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Abstract

Fibre Reinforced Polymers (FRP) are widely employed in lightweight applica-
tions mainly thanks to their excellent specific strength and stiffness. Nonetheless,
FRP suffer from a lack of ductility and toughness which leads to fibre tensile
failure with nearly any damage symptom. Consequently, composite materials
are often overdesigned, which potentially limits the costs and weight savings.

This also makes them unsuitable for applications where ductility is mandatory.

Fibre hybridisation is a promising strategy which can overcome the quasi-brittle
behaviour and low toughness of FRP. When a Low Elongation (LE) fibre is
combined with a High Elongation (HE) fibre in a single matrix, a hybrid material
is obtained. Within a proper hybridisation design, the failure of the LE fibre in
the hybrid can be delayed compared to that of the baseline non-hybrid composite,
something known as the hybrid effect. Moreover, an increase of ductility can
occur, getting rid of the catastrophic brittle failure of composite materials.
Currently, there are three main reasons to explain this phenomenon: dynamic

effects, thermal residual stresses and changes in the failure development.

Despite the great benefits of hybrid composites, their fibre tensile failure pro-
cess is not yet entirely understood. Moreover, derived from this insufficient
understanding, there is a lack of efficient tools to predict such failure. Currently,
different models exist in the literature that attempt to simulate the failure and
damage development of hybrid composite materials. Nonetheless, most models
omit dynamic effects and assume simplistic elastic matrix behaviours. In addi-
tion, models usually consider the fibres to be placed within a square or hexagonal
packing, instead of being randomly distributed. Such a simplification does not
allow to properly simulate hybrid composites with fibres of different radius and
does not permit to accurately capture the stress redistribution around broken
fibres. Last but not least, some models cannot compute the entire stress-strain
curve of the material, which does not allow to explicitly predict ductile effects.
Thus, the development of new models, able to characterise the tensile failure

process of hybrid composites more accurately, is necessary.

Departing from the literature need of developing more accurate models, as well
as the requirement of designing and further understanding composite materials
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exhibiting a ductile behaviour, the main purpose of this thesis is to develop an
efficient tool for predicting the tensile failure process in hybrid unidirectional
FRP under fibre tensile loading. The model proposed must consider the main
mechanisms involved in the tensile failure of hybrid composites, and should
also be capable of studying non-hybrid materials. Derived from this, the second
main purpose of this work is to establish the influence that different parameters

have on the tensile response and failure development in hybrid composites.

On the first contribution originated from this work, a micromechanical pro-
gressive failure model which can simulate the fibre tensile failure and damage
development in hybrid unidirectional FRP is formulated. The model is validated

by comparing with literature results exhibiting a good agreement.

On the second article derived from this thesis, the model is further improved
by including a more realistic stress redistribution around broken fibres. The
influence the matrix behaviour (plastic or elastic) has on the modelling results is
investigated. Results suggest that an elastic matrix cannot realistically capture

either the formation of clusters or the damage development in hybrid composites.

On the third article of this work, dynamic effects and thermal residual stresses
are added into the model. The influence these features have on the failure of
hybrid composites is studied. Results show that, while the dynamic effects have
a large influence on the formation of clusters, the thermal residual stresses do
not. Their effect in final failure is very reduced for both. Moreover, hybrid

composites exhibiting large ductile response are shown.

On the fourth contribution derived from this work, the influence that the speci-
men size has on the failure and damage development in hybrid composites is
investigated. Results prove that scaling up the composite length causes an ear-
lier failure, marginally decreases the ductility of the material, but considerably
increases the hybrid effect. Contrary to this, scaling up the composite cross-
section decreases the hybrid effect, may delay final failure and may increase
ductility. Moreover, the maximum cluster size always increases by increasing

the composite volume and the presence of ductility does not alter the size effects.

On the final contribution of this thesis, the influence the hybrid configuration
has on the tensile response and damage development in hybrid composites is ex-

plored. Furthermore, the model is validated by comparing it against experimental



results of hybrid composites. Results show that the intrayarn hybridisation leads
to higher hybrid effects, yield stress and strength than the interlayer and in-
tralayer configurations. However, the interlayer and intralayer lead to greater
failure and ductile strains than the intrayarn. The dispersion of the fibres is seen
to be a key parameter. Finally, the micromechanical model shows qualitatively a

good agreement compared with experimental data.
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Resum

Els polimers reforcats amb fibres (FRP) sén ampliament utilitzats en aplicacions
de baix pes principalment gracies a la seva excel-lent resistencia especifica i
rigidesa. Tot i aixi, els FRP pateixen d’una manca de ductilitat i tenacitat que
condueix a la ruptura de fibres a traccié sense practicament cap simptoma de
dany. Conseqiientment, els materials composits generalment es sobredimen-
sionen, cosa que limita el potencial estalvi de cost i pes. Aixo també els fa

inadequats per aplicacions on la ductilitat és necessaria.

La hibridacio de fibres és una prometedora estratégia que pot eradicar el com-
portament quasi-fragil i la baixa tenacitat dels FRP. Quan una fibra de Baixa
Elongacié (LE) es combina amb una d’Alta Elongacié (HE) en una sola matriu,
s’obté un material hibrid. Mitjancant un disseny apropiat, la ruptura de la fibra
LE en I’hibrid pot ser retardada comparada amb la del material no-hibrid de base,
fenomen conegut com a efecte hibrid. D’altra banda, es pot produir un augment
de la ductilitat, aconseguint desfer-se de la ruptura fragil i catastrofica dels
materials composits. Actualment, existeixen tres principals raons per explicar
aquest fenomen: efectes dinamics, tensions termiques residuals i canvis en el

procés de trencament.

Malgrat els grans beneficis dels composits hibrids, el seu procés de ruptura a
traccid en la direccié de les fibres encara no esta totalment compres. A més a
més, derivat d’aquest insuficient coneixement, no hi ha eines eficients per predir
aquest trencament. Actualment, existeixen diferents models en la literatura
que permeten simular la ruptura i el desenvolupament de dany en materials
composits hibrids. No obstant aix0, la majoria de models ometen els efectes
dinamics i assumeixen matrius amb un simple comportament elastic. A més,
els models usualment consideren que les fibres estan col-locades en un paquet
quadrat o hexagonal, en lloc d’estar distribuides aleatoriament. Tal simplificacié
no permet simular adequadament composits hibrids amb fibres de diferent radi
i no possibilita capturar amb precisi6 la redistribucié de tensié al voltant de
fibres trencades. Per dltim, alguns models no poden capturar la corba tensi6-
deformacié en la seva totalitat, cosa que no permet predir efectes ductils de

forma explicita. Per tant, el desenvolupament de nous models, capagos de
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caracteritzar el procés de ruptura a traccié de composits hibrids amb major
fiabilitat, és necessari.

Partint de la necessitat en la literatura de desenvolupar models més precisos,
aixi com també el requeriment de dissenyar i comprendre amb major exactitud
materials composits que presentin un comportament ductil, el proposit principal
d’aquesta tesis és desenvolupar una eina eficient per predir el procés de rup-
tura a tracci6é de materials unidireccionals hibrids FRP sotmesos a carregues
longitudinals. El model proposat ha de considerar els principals mecanismes
involucrats en la ruptura a traccié de composits hibrids i també hauria de ser
capag d’estudiar materials no-hibrids. Derivat d’aix0, el segon proposit principal
d’aquest treball consisteix en establir la influéncia que diferents parametres
tenen sobre la resposta a traccié i el desenvolupament de dany en materials
hibrids.

En la primera contribucié originada d’aquest treball, es formula un model
micromecanic de ruptura progressiu capa¢ de simular el trencament de fibres a
traccio i el desenvolupament de dany en materials unidireccionals hibrids FRP.
El model és validat comparant-lo amb resultats de la literatura mostrant una

gran conformitat.

En el segon article derivat d’aquesta tesis, el model es millora encara més
mitjancant una redistribuci6 de tensions més realista al voltant de les fibres
trencades. La influéncia que el comportament de la matriu (plastica o elastica)
té en els resultats modelats és investigada. Els resultats suggereixen que una
matriu elastica no pot capturar de forma realista ni la formacié de cldsters, ni el

desenvolupament de dany en composits hibrids.

En el tercer article d’aquest treball, s’inclouen efectes dinamics i tensions
termiques residuals en el model. La influéncia que aquests fenomens tenen en
la ruptura de composits hibrids és estudiada. Els resultats mostren que, mentre
que els efectes dinamics tenen una gran influeéncia en la formaci6 de clusters,
les tensions residuals no. El seu efecte en la ruptura final és molt reduit per tots

dos. A més, es mostren materials composits amb una gran ductilitat.

En la quarta contribucié obtinguda d’aquest treball, s’investiga la influeéncia
que la mida de la proveta té en el trencament i el desenvolupament de dany

en composits hibrids. Els resultats demostren que augmentar la longitud del



compost provoca un trencament prematur, disminueix lleugerament la ductilitat
del material, perd augmenta considerablement 1’efecte hibrid. Contrariament,
augmentar la secci6 transversal del composit disminueix I’efecte hibrid, pot
endarrerir el trencament i pot amplificar la ductilitat. A més, la mida maxima
del clister sempre creix quan s’augmenta el volum del compost i la preséncia

de ductilitat no altera els efectes de mida.

En la contribucid final d’aquesta tesi, s’explora la influéncia que la configuracié
hibrida té en la resposta a traccié i el desenvolupament de dany en composits
hibrids. A més a més, el model es valida comparant-lo amb resultats experi-
mentals de compostos hibrids. Els resultats mostren que la hibridaci6 intrayarn
produeix efectes hibrids, tensié de fluéncia i resistencia més elevats que la confi-
guracio interlayer i intralayer. Tot i aix0, les configuracions interlayer i intralayer
presenten una deformaci6 dltima i una ductilitat major que I’intrayarn. La dis-
persi6 de les fibres és un parametre clau. Finalment, el model micromecanic

mostra qualitativament un bon acord comparat amb les dades experimentals.
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Resumen

Los polimeros reforzados con fibras (FRP) son ampliamente utilizados en aplica-
ciones de bajo peso principalmente gracias a su excelente resistencia especifica
y rigidez. Sin embargo, los FRP sufren de una ausencia de ductilidad y tenacidad
que conlleva a la rotura de fibras a traccién sin apenas ningin sintoma de dafio.
Consecuentemente, los materiales compuestos generalmente se sobredimensio-
nan, lo cual limita el potencial ahorro de coste y peso. Esto también los hace

inadecuados para aplicaciones donde la ductilidad es necesaria.

La hibridacién de fibras es una prometedora estrategia que puede erradicar el
comportamiento casi-fragil y la baja tenacidad de los FRP. Cuando una fibra de
Baja Elongacién (LE) se combina con una de Alta Elongacién (HE) en una sola
matriz, se obtiene un material hibrido. Mediante un disefio apropiado, la rotura
de la fibra LE en el hibrido puede ser retardada comparada con la del material
no-hibrido de base, fendmeno conocido como efecto hibrido. Ademds, se puede
producir un incremento de ductilidad, consiguiendo asi deshacerse de la rotura
fragil y catastréfica de los materiales compuestos. Actualmente, existen tres
principales razones para explicar este fendmeno: efectos dindmicos, tensiones

térmicas residuales y cambios en el proceso de rotura.

A pesar de los grandes beneficios de los compuestos hibridos, su proceso de
rotura a traccién en la direccién de las fibras ain no estid enteramente com-
prendido. A mds a més, derivado de este insuficiente entendimiento, no hay
herramientas eficientes para predecir tal ruptura. Actualmente, existen distintos
modelos en la literatura que tratan de simular la rotura y el desarrollo de dafio en
materiales compuestos hibridos. No obstante, la mayoria de modelos omiten los
efectos dindmicos y asumen matrices con un simple comportamiento elastico.
Asimismo, los modelos usualmente consideran que las fibras estdn colocadas en
un paquete cuadrado o hexagonal, en vez de estar distribuidas aleatoriamente.
Tal simplificacién no permite simular adecuadamente compuestos hibridos con
fibras de diferente radio y no posibilita capturar con precision la redistribucién
de tension alrededor de fibras rotas. Por dltimo, algunos modelos no pueden cap-
turar la curva tension-deformacién en su totalidad, lo cual no permite predecir

efectos dictiles de forma explicita. Por tanto, el desarrollo de nuevos modelos,
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capaces de caracterizar el proceso de rotura a traccién de compuestos hibridos
con mayor fiabilidad, es necesario.

Partiendo de la necesidad en la literatura de desarrollar modelos mds precisos,
asi como también el requerimiento de disefiar y entender con mayor exactitud
materiales compuestos que presenten un comportamiento ductil, el propdsito
principal de esta tesis es desarrollar una herramienta eficiente para predecir
el proceso de rotura a traccion de materiales unidireccionales hibridos FRP
sometidos a cargas longitudinales. El modelo propuesto debe considerar los
principales mecanismos involucrados en la rotura a traccién de compuestos
hibridos y también deberia ser capaz de estudiar materiales no-hibridos. Derivado
de esto, el segundo propdsito principal de este trabajo consiste en establecer
la influencia que distintos pardmetros tienen en la respuesta a traccion y el

desarrollo de dafio en materiales hibridos.

En la primera contribucién originada de este trabajo, se formula un modelo
micromecanico de rotura progresivo capaz de simular la rotura de fibras a
traccion y el desarrollo de dafio en materiales unidireccionales hibridos FRP. El
modelo es validado compardndolo con resultados de la literatura mostrando una

gran conformidad.

En el segundo articulo derivado de esta tesis, el modelo se mejora atin mas
afiadiendo una redistribucién de tensién mds realista alrededor de las fibras rotas.
La influencia que el comportamiento de la matriz (plastica o eldstica) tiene en
los resultados modelados es investigada. Los resultados sugieren que una matriz
elastica no puede capturar de forma realista ni la formacién de cldsteres, ni el

desarrollo de dafio en compuestos hibridos.

En el tercer articulo de este trabajo se incluyen efectos dindmicos y tensiones
térmicas residuales en el modelo. La influencia que estos fenémenos tienen en
la rotura de compuestos hibridos es estudiada. Los resultados muestran que,
mientras que los efectos dindmicos tienen una gran influencia en la formacién
de clusteres, las tensiones residuales no. Su efecto en la rotura final es muy
reducido para ambos. Ademads, se muestran materiales compuestos con una gran
ductilidad.

En la cuarta contribucién derivada de este trabajo, se investiga la influencia

que el tamafio de la probeta tiene en la rotura y el desarrollo de dafio en los



compuestos hibridos. Los resultados demuestran que aumentar la longitud del
compuesto causa una ruptura prematura, disminuye ligeramente la ductilidad
del material, pero aumenta considerablemente el efecto hibrido. Contrariamente,
aumentar la seccién transversal del compuesto disminuye el efecto hibrido,
puede retrasar la rotura y puede incrementar la ductilidad. Ademas, el tamafio
méximo del clister siempre crece al aumentar el volumen del compuesto y la

presencia de ductilidad no altera los efectos de tamaiio.

En la contribucién final de esta tesis, se explora la influencia que la configuracion
hibrida tiene en la respuesta a traccién y el desarrollo de dafio en compuestos
hibridos. Ademads, el modelo se valida compardndolo con resultados experi-
mentales de compuestos hibridos. Los resultados muestran que la hibridacién
intrayarn conduce a efectos hibridos, tensioén de fluencia y resistencia mayores
que las configuraciones interlayer y intralayer. Sin embargo, las configuraciones
interlayer y intralayer presentan una deformacién tdltima y una ductilidad mayor
que la intrayarn. La dispersion de las fibras es un pardmetro clave. Finalmente,
el modelo micromecanico muestra cualitativamente un buen acuerdo comparado

con los datos experimentales.

xliii



xliv



Part |

Introduction and literature review






Introduction

1.1 Contextual background

Composite materials consist of mixing two or more components during the
manufacturing process, with the aim of marrying together the best qualities
of each constituent. Unlike metallic alloys, each material retains its separate
physical, chemical and mechanical properties. One constituent works principally
as a matrix while the other works as a reinforcement. The fibres, acting as
reinforcements, are stiff high-strength fibres that are the main loading constituent.
Usually, the length of the fibres is much greater than their radius. This is
known as the aspect ratio. Continuous fibres have long aspect ratios, whereas
discontinuous fibres have short aspect ratios. The matrix, on the other hand,
has a low stiffness and strength compared to the fibres and, above all, transmits
the loads between fibres and gives the geometrical shape to the structure, see
Fig. 1.1. The matrix can be a polymer, metal or a ceramic. Polymers have low
stiffness and strength, metals have intermediate strength and stiffness and high

ductility, while ceramics have high stiffness and strength but are brittle.

Figure 1.1: Microscopic representation of a composite material, showing the fibres
and the matrix. Notice that only a small volume is here represented, since the real
material would contain millions of fibres. a) continuous composite and b) discontinuous
composite.

Fibre Reinforced Polymer composites (FRP) appeared in the early 1960s. These
FRP composites combine carbon or glass fibres, which have a high specific

stiffness (high stiffness by mass unit) and high specific strength (high strength by
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mass unit), with polymer matrices. Thus, FRPs have the advantage of exhibiting
a considerable strength comparable to traditional metals like steel, but with a
greatly reduced weight, which makes them highly attractive. Nowadays, the use
of FRP is firmly established in the aircraft industry, wind turbine components,
spacecraft, motorsports and high specification sporting equipment, mainly thanks
to their low weight and excellent stiffness and strength. Moreover, FRP are

being used more and more in other applications such as the automotive industry.

Continuous FRPs are stacked into thin layers which, in the case of carbon FRP,
typically range from between 0.05 — 0.2 mm thick. Layers must be stacked
one on top of the other to obtain a laminate. A laminate may have all its
fibres oriented in the same direction, leading to a Unidirectional (UD) composite
material, or it may have layers where the fibres are oriented in different directions,
thus leading to a multidirectional composite laminate, see Fig. 1.2. Such design
freedom allows designers to maximise and optimise the material by aligning the
fibres in the direction of the most critical loads, although this, admittedly, makes

the material more difficult to analyse.

Figure 1.2: Microscopic representation of a composite material laminate comprised of
3 layers, a) a unidirectional composite with all fibres oriented in the same direction and
b) a multidirectional composite with layers oriented in different directions.

Despite all the benefits and advantages composite materials offer compared to
those of traditional metals, they are not trouble-free. Like many other materials,
composite materials suffer from a lack of toughness and, consequently, exhibit a
quasi-brittle failure behaviour, which leads to fibre tensile failure with barely
any damage symptoms [1-3]. Moreover, their failure process is very complex,
involving different failure mechanisms such as damage (loss of stiffness and
strength), fatigue (loss of strength under cyclic loading), debonding (loss of
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adherence between fibre and matrix), delamination (loss of adherence between
layers), matrix cracking, matrix yielding and fibre breakage. Nowadays, these
complex phenomena are not yet entirely understood and are under continuous
study. As a consequence, there is a lack of efficient predictive tools able to
accurately predict all these failure mechanisms [4, 5]. These facts, together
with the composites lack of toughness, lead to designers employing large safety
factors when designing structures. This in turn, does not allow the benefits of
the composites to be fully exploited. Moreover, it also limits their applicability
to other industries like the automotive or the construction industries, where the
lack of toughness is a major concern and a serious stumbling block.

1.2 Motivation

Fibre hybridisation is a potential solution to the quasi-brittle failure behaviour
dilemma of composite materials. In a fibre hybrid composite, two fibres with
different failure strains are mixed. Within a proper hybridisation design, the
failure process of the material can be altered, leading to hybrid effects and a
larger ductility than that of non-hybrid composites [3, 6-21]. The development
of such materials exhibiting a ductile failure with a wide margin between damage

initiation and final failure is therefore greatly attractive.

Despite their potential to increase the low toughness of composite materials,
the state of the art in hybrid composites is not yet sufficiently advanced enough.
Currently, there are still several unknowns concerning the failure of hybrid
composites. In addition, there is a lack of models able to accurately capture the
tensile failure of hybrid composites. Overall, the current state of the art models
present significant discrepancies compared with experiments. Therefore, the
development of more advanced models that can close this gap and move the

state of the art of hybrid composites forward is necessary.

1.3 Objectives

This thesis presents two main research objectives. The first is to develop a mi-
cromechanical numerical model able to simulate the tensile failure and damage
development in hybrid unidirectional polymer composite materials under fibre

tensile loading. Following on from this, the second main objective consists of

1.2 Motivation
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establishing the influence that different parameters have on the tensile response

and failure development of hybrid composites.

In order to achieve these goals, different specific objectives have been derived.

These, given below, have been addressed systematically.

A)

B)

®)

D)

E)

Develop a micromechanical Fibre Bundle Model (FBM) which can sim-
ulate hybrid composites containing a random distribution of fibres with
different elastic and geometrical properties. The model must capture the
entire failure process of these materials, so as to assess their ductility. The
model formulation should be flexible in order to allow new effects to be
added without having to reformulate the entire model. Furthermore, it
must also be computationally efficient for solving materials with a large

volume.

Formulate an analytical model for predicting the stress redistribution
around a cluster of broken fibres in hybrid composites taking into account
the material properties of each fibre, the volume fractions, the specimen
size as well as the matrix behaviour involved (i.e. plastic or elastic).
Reveal the influence that the fibre properties, as well as matrix yielding,
have on the stress redistribution around fibre breaks, the formation of clus-
ters and damage progression with different hybrid composites. Establish
whether the common assumption of modelling the matrix as elastic, is

acceptable or not.

Include dynamic effects, due to the failure of broken fibres and thermal
residual stresses as a result of the manufacturing process, in the FBM
developed. Expose the impact that the dynamic effects and thermal
residual stresses have on the tensile behaviour of hybrid composites as

well as on the formation and development of clusters.

Investigate the influence that specimen size has on the hybrid effect,
formation of clusters and damage development in hybrid composites (i.e.
the so-called size effect).

Propose an algorithm able to generate realistic fibre packings of hybrid
composites containing a random distribution of fibres with their own

radius, and with the fibres being hybridised within an interlayer, intralayer
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or an intrayarn configuration. Reveal whether the hybrid configuration
has any significant impact on the hybrid effect and damage development
using the realistic fibre packing developed.

1.4 Thesis structure

The present thesis has been developed as a compendium of five peer-reviewed
publications, each of which addresses the specific objectives A)-E) of the thesis,
respectively. With this in mind, the document has been divided into several

chapters, grouped into different parts according to their context.

In Chapter 2, a literature review into hybrid composite materials is thoroughly
outlined. This review first gives an introductory overview to hybrid composites
as a whole, explaining the synergistic effects that occur in these materials.
Afterwards, the most relevant micromechanical models available in the literature
to predict the failure of hybrid and non-hybrid composites under longitudinal
loading are analysed. It is worth mentioning that this review, and the greater
part of this thesis, will deal with continuous FRP composites, made of carbon
and/or glass fibres, since these materials are more attractive thanks to their high
performance. Together with Chapter 1, this constitutes Part I of this thesis.

The core of this work is presented in Part II, which is composed of Chapters
3,4, 5, 6 and 7. In these chapters, the whole text of each publication derived
from this thesis is presented, respectively, each one addressing objectives A)-E)
accordingly. To give the present thesis coherence, an introductory overview to

the contribution each paper makes is given at the beginning of each chapter.

The culmination of this thesis is presented in Part III, with Chapter 8 providing
a general discussion of the results obtained from all the papers, and Chapter 9

drawing the general conclusions and outlining future work.

Finally, a reproduction of the papers published at the time of the submission of
the thesis, in their journal form, is included in Appendix A. A conference paper

derived from the thesis is also enclosed in the Appendix.

1.4 Thesis structure
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Literature review

2.1 Fibre hybridisation in polymer composites

Fibre hybridisation is a promising strategy which can overcome the inherent
quasi-brittle behaviour and low toughness of composite materials [3, 6-18, 22—
28]. In a hybrid composite, two fibres with different mechanical properties are
embedded into a single matrix. It is important to remark that both fibres simply
need to have different mechanical properties, but can be of the same nature, e.g.
a hybrid can be made of two different carbon fibres. The fibre with lower failure
strain is called a Low Elongation (LE) fibre, while its counterpart is known as
a High Elongation (HE) fibre. Thanks to this combination, the failure strain
of the LE fibre can be enhanced compared to that of the baseline non-hybrid
composite. This remarkable fact is known as the ‘hybrid effect’. In addition, an
increase in ductility and a more gradual failure can be obtained by removing
the catastrophic brittle failure of composite materials [3, 6-21]. This is usually
called ‘pseudo-ductility’ since it emulates the behaviour of ductile metals by
means of a controlled damage failure progress, see Fig. 2.1. It should be noted
that the failure strain of the HE fibre does not necessarily need to be ‘large’,
but it must be larger than that of the LE fibre. It is also worth mentioning that,
currently, there is no evidence that fibre hybridisation increases the toughness
of non-hybrid composites. Nonetheless, owing to the larger ductility of hybrid
materials, an increase of toughness is theoretically expected.

A a) A b) A C)

Stress

Strain > Strain > Strain

Figure 2.1: Typical failure response of different composite materials: a) a common
non-hybrid composite with a brittle failure, b) a hybrid composite within the LE and HE
fibre population failing at different strains without progressive failure and c) a ductile
hybrid composite with a progressive failure.

Fibre hybridisation may take place at three levels or configurations which can

also be combined [3, 19]: interlayer or layer-by-layer, where the layers of two
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fibre types are stacked onto each other, intralayer or yarn-by-yarn, where the
two fibre types are mixed within the layers but in separate yarns, and intrayarn
or fibre-by-fibre or intermingled, where the fibres are mixed at the fibre level,
see Fig. 2.2.
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Figure 2.2: Main hybrid configurations: a) interlayer hybrid, with the different fibres
placed in alternating layers, b) intralayer hybrid, with the fibres placed in different
bundles and c) intrayarn hybrid, with the fibres completely mixed at the fibre level. The
LE fibre is shown in blue, and the HE fibre in green.

The so-called ‘hybrid effect’ was first described by Hayashi [23], who observed a
40% failure strain enhancement on carbon fibre layers in a carbon-glass interlayer
hybrid composite compared with the baseline carbon non-hybrid material. To
determine the hybrid effect, different definitions are available. The most basic of
which is also the most widely accepted: ‘the apparent failure strain enhancement
of the LE fibre in a hybrid composite compared to the failure strain of the LE
fibre-reinforced non-hybrid composite’ [3, 6]. Consequently, it is given by

R. = M 2.1)

ult
ELE

where sﬂg,ﬂ is the failure strain of the LE fibre population inside the hybrid
composite, whilst X is the failure strain of the LE non-hybrid composite,
see Fig. 2.3a. It should be noted that, applying this definition is not always
straightforward, since determining the failure of the LE fibre inside the hybrid
composite is not always a trivial task. For instance, within a ductile failure like
the one shown in Fig. 2.1c, such a failure point cannot be easily determined.
Moreover, it is important to accurately compute the failure strain of the LE
non-hybrid composite. If this failure strain is wrongly underpredicted, then

the hybrid effect may be overestimated [3, 15, 29]. Overall, the typical range
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of failure strain enhancement reported in the literature is between 10-50% [3].
Values larger than 50% or even negative hybrid effects have also been (albeit
rarely) reported, but these are probably due to a wrong determination of eﬂg, or

due to an incorrect definition of the hybrid effect [3].

Since fibre hybridisation also modifies the mechanical properties, the hybrid
effect may also be defined as a deviation from the linear rule of mixtures. This
is well illustrated in Fig. 2.3b. The advantage of this last definition is that it
can also be applied to mechanical properties rather than just the failure strain.
However, applying this definition is not straightforward because of the following

reasons [3]:

— The rule of mixtures is not necessarily linear for all properties.
— Each rule of mixtures needs a certain composition parameter.
— It does not apply for all mechanical properties (for example in bending).

—LE composite —Negative hybrid effect
—HE composite —Positive hybrid effect

a) A ——Hybrid composite] b) A | —Rule of mixtures
Hybrid effect
<>,
‘ >
=l -
2 2l N
b= 2 - -
5] [a Il P 3 -
Strain > % of LE fibres

Figure 2.3: Hybrid effect definitions: a) as an apparent failure strain enhancement of
the LE fibres and b) as a deviation from the rule of mixtures.

Since the discovery of the hybrid effect, different work has demonstrated that a
low content of LE fibres, high fibre strength scatters, larger ratio between the LE
fibre Young’s modulus over the HE fibre Young’s modulus and a larger failure
strain ratio between the HE fibres over the LE fibres, among others, all lead to
higher hybrid effects [30-35]. This will be discussed in detail in Section 2.1.2.

Currently there are three main reasons to explain the presence of the hybrid
effect [3, 6-8, 22, 26]:

— Changes in the failure propagation compared to non-hybrid composites.

2.1 Fibre hybridisation in polymer composites
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— The influence of thermal residual stresses.

— The presence of dynamic effects.

The failure development is considered to be the most important, while the
influence of thermal residual stresses has been proved to be secondary. Finally,
the dynamic effects have barely been studied and thus, their possible significance

is unknown. In the following, these are reviewed.
2.1.1 Hypothesis for the hybrid effect

2.1.1.1 Failure development

The most important hypothesis regarding the hybrid effect is that failure devel-
ops differently in hybrid composites compared to non-hybrids. To explain this
more in depth, first the strength of brittle fibres, such as glass or carbon, is not
deterministic due to the presence of flaws, and follows a statistical distribution.
When a composite is loaded in the fibre direction, the weakest fibre fails when-
ever its stress reaches its strength. The broken fibre then loses its load carrying
capability over a distance known as ineffective length. Along this length, the
matrix surrounding the broken fibre is loaded in shear and transmits the load
back onto the broken fibre, thus, allowing the load in the fibre to be recovered.
Furthermore, throughout this region, the neighbouring intact fibres take the
load loss of the broken fibre, thus being subjected to a stress concentration that
increases their probability of failure (Fig. 2.4a).

Fibre stress

Highm Ml Low
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concsetﬂ%ﬁasltion three broken fibres

Figure 2.4: Key events in the fibre tensile failure process of composite materials: a)
failure of a fibre and consequent stress redistribution around the broken fibre and b)
formation of a cluster of broken fibres.

This stress redistribution can be different according to the matrix behaviour. If
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the matrix behaves as an elastic solid, the ineffective length is small, while the
stress concentration is very localised, being relatively large for fibres nearby
the broken fibre, but low for fibres further away [5, 36—38]. Therefore, few
neighbouring fibres carry a significant stress concentration. Nonetheless, if
the matrix yields, the matrix shear yield stress limits the stress transfer. This
generates smaller stress concentration factors than when it behaves as an elastic
solid, but more fibres are affected by the stress concentration and the ineffective
length becomes longer [5, 37-39]. The latter is usually the case in FRP since
the shear yield stress of polymer matrices is relatively small, with typical values
ranging between 50 — 100 MPa [37]. In addition, debonding (fibre-matrix sepa-
ration) may occur which may lead to fibre pull-out and longer ineffective lengths.
Matrix cracking can also appear, causing slightly larger stress concentrations
[40], see Fig. 2.5. To make things even more complex, this process is transitory,
that is, dynamic effects occur which change the stress redistribution around the

broken fibres along time. This will be explained in Section 2.1.1.2.

At low fragmentation stages, fibre breaks occur at random places depending
on the fibre strength scatter. However, as the load is incremented, clusters
of neighbouring broken fibres start to form due to the presence of the stress
concentration (Fig. 2.4b). Eventually, final failure is reached either due to the
accumulation of damage or the unstable propagation of a large critical cluster
[4, 41, 42].

a) b)

Matrix —>matrix crack Matrix —» debonding

[Fibre 3 ] [Fibre ¢ ]
\Fibre break \Fibre break

Figure 2.5: a) mode I matrix cracks may appear around a fibre break increasing the
stress concentration carried by the surrounding fibres and b) a weak bonding between
the fibre-matrix interphase may cause debonding and fibre pull-out. Additionally, all
scenarios may appear altogether and also include matrix yielding, creating a very
complex stress state.

In a non-hybrid composite, this process leads to a quasi-brittle, catastrophic
failure. Nonetheless, in a hybrid composite, the failure development is altered
leading to a delay of the failure strain of the LE fibre [3, 8, 10, 18, 22, 24, 27, 31—

2.1 Fibre hybridisation in polymer composites
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33, 35, 39, 43, 44]. This alteration is because of the following reasons. Firstly,
the presence of two fibres with different stiffness and diameter (LE and HE)
fibres, changes the magnitude of the Stress Concentration Factors (SCF’s) around
the broken fibres compared to the baseline non-hybrid composites [45, 46].
Since the HE fibre usually has a smaller Young’s modulus, the HE fibre carries
larger SCF than the LE fibre [45, 46]. This in turn, delays the formation of
clusters in the LE fibre population. Secondly, given that the HE fibres have a
larger failure strain, the presence of HE fibres surrounding a cluster of broken
LE fibres can act as a crack arrester, delaying the propagation of the cluster [31].
A final fact is the presence of size effects [3]. It is well known that composite
materials exhibit a size effect, that is, the strength of the material decreases by
increasing the volume of the material [47-55]. Given that a hybrid composite
of the same volume as that of a non-hybrid composite contains fewer LE fibres,
the failure strain of the LE fibre in the hybrid should already be larger than that

of the baseline non-hybrid composite due to the associated size effects.

Although the failure development in hybrid composites has been widely studied
and is relatively well understood, there are still some unknowns. Currently, the
importance of size effects, matrix cracking and yielding as well as debonding has
not been investigated. Some of these gaps will be discussed further in Section
2.1.2.

2.1.1.2 Dynamic effects

Another important hypothesis for the hybrid effect is the presence of dynamic
effects. When a fibre breaks, the elastic energy that was sustained by the fibre is
released in the form of a stress wave which dampens after some time. During
this period, dynamic stress concentrations which exceed the static condition
appear, see Fig. 2.6. Such a temporal increase of stress concentration could lead

to more fibre failures.

Hedgepeth [56] was the first author to study the dynamic SCF around broken
fibres in non-hybrid composites considering an elastic matrix. The maximum
dynamic SCF was 60% higher than the static when a single fibre failed. Later
Xing et al. [26] studied, for the first time, the dynamic effects in hybrid compos-
ites using a simplified model consisting of one row of LE fibres and another row

of HE fibres in an elastic matrix. The authors found smaller dynamic SCF’s in
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Figure 2.6: Schematic representation of the dynamic stress concentration carried by an
intact fibre caused by a fibre failure.

the hybrid than in the LE non-hybrid composite. Accordingly, this was caused
because of two independent and out-of-phase stress waves, one for each fibre
population, that developed and propagated through the hybrid composite. This
phenomenon by itself should lead to hybrid effects. Further improvements were
performed in Ji et al. [57], who observed that the dynamic effect decreased by
increasing the distance from the fibre break plane. That should lead to the for-
mation of more co-planar clusters [5]. Sakharova and Ovchinskii [58, 59] found
even larger SCFs in non-hybrid composites than Hedgepeth [56], with dynamic
SCFs that were 200% higher than the static. The authors also obtained larger
dynamic SCFs when the fibre volume fraction was around 60—70%. Recently,
Ganesh et al. [60, 61] obtained similar results to those of Hedgepeth and Xing
et al. [56, 57] using a more advanced 2D finite element model.

Bullegas [62] was the first author to incorporate dynamic effects into a model
for simulating the tensile strength and damage development of non-hybrid
composites under longitudinal tension. The dynamic effects decreased the
strength by 10% compared to the static. Moreover, the formation of clusters was
clearly altered, as the average distance between consecutive breaks decreased
when using the dynamic model. More recently, Tavares et al. [63], presented
an advanced spring element model considering dynamic effects. The dynamic
SCF with a plastic matrix in a non-hybrid composite was, on average, 43.2%
higher, whereas it was 83.2% higher with an elastic matrix compared to the
static. While the formation of clusters was seen to be closer to the experimental
data using the dynamic model, nevertheless the predictions of final failure did

2.1 Fibre hybridisation in polymer composites
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not significantly change, especially when using a plastic matrix. Be that as it
may, they did not study the influence the dynamic effects have on the failure of

hybrid composites.

Despite the increasing number of studies concerning dynamic effects, this area is
still poorly investigated in hybrid composites. At present, all the work regarding
dynamic effects has been numerical, which limits the veracity of the models.
Currently, the influence that the dynamic effects have on the tensile failure and
damage development in hybrid composites has not been explored. Their impact
on the hybrid effect has also yet to be clarified. Consequently, this topic merits

further research due to its possible importance.

2.1.1.3 Thermal residual stresses

The final hypothesis for explaining the hybrid effect is related to the thermal
residual stresses derived from the manufacturing process due to the different
coefficients of thermal expansion of the fibres and the matrix. This phenomenon
occurs as follows. Once the temperature is raised to cure the thermoset matrix,
the LE and HE fibres attempt to change their length according to their respective
coefficients of thermal expansion. After the resin is cured and the composite is
cooled down, a force equilibrium is satisfied, inducing different residual stresses
into the LE and HE fibres [3]. In the classic hybrid composite consisting of
carbon and glass fibres, this leads to compressive residual stresses in the LE
fibres, and tensile in the HE fibres. Therefore, the failure strain of the LE fibre
is delayed, leading to hybrid effects.

In any case, it has been proved that the thermal residual stresses can only account
for 10% of the hybrid effect [7, 8, 22]. Because hybrid effects up to 50% have
been reported, it is clear that the thermal residual stresses only play a secondary
role. Nonetheless, the influence they have on the formation of clusters has not

been explored.

2.1.2 Influencing parameters on the hybrid effect

There are different parameters that have an impact on the hybrid effect. The
most important ones correspond to the hybrid volume fraction, the fibre elastic

properties, the failure strain ratio, the fibre strength scatter, the degree of disper-
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sion of the fibres and the matrix properties. In the following, these parameters
and their respective implications are highlighted.

2.1.2.1 Hybrid volume fraction

The Hybrid Volume Fraction (HVF) is one of the most important parameters
influencing the hybrid effect. Here, the HVF is referred to as the fibre volume
fraction of LE fibres, Vi g, over the total, V¢, so that HVF = V g /V;. Different
studies have demonstrated that a lower number of LE fibres, i.e. a lower HVF,
leads to larger hybrid effects [9, 27, 31, 34, 35, 64, 65]. This can easily be
understood. When the HVF is low, there are few LE fibres in the composite.
This hinders the creation of clusters of LE fibres since the LE fibres are mainly
surrounded by HE fibres, resulting in higher hybrid effects [66]. The failure of
the material is therefore dominated by the HE fibre population. Nonetheless,
given that the failure strength of the LE fibres is usually larger than that of the
HE fibres, the failure strength may be lower. On the contrary, when more LE
fibres are added, the failure of the composite is dominated by the LE fibre since
clusters are easily formed. In general, this leads to greater strength but smaller
hybrid effects. Thus, the aim should be to attempt to reach larger hybrid effects
with larger HVF to also maximise the strength of the material [3]. This may be
possible with a certain combination of fibres, e.g. by hybridising an HE fibre

with a failure strength larger or similar to that of the LE fibre.

It has also been demonstrated that the HVF significantly affects neither the SCF
nor the ineffective length on the LE fibres when an LE fibre is broken [45]. This
means that, the increase in the hybrid effect due to a smaller HVF, occurs only
because of the HE fibres surrounding LE fibres and delaying the formation of

clusters.

2.1.2.2 Elastic properties

The elastic properties of each fibre are of great importance because they modify
both the SCF around intact fibres and the ineffective length of broken fibres
[22, 25, 37, 45, 67-70]. In a hybrid composite, the presence of fibres with
different elastic properties alters the SCF around breaks compared to non-
hybrids. This may cause a reduction of the SCF carried by LE fibres compared
to the all LE non-hybrid composite, resulting in a delay in the formation of

2.1 Fibre hybridisation in polymer composites
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LE clusters and the development of damage [33, 45, 46, 71]. According to
Swolfs et al. [45] a stiffer HE fibre reduces the SCF on the HE fibres when the
LE fibre is broken, while this influence on the SCF carried by the LE fibres is
negligible. Conversely, increasing the ratio between the Young’s modulus of the
LE fibre over the HE fibre, decreases the SCF on the LE fibres compared to the
non-hybrid material when the HE fibre is broken [31], while the influence on
the SCF carried by HE fibres should be small. Thus, on the one hand, a stiffer
HE fibre may help to delay the formation of HE clusters when the LE fibre is
broken but, on the other hand, a softer HE fibre may help to reduce the SCF on
LE fibres when the HE fibre is broken. To maximise the hybrid effect, a lower
HE stiffness may be better, but this will undoubtedly depend on each material

system.

2.1.2.3 Failure strain ratio

Another important parameter is the failure strain ratio. If the HE fibre failure
strain is similar to that of the LE, some HE fibres will break before all the
LE fibres have failed due to the strength scatter, reducing the hybrid effect.
Otherwise, if the HE failure strain is much larger than the LE failure strain,
both fibres will act independently and a higher hybrid effect will be produced.
Notwithstanding, a ductile failure process may not be achieved because the
failure of both fibres will not be continuous [3, 35]. As a result, maximising the
failure strain ratio between the LE and HE fibres while maintaining a progressive
failure should be the best scenario. According to some work, the failure strain
ratio increases the hybrid effect up to a plateau where no more gain is observed

[33, 72]. This plateau is reached within a ratio equal to 2.

2.1.2.4 Fibre strength scatter

The fibre strength scatter of both LE and HE fibres also plays a significant role.
It is well accepted that a higher strength scatter leads to a more progressive
formation of clusters and higher hybrid effects [25, 33-35, 64]. This occurs
because a wider strength scatter allows fibres to progressively fail in a wider
strain margin. Conversely, if the scatter is very narrow, a progressive failure
cannot be achieved because all fibres simply break at once. As Fukunaga et
al. [64] pointed out, ‘had the LE strength scatter been zero, the hybrid effect
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would not have existed’. Or a similar quote from Manders [73], ‘the hybrid
effect arises from a failure to realise the full potential strength of the fibres in
all-carbon fibre composites, rather than from an enhancement of their strength
in the hybrids’.

2.1.2.5 Degree of dispersion

Another important aspect of hybrid composites, which is very closely related
to the hybridisation level, is the degree of dispersion of the fibres [3]. This
is defined as how well the two fibres are mixed. For example, the hybrid
composite illustrated previously in Fig. 2.2a, presents a very low dispersion. A
higher dispersion can be accomplished by increasing the number of layers or
decreasing the thickness of the layers [3]. A better dispersion is obtained within
the intralayer hybrid shown in Fig. 2.2b. By decreasing the bundle thickness or
increasing the number of bundles as such, dispersion can be further enhanced [3].
Nonetheless, the best dispersion is theoretically obtained within the randomly
allocated fibres, leading to an intrayarn hybrid, see Fig. 2.2c.

Many authors have found greater hybrid effects with higher dispersions [8, 30—
32, 64]. Considering that an intrayarn hybrid leads to the greatest dispersion,
hybridisation at that level should be the most effective. Nevertheless, Swolfs et
al. [31] studied the effect of the dispersion of fibres on the hybrid effect and
the highest was found for interlayer instead of intrayarn hybrids. Despite these
findings, Swolfs et al. used a simplified geometry of fibres, with all fibres having
the same radius, to model the hybrid composites. This could have affected
the results. Moreover, the authors focused their study on HVF = 50% in a
carbon-glass hybrid. Since the failure development is very dependent on the
HVF and the fibre properties, the conclusions found in their work may not apply
to different hybrid composites or other HVF. Despite the importance of the fibre
dispersion, this term has generally not been rigorously calculated. To overcome
this issue, Swolfs et al. [74] defined the dispersion as the ratio of the LE fibre
radius, Ry g, over the average centre-to-centre distance, d;, from a LE fibre to
the six nearest HE fibres averaged over all LE fibres. Consequently, dispersion

is given by

R
Dis = ( — = all j 2.2)
Zi:] dlc (LEJ' — HE,') /6
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This definition allows a more rigorous description of which is the degree of
dispersion of a certain hybrid composite, thus facilitating the comparison be-
tween different hybridisations. The downside, is that choosing the six nearest

neighbours to calculate the average distance is somewhat arbitrary.

To date, the effect that the hybrid configuration (interlayer, intralayer or intra-
yarn) has on the ductile response of the hybrid is unexplored. Since the hybrid
configuration changes the dispersion of the fibres, it may not only influence
the hybrid effect, but it may also change the ductile behaviour of the hybrid.
Moreover, its influence on the hybrid effect for different HVF than that studied
by Swolfs et al. [31] should also be investigated.

2.1.2.6 Matrix properties

The matrix also plays an important role because it transmits the load between
fibres. As a consequence, it has a considerable influence on both the ineffective
length and the SCF. The presence of matrix cracking, debonding and matrix
yielding can further affect stress redistribution around fibre breaks, which may
alter the hybrid effect and the failure of the material. Unfortunately, little work
has been done on this area in hybrid composites.

The importance matrix yielding has on stress redistribution around fibre breaks
in non-hybrid composites has been pointed out by many authors [4, 36-39, 75—
78]. Accordingly, adding matrix plasticity reduces the SCF, but spreads the load
loss over more fibres and increases the ineffective length. This occurs because
the shear stress transfer is limited by the matrix shear yield stress. Adding matrix
plasticity to models also leads to a more realistic formation of clusters compared
to experimental data [37]. So far, the effect matrix yielding has on the SCF
around broken fibres in hybrid composites has not yet been investigated. Pan
and Postle [79] demonstrated that increasing the matrix shear yield strength
increases the hybrid effect if the HVF is large. However, they did not check
the influence that including matrix yielding has on the SCF nor on the damage

development.

The influence of matrix cracking in non-hybrid composites was investigated
by Swolfs et al. [40]. Although matrix cracking led to larger SCFs around
fibre breaks, nonetheless it did not significantly affect either the development of
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clusters or the failure strain [40]. In any case, the authors recognised that more
experimental work is needed to determine exactly when these matrix cracks
occur. Currently, no studies have explored or incorporated matrix cracks in

hybrid composites, and hence their impact is yet to be revealed.

Fibre-matrix debonding is generally omitted in many studies. Currently, research
dealing with debonding in non-hybrid composites remains scarce [80-86]. In
general, debonding has a similar effect to that of matrix yielding, with the
difference being that it leads to larger ineffective lengths and smaller SCF’s. This
is because the shear stress transfer in a debonded matrix is (in theory) smaller
than in a yielded matrix. The magnitude of the SCF and that of the ineffective
length greatly depends on the friction in the fibre-matrix interphase [82, 83]. A
smaller friction, will produce smaller shear stresses, hence reducing the SCF
and increasing the ineffective length. To the author’s best knowledge, debonding
has not been studied in hybrid composites. This makes it difficult to establish
its importance as well as the effect associated parameters, such as the fibre-
matrix interphase strength, have. Another problem is the difficulty in observing
debonding in composites with millions of fibres [5]. Common techniques such
as micro-Raman spectroscopy or synchrotron radiation computed tomography

do not have enough resolution to see debonding [41, 42, 87].

The viscoelastic behaviour of polymer and metal matrix composites may also
be somewhat implicated. When the matrix is maintained under constant load, it
creeps, decreasing the stress carried by the matrix, and thus increasing the stress
in the fibres [5, 88, 89]. Moreover, over time the matrix becomes ‘more ductile’.
Basically, this causes the SCF around broken fibres to be reduced, but more
fibres are subjected into SCF, and the ineffective length increases [5, 88, 90-95].
Therefore, if the viscoelastic effects are important, the formation of clusters may
be altered, affecting the damage development and failure of the material. To the
author’s best knowledge, the implication that the viscoelastic matrix behaviour
has in the failure of hybrid composites has not yet been explored. Thus, it is
difficult to judge the importance of this topic.

Given that the matrix plays an important role on the load redistribution around
fibre breaks, this area merits further study with hybrid composites. The effect of
matrix yielding, cracking, debonding as well as that of the viscoelastic behaviour

should be further investigated and incorporated into models.
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2.1.2.7 Other parameters

There are other properties such as the interlaminar strength and fracture tough-
ness, which may also have some influence on the hybrid effect [3]. The im-
portance that the mode II interlaminar fracture toughness has on the failure of
interlayer hybrid composites has been highlighted [18]. If the strain energy re-
leased by the LE fibre after failure is larger than the mode 2 interlaminar fracture
toughness, delamination occurs. This may lead to final failure depending on the
layer thickness of each ply, the ply allocation and the relative thickness between
the layers (which also governs the HVF). By reducing the LE layer thickness,
the strain energy is reduced, avoiding catastrophic delamination and allowing a
progressive fragmentation of the LE fibre leading to a ductile failure. According
to Jalalvand et al. [11, 96], four failure scenarios, which are mainly governed
by the thickness of the layers, arise: a) premature failure of the HE fibre, b)
catastrophic delamination followed by HE failure, c) progressive fragmentation
of the LE fibres and then HE fibre failure and d) progressive fragmentation of
the LE fibre material followed by dispersed delamination and then HE fibre

failure.

2.1.3 Tensile behaviour of hybrid composites

The longitudinal Young’s modulus of hybrid composite materials follows a
linear rule of mixtures [7] with Ey = E;gVLE + EugVug + EmVm, where El g,
Eyg and Ey, are the longitudinal Young’s modulus whilst Vi g, Vyg and Vy, are
the volume fractions (VLg + Vug + Vin = 1), where subindices LE, HE and m
stand for the LE fibre, HE fibre and matrix, respectively. According to Swolfs et
al. [3], deviations from the linear rule of mixtures might be explained because

of variations in the fibre volume fractions and fibre orientation.

The tensile strength of hybrid composites may follow a bi-linear rule of mixtures
[3, 97]. During the tensile failure of hybrid composites, the LE fibre population
fails first. After that, different possibilities may happen. If the volume fraction
of HE fibres is very large, the stress usually reaches higher stresses than the
stress at the failure strain of the LE fibres. Therefore, the strength is dominated
by the stress of HE fibres at their failure strain. Otherwise, at low volume
fractions of HE fibres, the stress of the LE fibres may exceed that of the HE

fibres, see Fig. 2.7. However, these behaviours may differ depending on the
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hybrid configuration, the distinct parameters affecting the hybrid effect and the
presence of pseudo-ductility. Hence, the bi-linear response may only occur
when the LE and HE fibres fail separately.

ka) A b)

»
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\/

Strain > Strain

Figure 2.7: Bi-linear behaviour of some hybrid composites. a) the strength is dominated
by the HE fibre population and b) the strength is dominated by the LE fibres.

As previously discussed in Section 2.1, fibre hybridisation can lead to a ductile
failure process. If the failure between the LE and HE fibres in the hybrid is
gradual, a ductile response similar to those of ductile metals like steel, can be
achieved (Fig. 2.1b). This is usually called pseudo-ductility [3, 6-18, 35, 39].
Notice that in non-hybrid composite materials, it is also possible to obtain
pseudo-ductility by controlling the damage mechanisms [98]. Nonetheless, in
this thesis the focus is solely on hybrid composites. Nowadays, many authors
have obtained a ductile response in hybrid composites both numerically and

experimentally.

In terms of the experimental work, most authors have focused on testing in-
terlayer hybrid composites, as these are easier to manufacture. Generally, it
seems that pseudo-ductility can only be achieved if the HVF is low, and the
thickness of the LE fibre plies is thin [3, 15, 18]. In the 1970s, Bunsell and
Harris [7], and Manders and Bader [8], achieved pseudo-ductility in carbon-
glass hybrids with high HVF thanks to the fact that at that time carbon fibres
were weaker than they are nowadays. With stronger carbon fibres, reducing
the HVF may be the only way to achieve a ductile behaviour [3]. However, the
actual focus should be on achieving pseudo-ductility at high HVF, as then the
composite may be stronger. A minimal bonding strength between layers is also
necessary to achieve pseudo-ductility in interlayer hybrid composites [7]. Not

only can the failure strain be enhanced, but so too the failure strength. Jones
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and Dibenedetto [9] hybridised carbon fibres with either glass or aramid fibres.
A 92% improvement in the strength of the carbon fibres was obtained when
the carbon fibre content was lower than 6%, thus allowing all carbon fibres to
act independently. More recently, Czél and Wisnom [18] manufactured and
tested in tension interlayer unidirectional hybrid composites by sandwiching
various numbers of thin carbon prepreg plies between standard thickness glass
prepreg plies. The specimens containing one and two plies of thin carbon failed
in a desired pseudo-ductile manner, whereas the specimens with three and four
plies failed with unstable delamination. Thus, the LE layer thickness played a
crucial role in the material failure. Reducing the LE layer thickness reduced
the strain energy after the LE failure, avoiding catastrophic delamination and
allowing progressive fragmentation of the fibres. Similar findings were obtained

in Wisnom et al. [15], with failure strains up to 20% for the ductile hybrids.

Further work was performed by Yu et al. [17], who intermingled hybrid compos-
ites comprising high-modulus carbon with E-glass using aligned discontinuous
fibres. As a result of the progressive carbon fibre fragmentation, good pseudo-
ductile responses were obtained. Albeit employing discontinuous fibres, this is
currently the only experimental work that has achieved pseudo-ductility using
an intrayarn hybrid configuration. Diao et al. [99] were able to manufacture
and test intrayarn hybrid composites of continuous carbon-carbon epoxy, but the
tensile behaviour obtained did not present a safe and large pseudo-ductility. In
addition, Jalalvand et al. [11, 96] tested hybrid specimens comprising thin-ply
carbon fibres with standard thick-plies of glass fibres leading to large pseudo-
ductile responses. Similar pseudo-ductile responses were later obtained by Czél
et al. [16], this time by hybridising thin-ply UD all carbon-epoxy composites
of high modulus and strength. Finally, Fotouhi et al. [12] also obtained large
pseudo-ductile responses in all fibre orientations under fibre tensile loading with

quasi-isotropic high performance thin-ply carbon-glass hybrid laminates.

In the numerical work, most authors that modelled pseudo-ductility employed
intrayarn hybrid composites, unlike the experimental work, although there were
some exceptions [15, 31, 100]. In general, the modelling work has confirmed
the influence that the different parameters involving the hybrid effect (discussed
in Section 2.1.2) have on pseudo-ductility [15, 31, 33-35, 39, 96]. To achieve

pseudo-ductility, a wide strength scatter, low LE fibre content, a large failure
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strain ratio and a continuity between the failure of the fibres is necessary. The
different models available in the literature for predicting failure will be discussed

in Section 2.3.

Another possibility to achieve a higher failure strain is to hybridise a brittle
fibre such as glass or carbon with a ductile fibre such as steel, polyamide,
polyethylene, or to use natural fibres [3, 101, 102]. These options, however, are
beyond the scope of this thesis. Interested readers are referred to a recent review

and the references therein [3].

2.1.4 Conclusions

The hybrid effect is now clearly established. There are three main hypotheses
explaining its presence, with the failure procedure considered to be the most
important one, thermal residual stresses considered to play a secondary role, and
dynamic effects whose importance is still to be clarified. The main influencing
parameters on the hybrid effect are identified in the literature. Different studies
have clearly demonstrated that a lower HVF, a wider strength scatter, a larger
failure strain ratio, a larger ratio between the Young’s modulus of the LE fibre
over the HE and a higher degree of dispersion of the fibres should increase the
hybrid effect. The mode II interlaminar fracture toughness, as well as the layer
thickness in interlayer hybrids, are also key parameters, while other properties
such as the fibre-matrix interphase strength are not clear. The influence of size
effects, matrix plasticity, debonding, matrix cracking as well as viscoelasticity

has not yet been investigated.

Many authors have obtained hybrid composites exhibiting a ductile behaviour,
both numerically and experimentally. Therefore, fibre hybridisation is a feasible
solution to the lack of toughness in composite materials. Nearly all the research
has demonstrated that a small percentage of LE fibres is required to achieve
a ductile response. A large strength scatter is also critical. In the case of
interlayer hybrid composites, a small ply thickness for the LE fibre is necessary
as well as good bonding between plies to avoid unstable delaminations, and
to allow a progressive fragmentation of the LE fibres. Last but not least, a
continuity between the failure of the LE and HE fibres is also mandatory to
avoid load drops and allow a gradual failure. In theory, a larger hybrid effect

should translate into a larger ductility of the composite. Hence, pseudo-ductility
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should be influenced by the material parameters in the same way the hybrid
effect is. However, more work needs to be carried out to prove this hypothesis.
In addition, while modelling results have mainly focused on intrayarn hybrid
composites, experimental testing has focused on interlayer hybrids. More
experimental evidence, with intralayer and intrayarn hybrid configurations, is
therefore necessary. Likewise, modelling work with interlayer and intralayer
hybrid composites using a realistic random distribution of fibres should be
addressed, instead of considering a regular packing [15, 31]. A direct comparison
of the effect the hybrid configuration has on the ductile response of a hybrid
composite should be performed.

Despite the tremendous advances made in recent years, more work is needed.
More accurate and realistic models, incorporating the effects influencing the
tensile failure of hybrid composites, need to be developed. Currently the state
of the art of hybrid composites is behind the state of the art of non-hybrid
composites. The development of more advanced models together with more

accurate experimental data should allow this gap to be closed further.

2.2 Statistical models for modelling the tensile
strength of fibres

As discussed in Section 2.1.1.1, the strength of brittle fibres is not determined
due to the presence of flaws, and follows a statistical distribution exhibiting
weakest-link characteristics. This implies that a fibre breaks as soon as the
weakest link is overloaded. Such strength scatter has been widely described by
means of a Weibull distribution [103]. In the following, this distribution and

their variations are discussed.

2.2.1 Traditional Weibull distribution

The most widely used statistical distribution for representing the strength of
brittle fibres is the traditional Weibull distribution [103]. Accordingly, the failure
probability of a fibre segment of length L, with strength ¢, is

P=1—exp <_LL0 (:) ) 2.3)
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where m is the Weibull modulus, oy is the characteristic Weibull fibre strength
and L is the characteristic gauge length. Very high Weibull modulus leads

to a low strength variability, for instance, in metals where m is around 20.

However, low Weibull modulus, i.e. values between 3 and 9, lead to high
strength dispersions like in composite materials, see Fig. 2.8. Moreover, a
longer length L reduces the strength, since the probability of having a weak link
is greater.
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Figure 2.8: Example of the strength scatter of a fibre following a Weibull distribution
with different Weibull modulus m, considering oy = 4000 MPa, Ly = 10 mm and
L=10-10"3 mm. A smaller Weibull modulus m markedly increases the strength
scatter.

It has already been reported in the literature that this distribution overestimates
the strength for very low values of gauge lengths L [5, 37, 52, 104-106]. This
could be because of variations in the fibre diameter, variations in the Weibull
distribution from fibre to fibre and/or the presence of different flaw populations
[5]. Consequently, some authors proposed modified Weibull distributions which

attempt to solve these issues. In the next section, these are discussed.

2.2.2 Modified Weibull distributions

One of the modified Weibull distribution functions proposed in the literature
is known as the ‘Power Law Accelerated Weibull distribution’ (PLAW). This
distribution adds a correction factor into the Weibull equation to be able to

characterise the fibre strength at short gauge lengths without overestimating the
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strength [52, 104, 105]. Within this, the failure probability becomes

re-e(() (5)) &

where @, is the correction factor, which commonly varies between 0.6 and 0.9
[52, 104, 105]. This distribution has mainly been employed in micromechanical
simulations where the gauge length, L, tends to be small. Although this equation
may improve the extrapolation into short gauge lengths, it adds the need to
experimentally determine the value of a,. Another issue with this distribution

is its physical background since it is based on pure fitting.

