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Abstract

by Mireia Fontanet i Ambros

By 2025, the Food and Agriculture Organization (FAO) of the United Nations predicts that
two-thirds of the world population will experience water stress conditions. In addition, it is
expected that world population will increase significantly during the following years.
Agriculture is the largest consumer of fresh water, estimated 75%. The optimization of its
use is therefore crucial for future. The main objective of irrigation scheduling is to

guarantee maximum crop yield while saving significant amounts of water.

The main difficulty to determine a correct and optimal irrigation scheduling strategy is due
to complexity and variability of the Soil - Plant - Atmosphere (SPA) continuum. In each field
site, this continuous SPA has different patterns as a consequence of environmental
conditions, crop, soil hydraulic properties and soil tillage. Several tools and methodologies
are employed nowadays to monitor an improve irrigation scheduling. However, they all
have advantages and limitations, or, each one is used without considering the information

provided by the others, simplifying the system and avoiding information.

This thesis aims to improve irrigation scheduling by combining different tools available at
the present time. This combination aims to answer different kind of questions when
irrigation scheduling in a field site must be defined. For this, each tool has been used and
supported by others. In addition, this thesis will discuss when and how these tools might be

employed.

Firstly, we compare different tools and methodologies used to measure water content in an
agriculture field. Specifically, we compared gravimetric measurements and water content
sensors measurements with DISPATCH algorithm data. This algorithm is one of several
algorithms who estimates soil surface water content using remote sensing data. The main
goal was determining if remote sensing data can improve water content data measured by
sensors. We found that DISPATCH algorithm is capable of correctly estimating soil water

content when water content fluctuations are produced by general rainfall events, but not



when fluctuations are produced by local irrigation. Thus, at present, and considering our

field conditions, DISPATCH is no capable to improve water content sensors measurements.

Secondly, we present a methodology where a simulation-optimization problem is solved in
order to find an optimal irrigation scheduling strategy. This strategy might guarantee the
maximum economic net margin. This methodology has been applied in a real field. The
optimal irrigation scheduling of this field is compared with the traditional irrigation
scheduling method, based water requirements. Results show that even though the
traditional method supplies the volume of water evapotranspired, this methodology of
scheduling irrigation is not enough to avoid crop water stress, compromising final crop
yield. In this case, optimal irrigation strategy improves the final net margin in comparison
the traditional method. In order to emphasize the importance of soil characterization for
irrigation scheduling, the methodology was applied to another soil type. We demonstrate

that depending on soil properties, optimal irrigation scheduling is different.

Thirdly, considering the information reported before, we improved the irrigation
scheduling in a field site where irrigation was applied with the same criteria. In this part of
the thesis we employed NDVI remote sensing data, water content sensors and simulation
models to determine the optimal irrigation. The improvement is based on management
zones delineation with NDVI data. In this case, water content sensors are used to define if
each management zone presents different water content patterns and to verify that when
the field is divided into different management zones there is a gain in terms of water content
uniformity. Finally, an optimal irrigation scheduling calendar is proposed to allow the
consultants to take within-season irrigation decisions. Results show that management
zones are dynamic during the growing season and the optimal irrigation scheduling might
also be dynamic. In addition, we found that the uniform irrigation applied in the entire field,
without considering the possible differences in soil properties, produced waterlogging in
two management zones, therefore, transpiration decreases in comparison to the others
management zones. Simulations show that optimal irrigation scheduling proposed can save
water and to increase transpiration in all zones, solving the waterlogging problem which
affects this field site.

This thesis has been conducted in two different field sites; the first one presented is called
Foradada field; the second one is called Raimat field. Both of them are located in the NE of
Catalunya, Spain. Cultivated crop was Zea mays L. (maize) Crop cultivated was maize and

the irrigation water was applied by a solid sprinkle system.
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El 2025 la “Food and Agriculture Organization” (FAO) de les Nacions Unides prediu que
dues terceres parts de la poblacié6 mundial patira condicions d’estrés hidric. A més a més,
s’espera que la poblacié mundial augmenti els propers anys. L’agricultura, que és el sector
que produeix I'aliment necessari per alimentar la poblacié mundial, és el consumidor
principal d’aigua dolga, concretament un 75%. Considerant aquest context, existeix una
necessitat important d’optimitzar I'aigua de reg en un futur proper. La programacio del reg
és I'encarregada de determinar el moment i la quantitat d’aigua que s’ha d’aplicar. El seu

objectiu principal és garantir un rendiment maxim del cultiu i a la vegada estalviar aigua.

La dificultat principal per determinar I’estrategia de programacio de reg correcta i optima
és degut a la complexitat i variabilitat del continu Sol - Planta - Atmosfera (SPA). En cada
parcel-la de cultiu, el continu SPA té un comportament diferent degut a les condicions
ambientals, de cultiu, propietats hidrauliques del sol i maneig del mateix. Diverses eines i
metodologies son emprades avui en dia per monitoritzar i determinar la programaci6 del
reg. Malgrat I'amplia variabilitat de possibilitats, totes elles tenen avantatges i limitacions,
o sovint, cada una d’elles és fa servir sense considerar la informaci6 que poden

proporcionar les altres, simplificant el sistema i obviant informacio.

Aquesta tesis vol millorar la programacio del reg combinant diferents eines i metodologies
que estan disponibles avui en dia. La combinacié té com a objectiu satisfer necessitats
diferents en el moment que la programacion del reg ha de ser definida, destacant les
avantatges i minimitzant les limitacions de cada metodologia i eina, aixi com l'efecte de

I'escala.

Primerament, hem comparat diferents eines i metodologies per mesurar el contingut
d’aigua al sol en una parcella de cultiu. Concretament, s’han comparat mesures
gravimetriques i de contingut d’aigua de sensors amb mesures de 1'algorisme DISPATCH.
Aquest algorisme és un de varis algorismes que estimen el contingut d’aigua superficial del

sol emprant dades de teledetecci6. L’objectiu principal era determinar si les dades de



teledetecci6 poden millorar les dades de contingut d’aigua mesurades pels sensors. Vam
detectar que l'algorisme DISPATCH és capag d’estimar correctament el contingut d’aigua al
sol quan els increments d’aigua s6n produits per precipitacions generals, m’entres que quan
els increments d'aigua al sol son produits per el reg local, el DISPATCH no els detecta. Per
tant, ara per ara i considerant les condicions de camp, el DISPATCH no és capag¢ de millorar

les mesures dels sensors de contingut d’aigua al sol.

Després, presentem una metodologia on es soluciona un problema de simulacié-
optimitzaci6 per a determinar una estrategia de programaciéo de reg optim. Aquesta
estratégia ha de garantir un rendiment economic net maxim. S’ha aplicat en una parcel-la
de cultiu real. L’estratégia de programaci6 de reg optim ha estat comparat amb el metode
tradicional de programacid de reg, que esta basat amb el calcul de les necessitats hidriques.
Encara que el metode tradicional reemplaga per complet 'aigua evapotranspirada, els
resultats mostren que la manera de repartir I'aigua no evita l'estres hidric del cultiu,
disminuint el rendiment. En aquest cas, la programaci6 del reg optim millora el rendiment
economic net. Per tal d’emfatitzar la importancia de la caracteritzacié hidraulica del sol,
aquesta metodologia s’aplica en un altre tipus de sol. Els resultats mostren que depenent el

tipus de sol, la programacio del reg ha de ser diferent.

Finalment, considerant la informaci6 descrita previament, s’ha millorat la programacio del
reg en una parcel-la de cultiu on el reg s’havia aplicat uniformement en tota la seva extensio.
En aquesta part de la tesis, es fan servir dades de teledeteccié de NDVI, dades de sensors de
contingut d’aigua al sol i models de simulacié per a determinar el reg d0ptim. La millora esta
basada en la delineacié de zones maneig amb les dades de NDVI. En aquest cas, els sensors
s’han emprat per a determinar si casa zona de maneig representa diferents patrons de
contingut d’aigua i per a validar si quan la parcel-la és dividida en zones de maneig, la
variabilitat disminueix. Finalment, es proposa un calendari de programacié de reg optim
per a poder prendre decisions en la campanya de reg. Els resultat mostren que les zones de
maneig son dinamiques aixi com el reg optim. A més a més, es va detectar que I'aplicacio
d’un reg unifrome en tota la parcel-la, produeix saturacié del sol en algunes de les zones de
maneig, per tant, la transpiracié disminueix. Les simulacions mostren que el reg optim
proposat és capag¢ d’estalviar aigua i a més a més augmentar la transpiracié en totes les

zones, solucionant el problema de saturacio6 del sol que afecta aquesta parcel-la.

Aquesta tesis s’ha portat a terme en dues parcel-les diferents de cultiu; la primera és
anomenada parcel-la de Foradada; i la segon s’anomenada parcel-la de Raimat. Totes dues
es troben al nord est de Catalunya. El cultiu en tots dos casos és blat de moro i el reg és

aplicat mitjancant aspersors.
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Chapter 1

Introduction




1.1. General theoretical concepts

1.1.1. Soil - Plant - Atmosphere continuum

The Soil - Plant - Atmosphere (SPA) continuum (Philip, 1966) (Fig.1.1) is a concept who
simplifies the great complexity showed by plants and their interaction with soil and
atmosphere. It is a conceptual model that helps analysed water movement through the
plant from soil as a source to atmosphere as a sink, considering the characteristics of the
structure of the plant, the soil properties and atmospheric demand. At every specific case,
continuum SPA has different features because the three elements who compose SPA
continuum (soil, plant and atmosphere) offer a wide range of combinations, and they
usually do not never present the same properties. Thus, their interactions are different in

each case.

Before SPA continuum was formally defined, Huber (1928) and Van den Honert (1948)
proposed a parallel between Ohm’s law and water movement through SPA continuum. In
this way, SPA continuum was compared to an electric circuit with several resistance

connected between them (Fig.1.1). Each resistance represents elements of SPA continuum.

h Atmosphere Low water potential
A _h
oa b Plant I
> 4
P Ah
I5
h soil h

High water potential

Figure 1.1 Continuum SPA example where pressure head goes from high to low pressure head values. Each element
is represented as a electric resistance connected between them.



Water flux goes from the soil to roots, through xylem, through mesophyll cells and cell walls,
and finally transpires into sub-stomatal cavities. In this way, the water flux is transported
through the SPA continuum is with a pressure head gradient (Ah) between soil and
atmosphere (Nobel, 1983) (Fig.1.1). Pressure head or water potential is the potential
energy of water per unit volume relative to pure water under reference conditions. It

quantifies the tendency of water to move from one area (soil) to another (atmosphere).

Considering the general idea about how SPA continuum works, in this thesis, the focus is
specifically on one of the components of the SPA continuum, the soil, which is considered
as the vadose zone. It plays a role as the source of water content and it works as a reservoir
for all the other components. Thus, the water movement and processes in which water

content is involved have a direct effect on SPA continuum.

1.1.2. Vadose Zone

The vadose zone or the unsaturated soil is the portion of the subsurface above the
groundwater table (Radcliffe and Simunek, 2010). In this portion of the soil exists three-
phase system composed of solids (soil), liquid (water and dissolved solutes) and gases

(combination of gases).

The solid matrix is characterized by complicated geometries formed by particles with
different size and shapes. Soil texture refers to the size distribution to composed a soil.
According with United States Department of Agriculture (USDA), particles with diameter
smaller than 0.002 mm are clay size, 0.002-0.05 mm are silt size and 0.05-2 mm are sand

size.

Different soil textural classes are defined when percentages of sand, silt and clay are
analysed. Thus, a textural class is determined based on solid particle size. Nowadays,
several soil textural classes classification are available, but the most used is the USDA soil
textural classification. This classification scheme allows for soils having different
proportions of sand, silt and clay to be in the same textural class, depending on the lower
and upper limits of the different classes. Even though a textural class can be determined,

within the same class there is certain textural variability and soil properties change.

Soil structure is another important feature to define and usually is not considered. It
modifies porosity and pores size distribution. Therefore, spaces that water can fill are also
affected.



The interaction between water flux and soil depends on soil texture and soil structure.
Unfortunately, these features usually present high spatial variability making difficult the
characterization.

Two different types of curves are able to describe how water moves through a specific soil.
On the one hand, Soil Water Retention Curve (SWRC) relates water content () with
pressure head (h), and on the other hand, Hydraulic Conductivity Curve (HCC) associates
water content or pressure head with hydraulic conductivity (K). Both curves are
characteristics of each soil and their hydraulic properties are different. Therefore, an
accurate soil characterization provides powerful information about the interaction
between soil and water movement.

Figure 1.2 shows two different examples (Clay soil and a Sandy Loam soil) of SWRC and
HCC. The purpose of this figure is show how two different soils with different texture
present different SWRC and HCC shapes. As a consequence, the water movement is different
in each one. For instance, given a water potential value, Clay soil has greater water retention
capacity than the Sandy Loam. But Clay soil hydraulic conductivity is lower, therefore, water

moves slowly than Clay soil.

SWRC HCC

. . Clay
c |
% o — \ -s’-‘ \ Sandy Loam
S _ £ \
% Fa \
55 £3% \
N 8
£ Fi
£ S \
3 9 — 2
S . = - I

h pressure head (kPa) Pressure head (kPa)

Figure 1.2. Soil water Retention Curve (SWRC) and Hydraulic Conductivity Curve (HCC) from a typical Clay soil
and a Sandy Loam soil.

Considering that soil hydraulic properties govern water movement through the soil, it can
be assumed that processes where water content is involved, such as, drainage, infiltration,
run off... are also influenced.

1.1.3. Irrigation scheduling

Irrigation scheduling is the processes used by agricultures and stakeholders to apply water

in the soil with a correct frequency and duration time. The main goal of irrigation scheduling



is to guarantee that crop is under water content optimal conditions applying the minimum
volume of water and at the same time avoiding soil salinization. It has been explained in the
previous sections that water interaction between soil and plants is complex. Therefore, the
accurate determination of an optimized irrigation schedule is a time-consuming and

nonintuitive process.

Firstly, when an irrigation is scheduled, the amount of water to be applied must be
determined (Campbell, 1982). When water infiltrates, the wetting front pattern is
redistributed through the root zone. Secondly, if the volume of water applied exceeds the
soil retention capacity, part of this water is drained below the root zone. Also, water is
evaporated from the top soil profile and roots take up the necessary water for phenological
functions. In another words, there is a water consumption. It is when water content at the
root zone reaches a minimum where a crop could experience non-optimal (stress)
conditions. At this point, irrigation must be triggered and refill the root zone. These

processes are represented by Fig.1.3.

Note that irrigation scheduling is a periodic process where soil water content can be
delimitated employing different soil parameters or thresholds. These thresholds can be

expressed in terms of 6 or h. All of them are explained in the next section.

1.1.4. Water content dynamics for irrigation scheduling

One of the important soil parameters, who defines the maximum volume of water that a soil
can storage, is the Porosity or the water content Saturation point (6,) (Zhang et al., 2018).

Thus, soil can be considered as a reservoir with a maximum capacity defined by 6.

Although 6, provide information about the maximum volume of water that a soil can
storage, the most important soil parameters in terms of irrigation scheduling is Field
Capacity point (6y.). It is considered that at this water content value is the most optimal
conditions for crop water uptake. Gardener, (1960) defined 6, as the water content below
which the hydraulic conductivity is sufficiently small that redistribution of moisture in the
soil profile due to hydraulic gradients can be neglected. The processes, where water content
is involved, between 6; and 6, is drainage. When irrigation is applied, if water content
value is over 6. and gets closer to 6; this volume of water is drained and is not consumed
by plants (Fig.1.3). Several methodologies have been developed to measure or define 6.
For instance, some researchers defines 8y, using soil hydraulic conductivity curve
(Campbell, 1982; Gardener, 1960). An arbitrary matric potential value of -33 kPa for all soils
was defined as a 6, (Colman, 1947; Richards, 1944). In this case, it has seen that depending

on soil hydraulic properties this arbitrary method does not represent 6. For this reason,



Lehmann et al. (2008) proposed a formula based on van Genuchten, (1980) soil hydraulic
parameters. Another option to define 6¢. is using dynamics water content values, where
water content shows an inflection point when drainage is cessed (Zotarelli et al., 2010)

(Fig.1.4). Finally, Twarakavi et al. (2009) and van Lier and Wendroth, (2016) employed
numerical modelling to define 6.

Irrigation lrrigation Irrigation Irrigation Irrigofion

! . . i !

Saturation ()

Field Cgpacity (5;.)

e

Permanent Wilting Point (3,,,)

Water Content (crm*cm?)

Figure 1.3. Water content dynamics when irrigation is applied. Water content comfort zone is represented in light
blue. Soil saturation, Field Capacity, Lower threshold, Permanent Wilting Point are plotted. Drainage, root water
uptake and crop water stress processes are located within the corresponen water content dynamics fringe.

The Permanent Wilting Point (6,,,,) represents pressure head conditions in which restricts
the water absorption by the plants, which will die if there is no replacement of the water in
the soil (de Oliveira et al,, 2015). Thus, when an irrigation is scheduled, water contents
should never approach 6,,,,. Otherwise, crop water stress and crop yield reduce are related
with it. In general, the permanent wilting point is also determined in the laboratory, by the
retention curve method. In this method, the 6,,,, of the wilting point is represented by the

balance moisture with tension of 1500 kPa.

Available Water (AW) is defined by the water available for plants uptake, which is the
difference between 6. and 8, (Zotarelli et al, 2010). AW can be expressed in relative
terms (Eq.1.1), making comparable AW values between different sites. As the same case as
threshold parameters, AW can be calculated with 6 or h units.

AW [-] = 0 — Opwp (1.1)

t9fc - 6’pwp



Although AW represents the water that is theoretically available until 6 crop water

pwp’
uptake is reduced well before 8,,, is reached. As the soil water content decreases, water
becomes more strongly bound to the soil matrix and is more difficult to extract. When the
soil water content drops below a Lower threshold value (8,), soil water can no longer be
transported quickly enough towards the roots to respond to the transpiration demand and
the crop begins to experience stress (Fig.1.3). The fraction of AW that a crop can extract
from the root zone without suffering water stress is the Readily Available Water (RAW)
(Allen et al., 1998, hereafter “FA056”) (represented in light blue in Fig.1.3). As the same

case as AW, it can be expressed as relative terms (Eq.1.2) or AW fraction (Eq.1.3).

