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Abstract

The advances in computing power have motivated the hope that computational methods
can accelerate the pace of drug discovery pipelines. For this, fast, reliable and user-friendly
tools are required. One of the fields that has gotten more attention is the prediction of
binding affinities. In this context, this thesis is focused in the development of efficient
methods for the estimation of protein-ligand binding free energies. We have developed a
protocol that combines enhanced sampling with more standard simulations methods to
achieve higher efficiency. Thanks to the modularity and automation that the protocol
offers we were able to test three different simulation methods. Through the use of a
diverse benchmark of protein systems we have established the cases in which the protocol
is expected to give accurate results, and which areas require further development. Overall,
we hope that the methodology developed in this work can contribute to the drug discovery
process and motivate further advances in the field.

Keywords: Binding free energy, enhanced sampling, PELE, molecular dynamics, Markov
State Models, AdaptivePELE
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Chapter 1

Introduction

1.1 Motivation

The process of developing a drug is long and costly. Even if we ignore the difficulty of
characterising a disease and finding an appropriate target for treatment, an average of
around 10-15 years are needed to bring a new drug to the market (Ciociola et al., 2014).
The overall cost of this long process has been a subject of great debate, but studies
estimate that it has an associated cost of somewhere between US$161 million and US$2
billion (Sertkaya et al., 2016).

The main reason why drug candidates take so long to be developed is that a successful
drug requires many parameters to be tuned, as schematically illustrated in Figure 1.1.
First, the molecule needs to bind the target of interest, and do so for enough time that
the desired effect can be produced. Furthermore, the drug must be selective, avoiding
interaction with other proteins that might cause side-effects and/or toxicity. These are
only a small subset of properties to be tuned, many others such as solubility, permeability
or bioavailability must be considered to ensure that the molecule reaches the target protein
in the patient (Gleeson, 2008). For this reason, the process of drug discovery is typically
divided in several iterations, where the number of considered molecules is reduced as the
candidates fail to meet standard values for the properties described before.

Computational methods have found their way in multiple steps of the drug discovery
process, due to their potential efficiency increase and cost reduction (Jorgensen, 2004).
Different methods have impacted different stages of the pipeline. In the initial steps, the
most commonly used techniques are those which have low computational cost, such as
molecular docking and scoring. They are usually grouped under the virtual screening
category (Patrick Walters et al., 1998), and simulate in a computer the screening of vast
libraries of molecules to find good matches for the target in question. This procedure is
particularly useful where there is not much previous knowledge about the receptor and
serves as a quick filter for ligands that are not likely to have enough affinity for the target
protein.

When a more detailed understanding of the chemical interplay between protein and ligand
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1.1. Motivation Chapter 1. Introduction

Figure 1.1: Schematic illustration of some of the most important parameters to be optimised
during the drug discovery process. The number represents the usual order in which each param-
eter is typically optimised.

is required, it is common to resort to more complex molecular mechanics (MM) methods.
Monte Carlo (MC) and molecular dynamics (MD) simulations are the most popular ver-
sion of such techniques. They use an atomic-resolution classical force field to estimate the
potential energy of the protein-ligand complex, producing a more accurate approximation
than virtual screening methods, but requiring a much higher computational time. These
methodologies are able to sample extensively both the ligand and protein’s degrees of free-
dom. In the limit of infinite sampling, this could be used to easily compute the binding
affinity, as will be discussed in section 1.3, but, in the usual situation of limited sampling,
simulations provide only an incomplete picture of the binding process, and thus, a less
accurate affinity estimation. This limitation has led to the development of several tech-
niques, known as enhanced sampling methods, that attempt to circumvent this problem
by modifying the underlying potential energy surface, such as Umbrella Sampling (Torrie
and Valleau, 1977) or Metadynamics (Laio and Parrinello, 2002).

The main difficulty in the estimation of binding free energies lies in the tremendous com-
plexity of the protein-ligand dynamics. At the atomic level, the protein-ligand complex is
typically formed by several thousand atoms, which can interact through different forces.
Some of these interactions operate at small distances, while others have long ranges. The
precise determination of the interplay between the multiple molecular interactions and
the complete exploration of the highly dimensional space make of producing accurate and
fast estimates of the free energy of binding a formidable task.

8



1.2. Objectives Chapter 1. Introduction

The most accurate techniques for the estimation of binding free energies are based on
MM methods explained above. They are generally split into alchemical methods and
pathway-based methods. Alchemical methods estimate the binding free energy through a
nonphysical transformation, reducing the amount of simulation required, while pathway-
based methods need to reproduce the entire binding or unbinding path. Both groups
produce generally accurate predictions but are either limited by their computational cost
or by restricted applicability for some systems (see sections 1.4.3 and 1.4.4 for more details
of these techniques respectively).

Enhanced sampling methods can certainly alleviate some of these problems, reducing the
simulation time required and allowing the study of problems on time scales that are not
accessible to regular MM simulations. Nonetheless, commonly enhanced sampling often
requires non-negligible theoretical expertise in order to produce reliable results and/or
complicated initial setups. In order to have a significant impact in the drug discovery
process, computational approaches need to be fast and accurate, but also user-friendly to
some extent. Current developments are closing the gap on the first two challenges, aided
by the increase of computational power available. However, no universally applicable
method exists that can quickly and accurately predict the binding free energy of any
protein-ligand system.

1.2 Objectives

The aim of this dissertation is to develop an efficient protocol for the estimation of protein-
ligand binding free energies. The main goal is to produce a method that can benefit from
the accuracy of MM techniques but at the same time reduce the simulation time required.
The ultimate objective of such protocol would be to produce fast and reliable binding
affinity estimates, so that it could be applied in the early steps of the drug discovery
process, focusing the search for new drug molecules and improving its efficiency. In short,
this thesis is dedicated to testing the following hypothesis:

Using enhanced sampling methods, the sampling of the protein-ligand binding
and unbinding processes can be accelerated to a degree where fast absolute
binding free energy estimation can be accomplished, allowing its routine use in
real-life drug discovery projects.

The objectives are divided in three parts. First, to develop the full protocol, design-
ing, testing and implementing its different steps. Combining several methods requires
careful design to ensure seamless interconnection, which in turn has the advantage of be-
ing scalable, permitting its application to larger benchmarks and providing more robust
results. Secondly, we compare the two main MM methods (MC and MD) as the simu-
lation propagators. Both techniques have demonstrated their effectiveness in the study
of protein-ligand interactions, but given their unique characteristics we attempt to study
which one is better suited for the estimation of binding free energies. Finally, we explore
whether the use of an enhanced sampling as the simulation propagator can significantly
accelerate the full protocol run time while providing accurate results.

9
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This work attempts to solve one of the most difficult open problems in computational
biophysics, the estimation of protein-ligand binding free energies. This is not only an
important academic challenge, but any advances achieved are likely to contribute to the
search of new pharmacological treatments.

1.3 Theoretical basis

1.3.1 Biomolecules: proteins and ligands

Living organisms use proteins as their workforce. For example, a protein called trypsin
actively participates in the digestion process, DNA polymerase reads and replicates the
DNA sequences stored in the nucleus of our cells and another protein, collagen, forms
fibrous tissues such as tendons, ligaments, and skin. The diversity of functions performed
by proteins, and therefore their structures, is immense. In the human body, a minimum of
20.000 proteins exists, although some argue that this number may be as high as 100.000
(Ponomarenko et al., 2016). Remarkably, all this variety arises from the combination of
only 20 amino acids. The different chemical and structural characteristics of the amino
acids (depicted in Figure 1.2A) give in turn different properties to the resulting protein.

The sequence of amino acids (also known as residues) that forms a protein is determined
from the DNA sequence that encodes it. In a ribosome, the residues are attached, forming
a linear filament (which is known as the primary structure). This shape is unstable, and
the secondary structure quickly emerges. The protein then forms a series of helices (α-
helix ) and planar sheets (β-sheet) connected by stretched regions known as loops. At this
stage, the protein structure is partially folded, the newly formed domains participate in
interactions that cause the molecule to fold completely and adopt its tertiary structure.
Usually, this is the protein’s active form, but sometimes several copies of the protein are
required to carry out its function, forming what is known as the quaternary structure. This
process is illustrated in Figure 1.2B for the case of hemoglobin, a protein that transports
oxygen from the lungs to the rest of the body, and which is formed by two pairs of two
different subunits, commonly known as α and β.

Proteins are not the only biomolecules present in a cell. A cell is a crowded aqueous
environment, where in addition to proteins, many other molecules such as ions, nucleic
acids, lipid membranes or small molecules are present. The latter category typically
encompasses what we will refer to as ligands in this thesis, compounds with a molecular
weight smaller than 900 Dalton (Dougherty and Pucci, 2014). Ligands are commonly
found in protein binding sites, contributing to the protein function. Often, pharmaceutical
drugs fall into this category, since their reduced size gives them important advantages, such
as improve absorption and simpler administration (Robin Ganellin et al., 2013). Contrary
to proteins, ligands are not constructed by the combination of a fixed set of monomers,
but by covalently bonded atoms (commonly carbon, oxygen, nitrogen, sulphur and the
atoms in the halogen group). As a consequence, the size of the space spanned by all
theoretically possible ligands has been estimated to be at least of 1060 molecules (Dobson,
2004). This large space is one of the main reasons why creating a new drug is so difficult,
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Figure 1.2: Protein building blocks and the different hierarchies of protein structure.
Panel (aA): Natural amino acids classified according to their chemical properties. Source:
https://en.wikipedia.org/wiki/File:Amino_acids.png. Panel (b)): Process of protein folding il-
lustrating the different structural structural hierarchies: primary, secondary, tertiary and qua-
ternary. Source: https://en.wikipedia.org/wiki/File:225_Peptide_Bond-01.jpg

to advance one needs to reduce the amount of possible molecules to a tractable size, for
example in the order of 104, which leaves out almost all of the chemical space, probably
missing out on possibly useful ligands.

1.3.2 Protein-ligand binding

Diseases may appear for multiple reasons. For example, mutations in a protein might
cause misfolding, that is, the protein adopting a structure that prevents the molecule
from performing its function. In other cases, the protein is overexpressed, working at a
problematically excessive rate. Often, these malfunctions are targeted through protein-
ligand interactions, where the ligand might cause the protein to stop working, or the
opposite, helping the protein achieve its function, by modifying its structure. Several
theories of the mechanism through which such interactions occur exist.

The oldest theory is known as the Lock-and-Key model (Fischer, 1894), which describes
the protein and the ligand as two rigid molecules (the “lock” and the “key”, respectively).
In the model, the protein-ligand complex is formed if, and only if, the shapes of the two
molecules match, in analogy of a real life lock and key.

The assumption of rigidity imposes too great a restriction for the study of protein-ligand
interaction. Further insights lead to the substitution of the lock-and-key model for other
theories that account for the molecules’ dynamical nature. The two main alternatives are
the induced fit (Koshland, 1958) and the conformational selection models (Frauenfelder
et al., 1991; Tsai et al., 1999). In the former, the shape of the two compounds does not

11



1.3. Theoretical basis Chapter 1. Introduction

need to perfectly match, instead a provisional complex is formed and then a change in
the protein structure (and ligand) is induced to accommodate the latter.

On the other hand, conformational selection, sometimes also called population selection,
fluctuation fit or selected fit, describes the binding process as the interaction between the
fluctuating structural population of both the protein and the ligand, “selecting” from all
the available conformations those that match. It should be noted, however, that the two
competing theories are not mutually exclusive. Several examples can be found where the
effects described by the conformational selection model are followed by those of induced
fit (Grünberg et al., 2004; Wlodarski and Zagrovic, 2009), and extended models that
combine the two have been developed (Csermely et al., 2010).

The protein-ligand complex is typically, but not always, a non-covalent interaction me-
diated by hydrogen bonds, hydrophobic forces, van der Waals forces, π-π interactions
and/or electrostatic interactions. The combined strength of said interactions is defined
as the protein-ligand binding affinity, given by the equilibrium dissociation constant Kd,
or its inverse, the binding constant Kb. We start by modelling the binding process using
the following chemical reaction

R + L −−→←−− RL (1.1)

where R represents the receptor, L represents the ligand, and RL represents the receptor-
ligand complex. At equilibrium, the reaction is characterised by its binding constant

Kb =
Ceq
RL

Ceq
L C

eq
R

(1.2)

where Ceq
L is the ligand equilibrium concentration, Ceq

R is the receptor equilibrium con-
centration and Ceq

RL is the complex equilibrium concentration. As mentioned above, the
dissociation constant measures the strength of the protein-ligand interaction. Often, how-
ever, instead of the dissociation constant, the binding free energy is reported. The two
quantities are related by

∆Go
b = −kBT ln (CoKb) (1.3)

where ∆Go
b is the standard binding free energy (which will also be referred to in this

work as the absolute protein-ligand binding free energy), kB the Boltzmann constant, T
the temperature and Co the standard concentration. The term “standard”, here, refers to
the standard state, which is arbitrarily typically defined as Co = 1 M. This definition is
necessary to compare different binding free energies, since, contrary to equation 1.2, the
definition of the standard binding free energy is independent of the concentration of the
three species of molecules (General, 2010). A more detailed treatment of this relation can
be found in a review by Zhou and Gilson (Gilson and Zhou, 2007).

An alternative, more visual, understanding of the binding free energy comes from the free
energy profile of the reaction, shown in Figure 1.3a. A free energy profile plots the free

12



1.4. State of the art Chapter 1. Introduction

energy value along a reaction coordinate, a parameter that represents the progress along
a reaction and is able to separate the different states. In the example shown here, there
are four states. L-P, which represents the protein-ligand complex, is the most stable state
and therefore has the minimum free energy value. L+P represents the free protein and
ligand, with no interaction between them, which is why the value for the free energy is
constant. Finally, the states labelled L-P* and L-P** represent hypothetical metastable
intermediate states, that is, states that are not stable but are long-lived and relevant to
the dynamics.

The presence of these metastable states is meant to indicate the complexity of the dy-
namics of protein-ligand binding, which may not be apparent from the reaction and the
free energy profile. Importantly, these four states are located in local minima of the free
energy and are separated by local maxima, free energy barriers that need to be overcome
to transition between two states. Moreover, to obtain a more realist representation of the
system evolution one should study the free energy landscape (FEL), which is significantly
more complex that the free energy profile, as schematically illustrated in Figure 1.3b.

The free energy profile can be understood as a section of the FEL, projected over a single
coordinate, but the full dimensionality of the FEL is on the order of 3N , where N is the
number of atoms of the system; in practise the full dimensionality is less than 3N , given
that many coordinates are correlated due to the intramolecular bonds. As a consequence,
the picture painted by the FEL is significantly more intricate, with many more metastable
states represented as basins that are shallower than the absolute minimum. The presence
of this multitude of valleys contributes to the metastable trapping of molecular simula-
tions, reducing their efficiency. For this reason, the concept of the free energy landscape
has been extensively employed in the design of enhance sampling methods (see section
1.5.4 for more details).

1.4 State of the art of protein-ligand binding free en-
ergy calculations

The computational estimation of binding free energies is an active field of research, ex-
ploring multiple different approaches, as illustrated in a recent review article (Limongelli,
2020). All the research effort has led to significant advances but has also uncovered several
important challenges, which are typically classified in two categories: i) those related to
complexity of the protein-ligand interactions, and ii) those related to accuracy limitations
of the models used.

Proteins are composed of several thousand atoms, which means that when they are studied
by methods with atomic resolution several thousand degrees of freedom need to be taken
into account. Thus, an exhaustive description of protein-ligand binding would require to
explore a ∼3N -dimensional space, where N is the number of atoms of the complex, a space
so large that it is impossible to explore using current techniques (Mobley, 2012). Nonethe-
less, even if one could somehow sample the full 3N dimensions, in the so called “infinite
sampling” scenario, existing methods would still only provide a partially correct answer, as
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(a) Free energy profile of the reaction (b) Free energy landscape representation

Figure 1.3: Panel (a): Representation of the free energy profile of the protein-ligand binding
reaction, with the binding free energy as the difference between the bound and unbound states.
Several possible metastable states, L-P* and L-P**, are shown. Adapted with permission from:
Limongelli V. Ligand binding free energy and kinetics calculation in 2020. WIREs Comput Mol
Sci. 2020; e1455. https://doi.org/10.1002/wcms.1455. Panel (b): Representation of the free
energy landscape of the protein-ligand system. Source: https://tinyurl.com/v6lwg22

most of the current techniques model the molecular interactions using classical physics,
but said interactions are essentially quantum in nature. The combined inaccuracies of
these two limitations establishes a compromise that the developers of new methodologies
must consider, as using more accurate models limits the sampling capabilities that the
technique can offer.

The trade-off mentioned above gives rise to a natural classification of the existing methods
for binding free energy estimation according to two axes: cost (measured as the compu-
tational time required) and accuracy. In Figure 1.4, an schematic representation of the
methods that will be discussed in sections 1.4.1 to 1.4.4 is shown. Each category is shown
in a different colour, with an area that represents approximately where the methods would
fall in terms of accuracy and computational cost. It should be noted that this illustration
is only meant to simplify the introduction to the different techniques, and it should not
be taken as a quantitative comparison between the categories.

1.4.1 Virtual Screening

The first class of methods we explore are the so-called Virtual screening methods (VS).
The techniques included in this category are characterised by fast execution times and are
designed to process virtual libraries of between tens of thousands and millions of molecules
(Patrick Walters et al., 1998). Virtual screening is typically employed at the beginning of
the drug discovery process, when even the most approximate methods can contribute to
advance. In a VS pipeline, multiple filters are applied to subsequently less molecules. As
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Figure 1.4: Schematic representation of state of the art methods according to the cost-accuracy
trade-off. Each group of methods is coloured differently and assigned an area according to the
approximate values of cost and accuracy that characterises them.

the steps become more detailed, the size of the input is reduced, until the final steps of
docking and scoring, which take into account 3D structural information about the protein
and ligand, are reached.

Docking programs attempt to find the best possible fit between two molecules, however,
to do so in a fast manner, they simplify the problem by assuming that both protein
and ligand are rigid, although by using many different ligand structures the assumption
of ligand rigidity can be eliminated in practice, see for example the AutoDock Vina
(Trott and Olson, 2010), DOCK (Lang et al., 2009) or rDock (Ruiz-Carmona et al., 2014)
software. This is obviously limiting, as the dynamical nature of protein is key in the
binding process. To alleviate this constraint, improved strategies exist, such as induced-
fit docking and ensemble docking. Induced-fit docking, implemented for example in Glide
(Halgren et al., 2004), partially introduces flexibility into the protein, producing better
results at a higher computational cost. On the other hand, ensemble docking imitates
the “conformational selection” mechanism of binding, and instead of attempting to fit the
ligand into a single protein conformation, generates an ensemble of receptor structures
and then tries to dock the ligand (Huang and Zou, 2007).

The output of a docking run is a list of poses, usually with around a thousand elements,
which needs to be somehow ranked to be useful. This is the task of Scoring techniques
(Huang et al., 2010). Scoring functions use different strategies to predict the binding
affinity, some use a force-field based approach, calculating the energy of the complex from
models of the molecular interactions, others use a knowledge-based or even consensus
functions, combining different scoring functions for a more robust result.
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1.4.2 End-point methods

Removing the requirement of molecular rigidity allows for a greater exploration of protein-
ligand interaction at the expense of larger computational efforts. Most methods for the
estimation of binding free energies assume this cost, and the computationally cheapest
group of techniques is known as end-point methods. Looking back at the reaction shown in
Equation 1.1, end-point methods simulate only the two extreme points (hence the name),
the protein-ligand complex and the two molecules diffusing freely. The main examples of
such methods are the Linear Interaction Energy (LIE) (Wang et al., 1999), MM/PBSA
(Swanson et al., 2004) and MM/GBSA (Genheden and Ryde, 2015). The core estimation
of this group of techniques can be expressed as

G = Einternal + Eelectrostatic + Evdw +Gsol − TS (1.4)

where Einternal is the energy associated with the internal degrees of freedom (bonds, angles
and dihedrals), Eelectrostatic is the energy associated with the electrostatic interactions,
Evdw represents the van der Waals terms, Gsol is the solvation free energy and −TS
corresponds to the entropy contribution. The binding free energy is then calculated as

∆G = 〈GRL −GR −GL〉 (1.5)

where the angular bracket denotes the average of the protein, ligand and protein-ligand
complex contribution, which may be calculated from a single simulation of the ligand
bound to the protein or from multiple simulations of the complex and the free protein
and ligand. End-point methods occupy an intermediate stage in the accuracy-cost trade-
off, being more expensive than docking but generally more accurate. However, while
useful for quick exploratory studies, this group of techniques is generally not accurate
enough for drug discovery projects.

1.4.3 Alchemical methods

The binding free energy is a state function, that is, the free energy difference between two
states, in this case the protein-ligand complex and both molecules in solution (unbound
conformation), depends only on the values of the initial and final states, and not on the
intermediate values. This fact is already partially exploited in the methods explored in
the last section, reducing the exploration to only the two end states. One can realise, as
demonstrated by early works of Kirkwood (Kirkwood, 1935) and Zwanzig (Zwanzig, 1954),
that it is possible to rigorously estimate the binding free energy through a nonphysical
path, rather than following the binding or unbinding paths. In this way, simulations
can be driven through a series of intermediate states that would not occur naturally but
that are easier to sample, and as long as the initial and final states correspond to the
physical bound and unbound conformations, the free energy of binding would converge
to the correct value. Due to the use of the intermediate nonphysical states, the group of
methods described in this section are known as alchemical methods.
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The two main examples of alchemical methods are Thermodynamic Integration (TI) (Kirk-
wood, 1935) and Free Energy Perturbation (FEP) (Zwanzig, 1954). Both methods rely
on a thermodynamic cycle similar to the one shown in Figure 1.5. The present cycle is an
example of a FEP application, where ligand A is turned into a different ligand B through
a nonphysical transformation. One can choose whether to traverse the cycle horizontally
(calculating ∆GA

bind and ∆GB
bind) or vertically (calculating ∆GA−>B

1 and ∆GA−>B
2 ). Since

traversing the whole cycle implies that the total difference is zero, the difference between
the two directions is also zero, allowing to write the binding free energy difference between
the two ligands as

∆∆G = ∆GB
bind −∆GA

bind = ∆GA−>B
1 −∆GA−>B

2 (1.6)

and

∆GA−>B
i = −kBT ln〈e−β∆UA−>B(x)〉 (1.7)

where β is the inverse temperature, β = 1
kBT

and the i sub-index distinguishes which
process is taking place, 1 for the change of ligand inside the protein and 2 for the change
of ligand in water. Note that the result of FEP is not binding free energy of the two
ligands, but the difference between them, which is why FEP is usually referred to as a
relative free energy method, as opposed to absolute binding free energy methods that would
provide the free energy estimation for both ligands separately. Relative free energies
are often as useful as the absolute counterparts, particularly after other methods such
as virtual screening have reduced the number of ligands to evaluate. Furthermore, the
availability of implementations such as FEP+ from Schrödinger, with notable predictive
performance and accuracy as high as 1 kcal/mol (Wang et al., 2015), or the recent open-
source implementation based on Gromacs and PMX (Gapsys et al., 2020) with similar
accuracy to that of FEP+, has converted FEP into the gold-standard method for relative
free energy calculations.