Curtin [107] presented another model known as the “Weibull of Weibull’ (WOW)
which reverts into the PLAW but with a solid physical background. In the WOW
model, the strength distribution along a fibre follows a traditional Weibull distri-
bution with modulus m’, whereas the characteristic strength of the fibre follows
another Weibull distribution with modulus py,. Within these considerations, the
distribution given by Curtin reverts to the PLAW with

/
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The main issue of this model is that more parameters are necessary, since Py

and m’ must be determined as to characterise the strength of the fibres.

To consider that more than one population flaw is present in the fibres, multi-
modal Weibull distributions were formulated, from which the bimodal Weibull
distribution is the most common [108—111]. Within this, the failure probability

e ()@ oo

where oy, Oy, m; and my are the characteristic fibre strength and Weibull

becomes

modulus of each population flaw, respectively. The second population flaw of
this Weibull distribution determines the strength at short gauge lengths. Accord-
ing to Harlow and Phoenix [112], this distribution puts an upper limit into the
strength at short gauge lengths, and thus may be more realistic than the tradi-
tional Weibull function. The rate at which the strength at short gauge lengths
levels off, depends on the magnitude of the Weibull modulus m; [5]. Again,
the main issue with this equation is that many different parameters must be
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determined.

Besides the named statistical distributions, there is some work which has in-
corporated minor variations into the Weibull distribution [113-115]. Further to
this, other authors have also proposed the use of a normal distribution [36, 116].

According to R’Milli et al. [116], the Gaussian probability density function is

_ 1 (6" — ttn)?
"= o P <_ 25D? ) &7

where U, is the mean, SD is the standard deviation and €" is the fibre failure

strain. R’Milli et al. [116] determined that the normal distribution is appropriate
to describe the flaw strength in brittle fibres. Furthermore, they also claimed

that the Weibull distributions are a good approximation and easier to apply.

Finally, other authors have proposed alternative distributions [117-119]. In
practice, these are not used, since they are either too complex mathematically or
they need more complicated experimental testing to determine all the parameters

involved.

2.2.3 Conclusions

Despite the enormous number of statistical distributions available to date, there
is not any agreement as to which distribution would be the best one to use.
Some studies suggest that the traditional Weibull distribution overpredicts the
strength at short gauge lengths and that the bimodal Weibull distribution is in
better agreement with experimental data [108]. Other authors have pointed out
that the WOW model yields better predictions of the strength of composites
than the other Weibull distributions do [39, 52]. Nonetheless, the traditional
Weibull distribution is still the most widely used. This is, however, an important
and critical topic, specially for modelling the failure of composite materials.
Reliable data is mandatory if the strength is meant to be predicted with accuracy

[5].

Even a small error in determining the Weibull distribution could lead to mas-
sive errors in the input data for models [5]. The problem is that performing
experimental tests to determine the Weibull distribution is no trivial task. Firstly,

a large number of experimental tests are mandatory to accurately determine
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the Weibull parameters, albeit most authors perform fewer tests than what are
needed [120]. Secondly, clamping effects may occur during the test. Finally,
a minimum strength is needed to extract a fibre from a yarn to perform the
test. This is known to cause non-linearity at low fibre strengths in Weibull plots
[52, 105, 119]. Therefore, the literature clearly needs to draw further attention
to this topic and precisely propose the best distribution to use, as well as to

accurately determine, all the parameters related.

2.3 Micromechanical modelling of the tensile
failure of composite materials

In this section, an overview of the most important models presented in the
literature that are able to reproduce the tensile failure of UD composite materials
is provided. Some models are limited to non-hybrid composites, while others
do not face such limitations. Here, the models that are able to consider hybrid
composites will always be emphasised. Although this thesis deals with hybrid
composites, it is still important to review models for non-hybrid composites as
well since they may be able to be extended to hybrids. It is also worth noting
that each model possesses unique features and limitations, and thus each model

is able to capture different failure mechanisms.

Composite materials can be studied on three levels: micromechanical, mesome-
chanical and macromechanical. On the micromechanical level, the fibre and
matrix are represented and their interaction can be studied. However, on the
mesomechanical level, the fibres and matrix are considered as a unique material
with homogeneous mechanical properties at the layer level. This allows the inter-
action between layers, but not between fibres and matrix, to be captured. Finally,
on the macromechanical level, the scale of the global structure or mechanical
component is taken into consideration using, for instance, laminate theory [121],
see Fig. 2.9. Since the failure of composite materials is a micromechanical
problem which involves the formation of clusters, the focus here is placed on

the different micromechanical models published in the literature.

There are many micromechanical models with different modelling consider-
ations. In this thesis, two main groups are considered: Global Load Sharing
(GLS) models, and Local Load Sharing (LLS) models. In the GLS models, the
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Figure 2.9: The three mechanical levels for studying composite materials: a) microme-
chanical, where fibres and matrix are represented, b) mesomechanical, where fibres
and matrix are an homogeneous material at each ply or layer and ¢) macromechanical,
where a homogeneous material is considered for the entire structure.

load loss by a broken fibre is equally redistributed around all intact fibres. This is
a simple, but unrealistic approach which does not allow the formation of clusters
to be captured. As a result, these models can only predict the failure when the
interaction of fibres is low. Instead, in the LLS models the load of a broken fibre
is redistributed around the neighbouring intact fibres which allows the formation
of clusters to be captured. While this approach is more accurate, it is more
challenging to model. Moreover, analysing the results is also a difficult task
[31]. Additionally, shear-lag models which are able to predict the ineffective
length of broken fibres, as well as analytical stress concentration factor models
which predict the SCF around broken fibres, are also discussed.

When a composite material is studied on the micromechanical scale, the fibres
and matrix are usually represented by generating what is called a ‘Representative
Volume Element’ (RVE). An RVE may be defined as a volume representing a
real material i.e. a bundle containing fibres and a matrix in the field of composite
materials. This part should be representative, that is, it should be big enough
to capture all the physics involved [122, 123]. Nevertheless, its size still needs
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to be computationally workable since studying an RVE comprising the real
size of the material is generally not feasible. According to some studies, the
size of the RVE should be fifty times the fibre radius to accurately capture the
elastic properties of the material [122, 123]. Nonetheless, when dealing with
damage, the size may need to be far larger than that to accurately capture the
stress redistribution around breaks. Moreover, size effects can occur. Thus,
ideally the size of the RVE should be equal to the real material specimen. It is
worth noting that in some cases the RVE can only contain the fibres, since the
matrix may be physically omitted. A very important detail when generating the
RVE, is the spatial position of the fibres being taken into consideration. In a 1D
RVE, only one row of fibres is considered, as illustrated in Fig. 2.10a. A more
realistic representation is obtained with a 2D RVE. In this last case, the fibres
can be allocated within a square, an hexagonal or a random packing, as shown
in Figs. 2.10b-d, respectively. The latter is the most realistic representation of a
composite material, since the spatial allocation of the fibres is always random,

and allows the stress to be captured more accurately [124, 125].

a)

Iessssssesss!
....0......
HEHHHN
o:o:o:o:o:o

)00000000(

Figure 2.10: Examples of different fibre packings: a) a 1D packing of fibres with a
regular spacing, b) a 2D square packing of fibres, c) a 2D hexagonal packing of fibres
and d) a 2D random packing of fibres.

While generating an RVE with hexagonal or square packing is straightforward, it
is not so with random packing. To generate RVEs containing a random distribu-
tion of fibres, different methods are available in the literature. One possibility is
to employ digital image analysis which requires the use of sophisticated software
[126—-130]. Another possibility is to use an algorithmic method. With the latter,
two main approaches exist: the ‘hard-core’ model, or the ‘shaking’ model. In the
hard-core models, random fibre coordinates are continuously generated inside
the RVE. These fibres are then accepted as long as they do not overlap with any
previous existing fibre in the domain [124, 127, 128, 131-133]. In some models,

different criteria are used to move the fibres around to fill empty places in order
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to add more fibres until the requested fibre volume fraction is reached. On the
other hand, the shaking models have a given square or hexagonal distribution
of fibres that is then shaken to obtain a random one [134—-139]. Currently, the
most widely-acknowledged model, which employs a ‘hard-core’ approach, is
that developed by Melro et al. [124] and extended by Tavares et al. [35], to
generate hybrid intrayarn composites. The algorithm is quite powerful because
it was statistically validated against experimental RVEs [126], and is capable of
reaching a fibre volume fraction over 65% [124]. In any case, as will be seen
in the following subsections, most authors have employed models considering
hexagonal and square packings because of their simplicity compared to random
packings.

2.3.1 Global load sharing models

Daniels [140] presented the first GLS model. An RVE of parallel fibres of length
L without a matrix was considered, see Fig. 2.11a. Daniels assumed that the
strength of the fibres follows a Weibull distribution, while the tensile strength of
a bundle with infinite fibres may be represented by a normal distribution. With
these considerations, the strength of a bundle with infinite fibres is

S=
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Figure 2.11: Schematic example of a bundle of parallel fibres of length L, a) as in
Daniels’ model [140], and b) as in Rosen’s model [141], where the fibres are divided
into a chain of bundles of length /.

This equation is not accurate for several reasons. Firstly, since the matrix is
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omitted, when a fibre breaks the fibre is not able to carry load far from the break,
which is not realistic. Thus, the ineffective length of the fibres is not captured.
Secondly, it cannot deal with hybrid composites nor predict the failure curve of

composite materials.

Later on, Rosen [141] improved Daniels’ model by adding the effect of the
matrix through a shear-lag model assuming an elastic matrix behaviour. Rosen
considered a bundle of parallel fibres with length L divided into a chain of
bundles with lengths [ = L/LI", where L™ is the ineffective length of the fibres
defined as the distance from the break to which the fibre recovers a percentage,
£, of the remote stress (Fig. 2.11b). Rosen found that the ineffective length can

in_ dr [1—/ViE; 1
L" = > JViGn ln[l—C] (2.9)

where dr is the fibre diameter, V; is the fibre volume fraction, Er is the fibre

be estimated with

Young’s modulus and Gy, is the shear modulus of the matrix. Following the
weakest link theory and considering a large number of fibres, Rosen reached a
similar solution to that obtained by Daniels except it accounted for the ineffective
length:
. 1
O Lln L m
gt = S0 E"/Lo) 1/ f’) (2.10)

mmem
Even though this equation is more realistic than that of Daniels, it is still not

enough to accurately capture the strength.

Later, Curtin also attempted to model the strength of composite materials [107,
142-148]. In his extensive work, Curtin considered another RVE with parallel
fibres under a GLS rule. The matrix was hypothesised to break into short slabs
relative to the fibre fragments lengths. The load of a broken fibre was then
transferred by frictional shear coupling through these matrix slabs into all the
surviving fibres. Consequently, the matrix behaviour considered is more realistic
than the elastic matrix assumed in Daniels’ and Rosen’s models. With all these

considerations, the mean fibres stress, G, at a certain applied strain, €Y, is

2

. 2Lin : X

> dx (2.11)
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where P (x,E;€®) is the fragment length distribution, x is the fragment length
and L™ is again the ineffective length, given by Kelly-Tyson shear-lag model
[149] with

_ ReEr o

Ln = 2.12
27T € ( )

where Ry is the fibre radius and 7 is the acting shear stress. This shear stress can
be considered in different ways. It may be taken as the matrix shear yield stress,
as the interfacial shear strength, or as a debonded frictional shear stress (in this
case it is the latter). By applying the rule of mixtures, and neglecting the matrix
term, the stress of the composite becomes 6% = V;G;.

Curtin, proposed an approach to obtain the fragment length distribution,
P (x,Efeo), which was assumed to be exact until the publication of Hui et al.
[150], who provided the exact solution. Alternatively, a simplified analytical
equation to predict the stress-strain behaviour without having to integrate, by
neglecting the third term in the right hand side of Eq. (2.11), was also derived
[107]

1
6; = Ege’ <1 - 2D> (2.13)
where the damage variable, D, is

0 m+1

D= (Ef8> (2.14)
OR
and where oR is a reference strength [143, 148]
1 1
Lotol! 2L
GR:(O o)m—i—l:GO( 0T>m—|—l 2.15)
R¢ dfG()

Moreover, the strength of the composite considered as the maximum in the

stress-strain curve was determined with [143]

1

ult m—+ 1 2 m-+1
=V — 2.16
o tOR, " (m+2) (2.16)

The model proposed by Curtin is relatively powerful, allowing the strength
and the entire stress-strain curve of a non-hybrid composite to be estimated.

Nonetheless, due to the GLS conditions assumed, such a model is limited to
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composites with a very low interaction of fibre breaks. Additionally, size effects
are not captured.

Later on, Neumeister [151] presented a similar analytical model able to predict
the stress-strain behaviour, but without having to integrate. As in the model of
Curtin, the matrix-shear interface is modelled by friction, assuming a constant
frictional shear stress. Within this, Neumeister obtained that the composite stress

is given by

o° = ViEse +

1 D \?
2.17
D+1 2ln(D+1)<D+1> 2.17)

The term inside the square brackets on Eq. (2.17) represents the softening, and
when no damage is present it is equal to 1, while it tends to zero for very large
strains. Neumeister’s model is able to predict the stress-strain of non-hybrid
composites without solving differential equations, by taking into account the
recovery zone of the fibres and the stress carried by the fibre fragments shorter
than twice the stress recovery. However, the model faces the same limitations as
that of Curtin. In addition, it does not yield good results for Weibull modulus
lower than 2, and the strain to failure may jump to infinitum depending on the

fibre properties because of the slip of fibres in the matrix.

Hui et al. [150] obtained an exact closed form solution for the fibre fragmen-
tation phenomenon. Their work is very similar to that carried out by Curtin
[148], except that the fragment length distribution derived, P (x, Efeo) , 1s exact.
They also provided simplifications and different limiting cases. Accordingly, the

simplified average fibre stress is

1
1 D<13D>
&¢ = Ege” (1+2D+®~D2> e 8 (2.18)
where
Tm—+12 m
24(2m+3) m—+1 ( )

For the derivation of the exact solution, the reader is referred to Hui et al. [150].
Even though the model takes into account the exact fragment length distribution,

it is still limited due to not considering a local load sharing rule, nor capturing
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size effects, like in the Curtin and Neumeister models. This model was extended
to hybrid composites by Swolfs ef al. [34], which will be reviewed later.

More recently, Turon ef al. [1] presented another analytical model based on
the fragmentation of a single fibre. Unlike the previous work, the model of
Turon et al. considered the length of the composite, L, allowing size effects
to be captured. By assuming that fibre strength follows a Weibull distribution,
while the number of fibre breaks follows a Poison law, the average fibre stress
becomes
1 — 672meb .
6t = Epe? | ———— Ling= Py 2.20

t = Ef < 2Ly +poLle ) (2.20)

where
R¢E

_ Lot 80

2Lp, =D LD
Po 27

(2.21)
and where py, is the fibre break density.

The authors found that a higher Weibull modulus leads to a narrower stress-strain
curve, but to a higher strength. This is caused by the wideness of the stochastic
fibre strength. For large Weibull modulus m all fibres break at once since the
scatter is very low, the contrary occurs for a small m [1]. Moreover, Turon et
al. [1] discussed the importance of the fibre length. When a fibre is longer,
the stiffness loss is larger, since the number of breaks along the fibre increases.
However, the stiffness loss due to the presence of a break is smaller in a longer
fibre than in a shorter one [1]. Although this model takes into account the length
of the fibres, it, like all GLS models, still faces the limitation of not capturing
the formation of clusters. This model was extended by Tavares ef al. [35], to

work with hybrid composites and which will be reviewed later.

De Morais [152] considered an RVE consisting of parallel fibres of length
equal to the ineffective length and with stochastic strength following a Weibull
distribution. An elastic-plastic stress transfer model was taken into account for
calculating the stress recovery of the fibres. By neglecting the elastic stress

transfer and the contribution of broken fibres, the composite strength becomes

1 1

167°Lyoyr (‘ )

oHlt = Vp [ 0% |2\ -2 (2.22)
(m+2)d;
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The model derived is quite similar to the one given by Curtin shown in Eq. 2.16,

sharing the same limitations.

In an attempt to improve the inaccuracies of GLS models, Koyanagi et al. [153]
proposed the Simultaneous Fibre-Failure (SFF) model. The authors assumed
that the composite fails when a certain number of simultaneous fibre breaks, n"!,

ult

occurs. An expression to estimate n""* was empirically deduced from different

experimental tests, leading to

Inn" =4.21n < > +12.6 (2.23)

T
V000,
where oy, is the matrix longitudinal strength. The composite tensile strength is
then

1
ult m+1 2 ‘/f_|_nu1t_1 m+1
O = ORr 3
m+2 \ (m+2)(nlt) Vi

(2.24)

Although this model may be more accurate in terms of predicting the strength
of non-hybrid composites, it is still severely limited since it cannot predict the
softening curve of composite materials nor the formation of clusters. It is also
difficult to judge if the fitting for estimating n"!' is accurate enough for any

material combination.

By extending Hui et al.’s [150] model to hybrids, Swolfs et al. [34] developed
the first GLS model able to simulate the tensile failure of hybrid composites.
The analytical model shares the same assumptions performed in [150]. Thus,
the model omits size effects, dynamic effects, stress concentrations and thermal
residual stresses. Moreover, due to the GLS rule, the position of the fibres is
irrelevant, meaning it can predict neither the effect of the dispersion of the fibres,
nor the effect of the hybrid configuration. Therefore, the hybrid composite
consists of two parallel sub-composites, one which contains all the LE fibres and
the other which contains all the HE fibres. The stress of the hybrid composite is
then given by the rule of mixtures

o0 OLEVLE + OHEVHE

Vi

(2.25)

where 61 and Gyg are the average stress of the LE and HE sub-composites,
respectively. These are calculated according to the fragmentation solution of
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Hui ef al. [34, 150], using the corresponding properties of each fibre type.

With the model, Swolfs et al. predicted a hybrid effect up to 15% for a carbon-
glass hybrid. The carbon fibre strength scatter had a large impact on the hybrid
effect, while the scatter in the glass fibre showed no importance at all as long as
the failure of both fibres took place at different strains. These facts correspond
well to the general findings seen in the literature and which were discussed in
Section 2.1. The influence the failure strain ratio has on the hybrid effect was
insignificant. Nonetheless, this was proved to be wrong in a future work with a
more sophisticated model [33]. In accordance, the hybrid effect is influenced by
four parameters [33]: the Weibull shape modulus of both LE and HE fibres and
two non-dimensional parameters. For an LE Weibull modulus of 5 or higher,
the hybrid effect only depends on the LE Weibull modulus and the ratio of fibre
stiffness times the relative volume fraction of the LE and HE fibres.

Some time later, Tavares et al. [35] presented a GLS model capable of reproduc-
ing the stress-strain curve in hybrid and non-hybrid composites. Their work is
based on that of Calard and Lamon [154]. An RVE of parallel fibres of length
L, with no matrix, is generated. A strength, o}, is then assigned to each fibre
q following a Weibull distribution according to the length of the fibres with
P, =1—exp(—(L/Lo) (G(‘; /00)"), where P, is a random number between 0
and 1, and Ly, oy and m are the Weibull parameters of the fibre g. These can be
different for each fibre g in the case of a hybrid composite. A uniaxial tensile
strain is then applied in small increments. At each strain increment, the stress of
each fibre g is 0, = Eqso, where E, is the Young’s modulus of the fibre g. All
fibre stresses are then compared with their own strength, o;. When the stress
of a fibre is higher than its strength, the fibre breaks and the number of broken
fibres is incremented. Considering a GLS rule, the stress of the broken fibre is
proportionally split into the remaining fibres by means of a proportion between
the number of active fibres and the total number of fibres. When no more breaks
occur, the strain is incremented. Since a GLS rule is considered, the spatial
distribution of fibres is not relevant. Therefore, the stress of the composite at
each strain iteration is given by
(NFE —Ng®) ALgEre + (NG — MyF) AneExe

0
0=V e (2.26)
! Nqy (ALEVLE + AHEVHE)
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where N3* and Nj'" are the number of LE and HE fibres, respectively, Ni* and
NEE are the number of broken LE and HE fibres, respectively, A; g and Agg are
the cross-sectional area of the LE and HE fibres, respectively, and N is the total

number of fibres.

The model is quite simple, however, as the interaction between fibres and the
presence of the matrix are omitted, the accuracy of the results is compromised.
By using this model, the authors found that a continuity between the failure of
the LE and HE fibres is necessary to achieve pseudo-ductility. In addition, the
Weibull scale parameter, 0y, had an effect on the average fibre strength, while
the shape parameter, m, changed both the average failure strain and the strength
dispersion. A larger strength dispersion caused an earlier failure initiation and a
more progressive failure. The gauge length, L, had a similar impact to that of

Op.

In the same work, Tavares et al. [35] extended Turon et al.’s [1] analytical
model to hybrid composites. Like in the work of Swolfs et al. [34], the hybrid
composite consists of two parallel sub-composites, one which contains all the
LE fibres and the other which contains all the HE fibres. The global response of
the hybrid composite is then obtained by applying the rule of mixtures, while
the reponse of each sub-composite is given by the model of Turon et al. [1]. It
was found that to achieve pseudo-ductility, the failure strains of both fibres must
be different and a low LE content may enhance the hybrid effect. All of these

agree well with the literature, as discussed in Section 2.1.

Recently, Vanegas et al. [155] modified the models of Neumeister [151] and
Turon et al. [1] by assuming that failure takes place when a critical density of
fibre breaks is reached. This critical density was obtained by fitting an empirical
law into experimental data. The modified Neumeister and Turon models become,
respectively
1 1 2L
0 = Vi(puLa)'"" [ZLi“pb 1 22y 1) (ZLi“pprbr 1)]

1—e 2"

2L py

(2.27)
GO =V (prO)l/m o

+ prine_LOpb]

where L™ is calculated with Eq. (2.21). Unlike other work, in the model of
Vanegas et al. the composite stress is calculated as a function of the density of
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breaks, py, instead of the applied strain. Although the model improves on the
results of those of Neumeister [151] and Turon et al. [1], it still shares the same
issues present in the original models. Furthermore, the fitting employed may

compromise the results.

To summarise, there are a large number of GLS models in the literature, although
only a few of them can simulate the stress-strain curve of hybrid composites
[34, 35]. The main issue of these models is that the formation of clusters is
neglected, and consequently, GLS models are too simple to accurately simulate
the tensile failure of composites. Additionally, the majority of these models do
not consider a finite number of fibres, nor the length of the composite which
does not allow size effects to be captured. Nevertheless, these models need few
computational resources which makes them suitable for performing multiple
parametric analysis. For other contributing work, the reader is referred to
references [156—-158].

2.3.2 Local load sharing models

In the case of LLS models, many different modelling assumptions and back-
grounds exist. In this thesis, models are classified as analytical models, fibre
bundle models, spring element models or finite element models [37]. These are
reviewed in the following subsections. Note that, models have been classified
here according to the author’s own opinion, thus some models could be placed
into a different category. Since the majority of the models omit the dynamic
effects due to broken fibres, which ones take them into account will always be

specified.

2.3.2.1 Analytical models

There are few analytical models that take into account an LLS rule. This
is because obtaining a closed form solution with such a complicated stress

redistribution around broken fibres is generally impossible.

Zweben [22] extended a shear-lag model to hybrid composites in an attempt to
obtain the hybrid effect analytically. The author modelled a 1D packing of LE
fibres (one row of parallel fibres), and compared it with an alternating packing
of LE and HE fibres (Fig. 2.12).

2.3 Micromechanical modelling of the tensile failure of composite materials
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- | E fibre
HE fibre

Figure 2.12: The 1D fibre packing model assumed by Zweben to obtain the hybrid
effect. a) a non-hybrid composite of LE fibres and b) a hybrid composite of alternating
LE and HE fibres.

Assuming that the composite fails when the first HE fibre breaks, the hybrid
effect can be computed with

1

el [ Lij(eCFy—1) \ 2m
Re= | HE [ “H —H 2.28
S\ g <2Lm (eCFm —1) (2.28)

where 81‘_‘1112: is the mean failure strain of the HE non-hybrid composite. The

ineffective length of the hybrid composite, L}_’I‘, and that of the non-hybrid

composite, L', are given by

- | ELEALES
L™ =1.5314/ —/————
Gmhm

2 (kgy — k) ErgALEs
il k) k2 GR) VG

where s is the average fibre spacing and Ay, is the thickness of the matrix. The

(2.29)
Lh=

ratio of stiffness, k., and the two associated constants, k. and k¢;, are

L ELgALE r \/ks—i-l—i-\/kgﬁ . ke +1—+/k2+1
= el — £ =
ke

* " EnpAne ke

(2.30)
Finally, the strain concentration factor of the hybrid, éCFy, and that of the
non-hybrid, eCF, are
+ kez - kel
ke (2 - kgl) — kea (2 - kgz)

eCF =1293 eCFy=1 2.31)

In accordance with Swolfs et al. [3], if Zweben’s model is analysed, the follow-
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ing can be concluded:

— The strain concentration factor depends only on the ratio of the normalised
stiffness of both fibre types, therefore, if both fibres have the same stiff-
ness, the strain concentration factors between the hybrid and non-hybrid
composite are equal.

— The hybrid effect greatly increases with the ratio of failure strains. Thus,
a large HE fibre failure strain should be very effective. In practice, this
is probably overestimated. Swolfs ef al. [33] demonstrated that the
hybrid effect increases with the failure strain ratio up to a plateau which
is obtained for a ratio of 2.

— The term —1/2m tends to be small, meaning that the ineffective length
and SCF have a small influence on the hybrid effect. This is known
not to be true, since the hybrid effect strongly depends on the damage
development [33-35].

— Fibres with small Weibull modulus m should produce a larger hybrid
effect. This is something that has been proved to be true [25, 33-35, 64].

As the conclusions show, Zweben’s model is severely limited [3]. Owing to
the alternating packing considered, the fibre volume fraction and the effect
of dispersion cannot be studied and this may compromise the accuracy of the
results. Moreover, both LE and HE fibres are assumed to have the same Weibull
modulus which would be unlikely in the case of a real material. In addition, the
model assumes an unrealistic elastic matrix to obtain the SCFs and ineffective

lengths.

Fukuda [25] attempted to improve Zweben’s model further, which led to

1
Re= <LH<8CFP’I"—1>> 2m (232)
2L (eCF™—1)
Fukuda’s equation is quite similar to that of Zweben’s, albeit, the strain concen-
tration and ineffective length are calculated more accurately [25]. Moreover,
the failure strain ratio of the fibres is not included. This implies that the hybrid
effect does not depend on the failure strain of the fibres which is not realistic
[3]. As demonstrated by Swolfs et al. [33], Fukuda’s model underestimates

the importance of the failure strain ratio, while Zweben’s model overestimates
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it. Therefore, these two models may be taken as lower and upper bounds for
estimating the hybrid effect.

More recently, Pimenta and Pinho [159] presented the Hierarchical Scaling Law
(HSL) model, which was able to predict the tensile failure strength of non-hybrid
composites of any size. The model was subsequently refined, allowing the entire
stress-strain curve and damage progression of non-hybrid composites of any
size [54] to be simulated. The HSL considers a perfectly plastic matrix, and
takes into account that the ineffective length grows with the applied strain and
the number of broken fibres in the cluster [4]. The model pairs the fibres, whose
strength follows a Weibull distribution, into hierarchical bundles (Fig. 2.13).
Thus, the total number of fibres in a level-[i,] bundle is nlib] = 2 Failure is
assumed to propagate in a hierarchical way, that is, the failure description of a
level-[1] bundle is extrapolated to define the failure of any generic level-[i, + 1].
Therefore, the survival probability, S [L’,"ZLH of the generic level-[iy 4 1] under an

applied stress 0™ is
. . 4 . 21 - .
s (0™) = (st (e™) +2 [1 ~ (s (o) ] st (0=) Sl (0%) (2.33)
where SE’}’L (0*) is the survival probability of a level-[iy] bundle and SE?’L (0™)is

its survival probability under linear stress concentrations. The reader is referred

to Pimenta [54] for a description of the entire model.

=1

Figure 2.13: Hierarchical scaling law bundle schema. A level-[0] bundle contains only
one fibre. Two level-[0] bundles can be grouped to form a level-[1] bundle. Likewise,
two level-[1] bundles are paired to form a level-[2] bundle and so on. Notice that the
fibre packing used (in this illustration square) does not affect the modelling predictions.

The authors found that there is no universal size for the critical cluster that
leads to final failure. This implies that the weakest link theory cannot be used
to extrapolate the results of a small bundle to a very large structure [159].
Compared against experiments, the model slightly underpredicted the formation

of large clusters, and overpredicted the formation of individual fibre breaks.
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This is in-line with other similar models in the literature [39, 41]. Further to
this, the model was recently compared against blind and detailed experimental
results in the [ international benchmarking exercise for strength models of UD
composites [4]. Although the model had good correlation with experimental data,
some discrepancies between models and experiments were still evident. Overall,
models failed to consistently and accurately capture failure and fibre-breakage

accumulation altogether.

That said, the HSL model is remarkable. Since it is analytical, it is computa-
tionally efficient, allowing bundles with thousands of fibres to be simulated in
few seconds. Moreover, the model has been shown to be reasonably close to
experiments and it also takes into account that the ineffective length grows with
the cluster size, which is omitted by many models. Nonetheless, it has some
shortcomings. First of all, it assumes a regular distribution of fibres, which does
not allow hybrid composites with different radius to be simulated. Secondly it
assumes that all clusters are co-planar (i.e. all breaks occur on the same plane)
and the SCF carried by intact fibres is assumed to be equal to 2 [54]. That is a
very large value, especially for a plastic matrix [37], even if dynamic effects are

taken into account [63].

2.3.2.2 Fibre bundle models

Fibre Bundle Models (FBM) consider an RVE containing a number of parallel
fibres with stochastic strength loaded under uniaxial tension. When a fibre
fails, the load is redistributed into the neighbouring intact fibres. After the load
redistribution, if no more breaks are encountered, the strain is increased. The
procedure is repeated until a finish criterion is satisfied. The main difference in
between all the models is related to the way the load of a broken fibre is redis-
tributed over the intact fibres. In some models, this is calculated using known
data from a finite element simulation run a priori, while in other models it is
calculated either with an analytical equation, or inherently from the equilibrium
equations of the model.

Fukuda and Chou [24] proposed one of the earliest models able to deal with
hybrid composites. An RVE containing a 1D packing of parallel fibres with
alternating layers of LE and HE fibres is considered. The fibres are divided into

elements of length 2L"", where LI" is the ineffective length. The elements are
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labelled with subindices p, g according to their position, see Fig. 2.14a.

Stress concentration
a) ——LE fibre 9 5. '
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Broken element

Figure 2.14: Schema of the model developed by Fukuda and Chou [24]. a) a bundle of
alternating layers of LE and HE fibres is created, with the fibres divided into elements
of length 2™ and b) assumed load redistribution around a broken element.

A stochastic strength is assigned to each element. Following this, a uniform
strain controlled simulation is started. At the beginning, the SCF of all elements
are equal to 1 since there are no broken fibres. When an element p, g fails, the
element carries no more stress, and then the neighbouring elements to the broken
one, i.e. the elements at p,g — 1 and p,qg+ 1, carry an SCF larger than 1. This
SCF around broken fibres was estimated prior to the simulation using shear-lag
equations [46], considering an elastic matrix, and taking into account the elastic
properties of the LE and HE fibres as well as different break patterns. Since
the length of the elements is equal to the entire stress recovery of the fibres, the
stress in the broken fibre is directly recovered. This means that the elements at
p+1,qand p—1,q carry the nominal stress. Thus, the ineffective length is not
explicitly captured. This leads to an unrealistic, but simple, load redistribution

(Fig. 2.14b). The simulation continues until all elements in a plane p are broken.

The model demonstrated that the failure strain of hybrid composites can be
enhanced thanks to the fact that the cluster development is slower than that of
non-hybrid composites, as discussed previously in Section 2.1. Even though this
model is relatively advanced for capturing the hybrid effect, it is too simplistic.
It considers an unrealistic 1D regular packing of alternating fibres, not allowing
for hybrid composites with an HVF different than 50% to be simulated. The
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stress recovery of the fibres is also not captured. Thus, more refined models

were needed.

Curtin et al. [144] developed a more advanced LLS model for non-hybrid
composites. They considered a 3D RVE with a square or hexagonal fibre
packing. Here, the fibres are divided into elements of length /, with / being
much smaller than the ineffective length of the fibres. A stochastic strength is
applied to each element according to their length /. A uniaxial strain controlled
simulation is then started. When a fibre fails, the fibre is assumed to slip within
the matrix. Consequently, the ineffective length of the fibres is computed with
Eq. 2.12. Along the ineffective length, the stress dropped by the broken fibre
is redistributed into the neighbouring fibres by means of stress concentration.
This SCF is estimated using the model of Hedgepeth and Van Dyke [160].
Nevertheless, another model could be used instead since the longitudinal and
transverse behaviour is decoupled. Afterwards, a matrix equation is solved to
obtain the stress transferred to the intact fibres around the broken fibres. The

simulation is conducted until the composite fails.

The authors found that the overall strength did not depend on the fibre geometry
(square or hexagonal). This was also confirmed by Swolfs ef al. [120]. The
size scaling of strength proved to be nearly-independent as well. Despite these
findings, it is clear that such facts do not apply to hybrid composites where the
LE and HE have a different radius. In such composites, a random distribution
of fibres is necessary to properly represent the geometry of the material. In any
case, the model developed presents noteworthy features. Unlike the model of
Fukuda and Chou [24], Curtin’s model captures the stress recovery of broken
fibres. Moreover, since the transverse and longitudinal directions are decoupled,
stress redistribution around breaks can be changed without having to reformulate
the model. Finally, a more realistic packing of fibres was considered, together

with a plastic or debonded matrix.

Behzadi et al. [36] employed a finite element model to calculate both the
SCF around multiple broken fibres and the ineffective length, taking matrix
yielding into account. These were used as input data in an FBM consisting of
parallel fibres with length equal to the ineffective length, see Fig. 2.15a. This
is an interesting approach since it allows the accuracy of finite elements to be

exploited while still using a simple model. In the finite element model, the
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authors predicted an ineffective length of L = 0.0745 mm (measured at 90%
of stress recovery) and an increase of SCF from 1.09, around a single broken
fibre, to 1.36, around three broken fibres (Fig. 2.15b). These values of SCF

were larger with an elastic matrix, corresponding well to the literature [37, 39].

a)

Figure 2.15: Model from Behzadi et al. [36], a) a bundle of parallel fibres in a
hexagonal packing is considered with length equal to the ineffective length L™, b) SCF
obtained around different broken fibres (in red) using a finite element model, and c)
stacking of single bundles to form a large UD composite.

Unlike the majority of the models, the strength of the fibres was modelled within

a normal distribution
8; = Uy +F;SD (2.34)

where 8:; is the failure strain of fibre g, i, and SD are the mean and standard
variation of failure strains of the fibre at a length equal to the ineffective length
and P, is a random number between 0 and 1. At each loading step, the stress

Chapter 2 Literature review



of each fibre g is o, = SCFqEqso, where E, is the fibre Young’s modulus and
SCF; is the stress concentration applied to the fibre. When a fibre fails, its stress
is set equal to zero, and the surrounding fibres receive SCF according to the
finite element model data. Unfortunately the authors did not explain how they

obtained the SCF, for different combinations of broken fibres other than the ones

shown in Fig. 2.15b [5]. The FBM is run until an unstable cluster propagates.

After that, a fixed number N, of RVEs are stacked together to form a piece of
UD composite of known length (Fig. 2.15¢). In accordance with the weakest
link theory, failure of the UD composite is triggered whenever one of the bundles
fails, since the interaction between bundles is not considered [36].

The authors concluded that matrix yielding reduces the SCF in the fibres. The
presence of an elasto-plastic matrix surrounding the fibres leads to an increase
in the composite failure strain compared to the elastic matrix case. This does
not correspond well to the observations of recent work [4, 37], which must be
attributed to the omission of the stress recovery of the fibres. Since this effect is

omitted, and the SCF is larger with an elastic matrix, it is not surprising that the

model of Behzadi et al. predicted lower failure strains with an elastic matrix.

The authors themselves pointed out that a better description of the ineffective
length was needed to improve the results, along with the interaction between the
composite bundles. These, together with the very short length of the bundle, are
the majors flaws of the model. The modelling approach can easily be extended
to work with a random packing of fibres in hybrid composites, as long as a

proper stress redistribution around breaks is considered.

Mishnaevsky and Dai [32] proposed a model considering an RVE containing
a given number of fibres which were assigned either carbon or glass fibre
properties. The fibres in the RVE were randomly located and misaligned. Like
the majority of the models, the strength of the fibres was considered to follow a

Weibull distribution. At each strain increment the stress of a fibre ¢ is
o, = E,£* + Ao, (2.35)

where here, the fibre Young’s modulus, E,, is calculated as a function of the
fibre misalignment [32] and Aoy is the increase of stress carried by the fibre due
to the surrounding broken fibres. This increase was calculated using a power-law
function [32, 161].

2.3 Micromechanical modelling of the tensile failure of composite materials

49



50

The authors found that hybrid carbon-glass composites can have a lower failure
strength and strain than the all-glass non-hybrid composite. Likewise, the
strength of the hybrid can be lower than that of the all-carbon non-hybrid
composite. In addition, the failure strain of the hybrid composite decreased by
increasing the HVF'. The results were validated against data in the literature and
a finite element simulation. Although the model can simulate hybrid composites
it is too simple, since the ineffective length of the fibres is not included, and
does not allow their stress recovery to be simulated. The load sharing around
the surrounding fibres is also quite simplistic. A good point of the model is,
nonetheless, the inclusion of the fibre misalignment, which is generally omitted.

One of the most acknowledged and advanced FBMs is that developed by Swolfs
et al. [31, 33, 40, 41, 120]. An RVE consisting of parallel fibres is generated,
which can contain fibres of a different type or of the same type, and is either a
hybrid or a non-hybrid composite. Moreover, fibres may be distributed within a
hexagonal, square or a random packing. The fibres are divided into elements
of length [ along the fibre longitudinal direction, see Fig. 2.16. Like in the
majority of the models, dynamic effects and thermal residual stresses are omitted.

Nonetheless, their flexible formulation allows for their future incorporation.

”’o ,a

- /o

¥
//

Figure 2.16: The fibre bundle model of length L proposed by Swolfs et al. [31]. The
fibres are divided into elements of length /, with / being significantly smaller than the
ineffective length of the fibres.
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A stochastic strength is assigned to each fibre element according to the length of
the element, and a uniaxial strain controlled simulation is started. At each strain

increment, the stress of each fibre element, o, is
o, = E,SCF,€° (2.36)

where E, is the Young’s modulus of element g and SCF;, is the stress concen-
tration factor carried by element g. At each iteration the model checks if any
element, g, is carrying a stress higher than its strength. If not, the strain is
incremented. Otherwise, the new broken elements are assigned an SCF, = 0,
so that they no longer carry any stress. The model then searches for clusters.
Two broken fibres are considered to be part of the same cluster if the in-plane
distance between the centre of the two fibres, d;, is below 4 times the smallest
fibre radius and the axial distance between break planes, d|, is less than 10 times
the smallest fibre radius, see Fig. 2.17. This is a somewhat arbitrary approach to
define clusters. Nonetheless, it is based on finite element simulations describing
the stress redistribution around the breaks [45, 68].

a) Il Fibre break B Cluster 1
0 Cluster 2

I New break

Figure 2.17: Determination of clusters of broken fibres. a) Two broken elements belong
to the same cluster if d; and dj are equal to or smaller than a certain distance threshold,
and b) a new fibre break may appear that complies with the distance threshold conditions
for one break in ‘cluster 1’ and for another break in ‘cluster 2’, and thus, all broken
elements are merged together into a single cluster.

The model subsequently calculates the SCF carried by all elements. This is done
in two steps. In the first step, the SCF;, are calculated for all elements according
to the stress fields obtained in a finite element model that is run prior to the
simulation [45, 68]; like in the model of Behzadi et al. [36]. In most of the work
of Swolfs et al., this stress field was computed by assuming an elastic matrix
and perfect interphase bonding. In some studies, a small matrix crack was also
added around the broken fibre [40, 41]. These finite element models will be
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described further in Section 2.3.4. The ineffective length was also calculated
in the finite element model, and the same value was always used in the FBM
irrespectively of the applied strain level. For an elastic matrix this is clearly
a good approximation. Nonetheless, this is not the case for a plastic matrix
where the ineffective length grows with the applied strain [37, 54]. To apply the
ineffective length onto the broken fibres, the SCF, carried by the broken fibre is
adjusted from O, at the position of the break, to 1, at the end of the ineffective
length according to the finite element data. The SCF; carried by these elements
inside the ineffective length is therefore smaller than 1, see Fig. 2.18a. As a
result, these elements cannot receive SCF from other surrounding broken fibres
since their stress is limited by shear-lag. Instead, for each intact fibre element,
the SCF is given by the linear superposition of the SCF it receives from all
broken fibres according to the stress fields obtained in the finite element model,
see Fig. 2.18b. Therefore, the SCF is smaller than 1 for elements inside the
stress recovery of a broken fibre, while it may be equal to or larger than 1 for
intact elements that are under stress concentration due to surrounding broken
fibres.

a) Ineffective length
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Figure 2.18: Schema of the stress redistribution considered by Swolfs et al. [31], a)
the SCF along a broken fibre determines the stress recovery, b) step 1: the increase of
SCF caused by the different broken fibres to the intact fibres is summed up by linear
superposition, and c) step 2: the SCFs obtained in step 1 are modified to achieve load
equilibrium. The broken fibres carry an SCF = 0.
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In the second step, the SCF;, obtained from the first step are modified using
an ‘enhanced superposition principle’ which takes into account the interaction
between all fibre breaks. The basic idea is that the SCF; carried by intact
fibres, based on the linear superposition solution computed in the first step, are
corrected to achieve load equilibrium, see Fig. 2.18c. This is explained in great
detail in Swolfs er al. [31]. Although the SCF; is calculated taking the number
of breaks into account, the ineffective length is not. This means that the model
omits the increase of ineffective length with the increase of cluster size. This is
a common assumption in many models, although recent work has shown that it
underpredicts the ineffective length [37]. Along the ineffective length, the SCF;
carried by intact fibres decreases accordingly to the load loss by the broken
fibres respecting load equilibrium. The model continues the entire process until
an unstable cluster of LE fibres propagates. Finally, to avoid unrealistic stress
concentrations at the boundaries, a layer of unbreakable fibres is included on the

perimeter of the model. Their stress is not considered.

In the first version of the model, hybrid carbon-glass composites with all fibres
having the same radius in a hexagonal packing were simulated [31]. A very
local load sharing rule was considered to predict the SCF around the broken
fibres based on the results of the finite element model [45, 68]. In the case of
a hexagonal packing, this means that all six neighbours around a broken fibre
are proportionally affected by the stress concentration. Therefore, the SCF for a
carbon fibre around a broken carbon fibre is 7/6, while for a glass fibre around
a broken carbon fibre it is 1 + Eyg/(6Eqg). In the case of a carbon fibre around
a broken glass fibre, the SCF for the carbon is the opposite: 1+ Eyp/(6ELE),
while for the glass it is 7/6 again, where Epg is the Young’s modulus of the
carbon (LE) fibre and Eyg is the Young’s modulus of the glass (HE) fibre. The
final SCF is obtained with the enhanced superposition method as previously
explained. Within these considerations, the authors studied the influence that
fibre dispersion has on the hybrid effect and, according to the results, it has
a significant influence. For intrayarn hybrids, the hybrid effect was up to 9%,
nonetheless, the highest hybrid effect was 16% when using an interlayer hybrid
configuration of one layer thick. Furthermore, they determined that, although
the critical cluster size did not depend on the fibre dispersion, it was a function
of the HVF.
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In a further work, Swolfs ef al. [41] employed synchrotron radiation computed
tomography to analyse fibre break accumulation and cluster formation in a UD
non-hybrid composite loaded in tension. The authors compared their experimen-
tal data against their modelling results given by the FBM. In this case, a realistic
random distribution of fibres was considered instead of a simplistic hexagonal
packing. The SCF around the breaks was again calculated according to finite
element data, but this time a very local load sharing rule was not considered.
Instead, the SCF was computed as a function of the distance to the broken fibre.
This was a major improvement compared to the state of the art models. The
failure strain predicted by the model slightly overpredicted the experimental
failure strain. However, the fibre break density was too high compared to the ex-
periment, which was attributed to errors in the Weibull distribution. In addition,
the formation of clusters was analysed and compared. The authors defined two
type of clusters: co-planar and diffuse. A cluster was assumed to be co-planar if
the axial distance between fibre breaks was less than 3.5 um, otherwise it was
assumed to be diffuse. While 70% of the clusters were co-planar in the experi-
ments, the model only predicted between 20-30% of co-planar clusters. Swolfs
et al. suggested that this may be caused by the omission of dynamic effects,
and the averaging of the SCF over the entire cross-section of each fibre [41].
The maximum cluster predicted was in good agreement with the experiments.
Nonetheless, the formation of larger clusters was constantly underestimated by
the model. This suggests the presence of larger SCFs than the ones used in their

model.

In a subsequent study, Swolfs er al. [33] investigated the effect that the LE
fibre strength scatter, HE fibre stiffness and failure strain ratio have on the
hybrid effect using their FBM. A random distribution of fibres, with each fibre
having their respective radius, was considered. The SCF around the fibre breaks
was again calculated according to finite element data, and as a function of the
distance to the broken fibre, taking into account the elastic and geometrical
properties of the fibres. This allowed a major improvement to be made over
state of the art models. Accordingly, if all parameters except the failure strain,
HE fibre stiffness and LE fibre strength scatter are kept constant, the ways to
increase the hybrid effect are [33]:

— A large LE fibre strength scatter.
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— A sufficient high failure strain ratio. In their study, a value of 2 proved to
be successful.
— A high HE fibre stiffness reduces the SCF on the LE fibres.

Such findings correspond well to what was discussed in Section 2.1. Neverthe-

less, the authors claimed that a parametric study should be carried out.

The model developed by Swolfs et al. presents many good features, since it is
relatively simple and computationally efficient, and yet still makes the most from
using the accurate stress fields obtained by a finite element model. Nevertheless,
it also presents some shortcomings. First of all, running the finite element model
to obtain the stress fields is time consuming. Secondly, the ineffective length
does not grow with either the applied strain or the cluster size. Nonetheless, the
flexible formulation of the model allows such missing features, together with
other phenomena like dynamic effects, to be implemented. Indeed, an important
shortcoming of the model was that it could not capture the stiffness loss due
to broken fibres, thus not predicting pseudo-ductility. This limitation has been
lately addressed [100]. The model was recently compared against detailed and
blind experimental simulations in the [ international benchmarking exercise
for strength models of UD composites, showing that there is still a large gap
between models and experiments [4]. The formation of clusters and damage
accumulation predicted by the model did not correlate well with the experiments
as was the case with the experimental comparison performed in [41].

To sum up, there are many FBMs in the literature, with the model of Swolfs et al.
being the most advanced for predicting hybrid effects and formation of clusters.
For other notable work, the reader is referred to the literature and references
therein [9, 43, 62, 64, 71, 106, 114, 117, 157, 162—188].

2.3.2.3 Spring element models

The Spring Element Model (SEM) is one of the most widely-acknowledged
models in the literature. In the SEM, an RVE that contains parallel fibres of a
certain length divided into fibre elements of length / is considered. The fibres
are connected by means of matrix shear springs. Such geometry leads to a
lattice of nodes longitudinally joined by fibre springs and transversely by matrix
springs, as illustrated in Fig. 2.19. Thus, unlike FBMs, the matrix is physically
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represented by shear springs.
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Figure 2.19: A cross-section example of the spring element model showing the fibres
(nodes) connected by matrix shear springs, a) square packing, and b) hexagonal packing.

The first SEM was presented by Okabe er al. [76]. The model can be seen
as an evolution of the Lattice Green’s function model [189, 190], which is
itself similar to the quadratic influence superposition technique [75] and other
influence functions or shear-lag based models [85, 113, 115, 191-193]. In the
first SEM presented, the fibres were uniformly spaced in a square arrangement,
like in Fig. 2.19a. The model was formulated based on shear-lag theory,
including matrix yielding and/or debonding. The model was later refined further
by formulating it in a finite element form, thus making it more robust, and
compatible with the finite element method [194]. Compared to 3D finite element
simulations available in the literature, the model captured the stress fields around
broken fibres well. Likewise, the strength and size effects of a carbon FRP
were well captured using the WOW model [52, 107, 195] compared against
experiments. Although the SEM is an elegant and advanced model, allowing the
stress redistribution around breaks to be captured inherently from the equilibrium
equations, the SEM by Okabe ef al. [194] is limited to regular fibre packings
(Fig. 2.19) thus not allowing hybrid composites to be simulated.

To allow the study of hybrid composites, a new SEM, able to take into account a
random distribution of fibres with their own radius, was developed by Tavares et
al. [39]. To do so, the length of all matrix shear springs (transverse elements)
is different to accommodate the random fibre distribution and radius of each

fibre. This leads to an irregular triangular mesh, which can be generated by
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performing a Delaunay triangulation [196], see Fig. 2.20.
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Figure 2.20: A cross-section example of the spring element model developed by Tavares
et al. [39] showing the fibres (nodes) connected by matrix shear springs of different
lengths with a random fibre packing. As a result, an irregular triangular mesh is created.

In the new SEM, the stiffness matrix for the fibre elements, K§, and for the
matrix elements, K¢, are given by

1 -1
-1 1

AtEY
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} (2.37)
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where Ay, and Ay, are the associated matrix area of the two different fibres con-
nected by the transverse spring and d€ is the centre-to-centre distance between
the two fibres. These areas can be estimated as a function of the number of fibres
connected to the two fibres, Ns(l) and Ns(z), and their respective fibre radius, REI)

and R§2)

2R 2R
At each strain increment the equilibrium equation reads
F =Ku (2.39)

where u and F are the nodal displacement and load vectors, while K is the global
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stiffness matrix
NL—N, Nrp
K=Y K+) K (2.40)
e=1 e=1

where Ny is the number of fibre or longitudinal elements, Ny is the number
of broken elements and Nt is the number of matrix or transverse elements.
The matrix is considered to be either elastic or elasto-plastic according to a
given matrix shear yield stress. These behaviours are implemented using a
sequentially linear analysis [197]. A uniaxial strain is slowly applied. At each
strain increment, Eq. (2.39) is solved to obtain the nodal displacements and
thereafter the stress of each fibre element is computed by 6¢ = E¢Bsu, where
the strain-displacement transformation matrix is By = [1/I —1/I]. If a fibre
element fails or any matrix shear element exceeds the shear yield stress, 7y,
then the number of broken elements, N,, and the stiffness of the broken matrix
elements are updated. After that, the global stiffness matrix, K, is recalculated
and Eq. (2.39) is again solved. This iterative process is repeated until no more

fibre or matrix elements fail, and then, a new strain increment is started.

The model formulation is very robust, since it inherently captures the effect
that the different material parameters (matrix and fibres) have on the stress
redistribution around breaks from the equilibrium equations. Moreover, it allows
hybrid and non-hybrid composites with a random distribution of fibres to be
simulated. Compared to experimental data, the model overpredicted the fibre
break density and underpredicted the formation of larger clusters as well as the
number of co-planar clusters, as occurred with other similar models [4, 41, 54].
The omission of dynamic effects and matrix cracking were identified as being

the main explanations for such discrepancies.

Later, the authors performed an in-depth study of the stress redistribution around
broken fibres in non-hybrid composites with different material parameters [37].
The fibre volume fraction had a massive influence on the SCF. A smaller
volume fraction increased the SCF, since less fibres are available to share the
load of the broken fibre. This agrees well with the results of Swolfs et al. [68].
Adding matrix yielding heavily reduced the SCF, since the shear stress transfer
is limited by the shear yield stress. Hence, adding matrix yielding is necessary
for predicting an accurate load redistribution. Other material parameters did not
have a significant effect on the SCF. The ineffective length depended mainly on
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the fibre Young’s modulus and the matrix shear yield stress. A larger Young’s
modulus increases the ineffective length since a larger stress must be recovered.
Similarly, reducing the shear yield stress led to a larger ineffective length due to
a smaller shear stress transfer. In addition, the cluster size had a powerful effect

on the ineffective length, as has been pointed out by other authors [54, 198].

In a future contribution, Tavares et al. [63] would improve the SEM by including,
for the first time in the literature, the dynamic effects associated to the fibre
failure in a model able to predict the tensile failure of composites. The model
is itself the same as the previous SEM [39], but with the inertial term added
to capture the dynamic effect. The fibre and matrix stiffnesses are therefore
calculated as in Eq. (2.37). The mass matrix of the fibre elements, M¢, and that

of the matrix, M{,, are computed with
1/3 1/6
mg = agpet |12V
1/6 1/3

1/12(3Am, +Am,) 1/12(Am, +Am,)
1/12(Am, +Am,)  1/12(Am, +Am,)

(2.41)
an = Pm (dc —Rf1 —sz) [

where pf is the density of fibre element e, while py, is the density of the matrix.

Rayleigh damping is introduced into the model to avoid dynamic instability with
C=a'M+B'K (2.42)

where K is given as in Eq. (2.40), a" and B" are the mass and stiffness propor-

tional damping coefficients and M is the global mass matrix

Mo YoMy i=j
0 i#j

where M;; are the individual elements of the global mass matrix [63].

(2.43)

Finally, the equilibrium equation, now incorporating the inertial term, reads
Mii+Cu+Ku=F (2.44)

where #i and u are the nodal acceleration and velocity vectors, respectively. A lin-
ear velocity is slowly applied to the RVE. At each increment, Eq. (2.44) is solved
using an explicit integration scheme based on the central difference method to

obtain the displacement, velocities and accelerations [63]. Subsequently, the
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stresses of the fibre and matrix elements are determined.

The authors found that the maximum SCF is always larger in the dynamic
model than in the static one, and with this increase being dependent on the
material. On average, the dynamic SCF was 1.83 times larger than the static
for an elastic matrix, and 1.43 for a plastic matrix. The dynamic effects had an
influence on the tensile behaviour and final failure of the material if an elastic
matrix was considered. Nonetheless, with a plastic matrix the effect was not
significant. Including dynamic effects led to an earlier formation of clusters
than with the static model, making the results closer to the experimental ones.
Nonetheless, the formation of large clusters was still underpredicted compared
to the experiments. The formation of co-planar clusters did not improve either
compared to the static model. This occurred both with an elastic and a plastic

matrix.

The latest SEM developed is clearly one of the most robust and advanced models
in the literature, since it captures the stress fields around broken fibres inherently
from the equilibrium equations, and takes into account dynamic effects. In
addition, it can capture the entire stress-strain curve and the stiffness loss of
a composite material. Nonetheless, it also presents some disadvantages. The
model is computationally limited in comparison with other simpler models.
Solving RVEs with a large number of fibres is not feasible unless a super
computer is used. This is the case for both the static and dynamic models.
In the static model, a large stiffness matrix, K, must be inverted, which is
computationally expensive. Otherwise, an iterative procedure must be used
to obtain the displacement of the fibres. In the dynamic model, the explicit
formulation avoids having to invert the stiffness matrix. Nonetheless, since the
time increment is very small to avoid instability, the computational time is still
compromised. Finally, due to the complex formulation involved, adding new

effects may not be straightforward.

2.3.2.4 Finite element models

In this section different micromechanical Finite Element Models (FEM) able
to simulate the fibre tensile failure of composite materials are discussed. De-
veloping such a micromechanical FEM is a challenging task. Firstly, one must

choose the appropriate size of the RVE so that it can be representative of the
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true material but small enough to reduce computer time. Secondly, the compu-
tational resources needed to fully characterise a material with damage in the
fibres, matrix and the fibre-matrix interphase are incredibly high. That said,
one way to overcome this issue would be the use of super-computation such as
the Alya system [199]. Because of this, only a few studies have successfully
modelled the fibre tensile failure process using a micromechanical FEM, and in
all cases, the RVE employed was excessively small. Notwithstanding, there is a
lot of work which has used RVEs to obtain the elastic properties of composite
materials [124, 200-202], or to simulate fibre-matrix debonding [203-207] or
other loading conditions [208-213]. These studies will not be discussed here, as
they are not relevant for this thesis. Interested readers are referred to the cited
articles and references therein. Likewise, other non-micromechanical FEMs,
able to simulate the failure of hybrid composites are also outside the scope of
this review. Interested readers are again referred to the literature [15, 96].

Mishnaevsky and Brgndsted [214] performed a parametric study to investigate
the damage evolution of glass FRP. The effect that the fibre strength scatter,
viscosity of the polymer matrix, and the fibre matrix interface have on composite
strength were investigated. To do so, a three-dimensional micromechanical
FEM was developed [215]. To model fibre failure, damageable planes (layers of
elements) were introduced into several sections of fibres at random locations.
To model fibre-matrix interphase cracking, a damageable thin layer between the
fibre and the matrix was added (Fig. 2.21). The remainder of the model was
always elastic. This means that damage can only occur in certain locations of
the model. The damage evolution for the fibres and interphase was implemented
assuming that the stiffness is reduced if a stress or a damage parameter in the

element or a nodal point exceeds a critical level [216-220].

The authors concluded that if all fibres have the same strength, the strength of
the composite after the pre-critical load increases, while fibres with stochastic
strength increase the composite strength post-critical load. The matrix viscosity
increased the damage rate in the fibres. The inclusion of matrix defects was not
significantly important compared to the fibre strength variability. Nonetheless,
the presence of interface cracks had a considerable effect on fibre failure and
matrix cracking. According to the authors, these observations suggest that an

interface with varied strength and weak local areas can delay both matrix and
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Figure 2.21: Schema of the finite element model employed by Mishnaevsky and
Brgndsted [214]: a) damageable layers are introduced at random planes in the fibres,
and b) a thin damageable layer is added between the fibre and matrix to simulate
interphase failure. The RVE is small, containing around 20 fibres with a length of few
microns.

fibre failure and increase composite strength.

Qing and Mishnaevsky [139] performed more numerical investigations within
the same approach, using a random distribution of fibres. The influence the
random position of the fibres and the strength scatter have on the mechanical
response and strength of glass FRP was investigated. The results obtained
showed that the variability of the microstructure has a significant influence on
the composite strength and the mechanical behaviour after the beginning of
damage growth in the fibres. These results prove that an accurate microstructure

should always be aimed.

In a future work, Mishnaevsky and Dai would simulate the mechanical response
of a carbon-glass hybrid composite using the same modelling approach [32].
The aim was mainly to compare the FEM against an FBM, which was reviewed
in Section 2.3.2.2. In this case, crack evolution was implemented within a 3D
power law [221], using a linear elastic fracture mechanics approach together
with the extended-FEM method. In addition, the virtual crack closure technique
was also used to calculate the strain energy release rate. RVEs with an HVF of

0, 25, 50, 75 and 100% were simulated, showing a ductile response at low HVF'.
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An alternative approach to reduce computational effort is to create a coupled
two-scale FEM. These models separate micromechanical and macromechanical
geometries and couple them, so that the results of one simulation are the inputs of
the other at each load increment. One of the latest two-scale FEM was presented
by Thionnet et al. [222], who studied the effects of the accumulation of fibre
breakage in UD carbon fibre composites. Their model included stochastic fibre
strength, matrix shear failure, interfacial debonding and matrix viscosity, making
it a robust and complete model. The authors found that the failure of a UD
composite material is a consequence of random fibre breaks which at high
loads lead to the formation of clusters of broken fibres. The kinetics of fibre
failure were different under steady loading, but still, failure of the structure was
controlled by the viscoelasticity nature of the matrix leading to the development
of clusters of broken fibres. Like the models of Pimenta [54] and Swolfs et
al. [33], this model was also compared against blind data in the [ international
benchmarking exercise for strength models [4]. The model overpredicted the
formation of larger clusters, and predicted an excessive non-linear stress-strain

response, albeit the failure strength was relatively close to the experimental one.