0 — ch (1.2)
RAW [-] = ———,
o T
RAW [=] = p - AW, (1.3)

Where p is average fraction of AW that can be depleted from the root zone before water
content stress occurs [0 - 1]. p values can be found tabulated in FAO56 (Allen et al., 1998,
hereafter “FA056").

Note that all these soil parameters depend on soil hydraulic properties and soil type. Thus,
when the full and refill points determined for the specific field and the water content
monitoring method is selected, one is ready to start monitoring soil-water and irrigation
scheduling (Campbell, 1982). Measurements of water content should be made as frequent

as possible because all soil processes can be described better.

Several methodologies can be used to monitor water content dynamics, but the most used
is installing water content sensors. Advances in water content sensors have made them
easier to use and the cost of energy has made these sensors a more variable option. In
addition, they are able to provide water content measurements at high temporal resolution.
However, water content sensors represent a punctual point in the entire field. That is why
that soil spatial variability complicates frequently the decision for sensors location and
installation, and how a global water content values of the entire field are provided. Thus,

before installing water content sensors a different field zone must be identified.

1.1.5. Use a model for irrigation scheduling

Applying new technologies to irrigation water management leads to improvements in the
productivity and sustainability of agricultural systems (Burt et al., 1996; Vidal et al., 2001).
Simulation models linked to decision support systems for the management of irrigated

areas constitute powerful tools to achieve these goals (Hall, 1999; Playan et al., 2000;



Walker, 1999). In the last decades, the development of such models has been boosted by
developments in computer science. They have become much more efficient, making their

application to problems increasingly widespread (Simunek and Sejna, 2014).

As the same case as all simulation models, vadose zone simulation models need specific
input parameters. In this case are defined, for instance, by environmental conditions,
irrigation applied, crop and soil hydraulic parameters. Then, an unsaturated flow equation,
such as Richard’s equation (Richards, 1931) is solved providing the output with different
variables (transpiration, drainage, water content dynamics...). In this way, irrigation

scheduling can be assessed or a general point of view of the SPA continuum can be obtained.

The precision and accuracy of data introduced in the model (input data) is crucial to do not
compromise results obtained (output data). For instance, there are some methodologies
and equipment that can provide accurate soil hydraulic parameters (Schelle etal., 2013). If
they are used in a simulation model and it is assumed that they are representative of the
soil studied, the output simulations is going to be more realistic than soil hydraulic

properties from different data bases (Saxton and Rawls, 2006; Schaap et al., 2001).

Although, simulation models can represent vadose zone, in reality, they are just an
approximation and a simplification of the system. Even though input data employed is
representative of the system studied, field measurements are needed in order to compare
simulated data with measured data. It is when the model is calibrated minimizing its
uncertainty. Measurements from sensors installed at the field site are the most
methodology widely employed. As it has been commented in the previous section, they are
able to provide measurements at high temporal resolution monitoring different crop-soil
processes. Thus, sensors measurements or any kind of field measurements are needed in

order to trust in simulation models results.

At this point, simulation models are capable to simulate “what-if” scenarios and it is
considered that they have predictive capability. In this way, several hypothetical irrigation
scheduling strategies can be simulated in order to assess each one. Also, these scenarios can
help to understand how an irrigation strategy modifies water content patter through the
root zone or which one is the most favorable for optimal crop conditions. Another purpose
of simulation models and their “what-if” scenarios is found new alternatives or solutions to

mitigate or solve possible problems detected in the field.

1.1.6. Spatial variability in an agriculture field

In conventional agriculture each field is considered as a uniform unit, by purpose ignoring

the heterogeneity across the field, thereby decision-making is based on an estimation of



average conditions (Haghverdi et al, 2015). Unfortunately, an agriculture field soil
properties, soil organic matter content, profile depth and another properties can vary

significantly even within the same field (Koestel et al., 2013).

The motivation for site-specific crop management was first addressed by researchers
during the late 80s and early 90s (Arslan and Colvin, 2002). Specifically, site-specific crop
management is the management of agriculture crops at a spatial scale smaller than the
whole field by considering local variability to cost-effectively maximize crop production
and the efficient use of agrichemicals and irrigation to minimize detrimental environmental
impacts (Martinez-Casasnovas et al., 2018). Thus, the concept of Management Zone (MZ) is
introduced, which is a sub-region of a field that is relatively homogeneous with respect to

soil-landscape attributes (Haghverdi et al., 2015).

A field can be zoned based on a single soil-crop attribute or combining different attributes
from different source of information. Remote sensing is especially attractive technique
because it is noninvasive and relatively inexpensive (Schepers et al., 2004). In addition, a
difference in contrast to sensors, remote sensing provides continuous attribute maps

allowing delineate MZs.

Remote sensing is able to measure different kinds of data; (i) crop cover variables, in which
Normalized Difference Vegetation Index (NDVI), Leaf Area Index (LAI) and Land Surface
Temperature (LST) can be measured. These variables can indicate the existence of crop
development differences within the field. They can be related with irrigation scheduling
problems assuming that crop is not under optimal water content conditions. In this way,
when MZs are delineated, irrigation scheduling can be readjusted considering crop cover
data. (ii) Water content, in which different algorithms are employed based on crop cover
data. The main goal of these algorithm is to estimate water content for irrigation scheduling,
but they need field validation and they only provide water content data fot the first 5 cm of

soil, instead of the entire root zone.

1.2. Motivation and objectives

At present, there is not a unique methodology to determinate an optimal irrigation
scheduling in a determinate field. Most of the researchers use a single methodology to
monitor one parameter in the SPA continuum, resulting in incomplete information for the
entire process. In addition, most of the times, soil is not considered or their water content

processes are mostly simplified. That is why that in this thesis aims to improve irrigation



scheduling by integrating all the elements of SPA continuum, but with special emphasis with

soil, because its status effects the rest of the elements.

The main objective of this thesis is defining how to improve irrigation scheduling combining
three different methodologies; (i) water content sensors, (ii) remote sensing data, (iii)
simulation models (Fig.1.5). Each methodology aims to supply a different gap when
irrigation scheduling in a field site must be defined, highlighting the advantages and

avoiding limitations of each one and the scale effect.
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Figure 1.4. Remote sensing, water content sensors and model simulation combination data combination.

To accomplish this broad objective, specific targets are identified:

e Even though water content sensors provide water content measurements in a
specific location for the entire field and the fact of some new emerging remote
sensing algorithms are able to estimate water content, it is necessary to stablish if
any remote sensing algorithm that estimates water content at field scale, are
capable to improve water content sensors data.

e To present a methodology for optimizing irrigation scheduling in order to provide
maximum economic net margin employing a simulation model. The methodology
must have predictive capability when hypothetical irrigation scheduling strategies
are simulated, and at the same time, it must be scaled to another field with different

soil hydraulic properties, environmental conditions and crops.



e Todefine if joining crop cover remote sensing data and water content can validate
the delineation of MZs during the growing season.

e To define if field management zones have a dynamic water content pattern during
the growing season.

e To propose an optimal irrigation scheduling strategy calendar for each
management zone to allow the irrigation consultant to take within-season

irrigation decisions.

1.3. Thesis outline

Considering this introductory and first chapter, the resulting document is structured in five
chapters. Even though each chapter is focused on answer different questions, all of them

are related in order to supply information about irrigation scheduling.

Chapter 2 compares different methodologies to measure water content in an irrigation field.
Specifically, gravimetric measurements and water content sensor measurements are
compared with DISPATCH algorithm. This algorithm downscales Soil Moisture Ocean
salinity (SMOS) satellite water content data from low to high spatial resolution.
Downscaling process is based on Moderate Resolution Imaging Spectroradiometer (MODIS)
LST and NDVI data. Water content sensors are the most feasible methodology when water

content must be monitored to manage irrigation at field scale.

Chapter 3 presents a methodology which determines the optimal irrigation scheduling
strategy for specific field. This methodology solves a simulation-optimization problem
constrained by several irrigation control parameters that modifies an irrigation scheduling
strategy in each case. In this way, the irrigation is optimized and economic net margin
maximized. The methodology has been applied in a real field site and in a theoretical soil
type. Moreover, the methodology has been compared with the traditional irrigation
method, based on water requirements. Results shows that depending on soil hydraulic
properties irrigation must be scheduled differently. In addition, results also show that this

methodology provides a greater net margin than the traditional method.

Chapter 4 presents how to improve irrigation scheduling considering field spatial
variability. Water content sensors, remote sensing data and simulation models are
combined in this chapter. All of them, provide different kind of information which needs to
be complemented by the others. Firstly, field spatial variability was assessed with NDVI
remote sensing data and different management zones were delineated. Secondly, water

content sensors provided information about spatial variability and they validated the



management zone distribution. Finally, the methodology presented in chapter 3 was
applied to propose an alternative irrigation scheduling strategy. In this chapter, it has been
demonstrated that management zones can have a dynamic pattern and irrigation
scheduling could be readjusted depending on it.

Finally, Chapter 5 presents a summary of the conclusions drawn during the course of the
thesis.



Chapter 2

The value of satellite remote sensing water
content data and the DISPATCH algorithm in
irrigation fields

Fontanet, M., Fernandez-Garcia, D., and Ferrer, F.: The value of satellite remote sensing soil moisture data and the
DISPATCH algorithm inirrigation fields, Hydrol. Earth Syst. Sci,, 22, 5889-5900, https://doi.org/10.5194 /hess-22-
5889-2018, 2018.



2.1. Introduction

Water content measurements taken over different spatial and temporal scales are
increasingly required in a wide range of environmental applications, which include crop
yield forecasting (Holzman et al., 2014), irrigation planning (Vellidis et al., 2016), early
warnings for floods and droughts (Koriche and Rientjes, 2016), and weather forecasting
(Dillon et al., 2016). This is mostly due to the fact that water content controls the water and
energy exchanges between key environmental compartments (atmosphere and earth) and
hydrological processes, such as precipitation, evaporation, infiltration and runoff (Ochsner,
2013; Robock et al., 2000).

There are several applications in which water content measurements have been shown to
provide relevant information (Robock et al, 2000). For example, in environmental
applications, water content is typically used for defining the water stress occurring in
natural and human systems (Irmak et al., 2000) or for quantifying nitrate leaching and
drainage quality (Clothier and Green, 1994). Here, we highlight that water content
measurements from the root zone yields important information for field irrigation
scheduling, determining to a great extent the duration and frequency of irrigation needed
for plant growth as a function of water availability (Blonquist et al., 2006; Campbell, 1982;
Jones, 2004).

Water content is highly variable in space and time, mainly as a result of the spatial
variability in soil properties (Hawley, 1983), topography (Burt and Butcher, 1985), land
uses (Fu, 1994), vegetation (Le Roux et al., 1995) and atmospheric conditions (Koster and
Suarez, 2001). As a result, water content data exhibits a strong scale effect that can
substantially affect the reliability of predictions, depending on the method of measurement
used. For this reason, it is important to understand how to measure water content for

irrigation scheduling.

Nowadays, available techniques for measuring or estimating water content can provide
data either at a small or at a large scale. Gravimetric measurements (Gardner, 1986)
estimate water content by the difference between the natural and the dry weight of a given
soil sample. They are used as a reference value of water content for sensor calibration (Starr
and Paltineanu, 2002) or water content validation studies (Bosch et al., 2006; Cosh et al.,
2006). The main disadvantage of this method is that these measurements are time-
consuming; users have to go to the field to collect soil samples and place them in the oven

for a long time. Water content sensors such as time domain reflectometry sensors (Clarke



Topp and Reynolds, 1998; Schaap et al., 2003; Topp et al., 1980) or capacitance sensors
(Bogenaetal, 2007; Dean etal., 1987) are capable of measuring water content continuously
using a data logger, thereby enabling the final user to save time. Water content sensors are
especially useful for studying processes at a small scale, but suffer from the typical low
number of in situ sensors that provide an incomplete picture of a large area (Western et al,,
1998). Nevertheless, the use of soil moisture sensors is a common practice for guiding
irrigation scheduling in cropping field systems (Fares and Polyakov, 2006; Thompson et al.,
2007; Vellidis et al., 2008).

Remote sensing can estimate water content continuously over large areas (Jackson et al,,
1996). In this case, water content estimations refer to the near-surface water content
(NSSM), which represents the first 5 cm (or less) of the top soil profile. In recent years,
remote sensing techniques have improved and diversified their estimation, making them
an interesting tool for monitoring NSSM and other variables such as the Normalized
Difference Vegetation Index (NDVI) and the land surface temperature (LST). Different
satellites exist that are capable of estimating NSSM: the Soil Moisture Active Passive (SMAP)
satellite, the Advanced Scatterometer (ASCAT) remote sensing instrument on board the
Meteorological Operational (METOP) satellite, the Advanced Microwave Scanning
Radiometer 2 (AMSR2) instrument on board the Global Change Observation Mission 1-
Water (GCOM-W1) satellite, and the Soil Moisture and Ocean Salinity (SMOS) satellite
launched in November 2009 (Kerr et al., 2001). The SMOS satellite has global coverage and
arevisit period of 3 days at the Equator, giving two water content estimations, the first one
taken during the ascending overpass at 06:00 LST (local solar time) and the second one
during the descending overpass at 18:00 LST. The SMOS satellite is a passive 2-D
interferometer operating at L-band frequency (1.4 GHz) (Kerr et al., 2010). The spatial
resolution ranges from 35 to 55 km, depending on the incident angle. Its goal is to retrieve
NSSM with a target accuracy of a 0.04 m3 m-3 (Kerr et al.,, 2012). Since SMOS NSSM values
have been validated on a regular basis since the beginning of its mission (Bitar et al., 2012;
Delwart et al., 2008), they are considered suitable for hydro-climate applications (Lievens
etal, 2015; Wanders et al., 2014).

The relatively large variability of water content compared to the low resolution of SMOS-
NSSM data hinders the direct application of this method to irrigation scheduling. However,
the need for estimating NSSM with a resolution higher than 35-55 km using remote sensing
has increased for different reasons: (1) data are freely available, (2) a field installation of
water content sensors is not necessary, and (3) no specific maintenance is needed. For these
reasons, in the last few years, different algorithms have been developed to downscale

remote sensing water content data to tens or hundreds of meters.



Chauhan etal. (2003) developed a Polynomial fitting method which estimates soil moisture
at 1 km resolution (Carlson, 2007; Wang and Qu, 2009). This method links water content
data with surface temperature, vegetation index and albedo. It does not require in situ
measurements but cannot be used under cloud coverage conditions. The improvements in
the detection method reported by Narayan et al. (2006) downscales water content at 100
m resolution. This is an optimal resolution for agricultural applications, but the method is
highly dependent on the accuracy of its input data. The same problem is attributed to the
Baseline algorithm for the SMAP satellite (Das and Mohanty, 2006), which downscales
water content at 9 km resolution. These algorithms have to be validated using in situ
measurements. For this purpose, most studies use water content sensors installed at the
top soil profile, i.e., the first 5 cm of soil (Albergel et al., 2011; Cosh et al., 2004; Jackson et
al,, 2010), while others use gravimetric soil moisture measurements (Merlin etal., 2012) or
the combination of both methodologies (Robock et al., 2000). Satellite water content has
recently been used to provide irrigation detection signals (Lawston et al., 2017), quantify
the amount of water applied (Brocca et al., 2018; Zaussinger et al,, 2018) and estimate the
water use (Zaussinger et al, 2018). All these deal with relatively homogeneous and

extensive irrigation surface coverages (several kilometers).

Other satellites, such as Sentinel-1, can estimate NSSM at 1 km resolution (Bauer-
Marschallinger et al., 2018; Hornacek et al., 2012; Mattia et al., 2015; Paloscia et al., 2013).
Sentinel-1 provides two kinds of products, the first one is the Single Look Complex (SLC)
algorithm and the second one is the Ground Range Detected (GRD) algorithm. The latter can
be used for solving a wide range of problems related to Earth surface monitoring, such as
water content, but it is not a direct measurement and therefore data processing is needed.
In this case, the GRD product is converted into radar backscatter coefficients and then into
decibels to estimate water content. Usually, these conversions are cumbersome because
these kinds of measurements have surface roughness and vegetation influence that affect
the signal (Garkusha etal., 2017; Wagner et al., 2010).

The DISPATCH method (DISaggagregation based on Physical And Theoretical CHange)
(Merlin et al,, 2012, 2008) is an algorithm that downscales SMOS NSSM data from 40 km
(low resolution) to 1 km resolution (high resolution). This algorithm uses Terra and Aqua
satellite data to estimate NDVI and LST twice a day using the Moderate Resolution Imaging
Spectroradiometer (MODIS) sensor. These estimations have a resolution of 1 km and can
be conducted only if there is no cloud cover. This downscaling process provides the final
user with the possibility of estimating NSSM using remote sensing techniques at high
resolution. DISPATCH successfully reveals spatial heterogeneities such as rivers, large

irrigation areas and floods (Escorihuela and Quintana-Segui, 2016; Merlin et al.,, 2015;



Molero etal,, 2016) and it has also been validated (Malbéteau et al., 2015; Merlin etal., 2012;
Molero et al., 2016) in fairly large and homogeneous irrigation areas, but it has not been
applied in complex settings with spatially changing hydrologic conditions such as those

representing a local irrigation field.

In this work, we evaluate the value of remote sensing in agricultural irrigation scheduling
by comparing in situ water content data obtained from gravimetric and water content
sensors, with soil moisture data determined by downscaling remote sensing information
with the DISPATCH algorithm.

2.1.1. Study area
The study area shown in Fig. 2.1 is located in the village of Foradada (1.0152 N, 41.8662 W),

in the Segarra-Garrigues (SG) system (Lleida, Catalonia). The SG system is an important
irrigation development project currently being carried out in the province of Lleida,
Catalonia, which involves converting most of the current dry-land fields into irrigated fields.
[ts construction enables 1000 new hectares with a long agricultural tradition to be irrigated.
To achieve this, an 85 km long channel was constructed to supply water for irrigation. At
present, approximately 16 000 irrigators are potential beneficiaries of these installations.
However, most farmers have not yet installed this irrigation system, which means that the

SG systems can still be regarded as dry land.

