quality of
the provided service is improved if the position of the device, i.e., the position of the
user is used to customize the content that the service provides.

The technologies available today to support indoor positioning are insufficient to
cover all requirements and environments. Thus, several IPS proposals have mainly
focus on one of those technologies to provide solutions that fit some applications
or scenarios. The number of proposal for most of the technologies is remarkable.
One of the contributions of this dissertation is a meta-review that took IPS surveys
published within the last 5 years to explore the relevance of published works. The
meta-review was presented in Chapter 2, along with an introduction to key IPS
concepts, technologies, techniques, methods and the most-recognized challenges in
indoor positioning. The introduction and the meta-review allows a reader unfamiliar
with IPS to learn the basics of indoor positioning and have a curated collection to
browse from general to more specialized surveys.

Among the findings presented in Chapter 2, it is notable that most of the works
referenced in surveys are only cited once, which suggested that only a few works have
a significant and acknowledged relevance. A total of 3,901 works (with DOI number)
were cited in the context of 61 reviews but only 75 works were cited more than 5
times in the selected surveys, being considered well-known or disruptive works. In
some cases, the surveys cite recent papers that do not attract the indoor positioning
experts. Finally, the meta-review also shows that a few papers published in early
2000 were disruptive and have had a huge impact on further developments. Most of
the relevant works in the surveys are in the period 2010-2016, which match the birth
of smartphones as we currently know them and the proliferation of new conferences
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related to the topic, like the International Conference on Indoor Positioning and
Indoor Navigation (IPIN).

The contribution presented in Chapter 3 is two open datasets intended to foster
experimentation and reproducibility of indoor positioning solutions. The first dataset
contains 103,584 WiFi fingerprints collected during 25 months in the library building.
For the second dataset, three subjects collected 4,700 BLE fingerprints in two environ-
ments taking into account three BLE beacons intensity levels and three smartphone
models. Chapter 3 presented experiments performed with the datasets to describe
how each of them can be used to test specific traits of an IPS. The WiFi dataset
allowed testing an IPS robustness to short and long term variations in the environ-
ment, while the BLE dataset allowed exploring an IPS robustness to low detection
rates of BLE beacons and the effect of beacons positions on the IPS accuracy. The
WiFi collected dataset was intensively used for the analyses presented in Chapter 4
and Chapter 5.

Chapter 2 deepened into fingerprinting, one of the star methods used for IPS.
Fingerprinting is mainly used for WiFi signals, although it is used also for magnetic
and BLE signals. One of the most acknowledges challenges in fingerprinting is the
collection of samples to create the radio map, i.e., the signal characterization of the
environment. The collection of samples is a process that is not trivial and requires
a significant effort. Another contribution of this dissertation is a set of collection
methodologies, experiences, and methods that reduce the collection effort. The pro-
cess of collection involves obtaining or developing the collection tools, deciding how,
when and where to conduct the survey, performing the revision of samples, and trans-
forming the collected data. Chapter 4 of this dissertation addressed all the previous
steps.

The contributions presented in Chapter 4 included insights gathered thought the
development and usage of tools that assisted the collection of WiFi and BLE samples.
The tools included smartphone and web applications that allowed a user to plan a
collection as a point-based campaign. The experiences showed that proper collection
tools help improve the collection time and reduce tagging errors. Also, concerns
regarding the reported WiFi or BLE scans that affect the collection were described.
Besides the suggestions on how to collect the samples, Chapter 4 contributed with
suggestions on where to collect samples for the case of WiFi signals. The suggestions
are based on experiments analyzed the effect that the distribution of collection points
and the intensity of the APs in the environment have in (1) the accuracy of an IPS
and (2) in the quality of a regression that could be applied to enrich the radio map.
The suggestions highlighted the importance of situating collection points around the
boundaries of the target environment. Also, zones that are close to APs require more
points than other zones. The position of an AP was shown to be an important piece
of information for the determination of collection point.
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Another of the contributions presented in Chapter 4 is one method for determining
the position of an AP and another method for determining if an AP is inside the area
where WiFi samples were collected. The first method combines interpolation and the
Weighted Centroid method to find the position of an AP. The method provided better
estimates when compared with others found in the IPS literature. The other method
uses the distribution of the AP’s intensities seen in the collected samples to determine
whether the position of AP can be precisely determined using the Weighted Centroid
method. The final contribution presented in Chapter 4 uses the knowledge gained
from previous contributions shown in the chapter to propose a regression model that
improves the regression quality for APs that are close, and thus strongly seen, to the
target environment. The method uses a raw reference position of the AP and raw
map information of the obstacles in the environment.