The most recent and complete work to date concerning the damage development
and failure in hybrid and non-hybrid composites under longitudinal tension
is that published by Tavares ef al. [35]. In their study, a micromechanical
FEM able to reproduce fibre-matrix debonding by means of cohesive elements,
and matrix cracking and yielding was developed by using a constitutive model
developed by Melro et al. [207]. The fibres, randomly placed in the RVE within
their respective radius, were modelled as transversally isotropic with a stochastic
strength assigned for each fibre element. In addition, dynamic effects were
considered. The authors concluded that, in order to obtain a ductile behaviour,
the strength dispersion of the LE fibre was a key parameter. A wider strength
scatter led to a wider damage progression and to a larger ductility.

Although some authors have been able to simulate the damage progression in
composite materials using an FEM, performing such simulations is still too
demanding, even if a super computer is employed. All the work carried out
considered RVEs that were too small to be representative of real materials, and
therefore, care must be taken when interpreting the FEM results. In any case,

these models may be more useful in the future when the computational power
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increases enough to allow larger RVEs to be simulated. For other notable work,

the reader is referred to references [223-226].

2.3.3 Shear-lag theory

When a fibre breaks, the stress along the fibre is recovered over a distance called
ineffective length (Fig. 2.22), thanks to the shear stress transfer occurring in the
matrix. Shear-lag models attempt to estimate this stress recovery. Thus, these
models are important because, coupled with an FBM and an appropriate load
sharing rule, they can predict the tensile failure of composite materials. Some
of these models can also estimate the SCF around fibre breaks. However, most
studies only consider a fibre embedded in a portion of matrix and, consequently,
just predict the stress recovery of the broken fibre. In this section, different

shear-lag models that are solely able to predict the stress recovery of broken

fibres are reviewed.

Stress

: — Perfectly plastic
----Elasto-plastic
----Perfectly elastic

>

Distance from break

64

Figure 2.22: Examples of stress recovery in a broken fibre. An elastic matrix leads to
an exponential stress recovery, while a perfectly plastic matrix leads to a linear stress
recovery. An elasto-plastic matrix leads to a combination of the previous two extreme

cases, leading to a linear region (yielded matrix) and an exponential zone (elastic matrix).
More complex profiles can be obtained by adding a debonded region (not shown).

The first shear-lag model was presented by Cox [227]. This theory considered
a perfectly-bonded elastic fibre in an elastic matrix. Thus, no upper limit was
included for generating the interfacial shear stresses. In other words, the matrix
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shear yield stress is ‘infinite’. In addition, the matrix was assumed to carry only
shear loads; a very common supposition in shear-lag models. In general, this is
reasonable, since the tensile stresses carried by polymer matrices are negligible
compared to those of the fibres. Given these considerations, the stress in the

broken fibre, o, along its length is

Z 2Gme
—Ee' 1~ =T 2.45
or = Ere ( CXP< Rf“Ef(s—ZRf)>) (2.45)

where z is the longitudinal distance from the break plane. This kind of model
would correspond to the perfectly elastic case in Fig. 2.22. In practice, this
theory may apply at very low loads, but at higher loads, the matrix will undoubt-
edly yield, since the matrix shear yield stress of polymers is very low (typical
values range between 20 — 100 MPa [37]). Therefore, more advanced theories,

including matrix yielding were needed.

Rosen [141], developed a similar model, by assuming a fibre which was sur-
rounded by an elastic matrix which was itself surrounded by a material with
the composite properties. With these considerations, Rosen derived Eq. (2.9) to
predict the ineffective length of the broken fibre, see Section 2.3.1.

One of the most widely-acknowledged shear-lag models in the literature is the
one given by Kelly-Tyson [149]. In this model, a perfectly plastic matrix was
assumed for the first time, together with a perfect fibre-matrix bonding. In
this way, linear forces occur at the fibre-matrix interphase leading to a linear
stress recovery within a constant acting shear stress (Fig. 2.22). Within these
considerations, the ineffective length of a broken fibre, L™ and its stress, O,

along its length are

277 .
E R - O < < Lln
- %80 oi={ R == (2.46)

Ee? [M<z<o

in

where 7 is, here, the matrix shear yield stress. Thanks to the plastic flow, the
model includes an upper limit for the interfacial shear stress, allowing for a
better estimation of the stress recovery. Nonetheless, it also presents some
flaws. The model assumes that the matrix yields along the entire ineffective
length. In reality, the shear stress will decrease down to zero in some region

close to the end of the ineffective length. In that region, no yielding will occur,
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since the shear stress will not exceed the yield stress. Such a feature cannot be
captured by this model. It is worth mentioning that fibre-matrix debonding can
also be simulated by this model by assuming that a constant debonded shear
stress occurs instead of using the shear yield stress. This is something that was

discussed in Section 2.3.2.

Later Piggott [228] presented another model including a debonded region. In
Piggott’s work, interfacial shear stresses appear thanks to the frictional stresses
at the debonded region, whereas elastic stress transfer appears in the perfectly
bonded region. The model was subsequently refined by different authors [229-
232]. The stress recovery profile for these models combining a debonded and an

elastic region is illustrated in Fig. 2.23.

----- Debonded region
— Elastic region

Fibre stress
Shear stress

» »

Distance from break

Distance from break

Figure 2.23: Schema of the stress profile assumed by some authors [228-232]. A
debonded region, which may follow a constant shear stress or not, is followed by a
well-bonded elastic region.

According to Lacroix [230], debonding occurs over a distance GL/2 with 0 <
¢ < 1. The stress for the fibre in the debonding region at a distance z, and along

the elastic region is

(L)2) -z L L
= _— c=—<z< —
or =47, i Vz g2_2_2
h(2B8%z/d 2.47
Gf:Efs°—<Efs°—erjg> cosh ( f /) Vz:zé(l—g)% (247)
'/ cosh (ﬁL(l—g))
dr
where the debonded shear stress is calculated with
T, = —U (Oy + Of) (2.48)

whereas o is the thermal residual stress, i is the friction coefficient and

Gy = EvEm (Vi = Vi) £ (2.49)

Er(1+ Vi) +En (14+vp) (1 —2v)
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while vf and v, are the fibre and matrix Poisson’s ratio, respectively. The
shear-lag parameter, B, and the debonded coefficient, ¢, are, respectively,

Erel — ih coth (B~ (L/dr) (1))

B Em _ B-
ﬁL B \/Ef(l + Vm) In (2S/df) 5= 27 (L/df)

where 7" is the interfacial shear strength. Thus, when the shear stress reaches

(2.50)

the shear strength, debonding occurs. In order to obtain ¢ from Eq. 2.50, an
iterative procedure is necessary. Unfortunately, this makes the model infeasible
to be used with FBMs.

A rather similar model was presented by Ivens [229]. The stress along the
debonded region and along the elastic region are

Of=—2 Vz: zSLi“

(LS —2)

S

_ (2.51)
or = Ee’ — (Ere” — o) exp ( ) Vz: z>LY
where o is the fibre stress at the end of the debonded region and B! is a shear-lag

parameter similar to that of Lacroix [230]

IE 0_ 2 ult 2FE
o, = ﬁfeﬁqu Bl = m - (2.52)
Er (14 vin) In ((55/R;)?)
The length of the elastic region is
Ry 10 (E¢e® — o)

whereas the length of the debonded region, LI", is obtained from solving the

following system of equations:

05 =% (1 - exp (~asL’)) = s <Lis“ - ; (1—exp (—asLl“))>

. (2.54)
2R¢ (Efso — Gs) ﬁILm Oy
=204 TV (] == ——
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where
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A= TRE . P in <£m Ef> = <vm8m 2En) &
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and where ¥ is a constant which depends on the material and the geometrical
properties [229]. Because it introduces debonding, the model is powerful like
the one proposed by Lacroix [230], nonetheless, it is relatively complex and

obtaining L™ is not straightforward.

Nairn [233] developed a three-dimensional axisymmetric model taking into
account all the components of the fibre stress, and improving the interfacial
stress at the fibre breaks. The model also included thermal residual stresses
and assumed an elastic matrix. The model was later extended to include ma-
trix plasticity with and without debonding obtaining good agreement with a
finite element model [234]. The final model is relatively advanced since it
includes yielding and debonding. Nonetheless, its complex formulation makes

it challenging to implement in FBMs.

Landis and McMeeking [235] included matrix yielding in Cox’s [227] shear-
lag model, leading to an elasto-plastic shear-lag equation. Within this, matrix

yielding occurs when the applied strain, €°, is larger than the matrix shear yield

strain, Ut
w_p © [E(5Z2R) (2.56)
& E Gmds '

y > given by
When yielding occurs, the stress in the fibre at a distance z from the break is

47 .
de OSZSL?

f

of = Eils—2R Godi  [Lin— @257

E;e®—21 f(éidf)exp {2 B m2fR>( Sd Z)} > LM
maf fs— f f

where the slip length, i.e. the length where matrix yielding has occurred, L", is

@ EfSO E¢ (S — 2Rf)

L=
4 T Gmdf

(2.58)
where 7 is, here, the matrix shear yield stress. Note that, when yielding does
not occur, i.e. €2 < s;‘“, the fibre stress is given as in Eq. 2.45. Within this
model, the stress recovery profile corresponds to the elasto-plastic curve in Fig.
2.22 when yielding occurs, and to the perfectly elastic curve when no yielding
appears. In practice the model may also be used to simulate debonding instead
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of yielding, by inserting a debonded shear stress for 7 instead of the matrix shear
yield stress.

Although this model adds an upper limit to the shear stress, the model implies
that yielding occurs in a thin layer around the broken fibre while the rest of
the matrix is elastic [235]. To resolve this issue, Landis and McMeeking [235]
presented a new model based on the work of Cox [227]. The authors obtained
a non-linear partial differential equation to describe the load recovery. Since
a closed form solution is not available for the developed equation, the authors
fitted a power-law function to describe the model in a simple way. Their results

were in a good agreement with a finite element analysis.

De Morais [236] developed a more refined model which included a debonded
region, a plastic region, and a final elastic region in the broken fibre. Along the
debonded length, a decreasing interfacial shear stress is derived from Poisson
contractions and Coulomb friction, similar to the model of Lacroix [230]. The
debonded region is followed by a matrix yielding zone, where the interfacial
shear stress is assumed to be equal to the matrix shear yield stress. Finally, there
is an elastic part, where the interfacial shear stress follows an exponential law.
The model was in good agreement with a 3D FEM. The approach presented is
very robust since it includes debonding with an elasto-plastic matrix. Nonethe-
less, the model was developed for a regular packing of fibres, was derived for
non-hybrid composites, and must be solved numerically, making it impractical
to be used with FBMs.

More recently St-Pierre er al. [198] presented a shear-lag model to predict
the ineffective length. In their work, the Kelly-Tyson model was modified by
including a scaling factor, which increases the ineffective length with the number

of broken fibres in the cluster. Thus, the ineffective length becomes

. ACt

in (2.59)
where C is the shear-lag profile, C = 4sy/n, s is the mean distance between fibre
centres, s = Rg\/ 7/ V;, n is the number of broken fibres in the cluster and 7 is
here again the matrix shear yield stress, see Fig. 2.24. For other ways to estimate
the shear-lag profile, the reader is referred to Pimenta and Pinho [159]. The

model developed is remarkable, since it includes the effect of the cluster size in
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a simple analytical equation. When more than one broken fibre is present, the
ineffective length of the broken fibres increases [37, 159]. This is well captured
by this model. Moreover, the plastic limit is included, allowing for a more
realistic representation than the elastic models. The outcomes of the model were

validated against finite element data obtaining good agreement.
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Figure 2.24: A cross-section example of the model assumed by St-Pierre et al. [198].
A bundle of 100 fibres is shown, with a cluster of 16 broken fibres (coloured grey)
centred into the bundle. The model estimates the ineffective length of the planar cluster
of broken fibres, with corresponding shear-lag perimeter C.

> )

Even though the state of the art in shear-lag models has advanced and new and
more refined models have been developed, the Kelly-Tyson shear-lag model
[149] is still the most commonly used to date thanks to its simplicity. By
combining shear-lag models with a statistical strength distribution and a load
sharing rule, it is possible to simulate the tensile failure of composite materials.
According to Xia et al. [237] shear-lag models are generally accurate for high
fibre/matrix stiffness ratios, high fibre volume fractions, and/or when global
matrix yielding proceeds fibre breaking. Thus, shear-lag models should be
mostly accurate in FRP. Overall, many shear-lag models present the following

issues [5]:

Matrix plasticity is sometimes omitted.

— Fibre-matrix debonding is sometimes not considered.

Matrix cracking is neglected.

— Matrix viscosity effects are not taken into account.
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— Anisotropic fibre properties are not possible.

— An ordered fibre packing is generally considered.

— A combination of an elasto-plastic matrix behaviour with debonding is
usually not considered.

— The increase of ineffective length with the number of broken fibres is
generally omitted.

— All fibres are assumed to be of the same material.

As has been seen, some authors have tried to overcome some of these issues.
Nevertheless, more work is needed. More refined models, simpler to use and
incorporating an elasto-plastic matrix with debonding, matrix cracking and the
cluster size should be addressed in the future. Viscosity effects may also need to
be included. Moreover, there is not a single analytical model which takes into
account the existence of fibres with different mechanical properties, like in a
hybrid composite. For other notable work the reader is referred to references
[191, 231, 232, 238-242].

2.3.4 Stress concentration factor models

Different authors have derived analytical equations for predicting the SCF
around broken fibres, taking into account several features. This is also a relevant
topic, since an analytical equation can be used in an FBM together with a shear-
lag model for simulating the tensile failure of a composite material. It is worth
mentioning that, the SCF is defined here as the ratio between the local stress in
an intact fibre over the applied far-field stress. It should also be noted that the
SCF can be either dynamic or static. Most of the work found in the literature
has focused on static SCF, although some authors have also attempted to model
the dynamic SCF. Thus, the models which take dynamic effects into account
will be emphasised. In the following, some of the available models, mainly
analytical, able to predict the SCF around fibre breaks are summarised. Note
that this topic is interrelated with the shear-lag theory, since some models are
obtained by shear-lag considerations.

Hedgepeth [56] developed the first model able to predict the SCF around broken
fibres. The author modelled a 1D packing of fibres embedded in an elastic
matrix. According to Hedgepeth, the static SCF in an intact fibre around n
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broken fibres is

n2j42
SCF=||-—— (2.60)
]I;[l 2j+1
while the dynamic SCF is given by
SCFY = MySCF (2.61)

where M, is a dynamic factor which ranges between 1.15 and 1.2 depending
on the number of simultaneous breaks [56]. Although the model is somewhat
powerful, it is limited because of the following reasons. It does not consider
the distance between fibres (since it is a 1D fibre packing), neither the effect of
the fibre content nor the physical properties. Moreover, the matrix is treated as
an elastic solid. Thus, the model is unsuitable to perform accurate simulations.

Nonetheless, this model is one of the very few which includes dynamic effects.

Later, Hedgepeth and Van Dyke [160] extended their previous work to 2D
square and hexagonal fibre packings. Unlike the original model, the effect of
matrix yielding was included in their predictions as well. This allowed a more
realistic static SCF to be predicted, allowing the decrease in SCF due to the
matrix yielding to be captured. Nevertheless, the model is still limited since
it does not take into account a random distribution of fibres, and considers a
non-hybrid composite. Furthermore, the model is not purely analytical, making

it challenging to use with FBMs.

A further simple approach was given by Harlow and Phoenix [243]. By assuming
that the load released by a broken fibre is only transferred onto the two nearest
neighbouring fibres, the static SCF becomes

SCF =1+ g (2.62)

By analysing this equation it is clear that it is too simplistic. As with the work
of Hedgepeth and Van dyke, such a method considers neither the fibre spacing,
nor the properties of the material or the matrix behaviour.

Fukuda and Kawata [69, 70] included the effect of the fibre content and the
material parameters, and studied their influence on the static SCF. Decreasing
the interfibre spacing was seen to increase the SCF around breaks. Likewise,

increasing the number of broken fibres also increased the SCF, since more
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load needs to be redistributed. A larger ratio of fibre Young’s modulus over
matrix Young’s modulus also increased the SCF. The effect of random spacing
on the SCF was also studied [67], demonstrating that the SCF depends on
the distance between broken and intact fibres, and hence it should be treated
statistically. Most of these effects have been confirmed by different studies
[37, 68]. Although the model is powerful, taking into account many effects, it is
not purely analytical which makes it difficult to use. The model was also applied
to establish the SCF in hybrid composites [46].

Xing et al. [26] extended Hedgepeth’s [56] 1D packing approach to hybrid
composites, consisting of one row of LE fibres and another row of HE fibres
in an elastic matrix and including dynamic effects. The model showed that
the dynamic SCF may be smaller in hybrid composites than in non-hybrids,
which should lead to hybrid effects, as discussed in Section 2.1.1.2. Further
refinements were performed in Ji ef al. [57]. The main drawbacks of these
models is that they are not analytical, assume simplistic regular packings of
fibres and an elastic matrix. The good point is that they take into account the

dynamic effect.

Another simple model for predicting the static SCF was presented by Pitkethly
and Bader [30] with

SCF =1+ 4’2 (2.63)

where T is an experimentally determined load function depending on the ge-
ometrical and material properties. Therefore, such a model includes, in a
semi-empirical way, the geometry and material characteristics. While this model

is fairly simple, it is impractical, since it enforces the need to obtain Y.

Soon after, Wagner and Eitan [244] developed a more advanced model for
predicting the static SCF based on shear-lag theory considering an elastic matrix.
The authors derived a function depending upon the interfibre distance, the matrix
and fibre properties as well as the ineffective length. The static SCF around a
broken fibre was derived as

arcsin (Ry/d®) sinh (B¢ (L" —z))

SCF =1 -
* sinh (B<L)

(2.64)

2.3 Micromechanical modelling of the tensile failure of composite materials

73



74

where B¢ is cox’s shear-lag parameter [227]

1 2

B = — me (2.65)
Ry Erln i
"R

and d° is the centre-to-centre distance from the broken to the intact fibre. For
long fibres B¢ > 1. The model is somewhat powerful since it takes into account
the material properties and the distance between fibres by using simple analytical
equations. Thus, it can be used, to some extent, with hybrid and non-hybrid
composites. Nonetheless, it considers an elastic matrix, and the model was
derived from a 1D planar array of fibres. That is known to overpredict the SCF
[37]. It also omits the fibre volume fraction, which is known to have a very
considerable impact on the SCF [37, 68].

The importance of including matrix yielding was also highlighted by Nedele
and Wisnom [245]. In their work, a finite element model was used to study
the static SCF around a broken fibre. The model consisted of an axisymmetric
single broken fibre surrounded by a matrix which was itself surrounded by either
concentric cylinders representing the fibres or a perfect composite material.
Their results showed that the SCF is dependent on the assumed fibre-matrix
bonding and on the matrix behaviour. For all cases the static SCF predicted was
lower than that of Hedgepeth and Van Dyke [160]. Moreover, it was found that
only half of the ineffective length presented an excess of stress, and that the

stress actually decreases from the nominal value farther away.

Grubb et al. [246] simplified Eitan and Wagner’s approach using a similar idea
to that of Pitkethly and Bader [30]. The static SCF becomes

1 d°
F=1+— 2.
SC + pm arccos ( 2Re) (2.66)

where R. is an experimentally determined fibre-fibre interaction radius. The
authors compared the predictions of their new model against that of Eitan and
Wagner as well as experimental data obtained by Raman Spectroscopy. The
new model was closer to the experimental results than the model of Eitan and

Wagner, but had as a drawback the fibre-fibre interaction radius.

Van den Heuvel et al. experimentally obtained the static SCF by using Raman
Spectroscopy data [82, 83, 247-250] and studied the influence of inter-fibre
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spacing on the SCF resulting from a break. According to their data, the state of

the art models were not accurate enough.

Zhou and Wagner [251] improved the model of Eitan and Wagner [252] by
adding a given debonded region followed by an elastic region in the broken
fibre. The model was again derived from a 1D fibre packing, using shear-lag
theory. Overall, the model is quite similar to the one presented in Eitan and
Wagner, except that a more advanced shear-lag parameter is used, and debonding

is included. With these considerations, the static SCF around n adjacent broken

fibres is
zusin 55 )
arcsin . in() N
7 n dc(r) IJLlsn cosh ﬁq z
SCF =1+ 1221 . l (1 — 0 T
J cosh B} ST
(@) in( o
2UR: in in
+ L;ZJ <L§2 —z)] OSZSLSZ
q (2.67)
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where R; and R, are the radius of the broken and intact fibres, respectively, ﬁJN
and [3;\I are Nayfeh’s shear-lag parameter [253] for the broken and intact fibre,
respectively, as given in Zhou and Wagner [251], and L{" is the length of the
debonded region. For all equations, L < R i/ 1 should be satisfied.

A maximum SCF of 1.33 was predicted when one fibre break was present and
the radiuses of the broken and intact fibres were the same, agreeing well with
Hedgepeth [56]. Overall, results were in better agreement with experimental
data than the model of Eitan and Wagner [244]. Later, the model was extended

to work with hybrid composites by simply adding an extra term taking into

account the difference of stiffness between the broken and intact fibres [254].

However, such model is still not enough, because, besides not including matrix
yielding, it omits the volume fractions of the fibres which affect the SCF [45].

Ohno et al. [255] also derived equations for estimating the static SCF around
a broken fibre. A hexagonal fibre-array model containing a broken fibre was
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considered with interfacial slip and matrix yielding. Two approximate solutions

were found for predicting the SCF in the closest neighbour to the break with

1— e*\@Li“[']
Ser :W solution 1

KM (1 —e ML ”) — K373 (1 — e—mL‘“”) (2.68)
Ser = i solution 2

6 (K1 — K3) mums L")
where
] 1
" ? N4 2 (2.69)

~3-n2
3

Kn n:17273a4

and where L] is a dimensionless ineffective length [255]. The authors found
solution 2 to be in good agreement with 3D finite element simulations. Nonethe-
less, as in the case of previous work, this model was derived for a regular
packing of fibres, making it impractical for models with a random fibre packing.
Moreover, it does not directly take into account the material properties or the

distance between fibres.

An in-depth work of the static SCF around broken fibres was performed by
Swolfs et al. in different publications [40, 45, 68]. In a first contribution, Swolfs
et al. [68] studied the static SCF around a single broken fibre within a realistic
random distribution of fibres embedded in an elastic matrix using an FEM.
Hence this was the first time in the literature that a realistic fibre distribution
was used for studying the SCF, see Fig. 2.25a. By fitting their results, the SCF

around a broken fibre in a non-hybrid composite becomes

d°—R;—Ry .
SCF=-392In|—2L"9)4384 if V;,=30%
j
d“—R;—R
SCF——287m<’q>+286 if Vi=50% (2.70)
J
d°—R;—Ry

SCF =—-2.12In < > +1.78 if Vi =70%.

J

The results obtained show that ordered fibre packings lead to higher SCF than

random packings at the same normalised distance from a broken fibre. However,
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Figure 2.25: Schema of the finite element model developed by Swolfs ef al. [40, 68]:
a) general model, and b) including a matrix crack around the broken fibre.

the maximum SCF was approximately 70% higher in random packings due
to the fibres being closer to the broken one. The fibre volume fraction had
a significant impact on the SCF, the ineffective length and overload length
(the longitudinal distance in intact fibres presenting an excess of stress). Thus,
models should clearly include the effect of the volume fraction and fibre distance.
However, the fibre stiffness had a negligible impact on the SCF but an important
influence on both the ineffective length and overload length. Finally, including
anisotropic elastic properties for the fibres produced a higher SCF, ineffective
and overload lengths. Although the FEM developed to predict the SCF is quite
advanced, the authors did not include matrix plasticity in their modelling results.
Moreover, the obtained equations are a fitting for a specific material case. Thus,

the FEM must be run for each material configuration, to obtain the proper SCF'.

A similar study was later carried out by Swolfs et al. [45], but with different
hybrid composites. In this new study, the effect of the HVF, the elastic properties
and the assumption of having the same radius for both fibres or not was studied.
The authors found that the HVF has a small impact on the stress redistribution,
however, a small increase of the SCF on both fibre types was noted with decreas-
ing the LE fibre content. The ineffective length was not affected. In addition,
a stiffer HE fibre reduced the SCF on the HE fibres around a broken LE fibre,
while this influence for the SCF carried by LE fibres was smaller. Finally, the
authors attributed the discrepancies between their results and the ones in the
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literature to the use of a more realistic fibre packing.

Later, a matrix crack around the broken fibre was added into their FEM [40] and
their presence on the load redistribution was explored (Fig. 2.25b). The addition
of matrix cracks increased the SCF although the effect was small. However,
the authors highlighted that more work was needed as the matrix cracks were
assumed to occur around fibre breaks and, alternatively, the matrix could yield
or debond. For this case, the SCF around a broken fibre was fitted as

SCF = —-3.67In((d°—R;—R,) /R;)+6.36  with matrix crack

Q2.71)
SCF = —3.30In((d“—R;—R,) /R;)+5.76 without matrix crack.

One of the most relevant analytical models in the literature was recently de-
veloped by St-Pierre et al. [198]. The authors formulated an analytical model
capable of predicting the static SCF around a planar cluster of broken fibres
of any size, as shown in Fig. 2.26. Accordingly, the SCF around a cluster of

broken fibres follows a power-law with

Ry \“
SCF=1+1(— (2.72)
r
where
1
—_— ifoo=2
21n (R /Ry) !
b otherwise,

2(RE* =R %)

where r is the in-plane distance from the centre of the cluster to the centre of the
intact fibre, Ry, is the equivalent radius of the cluster of broken fibres, TRZ = ns?,
R, is the equivalent radius of the composite, TR> = Nqsz, n is the number of
broken fibres in the cluster, s is the average distance between fibre centres,
s = Rf\/m, and o is a power-law exponent which controls the maximum
value of SCF and the shape of the curve. Its value depends mainly on the matrix
properties and behaviour. According to St-Pierre ef al. [198], such a parameter
is equal to 2 for an elasto-plastic matrix, whilst according to Tavares et al. [37]
it is 3.8 for an elastic matrix. The analytical model was in good agreement with
an FEM for different cluster sizes. By analysing this model, it is clear that it
is one of the most robust in the literature. It is simple and analytical, it takes

into account the cluster size, composite size, fibre volume fraction, fibre radius
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and it can be further calibrated by adjusting the value of «, allowing different
matrix behaviours or features not directly accounted such as matrix cracks to be
taken into account. The formulation is flexible, allowing for it to be extended to

hybrid composites. Thus, this model can easily be applied to FBMs.
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Figure 2.26: A cross-section example of the model assumed by St-Pierre et al. [198].
A bundle of 100 fibres is shown, with a planar cluster of 16 broken fibres (coloured
grey) centred into the bundle. The model estimates the SCF carried by any fibre in the
bundle caused by the entire cluster.

To summarise, there are different models to predict the SCF around a broken
fibre. Most work omits the dynamic SCF, focusing only on the static. Some
models are based on mathematical considerations without taking into account ge-
ometrical and/or material properties, while other models take them into account
leading to more complex and realistic models. Currently, there is not a single
analytical model which can predict the SCF around a cluster of broken fibres in
a hybrid composite taking into account the elastic and geometrical properties of
the two fibres in the hybrid as well as the matrix behaviour (perfectly elastic or
elasto-plastic/perfeclty-plastic). Models taking debonding and matrix cracking
into account are also scarce. Thus, new models should be developed. For other

relevant work the reader is referred to references [37, 63, 95, 256].
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2.3.5 Conclusions

This section has focused on the available models able to predict the failure
and damage progression in UD composite materials under fibre tensile loading.
Clearly, predicting the failure of composite materials is not an easy task. The
most difficult challenges are to accurately calculate the stress redistribution
around broken fibres and to take the interaction between the fibres and matrix

into account.

Different models attempt to capture the failure of composites. GLS models are
computationally inexpensive, simple and easy to use. However, they cannot
capture the formation of clusters, which severely limits them. At best, these
can be used to perform some parametric analyses. In contrast, LLS models can
predict the formation of clusters and are more advanced than GLS. Nonetheless,
they are also computationally more expensive. LLS models can be classified
into diverse categories according to the considerations involved: analytical
models, fibre bundle models, spring element models and finite element models.
Analytical models may be more limited in terms of features, since different
assumptions need to be considered so as to obtain an analytical solution (e.g.
assuming that all clusters are planar as in the work of Pimenta [54]). The
advantage is that they are computationally less expensive than the others. Fibre
bundle models can be very sophisticated, and may take into account several
features, but they need larger computational resources. Spring element models
are even more sophisticated than fibre bundle models, but need even larger
computational resources due to the presence of the matrix. Finally, finite element
models should be the most accurate, yet computational power nowadays is not
substantial enough to perform studies with large RVEs. In some models, post-
processing the results is also a difficult task since the amount of data is very
large. Visualising and determining the formation of clusters is generally not

straightforward.

At present, the majority of the models in the literature were developed for non-
hybrid composites, although some are able to deal with hybrids [33, 39]. Hybrid
composite materials are more complex to simulate than non-hybrids, since the
difficult interaction between both LE and HE fibres must be captured. More-
over, if both fibres have a different radius, the geometry is further complicated,
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especially if random packings are used. Currently, (besides FEM) the spring
element model developed by Tavares et al. [39, 63] is one of the few models able
to predict the pseudo-ductile behaviour of a hybrid composite with a random
distribution of fibres. The model of Swolfs et al. [31, 33] can accurately predict
hybrid effects, but it can only capture the ductile behaviour of the material when
an interlayer hybrid configuration is considered [100]. Thus, new models able
to predict the ductility of hybrid composites and less expensive than the spring

element model are yet to be developed.

Shear-lag models can describe the stress recovery in a broken fibre. At present,
diverse shear-lag models have been formulated including different features
such as matrix yielding, debonding or the size of the cluster of broken fibres.
Nonetheless, there is a lack of models taking into account many of the features
collectively. Analytical models considering fibres of different types have not yet

been developed.

Models for predicting the SCF around broken fibres also exist in the literature.
Very few models are able to predict the SCF when taking into account the
distance between broken fibres, as well as the elastic and geometrical properties
of the composite. At present, no analytical model can predict the SCF in a hybrid
composite by accurately considering the elastic and geometrical properties of
the fibres as well as the volume fraction of each constituent. Additionally, most
models omit dynamic effects.

Currently there are a number of different issues and problems arising from
attempting to simulate the tensile failure of composite materials. This is well
discussed in Bunsell et al. [4]. Firstly, many models do not use an accurate
random distribution of parallel fibres. Although that is a reasonable approach
for non-hybrid composites, it should be avoided with hybrid composites as
to allow a more realistic stress redistribution [45, 68]. Moreover, there are
several defects such as fibre waviness, voids, resin-rich regions, etc., that are
neither included nor investigated [4]. Secondly, the majority of the models
assume a traditional Weibull distribution or a modified Weibull distribution
to characterise the strength of the fibres. This is a key input parameter in the
models, nonetheless, the proper distribution to use is not yet clarified [4, 5].
In addition, the matrix microscale properties are also not simple to determine.

In general, macroscale resin properties are entered into the micromechanical

2.3 Micromechanical modelling of the tensile failure of composite materials
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models, although the microscale resin properties could be different to that of
the macroscale properties [4, 5]. Many models, assume simplistic elastic stress
redistribution around the broken fibres, omitting matrix yielding, matrix cracks
and debonding. These phenomena should be incorporated into the models.
Likewise, the inclusion of dynamic effects has been scarce, which would affect
the formation of clusters in the models.

Compared against experiments, models are sometimes satisfactorily compared
against one set of data, but fail to accurately predict failure for a different
material [4]. All current state of the art models underpredict the formation
of larger clusters as well as the number of co-planar clusters compared to the
experiments [4, 39, 41]. Although this discrepancy was originally considered
to be caused by the omission of dynamic effects, recent work has shown there
may be other reasons behind this [63]. Overall, models have been compared
against only a single specimen. To take into account the strength variability, they
should be compared against a number of identical specimens rather than against
a single one [4]. Another issue is the size of the RVE. Models usually consider
small RVEs containing hundreds or thousands of fibres, while real composites
commonly contain millions of fibres. Because of the presence of size effects,
RVEs with the size of the real material specimen should be attempted. A more
objective definition of what determines a cluster of broken fibres is also necessary
[4, 37]. At present, this is usually determined by a distance criteria, which is
sometimes differently considered by the authors and hinders the comparison
with experimental data [4]. Finally, whether final failure is triggered due to the
accumulation of damage and clusters or due to the propagation of a large cluster
should be determined [4].

2.4 Literature review conclusions

Fibre hybridisation is a potential solution to the inherent quasi-brittle behaviour
and low toughness of composite materials. With the correct design, the failure
process of non-hybrid composites can be altered, leading to hybrid effects and
a ductile failure. The relative fibre volume fraction, elastic properties, failure
strains, degree of dispersion and fibre strength scatter are the main parameters
affecting the hybrid effect and have been studied in depth. Other phenomena
such as matrix cracks, debonding or yielding need yet further investigation.
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Currently, it is well known that a lower number of LE fibres, a large strength
scatter, higher fibre dispersion and larger ratio of failure strain between the
fibres, among others, should increase the hybrid effect. The three hypothesis to
explain the hybrid effect, mainly the changes in the failure development, residual
stresses and dynamic effects, are clearly pointed out in the literature. The failure
development has been well studied, and its significant importance is very clear.
Residual stresses are known to be secondary, whereas the dynamic effects have

not been properly studied yet.

There are different models with which to study the failure of hybrid and non-
hybrid composites. Two main modelling groups can be defined: GLS and
LLS models. GLS models are simple and computationally efficient, but cannot
capture the formation of clusters leading to a large overprediction of the strength.
Meanwhile, LLS models can capture the formation of clusters and the stress
redistribution around broken fibres, but their complexity is greater which, in
general, leads to computationally expensive models. While the majority of
models are developed for non-hybrid composites, only few are intrinsically
capable of taking hybrid composites into account. The development of accurate
LLS models able to capture the fibre tensile failure and damage development in

hybrid composites with a low computational effort is necessary.

The stress recovery of broken fibres can be predicted by means of shear-lag
models, while the stress concentration around broken fibres carried by the
surrounding intact fibres can be estimated using SCF models. Combining both,
it is possible to compute the entire stress redistribution around broken fibres. In
general, these models are developed for non-hybrid composites. New models
taking into account the presence of different fibres are yet to be seen.

At this point, the development of more advanced and accurate models in the
literature is needed. As discussed in Section 2.3.5, there is still a large gap
between models and experiments. As a summary, models present different
issues. Firstly, the failure of the material is not predicted with enough accuracy
for blind material design. Secondly, the formation of larger clusters and the
number of co-planar clusters are significantly underestimated, while, the fibre
break density is generally overestimated. Thirdly, dynamic effects are generally
omitted. Moreover, models should objectively determine when final failure

occurs, as well as include realistic fibre geometries (random fibre packings,
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including matrix rich regions, voids, etc.). Finally, all models need accurate

fibre strength data and matrix properties as input parameters.

84 Chapter 2 Literature review



Part 11

Publications



86



Paper A — A 3D Progressive 3
Failure Model for predicting
pseudo-ductility in hybrid
unidirectional composite

materials under fibre tensile

loading

The paper has been published in Composites Part A: Applied Science and
Manufacturing 107 (2018) 579-591.

87



88

Overview

One of the main objectives of this thesis is to develop a suitable model which can
simulate the fibre tensile failure and damage development in hybrid composite

materials containing fibres with different elastic and geometrical properties.

Currently, few models in the literature are able to predict the fibre tensile
failure and damage development in hybrid composites. Some models can only
predict failure up to the onset of the LE fibre failure, not allowing to capture
pseudo-ductility [33]. Finite element models and spring element models do not
face this limitation, but are heavily bounded computationally [35, 39]. Other
more simplistic models cannot capture the formation of clusters, making them
unrealistic [34, 35].

To obtain a model capable of predicting the formation of clusters and damage
development, while still being computationally efficient, developing a fibre

bundle model using a local load sharing rule seems to be the best option.

In this chapter a novel 3D progressive failure model able to simulate the tensile
failure and damage progression in hybrid and non-hybrid unidirectional com-
posite materials is developed. The model is based on a fibre bundle model, and
considers a representative volume element containing a given number of parallel
fibres with their own radius and elastic properties. The model captures the for-
mation of clusters of broken fibres using known functions to calculate the stress
redistribution around breaks. The stiffness loss of the materials is computed by
associating a damage variable to the loss of stress transfer capability along the
ineffective length of broken fibres. The model is validated against experimental
data and finite element simulations showing a good agreement with the different
hybrid and non-hybrid composites analysed.
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A 3D Progressive Failure Model for predicting
pseudo-ductility in hybrid unidirectional
composite materials under fibre tensile loading

Jose M. Guerrero™*, Joan A. Mayugo?, Josep Costa®, Albert Turon®

& AMADE, Polytechnic School, Universitat de Girona, Campus Montilivi s/n,
E-17003 Girona, Spain

Abstract

This paper presents a three-dimensional Progressive Failure Model based on the
chain of bundles able to represent the stiffness loss in unidirectional composite
materials loaded in the fibre direction. A representative volume element with
a random distribution of fibres with their own radius is considered. Complete
stress distributions around fibre breaks are obtained by associating a damage
variable to the loss of stress transfer capability along the ineffective length and
applying local stress concentrations. The model has been validated by comparing
it against the literature results and exhibits good agreement with hybrids and non-
hybrid composites. The aim of this model is to simulate the tensile response of
unidirectional composite systems dominated by fibre fragmentation mechanisms
using a very reduced computational effort, even for larger representative volume

elements, compared to micro-mechanical finite element models.

keywords: Hybrid, Polymer-matrix composites (PMCs), Computational mod-

elling, Micro-mechanics

3.1 Introduction

Fibre Reinforced Polymers (FRP) are widely used in lightweight structures
mainly thanks to their high specific strength and stiffness. However, their quasi-
brittle behaviour and low toughness leads to fibre tensile failure with hardly
any prior damage symptoms, thus limiting their use and applicability [1]. One
potential way to solve this problem is with fibre hybridisation [3]. In a hybrid
composite, two kinds of fibres with different longitudinal failure strains are

* Corresponding author
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Doi: https://doi.org/10.1016/j.compositesa.2018.02.005
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mixed. The mixture can be arranged on three different scales [3], which are also
able to be combined into: i) interlayer or layer-by-layer i.e. by mixing layers of
different fibres, ii) intralayer or yarn-by-yarn i.e. by mixing the fibres within the
layers but not within the separate yarns, and iii) intrayarn or fibre-by-fibre i.e.

by mixing the fibres completely at the yarn/tow.

A low elongation fibre (LE) has a low failure strain and a high elongation fibre
(HE) has a high failure strain. Thanks to this combination, the LE failure strain
in a hybrid can be larger than that in a non-hybrid composite. This phenomenon
is known as the hybrid effect [33]. Moreover, with the appropriate hybridisation
design, a progressive failure of fibres under tensile load can be induced leading
to pseudo-ductile behaviour [16]. Currently [3], to explain the hybrid effect the
scientific community outlines three main reasons: i) changes in the development

of the failure, ii) thermal residual stresses and iii) dynamic effects.

Nowadays, changes in the failure propagation are assumed to be the main
reason for the hybrid effect. Because of the presence of flaws, the strength of
brittle fibres is not deterministic and follows a statistical distribution. When
a fibre breaks, shear stresses are transferred from the fibre to the matrix. As
a consequence, the broken fibre recovers its stress in a distance called the
ineffective length, whereas the surrounding fibres withstand stress concentration.
Eventually, the neighbouring fibres of each broken fibre fail, thus initiating
several clusters of broken fibres which grow further upon loading. When one of
these clusters reaches a certain size, it propagates unstably and leads to the final
failure. Other phenomena, such as debonding, matrix cracking or yielding and
fibre pullout, may also contribute. Notwithstanding, in a hybrid composite the
differences between the elastic and geometrical properties and the failure strains
can alter and delay the formation of clusters. Moreover, by reducing the quantity
of LE fibres in the hybrid, LE failure strain can also be increased because of the
size effects [31].

An additional and secondary cause of the hybrid effect is related to the residual
stresses generated during the manufacturing process [3]. Residual stresses
appear when mixing different populations of fibres with dissimilar thermal
expansion coefficients, which leads to different residual stresses in each fibre

population.
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The third reason given for the hybrid effect is the dynamic effect in the process
of tensile failure. When a fibre breaks, the elastic energy that was sustained by
that fibre is released and becomes kinetic energy which dampens after some
time. During this period, dynamic loads propagate through the composite and
increase the probability of failure. However, in the case of a hybrid composite,
the dynamic phenomena can be altered. Xing et al. [26] demonstrated that in a
hybrid composite two out-of-phase stress waves, one for each fibre population,
propagate after an LE fibre break. If both waves compensate each other, lower
dynamic loads are produced, leading to larger failure strains. However, this
topic has not been studied in depth and its importance remains unclear [3, 5].

In addition, the hybrid effect is also influenced somewhat by different parameters
which include the relative volume fraction between both fibres, strength distri-
bution, fibre dispersion, fibre stiffness ratios and the failure strain ratio. Other
parameters, such as the matrix stiffness or debonding, have no clear influence
[33]. Moreover, the specimen size effect on the hybrid effect is also unknown
[15].

Over the past decades different authors have attempted to study hybrid compos-
ites under fibre tensile loading. Hayashi [23] was the first author who observed
the hybrid effect in a carbon-glass layer-by-layer hybrid in an experimental test.
Later, Zweben [22] extended a shear-lag model to hybrid composites to obtain
the hybrid effect analytically. While Fukuda [25] improved the model further,
it still has major limitations. According to Swolfs ef al. [33], Fukuda’s and
Zweben’s models can be used as the upper and lower bounds for predicting the
hybrid effect.

Recently, Tavares et al. [35] presented a fibre-by-fibre micro-mechanical fi-
nite element model (FEM) simulating fibre, matrix and fibre-matrix interphase
damage [206]. The results demonstrated the importance of the failure strain
ratio of both fibres, the statistical strength distribution and a progressive failure
between both HE and LE fibres in obtaining pseudo-ductility. However, the
model requires high computational resources and is limited to simulating a small

number of fibres.

Okabe et al. [76, 194] presented an advanced shear-lag model able to represent

the fibre failure process of composite materials. The model represents the fibres
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through tensile springs and the matrix through shear springs. The advantage of
these types of models is that they are simpler, faster and cheaper in computational
cost than FEM models are. Furthermore, they are still able to simulate the key
physics involved, without being limited to only a few fibres as in the FEM
approach. However, Okabe ef al.’s model is limited to hexagonal or square
packings, which do not allow hybrid composites with fibres of different radii to
be studied.

Swolfs ef al. [31, 33, 40, 41, 120] presented a strength model under the assump-
tion of a local load sharing rule, based on the chain of bundles approach from
Rosen [141], Okabe et al. [76, 194] and others [43, 175]. Unlike the model of
Okabe et al., a random fibre packing with each fibre with its own radius was
considered. With their model, Swolfs er al. demonstrated that larger LE strength
dispersions, lower number of LE fibres, higher HE fibre stiffness or larger fail-
ure strain ratios all ultimately lead to greater hybrid effects. Fibre dispersion
also showed an evident impact. However, Swolfs’ model [31, 33, 40, 41, 120]
attempts to predict the behaviour only up to the onset of LE fibre fragmentation,
because it does not capture a non-linear response attributable to fragmentation

mechanisms. Thus, it is unable to predict pseudo-ductility.

In recent years, an increase in the amount of experimental work conducted
concerning fibre hybridisation has also been seen. Czél and Wisnom [18]
hybridised thin carbon fibre prepreg plies with standard thick plies of glass fibres.
They found pseudo-ductility with specimens of one and two plies of thin carbon.
However, specimens with three and four plies failed with unstable delamination.
Later, Wisnom et al. [15] obtained similar findings. Moreover, they compared
their results with a simplified version of Swolfs er al. [31] strength model
and obtained good agreement. Yu ef al. [17] also manufactured intermingled
hybrid composites using aligned discontinuous fibres. By combining high-
modulus carbon and E-glass in the hybrid, good pseudo-ductile responses were
also obtained as a result of the carbon fibres fragmentation. Further to this,
Jalalvand et al. [11] developed a new simple analytical method to predict all
possible damage mode maps in unidirectional hybrid composites. By using the
method as a design guideline, new hybrid specimens of a standard-thickness
glass/thin-ply carbon hybrid were manufactured and tested, leading to a good

pseudo-ductile response. Quite recently, Fotouhi et al. [12] tested quasi-isotropic
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high performance thin-ply carbon/glass hybrid laminates. Pseudo-ductility was
also obtained in all fibre orientations under tensile loading. Last but no least,
Czél et al. [16] hybridised thin-ply unidirectional interlayer all carbon-epoxy
composites comprising high modulus and high strength. Again, large pseudo-

ductile responses were obtained.

Despite advances in the modelling and understanding of hybrid composites, there
is no local load sharing model for these materials that is capable of representing
the pseudo-ductile behaviour within a random distribution of fibres. At the
moment, the exception to this are the micro-mechanics FEM models which
require huge computational resources and so are unsuitable as a design tool or

to perform parametric studies.

In the present work, the authors propose a new three-dimensional Progressive
Failure Model, (called here PFM) based on the chain of bundles which is able
to accurately represent both progressive damage and pseudo-ductile behaviour
in unidirectional composites. The proposed model implicitly allows fibre frag-
mentation mechanisms to be captured, thus estimating multiple breaks along
the length of the fibre. A random distribution of fibres of a given radius is
considered. The methodology leads to different deformations along the model,
using the hypothesis that fibres work in parallel but taking into account the local
stress fields around each fibre break. The complete stress distribution around the
fibre breaks is obtained through two dependent approaches. Firstly, a damage
variable related to fibre breaks and to a shear-lag model is computed. Secondly,
local stress concentrations are applied through all stress recoveries. Thermal
residual stresses and dynamic loads are omitted but the model framework allows
for its future implementation. The remainder of this paper is as follows: firstly,
we present the model, which we then validate by comparing it with the literature

results, and finally some conclusions are drawn.

3.2 Chain of bundles progressive failure model

3.2.1 Definition of the fibre random distributed RVE

A representative volume element (RVE) with a random distribution of fibres
is generated to capture the interaction between the fibres and the matrix. The

RVE represents, on a micro-mechanical scale, a portion of a real material model
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containing the matrix and a sufficient number of fibres. According to Trias et
al. [122] and Zangernberg et al. [123], the minimum transversal size of the
RVE in an elastic model should be 50 times the fibre radius (50 x R¢). However,
in a model with damage, the minimum size of the RVE could be even larger
to capture the fibre effects. Similarly, the RVE length in the fibre longitudinal
direction should be long enough to ensure that the ineffective length will be well
captured. Some studies employed RVEs with a length of between 15 x Ry and
40 x R¢ [35, 68]. However, an RVE using these length values does not ensure a
good prediction of the fibre fragmentation. A congruent RVE length depends
on the fibre and matrix elastic properties as well the ineffective and debonding
lengths. Thus, RVEs length with an order of magnitude equal to several times
the ineffective length should be used [31, 41]. Furthermore, size effects may
occur. Therefore, the RVE must be big enough to capture the micro-mechanisms
of the damage, the stress redistribution around the broken fibres during the

failure process, and the clusters of fibre breaks on the different planes.

The model proposed considers an RVE that contains a certain number of parallel
fibres randomly allocated, with a total length L, height a, and width b. All the
fibres are divided into elements of constant length /. This leads to a domain
consisting of a number of fibres working in parallel and divided into different
planes working in series, also known as chain of bundles [141]. The RVE may
represent a hybrid, where each fibre has its own radius and properties, or a non-
hybrid composite. Each fibre element is noted by the sub-indices (p,q), where
p is the plane identity ranging from 1 to N,, with N, being the total number
of planes, and ¢ is the fibre identity ranging from 1 to Ny, with Ny being the
total number of fibres. The matrix is not really represented, but it is accounted
for by means of its stiffness and a shear-lag model. Fibres at the outskirts of
the RVE are cut and symmetric so that the geometry obtained is completely
periodic. This schema is illustrated in Fig. 3.1. The random distribution of fibres
is generated using the formulation of Melro et al. [124], and extended to hybrid

composites by Tavares et al. [35].

Because of the strength scatter of the fibres, each fibre element has a different
tensile strength, o), ,. To do this, a random number between 0 and 1 is applied
to all elements, P, ;. Then, the strength G;’ q of each element is obtained accord-

ing to a statistical distribution, the element length / and P, ,. Any statistical
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Figure 3.1: Schema of the RVE for the Progressive Failure Model. The enumeration of
the planes is sorted from 1 to N, with plane 1 always being the plane to the extreme
right and plane N, to the extreme left. Fibre numeration is random from 1 to Nj.

distribution could be adopted and implemented in the proposed model. In the
literature, the Weibull distribution [103] is most commonly used to represent
fibre strength, although other variants such as the bimodal and the power-law

accelerated Weibull distribution are also employed [104, 112].

3.2.2 Constitutive equation

The model assumes the complete stress distribution on the RVE in two dependent
ways. On the one hand, when a fibre breaks, shear-lag stresses are transferred
between the fibre and the matrix, which can lead to debonding, matrix cracking,
yielding, or a combination of these [76, 149, 227]. Consequently, an ineffective
length appears so that the stress in the fibre is recovered. A shear-lag model is
used to obtain the ineffective length of a broken fibre element. According to
Xia et al. [237], shear-lag models are accurate in polymer matrix composites
if the fibre stiffness is much larger than the matrix, the matrix yields and the
fibre volume fraction is relatively high. Assuming that the loss of stress transfer
capability produces a reduction in local effective stiffness, the shear-lag model
is implemented by simply updating the damage variable of all the elements
inside the ineffective length of the broken fibre. On the other hand, local Stress
Concentration Factors (SCF) are applied through all stress recoveries, so that

the neighbouring fibres to a break are locally overloaded, increasing their failure
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probability. Therefore, the (SCF) is assumed as a dimensionless parameter equal
to 1 if the fibre element is not affected by any break, or higher than 1 if it is
affected by breaks. In the literature, the SCF), , is measured as the ratio between
the real local fibre stress, o), 4, and the fibre far field stress, G;: o where the stress
is not influenced by the damage, fibre breaks or stress concentration

Gpq=SCF,407, 3.1)

In this work, the main hypothesis is that all fibre elements in each plane work in
parallel, while all planes work in series. This means that all fibre elements in
the plane undergo the same deformation, €,, (evaluated in Section 3.2.4). As
damage is different on each plane, a different deformation is obtained along the
model. Therefore, the effective stress is given by relating the effective Young’s

modulus and the deformation of the plane
6pq=E, (1—- Dp.,q) &p (3.2)

where E; is the Young’s modulus of fibre g and D, , is the state damage variable
on element p,q. Therefore, the effective stress, &, 4, depends on the stiffness
and damage distribution: the plane stiffness -by €,-, and the element stiffness

-directly by D), 4-, but it does not take into account the stress concentration.

To obtain the real fibre stress, 0, 4, it is necessary to relate the effective stress

00

Gp,q> and the far-field stress, 0,7,

that, a stress ratio, Q,, is defined

that appear in the definition of SCF, ;. To do

U
Q
Q

Q,=-2 (3.3)

o
KN

The stress ratio associated to each plane p is evaluated according to the plane
level equilibrium condition explained in Section 3.2.4. By putting together Eqs.
(3.1)—(3.3), the constitutive equation of a fibre element relates the real local

longitudinal fibre stress with the longitudinal plane strain

SCFpyq

Opq = E;(1-Dyq)&p (3.4)

P
When the element’s tensile stress o), ; exceeds its strength o), , the element fails
and its damage variable D), , is set equal to 1. This causes an ineffective length

in the broken fibre which is represented as damage in all the elements inside the
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ineffective length. Therefore, damage is equal to O for a pristine fibre element,
equal to 1 for a broken fibre element, or between 0 and 1 for a fibre element that
is influenced by the ineffective length predicted by a shear-lag model. In the

following, how to evaluate D, , and SCF, , is explained.

The PFM is able to use any model to predict the ineffective length. In this work,
the widely used Kelly-Tyson [149] shear-lag model is adopted, which assumes
a perfectly plastic matrix leading to a linear stress recovery. Therefore, the

ineffective length Li; 4 of a broken fibre is given by

in __ E‘IR‘IE

pa =g, O (35)

where 7, is the shear yield strength of the matrix for fibre g and R, is the radius
of fibre g. Note that both can be different for each fibre population in the case
of a hybrid composite. The Kelly-Tyson model leads to different ineffective
lengths depending on the elastic and geometrical properties and increases with

the strain as the load is incremented.

As previously outlined, the damage variable, (calculated assuming the loss of
stress transfer capability in the ineffective length), produces a reduction of local

effective stiffness. Thus, a gradual decrease of damage from 1 at the position

of the break, to O at both ends of the ineffective length (see Fig. 3.2a and Fig.

3.2b) is applied. As fibres may fail many times along their length, different
ineffective lengths may overlap. Then, the highest damage always prevails for
each element inside overlapping stress recoveries. Another potential case is an
element failure located close to the boundaries of the model. In that case, the
ineffective length is not fully recovered, (see Fig. 3.2c). According to these
hypotheses, an element p, g is affected by each break in the fibre g at each plane
i with

max <W> Vi: (Djg=1)U (|i—p|l <L}n>

Dpg= Ly ’ .

0 otherwise.

(3.6)

In general, according to the literature [68, 251, 252], the SCF of an affected
fibre element (p,q) around a broken element (i, j) can be predicted with two

interacting functions: one which depends on the radial distance between both
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Figure 3.2: a) Schema of the ineffective length around a broken element, b) resultant
damage distribution, c) overlapping ineffective lengths and not fully-recovered stresses
in a fibre with two breaks.

fibres, 5((],]'),
ineffective length, A,_;). A schematic example of the SCF for a fibre around

and the other which depends on the plane position along the

a broken one is shown in Fig. 3.3. The interaction functions &, and 4,_;
can be parametrised with computational micro-mechanics studies (for example
the work of Swolfs et al. [40, 41, 45, 68]), or can be formulated with analytical
approaches (such as the Zhou and Wagner [251], and Eitan and Wagner [252]
models). The corresponding functions are shown in Table 3.1.

It should be highlighted that in order to simplify the model, the widely used
Kelly-Tyson shear-lag model was adopted to predict the ineffective length.
Nonetheless, the SCF models of Eitan and Wagner and Zhou and Wagner are
based on Cox’s shear-lag model [227, 252] and Nayfeh’s shear-lag model [251]
respectively. This means that the SCF's are calculated using a different physical
principle than the ineffective length. Nevertheless, we assume it is a reasonable
approach considering the complexity involved in the process of fibre breakage.
In any case, the functions to predict the SCF and the ineffective length are
an ‘exchangeable part’ in the proposed Progressive Failure Model. Thus, any

another model to predict the SCF or the ineffective length could be used instead.

Whenever different broken fibres are present, the SCF of an affected fibre (p,q)
is obtained by assuming a linear superposition of the contribution given by all
the breaks on the fibres. However, the SCF is bounded by the limitation of
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Figure 3.3: a) In-plane separation between broken and affected fibre, b) stress concen-
tration schema for intact fibres around a broken fibre depending on the in-plane distance
and the position along the ineffective length.

transfering load to the fibre by shear-lag. On the one hand, the elements inside
any ineffective length (elements where 0 < D, , < 1) have their stress limited
by the shear-lag model. Therefore, only intact fibre elements (D), , = 0) can be
over loaded by the SCF. On the other hand, another important related fact is to
secure the stress continuity at the end of an ineffective length of a broken fibre.
In the last element in the ineffective length region, no SCF is applied, but the
subsequent elements can cover part of the SCF. To achieve this continuity, SCF
is limited in the elements close to ineffective length regions also in accordance
with the shear-lag limitation over load transfer to the fibre. Thus, the SCF), ,

expressed in a general form is

: L . —
SCF,, = { min (SCF?,WSCFP#) Vp,q:Dp,=0 3.7)

otherwise,

where SCF 27 o 18 the SCF predicted by the linear superposition of the contribution
of all the fibre breaks using the interacting functions as

Ny N

SCFya=1+Y Y 84 Ao [Dij=1] (3.8)

i=1j=1

where here [e] are the Iverson brackets and define 1 if e is true, and O if it is
false. SCF 1157 ¢ 18 the SCF limit according to the shear-lag capacity to transfer
load to the fibre, and is calculated as the slope defined by the stress gradient of

3.2 Chain of bundles progressive failure model
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Table 3.1: Functions to obtain the stress concentration factor according to three different
models. (*) Swolfs et al. [41] function along the ineffective length has been assumed.
(**) Zhou and Wagner [251] provided equations for debonding and non-debonding
regions. Here, only non-debonding regions are considered.

SCF model Functions: radial distance S(Q, ;) and ineffective length /l(p,,-)
dS_.—(Rj+Ry)
_ q-J / q
Swolfs et al. S(q,/) =—P/In <R7]> + P,

(417 ()
where P, and P> are two constants from a micro-mechanic model and d(; i
is the centre-to-centre distance between fibres g and j

Ly—li—pl o ;
Mpiy = L V() i pl < L
ij
: _ 9
Eitan and Wag-  §(,_;) = —
ner [252] T
where @; = arcsin (Rj/d;7j>
o B (i)
= - g i,j):lli—p
o sinh B, L)
where B(quj) is Cox’s [227] shear-lag parameter:
Zhou and Wag-

ner [251] (**)

where u is a friction coefficient

sinh B (L}{‘j +0.50—1 |ifp\>

Apei) = , Y(i,j):1]i—p| < Li
(p—i) smhﬁ}‘lL;“j ( j) ‘ pl i,
where ﬁJN is Nayfeh’s shear-lag parameter, as given in [251]:
R? R?
Ei~) +En|[1-=L
m
2 'R}, R%

() -7

J . 2 2

RiEiEn | L (0 RN L (R (R LR
4G; Ry | 26w \RL-R; \ R 2 RZ

where G; and Ry, are the broken fibre shear modulus and the radius of
the shear-carrying matrix cylinder

the nearest ineffective length:

(1 ,
SCF]E.,q =min{ li—pll| Vi:Dj,=1 (3.9)
l7q

The constitutive equation presented here allows the fibre fragmentation mech-
anism to be captured by means of the fibre breaks and its associated damage

variable. The redistribution of stress using the shear-lag model permits several
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breaks along the length of any fibre. However, other mechanisms, such as
delamination, are ignored by the model. Nonetheless, neglecting delamination
is an acceptable assumption in the failure prediction of non-hybrids and of an
intrayarn hybrid, where the different fibre populations are mixed at the fibre level.
In other hybrid configurations, such as an interlayer hybrid where the different
fibres are located in different layers, delamination should be considered.