The Urgell area is located in the west of the SG system. This area has totally different water
content conditions, especially during the summer season when the majority of fields are
currently irrigated. This gives rise to two clearly distinguishable wet and dry water content
conditions. Figure 2.1 shows the Foradada field, which represents 25 ha of a commercial
field irrigated by a solid set sprinkler irrigation system distributed across 18 different
irrigation sectors. The soil texture, in a single point, is 28% Clay, 58.4% Silt and 13.6% Sand.
Every year two different crops are grown, the first one during the winter and spring
seasons, when wet conditions are maintained by precipitation, and the second one during
the summer and autumn seasons, when wet conditions are maintained by sprinkler
irrigation. The Foradada field is thus one of the few irrigated fields located within the SG
system. Consequently, this field has soil moisture conditions similar to those in the
surrounding area during the winter and spring season, but completely different conditions
during the summer and autumn seasons. This makes this site unique for assessing remote

sensing in a distinct isolated irrigation field.
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Figure 2.1. Location of the Foradada field site within the Segarra-Garriga irrigation system and distribution of soil
moisture measurement points. Gravimetric measurement points are arranged with cross section points in green
and support points in yellow. The location of EC-5 sensors are represented in red.

2.2. Materials and methods

2.2.1. In situ soil moisture measurements

A total of nine intensive and strategic field campaigns were conducted in the study area
during 2016: DOY42, DOY85, DOY102, DOY187, DOY194, DOY200, DOY215, DOY221 and
DOY224. During each field campaign, disturbed soil samples were collected from the top
soil profile (0-5 cm depth) for measuring gravimetric water content data. A total of 101
measurement points, depicted in Fig. 2.1, were defined around the field. They are divided
into two different kinds of points: (1) cross section points - 75 points defined to represent
the spatial variability of soil moisture in different cross sections (in these cross sections,
points are separated by 9, 16 and 35 m); (2) support points - 26 points defined to
complement information measured from cross sections, thereby adding and supporting
information about the spatial variability across the field. Each soil sample is analyzed using
the gravimetric method for measuring gravimetric water content, which is transformed to

volumetric soil moisture content using bulk density measurements (Letelier, 1982). Daily



averages of gravimetric measurements and their standard deviations were computed to

represent the soil moisture associated with the entire field site.

Water content was also measured using capacitive EC-5 sensors (METER Group, Pullman,
WA, USA), previously calibrated in the laboratory (Star and Paltineanu, 2002). As Fig. 2.1
shows, a total of five control points were installed across one of the three gravimetric cross
sections. Each control point represents a different irrigation sector of the field. Water
content sensors were installed at 5 cm depth, taking into account the measured volume of
these sensors. Their accuracy is +0.03 cm3 cm~3 (Campbell and Devices, 1986). They were
connected to an EM50G data logger (METER Group, Pullman, WA, USA) that registers soil

moisture every 5 min.

2.2.2. DISPATCH soil moisture measurements

In this section we briefly describe the DISPATCH algorithm. Further details can be found in
Merlin et al. (2013) and references therein. The DISPATCH algorithm aims to downscale
NSSM data obtained from SMOS at 40 km resolution to 1 km resolution. The method
assumes that NSSM is a linear function of the soil evaporative efficiency (SEE), which can
be estimated at high resolution (1 km) from the acquisition of two products obtained from
MODIS, i.e., LST and NDVI datasets. This MODIS-derived SEE is further considered as a
proxy for the NSSM variability within the SMOS pixel. The estimation of SEE is assumed to
be approximately constant during the day given clear sky conditions. The downscaling
relationship is given by Eq. (2.1):

QHR = GSMOS + HII-IR(HSMOS) : (SEEHR - SEESMOS)' (21)

where 6,05 is the low-resolution SMOS soil moisture data, SEEy is the MODIS-derived
SEE at a high resolution (1 km), SEE,s is the average of SEE,; within the SMOS pixel at
a low resolution (40 km), and 6/,z(6sp0s) is the partial derivative of water content with
respect to the soil evaporative efficiency at high resolution evaluated at the SEE ;s value.
This partial derivative is typically estimated by using the linear soil evaporative efficiency
model of Budyko, (1961) and Manabe (1969), which is defined in Eq. (2.2):

HHR = SEEHR . gp, (2.2)

where 04, represents the water content of the top soil layer (0-5 cm) at high resolution,
and 6, is an empirical parameter that depends on soil properties and atmospheric
conditions. The soil evaporation efficiency at high-resolution SEE} is estimated as a linear

function of the soil temperature at high resolution (T yz) (Eq.2.3):



SEEHR — Ts,max - TS,HR : (2-3)

Ts,max - Ts,min

The soil temperature at high resolution is estimated by partitioning the MODIS surface
temperature data (LST) into the soil and the vegetation component according to the
trapezoid method of Moran et al. (1994). This also requires an estimation of the fractional
vegetation cover, which is calculated from the NDVI data. T ,,;, and T4, are the soil

temperature end-members (Merlin et al,, 2012).

In this work, the DISPATCH algorithm has been applied during the period from DOY36 to
DOY298 of 2016 to estimate NSSM at 1 km resolution in the Foradada field site. DISPATCH
provides a daily NSSM pixel map (regular grid). The Foradada field site is entirely included
in one pixel. In this pixel, 51.5 % of the total area corresponds to irrigated area. The

remaining portion of the pixel corresponds to dry land (shown in Fig. 2.2).
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Figure 2.2. The DISPATCH grid representing the Foradada field, outlined in dark blue, irrigated fields in light blue,
and dry land in light red.

2.2.3. Image spatial resolution and spatial variability

The information contained in a satellite image is characterized here by two properties: the

spatial resolution and the spatial variability of the image attributes. The spatial resolution



of a satellite image is the ground area represented by each pixel, i.e., the raster cell size. It is
essentially the representative support volume chosen to describe the variations of the
attributes of interest at the ground surface. This is typically determined based on the type
of satellite sensor. The spatial variability refers to the variations of the attributes presented
in the image at the ground surface, e.g., patterns of spatial continuity, size of objects in the
scene, and so on. In random field theory and geostatistics, the spatial variability is mainly
characterized by the covariance function or by its equivalent, the semivariogram, which is
defined by (Journel and Huijbregts, 1978) (Eq.2.4):

1 .
y(h) = S E{[Z(x + h) - Z(0)]*}, (2.4)

where Z(x) is the random variable at the x position, and E{-} is the expectation operator.
Essentially, the semivariogram is a function that measures the variability between pairs of
variables separated by a distance h. Very often, the correlation between two variables
separated by a certain distance disappears when |h| becomes too large. At this instant, y (h)
approaches a constant value. The distance beyond which y (h) can be considered to be a
constant value is known as the range, which represents the transition of the variable to the
state of negligible correlation. Thus, the range can ultimately be seen as the size of
independent objects in the image. If the pixel size is smaller than 10 times the minimum
range (in the absence of the nugget effect), then neighboring pixels will be alike, containing
essentially the same level of information (Journel and Huijbregts, 1978). This will be a
critical pointin the discussion of the results later on. We note that the spatial resolution and
the spatial variability are two related concepts. Several authors note that a rational choice
of the spatial resolution for remote sensing should be based on the relationship between
spatial resolution and spatial dependence (Atkinson and Curran, 1997; Curran, 1988).
However, since this is not the usual procedure, the spatial resolution can be inappropriate
in some cases or provide unnecessary data in others (Atkinson and Curran, 1997;
Woodcock and Strahler, 1987).

2.3. Results

2.3.1. General observations

One of the main advantages of our experiment is that remote sensing soil moisture data is
evaluated during two different hydrologic periods of the same year in a given agriculture
field site. The first period represents crop growth with soil wet conditions caused by natural

rainfall events (withoutirrigation). This period occurs during the winter and spring season,



i.e., from February to June. The following period occurs during the dry season with
artificially created wet soil conditions caused by sprinkler irrigation operating to satisfy
crop water requirements during the summer and autumn season, from June to October. In
contrast to the rainfall events, sprinkler irrigation creates a local artificial rainfall event
using several rotating sprinkler heads. The comparisons of these two hydrologic periods
allow us to evaluate the effect of local sprinkler irrigation on remote sensing soil moisture

estimations.

Figure 2.3 compares gravimetric and water content sensor measurements with the
DISPATCH water content estimates obtained from remote sensing data during the first
period of time (without irrigation). We note that the comparison here is not between the
point gravimetric measurements (with a support volume of few centimeters) and the
satellite information (1 km in resolution). Instead, we compare the average of these point
measurements over the entire field site (very well distributed with more than 100
measurement points) with the satellite information. The average of the water content is
representative of the entire irrigated area associated with the Foradada field site.
Consequently, these two variables have similar support scale and are therefore comparable.
Error bars in the gravimetric measurements represent the standard deviation of all the
measurements obtained in 1 day. In addition, the area between the light and dark green
lines in this figure displays the difference between the daily minimum and maximum values
of water content data obtained from the five EC-5 sensors. We note that the average of the
gravimetric water content data always lies within this region. This supports the use of this
information to complement water content data on days where no gravimetric sampling is
available. The error bars associated with DISPATCH data refer to the standard deviation
obtained with two daily SMOS estimations and four MODIS data (two at) 06:00 LST and two
more at 18:00 LST). To better appreciate tendencies, the same information is also presented
as normalized relative water content, i.e., (0—6min)/(Omax—Omin), where Omin and Omax are the
minimum and maximum values of the soil moisture time series data obtained with the EC-
5 sensors. Results show that DISPATCH estimates can properly detect the relative increase
in water content estimates caused by rainfall events. Note for instance that all methods
produce a similar relative increase in water content signal after the occurrence of a strong
rainfall event. In absolute terms, we see that DISPATCH slightly underestimates the true
value of water content but this could be attributed to small differences between the support

volume of the field site and the spatial resolution of the satellite image.
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Figure 2.3. Comparison of average gravimetric water content measurements (red) with the DISPATCH soil
moisture estimations (yellow) and the daily maximum and minimum water content sensor measurements (green)
during the first hydrologic period (soil wet conditions caused by rainfall events only).

A similar analysis is shown in Fig. 2.4, which compares gravimetric and sensor water
content measurements with DISPATCH water content estimations during the second period
(wet soil conditions maintained by sprinkler irrigation). In contrast to our previous results,
it can be seen that the DISPATCH dataset is essentially not sensitive to sprinkler irrigation
even though there is a proper response to sporadic small rainfall events. Likewise, the
relative increase in water content measurements also shows that sprinkler irrigation does
not affect the DISPATCH estimation. Thus, even though the DISPATCH estimations seem to
properly respond to rainfall events during the first period, irrigation operating at the
Foradada field scale remains undetected during the second period. The DISPATCH dataset
is not sensitive to irrigation and merely indicates that soil dry conditions exist at a larger

scale.
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Figure 2.4. Comparison of average gravimetric water content measurements (red) with the DISPATCH soil
moisture estimations (yellow) and the daily maximum and minimum water content sensor measurements (green)
during the second hydrologic period (soil wet conditions caused by irrigation). The top figure shows the intensity
of precipitation and irrigation.

This can also be seen from a different perspective by looking at the scatter plot between the
average of the normalized relative water content data obtained with the EC-5 sensors and
the corresponding DISPATCH measurement determined on the same day. Figure 5 shows
the scatter plots obtained during rainfall events and irrigation period. We note that even
though a clear tendency is seen during rainfall events (R2 = 0.57), no correlation seems to
exist during irrigation (R? = 0.04). We conclude then that the DISPATCH dataset provides

representative estimates of water content at a lower resolution than expected.
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Figure 2.5. Scatter plot between the average of the normalized water content obtained with EC-5 sensors and the
DISPATCH measurements obtained during both hydrologic scenarios, rainfall events and irrigation period.

2.4. Analysis and discussion

We seek to answer the important question of why the DISPATCH water content estimates
obtained by downscaling satellite information from 40 to 1 km of resolution are not
sensitive to sprinkler irrigation in this case. The following possible sources of discrepancies
can be identified: (i) errors associated with the approximations used in the DISPATCH
downscaling formulation, (ii) differences in the scale of observations, (iii) low quality of
information associated with DISPATCH input variables, and (iv) poor relationship between
irrigation fluctuations and DISPATCH input variables dynamics. We concentrate the
analysis on (ii) and (iii). First, we note that the DISPATCH resolution of 1 km is similar to
the characteristic scale of the irrigated area at the Foradada field site and therefore a better
performance was expected. The extent of the irrigated area in the DISPATCH pixel size of
interest is 51.5 % (see Fig. 2.2). Given that water content is a linear property, we contend
that this cannot explain the negligible relative increase in water content obtained during
irrigation. Then, we examine the semivariograms of the different input variables involved
in the downscaling process, i.e., the NDVI and the LST properties provided by the MODIS
sensor. The NDVIand LST semivariograms were respectively estimated from the MOD13A2
and MOD11A1 product data, which can be freely downloaded from the Google Earth Engine
website (https://earthengine.google.com, last access: 15 January 2017). We selected daily
representative images of April, June and August. The April image describes a general rainfall
event in the region, the June image shows when local irrigation starts in the Foradada field,
and finally the August image represents when the crop is well developed and frequent

irrigation is needed. Experimental semivariograms have been fitted with a theoretical



model (spherical and exponential models for the LST and NDVI, respectively), which can be
formally expressed as Egs. (2.5) and (2.6):

|h| |h| (2.5)
Vst = €11Sph|— |+ ¢ |1 —cos|—m ||,
a1 A
|h| |h| |h| (2.6)
Ynovi = C21Exp| — ) + co2Exp | — | + c23|1 —cos|—m ||,
az1 azz azz

where ¢;; are constant coefficients that represent the contribution of the different standard
semivariogram models, and a;; denotes the corresponding ranges of the different
structures. The LST and NDVI experimental and theoretical semivariograms are shown in
Fig. 2.6. The parameters adopted in the random function model are summarized in Tables
2.1 and 2.2. The analysis determines a nested structure with a positive linear combination
between isotropic stationary semivariogram models and the hole effect model. Hole effect
structures most often indicate a form of periodicity (Pyrcz and Deutsch, 2003). In our case,
this periodicity reflects the presence of areas with different watering and crop growth
conditions, i.e., in contrast to the dry-land conditions in the SG area, the Urgell area is based
on irrigation.
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Figure 2.6.. LST and NDVI experimental and theoretical semivariograms associated with April (blue), June (green)
and August (red).

The spatial variability of NDVI and LST vary with time according to changes in hydrologic
conditions. In April, the semivariogram of NDVI displays more variability and less spatial
continuity due to the differences in growth rate and crop type conditions existing at the
regional scale during the wet season (controlled by rainfall events). On the other hand, the
spatial dependence of LST is more significant in August. Importantly, results show that the
scale of variability (range) associated with MODIS data during the dry season, when a
controlled amount of water by irrigation is applied, ranges between 35 and 36 km for the
NDVI and between 22 and 32 km for the LST. Recalling the discussion provided in section
2.2.3., this means that the size of independent objects in the NDVI and LST images is about
30 km and that insignificant spatial variations of NDVI and LST values are expected below
1/10 of this size. This suggests that the NDVI and LST products provided by MODIS cannot

detect differences between neighboring pixels with a size of 1 km.



Table 2.1. Random function model parameters of LST semivariograms.

LST
Variogram Hole effect
Month Model Sill (c11) Range (a11) Sill (c12) Range (ai2)
April Spheric 8.4 46000 - -
June Spheric 7.5 22000 1.5 25000
August Spheric 14 32000 2 29000

Table 2.1. Random function model parameters of NDVI semivariograms.

NDVI
Variogram Hole effect
Month Model Sill (c21) Range (az21)  Sill (cz2) Range (az2) Sill (c23) Range (az3)
April  Exponential 0.013 8000 0.02 55000 - -
June  Exponential 0.013 35000 - - 0.22 28000
August Exponential 0.015 36000 - - 0.21 28000

To further corroborate this point, Fig. 2.7 compares the temporal evolution of LST and NDVI
obtained from two adjoining MODIS pixels: the Foradada pixel, where Foradada is located,
and its northwest neighboring pixel. Note that the neighboring pixel corresponds to an area
that is not irrigated. Data were downloaded using MOD13A2 and MOD11A1 products from
the Google Earth Engine website, from DOY036 to DOY298. In general, based on DISPATCH
suppositions, irrigation in an agriculture field site should produce a decrease in LST values
as a consequence of uniform irrigation over the entire field site and an increase in NDVI due
to well-developed crop growth conditions. However, Fig. 2.7 shows the same dynamics and
similar values in both pixels even when irrigation is applied. Results show that the LST and
NDVI information can detect neither the sprinkler irrigation nor the crop growth as a
consequence of irrigation in this case. We finally note that these results suggest that the
resolution of LST and NDVI is not appropriate in this case but can also express that these
two variables are simply not sensitive to irrigation because they only provide information

about the status of the crop and land surface. Further research is needed in this sense.
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Figure 2.7. Temporal evolution of LST and NDVI obtained at the Foradada pixel and its neighboring northwest
pixel situated 2 km away

2.5. Conclusion

We analyze the value of remote sensing and the DISPATCH downscaling algorithm for
predicting water content variations in an irrigated field site of size close to image resolution.
The DISPATCH algorithm based on the NDVI and LST data obtained from the MODIS
satellite is used for downscaling the SMOS information and transforming the SMOS water
content estimations from a resolution of 40 to 1 km. These estimates are then compared
with average gravimetric and soil moisture sensor measurements taken all over the field
site. Results have shown that in this case the downscaled water content estimations are
capable of predicting the variations in soil moisture caused by rainfall events but fail to
reproduce the temporal fluctuations in the average water content caused by local irrigation.
To provide insight into this problem, we examine the spatial variability of the different input
variables involved, i.e., the NDVI and LST. Results indicated that the size of individual
objects in the NDVI and LST images is too large to be able to adequately represent the



variations of the average water content at the site. This effect is not significant during
rainfall events because the typical spatial scale of rainfall events is much larger than the size
of the irrigated field site.