Despite the popularity and success of FEP, there are some critical points that need to
be considered. Mainly, to ensure good convergence, the perturbation introduced to the
changing ligand has to be small. That is, ligand A and B have to be very similar, up to
10 heavy atoms (Wang et al., 2015). Importantly, the perturbation must typically avoid
net charge modifications, although recent works appear to be able to relax this constraint
(Chen et al., 2018). Moreover, FEP calculations are dependent on the initial pose of the
ligand. If this pose is incorrect or the ligand can bind the protein with multiple binding
poses then the result of the calculation is likely to be incorrect. Finally, the simulations
between the intermediate states must be kept short to avoid long computational times, but
if protein motion or water network rearrangements are important for ligand binding the
simulations might be too short to observe them, limiting the accuracy of the estimation.
All in all, while FEP is a successful tool, its limitations prevent it from being universally
applied, requiring other complementary methods.
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Figure 1.5: Illustration of a typical thermodynamic cycle used in FEP calculations. The relative
binding free energy is estimated through the simulation of process 1 and 2, thus avoiding the
simulation of the computationally expensive binding process of the two ligands. Extracted with
permission from: Limongelli V. Ligand binding free energy and kinetics calculation in 2020.
WIREs Comput Mol Sci. 2020; e1455. https://doi.org/10.1002/wcms.1455

1.4.4 Pathway-based methods

The term Pathway-based methods refers to a group of techniques which, contrary to the
ones previously discussed, estimate the binding free energy by simulating the binding
mechanism of the ligand to the protein. Examples of such techniques include Umbrella
sampling (Torrie and Valleau, 1977), Funnel Metadynamics (Limongelli et al., 2013) or
Steered MD (Izrailev et al., 1997). Pathway-based methods usually provide the estimation
of the binding free energy through the calculation of a potential of mean force (PMF) (see
section 1.7 for more details).

Since the simulation of the whole binding or unbinding process is computationally expen-
sive, the methods mentioned make use of some biasing scheme to accelerate the sampling.
Steered MD introduces an external force applied to the ligand that pulls it out of the
binding site, mimicking an atomic force microscopy experiment. The binding free energy
is then recovered using the Jarzynski non-equilibrium work theorem (Jarzynski, 1997).
On the other hand, umbrella sampling accelerates the simulations by adding harmonic
potentials along one or more reaction coordinates, that is, user-defined dimensions, ex-
pressed as function of some degrees of freedom relevant to the system that describe well
the binding reaction.

Finally, funnel-metadynamics is a variant of the well known metadynamics method (Laio
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Figure 1.6: Illustration of typical funnel metadynamics setup. The light blue area denotes the
volume available for the ligand to explore. The narrow cylinder avoids the exploration of many
homogeneous ligand solvated states, while the cone allows perfect exploration of the binding
site. Extracted with permission from: Limongelli V. Ligand binding free energy and kinetics
calculation in 2020. WIREs Comput Mol Sci. 2020; e1455. https://doi.org/10.1002/wcms.1455

and Parrinello, 2002), which biases the dynamics by depositing history-dependent po-
tential along a few selected degrees of freedom, usually termed collective variables (CV).
This has the effect of “filling” the already visited minima, enhancing the exploration and
the probabilities of finding transitions between states. Funnel metadynamics introduces
an extra potential that restricts the volume accessible to the ligand, depicted in Figure
1.6. The shape drawn by this potential, which gives name to the method and is shown in
blue in the figure, if implemented using a flat-bottom potential. Thus, when the ligand
is inside the delimited space it feels no other perturbation than that of classical metady-
namics, exploring freely the binding site. However, after leaving the funnel, the ligand
feels a repulsive force, drastically reducing the number of available solvent conformations
and improving the convergence of the simulation.

Pathway-based methods have three important advantages when compared with alchem-
ical methods. First, they do not require precise information about the binding mode,
just with approximate information about the binding site the active conformation can
be recovered from the state of lowest energy. Moreover, pathway-based methods can be
used to study ligands with important structural differences without any convergence or
performance penalty. Finally, in addition to the free energy estimation, additional kinetic
and structural information can be recovered from the simulations, which might be useful
for systems where knowledge is limited. On the other hand, some drawbacks can be read-
ily noted. Importantly, pathway-based methods require higher computational times than
those of alchemical techniques, given the additional simulation needed. Also, it should
be noted that while precise information about the binding mode is not required, typically
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pathway-based methods require the user to define a reaction coordinate of collective vari-
able, which will be system-dependent. Moreover, a badly chosen option will hamper the
convergence of the estimation or directly provide incorrect results.

All in all, the different weaknesses and strengths of the methods reviewed throughout
section 1.4 show that it does not exist a universally applicable technique for the estimation
of protein-ligand binding free energies. The problem is still highly system-dependent, and
a combination of different techniques is needed to complement each other and cover their
weak points.

1.5 Molecular mechanics

Until this point, this dissertation has focused on framing the problem of protein-ligand
binding free energies and reviewing its most important advances. For the rest of this
chapter, we discuss the methods that will constitute the foundations for the original work
developed in this thesis.

Almost all the techniques reviewed in previous sections use, in one way or another, a
physics-based approach. As the name indicates, these techniques use an approximation
based on principles from physics to describe the behaviour of some system, in our case,
molecular (atomistic) view of the protein-ligand complex. Physics-based approaches can
be roughly classified in two categories: classical or quantum, although techniques that mix
the two also exist. Here we will focus on methods based on classical physics, particularly
on molecular mechanics (MM).

Molecular mechanics models the molecules at the atom level, assuming that each atom is
a solid sphere, connected to other atoms via covalent bonds which are modelled as springs.
The atoms posses a radius, called the Van der Waals radius that describes the minimum
distance at which another atom can be found and some electrostatic charge. From the
combination of all mentioned assumptions, the notion of a force field appears. A force
field can be thought of a map from atom positions to an energy value, for example

E =
∑
bonds

Kr(r − req)2+
∑
angles

Kθ(θ − θeq)2 +
∑

torsions,n

Kφ,n[1 + cos(nφi − δn)]+

+
∑
i<j

ke
qiqj
rij

+
∑
i<j

4εij

[(
σij
rij

)12

−
(
σij
rij

)6
] (1.8)

where the first two terms correspond to the energy of the covalent interactions, measured
as an harmonic potential of the deviation from the equilibrium values. The third term,
models the steric interaction between atoms separated by 3 covalent bonds (also known
as 1, 4 pairs), as well as the improper dihedrals, used to enforce planarity where required.
The final two terms constitute the so-called non-bonded terms, electrostatic and van
der Waals. The former is modelled by a Coulomb potential, while the latter typically
uses a 6-12 Lennard Jones potential, which is strongly repulsive at very short distances,
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Figure 1.7: Illustration of the main interactions present in a classical force
field. Graphs depict the functional shape of some of these terms, while the ar-
rows highlight the extent of the interactions, and which atoms participate. Source:
https://upload.wikimedia.org/wikipedia/commons/5/5c/MM_PEF.png

but as the distance increases the attractive term overcomes the repulsion. There are
multiple parameters that need to be adjusted in each term, and their values will depend
on which force field is used. Prominent examples include AMBER (Maier et al., 2015),
OPLS (Jorgensen and Tirado-Rives, 1988), CHARMM (Vanommeslaeghe et al., 2010) or
GROMOS (Reif et al., 2012).

In Figure 1.7 the terms described in equation 1.8 are depicted graphically. Missing from
said equation is the contribution of the solvent, which can be considered using two models:
explicit or implicit waters. In explicit solvent models, the water molecules are incorpo-
rated to the simulations, just like the protein and ligand molecules, and their energy con-
tribution is taken into account similarly. There several such models, such as the TIP3P
(Jorgensen et al., 1983) or SPC (Berendsen et al., 1981), which differ in parameters like
the angle formed by the three atoms or their electric charges. Considering every single
water molecule explicitly results in an elevated computational cost, which prompted the
creation of simplified representations of the water interactions. Known as continuum mod-
els or implicit solvent models, these techniques use an average interaction field instead and
eliminate the water molecules from the simulation. Implicit solvent models incorporate
this average interaction through an extra term to equation 1.8

∆Gsolv = ∆Gpol + ∆Gnp (1.9)

∆Gpol is known as the polar term, represents the reversible work done to create the charge
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distribution of the solute, while ∆Gnp, the non-polar term, measures the reversible work
needed to create the empty space in the solvent needed to fit the solute molecules and the
repulsive forces due to var der Waals effects. Approaches based on such approximation,
like VDGBNP (Zhu et al., 2007) or OBC (Onufriev et al., 2004), are faster than explicit
solvent modelling, but are limited in accuracy when local fluctuations are important, such
as in the formation of hydrogen bond interactions between water and solute molecules.

The combination of a force field and a water model provides the energy of a molecu-
lar conformation, mapping the atomic coordinates to an energy value. From statistical
mechanics, we know that the probability of a given state, x, can be obtained from the
Boltzmann distribution

P (x) ∝ e−βE(x) (1.10)

To precisely calculate this probability one would need to evaluate a normalisation factor,
the partition function, which requires an energy calculation for every possible conforma-
tion of the system in question. For a protein-ligand system this is impossible, due to
the immense number of degrees of freedom needed to describe it. Nonetheless, one can
design strategies to sample the Boltzmann distribution without needing to enumerate the
full space of possible conformations. If sufficient samples are drawn then it is possible
to estimate probabilities and gain useful information about the system. In the following
section we will provide an overview of the two most popular strategies to sample the Boltz-
mann distribution in protein-ligand systems, Monte Carlo methods (MC) and Molecular
dynamics (MD).

1.5.1 Molecular dynamics

The idea behind molecular dynamics is rather simple. In essence, MD numerically inte-
grates Newton’s equations of motion under a potential described by the force field. In
practice, however, its application is not so simple. To begin, the equations of motion need
to be solved for every atom imposing steep computational demands. Also, the time step
used in the integration scheme needs to be small in order to reduce the integration error.
In atomistic systems, the time step should be in the order of 1 fs, which is about 10 times
smaller than the periodic temporal scale at which the fastest motions, the stretching of
the bonds involving a hydrogen atom (such as O-H or N-H), occur. If these bonds are
constrained using techniques such as SHAKE (Ryckaert et al., 1977) the time step can be
doubled (adjusting it to 1/10 of the fastest bending period).

An MD simulation starts from a 3D structure of the molecules of interest, either from
an experimental source (X-Ray crystal or NMR) or a model constructed, for example,
through homology modelling. These structures typically have small artifacts that are
corrected by running a minimisation step, which also ensures that the forces in the atoms
are not too large so that they will not increase dramatically with each time step, causing
the simulation to “explode”. When the system is in an energy minimum the equilibration
process begins, which is necessary to slowly adapt our system dynamics to the desired
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experimental (pressure, temperature, etc) conditions.. There is no established sequence
for the equilibration procedure, as it depends on the statistical ensemble to simulate (NPT
for constant pressure and temperature, NVT for constant volume and temperature or NVE
for constant volume and energy are the most common). Typically one equilibration stage
includes a thermalisation, that is, the increase of the systems temperature until the target
value is reached, and checking whether the thermostat works properly, if the simulation
is carried out at constant temperature. If the simulation is run at constant pressure, a
barostat needs to be added. Once the equilibration is finished, then the actual simulation
is run, usually referred to as the production phase. The equations of motion are integrated
until some stopping criteria is met (normally simulation time) and the coordinates are
periodically saved.

MD is a highly popular tool due to the excellent spatial and temporal resolution it offers,
permitting the observation of phenomena at atomic level and with a femtosecond time
scale. It has been often referred to as a “computational microscope”, offering a comple-
mentary point of view that is not available in experimental studies. However, despite its
popularity, the small time step needed for the integration prevents MD simulations from
reaching the long time scales of some slow processes such as ligand binding or protein
folding. For this reason, several enhanced sampling methods have been designed to in-
crease the available time scales for MD simulations (for more details on such methods see
section 1.5.4).

1.5.2 Monte Carlo methods

Monte Carlo methods were one of the earliest contributions that computing made to the
world of science. During the development of the Manhattan project, in Los Alamos,
in 1946, the Polish mathematician Stanislaw Ulam came up with a simple procedure to
calculate the probability of winning in a game of solitaire without the need of complicated
combinatorics calculations (Eckhardt, 1987). Together with John Von Neumann, they
quickly applied the new strategy to solve problems like neutron diffusion, using the, at
the time quite powerful, ENIAC computer. The core idea was to repeatedly draw random
samples of the process of study, so that when enough samples have been collected one can
use statistical methods to extract information about the system, even if its evolution is
fully deterministic in nature.

The random and statistical nature of MC methods highlight their main difference to MD
ones. While MD trajectories follow the time evolution of the system, the concept of time
is absent from MC methodologies. Here, the protein-ligand is randomly perturbed, the
term perturbation might refer to a wide range of movements such as small few atoms
displacement or more complex side chain rotations, to name a few. After the new confor-
mation is applied, its energy is calculated and the proposed move is accepted or rejected
according to (typically) the Metropolis criterion (Metropolis and Ulam, 1949)

Pa = min
(
1, e−β(En−Eo)

)
(1.11)
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where Pa is the probability of accepting the move, En is the energy of the new configura-
tion and Eo is the energy of the old configuration. After the energy calculation, a random
number r is generated and the move is accepted if r ≤ Pa. Note that if the move improves
the energy En < Eo it will automatically be accepted. If the attempt is rejected, the old
conformation is considered again. The process is iteratively applied and the successive
states are joined in a chain, which is why these kinds of methods are known as Markov
Chain Monte Carlo (MCMC). If the moves applied satisfy some mathematical conditions,
the theory of Markov processes guarantees that the simulation will eventually reach a
stationary or equilibrium distribution, a probability distribution that is left invariant after
random MC moves. In the case of protein-ligand systems, this distribution is the Boltz-
mann distribution (see equation 1.10). The most common of such conditions is known as
detailed balance and mathematically is expressed as

πipij = πjpji (1.12)

where πi is the probability of state i and pij is the probability to transition from state
i to state j. This equation, based on the physical principle of microscopic reversibility,
describes a system in which every transition is equilibrated by its reverse. However, some
authors have proposed that the detailed balance condition is too strict and a weaker, but
more difficult to implement, balance condition would be enough to guarantee Boltzmann
sampling (Manousiouthakis and Deem, 1999).

The proposal move is the most important step in a MC simulation. In a protein system
generating perturbations that lead to high acceptance is difficult, given that if the moves
involve big translations there is a high probability of generating steric clashes. On the
other hand, while small moves would avoid the clashes, the obtained sampling would be
inefficient, requiring many steps to observe rare events such as ligand binding or confor-
mational changes. Compared to MD, MC sampling has a theoretical advantage in its
exploratory efficiency. Since there is no concept of time in a MC move, it is not necessary
to surmount energy barriers pushed by thermal fluctuations, the move may take a more
efficient path by “walking” around the barrier. In practice, this advantage is typically
hindered by the ruggedness of the energy landscape. The binding mechanism is not a
simple barrier to overcome, but a complex network of hills of variable height and thus
while surpassing any particular barrier is easier than with MD, the overall exploration
is as limited in practice. Nonetheless, MC methods are still highly useful in the study
of protein ligand interactions with prominent examples being the MCPRO software (Jor-
gensen and Tirado-Rives, 2005), ProtoMS (Woods et al., 2017) or PELE (Borrelli et al.,
2005).

1.5.3 PELE

The Protein Energy Landscape Exploration (PELE) method is a MC method based on
the idea that efficient sampling can be obtained by carefully crafting a complex move to
increase the acceptance probability, as opposed to most MC methods that attempt simple
moves at a higher rate. A PELE move or step is divided into perturbation and relaxation
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phases. This two stages design follows the idea found in other methods such as the Monte
Carlo with minimisation approach (Li and Scheraga, 1987), the Activation-relaxation
technique (Malek and Mousseau, 2000) or basin hopping (Wales and Doye, 1997). By
introducing an energy minimisation step (the core of the relaxation stage) the mentioned
methods can explore more efficiently the multiple energy minima of the system. The
main difference between PELE and the mentioned methods is the introduction of protein
structure prediction functions in each MC move, which helps to keep the acceptance
probability high.

The different steps of the PELE algorithm are illustrated in Figure 1.8. An MC step
starts with a random translation and rotation of the ligand, which is modelled by a rigid
core connected to a set of rotatable side chains. Several perturbed poses for the ligand
are generated, and the one with the lowest energy is chosen. Optionally, the direction of
movement of the ligand might be reused for several steps, to help sample rare events if the
system is near a transition state, this option is named steering. Additionally, often the
space available to the ligand is restricted, for example to a sphere; this restricted space is
usually called the simulation box, and if during the perturbation the ligands steps outside
the move is automatically rejected. After the ligand, the protein structure might also
be perturbed. This is done either using an Anisotropic Network Model (ANM) (Atilgan
et al., 2001) or by using a set of predefined normal modes which can be extracted from
a group (more than 2) X-ray structures or from a previous MD simulation (for example
using principal component analysis). Typically, a combination of several of the lowest
frequency modes are used, although the option to use a single mode or a random mixture
also exists. This phase is usually applied every few steps to reduce the run time of the
simulation, and to emphasise local rapid movements (ligand and side chain) over slower
ones (backbone reorganisation). After the perturbation, energy minimisation is applied
with the alpha carbons constrained, so the backbone can be reorganised following the
perturbation.

After the perturbation, the relaxation phase begins by running side chain prediction
techniques. The main goal of this step is to sample local interactions (hydrogen bonds, π-
π stacking, etc.) and possible small openings that may facilitate the ligand binding. The
side chain prediction acts on those residues that are close to the ligand (by default ∼6Å),
and could also include the ligand itself and residues that have suffered a large increase in
energy during the perturbation. The side chain prediction proceeds on one residue at a
time, keeping the others fixed. Following the algorithm of Jacobson et al. (Jacobson et al.,
2002) a rotamer library is considered, the possible conformations are clustered and the
best one is selected. This is iterated a few times for each residue until energy changes are
negligible or a maximum number of steps is reached. Afterwards, a partial minimisation
of the side chain atoms is performed. However, if no suitable conformation is found the
MC step is rejected.

Finally, an energy minimisation is applied to the whole system to relax the structure and
improve the acceptance probability. Since the minimisation prevents the exploration of
some regions, the detailed balance condition is broken. To alleviate this problem, the
convergence criteria for the minimisation is significantly relaxed as discussed in Daniel
Lecina’s doctoral thesis (Lecina, 2017), allowing the partial recovery of detailed balance.
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Figure 1.8: Schematic representation of the different stages in a PELE step. Image author:
Ryoji Takahashi

PELE can use the OPLS2005 force field (Kaminski et al., 2001; Banks et al., 2005) or the
AMBER99sbBSC0 (Pérez et al., 2007) with two options for the implicit solvent model,
OBC (Onufriev et al., 2004) and VDGBNP (Zhu et al., 2007), however, some discrete
water molecules can be placed if they are important for the protein-ligand dynamics and
will be moved during the final minimisation step. Here we have reviewed the aspects of
PELE that are most relevant for the work done in this thesis, but a more thorough view
of PELE can be found in a recent book chapter (Gilabert et al., 2018).

1.5.4 Enhanced sampling

Both MD and MC methods are routinely applied in the study of protein-ligand systems,
thanks to the extensive work done in providing user-friendly software packages, together
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with more efficient software and hardware implementations. In particular, the hardware
side has driven most of the improvements with the wide-spread use of Graphical Process-
ing Units (GPU) to calculate the expensive but easily parallelisable operation involved in
a MD simulation (Harvey et al., 2009; Kutzner et al., 2015; Lee et al., 2018). Other sig-
nificant contributions involve the design of specialised machines like Anton (Shaw et al.,
2008) or MDGRAPE (Susukita et al., 2003) which have achieved simulation lengths in the
order of milliseconds (Shaw et al., 2010) and the development of distributed computing
networks such as GPUGRID (Buch et al., 2010) or Folding@Home (Shirts and Pande,
2000) that take advantage of a wide range of volunteer devices that perform molecu-
lar dynamics simulations when idle. Despite the groundbreaking advancements, regular
molecular simulations are often not powerful enough to obtain robust sampling of rare
events, which has led to the development of enhanced sampling methods.

The term enhanced sampling refers to the set of methods designed to accelerate a molec-
ular simulation either by modifying the potential energy surface of the system of inter-
est or by forming a model that explains the dynamics and iteratively improving it. In
the first group we find some methods that have been already discussed in section 1.4.4,
metadynamics and umbrella sampling. As mentioned before, these methods add history-
dependent biasing potentials in some user-defined coordinates making it easier for the
simulation to overcome free energy barriers. Similarly, in this group of methods one can
find metadynamics variants such as well-tempered metadynamics (Barducci et al., 2008),
where the bias strength is gradually decreased to improve the convergence properties and
avoid overfilling the energy minima, or infrequent metadynamics (Tiwary and Parrinello,
2013) which allows the extraction of kinetic information by reducing the frequency at
which the bias is applied and assuming that the time spent on a transition state is much
less than the waiting time between transitions. In the same group, one can find methods
that instead of adding biasing interactions modify the underlying free energy landscape.
Prime examples here are the basin-hopping (Wales and Doye, 1997) and basing-sampling
methods (Wales, 2013). These techniques explore a modified version of the FEL, as il-
lustrated in Figure 1.9. By running an energy minimisation after every step, the shape
of the underlying landscape is simplified, removing barriers and improving the sampling
efficiency.

A second group of methods, contrary to the ones outlined above, leaves the FEL un-
touched, but accelerates sampling by adaptively focusing on more interesting regions
and forming a better model of the landscape. For example, Adaptive Sampling methods
(Singhal and Pande, 2005; Doerr and De Fabritiis, 2014; Bowman et al., 2010) follow an
iterative algorithm with three steps: i) run N short simulations, ii) build a Markov State
Model (see section 1.6 for more details) of the simulations run so far, and iii) use the infor-
mation provided by the MSM to select the most interesting states and start a new round
of simulations from them. The criteria used to select those states is commonly referred
to as reward function, drawing inspiration from Reinforcement learning (RL) techniques.
In RL, an agent is trained to perform a task by maximising the reward obtained by its
actions. The agent must navigate the exploration-exploitation dilemma, that is, if it is too
greedy and just gets the highest rewards possible it will quickly get stuck in a local min-
imum, failing to obtain the maximum possible reward. This is why in complex problems
a balance between exploiting current information and gaining new information is needed
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Figure 1.9: Graphical representation of the effect of basin-hopping techniques on the FEL,
reducing significantly the free energy barriers by the use of energy minimisation. Source:
https://esa.github.io/pagmo2/_images/mbh.png

(Auer et al., 1995). The prime example of the application of ideas from RL in molec-
ular simulations is the Fluctuation Amplification of Specific Traits (FAST) which runs
iterations of simulations, clustering and selection based on the following reward function

ri = φi + αψi (1.13)

where ri is the reward of a particular state i, φi is a score design to favour exploitation
towards states that optimise some structural metric, ψi is a score proportional to the
exploration accumulated in each state, favouring the sampling of less populated states
and α is a parameter that can be tuned to direct the simulation towards either side of the
exploration-exploitation trade-off. Similarly, the REinforcement learning based Adaptive
samPling (REAP) method (Shamsi et al., 2018) which uses a weighted combination of
several reward functions that can change during the simulation, facilitating the sampling
of rare events that need more than one order parameter to be successfully described.