3.2.3 Element stiffness, plane stiffness and global RVE

stiffness

As previously mentioned, the proposed methodology leads to different elonga-
tions through the domain, causing a dissimilar strain for each plane €,. The
approach proposed is to compute the strains of each plane according to the
element’s stiffness and the initial hypothesis that fibres work in parallel and

planes in series.

The progressive failure is formulated using the stiffness damage of each fibre
element, D, ,. To do so, Hooke’s law of an element under tensile stress defines

the longitudinal stiffness of a single fibre element, &, ;, with

A
kpg=Eq(1—Dpg) Tq (3.10)

where A, is the cross-sectional area of fibre g given by A, = s,/ nRé, and where
54/ 1s a factor which guarantees the appropriate area of not entire fibres on the
domain will be considered (s, = 1 for entire fibres and s,/ < 1 for fibres located
at the corners, or the outskirts of the RVE).

The total stiffness of each plane can be obtained by assuming that all fibre
elements in the plane and the matrix stiffness work in parallel
Y Am

kp=Y kpg+Em ; (3.11)
g=1

where the matrix behaviour is assumed to be linear elastic, with Ey, being the

matrix Young’s modulus, and Ay, the matrix cross-sectional area of the RVE,
N,

An=a b—ZqilAq.

Similarly, the total stiffness is calculated by assuming that all planes work in

3.2 Chain of bundles progressive failure model
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series

N o -1
K= — (3.12)
(2c)

3.2.4 External and internal equilibrium

Because of mechanical equilibrium, the internal force of each plane, F,, must be
equal to the total external force, F', sustained by the system so that F' = F),. The
total external force can be found by relating the current total stiffness, K, and
the global longitudinal homogenised strain, £°, given in Section 3.2.6. Similarly,
the force of each plane can also be obtained by relating the plane stiffness and

the strain of the plane leading to
F=F, Ke"L=kye,l (3.13)

Therefore, €, is obtained as a function of €Y with

KL,

&, = £
Pkl

(3.14)
To maintain local load equilibrium, the aggregation of the loads of the fibres and
the matrix, must be equal to the load of the plane, therefore

Nq

Fy=kpepl =Y 0p4As+&EnAn (3.15)
qg=1

By substituting Eq. (3.4) in (3.15), and re-organizing, , can be found as
N,
Y1 SCFpqEy (1=Dpg)Aq

Q — == i (3.16)
b kyl— EmAm

where €, as result of a plane level equilibrium becomes constant to all fibre
elements in plane p. An additional formulation of €2, is obtained by substituting
(3.11) in (3.16) leading to

N,

Q, == (3.17)

Zq:l E;(1-Dpq)Aq

Once ), has been evaluated, all 6, , can be calculated from Eq. (3.4) and

compared with their strength o, . It is worth mentioning that small deformations
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are assumed. Thus, the element length /, total RVE length L and cross-sectional

areas A, Ay, remain constant.

3.2.5 Composite homogenised stress and break density

The homogenised composite stress is obtained as an average of both element

stresses and matrix stress, weighed by their volume fraction. For a non-hybrid,

this leads to

-V

NN ZZ ,,q+ ZEmp (3.18)

qd p=1¢=1 p=1

where V is the total fibre volume fraction.

For a hybrid composite, the average of the fibre stress must be calculated

independently for each fibre type to capture the differences in the cross-sectional

area
N,
Vil & o — Vi =V
0
NNZZ ,,q+ ZZ Gpg+ =Y N ZEmp (3.19)
L p= 1 g&fl p 1gef2 p

where V¢ and Vg, are the relative fibre volume fractions of each fibre population
in the case of a hybrid, and N; and N, are the number of fibres in populations f1
and 12, respectively.

The break density is calculated by dividing the number of broken elements into
the total RVE volume as

1 NN
i Y. Y Dy, =1] (3.20)
p=1g=1

where [e] is the Iverson bracket. In the case of a hybrid composite, the break
density of each population can also be calculated with the respective number of

broken elements.

3.2.6 Algorithm procedure

A controlled monotonic increment of longitudinal displacement is performed
along z direction to guarantee a stable tensile damage process. Hence, each new

loading step ¢ starts by increasing the current longitudinal displacement applied,

3.2 Chain of bundles progressive failure model
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(u);, with
(”)t = (u)tfl + (Au)t (3.21)

where (u),—; is the displacement from the previous step, and (Au);, is the dis-
placement increment. In each load step, the longitudinal displacement and the
global longitudinal homogenised strain, €°, assuming a uni-axial behaviour, are
both related by the total length of the model with

(%), = (i)’ (3.22)
Following this, the stiffness, forces, strains and ,, are first estimated with the
damage variable and the SCF from the previous step with Egs. (3.10)—(3.12),
(3.14) and (3.17). Note that, in the first step ¢ = 1, all damage variables D, ,
are equal to zero, and all SCF,, ; are equal to one. If there are broken elements,
then the ineffective length, damage variable and the SCF are calculated with the
estimated stiffness, forces, strains and €, using Eqgs. (3.5)—(3.7). As the damage
has changed, the stiffness, forces, strains and €, are re-calculated to obtain the
true actual current magnitudes. Next, the element stresses are computed with
Eq. (3.4). If no elements break, the composite stress and break densities are
evaluated with Egs. (3.18)—(3.20). If new elements fail, the damage D, , of
all new broken elements is set equal to 1 and the same procedure is repeated
without increasing the applied displacement and with the current damage and
latest calculated SCF, until no more failures happen in the current step. When
no new elements fail, a new step is started by updating (u), and (80) . with Egs.
(3.21) and (3.22). This procedure is shown in the flowchart in Fig. 3.4. The
model stops when either all elements in a plane are damaged, or the composite
stress has decreased by a pre-defined percentage of maximum load value. For
non-hybrid composites, where a brittle failure is expected, the simulation is
stopped when the stress decreases 10% from the maximum reached. In a hybrid
composite, LE fibre population could fail originating a large load drop. To avoid
an early end of the simulation before HE fibre failure, the calculation is stopped
when the stress decreases more than 80%. The model was implemented in
MatLab (The MathWorks Inc., USA) [257] and Python programming language
(Python Software Foundation, https://www.python.org/). The results can be
exported into ParaView (Kitware Inc., USA) [258] for visual post-processing.
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Start PFM simulation ‘

|
Input data: Ry, E, Ey, G, G, T, Rm. Vi, Vi1, Vi, a, b, L, I, (Au),, fibre posi-
tions, strength distribution, SCF model, post-processing and stiffening options

1
g 3 . _ . Opy
Starting displacement: u; = 0, u; = min E,_,,L
L 0 ‘ t=t+1
‘ New step ¢: update u, € |

Update kp 4, ky, K, F, &, Q,

Reached
end? Yes
‘ Calculate Lip'fq, D4, SCFp, ‘
1
! | Update by kp K. F. 8, Q, |
Apply Dy, =1 l
to all new broken Calculate o, , ‘<——
(p,q) elements 1

} Stop PFM simulation

Figure 3.4: Progressive Failure Model flowchart.

3.3 Results and discussion

3.3.1 Non-hybrid UD T700S and M40 carbon fibre epoxy

Two different non-hybrid UD composites consisting of T700S-Epoxy and M40-
Epoxy were simulated using the proposed PFM. The results were compared with
the reported experimental data in Swolfs et al. [41] and Koyanagi et al. [153]
respectively, in an attempt to validate the model. All model properties shown
in Table 3.2, except the estimated matrix and SCF related properties, were also
taken from [41] and [153]. The tensile behaviour of each composite system
was performed with all three models shown in Table 3.1 to observe their impact
on the final failure. The parameters P; and P were taken to be P = 6.12 and
P, =7.74, as in [41].

3.3 Results and discussion
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Table 3.2: UD composites and model properties.

Fibre properties Weibull properties Matrix properties SCF properties RVE data
Composite E.E, G Re m Go Lo En  Gm T Rnm 1 LV
[GPa]  [GPa] [pm] [-] [MPa] (mm] [GPa] [GPa] [MPa] [um]  [-] (mm]  [%]
mp = 4.8 Oop] = 5200
T700S-Epoxy 1979 7853 35 my =12 G = 6100 10 3.0 1.11 40 42 0.5 1.54 55
M40-Epoxy 392.0 15555 3.0 16 4500 25 35 1.29 50 36 0.18 25 60
AS4 “Epoxy 2340 9285 3.5 10.7 4275 12.7 376 1.39 50 - - I5%R; 60

M50S 480.0 190.48 2.65 9 4600 10 - -

Chapter 3 Paper A — A 3D Progressive Failure Model (...)
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Like [41], a bimodal Weibull distribution was applied to assign the strength,
0, 4 to each fibre element of the T700S composite with

e (BN (G (L) (%a\ "
Fra=1 eXp< <L0)(001> <L0>(002) ) G239

Whereas, according to [153], a traditional Weibull distribution was applied for
the M40 composite using

oy \"
Py, =1—exp <—Llo <(;.‘1> > (3.24)

where P, , is a random number between 0 and 1, Ly, m, oy, 0p1, m1, Op and
my are Weibull parameters and o), , is the corresponding strength of the fibre

element.

A stiffening effect was assumed for the T700S composite only, to be consistent
with [41]. Hence, the Young’s modulus of the fibres at a step ¢ was given as
described in Toyama and Takatsubo [259]

(Eq), = Eo+1000 (4133.6 (¢"), ~ 70331 (&°);) (3.25)
The initial Young’s modulus, Ej, was chosen to be consistent with [41].

The main issue in defining the model was to decide on the appropriate width,
thickness and length of the RVE. These dimensions had to be as close as possible
to the real specimen but still ensure that the model would be workable. To
observe the influence the RVE size has on the results, RVEs of a width and
thickness of 50 xRy, 100 x R¢, 150 x Ry and 200 X Ry —where Ry is the fibre
radius— were generated. Fig. 3.5 shows a cross-section view of an example of
the fibre distributions obtained.

The RVE length of the T700S was 1.54 mm for all cases, which corresponded to
the length of the testing coupon [41]. However, for the M40, the experimental
length was 150 mm [153], which is too long to be simulated while maintaining
an appropriate small element length. Thus, a first previous study was performed
with the M40 composite to determine the sensitivity of the results for both the
RVE length L and the element length /. The results obtained from this analysis
(Fig. 3.6) suggested that an element length below 3 x Ry is small enough, while
an RVE length of 25 mm is acceptably long enough. Hence, the RVE length L

3.3 Results and discussion
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Figure 3.5: Cross-section view examples of RVEs with T700S fibre a) 50 X R, b)
100 X R¢, ¢) 150 x Ry, d) 200 X Ry.

of the M40 composite was set to 25 mm. Consequently, an element length / of
3.5 x 1072 and 8.3 x 1072 mm for the T700S and M40 composites, respectively,
was applied. These values were taken as a compromise between accuracy and

computational time.

In addition, the variability in the results caused by the randomness of fibre
position and fibre strengths had to be considered. Thus, all simulations of each
size and SCF model were solved 40 times with different fibre distributions,

leading to a total of 480 simulations for each composite.

Considering all the inevitable inaccuracies in the modelling assumptions and
in the input data, the predicted ultimate strain and strength presented remark-
able agreement with the given experimental data for both the T700S and M40
composites, especially for the largest RVE sizes. For the T700S composite, the
proposed PEM predicted in the largest RVE, a mean failure strain of 2.14% with
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Figure 3.6: Influence of the total RVE length (L) and element length (/) on the failure
strength for the M40 composite. The mean result for 20 simulations is shown. The RVE
width and thickness were 50 x Ry. a) Using the Swolfs ef al. SCF model, b) using the
Eitan and Wagner SCF model, and c) using the Zhou and Wagner SCF model.

the Swolfs SCF model, and of 2.07%, using the Eitan SCF and the Zhou SCF
models which over-predict the experimental result of 1.89%, but are close to
the 2.17% prediction of Swolfs’ strength model [41]. Similarly, for the M40
composite the models predicted a mean failure strength between 2511 MPa and
2572 MPa, albeit with a small over-prediction of 2310 MPa for the experimental

one as well.

The obtained failure strain and stress decreased as the RVE cross-sectional size
increased; which is coherent with the size effect. These findings suggest that an
RVE with a width and thickness size of 50 x Ry (adequate for elastic predictions
according to [122, 123]) is not enough to predict unidirectional composite failure
mechanisms. The error bars within the 95% confidence intervals in Figs. 3.7

and 3.8, decrease with larger RVE sizes.

The size effect was remarkably less pronounced in the Swolfs et al. [41]
SCF model. To better understand the differences between the SCF models
implemented, a plot example of the predicted SCF with all models is shown in
Fig. 3.9. As can be seen, the Swolfs SCF model predicts a much larger SCF at

a smaller centre-to-centre distance, d¢_ ;, to the broken fibre. However, the SCF

q-J’
decreases much faster by increasing, d;_,
Therefore, the Swolfs SCF model is more localised than the others. This should

in comparison to the other models.

explain why the size effect is smaller with the Swolfs model: causing SCF
in a smaller centre-to-centre distance means that fewer fibres are needed to
accurately represent stress re-distribution around fibre breaks. The Zhou and

Wagner and Eitan and Wagner SCF models both estimate the same stress peak,

3.3 Results and discussion
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Figure 3.7: T700S error bars for 40 simulations at each simulated RVE size for each

SCF model compared with Swolfs et al. [41] experimental results, a) failure strain, b)
fibre failure stress.
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Figure 3.8: M40 error bars for 40 simulations for each simulated RVE size for each
SCF model compared with Koyanagi ez al. [153] experimental results, a) failure strain,
b) composite failure stress.

but the SCF along the ineffective length is different. For the Eitan and Wagner
model, the SCF distribution along the ineffective length is narrower and affects
only a small region of the intact fibres close to the broken fibre. By increasing

C

4 j» the SCF distribution along the ineffective length tends to coincide with the
Zhou and Wagner model.

The cluster evolutions, with the T700S composite for each SCF model, are
shown at different instants close to final failure in Fig. 3.10. It can be observed

that groups of clusters formed with all models. These clusters increased in size
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Figure 3.9: Predicted SCF to an intact fibre at different centre-to-centre distances,

dfF j» according to the Zhou and Wagner, Eitan and Wagner and Swolfs et al. models.
a) d;_j = 2.07Ry, b) d;_j =4.14Ry, ¢) d;_j = 6.21Ry. The SCF is shown along the
ineffective length of a 0.15 mm broken fibre, with all material data corresponding to the

T700S fibre in Table 3.2.

as the load was incremented until a critical cluster propagated and led to final
failure. Even though the same fibre strengths were used with all three SCF
models, the failure procedure was clearly different. Not only was the failure
strain different, but so too were the clusters formed at the different places in
the model. Moreover, final failure, due to unstable cluster propagation, also

happened at a different location.

By observing the results obtained, it is not possible to conclude if an SCF
approach is more accurate than the others. Indeed, the results show that the
SCF model has only a relative influence on the predicted failure. The significant
difference between the SCF models analysed is the formulation basics and the
nature of the identification parameters. The Zhou and Wagner model and the
Eitan and Wagner model are formulations totally based on theoretical shear-lag
assumptions. These models need a major number of parameters, which are not
always simple to estimate, such as u or R,. However, the Swolfs SCF model
proposes a completely different approach, by where the SCF is obtained by
fitting results from a micro-mechanic finite element analysis using a relatively

large RVE with hundreds of fibres and a long length.

Both composites presented a different failure. The T700S composite experi-
mented some stiffness loss before final failure, whereas the M40 composite
exhibited a very brittle failure, as seen in Figs. 3.11a and 3.12a. This effect is
highlighted by the evolution of the break densities in Figs. 3.11b and 3.12b, as
the curve of the M40 presents a more sudden degradation than that of T700S.

3.3 Results and discussion
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Figure 3.10: Cluster evolution at different stages during final failure within 16% of
total length in each direction of the section with largest break density for the T700S
composite. Broken fibres in black, damaged fibres in red and intact fibres in green. RVE
size corresponds to 100 X Ry.

The break density of T700S was over-predicted by the model compared to the
experimental results, as in Swolfs et al. [41], which could be the consequence
of inaccuracies in the model or in the experimental data. A summary of the
results obtained is presented in Table 3.3. The total computational time is also
shown for each set of simulations and presented a strong exponential increase
by increasing the width/thickness of the RVE. The simulations using the Swolfs
SCF model needed smaller computational time in the PFM. However, it must be
remarked that the two constants (P, and P) used by this SCF model are obtained
from micromechanical finite element analyses which represent a considerable
effort.
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3.3.2 Hybrid UD AS4-M50S carbon fibres/epoxy

A UD intrayarn hybridisation within M50S carbon (LE fibre) and AS4 Carbon
(HE fibre) with epoxy matrix was simulated at different LE relative hybrid
volume fractions. All data, shown in Table 3.2, was taken from Tavares et

al. [35]. In order to carry out a clean comparison with [35] FEM results, the



simulations were performed using the same RVE dimensions. Thus, RVEs
with width, thickness and length of 15 x Ry were generated, with Ry being the
largest fibre radius in the RVE. It is important to remark that while such a small
RVE is not big enough to properly represent the failure process accurately, it is
the appropriate configuration to compare the PFM simulation with the micro-
mechanical FEM results. A Weibull distribution extrapolated to the total gauge

length (instead of the element length) was also used:

L ol m
Ppg=1—exp (—LO (;j) > (3.26)

where the element length / was set to 0.35 x 1073 mm.

The SCF model used was from Swolfs et al. [41]. In a hybrid composite the
appropriate SCF's profiles depend on the stiffness ratio between the broken and
the intact fibre (E; / E,). Three combination cases are then possible: i) a broken
LE fibre causing SCF to an HE fibre (E;/E, = 2.05), ii) a broken HE fibre
causing SCF to an LE fibre (E;/E, = 0.49), and iii) a broken fibre (LE or HE)
causing SCF to a fibre of the same population (E;/E, = 1). Swolfs et al. [45]
provided the SCF for E;/E, = 3.71 and E; /E, = 1.85. Thus, interpolation and
extrapolation was performed in between to obtain the SCF for E;/E, = 2.05
and E;/E,; = 0.49, respectively. These profiles are shown in Fig. 3.13a. When
either a broken LE fibre causes SCF to an intact LE, or a broken HE fibre causes
SCF to an intact HE fibre, the profile shown in Fig. 3.13b was assumed, which
was also taken from [45]. Thus, the corresponding parameters P, and P, from
Table 3.1 are P, =2.982,P, = 3.068 for E;/E, = 3.71, P, = 1.908,P, = 1.975
for E;/E, = 1.85, and P; = 3.656, P, = 3.053 for the SCF profile between fibres
of the same population. Note that for the two non-hybrid cases (a 100% HE
composite and a 100% LE composite), the same Swolfs et al. [41] SCF model
used in Section 3.3.1 was applied. Moreover, it is worth mentioning that the
stress re-distribution between fibres of the same type (Fig. 3.13b), which share
the same stiffness and radius, differs from the one obtained between fibres of
different type (Fig. 3.13a), with distinct stiffness and fibre radii. Therefore,
the SCF for E;/E, = 1 does not fit in between the curves of E;/E, = 0.49 and
E;/E, =1.85.

Within each hybrid relative volume fraction modelled (see Fig. 3.14), 40 sim-
ulations were solved leading to a total of 360 simulations, with each set of

3.3 Results and discussion
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Figure 3.13: Hybrid stress concentration profiles. a) for different ratios E;/E, between
broken and intact fibres when both fibres belong to different fibre populations, b) for
the same fibre population.

40 simulations taking approximately 9 minutes to be completed. The tensile
stress-strain curves obtained are shown and compared with the [35] FEM results

in Fig. 3.14 at LE hybrid volume fractions of 0, 25, 50, 75 and 100%. A good

agreement was obtained, which led to similar failure responses.

Pseudo-ductility was predicted at LE relative volume fractions between 10 and
30%. The other composites either failed prematurely, or the interaction between
fibres was not evident enough. This failure process is highlighted in Fig. 3.15.
For nearly all the hybrid configurations it is possible to observe that the LE fibre
break density does not increase once a certain point is reached. That means that
the LE fibre is fully fragmented and is incapable of breaking further, even when
the applied load is incremented. At low LE volume fractions between 10 and
30%, the breaks of the LE fibre saturated while the HE fibre was failing, which
led to pseudo-ductility until the final failure. However, at higher LE volume
fractions the failure was sudden and brittle. These results demonstrate that the
proposed model is able to capture fibre fragmentation, which is one of the most

relevant mechanisms associated to pseudo-ductility.

The hybrid failure strain is also presented in Fig. 3.16. For LE volume fractions
lower than 70%, the hybrid failure strain was considered as the corresponding
strain at the second maximum in the stress-strain curve, which corresponded
to the failure of the HE fibre in the hybrid. However, for larger LE volume
fractions, the first maximum was considered as failure strain instead, because

the drop in stress afterwards did not show any evidence of a second maximum.
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Figure 3.14: Stress-strain curves obtained for hybrid M50S-AS4 fibre compared with
Tavares et al. [35] FEM when varying the relative LE hybrid fibre volume fraction. a)
0%LE, b) 10%LE, c) 20%LE, d) 25%LE, e) 30%LE, f) 40%LE, g) 50%LE, h) 75%LE,
1) 100%LE. For the sake of readability only 5 realisations are shown.

These failure strain values correspond to the failure of the LE fibres.

The small discrepancies between PFM and FEM are attributed to the shear-
lag model, the prediction of SCF and, in particular, the omission of dynamic
phenomena. Nonetheless, the proposed model predicted similar results using a
very simple model that can be run on a regular computer in a short time, whereas
Tavares et al’s [35] model requires an enormous computational effort in a high

power computational facility.

Future work should try to address the problems omitted here such as matrix

3.3 Results and discussion
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damage, thermal residual stresses and dynamic effects. Further parametric
studies to design hybrid configurations to maximise pseudo-ductility and the
effect of unknown parameters such as the effect of debonding or the effect of
the size in the hybrid effect should also be included.
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3.4 Conclusions

A 3D progressive failure model based on the chain of bundles approach [141],
was developed and validated. The model accurately represents the failure curve
of unidirectional composite materials with a random distribution of fibres. A
complete stress distribution is obtained by associating a damage variable to the
loss of stress transfer capability along the ineffective length, which produces a
reduction of local effective stiffness. Consequently, local stress concentrations
are applied through all stress recoveries, so that the neighbouring fibres are
locally overloaded. The method, formulated in an explicit form, leads to different

deformations along the length of the model.

The model has been validated with results available in the literature. Each
simulation, with different random distribution of fibres, has been repeated
multiple times to evaluate the uncertainly of the results. For non-hybrids, T700S-
Epoxy and M40-Epoxy UD composites were simulated and compared to results
from Swolfs et al. [41] and Koyanagi et al. [153], respectively. Moreover, an
RVE size with transversal dimensions larger than 200 X Ry is needed to capture
the size effect inherent to the failure process, which is more exigent than the
required 50 X Rt for elastic RVE predictions according to [122, 123]. Three SCF

3.4 Conclusions
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models corresponding to the models of Swolfs er al. [41], Zhou and Wagner
[251] and Eitan and Wagner [252] were compared and found to have a slightly
different failure prediction. A significant difference between these formulations
is the parameters identification method. The Zhou and Wagner model and the
Eitan and Wagner model are entirely based on theoretical assumptions. They
need a significant number of parameters and some of them are not easy to
calculate or estimate. Meanwhile, the Swolfs SCF model is parametrised with
a simpler set of values. The exact identification of these must be performed
by a micro-mechanical finite element approach. However, all three models
led to a similar failure procedure which showed a tendency to form clusters of
broken fibres and which led to final failure. In any case, the Swolfs SCF model
generates more localised stress concentration factors, leading to predictions
significantly less sensitive to the size effect when compared to the other models.
Finally, a hybrid carbon-carbon (M50S-AS4) epoxy composite was simulated
and pseudo-ductility was obtained at LE volume fractions between 10 and 30%.
The results were compared with those of Tavares et al. [35] micro-mechanical
FEM and also obtained good agreement, but with a much faster and simpler
model than the FEM is.
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Overview

One of the objectives of this thesis is to develop an analytical model for pre-
dicting the stress redistribution around a cluster of broken fibres in hybrid
composites, taking into account the geometrical and elastic properties of the
fibres. And, derived from this, to understand the influence that the matrix be-
haviour (elastic or plastic), has on the load redistribution around broken fibres,

as well as on the damage evolution in different hybrid composites.

Currently, some analytical models exist in the literature which are able to predict
this load redistribution, but they do not take into account either the geometrical
and elastic properties of the fibres or the volume fraction of each constituent
[198, 251, 252]. In addition, many models consider an elastic matrix instead of
a more realistic plastic matrix. However, the validity of omitting matrix yielding
for simulating hybrid composites is not yet established. Thus, to predict an
accurate stress redistribution around fibre breaks in hybrid composites, a new
model which takes into account all relevant material properties as well as the

matrix behaviour, must be developed.

In this chapter, an analytical model for predicting the stress redistribution around
clusters of broken fibres is developed. The model takes into account the cluster
size, RVE size, volume fractions, fibre radius and elastic properties of each
fibre population in the hybrid with simple analytical equations. Moreover, it
can represent different matrix behaviours or effects not directly present into
the model. The analytical model is entered into the progressive failure model
previously presented in Chapter 3, to predict more accurately the fibre tensile
failure and cluster development in hybrid composites. The results demonstrate
that the stiffness ratio between both fibres as well as the matrix behaviour
considered (plastic or elastic) have a significant impact on the load redistribution
around breaks. This further leads to a different damage development and failure
process, being a plastic matrix more realistic compared to experimental data.
The model is validated by comparing with a spring element model.
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Abstract

This paper presents an analytical model to predict the stress redistribution
around broken fibres in hybrid polymer composites. The model is used under
the framework of a progressive failure approach to study the load redistribution
around breaks in hybrid composites. The outcomes of the model are validated
by comparing it with a spring element model. Moreover, the approach is further
used to study the tensile behaviour of different hybrid composites. The results
obtained show that the load redistribution around breaks depends on the stiffness
ratio between both fibres as well as the matrix behaviour considered and the
hybrid volume fraction. Furthermore, the different material parameters have a
large effect on the tensile behaviour, with an increase of ductility achieved if the

failure process of the two fibres is gradual.
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4.1 Introduction

Fibre hybridisation is a potential solution to the quasi-brittle behaviour of Fibre
Reinforced Polymers (FRP), resulting in fibre tensile failure with hardly any
previous damage symptoms [1, 4, 41, 42, 260]. In a hybrid composite, a Low
Elongation (LE) fibre is combined with a High Elongation (HE) fibre. This
combination may lead to a larger failure strain of baseline composites based
on LE fibres, resulting in a hybrid effect. Moreover, the failure process of the
material can become gradual leading to an increase of ductility [16, 18]. It is
currently accepted that progressive failure, dynamic effects, and thermal residual

stresses are the main reasons to explain the hybrid effect [3, 4, 26].

The strength of the fibres is not deterministic and follows a statistical distribution.
When a fibre fails, the fibre locally loses its loading capability, which is recovered
by shear transfer in the matrix over a distance called ineffective length. In this
region the neighbour intact fibres are subjected to stress concentrations. As
the load is incremented, clusters of broken fibres are created increasing the
stress concentration in intact fibres even further. In a non-hybrid composite this
process quickly leads to final failure, whilst in a hybrid composite the stress
redistribution around broken fibres is altered due to the presence of fibres with
different mechanical and geometrical properties [45]. These differences may
alter and delay the formation of clusters leading to hybrid effects [15, 31, 33].
However, it remains to be understood if final failure happens either by the
accumulation of damage and clusters or by the unstable propagation of a large

critical cluster [4].

Different models that attempt to represent the failure process of composite
materials and the stress redistribution around breaks are available in the literature.
These models can be classified as Global Load Sharing (GLS) and Local Load
Sharing (LLS). In GLS models, the stress loss by a broken fibre is redistributed
equally among all intact fibres [1, 142, 150, 151, 155]. As a consequence, such
models cannot predict the formation of clusters, which in general leads to a large
overprediction of the failure strength. Nonetheless, GLS models can capture
some trends affecting the failure process such as fibre fragmentation or the effect
of the fibre strength variation [34, 35].

In the LLS models, the load of broken fibres is redistributed into the closest
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intact fibres allowing to capture the formation of clusters. In these models, dif-
ferent modelling approaches exist [37]: analytical models [54, 159, 198], spring
element models [39, 76, 194], fibre bundle models [33, 260] and microme-
chanical finite element models [35, 214, 222]. Though all methods, in general,
predict the failure strength accurately, all predict different cluster formation
and evolution due to the different modelling strategies. Moreover, all models
omit the dynamic effects and overpredict the fibre break density compared with

experiments [4, 41].

Currently there is not any analytical model that can predict accurately the Stress
Concentration Factor (SCF) around clusters of broken fibres in hybrid compos-
ites taking into account the differences in elastic and geometrical properties of
the two fibres in the hybrid [45]. Moreover, in depth parametric analysis of the
load redistribution around breaks in hybrid composites, and their effect on the
tensile response still remain scarce [31, 33, 35, 39, 260]. Furthermore, recent
simulations showed that the load redistribution around breaks in non-hybrid
composites is heavily influenced by the matrix behaviour [37]. However, such
effects have not been studied with hybrid composites. It is, therefore, vital to
further understand the load redistribution and to improve the available tools to
predict this load redistribution as this is believed to be the main mechanism that

triggers final failure of composites.

In this work, a new analytical model to compute the load redistribution around
a cluster of broken fibres in a hybrid composite is presented. The model is
an extension of the non-hybrid model presented in St-Pierre et al. [198]. The
analytical model is used within the framework of a progressive failure model
approach [260] to study the load redistribution around broken fibres in different
hybrid composites using both a plastic and an elastic matrix. The model is
validated by comparing with the extension of the Spring Element Model (SEM)
to hybrid composites proposed by Tavares et al. [39]. Furthermore, the tensile
failure of different hybrid composites is simulated using the same approach with
the objective of understanding the influence of the modelling parameters on the
macroscopic response. These simulations are also validated and compared with
the SEM.

4.1 Introduction
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4.2 Modelling strategy

In this work, a new analytical model to predict the SCF around broken fibres
in hybrid composites is presented. The analytical model is used within the
framework of a Progressive Failure Model (PFM) [260]. In the PFM, a three
dimensional Representative Volume Element (RVE) containing a random dis-
tribution of fibres is used. By applying known functions to predict the load
redistribution around broken fibres, the PFM can simulate the tensile failure
process of composite materials, capturing fibre clustering, fibre fragmentation
and stiffness loss. This model is reviewed in the next sections where also the

new analytical model to predict the SCF around breaks is presented.

To validate the new proposed model used in PFM, the obtained results are
compared with the SEM. The SEM was firstly developed by Okabe er al.
[76, 194, 195] and was recently extended to hybrid composites, damageable
interfaces, and random fibre microstructures by Tavares et al. [39]. The SEM
consists of a more complex three dimensional RVE where the fibres are longi-
tudinal tensile springs connected by transverse springs representing the matrix.
Unlike the PFM, the SEM can predict the load redistribution around breaks in-
herently from the equilibrium equations, being a finite element model. However,
SEM is computationally more expensive than PFM. Further details of the SEM

can be seen in Tavares et al. [39].

4.2.1 Progressive Failure Model

The PFM consists of a RVE of width a, height b and length L containing a
random distribution of fibres of a given radius. The fibres are divided into
elements of length [ along their longitudinal direction, leading to a succession of
planes. Each fibre is denoted with the sub-index g € [1, vees Nq] , while each plane
is denoted with the sub-index p € [1, e Np] , where Ny and N, are the number
of fibres and planes respectively, see Fig. 4.1. Each element has a different
strength according to a statistical distribution. Once an element fails, a damage
distribution is applied over the ineffective length of the broken fibre, whereas

stress concentration is applied into the neighbouring intact fibre elements.
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Figure 4.1: Schema of the RVE used in the PFM: a) 3D view, b) plane view.

4.2.1.1 Constitutive equation

The constitutive equation relating the stress of each element, o), 4, and the strain
€ is

Opg= %Eq (1=Dp4q)&p 4.1)

P

where SCF, , is the stress concentration factor of element p, g, E, is the Young’s
modulus of fibre g, D), ; is the state damage variable, which is equal to 1 for
broken elements, equal to O for intact elements and in between for elements in
any stress recovery, €, is the strain of the plane (which is considered to be the
same for all elements of plane p) and €, is a stress ratio which enforces load

equilibrium by modifying the stress concentration according to the strain level.

Readers are referred to Guerrero et al. [260] for an in-depth description of the
model.

The evolution of D, , and SCF, ,, depends on the model used to predict the
ineffective length and the SCF around breaks, respectively. Even though any
model may be applied to predict both, it is important to use models that are
consistent for both parameters. In the following section, the model to predict
damage is explained, whereas the new model for predicting the SCF is explained
in Section 4.2.1.3.

4.2 Modelling strategy
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4.2.1.2 Functions for ineffective length

In this work two different behaviours to simulate damage are considered, i.e. the

matrix is plastic or the matrix is elastic.

When the matrix is plastic, a modified version of Kelly-Tyson shear-lag model
[149] is adapted as given in St-Pierre et al. [198]. This approach adds a factor,
H, which scales the ineffective length with cluster size. Here, two broken fibre
elements belong to the same cluster (c), if the distance between the centres of
both fibres is below four times the fibre radius and both elements are in the same
plane p. Each cluster is represented with the sub-index p,c, with ¢ € [1,..., N§]
where Ny is the number of clusters at plane p. This means that the scaling effects
depend on the element length, /. Nonetheless, it was verified that varying the
element length does not significantly change neither the macroscopic response of
the composite nor the damage development. The ineffective length of a broken

fibre in cluster p,c is then

. R,E n, . TR2E,
Lln — MH £ = p’iqg 4.2
pa g, PP CpeTy @2

where 7, is the matrix shear yield stress, R, is the fibre radius, C, . = 4s\/zm,
where n, . is the number of broken fibres on cluster p,c and s is the mean
centre-to-centre distance between each fibre and its closest neighbour. Here,
it is estimated with s = (R Vi1 + R Vi) /Ve) \/W where R¢; and Ry, are
the fibre radius of fibre populations 1 and 2 respectively, Vs is the overall fibre
volume fraction and V¢, and Vp, are the fibre volume fraction of each population
respectively (Vy = Vi + Vo). It is worth mentioning that here, s, is not the
average inter-fibre spacing of the cluster, but the average inter-fibre spacing of
the overall RVE. That is, because the ineffective length should depend not only

on the fibres in the broken cluster but also on the fibres that surround it.

The damage of element p, g according to each break in the fibre g at each plane

i follows a linear recovery with
Ly —li-pll\ . -
max (qum Vi: (Di7q:1)U(\l—p|l<L}j‘q>
l?q

0 otherwise.

D, = 4.3)
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If the matrix behaves elastically, the Cox’s shear-lag model [227, 235] is adapted
as in [37]. Then the ineffective length is

' E,R Re1Vii + R Vi 1
Lm — H q9°*q _ 2 1 44
P4 ”\/ 2Gnm <S Vi ) . < - o.999> @4

where Gy, is the matrix shear modulus. It should be noted that this length

corresponds to a recovery of 99.9% of the fibre stress [37]. The damage is then

computed with

max | ex |i — p| ) 2Gqu
Pl 7 H, R, o (o RaVi+RaVe
D. — q\S— :
g Vi

Vit (Dig=1)U <|i—p|l <L}f1q)

0 otherwise.
4.5)

4.2.1.3 Stress concentration factor model

Different approaches have been used to predict the SCF around breaks [41,
198, 251, 252]. Recently, St-Pierre et al. [198] presented a model capable of
predicting the SCF around co-planar clusters of broken fibres in non-hybrid
composites. St-Pierre’s et al. [198] approach is adapted and extended here to
work with hybrid composite materials. The reason why this model was chosen
over others is related to the fact that the model predicts the SCF around clusters
instead of isolated fibre breaks, and it is built on a simple but solid physical
background. The model assumes that the SCF around a cluster of broken fibres

takes a power-law shape.

In this work, the increment of SCF for an intact element p, g due to cluster i, ¢ is
represented with two functions, 6 and A, so that ASCF = 6 - A. The function
0 depends on the in-plane distance (r,—.) between the geometrical centre of
coordinates of cluster i, ¢ and intact element p,q, while A depends on the plane
position along the ineffective length. As each cluster may contain broken fibres
of each type, an intact element may receive SCF from broken fibres of the same

4.2 Modelling strategy
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population or the other, leading to four combinations of o

R,'.C « Ric *
511 . —_111,.6 - 522 _ —122,-_C
(g—¢) B r (g—c) r
q—c q—c

R,'.C « Ric *
o2, ., =, : i, ., = b,
(g—¢) i r (g—c) 7
qg—c q—c

where 611, . and &;, . represent the increment of SCF that an intact element
(g—c) (g—c)

(4.6)

of fibre population 1 and 2 respectively receives due to broken fibres of its
own type in cluster i,c, while 612(;,70) and & (g are the increment of SCF
that an element of fibre population 1 and 2 respectively receives due to broken
fibres of different type in cluster i, c. R; . is the equivalent radius of the cluster,
estimated with nR%C = ni_,CSl-%C, where §; . is the average fibre spacing of the
cluster, S;. = ((m;eRﬂ +n2,-,L.Rt2) / n,"c) \/W, where ny,, and ny,, are the
number of broken fibres of population 1 and 2 respectively in cluster i,c and
nic = ny,, +ny, . The exponent ¢ is an input parameter which controls the
maximum value of SCF and the shape of the curve. According to the literature,
this value can be adopted as @ = 2 for a plastic matrix and o = 3.8 for elastic
matrix [37, 198]. The terms I are constants, which are determined later in this

section, see Eq. (4.10).

Similarly, as there are two fibre populations, each cluster i, ¢ has two ineffective
lengths, the ineffective length of broken elements of type 1, ill:.c’ and that of

broken elements of type 2, L‘zrllc Therefore, two functions appear for A as

Ln —1]i—pl| .
“T Y(i,c): l)i—p| < Ly Plastic matrix
l1(;;7[) = exp | — |i _P| ICi 2GRy
27n; R}, £ ( Ry Vit + szsz>
f1{sS— 2———=
Vi
V(i,c): lli—p| < Li®  Elastic matrix,
) . ic (4.7)
————— V(i,c): l]li—p| <Ly Plastic matrix
2i,c
A’Z( ) |i — P| lCi.c 2GmRp
=) exp | — '
27n; R o (s ZRfl Vi1 + RV
2 v
V(i,e): li—p| < Liz‘:.(. Elastic matrix,

Chapter 4 Paper B — An analytical model to predict stress fields (...)



where A; (»i) TEpresents the evolution of 511(‘170) and 621((17(7) along Lil‘ll,c, while
kz(p_i) represents the evolution of 522((4_6) and 512(‘/_6) along Liz‘;r. E¢ and Ep, are
the Young’s modulus of fibre type 1 and 2 respectively.

Because of load equilibrium, the load loss of each fibre population in the cluster,
must be redistributed into the remaining intact fibres at same plane. Thus, the

following equilibrium equations arise

Ry
2 i,c
TRny, OF —/ Iy, ( >
Rt lC
+ / by | —
oo ic
ﬂR%znzi.(_Gz :/ 122“( > o, Vf227l'7‘q Cdl”q et
R;,

R
+/ Lo, (
rg—c

where R is the RVE equivalent radius, R = /(a - b) /7, while 6}° and 05" are

the stress at infinite for each fibre population respectively. Assuming that the

(4.8)

Gl Vf127'L'I’q Cdrq ¢

strain is the same for both fibre populations, 67°/Ef; = 05°/Ef,. In addition, it is
assumed that two intact fibre elements of different type located at the exact same
distance to the same break, receive the same increment of force due to the break.
This assumption means that the overload transferred from a break to an intact
fibre is independent of both the Young’s modulus and the fibre radius of the
intact fibre. This fact is supported by the results presented in Swolfs et al. [45].
As isostrain conditions are considered, force equality implies that the increment
of stress concentration solely depends on the stiffness and cross-sectional area
of both fibres leading to

EnR2 EpRZ
by, = M. Tl = f271;2122,-‘(, (4.9)
EpR;, ’ EnR;

These conditions imply that a fibre with lower stiffness located at the same
distance to the break is subjected to a higher SCF than a fibre with a higher
stiftness, which is consistent to the general observations seen in the literature
[31, 45]. By substituting the relation between 0" and 65° and Eq. (4.9) into Eq.
(4.8), the constants /yy,,., 1, ., 112, and by, are obtained as functions of o:
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2 p2
ni, Ry Ry

forax =2
2R? .In(Ry/Ri.) (Rf Vi2 + R{ Vi)
.= ni, RERBR; (0 —2) .
; : . : otherwise,
2 (R~ R (RR Vio + R, Vi)
( Eqn, R}
5 f1™e f2l 5 forooe =2
2EpR? In (Ri/R;.) (R} Vio + R Vi)
by, = Eqny, RER % (o0 —2) ,
’ otherwise,

26 (R~ R (R Vi + R Vi)

(4.10)
nleR%IRfZZ

foroa =2
2R? In(Ri/R;.) (R} Via + R} Vi)
b, = m, RARBR S (o~ 2) |
- : otherwise,
| 2(R— R) (R Vi + RV
Epns, R}
5 127 f; 5 fora =2
2EqR? In(Ri/R;c) (R} Vio + R Vi)
ho, = Epny, RER (a0 —2) ,
. ’ otherwise.

2Ey (RE;O‘ — th_“) (R} Vo + RE Vi)

The model is very powerful as it takes into account the cluster size, RVE size,
volume fractions, fibre radius and elastic properties of each fibre population
with simple analytical equations. Moreover, it can represent different matrix

behaviours or effects not present into the model by adjusting the value of a.

As there can be multiple clusters along the RVE, a superposition rule is con-
sidered. Therefore, the total SCF for an intact fibre element is obtained by
linear superposition of the SCF of all clusters. Nonetheless, the SCF of a given
element is bounded according to shear-lag transfer. This limitation ensures
that there is a stress continuity between elements inside any ineffective length
(elements where 0 < D, , < 1) that are not affected by SCF, and subsequent
intact elements (D), , = 0), which can be affected by the SCF. Thus, the total
SCF of an intact element p, g is given by

SCF,, = { min (SCFY,,SCF5 ) Vp,q: Dpy=0

] 4.11)
otherwise,
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where SCF 27 o 18 the SCF predicted by the linear superposition of the contribution
of all clusters using the previous 6 and A functions given by

Ny N¢
0 _
SCFp =1+ Z Z g l(g—) Al( ) T 3‘2<q—c> lz(

p—i

i) Vi,c:nic>0 & gefl
R (4.12)
NS
Vi,c:inic. >0 & qgecf2

i

0 _
SCFp =1+ Z Z 522@4) ’12( )T 521@75) l‘(

p—i p—i)
i=lc=1

where f1 and 2 are fibre populations 1 and 2 respectively. SCF ;q is the SCF
limitation for broken fibre g to achieve stress continuity. This limit for intact
element p,q is calculated according to the slope of the stress gradient of the
nearest ineffective length, 1/L§f‘q, in the fibre g, multiplied by the distance
between planes i and p:

(1 _
SCF]E,q = min (Lm i — pl l) Vi:Djy=1 (4.13)
g

It should be noted that the broken and damaged fibre elements are not excluded
from Eq. (4.8). Therefore, the SCF of each intact element is computed inde-
pendently of the percentage of broken and damaged elements. However, the
percentage of broken and damaged elements is taken into account to compute
the strain of each plane, €,, and the stress ratio, 2, which affect the final stress

of the elements, 6, ;. This is explained in detail in Guerrero et al. [260].

4.3 Methodology

In a hybrid composite the stress redistribution around broken fibres depends
mainly on the elastic and geometrical properties of both fibres, the matrix
behaviour (plastic or elastic), the hybrid volume fraction as well as the local
fibre arrangement [33, 45]. All these properties will affect the creation and
propagation of clusters that lead to final failure. In this work, the effects of
the Young’s modulus of the fibres, matrix shear strength (plastic or elastic) and
hybrid volume fraction on the stress redistribution around a broken fibre are
investigated in detail. Later, their effect on the tensile failure behaviour are also
evaluated. The simulations are performed with the PFEM using the new SCF
model presented in previous section 4.2.1.3. All simulations are compared with
the SEM [39] to validate the results.

4.3 Methodology
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A modified version of Melro’s et al. [124] random fibre generator is used to
create a RVE of width, thickness and length of 75 x 75 x 300 times the fibre
radius. The element length is always 2 times the fibre radius, with both fibres in
the RVE having the same radius. The same RVE is used for both PFM and SEM
when studying the same problem. Note however that a new RVE is generated
for each case in study. To observe the differences in load redistribution and
failure process with different properties, three hybrid composites are considered
by combining different fibres. These hybrids correspond to AS4-Eglass, M50S-
AS4 and AS4-T800G, whose properties are shown in Table 4.1. In all cases,
the matrix corresponds to epoxy with elastic properties E,, = 1260 MPa and
Gm = 450 MPa. To understand the impact of the matrix behaviour, all cases are
simulated with plastic (7, = 50 MPa) and elastic matrix (7, — o). In addition,
each hybrid is simulated with a HE hybrid volume fraction of 25%, 50% and
75%. Here, the HE Hybrid Volume Fraction (HVFyg) is referred to be as the
percentage of HE fibre volume fraction, Vg, over the total fibre volume fraction,
HVFgg = (VHE/Vf) -100.

Table 4.1: Fibre properties.

Fibre type Fibre properties Weibull properties
E; [GPa] ~ R¢ [um] m[-] oo [MPa] Lo [mm]
AS4 230 10.7 4275 12.7
MS50S 480 35 9 4600 10
T800G 295 ' 4.8 6800 10
E-glass 70 6.34 1550 24

In the case of SEM, the model calculates all unknown variables directly from
the equilibrium equations, as a function of the material properties and RVE
geometry, being a very robust tool. However, it is less efficient computationally
than the PFM. For the PFM instead, the ineffective length and SCF need to
be applied according to the matrix behaviour. In all cases where the matrix is
plastic (7, # o), the ineffective length and damage are simulated within Eqs.
(4.2) and (4.3). In these cases, the SCF is calculated using & = 2. However,
when the matrix is elastic (7, = o), then the ineffective length and damage are
simulated with Eqgs. (4.4) and (4.5) and o = 3.8. It is worth mentioning that,
when the matrix is plastic, its behaviour is considered to be perfectly plastic in
the PFM, whilst it is elastic-plastic in the SEM.
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To investigate the stress redistribution around breaks, a broken fibre is arbitrarily
placed around the middle of the RVE for each hybrid composite. This broken
fibre is either the fibre with lower Young’s modulus (LM) or the fibre with higher
Young’s modulus (HM). Usually, the LM fibre corresponds to the fibre with
larger failure strain, i.e. the HE fibre, whereas the HM fibre corresponds to the
fibre with smaller failure strain, i.e. the LE fibre. Even tough the LE fibres will
break before the HE fibres, it is important to study the HE fibre load redistribution
as well as towards final failure the HE fibre also fails. A remote tensile strain,
€9, of 2% is applied and the consequent obtained load redistribution around the
broken fibre is characterised with three different metrics. The first one is the
maximum SCF obtained on intact LM and HM fibres. The SCF is calculated
as the ratio between the actual stress on the fibre over the stress if there were
no breaks, i.e. Eze¥. The second metric is the ineffective length of the broken
fibre, which is defined as the distance where the broken fibre recovers 90% of
the nominal load, whereas the last metric is the radial influence length. This is
defined as the maximum distance in the break plane in which the SCF is higher
than 1%. The results shown for both the ineffective length and radial length are
normalised by the fibre radius. Ten realisations are performed for each case,

leading to a total of 360 simulations.

To understand the influence of the modelling parameters on the tensile failure
process, the same hybrid composites are simulated under fibre tensile loading.
Moreover, non-hybrid composites of each fibre type are also simulated. To do
so, a random strength, ,, ., is generated for each element in the RVE according
to the Weibull distribution [103] with P, , = 1 —exp (— (I/Lo) (o5,/00)").
where P, , is a random number between 0 and 1, while oy, Lo and m are the
corresponding Weibull parameters of the fibre element shown in Table 4.1. To
compare the results between simulations, different metrics are proposed based
on literature [14]. The first metric is the yield stress, ¢¥, which is understood
as the knee point where the stress-strain curve deviates from the initial linear
elastic regime at a strain of 0.1%. The second metric is the ductile strain, ed,
defined as the strain difference between the strain at peak stress, and the initial
slope line at the failure stress level (¢ = "' — 6"'/E;), where Ej is the initial
Young’s modulus of the composite given by the rule of mixtures. The third

metric is the peak stress, o'

ult

, whereas the fourth metric is the strain at peak

stress, €""'. These metrics are summarised in Fig. 4.2. The fifth metric is the
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cluster size at peak stress, N°. Here, two broken fibres belong to the same cluster
if the distance between centres is smaller than 4 times the fibre radius and the
axial distance between break planes is smaller than 10 times the fibre radius
[37, 39, 41]. It should be noted that the definition of clusters used to assess the
damage evolution explained in this section, is different than the one used for
calculating the SCF and ineffective length shown in previous Section 4.2.1.2.
This is done to allow a fair comparison between the analytical and numerical
model, and other models in the literature. The sixth and final metric is the fibre
break density at peak stress, p,;’“. Five realisations are performed for each case

in study, leading to 110 simulations in total.

A
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Figure 4.2: Main metrics used to characterise the tensile behaviour of hybrid compos-
ites.

4.4 Stress redistribution around breaks

In this section the stress redistribution around a broken fibre is analysed. A
comparison of the results between the SEM and the analytical SCF model used
in the framework of the PFM is performed to asses the validity of the analytical
model. The overall volume fraction considered was 60% for all cases studied.
It should be noted that in this section, because the fibres have no strength, the
HVFyg is referred to be as the percentage of LM fibre volume fraction over the

total fibre volume fraction.
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4.4.1 Stress concentration factor

The trends predicted by both PFM and SEM are the same for all hybrid mate-
rials and matrix behaviour, even though the absolute values are not the same.
However, their relative difference is remarkably small considering the simplicity

of the analytical model. These results justify the assumption done in Eq. 4.9.

In Fig. 4.3, the SCF around a broken HM fibre is shown with a plastic matrix
and an elastic matrix as a function of the HVFyg for the different hybrids in
study. The SCF calculated is larger for the LM fibres when compared with the
HM fibres. As the LM fibres have a lower stiffness, their stress before the break
was lower compared with the HM fibre. Hence, the relative increase of stress is
larger on the LM fibre causing a larger SCF [45].

Interestingly, the SCF on HM fibres decreases when adding LM fibres, while the
opposite happens for the SCF on LM fibres. That should be related to the fact
that by increasing the LM fibre content, the distance of the HM fibre to the break
increases, and the load to redistribute is mainly taken by the LM fibres. This
will cause larger hybrid effects at smaller HM volume fractions as has already
been reported in literature [31, 33, 35, 260]. Moreover, the SCF on HM fibres is
not strongly affected by the LM stiffness, whereas the opposite happens with
the SCF on LM fibres. The larger the ratio between the stiffness of the HM and
LM fibre is, the larger is the SCF obtained on the LM fibres. This fact agrees
well with the findings of Swolfs et al. [45].

The matrix behaviour i.e. plastic or elastic changes the maximum value of SCF,
being larger with elastic matrix, however, the trends are the same. The reason
for this difference is the fact that, in an elastic matrix, there is no upper limit for
shear stress transfer between fibre and matrix, hence causing a more localised
effect and larger SCF.

In Fig. 4.4 the SCF around a broken LM fibre is shown with both plastic and
elastic matrix for different HVFyg and materials. The SCF on HM fibres again
decreases by increasing the content of LM fibres, whilst the opposite happens
with the LM fibres. Interestingly, the SCF on both HM and LM fibres are smaller
than in the previous case. That is related to the fact that the LM fibre carried less
load than the HM fibre before failure, hence resulting in smaller SCF. It should

4.4 Stress redistribution around breaks
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Figure 4.3: Maximum stress concentration factors around a broken HM fibre as a
function of the HE hybrid volume fraction for different hybridisations: a) on HM fibres
with plastic matrix, b) on HM fibres with elastic matrix, ¢c) on LM fibres with plastic
matrix, d) on LM fibres with elastic matrix. The average of 10 realisations are shown
(74 = 50 MPa for plastic matrix). Note that in a) and b), all PFM results are the same.

be noted however, that in reality the LM fibres usually fail after the failure of
multiple HM fibres. Thus, the SCF obtained will be much larger than the ones
predicted here, as the HM fibres no longer support load. The SCF on the LM
fibre is not strongly affected by the stiffness of the HM fibre. Nonetheless, the
SCF on the HM fibre is highly influenced by the stiffness of the LM fibre. A
smaller stiffness ratio between HM and LM fibre leads to a larger SCF on the
HM fibres, which is the opposite as observed in the previous case.

Although the models are able to take into account fibres with different radii
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Figure 4.4: Maximum stress concentration factors around a broken LM fibre as a
function of the HE hybrid volume fraction for different hybridisations: a) on HM fibres
with plastic matrix, b) on HM fibres with elastic matrix, c) on LM fibres with plastic
matrix, d) on LM fibres with elastic matrix. The average of 10 realisations are shown
(T4 = 50 MPa for plastic matrix). Note that in ¢) and d), all PFM results are the same.

[39, 260], in this study the fibres were considered to always have the same radii.
Otherwise, it would add another layer of complexity due to higher differences in

the microstructures of the composites analysed.

4.4.2 Ineffective length

In Fig. 4.5 the ineffective length is shown for a broken HM fibre and a broken
LM fibre with both plastic and elastic matrix as a function of the HVFyg for

each material system.
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Figure 4.5: Normalised ineffective length at 90% of load recovery: a) broken HM
fibre and plastic matrix, b) broken HM fibre and elastic matrix, c) broken LM fibre and
plastic matrix, d) broken LM fibre and elastic matrix. The average of 10 realisations
are shown (7, = 50 MPa for plastic matrix). Note that in c) and d), the results for
EHM/ELM = 480/230PFM and EHM/ELM = 295/230PFM are the same.

The ineffective length is larger for the HM fibre than for the LM fibre. That
is due to its stiffness: a larger stiffness means that a larger load needs to be
recovered, hence causing a larger ineffective length. Interestingly, the ineffective
length is not significantly affected by the stiffness of the other fibre in the hybrid,
which corresponds well to the findings of Swolfs er al. [45]. Similarly, the
HVFyg has a small effect on the ineffective length. In Fig. 4.5 d), a minimum
can be observed for the SEM at HVFyr = 50%, however, the difference is small
compared to other volume fractions. In the same way, in Fig. 4.5b) and c) a

small increase of ineffective length is observed in the SEM for HVFyg = 75%.
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In any of these cases, the small difference in ineffective length due to the HVFyg
should be related to the changes in the microstructure, as the ratio between HM
and LM fibres is different.

The ineffective length exhibits a large change between plastic and elastic matrix,
the same trend that was observed for the SCF. The ineffective length is smaller
for an elastic matrix, as there is no limit in shear stress transfer, making it
possible for the stress to be recovered in the broken fibre in a shorter region.
With the plastic matrix the shear transfer is limited by the matrix shear strength
resulting in a larger ineffective length. In any case the trends remain the same

for both matrix behaviours.

In general, the results predicted between the SEM and the analytical models in
PFM follow similar trends, although some differences are observed. In the PFM
the ineffective length is always smaller than in SEM. This is specially evident
for the plastic matrix cases. There are two main reasons which can explain this
difference. Firstly, with a plastic matrix, the behaviour of the matrix is elastic-
plastic in the SEM, whilst it is perfectly plastic in PFM. Because of this, the
shear stress is constant along the ineffective length, causing an underprediction
of the ineffective length. This issue could in principle be improved by using an
elastic-plastic model in PFM instead of a perfectly plastic. The second reason
could be related to the microstructure. In the SEM, the ineffective length of each
broken fibre depends on the local stiffness around the broken fibre. This means
that if the broken fibre is surrounded by more LM fibres (with lower stiffness),
then the ineffective length of the broken fibre is higher. This explains why the
SEM predicts an increase in ineffective length at larger HVFyg. However, this
effect is unlikely to be captured by a simple analytical model.

4.4.3 Radial influence length

The radial influence length for each material system, as a function of the HVFyg

is shown in Fig. 4.6.

As it can be observed, the radial influence length is larger when a HM fibre
is broken than when a LM fibre is. That is because the HM fibre has a larger
stiffness, causing a larger load to be redistributed over intact fibres leading to a
larger radial length. In most cases a small increase of the radial length can be
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Figure 4.6: Normalised radial influence length: a) broken HM fibre and plastic matrix,
b) broken HM fibre and elastic matrix, c) broken LM fibre and plastic matrix, d) broken
LM fibre and elastic matrix. The average of 10 realisations are shown (7, = 50 MPa for
plastic matrix).

observed by increasing the HVFyg. This increase is larger for the SEM than for

the PFM, although overall the trends are similar. In general, the radial influence
length is slightly larger for the PFM than for SEM.

Overall the radial length is affected by the stiffness of the fibres. A larger ratio
of stiffness between HM and LM fibres causes a larger radial influence length
when the HM fibre is broken. The opposite trend is observed when the LM fibre
is broken. This observation corresponds well to what was observed with the
SCF.
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Changing the matrix from elastic to plastic maintains the same trends as it was
seen with the SCF and ineffective length. As expected, the radial length is
smaller with an elastic matrix, which is again caused by the no upper limit
in shear transfer between fibre and matrix. In any case, the radial influence
length is heavily dependent on the microstructure and its average value for each
realization performed presents an error of approximately 1 mm/mm.

4.5 Tensile behaviour

In this section the tensile failure of the hybrid materials cases used in Section
4.4 is simulated under strain controlled conditions. A comparison of results
is performed between SEM and PFM. In this section, the total fibre volume

fraction considered is 50%.

A summary of all the results obtained for the hybrid materials with plastic matrix
is presented in Table 4.2, while the results with elastic matrix are shown in Table
4.3. The results for the non-hybrid cases are summarised in Table 4.4. The
presented results, correspond to the average of 5 realisations for each case. The
average computational time for performing one run of the cases studied was
1314 s for the SEM, whereas it was 114 s for the PFM. Therefore, the simplified

model is approximately 10 times faster.

The stress-strain curves obtained for all materials with a plastic matrix are shown
in Fig. 4.7. The tensile behaviour predicted by the two modelling approaches
is in good agreement for all cases despite of the differences in the modelling
assumptions. In general, the PFM overpredicts the final failure of the composite,
leading to larger peak stresses, yield stresses, strain and break densities, when
compared with the SEM.

The failure process is seen to be very different for each hybrid configuration
and varies greatly with the HVFyg. For the AS4-Eglass hybrid, no ductility is
observed at the different HVFyg simulated. However, at a HVFEFyg = 75%, there
is a larger stiffness loss when compared with HVFyg = 50% and HVFyg = 25%
before the final load drop, which suggests that ductility could be present for
HVFyg > 75%. This is also indicated by the fibre break density evolution
presented in Fig. 4.8. As it can be seen, the fibre break density increases
exponentially for all HE hybrid volume fractions leading to a brittle failure,

4.5 Tensile behaviour

143



Table 4.2: Obtained results for all hybrid materials with plastic matrix.