From a different perspective, these results also suggest that irrigation scheduling based on
satellite information coupled with the DISPATCH downscaling algorithm might be
appropriate in regions of the world with extensive irrigation surface coverage, larger than
approximately 10 km (e.g., Punjab basin). However, care should be taken when directly
applying this method as its performance will strongly depend on the spatiotemporal
variation of irrigation within the area. These variations can generate occasional areas with
different hydrologic scenarios and behaviors leading to the failure of the soil moisture

prediction method.

We thank our colleagues from “Root zone soil moisture Estimates at the
daily and agricultural parcel scales for Crop irrigation management
and water use impact” (REC project), who provided insight and

expertise that greatly assisted the research.
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3.1. Introduction

Agriculture is the largest consumer of freshwater and accounts for 75% of current human
water use (Wallace, 2000). The Food and Agriculture Organization of the United Nations
(FAO) predicts that if current consumption patterns continue at the present rate, two-thirds
of the world’s population could be living in water-stressed countries by 2025. As a result,
water will become scarce not only in arid areas but also in regions where precipitation is
abundant (Pereira et al., 2002). Within this context, optimal irrigation water strategies are

crucial for saving water while guaranteeing maximum crop yields in the near future.

Irrigation scheduling is the process used by irrigation system managers to determine both
the correct moment and the required amount of water to irrigate fields while maximizing
crop yields with the minimum amount of water applied. Properly defining the moment of
irrigation through water content (or pressure head) thresholds has been demonstrated to
substantially increase the efficiency of agriculture fields (Dabach et al., 2013). However,
irrigation water contains salts and fertilizers that often promotes soil salinization, which
results in an increase in soil Electrical Conductivity (EC.) and a reduction of crop
productivity. Thus, optimal irrigation strategy should be design to avoid soil salinization
(Gongalves et al., 2007; Pereira et al., 2007).

Irrigation scheduling can modify water management strategies that control water
governance (Budds and Hinojosa, 2012; Hanjra et al., 2012), irrigation system performance
(Pitts et al,, 1996; Sakthivadivel et al., 1993; Singh et al.,, 2006), water allocation (Dudley et
al, 1971; Reca et al,, 2001) and water accounting (Perry, 2011). Because of the importance
of irrigation scheduling, a wide range of irrigation methodologies have been recently
developed and used in the field to guarantee crop productivity and avoid soil salinization.
We distinguish between methods based on water requirements, direct measurements of
the plant water status or response to water stress, direct measurements of water content,

and numerical modeling of flow and transport of salt concentrations in the vadose zone.

Water requirements determined from crop evapotranspiration calculations (ET,) is the
most widely used method for irrigation scheduling. ET, is typically estimated as the product
of two terms: the reference evapotranspiration (ET,), generally defined for either clipped
grass (Allen et al, 1998) or alfalfa (Wright and Jensen, 1978), and the specific crop
coefficient (K.), estimated from different tabulated information such as FAO56 Irrigation
and Drainage Paper No. 56 (Allen et al., 1998). In this case, the daily or weekly volume of
water evapotranspirated is estimated and used to schedule the irrigation in the next days
or weeks (Pereira et al., 2009; Sun et al., 2006; Thompson et al., 2007). This method does



not provide the frequency and duration of irrigation (stakeholders do not know when to

apply this volume of water) and requires accurate estimations of weather conditions.

Plant based methods include direct measurements of the plant water status as well as a
number of plant processes that are known to depend on water deficits (Jones, 2004).
Different types of measurements can be used to determine plant water and salt stress for
irrigation scheduling. This includes photosynthetic capacity (de Lima et al., 2015; Flexas et
al., 2004; Ribas-carbo et al., 2006), stomatal conductance (Flexas et al., 2004; Jones, 1999),
leaf water potential (Alberola et al., 2008; Girona et al., 2006; Turner, 1990), and crop
temperature (Bellvert etal,, 2014; DeJonge etal., 2015; Kassie et al.,, 2018). In general, these
methods only provide a direct measurement of the plant status without determining how
much water is necessary. Moreover, these methods require sophisticated and calibrated
devices (Jones, 2004).

Different sensors have been recently developed for the continuous measurement of water
content, pressure head and EC with high precision and temporal resolution (Ferrarezi et
al, 2015; Hanson et al., 1977). With these measurements it is possible to determine the
Plant Available Water (PAW) (Denmead and Shaw, 1962) needed to estimate crop
development and soil salinization for irrigation scheduling (Jones, 2004 ). These sensors are
provided, for instance, by the METER and SENTEK Group, which assure an easy installation.
The location and depth of the sensor may substantially affect the estimation of PAW, which
strongly depends on soil heterogeneity and root distribution (see Chapter 2). Several
authors have studied the optimal irrigation strategy in different field areas and crop types
using sensors (Hoppula and Salo, 2007; Phene and Howell, 1984; Thompson et al., 2007).
However, these results cannot be scaled to other crops and fields with different soil type

and weather conditions.

Several algorithms for optimizing irrigation can be found in the literature. For instance,
Soentoro et al. (2018) optimized irrigation by determining the cropping patterns and
planting areas through linear programming. Ortega et al. (2004) and Martinez-Romero et
al. (2017) proposed to determine irrigation by maximizing the gross margin through
genetic algorithms. Finally, Noory etal. (2011) proposed a linear and a mixed-integer linear
model for optimizing an irrigation water allocation and a multicrop planning problem that
maximizes the total net benefit. None of these algorithms properly represent the water

movement in the vadose zone.

Numerical models constitute an efficient tool for assessing irrigation scheduling (Linker et
al, 2016; Ma et al,, 2015). Among the different models available, HYDRUS (§imﬁnek et al,,

2016, 2008) is often used to simulate water fluxes, root water uptake, root growth, and



solute and head transport in the vadose zone. Several researchers have used HYDRUS for
simulating water content, soil suction and EC to improve irrigation scheduling or to provide
some information to stakeholder. For instance, Arbat et al. (2008) simulated soil suction
with HYDRUS in order to demonstrate that this model is capable to assess irrigation
scheduling in a given field site. Results cannot be directly extrapolated to other field
conditions. Siyal and Skaggs, (2009) and Skaggs et al. (2010) simulated water content
distribution patterns during drip irrigation. The water balance components were not
analyzed in this study to ultimately define an optimal irrigation strategy. A different point
of view was proposed by Twarakavi et al. (2009), who defined the field capacity point by
simulating the drainage process with HYDRUS. These authors found that the field capacity
point controls the irrigation schedule strategy but important variables such as the
transpiration were not considered. The role of transpiration was latter on studied by
Dabach et al. (2013), who analyzed different irrigations scheduling strategies through
numerical simulations. However, in this case, irrigation scheduling was not chosen to
maximize the net profit. From this, we see that it does not exist a scalable methodology to
define an optimal irrigation scheduling strategy that links the water balance components

with the crop yield and economical profit.

In this chapter, we present a combined simulation and optimization framework aimed at
obtaining the irrigation scheduling parameters which maximizes crop yield with minimum
applied water while guaranteeing maximum net profit without soil salinization. The
methodology accounts also for the water movement in the unsaturated zone and can be
easily exported to any field site, making it applicable to any kind of agricultural field,
weather conditions, soils and crops. The chapter is organized as it follows. We first present
the formulation of the optimization framework in section 3.2. Then, we applied the method
to a specific field site in section 3.3. To do this, we set up a numerical model to simulate flow
and transport through the vadose zone at the field site. The model is shown capable to
simulate water content data recorded at different depths over one year. After this, we
optimize the irrigation problem and we discuss the results in section 3.4. The optimal
irrigation solution is compared against traditional methods in this section. Finally, in
section 3.5, we used the proposed framework to analyze the impact of soil properties on

irrigation scheduling.



3.2. Combined simulation - optimization framework

3.2.1. Optimization problem

A short-term irrigation optimization problem is formally presented here. The framework
permits to find the optimal control settings of an irrigated field that maximize the net profit
obtained in a short period of time T assuming minimum fluctuations and discounting in the
water price. A short period of time refers for instance to the duration of a crop growing
season. Let us consider that the schedule of irrigation depends on a vector of control
variables p that characterize the irrigation rate g;(p, t). The components of this vector can
include for instance the pressure head threshold (h*), which indicates the degree to which
the soil can dry before irrigation is applied, and the duration of irrigation (7) among others.
The optimal irrigation scheduling strategy characterized by p (Eq. 3.1) is defined here as
the one that is most productive and sustainable, which is mathematically formulated as the
problem of finding the set of control variables p that maximizes the crop Net Margin (NM)
cost Eq. (3.2) subject to operational and functional constraints. The NM cost is the revenue
from crop production, i.e., the Gain Margin (GM) Eq. (3.3) subtracted by the cost of crop
production during an operational time t = T. The cost of crop production consists of two
main parts: capital costs and operation costs. Capital costs (Capex) Eq. (3.4) are the one-
time expenses that usually incur during the purchase of land and equipment, i.e., expenses
for bringing the irrigation field to an operable status. This includes the construction and
installation of physical facilities such as the watering system, access roads, pipelines,
drilling of wells and so on. Operation costs (Opex) Eq. (3.5) refers to the cost of specific
activities incurred during the crop field lifecycle, which include equipment maintenance,
product transport and overheads. From this, the optimization problem is mathematically

formulated as

Popt = man NM(p,T), (3.1)
where,
NM(p,T) = GM(p,T) — Opex(p,T) — Capex, (3.2)

Capex = C, + C,, (3.4)



T (3.5)

Opex(p,T) = Crix + f qi(p,t") (Cyyar + Ce) dt’,
0

The GM [€-ha1] is described here as the product between harvest price C,, [€-ha'l] and the
actual crop yield Y, [t-ha'l], Cr;, [€-ha’l] is the water fixed cost, C,,yq [€:m3] is the water
variable cost, C, [€-ha] is the energy cost, C,, [€-ha'l] is the irrigation system maintenance

cost, and C, [€-hal] is the capital cost.

In practice, irrigation control settings must satisfy also some operational constraints. The
constraints can include limitations on irrigation parameters as well as limitations on
leaching water quality (solute concentrations). These features are incorporated into the
optimization problem by constraining the solution to practical limitations and

requirements, formally written as

Pi=p=p: (3.6)

go)=a (3.7)

The first set of constraints Eq. (3.6) refers to practical issues such as those determined from
the water system capacity installed. Here, we only set an upper and a lower bound of p to
represent this. The other constraints Eq. (3.7) refer to solute concentrations, which can be
used to limit for instance soil salinization. Note though that this methodology is not affected

by the removal or the modification of the constraints included.

Solving this optimization problem results in the selection of optimal irrigation parameters.
The solution will identify the maximum profitable solution subject to sustainable and
feasible constraints. However, the simulation of crop yields requires two simulation
components, one that simulates the distribution of water in the vadose zone as a result of
irrigation and environmental conditions, and another that relates soil water content and
water availability with crop yields. These two components are discussed in the following

sections.

3.2.2. Flow and transport model

The simulation of water availability requires a numerical model capable to predict the flow
of water in the unsaturated zone. The unsaturated flow is typically described by Richards’
equation (Richards, 1931) Eq. (3.8), which can be written as



g—(z =V [K(h)Vh+ K(h)Vz] - S, (36)
where 6 [-] is the volumetric water content, h [-] is the water pressure head, t is time, S [T-
1] is the source-sink term (includes root water uptake), and K [LT-1] is the unsaturated
hydraulic conductivity. Solving this partial differential equation requires the knowledge of
the Soil Water Retention Curve (SWRC), which is the relationship between the water
content and the pressure head, and the Hydraulic Conductivity Curve (HCC), which is the
relationship between the hydraulic conductivity and the pressure head. These curves are

characteristic for different types of soils.

The solution of Richards’ equation requires also the knowledge of initial and boundary
conditions. For our purposes, the boundary condition specified at the soil surface plays an
important role as it defines the amount of water infiltrated into the soil during irrigation.
The water flux across the soil surface depends on both external conditions such as irrigation
water rates q;(p,t) and the water content conditions in the soil. The corresponding
boundary condition should represent for instance that run-off occurs when an irrigation
rate exceeds the infiltration capacity of the soil or the fact that evaporation cannot exceed
the capacity of the soil to deliver enough water to the soil surface. Solving Eq. (3.8) subject
to a system-dependent boundary condition that limits the surface flux by the following two
conditions (Egs. 3.9 and 3.10) is often used to incorporate these features (Feddes et al,,
1974; Neuman et al.,, 1974),

|q(Zeop, )| < 1X (O, (3.9)

hg < h < hg, (3.10)

here q(z;,p, t) is the water flux at the soil top surface, z.,,, is the z-coordinate of the soil top
surface, X(t) is the prescribed maximum potential rate of infiltration or evaporation given
by meteorological conditions [LT-1],and h,; and h, refer to dry and saturated water pressure
heads, respectively. During evaporation, X(t) > 0 and this value represents the maximum

evaporation rate E,.

The numerical model should also describe the water extraction by plant roots. In this
context, the root water uptake S(h, hy, z, t) Eq. (3.11) is typically determined by the product
of the water and salinity stress function a(h, hy), the root density distribution function

f(z, t) in the vertical direction, and the potential transpiration T, (t),



S(h,he,z,t) = a(h, he,) B(z,t) T,(1), (3.11)

where h is the osmotic pressure head. Several stress models can be found in the literature.
Among them, the model presented by Feddes et al. (1978) and van Genuchten (1987) are
the most widely used. Essentially, the latter model considers a smooth monotonic function
with maximum root uptake at saturated conditions, while the other represents a piecewise
linear function with maximum uptake within a pressure (saturation) interval. Importantly,
only the formulation presented by Feddes considers a transpiration reduction near
saturation. Assuming an isothermal system, the osmotic pressure head depends only on the
solute concentrations of the chemical compounds in water, i.e., hg = F(c;). This

relationship is often determined based on empirical relationships.

The simulation of solute concentrations is needed for two reasons: to evaluate constraints
in concentrations (prevent soil salinization) and to estimate osmotic pressures. Solute
transport in the unsaturated zone is typically described by the advection-dispersion
equation Eq. (3.12), which is written as,

d(ROc;) _ (3.12)
— = =V-(qc) +V-(6DVe) + f;, i=1,..,N

where c; is the solute concentration of the i-th chemical component, q is the Darcy flux, D
is the hydrodynamic dispersion tensor, Ng is the number of chemical components

considered, and f; is the concentration source-sink term.

3.2.3. Soil - water - crop productivity relationship

An estimation of the crop yield is required to evaluate the revenue from crop production
during optimization. Crop productivity models can be complex as they include the
interaction between genetics, physiology and environmental conditions such as water
content. To facilitate the estimation procedure, one often considers an empirical model that
relates crop water needs to crop yields. The model presented by Stewart et al. (1977) Eq.
(3.13) has been widely accepted and recommended by the Food and Agriculture
Organization of the United Nations (FAO) (Doorenbos and Pruitt, 1975, hereafter FAO24).
This model represents the seasonal pattern of crop water needs by different growing stages
(four in the case of maize). The potential crop yield is penalized at each growth stage
depending on the deficit of water, which is estimated by the relative discrepancy between

potential (maximum) and actual evapotranspiration. The model determines that



(3.13)

e (1 o ()

where Y, [t-ha!] is the potential crop Yield for the total growing season, k is the growing
stage index, Ny is the number of growing stages, and K, [-]is the crop yield response factor
associated with the k-th growing stage. ET, and ET, are the actual and potential
accumulated crop evapotranspiration in each growing stage k [mm]. Note that the crop is

under stress conditions when ET,/ET, < 1.

At each growing stage, according to Allen et al. (1998) the potential evapotranspiration ET,
Eq. (3.14) is estimated by the crop coefficient K, and the reference evapotranspiration ETj,.
The latter can be calculated by the Penman-Monteith equation (Allen et al., 1998), which is
a function of the input daily mean temperature, the wind speed, the relative humidity and

the solar radiation.
ET, = K. ET,, (3.14)

The actual evapotranspiration is estimated from the simulation of flow in the vadose zone,
which gives the evaporation at the soil surface and the water uptake by plant roots
S(h, hg, z,t). From this, the ET, Eq. (3.15) of the k-th growing stage taking place in the time

interval (t, ty4+1) can be determined by

tht1 tky1  Ztop
1= [ aleionV(alziont) > Ot + [ [ o zedzar o
tx tk  Ztop—LRr

where I(g > 0) is an indicator function that is equal to one during evaporation (g > 0) and
zero otherwise, z;,, is the z-coordinate of the soil top surface, and Ly, is the vertical length

of the root zone.

3.3. Field application

3.3.1. Field site description

In this section we illustrate the applicability of the method in a real field setting. The study
area considers the same commercial field exposed in chapter 2 (Foradada field) Fig.3.1. The
irrigation method is fully covered with irrigation sprinkles, distributed with 23 different

irrigation sectors. The irrigation rate is 6.5 L-m-2-h-1. Two sectors can be irrigated at the



same time during 24 h-d-1. The soil texture can be classified as a Silty Clay Loam (USDA
classification) with 28% Clay, 58.4% Silt and 13.6% Sand. Every year two different crops
are grown: The first crop is usually canola and the growing season extends between winter
and spring, during which wet conditions take place due to rainfall events. The second crop
is always maize and takes place during the summer and autumn seasons, where wet
conditions are maintained by applying periodic irrigation. Correct irrigation scheduling is

needed to maximize productivity.

&‘gggegada field

:l Foradada Field

0 80 180 320
— — et

Figure 3.1. The Foradada field is located within the Aiglies Segarra garrigues (ASG) canal. Solid irrigation sprinkle
systems installed and distributed in 23 sectors are represented in different colors. Water content monitoring
station and sampling is represented in yellow.