Changes eventually occur for any environment where an IPS is deployed. Those
changes may affect the behavior of an IPS, altering its accuracy. Thus, periodic radio
map updates are commonly performed to allow the IPS to adapt to those changes.
A method that suggests where to perform WiFi radio map updates was another
contribution of this dissertation, presented in Chapter 5. The set of positions is chosen
so that the newly collected samples are used to train a regression. The regression is
then applied to estimate signal measurement for the remaining positions targeted in
the environment. The method optimizes the set of collection positions based on a
genetic algorithm, finding a fine compromise between a small number of points in the
selected set and a good regression quality. Chapter 5 also contributes with a brief
characterization of nominality of changes in an environment. The characterization
is supported by experimental analyses that showed that large variations in the RSS
values are to be expected under normal functioning conditions for an IPS. Also, the
non-detection situations were analyzed, showing that they are common for AP weakly
detected in an environment and that when APs important for the positioning have
drastic changes the similarity between fingerprint is significantly affected.

The contributions of this dissertation presented in Chapter 6 were related to the
evaluation of IPS, mainly those based on fingerprinting. The first contribution is the
insights gained through experiences from competition challenges based on the off-
line evaluation of fingerprinting based IPS. The insights explained the challenges of
preparing the data that later allows the evaluation and the challenges in performing
a fair assessment and comparison of distinct IPS.

Another contribution presented in Chapter 6 is a measurement procedure of po-
sitioning errors. The procedure estimates the error magnitude as the length of a
pedestrian path that would connect an estimated position with its associated ground
truth position. The procedure uses 2D pathfinding methods to compute paths inside
building floors. In case of paths that traverse several floors or buildings, the floor
paths are joined using pre-computed vertical and inter-building paths. Chapter 6
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presented experiments that tested three 2D pathfinding methods: Visibility Graphs,
Navigation Meshes, and Fast Marching. The measurement procedure was applied to
position estimates provided by several IPS on a large environment. The results of the
experiments showed that usual ways of measuring the positioning error may overesti-
mate and frequently underestimate the magnitude of the error as could be perceived
by the IPS users. Also, the results showed that the Navigation Meshes method is a
fair way to determine the shortest pedestrian path without incurring in large com-
putational overloads. The final contribution presented by Chapter 6 analyzed the
locality of positioning errors associated with an IPS. The experiments show that the
usage of the positioning error metric commonly used to compare IPS may mask low
accuracy cases of an IPS that are not manifesting across the whole environment. The
experiments also hinted the detection of the susceptibility of an IPS to variations in
the signals.

7.1 Future Work

The contribution presented in this dissertation can be improved or continued in several
ways. The collection tools and methodologies can be extended to continuous – route-
based collection. The route-based collection is becoming increasingly popular and has
been used to collect the data for IPS evaluation in recent competitions.

Also, the regression model presented in Chapter 4 could be considered a first step
towards the definition of more general regression models or method. To the best of this
work’s knowledge, there is not any interpolation method, regression method, or tool
that allow direct modeling of the environment influence of the measured phenomenon.
The environment characteristics could be incorporated into the existent methods that
consider the spatial relation between measurements.

The path-based error measurement presented in Chapter 6 used an accurate rep-
resentation of the evaluation environment. Continuation lines of this work may try
to obtain such representation in ways more automatic than those used in this disser-
tation, as well as include their implementations into GIS tools that enable easy usage
of them.
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