SEM PFM
Material HVFug oY oult ed gult N°© bw: oY ot ed gult N°© bw_:
[%] [MPa] [MPa] [%] [%] [] [mm?] [MPa] [MPa] [%] [%] [] [mm ]
25 1844 1858 0.101 2.026 5.2 2880 2009 2025 0.134 2251 104 6195
Hybrid AS4-Eglass 50 1481 1494  0.101 2.067 4.4 2380 1624 1660 0.192 2388 94 6712
75 1144 1153  0.124 2201 4.0 2480 1239 1299 0.316 2.653 14.2 8141
25 2163 2163 0.065 1.098 10.6 4235 2310 2321 0.091 1.199 8.6 7063
Hybrid M50S-AS4 50 1955 1966 0.109 1210 14.8 6435 2052 2060 0.119 1275 7.0 6922
75 1680 1897 0.525 1.808 144 9692 1817 2020 0.517 1.893 60.2 16229
25 2432 2444 0.115 2.076 7.2 3831 2604 2614 0.112 2223 338 6397
Hybrid AS4-T800G 50 2687 2720 0.157 2213 7.0 4719 2880 2908 0.141 2345 11.6 7439
75 2978 3222 0.646 2949 8.8 10670 3213 3533  0.760 3.282 31.0 21340
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Table 4.4: Obtained results for all non-hybrid materials with plastic (7, = 50) and elastic matrix (7, = o).

SEM PFM
Material 7, oY oult ed gult N© ) _M: oY ot ed gult N¢ ) _w_:

[MPa] [MPa] [MPa] [%] [%] [-] [mm™] [MPa] [MPa] [%]  [%] [-] [mm ]

AS4 50 2252 2252  0.094 2018 4.2 3265 2383 2391 0.105 2.172 142 5927

oo 2397 2397 0.065 2.114 140 6482 2173 2173  0.009 1.887 8.2 1413

TS00G 50 3605 3950 0.377 3.055 34 4940 3873 4388 0.416 3.376 6.0 7864
oo 4615 5613 0.671 4476 755 31195 4725 5708 0935 4.785 1035.8 45807

M50S 50 2388 2388 0.059 1.054 5.2 3477 2590 2592  0.074 1.150 8.0 7187

oo 2599 2599 0.058 1.141 174 7900 2385 2385 0.015 1.005 5.2 2604

E-olass 50 1043 1111 0.251 3426 106 9479 1168 1263 0316 3.859 22.0 18335
& o 1222 1301 0.246 3964 47.8 26062 1244 1311 0.217 3.895 177.0 25973
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Figure 4.7: Simulated stress-strain curves for different hybrid materials at different HE
hybrid volume fractions (HVFyg) using a plastic matrix. (a) hybrid AS4-Eglass, (b)

hybrid M50S-AS4, and (c) hybrid AS4-T800G. The non-hybrid composites are also
shown.

nonetheless, this increase is less abrupt for HVFyg = 75%.
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Figure 4.8: Simulated break-density curves for different hybrid materials at different
HE hybrid volume fractions (HVFyg) using a plastic matrix. (a) hybrid AS4-Eglass, (b)

hybrid M50S-AS4, and (c) hybrid AS4-T800G. The non-hybrid composites are also
shown.

For the M50S-AS4 hybrid, brittle failures are also obtained at HVFyg of 25%
and 50%. Nonetheless, a rather large ductility of around 0.5% is predicted by
the models for HVFyg = 75%, meaning that for this composite material the
failure process is gradual. This is clearly demonstrated by the evolution of fibre

break density, which increases linearly but not exponentially, until final failure.

Similarly, a ductility of around 0.7% is observed within the AS4-T800G hy-
bridisation at a HVFyg = 75%. However, by decreasing the HVFyg brittle
failures are obtained. In the case of HVFyg = 25%, the failure is completely
brittle whereas for the HVFyg = 50% two load drops can be observed. The
first load drop corresponds to the failure of the LE fibres, whilst the second one

4.5 Tensile behaviour
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corresponds to the failure of the HE fibres. Nevertheless this case cannot be

considered as ductile because the failure is not really continuous.

In general, the predicted cluster size is larger for the PFEM than for SEM. The
reason for this is likely to be related to the fact that final failure occurs later in
PFM. In any case, the cluster size predicted are in general in good agreement
with results of non-hybrid composites [41]. Similarly, the fibre break density
is in general larger for the PFM for the same reason, although in this case both
models predict larger values than seen in the literature [41]. The fibre break
density seems to increase with ductility. The larger is the ductile strain, the
larger is the break density. This is caused by the fact that final failure is being
delayed, leading to larger break densities. For the M50S-AS4 hybrid, the fibre
break density at maximum stress for HVFyg = 75% is more than 2 times larger
compared to HVFyg = 25%, being this increase from 4235 to 9692 mm =3 for
SEM and from 7063 to 16229 mm~3 for PFM. Similarly, for the AS4-T800G
hybrid, the fibre break density at HVFyg = 75% is approximately 3 times larger
than at HVFyg = 25%, with an increase from 3831 to 10670 mm > and 6397
to 21340 mm~3 for SEM and PFM respectively. It is worth mentioning that
both the cluster size and fibre break density are here being compared with
results of non-hybrid composites, which are brittle and less damage tolerant
than the analysed hybrids. Therefore, this comparison should be taken with care.
Nonetheless, although there is no certainty in the results for hybrid composites,
the models seem to partially capture the results in non hybrid composites and
their application to hybrid composites, although debatable, can lead to important

insights.

The predicted stress-strain curves using an elastic matrix are shown in Fig.
4.9, while the fibre break density can be seen in Fig. 4.10. Both models are
again in good agreement for most material configurations, although now the
PFM is in general underpredicting final failure compared to SEM. Nonetheless,
the obtained stress-strain curves and failure process differ greatly from the
ones observed by using a plastic matrix. Unlike the plastic matrix case, some
ductility appears within the AS4-Eglass hybrid at a HVFyg = 75%. However, a
very small ductility is predicted for the M50S-AS4 hybrid at a HVFyug = 75%
compared to the plastic matrix case. The differences between plastic and elastic
matrix are even larger for the AS4-T800G hybrid. With this material, the ductile
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strain at a HVFyg = 75% is of 1%, which is much larger than the 0.7% predicted
for plastic matrix. Similarly, at a HVFygg = 50% a large ductility of 1.5% for
SEM and 0.5% for PFM is predicted whilst no ductility was present with a
plastic matrix.
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Figure 4.9: Simulated stress-strain curves for different hybrid materials at different HE
hybrid volume fractions (HVFyg) using an elastic matrix. (a) hybrid AS4-Eglass, (b)
hybrid M50S-AS4, and (c) hybrid AS4-T800G. The non-hybrid composites are also
shown.
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Figure 4.10: Simulated break-density curves for different hybrid materials at different
HE hybrid volume fractions (HVFgg) using an elastic matrix. (a) hybrid AS4-Eglass,
(b) hybrid M50S-AS4, and (c) hybrid AS4-T800G. The non-hybrid composites are also
shown.

By further analysing the cluster evolution and break density with an elastic
matrix, larger differences appear in comparison with the plastic matrix. For
the ductile cases, the models with an elastic matrix predict a much larger break
density than with a plastic matrix. The cluster size is also unrealistically large
compared with experimental data [41]. This is especially evident for the AS4-
T800G hybrid, in which the cluster size predicted by the models exceeds the
number of fibres in the RVE for HVFyg = 75% and HVFyug = 50%. This

4.5 Tensile behaviour
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means that in some cases, some fibres were broken more than once over the
10 axial element lengths considered, corresponding to 20 times the fibre radius.
Therefore, the same fibre was broken multiple times in the same cluster. This
effect is even more exaggerated due to the small Weibull modulus, m, of the
T800G fibre which causes a large strength variation for that fibre. However, it
should be highlighted again that both the cluster size and fibre-break density are
being compared with results of non-hybrid composites which are brittle and less

damage tolerant than the simulated hybrids.

For the cases of the non-hybrid composites the models are again in good agree-
ment. For these materials the final failure is brittle for all cases, being similar
between elastic and plastic matrix. However, the fibre break density and cluster
size are again very large for some cases with elastic matrix and do not correspond

well to data available in the literature [41].

The large differences of results between plastic and elastic matrix highlight
that the differences in load redistribution, seen in previous Section 4.4, lead to
very different failure progression. In an elastic matrix, the shear stress transfer
between fibre and matrix is not limited which causes the stress redistribution
to be always very localised around the break. As a consequence, many iso-
lated clusters along the model appear which need to grow very large in size to
propagate unstably. This is the reason why the cluster size is usually larger for
the elastic matrix cases. Similarly, it should also explain why larger ductilities
are observed with an elastic matrix. In a real composite however, the shear
stresses are limited by the matrix strength, like it is the case with a plastic matrix
approach. Results of this work suggest that, while an elastic matrix may lead to
similar failure prediction in non-hybrid composites compared to a plastic matrix,
the use of an elastic matrix can lead to inaccurate results when modelling hybrid
composites. Nonetheless, it is impossible to further validate the results due to
the lack of experimental data. Furthermore, a better definition of cluster size is
needed to avoid clusters larger than the number of fibres.
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4.6 Conclusions

In this work, a new analytical model for predicting the SCF around clusters of
broken fibres in hybrid unidirectional composites was presented. The model
was used within the framework of a PFM [260] to study the stress redistribution
around breaks in different hybrid composites and their effect on the tensile
response and failure process. The results were validated by comparing with the
SEM [39].

The predicted stress redistribution around broken fibres in hybrid composites
was seen to vary with the stiffness ratio of the fibres on the hybrid, the matrix
behaviour being plastic or elastic, the broken fibre stiffness as well as the HE
hybrid volume fraction. Three different metrics were used to quantify this load
redistribution: maximum SCF on HM and LM fibres, ineffective length and
radial length.

The SCF on an intact fibre with different stiffness than the broken fibre is
affected by the stiffness ratio of both fibres. The larger the ratio, the larger the
SCF when the HM fibre is broken, whereas the opposite happens when the LM
fibre is broken. Adding LM fibres into the hybrid composite decreases the SCF
on HM fibres, which should lead to larger hybrid effects. When a HM fibre is
broken, the SCF  is larger on the LM fibres than on the HM fibres. However, the
SCFs are smaller in both populations when the LM fibre is broken. Changing
the matrix from plastic to elastic has an important impact on the SCF. With an
elastic matrix, the SCF is larger due to the fact that there is no limit in shear
stress transfer. The new proposed analytical model predicted well the trends
and stress redistribution in all cases and is in good agreement with the SEM.
Moreover, assuming that the overload carried by an intact fibre due to a break
does not depend on its Young’s modulus and radius, provides a good correlation
between the analytical model and the SEM.

The ineffective length was found to depend mainly on the stiffness of the broken
fibre. The larger the stiffness, the larger the ineffective length. As a difference
from the SCF, the stiffness of the hybridisation fibre and the HVFyg has no
significant impact on the ineffective length. However, the matrix behaviour has a
strong effect, being the ineffective length smaller with an elastic matrix. Finally,

the radial influence length follows the same trends as the SCF and is smaller
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with an elastic matrix.

In addition, a simulation of the fibre tensile failure of different hybrid materials
was performed under strain controlled conditions. Different ductile responses
were predicted for some composites at high HVFyg, whereas in other cases
brittle and sudden failures were obtained. The ductile composites presented a
gradual and progressive increase of fibre break density, whereas an exponential

increase was obtained for the brittle materials.

Large differences were again found between plastic and elastic matrix, meaning
that the differences in load redistribution lead to different failure progression.
When the matrix was considered elastic, many isolated clusters appeared along
the model. These clusters needed to grow very large in size before unstable
propagation. As a consequence, unrealistically large cluster size and break
densities were predicted for some simulations. This wasn’t the case with a
plastic matrix, which presented more realistic results compared to experiments
[41]. Therefore, results suggest that using an elastic matrix may lead to erroneous
predictions when modelling hybrid composites. Additional experimental data
is required to further validate and improve the different models for hybrid

composites.
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Overview

One of the objectives of the present thesis is to investigate the impact that the
dynamic effects and thermal residual stresses have on the tensile behaviour of

hybrid composites as well as on the formation and development of clusters.

Besides some FEMs [35], the SEM by Tavares et al. [63] is the only state of
the art model that inherently captures the failure and damage development in
composite materials taking into account dynamic effects due to fibre failure. The
drawback of either FEM or SEM, is their massive computational requirements.
Since none of these models have studied dynamic effects in hybrid composites,
their role on the tensile failure and cluster development in hybrid composites
is still unknown. Regarding the thermal residual stresses, the majority of the
models omit them altogether, since their impact on final failure and on the hybrid
effect is known to be small [3]. However, their influence on cluster development

is unexplored.

In this Chapter, the latest PEM presented in previous Chapter 4 is enhanced by
including dynamic effects due to fibre failure, and thermal residual stresses as
a result of the manufacturing process. On the one hand, this should allow to
improve the model further, closing the gap to the experiments. On the other
hand, it should allow to capture dynamic effects with a low computational effort
compared to FEM or SEM. The outcomes of this work show that, albeit the
dynamic effects change cluster formation, nonetheless they do not significantly
alter the final failure of the material. Although the thermal residual stresses do
not affect the formation of clusters, they can delay damage initiation and final

failure by inducing compressive stresses into the fibres.
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Failure of hybrid composites under
longitudinal tension: Influence of dynamic
effects and thermal residual stresses
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E-17003 Girona, Spain

Abstract

A progressive failure model including dynamic effects and thermal residual
stresses able to simulate the failure and damage development of hybrid unidirec-
tional polymer composites under fibre tensile loading is presented. The model
is used to study the influence dynamic effects and thermal residual stresses
have on the development of clusters of fibre breaks and the failure process of
different hybrid composites. The results obtained show that while the dynamic
effects change cluster formation, nonetheless they do not significantly alter
the final failure of the material. Overall, the influence is greater for the more
brittle materials. Although the thermal residual stresses do not affect the forma-
tion of clusters, they can delay damage initiation and final failure by inducing

compressive stresses into the fibres.

keywords: Dynamic effects, Thermal residual stresses, Hybrid, Micro-mechanics

5.1 Introduction

Fibre hybridisation, obtained by mixing a Low Elongation (LE) fibre with a
High Elongation (HE) fibre in a single matrix, is a promising strategy that
can overcome the inherent quasi-brittle behaviour and low toughness of Fibre
Reinforced Polymers (FRP) that leads to fibre tensile failure with hardly any
prior damage symptoms [1, 4, 41, 260, 261]. With a certain hybridisation, the
failure process of the material can be altered, leading to hybrid effects and an
increase in ductility [3, 13, 15-18, 31, 33-35, 39, 260, 261]. At present, changes
in failure development, thermal residual stresses and dynamic effects are the
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Paper published in: Composite Structures. In Press, journal pre-proof (2019)
Doi: https://doi.org/10.1016/j.compstruct.2019.111732
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main explanations for the so-called effects [3, 22, 26, 44].

The tensile strength of brittle fibres is not deterministic and can be characterised
with a statistical distribution. When a fibre breaks, the fibre loses its load
carrying capacity over a distance known as ineffective length. Along this length,
the neighbouring intact fibres are subjected to stress concentrations. Intrinsically,
this stress redistribution is dynamic. When a fibre fails, the strain energy
sustained by the fibre is released in the form of a stress wave which dampens
after some time. During this period, dynamic stress concentrations, which exceed
the static, appear in intact fibres around the broken fibre [26, 56, 57, 60, 61, 63].
Currently, it has been reported that the dynamic stress concentration can be
between 10% to 110% higher than the static depending on the configuration of
the material [63]. As the load is increased, clusters of broken fibres start to form,
which will eventually lead to final failure. It is, however, unclear if final failure
is triggered due to the accumulation of damage or the unstable propagation of a
large critical cluster [4]. In a non-hybrid composite this failure process occurs
quickly, leading to a catastrophic failure. Nonetheless, in a hybrid composite,
the formation of clusters can be altered thanks to the difference between the
elastic and geometrical properties of the two fibre populations in the hybrid,
leading to hybrid effects [15, 17, 18, 31, 33, 35, 260, 261].

Two main modelling approaches can be found in the literature to predict the
fibre tensile failure of composites. Global Load Sharing (GLS) [1, 34, 35, 142,
150, 151, 155], which cannot capture the formation of clusters, and Local Load
Sharing (LLS) [31-33, 35, 39, 54, 62, 63, 159, 194, 214, 222, 260, 261] which
are able to do so. In general, models can predict the failure strength within an
accuracy of around 20%, but overpredict the fibre break density at failure and
underpredict the formation of co-planar clusters. In addition, compared with
experiments, most models predict the formation of larger clusters too late. These
issues have been mainly attributed to the omission of the dynamic effects due to
fibre failure [4, 37, 41, 260].

To study their importance, Bullegas [62], incorporated for the first time, the
dynamic effects in the tensile failure process of non-hybrid composites using
a simplified approach. A 10% decrease in strength was found. Moreover, the
average distance between consecutive breaks decreased when using the dynamic

model. Such findings should have made the modelling results closer to the
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experiments. Unfortunately, they did not provide a direct measure of the number
of co-planar clusters. Recently, Tavares et al. [63], incorporated the dynamic
effects in a spring element model using a random distribution of fibres. The
dynamic Stress Concentration Factor (SCF) with a plastic matrix in a non-hybrid
composite was on average 43.2% higher, whereas it was 83.2% higher with an
elastic matrix. Even though the dynamic effects caused an earlier formation of
larger clusters, the number of co-planar clusters and the fibre break density did
not significantly improve compared to the static model when an elasto-plastic
matrix was considered. However, the authors did not study the influence the
dynamic effects have on the hybrid composites. Therefore, the role of the
dynamic phenomenon on the fibre tensile failure and cluster development of
hybrid composites remains unexplored. Moreover, if the dynamic SCF' is smaller
in hybrid composites than in non-hybrids, hybrid effects may occur [26], but the
importance of this has not yet been clarified.

Another common assumption in models is to neglect the thermal residual stresses
resulting from the manufacturing process, which appear because of the differ-
ent thermal expansion coefficient of the constituents. Different authors have
demonstrated that the thermal residual stresses are secondary, since they can
only account for up to 10% of the hybrid effects [7, 8, 22]. Nonetheless, their

influence on cluster development has yet to be studied.

In this work, a progressive failure model [37, 260, 261], including thermal
residual stresses and dynamic effects, is formulated. Their influence on the
tensile failure process of hybrid composite materials is then investigated. The
paper is organised as follows: firstly, the progressive failure model, including
dynamic effects and thermal residual stresses, is presented. After that, some
hybrid materials are simulated under fibre tensile loading to assess their influence

and finally some conclusions are drawn.

5.2 Modelling approach

In this section the modelling strategy of this work is presented. Firstly, an ana-
Iytical equation to determine thermal residual stresses for each fibre population
derived from the manufacturing process is developed. Secondly, a progressive
failure model [260, 261] is reviewed and modified by including thermal resid-

ual stresses and dynamic effects. To take the dynamic effects into account, a
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simple approach is considered based on Bullegas’ work [62]. After a fibre fails,
a dynamic iteration is performed in which the static SCF caused by the new
failures is increased by a given dynamic factor. If at the end of the iteration no

new failures occur, then the SCF values are reverted into the static conditions.

5.2.1 Analytical determination of thermal residual stresses

To determine the thermal residual stresses in a hybrid composite, two main
hypothesis are applied following the approach in Prussak et al. [262]. Firstly,
the force equilibrium in the fibre direction should lead to the summary of the
force of all constituents (each fibre population and matrix) equal to zero, thus
leading to

Vi16¢, + Vi Oy + V0, = 0 (5.1)

Secondly, both fibre populations and matrix should have the same strain (includ-
ing mechanical and thermal), thus

of Op) Om
—top(T—T)=—>+op(T-T)=—"+0n(T —T) (52)
Ex En En

where Vi, Vi, Vi are the volume fractions (Vg + Vi + Vin = 1), o4, Op,, O
are the longitudinal residual stresses, Ef;, Erp, and Ey, are the Young’s mod-
ulus whilst, o, ap and o, are the coefficient of thermal expansion, where
sub-indices f1, f2 and m refer to fibre populations 1 and 2, and the matrix,
respectively, whereas T is the test temperature and 7; is the stress-free reference
temperature (usually the cure temperature). By mixing Eq. (5.1) and (5.2), the

residual stresses become

VioEp (04 — 1) + VinEm (0 — 01)

oy =E T-T,
e R Ve + BVt BV )
of, = EfZVflEfl (a1 — 02) + VinEm (0m — ) (T—1T) (5.3)
En Vi + EpVio + EnVin
\ 0 — o, Vi E —
o = VI t1 (01 — Om) + ViEp (0 — Olm) (T—T)

EaVii +EnVep +E,V,

while the residual strains can be determined with &, = of, /Er1, €, = 0}, /En
and g, = o}, /Em. Note that for a non-hybrid composite the same equations can
be applied by simply setting the quantities of one of the fibre populations equal

to zero and thus leading to the same equations shown elsewhere as [263, 264].
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5.2.2 Progressive Failure Model

The Progressive Failure Model (PFM) [37, 260, 261] is based on the chain of
bundles approach and consists of a Representative Volume Element (RVE) of
width a, height b and length L which contains a random distribution of fibres of
a given radius. The fibres are divided into elements of length / along their longi-
tudinal direction. For each element a different strength is assigned according to a
statistical distribution. This leads to a domain of parallel tensile springs divided
into planes in series. Each fibre is denoted with the sub-index g € [1,..., Ny,
which determines the position along the X and Y axes, while each plane is
denoted with the sub-index p € [1,..., N,], which determines the position along
the Z axis, where N, and N,, are the number of fibres and planes respectively,
see Fig. 5.1. When an element fails, the stress redistribution around the break is
simulated by applying damage along the ineffective length of the broken fibre
and stress concentration onto the neighbouring intact fibre elements. This ap-
proach allows fibre clustering and the stiffness loss of composite materials to be
captured in a more computationally efficient way than other more sophisticated
models [37, 261].

a)

Figure 5.1: Schema of the RVE employed in the PFM: a) isometric view, b) plane view.

5.2.2.1 Constitutive equation

The constitutive equation which relates the element stress, ), 4, and the strain,
€y, taking into account the residual strain now becomes

SCFp,

Opq = E;(1-Dpy) (gp+) 54
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where SCF, , is the stress concentration factor (SCF) of element p, g, E, is the
Young’s modulus of fibre g, D), , is the damage state variable which is equal to 1
for broken elements, equal to O for intact elements and in between for elements
in any stress recovery, €, is the mechanical strain of the plane (which is assumed
to be the same for all elements of plane p), & is the fibre’s thermal residual
strain determined with Eq. (5.3) and €, is a stress ratio which enforces load

equilibrium at each plane.

Calculating Q, and €, depends on a load equilibrium condition, whereas cal-
culating D, , and SCF), , depends solely on an analytical model that is entered
into the PFM. In theory, any model can be applied to predict both of them.
Nonetheless, the models used should be consistent between them to obtain
reliable results [37].

To take into account the dynamic effects, it is assumed here that the dynamic
effects act by increasing the static SCF by a magnification factor, as has been
proposed in other work [62]. Thus, after a fibre element fails, a dynamic iteration
is performed and the static SCF's caused by the new failures are increased by a
given factor. If at the end of the iteration no new failures occur, then the SCF's
are reverted into the static values. Therefore the dynamic effects are included in
the calculation of the SCF'. In the following, the remaining modelling equations

and model process are explained.

5.2.2.2 Load equilibrium

Because the amount of damage may be different at each plane, each plane has
its own mechanical strain, €,. Thus, €, is evaluated according to the stiffness of
the RVE, the current strain applied at infinity, £°, and the residual strains. To do
so, first the stiffness of each element, &, 4, is calculated by Hooke’s law with

A
kpg=Es(1=Dpy4) Tq (5.5

where A, is the fibre’s cross-sectional area. The stiffness of each plane, k,, and
the stiffness of each plane for fibre populations 1 and 2 (f1 and f2), are then

computed by assuming all elements and the matrix in the plane work in parallel

N, N,
kpy = Z kp.q kp, = Z kp.g kp =kp, +kp, +km (5.6)
S qef2
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where kp, is the matrix stiffness, ky = EnAm /[, En is the matrix Young’s mod-
- . N,
ulus and Ay, the matrix’s cross-sectional area, Am =a b—}, ", A4. Next, the

total stiffness of the system is computed by assuming all planes work in series

N\ !
K= (Z kp) (5.7)

p=1

Finally, €, can be obtained by load equilibrium, as the total mechanical and
thermal force of each plane, F), = k,€,l +k, &1+ kp, €51 + k€l [, must be
equal to the force applied, F = Ke"L, leading to
e, = Ke° £ _ kpl 8%1 +kp281£2 +km8rrn
Pk, ky

(5.8)

where € is the applied strain and &, & and &, are the residual strains of fibre

populations 1 and 2, and the matrix, respectively, determined with Eq. (5.3).

To maintain local load equilibrium, the aggregation of the loads of the fibres
and the matrix at each plane, p, must be equal to the load of the plane F),. This

condition allows the stress ratio €2, to be obtained with

Fp:z

g=1

N, a
qSC”’qE 1-D +eNA, )|+ (e, + € )ELA
q( ) (€p+€)Aq | + (& +8,) Endm
P

(5.9

Ny
L, L1 SCFpqEq(1-Dpyq) (& +€5) Ag

(kp€p +kp, &f) 4 kpy €5 —km€p) |

p:

5.2.2.3 Ineffective length and damage

The ineffective length of broken fibres depends mainly on the matrix behaviour,
which can be elastic or plastic, as debonding is omitted here [37, 261]. The
matrix behaviour is a key factor in the modelling predictions as it changes the
ineffective length and the magnitude of the SCF over the intact fibres [5, 37, 39,
261].

For a plastic matrix, the model is modified as to include the residual strain.
Therefore, the ineffective length corresponds to a modified Kelly-Tyson shear-
lag model [149]. The ineffective length includes a scaling factor, H, which
scales the ineffective length according to the cluster size [198]. This cluster is

calculated assuming that two broken fibre elements belong to the same cluster
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(c), if the distance between the centres of both fibres is below four times the
smallest fibre radius and both elements are on the same plane p [37, 261]. Each
cluster of plane p is represented with the sub-index p,c, with ¢ € [1, o NIC,]
where Ny, is the total number of clusters on plane p. Thus, the ineffective length
of a broken fibre element in cluster p, ¢ is

R,E,  n, RGE,

Lgl-,q = ;T:prc (ep+e) = T Cpet, (o +€) (5.10)

where 7, is the matrix shear yield stress, R, is the fibre radius, C, . = 4s,/np .,
and where n,, . is the number of broken fibres on cluster p,c and s is the overall
mean distance between fibre centres, s = [(Rf Vs + Rp2Vin) /VA] \/m, where
Ry and Ry, are the fibre radius of fibre populations 1 and 2 respectively and V¢ is
the overall fibre volume fraction, Vy = V¢ 4+ Vy,. The damage of element p, g due
to each break in the fibre g at each plane i is computed following the ineffective

length curve as

Lr —|i—pll i
max % Vi: (Djg=1)U (\i—p!l <L,
Dpg= Ly |

0 otherwise.

) (5.11)

If an elastic matrix is assumed, then the ineffective length is based on Cox’s
shear-lag model [227, 235]. For this scenario, the ineffective length depends

neither on the residual strain nor on the mechanical strain [37], and is given by

[261]
~ E.R Re1 Vel + Ry Vi 1

I =H 9 (g—2 | 5.12

pa p,c\/sz <S 14 ) n(l—C> 12

where G, is the matrix shear modulus. It is worth mentioning that this length

corresponds to a recovery of { percent of the nominal fibre stress (in this work
£ =99.9% of the nominal fibre stress [37, 261]). The damage is then computed
with

max | ex i plt 2Gum
P Hy . R (s— 2Rf1 Vi1 + RV
Dyg= o Vi

Vii (Dig=1)U (|i—p\1 < L}f‘q)

(5.13)

0 otherwise.
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Nonetheless, as was demonstrated in Guerrero et al. [261], the use of an
elastic matrix may lead to inaccurate results when modelling hybrid composites.
Consequently, in this work the matrix is assumed to be plastic and the ineffective
length and damage are calculated with Eqgs. (5.10) and (5.11).

5.2.2.4 Stress concentration factor and dynamic effects

To predict the static SCF around breaks, different models can be found in the
literature [41, 198, 251, 252]. In this work, the proposed model, which has been
used in previous studies and is based on the work of St-Pierre ef al. [198], is
applied [261]. The model is very powerful as it can predict the static SCF around
a cluster i, ¢ of broken fibres located on the same plane, taking into account the
cluster size, RVE size, volume fractions, fibre radius and elastic properties of
each fibre population. Furthermore, it can be calibrated to take into account

different effects not present in the model [261].

The complex dynamic effects are simulated in this work in a simple and efficient
way by adapting the approach proposed in Bullegas [62]. When a new element
fails, a dynamic iteration is started. The static increment of SCF produced by
the cluster i, c, to which the broken element belongs to, is multiplied by a factor
larger than 1, My. This factor is only applied to the SCF produced by clusters
i,c with new breaks, while it is equal to 1 for all other clusters i, c with no new
broken elements. If no new elements fail at the end of the dynamic iteration,
then all factors are set equal to 1 and the model reverts to static conditions.
However, if new elements fail, then a new dynamic iteration is started. Hence,
the static SCF caused by any cluster i,c with new broken fibres is multiplied by
M.

It should be noted that the proposed approach does not allow the entire dynamic
process to be captured, as unlike other models [63], the time variable is omitted.
Within this approach, only the instant of time at which the maximum dynamic
effect is produced is considered. Notwithstanding, that is the only time instant
of interest as any new failures will occur when the SCF is maximum. Therefore,
this method allows for a more efficient simulation process. In addition, it is
assumed that the behaviour is quasi-static, since dynamic effects only occur as a
result of new breaks and not to the applied load. Further to this, it is considered

that the dynamic factor, My, is independent of the number of simultaneous
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breaks that occur in the cluster i, c, in accordance with the results of Tavares et
al. [63].

The static increment of SCF for an intact element p,q due to cluster i,c is
given by ASCF = 6 - A, where 0 and A are two functions [261]. The function
0 is related to the in-plane distance (r,—.) between the geometrical centre of
coordinates of cluster i, ¢ and intact element p, g, while A is related to the plane
position along the ineffective length. Because an intact element can receive
SCF from broken fibres from the same or other population, and each cluster can

contain broken fibres of each population, four combinations for 6 occur

R,'.C « Ric *
o, ., =h, : 0, =M | —
(g—c) ! r (g—¢) r
q—c q—c

R,'.C « Ric *
512 —c :IIZiC - 621 —c :IZIf.(‘ :
(g—c) ! r (g—¢) r
q—c q—c

Similarly, each cluster i, ¢ has two ineffective lengths, the ineffective length of

(5.14)

broken elements of type 1, Li‘l‘_‘r, and that of broken elements of type 2, Liz‘j_‘c.

Therefore, two combinations for A occur

Lir —1]i—pl| :
———— V(i,¢):lli—p| <Ly  Plastic matrix
11',('
A«l(p,,-) = ‘i — p’ lCi,c 2Gme1
P 2 R RiiVii + RV,
iR | gy <s—2 1V +Rp f2>
Vi
V(i,c): I]i—p| < Li®  Elastic matrix,
. . (5.15)
LY —1li—p| .
————— VY(i,c):l|li—p| <Ly Plastic matrix
L12n . i,c
N, = li— piC;e 2GmRe
exp | — 5
2mn; (R%, Rt Vi + RV
’ Epls—2——mFF—F——
Vi
[ .. V(ic):1]i—p| <L}  Elastic matrix,

where 0; Lo and 522(5,75) correspond to the static increment of SCF that an intact
element from fibre populations 1 and 2, respectively, receives due to broken fibres

of its own type in cluster i, c, while 0 20 and &y (i Are the static increments
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of SCF that an element of fibre populations 1 and 2, respectively, receives due
to broken fibres of a different type in cluster i,c. A (»_y 18 the evolution of

in . . .
o011 (g @nd 621(;,75) along LY , while ;LZ(,H-) is the evolution of 622(1;%) and 512(H)

along L‘2‘:C R; . is the equivalent radius of the cluster, ER%C = nichiZ’C, Sic 18
the average fibre spacing of the cluster, S;. = [(n1, Re1 +n2, Rp) /nic] /7 /i,
ny,, and ny, , are the number of broken fibres in populations 1 and 2, respectively,
in cluster i,c, and n;. = ny,, +ny,.. The exponent @ is an input parameter
which governs the maximum value of SCF and the shape of the curve. Its value
can be adopted as a = 2 for a plastic matrix or @ = 3.8 for an elastic matrix

[37, 198, 261]. As this work assumes a plastic matrix, @ = 2 will be used.

The terms [ are constants which differ for each cluster i, c and are given by

( nliﬁcR%lR%Z
5 5 3 forax =2

2R? In(Ri/Ri.) (RE Via + Ry, Vi)

Iy, = ni, RARLR, * (00 —2) '
. ‘ > ’ otherwise,
2 (Ri,c_a — R _a> (Rglva +R1%2Vf1)
Eqny, RY
5 1M e le 5 foroe =2

2EnR} In(Ri/Ric) (RfVi2 + RE Vi)

by, = EflnlicR?l Ri_ca (a—2) )
; : ; ’ otherwise,
2 (R~ R (R} Vi + RBVin)
(5.16)
nztchle%2
5 5 5 foroo =2

2R} In(Ri/Ri.) (R Vi2 + R, Vi )

I = ny, RERBR; (0 —2) .
. ad ; : otherwise,
2 (R~ R (RR Vio + R, Vi)
( Epny, R}
5 12 e f22 5 foraa=2

2EqR; In (Re/Ri.) (Rfl Vi2 +szvfl)

ha,. = Epny RHR; * (a—2) :
: : otherwise,

2 (R — R (RE Vi + RB Vi)
where R, is the RVE equivalent radius, Ry = +/(a-b) /7.

To take into account the interaction between different clusters, a superposition
rule is considered. The total SCF for an intact fibre element is obtained by the
linear superposition of the SCF it receives from all clusters i,c. Nonetheless,

to achieve stress continuity between elements inside any ineffective length
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(elements where 0 < D, , < 1) that are not affected by the SCF, and subsequent
intact elements (D, , = 0), which can be overloaded by the SCF, the SCF of an
element is limited according to shear-lag transfer [37, 260, 261]. Thus, the total

SCF of an intact element p, q is

in (SCFY,,,SCF}; ) Vp,q:Dpg=0
SCFMZ{ min (SCF,.qSCFyq) VP4 Dpg (5.17)

otherwise,

where SCF 27 4 18 the SCF predicted by the linear superposition of the contribution
of all clusters, taking into account the dynamic effect using the previous & and
A functions with

N, Nf

SCF ?xq =1+ Z Z My, 511<q—c> 7Ll<,,,,-) + Mo, 612(q—c> b(

i=lc=1

i)

Vi,c:ni.>0 & gefl
N, N¢

0 _
SCF,, =1+ Z Z Mo, 522@70) Az(p—f) +M 1Lc621(q—c> A (p—i) "

i=lc=1

Vijc:ini.>0 & qgecf2

(5.18)

where f1 and f2 are fibre populations 1 and 2, respectively, while M), and
Mp,, are the dynamic factors caused by new breaks in populations 1 and 2,
respectively, in cluster i,c. As detailed at the beginning of this subsection,
these factors are equal to 1 for any cluster i, ¢ in which no new breaks occurred.
Nevertheless, if any new broken elements of type 1 appear in cluster i, c, then
M,

Therefore, many different combinations may occur because, an intact element

i« = Mgy. Similarly, if new broken elements of type 2 appear then My, . = M.
may receive dynamic SCF from the two populations in the cluster or from only
one of them, or it may receive dynamic SCF from one cluster and static SCF
from another different cluster. Finally, SCF ]57 q is the SCF limitation for broken
fibre ¢, and it is calculated as in previous work [37, 260, 261]:

1
L = 1 / ;. —
SCF), , = min (L“ |i—pl l) Vi:Dig=1 (5.19)

i,q

Chapter 5 Paper C — Failure of hybrid composites under (...)



5.2.2.5 Numerical implementation

A uniaxial strain controlled simulation is performed along the fibre longitudinal
direction by slowly increasing the applied strain, £°. In this way, a progressive
and stable damage process can be simulated. A step-by-step implementation
of the model is shown in Algorithm 5.1. Before starting the simulation, the
strength of each element is generated following a given statistical distribution,
and if they are to be considered the thermal residual stresses are estimated, as
given in lines 1-2 of the algorithm. After that, a new loading step is started by
applying a uniaxial strain, see line 3. At each new iteration, y, of the model, the
objective is to compute the stress of each element by following the procedure
shown in lines 5-11 of the algorithm. Next, the stresses are compared with the
strengths, as given in line 12. At this point two possibilities may arise: 1) new
elements fail and, consequently, lines 13-16 of the algorithm are applied, or 2)
no new elements fail, and thus lines 18-20 are employed. If no new elements
fail, then the algorithm applies static conditions, i.e. M;,, = 1 and M,, =1 for
all clusters p,c. Then a new static step, is started by increasing the applied strain.
However, if new elements fail, a damage factor equal to 1 is assigned to all new
broken elements. Then, all clusters p, ¢ are determined. For the clusters p, c with
new breaks of type 1, M1, = Mq. Similarly for the clusters p,c with new breaks
of type 2, M, = Mg is assigned. For all clusters with no new breaks M, = 1
and M,, = 1. The algorithm then starts a dynamic iteration by repeating the
whole process. The process shown continues until either all elements in a plane
are broken, or the average fibre stress of the HE fibre population has decreased
in a single step, #, by a pre-defined percentage of the maximum load value. A
small decrease of 10%, is enough to capture the final failure of the material and
also allows computational time to be reduced.

5.3 Methodology

To study the influence both thermal residual stresses and dynamic phenomenon
have on the tensile failure of hybrid composites, different materials are simulated
using the PFM. To quantify their importance separately, the tensile behaviour
is simulated three times: a) under static conditions (i.e. My = 1) and without
thermal residual stresses, b) under static conditions with thermal residual stresses,

and ¢) under dynamic conditions (i.e. My # 1) and without thermal residual
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Algorithm 5.1 Progressive Failure Model algorithm

Input: RVE domain and model data (material properties, model options, etc.)
Output: Stress-strain curve, break density, cluster progression, etc.

A

>

10:
11:
12:
13:
14:
15:

16:

17:
18:
19:
20:

21:

22

Generate the strength of each element, o), ,

Calculate thermal residual stresses with Eq. (5.3) if considered

Start new step ¢ + 1: increase &°

Start new iteration y+ 1

Estimate k;, 4,kp, ,kp,,kp, K, €, with Egs. (5.5)—(5.8) using the latest known

values of damage, D), ,

if There are broken elements then
Calculate Li?,q,Dp,q of broken fibres with Egs. (5.10) and (5.11) if the
matrix is plastic, or Egs. (5.12) and (5.13) if it is elastic
Calculate SCF with Egs. (5.14)—(5.19) using the latest known values of
M 1p‘c and MQN
Re-calculate &, .kp, . kp,,kp, K, €, with Eqs. (5.5)—(5.8) using the
updated values of damage, D), 4

end if

Calculate Q, and o), , with Eqgs. (5.4) and (5.9)

if Any 0,4 > 0, , then
Set D), , = 1 to all new broken elements
Determine all clusters p,c
For all clusters p,c in which new broken elements of type 1 appeared,
M,,. = M. For all clusters p,c in which new broken elements of type
2 appeared, M, = Mjy. For all clusters with no new breaks, M, =1
and M, =1
Start dynamic iteration: go to line 4 if end criteria is not met, otherwise
go to line 22

else
Set all M]N =land M, =1

X

P

Reset iteration counter: y =0
Start new static iteration: go to line 3 if end criteria is not met, otherwise
go to line 22

end if

: Output simulation data and stop

stresses. For the dynamic cases, the value of My is varied between 1.25, 1.43,

1.6 and 2. These values are taken from the literature: 1.43 corresponds to the

average result given in Tavares et al. [63] using a plastic matrix, while 1.6

corresponds to the result of Hedgepeth [56] and 2 is a theoretical maximum

factor for a spring-mass system without damping [62]. Likewise for the thermal

residual stresses, two extreme values (a lower bound and an upper bound) for the
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coefficient of thermal expansion of both LE and HE fibres in the materials are
used to observe their impact. To calculate them, the test temperature is assumed
to be T = 25°C, whereas the stress-free temperature is 7, = 150°C.

To observe the impact of the dynamic phenomenon and thermal residual stresses
with diverse material properties, different intrayarn hybrid unidirectional com-
posites are simulated by combining various carbon and glass fibres. These
hybrids correspond to X5-T300 (Carbon-Carbon), T300-Eglass (Carbon-Glass)
and X5-Eglass (Carbon-Glass). These material combinations are interesting
as, in all cases, the failure strain of both fibre populations should be fairly well
apart, and all LE fibres have a relatively small Weibull modulus which is known
to be positive for the hybrid effect [33—35]. In all cases, the matrix is always
Epoxy with properties Ey,, = 3760 MPa, 7, = 50 MPa and o, = 58 - 1076 oC!
[35, 265]. The corresponding properties of each fibre can be seen in Table 5.1.

Fibre properties Weibull parameters
Fibretype o 1Gpay Ry [um) o [°C1) m[-] oy [MPa] Lo[mm]
f rf Low High 0 0
T300 232 35 —0.7-10° 07-10° 510 3170 25
X5 520 505 —0.7-10° 0.7-10°° 6.1 2500 25
Eglass 72 8 5-107° 10-107% 13 2500 25

Table 5.1: Fibre properties.

A modified version of Melro’s random fibre generator [35, 124] is used to
create an RVE of width, thickness and length of (respectively) 75 x 75 x 300
times the largest fibre radius on the RVE. The element length, /, is equal to
the smallest fibre diameter in the RVE. The overall volume fraction (V;) is
always 60%. However, because the Hybrid Volume Fraction (HVF) is known
to have a considerable impact on the tensile response of hybrid composites
[27, 31, 34, 35, 261], each hybrid is simulated with an HVF of 10, 20, 30, 40,
50 and 75%. Here, the HVF is the percentage of LE fibre volume fraction (VLg)
over the total volume fraction (Vy), HVF = (VLg/V;). In addition, a non-hybrid
composite of each fibre type is also simulated.

As in other work [37, 39, 41, 260, 261], the strength of each element in the
RVE is given by a Weibull distribution [103]. To generate them, a random
number between 0 and 1 is assigned for each element, P, ,. The strength of the
element, 0, ,,
with P, =1—exp (—(I/Ly) (G},‘jq/ao)m), using the corresponding Weibull

is then computed according to the Weibull distribution function
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properties, 0y, m, Ly of the fibre given in Table 5.1. Because of the random
nature of the fibre strength and the random position of the fibres, 8 runs are
performed for each case in study. For each run, a new RVE and new element
strengths are generated. However, the same RVEs and fibre strengths are used
for the static, dynamic and thermal residual stress cases to allow for a fair

comparison between them.

To compare the results between simulations, different metrics are used [261].

ult

Firstly, the failure strength, o"*, which corresponds to the maximum stress

reached by the material. Secondly, the failure strain, £"!

, which corresponds to
the strain at ¢"!*. Thirdly, the yield stress (), which is defined as the knee point
at a strain of 0.1% where the stress-strain curve deviates from the initial linear
elastic region. And fourthly, the pseudo-ductile strain (¢4 = "' — "'/ Ey),
where E is the initial Young’s modulus of the composite given by the rule of

mixtures.

The fifth metric is the maximum cluster of broken fibres in the RVE, N¢, at
failure. To track these clusters along the simulation, it is assumed that two
broken elements belong to the same cluster if their distance between centres is
smaller than 4 times the smallest fibre radius and the distance between break
planes is less than 10 times the smallest fibre radius [33, 37, 39, 41, 261]. A
cluster is assumed to be co-planar if the axial distance between all brake planes
in the cluster is smaller than or equal to one element length, otherwise it is a
diffuse cluster [39, 41]. It should be noted that, the maximum cluster size shown
in the results is different from the cluster definition that was used in section
5.2.2.3 to calculate the SCFs and ineffective length. This was done to allow the
damage evolution to be measured in the same way as it has been done in the

literature.

It is worth mentioning that the RVE volumes used in this study, which are as
small as 0.26 x 0.26 x 1.05 mm and as large as 0.6 x 0.6 x 2.4 mm, and contain
as few as 1100 fibres and as many as 4500 fibres, are small compared to a real
material specimen. Due to the size effects present in composite materials, the

strengths obtained, ot

, may not be representative of real composites. Moreover,
the Weibull distribution used to calculate the fibre strengths is extrapolated to the
element length, /, which is very small. This is known to cause an overprediction

of the strength. Further discussion related to size effects and Weibull distribution
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issues can be found elsewhere [5, 37].

5.4 Results

In this section the influence both thermal residual stresses and dynamic effects
have on the failure process and cluster development of broken fibres for the
different hybrids simulated is analysed. All results correspond to the average of

8 runs.

5.4.1 Dynamic effects

Overall, the maximum cluster size, shown in Fig. 5.2 a)-c), increases with the
dynamic factor. In general, this increase seems to be larger for the composites
that are less damage tolerance, i.e. the non-hybrid composites and the hybrids
with larger HVF. Nevertheless, the formation of co-planar clusters shown in Fig.

5.2 d)-f) presents a negligible variation for the dynamic factor.
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Figure 5.2: Effect of the dynamic factor on the formation of clusters. From a) to c), the
maximum cluster size, in number of broken fibres, is shown within the T300-Eglass,
X5-Eglass and X5-T300 composites respectively. From d) to f), the percentage of co-
planar clusters are shown within the T300-Eglass, X5-Eglass and X5-T300 composites
respectively. The average of 8 runs is shown for each material configuration.

5.4 Results 173



174

The influence of the dynamic effects on the failure strain and ductile strain
is shown in Fig. 5.3. Overall, there is a minor decrease in the failure strain
when the dynamic factor is increased. For both the X5-Eglass and X5-T300
composites, shown in Fig. 5.3 b) and c), the decrease in failure strain is larger
for the non-hybrid composites than it is for the hybrids. However, this does not
occur with the T300-Eglass composite shown in Fig. 5.3 a), which presents
a larger decrease of failure strain for the hybrid composites with HVF = 10%
and HVF = 20% than it does for the non-hybrids when My = 2. Regarding
the ductile strain, similar trends are highlighted. In general, there is a minor
decrease in the ductile strain when the dynamic factor is increased. This decrease
is seen to be larger for the T300-Eglass hybrid composites with HVF = 10%
and HVF =20%.
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Figure 5.3: Effect of the dynamic factor on the failure strain and ductile strain. From
a) to ¢), the failure strain is shown within the T300-Eglass, X5-Eglass and X5-T300
composites respectively. From d) to f), the ductile strain is shown within the T300-
Eglass, X5-Eglass and X5-T300 composites respectively. The average of 8 runs is
shown for each material configuration.

The failure stress and yield stress of the simulated composites is shown in Fig.
5.4. As with the failure strain, the failure strength also presents a small decrease

when increasing the dynamic factor, although the decrease is mostly negligible.

Chapter 5 Paper C — Failure of hybrid composites under (...)



In regards to the yield stress, no changes at all are observed for the hybrid
composites.
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Figure 5.4: Effect of the dynamic factor on the failure stress and yield stress. From
a) to c), the failure stress is shown within the T300-Eglass, X5-Eglass and X5-T300
composites respectively. From d) to f), the yield stress is shown within the T300-Eglass,
X5-Eglass and X5-T300 composites respectively. The average of 8 runs is shown for
each material configuration.

The tensile behaviour predicted for each composite is seen to be very different
and to be heavily dependent on the HVF, as illustrated in Fig. 5.5. A large
pseudo-ductile strain of 0.6-0.8% is predicted with the X5-T300 hybrid for an
HVF of between 10-50%, whilst at larger HVF, brittle behaviours are obtained.
An even larger pseudo-ductile strain of 1.25-1.5% can be observed for the X5-
Eglass composite for an HVF of between 10-30%. For the last hybrid studied,
T300-Eglass, a ductile strain of 0.6-0.8% for an HVF of between 10-20% is
found. As has been discussed, the dynamic effects lead to a slightly earlier

failure, but do not significantly change the tensile behaviour.
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Figure 5.5: Simulated stress-strain curves with each hybrid composite material for
different dynamic factors, My.

5.4.2 Thermal residual stresses

The influence thermal residual stresses have on the formation of clusters is
shown in Fig. 5.6. Overall the thermal residual stresses do not have a significant
impact on cluster formation. The maximum variation in cluster size can be seen
for the X5-Eglass hybrid composite for HV F = 30%, showing a change of 10
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fibres compared to the case without thermal residual stresses. For the co-planar
clusters, the variation is less than 1% for all composites.
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Figure 5.6: Effect of the thermal residual stresses on the formation of clusters. From
a) to ¢), the maximum cluster size, in number of broken fibres, is shown within the
T300-Eglass, X5-Eglass and X5-T300 composites respectively. From d) to f), the
percentage of co-planar clusters are shown within the T300-Eglass, X5-Eglass and
X5-T300 composites respectively. The average of 8 runs is shown for each material
configuration.

The influence of thermal residual stresses on the failure and ductile strains is
shown in Fig. 5.7. In some composites a minor variation of these two strains
is seen when the residual stresses are considered. For the X5-T300 composite,
the failure strain and ductile strain present a minor increase when oy g = 7 -
1076 °C~! and o = —7-107° °C~! and a small decrease for the opposite
combination. For the other two combinations of oq g and ayg, the results lie
somewhere in between. The same trend is seen for the X5-Eglass and T300-
Eglass composites. The ductile composites, corresponding to HVF = 10 — 30%,
experience an increase in failure strain and ductile strain when oqg = 7-107°
°C~'and ogg = 51079 °C~!, and a decrease when g = —7-107% °C~! and
omE = 10-1076 °C~1.
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Figure 5.7: Effect of the thermal residual stresses on the failure strain and ductile
strain. From a) to c), the failure strain is shown within the T300-Eglass, X5-Eglass and
X5-T300 composites respectively. From d) to f), the ductile strain is shown within the
T300-Eglass, X5-Eglass and X5-T300 composites respectively. The average of 8 runs
is shown for each material configuration.

In regards to the failure stress and yield stress shown in Fig. 5.8, a minor variation
can also be observed with the thermal residual stresses. For the X5-T300
composite, the strength and yield stress are the largest when o g = —7-107°
°C~'and ayg = 7-107° °C~!, while they are the smallest when o g = 7-107°
°CVand oy = —7-10"6 °C 1. Similarly, for the X5-Eglass and T300-Eglass
the maximum occurs when oqg = —7-107% °C~! and apg = 10- 1076 °C~!
and the minimum for the opposite combination. For the other combinations of

coefficient of thermal expansion, the results lie between these.

The tensile behaviour obtained is not shown since it is qualitatively the same as
that illustrated in Fig. 5.5.
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Figure 5.8: Effect of the thermal residual stresses on the failure stress and yield stress.
From a) to c), the failure stress is shown within the T300-Eglass, X5-Eglass and X5-
T300 composites respectively. From d) to f), the yield stress is shown within the
T300-Eglass, X5-Eglass and X5-T300 composites respectively. The average of 8 runs
is shown for each material configuration.

5.5 Discussion

5.5.1 Influence of dynamic effects

As proved in Fig. 5.2, the maximum cluster size increases as the dynamic factor
does. This can be easily understood. Since increasing the dynamic factor leads
to higher SCF, the probability of creating larger clusters is also greater. These
findings imply that the dynamic effects change the damage development of the
materials, leading to an earlier formation of larger clusters in the dynamic model
than in the static model. This emphasises the importance of including dynamic
effects. Considering them should, in theory, lead to a more realistic formation
of clusters compared to experiments. Nevertheless, the formation of co-planar
clusters is seen to be unaffected by the dynamic effects. Thus, increasing the
dynamic factor does not increase the formation of co-planar clusters, as was

supposed in the literature [5, 41]. This corresponds well to the recent findings

5.5 Discussion
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of Tavares et al. [63]. Such outcomes suggest that, the underprediction of
co-planar clusters seen in most of the models in the literature may not be related
to the omission of dynamic effects. It should be noted that the formation of
clusters depends on the specific RVE and fibre strengths of each run. In other
words, owing to the variability of the results, some of the curves in Fig. 5.2 may

intersect.

As evidenced in Fig. 5.3, a minor decrease in the failure strain and ductile strain
occurs when considering dynamic effects. In some hybrid composites such
as the X5-Eglass and X5-T300, the decrease in failure strain is larger for the
non-hybrid composites than for the hybrids, which suggests the presence of a
small positive hybrid effect caused by the dynamic effects. However, this does
not occur with the T300-Eglass composite which presents a larger decrease of
failure strain for the hybrid composites comprising a low HVF. These results
suggest that, although the dynamic effects change the formation of clusters, they
do not have any significant influence on the final failure or on the ductility of the
composite. This is something that corresponds well to the findings of Tavares et

al. [63] in non-hybrid composites using an elasto-plastic matrix.

A minor decrease in strength is also seen when considering the dynamic effects
as illustrated in Fig. 5.4. The yield stress presents no changes at all due to the
dynamic effects. This is because the yield stress depends mainly on the initiation
of damage when the number of breaks is still small. At that point, the dynamic

effects are not important.

The tensile behaviour predicted for each composite, shown in Fig. 5.5, proves
that a ductile failure process can be achieved via fibre hybridisation. A very
large ductile strain between 1.25-1.5% is obtained with the X5-Eglass composite
for an HVF between 10-30%. That large pseudo-ductile strain is possible thanks
to the fact that the failure strain of the two fibres in the hybrid is well apart, and
the failure process is continuous. In any case, it can be seen that the dynamic
effects lead to a slightly earlier failure, but do not significantly change the tensile

behaviour.

The results obtained show that the dynamic phenomenon has an effect on the
formation of clusters, leading to larger clusters at smaller strains compared to the

static model. Nonetheless, final failure is not significantly altered, as the failure
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strain and strength are marginally smaller in the dynamic model. The tensile
behaviour is also seen to be unaffected. This contradicts the general belief in
the literature that the dynamic effects considerably influence final failure [5, 41].
Additionally, if the dynamic factor is smaller in the hybrid composites than that
of the baseline non-hybrid composites, as the work of Xing et al. [26] suggests,
hybrid effects should occur due to the dynamic phenomenon. However, the
results presented by varying the dynamic factor, My, show a very reduced effect.
Therefore, the contribution the dynamic phenomenon makes to the hybrid effect
seems to be very small. These results have been obtained by using a plastic
matrix approach. Using an elastic matrix should lead to the dynamic effects
having a greater influence on final failure, as pointed in Tavares et al. [63].
Nonetheless, a plastic matrix should be a more realistic representation of the
failure process [261]. Adding the dynamic effects should allow a more accurate
formation of clusters and, consequently, should be a step forward in modelling

predictions.

5.5.2 Influence of thermal residual stresses

As evidenced in Fig. 5.6, the thermal residual stresses do not change damage
progression. However, as shown in Fig. 5.7, they can have a minor influence on
the failure and ductile strains. In some material combinations, the failure strain
and ductile strain increase when the thermal residual stresses are considered.
These changes can be understood as being due to the magnitude of the thermal
residual stresses. For the X5-T300 hybrid composites, when oq g =7-1076 °C~!
and agg = —7-107% °C~!, the HE fibre residual stress is either compressive,
or it is tensile albeit smaller than in the other combinations. This, in turn,
causes a delay in the initiation of damage for the HE fibre compared to the
other scenarios, thus leading to an increase in the failure strain and ductile strain.
However, since the magnitude of the thermal stresses is small, the variation in
the final failure is very reduced. A similar effect occurs with the X5-Eglass and
T300-Eglass composites. When oqg =7 - 10°°°Cand ogg = 5-1076 °C 1,
smaller residual stresses in the HE fibre are again induced compared to the other
combinations when the HVF is low. Therefore, either inducing compressive
stresses or smaller tensile stresses into the HE fibre should delay the initiation of

damage in the HE fibre, leading to an increase in failure strain and ductile strain.
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A similar effect is seen with the failure strength and yield stress. This is again
controlled by the magnitude of the thermal residual stresses. Introducing com-
pressive stresses into the LE fibre increases the yield stress and failure strength
because the initiation of damage in the LE fibre is delayed. This in itself should
also increase the hybrid effect, as pointed out in the literature [7, 8, 22].

The results obtained suggest that the thermal residual stresses have a negligible
effect on cluster formation and damage evolution. Nonetheless, they can have a
minor effect on final failure [3, 7, 22]. Inducing compressive residual stresses
for the LE fibre increases the failure strength and yield stress of the material.
Likewise, introducing compressive stresses into the HE fibre increases the failure
and ductile strains. A combination of the two cases should lead to the best overall

behaviour.

5.6 Conclusions

In this work, a progressive failure model including dynamic effects and thermal
residual stresses was developed. The model was used to study the effect the dy-
namic phenomenon and thermal residual stresses have on the fibre tensile failure
process and cluster development of intrayarn hybrid unidirectional composite

materials.

Different metrics were used to characterise the failure process of the materials
studied: ductile strain, failure strain, yield stress, failure stress, maximum cluster
size and the percentage of co-planar clusters. The different hybrids simulated
presented a different tensile behaviour, exhibiting a ductile response at low LE
hybrid volume fractions. Composites with larger hybrid volume fractions were

found to fail in a brittle manner.

The addition of thermal residual stresses had a negligible effect on cluster
evolution and damage development. However, they can have some effect on the
final failure of the material. Adding compressive residual stresses delays the
damage initiation for the LE fibre, leading to an increase in the failure strength
and yield stress of the material. That in itself leads to an hybrid effect. Likewise,
adding compressive stresses to the HE fibre delays the initiation of damage in
the HE fibre, increasing both the failure strain and ductile strain. Combining
both scenarios in the right measure should lead to the best overall behaviour.
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The dynamic effects were found to have a considerable influence on cluster
formation and damage evolution compared to the static model. When the
dynamic model was employed, larger clusters were always obtained. Thus,
the formation of larger clusters occurred earlier in the dynamic model. This
should lead to a more realistic formation of clusters compared to experiments,
as was pointed out by Swolfs ef al. [41]. Nonetheless, the influence on final
failure was very minor, with a negligible decrease in failure strain and strength
being noted. Despite their minor effect on final failure, a remarkable fact is that
some hybrid composites experienced a smaller influence of the dynamic effects
compared to the baseline non-hybrid composites, which suggests a small positive
hybrid effect caused by the dynamic phenomenon. Therefore, the influence of
the dynamic effects on final failure is very dependent on the material system.
Although, the impact of the dynamic effect on final failure was negligible, adding
dynamic effects should allow a more realistic prediction of cluster formation,
thus closing the gap between models and experiments. However, at this point
it is impossible to further validate the results from this work due to the lack of
experimental data. The literature needs more experimental results, especially
with hybrid composites, to be able to improve the available models.
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Overview

Another specific objective of this work is to investigate the influence that the
specimen size has on the hybrid effect, formation of clusters and damage devel-

opment in hybrid composites (i.e. the so-called size effect).