A field campaign was conducted to install water content sensors and collect undisturbed
soil core samples. Two EC-5 soil moisture sensors (METER Group, Pullman, WA, USA) were
installed at 10 and 20 cm depth in a representative location (Fig.3.1). Sensor data was
collected every 5 minutes with an accuracy of £0.03 cm3-cm-3 (Campbell and Devices,
1986). Two undisturbed soil samples were taken near the EC-5 sensors using a stainless-
steel ring of 250 cm3 capacity. These soil samples were used to measure the SWRC and HCC
with high precision and over a wide range of pressures. This was achieved by combining
the HYPROP, the WP4c, and the KSat devices (METER Group, Pullman, WA, USA). Whereas
the HYPROP device is capable to measure SWRC and HCC, WP4c can complement SWRC in
the dry region. The KSat system does the same for HCC. A comparison of approaches has
been reported by Schelle et al. (2013). These authors demonstrated that this combined
method shows less noise than the other traditional methods. The experimental data was
fitted to the van Genuchten-Mualem SWRC model using the HYPROP Fit software (METER
Group). Figure 3.2 shows SWRC and HCC measured by HYPROP, WP4c and KSat. Note that
these devices provide SWRC and HCC with high resolution. SWRC describes a soil with a
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quite high-water content retention capacity and a low air enter potential and slope. This is

shown by the shape parameters a and n with values of 0.0678 and 1.186, respectively. HCC

is characterized by a low K; value with 12 cm-d-1, indicating slow wetting front movement

during irrigation.
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Figure 3.2. Soil Water retention Curve (SWRC) and Hydraulic Conductivity Curve (HCC) measured by HYPROP,

Mualem model.

WP4c and KSat systems and fitted by van Genuchten -

3.3.2. Model setup

k et al, 2016, 2008) for simulating the

line
one-dimensional movement of water and solute transport in variably-saturated porous

o

~

We use the HYDRUS-1D software package (Sim

media at the field site. This code solves Richards’ equation to simulate water flow in the

unsaturated zone and the advection-dispersion equation to simulate solute transport using

numerical methods based on the Galerkin finite element method. We consider a 60 cm



vertical soil profile representative of the Foradada field site. The domain was discretized
into 101 segment elements. The column represents the movement of water through the soil
profile associated with the water content sensors and core samples. A system-dependent
boundary condition was imposed at the soil top surface according to Egs. (3.9) and(3.10).
Since the water table is far below, a free drainage boundary condition was imposed at the
column bottom, i.e,, ¢ = —K(h). Initial conditions were set to 8 = 0.25. A multiplicative
model was used to represent the water and salinity stress function, i.e., a(h, hy) =
a(h)a(hg), where a(h) and a(hy) are the water and salinity stress functions, respectively.
The Feddes et al. (1978) Eqg. (3.16) model is used to represent the water stress function,

( h_h4
_ h; >h > h,
hg_h4 ( )
>h > 3.16
a(h) = | 1 h, > h = h, '
h=h h,>h>h
hy — hy 1 2
\ 0 h<hgorh=hy

which describes that the plant suffers water stress outside the pressure head range (h,, hs).
The water stress reduction decreases linearly from those pressure points and gets to a
minimum (a¢ = 0) below or above h, and h;. The salinity stress function is defined using the
threshold-slope salinity stress reduction function (Maas and Hoffman, 1977) Eq. (3.17),

1, a<hy <0
1
a(hy) = 1+b(h¢,—a), a>h¢,>—g , (3.17)
1
< g——
0; h(p sa b

Here, the salinity threshold value a quantifies the minimum osmotic head above which root
water uptake occurs without reduction, and the slope b determines the fractional root
water uptake decline per unit increase in salinity below the threshold. The parameters
adopted to define these stress functions were chosen from the HYDRUS internal database
and are summarized in Table 3.1. The transport model is simplified to simulate only one
representative chemical component, i.e., Electrical Conductivity EC, which is assumed to
behave as a conservative species (non-reactive). We neglect salt precipitation and
dissolution processes. The osmotic pressure is assumed to be proportional to EC by the
expression EC = 1hg (Simunek and Sejna, 2014).



Table 2.1. Water and salinity stress function parameters.

Feddes Function Mass and Hoffman
(water stress) (salinity stress)
hy 1.5 kPa a 3.4 dS/m
h, 3.0 kPa b 6 -
h, 32.5-600.0 kPa
h, 800.0 kPa

An initial estimation of model properties (e.g., SWRC and HCC) was known from core
sample measurements. The model parameters were then calibrated to reproduce the
recorded soil moisture data obtained at the field site. The calibrated parameters were not
significantly different from the initial estimation. Table 3.2 summarizes the measured and
calibrated parameters. Parameters modified in the calibration process were a and n. The
simulation considered 240 days, from February 9% 2017 to October 31st 2017. Two
different crops growing at different periods of time were accounted for during the
simulation; canola from February, 9t 2017 to May, 315t 2017, and maize from June, 15t 2017
to October, 31st 2017. Meteorological parameters were downloaded from the nearest
available weather station to compute ET,, which was then converted into daily ET, values
with the K, coefficients shown in Table 3.3. The potential evaporation and transpiration
values needed in the root water uptake model, Eqs (3.9) and (3.11), were calculated by
partitioning ET, into potential evaporation E, and transpiration T,, based on the Canopy
Cover (Raes et al,, 2010), which determines that ET, = aE,, + (1 — a)T,, being a the soil
cover fraction. Figure 3.4 compares simulation results with water content field
measurements obtained at two different depths. Simulations are in good agreement with
soil moisture data. Table 3.4 shows several goodness-of-fit statistics calculated for both
depths.

Table 3.2. Foradada and Loamy Sand Soil hydraulic parameters used in simulations. 6,, is the residual volumetric
water content; 6y, is the saturated volumetric water content; @, n and i the are shape parameters, and K; is the
saturated hydraulic conductivity.

. . 0, 0, a n K, i
Location Soil (micm?)  (emiem3) (b)) (9 (emd) ()
Measured 0.012 0.473 0.0421 1157 12 0.5
Foradada soil
Calibrated 0.012 0.473 00678  1.186 12 0.5

Theoretical soil Loamy Sand 0.05 0.41 0.124 2.28 350 0.5




Table 3.3. Canola crop coefficient (Kc1), maize crop coefficients (Kc2) applied for ET., where Stage I represents the
initial period; Stage Il is crop development; Stage IIl mid-season; Stage IV is late season. Crop yield response factor
(Ky) used for actual Yield estimations, where Stage I is vegetative period, Stage II is flowering period, Stage III the
yield formation, and Stage IV ripening.

Stage I I1 I v

Ket 0.2 0.7 1.15 0.2
Ke2 0.3 03-1.1 1.1 1.10 - 0.55
Ky 0.35 1.05 0.4 0.2
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Figure 3.3. Comparison between daily soil moisture field measurements and the soil moisture output from the
validation model at 10 and 20 cm depth.

Table 3.4. Statistical index calculated with observed and simulated water content values.

Observation Point RMSE Willomtt Index R2

6 10 cm Depth 0.12 0.89 0.61
6 20 cm Depth 0.08 0.96 0.60




3.3.3. Optimal irrigation scheduling problem setup

We applied the simulation-optimization framework presented in section 3.2 to the
Foradada field site to estimate optimal irrigation scheduling parameters during a growing
season with unfavorable weather conditions. The methods and parameters used here were
directly adopted from the previous calibrated model. However, weather conditions were
considered to represent the growing season with the highest ET, values estimated between
2008 and 2017. The corresponding K, coefficients are presented in Table 3.3. The year with
more water demand was 2016. Rainfall events were neglected. Initial conditions were 6 =
0.25 and EC = 0.6 dS/m, which represents an average water content of the field site without
salinity problems. Simulations considered the entire growing season of maize, from June
15t (sowing) to November 11t (harvesting). Data necessary to evaluate the crop net
margin cost NM is summarized in Table 3.5, mostly provided by the Aigilies Segarra

Garrigues (ASG) company.

Table 3.5. Parameters necessary to apply Stewart and Net Margin (NM) equations. Y, is the potential crop yield;
Cyis the harvest price; C,,, is the maintenance cost; C,, are the capital costs; Cr;,, is the fix water cost; C,,y 4, is the
variable water cost; C,, is the energy cost; q;, is the irrigation rate.

Parameter Value Reference
Y, 195 t-ha- Martine?-zlf)(i%ero et al.
C, 171.8 €11 www.mapama.gob.es
Cn No data available €-hat -
C. No data available €-hat -
Crix 115.35 €-hat Aigiies Segarra Garrigues
Cwvar 0.1003 €m3 Aigiies Segarra Garrigues
C, No data available €-m3 -
q; 6.5 l'm2-h1 Aigiies Segarra Garrigues

Two control irrigation parameters were used to characterize water irrigation rates, i.e., the
pressure head threshold h* observed at a control point and the duration of irrigation t. The
control point is located at the vertical midpoint of the maximum maize root length (20 cm
below soil surface). The pressure head at the control point triggers irrigation when h < h*
(when the soil is dry). At this moment, the model applies water at a constant irrigation rate
q; for an irrigation time 7. Since the watering capacity is fixed by the type of irrigation
equipment installed, the irrigation rate is not considered to be a control parameter in this

case (q; is set constant to 6.5 L-m-2-h'1). Figure 3.4 presents an illustrative sketch of the



irrigation. The salt concentration in the irrigated water is assumed to have electrical
conductivity values of 0.4 dS/m. The optimization is constraint to fulfill that EC, < 3.4
dS/m (below this threshold maize is not under salinity stress).

Atmospheric
BC T T T
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Figure 3.4. On the right, boundary conditions imposed in the model where triggered irrigation is a function of h*
and 7.0n the left, a synthetic case about how the model triggers the irrigation, when h* and t are defined.

A large number of algorithms can be used to maximize the crop net margin cost function
NM with constraints. Here, we chose to maximize NM over a given range by brute force,
which simply consists in computing the function's value at each point of the parameter
space to find the global maximum. This can be inefficient in practical applications but
provides detail insights about irrigation scheduling as well as the full shape of the NM cost
function, which is the objective here. To do this, the parameter space (z, h*) was discretized
into a 4 X 10 regular mesh, where 7 ranges between 1 and 4 hours and the threshold

pressure head h* varies between -100 KPa and -10 KPa.

In order to analyze the performance of the method, we compared the optimal irrigation
results obtained with our proposed framework with those given by a traditional irrigation
method. The traditional irrigation scheduling method is based on water requirements and
consists in irrigating as much water as that evapotranspirated in the previous week. To this
end, the farmer must devise an irrigation calendar. Thus, to reproduce the traditional
method, the weekly ET, value is calculated and this volume of water is applied over the next
week. This amount of water is uniformly distributed over the next week. All other
parameters are kept the same. The relative difference between the Net Margin obtained
with the traditional method (NM,,..4) and the optimal one is computed as follows (3.18)



NM — NM¢yqq (3.18)
ANM = :
r NM

3.4. Simulation - optimization results

In this section, we present the simulation-optimization results of the Foradada irrigation
scheduling problem. Figure 3.5a shows a map of the net margin NM function obtained from
all the irrigation strategies simulated as a function of h* and 7. A clear NM maximum value
of 2791 €-ha1 can be seen in this figure for 7 =1 h and h*=-40 kPa. This optimal irrigation
strategy represents a short but moderately frequent irrigation, i.e., moderate h* value,
which results from balancing the gain margin GM with the operational expenses Opex. The
corresponding maps of GM and Opex are also depicted in Fig. 3.5b and Fig. 3.5c,
respectively. The maximum gain requires a more frequent irrigation with 7 =1 h and h*= -
25 kPa (more irrigated water) but the operational expenses significantly increase in this
region. Thus, even though this is the most productive strategy, Opex penalizes economically
GM and, consequently, NM decreases. Thus, although this irrigation strategy could be the
most productive in crop yield terms, the required volume of water and expenses related can
substantially affect the optimal irrigation strategy. On the contrary, Opex is minimum when
the frequency of irrigation is very small, implying that less water is used for irrigation.
Figure 3.5d shows the relative difference between the traditional method and the optimal
solution obtained with the proposed methodology. Results show that the proposed method
can increase the net margin by 7%. We also note that the NM function can give smaller
values than the traditional one when either irrigations strategies apply a large volume of
water (increasing Opex) or when h”* is too small (decrease in GM). This situation is far away
from the optimal irrigation strategy and thereby the simulation-optimization method

seems mandatory in routine field applications.
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Figure 3.5 a) Net Margin (NM) Foradada soil results and objective functions elements, being b) GM, Gain Margin;
c) Opex, Operational costs and d) A,.NM, fractional difference between NM and NM,,,4. Dash line in A,NM map
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A more profound understanding of the difference between the traditional irrigation scheme
and the optimal irrigation method (7 = 1 h and h*=-40 kPa) can be seen from Fig. 3.6, which
compares the temporal evolution of the water content resulting from both methods at 4
different soil depths during the growing season. The optimal irrigation strategy applies
water for 1 hour during several days and stops when h* approaches -40 kPa. The traditional
method applies water every day. The main difference is that the optimal solution provides
amore uniform variation of the water content over the entire season, i.e., oscillates between
0.20 and 0.32 cm3-cm3, compared with the traditional method, which fluctuates between
0.16 and 0.34. Moreover, the optimal method is capable to increase the water content
globally in the root zone, in particular at 10 cm depth, whereas the traditional method
stresses the system during periods with higher ET,. demand by letting the water content to
decrease up to 0.16 cm3-cm-3. This water stress affects crop productivity because water
content conditions are not optimal. We also note that when the volume of water applied is
less than 5 mm-d-1, the wetting front does not arrive to the deeper soil parts, compromising
root water uptake. This way, even though the traditional method applies the total volume
of water evapotranspired during the growing season, this is not enough to maintain a more

constant the water content during the growing season.
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Figure 3.6. Irrigation scheduling from both strategies, where irrigation, volumetric water content dynamics at
different depths and the potential evapotranspiration demand (ET,) are plotted.

To better understand the results, Fig. 3.7 describes the impact that each irrigation strategy
produces on T, E, and soil EC,. The optimal strategy is highlighted in these figures with a
black circle. Figure 3.7a presents the simulated transpiration values obtained as a function
of h* and 7. Remarkably, the optimal irrigation strategy is not the one that produces more
transpiration but lies within the plant water stress region, i.e., a(h") is smaller but close to
1. This means that the gain in crop productivity obtained for ¢ = 1 does not compensate
the expenses associated with the increase in irrigated water. Results also show a decrease
in transpiration when irrigation applies water during several hours. This is caused by the

saturation of the top horizon of the soil (see Fig. 3.8).
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Figure 3.7. a) Actual Transpiration (T,), b) actual Evapotranspiration (E,) and c) Electrical Conductivity at the
root zone (EC) resulting from Foradada soil showing all the irrigation strategies simulated. Circles show the
strategy who provides maximum Net Margin (NM).

Figure 3.7b plots the corresponding evaporation values. According to Philip (1956) and
Ritchie (1972), we distinguish between two evaporation regions: Range I represents an
energy-limited evaporation process where the soil surface is wetted by irrigation and water
evaporates from a thin soil surface layer; Range Il represents a falling-rate evaporation
process that occurs when water content flows from the soil layer below. Results show that
the optimal irrigation strategy is energy-limited because the Foradada soil has a high-water

content retention capacity.



Figure 3.7c presents the simulated EC, values at the end of the season as a function of h*
and 7. They are the average from the four observation points inserted at different depths.
Even though none of the irrigation strategies exhibit salinity stress (above threshold) an
increase in EC is seen in all simulations. Consequently, salts are accumulated through the
root zone presenting a maximum at the end of the season. This is more pronounced for
small h* values. This increase could significantly affect the crop productivity in the following
seasons and reflects the importance of rainfall events in wet periods (spring and summer).
This volume of water should be responsible for flushing out the salts accumulated during
dry periods. Our simulated scenarios considered only dry conditions without rainfall events

and thereby this flushing mechanism could not be seen.

Figure 3.8 displays the wetting front resulting from different irrigation events for 4 different
irrigation strategies. One can observe that when water is applied over several hours (i.e.,
more that indicated by the optimal irrigation strategy), the top horizon of the soil becomes
almost saturated and thereby water uptake is negligible in this region (pressure head
overpasses the h, threshold). This prolonged saturation of the top soil horizon due to poor

drainage inhibits crop productivity. This is in turn reflected by smaller T, values in Fig. 3.7a.
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3.4.1. Impact of soil hydraulic properties on the optimal irrigation strategy

In order to evaluate the impact that soil hydraulic properties have on the optimal irrigation
strategy, we also solved the optimization-simulation problem considering a different soil
type. The chosen soil hydraulic properties have been downloaded from the Rosetta
database (Schaap et al., 2001) available from HYDRUS 1D. Table 2 shows the soil hydraulic
parameters of a Loamy Sand soil. In this specific case, @ and n parameters represent a soil
with less soil moisture retention capacity than the Foradada soil, and K is substantially
higher than the soil previously studied (K; = 350 cm-d-1). Taking these observations into
account, a lower soil moisture retention with a faster wetting front movement is expected.
Figure 3.9 shows the map of the NM, GM, and Opex function depending on h* and 7. The
linear-like shape of these functions are strikingly different from those of Foradada, which
exhibited a strong nonlinear behavior close to the optimal value. Consequently, results
show that in this case h* is mostly controlling NM and 7 has little effect. An optimal
irrigation strategy is found for t = 1 h and h*= -10 kPa. The maximum NM value is 2719
€-ha’l, which is slightly smaller than that of the Foradada soil of 2719 €-ha1. This irrigation
strategy represents a short but very frequent irrigation. We conclude then that the optimal

irrigation strategy can drastically change from one soil type to another.

The physical process by which the NM function associated with a Loamy Sand soil is now
mostly controlled by the pressure head threshold h* and not 7 can be seen from the
dependence of T,,, E,;, and EC, with h* shown in Fig. 3.10. Note that in all cases these results
are substantially different than those of the Foradada soil (Fig. 3.7). In this case, results
indicate that the irrigation water can easily infiltrate and redistribute through the entire
root zone, following a falling-rate evaporation process. In contrast to our previous results,
a more permeable soil leads to an optimal irrigation strategy (black circle) that favors
maximum transpiration rates with zero plant water stress. The optimal strategy also
inhibits waterlogging and provides minimum salinization compared to other irrigation
strategies obtained with different pressure head thresholds (Fig. 3.10c). Again, this can be
explained by an effective percolation of water through the root zone, which gives good

internal drainage.



54 Chapter 3

NM (€-ha)
" 2550
2450
3 2350
z 2250
o 2150
2 2050
1950
=]
5 1850
GM (€-ha?)
4
3100
2950
- 2800
¥ o
= 2650
2 2500
2350
2200
1
Opex (€-ha’)
4 620
580
3 540
< 500
e 460
2 420
380
1]
1 340

<100 90 -8 -70 -60 50 -40 30 -20 -10
h*(kPa)

Figure 3.9.a) Net Margin (NM) Loamy sand soil results and objective functions elements, being b) GM, Gain Margin
and c) Opex, Operational costs.