More mainstream kinds of machine learning techniques have also been used to enhance
sampling. For example, the Reweighted Autoencoded Variational Bayes for Enhanced
sampling (RAVE) (Ribeiro et al., 2018) utilises a state-of-the-art deep learning approach
called variational autoencoder (VAE) to estimate a low-dimensional representation of the
protein-ligand dynamics and run successive iterations of new simulations to refine the
model. RAVE has been applied to the estimation of the binding free energy of benzene
from the L99A variant of lysozyme, with notable success (Lamim Ribeiro and Tiwary,
2019). In short, the neural network creates a low-dimensional representation to guide
the dynamics, thus avoiding the pitfalls of exploring the full energy landscape. This re-
duced space, referred in the literature as “latent space”, has been introduced previously
as a helpful trick to accelerate sampling in the Intrinsic Map Dynamics (iMapD) tech-
nique (Chiavazzo et al., 2017), and is also exploited in a recent promising method termed
Boltzmann generators (Noé et al., 2019). In this technique, a neural network encodes the
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system coordinate into a latent space, which is explored via Monte Carlo moves and then
can reverse the transformation, obtaining conformation sampling at an accelerated rate,
as well as estimates of thermodynamic properties.

Finally, in this group one can find the family of works belonging to the category of
Weigthed Ensemble (WE) techniques (Zuckerman and Chong, 2017; Dickson and Brooks,
2014; Zwier et al., 2015). Similarly to Adaptive Sampling, in WE an ensemble of short
unbiased simulations is run. In the beginning, the multiple copies in the ensemble have an
equal weight. As the simulations explore more states the statistical weights are updated
and the replicas are merged or split according to the weights prioritising those states with
less sampling. WE methods have been applied to the study of kinetics of protein-ligand
systems (Dickson and Lotz, 2016; Dickson and Lotz, 2017; Dickson, 2018), successfully
studying the unbinding of 11 min time scale with only 6 microseconds of molecular dy-
namics (Lotz and Dickson, 2018).

1.6 Markov State Models

The increase in parallel computers mentioned at the beginning of the previous section has
facilitated the surge in popularity of Markov State Models (MSM). While the theoretical
groundwork was first established in 1983 (Zwanzig, 1983), it was not fully developed
until almost 20 years later (Swope et al., 2004). Nonetheless, the framework experienced,
shortly after, a sudden increase of popularity and attention, receiving great advances in
capabilities and robustness (Pande et al., 2010; Husic and Pande, 2018; Chodera and Noé,
2014).

A Markov State Model represents a model of the dynamics of a system that is assumed
to be Markovian at a lag time τ . The Markovian property establishes that the tran-
sitions between different states are memory-less, that is, the transition probabilities do
not depend on the past history, but only on the current state. The construction process
of a MSM is outlined in Figure 1.10. First, a simulation or ensemble of simulations is
run. The trajectories are discretised into a set of M clusters. Here, we will assume that
the state decomposition corresponds to a “crisp” assignment, where each conformation is
assigned to the closest state, creating a Voronoi diagram of the simulation on the coordi-
nates used for the clustering, commonly known as features. This assumption, however, is
not necessary and the estimation of MSMs has been done with a state discretisation that
does not create a full partition of the state space using milestoning (Schütte et al., 2011).
After the clustering, we use a sliding window approach to generate a count matrix from
the discrete trajectories (see panel (d) of Figure 1.10). That is, with trajectories indexed
from 0 to L− 1, where L is the length of the trajectory, we label as i the state at index
0 and j the state at index τ and add one to the matrix entry in row i and column j, and
we repeat the procedure for indexes (1, τ + 1), (2, τ + 2) until (L− τ , L). From the count
matrix, a transition matrix is estimated, which gives the probability to jump from one
state to another, following the Markovian assumption.

The transition matrix is the core of an MSM, as it permits the extraction of plenty of
information. If the matrix is diagonalised we obtain a set of eigenvectors and eigenvalues.
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Figure 1.10: Schematic representation of a MSM. Panel (a): Four-well energy potential that is
sampled. Panel (b): The MSM eigenvectors approximate to the real dynamics’ eigenfunctions.
Panel (c): The relaxation time scales estimated from the MSM converge to the exact time scales,
with a rate depending on many factors, such as the discretisation. Panel (d): Outline of the
construction of a MSM. Trajectories are discretised, from which a transition matrix is estimated.
The largest eigenvector approximate the stationary distribution of the dynamics. Extracted
with permission from: Chodera, J. D. and Noé, F. (2014). Markov state models of biomolecular
conformational dynamics. Current Opinion in Structural Biology, 25:135–144.

The eigenvectors describe “probability fluxes”, that is, how the probability distribution
that describes the dynamics is affected by a given dynamical process (Prinz et al., 2011),
while the eigenvalues establish the time scale at which the processes decay (Swope et al.,
2004), according to the formula

ti =
−τ

ln |λi(τ)|
(1.14)

where ti is the associated time scale, also known as implied time scale, λi is the eigenvalue
and τ is the lag time used. Note that the largest eigenvalue will be 1, and its associ-
ated eigenvector is called the stationary distribution, π. This eigenvector represents the
equilibrium distribution of the Markov chain, meaning that when the transition matrix
is applied to a system initialised from π, this distribution is left invariant. The rest of
eigenvalues are smaller than one, representing dynamical processes that will eventually
decay, leaving only the stationary distribution.

Markov State Models have two main advantages: i) they facilitate the integration of an
ensemble of independent, usually short, parallel simulations into a single model, instead
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of a long simulation, and ii) the obtained model allows the extraction of kinetic and
equilibrium information. There are, however, some weak points to the method: i) the
spatial discretisation greatly affects the model quality, one must choose a set of coordinates
that represent well the dynamics of the system. The choice of a clustering algorithm and
other parameters such as the number of states can be difficult. And ii) the lag time chosen
should be as large as the time scale of the slowest dynamical process of the system. Since
this is not known beforehand, a method for assessing whether the lag time is appropriate
exists. Proposed by Swope et. al. (Swope et al., 2004) this technique requires estimating
several MSM at increasing lag times, and checking at which values the implied time scales
converged to a constant value, since if a model is Markovian at a lag time τ it will also be
Markovian at any lag time larger than that (see panel (c) of Figure 1.10 for an example
of this technique).

The process of construction of an MSM like the one outlined above is the most common
one, however recent developments in the field have open the door to alternatives modes
of construction that can alleviate some of the weak points described. The selection of
features for the space discretisation is difficult and system-dependent. In an attempt to
simplify and automate the process, dimensionality reduction techniques were introduced.
With these methods, one could use a large number of coordinates from the system and
run a Principal Component Analysis (PCA) (Mu et al., 2005) or Time-lagged Independent
Component Analysis (TICA) (Naritomi and Fuchigami, 2011; Pérez-Hernández et al.,
2013; Schwantes and Pande, 2015) to obtain a simplified set of features on which the
discretisation is carried out. Building on the groundwork of the TICA method, Nüske
et. al. developed the Variational Approach to Conformational dynamics (VAC) (Nüske
et al., 2014), which presented a variational approach to building MSMs. According to
the VAC, models could be objectively scored by the magnitude of the eigenvalues. Since
in an MSM the eigenvalues are systematically underestimated, the best models would
maximise the magnitude of their eigenvalues. Using this principle, McGibbon and Pande
introduced the Generalized Matrix Rayleigh Quotient (GMRQ) score that allowed the
comparison between different discretisation schemes and introduced the concept of cross-
validation, ubiquitous in machine learning fields, for a more robust validation of the
sampling quality of a simulation (McGibbon and Pande, 2015). In 2018 VAMPNets were
introduced (Mardt et al., 2018), this technique uses a neural network trained to maximise
the variational score and estimate an MSM, without the need of user interaction. With
the introduction of ideas from artificial intelligence fields, the construction of MSMs has
become more user-friendly and automatable which will surely increase the popularity of
the technique.

1.7 PMF, probability distribution and ∆G

The construction of potentials of mean force is ubiquitous in free energy calculations,
particularly in pathway-based methods. A PMF, denoted as W (χ), describes the free
energy changes as a function of a coordinate or a small subset of coordinates of the system,
χ. These coordinates can be a subset of the natural coordinates of the system, for example
the coordinates of some atom, or more complex combination, such as the centre of mass
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of a molecule or the distance between the protein and ligand. Numerically, the PMF can
be understood as the projection of the free energy onto the subset of coordinates χ. With
this in mind, the PMF can be defined as

e−βW (χ) =

∫
dxδ(χ′(x)− χ)e−βE(x)∫

dxe−βE(x)
(1.15)

where δ(χ′(x)− χ) is the Dirac delta function for the coordinate χ, x represents the 3N
coordinates of the atoms of the system and the integrals perform Boltzmann averaging
over all the coordinates, leaving as a result the projection of the free energy over χ. For
an illustrative discussion of the PMF derivation, one can review the introductory-level
discussion by Zuckerman (Zuckerman, 2013), and for a more detailed view on can consult
the reviews by Gallichio and Levy (Gallicchio and Levy, 2011) and Zhou and Gilson
(Zhou and Gilson, 2009). The right-hand side of equation 1.15 describes a probability
distribution over the coordinates χ, π(χ), allowing to establish a connection between the
PMF and probability

W (χ) = −kBT ln(π(χ)) (1.16)

Examples of the kind of coordinates used for PMF building include protein-ligand dis-
tances (Gumbart et al., 2013; Deng et al., 2018), the z coordinate after aligning the system
to the z axis (Doudou et al., 2009) or the RMSD to a reference conformation (Woo and
Roux, 2005; Wang et al., 2006a; Gumbart et al., 2013). These works have several com-
mon points: i) the PMFs were one-dimensional and ii) they used restraints on the ligand
and the protein to restrict the exploration to conformations relevant for binding. The re-
straints were important to reduce the computational cost, but introduce a higher degree
of complexity in the setup. The two points were addressed in a work by Buch et. al.
(Buch et al., 2011), where they run an ensemble of molecular dynamics simulations of the
trypsin-benzamidine system, with an aggregated simulation time of 50 µs. The ligand
was allowed to diffuse freely within a restricted volume delimited by a box around the
binding site. The simulations were analysed using a Markov State Model, clustering using
the coordinates of the C7 atom of benzamidine. Using equation 1.16, a three-dimensional
PMF was estimated from the MSM stationary distribution. The standard binding free
energy was then calculated as

∆Go
b = −kBT ln

Vb
V0

−∆W (1.17)

with standard volume V0 = 1661Å3, Vb =
∫
b
e−βW (r)dr is the average sampled bound

volume and ∆W is the depth of the PMF (Zhou and Gilson, 2009), which is defined as
the value of the PMF in the “bulk” region, that is, in the region where the ligand is not
interacting with the protein and the PMF is flat. The value is determined after setting the
minimum of the PMF to zero and shifting all the values by the original minimum value.
This work was, to the best of our knowledge, the first one to combine MSM methodologies
with a PMF to calculate binding free energies. The simpler setup with respect to previous
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PMF calculations offers the advantage of being automatable, if enough computational
resources are available.

Despite the versatility of the PMF technique, studies with large benchmarks including
multiple proteins and ligands are difficult to find in the literature, especially so for those
using MSM methodologies. Some examples include a study employing funnel metady-
namics to estimate the binding affinity of 2 ligands to the human peroxiredoxin 5 protein
(Troussicot et al., 2015). Another example demonstrated the estimation of the binding
free energy of six ligand fragments to the FKBP protein using extensive equilibrium sim-
ulations (Pan et al., 2017). Despite these few enlightening examples, to the best of our
knowledge, there is no publication describing the prediction of absolute binding free ener-
gies for multiple receptors with numerous ligands per receptor using unbiased simulations.
The absence of further studies in this direction illustrates the important limitations faced
by unbiased simulations, and reinforces the need for smarter enhanced sampling strategies
that can make accurate free energy prediction techniques efficient enough for their routine
use in real-case scenarios.

1.8 Protein-ligand systems used throughout this thesis

Often, when developing a new method, be it for free energy calculations or for molecular
simulations, tests are run with a small set of systems that are simple and well studied,
such as alanine tripeptide for protein dynamics, villin for protein folding or host-guest
systems for protein-ligand binding. This is a sound strategy for initial tests, since it is
easy to derive testable assertions for such systems. However, one should be careful to not
over-trust such tests, because these simple systems are not entirely representative of the
complex nature of protein systems, and there will be many characteristics that will not
be properly captured by them.

Focusing on binding free energies, Mobley and Gilson reviewed common challenges that
should be tested against (Mobley and Gilson, 2017). For example, sampling varying
degrees of protein conformation changes, different ligand binding modes or different pro-
tonation states. It would be useful to create standardised benchmarks of systems that
raise some of the mentioned issues, so that when a new method is designed it can be
tested against them. Of course, this cannot be the work of a single group, but it must be
a community effort. In this thesis, we have strongly considered the issues mentioned and,
while we have not built or proposed a full set of benchmarks, we have selected widely
different systems to test the methods developed. In this section we will overview, in no
particular order, the different proteins chosen, and discuss what makes them relevant for
our use cases.

1.8.1 Trypsin

Trypsin (TRP) is a serine protease, found mostly in the small intestine (Rawlings and
Barrett, 1994). Its function is to catalyse the proteolysis of ingested protein, that is,
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(a) TRP (b) Plasmin (c) URO

Figure 1.11: Panel (a) Trypsin-benzamidine complex. Panel (b) Plasminogen kringle domain
1 with L01 as a ligand. Panel (c) Urokinase-type plasminogen activator with 39L as a ligand.
The protein is shown in cartoon representation, coloured in white, while the ligand is shown in
licorice representation, with carbon coloured cyan, oxygens red, nitrogens blue and hydrogens
white. The cofactor for trypsin, a calcium ion is shown as a cyan sphere.

the breakdown of proteins into smaller peptide chains, in the digestive system. Due to
its small size and considerable rigidity, it binding to benzamidine has been extensively
studied computationally (Doudou et al., 2009; Buch et al., 2011; Plattner and Noé, 2015;
Takahashi et al., 2014). In Figure 1.11a, the trypsin-benzamidine complex is shown. The
structure, taken from PDB entry 3PTB, shows a wide, solvent-exposed binding site, easily
accessible for the small benzamidine ligand. This fact made trypsin a perfect initial test
for both enhanced sampling exploration and free energy calculations.

1.8.2 Plasminogen kringle domain 1

The plasminogen kringle domain 1 (Plasmin) is one of the kringle domains of plasminogen.
In the kringle domains lysine binding sites can be found, which are closely linked to blood
clotting action. The plasminogen protein is involved in blood protein degradation, which
is why it is an interesting drug target in situations with heavy blood loss, such as during
surgery (Cheng et al., 2014). Plasmin is the simplest protein used throughout this thesis,
with only 80 residues, as can be seen in Figure 1.11b. The structure, with PDB id 4CIK,
shows a wide-open active site, where fragment-like ligands can bind. This system has
served as a simple test for the binding free energy studies, with 16 ligands (see Table 1.1
for ligand structures) with binding free energies between -2.1 and -3.9 kcal/mol (Schmidt
et al., 2017). Despite its simplicity, the reduced range of affinities makes it a quite
challenging system to model computationally.

1.8.3 Urokinase-type plasminogen activator

The urokinase-type plasminogen activator, also known as urokinase (URO), is a protein
of the family of the serine proteases. Its main function is the catalysis of the activa-
tion of plasmin through cleavage of plasminogen (Jankun and Skrzypczak-Jankun, 1999;
Matthews et al., 2011). Urokinase is an interesting pharmaceutical target due to its rel-
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(a) PR (b) ERK2

Figure 1.12: Panel (a) Complex of progesterone with its endogenous ligand, progesterone. Panel
(b) Complex of Mitogen-activated protein kinase 1 with EK2 as ligand. The protein is shown
in cartoon representation, coloured in white, while the ligand is shown in licorice representation,
with carbon coloured cyan, oxygens red, nitrogens blue and hydrogens white.

evance for blood clotting conditions as well as its possible relation to cancer migration
(Tang and Han, 2013). Structurally, URO is similar to trypsin (compare Figure 1.11a to
Figure 1.11c) with a solvent exposed cavity. However, the ligands used in this thesis in
complex with URO are generally strong binders, with affinities between -5.16 and -12.70
kcal/mol (Dunbar et al., 2013) (see Table 1.2 for the ligand structures), making URO a
more complex test case than trypsin. The protein structure is extracted from PDB entry
4FU9.

1.8.4 Progesterone receptor

The progesterone receptor (PR) is a nuclear hormone receptor capable of sensing the
present of the hormone progesterone. Upon binding to the endogenous ligand, the re-
ceptor undergoes a conformational change that triggers the transcription of mRNA. The
progesterone receptor has been studied as an important target for diseases such as dia-
betes, cancer or heart conditions (Beato and Klug, 2000; Smith and Muscat, 2005; Conzen,
2008; Wang et al., 2010). PR represents probably the most challenging system of the ones
used in this work, due to its buried and narrow binding site (see Figure 1.12a). Sampling
binding events requires the occurrence of low frequency concerted protein motions, along-
side with local loop rearrangements. The five ligands used are shown in Table 1.3 with
a range of experimental binding free energies between −5.3 and −9.1 kcal/mol (Grebner
et al., 2017). The protein structure is extracted from PDB entry 1A28.
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1.8.5 Mitogen-activated protein kinase 1

The mitogen-activated protein kinase 1 (ERK2) is a member of the MAP kinase family.
These proteins mediate in multiple signalling pathways by phosphorilating nuclear targets.
This receptor is involved in many processes such as cellular proliferation or transcription
regulation and mutations of this receptor have been found in various cancer types (Owaki
et al., 1992). The structure and binding site of ERK2 differs from all remaining proteins
used in this work, as can be seen in Figure 1.12b. The binding site is partially solvent
exposed and broad, fitting several different binding modes. The experimental affinities
for the five ligands are in the range of −7.0 to −9.7 kcal/mol (Dunbar et al., 2013), see
Table 1.4. The receptor was extracted from PDB entry 4FV3.
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Table 1.1: Two dimensional structures of the ligands of the plasmin receptor, alongside
with their experimental affinities

L05, ∆Gexp = -2.16 kcal/mol L12, ∆Gexp = -2.43 kcal/mol

L06, ∆Gexp = -2.70 kcal/mol L02, ∆Gexp = -2.70 kcal/mol

L13, ∆Gexp = -2.92 kcal/mol L09, ∆Gexp = -3.02 kcal/mol

L10, ∆Gexp = -3.24 kcal/mol L08, ∆Gexp = -3.24 kcal/mol

L11, ∆Gexp = -3.40 kcal/mol L04, ∆Gexp = -3.40 kcal/mol

L14, ∆Gexp = -3.46 kcal/mol L03, ∆Gexp = -3.62 kcal/mol

L16, ∆Gexp = -3.67 kcal/mol L15, ∆Gexp = -3.73 kcal/mol

L01, ∆Gexp = -3.78 kcal/mol L07, ∆Gexp = -3.94 kcal/mol
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Table 1.2: Two dimensional structures of the ligands of the URO receptor, alongside with
their experimental affinities

BAM, ∆Gexp = -5.16 kcal/mol 2UP, ∆Gexp = -6.50 kcal/mol

1UP, ∆Gexp = -7.70 kcal/mol 675, ∆Gexp = -7.71 kcal/mol

4UP, ∆Gexp = -7.73 kcal/mol 6UP, ∆Gexp = -7.89 kcal/mol

7UP, ∆Gexp = -8.99 kcal/mol 239, ∆Gexp = -9.20 kcal/mol

655, ∆Gexp = -9.20 kcal/mol UI1, ∆Gexp = -12.70 kcal/mol

Table 1.3: Two dimensional structures of the ligands of the PR receptor, alongside with
their experimental affinities

356, ∆Gexp = -5.35 kcal/mol HCY, ∆Gexp = -6.65 kcal/mol

AS4, ∆Gexp = -8.21 kcal/mol 400, ∆Gexp = -8.91 kcal/mol

STR, ∆Gexp = -9.08 kcal/mol
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Table 1.4: Two dimensional structures of the ligands of the ERK2 receptor, alongside
with their experimental affinities

EK3, ∆Gexp = -6.95 kcal/mol EK2, ∆Gexp = -7.57 kcal/mol

EK9, ∆Gexp = -9.57 kcal/mol EK6, ∆Gexp = -9.62 kcal/mol

E63, ∆Gexp = -9.72 kcal/mol
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Chapter 2

Results

In this chapter we report the main results obtained from this thesis. They contain a
description of the methodology developed for the estimation of binding free energies and
the application and accuracy measurements of said work. Section 2.1 includes a descrip-
tion of AdaptivePELE, as well as the first attempts at binding free energy estimation.
Section 2.2 then explains the multi-stage protocol developed to accelerate the affinity
calculations. Sections 2.3 and 2.4 cover the application of the mentioned protocol using
different simulation techniques (PELE and MD, respectively). Finally, section 2.5 con-
tains a preliminary attempt to reintroduce AdaptivePELE as the simulation propagator.
During some of this sections there will be brief discussions about some relevant aspects
of the results. This discussions are included for easier reading, and a more detailed one
will be done in the next chapter.

2.1 AdaptivePELE

PELE has been successfully employed in exploring protein-ligand binding (Santiago et al.,
2016; Edman et al., 2015; Grebner et al., 2016), as well as for free energy calculations
(Takahashi et al., 2014; Grebner et al., 2017). However, all these examples involved testing
few ligands and had a significant computational cost. AdaptivePELE was designed to
overcome this limitation and permit the study of larger sets of protein-ligand systems
with PELE.

2.1.1 AdaptivePELE algorithm

AdaptivePELE is an enhanced sampling technique that belongs in the same group as
Adaptive Sampling or FAST. These methods, reviewed in section 1.5.4, are capable of
accelerating molecular sampling without the need of adding any biasing potential. When
compared with regular PELE simulations, AdaptivePELE shows an order of magnitude
speed-up in the mapping of binding events (Lecina et al., 2017), consistently for widely
different protein systems, from a simple trypsin protein to much more complex G-Protein
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Coupled Receptors (GPCR).

The idea behind AdaptivePELE is based in reinforcement learning, a subfield of artifi-
cial intelligence that studies how agents can learn to solve a problem by maximising the
rewards obtained from their actions (Sutton and Barto, 1998). More precisely, the the-
oretical framework discussed here is based on the Multi Armed Bandit (MAB) problem
(Robbins, 1952). The most common description of the MAB problem requires maximis-
ing the money obtained from playing with k slot machines. The player can only pick one
machine at a time and the rewards and winning probabilities of the machines are differ-
ent and unknown to the player. If k is sufficiently big, it is easy to see that discovering
the optimal strategy is difficult. The player is faced with the exploration-exploitation
dilemma, where if he always plays the machine with the biggest known reward, the player
might miss out on another machine with an even bigger reward, but if he keeps trying
more machines to discover the maximum one the total obtained prize will be low.

The lessons learned from the MAB can be easily mapped to protein ligand systems by
use of the free energy landscape. Ideally, the basins of the FEL would take the role of
machines, and their reward would be the basin depth. However, this information is not
available a priori, thus in AdaptivePELE the agent chooses between a set of different
states, with a reward that is proportional to some metric that can approximate a reaction
coordinate. The full AdaptivePELE algorithm, shown in Figure 2.1, is divided in three
phases: propagation, clustering, and spawning. These steps are run for a number of
iterations, also called epochs, or until an exit condition is met. The different steps will
now be carefully explained.

Propagation. A number of PELE simulations, n, is run in parallel, either from the initial
structures or from the conformations selected in a previous iteration. This is depicted
in the top right image of Figure 2.1. In this example, all simulations start from a single
initial state (white circle) and explore slightly different regions of the energy landscape.

Clustering. After the propagation phase, the simulation trajectories are clustered into a
set of different states. Clustering uses the leader algorithm (Hartigan, 1975), a technique
that is well suited for the incremental nature of the method. In this algorithm, one starts
with an empty list of clusters and the first snapshot of the trajectories is added as the first
cluster’s representative structure. The subsequent snapshots are then compared to the
existing clusters, and stops if the structure is deemed similar enough to the representative
structure of a cluster, and the population of said cluster is incremented. If the snapshot
is different to all existing states, it is assigned to a new cluster. The similarity criteria
can be either the ligand root-mean-square deviation (RMSD) between the representative
structure and the new conformation or the difference between the protein-ligand contact
maps of the two structures.