Currently it is well known that composite materials exhibit a size effect, which
implies that their strength changes with the volume of the material [47-51, 54,
55, 266, 267]. This is an important phenomenon, since small specimens are
commonly used to design larger structures. Although size effects have been
greatly studied in non-hybrid composites, the importance that the specimen size
has on the hybrid effect and damage development in hybrid composites is not
clear [15].

In this Chapter, the influence that the specimen size has on the tensile behaviour
and cluster development in hybrid unidirectional polymer composites is investi-
gated using the dynamic PFM presented in previous Chapter 5. Results show
that increasing the RVE length leads to an earlier failure and to a small decrease
of ductility. However, the hybrid effect improves considerably. In contrast,
increasing the RVE cross-section leads to smaller hybrid effects, may delay final
failure and may increase the ductility of the material. Moreover, incrementing
the RVE volume increases the critical cluster size, while the presence of ductility

does not change the magnitude of the size effects.
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Size effects in hybrid unidirectional polymer
composites under longitudinal tension: a
micromechanical investigation
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& AMADE, Polytechnic School, Universitat de Girona, Campus Montilivi s/n,
E-17003 Girona, Spain

Abstract

While fibre hybrid composites result in hybrid effects and improved ductility
compared to non-hybrid laminates, it is unclear how specimen size influences
hybrid properties (i.e. the so-called ‘size effect’). This paper addresses this
phenomenon in a carbon-carbon hybrid composite by means of micromechanical
modelling using a progressive failure model. Results demonstrate that increasing
the length of the virtual specimen causes an earlier failure, slightly decreases
the ductility and significantly improves the hybrid effect, whereas increasing
the cross-section of the virtual specimen may delay final failure, may increase
ductility and reduces the hybrid effect. In addition, increasing the coupon
volume results in a higher maximum cluster size, while the presence of ductility

does not alter the magnitude of the size effects.
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Overview

The final objective of this work is to develop an algorithm capable of generating
hybrid composites hybridised within an interlayer, intralayer or an intrayarn
hybrid configuration with a random distribution of fibres. Derived from this, to
study whether the hybrid configuration has any significant impact on the hybrid
effect and damage development using the realistic fibre packing developed.

In a hybrid material, the LE and HE fibres can be hybridised on three different
scales: interlayer, intralayer or intrayarn. Currently, many studies have found
higher hybrid effects with higher dispersion of the fibres [8, 31, 64]. Since an
intrayarn hybrid theoretically leads to the highest dispersion, hybridisation at
that level should the most efficient. In contrast with this hypothesis, Swolfs et
al. [31] found that an interlayer hybrid of alternating single fibre layers leads to
higher hybrid effects than intralayer and intrayarn hybrids. Nevertheless, Swolfs
et al. [31] did not check the influence the hybrid configuration has on the tensile
behaviour of the material. In addition, there are currently no algorithms able
to generate hybrid composites hybridised within an interlayer, intralayer or an

intrayarn hybrid configuration with randomly distributed fibres.

In this Chapter, an algorithm able to generate intrayarn hybrid composites with
randomly distributed fibres is extended to also generate interlayer and intralayer
hybrids. The influence that the hybrid configuration has on the hybrid effect,
tensile behaviour and cluster development in hybrid unidirectional polymer
composites is investigated using the dynamic PFM presented in Chapter 5.
Results show that an intrayarn hybrid leads to higher hybrid effects, yield
stresses and strength. However, an interlayer and an intralayer hybrid lead to
larger failure and ductile strains. Increasing the dispersion of the fibres improves
the hybrid properties. In addition, the progressive failure model is validated
by comparing it against experimental results of interlayer hybrid composites

showing qualitatively a good agreement.
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Abstract

Fibre hybrid composites, obtained by mixing two fibres with different properties
in a single matrix, are able to increase the ductility of non-hybrid composites.
This mixture may take place at different scales, nonetheless, the effect that
mixing the fibres at different scales has on the hybrid properties is not broadly
explored. In this paper, the effect of hybridising the fibres at different scales is
investigated by micromechanical modelling using randomly distributed fibres.
Results show that an intrayarn hybrid configuration leads to higher hybrid ef-
fects, yield stresses and strengths. In contrast, an interlayer and an intralayer
hybrid lead to larger failure and ductile strains. Increasing the dispersion of the
fibres considerably improves the efficiency of the hybridisation. In addition, the
micromechanical model used is validated by comparing it against experimen-
tal results of interlayer hybrid composites available in the literature showing

qualitatively a good agreement.
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Results and discussion

This chapter summarises the results obtained from each paper and discusses

them as a whole in accordance with the main objectives of the present thesis.

As demonstrated in Chapter 2, fibre hybridisation is a potential solution to the
quasi-brittle behaviour and low toughness of composite materials. Nonetheless,
there is a lack of micromechanical models able to simulate the tensile failure
and damage development in hybrid unidirectional polymer composites under
longitudinal loading with a low computational effort. For this reason, a new
model called Progressive Failure Model (PFM) was developed. The modelling
approach was used to study the influence that different parameters have on the

longitudinal failure of hybrid composites, covering the objectives of this thesis.

The PFM is able to simulate the failure and damage development in hybrid
and non-hybrid UD composites under longitudinal tension, and presents many
features and advantages: it is computationally efficient against other models like
SEM, it can qualitatively represent the entire stress-strain curve of the material,
it captures the formation of clusters of fibre breaks, it considers a different
deformation along the model accordingly to the number of fibre breaks and the
associated stiffness loss, and finally the SCF and ineffective length are decoupled
and given by analytical equations. This means that the PFM can be improved
by modifying the analytical equations to calculate the SCF and ineffective
length without reformulating the entire model. The PEM also presents different
assumptions and inconveniences: it assumes that fibres work in parallel while
planes work in series, considers that the loss of stiffness along the ineffective
length is proportional to the expected stress recovery of the fibre, assumes that
all fibres in a certain plane carry the same strain, etc. Along the thesis, the PFM,
which was firstly presented in Chapter 3, was continuously refined by adding
different phenomena. Firstly, more accurate models for predicting the stress
redistribution around fibre breaks were presented in Chapter 4 and after that,
dynamic effects and thermal residual stresses were included into the PFM in
Chapter 5.

In Chapter 3, the first version of the PFM was presented. To validate the

model, two non-hybrid composite materials consisting of T700S-Epoxy and
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M40-Epoxy were simulated and compared against the experimental results of
Swolfs et al. [41] and Koyanagi et al. [153], respectively. As discussed in
Chapter 2, there exist different models for predicting the SCF. In the validation
carried out in Chapter 3, the models of Eitan and Wagner [252], Zhou and
Wagner [251] and Swolfs ef al. [41] were considered for predicting the SCF' in
non-hybrid composites. These were chosen over others due to their simplicity
and analytical form. The ineffective length was predicted with Kelly-Tyson
shear-lag model [149]. This means that the SCF and the ineffective length were
computed using different physical principles: while the SCF models assumed
an elastic matrix, the ineffective length model was considering a plastic matrix.

In addition, dynamic effects and thermal residual stresses were omitted.

RVE:s of a width and thickness of 50, 100, 150 and 200 times the fibre radius
were simulated (see Fig. 3.5). For the T700S composite the length of the RVE
corresponded to the experimental specimen (1.54 mm), whereas for the M40
composite it was significantly smaller (25 mm in the PFM, but 150 mm in
the experiment). Nevertheless, a first study suggested that the length used to
simulate the M40 composite was long enough to properly represent the real
material (the reader is referred to Fig. 3.6). As expected due to size effects,
the failure strain and strength of the composites decreased by increasing the
number of fibres in the RVE (Figs. 3.7 and 3.8). With the largest RVE simulated,
the PFM slightly overpredicted the failure strain and strength compared to
the experimental data for both non-hybrid composites, with the different SCF
models considered (Fig. 8.1). Therefore, simulating an RVE closer to the real
specimen dimensions should lead to a closer prediction of failure strain and
strength. The two composites exhibited a different failure process, with the
T700S presenting a larger stiffness loss than the M40 composite. This different
failure was well highlighted by the fibre break density evolution presented in Fig.
8.1. In the case of the T700S, the fibre break density was heavily overpredicted
compared to the experimental, which could be the consequence of inaccuracies
in the experimental data, or inaccuracies/omissions in the model such as dynamic
effects, size effects, matrix cracks, debonding, etc. This overprediction of fibre
break density also explains the fact that the PFM predicts a more significant
non-linearity in the stress-strain curve close to final failure than the experiments.
Thus, the PFM exhibits the same gaps compared with experiments that other

similar state of the art models show [4, 39, 41].
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Figure 8.1: Predicted stress-strain and break density curves by the PFM compared with
the experimental data. a)-b) T700S-Epoxy compared with Swolfs experimental data
[41], c)-d) M40-Epoxy compared with Koyanagi data [153]. The closest curve to the
average of forty runs is shown with 95% confidence intervals.

The different SCF models presented a distinct impact of the size effect. The
Swolfs SCF model provoked a more localised stress redistribution, leading to a
smaller size effect than the Zhou and Eitan models. In addition, the SCF model
had a large influence on the formation of clusters (Fig. 3.10). Although with
each model the clusters increased in size until failure, however, the clusters
developed differently and in distinct locations along the model. Taking into
account the comparison against the experimental data, it was not possible to

conclude which SCF approach was more accurate.

Further to this, the PFM was validated by simulating an hybrid AS4-M50S
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(carbon-carbon) epoxy composite and comparing it against the FEM of Tavares
et al. [35]. Again, the first issue for performing this comparison was to define an
appropriate SCF model, since in a hybrid material the load redistribution around
fibre breaks depends on the stiffness of the fibres, the radius, and the volume
fractions. To simplify the modelling, it was decided to take the results from
Swolfs et al. [45], who provided the SCF for stiffness ratios of E; / E, =371,
E;/E;=1.85and E;/E, = 1.0, where E; and E, are the Young’s modulus of
the broken and intact fibre, respectively. Interpolation was then performed for
obtaining the SCF for the ratios of E;/E, = 2.05 and E;/ E, = 0.49 respectively,
which corresponded to the ratios of the AS4-M50S hybrid to simulate (see Fig.
3.13). This means that the effect of the fibre radius and that of the volume
fraction on the SCF was omitted. Moreover, these SCF were again considering
an elastic matrix, whereas the ineffective length was plastic. Despite the different
simplifications performed, the tensile stress-strain curves predicted by the PFM
were qualitatively in good agreement compared with the FEM of Tavares et al.
[35] (Fig. 8.2). However, while Tavares et al. FEM takes many days to be solved
in a super-computer facility, the PFM only needed mere minutes. In addition,
the results not only proved the capability of the PFM to capture the failure and
damage development in hybrid composites, but also that fibre hybridisation can
lead to a ductile failure. Pseudo-ductility was predicted for a HVF between 10
and 30%. The other composites either failed prematurely, or the interaction
between fibres was not evident enough. These findings demonstrate that the
PFM is able to capture fibre fragmentation, the formation of clusters, and the
associated stiffness loss of a composite material. The discrepancies between the
PFM and the FEM should be attributed to the omission of dynamic effects, as
well as the simplified stress redistribution around breaks considered.

The validation performed in Chapter 3, highlighted that while the PFM compared
well against literature results with hybrid and non-hybrid composites, there were
some issues to be solved in the model. The ineffective length and SCF needed to
be improved, to be consistent in between them (i.e. both considering an elastic
matrix or both being plastic). Moreover, the SCF model had to be enhanced in
order to inherently capture the geometrical and elastic properties of the fibres
(instead of interpolating from a set of data), the effect of the HVF of the fibres,
as well as the matrix behaviour. Finally, which SCF model was more accurate

to predict failure was something to be determined. These issues were addressed

Chapter 8 Results and discussion
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Figure 8.2: Predicted stress-strain curves by the PFM compared with the FEM of
Tavares et al. [35]. a) HVF=0%, b) HVF=25%, ¢) HVF=50%, d) HVF=75% and e)
HVF=100%. A total of five runs is shown.

in Chapter 4, as well as in a co-authored paper (not included in this thesis) with
Tavares et al. [37], authors of the SEM.

In Tavares et al. [37], the PFM was improved by modifying the models to predict
the SCF and ineffective length. Note that this did not require a reformulation of
the model, since the ineffective length and SCF are ‘interchangeable’ parts in
the PEM. To simulate a plastic matrix, the ineffective length and SCF were then
calculated using the St-Pierre models [37, 198]. Instead, to simulate an elastic
matrix, the ineffective length was then predicted using a modified Cox shear-lag
model [37, 227], while the SCF was also computed using the St-Pierre model.
This allowed the PFM to consider either an elastic or a plastic matrix with
both ineffective length and SCF being consistent in between. In addition, the
increase of ineffective length with cluster size [37] was also taken into account.
Compared with the SEM, the enhanced PFM was in good agreement with both
matrix behaviours, however, the PFM was significantly faster computationally.
Moreover, the SCF model of Zhou and Wagner [251] was seen to be inaccurate,

while the one of Swolfs et al. [41] was close to the results of SEM with an
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elastic matrix only for certain material combinations. Overall, the St-Pierre SCF
model [198] was in excellent agreement with the SEM [37], and thus, it is the

most accurate analytical SCF model available.

Since the SCF model of St-Pierre ef al. [198] was limited to non-hybrid com-
posites, in Chapter 4 the model was modified for simulating hybrid composites
as well. The reformulated SCF model is very powerful since it considers all the
main effects influencing the stress redistribution around fibre breaks in hybrid
composites: the cluster size, RVE size, volume fractions, fibre radius and elastic
properties of each fibre population with simple analytical equations. Moreover,
it can represent different matrix behaviours or effects not present into the model.
The model is derived assuming that the overload carried by an intact fibre due
to a break does not depend on its Young’s modulus and radius. Moreover, the
ineffective length used for a plastic matrix, and that for an elastic matrix, was
also slightly adapted to take into account the presence of different fibres in
the composite. This changes allowed the PFM to be more robust, and solve
some of the modelling issues raised in Chapter 3. For more in-depth details, the
reader is referred to Chapter 4. The improved PFM was used to study the load
redistribution around fibre breaks, as well as the tensile behaviour, for diverse
hybrid composites and as a function of the matrix behaviour. To do this, three
hybrid materials were considered: AS4-Eglass, M50S-AS4 and AS4-T800G,
all with epoxy matrix. To validate the model, the results were compared with
Tavares et al.’s SEM [37, 39]. For further details of the materials and cases

studied, the reader is referred to Section 4.3.

The results from Chapter 4 demonstrate that the SCF carried by intact fibres
around broken fibres with a different stiffness is affected by the stiffness ratio
of both fibres (for this the reader is referred to Figs. 4.3 and 4.4). If the
HM fibre is broken, a larger ratio between the stiffness of the HM over the
LM fibre increases the SCF on LM fibres. Oppositely, when the LM fibre
is broken, a larger ratio decreases the SCF on HM fibres. This agrees well
with Swolfs et al. [31, 45]. Since the HM fibres usually correspond to the LE
fibres, increasing the stiffness ratio should help to increase the hybrid effect.
Overall, adding LM fibres decreases the SCF on HM fibres. This occurs since
the HM fibres are more surrounded by LM fibres, and thus, more LM fibres
share the load, decreasing the SCF on HM fibres. This implies that a lower HVF

Chapter 8 Results and discussion



should increase the hybrid effect, as it is already well known in the literature
[9,27, 31, 34, 35, 64, 65]. Likewise, when a HM fibre is broken, the SCF carried
by LM fibres is larger than that of the HM fibres, which should also increase
the hybrid effect. These findings prove that the presence of fibres with different
mechanical properties heavily influence the stress redistribution around breaks.
Another remarkable fact is that the SCF's are smaller for both LM and HM fibres
when the LM fibre fails than when the HM is broken. This occurs since the LM
fibre carried a smaller stress before failure compared to the HM fibre. Overall,
adding matrix yielding has a massive impact on the SCF, corresponding well
to the literature [4, 3639, 75-78]. Due to the limiting shear stress transfer, the
SCF decreases, while more fibres share the load. Consequently, the effect of
matrix yielding in hybrid composites is the same that occurs with non-hybrids.
Results demonstrate that the model predicts well the SCF for different materials
combinations compared with the SEM, but using simple analytical equations.

As proved in Fig. 4.5, the ineffective length of broken fibres strongly depends
on the stiffness of the broken fibre: a larger stiffness provokes a larger stress to
be recovered, increasing the ineffective length. Unlike the SCF, the ineffective
length is not significantly influenced by the presence of fibres with different
stiffness. Similarly, the HVF does not present a significant impact. These
facts agree well with the results of Swolfs et al. [45]. Nonetheless, the matrix
behaviour presents a considerable impact on the ineffective length, like with
the SCF. When the matrix is elastic, no shear stress limit occurs. This allows
the stress to be recovered quickly, leading to smaller ineffective lengths than
a plastic matrix [37]. Compared to SEM, the ineffective length predicted by
the PFM was always smaller, especially with the plastic matrix. This occurs
because of two reasons. First of all, when the matrix is plastic, it is perfectly
plastic in the PFM, but elasto-plastic in SEM. This means that the shear stress is
constant along the ineffective length, causing a shorter stress recovery. Although
this issue could be solved by using an elasto-plastic model in the PFM, that
would also complicate further the model, and may not significantly improve the
modelling predictions. Secondly, the SEM captures the local stiffness of the
microstructure. This means that if the broken fibre is surrounded by more LM
fibres, then the ineffective length of the broken fibre is larger. This is currently
ignored by the PFM.
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As evidenced in Fig. 4.6, the radial influence length is larger when the HM fibre
is broken. This is because of the stiffness. When the HM fibre fails, the stiffness
loss is larger, and thus, the load is spread over more fibres. Moreover, the radial
influence length slightly increases by adding LM fibres, which occurs due to
the decrease of overall stiffness. Like with the SCF, the stiffness ratio has a
significant influence on the radial length. A larger stiffness ratio between HM
and LM fibres increases the radial influence length when the HM fibre is broken,
whereas the opposite occurs when the LM fibre is broken. Likewise, adding
matrix yielding increases the radial influence length because the load transfer
is limited, although the trends between elastic and plastic matrix are the same.
Another remarkable fact, is that the radial influence length is heavily dependent

on the microstructure, presenting a large scatter.

In general, the tensile behaviour predicted by the PFM agrees well with the
SEM, both with a plastic and an elastic matrix (Figs. 4.7, 4.9 and 8.3). With a
plastic matrix, the PFM overpredicted final failure compared with SEM (leading
to larger cluster sizes, break density, etc.), whereas the opposite occurred with
an elastic matrix. The reason for this could be related to an overprediction of
SCF with an elastic matrix in the PFM (readers are referred to Tavares et al.
[37]), and to an underprediction of SCF and ineffective length in the case of a
plastic matrix. Anyway, considering that the PFM is at least 10 times faster than
SEM, the small differences are well justified, and thus, the approach proposed
by the PFM is accurate enough. Like in Chapter 3, the tensile behaviour of
the hybrid materials varied greatly with the content of LE fibres in the hybrid.
Moreover, the matrix behaviour (plastic or elastic) had a massive influence on
the tensile failure process. The AS4-Eglass presented no ductility at all for
the different hybrids simulated with a plastic matrix, however, some ductility
appeared for an elastic matrix with an HVF = 25%. The M50S-AS4 presented a
large ductility of 0.5% for an HVF = 25% when matrix yielding was considered,
but only a tiny ductility was predicted with an elastic matrix. Differences with
the AS4-T800G composite were even more important. For this composite, the
ductile strain was 0.7% with a plastic matrix, but it was 1% with an elastic
matrix for an HVF = 25%. Even more, for an HVF = 50% no ductility was
present with matrix yielding, nonetheless, the elastic matrix exhibited a large
ductility of 1.5% for SEM and 0.5% for PFM.

Chapter 8 Results and discussion
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Figure 8.3: Predicted stress-strain curves by the PFM and SEM with a plastic and
elastic matrix for different hybrid materials and varying the HVF. a) AS4-Eglass plastic,
b) M50S-AS4 plastic, ¢c) AS4-T800G plastic, d) AS4-Eglass elastic, €) M50S-AS4
elastic and f) AS4-T800G elastic. A total of five runs is shown.

By analysing the formation of clusters and the break density, the differences
between elastic and plastic matrix are even more highlighted (for this the reader
is referred to Figs. 4.8 and 4.10, and Tables 4.2 and 4.3). While the critical
cluster size with a plastic matrix for all composites agrees relatively well with
experimental data of non-hybrid composites [41], the cluster size with an elastic
matrix is mostly overpredicted. In fact, with the AS4-T800G composite it is
even larger than the number of fibres in the RVE. This is a consequence of the
non-shear transfer limit of the elastic matrix, causing the load redistribution to
be always very localised around the broken fibres. Thus, many isolated clusters
form along the RVE, which need to increase very large in size to provoke final
failure. With the AS4-T800G, this effect is even more exaggerated due to the
small Weibull modulus of the T800G fibre. This could also explain why larger
ductilities occur with some composites when the matrix is elastic. In a similar
manner, the fibre break density with an elastic matrix is unrealistically large com-
pared with a plastic matrix, albeit both PFM and SEM overpredict experimental
data of non-hybrid composites in this regard [41]. This overprediction could
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be attributed to errors in the Weibull distribution, dynamic effects, omission of
debonding, matrix cracks, etc. An important remark is that the break density
strongly depends on the ductility of the composite. A larger ductility increases
the break density since the material is more damage tolerant. It is worth noting
that the critical cluster size and break densities were compared with results of
non-hybrid composites (since results for hybrid materials are lacking). Even
if this comparison is discussable, it allows to clearly point out that an elastic
matrix does not seem to be accurate. The non-hybrid composites were also in
good agreement between PFM and SEM, in all cases exhibiting a brittle failure.
Like with the hybrids, the plastic matrix showed better results compared to

experimental data (see Table 4.4).

Overall, the results presented in Chapter 4 prove that an elastic matrix should
be avoided to model hybrid materials. A plastic matrix, allows a more realistic
representation of FRP composites (since it limits the shear stress transfer), lead-
ing to a more accurate load redistribution around broken fibres. The inclusion
of omitted phenomena such as dynamic effects could also help to improve the
models. Nevertheless, more experimental data is necessary to further validate
the results, especially with hybrid composites. Another gap opened in Chapter 4
is to find a better way to determine clusters in order to avoid clusters larger than
the number of fibres, and to have a more objective description of what constitutes
a cluster. An attempt to solve this issue was carried out in a conference paper,
where different algorithms to determine clusters were compared. Interested

readers are referred to the paper in Appendix A.3.

Like it has been pointed out during previous Chapters 3 and 4, the omission
of dynamic effects could explain some of the gaps compared to experiments.
As proved in Chapter 2, their influence on damage development in hybrid
composites has not been studied. Similarly, thermal residual stresses are usually
omitted, and although their impact on the hybrid effect is secondary, their
influence on cluster formation is unexplored. To answer some of these unknowns,
and in an attempt to improve the model further, dynamic effects and thermal
residual stresses were included into the PFM in Chapter 5. The thermal residual
stresses were considered by simply adding an extra term into the main equations
of the PFM, representing the thermal contribution. An analytical equation was

formulated for determining the magnitude of the thermal residual stresses in

Chapter 8 Results and discussion



hybrid composites, see Eq. (5.3). Regarding the dynamic effects, these were
added into the PFM by simply increasing the static SCF by a magnification
factor when new breaks occur, similarly to the model of Bullegas [62]. Although
simplistic, this approach allows the desired effect to be captured while still
maintaining a reduced computational effort. The main disadvantage is that the
entire transient effect is not considered, since only the instant of time at which
the maximum dynamic effect is produced is taken into account. Nevertheless,
new failures will occur when the SCF is maximum, and thus, that is the only time
of interest. The enhanced PFM was used to study the influence dynamic effects
and thermal residual stresses have on final failure and damage development in
hybrid composites. Three distinct hybrid materials corresponding to X5-T300
(Carbon-Carbon), T300-Eglass (Carbon-Glass) and X5-Eglass (Carbon-Glass)
were simulated, all with Epoxy matrix. For further details of the materials and
cases studied, the reader is referred to Section 5.3.

The results from Chapter 5 prove that the formation of clusters is heavily in-
fluenced by the dynamic effects. As shown in Fig. 5.2, the maximum cluster
size increases with the dynamic magnification factor, My. Consequently, adding
dynamic effects leads to larger clusters at smaller strains and to larger critical
cluster sizes compared to the static model [63]. Theoretically, this should make
the model closer to the experiments. However, the formation of co-planar clus-
ters is not clearly affected, and thus, the underprediction of co-planar clusters

seen in the literature may not be related to dynamic effects.

Adding dynamic effects marginally decreases the failure strain, the strength and
ductile strain, since larger stress concentrations are produced compared to the
static (Figs. 5.3 and 5.4). An interesting remark is that the influence on final
failure seems to be more important for the non-hybrid composites and the most
brittle materials, which suggests the presence of small hybrid effects caused
by the dynamic phenomenon. However, the influence is small, and thus, the
dynamic effects do not significantly alter either final failure or the ductility of
the hybrid composites, even for large dynamic factors. This corresponds well
with the results of Tavares ef al. [63] with non-hybrid materials. Further to this,
the yield stress is totally unaffected by the dynamic effects, since it depends
mainly on the initiation of damage. At that point, the number of breaks is so low

that dynamic effects are negligible.
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Likewise, the tensile behaviour is not significantly affected by the dynamic
effects, even for large dynamic factors (see Figs. 5.5 and 8.4), although failure
occurs slightly earlier for all materials. Results also prove again that hybrid
composites can totally enhance the ductility of composite materials, showing
ductile strains up to 1.5% for some hybrids. To obtain such ductile strain, the
failure strain of the two fibres must be well apart, and the failure process must

be continuous.
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Figure 8.4: Compared stress-strain curves with each hybrid composite material between
the static model (M4 = 1), and the dynamic model with a large dynamic factor (Mg = 2).
The eight runs simulated are shown.

Overall, results from Chapter 5 contradict the general belief in the literature that
the dynamic effects should considerably lead to an earlier final failure [5, 41].
These results were obtained by assuming a plastic matrix. Considering an elastic
matrix could lead to a greater influence of the dynamic effects, as observed by
Tavares et al. [63]. However, a plastic matrix is more realistic than an elastic
matrix, as proved in Chapter 4. Even if the dynamic effects do not significantly
influence final failure, their addition improves the formation of clusters compared
to experiments, and thus, it should be seen as a modelling improvement. In any
case, it is worth mentioning that the dynamic effects considered in the PFM

are extremely simplified compared to reality, although the tendencies obtained
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agree well with those seen with a more advanced dynamic SEM [63]. Currently,
there is no experimental data available in the literature regarding the dynamic
SCF, that would help to validate the results of the models and understanding
their limitations. In addition, even if the SEM is more advanced than the PFM,
the SEM is still a simplified FEM. Comparing the dynamic SEM (or the PFM)
with a detailed 3D FEM simulation could help to establish whether the dynamic
results of the PFM and SEM are valid or not, nonetheless, performing such a
3D FEM is not yet computationally feasible. Therefore, whether the dynamic
results obtained in this work are really realistic or not, is yet to be seen.

Unlike the dynamic effects, the presence of thermal residual stresses shows
no influence on the formation of clusters (see Fig. 5.6). However, they can
have a small effect on final failure, depending on the magnitude of the thermal
residual stresses (for this the reader is referred to Figs. 5.7 and 5.8). When the
HE fibre residual strain is negative or tensile (but smaller than other scenarios),
the initiation of damage for the HE fibre is delayed. Consequently, this allows
to increase the failure and ductile strains. A similar effect is observed with
the failure and yield stresses. Inducing compressive stresses into the LE fibre
increases the strength and yield stress as the initiation of damage in the LE fibre
is delayed. This scenario also leads to hybrid effects [7, 8, 22]. Therefore, a
hybrid composite exhibiting compressive residual stresses into both LE and HE
fibres should be optimum. Nevertheless, since the magnitude of the thermal
residual stresses is generally small, their influence on final failure is mostly
reduced. As a consequence, if the magnitude of the thermal residual stresses is

known to be small, these can be omitted altogether.

With all these improvements, the new dynamic (and static) PFM was again
compared against the experimental results of the T700S-Epoxy and M40-Epoxy
non-hybrid composites simulated in Chapter 3, see Fig. 8.5. Overall, the static
PFM is less close to the experiments than the old PFM from Chapter 3, both in
terms of ultimate failure and accumulation of fibre breaks. This occurs because
in Chapter 3, the SCF around fibre breaks was calculated using an elastic matrix,
while the ineffective length was considering a plastic matrix. As proved in
Chapter 4, such an approach was not an accurate way to calculate the load
redistribution around fibre breaks since both the SCF and ineffective length were

not consistent in between, which caused the SCF to be heavily overpredicted.
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Thus, even if the new static PFM is less close to the experiments than the old
model, the static PFM is clearly a more robust model. Furthermore, the dynamic
PFM is closer to the experiments than the static because the dynamic effects
lead to an earlier failure. In fact, some runs of the dynamic model are very close
to the experimental results in the case of the T700S-Epoxy, although in broad
terms, the dynamic PFM still overpredicts the ultimate failure, the accumulation
of fibre breaks and the non-linearity at final failure. However, results prove that
the dynamic PFM is a step forward in the modelling predictions since it is more

realistic than the original PFM and closer to the experimental results than the
static model.
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Figure 8.5: Predicted stress-strain and break density curves by the new PFM (static
and dynamic) and the old PFM (as used in Chapter 3, with the Swolfs, Eitan and Zhou
SCF models) compared with the experimental data. a)-b) T700S-Epoxy compared with
Swolfs experimental data [41], ¢)-d) M40-Epoxy compared with Koyanagi data [153].
All forty runs simulated are shown.

Likewise, the dynamic PFM was also compared again against the FEM results of
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the M50S-AS4 hybrid composite simulated in Chapter 3, see Fig. 8.6. Overall,
results show that the dynamic PFM leads to similar stress-strain curves compared
with the original PEM. Nonetheless, the dynamic effects lead to an earlier failure,
making the model slightly closer to the FEM of Tavares et al. [35]. Since the
dynamic PFM is clearly an improvement compared to the static and the old
PFM, the dynamic model was used for the rest of this work.
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Figure 8.6: Hybrid M50S-AS4 stress-strain curves predicted by the dynamic PFM
compared with the FEM of Tavares et al. [35], and with the results of the old PFM (as
given in Chapter 3). a) HVF = 0%, b) HVF = 25%, ¢c) HVF = 50%, d) HVF = 75%,
and e) HVF = 100%. For the sake of readability only five runs are shown.

As it was well pointed out in the literature review performed in Chapter 2, it
is currently unclear which is the influence that the specimen size has on the
hybrid effect and failure process in hybrid composites. Given that the PFM is an
efficient model that can simulate composites with large volumes, this literature
gap was addressed in Chapter 6. To do this, a hybrid composite consisting of
X5-AS4 (Carbon-Carbon) in an Epoxy matrix was simulated for varying HVFss.
Two different studies were performed: length scaling and cross-section scaling.
In the former, an RVE with 0.303 x 0.303 mm? cross-section was simulated for

various lengths. In the latter, a 1 mm long RVE was simulated for different
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cross-sections. For further details of the materials and methods, the reader is
referred to Section 6.3.

Results of Chapter 6 prove that the hybrid effect considerably increases with the
RVE length (Fig. 6.5a). Thus, length scaling provides a positive contribution to
the hybrid effect. However, increasing the length of the RVE rapidly decreases
the failure and ductile strains, and the failure and yield stresses up to a certain
length (around 20 — 40 mm) when a plateau starts, see Figs. 6.5b-e. This size
effect agrees well with the literature [48], and may be explained as follows.
When a material is longer, the number of defects increases leading to an earlier
failure. However, up to a certain length the number of weak fibres becomes so
large that more defects do not further lead to an earlier failure. Moreover, the
presence of ductility does not seem to alter the size effect attributed to length
scaling, since the decrease in strength, yield stress, failure and ductile strains is
similar for all materials regardless of the presence (or not) of ductility (Fig. 6.5).
In contrast, the HE non-hybrid material (HVF = 0%) and the composites with a
low HVF present a larger decrease in failure strain. One possible explanation
for this is that these materials are dominated by the HE fibre which has a
larger Weibull modulus (i.e. a narrower strength scatter) than the LE fibre.

Consequently, the strength scatter governs the magnitude of the size effects.

Unlike length scaling, the hybrid effect rapidly decreases when the RVE cross-
section is scaled up (Fig. 6.9a), thus, a bigger RVE cross-section provides a
negative contribution to the hybrid effect. In contrast, the failure strain, ductile
strain and failure stress (Figs. 6.9b-d) decrease for HVF = 0% and HVF = 75%
when the cross-section is incremented, but increase for all the other HVFs,
until a plateau that begins for a 1.212 x 1.212 mm? cross-section. The fact that
some composites present an earlier failure by increasing the cross-section while
others show a delayed failure seems contradictory and is difficult to explain.
Indeed, an earlier failure has been generally reported in experimental testing
with unidirectional composites [48, 49]. A possible reason for this is that each
composite presents a different failure propagation because of the synergistic
effects of the hybridisation, causing different size effects. Another plausible
explanation is that although scaling up the RVE cross-section augments the
number of weak fibres, it also increases the number of stronger fibres. For some

cases one may cancel out the other, and thus, each material combination may
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present a different size effect. On the other hand, the yield stress marginally
decreases when increasing the RVE cross-section for all composites (Fig. 6.9e),
which means that the initiation of damage occurs earlier when the scale is
incremented. This is proved by the maximum cluster size (see Figs. 6.8g-i).
As the cross-section is increased, larger clusters form earlier as a result of the
greater number of weak fibres, consequently causing an earlier initiation of

damage.

The reason why length scaling provides a positive contribution to the hybrid
effect, while cross-section scaling gives a negative one is related to the size
effects experienced by the all LE non-hybrid material. A hybrid composite of the
same volume of the all LE non-hybrid contains less number of LE fibres. Since
the failure strain of the all LE non-hybrid composite decreases by increasing
the RVE length, the failure strain of the LE fibre in the hybrid is already larger
than that of the baseline non-hybrid composite due to the associated size effects.
This leads to a positive contribution to the hybrid effect. Contrary, since cross-
section scaling increases the failure strain of the all LE non-hybrid material, the
failure strain of the LE fibre in the hybrid is smaller than that of the baseline
non-hybrid, providing a negative contribution to the hybrid effect. Nonetheless,
it may be hypothesised that, if the failure strain of the all LE non-hybrid material
decreased when scaling up the RVE cross-section rather than increased (as it
occurred for instance in Chapter 3), a positive contribution to the hybrid effect
would have been obtained. The fact that the size effects could play some role on
the hybrid effect was already hypothesised in the literature [3], although results
from Chapter 6 are the first to prove it. It is also worth mentioning that the
hybrid effect generally presents a significant scatter since it strongly depends on
the specific RVE and fibre strengths of each run performed (see Figs. 6.6a and
6.10a).

The maximum cluster size (Figs. 6.4g-1 and 6.8g-i) always increases with either
the RVE length or the RVE cross-section. This corresponds well to the literature
[54, 120], and can be explained by the fact that, in a material with larger volume
more clusters are formed. Eventually, two big clusters merge onto a single one,

leading to larger clusters. This is well illustrated in Figs. 6.7 and 6.11.

In line with literature results [34, 35], and previous Chapters 3, 4 and 5, the
hybrid composites present a ductile and progressive failure for HVF = 10—50%,
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proving again the efficiency of fibre hybridisation (see Fig. 8.7). A remarkable
finding is that the hybrid effect with an HV F = 75% was relatively large (Figs.
6.5a and 6.9a), however, the composite is brittle. Thus, a larger hybrid effect
may not correlate with ductility. An additional interesting fact is that the hybrid
effect and ductile strain increase from HVF = 0% up to a certain HVF and then
decrease again until HVF = 100%, while the failure and yield stresses follow
the opposite tendency (Figs 6.6 and 6.10). Consequently, there is a trade-off

between ductility and strength, which corresponds well with the literature [14].

L=0.5 mm L=20 mm L=160 mm
3000 3000 3000
£
2
2 2000 Y 2000 ) 2000
5 7
b
'Z 1000 1000+ 1000+
o
=
o
O
0 ; 0 . 0 r
0.00 1.25 2.50 0.00 1.25 2.50 0.00 1.25 2.50
0.303 x 0.303 mm? 0.606 x 0.606 mm? 2.424 x 2.424 mm?
3000 3000 3000
£
=3
% 2000 , 2000+ 20001
s
'Z 1000 1000+ 1000+
o
g
o
O
0 T 0 T 0 T
0.00 1.25 2.50 0.00 1.25 2.50 0.00 1.25 2.50
Strain [%] Strain [%] Strain [%)]
—— HVF=0% HVF=20% HVF=40% HVF=75%
—— HVF=10% HVF=30% HVF=50% HVF=100%

Figure 8.7: Stress-strain curves obtained for each HVF (ranging from 0% to 100%),
and for different RVE lengths (0.5, 20 and 160 mm), and cross-sections (0.303 x 0.303
mm?, 0.606 x 0.606 mm? and 2.424 x 2.424 mm?). All eight runs simulated are shown.

Overall, results from Chapter 6 prove that the specimen size has a large influ-
ence on the hybrid effect and final failure. Thus, care should be taken when
extrapolating the results from a small RVE or a small specimen to a bigger

structure.

While in Chapters 3, 4, 5 and 6, the PEM demonstrates that a ductile failure can

be achieved via fibre hybridisation, nonetheless, all work focused on intrayarn
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hybrids. As it was highlighted in Chapter 2, the influence the hybrid configura-
tion (interlayer, intralayer or intrayarn) has on the tensile behaviour and cluster
development in hybrid composites is unexplored. Moreover, there is not any
literature algorithm to generate intralayer and interlayer hybrid composites with
randomly distributed fibres. In addition, the PFM was validated in Chapters 3
and 4 by comparing with experimental results of non-hybrid composites, and
against numerical results of hybrid composites given by a FEM and a SEM.
Nonetheless, the PFM has not been compared against experimental results of
hybrid composites. In consequence, these literature gaps were covered in Chap-
ter 7. To do this, firstly, a state of the art algorithm [35, 124] able to generate
intrayarn hybrid composites with randomly distributed fibres, was extended to
generate interlayer and intralayer hybrids as well. The algorithm only required
small changes, for this the reader is referred into Section 7.2. Secondly, dif-
ferent real interlayer hybrid composites were simulated by the PFM, and the
results were compared against the experimental data given in Czél et al. [16].
Finally, the model was used to study the effect of the hybrid configuration by
comparing an X5-HTS (Carbon-Carbon) hybrid composite hybridised in either
an interlayer, intralayer or an intrayarn configuration. Since the thickness of the
plies in interlayer hybrids or that of the bundles in intralayer hybrids may have
a large influence on failure, the study was performed for various thicknesses.
For further details of the materials and cases studied, the reader is referred to
Section 7.4.

Results from Chapter 7 prove that, in spite of the simplicity of the PFM, the
model is able to capture qualitatively well the longitudinal failure of interlayer
hybrid composite materials (see Fig. 7.8). Overall, the model not only captures
(qualitatively) the progressive failure process of the materials but also their
ultimate failure. Although for doing this comparison, the failure strain of the HE
fibre was fitted to be 1.9% (the reader is referred to Section 7.4 for more details),
nonetheless, the failure strain of the hybrid composites is smaller. This occurs
since the accumulation of damage attributed to the failure and fragmentation
of the LE plies causes a decrease of the failure strain of the HE material, and
thus, the PFM accurately captures this effect. However, the PFM underpredicts
the yield stress with all composites compared against the experimental data,
especially for the XN80-T1000 dispersed material (see Fig. 7.8d). This issue

also occurs with other similar models [100], and may be caused either by errors

257



258

in the Weibull distribution, or inaccuracies in the load redistribution around fibre
breaks causing the failure initiation of the LE fibres to begin much earlier than
in the experiments. Likewise, the plateau region in the stress-strain curve after
failure initiation is considerably underpredicted by the PFM (particularly with
the XN80-T1000 dispersed composite, see Fig. 7.8d). This could be attributed
to the presence of stable and dispersed delaminations between the LE and HE
plies, causing a loss of stiffness [16]. Currently, the PFM omits the presence
of delaminations and thus, it cannot capture this effect. In addition to this,
the model again predicts a greater non-linearity close to final failure than the
experiments, like it occurred with the non-hybrids in Fig. 8.5. It is also worth
mentioning that ply fragmentation is another important failure mechanism of
interlayer hybrid composites [100]. Although the authors believe that the PFM
is at least partially capturing this effect via the accumulation of fibre breaks, a
more in-depth study of the capabilities of the model to capture this phenomenon

is needed.

Despite the discrepancies with the experimental data, the PFM predicts qual-
itatively well the failure process of interlayer hybrid composites, although it
undepredicts the yield stress and the plateau region after failure initiation of
the LE fibres. Anyhow, given the simplicity of the PFM, and considering the
(inevitable) inaccuracies of the modelling assumptions and input data, the results
of the PFM are encouraging. At this point, more in-depth experimental data is
needed regarding the formation and development of clusters to shed more light
on the inaccuracies of the model and improve it further. Adding the effect of
delaminations could also be a key feature for improving the models to simulate

interlayer hybrids.

The tensile behaviour of the three hybrid configurations (interlayer, intralayer
and intrayarn) is compared in Figs. 8.8 and 7.9 for different LE ply and bundle
thicknesses. When the thickness is thin, the three hybridisations predict a similar
ductile failure, with a progressive increase of fibre break density and a similar
grow of the maximum cluster size. However, when the thickness is thick, the
initiation of damage begins earlier for the interlayer and intralayer hybrids than
for the intrayarn, leading to larger break densities and bigger maximum cluster
sizes at smaller strains. Moreover, the interlayer and intralayer also present

several load drops after damage initiation due to the simultaneous failure of
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multiple LE fibres (see Fig. 7.9¢). The reason for this is well illustrated by
the hybrid effect (Fig. 7.10a). Overall, the intrayarn hybrid produces higher
hybrid effects than the interlayer and intralayer. Consequently, the intrayarn
configuration allows to hinder the formation of clusters of LE fibres more
efficiently, leading to larger hybrid effects and a delayed damage initiation.
Nonetheless, by reducing the LE ply or bundle thicknesses the results of the
interlayer and intralayer composites, respectively, are improved and quite close
to the intrayarn. This occurs because reducing the thickness allows to increase
the dispersion of the fibres, resulting in a better hybridisation [8, 31, 64, 273].
Therefore, results prove that the dispersion of the fibres is a key parameter.
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Figure 8.8: Stress-strain curves obtained for each hybrid configuration (interlayer,
intralayer and intrayarn) and for different thicknesses (25, 50 and 200 pum). All twenty-
four runs simulated are shown.

In line with this, the yield stress and strength are considerably larger for the
intrayarn, particularly when the thickness is large (Figs. 7.10d and 7.10e). This
occurs because the hybrid effect is larger for the intrayarn, causing a delayed
failure of the LE fibres and a smaller stiffness loss. This in turn, results in larger
failure and yield stresses. In contrast, the failure and ductile strains (Figs. 7.10b
and 7.10c) are similar for the three configurations when the thickness is small,
nonetheless, as the thickness is incremented the failure and ductile strains of
the interlayer and intralayer increase, being then considerably larger than the
intrayarn. This may be explained because as the thickness is incremented, the
initiation of damage begins earlier, causing load drops and an important stiffness
loss. Since these load drops are not big enough to cause final failure, the HE
fibres continue to carry load. However, due to the large presence of damage, the

applied strain needs to be significantly large to cause more failures, thus resulting
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in larger failure and ductile strains. In any case, it is important to highlight that
for even larger thicknesses, or for different material combinations, the load drops
caused by the failure of the LE fibres could lead to a premature final failure.
In addition, in real interlayer and intralayer hybrid composites catastrophic
delaminations may appear between the plies or bundles [16, 272], which could
also lead to a premature failure. Unfortunately, all current state of the art models
(including the PFM) omit this mesomechanical failure mechanism, and thus it is

difficult to judge its importance.

As illustrated in Fig. 7.11, the clusters form differently within each hybrid
configuration, due to the different geometry and dispersion of the fibres. For
the interlayer hybrids, the clusters begin to form in the LE plies and slowly
propagate up to the boundaries between the layers where they are arrested by the
surrounding HE fibres. Likewise, for the intralayer hybrids, these start to form
in the LE bundles and afterwards spread up to the boundaries of the bundles.
Eventually the HE fibres start to fail, causing the clusters to slowly propagate
through the boundaries. Instead, the intrayarn hybridisation shows that clusters
form randomly anywhere in the RVE because of the random dispersion of the
fibres. This different formation and development of clusters is more deeply
shown in Fig. 7.12. While the formation of 1-plets is significantly larger for the
intrayarn hybrid, nonetheless, the formation of 3-plet and 6-plet is considerably
larger for the interlayer and intralayer, than for the intrayarn. These findings
mean that the intrayarn hybrid is more efficient in delaying the formation of
larger clusters (thus forming more 1-plets) than the intralayer and interlayer,
which in turn leads to larger hybrid effects. This is also the reason why the
maximum cluster size (Figs. 7.9g-1) is smaller for the intrayarn. Furthermore, if
the thickness is increased, the formation of larger clusters is increased because

of the smaller dispersion of the fibres.

Overall, results from the hybrid configuration study presented in Chapter 7, are
in-line with other literature work [31], although there are some discrepancies.
Swolfs et al. [31], performed a similar study with a micromechanical model,
and found that an interlayer configuration of alternating single fibre layers
leads to higher hybrid effects. Contrary to that, results of Chapter 7 show
that the interlayer material is the worst hybridisation in terms of hybrid effect,
although within a very small ply thickness of 25 um, (which is around 1-3
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fibres thick, see Fig. 7.6), the results are close to the intrayarn. The small
discrepancies between the results of this work and the ones presented in Swolfs
et al. should be attributed to the different modelling assumptions. Swolfs et al.
[31] assumed an hexagonal packing of fibres under a very local load sharing
rule. It also considered an elastic matrix, and did not take into account dynamic
effects. All these assumptions significantly change the stress redistribution
around broken fibres. Instead, this work considered a more accurate random
distribution of fibres, a plastic matrix and dynamic effects. In addition, Swolfs
et al. [31] found a small difference between the maximum cluster size of the
three hybrid configurations, which also does not agree with the results of this
work. However, this occurs because the maximum cluster size here corresponds
to the cluster at failure of the HE fibres, while it corresponds to the cluster at
failure of the LE fibres in Swolfs et al. [31]. Anyhow, the two studies agree
well that increasing the fibre dispersion augments the hybrid effect and delays

break-cluster development.

Based on the results from Chapter 7 it is difficult to establish which hybrid
configuration is better. On the one hand, the intrayarn leads to higher hybrid
effects, a delayed damage initiation and larger yield stresses and strength. On
the other hand, the interlayer hybrid leads to larger failure and ductile strains,
but lesser hybrid effects and lower yield stresses and strength. The intralayer lies
in-between and thus, may generally be a good compromise. Nevertheless, these
findings were obtained with a specific carbon-carbon hybrid composite. Since
the failure is quite dependent on the material properties (as it was for instance
proved in Chapter 4), which hybrid configuration performs best may depend on
each material system.

To conclude the discussion, a PFM was developed able to qualitatively predict the
tensile failure and damage development in hybrid and non-hybrid unidirectional
composites. The model predicts the formation of clusters of broken fibres and
the stiffness loss of composite materials, taking into account matrix yielding
(assuming a perfectly plastic matrix), dynamic effects and thermal residual
stresses. Moreover, it presents the advantage of being computationally efficient
compared to finite element models and spring elements models, but still, it is able
to capture qualitatively well the failure of hybrid and non-hybrid composites.

Therefore, the PFM is a suitable model for modelling composite materials.
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By using the PFM, the micromechanical behaviour of hybrid composites was
analysed. Results of this thesis prove that fibre hybridisation is an adequate
solution to the lack of toughness of composite materials. Furthermore, it has
been demonstrated that matrix yielding is necessary to predict more accurate
results. Likewise, adding dynamic effects allows to predict a more realistic
formation of clusters, while the thermal residual stresses are secondary and may
be omitted. Additionally, it was seen that the specimen size has a significant
importance on the hybrid properties. On the one hand, scaling up the composite
length may enhance the hybrid effect, but on the other hand, scaling up the
cross-section size of the material may reduce it. Finally, it was proved that an
intrayarn hybrid configuration is more efficient than an interlayer and intralayer
in terms of hybrid effect and strength, whereas an interlayer hybrid may lead to
larger ductile and failure strains. At this stage, more work is needed to further
improve and validate the models for blind material design. In addition, there are
still several literature gaps and modelling issues that need to be addressed (for

this, the reader is referred to Section 9.2).
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Conclusions and future work

9.1 Conclusions

A Progressive Failure Model (PFM) able to qualitatively predict the failure
and damage development in hybrid and non-hybrid unidirectional polymer
composite materials under longitudinal loading has been developed. The model
captures individual fibre breaks as well as the formation and development of
clusters of broken fibres. The stress redistribution around fibre breaks takes into
account matrix yielding (assuming a perfectly plastic behaviour), the cluster
size, RVE size, volume fractions, fibre radius and elastic properties of each
fibre population in the material with simple analytical equations. Dynamic
effects caused by broken fibres and thermal residual stresses derived from the
manufacturing process are also considered. Furthermore, the strain along the
model is different depending on the damage state, allowing to capture larger
strains at locations with more damage. Thanks to its semi-analytical framework,
the PFM is computationally efficient compared to finite element models. In
addition, an algorithm to generate hybrid interlayer, intralayer and intrayarn

composites with a random distribution of fibres was developed.

According to the results obtained from the present thesis, several conclusions
are drawn. These are classified in different blocks as follows, based on their
context: Progressive Failure Model, tensile behaviour of hybrid composites,
stress redistribution around fibre breaks, dynamic effects and thermal residual

stresses, specimen size, and hybrid configuration.
The following conclusions are obtained regarding the Progressive Failure Model:

— The PFM captures the failure curve of hybrid and non-hybrid unidirec-

tional composite materials containing a random distribution of fibres.

— The PFM slightly overpredicted the experimental failure strain and
strength of two non-hybrid materials consisting of UD T700S-Epoxy
and M40-Epoxy. Nonetheless, the fibre break density was heavily
overpredicted. Increasing the dimensions of the model decreased the

failure strain and strength, being coherent with size effects.
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— A hybrid carbon-carbon (M50S-AS4) epoxy composite was simulated

and compared with the FEM of Tavares et al. [35]. A good agreement

was obtained, but with a much simpler and faster model than the FEM is.

Overall the PFM is in good agreement compared with a more sophisticated

SEM, but significantly faster and lighter computationally.

The PFM predicts qualitatively well the failure process of interlayer hybrid
composites, as well as their ultimate failure compared with experimental
data. Notwithstanding, the model undepredicts the yield stress and the
plateau region after failure initiation of the LE fibre plies.

Additional experimental data, with hybrid composites manufactured in
an intrayarn and intralayer hybrid configuration is necessary to validate
and improve the models further. Likewise, the literature needs more ex-
perimental results regarding the formation and development of clusters in
hybrid composites to better correlate and improve the models. Microme-

chanical models are not yet good enough for blind material design.

Derived from the tensile behaviour of hybrid composites, the following conclu-

sions are obtained:

— Hybrid composites can exhibit a ductile behaviour at relatively low HVF

(depending on the hybrid material). At large HVF, the failure is brittle,
even though there may be important hybrid effects.

The fibre break density is directly related to the ductility of the composite.
A larger ductility increases the break density at failure, and leads to a more
progressive increase of break density with the applied strain. Otherwise, a

more brittle material leads to a rapid grow of break density.

The tensile failure of hybrid composites strongly depends on the matrix
behaviour. An elastic matrix leads to the formation of many isolated
clusters along the model which need to significantly grow in size in
order to trigger final failure. Consequently, an elastic matrix leads to
unrealistically large cluster sizes and break densities. In contrast, a plastic
matrix leads to a more realistic formation of clusters compared with

experiments.
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— A trade-off between strength and ductility may occur. For certain hybrid
composites, a larger ductility may lead to a lower strength.

Regarding the stress redistribution around fibre breaks, the following findings

are given:

— The SCF models of Swolfs et al. [41], Zhou and Wagner [251] and Eitan
and Wagner [252] had a marginal different failure prediction. However,
all three models led to the formation of clusters of broken fibres which
caused final failure. The Swolfs SCF model generated more localised
stress concentration factors. Consequently, it led to smaller size effects
than the models of Zhou and FEitan.

— The SCF carried by an intact fibre with different stiffness than the broken
fibre depends on the stiffness ratio of both fibres. A larger ratio between
the HM fibre over the LM fibre increases the SCF when the HM fibre is
broken, whereas the opposite occurs when the LM fibre is broken.

— The SCF on HM fibres decreases by adding LM fibres into the hybrid
composite. Since the HM fibres are usually the LE fibres, this should
increase the hybrid effect.

— The SCF carried by LM fibres is larger than that of the HM fibres when
a HM fibre is broken, which should increase the hybrid effect if the HM
fibre corresponds to the LE fibre. When the LM fibre fails, the SCFs are
smaller in both populations compared with a broken HM fibre.

— The analytical model to predict the SCF around breaks in hybrid com-
posites used in the PFM agrees well with the SEM for different material

configurations.

— The ineffective length depends mainly on the stiffness of the broken fibre.
The larger the stiffness, the larger is the ineffective length. Nonetheless,
the stiffness of the other fibre in the hybrid and the HVF do not have any
significant influence on the ineffective length.

— The radial influence length is larger when a HM fibre is broken than when
the LM fibre is, and increases by adding LM fibres. Like the SCF, the

radial influence length increases with the stiffness ratio between HM and
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LM fibres when a HM fibre is broken, while the opposite occurs when the
LM fibre is broken. In addition, it strongly depends on the microstructure.

Adding matrix yielding has a significant impact on the stress redistribution
around broken fibres. Since matrix plasticity limits the shear stress transfer,
the SCF carried by intact fibres is significantly decreased compared to
an elastic matrix. Contrary to this, the ineffective length is considerably
longer. Likewise, the radial influence length significantly grows, and thus,

the load loss is spread over more fibres.

In the case of the dynamic effects and thermal residual stresses, the following

outcomes are drawn:

— The thermal residual stresses have a negligible influence on the formation

of clusters and damage progression, but may have a small impact on final
failure. The addition of compressive residual stresses into the LE fibre
delays damage initiation, increasing the failure strength and yield stress.
This may also lead to an hybrid effect. Similarly, inducing compressive

stresses into the HE fibre increases the failure and ductile strains.

Given that the magnitude of the thermal residual stresses is small, their
impact on the hybrid effect and final failure is mostly secondary.

The dynamic effects have a massive influence on the creation and devel-
opment of clusters, leading to the formation of larger clusters at lower
strains than the static model. However, the formation of co-planar clusters

is not clearly affected.

The dynamic effects have a minor influence on final failure, leading to
a slight earlier final failure than the static. Their importance on final
failure depends on each material system. In fact, some hybrid composites
show a smaller influence of the dynamic effects on final failure than their
baseline non-hybrid composites. Thus, there may be a small contribution
to the hybrid effect given by the dynamic phenomenon for certain material
combinations. In addition, the yield stress is totally unaffected by the

dynamic effects. The tensile response is also not much influenced.

Although the dynamic effects have a small impact on final failure, their

addition into the modelling predictions improves the formation of clusters
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and thus, closes the gap to the experiments.
In regards to the specimen size, the following conclusions are obtained:

— Increasing the RVE length strongly increases the hybrid effect, and thus,
the size effects provide a positive contribution to the hybrid effect. The
failure strain, ductile strain and failure strength rapidly decrease by in-

creasing the RVE length up to a certain length when a plateau begins.

— Increasing the RVE cross-section considerably decreases the hybrid effect,
thus, giving a negative contribution. Moreover, final failure is delayed for
some composites whereas it leads to an earlier failure for other materials.

These size effects vanish for large cross-sections.

— Increasing the RVE volume always increments the maximum cluster size,
(either by scaling up the RVE length or scaling up the cross-section size),

and leads to the formation of more clusters of bigger size.

— The importance of the size effects seems to be principally governed by

the fibre strength scatter and it is unaffected by the presence of ductility.

— Increasing the material dimensions generally decreases the scatter of the
results, except for the formation of clusters which always exhibits a large

variability.

Finally, concerning the hybrid configuration, the following conclusions are

found:

— The intrayarn hybrid configuration leads to higher hybrid effects, larger
yield stresses and strength than interlayer and intralayer hybrids. Conse-
quently, damage initiation begins later as well with the intrayarn. In this
regard, the interlayer is the worst one whereas the intralayer is in-between.
In contrast, the interlayer and intralayer lead to larger ductile and failure

strains than the intrayarn, being the interlayer the best in these aspects.

— The dispersion of the fibres is a key parameter. By reducing the LE
ply and the bundle thicknesses for the interlayer and intralayer hybrids,
respectively, the results of these can be optimised and be close to the

intrayarn.
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— The maximum cluster size, as well as the number of clusters of bigger
sizes, are considerably smaller with the intrayarn hybridisation. The
propagation of the clusters is also different for each hybrid configuration

due to the distinct geometry and dispersion of the fibres.

9.2 Future work

In this section different research lines to extend further the work carried out in

this thesis are presented.

The present thesis has mainly devoted to develop a micromechanical model able
to predict the failure and damage development in hybrid unidirectional FRP,
and study different parameters affecting their failure. By employing the PFM
proposed, the failure of composites can be simulated with a low computational
effort compared to other models. Although the model has been relatively close
to experimental data and includes many features and advantages compared to
other state of the art models, there are still different issues to be addressed.

Currently, the PFM can be improved by adding the following phenomena:

— Fibre-matrix debonding and matrix cracks around broken fibres.

— Improve the matrix further, by considering matrix viscosity and capturing
the entire yielding of the matrix as well as its strain dependency. In
addition, the stress redistribution around fibre breaks should be calculated

accordingly.
— Scaling up the ineffective length and SCF also for diffuse clusters.

— Improve the RVEs entered into the PFM by including defects such as fibre

waviness, voids, resin rich regions, etc.
— Possibility to simulate fatigue.
— Delamination between plies.

— Establish to which extent is the model able to capture ply fragmentation,
and if needed, to include this phenomenon into the modelling predictions.

— Ability to simulate multidirectional composites.
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Possibility to simulate discontinuous fibre composites. In this way, the
model with intrayarn hybrid composites could be validated by comparing
against experimental results for discontinuous hybrid materials published
in Yuet al. [17].

The addition of these phenomena in the PEM should allow to close further the

gap between models and experiments, as well as to have a more robust and

advanced model. To do so, not only the model needs to be improved, but also

the experimental data available in the literature for hybrid composites needs to

grow further. In a similar manner, there still exist multiple literature gaps. These

are listed as follows:

The proper statistical distribution (Weibull-based or not) to characterise

the strength of the fibres is not clarified.

The presence of matrix cracks around broken fibres needs to be investi-
gated further. Determine when they occur, and investigate their influence

in hybrid composites.

Determine the importance of debonding in hybrid and non-hybrid materi-

als.

Study whether the viscoelastic behaviour of polymer matrices has any

influence on the hybrid effect and the failure of hybrid composites.

The stress concentration factor carried by an intact fibre varies greatly
around its cross-section, being highest close to the break. Since most
models use a constant stress for the entire cross-section, this effect is

generally ignored. The implication of this is not clear.