- T=1h -+ T=2h “* T=3h ~* T=4h
380 a Potential Transpiration Tp

360 A

340 A==
L
320 ) =7

300 e
= No water stress

afh)=1

T,(mm)

280

260

1w |lp — T T T T T T T T = == ©
80

60 //o

40 e

& * v
L .4

E,(mm)

20 Evap.
Evaporation Range Il Range |

C  Electrical Conductivity threshold a

3,2

2,4

EC (dS/m)

* & #* & e -
1,6 P R e e ) S —

08 Electrical Conductivity initial conditions

-100 -80 -60 -40 -20 0
h* (kPa)

Figure 3.10. a) Actual Transpiration (7,), b) actual Evapotranspiration (E,) and c) Electrical Conductivity at the
root zone (EC) resulting from Loamy Sand soil showing all the irrigation strategies simulated. Circles show the
strategy who provides maximum Net Margin (NM).

3.5. Conclusions

Irrigation scheduling in agriculture is crucial for saving water while guaranteeing maximum
crop yields in arid regions as well as in future areas affected by climate change and water
scarcity. However, irrigation scheduling is typically conducted based on simple water
requirement calculations without accounting for the strong link between water movement
in the root zone, crop yields and irrigation expenses. In this work, we have presented a

combined simulation and optimization framework aimed at estimating irrigation



parameters that maximize the crop net margin cost subject to operational and functional
constraints. The simulation component couples the movement of water in a variably
saturated porous media driven by irrigation with plant water uptake and crop yields. The
optimization component assures maximum gain with minimum cost of crop production

during a growing season.

An application of the method was presented in the Foradada irrigation field test site, where
soil hydraulic parameters represented a soil with high water content capacity and slow
wetting front percolation. The method was demonstrated to yield optimum irrigation
parameters at the site (irrigation duration of 1 hour and a frequency determined by a
pressure head threshold of -40 kPa). These parameters were substantially different from
those estimated with traditional water requirement methods based on previous
evapotranspiration values. Results have shown that even though the volume of water
evapotranspired during the growing season is fully replaced by the traditional method, the
way to schedule irrigation does not guarantee that water content values vary within an
optimal water content fringe. Prolonged saturation of the top soil horizon is often shown to
occur with the traditional method. On the contrary, the optimal irrigation scheduling
solution prevents waterlogging and provides a more constant value of water content during
the entire growing season within the root zone. As a result, the crop net margin cost
exhibited an increase with respect to the traditional method by a factor of 7%. The optimal
irrigation solution is also demonstrated to properly balance the crop gain margin and
operational expenses. Results have shown that even though some strategies can be more
productive, irrigation expenses counterbalance the economic benefit ultimately leading to
a compromise between them. At this stage, we highlight the practical advantages of the
method proposed compared to traditional water requirement methods: (i) agriculture
stakeholders can obtain better crop gain margins to achieve the same crop productivity;
and (ii) irrigation scheduling parameters can be known prior the start of the growing
season. However, the method requires a more important soil characterization of the field

site and the installation of sensors to measure (at least) pressure head potentials.

The impact of soil hydraulic properties has been also analyzed by assuming another soil
type (Loamy Sand soil). Soil hydraulic parameters described a soil with less water retention
capacity than the Foradada soil and easier wetting front percolation. Results have shown
that the optimal solution strongly depends on the type of soil. In this case, the frequency of

irrigation was much larger given by a pressure head threshold of -10 kPa.
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4.1. Introduction

Irrigation is the process where water is applied artificially to a specific field in order to
supply water evaporated and/or taken up plants. In humid areas precipitation covers the
largest fraction of this crop and atmosphere demand, but in dry regions precipitation is not
enough to satisfy it and irrigation covers the evapotranspiration demand (Evans et al,,
2013). In addition, it is generally expected that irrigated agriculture will have to be
extended in the future in order to feed the world’s growing population (D6ll, 2002). Thus,
water optimization without compromising crop yield will play a crucial role in the near

future, where optimal irrigation scheduling is responsible for this.

One of the main difficulties for stakeholders to make decisions about irrigation scheduling
involves field spatial variability. Irrigation is frequently applied with uniform criteria in the
entire field, and water content patterns present differences as a consequence of soil
hydraulic properties (Hawley, 1983), topography (Burt and Butcher, 1985) and vegetation
(Le Roux et al., 1995). This spatial variability should be taken into consideration, since it
significantly determines how the irrigation criteria should be managed differently, thereby
guaranteeing optimal crop development and decreasing water use. In addition, processes
involved in the Soil - Plant - Atmosphere (SPA) continuum under any kind of irrigation

system are complex and difficult to characterize (Mailhol et al.,, 2011; Buckley, 2017).

With regard to this spatial variability, precision agriculture proposes to achieve the
optimization of input use efficiency by site-specific application of nutrients and water on
small, within-field management zones of more homogeneous soil properties and crop
growth conditions (Zhang et al., 2002). In this framework, the concept of Management Zone
(MZ) must be introduced. A MZ is a sub-region of a field that is relatively homogeneous with
respect to soil-landscape attributes (Haghverdi et al., 2015). Thus, the presence of different
MZs represents different patterns in the same field. Nowadays, different clustering methods
such as k-mean, IDODATA and Gaussian Mixture are available for delineating MZs based on
different data sources. In regard to the necessary data, Yield maps, topography, remote
sensing data and soil apparent electrical conductivity are used to delineate MZs. However,
remote sensing data is frequently used in agriculture because it is a noninvasive method

and data can be downloaded without any cost (see chapter 2) .

Several researchers have defined MZs in a specific field, with the main goal of increasing
crop yield and decreasing water use. Inman et al. (2008) and Schenatto et al. (2015)
delineated MZs with NDVI data and different crop indices. Liu et al. (2018) delineated MZs
based on yield and band vegetation indices maps. Scudiero et al. (2013) defined different

MZs, but in this case using geospatial apparent soil electrical conductivity and bare soil



reflectance measurements. These data were correlated and linked with soil properties
(salinity, texture, carbon content and bulk density). A similar study was presented by Reyes
et al. (2019), in which MZs were defined with NDVI data and complemented with soil
properties. Georgi et al. (2018) developed an algorithm to delineate MZs automatically,
based on remote sensing data. However, one of the disadvantages of this algorithm is that
itdoes not work properly on fields with unstable spatial patterns. All the studies sited above
consider that MZ distribution is static and assume that these distributions have no dynamic
pattern during the growing season. Thus, in fields where spatial variability has a dynamic
pattern, it is necessary for MZ delineation to be improved, a measure which some

researchers have indeed advocated (Evans et al., 2013; Haghverdi et al.,, 2015).

Water content sensors constitute an optimal tool for real-time monitoring of water content
dynamics in the field. Although sensors are able to monitor water content at a single point,
the study of spatial and temporal variations of soil water content and the interaction with
crop can be analyzed if several sensors are installed across the field (Biswas and Si, 2011;
Biswas, 2014; Yang et al., 2016; Huang et al., 2019). Furthermore, infiltration rates and
water movement also have subsurface spatial variability when irrigation is applied
(Nielsen, 1985; Wendroth et al., 1999). These measurements can provide us information
about the reason for the existence of different MZs as well as complementing their
delineation. Thus, variables that influence or correlate with soil hydraulic properties and
soil water status and dynamics should be considered in the delineation of MZs (Reyes et al.,
2019). In this way, it is known that water content dynamics is a consequence of soil

properties that affect crop performance (Scudiero et al., 2018) and modify MZ patterns.

HYDRUS (Simﬁnek et al,, 2008, 2016) simulates water content, pressure head and solute
transport in the vadose zone considering root water uptake and root growth. Any kind of
simulation model requires field measurements, such as those from water content sensors,
in order to validate and calibrate the model. However, HYDRUS is an optimal tool for
simulating processes measured in the field and for the subsequent simulation of “what-if”
scenarios. In addition, an analysis of all the outputs obtained at each simulation can be
conducted afterwards in order to provide an overall view of the system simulated. In this
way, it is possible to propose an alternative or to mitigate the existence of a hypothetical
problem in a field. Several researchers have used HYDRUS to improve irrigation or to assess
water content patterns through the soil profile change when different irrigation strategies
are applied (Arbatetal., 2008, 2009; Siyal and Skaggs, 2009; Twarakavi et al., 2009a; Skaggs
et al, 2010; Dabach et al., 2013). One of the main disadvantages of these studies is that the
results cannot be scaled to soil and environmental conditions or another crop. Furthermore,

while they all consider a homogeneous soil profile or with several materials in the depth



domain, they do not take into account spatial variability in the entire field with different
memberships properties. This may be due to the fact that soil hydraulic properties cannot
be measured in the entire field; thus, simulations represent a particular point at which soil
parameters are measured. In chapter 3 is proposed a methodology where a simulation-
optimization problem is solved and enables an optimal irrigation scheduling strategy to be
determined. The improvement in comparison with the other studies is that this
methodology can be scaled to any kind of field. Nevertheless, as in the case of these other
studies, it does not consider the existence of MZs, since the simulation model represents a
particular point. This may pose a problem if a field is divided into different MZs, because a
global pattern of all variables, such as transpiration, must be provided in order to propose

an irrigation alternative or to understand specific water processes in each MZ.

Note that several methodologies and technologies can be used in order to improve
irrigation scheduling strategies, each of which may provide different kinds of information.
However, if the aim is to obtained an overall view of the entire system, all of these
methodologies and technologies should be employed together and all must be employed for
different purposes. Thus, it is clear that if optimal crop performance and water use are to
be guaranteed, the first step is to take field spatial variability into account. When the field
spatial variability is identified and the MZs are delineated, water content sensors can
provide substantial information about the specific water processes that affect or
characterize each MZ. In another words, they can verify in real-time if the irrigation
scheduling is not optimal and if differences in water content processes between MZs exist.
Finally, the purpose of simulation models is to propose an alternative irrigation scheduling

and to adjust it in accordance with MZ features.

In this study, we combine several methodologies with the main goal of improving irrigation
scheduling. They are (i) crop cover remote sensing data form Sentinel 2 satellite; (ii) water
content sensors; (iii) Hydrus 1-D simulations. All the methodologies have provided
different kinds of information and have been used at different times for different purposes.
None of them can be used separately because each one needs to be complemented by the

others. However, this is not the only objective of this work, all of which are specified below:
e To determine if MZs have a dynamic pattern during the growing season.
e Tovalidate MZ delineation with water content sensors and ground measurements.

e Considering that irrigation is applied with uniform criteria, to identify if each MZ
corresponds to a different soil-water pattern affecting crop cover remote sensing
data.



e To prove if Hydrus 1-D simulations are capable of representing similar soil-water

conditions and if they can be used as “what-if” scenarios.

e To propose an optimal irrigation scheduling calendar at each MZ, to enable the

consultant to make within-season irrigation scheduling decision-making.

4.2. Materials and methods
4.2.1. Study site

The research site was a 5.8-ha maize (Zea mays L.) field located in Raimat, about 170 km
west of Barcelona, Spain (Fig.4.1). The study region has a semi-arid climate. Summer
temperatures average 24 2C, with several days of the year above 40 2C. Summer is the dry

season, with seasonal rainfall of 45 mm.

Land use at the study site has changed over the years (Fig. 1 in the supporting information).
Originally, the site was a forest where no tillage occurred. Approximately 30 years ago, the
land was converted to a vineyard. The topography of the field was modified, with soil being
added or removed in various sections, such that the site can now be regarded as having an
anthropogenic soil. In 2017, one year before the current study, grapevines were removed

and maize was grown at the site.
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Figure 4.1 Study site general location, the soil moisture stations installed in the field and the four maize varieties
distribution, where the blue area represents maize variety p0937 (a combination of 500 and 600 series), the red
area is the variety d6980 (700 series), the yellow area is p1524 (700 series) and the green area is d6780 (600
series).



4.2.2. Sowing and irrigation

The field was sectioned into four plots that were each sowed with a different maize variety
(Fig.4.1). The varieties were, from west to east: p0937 (DuPont Pioneer, Johnston, 1A),
d6980 (DEKALB Genetics Corporation, Dekalb, IL), p1524 (DuPont Pioneer), and d6780
(DEKALB). All plots were sown on May 3, 2018, with a sowing density of 90000 seeds-ha1l.
The seed companies indicated that the varieties planted on the west and east edges of the
field (p0937 and d6780, respectively) grow slightly faster than those planted down the
center (d6980 and p1524), although all varieties were anticipated to reach full maturity
125-165 days after sowing. Plants started to emerge on May 12, 2018. The site was
harvested on September 22, 2018.

The field was irrigated with a Solid Set sprinkler system (Nelson Irrigation Corporation,
Walla Walla, WA) having 15 x 15 m spacing. Water was delivered over 18 irrigation zones
atarate of 6.5 L-m2-h-1. Total applied water during the season was 679 mm. Irrigation was
applied uniformly over the field with scheduling and depths determined using a crop
coefficient approach (FAO56). For most of the site, irrigation ended 115 days after sowing.
But, in two 0.3-ha sections located at the north-east end of the site, irrigation was halted 74

days after sowing.

4.2.3. Soil, environment, and crop measurements

Field data was collected between May 2018 and September 2018. Water content, soil and
crop parameters, environmental variables, and remote sensing NDVI data were measured.
In May 2018, 33 capacitive EC-5 soil moisture sensors (METER Group, Pullman, WA, USA)
with an accuracy of + 0.03 cm® cm™ (Campbell and Devices, 1986) were installed at 11
locations named P1, P2, ..., and P11 (Fig.4.1). The sensors were installed at 15, 35, and 50-
cm depths. Water content data were registered every 30 minutes using an EM5b data logger
(METER Group).

At each station, three disturbed soil samples were collected at 0-5, 5-35 and 30-60 cm depth
for organic matter (OM) and soil texture analyses. The Walkley-Black method was used to
measure OM (Nelson and Sommers, 1996), whereas soil particle size distribution was

measured according to the gravimetric method (Gee and Bauder, 1986).

Particles were categorized into the following size classes: clay (soil particle diameter, D <
0.002 mm), fine silt (0.002 < D < 0.02 mm), coarse silt (0.02 <D < 0.05 mm) and sand (0.05
< D < 2 mm). Undisturbed soil cores were also collected at the same locations and depths
for measuring soil hydraulic properties. The soil water retention curve (SWRC) and

unsaturated hydraulic conductivity curve (HCC) were determined using a combination of



three laboratory devices: Hyprop, WP4c, and KSat (METER Group). The van Genuchten
model (van Genuchten, 1980) was fit to the measured curves using the RETC software (van
Genuchten MTh, Leij FJ, 1991) to estimate saturated water content (6,), residual water
content (6,), saturated hydraulic conductivity (K;) and the shape parameters a and n.
Principal Component Analysis (PCA) Abdi and Williams, (2013) and Martini et al. (2017)
was used to investigate the relationships between soil texture, OM, bulk density, and
hydraulic parameters. The PCA calculations were done with Statistica 12 (StatSoft Inc.
Tulsa, OK, USA).

A weather station consisting of an ECRN-100 rain gauge (METER Group), a cup anemometer
(Davis Instruments, Hayward, CA, USA), and PYR pyranometer and VP-4 relative humidity
and temperature sensors (METER Group) was installed 150 m from the north-east corner
of the field. The measured temperature, wind speed, relative humidity, and solar radiation
were used to calculate daily reference evapotranspiration (ET,) using the Penman Monteith
equation as specified in FAO Irrigation and Drainage Paper No. 56 (Allen et al, 1998;
hereafter “FA056”). The estimated ET, was converted into daily water requirements or
potential evapotranspiration (ET,) using the maize crop coefficient (k.) from FAOS56.
Maximum and minimum daily temperatures measurements were used to calculate growing
degree days (GDD) according to FAO56 and to determinate reference maize growing stages
(Ritchie et al., 1997).

Remote sensing data from Sentinel 2 were used to determine normalized difference
vegetation index (NDVI) Eq. (4.1) (Rouse etal., 1974).

npyy = MR = Red) (4.1)
(NIR + Red)

where NIR and Red are measured reflectance values in the near-infrared and visible red
regions, respectively. NDVI was used to evaluate spatial variability in the field. Remote
sensing data were downloaded with 10-m spatial resolution every 5 days unless there was
cloud coverage. The first and last images downloaded were the 15t and 135t day after
sowing. Remote sensing data were processed with the Sentinel application platform (SNAP)
software (Zuhlke et al., 2015).

4.2.4. Management zones delineation

Sentinel 2 NDVI was used to characterize the spatial variability of crop vigor through the
season. A k-means (also known as “fuzzy c-means”) unsupervised clustering algorithm
(Odeh et al.,, 2010) was used to classify the NDVI data into temporally dynamic MZs. The
Grouping Analysis tool in ArcMap 10.4.1 (ESRI, Rdlands, CA) was used for the MZ



delineation. Anytime a new Sentinel 2 NDVI scene was available at the site, a new MZ
scheme was delineated. Designs having 2 to 6 MZs were considered. The Calinski-Harabasz
criterion (CHC) Eq. (4.2) (Harabasz et al., 1974) was used to evaluate the clusters and MZ
delineations and select the optimum number of MZs. The CHC, also known as a pseudo F-
statistic, measures the ratio of between-MZ differences and within-MZ similarity. It is

formulated as:

_ BMZSS/(MZn —1)
- WMZSS/(N — MZn)

(4.2)

where N is the number of pixels, MZn is the number of considered zones, BMZSS is the
between-zones sum of squares, and WMZSS is the within-zone sum of squares. Large CHC

values indicate high within-MZ homogeneity and between-MZ heterogeneity.

The NDVI averages and maximum and minimum values within each MZ were calculated for
further comparison between different MZs. MZs were not defined for the beginning of the
season (0-20 day after sowing) because plants had not yet germinated or were not big
enough to influence NDVI, and for the end of the season (beyond 130 days after sowing)
because in that period the crop is in a late phenological stage and not irrigated. Differences
in soil properties across MZs over time were assessed using a Kruskal-Wallis (Kruskal and
Wallis, 1952) rank test (i.e., a non-parametric analysis of variance), calculated with
Statistica 12.