Spawning. The most important phase of the AdaptivePELE algorithm is the spawning
step. At this stage, the list of clusters is evaluated and a reward score is assigned to
them. There are many possible schemes for this calculation, but the most commonly
used ones available in AdaptivePELE are called inverselyProportional and epsilon. The
first assigns a score that is inversely proportional to the population of the clusters, thus
favouring the exploration of under-sampled regions of the energy landscape. The epsilon
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Figure 2.1: Schematic representation of the AdaptivePELE algorithm. The algorithm starts
from a set of conformations and runs short simulations (propagation phase, top right). Then
the trajectories are clustered according to the ligand structure (middle right) and finally some
promising states are selected for a new round (bottom right), until an exit condition is met.
Image author: Daniel Lecina.

strategy combines the same exploration component of the inverselyProportional with a
secondary approach to exploit known information. The method assigns a fraction ε of
the n selected structures, to those clusters that maximise (or minimise) a certain metric,
such as the ligand solvent-accessible surface area (SASA) or the distance between a pair
of atoms. Based on the commonly known ε-greedy (Sutton and Barto, 1998) methodology
of RL, the combination of a exploration oriented score with an exploitation one results in
a more efficient sampling, particularly for values of ε of approximately up to 0.25 (Lecina
et al., 2017). In addition to the score calculated by the spawning methods mentioned,
AdaptivePELE optionally incorporates an extra term called density designed to compen-
sate the difficulty of generating acceptable poses when the ligand is in close contact with
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the protein, both due to steric limitations and the increased ruggedness of the energy
landscape. This density is commonly calculated as

ρ =

{
64

(−4r+6)3
if r ≤ 1

8 if r > 1
(2.1)

where the density, ρ, is a function of a parameter r = c
l
, where l is the number of the

ligand heavy atoms and c is the number of alpha carbons of the protein in contact with
the ligand. After the overall score is calculated, the n top states are filtered and a number
of new trajectories is assigned to each state according to the score. Since in a typical
simulation the number of clusters can get relatively large (numbers between 500 and 1000
are common), filtering the states ensures that resources are focused in regions of interest.

Exit condition. Finally, the structures selected in the spawning step are prepared to be
used in the next iteration. However, before that the codes check for an exit condition. This
is typically a number of epochs or iterations, but AdaptivePELE also offers the possibility
of stopping the simulation if a maximum or minimum value is reached for a metric. For
example, one might be interested in simulating the unbinding of a protein-ligand system,
so a suitable exit condition would consist of stopping once a value for the SASA close to
one is obtained, or once a certain number of trajectories have encountered such a value.
If no exit condition is triggered, then the algorithm proceeds by preparing the structures
for the next round of simulations, and goes back to the propagation phase.

2.1.2 Binding free energies from AdaptivePELE simulations

As mentioned in the previous section, PELE has already been used in conjunction with
Markov State Models to estimate a potential of mean force and calculate binding free
energies (Takahashi et al., 2014). In that paper, the authors accurately predicted the
binding free energy of trypsin and three structurally similar ligands, which required ap-
proximately 1 week of simulation time per ligand with 64 processors. Although the time
could be substantially reduced increasing the number of processors, the computational
cost prevented the technique from being scalable to a higher number of ligands. For this
reason, we set out to study whether the simulation time necessary could be reduced by
use of AdaptivePELE.

The first system used was the trypsin-benzamidine complex shown in Figure 1.11a, which
we will refer to as TRP from here on, with an experimentally determined binding free
energy of -6.2 kcal/mol (Mares-Guia and Shaw, 1965). The process of the free energy
estimation consists of three steps: i) AdaptivePELE simulation, ii) MSM generation, and
iii) PMF and binding free energy estimation.

AdaptivePELE simulation. A simulation is started from an initial structure where ben-
zamidine is fully solvated, with approximately 23 Å RMSD from the native structure
(bound), as shown in Figure 2.2. The simulation consists of a series of short PELE
simulations, followed by clustering using the leader algorithm on the ligand RMSD and
spawning trajectories with a score inversely proportional to the cluster population. The
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PELE simulations were run for a number of steps l, which we will refer here as the epoch
length. Simulations used the OBC implicit solvent and ran ANM every step with modes
changing every six. The ligand perturbation consisted of small steps of either 1 or 2
Å, each with a 50% probability, and rigid body rotation between -36◦and 36◦or between
-18◦and 18◦, again, with 50% probability. The most important parameter for an Adap-
tivePELE run is the epoch length, that is, the length of the PELE simulation. Shorter
epochs imply more interruptions and more opportunities to distribute the computing ca-
pabilities more efficiently. However, if the next step is to analyse the simulations with
MSM, simulations need to be long enough to allow for a sufficiently large lag time for the
model to satisfy the Markovian property.

MSM generation. The first step in the estimation of an MSM is the discretisation of
the input simulations. To do so, one must first decide on a set of features to use in the
clustering. For all trajectories we extracted the coordinates of the amidine carbon and
ran K-Means clustering to obtain 100 clusters. We used the python PyEMMA package
(Scherer et al., 2015) both for clustering and MSM construction. A count matrix was
created using a sliding window approach, with a lag time l

2
, in order to maximise both

the collected statistics and the Markovianity of the model. From the count matrix, a
transition matrix is estimated using a maximum likelihood estimator (Prinz et al., 2011).
The transition matrix can be diagonalised, offering plenty of information about the system
dynamics. In this work, however, we focus mainly on the stationary distribution, π, that
allowed us to estimate the binding free energy.

PMF and binding free energy estimation. Following the method presented by Buch et. al.
(Buch et al., 2011), the stationary distribution is used to estimate a PMF using equation
1.15 and later the binding free energy is estimated using 1.17, see section 1.7 for more
details. What remains to be described in the mentioned section is the process for volume
estimation. The volume of the states is calculated by considering the maximum and
minimum values of the discretised coordinates. A cube is constructed with those points
as vertices, and is later cut into smaller cubes. Each small cube is assigned to the nearest
cluster centre and the total volume of each cluster is then the sum of the populated small
cubes belonging to the particular state. The whole process of MSM generation and free
energy estimation is repeated several times (usually 10) to approximate the estimation
error. This is done using a bootstrapping technique, where at each iteration a number
of trajectories is sampled with replacement from the complete set of simulations, and the
standard deviation of the predictions is taken as an error estimate.

We started by testing the influence of the epoch length in the free energy estimation by
running simulations with 50 processors. We ran AdaptivePELE with 50, 100, 200 and
400 steps per epoch and calculated the estimated binding free energy as more epochs are
introduced. The lag time used for the MSM should not be larger than half the simulation
length or else the statistics collected would be insufficient, and a non-negligible fraction
of the simulation would be wasted due to the sliding window approach (Doerr and De
Fabritiis, 2014). Thus, for example for simulations of 50 steps the lag time would be 25
and for the simulations of 400 steps the lag time would be 200. Similarly, the number of
clusters used was 100, since using more clusters creates numerical problems in the initial
epoch due the small amount of data. Figure 2.3 shows that after about ten iterations the
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Figure 2.2: Initial position of the ligand used in the AdaptivePELE simulation. The native
pose is also shown for comparison, coloured in dark blue.

45



2.1. AdaptivePELE Chapter 2. Results

Figure 2.3: Evolution of the binding free energy prediction as more epochs are used. The hori-
zontal line marks the experimental value, while the different coloured lines represent simulations
with different epoch lengths. Error bars correspond to the standard deviation obtained from the
bootstrapping procedure.

50 steps simulation seems to have converged around the experimental value (marked by
the horizontal black line). The same cannot be said about the rest of the simulations.
With a similar amount of aggregated sampling, the runs with longer epochs do not come
closer than 1 kcal/mol to the experimental value. The sampling redistribution done at
the end of each epoch appears to help in the prediction accuracy. In those simulations
with longer epochs and less redistribution attempts, the prediction accuracy improves
minimally.

To further test the effect of the AdaptivePELE spawning in the free energy calculations, we
ran additional simulations with 200 and 400 steps per epoch and 144 and 528 processors.
Lag time and number of clusters were selected in the same way as the previous simulations.
The results are shown in Figure 2.4a for the 200 steps and Figure 2.4b for the 400 steps. It
is clear from the plots that when the number of processors was increased the accuracy was
significantly improved. With 528 processors both the simulations with 200 and 400 steps
were within 1 kcal/mol of the experimental value. Also, with 400 steps and 144 processors
similar accuracy was achieved. Shorter epochs seemed the most efficient choice for the
estimation of the binding affinity. However, this imposes an important limitation on the
MSM constructed, as mentioned before. The short simulations of 50 steps might give a
sufficiently good approximation for a relatively fast binding like the trypsin-benzamidine
one, but it is not likely to give good results for more complicated systems.

To further improve the simulation efficiency, we modified the initial setup. Instead of
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(a) 200 steps per epoch (b) 400 steps per epoch

Figure 2.4: Evolution of the binding free energy prediction as more epochs are used, and with
a different number of processors. The horizontal line marks the experimental value, while the
different coloured lines represent simulations with different numbers of processors. Error bars
correspond to the standard deviation obtained from the bootstrapping procedure. Panel (a)
Evolution of the prediction with different number of processors with simulations of 200 steps.
Panel (b) Evolution of the prediction with different number of processors with simulations of 400
steps.

starting the simulation from a single starting conformation, we traced the binding path
from a previous simulation and used those conformations as starting points. We assumed
that by beginning the simulations from those diverse structures, sampling transitions in
and out the binding site would be more likely, thus improving the free energy estimation.
The path used is shown in Figure 2.5, with ligand structures coloured from red to blue
as benzamidine enters the binding site. To test this approach, we ran simulations with
50 processors and 100 steps per epoch, using 100 clusters and 25 steps lag time for the
MSM. The evolution of the prediction for each epoch is shown in Figure 2.6. Comparing
it to the red line in Figure 2.3, it is clear that with the same computational resources
and same model conditions the prediction was better from the very first epoch. At all
epochs the estimated value is within 1 kcal/mol from the experimental value, with small
fluctuations around it.

Considering the apparent improvement brought by the additional initial exploration, we
decided to adopt this strategy and extend the testing system to incorporate the URO
receptor (see section 1.8.3 for more details) with 3 ligands: BAM, 655 and UI1 (2D
structures and experimental affinities for these ligands are shown in Table 1.2). The new
strategy inserted an extra step to the schema explained before, the new sequence looked
like: i) short AdaptivePELE exploration, ii) “production” AdaptivePELE simulation, iii)
MSM generation, and iv) PMF and binding free energy estimation.

The first step consisted of an AdaptivePELE simulation with short epochs of only four
steps, with 144 processors, clustering using the ligand RMSD and spawning from those
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Figure 2.5: Illustration of a binding pathway for trypsin-benzamidine. Protein is shown in
white cartoon, while ligand is coloured from red to blue, with red marking the initial poses in
the pathway and blue the final ones.

Figure 2.6: Evolution of the binding free energy prediction for the simulations starting from
the pathway as more epochs are used. The horizontal line marks the experimental value, while
the red line represents the predicted values. Error bars correspond to the standard deviation
obtained from the bootstrapping procedure.
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(a) Ligand RMSD versus MC steps (b) Ligand SASA versus MC steps

Figure 2.7: Evolution of some simulation metric as the simulation of URO with the BAM
ligand progresses. Lines are coloured according to the epoch they belong. Panel (a) Evolution
of the ligand RMSD to the native pose. Panel (b) Evolution of the ligand SASA.

states that have been explored the least. The goal of this simulation was to quickly explore
the binding mechanism to extract a diverse set of structures that will serve as seeds for
the longer, “production” AdaptivePELE simulation. In Figure 2.7 we plot the evolution
of the ligand RMSD to the native pose, in panel (a), and the ligand SASA, in panel (b),
along an example of such short simulation for the binding of the BAM ligand to URO.
From the plots, it is clear that within the first four epochs RMSD values below 2 Å were
achieved, which translated to about 5 minutes of wall clock time. All the output of this
short simulation was then reclustered to extract a reduced set of structures to begin the
next phase. We selected 40 such structures, this number was chosen because it is high
enough to include sufficient diversity of ligand conformations but low enough to allow
us to start several processors from each structure, which we assumed would also help
improve the sampling efficiency. Next, we ran an AdaptivePELE simulation of 200 steps,
with 240 processors, 100 steps as lag time and 100 clusters for the MSM discretisation.
The MSM and free energy estimation steps were identical to those presented in the trypsin
simulations.

Results from the new approach are shown in Figure 2.8. In the plot, the different colours
are mapped to the three ligands used. The red lines represent values for the BAM
molecule, blue for 655 and violet for UI1. The horizontal lines mark experimental values,
while the lines with error bars represent the predicted values. It is clear from the plot that
the method is not able to distinguish between the three ligands, as all seem to converge
towards the binding free energy of BAM, which is around 4 kcal/mol higher than 655 and
7 kcal/mol higher than UI1. There are several possible explanations for the poor perfor-
mance observed. One is the length of the simulations. In the case of trypsin a lag time of
25 steps seemed sufficient to predict the free energy of binding, but the length required
for the URO receptor might be much longer, especially for ligands that are strong binders
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Figure 2.8: Evolution of the binding free energy prediction for the URO simulations with
the three selected ligands. The horizontal lines mark the experimental values, red for BAM,
blue for 655 and violet for UI1, while the lines with error bars represent the predicted values,
with the same colour code. Error bars correspond to the standard deviation obtained from the
bootstrapping procedure.

like 655 and UI1. Secondly, at the beginning of each epoch simulations are started from
a distribution that is surely different to the equilibrium distribution, since the states are
selected from those that are less visited. The precise impact of such perturbation in the
dynamics of the system is difficult to measure but it seems reasonable to assume that it
will interfere with the accuracy of the free energy estimation.

For the reasons outlined above, we decided to swap the production AdaptivePELE simu-
lations with longer, regular PELE simulations. The initial adaptive simulation was kept
to attempt to preserve the sampling advantage, but running longer PELE simulations
would: i) remove whatever noise, if any, was introduced by the spawning step, and ii)
allow the use of a longer lag time. PELE simulations were run with 240 processors for
2000 steps. Data was collected and processed in the exact same way as previously ex-
plained. The number of clusters for the MSM was kept at 100 but several lag times were
used to evaluate its impact (25, 50, 100, 200 and 400 PELE steps). To evaluate the
prediction accuracy we used three statistics: the first, the coefficient of determination,
R2, corresponds to the proportion of the variance in the dependent variable explained by
the independent variable. This measure has a value between 0 and 1, with a value of 1
meaning that the independent variable (in our case the free energy estimation) perfectly
predicts the experimental values. The second statistic is the Spearman correlation. This
value, also between 0 and 1, compares the rankings of two variables. It allows us to deter-
mine whether the predicted affinity is able to correctly rank the different ligands in a set
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(a) R2 and spearman correlation (b) Root-Mean-Square Error (RMSE)

Figure 2.9: Prediction accuracy for different lag times. Measures include R2 and Spearman
correlation in panel (a) and RMSE in panel (b)

even if the error with respect to the experimental values are large. Finally, we calculated
the Root-Mean-Square Error of the predicted values, calculated as

RMSE =

√∑
i

(
∆Gi

exp −∆Gi
calc

)2

N
(2.2)

where the index i runs over all the ligands in the set and N is the size of said set. Figure
2.9a shows the value of the coefficient of determination and the Spearman correlation
for different MSM lag times. Figure 2.9b also plots the RMSE value for different MSM
lag times. The measures were split into two figures to ease the visualisation of their
magnitudes and avoid visual artifacts due to the different ranges. The values for R2 and
Spearman correlation suggest that the predicted binding free energy is able to separate
and correctly rank the three ligands at all lag times. However, the values of the RMSE
indicate a dramatic decrease in the error for a lag time of 400 steps. For reference, the
values of the R2, Spearman correlation and RMSE for the AdpaptivePELE simulations
shown before are 0.67, 0.5 and 5.15 respectively. Analysis of the statistics should be cau-
tiously done due to the small number of ligands used (only three) which will inevitably
lead to noisy estimations. Nonetheless, a qualitatively different performance is observed
between the predictions done with regular PELE simulations with a previous Adaptive-
PELE exploration and those done with two subsequent AdaptivePELE simulations.

Overall, we learned from these preliminary tests that the efficiency gain in exploration
offered by AdaptivePELE can help reduce the computational time needed for binding
free energy estimations with regular PELE simulations. However, from the simulations
with URO we observed that using AdaptivePELE with the same clustering and spawning
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methods used for quick exploration simulations and short epochs does not result in accu-
rate binding affinity predictions. Combining these lessons we envision two possible routes
for more efficient free energy estimation: i) combining a very short AdaptivePELE simu-
lation with a longer regular PELE simulation, and ii) modify the clustering and spawning
methods used in AdaptivePELE for those longer, “production” simulations, to rule out the
possible noise-inducing effects introduced. The first option will be thoroughly explored in
sections 2.2 to 2.4, while the latter option will be examined in section 2.5.

2.2 Protocol for the estimation of binding free energies

To prove the efficiency gained by running a short AdaptivePELE to extract seeds for
a longer simulation we decided to expand the test systems to multiple protein systems.
This requires two tasks: i) put together a diverse set of proteins with multiple ligands
each, and ii) create a reasonably automatic protocol. The test benchmark consisted of
the following receptors: URO, plasmin, ERK2 and PR (see section 1.8 for more details
on those proteins and the ligands used). The selected proteins present different degrees
of difficulty. Plasmin is a simple and small protein, but its ligands are grouped into a
narrow range of affinities, making their prediction more difficult. URO showed promising
results in previous tests, so more ligands were incorporated to fully test the prediction
accuracy. ERK2 is a much more complex case, mainly due to its wide and flexible binding
site. Finally, PR is the most difficult protein to sample in the whole benchmark due to
its buried binding site only accessible from a narrow entrance canal.

The protocol requires previous knowledge about the binding site, as well as, at least
a good approximation of the binding mode. One could start from a crystal structure if
available, although a docking pose should also work. Exact information about the binding
mode is not needed since, like most pathway-based methods, the binding mode should be
recovered from the production simulations. The protocol was implemented in python, in
collaboration with Daniel Soler from Nostrum Biodiscovery, and chains the several steps
explained below automatically, as depicted in Figure 2.10.

Initialisation. The initial structure needs to be processed before starting any simulations.
Mostly, protein preparation is automatically performed, tasks like adding possibly missing
hydrogen atoms, assign the force field atom types or generate the atomic parameters for
the ligand.

Equilibration. After processing the input structure, an equilibration step takes place.
This consists of a short simulations (∼500 PELE steps) with the goal of refining possible
small inaccuracies that might be present in the input structure. This procedure uses
very weak ligand perturbation parameters, ensuring that it will remain in the binding
site. The equilibration trajectories are clustered into 10 clusters, and for each group a
representative structure is selected to use in the next step. The whole procedure requires
about 1-2 minutes of wall clock time.

Ligand unbinding simulation. The equilibrated structures are used as input to a short
AdaptivePELE simulation. The goal of this run is to map the unbinding process in order
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Figure 2.10: Schematic summary of the binding free energy protocol. The top left image
depicts a summary of the ligand exit simulation, with structures coloured from red to blue
as the simulation advances. The top right image depicts the centre of mass of the selected
initial structures from the starting simulations in blue dots and the simulation box in grey. The
bottom left image shows a schematic representation of the MSM clusters coloured according to
their equilibrium probability
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(a) URO unbinding simulation (b) PR unbinding simulation

Figure 2.11: Evolution of the SASA along the several epochs of the unbinding simulation.
Values of SASA larger than 0.8 typically mean almost completely solvated ligand structures.
Colours represent the epoch number. Panel (a) shows the evolution for an AdaptivePELE sim-
ulation with the 1UP ligand for URO. Panel (b) shows the evolution of the STR ligand with
PR.

to generate representative poses to use as seeds in the production simulation. We map
the unbinding process instead of the binding since it requires less information about the
receptor, making it easier to automatise, and we assume that the resulting structures
will be representative of both processes. Epochs of only two steps are used, with an
spawning criterion distribution 75% of the processors to structures with the largest SASA
and the remaining cores to the least visited clusters. The simulation is run until at least
four independent trajectories reach a SASA value larger than 0.95. In Figure 2.11 two
examples of ligand unbinding simulation are shown. Figure 2.11a shows the unbinding of
the 1UP ligand to URO. The exit condition was met after six epochs. Similarly, Figure
2.11b shows the simulation output for ligand STR and PR. Here, the occluded binding
site makes unbinding more difficult and about twice as many steps were required to meet
the exit condition.

Clustering and “box” construction. To extract “seeds” from the unbinding simulation,
that is, structures that will serve as inputs for running additional simulations, we cluster
the output of the initial run. The clustering is done with the K-Means implementation
of PyEMMA, and results in 40 conformations that we assume will approximate both
the binding and unbinding process well. This number is arbitrarily set, but, based on
prior experience detailed in the previous section, results in a useful compromise of having
enough different states to sample most of the relevant conformation space for binding
while being able to run several trajectories from each starting point. Additionally, the
clusters are used to construct the simulation “box”, that is, the volume available for ligand
exploration. Multiple shapes can be used for this box, such as a single sphere around the
binding site, multiple spheres along the unbinding path (as shown in Figure 2.12) or a
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Figure 2.12: Initial setup for the production simulation. Each dot represents the centre of mass
of the ligand in an initial structure. The multiple spheres depict the simulation box, that is, the
volume accessible to the ligand.

cylinder covering the same path. The ligand is restricted inside this closed volume, but is
free to explore the allowed region, without any external force when inside. The objective
of setting this box is to reduce the computational time required to obtain converged free
energy estimations.

Production simulation. From the 40 selected structures in the previous step, we start an
ensemble of longer simulations, that we will refer to as production simulations. As we saw
in the previous section, AdaptivePELE simulations did not produce consistent binding
free energy predictions, and for this reason the production runs are done using regular
unbiased simulations. These can either use PELE (see section 2.3) or MD (see section
2.4). The resulting trajectories from these simulations are processed, extracting the centre
of mass of the ligand, to construct the MSM. The centre of mass is used because it is
a measure that is generally applicable to any protein-ligand system and thus aids in the
automation of the protocol.

MSM and binding free energy estimation. The process of MSM estimation follows the same
schema previously considered. The processed trajectories are clustered using K-Means and
each snapshot is assigned to the closest cluster. A count matrix is constructed with a lag
time, τ , which leads to a transition matrix and a stationary distribution describing the
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(a) State discretisation used for the MSM (b) PMF one-dimensional projection

Figure 2.13: Example of visualisation analysis useful for evaluating the modelling accuracy. In
panel (a) the clusters are coloured according to their PMF value (red means higher probability,
blue lower probability). Panel (b) shows a one-dimensional projection of the PMF with respect
to the distance to the initial structure. Each point corresponds to a cluster, however, it should
be noted that the figures are only used for illustrative purposes, and no relationship should be
inferred from the two panels.

equilibrium probability of each state. From the distribution a PMF and binding free
energy are estimated as detailed in section 1.7.