Understand why models underpredict the formation of co-planar clusters

and the formation of clusters of larger size.
Establish why models heavily overpredict the fibre break density at failure.
Find a more objective description of what constitutes a cluster.

Establish whether final failure occurs by the accumulation of damage or

the unstable propagation of a large critical cluster.
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— Obtain more experimental results with hybrid composites, especially
regarding the formation of clusters. In addition, intrayarn and intralayer

hybrid composites should also be manufactured.

The work proposed in the present thesis is a continuous effort in the road
towards the development of accurate models which are able to predict the
failure of composite materials in a blind basis. Such models would allow to
design structures without the need of performing expensive and complicated
experimental tests. Having accurate and reliable models could also allow to
further optimise the materials, resulting in costs and weight savings. Finally,
increasing the understanding in hybrid composites further can allow to produce
composites with a wide margin between damage initiation and final failure

resulting in better designed and optimised materials.
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This paper presents a three-dimensional Progressive Failure Model based on the chain of bundles able to re-
present the stiffness loss in unidirectional composite materials loaded in the fibre direction. A representative
volume element with a random distribution of fibres with their own radius is considered. Complete stress dis-
tributions around fibre breaks are obtained by associating a damage variable to the loss of stress transfer cap-
ability along the ineffective length and applying local stress concentrations. The model has been validated by

comparing it against the literature results and exhibits good agreement with hybrids and non-hybrid composites.
The aim of this model is to simulate the tensile response of unidirectional composite systems dominated by fibre
fragmentation mechanisms using a very reduced computational effort, even for larger representative volume
elements, compared to micro-mechanical finite element models.

1. Introduction

Fibre reinforced polymers (FRP) are widely used in lightweight
structures mainly thanks to their high specific strength and stiffness.
However, their quasi-brittle behaviour and low toughness leads to fibre
tensile failure with hardly any prior damage symptoms, thus limiting
their use and applicability [1]. One potential way to solve this problem
is with fibre hybridization [2]. In a hybrid composite, two kinds of fi-
bres with different longitudinal failure strains are mixed. The mixture
can be arranged on three different scales [2], which are also able to be
combined into: (i) interlayer or layer-by-layer i.e. by mixing layers of
different fibres, (ii) intralayer or yarn-by-yarn i.e. by mixing the fibres
within the layers but not within the separate yarns, and (iii) intrayarn
or fibre-by-fibre i.e. by mixing the fibres completely at the yarn/tow.

A low elongation fibre (LE) has a low failure strain and a high
elongation fibre (HE) has a high failure strain. Thanks to this combi-
nation, the LE failure strain in a hybrid can be larger than that in a non-
hybrid composite. This phenomenon is known as the hybrid effect [3].
Moreover, with the appropriate hybridization design, a progressive
failure of fibres under tensile load can be induced leading to pseudo-
ductile behaviour [4]. Currently [2], to explain the hybrid effect the
scientific community outlines three main reasons: (i) changes in the
development of the failure, (ii) thermal residual stresses and (iii) dy-
namic effects.

Nowadays, changes in the failure propagation are assumed to be the
main reason for the hybrid effect. Because of the presence of flaws, the

= Corresponding author.
E-mail address: josemanuel.guerrero@udg.edu (J.M. Guerrero).
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strength of brittle fibres is not deterministic and follows a statistical
distribution. When a fibre breaks, shear stresses are transferred from
the fibre to the matrix. As a consequence, the broken fibre recovers its
stress in a distance called the ineffective length, whereas the sur-
rounding fibres withstand stress concentration. Eventually, the neigh-
bouring fibres of each broken fibre fail, thus initiating several clusters
of broken fibres which grow further upon loading. When one of these
clusters reaches a certain size, it propagates unstably and leads to the
final failure. Other phenomena, such as debonding, matrix cracking or
yielding and fibre pullout, may also contribute. Notwithstanding, in a
hybrid composite the differences between the elastic and geometrical
properties and the failure strains can alter and delay the formation of
clusters. Moreover, by reducing the quantity of LE fibres in the hybrid,
LE failure strain can also be increased because of the size effects [5].

An additional and secondary cause of the hybrid effect is related to
the residual stresses generated during the manufacturing process [2].
Residual stresses appear when mixing different populations of fibres
with dissimilar thermal expansion coefficients, which leads to different
residual stresses in each fibre population.

The third reason given for the hybrid effect is the dynamic effect in
the process of tensile failure. When a fibre breaks, the elastic energy
that was sustained by that fibre is released and becomes kinetic energy
which dampens after some time. During this period, dynamic loads
propagate through the composite and increase the probability of
failure. However, in the case of a hybrid composite, the dynamic phe-
nomena can be altered. Xing et al. [6] demonstrated that in a hybrid
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composite two out-of-phase stress waves, one for each fibre population,
propagate after an LE fibre break. If both waves compensate each other,
lower dynamic loads are produced, leading to larger failure strains.
However, this topic has not been studied in depth and its importance
remains unclear [2,7].

In addition, the hybrid effect is also influenced somewhat by dif-
ferent parameters which include the relative volume fraction between
both fibres, strength distribution, fibre dispersion, fibre stiffness ratios
and the failure strain ratio. Other parameters, such as the matrix stiff-
ness or debonding, have no clear influence [3]. Moreover, the specimen
size effect on the hybrid effect is also unknown [8].

Over the past decades different authors have attempted to study
hybrid composites under fibre tensile loading. Hayashi [9] was the first
author who observed the hybrid effect in a carbon-glass layer-by-layer
hybrid in an experimental test. Later, Zweben [10] extended a shear-lag
model to hybrid composites to obtain the hybrid effect analytically.
While Fukuda [11] improved the model further, it still has major lim-
itations. According to Swolfs et al. [3], Fukuda’s and Zweben’s models
can be used as the upper and lower bounds for predicting the hybrid
effect.

Recently, Tavares et al. [12] presented a fibre-by-fibre micro-me-
chanical finite element model (FEM) simulating fibre, matrix and fibre-
matrix interphase damage [13]. The results demonstrated the im-
portance of the failure strain ratio of both fibres, the statistical strength
distribution and a progressive failure between both HE and LE fibres in
obtaining pseudo-ductility. However, the model requires high compu-
tational resources and is limited to simulating a small number of fibres.

Okabe et al. [14,15] presented an advanced shear-lag model able to
represent the fibre failure process of composite materials. The model
represents the fibres through tensile springs and the matrix through
shear springs. The advantage of these types of models is that they are
simpler, faster and cheaper in computational cost than FEM models are.
Furthermore, they are still able to simulate the key physics involved,
without being limited to only a few fibres as in the FEM approach.
However, Okabe et al.’s model is limited to hexagonal or square
packings, which do not allow hybrid composites with fibres of different
radii to be studied.

Swolfs et al. [3,5,16-18] presented a strength model under the as-
sumption of a local load sharing rule, based on the chain of bundles
approach from Rosen [19], Okabe et al. [14,15] and others [20,21].
Unlike the model of Okabe et al., a random fibre packing with each
fibre with its own radius was considered. With their model, Swolfs et al.
demonstrated that larger LE strength dispersions, lower number of LE
fibres, higher HE fibre stiffness or larger failure strain ratios all ulti-
mately lead to greater hybrid effects. Fibre dispersion also showed an
evident impact. However, Swolfs’ model [3,5,16-18] attempts to pre-
dict the behaviour only up to the onset of LE fibre fragmentation, be-
cause it does not capture a non-linear response attributable to frag-
mentation mechanisms. Thus, it is unable to predict pseudo-ductility.

In recent years, an increase in the amount of experimental work
conducted concerning fibre hybridization has also been seen. Czél and
Wisnom [22] hybridized thin carbon fibre prepreg plies with standard
thick plies of glass fibres. They found pseudo-ductility with specimens
of one and two plies of thin carbon. However, specimens with three and
four plies failed with unstable delamination. Later, Wisnom et al. [8]
obtained similar findings. Moreover, they compared their results with a
simplified version of Swolfs et al. [5] strength model and obtained good
agreement. Yu et al. [23] also manufactured intermingled hybrid
composites using aligned discontinuous fibres. By combining high-
modulus carbon and E-glass in the hybrid, good pseudo-ductile re-
sponses were also obtained as a result of the carbon fibres fragmenta-
tion. Further to this, Jalalvand et al. [24] developed a new simple
analytical method to predict all possible damage mode maps in uni-
directional hybrid composites. By using the method as a design guide-
line, new hybrid specimens of a standard-thickness glass/thin-ply
carbon hybrid were manufactured and tested, leading to a good pseudo-
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ductile response. Quite recently, Fotouhi et al. [25] tested quasi-iso-
tropic high performance thin-ply carbon/glass hybrid laminates.
Pseudo-ductility was also obtained in all fibre orientations under tensile
loading. Last but no least, Czél et al. [26] hybridized thin-ply uni-
directional interlayer all carbon-epoxy composites comprising high
modulus and high strength. Again, large pseudo-ductile responses were
obtained.

Despite advances in the modelling and understanding of hybrid
composites, there is no local load sharing model for these materials that
is capable of representing the pseudo-ductile behaviour within a
random distribution of fibres. At the moment, the exception to this are
the micro-mechanics FEM models which require huge computational
resources and so are unsuitable as a design tool or to perform para-
metric studies.

In the present work, the authors propose a new three-dimensional
Progressive Failure Model, (called here PFM) based on the chain of
bundles which is able to accurately represent both progressive damage
and pseudo-ductile behaviour in unidirectional composites. The pro-
posed model implicitly allows fibre fragmentation mechanisms to be
captured, thus estimating multiple breaks along the length of the fibre.
A random distribution of fibres of a given radius is considered. The
methodology leads to different deformations along the model, using the
hypothesis that fibres work in parallel but taking into account the local
stress fields around each fibre break. The complete stress distribution
around the fibre breaks is obtained through two dependent approaches.
Firstly, a damage variable related to fibre breaks and to a shear-lag
model is computed. Secondly, local stress concentrations are applied
through all stress recoveries. Thermal residual stresses and dynamic
loads are omitted but the model framework allows for its future im-
plementation. The remainder of this paper is as follows: firstly, we
present the model, which we then validate by comparing it with the
literature results, and finally some conclusions are drawn.

2. Chain of bundles Progressive Failure Model
2.1. Definition of the fibre random distributed RVE

A representative volume element (RVE) with a random distribution
of fibres is generated to capture the interaction between the fibres and
the matrix. The RVE represents, on a micro-mechanical scale, a portion
of a real material model containing the matrix and a sufficient number
of fibres. According to Trias et al. [27] and Zangernberg et al. [28], the
minimum transversal size of the RVE in an elastic model should be 50
times the fibre radius (50 x R). However, in a model with damage, the
minimum size of the RVE could be even larger to capture the fibre ef-
fects. Similarly, the RVE length in the fibre longitudinal direction
should be long enough to ensure that the ineffective length will be well
captured. Some studies employed RVEs with a length of between 15 x R
and 40 X R [12,29]. However, an RVE using these length values does
not ensure a good prediction of the fibre fragmentation. A congruent
RVE length depends on the fibre and matrix elastic properties as well
the ineffective and debonding lengths. Thus, RVEs length with an order
of magnitude equal to several times the ineffective length should be
used [5,18]. Furthermore, size effects may occur. Therefore, the RVE
must be big enough to capture the micro-mechanisms of the damage,
the stress redistribution around the broken fibres during the failure
process, and the clusters of fibre breaks on the different planes.

The model proposed considers an RVE that contains a certain
number of parallel fibres randomly allocated, with a total length L,
height a, and width b. All the fibres are divided into elements of con-
stant length L. This leads to a domain consisting of a number of fibres
working in parallel and divided into different planes working in series,
also known as chain of bundles [19]. The RVE may represent a hybrid,
where each fibre has its own radius and properties, or a non-hybrid
composite. Each fibre element is noted by the sub-indices (p,q), where p
is the plane identity ranging from 1 to N,, with N, being the total
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X

Z

Fig. 1. Schema of the RVE for the Progressive Failure Model. The enumeration of the
planes is sorted from 1 to Ny, with plane 1 always being the plane to the extreme right and
plane Nj, to the extreme left. Fibre numeration is random from 1 to N,. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

number of planes, and q is the fibre identity ranging from 1 to N, with
N, being the total number of fibres. The matrix is not really represented,
but it is accounted for by means of its stiffness and a shear-lag model.
Fibres at the outskirts of the RVE are cut and symmetric so that the
geometry obtained is completely periodic. This schema is illustrated in
Fig. 1. The random distribution of fibres is generated using the for-
mulation of Melro et al. [30], and extended to hybrid composites by
Tavares et al. [12].

Because of the strength scatter of the fibres, each fibre element has a
different tensile strength, o,,. To do this, a random number between 0
and 1 is applied to all elements, B,,. Then, the strength op, of each
element is obtained according to a statistical distribution, the element
length [ and B, . Any statistical distribution could be adopted and im-
plemented in the proposed model. In the literature, the Weibull dis-
tribution [31] is most commonly used to represent fibre strength, al-
though other variants such as the bimodal and the power-law
accelerated Weibull distribution are also employed [32,33].

2.2. Constitutive equation

The model assumes the complete stress distribution on the RVE in
two dependent ways. On the one hand, when a fibre breaks, shear-lag
stresses are transferred between the fibre and the matrix, which can
lead to debonding, matrix cracking, yielding, or a combination of these
[14,34,35]. Consequently, an ineffective length appears so that the
stress in the fibre is recovered. A shear-lag model is used to obtain the
ineffective length of a broken fibre element. According to Xia et al.
[36], shear-lag models are accurate in polymer matrix composites if the
fibre stiffness is much larger than the matrix, the matrix yields and the
fibre volume fraction is relatively high. Assuming that the loss of stress
transfer capability produces a reduction in local effective stiffness, the
shear-lag model is implemented by simply updating the damage vari-
able of all the elements inside the ineffective length of the broken fibre.
On the other hand, local stress concentration factors (SCF) are applied
through all stress recoveries, so that the neighbouring fibres to a break
are locally overloaded, increasing their failure probability. Therefore,
the (SCF) is assumed as a dimensionless parameter equal to 1 if the
fibre element is not affected by any break, or higher than 1 if it is af-
fected by breaks. In the literature, the SCF,, is measured as the ratio
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between the real local fibre stress, 0,4, and the fibre far field stress, o5y,
where the stress is not influenced by the damage, fibre breaks or stress
concentration

g = SChpq0py @
In this work, the main hypothesis is that all fibre elements in each plane
work in parallel, while all planes work in series. This means that all
fibre elements in the plane undergo the same deformation, ¢,, (eval-
uated in Section 2.4). As damage is different on each plane, a different
deformation is obtained along the model. Therefore, the effective stress
is given by relating the effective Young’s modulus and the deformation
of the plane

Gpq = Eg(1-Dpq)e, 2)
where E, is the Young’s modulus of fibre g and D, is the state damage
variable on element p,q. Therefore, the effective stress, &4, depends on
the stiffness and damage distribution: the plane stiffness -by ¢,-, and the
element stiffness -directly by D, 4-, but it does not take into account the
stress concentration.

To obtain the real fibre stress, g4, it is necessary to relate the ef-
fective stress &4, and the far-field stress, o> that appear in the defi-
nition of SCF, 4. To do that, a stress ratio, Q,, is defined

%4
)
%q

Q,=
3)
The stress ratio associated to each plane p is evaluated according to the
plane level equilibrium condition explained in Section 2.4. By putting
together Egs. (1)—(3), the constitutive equation of a fibre element re-
lates the real local longitudinal fibre stress with the longitudinal plane
strain

SCF,,
Q"qE,,(l—D,,,,,)s,,

i
e 3 @

When the element’s tensile stress o, , exceeds its strength o, the ele-
ment fails and its damage variable D, is set equal to 1. This causes an
ineffective length in the broken fibre which is represented as damage in
all the elements inside the ineffective length. Therefore, damage is
equal to O for a pristine fibre element, equal to 1 for a broken fibre
element, or between 0 and 1 for a fibre element that is influenced by the
ineffective length predicted by a shear-lag model. In the following, how
to evaluate D,  and SCF, , is explained.

The PFM is able to use any model to predict the ineffective length.
In this work, the widely used Kelly-Tyson [35] shear-lag model is
adopted, which assumes a perfectly plastic matrix leading to a linear
stress recovery. Therefore, the ineffective length L;,f‘q of a broken fibre is
given by

o _ By,

T ®
where 7, is the shear yield strength of the matrix for fibre g and r, is the
radius of fibre g. Note that both can be different for each fibre popu-
lation in the case of a hybrid composite. The Kelly-Tyson model leads to
different ineffective lengths depending on the elastic and geometrical
properties and increases with the strain as the load is incremented.

As previously outlined, the damage variable, (calculated assuming
the loss of stress transfer capability in the ineffective length), produces
a reduction of local effective stiffness. Thus, a gradual decrease of da-
mage from 1 at the position of the break, to 0 at both ends of the in-
effective length (see Fig. 2a and b) is applied. As fibres may fail many
times along their length, different ineffective lengths may overlap.
Then, the highest damage always prevails for each element inside
overlapping stress recoveries. Another potential case is an element
failure located close to the boundaries of the model. In that case, the
ineffective length is not fully recovered, (see Fig. 2 c). According to
these hypotheses, an element p,q is affected by each break in the fibre q
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fibre with two breaks.
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In general, according to the literature [29,37,38], the SCF of an
affected fibre element (p,q) around a broken element (i,j) can be pre-
dicted with two interacting functions: one which depends on the radial
distance between both fibres, §_;), and the other which depends on the
plane position along the ineffective length, 4(,_;. A schematic example
of the SCF for a fibre around a broken one is shown in Fig. 3. The
interaction functions §(_j) and A(,—; can be parametrized with com-
putational micro-mechanics studies (for example the work of Swolfs
et al. [16,18,29,39]), or can be formulated with analytical approaches
(such as the Zhou and Wagner [37], and Eitan and Wagner [38]
models). The corresponding functions are shown in Table 1.

It should be highlighted that in order to simplify the model, the
widely used Kelly-Tyson shear-lag model was adopted to predict the
ineffective length. Nonetheless, the SCF models of Eitan and Wagner
and Zhou and Wagner are based on Cox’s shear-lag model [34,38] and
Nayfeh’s shear-lag model [37] respectively. This means that the SCFs
are calculated using a different physical principle than the ineffective
length. Nevertheless, we assume it is a reasonable approach considering
the complexity involved in the process of fibre breakage. In any case,
the functions to predict the SCF and the ineffective length are an ‘ex-
changeable part’ in the proposed Progressive Failure Model. Thus, any
another model to predict the SCF or the ineffective length could be used
instead.

Whenever different broken fibres are present, the SCF of an affected
fibre (p,q) is obtained by assuming a linear superposition of the con-
tribution given by all the breaks on the fibres. However, the SCF is
bounded by the limitation of transfering load to the fibre by shear-lag.
On the one hand, the elements inside any ineffective length (elements
where 0 < D,, < 1) have their stress limited by the shear-lag model.

7 Affected
clement (p,q)

Ineffective
length region

yyfibrej fibre q
Broken )
x fibre () A(p-i)
Fig. 3. (a) In-plane separation between broken and affected fibre, (b) stress concentration
schema for intact fibres around a broken fibre depending on the in-plane distance and the
position along the ineffective length. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Composites Part A 107 (2018) 579-591

Table 1

Functions to obtain the stress concentration factor according to three different models. (x)
Swolfs et al. [18] function along the ineffective length has been assumed. (x*) Zhou and
Wagner [37] provided equations for debonding and non-debonding regions. Here, only
non-debonding regions are considered.

SCF model Functions: radial distance (q—j) and ineffective length A¢,—;
Swolfs et al. dsijf(rji»rq)
[18] (%) Og-p = ~Piln 5 +P
where Py and P; are two constants from a micro-mechanic model
and d;, j is the centre-to-centre distance between fibres q and j
LiD—11i-pl
Ap-i=—1 o v (@ij): Lli-pl < L}
2
Eitan and %
W Sq-» =+
agner
[38]
where 9= arcsin(y_,/dqc,]-)
sinhBE, (Wi —11i-pl)
— (g—j) "ty A in
Ap-i = 7“““&7””? Y (ij): I li—pl < Lij
where ﬁ(‘qﬁ) is Cox’s [34] shear-lag parameter:
¢ -1 |  26m
ﬁ(q—/) T —
| Ej
T
where Gy, is the matrix shear modulus.
Zhou and 929
Wagner - = 1771 ra
[371
(k)
where 9 is a friction coefficient
sinhp’,(Ll“;Ho.sx—Hx—pl) N
o My T TR Gy i Lin
Ap-i) Sl"hﬁjlg“," (@i): 1 li=pl < L]

where f; is Nayfeh’s shear-lag parameter, as given in [37]:
2 2

Ej—+Em|1-
T rin

2

2,
r2Ej By 2 2
E il O O TR U W - WY D
Gj 2] 26m y}“fyll ,12 2 2

where G; and 1, are the broken fibre shear modulus and the radius
of the shear-carrying matrix cylinder

g=

Therefore, only intact fibre elements (D,, = 0) can be over loaded by
the SCF. On the other hand, another important related fact is to secure
the stress continuity at the end of an ineffective length of a broken fibre.
In the last element in the ineffective length region, no SCF is applied,
but the subsequent elements can cover part of the SCF. To achieve this
continuity, SCF is limited in the elements close to ineffective length
regions also in accordance with the shear-lag limitation over load
transfer to the fibre. Thus, the SCF,, expressed in a general form is

; L . -
SCE, = {;nm(SCFO SCF;q) ¥ D.g: Dpg =0

[ X
otherwise, (@)

where SCFqu is the SCF predicted by the linear superposition of the
contribution of all the fibre breaks using the interacting functions as
Np Ny
SCFpa =1+ 3 8g-pre-plDy =1]
=1 j=1 @®
where here [+] are the Iverson brackets and define 1 if * is true, and 0 if
it is false. SCFy,, is the SCF limit according to the shear-lag capacity to
transfer load to the fibre, and is calculated as the slope defined by the
stress gradient of the nearest ineffective length:

Y .
SCFy, = mm(ﬁ li—pl l) Vi Dig=1
Lq

©)]

The constitutive equation presented here allows the fibre
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fragmentation mechanism to be captured by means of the fibre breaks
and its associated damage variable. The redistribution of stress using
the shear-lag model permits several breaks along the length of any
fibre. However, other mechanisms, such as delamination, are ignored
by the model. Nonetheless, neglecting delamination is an acceptable
assumption in the failure prediction of non-hybrids and of an intrayarn
hybrid, where the different fibre populations are mixed at the fibre
level. In other hybrid configurations, such as an interlayer hybrid where
the different fibres are located in different layers, delamination should
be considered.

2.3. Element stiffness, plane stiffness and global RVE stiffness

As previously mentioned, the proposed methodology leads to dif-
ferent elongations through the domain, causing a dissimilar strain for
each plane ¢,. The approach proposed is to compute the strains of each
plane according to the element’s stiffness and the initial hypothesis that
fibres work in parallel and planes in series.

The progressive failure is formulated using the stiffness damage of
each fibre element, D,,. To do so, Hooke’s law of an element under
tensile stress defines the longitudinal stiffness of a single fibre element,
kp.g, with

Ay
kpg = Eq(1— M)T 10$)
where A, is the cross-sectional area of fibre g given by A, = s, 77, and
where s, is a factor which guarantees the appropriate area of not entire
fibres on the domain will be considered (s, = 1 for entire fibres and
sq < 1 for fibres located at the corners, or the outskirts of the RVE).

The total stiffness of each plane can be obtained by assuming that all
fibre elements in the plane and the matrix stiffness work in parallel
N
k=Y kg + B2
q=1 an
where the matrix behaviour is assumed to be linear elastic, with E,,
being the matrix Young’s modulus, and A,, the matrix cross-sectional
area of the RVE, A, = a b— ZNilAq
Similarly, the total stiffness is calculated by assuming that all planes
work in series

-1
1
kp

2.4. External and internal equilibrium

N,

12)

Because of mechanical equilibrium, the internal force of each plane,
F,, must be equal to the total external force, F, sustained by the system
so that F = F,. The total external force can be found by relating the
current total stiffness, K, and the global longitudinal homogenized
strain, ¢°, given in Section 2.6. Similarly, the force of each plane can
also be obtained by relating the plane stiffness and the strain of the
plane leading to

F=F, Ke®L=kygl 13)
Therefore, ¢, is obtained as a function of £° with
o= Kla

kpl 14

To maintain local load equilibrium, the aggregation of the loads of
the fibres and the matrix, must be equal to the load of the plane,
therefore

Ny
E=kyel= Z OpgAq + EEmAn

q=1 (15)
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By substituting Eq. (4) in (15), and re-organizing, Q, can be found as

N,
Q am1 SChpqEq (1-Dpg)Aq
= ——

Z
p =B (16)

where Q, as result of a plane level equilibrium becomes constant to all
fibre elements in plane p. An additional formulation of Q, is obtained
by substituting (11) in (16) leading to

N,
i] SCFl")q E’i (I_Dqu >Aq

— zq_
) =
oty By (1-Dpg) g
Once Q, has been evaluated, all g, can be calculated from Eq. (4)
and compared with their strength oy . It is worth mentioning that small

deformations are assumed. Thus, the element length [, total RVE length
L and cross-sectional areas A,,A, remain constant.

a7z

2.5. Composite homogenized stress and break density

The homogenized composite stress is obtained as an average of both
element stresses and matrix stress, weighed by their volume fraction.
For a non-hybrid, this leads to

N N v
N 2 2% 3 us
NoNg 320 021 N oo (18)

where vy is the total fibre volume fraction.

For a hybrid composite, the average of the fibre stress must be
calculated independently for each fibre type to capture the differences
in the cross-sectional area

ZZ"M

Plplqeﬂ

1—vp—v,
[P ke -4 Z Enép
N o

Vi

o’ = - Z Z g+

NN2 p=1 qef2

(19)

where v and vp, are the relative fibre volume fractions of each fibre
population in the case of a hybrid, and N; and N, are the number of
fibres in populations f1 and f2, respectively.
The break density is calculated by dividing the number of broken
elements into the total RVE volume as
Np Ng

2 2 De

p=1 g=1

Py =

a b L (20)
where [+]is the Iverson bracket. In the case of a hybrid composite, the
break density of each population can also be calculated with the re-
spective number of broken elements.

2.6. Algorithm procedure

A controlled monotonic increment of longitudinal displacement is
performed along z direction to guarantee a stable tensile damage pro-
cess. Hence, each new loading step t starts by increasing the current
longitudinal displacement applied, (u),, with

W) = W-1 + (Au)

where (u),—; is the displacement from the previous step, and (Au), is the
displacement increment. In each load step, the longitudinal displace-
ment and the global longitudinal homogenized strain, ¢, assuming a
uni-axial behaviour, are both related by the total length of the model
with

@1

(u)t
0} —
() = @2
Following this, the stiffness, forces, strains and Q, are first estimated
with the damage variable and the SCF from the previous step with Egs.
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Start PFM simulation |

|

Input data: r, E, Ey, G, Gy, T, I'm, Vs, Vi1, V2, @, b, L, [, (Au),, fibre positions,
strength distribution, SCF model, post-processing and stiffening options

i

c . .oy
Starting displacement: u; = 0, u; = min z*L
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I

New step t: update u, & |
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Apply D, = 1 1
to all new ‘ Calculate o, ,
broken (p, q) ¥
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Output data: o
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, &, py, other

1

Reached end?

No

} Stop PEM simulation

Fig. 4. Progressive Failure Model flowchart. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

(10)-(12), (14) and (17). Note that, in the first step t = 1, all damage
variables D, , are equal to zero, and all SCF, ; are equal to one. If there
are broken elements, then the ineffective length, damage variable and
the SCF are calculated with the estimated stiffness, forces, strains and
Q, using Egs. (5)-(7). As the damage has changed, the stiffness, forces,
strains and (, are re-calculated to obtain the true actual current mag-
nitudes. Next, the element stresses are computed with Eq. (4). If no
elements break, the composite stress and break densities are evaluated
with Egs. (18)-(20). If new elements fail, the damage D,  of all new
broken elements is set equal to 1 and the same procedure is repeated
without increasing the applied displacement and with the current da-
mage and latest calculated SCF, until no more failures happen in the
current step. When no new elements fail, a new step is started by up-
dating (u); and (%), with equations (21) and (22). This procedure is
shown in the flowchart in Fig. 4. The model stops when either all ele-
ments in a plane are damaged, or the composite stress has decreased by
a pre-defined percentage of maximum load value. For non-hybrid
composites, where a brittle failure is expected, the simulation is stopped
when the stress decreases 10% from the maximum reached. In a hybrid
composite, LE fibre population could fail originating a large load drop.
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To avoid an early end of the simulation before HE fibre failure, the
calculation is stopped when the stress decreases more than 80%. The
model was implemented in MatLab (The MathWorks Inc., USA) [40]
and Python programming language (Python Software Foundation,
https://www.python.org/). The results can be exported into ParaView
(Kitware Inc., USA) [41] for visual post-processing.

3. Results and discussion
3.1. Non-hybrid UD T700S and M40 carbon fibre epoxy

Two different non-hybrid UD composites consisting of T700S-Epoxy
and M40-Epoxy were simulated using the proposed PFM. The results
were compared with the reported experimental data in Swolfs et al.
[18] and Koyanagi et al. [42] respectively, in an attempt to validate the
model. All model properties shown in Table 2, except the estimated
matrix and SCF related properties, were also taken from [18,42]. The
tensile behaviour of each composite system was performed with all
three models shown in Table 1 to observe their impact on the final
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Table 2
UD composites and model properties.
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Composite Fibre properties Weibull properties Matrix properties SCF properties RVE data
E,Ey G r m @ Lo Em Gm T I ¥ L vy
[GPa] [GPa] [mm] [-] [MPa] [mm] [GPa] [GPa] [MPa] [mm] -] [mm] [%]
T700S-Epoxy 197.9 78.53 3.5 %1073 m =48 o1 = 5200 10 3.0 111 40 42 x 1073 0.5 1.54 55
m =12 gp2 = 6100
M40-Epoxy 392.0 155.55 3.0 % 1073 16 4500 25 3.5 1.29 50 36 x 1073 0.18 25 60
AS4 -Epoxy  234.0 92.85 3.5 % 10°3 10.7 4275 12.7 3.76 1.39 50 - - 15% R 60
MS508 480.0 190.48 265 x 103 9 4600 10 - -

0.2 0.4
X distance [mm]

0.2 0.4
X distance [mm]

0.6

Fig. 5. Cross-section view examples of RVEs with T700S fibre (a) 50 X R, (b) 100 X R, (c)
150 X R, (d) 200 x R. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

failure. The parameters P, and P, were taken to be P, = 6.12 and
P, =17.74, as in [18].
Like [18], a bimodal Weibull distribution was applied to assign the

strength, g, ,, to each fibre element of the T700S composite with

% —— Swolfs Experiment 4.0
w1449 4~ Swolfs SCF - Swolfs SCF
- Eitan SCF Eitan SCF
- Zhou SCF - Zhou SCF
1.0 — T T T 0 - T T T
50 100 150 200 50 100 150 200

RVE size divided by fibre radius RVE size divided by fibre radius

Fig. 7. T700S error bars for 40 simulations at each simulated RVE size for each SCF
model compared with Swolfs et al. [18] experimental results, (a) failure strain, (b) fibre
failure stress. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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0.85 1 , : - S18L , : .
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RVE size divided by fibre radius RVE size divided by fibre radius

Fig. 8. M40 error bars for 40 simulations for each simulated RVE size for each SCF model
compared with Koyanagi et al. [42] experimental results, (a) failure strain, (b) composite
failure stress. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 6. Influence of the total RVE length (L) and element length () on the failure strength for the M40 composite. The mean result for 20 simulations is shown. The RVE width and
thickness were 50 X R. (a) Using the Swolfs et al. SCF model, (b) using the Eitan and Wagner SCF model, and (c) using the Zhou and Wagner SCF model. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Swolfs SCF model

Eitan SCF model
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—— Zhou SCF model
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Fig. 9. Predicted SCF to an intact fibre at different centre-to-centre distances, d;_;, according to the Zhou and Wagner, Eitan and Wagner and Swolfs et al. models. (a) dj_

0.1 -0.1 0.0 0.1 -0.1 0.0 0.1
break [mm] Distance from break [mm] Distance from break [mm]

=2.07r, (b)

4—j = 4.14r, (c) dg_; = 6.21r. The SCF is shown along the ineffective length of a 0.15mm broken fibre, with all material data corresponding to the T700S fibre in Table 2. (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Swolfs SCF
g =2211%

o

Eitan SCF
268 %

Zhou SCF
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Fig. 10. Cluster evolution at different stages during final failure within 16% of total
length in each direction of the section with largest break density for the T700S composite.
Broken fibres in black, damaged fibres in red and intact fibres in green. RVE size corre-
sponds to 100 X R. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 11. T700S closest curve to the mean from all 40 simulations with a size of 200 x R for
each SCF model compared against the experimental results from Swolfs et al. [18], (a)
mean stress-strain curve, (b) mean break density curve. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of this
article.)
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Fig. 12. M40 closest curve to the mean from all 40 simulations of size 200 x R for each
SCF model compared against the experimental results from Koyanagi et al. [42], (a) mean
stress-strain curve, (b) mean break density curve. The experimental stress-strain curve
was assumed to be linear from the experimental strength with Young’s modulus given by
the rule of mixtures. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

G
@IES)

Whereas, according to [42], a traditional Weibull distribution was ap-
plied for the M40 composite using

e

where B, is a random number between 0 and 1, Lo, m, 0o, 0o1, M1, Go2
and m, are Weibull parameters and oy, is the corresponding strength of
the fibre element.

A stiffening effect was assumed for the T700S composite only, to be
consistent with [18]. Hence, the Young’s modulus of the fibres at a step
t was given as described in Toyama and Takatsubo [43]

u
%pa

Go1

u
%aq

% 24)

(Eg) = Eo + 1000(4133.6(c°),~70331(e°)?) (25)

The initial Young’s modulus, E,, was chosen to be consistent with [18].

The main issue in defining the model was to decide on the appro-
priate width, thickness and length of the RVE. These dimensions had to
be as close as possible to the real specimen but still ensure that the
model would be workable. To observe the influence the RVE size has on
the results, RVEs of a width and thickness of 50 X R, 100 X R, 150 X R
and 200 X R —where R is the fibre radius— were generated. Fig. 5
shows a cross-section view of an example of the fibre distributions
obtained.

The RVE length of the T700S was 1.54 mm for all cases, which
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Table 3

Composites Part A 107 (2018) 579-591

Obtained failure strains and stress with 95% normal distribution confidence intervals for 40 realizations of each RVE size and SCF model. T700S failure stress corresponds to the fibre
failure stress, whereas M40 corresponds to the composite failure stress. The CPU times are the mean values for each realization (simulation). Simulations were run on an Intel i7-5820 K

3.3 GHz processor. (*) Estimated values.

Composite Experimental test SCF model Variable RVE width and thickness size (R is the fibre radius)
50 X R 100 X R 150 X R 200 X R
T700S-Epoxy 1.89 % [18] Swolfs et al. Failure strain [%] 2.23 +0.07 2.18 +0.08 2.16 £ 0.07 2.15 £ 0.07
Failure stress [MPa] 5341 + 143 5287 + 121 5264 + 124 5243 + 123
CPU time [h:mm:ss] 0:01:28 0:06:00 0:15:10 0:34:50
Eitan and Wagner Failure strain [%] 2.33 £ 0.05 222 +0.04 2.15 +0.03 2.07 + 0.02
4740 MPa (*) Failure stress [MPa] 5491 + 121 5352 + 64 5219 + 62 5075 + 52
CPU time [h:mm:ss] 0:03:20 0:28:12 1:49:47 4:37:00
Zhou and Wagner Failure strain [%] 2.31 + 0.06 2.20 £ 0.05 2.13 + 0.05 2.07 + 0.04
Failure stress [MPa] 5486 + 112 5332 + 84 5203 + 104 5081 + 73
CPU time [h:mm:ss] 0:03:14 0:25:59 1:40:16 4:59:00
M40-Epoxy 0.976 % (*) Swolfs et al. Failure strain [%] 1.09 + 0.03 1.08 + 0.02 1.07 + 0.03 1.06 + 0.03
Failure stress [MPa] 2584 + 73 2561 + 51 2534 + 66 2511 + 60
CPU time [h:mm:ss] 0:02:08 0:13:36 0:45:41 1:09:00
Eitan and Wagner Failure strain [%] 1.18 + 0.03 1.13 £+ 0.03 1.11 + 0.02 1.09 + 0.01
2310 MPa [42] Failure stress [MPa] 2768 + 52 2657 + 57 2610 + 46 2572 + 31
CPU time [h:mm:ss] 0:03:42 0:22:43 0:42:28 2:53:00
Zhou and Wagner Failure strain [%] 1.14 + 0.02 1.10 + 0.02 1.08 £ 0.02 1.07 £ 0.02
Failure stress [MPa] 2676 + 50 2589 + 51 2546 + 49 2521 + 54
CPU time [h:mm:ss] 0:02:51 0:27:26 0:24:22 2:30:00
(a) ()
~
+0.150 0.150
© —— (EfEs) =371
£0125 (E/Eg) = 1.85 0.125
fud
Soa00{ | 7 (E/Eq) = 2.05 0.100
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=
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<
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Normalised distance (d§_ ;= (r;+ rg))/r;

Fig. 13. Hybrid stress concentration profiles. (a) for different ratios Ej/Eq between broken and intact fibres when both fibres belong to different fibre populations, (b) for the same fibre

population. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

corresponded to the length of the testing coupon [18]. However, for the
M40, the experimental length was 150 mm [42], which is too long to be
simulated while maintaining an appropriate small element length.
Thus, a first previous study was performed with the M40 composite to
determine the sensitivity of the results for both the RVE length L and
the element length I The results obtained from this analysis (Fig. 6)
suggested that an element length below 3 X R is small enough, while an
RVE length of 25 mm is acceptably long enough. Hence, the RVE length
L of the M40 composite was set to 25 mm. Consequently, an element
length [ of 3.5 x 1073 and 8.3 x 10~ mm for the T700S and M40 com-
posites, respectively, was applied. These values were taken as a com-
promise between accuracy and computational time.

In addition, the variability in the results caused by the randomness
of fibre position and fibre strengths had to be considered. Thus, all si-
mulations of each size and SCF model were solved 40 times with dif-
ferent fibre distributions, leading to a total of 480 simulations for each
composite.

Considering all the inevitable inaccuracies in the modelling as-
sumptions and in the input data, the predicted ultimate strain and
strength presented remarkable agreement with the given experimental
data for both the T700S and M40 composites, especially for the largest
RVE sizes. For the T700S composite, the proposed PFM predicted in the
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largest RVE, a mean failure strain of 2.14% with the Swolfs SCF model,
and of 2.07%, using the Eitan SCF and the Zhou SCF models which
over-predict the experimental result of 1.89%, but are close to the
2.17% prediction of Swolfs’ strength model [18]. Similarly, for the M40
composite the models predicted a mean failure strength between
2511 MPa and 2572MPa, albeit with a small over-prediction of
2310 MPa for the experimental one as well.

The obtained failure strain and stress decreased as the RVE cross-
sectional size increased; which is coherent with the size effect. These
findings suggest that an RVE with a width and thickness size of 50 X R
(adequate for elastic predictions according to [27,28]) is not enough to
predict unidirectional composite failure mechanisms. The error bars
within the 95% confidence intervals in Figs. 7 and 8, decrease with
larger RVE sizes.

The size effect was remarkably less pronounced in the Swolfs et al.
[18] SCF model. To better understand the differences between the SCF
models implemented, a plot example of the predicted SCF with all
models is shown in Fig. 9. As can be seen, the Swolfs SCF model pre-
dicts a much larger SCF at a smaller centre-to-centre distance, d;_,, to
the broken fibre. However, the SCF decreases much faster by in-
creasing, dqc,j, in comparison to the other models. Therefore, the Swolfs
SCF model is more localized than the others. This should explain why
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Fig. 14. Stress-strain curves obtained for hybrid M50S-AS4 fibre compared with Tavares et al. [12] FEM when varying the relative LE hybrid fibre volume fraction. (a) 0%LE, (b) 10%LE,
(c) 20%LE, (d) 25%LE, (e) 30%LE, (f) 40%LE, (g) 50%LE, (h) 75%LE, (i) 100%LE. For the sake of readability only 5 realisations are shown. (For interpretation of the references to colour

in this figure legend, the reader is referred to the web version of this article.)

the size effect is smaller with the Swolfs model: causing SCF in a
smaller centre-to-centre distance means that fewer fibres are needed to
accurately represent stress re-distribution around fibre breaks. The
Zhou and Wagner and Eitan and Wagner SCF models both estimate the
same stress peak, but the SCF along the ineffective length is different.
For the Eitan and Wagner model, the SCF distribution along the in-
effective length is narrower and affects only a small region of the intact
fibres close to the broken fibre. By increasing d,_;, the SCF distribution
along the ineffective length tends to coincide with the Zhou and
Wagner model.

The cluster evolutions, with the T700S composite for each SCF
model, are shown at different instants close to final failure in Fig. 10. It
can be observed that groups of clusters formed with all models. These
clusters increased in size as the load was incremented until a critical
cluster propagated and led to final failure. Even though the same fibre
strengths were used with all three SCF models, the failure procedure
was clearly different. Not only was the failure strain different, but so too
were the clusters formed at the different places in the model. Moreover,
final failure, due to unstable cluster propagation, also happened at a
different location.

By observing the results obtained, it is not possible to conclude if an
SCF approach is more accurate than the others. Indeed, the results
show that the SCF model has only a relative influence on the predicted
failure. The significant difference between the SCF models analysed is
the formulation basics and the nature of the identification parameters.
The Zhou and Wagner model and the Eitan and Wagner model are
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formulations totally based on theoretical shear-lag assumptions. These
models need a major number of parameters, which are not always
simple to estimate, such as ¢ or r,. However, the Swolfs SCF model
proposes a completely different approach, by where the SCF is obtained
by fitting results from a micro-mechanic finite element analysis using a
relatively large RVE with hundreds of fibres and a long length.

Both composites presented a different failure. The T700S composite
experimented some stiffness loss before final failure, whereas the M40
composite exhibited a very brittle failure, as seen in Figs. 11a and 12a.
This effect is highlighted by the evolution of the break densities in
Figs. 11b and 12b, as the curve of the M40 presents a more sudden
degradation than that of T700S. The break density of T700S was over-
predicted by the model compared to the experimental results, as in
Swolfs et al. [18], which could be the consequence of inaccuracies in
the model or in the experimental data. A summary of the results ob-
tained is presented in Table 3. The total computational time is also
shown for each set of simulations and presented a strong exponential
increase by increasing the width/thickness of the RVE. The simulations
using the Swolfs SCF model needed smaller computational time in the
PFM. However, it must be remarked that the two constants (P, and P,)
used by this SCF model are obtained from micromechanical finite
element analyses which represent a considerable effort.

3.2. Hybrid UD AS4-M50S carbon fibres/epoxy

A UD intrayarn hybridization within M50S carbon (LE fibre) and
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reader is referred to the web version of this article.)

AS4 Carbon (HE fibre) with epoxy matrix was simulated at different LE
relative hybrid volume fractions. All data, shown in Table 2, was taken
from Tavares et al. [12]. In order to carry out a clean comparison with
[12] FEM results, the simulations were performed using the same RVE
dimensions. Thus, RVEs with width, thickness and length of 15 X R
were generated, with R being the largest fibre radius in the RVE. It is
important to remark that while such a small RVE is not big enough to
properly represent the failure process accurately, it is the appropriate
configuration to compare the PFM simulation with the micro-mechan-
ical FEM results. A Weibull distribution extrapolated to the total gauge
length (instead of the element length) was also used:

where the element length L was set to 0.35 x 107> mm.

The SCF model used was from Swolfs et al. [18]. In a hybrid
composite the appropriate SCFs profiles depend on the stiffness ratio
between the broken and the intact fibre (Ej/E,;). Three combination
cases are then possible: (i) a broken LE fibre causing SCF to an HE fibre
(Ej/E; = 2.05), (ii) a broken HE fibre causing SCF to an LE fibre
(Ej/E; = 0.49), and (iii) a broken fibre (LE or HE) causing SCF to a fibre
of the same population (Ej/E; = 1). Swolfs et al. [39] provided the SCF
for Ej/E; = 3.71 and E;/E, = 1.85. Thus, interpolation and extrapolation

was performed in between to obtain the SCF for E/E, = 2.05 and
Ej/E; = 0.49, respectively. These profiles are shown in Fig. 13a. When

L

i

o
PByg = 1—exp| —— b4
o\ % (26)
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either a broken LE fibre causes SCF to an intact LE, or a broken HE fibre
causes SCF to an intact HE fibre, the profile shown in Fig. 13b was
assumed, which was also taken from [39]. Thus, the corresponding
parameters P, and P, from Table 1 are P, = 2.982, P, = 3.068 for
Ej/Ey = 3.71, P, = 1.908, P, = 1.975 for Ej/E, = 185, and
P, = 3.656, P, = 3.053 for the SCF profile between fibres of the same
population. Note that for the two non-hybrid cases (a 100% HE com-
posite and a 100% LE composite), the same Swolfs et al. [18] SCF
model used in Section 3.1 was applied. Moreover, it is worth men-
tioning that the stress re-distribution between fibres of the same type
(Fig. 13b), which share the same stiffness and radius, differs from the
one obtained between fibres of different type (Fig. 13a), with distinct
stiffness and fibre radii. Therefore, the SCF for E;/E; = 1 does not fit in
between the curves of Ej/E, = 0.49 and E;/E, = 1.85.

Within each hybrid relative volume fraction modelled (see Fig. 14),
40 simulations were solved leading to a total of 360 simulations, with
each set of 40 simulations taking approximately 9 min to be completed.
The tensile stress-strain curves obtained are shown and compared with
the [12] FEM results in Fig. 14 at LE hybrid volume fractions of
0, 25, 50, 75 and 100%. A good agreement was obtained, which led to
similar failure responses.

Pseudo-ductility was predicted at LE relative volume fractions be-
tween 10 and 30%. The other composites either failed prematurely, or
the interaction between fibres was not evident enough. This failure
process is highlighted in Fig. 15. For nearly all the hybrid
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configurations it is possible to observe that the LE fibre break density
does not increase once a certain point is reached. That means that the
LE fibre is fully fragmented and is incapable of breaking further, even
when the applied load is incremented. At low LE volume fractions be-
tween 10 and 30%, the breaks of the LE fibre saturated while the HE
fibre was failing, which led to pseudo-ductility until the final failure.
However, at higher LE volume fractions the failure was sudden and
brittle. These results demonstrate that the proposed model is able to
capture fibre fragmentation, which is one of the most relevant me-
chanisms associated to pseudo-ductility.

The hybrid failure strain is also presented in Fig. 16. For LE volume
fractions lower than 70%, the hybrid failure strain was considered as
the corresponding strain at the second maximum in the stress-strain
curve, which corresponded to the failure of the HE fibre in the hybrid.
However, for larger LE volume fractions, the first maximum was con-
sidered as failure strain instead, because the drop in stress afterwards
did not show any evidence of a second maximum. These failure strain
values correspond to the failure of the LE fibres.

The small discrepancies between PFM and FEM are attributed to the
shear-lag model, the prediction of SCF and, in particular, the omission
of dynamic phenomena. Nonetheless, the proposed model predicted
similar results using a very simple model that can be run on a regular
computer in a short time, whereas Tavares et al.’s [12] model requires
an enormous computational effort in a high power computational fa-
cility.

Future work should try to address the problems omitted here such as
matrix damage, thermal residual stresses and dynamic effects. Further
parametric studies to design hybrid configurations to maximise pseudo-
ductility and the effect of unknown parameters such as the effect of
debonding or the effect of the size in the hybrid effect should also be
included.

4. Conclusions
A 3D Progressive Failure Model based on the chain of bundles ap-

proach [19], was developed and validated. The model accurately re-
presents the failure curve of unidirectional composite materials with a
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random distribution of fibres. A complete stress distribution is obtained
by associating a damage variable to the loss of stress transfer capability
along the ineffective length, which produces a reduction of local ef-
fective stiffness. Consequently, local stress concentrations are applied
through all stress recoveries, so that the neighbouring fibres are locally
overloaded. The method, formulated in an explicit form, leads to dif-
ferent deformations along the length of the model.

The model has been validated with results available in the litera-
ture. Each simulation, with different random distribution of fibres, has
been repeated multiple times to evaluate the uncertainly of the results.
For non-hybrids, T700S-Epoxy and M40-Epoxy UD composites were
simulated and compared to results from Swolfs et al. [18] and Koyanagi
et al. [42], respectively. Moreover, an RVE size with transversal di-
mensions larger than 200 X R is needed to capture the size effect in-
herent to the failure process, which is more exigent than the required
50 X R for elastic RVE predictions according to [27,28]. Three SCF
models corresponding to the models of Swolfs et al. [18], Zhou and
Wagner [37] and Eitan and Wagner [38] were compared and found to
have a slightly different failure prediction. A significant difference be-
tween these formulations is the parameters identification method. The
Zhou and Wagner model and the Eitan and Wagner model are entirely
based on theoretical assumptions. They need a significant number of
parameters and some of them are not easy to calculate or estimate.
Meanwhile, the Swolfs SCF model is parametrized with a simpler set of
values. The exact identification of these must be performed by a micro-
mechanical finite element approach. However, all three models led to a
similar failure procedure which showed a tendency to form clusters of
broken fibres and which led to final failure. In any case, the Swolfs SCF
model generates more localized stress concentration factors, leading to
predictions significantly less sensitive to the size effect when compared
to the other models. Finally, a hybrid carbon-carbon (M50S-AS4) epoxy
composite was simulated and pseudo-ductility was obtained at LE vo-
lume fractions between 10 and 30%. The results were compared with
those of Tavares et al. [12] micro-mechanical FEM and also obtained
good agreement, but with a much faster and simpler model than the
FEM is.
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This paper presents an analytical model to predict the stress redistribution around broken fibres in hybrid
polymer composites. The model is used under the framework of a progressive failure approach to study the load
redistribution around breaks in hybrid composites. The outcomes of the model are validated by comparing it
with a spring element model. Moreover, the approach is further used to study the tensile behaviour of different
hybrid composites. The results obtained show that the load redistribution around breaks depends on the stiffness

ratio between both fibres as well as the matrix behaviour considered and the hybrid volume fraction.
Furthermore, the different material parameters have a large effect on the tensile behaviour, with an increase of
ductility achieved if the failure process of the two fibres is gradual.

1. Introduction

Fibre hybridization is a potential solution to the quasi-brittle be-
haviour of fibre reinforced polymers (FRP), resulting in fibre tensile
failure with hardly any previous damage symptoms [1-5]. In a hybrid
composite, a Low Elongation (LE) fibre is combined with a High
Elongation (HE) fibre. This combination may lead to a larger failure
strain of baseline composites based on LE fibres, resulting in a hybrid
effect. Moreover, the failure process of the material can become gradual
leading to an increase of ductility [6,7]. It is currently accepted that
progressive failure, dynamic effects, and thermal residual stresses are
the main reasons to explain the hybrid effect [4,8,9].

The strength of the fibres is not deterministic and follows a statis-
tical distribution. When a fibre fails, the fibre locally loses its loading
capability, which is recovered by shear transfer in the matrix over a
distance called ineffective length. In this region the neighbour intact
fibres are subjected to stress concentrations. As the load is incremented,
clusters of broken fibres are created increasing the stress concentration
in intact fibres even further. In a non-hybrid composite this process
quickly leads to final failure, whilst in a hybrid composite the stress
redistribution around broken fibres is altered due to the presence of
fibres with different mechanical and geometrical properties [10]. These
differences may alter and delay the formation of clusters leading to

* Corresponding author.
E-mail address: josemanuel.guerrero@udg.edu (J.M. Guerrero).
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hybrid effects [11-13]. However, it remains to be understood if final
failure happens either by the accumulation of damage and clusters or by
the unstable propagation of a large critical cluster [4].

Different models that attempt to represent the failure process of
composite materials and the stress redistribution around breaks are
available in the literature. These models can be classified as Global
Load Sharing (GLS) and Local Load Sharing (LLS). In GLS models, the
stress loss by a broken fibre is redistributed equally among all intact
fibres [1,14-17]. As a consequence, such models cannot predict the
formation of clusters, which in general leads to a large overprediction of
the failure strength. Nonetheless, GLS models can capture some trends
affecting the failure process such as fibre fragmentation or the effect of
the fibre strength variation [18,19].

In the LLS models, the load of broken fibres is redistributed into the
closest intact fibres allowing to capture the formation of clusters. In
these models, different modelling approaches exist [20]: analytical
models [21-23], spring element models [24-26], fibre bundle models
[2,11] and micromechanical finite element models [18,27,28]. Though
all methods, in general, predict the failure strength accurately, all
predict different cluster formation and evolution due to the different
modelling strategies. Moreover, all models omit the dynamic effects and
overpredict the fibre break density compared with experiments [3,4].

Currently there is not any analytical model that can predict
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accurately the Stress Concentration Factor (SCF) around clusters of
broken fibres in hybrid composites taking into account the differences
in elastic and geometrical properties of the two fibres in the hybrid
[10]. Moreover, in depth parametric analysis of the load redistribution
around breaks in hybrid composites, and their effect on the tensile re-
sponse still remain scarce [2,11,12,18,24]. Furthermore, recent simu-
lations showed that the load redistribution around breaks in non-hybrid
composites is heavily influenced by the matrix behaviour [20]. How-
ever, such effects have not been studied with hybrid composites. It is,
therefore, vital to further understand the load redistribution and to
improve the available tools to predict this load redistribution as this is
believed to be the main mechanism that triggers final failure of com-
posites.

In this work, a new analytical model to compute the load redis-
tribution around a cluster of broken fibres in a hybrid composite is
presented. The model is an extension of the non-hybrid model pre-
sented in St-Pierre et al. [22]. The analytical model is used within the
framework of a progressive failure model approach [2] to study the
load redistribution around broken fibres in different hybrid composites
using both a plastic and an elastic matrix. The model is validated by
comparing with the extension of the Spring Element Model (SEM) to
hybrid composites proposed by Tavares et al. [24]. Furthermore, the
tensile failure of different hybrid composites is simulated using the
same approach with the objective of understanding the influence of the
modelling parameters on the macroscopic response. These simulations
are also validated and compared with the SEM.

2. Modelling strategy

In this work, a new analytical model to predict the SCF around
broken fibres in hybrid composites is presented. The analytical model is
used within the framework of a Progressive Failure Model (PFM) [2]. In
the PFM, a three dimensional Representative Volume Element (RVE)
containing a random distribution of fibres is used. By applying known
functions to predict the load redistribution around broken fibres, the
PFM can simulate the tensile failure process of composite materials,
capturing fibre clustering, fibre fragmentation and stiffness loss. This
model is reviewed in the next sections where also the new analytical
model to predict the SCF around breaks is presented.

To validate the new proposed model used in PFM, the obtained
results are compared with the SEM. The SEM was firstly developed by
Okabe et al. [26,25,29] and was recently extended to hybrid compo-
sites, damageable interfaces, and random fibre microstructures by Ta-
vares et al. [24]. The SEM consists of a more complex three dimensional
RVE where the fibres are longitudinal tensile springs connected by
transverse springs representing the matrix. Unlike the PFM, the SEM
can predict the load redistribution around breaks inherently from the
equilibrium equations, being a finite element model. However, SEM is
computationally more expensive than PFM. Further details of the SEM
can be seen in Tavares et al. [24].

2.1. Progressive failure model

The PFM consists of a RVE of width a, height b and length L con-
taining a random distribution of fibres of a given radius. The fibres are
divided into elements of length [ along their longitudinal direction,
leading to a succession of planes. Each fibre is denoted with the sub-
index g € [1,..., Nj|, while each plane is denoted with the sub-index
p € [1,..,N,], where N; and N, are the number of fibres and planes
respectively, see Fig. 1. Each element has a different strength according
to a statistical distribution. Once an element fails, a damage distribution
is applied over the ineffective length of the broken fibre, whereas stress
concentration is applied into the neighbouring intact fibre elements.

2.1.1. Constitutive equation
The constitutive equation relating the stress of each element, g, ,,
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and the strain ¢, is

q

P.gq

SChhq
= Eq(1 — Dpg)gp
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@

where SCF, , is the stress concentration factor of element p, g, E is the
Young’s modulus of fibre g, D, is the state damage variable, which is
equal to 1 for broken elements, equal to O for intact elements and in
between for elements in any stress recovery, ¢, is the strain of the plane
(which is considered to be the same for all elements of plane p) and Q,
is a stress ratio which enforces load equilibrium by modifying the stress
concentration according to the strain level. Readers are referred to
Guerrero et al. [2] for an in-depth description of the model.

The evolution of D,, and SCF,,, depends on the model used to
predict the ineffective length and the SCF around breaks, respectively.
Even though any model may be applied to predict both, it is important
to use models that are consistent for both parameters. In the following
section, the model to predict damage is explained, whereas the new
model for predicting the SCF is explained in Section 2.1.3.

2.1.2. Functions for ineffective length

In this work two different behaviours to simulate damage are con-
sidered, i.e. the matrix is plastic or the matrix is elastic.

When the matrix is plastic, a modified version of Kelly-Tyson shear-
lag model [30] is adapted as given in St-Pierre et al. [22]. This approach
adds a factor, H, which scales the ineffective length with cluster size.
Here, two broken fibre elements belong to the same cluster (c), if the
distance between the centres of both fibres is below four times the fibre
radius and both elements are in the same plane p. Each cluster is re-
presented with the sub-index p, ¢, with ¢ € [1,...,N§] where N; is the
number of clusters at plane p. This means that the scaling effects depend
on the element length, I. Nonetheless, it was verified that varying the
element length does not significantly change neither the macroscopic
response of the composite nor the damage development. The ineffective
length of a broken fibre in cluster p, c is then
"p,c”quEqE

E,
95
———H, g, =
'p.cEp
27

Lin
P.q
Cpey

2

where 7, is the matrix shear yield stress, R, is the fibre radius,
Cpe =48 Ny, where n, . is the number of broken fibres on cluster p, ¢
and s is the mean centre-to-centre distance between each fibre and its
closest neighbour. Here, it is estimated with
s = ((RuVi + RpV)/ Vi) 7/ Vi, where Ry and Ry, are the fibre radius of
fibre populations 1 and 2 respectively, V; is the overall fibre volume
fraction and V4, and V4, are the fibre volume fraction of each population
respectively (V; = Vi + Vp). It is worth mentioning that here, s, is not
the average inter-fibre spacing of the cluster, but the average inter-fibre
spacing of the overall RVE. That is, because the ineffective length
should depend not only on the fibres in the broken cluster but also on
the fibres that surround it.

The damage of element p, g according to each break in the fibre q at
each plane i follows a linear recovery with

Ln—li-pll
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max
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0 otherwise.