Additionally, we subdivided the site into four contiguous field: one for each maize variety.
The CHC was calculated for each available NDVI scene to compare a variety-based MZ

approach to the dynamic NDVI-based MZ delineation.

4.2.5. Management zones available water

Soil-water status for the MZs was modeled as plant available water (AW) Eq. (4.3) (Liang et
al,, 2016; Vellidis et al., 2016; Zurweller et al., 2019):

im __pim
AW (¢) =ZLTZ<QJ () = Bup )Azm (4.3)

jm _ pjm
0. Bwp

where AW/ (t) is the profile average available water at monitoring station j and time t, m
indexes the measurement depths, Az™ (cm) is the depth increment associated with the

moisture sensor at depth m, Zy = ¥ Az, (cm) is the total soil profile depth, /™ (cm3-cm-

3) is soil water content, 9‘,]\',’;” (cm3.cm3) is the wilting point (water content at -1500 kPa),



and Bf{:’m (cm3.-cm-3) is field capacity (determined using the method of Twarakavi et al,,
(2009)). The AW for each MZ was defined to be the average AW for all monitoring stations
located within each MZ. Note that the MZ design changed over the growing season, so the
MZ membership of some stations also changed. In addition to the CHC calculation on the
NDVI data, the spatiotemporal variability of AW was also used for in-season evaluation of
the dynamic MZ-design. Following Fraisse et al.,, (2001), we calculated the daily weighted
within-MZ AW variance Eq. (4.4),

52 - NsN, 1
" NgN; ~ NN,

D 4wl - AW (4.4)
Jk

where 512\421' is the daily weighted AW variance within management zone i; j indexes the
monitoring stations within management zone i; k indexes the measurement times during
the current day; N, is the number of stations in management zone i; Ng(= 11) is the total
number of stations in the field; N, (= 48) is the number of measurements per day (every 30
min), AW/is defined by (3), and AW, is the average profile AW across monitoring stations in
management zone [ and measurement times in the current day. The total within-zone
variance is equal to the sum of the weighted within-zone variances, S? = ZiS,\Z,,Zi. By
comparing S2with the total daily field-wide AW variance, it is possible to determine how

much was gained in terms of AW uniformity by dividing the field into MZs (Fraisse et al,,
2001).

4.3. Results
4.3.1. Soil properties

Texture, OM contents and bulk density (p,) values measured at each station are reported
in Table 4.1. The soil texture classes (USDA system) of samples taken from the 11 stations
were clay loam (42.4 % of samples), loam (42.4%), and silty clay loam (15.2%). Stations on
the east side (P1, P6, P7, P11) of the field had, on average, lower sand and higher silt and
clay contents than those on the west. Average OM contents ranged between 0.57 and 1.96
%, which is typical for agricultural soils in the region (Romanya and Rovira, 2011). Fitted
and measured parameters for the soil hydraulic properties measured at each station are
reported in Table 4.2. Consistent with the spatial trend in soil texture noted previously, the
SWRCs measured on the east side of the study site (stations P1, P6, P7, P11) had lower fitted

n values than in the rest of the site. On the wet end of a retention curve, a lower n value



corresponds to a more gradual transition in water content as pressure head changes. Figure

4.2 SWRCs observed at stations on the west (P9) and east (P11) sides of the field.
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Figure 4.2. Soil water retention curves at 10 cm depth from two stations located on opposite edges of the filed.

Station P9 is located on the west side and P11 on the east.



Table 4.1. Soil samples texture, Organic Matter (OM) and bulk density (p») averages at each station.

. Depth D<r?1.r(1)102 0.002;13:0.02 0.02<D<0.05 mm 0.0r5n<nll)<2 .
Station OM (%) (gr/cm3)
(cm) Clay (%) Fine Silt (%) Coarse Silt (%) Sand (%)
P1 0-5 36 27.3 13.8 229 1.18 1.66
5-35 32 33.6 14.5 19.9 0.71 1.63
35-60 26.5 28.1 9.7 35.7 0.5 1.68
p2 0-5 25.9 26.4 14.8 329 1.59 1.57
5-35 25.2 26.1 15.1 33.6 1.1 1.58
35-60 24.2 23.4 14.7 37.7 0.98 1.59
P3 0-5 36.5 32.1 14.5 16.9 0.7 1.54
5-35 21.3 27.8 16.7 34.2 0.5 1.65
35-60 24.4 31.8 8.3 35.9 0.65 1.60
P4 0-5 28.7 23.6 13.2 34.5 2.71 1.48
5-35 28.5 28.9 11 31.6 1.02 1.59
35-60 28.6 19.8 10.4 41.2 1.14 1.60
P5 0-5 22.5 26.3 15.6 35.6 0.57 1.56
5-35 289 36.6 20.3 14.2 0.72 1.58
35-60 21.8 28.9 7.3 42.0 0.42 1.56
149 0-5 29.9 26.9 15.1 28.1 2.11 1.64
5-35 29.3 25.7 14.9 30.1 0.85 1.67
35-60 30.2 26 14.8 29.0 0.7 1.69
P7 0-5 28.1 36 17.1 18.8 3.14 1.65
5-35 28 27.8 11.9 32.3 1.48 1.72
35-60 27.2 24.3 14.3 34.2 1.27 1.69
P8 0-5 25.7 28.7 15.2 30.4 2.22 1.58
5-35 27.7 26.1 14.7 31.5 15 1.64
35-60 29.2 27.3 14.7 28.8 1.02 1.78
P9 0-5 23.7 26.1 14.8 35.4 2.48 1.53
5-35 23.6 27.8 14.4 34.2 1.06 1.51
35-60 23.5 27.7 14.8 34 0.99 1.51
P10 0-5 27.7 25.8 20.3 26.2 1.84 1.61
5-35 28.3 29.5 19.2 26.0 0.72 1.62
35-60 24.6 335 9.5 32.4 0.81 1.80
P11 0-5 29.4 35.9 14.9 19.8 0.73 1.63
5-35 30.3 34.7 14.9 20.1 0.5 1.65
35-60 26.1 30.5 16.4 27.0 0.5 1.64




Table 4.2. Soil hydraulic parameters from each station, where: s is the saturated water content; 6. is the residual
water content; a and n are shape parameters; Ks is the saturated hydraulic conductivity; 6s is simulated field
capacity; and Bw, is wilting point.

Depth s Br o n Ks Brc Bup
Station
(cm) (cm3cm-3) (cm3-cm3) (cm-1) ) (cm-d-1) (cm3-cm-3) (cm3cm-3)
P1 0-5 0.424 0.026 0.0169 1.140 2.05 0.345 0.196
5-35 0.407 0.027 0.0150 1.141 2.52 0.351 0.190
35-60 0.364 0.037 0.0115 1.232 1.00 0.350 0.110
P2 0-5 0.389 0.061 0.0126 1.364 2.95 0.270 0.103
5-35 0.388 0.060 0.0130 1.358 2.94 0.265 0.104
35-60 0.321 0.047 0.0242 1.354 1.53 0.290 0.124
P3 0-5 0.418 0.012 0.0103 1.313 4.42 0.330 0.085
5-35 0.362 0.025 0.0101 1.329 5.63 0.273 0.070
35-60 0.341 0.017 0.0083 1.345 11.47 0.261 0.066
P4 0-5 0.439 0.024 0.0658 1.301 5.70 0.340 0.187
5-35 0.400 0.031 0.0143 1.290 4.60 0.300 0.192
35-60 0.395 0.018 0.0424 1.315 4.90 0.315 0.181
P5 0-5 0.450 0.062 0.0099 1.497 6.88 0.340 0.070
5-35 0.460 0.067 0.0094 1.402 1.94 0.340 0.080
35-60 - - - - - - -
P6 0-5 0.420 0.030 0.0126 1.153 12.00 0.371 0.172
5-35 0.430 0.050 0.0828 1.154 9.40 0.390 0.198
35-60 0.421 0.010 0.0974 1.146 8.10 0.390 0.182
P7 0-5 0.375 0.024 0.0105 1.118 1.06 0.300 0.208
5-35 0.349 0.026 0.0380 1.141 3.34 0.300 0.196
35-60 0.361 0.049 0.0391 1.141 4.10 0.280 0.107
P8 0-5 0.402 0.040 0.0135 1.375 4.01 0.310 0.123
5-35 0.379 0.030 0.0115 1.356 3.05 0.280 0.090
35-60 0.328 0.020 0.0121 1.287 1.75 0.280 0.080
P9 0-5 0.420 0.060 0.0105 1.462 5.79 0.300 0.089
5-35 0.430 0.060 0.0107 1.441 4.70 0.330 0.091
35-60 0.430 0.060 0.0109 1.433 5.52 0.330 0.090
P10 0-5 0.389 0.073 0.0115 1.421 3.98 0.301 0.105
5-35 0.387 0.072 0.0112 1.425 4.56 0.300 0.080
35-60 0.320 0.058 0.0181 1.256 1.87 0.290 0.090
P11 0-5 0.400 0.012 0.0784 1.121 10.00 0.380 0.188
5-35 0.451 0.018 0.0308 1.141 5.27 0.375 0.188

35-60 0.420 0.014 0.0121 1.112 11.00 0.350 0.250




The principal component analysis (PCA) indicated that 8 principal components were
needed to explain 95% of the variability in the soil dataset (Fig. S2; supplementary
material). The first three components, PC1 (30.9%), PC2 (18.6%), and PC3 (15.9%),
explained around two thirds of the variance in the soil dataset. Particularly, PC1 indicated
that clay content clustered (was positively correlated) with Gwp, 65, and a. The PC1 also
indicated that clay content was negatively correlated with sand content, 6, and n. Further

detail about PC1, PC2, and PC3 are reported in Fig. S2 in the supplementary materials.

4.3.2. Remote sensing and dynamics management zones delineation

The site average, minimum, and maximum NDVI values for each available Sentinel 2 scene
are reported in Fig. 4.3a. The changes in average NDVI generally corresponded to the
evolution of ET, at the site, consistent with reports for maize grown in Mediterranean
climates in other studies (Segovia-Cardozo et al., 2019; Toureiro et al., 2017). Figure 4.3b
shows that cumulative input water (irrigation and precipitation) (618 mm) exceeded by
10.2% the site-wide cumulative ET, (561 mm). At the bottom of Fig. 4.4, reference growing
stages for maize at the site are shown (Ritchie et al., 1997). Varieties at the site took 120 to
130 days to reach maturity. Thus, we considered the reference growing stages to be
representative for all maize varieties grown at the site. NDVI and ET,. were low during the
early vegetative stages, had maximum values during the late vegetative stage (VT) through
the beginning of the reproductive stages (R1-R6), then decreased after R6. The temporal
changes of NDVI at the site are comparable to those observed in other studies on maize
(Vifia et al.,, 2004). In the early vegetative stages (VO to V5), the NDVI range of each Sentinel
2 scene was narrow. In later vegetative stages and early reproductive stages, the NDVI
ranges were much larger, indicating considerable variability in crop status (greenness,
health) at the site.
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Figure 4.3. a) Maize growth stages, where V is vegetative stage and R represents reproductive stage; Normalized
Difference Vegetation Index (NDVI) evolution, in blue; daily water requirements (ETc), in red; cumulative
Precipitation and Irrigation (Cum P+I), in green and cumulative water requirements (Cum ETc), in orange.

Figure 4.4a shows the spatiotemporal changes of NDVI at the sites. Areas with high and low
NDVI were observed at the site throughout the growing season. However, the NDVI spatial
patterns changed over time, suggesting that homogeneous or static site-specific
management may be inadequate to address crop needs over time at this site. Figure 4.4b
shows the dynamic MZ delineation obtained with unsupervised clustering of the NDVI data.
Through the growing season, the number of MZs, as well as their spatial distribution,
changed. At the beginning of the season, until 50 days after sowing, the CHC indicated that
three MZs were optimal for identifying homogeneous zones at the site. The MZ1 covered
the north-west side of the site and had the highest NDVI values; the MZ2 had intermediate
NDVI and spanned across the south of the site until the 45t day after sowing and after that
over the south-west only. The MZ3 had lower NDVI values and was initially the north-
eastern side of the site, then covered the entire western side of the field at 45 days after
sowing. From the 50t day after sowing, the CHC indicated that four clusters were best at
identifying areas with homogeneous NDVI. MZ1 and MZ2 covered similar extents than

earlier in the season. The MZ4 identified an area of moderately low NDVI at the south-



eastern portion of the site, whereas MZ3 was characterized by the lowest NDVI values, in
the north-eastern side of the site. The spatial patterns of the four MZs change only slightly
over time, until the 130t day after sowing, when the size of MZ3 increased remarkably
while MZ4’s extent decreased. The unsupervised NDVI clustering was compared to
dividing the site into four blocks, one for each maize variety. Figure 4.4c shows the CHC
values for NDVI clustering into dynamic MZ and into varietal blocks strategies through the
growing season. The dynamic MZ-design strategy had larger CHC values for the entire
growing season than the variety-block strategy, indicating that the dynamic MZs identified

by unsupervised clustering had more homogeneous NDVI than the varietal blocks.
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Figure 4.4. a) Normalized Difference Vegetation Index (NDVI) datasets measured by Sentinel 2 satellite through
the growing season; b) dynamic management zone (MZ) delineation. The letter t indicates day after sowing; and
c) Calinski-Harabaz criterion (CHC) for the NDVI grouped by maize variety (squares) and with the unsupervised
fuzzy-k clustering (dots).



Figure 4.4a shows contrasting NDVI values between the eastern and western side of the
field, especially visible along the boundary between the d6980 and p1524 varieties. The
boundary between the d6980 and p1524 varieties seemed to be a big factor in the
determination of the boundary between eastern (MZ1 and MZ2) and western (MZ3 and
MZ4) zones from 55 to 120 days after sowing (Fig. 4.4b). Figure S1f in the supporting
information shows the p1524 and d6780 varieties doing relatively poorly in July 2018. So
in addition to different soil hydrualic properties on the east side of the field, crop genetics
(e.g., pest resistance, germination rate between the varieties) and uneven management
(e.g., mechanical sowing, fertilization, soil tillage) could have been contributing factors to
the poor performance of the p1524 and d6780 varieties. Changes in MZ delineation over
time led to some changes in MZ membership for certain soil-water monitoring stations
(Table 4.3). These changes occurred frequently in the early vegetative stages (i.e., until 54
days after sowing). No MZ membership change occurred in the late vegetative and
reproductive stages. The MZs were characterized by contrasting soil properties throughout
the season. The MZ had significantly (p<0.05) different PC1 scores throughout the season
according to the Kruskal Wallis test: MZ1 and MZ2 were characterized by low PC1 scores,
whereas MZ3 and MZ4 were characterized by the highest PC1 scores (Fig. S2 in the

supporting information).

Table 4.3. Periods where one or more stations change MZ membership.
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4.3.3. NDVI and applied water

Changes in NDVI and AW across MZs are depicted in Fig. 4.5a (MZ1), 4.5b (MZ2), 4.5c
(MZ3), and 4.5d (MZ4). Through the growing season, NDVI in MZ1 and MZ2 was higher



than in MZ3 and MZ4. Furthermore, NDVI was slightly higher in MZ1 than in MZ2. Average
AW in MZ1 was close to 1 (i.e., water content was near 0¢«) throughout the entire growing
season. Average AW in MZ2 was greater than 1 at the beginning of the season (until 45 days
after sowing) and then very close to 1 through the end of the growing season. Portions of
MZ3 and MZ4 had lower NDVI values than MZ1 and MZ2. In these areas, irrigation was
likely excessive. AW was considerably higher than 1 for the entire vegetative growth of
maize and during the early reproductive stages. Once irrigation was halted in the
northeastern corner of the site (i.e., approximately over the area comprised by MZ3) at 74
day after sowing, the AW in MZ3 gradually decreased until the end of the season, while
NDVI in MZ3 remained stable. Halting irrigation in the northeastern corner of the site had
little-to-no effect on the spatial extent of MZ3 and the other MZs, as shown in Fig. 4.4c.The
analysis of the daily total within-MZ AW variance (S?) provided further support for the use
of NDVI to identify areas with similar AW conditions at the site. In Fig. 4.5e, the calculated
total MZ variance is normalized by the daily whole-site AW variance. Especially beyond 45
days after sowing (the beginning of the VT growth stage), the normalized within-MZ
variance is much less than 1, showing that a large part of the total AW variance was
explained by splitting the site into dynamic MZs which were delineated based on an analysis
of NDVI. Fraisse et al. (2001) used yield within-zone variance to evaluate soil-derived MZs
at the end of the season. Our results suggest that daily AW S 2could also be used for in-

season evaluation of management zone designs.
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Figure 4.5. Soil profile available water (AW) and NDVI averages for a) MZ1, b) MZ2, ¢c) MZ3, d) MZ4. Shaded areas
represents the maximum in minimum AW at each MZ, while dash lines show availabe water saturated (AWj,,) (0)
and field capacity point (8«). Error bars represents the maximum and minimum NDVI at each MZ. Note that AW =
1 corresponds to a soil water content equal to field capacity. Panel e) shows the daily total within-MZ weighted
variance (S%) of AW as a fraction of the daily field-wide AW variance.

4.4, Discussion

4.4.1. NDVI and irrigation scheduling simulations

The AW and NDVI time series data show that soil water content was a major factor
determining NDVI spatiotemporal variability at the site. NDV1 is an indicator of maize crop

health, and several studies have found positive correlations between NDVI, AW, and crop



growth (Scudiero et al., 2014; West et al,, 2018). However, those studies were for water
scarce conditions. Crop stress and reductions in growth can occur from too much water in
the soil profile as well as too little (Feddes et al., 1978). In the current study, where maize
was grown under nearly waterlogged conditions for most of the growing season (Fig. 4),
changes in NDVI and AW between consecutive Sentinel 2 scenes were negatively
correlated, with Pearson r equal to -0.64 (MZ1), -0.87 (MZ2), -0.79 (MZ3), and -0.83 (MZ4)
(all significant at p<0.05). Thus, as has been noted elsewhere (Long et al., 2015; Quebrajo
et al,, 2018; Scudiero et al., 2018; Shanahan et al., 2008), NDVI data alone should not be
used to make irrigation management decisions; NDVI (and/or other plant canopy
information) should be integrated with soil information to properly understand plant

processes at a site.