The main, new contributions to this step of the protocol are the analysis and visualisation
tools shown in Figure 2.13. They give two complementary views of the PMF estimation
that highlight possible shortcomings that can affect the prediction accuracy. Figure 2.13a
shows a representation of the MSM clusters centres with the URO receptor. The clusters
are coloured according to their PMF value, with the lowest values shown in red and the
highest in blue. This visualisation allows for a quick check if the assumptions made in
the PMF derivation are held, mainly whether the minimum corresponds to the binding
pose and the fully solvated structures shows maximal, close to constant, PMF values.
Additionally, this kind of image can also point to possible sampling artifacts caused by
the simulation box, as exemplified by the few reddish clusters on the top right corner.

Figure 2.13b shows a related plot, a one-dimensional projection of the estimated PMF over
the euclidean distance to the initial conformation, which points to the active site bound
mode. This offers a simplified version of the information conveyed by Figure 2.13a, but
it is easier to incorporate into the automatic protocol and provides an informative quick
analysis of the simulation.

Once the entire protocol is run for the chosen set of ligands, the prediction accuracy
is measured, like in the previous URO example, using three statistical metrics: i) the
Spearman correlation, ii) the coefficient of determination, R2, and iii) the RMSE. In
the following sections we report the results obtained from applying the protocol to some
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test systems, in section 2.3 we use the version of the protocol that uses PELE as the
propagator, we call this version of the protocol PELE-MSM. In section 2.4 we demonstrate
the results of applying a second version of the protocol that uses MD as the propagator,
which is why we refer to this variation as MD-MSM. Finally, in section 2.5, we introduce
another version that again uses AdaptivePELE to run the production simulations but
with different spawning and clustering methods than those shown in section 2.1.

2.3 PELE-MSM

The method termed PELE-MSM employs the protocol described in the previous section
using PELE as the simulation propagator for the production runs. To thoroughly test
its accuracy we ran three independent iterations of the whole protocol using 128 cores,
with simulations of 1000 PELE steps. The three iterations were completely independent,
starting from the same initial structure but with different random seeds. The multiple
rounds were incrementally used in the free energy prediction. That is, we first estimated
the binding affinity with the trajectories from the first iteration only. Then, we com-
bined the simulations of the first two rounds and again estimated the binding free energy.
Lastly, all trajectories were used to perform a final estimation. This process allowed us
to investigate the effect of the amount of sampling in the prediction accuracy as well as
providing a quick evaluation of the convergence of the calculations.

The benchmark used to test the method consisted of a total of four proteins and 23 ligands:
plasmin with ligands L01, L02, L05, L06, L07 and L15 (see Table 1.1 for ligand structures
and experimental affinities); URO with ligands 1UP, 2UP, 4UP, 6UP, 7UP, 675 and 39L
(see Table 1.2 for ligand structures and experimental affinities); ERK2 with ligands EK2,
EK3, EK6, EK9 and E63 (see Table 1.4 for ligand structures and experimental affinities);
and PR with ligands STR, AS4, HCY, 356 and 400 (see Table 1.3 for ligand structures
and experimental affinities). The work described in this section was recently published in
the Journal of Chemical Theory and Computation (Gilabert et al., 2019).

2.3.1 Binding Free Energy for the Plasmin System

The initial structure used for the Plasmin runs was the top Glide SP docking pose, which
closely matched the binding pose shown in the crystallographic structure (PDB id 4CIK).
Due to the small size of the protein, this was the fastest system to test, requiring only 3
hours of wall-clock time per iteration. Figure 2.14 shows the correlation between the com-
putational estimations of the binding free energy and the experimental values. Prediction
has a R2 values of 0.72, a Spearman correlation of 0.75 and RMSE of 1.11 kcal/mol.
The graph clearly shows a separation of the ligands into two halves, one with the three
strongest binders and one with the three weakest ones. This observation is supported by
the statistical measures that show low error, with strong correlation and ranking. This
positive result is obtained despite the fact that all six ligands are quite weak binders
(best in the set has a binding free energy of −3.94 kcal/mol); as a reference, Glide SP
and XP scores, although predicting the bound pose, give correlations of 0.02 and 0.04,
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Figure 2.14: Correlation of the predicted binding free energy with respect to experimental
values for the Plasmin system. Text labels identify the ligand that each point represents.

respectively.

To evaluate the accuracy as the amount of sampling increases, we calculated the coefficient
of determination as more iterations are completed, which resulted in R2 values of 0.55, 0.70
and 0.72 for 1, 2 and 3 iterations respectively. While the accuracy with only one iteration
was already notable, it improved when more trajectories were added. This suggests that
with only 127 simulations, one could get a quick approximation, but at least twice as many
simulations are required to obtain accurate results. In Figure 2.15 the PMF obtained at
the introduction of each iteration are shown, with Figure 2.15a showing the first round,
Figure 2.15b the PMF for the first two, and Figure 2.15c shows the estimation for the
combination of the three. There exist fewer differences in the PMF profiles than there are
in the R2 values. All three cases show a similar outline, with a well defined minimum at
close distances to the native bound pose, and overall flat PMF values at distances larger
than 10 Å.

The PMF profiles shown in Figure 2.15 present little fluctuations, with only a small group
of about four states deviating from the main trend. We investigated the representative
structures of said cluster, which is shown in Figure 2.16b. In Figure 2.16a the structure
of the absolute minimum is shown, with the ligand and some important residues painted
cyan and the protein illustrated using white ribbons. The ligand, which has a zwitterionic
nature, is trapped between two positive and two negative ones. The positive charges
come from two arginine residues, Arg 33 and 71, while the negative charges come from
two aspartates, Asp 55 and 57. The small PMF deviation, which we will refer here as a
secondary minimum, although it is of little importance, shows a similar but less stable
binding mode to that of the active site. Both structures share a pair of arginine residues
that, along with Arg 35, interact with the negative charge of the ligand. On the other
end of the L01 molecule, its positive charge interacts with only one negative charge, Glu
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(a) PMF using one iteration (b) PMF using two iterations (c) PMF using three iterations

Figure 2.15: Comparison of the evolution of the one-dimensional PMF with three iterations
for the L01 ligand of the plasmin receptor for the three iterations. Panel (a) shows the PMF
resulting from the first iteration only. Panel (b) shows the PMF resulting from combining the
first and second iterations. Panel (c) shows the PMF resulting from combining the first three
iterations.

69, forming a similar but less balanced interaction than that of the binding pose.

For completeness, in Appendix A, we show the evolution of the PMF estimation for the
three iterations for all the remaining ligands of the set. This is shown in Figure A.1
to A.5. It seems clear from the graphs that a similar analysis to that of L01 applies
to the rest. All profiles are similar throughout the three iterations, with well-defined
minima at small distances to the active conformations and approximately constant values
at large distances. All in all, the PELE-MSM scheme showed accurate predictions of
the binding free energies for the plasmin receptor with around 9 hours of wall-clock time
and 128 processors. Importantly, these positive results are achieved despite the reduced
range of binding affinities of the ligand set used, for a system that despite its simplicity
has been unsuccessfully studied using FEP and MM/GBSA with R2 values of 0.16 and
0.2 respectively (Schmidt et al., 2017). The good performance of the method with this
small test system, in line with the previous results obtained with trypsin suggest that the
method is well suited to predict the binding free energy of fragments.

2.3.2 Binding Free Energy for the URO System

The study of the URO receptor with PELE-MSM started from a Glide docking pose, which
could reproduce the crystallographic binding pose (using PDB entry 4FU9 as reference).
This protein, which is larger than plasmin, required around 8 hours of wall-clock time
per iteration. The correlation between the calculated and experimental values, shown
in Figure 2.17, was qualitatively similar to that observed in plasmin. The ligands were
separated into two groups, the two with highest affinity (39L and 7UP) on one side and
the remaining five ligands on the other. The difference between the two groups is less
marked than the one observed in the plasmin predictions, and the ranking of the ligands
inside each group is also less precise. In quantitative terms, the prediction statistics show
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(a) Absolute minimum (b) Secondary minimum

Figure 2.16: Representative structure of the minima of the L01 ligand binding to the plasmin
receptor. Protein is shown in white ribbons, ligand and key residues are shown in licorice
representation with cyan carbons. Panel (a): Active site and absolute minimum. Panel (b):
Secondary minimum at about 10 Å distance from the active site, with the active site structure
depicted in blue for reference.

an R2 value of 0.59, Spearman correlation of 0.61 and RMSE of 5.86 kcal/mol. The
free energy predictions were significantly off from experimental values, however the other
measures showed some predictive power of the ligand ranking within the set.

The PMF profiles obtained for URO show signs of not fully converged simulations. This
is particularly true for the 7UP ligand; in Figure 2.18 its PMF profiles are shown. With
only one iteration significant deviations from an ideal profile are observed, with the PMF
minimum located at around 15 Å. A representative structure of such states is shown
in Figure 2.19, with the bound pose shown in dark blue for reference. In this structure
the ligand forms an ionic bond with Asp 147 as well as hydrophobic interactions. The
protein-ligand interaction does not seem particularly strong, as evidenced by the profile
including the second and third iterations (Figures 2.18b and 2.18c) where the mentioned
minimum vanishes and the PMF presents a shape more similar to that seen in the plasmi
receptor. The rest of the ligands do not show such inaccuracies in their PMF profiles
(Figure A.6 to A.11). They do, however, show overall less well-defined PMF outlines,
which together with the moderate success reflected by the measured suggest that more
sampling would be necessary to obtain better estimations, likely due to the bigger size of
the protein and stronger interactions formed with the larger ligands, most of which have
net charges, some even with two positive charges.
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Figure 2.17: Correlation of the predicted binding free energy with respect to experimental
values for the URO system. Text labels identify the ligand that each point represents.

(a) PMF using one iteration (b) PMF using two iterations (c) PMF using three iterations

Figure 2.18: Comparison of the evolution of the one-dimensional PMF with three iterations for
the 7UP ligand of the URO receptor for the three iterations. Panel (a) shows the PMF resulting
from the first iteration only. Panel (b) shows the PMF resulting from combining the first and
second iterations. Panel (c) shows the PMF resulting from combining the first three iterations.
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Figure 2.19: Representative structure of the minimum in the first iteration of the 7UP ligand
binding to the URO receptor. Protein is shown in white ribbons, ligand and key residues are
shown in licorice representation with cyan carbons, with the active site structure depicted in
blue for reference.

62



2.3. PELE-MSM Chapter 2. Results

Figure 2.20: Correlation of the predicted binding free energy with respect to experimental
values for the ERK2 system. Text labels identify the ligand that each point represents.

2.3.3 Binding Free Energy for the ERK2 System

The initial structures were extracted from a Glide docking. In order to reproduce the
crystallographic pose (PDB entry 4FV3) we needed to use the hydrogen bond constraint
options (to Met 106), otherwise, Glide produced several incorrect poses without the con-
straint option. For this system, we again performed three independent simulations, each
taking approximately 8 h of wall-clock time.

Contrary to the examples shown before, PELE-MSM has no predictive power on the
ERK2 set. In Figure 2.20, it is apparent that the method is not able to separate or rank
the ligands. The prediction provides an R2 value of 0.01, Spearman correlation of 0 and
RMSE of 6.98 kcal/mol.

Figures 2.21, and A.12 to A.15, provide evidence to why the accuracy of the method is so
low in this example. All those PMF profiles have a “V shape”, with a minimum around 10
Å from the initial pose, contrary to the well-behaved profiles of the plasmin or URO. The
failure to identify the correct PMF minimum arises from modelling error. We examined
the force field total energy internally used in the PELE simulation with respect to the
distance, shown in Figure 2.22 for the EK2 ligand. There, it is clear that the interactions
in the native pose are not properly captured by the energy function, having an energy 50
kcal/mol higher than those poses in the PMF absolute minimum.

The structures of the active site and the PMF minimum are shown in Figures 2.23a and
2.23b, respectively. The native pose, despite forming more protein-ligand interactions
than those in the PMF minimum, had a less favourable energy. This could be explained
by two factors, a poor force field parametrisation or the inability of the implicit solvent
to capture important water network interactions in the bound pose.
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(a) PMF using one iteration (b) PMF using two iterations (c) PMF using three iterations

Figure 2.21: Comparison of the evolution of the one-dimensional PMF with three iterations
for the EK2 ligand of the ERK2 receptor for the three iterations. Panel (a) shows the PMF
resulting from the first iteration only. Panel (b) shows the PMF resulting from combining the
first and second iterations. Panel (c) shows the PMF resulting from combining the first three
iterations.

Figure 2.22: Plot of PELE’s internal energy values with respect to the centre of mass distance,
that is, the same distances used in the one-dimensional PMF plots
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(a) Native structure (b) PMF minimum

Figure 2.23: Representative structure of the minima of the EK2 ligand binding to the ERK2
receptor. Protein is shown in white ribbons, ligand and key residues are shown in licorice
representation with cyan carbons. Panel (a): Active site structure. Panel (b): PMF minimum
at about 10 Å distance from the active site, with the active site structure depicted in blue for
reference.

To determine the influence of the implicit solvent in the energy evaluation, we ran a PELE
simulation of the same length and number of processors but introducing four explicit
waters, positioned as shown in Figure 2.24a. From the image, it is already apparent that
the waters form bridging interactions between the ligand and the protein. This simulation
was run using the newly developed water sampling algorithm part of Martí Municoy’s
PhD thesis (manuscript in preparation). In such a simulation, waters are sampled using
a parallel MC scheme at each PELE step and are later subjected to energy minimisation.
Figure 2.24b shows the total energy obtained from the simulation, which, if compared
to Figure 2.22, shows a remarkable improvement in energy calculation accuracy, while
showing limited sampling at low distances. While the regular PELE-MSM is not able to
predict binding free energies for a kinase such as ERK2, with the addition of the Water-
PELE mode, once it is fully developed, the prediction accuracy might prove sufficient to
make it a relevant method for the study of kinases in the context of drug discovery.

2.3.4 Binding Free Energy for the PR System

Finally, we applied the PELE-MSM protocol to the PR system. Initial structures were
generated from Glide docking, which could reproduce the crystallographic pose of proges-
terone. We then placed the other ligands similarly in the binding site (we used the 1A28
crystal as the protein structure for all ligands). Each iteration of the protocol required
approximately 8 hours of wall clock time. Similarly to the results obtained for the ERK2
receptor, the correlation plot of the binding free energy estimation versus the experimen-
tal value (shown in Figure 2.25) showed no correlation, with a R2 value of 0.0, Spearman
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(a) Water disposition (b) Energy with waters

Figure 2.24: Preliminary analysis of the impact of explicit waters in the PELE simulations
of the ERK2 receptor with ligand EK2. Panel (a): Initial structure with water positions and
interactions marked. Panel (b): Plot of PELE’s internal energy values with respect to the centre
of mass distance in the simulation with four explicit waters.

of 0.0, RMSE of 4.41 kcal/mol.

Contrary to the ERK2 case, the problem with the PR simulation does not appear to be
with the force field or model assumptions, but with insufficient sampling. In Figure 2.26,
the PMF profile obtained for the STR ligand is shown. The PMF minimum is indeed
located at very low distances. There are, however, very few states located at less than
10 Å, and the PMF does not flatten as the distance increases. Instead, we observed two
seemingly disconnected sets of states, with most of them clustered between 15 and 20 Å
and similar PMF values. The maximum value of the profile is not at these large distances,
but at what seems to be a sort of transition state.

The sampling difficulties are better illustrated by plotting the SASA of the ligand as the
production advances, as shown in Figure 2.27. In the figure, a total of 381 trajectories
(the combined results of the three independent iterations run are plotted, of which only
∼10 show transitions involving states of low SASA values, within the active site and
entrance channel. Moreover, these transitions occurred mostly in early simulation times.
Thus, the simulation forms two almost fully disconnected sets of states, as observed in
the PMF plot, which leads to a spurious free energy estimation. This is likely caused
by the fully occluded nature of the PR binding site which prevents sufficient observation
of both binding and unbinding events for the MSM to produce a correct estimate of the
equilibrium probabilities.
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Figure 2.25: Correlation of the predicted binding free energy with respect to experimental
values for the PR system. Text labels identify the ligand that each point represents.

Figure 2.26: One-dimensional PMF of the first iteration for the STR ligand of the PR receptor
for the three iterations.
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Figure 2.27: SASA evolution during the production simulation for three iterations of 127
trajectories each for the PR system with the STR ligand.
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2.3.5 Effect of the previous AdaptivePELE simulation

After testing the four receptors, we evaluated the impact that the initial steps of the
protocol had in the free energy estimation. We ran a simulation matching the resources
requirements of one protocol iteration with the L05 ligand and plasmin protein and the
39L ligand of the URO system. We ran a PELE simulation with 128 processors starting
from the initial structure of the previous protocol run, that is, the docking pose matching
the crystallographic structure.

Figure 2.28 compares the SASA evolution of the 250 initial steps with (Figure 2.28a) and
without (Figure 2.28b) the previous exploratory AdaptivePELE simulation. It is clear
from the plots that adding an extra enhanced sampling simulation at the beginning of
the protocol introduces plenty of additional transitions between regions of low and high
SASA. The simulations starting from the bound pose did not show any unbinding event in
the first 250 steps, and needed around 1000 PELE steps to produce a conformation with a
SASA value larger than 0.9, as shown in Figure 2.29a. On the other hand, the simulations
starting from multiple seeds showed a uniform exploration of the whole range of SASA
values, with multiple transitions between the different regions. If we compare the PMF
profile for the simulation starting from the bound (Figure 2.29b) with the one obtained
in first iteration of the protocol run starting from multiple structures (Figure A.2a), the
profile is more noisy, with more dispersion of the clusters, probably as a consequence of
the small range of states explored in the simulation.

A similar analysis was done for the 39L ligand binding to the URO receptor. In Figure
2.30a, we show the evolution of the ligand SASA for the production simulation. Similarly
to the L05 case, only one trajectory showed an unbinding event, with SASA larger than
0.8. Moreover, the intermediate regions with SASA values between 0.3 and 0.6 were only
populated at the very beginning of the simulation, but were barely sampled overall. In
Figure 2.30b, the PMF estimated from the same simulations is shown. There, we again
see a profile that strongly deviates from the assumptions made about the dynamics. The
PMF presents a bifurcating shape with the maximum at distances around 5 Å and a
roughly constant region at distances larger than 10 Å.

While it might be expected to not see many unbinding events for the 39L ligand, which
has a free energy of binding of approximately -9 kcal/mol, it is more surprising that a
similar phenomenon is observed in the weakly binding L05 ligand. Being able to sample
several occurrences of binding and unbinding events is crucial for accurate binding free
energy estimation, thus the introduction of a previous enhanced sampling exploration led
to improved sampling.

In summary, PELE-MSM has shown success in ranking a set of several ligands for two
proteins, plasmin and URO. In the former, the absolute free energy prediction was on par
with state of the art methods, with RMSE values less than 2 kcal/mol. The accuracy
for the URO receptor was more modest, but still could be useful in separating strongly
binding ligands for weaker ones. For the other two receptors, it has highlighted two well-
known issues in biomolecular simulations: limited accuracy of the models and insufficient
sampling. An alternative to the modelling assumptions would be the use of MD simula-
tions (as we will see in the next section), and the sampling limitations could be tackled
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(a) SASA evolution from multiple struc-
tures

(b) SASA evolution from single structures

Figure 2.28: Comparison of the exploration with and without a previous AdaptivePELE sim-
ulation for the L05 ligand for the plasmin system. Panel (a): Evolution of the SASA during the
250 PELE steps of the first iteration of the simulation starting from seeds extracted from and
AdaptivePELE simulation. Panel (b): Evolution of the SASA during the 250 PELE steps of
the first iteration of the simulation from a single bound conformation in the active site. Panel
(c): Evolution of the SASA during the entire production simulation of the first iteration starting
from a single bound conformation in the active site.
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(a) SASA evolution (b) PMF estimation.

Figure 2.29: Comparison of the exploration without a previous AdaptivePELE simulation for
the L05 ligand for the plasmin system. Panel (a): Evolution of the SASA during the first iteration
of the simulation starting from a single bound conformation in the active site. Panel (b): PMF
of the first iteration of the simulation starting from a single conformation in the active site.

(a) SASA evolution (b) PMF estimation

Figure 2.30: Comparison of the exploration without a previous AdaptivePELE simulation for
the 39L ligand for the URO system. Panel (a): Evolution of the SASA during the first iteration
of the simulation starting from a single bound conformation in the active site. Panel (b): PMF
of the first iteration of the simulation starting from a single conformation in the active site.
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using enhanced sampling methods. One thing to note is the high RMSE values of all
systems but plasmin. This considerable deviation from the experimental values could be
in part explained by the limited solvent exploration caused by the simulation box.

2.4 MD-MSM

A second version of the protocol for the calculation of binding free energies was developed
using MD simulations for the production. This schema, named MD-MSM, was an exact
replica of the PELE-MSM protocol swapping the PELE simulations with MD ones. The
MD simulations were run using an extension to AdaptivePELE which used the python
OpenMM API (Eastman et al., 2017) to carry out the simulations. The newly developed
MD mode started processing the input structure (or multiple structures in our case) to
fix common problems such as identifying disulphide bonds. The parameters are generated
using Amber force fields, by default Amber14 (Maier et al., 2015) for proteins, and the
ligands are parameterised with GAFF (Wang et al., 2004) using the Ambertools suite
(Wang et al., 2006b). Using the TLeap software from Ambertools, the system is solvated
using a cubic box and ions are added to neutralise.

Input structures are minimised for 2000 steps of the L-BFGS optimisation algorithm,
followed by 400 ps of NVT equilibration at 300 K with restraints to the protein and
ligand heavy atoms of 5 kcal mol−1 Å−2. The system is subjected to a second equilibration
run under NPT conditions at 300 K and 1 atm with restraints to protein alpha carbons
and ligand heavy atoms of 0.5 kcal mol−1 Å−2. The time step used in the equilibration
simulation, as well as the production ones, is 2 fs. Finally, the production simulations are
run with no restraints but restricting the volume accessible to the ligand, as was done in
the PELE-MSM protocol, and conformations were saved every 125 ps.

The benchmark used to test the method consisted of a total of three proteins and 25
ligands: plasmin with ligands L01 to L16 (see Table 1.1 for ligand structures and exper-
imental affinities); URO with ligands 1UP, 2UP, 7UP and 39L (see Table 1.2 for ligand
structures and experimental affinities), and ERK2 with ligands EK2, EK3, EK6, EK9 and
E63 (see Table 1.4 for ligand structures and experimental affinities). The work described
in this section was developed in collaboration with Oriol Gracia during his master thesis
and was submitted for publication (under revision at the moment of writing this thesis)
in the Journal of Chemical Information and Modelling (Gilabert et al., 2020).

2.4.1 Binding Free Energy for the Plasmin System

As was done in the PELE-MSM study, the first system used to test the new version
of the protocol was the plasmin receptor. We did so by using a series of 16 ligands.
For each molecule we performed 80 simulations of 200 ns, starting from 40 structures
selected from the initial stages of the protocol as described in the PELE-MSM section.
The simulations amount to a total aggregated time of 256 µs (16 µs per ligand), and were
processed in the same way as the PELE runs, building an MSM with a lag time of 400
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Figure 2.31: Correlation of the predicted binding free energy with respect to experimental
values for the plasmin system. Text labels identify the ligand that each point represents.

saved steps, corresponding to 50 ns, and 1000 clusters. The number of clusters used with
MD simulations was notably larger than the ones used with PELE. This was due to the
higher amount of conformations to analyse in MD simulations. Early tests varying the
number of clusters showed that a number of clusters similar to the ones used with PELE
yielded unreliable models, while increasing this number improved significantly the MSM
quality.