3)
If the matrix behaves elastically, the Cox’s shear-lag model [31,32]

is adapted as in [20]. Then the ineffective length is
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where G, is the matrix shear modulus. It should be noted that this
length corresponds to a recovery of 99.9% of the fibre stress [20]. The
damage is then computed with
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Fig. 1. Schema of the RVE used in the PFM: a) 3D view, b) plane view.
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2.1.3. Stress concentration factor model

Different approaches have been used to predict the SCF around breaks
[3,22,33,34]. Recently, St-Pierre et al. [22] presented a model capable of
predicting the SCF around co-planar clusters of broken fibres in non-hy-
brid composites. St-Pierre’s et al. [22] approach is adapted and extended
here to work with hybrid composite materials. The reason why this model
was chosen over others is related to the fact that the model predicts the
SCF around clusters instead of isolated fibre breaks, and it is built on a
simple but solid physical background. The model assumes that the SCF

Lin —11i-pl . X . ) .
"‘T V(e lli—pl <Ly, Plastic matrix
lie N
M o=
o exp| - e 26mRn Y (G, c) lli—pl <L
2nicRE [ RVt RV e lie
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27ni,c R | o (5 - 2R01VELT RV > 2ie
R S

around a cluster of broken fibres takes a power-law shape.

In this work, the increment of SCF for an intact element p, g due to
cluster i, c is represented with two functions, § and A, so that
ASCF = §-1. The function § depends on the in-plane distance (r;_.)
between the geometrical centre of coordinates of cluster i, ¢ and intact
element p, g, while 1 depends on the plane position along the in-
effective length. As each cluster may contain broken fibres of each type,
an intact element may receive SCF from broken fibres of the same
population or the other, leading to four combinations of &

Rie \* Rie \*
5“(q—c)=l“w( 'c) 521(q—c)=122i‘c(yqic)
_ Rie \* _ Rie \*
512(1;7() =Ly, (rqﬂ-) 511(.14) = Ly, (,qﬂ.)

T
where 511([,,0 and 522@7() represent the increment of SCF that an intact
element of fibre population 1 and 2 respectively receives due to broken

©

A.2 Paper B — An analytical model to predict stress fields (...)

566

fibres of its own type in cluster i, ¢, while 512((‘7” and 521@4) are the
increment of SCF that an element of fibre population 1 and 2 respec-
tively receives due to broken fibres of different type in clusteri, c. R; . is
the equivalent radius of the cluster, estimated with 7R2 = n;cS%,
where S;. is the average fibre spacing of the cluster,
Sic = ((ny, R + Ny, Rep)/ni )7/ Vi, where ny, , and ny, , are the number
of broken fibres of population 1 and 2 respectively in cluster i, ¢ and
nie = ny,, + ny,. The exponent a is an input parameter which controls
the maximum value of SCF and the shape of the curve. According to the
literature, this value can be adopted as « = 2 for a plastic matrix and
a = 3.8 for elastic matrix [20,22]. The terms I are constants, which are
determined later in this section, see Eq. (10).

Similarly, as there are two fibre populations, each cluster i, ¢ has
two ineffective lengths, the ineffective length of broken elements of
type 1, L{fc, and that of broken elements of type 2, inffc. Therefore, two
functions appear for 1 as

Elastic matrix

Elastic matrix

@)

where 2,,_, represents the evolution of 8y, , and &y, ,, along L{ffc,
while 4, _; represents the evolution of 85, , and 1z, _,, along L. En
and E, are the Young’s modulus of fibre type 1 and 2 respectively.

Because of load equilibrium, the load loss of each fibre population in
the cluster, must be redistributed into the remaining intact fibres at
same plane. Thus, the following equilibrium equations arise

R Rie \* R Rie \*

TREmy, 0 = Sl Iu(T:) o Va2 edry—e + fo 121,Vt(ﬁ) 0 Vi 2ty e diy—c

kB 08 = L5 I (B Vo viamn_odnye + 5 1 (R0 Y o vz e ar
212 002 i e 222 | 2 b227lg—c dlg—c ki M2ic\ e ) O 127 —c dlg—c
®)
where R, is the RVE equivalent radius, R, = \/(a-b)/7, while o° and o5°
are the stress at infinite for each fibre population respectively.
Assuming that the strain is the same for both fibre populations,
o°/Epy = 05°/Ep. In addition, it is assumed that two intact fibre ele-
ments of different type located at the exact same distance to the same
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break, receive the same increment of force due to the break. This as-
sumption means that the overload transferred from a break to an intact
fibre is independent of both the Young’s modulus and the fibre radius of
the intact fibre. This fact is supported by the results presented in Swolfs
etal. [10]. As isostrain conditions are considered, force equality implies
that the increment of stress concentration solely depends on the stiff-
ness and cross-sectional area of both fibres leading to

RE
EpRE

Ith,c =

by = Iy,

9
These conditions imply that a fibre with lower stiffness located at the
same distance to the break is subjected to a higher SCF than a fibre with
a higher stiffness, which is consistent to the general observations seen
in the literature [10,12]. By substituting the relation between of* and
05° and Eq. (9) into Eq. (8), the constants Iy, ,, I, hy, and I, are
obtained as functions of a:

2 R2
_ mefaRe fora =2
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Le 1002 e otherwise
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21 =
LC Enmy KRS (€ 22) otherwise
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e it Ry =) otherwise

2E¢1 (R Vi + RE Vi) (RZ, (1/ Ri,e)* — RE(L/ ROY) (10)
The model is very powerful as it takes into account the cluster size, RVE
size, volume fractions, fibre radius and elastic properties of each fibre
population with simple analytical equations. Moreover, it can represent
different matrix behaviours or effects not present into the model by
adjusting the value of a.

As there can be multiple clusters along the RVE, a superposition rule
is considered. Therefore, the total SCF for an intact fibre element is
obtained by linear superposition of the SCF of all clusters. Nonetheless,
the SCF of a given element is bounded according to shear-lag transfer.
This limitation ensures that there is a stress continuity between ele-
ments inside any ineffective length (elements where 0 < D, ; < 1) that
are not affected by SCF, and subsequent intact elements (D, = 0),
which can be affected by the SCF. Thus, the total SCF of an intact
element p, q is given by

SCFyq) Vp,q: Dpg=0

otherwise,

J2Ci

in(SCF?
SCEy, = {mm(
1

an

where SCFqu is the SCF predicted by the linear superposition of the

contribution of all clusters using the previous é and A functions given by
Np Nf

SCFpq =1+ D7 ) Sug o+ Oizq_ohzpyy Vicne>0 & gefl

SCFRq =1+ D7 2} 8y p2pp + Oq_olipy Vicme>0 & qef2
i=1 =1

12)

where f, and f, are fibre populations 1 and 2 respectively. SCFlﬂjq is the
SCF limitation for broken fibre g to achieve stress continuity. This limit
for intact element p, q is calculated according to the slope of the stress
gradient of the nearest ineffective length, 1/L;5, in the fibre g, multi-
plied by the distance between planes i and p:
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It should be noted that the broken and damaged fibre elements are
not excluded from Eq. (8). Therefore, the SCF of each intact element is
computed independently of the percentage of broken and damaged
elements. However, the percentage of broken and damaged elements is
taken into account to compute the strain of each plane, ¢, and the stress
ratio, Q,, which affect the final stress of the elements, o, 4. This is ex-
plained in detail in Guerrero et al. [2].

3. Methodology

In a hybrid composite the stress redistribution around broken fibres
depends mainly on the elastic and geometrical properties of both fibres,
the matrix behaviour (plastic or elastic), the hybrid volume fraction as
well as the local fibre arrangement [10,11]. All these properties will
affect the creation and propagation of clusters that lead to final failure.
In this work, the effects of the Young’s modulus of the fibres, matrix
shear strength (plastic or elastic) and hybrid volume fraction on the
stress redistribution around a broken fibre are investigated in detail.
Later, their effect on the tensile failure behaviour are also evaluated.
The simulations are performed with the PFM using the new SCF model
presented in previous Section 2.1.3. All simulations are compared with
the SEM [24] to validate the results.

A modified version of Melro’s et al. [35] random fibre generator is
used to create a RVE of width, thickness and length of 75 X 75 x 300
times the fibre radius. The element length is always 2 times the fibre
radius, with both fibres in the RVE having the same radius. The same
RVE is used for both PFM and SEM when studying the same problem.
Note however that a new RVE is generated for each case in study. To
observe the differences in load redistribution and failure process with
different properties, three hybrid composites are considered by com-
bining different fibres. These hybrids correspond to AS4-Eglass, M50S-
AS4 and AS4-T800G, whose properties are shown in Table 1. In all
cases, the matrix corresponds to epoxy with elastic properties
E, = 1260 MPa and G, = 450 MPa. To understand the impact of the
matrix behaviour, all cases are simulated with plastic (z; = 50 MPa) and
elastic matrix (; = o). In addition, each hybrid is simulated with a
hybrid volume fraction of 25%, 50% and 75%. Here, the Hybrid Vo-
lume Fraction (HVF) is referred to be as the percentage of HE fibre
volume fraction, Vg, over the total fibre volume fraction,
HVF = (Vie/V;)-100.

In the case of SEM, the model calculates all unknown variables di-
rectly from the equilibrium equations, as a function of the material
properties and RVE geometry, being a very robust tool. However, it is
less efficient computationally than the PFM. For the PFM instead, the
ineffective length and SCF need to be applied according to the matrix
behaviour. In all cases where the matrix is plastic (z; # o), the in-
effective length and damage are simulated within Egs. (2) and (3). In
these cases, the SCF is calculated using a = 2. However, when the
matrix is elastic (z; = o), then the ineffective length and damage are
simulated with Egs. (4) and (5) and « = 3.8. It is worth mentioning that,
when the matrix is plastic, its behaviour is considered to be perfectly
plastic in the PFM, whilst it is elastic-plastic in the SEM.

Table 1
Fibre properties.

Fibre type Fibre properties ‘Weibull properties
Eg [GPa] Ry [mm] m [-] op [MPa] Lo [mm]
AS4 230 35103 10.7 4275 12.7
M50S 480 9 4600 10
T800G 295 4.8 6800 10
E-glass 70 6.34 1550 24
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To investigate the stress redistribution around breaks, a broken fibre
is arbitrarily placed around the middle of the RVE for each hybrid
composite. This broken fibre is either the fibre with lower Young’s
modulus (LM) or the fibre with higher Young’s modulus (HM). Usually,
the LM fibre corresponds to the fibre with larger failure strain, i.e. the
HE fibre, whereas the HM fibre corresponds to the fibre with smaller
failure strain, i.e. the LE fibre. Even tough the LE fibres will break be-
fore the HE fibres, it is important to study the HE fibre load redis-
tribution as well as towards final failure the HE fibre also fails. A remote
tensile strain, €, of 2% is applied and the consequent obtained load
redistribution around the broken fibre is characterized with three dif-
ferent metrics. The first one is the maximum SCF obtained on intact LM
and HM fibres. The SCF is calculated as the ratio between the actual
stress on the fibre over the stress if there were no breaks, i.e. Ere. The
second metric is the ineffective length of the broken fibre, which is
defined as the distance where the broken fibre recovers 90% of the
nominal load, whereas the last metric is the radial influence length.
This is defined as the maximum distance in the break plane in which the
SCF is higher than 1%. The results shown for both the ineffective length
and radial length are normalised by the fibre radius. Ten realisations
are performed for each case, leading to a total of 360 simulations.

To understand the influence of the modelling parameters on the
tensile failure process, the same hybrid composites are simulated under
fibre tensile loading. Moreover, non-hybrid composites of each fibre
type are also simulated. To do so, a random strength, o“,‘}‘;, is generated
for each element in the RVE according to the Weibull distribution [36]
with P,y =1 — exp(—(l/Lo)(o;lé/oo)'“), where P, is a random number
between 0 and 1, while ), L, and m are the corresponding Weibull
parameters of the fibre element shown in Table 1. To compare the re-
sults between simulations, different metrics are proposed based on lit-
erature [37]. The first metric is the yield stress, o¥, which is understood
as the knee point where the stress—strain curve deviates from the initial
linear elastic regime at a strain of 0.1%. The second metric is the ductile
strain, €9, defined as the strain difference between the strain at peak
stress, and the initial slope line at the failure stress level
(¢4 = ¢ — g"/E,), where E, is the initial Young’s modulus of the
composite given by the rule of mixtures. The third metric is the peak
stress, o', whereas the fourth metric is the strain at peak stress, "I,
These metrics are summarized in Fig. 2. The fifth metric is the cluster
size at peak stress, N¢. Here, two broken fibres belong to the same
cluster if the distance between centres is smaller than 4 times the fibre
radius and the axial distance between break planes is smaller than 10
times the fibre radius [3,24,20]. It should be noted that the definition of
clusters used to assess the damage evolution explained in this section, is
different than the one used for calculating the SCF and ineffective
length shown in previous Section 2.1.2. This is done to allow a fair
comparison between the analytical and numerical model, and other
models in the literature. The sixth and final metric is the fibre break
density at peak stress, 5. Five realisations are performed for each case

V)

of i T
07% Strain ¢
Fig. 2. Main metrics used to characterize the tensile behaviour of hybrid
composites.
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in study, leading to 110 simulations in total.

4. Stress redistribution around breaks

In this section the stress redistribution around a broken fibre is
analysed. A comparison of the results between the SEM and the ana-
lytical SCF model used in the framework of the PFM is performed to
asses the validity of the analytical model. The overall volume fraction
considered was 60% for all cases studied. It should be noted that in this
section, because the fibres have no strength, the HVF is referred to be as
the percentage of LM fibre volume fraction over the total fibre volume
fraction.

4.1. Stress concentration factor

The trends predicted by both PFM and SEM are the same for all
hybrid materials and matrix behaviour, even though the absolute values
are not the same. However, their relative difference is remarkably small
considering the simplicity of the analytical model. These results justify
the assumption done in Eq. 9.

In Fig. 3, the SCF around a broken HM fibre is shown with a plastic
matrix and an elastic matrix as a function of the HVF for the different
hybrids in study. The SCF calculated is larger for the LM fibres when
compared with the HM fibres. As the LM fibres have a lower stiffness,
their stress before the break was lower compared with the HM fibre.
Hence, the relative increase of stress is larger on the LM fibre causing a
larger SCF [10].

Interestingly, the SCF on HM fibres decreases when adding LM fi-
bres, while the opposite happens for the SCF on LM fibres. That should
be related to the fact that by increasing the LM fibre content, the dis-
tance of the HM fibre to the break increases, and the load to redistribute
is mainly taken by the LM fibres. This will cause larger hybrid effects at
smaller HM volume fractions as has already been reported in literature
[2,18,12,11]. Moreover, the SCF on HM fibres is not strongly affected
by the LM stiffness, whereas the opposite happens with the SCF on LM
fibres. The larger the ratio between the stiffness of the HM and LM fibre
is, the larger is the SCF obtained on the LM fibres. This fact agrees well
with the findings of Swolfs et al. [10].

The matrix behaviour i.e. plastic or elastic changes the maximum
value of SCF, being larger with elastic matrix, however, the trends are
the same. The reason for this difference is the fact that, in an elastic
matrix, there is no upper limit for shear stress transfer between fibre
and matrix, hence causing a more localised effect and larger SCF.

In Fig. 4 the SCF around a broken LM fibre is shown with both
plastic and elastic matrix for different HVF and materials. The SCF on
HM fibres again decreases by increasing the content of LM fibres, whilst
the opposite happens with the LM fibres. Interestingly, the SCF on both
HM and LM fibres are smaller than in the previous case. That is related
to the fact that the LM fibre carried less load than the HM fibre before
failure, hence resulting in smaller SCF. It should be noted however, that
in reality the LM fibres usually fail after the failure of multiple HM
fibres. Thus, the SCF obtained will be much larger than the ones pre-
dicted here, as the HM fibres no longer support load. The SCF on the
LM fibre is not strongly affected by the stiffness of the HM fibre.
Nonetheless, the SCF on the HM fibre is highly influenced by the
stiffness of the LM fibre. A smaller stiffness ratio between HM and LM
fibre leads to a larger SCF on the HM fibres, which is the opposite as
observed in the previous case.

Although the models are able to take into account fibres with dif-
ferent radii [24,2], in this study the fibres were considered to always
have the same radii. Otherwise, it would add another layer of com-
plexity due to higher differences in the microstructures of the compo-
sites analysed.
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Fig. 3. Maximum stress concentration factors around a broken HM fibre as a function of the hybrid volume fraction for different hybridizations: a) on HM fibres with
plastic matrix, b) on HM fibres with elastic matrix, ¢) on LM fibres with plastic matrix, d) on LM fibres with elastic matrix. The average of 10 realisations are shown
(7, = 50 MPa for plastic matrix). Note that in a) and b), all PFM results are the same.

4.2. Ineffective length

In Fig. 5 the ineffective length is shown for a broken HM fibre and a
broken LM fibre with both plastic and elastic matrix as a function of the
HVF for each material system.

The ineffective length is larger for the HM fibre than for the LM
fibre. That is due to its stiffness: a larger stiffness means that a larger
load needs to be recovered, hence causing a larger ineffective length.
Interestingly, the ineffective length is not significantly affected by the
stiffness of the other fibre in the hybrid, which corresponds well to the
findings of Swolfs et al. [10]. Similarly, the HVF has a small effect on
the ineffective length. In Fig. 5d), a minimum can be observed for the
SEM at HVF = 50%, however, the difference is small compared to other
volume fractions. In the same way, in Fig. 5 b) and c) a small increase of
ineffective length is observed in the SEM for HVF = 75%. In any of these
cases, the small difference in ineffective length due to the HVF should
be related to the changes in the microstructure, as the ratio between
HM and LM fibres is different.

The ineffective length exhibits a large change between plastic and

elastic matrix, the same trend that was observed for the SCF. The in-
effective length is smaller for an elastic matrix, as there is no limit in
shear stress transfer, making it possible for the stress to be recovered in
the broken fibre in a shorter region. With the plastic matrix the shear
transfer is limited by the matrix shear strength resulting in a larger
ineffective length. In any case the trends remain the same for both
matrix behaviours.

In general, the results predicted between the SEM and the analytical
models in PFM follow similar trends, although some differences are
observed. In the PFM the ineffective length is always smaller than in
SEM. This is specially evident for the plastic matrix cases. There are two
main reasons which can explain this difference. Firstly, with a plastic
matrix, the behaviour of the matrix is elastic-plastic in the SEM, whilst
it is perfectly plastic in PFM. Because of this, the shear stress is constant
along the ineffective length, causing an underprediction of the in-
effective length. This issue could in principle be improved by using an
elastic—plastic model in PFM instead of a perfectly plastic. The second
reason could be related to the microstructure. In the SEM, the in-
effective length of each broken fibre depends on the local stiffness
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Fig. 4. Maximum stress concentration factors around a broken LM fibre as a function of the hybrid volume fraction for different hybridizations: a) on HM fibres with
plastic matrix, b) on HM fibres with elastic matrix, ¢) on LM fibres with plastic matrix, d) on LM fibres with elastic matrix. The average of 10 realisations are shown
(7, = 50 MPa for plastic matrix). Note that in c) and d), all PFM results are the same.

around the broken fibre. This means that if the broken fibre is sur-
rounded by more LM fibres (with lower stiffness), then the ineffective
length of the broken fibre is higher. This explains why the SEM predicts
an increase in ineffective length at larger HVF. However, this effect is
unlikely to be captured by a simple analytical model.

4.3. Radial influence length

The radial influence length for each material system, as a function of
the HVF is shown in Fig. 6.

As it can be observed, the radial influence length is larger when a
HM fibre is broken than when a LM fibre is. That is because the HM
fibre has a larger stiffness, causing a larger load to be redistributed over
intact fibres leading to a larger radial length. In most cases a small
increase of the radial length can be observed by increasing the HVF.
This increase is larger for the SEM than for the PFM, although overall
the trends are similar. In general, the radial influence length is slightly
larger for the PFM than for SEM.

Overall the radial length is affected by the stiffness of the fibres. A

A.2 Paper B — An analytical model to predict stress fields (...)

larger ratio of stiffness between HM and LM fibres causes a larger radial
influence length when the HM fibre is broken. The opposite trend is
observed when the LM fibre is broken. This observation corresponds
well to what was observed with the SCF.

Changing the matrix from elastic to plastic maintains the same
trends as it was seen with the SCF and ineffective length. As expected,
the radial length is smaller with an elastic matrix, which is again caused
by the no upper limit in shear transfer between fibre and matrix. In any
case, the radial influence length is heavily dependent on the micro-
structure and its average value for each realization performed presents
an error of approximately + 1 mm/mm.

5. Tensile behaviour

In this section the tensile failure of the hybrid materials cases used
in Section 4 is simulated under strain controlled conditions. A com-
parison of results is performed between SEM and PFM. In this section,
the total fibre volume fraction considered is 50%.

A summary of all the results obtained for the hybrid materials with
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Eyy/Epy = 480/230 PEM and Eyy/Epy = 295/230 PFM are the same.

plastic matrix is presented in Table 2, while the results with elastic
matrix are shown in Table 3. The results for the non-hybrid cases are
summarized in Table 4. The presented results, correspond to the
average of 5 realisations for each case. The average computational time
for performing one run of the cases studied was 1314 s for the SEM,
whereas it was 114 s for the PFM. Therefore, the simplified model is
approximately 10 times faster.

The stress-strain curves obtained for all materials with a plastic
matrix are shown in Fig. 7. The tensile behaviour predicted by the two
modelling approaches is in good agreement for all cases despite of the
differences in the modelling assumptions. In general, the PFM over-
predicts the final failure of the composite, leading to larger peak
stresses, yield stresses, strain and break densities, when compared with
the SEM.

The failure process is seen to be very different for each hybrid
configuration and varies greatly with the HVF. For the AS4-Eglass
hybrid, no ductility is observed at the different HVF simulated.
However, at a HVF = 75%, there is a larger stiffness loss when com-
pared with HVF = 50% and HVF = 25% before the final load drop,
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which suggests that ductility could be present for HVF > 75%. This is
also indicated by the fibre break density evolution presented in Fig. 8.
As it can be seen, the fibre break density increases exponentially for all
hybrid volume fractions leading to a brittle failure, nonetheless, this
increase is less abrupt for HVF = 75%.

For the M50S-AS4 hybrid, brittle failures are also obtained at HVF
of 25% and 50%. Nonetheless, a rather large ductility of around 0.5% is
predicted by the models for HVF = 75%, meaning that for this compo-
site material the failure process is gradual. This is clearly demonstrated
by the evolution of fibre break density, which increases linearly but not
exponentially, until final failure.

Similarly, a ductility of around 0.7% is observed within the AS4-
T800G hybridization at a HVF = 75%. However, by decreasing the HVF
brittle failures are obtained. In the case of HVF = 25%, the failure is
completely brittle whereas for the HVF = 50% two load drops can be
observed. The first load drop corresponds to the failure of the LE fibres,
whilst the second one corresponds to the failure of the HE fibres.
Nevertheless this case cannot be considered as ductile because the
failure is not really continuous.
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Table 2
Obtained results for all hybrid materials with plastic matrix.
Material SEM PFM
HVF oy Gult ed cult Ne¢ st oY ult od Zult Ne© st
[%] [MPa] [MPa] [%] [%] [-] [1/mm?] [MPa] [MPa] [%] [%] -1 [1/mm3]
Hybrid AS4-Eglass 25 1844 1858 0.101 2.026 5.2 2880 2009 2025 0.134 2.251 10.4 6195
50 1481 1494 0.101 2.067 4.4 2380 1624 1660 0.192 2.388 9.4 6712
75 1144 1153 0.124 2.201 4.0 2480 1239 1299 0.316 2.653 14.2 8141
Hybrid M50S-AS4 25 2163 2163 0.065 1.098 10.6 4235 2310 2321 0.091 1.199 8.6 7063
50 1955 1966 0.109 1.210 14.8 6435 2052 2060 0.119 1.275 7.0 6922
75 1680 1897 0.525 1.808 14.4 9692 1817 2020 0.517 1.893 60.2 16229
Hybrid AS4-T800G 25 2432 2444 0.115 2.076 7.2 3831 2604 2614 0.112 2.223 33.8 6397
50 2687 2720 0.157 2213 7.0 4719 2880 2908 0.141 2.345 11.6 7439
75 2978 3222 0.646 2.949 8.8 10670 3213 3533 0.760 3.282 31.0 21340
572
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Table 3
Obtained results for all hybrid materials with elastic matrix.
Material SEM PFM
HVF oY Sult ed cult N© st oY Sult od cult Ne¢ st
[%] [MPa] [MPa] [%] [%] [-] [1/mm3] [MPa] [MPa] [%] [%] [-1 [1/mm’]
Hybrid AS4-Eglass 25 2001 2002 0.070 2.144 16.2 5661 1927 1927 0.022 2.038 9.4 2471
50 1627 1635 0.102 2.253 18.6 6585 1648 1652 0.061 2.246 77.2 5739
75 1247 1315 0.531 2.900 135.2 22360 1290 1349 0.221 2.648 132.6 17150
Hybrid M50S-AS4 25 2278 2313 0.074 1.180 30.8 7958 2237 2237 0.039 1.107 33.2 5979
50 2069 2090 0.157 1.327 34.8 13141 2060 2075 0.064 1.229 116.0 8625
75 1923 2078 0.299 1.706 42.8 19782 1876 1893 0.069 1.358 80.0 6977
Hybrid AS4-T800G 25 2602 2656 0.063 2.194 49.3 9242 2583 2585 0.042 2.130 115.2 6073
50 2969 3495 1.557 4.199 4745.0 92451 3006 3414 0.539 3.127 1136.0 56394
75 3447 4576 1.054 4.326 159.0 63661 3525 4484 0.991 4.192 3909.8 78179
Table 4
Obtained results for all non-hybrid materials with plastic (7, = 50) and elastic matrix (7, = o).
Material SEM PFM
7 oY Sult ed cult N¢ st oy Sult ed ult N¢ st
[MPa] [MPa] [MPa] [%] [%] [-] [1/mm?] [MPa] [MPa] [%] [%] -] [1/mm3]
AS4 50 2252 2252 0.094 2.018 4.2 3265 2383 2391 0.105 2172 14.2 5927
0 2397 2397 0.065 2114 14.0 6482 2173 2173 0.009 1.887 8.2 1413
T800G 50 3605 3950 0.377 3.055 3.4 4940 3873 4388 0.416 3.376 6.0 7864
0 4615 5613 0.671 4.476 75.5 31195 4725 5708 0.935 4.785 1035.8 45807
M508 50 2388 2388 0.059 1.054 5.2 3477 2590 2592 0.074 1.150 8.0 7187
oo 2599 2599 0.058 1.141 17.4 7900 2385 2385 0.015 1.005 5.2 2604
E-glass 50 1043 1111 0.251 3.426 10.6 9479 1168 1263 0.316 3.859 22.0 18335
£ 1222 1301 0.246 3.964 47.8 26062 1244 1311 0.217 3.895 177.0 25973

In general, the predicted cluster size is larger for the PFM than for
SEM. The reason for this is likely to be related to the fact that final
failure occurs later in PFM. In any case, the cluster size predicted are in
general in good agreement with results of non-hybrid composites [3].
Similarly, the fibre break density is in general larger for the PFM for the
same reason, although in this case both models predict larger values
than seen in the literature [3]. The fibre break density seems to increase
with ductility. The larger is the ductile strain, the larger is the break

density. This is caused by the fact that final failure is being delayed,
leading to larger break densities. For the M50S-AS4 hybrid, the fibre
break density at maximum stress for HVF = 75% is more than 2 times
larger compared to HVF = 25%, being this increase from 4235 to
9692 mm~3 for SEM and from 7063 to 16229 mm~3 for PFM. Similarly,
for the AS4-T800G hybrid, the fibre break density at HVF = 75% is
approximately 3 times larger than at HVF = 25%, with an increase from
3831 to 10670mm~ and 6397 to 21340mm~3 for SEM and PFM
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Fig. 7. Simulated stress-strain curves for different hybrid materials at different hybrid volume fractions (HVF) using a plastic matrix. (a) hybrid AS4-Eglass, (b)

hybrid M50S-AS4, and (c) hybrid AS4-T800G. The non-hybrid composites are
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also shown.
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Fig. 8. Simulated break-density curves for different hybrid materials at different hybrid volume fractions (HVF) using a plastic matrix. (a) hybrid AS4-Eglass, (b)
hybrid M50S-AS4, and (c) hybrid AS4-T800G. The non-hybrid composites are also shown.

respectively. It is worth mentioning that both the cluster size and fibre
break density are here being compared with results of non-hybrid
composites, which are brittle and less damage tolerant than the ana-
lysed hybrids. Therefore, this comparison should be taken with care.
Nonetheless, although there is no certainty in the results for hybrid
composites, the models seem to partially capture the results in non
hybrid composites and their application to hybrid composites, although
debatable, can lead to important insights.

The predicted stress-strain curves using an elastic matrix are shown
in Fig. 9, while the fibre break density can be seen in Fig. 10. Both
models are again in good agreement for most material configurations,
although now the PFM is in general underpredicting final failure
compared to SEM. Nonetheless, the obtained stress-strain curves and
failure process differ greatly from the ones observed by using a plastic
matrix. Unlike the plastic matrix case, some ductility appears within the
AS4-Eglass hybrid at a HVF = 75%. However, a very small ductility is
predicted for the M50S-AS4 hybrid at a HVF = 75% compared to the
plastic matrix case. The differences between plastic and elastic matrix
are even larger for the AS4-T800G hybrid. With this material, the
ductile strain at a HVF = 75% is of 1%, which is much larger than the
0.7% predicted for plastic matrix. Similarly, at a HVF = 50% a large
ductility of 1.5% for SEM and 0.5% for PFM is predicted whilst no

ductility was present with a plastic matrix.

By further analysing the cluster evolution and break density with an
elastic matrix, larger differences appear in comparison with the plastic
matrix. For the ductile cases, the models with an elastic matrix predict a
much larger break density than with a plastic matrix. The cluster size is
also unrealistically large compared with experimental data [3]. This is
especially evident for the AS4-T800G hybrid, in which the cluster size
predicted by the models exceeds the number of fibres in the RVE for
HVF = 75% and HVF = 50%. This means that in some cases, some fibres
were broken more than once over the 10 axial element lengths con-
sidered, corresponding to 20 times the fibre radius. Therefore, the same
fibre was broken multiple times in the same cluster. This effect is even
more exaggerated due to the small Weibull modulus, m, of the T800G
fibre which causes a large strength variation for that fibre. However, it
should be highlighted again that both the cluster size and fibre-break
density are being compared with results of non-hybrid composites
which are brittle and less damage tolerant than the simulated hybrids.

For the cases of the non-hybrid composites the models are again in
good agreement. For these materials the final failure is brittle for all
cases, being similar between elastic and plastic matrix. However, the
fibre break density and cluster size are again very large for some cases
with elastic matrix and do not correspond well to data available in the
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Fig. 9. Simulated stress-strain curves for different hybrid materials at different hybrid volume fractions (HVF) using an elastic matrix. (a) hybrid AS4-Eglass, (b)
hybrid M50S-AS4, and (c) hybrid AS4-T800G. The non-hybrid composites are also shown.
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Fig. 10. Simulated break-density curves for different hybrid materials at different hybrid volume fractions (HVF) using an elastic matrix. (a) hybrid AS4-Eglass, (b)
hybrid M50S-AS4, and (c) hybrid AS4-T800G. The non-hybrid composites are also shown.

literature [3].

The large differences of results between plastic and elastic matrix
highlight that the differences in load redistribution, seen in previous
Section 4, lead to very different failure progression. In an elastic matrix,
the shear stress transfer between fibre and matrix is not limited which
causes the stress redistribution to be always very localized around the
break. As a consequence, many isolated clusters along the model appear
which need to grow very large in size to propagate unstably. This is the
reason why the cluster size is usually larger for the elastic matrix cases.
Similarly, it should also explain why larger ductilities are observed with
an elastic matrix. In a real composite however, the shear stresses are
limited by the matrix strength, like it is the case with a plastic matrix
approach. Results of this work suggest that, while an elastic matrix may
lead to similar failure prediction in non-hybrid composites compared to
a plastic matrix, the use of an elastic matrix can lead to inaccurate
results when modelling hybrid composites. Nonetheless, it is impossible
to further validate the results due to the lack of experimental data.
Furthermore, a better definition of cluster size is needed to avoid
clusters larger than the number of fibres.

6. Conclusions

In this work, a new analytical model for predicting the SCF around
clusters of broken fibres in hybrid unidirectional composites was pre-
sented. The model was used within the framework of a PFM [2] to study
the stress redistribution around breaks in different hybrid composites
and their effect on the tensile response and failure process. The results
were validated by comparing with the SEM [24].

The predicted stress redistribution around broken fibres in hybrid
composites was seen to vary with the stiffness ratio of the fibres on the
hybrid, the matrix behaviour being plastic or elastic, the broken fibre
stiffness as well as the hybrid volume fraction. Three different metrics
were used to quantify this load redistribution: maximum SCF on HM
and LM fibres, ineffective length and radial length.

The SCF on an intact fibre with different stiffness than the broken
fibre is affected by the stiffness ratio of both fibres. The larger the ratio,
the larger the SCF when the HM fibre is broken, whereas the opposite
happens when the LM fibre is broken. Adding LM fibres into the hybrid
composite decreases the SCF on HM fibres, which should lead to larger
hybrid effects. When a HM fibre is broken, the SCF is larger on the LM
fibres than on the HM fibres. However, the SCFs are smaller in both
populations when the LM fibre is broken. Changing the matrix from
plastic to elastic has an important impact on the SCF. With an elastic
matrix, the SCF is larger due to the fact that there is no limit in shear
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stress transfer. The new proposed analytical model predicted well the
trends and stress redistribution in all cases and is in good agreement
with the SEM. Moreover, assuming that the overload carried by an in-
tact fibre due to a break does not depend on its Young’s modulus and
radius, provides a good correlation between the analytical model and
the SEM.

The ineffective length was found to depend mainly on the stiffness
of the broken fibre. The larger the stiffness, the larger the ineffective
length. As a difference from the SCF, the stiffness of the hybridization
fibre and the HVF has no significant impact on the ineffective length.
However, the matrix behaviour has a strong effect, being the ineffective
length smaller with an elastic matrix. Finally, the radial influence
length follows the same trends as the SCF and is smaller with an elastic
matrix.

In addition, a simulation of the fibre tensile failure of different hy-
brid materials was performed under strain controlled conditions.
Different ductile responses were predicted for some composites at low
HVF, whereas in other cases brittle and sudden failures were obtained.
The ductile composites presented a gradual and progressive increase of
fibre break density, whereas an exponential increase was obtained for
the brittle materials.

Large differences were again found between plastic and elastic
matrix, meaning that the differences in load redistribution lead to dif-
ferent failure progression. When the matrix was considered elastic,
many isolated clusters appeared along the model. These clusters needed
to grow very large in size before unstable propagation. As a con-
sequence, unrealistically large cluster size and break densities were
predicted for some simulations. This wasn’t the case with a plastic
matrix, which presented more realistic results compared to experiments
[3]. Therefore, results suggest that using an elastic matrix may lead to
erroneous predictions when modelling hybrid composites. Additional
experimental data is required to further validate and improve the dif-
ferent models for hybrid composites.

Data availability
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be shared at this time due to legal or ethical reasons.
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Summary: [In this paper the failure development of different hybrid and non-hybrid unidirec-
tional composite materials is simulated under fibre tensile loading using a progressive failure
model. Different hierarchical clustering analysis algorithms as well as the OPTICS method are
used to predict the formation of clusters of broken fibres in the simulated materials, and the out-
comes of these algorithms are compared. Results show that the diverse hierarchical algorithms
may lead to similar formation of clusters, but different critical cluster sizes depending on the
algorithm, whereas the OPTICS method predicts considerable different formation of clusters,
leading to more clusters of large size. However, the formation of co-planar clusters is similar
between all algorithms.

1. INTRODUCTION

The fibre tensile failure of unidirectional composite materials is mainly dominated by the
formation of clusters of broken fibres. The strength of brittle fibres is not deterministic, and
follows a statistical distribution. Consequently, the formation of clusters is governed by the
stochastic strength of the fibres as well as the stress redistribution around broken fibres. When
a fibre fails, the fibre locally loses its load carrying capability, but it is then recovered due to
shear transfer in the matrix over a distance known as ineffective length. Along this region,
the surrounding intact fibres are subjected into stress concentrations. As the load is increased,
clusters of broken fibres start to form. Eventually, final failure is triggered either due to the
unstable propagation of a large critical cluster or due to the accumulation of damage [1, 2].

There are two main modelling approaches to simulate the failure of composite materials:
Global Load Sharing models (GLS) and Local Load Sharing models (LLS). While GLS models
cannot capture the formation of clusters, LLS models are able to do so. Many different LLS with
diverse modelling assumptions and backgrounds are available: analytical models [3, 4], fibre
bundle models [5, 6], spring element models [7, 8] and micromechanical finite element models
[9, 10]. Currently, one of the main difficulties in LLS models is to determine the formation of
clusters of broken fibres. At present, the literature has considered metrics based on the distance
between broken fibres to establish whether they form a cluster or not. Overall, it has been
considered that two broken fibres belong to the same cluster if their centre-to-centre distance is
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smaller than four times the fibre radius and their axial distance between break planes is smaller
than ten times the fibre radius [1, 6, 11]. Although this approach is valid, there exit different
clustering algorithms that, alternatively, may also be employed to determine the formation of
clusters with distinct considerations [12—-15]. However, to the authors’ best knowledge, the use
of alternative methods has not been explored.

In this work, the failure development of hybrid and non-hybrid unidirectional composite
materials is simulated under fibre tensile loading using a progressive failure model [1, 5, 11, 16].
The formation of clusters is determined using various hierarchical clustering analysis algorithms
as well as OPTICS, and results with all methods are compared. The remainder of this article
is as follows. Firstly, the progressive failure model is briefly summarised. Secondly, different
algorithms to determine clusters are outlined, and some of them are used to predict the formation
of clusters of broken fibres. Finally, some conclusions are obtained.

2. PROGRESSIVE FAILURE MODEL

The Progressive Failure Model (PFM) [1, 5, 11, 16] is a micromechanical model consisting
of a Representative Volume Element (RVE) of width a, height b and length L. The RVE contains
a random distribution of fibres, each with its own radius. Each fibre is divided into elements
of length [ along its longitudinal direction, thus leading to a domain of parallel tensile springs
divided into planes in series. The RVE may consist of fibres all of the same type, being a non-
hybrid composite, or can contain fibres of different types, leading to a hybrid composite. Fibres
are labelled with subindices ¢ € [1, ..., N,], while planes are referred with p € [1, ..., N,] where
N, and N, are the number of fibres and planes respectively. This scheme is shown in Figure 1.

b)

Y

Figure 1. Schema of the Progressive Failure Model, a) 3D view, b) cross-section.

A stochastic strength is assigned to each element in the RVE according to an appropriate
statistical distribution representing the strength of the fibres. An unixial strain controlled simu-
lation is then performed, by slowly increasing the applied strain. At each loading step, the stress
of each element, 0,, 4, is calculated with

_ SCFy,

Tpa = g Eq (1= Dpy) (EP + 5:1) M
P
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where SC'F,, is the Stress Concentration Factor (SCF) of element p, g, E, is the Young’s
modulus of fibre g, D, , is the damage factor which is equal to 1 for broken elements, equal to
0 for intact elements and in between for elements in any stress recovery, ¢, is the mechanical
strain of the plane, €, is the fibre’s thermal residual strain and €2, is a stress ratio which enforces
load equilibrium at each plane [5, 11, 16].

When the stress of an element exceeds its strength, the element fails. A damage factor is
then applied along the ineffective length of the broken fibre whereas stress concentration is
applied onto the intact fibre elements surrounding the broken fibre. Therefore, D, , and SC'F, 4
are computed by an analytical model that is entered into the PFM. This model takes into account
the matrix behaviour, which can be considered as elastic or perfectly plastic, since debonding is
omitted. When new elements fail, dynamic effects are also considered by increasing the SCF
with a magnification factor [16]. Additionally, a load equilibrium condition is employed for
computing €2, and €, taking into account the damage along the RVE. Further details of the
model can be seen in Guerrero et al. [5, 11, 16].

The PFM explicitly captures individual fibre breaks and the formation of clusters of multiple
broken fibres. Since damage is considered, the stiffness loss of composite materials is captured,
allowing to model pseudo-ductility in fibre hybrid composites [5, 11, 16]. Unlike other mod-
els, the PFM scales up the ineffective length of the broken fibres when the number of breaks
increases, and considers dynamic effects. Given the semi-analytical framework considered, the
PFM is computationally more efficient than other similar models [11].

3. COMMON DEFINITION OF CLUSTERS

One of the key problems in the literature is to determine the formation of clusters, i.e., to
establish which broken fibres in a given domain should be considered as a cluster of broken
fibres. 1deally, two different broken fibres should form a cluster as long as these are ‘sufficiently
close’, which implies that one of the fibres failed under stress concentration caused by the other
one.

Currently, the literature in composite materials has used a criterion based on the stress redis-
tribution around broken fibres to determine the formation of clusters. Consequently, two broken
fibres are considered to belong to the same cluster if the radial distance between the two broken
fibres, d,, is equal or smaller than A,, and the longitudinal distance between break planes, d,,
is smaller or equal than A, (see Figure 2a). By default, most authors have used A, = 4R; and
A; = 10R; respectively (where Ry is the fibre radius) [1, 6, 7, 11, 17], since these are reasonable
values for carbon reinforced polymer composites (although this should ideally be calculated for
each material system). Once many broken fibres are present, it may occur that a new broken
fibre links two different clusters. When this occurs, the two clusters and the new broken fibre
are merged into a sole single cluster (see Figure 2b). Consequently, A, and A}, are not upper
distances.

Although this approach has been satisfactorily used in many recent works [6, 7, 11], there
exist different algorithms able to link or cluster a set of data (in this case broken fibre elements),
based on their similarity (or dissimilarity), which in this work corresponds to how close or far
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a) I Fibre break b) (WM Cluster 1
Cluster 2
Il New break

Figure 2. Criterion to determine clusters. a) Two fibre breaks form a cluster if the radial distance

between the two breaks, d,, is equal or smaller than A,, and the longitudinal distance, dj, is

smaller or equal than A;. b) A new fibre break (in blue colour) complies the conditions A, and

A, with one fibre in ‘cluster 2’ (coloured orange), and also with one fibre in ‘cluster 1’ (coloured
red), thus, the two clusters (and the new break) are merged into a single cluster.

these breaks are placed in the material. Although similar in some form, these methods could
allow to determine clusters by considering different linkage criteria. Moreover, these methods
are available in different programming languages (such as Python [18]) which may facilitate
the determination of clusters. In the next section, different clustering algorithms are explained.

4. ALGORITHMS FOR DETERMINING CLUSTERS

There exist many algorithms able to cluster a set of data. The most common ones in un-
supervised machine learning are centroid-based clustering, hierarchical clustering, distribution
based clustering and density-based clustering [12—15, 19]. In the following, these methods are
broadly summarised.

4.1 CENTROID-BASED: K-MEANS

Centroid-based methods divide a given set of data points into different groups, and each
sample is assigned to the closest one. The most common centroid-based algorithm is k-means,
which clusters data by separating it into k groups of equal variance [12]. This is done by
minimizing either a criterion called the inertia or a sum-of-squares [18]. These criteria can be
seen as a measure of how similar or dissimilar the clusters are.

The procedure is composed of three basic steps. Firstly, the algorithm starts by choosing the
initial centroid of each cluster. After that, each sample is assigned to its nearest centroid. In the
third step, the centroid of each cluster is recomputed by averaging all data points in it. Steps 2
and 3 are then repeated until convergence is reached.

Although this method is broadly used, it has some drawbacks [18]. Firstly, it needs the
number of clusters, k, to be known a priori. Secondly, it assumes that clusters are convex and
isotropic (thus not capturing irregular shapes). In addition, it generates clusters of even sizes.
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4.2 HIERARCHICAL CLUSTERING

Hierarchical Clustering Analysis (HCA) algorithms build a hierarchy of clusters by merg-
ing or splitting data successively [19]. Two main approaches are possible: Agglomerative or
Divisive. In Agglomerative clustering each sample in the data starts being a cluster on its own.
These clusters are then successively merged together step by step (based on their distance and
a linkage criteria), until the entire data forms a single cluster. Instead, divisive clustering starts
with all samples in a single cluster, and these are successively split step by step until each
sample is a cluster. This hierarchy can be represented by a tree or dendrogram. By cutting
the dendrogram at a given certain height (which represents the distance at which clusters are
merged or split), the clusters are directly determined, see Figure 3a.

a) b) Single link

M ] O@/@Q

] Complete link
<

0.5 O
0.0
4501111089236 71613141215 Q

Sample labels

Average link

Figure 3. a) Example of a dendrogram. The x axis represents the different samples while the y

axis shows the distance at which the samples are merged into clusters. By cutting at a distance

of 1.25, twelve clusters are obtained. b) distances used to merge two different clusters into one
according to the linkage criteria.

HCA may calculate the distance between points using different metrics such as Euclidean,
Manhattan or Cosine [18], or alternatively, a distance/dissimilarity matrix may be considered.
The distance matrix is a 2-dimensional matrix where the value in the i-th row j-th column,
is the distance between the i-th and j-th elements. To merge or split the clusters, different
linkage criteria exist, being the most common single, complete or maximum, average and ward
[18, 19]. Single takes the minimum distance between all samples in different clusters to link
them. Instead, complete takes the maximum, average takes the average, whereas ward considers
the sum of squared differences (thus this is similar to k-means method), see Figure 3b.

Unlike k-means, in hierarchical clustering the number of clusters does not need to be known,
instead, a distance threshold is needed for cutting the dendrogram. In addition, hierarchical
clustering may capture clusters of uneven sizes (in this sense single linkage leads to more uneven
clusters, ward would lead to more regular sizes, while the other methods would be in-between).
HCA can also capture clusters of irregular shapes.
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4.3 DISTRIBUTION BASED

Distribution based clustering models are more related to statistics. One of the most well
knowns algorithms is the Gaussian Mixture Model (GMM) [14]. With this algorithm, the data
points are assumed to be Gaussian distributed. Hence, two parameters describe the shape of the
clusters: the mean and the standard deviation. These are usually calculated with an Expectation
Maximization (EM) algorithm [14].

Like k-means, the procedure follows three steps. First, GMM starts by initiating the Gaus-
sian parameters of each cluster, according to the given number of clusters. In step 2, the prob-
ability of a point to belong into a cluster is computed, and the point is assigned to the cluster
it most likely belongs to. In step 3, the Gaussian distribution parameters are recalculated to
maximize the probability that each data point belongs to the cluster. Finally, Steps 2 and 3 are
repeated until convergence.

GMM captures clusters of elliptical shape, and thus, it is less restrictive than k-means in that
sense. However, like k-means, GMM also fails to capture clusters of largely irregular shapes
(and assuming that clusters are Gaussian distributed is a strong assumption) [18]. In addition,
the number of clusters needs to be known a priori.

4.4 DENSITY BASED

Density based algorithms cluster the data by separating areas of high density from areas of
lower density [15, 20, 21]. The most common density-based algorithm is DBSCAN (Density-
Based Spatial Clustering of Applications with Noise) [15]. This algorithm requires two input
parameters: eps and min_samples, which determine what is considered to be ‘dense’.

Given a dataset of n-dimensional data points, the algorithm proceeds as follows. Firstly,
a point is taken, and an n-dimensional sphere of radius eps around the point is created. If
the number of points in the sphere (including the sample on its own) is equal or larger than
min_samples, then all points in it belong to the same cluster. The point in the centre is known
as a core sample, and it is considered to be in a dense region. The cluster is then recursively
expanded by creating another sphere at each of these points. However, any of these points
that have less than min_samples inside their own sphere are omitted. Intuitively, these points
define the border of the cluster. In addition, any point that has less than min_samples inside its
own sphere and that it is not inside the sphere of a core sample, is labelled as ‘noise’ and does
not belong to any cluster. Essentially, this means that the value of min_samples determines
which is the minimum cluster size. In this way, DBSCAN captures clusters of any shape and of
uneven sizes.

Therefore, DBSCAN is similar to single link HCA, but including the concept of dense
regions. In fact, when min_samples = 2, DBSCAN is equivalent to single link hierarchical
clustering, with eps being the same value that is used to cut the dendrogram. An alternative
version of DBSCAN is OPTICS [21], which takes eps as a range instead of a single value. Thus,
OPTICS eliminates the need of determining a proper value for eps, since this is established by
the algorithm, albeit a maximum value for eps can be given to reduce CPU time.
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5. METHODOLOGY AND MATERIALS

To compare the formation of clusters between algorithms, different hybrid and non-hybrid
unidirectional composite materials are simulated using the PFM. A perfectly plastic matrix is
used, because it should be more realistic than an elastic matrix [11]. Consequently, a magnifica-
tion factor for dynamic effects of 1.43 is considered, since this should be accurate for a plastic
matrix [22]. In addition, thermal residual stresses due to the manufacturing process are omitted.
A RVE of width, a, height, b, and length L of 0.2625 x 0.2625 x 1.05 mm is created, containing
around 1100-1800 fibres. Hybrid composites are preferably to be simulated for the porpoise of
this work, since these are more damage tolerant and will contain more clusters than non-hybrid
composites, allowing to better highlight the difference between clustering methods. In a fibre
hybrid composite, a Low Elongation (LE) fibre, is combined with a High Elongation (HE) fi-
bre in a single matrix. Thanks to this combination, synergistic effects may occur allowing to
increase the composite ductility compared to non-hybrid composites [5, 6, 9, 11].

The RVEs contain a random distribution of fibres each with its own radius, and are gen-
erated using a state of the art algorithm [9, 23]. The material comprising the RVEs consists
of an intrayarn hybrid M40S-T700 (Carbon-Carbon) fibres in an Epoxy matrix with Young’s
modulus, £, = 3760 MPa, and shear yield stress, 7, = 50 MPa. The properties of the fibres
can be seen in Table 1. The overall fibre volume fraction (V}) is always 60%, whereas the HVF'
is varied between 0, 20, 40, 60, 80 and 100% as it significantly influences the tensile response
of hybrid composites [9, 11]. Here, the HVF is considered as the percentage of LE fibre vol-
ume fraction (Vig) over the total volume fraction (V;), with HV F' = Vi g/V; [16]. Note that,
HVF = 0% and HV F' = 100% correspond to the base-line non-hybrid materials, T700-Epoxy
and M40S-Epoxy, so that the M40S is the LE fibre and the T700 is the HE fibre respectively.

Table 1. Fibre properties.

Fibre type Fibre properties Weibull parameters
Er[GPa] R¢[pm] o9 [MPa] Lo [mm] m[-]
M40S 380 2.7 4900 10 52
T700 220 35 5470 20 5.6

The strength of each element in the RVE, o, , is computed by a Weibull distribution [1, 5~
7,11, 16, 17], with P,, = 1 — exp (- (I/Lo) (0% ,/00)™) where P, , is a random number
between 0 and 1, and oy, m and L, are the Weibull parameters given in Table 1. To take
into consideration both the random nature of the position of the fibres and the stochastic fibre
strength 8 runs are performed within each RVE considered. For each run, a different RVE
with new element strengths is generated. In Figure 4, a cross-section example of the materials
simulated is shown.

For each material considered, the formation of clusters during the simulation (i.e., at each

loading step) is determined in different ways. Firstly, with the HCA algorithm, using the single,
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Figure 4. Cross-section examples of the RVEs generated, a) HV F' = 0%, b) HV F = 20%, c)
HVF = 40%,d) HVF = 60%, e) HVF = 80% and f) HVF = 100%. The LE fibres are
coloured blue, while HE fibres are coloured green.

average, and complete linkage criteria. Ward will not be used since it should be similar to
complete and average [18]. For HCA, a distance criterion is needed to establish when two
broken fibres form a cluster. To do this, a distance matrix is computed where the value in the i-
th row j-th column, is considered to be 0 if the radial distance between the i-th and j-th elements
is smaller or equal than A, = 4Ry, and if their axial distance is smaller or equal than A; = 10R;.
Otherwise, a value of 1 is assigned. The dendrogram is then cut at a distance of 0.5. With this
consideration, two broken fibres form a cluster or not according to their radial and longitudinal
distance. Consequently, the single link algorithm is exactly equivalent to the method explained
in section 3. (although the two algorithms are different). Secondly, the OPTICS method is
also employed. Here, a maximum eps of 10R; is considered (larger values do not really make
sense). The algorithm will determine by itself the proper value of eps, but will be equal to or
smaller than the given maximum. Unlike HCA, OPTICS will establish by itself if two breaks
form a cluster, according to the value of eps it determines. Consequently no distance matrix is
needed either, only the coordinates of the broken fibres. In addition, min_samples = 2, since
the minimum cluster size in a composite should contain at least two broken fibres. Finally,
k-means and GMM algorithms will not be used, since these cannot capture clusters of irregular
shapes and need the number of clusters to be known a priori. Consequently, these methods are
not feasible for this study. For all cases considered, the implementation provided in Python
language is used to get the clusters [18].

Derived from this, the maximum cluster size along the simulation, the number of i-plets
(clusters of size ‘i’), and the percentage of co-planar clusters are compared between the different

Appendix A  Papers in their journal form



Jose M. Guerrero, Joan A. Mayugo, Josep Costa, Albert Turon

algorithms. A cluster is co-planar if the longitudinal distance between break planes, d, is
smaller or equal than the element length (which corresponds to 5.4 ;zm) otherwise it is diffuse.
Note that, all this data is solely output information by the PFM. Hence, the different algorithms
do not change the modelling predictions, but only this output information.

6. RESULTS AND DISCUSSION

In Figure 5 the maximum cluster size and the formation of co-planar clusters along the
simulations is compared between the different algorithms for all materials. Overall, the single
HCA algorithm leads to significant larger cluster sizes than the complete and average HCA. The
complete HCA leads to the smallest cluster sizes, which occurs since it considers the maximum
distance between samples to merge the clusters, and thus clusters are less likely to be linked.
The average is in between the single and complete methods. The OPTICS algorithm leads to
similar cluster sizes compared to the single HCA, but slightly smaller. An important remark
is that, all algorithms predict a constant increase in cluster size with the applied strain except
OPTICS, which in some instants predicts a decrease. Hence, OPTICS may have considered
different values for eps at different loading steps, causing a change in the maximum cluster
size. This is an inconsistent behaviour, since a continuous grow of the cluster size with the
applied strain is expected due to the increased number of fibre breaks. In addition, all tendencies
are generally the same regardless of the HVF, and therefore, the materials do not change the
differences between the algorithms.
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i a) b) ) d)
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Figure 5. Maximum cluster size and percentage of co-planar clusters predicted by each algo-
rithm along the simulation. a)-d) maximum cluster size for each algorithm, e)-h) percentage of
co-planar clusters for each algorithm. The average of 8 runs is shown.

In terms of co-planarity, the difference between algorithms seems to be smaller, especially
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between the single, average and complete HCA. The OPTICS method shows larger differences,
particularly for HVF = 20% and HVF = 60% which lead to more co-planar clusters than
the HCA cases. This should be attributed to the different way OPTICS creates the clusters.
Generally, the single HCA leads to smaller number of co-planar clusters than the rest. This may
be explained because it leads to larger cluster sizes, and thus, larger cluster sizes are more likely
to be more spread in a larger volume, leading to more diffuse clusters instead of co-planar.

In Figure 6 the number of ‘i-plets’ (clusters of size ‘i’) along the simulation is shown for
the different algorithms. The formation of 1-plets is considerably smaller for the OPTICS
algorithm than for the other ones. The HCA algorithms are all similar, with the average and
complete leading to slightly larger number of 1-plets, compared to the single HCA. However,
the formation of 3-plets and 6-plets shows the opposite trend. The OPTICS algorithm predicts
a considerable larger number of 3-plets and 6-plets. Thus, OPTICS generates a bigger number
of large clusters (hence forming less 1-plets) than the other algorithms. The opposite occurs
with the average and complete HCA which lead to the smallest 3-plets and 6-plets, since these
consider bigger distances to merge clusters. Thus, these algorithms lead to a lesser number of
big clusters (and consequently to smaller cluster sizes and larger number of 1-plets). The single
HCA forms more 3-plets and 6-plets than the average and complete, but less than OPTICS.

To better illustrate the differences obtained by the algorithms, a 2D representation of the
formation of clusters at failure is presented in Figure 7. The single, average and complete HCA
algorithms may lead to the formation of clusters in similar locations (although the clusters do not
have the same size, and the critical cluster may be in a different place). However, the OPTICS
algorithm predicts a very distinct formation of clusters. In addition, clusters generally span
over a bigger area with the OPTICS algorithm, and more clusters of a big size are formed. This
is probably related to the fact that OPTICS is using the same value of eps for all dimensions,
whereas in HCA, a different distance was considered for the radial and longitudinal directions.
Hence, although the data is the same, the algorithms are finding distinct clusters, especially the
OPTICS method.

The results suggest that all algorithms may be used to determine the formation of clusters.
The single, complete and average HCA may form clusters in similar locations, albeit the single
method leads to larger cluster sizes. The OPTICS method may lead to the formation of more
clusters of large size, and these may also form in different places than the other algorithms.
OPTICS is the only method which calculates the clusters entirely by itself, without having
to consider a certain distance threshold to establish what constitutes a cluster. Instead, this
is estimated by the algorithm, facilitating the process. Currently, choosing a proper distance
criterion to predict the clusters is an open issue in the literature [2], and thus OPTICS may
overcome this issue, allowing a more objective formation of clusters. Nonetheless, OPTICS is
computationally expensive compared to HCA, and may lead to ‘inconsistent’ results (such as a
decrease in cluster size by increasing the number of breaks) depending on what the algorithm
ends up considering to be a cluster.
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Figure 6. Formation of ‘i-plets’ (clusters of size ‘i’) predicted by each algorithm along the

simulation. The number of i-plets is normalized by the RVE volume. a)-d) 1-plets for each

algorithm, e)-h) 3-plets for each algorithm and i)-1) 6-plets for each method respectively. The
average of 8 runs is shown.

7. CONCLUSIONS

In this work, HCA and OPTICS algorithms were employed to determine the formation of
clusters of broken fibres in hybrid and non-hybrid unidirectional composite materials under
longitudinal loading. The outcomes of these methods were compared between them.

The results obtained show that HCA and OPTICS are alternative algorithms to determine the
formation of clusters of broken fibres in composite materials. The single link HCA is equivalent
to the distance based method that has been broadly used in the literature [6, 7, 11] and leads to
the formation of larger clusters than the average and complete HCA algorithms. The OPTICS
model leads to smaller critical clusters than the single link HCA. Nevertheless, it tends to predict
a larger number of big clusters compared to the other methods. Moreover, these may form in
different locations. Overall, the formation of co-planar clusters is similar between algorithms,
being partially smaller for the single link HCA.

Results suggest that all algorithms can be used to predict the formation of clusters. However,

11
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Figure 7. 2D representation of the formation of clusters at failure for one run with HVF = 20%.

The largest cluster at which each fibre belongs to is indicated with the corresponding fibre

colour. Fibres in black have no breaks along their length. An ‘i-plet’ refers to a cluster of size
‘1’. The larger clusters are indicated with a red dashed circle.

care must be taken to properly predict the clusters. The HCA algorithms depend on a given
distance criterion to constitute what is a cluster, and thus results will depend on the chosen
distance. Oppositely, OPTICS has the advantage that it determines the distance to merge the
clusters by itself. However, OPTICS may lead to ‘inconsistent’ results depending on what the
algorithm considers to be a cluster.
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