With respect to within-season management decisions, one way to make the connection
between NDVI-based dynamic management zone delineation and soil conditions would be
to use a simulation model to make within-season forecasts of soil and crop conditions for
different management options. Here, we determined optimal irrigation scheduling for each
growing stage using the simulation/optimization approach exposed in chapter 3 and
Hydrus-1D model (Simfinek et al., 2016). First, we simulated the field experiment using
hydraulic properties measured at each monitoring station and the recorded irrigation
schedule and ET, as boundary conditions. In demonstrating agreement between measured
AW and simulated available water (SAW), as well as showing a correspondence between
simulated transpiration (S7,) rates and NDVI, we show that (i.) the NDVI-based zoning was
consistent with a physically based model representation of the study site, and (ii.) the model
was adequately parameterized and calibrated to permit further investigation of what-if
scenarios. Second, we calculated an irrigation scheduling table for each dynamic MZ that
would allow growers to optimize transpiration, water applied throughout the growing

season.

4.4.2. Hydrus 1-D available water and transpiration simulations

The well-known Hydrus-1d model solves the Richards Equation numerically to simulate
variably saturated water flow and root water uptake in soils. The model inputs and
parameterizations used in our simulations are detailed in the supplementary material
(Hydrus 1D Simulations section). Simulations of the experiment for differing monitoring
locations all used the same inputs and parameters except for (i.) the soil hydraulic
properties, which were measured at each station during the field campaign (Table 4.2), and
(ii.) the irrigation boundary condition, which differed only for stations P10 and P11 because

irrigation was stopped during the experiment.
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Figure 4.6. a) Evaluation of profile Available Water (AW) simulations showings the fraction of error greater than
5,10, and 15%. From b) to 1) Comparison between measured Available water (AW) and simulated Available Water
(SAW) at each station (P1 - P11).

In Fig. 4.6, daily observed AW for each station is compared with daily SAW. Generally good
agreement between AW and SAW existed for all stations, although it is noted that the AW
time courses were relatively non-dynamic. Still, the simulations were done using
independently measured hydraulic properties and without any parameter fitting, so the

agreement is quite good. Missing data towards the end of the season in P7 was due to



rodents chewing on the sensor cables. Sensor loss due to rodents is a common problem in
many agricultural regions. Enough sensors should be ideally set out so that each MZ
includes more than one sensor, so that within zone spatial variability is accounted for and

as a fail-safe in case of sensor loss.

Figure 4.7 shows the weekly ST, at each MZ and the potential transpiration (T},) at the site.
At MZ1 and MZ2, ST, weekly averages were always equal or slightly smaller than potential
transpiration through the entire growing season. At MZ3 and MZ4, ST, weekly values were
remarkably lower than weekly potential transpiration. There was good correspondence
between ST, and NDVI at each MZ, with a Pearson r of 0.6 (MZ1), 0.51 (MZ2), 0.69 (MZ3),
and 0.82 (MZ4). In agreement with the results discussed for NDVI and AW data (section
4.3.2. Remote Sensing and Dynamic Management Zones Delineation), low ST, values at MZ3
and MZ4 were due to waterlogging. Stations in MZ3 and MZ4 (see Table 4.3) had AW and
SAW over 1 for most of the growing season (Fig. 4.5).
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Figure 4.7. Simulated weekly transpiration at each MZ with the growing stages. Error bars represent the maximum
and minimum and the dash line shows the weekly potential transpiration.

4.4.3. Irrigation scheduling for within-season decision making

We used the methodology exposed in chapter 3 to investigate an optimal irrigation
scheduling strategy based on dynamics MZs delineation. The main goal of the optimization
was to improve irrigation scheduling and to guarantee optimal crop conditions. This

methodology is capable of generating the optimal combination of two different irrigation



parameters, which are (i) the limit threshold or soil pressure head where irrigation is
triggered (h*); and (ii) the irrigation duration (7). As output of these simulations it is
possible to obtain optimal actual transpiration (OpT,) and the water necessary to cover

transpiration demand, which is optimal water applied (OpW A).

The methodology employed optimizes irrigation scheduling solving a
simulation/optimization problem (see chapter 3). However, considering the existence of
different MZs, and the variability within them, it is difficult for an agriculture to follow
irrigation scheduling recommendations resulting from this methodology. Thus, it would be
difficult to take within-season management decisions. In order to solve this necessity,
simulations have been repeated but considering different, new and lower pressure heads
thresholds (h;;) than the optimal one (h;;, < h*). Thus, the irrigation required (A8) to bring
soil-water status back to the optimal one might be increase. In this case, irrigation rate
(L-qte) is constant and cannot be modified, therefore, 7 is modified increasing their values.
The model inputs are summarized in the supporting information (Irrigation scheduling

section).

A dynamic-MZ irrigation approach is presented in Tables 4.4 (MZ1), 4.5 (MZ2), 4.6 (MZ3)
and 4.7 (MZ4). They represent an irrigation scheduling calendar that could have been used
at the site based on simulated soil-water balance at different growth stages. This calendar
was developed with the objectives of (i) propose an optimal irrigation scheduling allowing
agricultures to take within-season irrigation management decisions, (ii) guaranteeing
optimal crop growth (i.e.,, maximizing crop transpiration) (iii) if it is possible save water at

the end of the season.

Optimal irrigation strategies are represented in Tables 4.4 - 4.7, in bold. Below them, are
reported all irrigation strategies alternatives in order to allow agriculture to readjust
irrigation in case that some parts of the field do not follow the optimal irrigation
recommendation. In case that h* > hy,; as a general term, and following the tendency of
this work, there are two main groups; (i) MZ1 with 7=1.1 - 2.6 h-d'* and h*=-23.3 - -30 kPa;
MZ2 with t=1.9 - 2.0 h-d'! and h*=-18.4 - -30 kPa. These parameters represent medium
frequent and short irrigations. (ii) MZ3 with 7=2 h-d-! and h*=-10 - -20 kPa; MZ4 with t=2
- 2.3 h:d?and h*=-10 - -16.7 kPa. They represent very frequent and short irrigations. The
other situation that can be in the site is when h* < h,; note that in this case t increase
because water consumed might be supplied until similar values as the optimal irrigation
scheduling.

Table 4.8 shows a summary of transpiration and water applied at the end of the season in

case that optimal irrigation scheduling is applied in the field. The transpiration and water



applied from the other irrigation alternatives are not reported because it has been seen that
irrigation scheduling is dynamic during the growing season, therefore, it was not possible
to represent these results in a table. However, it is assumed that transpiration is lower than
results reported in Table 4.8, because they do not represent optimal irrigation scheduling.
Note thatin even though in MZ1 and MZ2 any soil water content problem has been observed
during this work, transpiration increases from 4.8 to 8 %. But the most transpiration
improvement is represented by MZ3 and MZ4, where it increases a 23.9 and 52.6 %,
respectively. Considering water applied, the optimal strategies apply less water in all cases
than the experiment simulations. Water saving in MZ1 and MZ2 is quite similar, -11 and -
12.8 %, while in MZ3 and MZ4, optimal irrigation applies a -28.5 and -16.6 % of water.

Considering all data presented and discussed in this work, it has been seen that even though
NDVI is not an appropriate variable to determine irrigation scheduling, when it is
integrated with sensors and ground measurements, it helps us to understand if there is
some problem regarding on irrigation scheduling. In this case, we have seen that in two
different MZs of the filed, waterlogging, crop genetics and soil tillage could decrease crop
transpiration, showing low NDVI values. In addition, Hydrus 1-D simulations have
simulated the field experiment to allow us to simulate what-if scenarios in order to propose
a different irrigation scheduling strategy. In this case, strategies proposed are capable of
increasing transpiration with less water, verifying that water clogging could be the main

problem in this field.
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Table 4.8. Optimal actual transpiration (OpT,) and optimal water applied (OpWA) results compared with
simulated actual transpiration (S7,) and simulated water applied (SAW).

OpT, (mm) 0pT, /ST, (%) OpWA (mm) OpWA/SAW (%)

MZ1 405.6 8.0 525.5 -11.0
MZ2 405.6 4.8 517.8 -12.8
MZ3 107.5 239 217.5 -28.5
MZ4 271.7 52.6 350.2 -16.6

4.5. Conclusions

Spatial variability depends on different variables and parameters that complicate irrigation
scheduling decisions. In addition, no single methodology for defining irrigation scheduling
exists, nor one that is able to provide an overview of the whole system. In this work, we
have improved irrigation scheduling in a maize field site where four different maize
varieties were sown and where irrigation was applied with unifrom criteria. The
improvement is based on MZ delineation with unsupervised NDVI clustering. It is proved
that this is the most optimal way to divide the field into different zones rather than by maize
varieties. In this case, therefore, crop variety is not the only variable to consider when MZs
are delineated; for instance, soil properties, soil tillage and crop genetics should also be
taken into account. Furthermore, it is shown that MZs have a dynamic pattern, changing
their extension and number during the growing season. In this case, the maximum number
of MZs were 4; MZ1 and MZ2, where NDVI values represent a normal crop performance,
while MZ3 and MZ4 present anomalous low NDVI measurements, which can be related

with maize growth problems.

AW measurements are employed to demostrate that soil water conditions in MZ3 and MZ4
are different than those in MZ1 and MZ2. In the former case, it is shown that soil hydraulic
properties represent a soil with higher water retention, and thus uniform and excessive
irrigation (10.2 % more than the ET,) lead to waterlogging. Furthermore, it is demostrated
that a relationship exists between AW and NDVI at each MZ, revealing that irrigation
scheduling was not appropiate in MZ3 and MZ4. These measurements are also used to
validate MZ delineation. In this case, S? results show that there is a gain in terms of
uniformity when the field is divided into different MZs. Thus, water content sensors are able

to validate and complement information provided by MZ delineation.

Hydrus 1-D has been employed in order to propose an appropiate irrigation scheduling for

each MZ as well as to simulate “what if” scenarios,. The field experiment was first simulated



in order to validate the its own representation. The results show that a good agreement
exists between AW and SAW, thereby showing that Hydrus 1-D provides a reasonable
reproduction of the field experiment. With regard to the optimal irrigation results, we wish
to stress that optimal irrigation strategies are also dynamic with MZ patterns. In all cases,
optimal irrigation scheduling strategies are able to increase transpiration and save water
when compared with experimental simulations. Moreover, there is a remarkable
improvement in MZ3 and MZ4, where a 28.5 and 16.6 % volume of water is saved, while
transpiration increases by 23.9 and 52.6 %, respectively. Simulation models therefore
enable us to confirm that one of the issues in this field was the water logging occurring in

MZ3 and MZ4, produced by the unifrom irrigation scheduling applied.

This work reports that irrigation scheduling can be improved by the correct combination of
different methdologies that provide direct or indirect irrigation scheduling information. All
of these methodologies are employed for different purposes and each one needs to be

complemented by the others, thereby providing a full overview of the system as a whole.



Acknowledgements to project Low Input Sustainable Agriculture (LISA)
funded by RIS3CAT



Chapter 5

Conclusions




In this thesis irrigation scheduling has been improved by combining kinds of measurements

from several methodologies and tools. Each of them has been used with the main goal to be

employed for specific purposes and objectives. That is why that in this thesis concludes

with:

° In our conditions and scenarios water content sensors were a more useful and

accurate tool to monitor water content in an irrigated field than the remote sensing

algorithm tested.

@)

The DISPATCH algorithm provides poor spatial-temporal resolution.
Furthermore, water content provided by DISPATCH algorithm represents
the first 5 cm depth and not the water content in the root zone which is

necessary to accurate schedule irrigation.

e  When a simulation model has predictive capability, it is a powerful tool to optimize

irrigation scheduling.

)

The methodology presented in chapter 3 optimizes irrigation and
maximizes economic net margin. In addition, this methodology increases

net margin resulting from traditional irrigation scheduling method.

Optimal irrigation scheduling depends on soil hydraulic properties of each
field, because they modify water movement and how water is distributed

through the root zone.

e [ncontrastto algorithms which measures water content using remote sensing data,

in our field site, the crop cover remote sensing data provided powerful information

for irrigation scheduling, specifically to determine field spatial variability and to

delineate management zones in the agriculture field.

)

In our field site, management zones have a dynamic pattern during the
growing season. This dynamics pattern has been validated with water
content sensors, showing that when field is divided into different zones,
available water spatial variability decreases rather than when the field is

considered as a single zone.

The fact of existence of different management zones shows that irrigation
scheduling must be readjusted to consider specific features of each

management zone. In addition, irrigation scheduling might be dynamic. In
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our field site, optimal irrigation scheduling strategy saves water and

increases transpiration.

o Soil water status and the irrigation scheduling strategy conducted in the
field site, directly affected crop status and its development. Thus, an
optimal irrigation strategy and a correct soil water content monitoring is

crucial to guarantee crop yield.

Finally, the authors of this thesis wants to conclude remarking that if irrigation scheduling
should be improved, all methodologies employed in this thesis must be used together. Each
one provides different kind of information but at the same time, all of them need the other
to be complemented. Thus, irrigation scheduling cannot be improved using a single

methodology because the point of view ultimate result is incompleted.

To conclude and considering FAO predictions, the significant projected increase in world
population and the climate change scenario, the potential implication of this thesis is to
determine how irrigation scheduling can become more sustainable, by increasing crop

productivity, but at the same time saving water.
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Supporting information

This section comprises supporting information for Chapters 4.

Appendix A. Supplementary material of Chapter 4: Dynamics management
zone to improve irrigation scheduling

Figure S1. Historical land use and topography modifications at the study site.
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Figure S2. a) Eigenvalue and percent of variance explained by the first eight components of
the principal component (PC) analysis; b) bi-plot of select soil properties (clay. fine silt.
coarse silt. sand. and organic matter (OM) content; bulk density (pb); water content at
saturation (0s); residual water content (Or); water content at field capacity (6fc); water
content at wilting point (6wp); saturated hydraulic conductivity (Ks); and shape
parameters a and n) for PC1 and PC2; c) same for PC1 and PC3; d) Pearson correlation
matrix for the first three PCs and selected soil properties (significant (p<0.05) correlations
highlighted in red); and e) averages (bars) and standard deviations (lines) ofPC1 for the
four management zones (MZs) through the growing season. Capital letters indicate

significant (p<0.05) differences within MZs according to the Kruskal-Wallis test.



Hydurs-1D Simulations

Hydrus-1d (Simtinek et al., 2008, 2016) was used to simulated soil moisture dynamics and
water balance components at each monitoring station. Each simulation spanned 105 days,
from the 18t to the 123rd day after sowing. The 60 cm soil profile consisted of three
layers/materials, as specified in Table 2. Soil hydraulic properties were specified using the

van Genuchten-Mualem model (van Genuchten, 1980) Eq. (51-52).)
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where 6 (cm3-cm-3) is the volumetric water content; h is the soil water pressure head (cm);
0, (cm3-cm-3) is saturated water content; 8, (cm3-cm-3) is residual water content; K, (cm-d-

1) is saturated hydraulic conductivity; n and a are dimensionless shape parameters; S, =
6-6,
05s—6

sandm=1-1/n.

The potential evaporation and transpiration values needed in the root water uptake model,
equations (9) and (11), were calculated by partitioning ET, into potential evaporation E,
and transpiration T,, based on the Canopy Cover (Raes et al., 2010), which determines that
ET. = aE, + (1 — a)T,, being a the soil cover fraction. Atmospheric boundary condition

was imposed at the surface and a free drainage condition was used at the bottom.

In Hydrus, root water uptake is simulated using a sink term S Eq. (S3) which has three parts,
the potential transpiration rate (7p) (cm-d-1), the root density distribution (5) (cm1), and

the dimensionless water stress function («a(h)),

S(h,z,t) = a(h,z,t)B(z,t)T,(t) (S3)

The actual transpiration rate (Tq) (cm-d-1) Eq. (S4) is calculated by integrating Eq.(S3) over

the root zone Lr.

T, = J- S(h.z.t)dz = Tpf a(h,z,t)B(z,t)dz, (S4)
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Roots were measured twice a month during the field campaign excavating a plant and
measuring root depth. This information is used in the model to consider root growth and to
make realistic simulations in terms of root water uptake through the soil profile. Water

stress (a(h)) function model employed in these simulation is Feddes et al. (1978) Eq. (S5)
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Parameterized by four critical values of pressure head. this function prescribes that uptake
is maximal (¢ = 1) when the soil water pressure head is between h, = h > h;. drops off
linearly above or below that range (h; > h > h,orh; > h > h,), and becomes zero
whenever h < h, or h > h,. According to the database in Hydrus-1D, the parameter values
for maize are h1 = -1.5, h2 = -3.0, h3 = -60. and hs = -800. kPa, respectively. The value of h3

was allowed to vary as a function of evaporative demand as modeled by Hyrdurs-1D.

Three observation nodes were inserted in the domain at the same depths as the soil
moisture sensors, 15, 35 and 50 cm. Soil moisture values simulated at the observation nodes
were used to determine the simulated available water (SAW), using the same procedure as
with the field data.

Simulated actual transpiration (ST, ) and simulated water applied (SWA) results from each
station were extracted. ST, and SWA were calculated averaging stations results

considering dynamics MZ.

Irrigation Scheduling

In order to apply Fontanet methodology Hydrus 1D is also employed. All soil, environmental
and crop inputs are the same as in previous Hydrus 1D simulations. Irrigation parameters
have been constrained into h*=-10. -20. -30. .... -100 kPa and 7 = 1. 2. .... 4 h-d-1. In this case
irrigation rate (I,4:) is constant (6.5 I-h-1-m-2). The triggered depth (Z;,) changes during
the growing season and it is located through the soil profile depending on root growth
measurements. New h;,considered to simulate alternative irrigation scheduling and dryer

conditions are defined from 0 to -100 kPa.



Irrigation parameters have been defined at each station and also at different crop growing
stages (V0-V5, V6-V10, V11-V15, VT, R1-R6). The optimal irrigation at each grow stage

period and MZ have been defined averaging these irrigation parameters.

Finally, Optimal actual transpiration (OpT,) and optimal water applied (OpW A) at the end

of the season in each MZ are also computed averaging results from each station.