The correlation of the predicted free energy values with the experimental values is shown in
Figure 2.31. The plot shows a positive correlation, with a low RMSE of 0.64 kcal/mol, R2

of 0.343 and Spearman correlation of 0.66. The general agreement between the predicted
and experimental values is reflected in the Spearman correlation, even if the calculated
values are generally overestimated. The coefficient of determination is low due to two
groups of ligands that deviate from the general trend. On the one hand, ligands L02, L05,
L06 and L12 are correctly ordered but their estimated affinities appear shifted down with
respect to the general trend drawn by the other ligands. On the other hand, the binding
free energy of ligand L03 is overestimated and lies well outside the general trend. There
is no apparent reason that could explain the misclassification of this ligand, but the shift
observed in the group of four ligands suggest that our method has a lower bound in the
range of affinities that is able to predict at -3 kcal/mol. Overall, despite the modest values
obtained for the prediction statistics, the method seems to perform quite well, ranking
correctly most of the ligands in a set that is difficult to rank due to the small ranges of
affinities covered.
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Figure 2.32: Analysis of the evolution of the prediction statistics (Spearman and R2) as the
simulation length increases for the plasmin simulations. The dotted line marks the predictions
using only the first 100 ns for each trajectory. The starting point is based on adding the first 75
ns segments of all trajectories (with subsequent increments of 25ns).

In Figure 2.32, we plot the evolution of the coefficient of determination and the Spearman
correlation as different simulation lengths are considered. The x axis starts at a length of
75 ns due to the MSM lag time of 50 ns, and increases by 12.5 ns. For example, the dotted
line marks the performance with simulation of 100 ns (which amounts to an aggregated
simulation time of 8 µs given that there are 80 trajectories and 16 ligands). The figure
shows a slight improvement when the simulation length increases until 100 ns, beyond
that, the metrics fluctuate around the values reported in the previous paragraph.

Additionally, we ran some additional replicas to assess the convergence of the method
results. First, we ran two extra ensembles of 80 simulations for ligand L04 varying the
random seed and then we repeated the whole protocol, generating a new set of initial
structures and running simulations from them, for the L06 ligand. The results from these
additional runs are shown in Table 2.1. The agreement for both tests was excellent. The
predictions with different seeds for ligand L04 were within the standard deviation, and
the difference in the binding free energy estimation of the two independent protocol runs
with ligand L06 was only of 0.1 kcal/mol. This, together with the analysis of Figure 2.32
suggests that the amount of sampling used in the simulation is sufficient to obtain reliable
estimations.
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Table 2.1: Comparison of estimated binding free energies obtained from runs starting
from different seeds or different initial structures for ligands L04 and L06 and plasmin
receptor.

Ligand Seed Initial structures Estimated ∆G (kcal/mol)
L04 75686 Set 1 -3.43 ± 0.27
L04 42353 Set 1 -3.21 ± 0.17
L04 12351 Set 1 -3.70 ± 0.19
L06 75686 Set 1 -3.66 ± 0.19
L06 75686 Set 2 -3.77 ± 0.22

In section B.1 of the Appendix, the PMF profiles for all 16 ligands are shown. The
presented landscapes strongly agree with the assumptions made in the free energy cal-
culation. All of them show a well-defined minimum, with roughly constant values at
distances larger than 10 Å. Some of the ligands show signs of noise and non-convergence,
like ligand L13 (Figure B.4a) or ligand L16 (Figure B.4d), but overall, as seen with the
PELE-MSM examples, obtaining clean PMF profiles from the simulations goes hand in
hand with accurate binding free energy predictions.

2.4.2 Binding Free Energy for the URO System

As a second test, we executed the MD-MSM protocol with the URO receptor and four
ligands. Since the protein is bigger than plasmin, we hypothesised that more parallel
trajectories would lead to a better estimation and ran 120 simulations for each molecule
of length 100 ns, starting from 40 structures selected from the initial stages of the protocol
as described in the PELE-MSM section. The simulations amount to a total aggregated
time of 48 µs (12 µs per ligand), and were processed in the same way as the PELE runs,
building an MSM with a lag time of 400 saved steps, corresponding to 50 ns and 1000
clusters.

In Figure 2.33 we show the correlation between the predicted free energy values and the
experimental ones. The plot shows a clear disagreement between the two, with an obvious
anti-correlation and the ligand split in two pairs, 7UP and 39L which have the highest
affinity in the set were predicted as weaker binders than 1UP and 2UP, contrary to the
experimentally determined binding affinities. This was indicated by the negative value of
the Spearman correlation, of -0.6. The coefficient of determination showed a misleadingly
high value of 0.454. The RMSE obtained was 4.31 kcal/mol. While both the correlation
plot and the Spearman correlation illustrate without a doubt that the protocol is not
able to predict binding free energies for this receptor, the value of the statistics should
be carefully considered due to the small number of data points. The reduced sample size
could lead to high fluctuations that would difficult the interpretations, although this is
not the case here, as they correctly identify the poor performance of the method.

To further investigate the causes of the failure, we plotted the PMF profiles of all four
ligands in Figure 2.34. The profiles for ligands 1UP and 2UP (Figure 2.34a) show clean
profiles, with a well defined minimum at short distances from the initial structure. The
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Figure 2.33: Correlation of the predicted binding free energy with respect to experimental
values for the URO system. Text labels identify the ligand that each point represents.

76



2.4. MD-MSM Chapter 2. Results

(a) PMF plots for 1UP and 2UP ligands (b) PMF plots for 7UP and 39L ligands

Figure 2.34: One dimensional projection of the PMF over the distance to the initial structure
of the simulations with the URO system. Panel (a): PMF for ligands 1UP and 2UP (weaker
binders). Panel (b): PMF for ligands 39L and 7UP (stronger binders).

same is not true for ligands 39L and, especially, 7UP. As shown in Figure 2.34b, the PMF
profile for 39L has a well-defined minimum at short distances, but has several secondary
minima at different distances. The absolute minimum for 7UP, however, is located at
around 10 Å, with secondary minima at distances around 0 and 25 Å.

In Figure 2.35, representative structures for the minima of ligands 7UP and 39L are
shown. The representative structures of the absolute minimum of the 7UP PMF are
illustrated in Figure 2.35a. They correspond to a group of states located at around 10
Å of the binding site. The clusters in that region can be separated into two groups that
feature very similar poses, with roughly the same centre of mass but flipped (shown in
cyan and purple). Due to the almost symmetrical structures of the ligand the structures
depict similar interactions with the protein, a hydrogen bond with Glu 151 and π − π
interactions between the fused rings of the ligand and Tyr149 and Tyr28 (shown coloured
in green). The secondary minimum observed in the 39L PMF at around 11 Å from the
binding site forms a sort of “pre-binding” conformation, with a very similar orientation to
the bound pose but out of the binding site. There ligand forms several interactions with
the protein: hydrogen bonds with Ser197, Val39 and Asp55, a salt-bridge interaction with
Asp55 and a cation-π interaction with Tyr50.

The analysis of the relevant structures extracted from the PMF profiles suggests the poor
predictive performance could be caused by metastable trapping of the largest ligands in
the protein surface. There, those molecules can form several interactions with the protein
due to their large size and electrical charge which would translate into longer transition
times and thus require longer simulation times to observe binding or unbinding events.
Therefore, we decided to run another set of longer simulations with the same set of
ligands to test whether the effects observed would vanish with more sampling. We ran 40
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(a) PMF minimum for 7UP ligand (b) PMF secondary minimum for 39L ligand

Figure 2.35: Representative structures for relevant PMF minima for the 7UP and 39L lig-
ands of the URO receptor. The representative structures are shown with carbons colored in
cyan. Interacting amino acids and the native bound pose are shown with carbons coloured in
green. Non-carbon atoms are coloured according to the atom type (blue for nitrogen and red
for oxygen). Panel (a): Representative structures for the absolute PMF minimum of the 7UP
ligand. The mentioned structures are shown with carbons coloured in cyan and purple. Panel
(b): Representative structure of the secondary minimum of the PMF profile of the 39L ligand.

trajectories of 1 µs each, starting from the same 40 initial structures used in the previous
runs. The new set of simulations amounted to a total aggregated simulation time of 160
µs (40 µs per ligand). The MSM parameters were kept the same as in the previous runs.

Figure 2.36 shows the correlation between the predicted and experimental values obtained
from the new set of simulations. The anti-correlation observed with the simulations of 100
ns disappeared with more sampling. However, the new set of simulations did not improve
dramatically the performance, predicting as equal the three ligands 1UP, 2UP and 7UP,
which, according to their experimental values, are separated by at least 1 kcal/mol. The
statistics obtained are a R2 value of 0.477, Spearman correlation of 0.8 and RMSE of
4.94 kcal/mol. The error has increased, but the other two metrics show an important
improvement, even if misleading after the analysis of the correlation plot.

The PMF profiles, shown in Figure 2.37, are different from those obtained for the shorter
simulations. For the ligands 39L and 7UP (Figure 2.37b), the profiles are clean, with
the absolute minimum at a distance close to zero, and some secondary minima of much
less importance than those shown in Figure 2.34. The same is not true for the 1UP and
2UP ligands (Figure 2.37a). There, we see a bimodal PMF distribution with two equal
minima, one at 0 Å, and one at around 20 Å. The minimum at the largest distance
is more sparsely populated than the one at short distance, suggesting that it might be
caused by one trajectory sampling some infrequent but strong interaction of the ligands
with the protein surface.
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Figure 2.36: Correlation of the predicted binding free energy with respect to experimental
values for the URO system with the longer simulations. Text labels identify the ligand that each
point represents.

(a) PMF plots for 1UP and 2UP ligands (b) PMF plots for 7UP and 39L ligands

Figure 2.37: One dimensional projection of the PMF over the distance to the initial structure
of the longer simulations with the URO system. Panel (a): PMF for ligands 1UP and 2UP
(weaker binders). Panel (b): PMF for ligands 39L and 7UP (stronger binders).
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Figure 2.38: Depiction of the new cylindrical region available for the ligand. The cylinder is
delimited by the small dots, the protein is shown in white cartoon and the ligands are shown in
cyan, the structures shown correspond to the secondary minima found in the short simulations.

The analysis of the PMF profiles, in agreement with the correlation plot, indicates that
the use of long simulations can improve some of the problems identified with the first test.
Nonetheless, the accuracy obtained is far from sufficient to provide a reliable estimation for
the reduced set of ligands picked. As a final attempt to improve the prediction accuracy,
we repeated the long simulations, but modifying the volume available for the ligand.

In the new set of trajectories, the ligand was allowed to explore a region defined by a
cylinder, as shown in Figure 2.38. This new encompassing volume allows the ligand to
freely explore the binding site, as well a fully solvated state. Through the use of a flat
bottom potential restraint, once the atom closest to the centre of mass of the ligand exits
the defined cylinder, an attractive force is applied, restricting the possibility of interaction
with other sites in the protein surface. The purpose of this restriction, similar in nature to
the one applied in funnel metadynamics, is to, in addition of avoiding metastable states,
to reduce the number of fully solvated states accessible for the ligand, which is assumed
to improve the convergence of the calculations and require less computational power.

The correlation of the estimated values for the new simulation ensemble is shown in Figure
2.39. The new results showed considerable improvements with respect to previous ones.
The four ligands are separated into two groups, and the two strongest binders 39L and
7UP were grouped together and correctly predicted as the two ligands with highest affinity,
although the order between them was reversed. The other two molecules, 1UP and 2UP
were predicted to be almost identical, despite having around 1 kcal/mol experimental
difference. However, they were predicted as clearly weaker binders than the other two,
something that was not achieved in previous attempts. The measured statistics were an
R2 value of 0.761, Spearman correlation of 0.6 and RMSE of 5.64 kcal/mol, which means
a significant improvement over the previous attempts, despite the increase in the error of
the absolute value.
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Figure 2.39: Correlation of the predicted binding free energy with respect to experimental
values for the URO system with the longer simulations and a cylinder shaped simulation “box”.
Text labels identify the ligand that each point represents.

The PMF profiles for these new simulations are shown in Figure 2.40. In all four cases
the issues observed in the previous simulation were not present. All profiles show a clear
trend, with a minimum at close distances and PMF values that are roughly constant at
distances larger than 15 Å. The PMF profiles indicate that in these new simulations there
were no significant protein-ligand interactions outside of the binding, as evidenced by the
improved statistics, which has contributed to a more accurate estimation.
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(a) PMF plots for 1UP and 2UP ligands (b) PMF plots for 7UP and 39L ligands

Figure 2.40: One dimensional projection of the PMF over the distance to the initial structure
of the longer simulations with a cylinder shaped simulation “box” with the URO system. Panel
(a): PMF for ligands 1UP and 2UP (weaker binders). Panel (b): PMF for ligands 39L and 7UP
(stronger binders).
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2.4.3 Binding Free Energy for the ERK2 System

As a third and final test, we executed the MD-MSM protocol with the ERK2 receptor
and five ligands. For this system we used the protocol that worked best with URO, 40
trajectories of 1 µs each, starting from 40 structures selected from the initial stages of
the protocol as described in the PELE-MSM section. The simulations amount to a total
aggregated time of 200 µs (40 µs per ligand), and were processed in the same way as the
PELE runs, building an MSM with a lag time of 400 saved steps, corresponding to 50
ns and 1000 clusters. As we did with the URO protein, we used two different simulation
boxes, spherical and cylindrical.

We first ran the simulations with a spherical box, and analysed them similarly to the
previous cases. First, we looked at the correlation with respect to the experimental
measurements, shown in Figure 2.41. The plot shows good correlations, with almost
perfect ranking, except for the EK9 ligands which is underestimated. The deviation of
the EK9 ligands has an important impact in the R2 value of 0.526. On the other hand,
the Spearman correlation is high, with a value of 0.9, and the RMSE is quite high too, at
4.77 kcal/mol.

Figure 2.41: Correlation of the predicted binding free energy with respect to experimental
values for the ERK2 system with the sphere shaped simulation box. Text labels identify the
ligand that each point represents.

The correlation plot and the statistics indicate an accurate estimation of the binding free
energy, contrary to the simulations done with PELE. However, the PMF profiles present
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strong similarities to the PELE case presented in section 2.3.3, where the simulations did
not properly capture the active conformation as the absolute minimum. The new profiles,
shown in Figure 2.42, show that only for ligand EK9 the absolute minimum was correctly
identified. For the four remaining ligands, the minima was placed at different distances.
For ligand E63, the minimum is located at around 5 Å from the active pose, deeper in
the binding site. For the other three ligands, the minima are located in the same region,
binding inside a small cavity in the protein surface at between 15 and 20 Å from the
binding site. The mentioned structures are shown in Figure C.1 and C.2 in section C.1 of
the Appendix.

The simulations with a cylinder-shaped simulation box for ERK2 produced, contrary to
what we saw with URO, worse binding free energy prediction. The measured statistics
were: an R2 of 0.143, Spearman correlation of 0.5 and RMSE of 6.44 kcal/mol. In Figure
2.43 the correlation plot between the predicted and experimental free energies is shown.
The graphs confirm what the statistics suggest, the accuracy of the MD-MSM simulation
with a cylindrical box are significantly worse than those obtained with a spherical one.
Four of the five ligands, with a difference in experimental affinities of around 2 kcal/mol,
were predicted to have the same binding free energy, within a 0.25 kcal/mol range.

The analysis of the PMF profiles, shown in Figure 2.44, points to inaccurate models, just
like was observed in the simulation with the spherical box. The profiles show that in only
two ligands, EK2 and EK9, the minimum was located at a small distance of the active
site. In the rest, minima were situated at different places, for EK6, the ligand was placed
just outside of the binding site, the minimum for E63 was inside a small cavity close to
the active site, and finally, the EK3 minimum was found in another cavity in the protein
surface at almost 20 Å from the active site. The structures of the minima described here
can be seen in Figures C.3 and C.4 in section C.2 of the appendix.

In light of the results obtained with MSM-PELE and the ERK2 receptors we hypothesised
that one of the causes for the poor predictive performance was the implicit solvent of
PELE. After redoing the same test with MD simulations, which included explicit waters,
we see that the solvent model was not the main problem, as in the MD simulation the
active conformation was often misidentified. However, the explicit waters did show a small
improvement with respect to PELE, as the minimum was correctly identified in some of
the cases (even if the model was still noisy), while none of the ligands showed any success
with the implicit solvent in PELE.
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(a) EK2 (b) EK3

(c) EK9 (d) E63

(e) EK6

Figure 2.42: One-dimensional projection PMF for all the ligands used in the ERK2 set in the
simulations with a spherical simulation box.
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Figure 2.43: Correlation of the predicted binding free energy with respect to experimental
values for the ERK2 system with the longer simulations and a cylinder shaped simulation box.
Text labels identify the ligand that each point represents.

86



2.4. MD-MSM Chapter 2. Results

(a) EK2 (b) EK3

(c) EK9 (d) E63

(e) EK6

Figure 2.44: One-dimensional projection PMF for all the ligands used in the ERK2 set in the
simulations with a cylindrical simulation box.
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2.4.4 Effect of the previous AdaptivePELE simulation

As done in the PELE-MSM section, we attempted to evaluate the acceleration provided
by the use of a previous exploratory AdaptivePELE simulation. We did so by running
an additional set of simulations with the plasmin system starting from a fully solvated
structure. Simulation and MSM parameters were kept the same, thus one can obtain a
measure of the acceleration by comparing the prediction statistics.

Figure 2.45 shows the correlation of the estimated binding free energies from the new
simulations with the experimental values. If compared with Figure 2.31, it is clear that
the correlation observed has decreased significantly. All but two ligands were estimated
at around -3.5 kcal/mol, forming no clear trend. The remaining two ligands, L01 and
L03 were grossly overestimated, with over 1.5 kcal/mol error. One should note that,
again, the L03 ligand results in an inaccurate estimation, suggesting that this molecule
in particular is problematic for our setup. The bad predictive performance was confirmed
by the reduction in the predictive metrics, with R2 going from 0.343 to 0.178, Spearman
correlation from 0.66 to 0.41 and RMSE slightly increasing from 0.64 kcal/mol to 0.79
kcal/mol.

Figure 2.45: Correlation of the predicted binding free energy with respect to experimental
values for the plasmin system starting the simulation from fully solvated structures. Text labels
identify the ligand that each point represents.

In section B.2 of the Appendix, the PMF profiles for all 16 ligands are shown. As was seen
in the simulations following the entire protocol, the obtained landscapes strongly agree
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with the assumptions made in the free energy calculation. All of them show a well-defined
minimum, with roughly constant values at distances larger than 10 Å.

In summary, MD-MSM has not shown an improvement in accuracy or efficiency with
respect to PELE-MSM. For plasmin, results were overall similar to those achieved with
PELE, albeit with a larger set of ligands. For URO, the obtained results with reduced set
of ligands were initially significantly worse than the ones obtained with PELE, requiring
a change in the region accessible to the ligand and remarkably long simulations, that
required days of compute time to produce a positive correlation. Finally, for the ERK2
system, the statistics measured were improved with respect to the ones obtained with
PELE-MSM. Nonetheless, further analysis showed models that predict binding poses and
sites wildly different than those observed crystallographically. Despite seeing an improve-
ment in accuracy by the use of a previous enhanced sampling simulation, using unbiased
MD simulations does not appear to be a viable strategy for the estimation of absolute
binding free energies.

2.5 AdaptivePELE-MSM

The final version of the protocol for the calculation of binding free energies developed
consisted solely of enhanced sampling simulations, both for exploration and production
runs. This schema, named AdaptivePELE-MSM, was structured similarly to the previous
protocols but using a modified AdaptivePELE schema for the production simulations.

In the initial tests using AdaptivePELE for production runs shown in section 2.1, we
observed that the results were less accurate than those obtained with regular PELE sim-
ulations. Our main hypothesis to explain the lack of accuracy was based on the pertur-
bation introduced by the spawning method, which redirected the sampling efforts to the
less populated states. This strategy, that we have named here inverselyProportional, is
often referred to in the literature as counts adaptive sampling and has been shown to
efficiently explore the high dimensional energy landscape in protein systems, but to spend
significant simulation time in high energy state that are not too relevant for the dynamics
(Zimmerman et al., 2018; Shamsi et al., 2018; Betz and Dror, 2019).

We hypothesised that the cited shortcoming of the spawning method was the main cause
of the poor predictive performance observed in the AdaptivePELE simulations. In sec-
tions 2.3 and 2.4, we evidenced an improvement in the accuracy of the binding free energy
prediction with the introduction of a previous short, exploratory AdaptivePELE simula-
tion. However, the tests with more complex systems, like ERK2 and PR, demonstrated
that the limited sampling capabilities of unbiased molecular simulations were a limiting
factor for the estimation of binding free energies.

Thus, in need of methods that provide more sampling of the relevant events (ligand binding
and unbinding) we turned again to AdaptivePELE. In the new production simulations,
we used the same clustering used in the MSM estimation, the K-Means algorithm instead
of the leader one. In the spawning step, we built an MSM that would serve as a guide
for the sampling in the next iteration. To choose the most relevant states, we followed
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the adaptive sampling approach presented by Hinrichs and Pande (Hinrichs and Pande,
2007). There, the authors developed an score function based on the uncertainty of the
eigenvalue estimation in an MSM, which can be calculated as

ri =

(
q̄i

wi + 1
− q̄i
wi +m+ 1

)
(2.3)

where ri is the score for each cluster, wi is the sum of the transitions from state i, m is
the number of new trajectories that will be spawned (the number of processors), and q̄i
is a factor that measures the sensitivity of the eigenvalues with respect to the transition
probabilities, more detail on the derivation of equation 2.3 are available in the original
publication (Hinrichs and Pande, 2007).

The resampling strategy is based on focusing the processing efforts on those states that
contribute the most to said uncertainty to improve the overall quality of the model. After
the less converged states are selected, a new round of simulations begins, in the exact
same fashion of the original AdaptivePELE algorithm. The post-processing, MSM and
binding free energy estimation steps were the same used in the previous versions of the
protocol.

To test the new version of the protocol we used a fraction of the benchmark used to
test the PELE-MSM method, consisting of two proteins and twelve ligands: URO with
ligands 1UP, 2UP, 4UP, 6UP, 7UP, 675 and 39L (see Table 1.2 for ligand structures and
experimental affinities); and PR with ligands STR, AS4, HCY, 356 and 400 (see Table
1.3 for ligand structures and experimental affinities).

2.5.1 Binding Free Energy for the URO System

To test the efficiency of the new clustering and spawning strategies, we ran the new
protocol, AdaptivePELE-MSM, with the URO receptor, with the same set of ligands that
we used in the PELE-MSM test. We ran three different versions of the protocol, i) with
production simulations of 200 steps per epoch, ii) with production simulations of 400 steps
per epoch and iii) with production simulations of 600 steps per epoch. All versions used
128 cores. In this manner, we can not only evaluate the effectiveness of the new strategy
by comparing the prediction accuracy with the PELE-MSM runs from section 2.3.2, but
we can also analyse the impact of the epoch length parameter. The MSM lag time was
set at half the epoch length, and the number of clusters was chosen to be 100, like in the
PELE-MSM protocol.

For all three versions, we ran three epochs, and calculated the binding free energy incre-
mentally at the end of each iteration. That is, after the second epoch the trajectories of
epochs 1 and 2 were used, and after the third one all trajectories were used. In Figure
2.46 we show the correlation with respect to the experimental binding free energies for
the three protocols using the three computed epochs. All three plots show an overall
good ranking of the ligands, with considerable separation between ligands 39L and 7UP
and the rest. Also, for all three cases, the 2UP ligand is overestimated with respect to
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ligand like 1UP, something that was also observed in the PELE-MSM runs with the URO
receptor.

(a) 200 steps (b) 400 steps

(c) 600 steps

Figure 2.46: Correlation of the predicted binding free energy with respect to experimental
values for the URO system in the simulations with AdaptivePELE-MSM, in the final epoch.
Text labels identify the ligand that each point represents.

To evaluate the impact of the spawning strategy we calculated the same three statistics
used throughout this thesis (R2, Spearman correlation and RMSE) at the end of each
epoch. The results are shown in Figure 2.47. We can observe two general behaviours. For
simulations with 400 and 600 steps per epoch, we see small improvements as the epochs
accumulate, but the same is not true for the runs with 200 steps per epoch.

If we look at the evolution of the coefficient of determination (Figure 2.47a), we see
that for the simulations with 400 and 600 steps, there is no improvement as the epochs
accumulate, with a value around 0.6. The adaptive procedure did not appear to yield
great improvement in those cases. On the other hand, the run with 200 steps per epoch
showed a remarkable improvement from the second epoch to the first, and stayed roughly
constant in the third epoch. The final value for R2 in this version was lower than those
observed in the simulations with 400 and 600 steps.
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(a) R2 (b) Spearman correlation

(c) RMSE

Figure 2.47: Evolution of the measured statistics for the URO system in the simulations with
AdaptivePELE-MSM, as more epochs are used.

The analysis of the Spearman correlation (Figure 2.47b)is similar to that of the coefficient
of determination. The runs with 400 and 600 steps show similar values for all three epochs.
The simulations with 200 steps per epoch, however, showed a clear improvement for all
epochs, and finished with roughly the same accuracy for this metric as the other two
versions of the AdaptivePELE-MSM protocol, with a fraction of the simulation time.

Finally, we look at the evolution of the RMSE (Figure 2.47c). Here, all three variants of
the AdaptivePELE-MSM protocol show a similar behaviour, with an increase in error as
the epochs accumulate. In section D.1 of the Appendix, we show the PMF profiles for all
seven ligands after the third epochs for the runs with 200 steps (Figures D.1 and D.2), 400
steps (Figures D.3 and D.4) and 600 steps (Figures D.5 and D.6). In all cases, the profiles
were clean, with only a single minimum at close distances to the bound conformation, no
secondary minima and roughly constant PMF values at distances larger than 10 Å.
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2.5.2 Binding Free Energy for the PR System

The first test with AdaptivePELE-MSM showed a predictive performance similar, or
slightly better, for the URO receptor. Thus, we extended the testing benchmark including
the PR protein, which posed a significant challenge for PELE-MSM in terms of sampling.
We ran four different versions of the protocol with different epoch lengths: i) 200 steps,
ii) 400 steps, iii) 600 steps, and iv) 1000 steps. All versions, like the simulations in the
previous section used 128 processors. The MSM parameters were chosen in a similar
fashion to URO, with the number of clusters fixed at 100 and the lag time set at half the
epoch length, to maximise the gathered statistics used.

Like we did in the URO case, we estimated the binding free energy incrementally, along the
14 calculated epochs. This number was higher than for the URO system due to the higher
sampling requirements of PR. In Figure 2.48 we show the correlation with respect to the
experimental binding free energies for all four epoch lengths tested. It is clear from the
plots that the protocol was not able to accurately predict the binding free energy. For all
four versions tested there is no clear correlation between the estimated and experimental
values. With the long epochs, however, there is some apparent correlation, albeit low. On
the other hand, for simulations with 600 and 200 steps the points are roughly uniformly
distributed, and for the case of 400 steps there is a small anti-correlation. The different
distributions suggest that the predictions were noise-driven and the sampling obtained
was not sufficient to obtain an accurate model of the ligand binding to PR.

The evolution of the prediction statistics agrees with the assessment above. The plot of
the coefficient of determination (Figure 2.49a) shows mostly no correlation, with some
fluctuations in the 400, 600, and 1000 steps simulations. Similarly, the evolution of the
Spearman correlation (Figure 2.49b) shows values fluctuating between 0 and -0.75 for
all simulations but the one with 1000 steps per epoch. For this last case, starting from
the fifth epoch the Spearman correlation value above 0.5, which accounts for the small
correlation seen in Figure 2.48d. The RMSE (Figure 2.49c) shows a clear decreasing trend
as the epochs accumulate, with a lower error for the longer simulations.

In section D.2 of the Appendix, we show the PMF profiles for the five ligands, estimated
using all simulation epochs. The profiles, shown in Figures D.7 to D.14, present two
differentiable patterns. In one, exemplified in Figures D.7a and D.7c the minimum is
correctly predicted at low distances, but the PMF does not show a flat, constant value at
larger distances, but instead all points above 12 Å form a secondary minimum, with an
abrupt barrier at 10 Å. The second pattern, illustrated in Figures D.7b and D.8b, clearly
distinguishes two minima, as the first pattern, but with their weights switched. That is,
the absolute minimum, in these cases, is the one above 12 Å, while the minimum around
0 Å has a higher PMF value. Like in the first pattern, the two minima are separated by
a spiked barrier at around 5 Å.

Overall, the reduced benchmark tests for AdaptivePELE-MSM have shown promising
but partially unsatisfactory results. For URO, the ordering of the ligands was mostly
correct, but the RMSE was high. On the other hand, the results for the PR system
were disappointing. Despite using a considerable amount of computational power, the
correlation with the experimental values was poor, and the obtained models pointed to
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(a) 200 steps (b) 400 steps

(c) 600 steps (d) 1000 steps

Figure 2.48: Correlation of the predicted binding free energy with respect to experimental
values for the PR system in the simulations with AdaptivePELE-MSM, in the final epoch. Text
labels identify the ligand that each point represents.

significant sampling issues. The adaptive sampling reward function used here has not
provided sufficient acceleration to tackle a highly complex system like PR.
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(a) R2 (b) Spearman correlation

(c) RMSE

Figure 2.49: Evolution of the measured statistics for the PR system in the simulations with
AdaptivePELE-MSM, as more epochs are used.
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Chapter 3

Discussion

3.1 Protocol development and the importance of scien-
tific software

Moving beyond the traditional paradigm of theory and experimentation, computational
science has transformed many aspects of research. Whether simulations are regarded as
the “third pillar” of science or just a set of methods for theoretical work, it is virtually
impossible to find a scientific field that does not benefit from simulations.

In works where the development of new methods takes a central role, such as this one, an
important amount of work hours are devoted to software development tasks, which are
often “invisible” to other scientists. This is in part to be expected, as the main goal of any
research endeavour, even the computational ones, is to better comprehend some natural
phenomenon. This development work, however, is of crucial importance, and if done with
best practices in mind it can allow for investigations that would not be possible without.

Good software is written to be understood by humans, so it is maintainable and welcomes
contribution and collaboration. Maintainability is crucial if the program is expected to
be used by other scientists, or by the authors in future times. Programs that are not
catered to a single use should be written in a clear manner, both for ease of use and for
reproducibility. This last point is essential to ensure the quality of the scientific results.
Further, good code should be modular, to facilitate the incorporation of new techniques
or ideas. In important, open problems like the prediction of binding free energies failing
to stay up to date with newly discovered ideas could prevent altogether the production of
relevant research. Finally, good software should be reliable, which can be achieved with
thorough testing procedures, and scalable, which is particularly important if the software
has to run in supercomputing facilities. The development work done in this thesis, focused
in AdaptivePELE and the automatic protocol, was carried out with such good practices
in mind.

An important challenge we encountered was to make the software robust enough to run
in different machines. As an example, during the development of the extension of Adap-
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tivePELE that allowed us to run MD simulations, we had to adapt the software to run
on a GPU cluster, which raised particular issues that needed to be resolved. Since our
approach relies on ensembles of simulations, we wanted to run them in parallel on mul-
tiple nodes. We implemented a basic communication protocol in AdaptivePELE, which
allowed us to run the ensemble of simulations in many nodes in parallel (typically we
used 10 nodes) and using the 4 GPUs of each node. This had the advantage that we
only needed to run one command to launch the simulations of all ligands, which in turn
increased our throughput, so we could study sets of four or more ligands for multiple
proteins, and even test several configurations, using MD simulations.

The development of a fully automatic protocol for the estimation of binding proved crucial
to the study of binding free energies in a benchmark composed of four proteins. The
main characteristics of the protocol are user-friendliness, modularity and a high degree
of automation. The modularity of the implementation allowed us to test three different
simulation techniques, with little tuning, so their strengths and weaknesses could be
easily compared. Its user-friendliness and automation level were crucial to study multiple
proteins with several ligands each. Automating cumbersome tasks like protein preparation
steps, or ligand parametrisation eliminated points that require manual attention, greatly
increased our efficiency. The protocol implementation not only facilitated running the
simulations, but incorporated also the subsequent analysis, including the construction of
the MSM and the estimation of the binding free energy. Even if further analysis needed
to be customised on a per-system basis, this automatic, preliminary analysis provided us
with the opportunity to quickly assess the performance and plan, when needed, further
testing or parameter variation.

The software development work done during this thesis has made possible the compu-
tational estimation of protein-ligand binding free energies using pathway-based methods
on a number of proteins and ligands that, to the best of our knowledge, has not been
published before. Despite the advancements, the problem of binding free energies is far
from solved, as will be clear in the next section, and surely new insights will be uncovered
in the future that will bring us closer to the solution. Making it possible to incorporate
these still unknown ideas shows that time spent in hidden tasks like testing and designing
are good time investments for a computational scientist.

3.2 Successes and limitations of presented protocol for
binding free energies

As we mentioned in the previous section, the automatic protocol we developed allowed
us to estimate the binding free energy for five proteins. One of them, trypsin, was only
used for the initial tests of the software, but the remaining four were studied using three
different simulation methods, with varying degrees of success.

Firstly, the system here referred as plasmin is a kringle domain of plasminogen. This is
a small protein, of only 80 residues, which allowed for extensive sampling. We predicted
the binding to a set of six ligands using PELE simulations and 16 ligands using MD. The
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prediction was successful in both cases. With PELE-MSM, we obtained an R2 of 0.72,
a Spearman correlation of 0.75 and an RMSE of 1.11 kcal/mol. With MD-MSM, the
larger amount of ligands used caused the R2 value to decrease to 0.343, but the Spearman
correlation was similarly high at 0.66 and error was lower, with an RMSE of 0.64 kcal/mol.
In both cases the ligands were mostly correctly ranked, with a low error in the absolute
binding free energy values.

Secondly, we used the urokinase-type plasminogen activator protein. URO was a test
system for all simulation methods selected with the protocol, PELE, MD and Adaptive-
PELE, and was also for the runs using PELE and AdaptivePELE before developing the
protocol. The accuracy for all three versions was similar. With PELE-MSM, we obtained
an R2 of 0.59, a Spearman correlation of 0.61 and an RMSE of 5.86 kcal/mol. With
AdaptivePELE-MSM, the collected statistics with an epoch length of 600 steps, which
seemed to give the best performance, were an R2 of 0.632, a Spearman correlation of 0.75
and an RMSE of 5.35 kcal/mol. Finally, for the MD-MSM case we observed an R2 of
0.761, a Spearman correlation of 0.6 and an RMSE of 5.64 kcal/mol. The results for PELE
and AdaptivePELE were similar, although as noted in section 2.5.1 the AdaptivePELE
runs took about half the computing resources that PELE required. The simulations with
MD-MSM used only four ligands and the accuracy with that reduced set was on par, for
the runs using a cylindrical box and long simulations, but was significantly worse for the
other parameters tested, as we will discuss in detail in section 3.3.2. Overall the ranking
in the ligand was good, but slightly worse than for plasmin. The absolute error, however,
was much higher.

Third, we ran the PELE and MD versions of the protocol with the mitogen-activated
protein kinase 1. This protein is similar in size to URO, but its binding site is larger
(and more exposed), which complicates the binding free energy predictions. For both
versions of the protocol we used the same five ligands. With PELE-MSM we obtained an
R2 of 0.01, a Spearman correlation of 0.0 and an RMSE of 6.98 kcal/mol, while in the
MD case the values were an R2 of 0.526, a Spearman correlation of 0.9 and an RMSE
of 4.7 kcal/mol. The measured statistics seem completely different, with MD performing
significantly better than PELE. In both cases, however, analysing the PMF profiles made
clear that the estimated models could not properly capture the binding process. We
believe that this limitation is mostly related to modelling parameters, mainly force field
inaccuracies and solvent models, as we will discuss further in section 3.2.2.

The last protein studied was the progesterone receptor, which is a protein that presents
significant sampling challenges due to its buried binding site. We ran PELE-MSM and
AdaptivePELE-MSM with this protein, using five ligands in both cases. In this case,
PELE-MSM showed no predictive power, with an R2 value and a Spearman correlation of
0 and an RMSE of 4.41 kcal/mol. With AdaptivePELE-MSM we obtained similar results,
but slightly better statistics in the best case with 1000 steps per epoch. After running 13
epochs, the measured statistics were an R2 of 0.355, a Spearman correlation of 0.8 and
an RMSE of 4.38 kcal/mol. Despite the seemingly improved results with AdaptivePELE,
the analysis of the PMF profiles shows that the obtained models are not much more
precise than the PELE ones. The PR receptor constitutes a prime example of sampling
limitations for binding free energy estimation, as will see in section 3.2.1.
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3.2.1 Sampling limitations

It is well-known that the usability of molecular simulation methods is hampered by the
long time scales at which many processes of interest happen. A clear example of such
processes is protein-ligand binding. Non-covalent complexes might occur on a time scale
of milliseconds, or even longer, which makes simulations that sample multiple occurrences
of binding and unbinding prohibitively expensive.

This well-known limitation motivated the central idea of this thesis, the combination of
short exploratory enhanced simulation with a longer simulation for data collection, that
takes advantage of information acquired during the first one. Despite this, we observed
clear signs of insufficient sampling in some of the tests, particularly in the ones run with
the PR system.

In the PELE-MSM runs for PR we observed a clear lack of transitions in and out of the
binding site, as measured by the SASA value. In Figure 3.1 we show the evolution of
the SASA during the production simulations of the three iterations for the STR ligand
with PR (one should note that this plot is the same as in Figure 2.27, we reproduced
it again here for easier reading). There is a clear gap in sampled SASA values around
0.2, which marks a transition state between conformations that have entered the binding
site. This lack of sampling prevents the estimated model from properly reproducing the
protein-ligand binding process, and ultimately explains the poor predictive performance
observed with PELE-MSM and the PR protein.

The AdaptivePELE-MSM version of the protocol was designed to improve the sampling
issues encountered with PELE-MSM and the PR system. In Figure 3.2 we show the plots
of the evolution of the SASA for the AdaptivePELE-MSM production simulations for the
four epoch length tested (200, 400, 600 and 1000 steps). If we compare those plots with
the PELE one, we can see that the sampling is increased in the intermediate region, with
better results as the epoch length is increased. The increase in sampling is also reflected in
the measured statistics, particularly for the simulations of 1000 steps per epoch. However,
the predictive performance is still poor and the resulting models, as reflected by the PMF
profiles, show the same inaccuracies that the ones obtained with PELE-MSM (see section
3.3.1 for more details on the accuracy comparison of AdaptivePELE-MSM and PELE-
MSM).

We also approximately measured the amount of transition events in and out of the binding
site for each epoch length and ligand. We did so by counting, in each trajectory, how
many times the ligand goes from a distance less than 2.5 Å to a distance larger than 10
Å to the crystallographic pose, for unbinding events, and the opposite for binding events.
The results are shown in Figure 3.3, with number of bindings in Figure 3.3a and number
of unbinding events in Figure 3.3b. If we look at the number of binding events, the only
set of simulations that reliably produces such transitions is the one with 1000 steps per
epoch, which still failed to find any binding for the ligand labelled 400. The number of
events decreased with the epoch length, the simulations with 600 steps found binding
events for only three of the ligands, the runs with 400 steps only for two and the shortest
simulations found no such event for any of the ligands. The situation is similar but slightly
better when looking at the number of unbinding events. Again the longest simulations
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Figure 3.1: SASA evolution during the production simulation for three iterations of 127 tra-
jectories each for the PR system with the STR ligand.

were the most reliable finding unbinding for all five ligands, even if the amount is low.
The same was not true for the other runs, with unbinding events detected in four ligands
for the simulations with 600 steps, but only in one ligand for the runs with 400 and 200
steps.

Despite the additional sampling that AdaptivePELE-MSM introduced, the number of
transitions in and out of the binding site is still limited, which prevented an accurate
binding free energy estimation. In a previous study with PELE (Grebner et al., 2017)
the accurate binding affinity prediction to PR was achieved using three ligands. In that
paper, the authors reportedly used 600 trajectories for 48 hours of wall clock time for each
ligand. With PELE-MSM, we used 3 iterations of 1000 steps with 128 trajectories, which
required around 24 hours of wall clock time, approximately 9 times less if we consider the
number of CPU hours. The longest AdaptivePELE-MSM simulations used 128 processors
for 14 epochs of 1000 steps, with each epoch requiring approximately 6 hours of wall clock
time, amounting to around 5 times more than PELE-MSM and 2.7 times less than the
original publication by Grebner et. al. Comparing the resources used by each paper and
the resulting accuracy it is clear that the amount of computational resources required to
obtain accurate binding free energy predictions for the PR protein is exceedingly high,
and the methods presented here do not allow for a reliable estimation of multiple ligands
in a fast manner.
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(a) 200 steps (b) 400 steps

(c) 600 steps (d) 1000 steps

Figure 3.2: SASA evolution during the production simulation with AdaptivePELE-MSM for
the STR ligand and PR. The colour represents the simulation epoch. Panel (a): Simulations with
200 steps per epoch. Panel (b): Simulations with 400 steps per epoch. Panel (c): Simulations
with 600 steps per epoch. Panel (d): Simulations with 1000 steps per epoch.

3.2.2 Modelling limitations

Aside from insufficient sampling, the other most common cause of failures in binding free
energy predictions is modelling inaccuracies, mainly attributed to limited force field accu-
racy. Inadequate sampling should be identified almost always as the cause of prediction
failures as current simulation methods are incapable of exploring the time scales to reach
true equilibrium, as clearly exposed by David Mobley (Mobley, 2012). True equilibrium
sampling is impossible to assess, and methods that measure simulation convergence are
limited to attempt to identify cases of insufficient sampling, but can never ensure that
sampling was sufficient in simulations of systems as complex as proteins.
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(a) Binding events (b) Unbinding events

Figure 3.3: Plot of the number of transitions obtained for the simulations of the PR receptor
using different epoch lengths with AdaptivePELE-MSM. Panel (a): Plot of binding events. Panel
(b): Plot of unbinding events.

Here we will discuss the poor results obtained with the ERK2 systems, that are likely
attributable to a combination of sampling and modelling issues, with emphasis on the
latter. With PELE-MSM the prediction showed no correlation, and the estimated models
were not even able to properly identify the (experimentally known) binding pose. While
the relatively short simulations likely produced insufficient sampling, the model PMF
profiles and plots of internal energy point to severe modelling limitations that are most
likely the key factor. If we compare the potential energy calculated by PELE in the PELE-
MSM runs that use and implicit solvent with the one obtained with a combined implicit
solvent and four added explicit solvent molecules (Figure 3.4, note that the two plots
were already shown in the Results chapter, Figures 2.22 and 2.24b, and are only shown
here for the sake of discussion) we observe significant differences in the energy values at
distances of less than 5 Å, and a displacement of the energy minimum towards the low
distance region. This suggests that the interactions that the introduced water molecules
form are important to stabilise the binding pose, and without them the implicit solvent
introduces an error that prevents the accurate estimation of binding free energies. The
water molecules could also prevent the ligand from adopting alternative binding poses
by filling spaces that would be free in pure implicit solvent models. It should be noted,
however, that the simulation with explicit waters is not exactly comparable to the PELE-
MSM runs, since it was only a quick test using a functionality of PELE that is still under
development.

Since PELE did not fully support an explicit solvent model, we introduced the ERK2
as a test system for the MD-MSM version of the protocol. In those runs, the results,
measured by the three statistics that we have used throughout this thesis, were much
better than those of PELE, but the PMF profiles still showed issues identifying the binding
pose. We analysed the evolution of the R2 and the Spearman correlation for the two test
runs, one with a spherical simulation box and one with a cylindrical one (Figure 3.5),
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(a) Energy with implicit solvent (b) Energy with explicit waters

Figure 3.4: Plot of PELE’s internal energy values with respect to the centre of mass distance
in the PELE-MSM simulations of the ERK2 receptor with ligand EK2. Panel (a): Simulation
with implicit solvent. Panel (b): Simulation with implicit solvent and four explicit waters.

as the simulation length increased. The evolution for the simulations with a spherical
box (Figure 3.5a) showed a consistent improvement of both metrics as the simulation
length increased, up to around 400 ns. From there on, the value of the metric does
not show great variations, only small fluctuations. Similarly, for the simulations with a
cylindrical box, there is a clear increasing trend until the simulations reach 250 ns. From
there, the Spearman correlation stays roughly constant, but the R2 value shows a clear
decreasing trend. These plots support the idea that inadequate sampling is not the main
factor to explain the inaccurate models with ERK2, as extending the simulation length
renders no improvement or even a reduction in the prediction accuracy. On the other
hand, the results with MD-MSM indicate that while the use of explicit solvent appears
to have a measurable impact in the model accuracy, it can not be the only cause of
poor performance, given the lack of accuracy of some of the models obtained with MD
simulations with explicit waters.

In this work, we have illustrated, through two protein systems, the difficulty in establishing
the shortcomings in simulations for free energy calculations. The two most common issues,
inadequate sampling and inaccurate models, are often intertwined and it is extremely
difficult to precisely establish to what extent is each to blame in the simulations failures.
Lack of sampling is regarded as the first limitation that should be ruled out, as it is easier
to measure than the modelling inaccuracies, that can come from multiple sources. In the
PR system, that seemed to be the case, as the insufficient sampling was easily measurable,
and a previously published work with a similar set-up but more sampling had significantly
better results. In the ERK2 system, there was no evident sign of insufficient sampling,
although that does not guarantee that sampling was adequate. It was clear, however,
that the model used did not properly capture the binding process as evidenced by the
incapacity of identifying the binding pose. This could be attributed to a combination
of issues with the solvent model (particularly in PELE simulations) and the force field
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(a) Spherical box (b) Cylindrical box

Figure 3.5: Analysis of the evolution of the prediction statistics (Spearman and R2) as the
simulation length increases for the ERK2 system. The starting point is based on adding the first
75 ns segments of all trajectories (with subsequent increments of 25ns). Panel (a): Statistics
evolution for the simulations with a spherical simulation box. Panel (b):Statistics evolution for
the simulations with a cylindrical simulation box.

parameters (both in PELE and MD simulations).

3.3 Effectiveness of unbiased simulations for free en-
ergy calculations

To overcome the limited sampling offered by unbiased molecular simulations for long time
scale events like protein-ligand binding, enhanced sampling methods have been the object
of extensive research. Many of these techniques require a complex and system-dependent
setup, such as the discovery of efficient collective variables for metadynamics. Since one
of the goals of this thesis was to obtain a method that could predict the binding free
energies for different systems, using techniques with a system-specific setup would not be
feasible.

As a compromise between sampling efficiency and user-friendliness we decided to combine
both enhanced and unbiased simulations. We first used a quick exploratory simulation
with AdaptivePELE, which required no specific setup and could be easily automated to
work with different proteins, and combined it with regular unbiased simulations. This
approach worked well for plasmin and URO, two systems that possess a well-defined,
tight and accessible binding site, but failed with systems with more flexible binding sites
and deeply buried (less accessible) ones.
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3.3.1 Role of enhanced sampling methods

In sections 2.3.5 and 2.4.4 we tested whether the initial AdaptivePELE simulation pro-
vided a noticeable sampling improvement to the subsequent production simulations using
unbiased methods. There, running simulations after this initial step resulted in less noisy
models and a better estimation, as measured by the statistical metrics used (R2, Spear-
man correlation and RMSE). Nonetheless, the tests with the PR and ERK2 receptors
showed that even this accelerated sampling was not sufficient for the accurate prediction
of binding free energies.

A final version of the protocol was developed that removed altogether unbiased simulation
methods from the protocol. With an adaptive sampling based approach (Hinrichs and
Pande, 2007), this new version, AdaptivePELE-MSM, showed an acceptable binding free
energy estimation with reduced computational resources for the URO system, but it did
not prove successful for PR.

Before delving further into the analysis of the PELE and AdaptivePELE-MSM results
for URO, we should note the differences in the amount of sampling used in each version
of the protocol. Three factors need to be taken into account: the number of processors,
the number of steps per simulation and the number of runs. The number of runs and
the number of processors is the same in all four versions, 3 and 128. Finally, the number
of steps per simulation was 1000 for the PELE-MSM simulation, 200, 400 or 600 for
the AdaptivePELE simulations. The total amount of sampling used for the PELE-MSM
results was 5 times that used for the 200 steps per epoch run, 2.5 times the time used
for the 400 steps per epoch run and about 1.6 times the amount of sampling used for the
simulation with 600 steps per epoch.

In Figure 3.6, we plot the evolution of the measured statistics after each AdaptivePELE-
MSM epoch (lines with markers) and PELE-iterations (solid, horizontal lines). In some
graphs only two horizontal lines are visible, that is caused by two PELE-MSM values that
are so close that their lines are overlapped. For all three metrics, there is little difference
and the fact that increasing the PELE-MSM iterations does not generally improve the
estimations points to random fluctuations as the most likely explanation. Judging from
the comparisons, it would seem that with only one simulation of 400 PELE steps is
sufficient to obtain and acceptable ranking, with R2 and Spearman correlation around
0.6. The RMSE value seems initially better for the AdaptivePELE-MSM runs, but as the
epochs accumulate the value increases to only 0.5 kcal/mol lower than the PELE-MSM
runs.

The positive results of AdaptivePELE-MSM with URO contrast with the negative results
obtained with AdaptivePELE simulations before establishing the protocol (see section
2.1.2 for more details). The main difference between the two runs is the spawning strategy
used, in the early simulations the reward function considered as more relevant those state
that were less visited, while the AdaptivePELE-MSM reward function gave priority to
those states that contributed more to the uncertainty of the eigenvalue estimation. Likely,
the former gave worse results due to tendency, observed multiple times, to sample high
energy states that are not too relevant for the dynamics (Zimmerman et al., 2018; Shamsi
et al., 2018; Betz and Dror, 2019).
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(a) R2 (b) Spearman correlation

(c) RMSE

Figure 3.6: Evolution of the measured statistics for the URO system in the simulations with
AdaptivePELE-MSM, as more epochs are used. The horizontal line marks the statistics measured
using PELE-MSM protocol after each iteration.

Contrary to the URO case, and aiming at evaluating sampling deficiencies, in the PR
runs with AdaptivePELE-MSM we used more computational power than with PELE-
MSM. The runs used the same number of processors, but while in PELE-MSM we used 3
iterations, with AdaptivePELE-MSM we used 14. Considering the different epoch lengths,
with the 200 steps per epoch we roughly matched the sampling effort of PELE-MSM, with
400 we double it, 600 was thrice as expensive and for the longest epochs (1000 steps), the
resources used were almost five times as much.

In figure 3.7 we show the evolution of the statistics for all four epochs lengths, and compare
them to the value obtained with all three PELE-MSM iterations (horizontal line). For
the coefficient of determination we see that the shortest run stays in line with the PELE-
MSM result, while the longer simulations fluctuate above the PELE mark, but end with
low correlation values. The Spearman correlation paints a different picture. There is a
clear difference between the 1000 steps per epoch simulation and the rest. Again, the
simulation of 200 steps shows no correlation, with small fluctuations, in line with the
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PELE results. The runs with 400 and 600, show fluctuations between 0 and -0.75. The
runs with 1000 steps, however, shows a clear improvement with respect to PELE starting
from the fifth epoch, showing a partially correct ranking of the ligands, with a Spearman
correlation finishing at 0.5. The error, measured through the RMSE, despite decreasing
with more sampling stays always higher than the one observed with PELE.

(a) R2 (b) Spearman correlation

(c) RMSE

Figure 3.7: Evolution of the measured statistics for the PR system in the simulations with
AdaptivePELE-MSM, as more epochs are used. The horizontal line marks the statistics measured
using PELE-MSM protocol.

The insufficient sampling recorded by the PR runs, together with the lack of improvement
observed with URO using AdaptivePELE-MSM indicate that better reward functions are
needed. In the field of MSM theory, there have been important advances that allow the
evaluation of the quality of a constructed MSM, in terms of the variational approach
to conformational mechanics (Nüske et al., 2014) or the GMRQ score (McGibbon and
Pande, 2015). However, these schemes generate a score for the entire model and are
useful for tuning different parameters, such as the number of clusters. But a reward
function inside an adaptive sampling method needs a way to score each individual state,
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in order to select the most promising one for further rounds. Therefore, the search for
better spawning criteria to improve binding free energies remains an open question, and
an interesting avenue for future research.

3.3.2 Sampling efficiency of longer vs multiple shorter simulations

Throughout this thesis, we have relied on MSMs for the analysis of the simulations, and
to obtain an estimation of the equilibrium probability. These kinds of models are very
popular due to the vast amount of information that they offer and their capacity to
integrate ensembles of short parallel simulations into a single model. There is, however,
a potential issue that might affect the quality of the Markov model if the simulations are
not long enough. As pointed out in early groundwork (Swope et al., 2004), the lag time
used to construct the model must be at least as long as the longest equilibration time
among the states used to discretise the simulations. That in turn pushes the simulation
length to several times this lag time, in order to be able to collect sufficient statistics.

We suspected that this effect could be at play in the early runs of the MD-MSM protocol
with the URO receptor. For this system, we ran three different sets of simulations, one
with 120 trajectories of length 100 ns, one with 40 trajectories of length 1 µs with a
spherical box and one with 40 trajectories of length 1 µs with a cylindrical box. The first
set provided the worst predictive performance, with an anti-correlation of the predicted
values versus the experimental ones. This anti-correlation was not found in any of the two
other sets, with longer simulations. The performance of the simulations with the spherical
box was not great, grouping three of the four ligands at the same predictive value, while
the difference in the experimentally measured affinity was greater than 1 kcal/mol for
each. This was not true for the final set of simulations, with the cylindrical box. There,
there is a weak correlation between the predictions and experimental values, but at least
the predictions correctly separate the two ligands with higher affinity from the two with
lower affinity.

To characterise the sampling obtained by each set of simulations we approximated the
number of binding and unbinding events by measuring the ligand distance to the bound
pose and counting how many times each simulation went from a bound pose to free one,
and vice versa. We considered as bound all conformation with a distance less than 2.5 Å,
and as unbound those with a distance larger than 6 Å. This analysis was not intended
as a rigorous characterisation of the protein-ligand complex, but merely as a lower bound
on the true number of binding and unbind events. The results are shown in Figure 3.8.
The simulations of 100 ns are labelled as “Short, sphere”, the longer ones with a spherical
box as “Long, sphere” and the ones with the cylindrical box are labelled “Long, cylinder”.

The number of binding events (Figure 3.8a) is bigger for the shorter simulations with
ligand 1UP and 2UP, which are the one with lowest affinity. However, for the other two
ligands, the simulations that produced more transitions are the long ones with the cylinder
box. Both the short and long simulations with the spherical box show less binding events,
which could be explained by metastable trapping of the largest ligands in small cavities in
the protein surface, as suggested by the PMF profile (see section 2.4.2 for more details).
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This is particularly true for the long, sphere simulations which showed only two bindings
for the 39L ligand and no binding events for the 7UP. For reference, the long, cylinder
simulations produced 19 and 9 transitions, respectively.

(a) Binding events (b) Unbinding events

Figure 3.8: Plot of the number of transitions obtained for the simulations of the URO receptor
using different simulation boxes with MD-MSM. Panel (a): Plot of binding events. Panel (b):
Plot of unbinding events.

The results were quite different for the number of unbinding events (Figure 3.8b). Of the
four ligands, only for 1UP we observed transitions, and merely one of the long, sphere
simulations and 2 for the long, cylinder ones. The short simulations showed no unbinding
events at all. Even in the version of the protocol that showed better results, the sampling
is limited. To further assess this, we analysed the evolution of the statistical metrics
as the simulation length increased for the long simulations, shown in Figure 3.9. In the
plots, we also marked in two vertical lines the results after only considering the first 100
ns of simulation (dotted line) and the results at the point in which the long simulations
match the aggregated simulation time of the ensemble of short simulations (solid vertical
line). With only 100 ns simulations the results are, unsurprisingly, bad since there are
three times less trajectories than in the short simulations ensemble. Comparing the point
in which all three sets of runs have the same amount of sampling, however, we clearly
see that the long simulations are better for this system, since while the short simulations
predictions were anti-correlated, the long simulations give positive results. At this point
the results of the sphere box are better than the cylindrical one, but if we observe the
whole evolution it is clear that the latter produces more reliable sampling. The long,
sphere runs show wide fluctuations, between no correlation and negative one, at length
greater than 500 ns. On the other hand, the plot for the cylindrical box shows a much
more stable evolution, with only small fluctuations and always positive values for the
Spearman correlation.

Despite the apparent advantage of the cylindrical box, MD simulations have proven in-
capable of sampling the URO system in an efficient enough manner for the estimation
of binding free energies for even moderately sized sets of ligands. Even with 1 µs long
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(a) Spherical box (b) Cylindrical box

Figure 3.9: Analysis of the evolution of the prediction statistics (Spearman and R2) as the
simulation length increases for the URO simulations. The solid vertical line marks where the long
simulations of the URO system have the same aggregated simulation time as the short ones, while
the dotted line marks the predictions with the same simulation length as the short simulations
(100 ns). The starting point is based on adding the first 75 ns segments of all trajectories
(with subsequent increments of 25ns). Panel (a): Statistics evolution for the simulations with
a spherical simulation box. Panel (b):Statistics evolution for the simulations with a cylindrical
simulation box.

simulations, the sampling was poor and no unbinding event was observed. Similarly, in
a recent paper (Pramanik et al., 2019), while comparing the efficiency and accuracy of
estimations from metadynamics versus unbiased MD simulations, it was reported that 7 of
the unbiased MD replicas run up to 2 µs without showing any unbinding event. It seems
clear that the future of binding free energy estimation will require more sophisticated
enhanced sampling methods, since unbiased techniques would need orders of magnitude
more powerful computing capabilities than the ones currently available, which does not
seem likely in the short-term future.
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Chapter 4

Conclusions

The conclusions that can be extracted from this thesis are:

• The development of an automatic, modular and user-friendly protocol for the es-
timation of binding free energies has allowed us to predict binding affinities for a
large amount of protein-ligand systems, with respect to comparable pathway-based
methods. The protocol appeared to work best with fragment systems and protein
with well defined and not very flexible binding sites.

• Unbiased simulation techniques are not efficient enough for the prediction of bind-
ing free energies for realistic protein-ligand systems in a constrained time frame.
Even with optimisations designed to improve sampling, they fail to collect sufficient
statistics about protein-ligand binding and unbinding processes.

• Enhanced sampling methods are required to predict binding affinities in a way that
can impact real-world drug discovery campaigns. However, further work is required
in development of such techniques that can be generally applied to many protein
system, as well as easing their applicability.

• The design of realistic and diverse testing benchmarks is crucial to properly iden-
tify strengths and weaknesses of newly developed methods. Further work on the
standardisation of such benchmarks would help in the comparison of the multiple
existing methods for the prediction of binding free energies.

• Establishing software development best practises during the implementation of new
techniques increases scientific productivity, even if the development time is longer.
Further, establishing automatic and reproducible protocols results in less error-prone
procedures.
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Appendix A

PMF plots for PELE-MSM benchmark

A.1 PMF plots for plasmin system

(a) PMF using one iteration (b) PMF using two iterations (c) PMF using three iterations

Figure A.1: Comparison of the evolution of the one-dimensional PMF with three iterations
for the L02 ligand of the plasmin receptor for the three iterations. Panel (a) shows the PMF
resulting from the first iteration only. Panel (b) shows the PMF resulting from combining the
first and second iterations. Panel (c) shows the PMF resulting from combining the first three
iterations.
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(a) PMF using one iteration (b) PMF using two iterations (c) PMF using three iterations

Figure A.2: Comparison of the evolution of the one-dimensional PMF with three iterations
for the L05 ligand of the plasmin receptor for the three iterations. Panel (a) shows the PMF
resulting from the first iteration only. Panel (b) shows the PMF resulting from combining the
first and second iterations. Panel (c) shows the PMF resulting from combining the first three
iterations.

(a) PMF using one iteration (b) PMF using two iterations (c) PMF using three iterations

Figure A.3: Comparison of the evolution of the one-dimensional PMF with three iterations
for the L06 ligand of the plasmin receptor for the three iterations. Panel (a) shows the PMF
resulting from the first iteration only. Panel (b) shows the PMF resulting from combining the
first and second iterations. Panel (c) shows the PMF resulting from combining the first three
iterations.
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(a) PMF using one iteration (b) PMF using two iterations (c) PMF using three iterations

Figure A.4: Comparison of the evolution of the one-dimensional PMF with three iterations
for the L07 ligand of the plasmin receptor for the three iterations. Panel (a) shows the PMF
resulting from the first iteration only. Panel (b) shows the PMF resulting from combining the
first and second iterations. Panel (c) shows the PMF resulting from combining the first three
iterations.

(a) PMF using one iteration (b) PMF using two iterations (c) PMF using three iterations

Figure A.5: Comparison of the evolution of the one-dimensional PMF with three iterations
for the L15 ligand of the plasmin receptor for the three iterations. Panel (a) shows the PMF
resulting from the first iteration only. Panel (b) shows the PMF resulting from combining the
first and second iterations. Panel (c) shows the PMF resulting from combining the first three
iterations.
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A.2 PMF plots for URO system

(a) PMF using one iteration (b) PMF using two iterations (c) PMF using three iterations

Figure A.6: Comparison of the evolution of the one-dimensional PMF with three iterations for
the 1UP ligand of the URO receptor for the three iterations. Panel (a) shows the PMF resulting
from the first iteration only. Panel (b) shows the PMF resulting from combining the first and
second iterations. Panel (c) shows the PMF resulting from combining the first three iterations.

(a) PMF using one iteration (b) PMF using two iterations (c) PMF using three iterations

Figure A.7: Comparison of the evolution of the one-dimensional PMF with three iterations for
the 2UP ligand of the URO receptor for the three iterations. Panel (a) shows the PMF resulting
from the first iteration only. Panel (b) shows the PMF resulting from combining the first and
second iterations. Panel (c) shows the PMF resulting from combining the first three iterations.
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(a) PMF using one iteration (b) PMF using two iterations (c) PMF using three iterations

Figure A.8: Comparison of the evolution of the one-dimensional PMF with three iterations for
the 4UP ligand of the URO receptor for the three iterations. Panel (a) shows the PMF resulting
from the first iteration only. Panel (b) shows the PMF resulting from combining the first and
second iterations. Panel (c) shows the PMF resulting from combining the first three iterations.

(a) PMF using one iteration (b) PMF using two iterations (c) PMF using three iterations

Figure A.9: Comparison of the evolution of the one-dimensional PMF with three iterations for
the 6UP ligand of the URO receptor for the three iterations. Panel (a) shows the PMF resulting
from the first iteration only. Panel (b) shows the PMF resulting from combining the first and
second iterations. Panel (c) shows the PMF resulting from combining the first three iterations.

(a) PMF using one iteration (b) PMF using two iterations (c) PMF using three iterations

Figure A.10: Comparison of the evolution of the one-dimensional PMF with three iterations for
the 239 ligand of the URO receptor for the three iterations. Panel (a) shows the PMF resulting
from the first iteration only. Panel (b) shows the PMF resulting from combining the first and
second iterations. Panel (c) shows the PMF resulting from combining the first three iterations.
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(a) PMF using one iteration (b) PMF using two iterations (c) PMF using three iterations

Figure A.11: Comparison of the evolution of the one-dimensional PMF with three iterations for
the 675 ligand of the URO receptor for the three iterations. Panel (a) shows the PMF resulting
from the first iteration only. Panel (b) shows the PMF resulting from combining the first and
second iterations. Panel (c) shows the PMF resulting from combining the first three iterations.
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A.3 PMF plots for ERK2 system

(a) PMF using one iteration (b) PMF using two iterations (c) PMF using three iterations

Figure A.12: Comparison of the evolution of the one-dimensional PMF with three iterations
for the EK3 ligand of the ERK2 receptor for the three iterations. Panel (a) shows the PMF
resulting from the first iteration only. Panel (b) shows the PMF resulting from combining the
first and second iterations. Panel (c) shows the PMF resulting from combining the first three
iterations.
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(a) PMF using one iteration (b) PMF using two iterations (c) PMF using three iterations

Figure A.13: Comparison of the evolution of the one-dimensional PMF with three iterations
for the EK6 ligand of the ERK2 receptor for the three iterations. Panel (a) shows the PMF
resulting from the first iteration only. Panel (b) shows the PMF resulting from combining the
first and second iterations. Panel (c) shows the PMF resulting from combining the first three
iterations.

(a) PMF using one iteration (b) PMF using two iterations (c) PMF using three iterations

Figure A.14: Comparison of the evolution of the one-dimensional PMF with three iterations
for the EK9 ligand of the ERK2 receptor for the three iterations. Panel (a) shows the PMF
resulting from the first iteration only. Panel (b) shows the PMF resulting from combining the
first and second iterations. Panel (c) shows the PMF resulting from combining the first three
iterations.
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(a) PMF using one iteration (b) PMF using two iterations (c) PMF using three iterations

Figure A.15: Comparison of the evolution of the one-dimensional PMF with three iterations
for the E63 ligand of the ERK2 receptor for the three iterations. Panel (a) shows the PMF
resulting from the first iteration only. Panel (b) shows the PMF resulting from combining the
first and second iterations. Panel (c) shows the PMF resulting from combining the first three
iterations.
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PMF plots for MD-MSM benchmark

B.1 PMF Plots for plasmin system
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(a) L01 (b) L02

(c) L03 (d) L04

Figure B.1: One-dimensional projection PMF for all the ligands used in the plasmin set.
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B.1. PMF plots for plasmin Chapter B. PMF plots MD-MSM

(a) L05 (b) L06

(c) L07 (d) L08

Figure B.2: One-dimensional projection PMF for all the ligands used in the plasmin set.
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B.1. PMF plots for plasmin Chapter B. PMF plots MD-MSM

(a) L09 (b) L10

(c) L11 (d) L12

Figure B.3: One-dimensional projection PMF for all the ligands used in the plasmin set.

125



B.1. PMF plots for plasmin Chapter B. PMF plots MD-MSM

(a) L13 (b) L14

(c) L15 (d) L16

Figure B.4: One-dimensional projection PMF for all the ligands used in the plasmin set.
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B.2. PMF plots plasmin no exploration Chapter B. PMF plots MD-MSM

B.2 Plots for plasmin system without previous explo-
ration

(a) L01 (b) L02

(c) L03 (d) L04

Figure B.5: One-dimensional projection PMF for all the ligands used in the plasmin set in the
simulations without a previous AdaptivePELE simulation.
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B.2. PMF plots plasmin no exploration Chapter B. PMF plots MD-MSM

(a) L05 (b) L06

(c) L07 (d) L08

Figure B.6: One-dimensional projection PMF for all the ligands used in the plasmin set in the
simulations without a previous AdaptivePELE simulation.
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B.2. PMF plots plasmin no exploration Chapter B. PMF plots MD-MSM

(a) L09 (b) L10

(c) L11 (d) L12

Figure B.7: One-dimensional projection PMF for all the ligands used in the plasmin set in the
simulations without a previous AdaptivePELE simulation.
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B.2. PMF plots plasmin no exploration Chapter B. PMF plots MD-MSM

(a) L13 (b) L14

(c) L15 (d) L16

Figure B.8: One-dimensional projection PMF for all the ligands used in the plasmin set in the
simulations without a previous AdaptivePELE simulation.
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Appendix C

Structures for MD-MSM simulations
with the ERK2 benchmark

C.1 Structures of the PMF minima for the ERK2 lig-
ands with spherical box

(a) E63 (b) EK6

Figure C.1: Structure of the absolute minimum of the PMF for all the ligands used in the
ERK2 set in the simulations with a spherical simulation box. Protein is shown in white cartoon,
the minimum structure is coloured cyan, with the active conformation shown in dark blue for
reference. Waters at less than 4 Å of the ligand are also shown.
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C.1. Structures ERK2 sphere Chapter C. Structures ERK2 MD simulations

(a) EK2 (b) EK3

(c) EK9

Figure C.2: Structure of the absolute minimum of the PMF for all the ligands used in the
ERK2 set in the simulations with a spherical simulation box. Protein is shown in white cartoon,
the minimum structure is coloured cyan, with the active conformation shown in dark blue for
reference. Waters at less than 4 Å of the ligand are also shown.
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C.2. Structures ERK2 cylinder Chapter C. Structures ERK2 MD simulations

C.2 Structures of the PMF minima for the ERK2 lig-
ands with cylindrical box

(a) E63 (b) EK6

Figure C.3: Structure of the absolute minimum of the PMF for all the ligands used in the
ERK2 set in the simulations with a cylindrical simulation box. Protein is shown in white cartoon,
the minimum structure is coloured cyan, with the active conformation shown in dark blue for
reference. Waters at less than 4 Å of the ligand are also shown.
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C.2. Structures ERK2 cylinder Chapter C. Structures ERK2 MD simulations

(a) EK2 (b) EK3

(c) EK9

Figure C.4: Structure of the absolute minimum of the PMF for all the ligands used in the
ERK2 set in the simulations with a cylindrical simulation box. Protein is shown in white cartoon,
the minimum structure is coloured cyan, with the active conformation shown in dark blue for
reference. Waters at less than 4 Å of the ligand are also shown.
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Appendix D

PMF plots for AdaptivePELE-MSM
benchmark

D.1 PMF plots for URO system

(a) 1UP (b) 2UP

Figure D.1: One-dimensional projection PMF for all the ligands used in the URO set in the
simulations with AdaptivePELE-MSM with 200 steps per epoch.
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D.1. PMF plots for URO system Chapter D. PMF plots for AdaptivePELE-MSM

(a) 4UP (b) 6UP

(c) 675 (d) 239

(e) 7UP

Figure D.2: One-dimensional projection PMF for all the ligands used in the URO set in the
simulations with AdaptivePELE-MSM with 200 steps per epoch.

136



D.1. PMF plots for URO system Chapter D. PMF plots for AdaptivePELE-MSM

(a) 1UP (b) 2UP

Figure D.3: One-dimensional projection PMF for all the ligands used in the URO set in the
simulations with AdaptivePELE-MSM with 400 steps per epoch.
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D.1. PMF plots for URO system Chapter D. PMF plots for AdaptivePELE-MSM

(a) 4UP (b) 6UP

(c) 675 (d) 239

(e) 7UP

Figure D.4: One-dimensional projection PMF for all the ligands used in the URO set in the
simulations with AdaptivePELE-MSM with 400 steps per epoch.
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D.1. PMF plots for URO system Chapter D. PMF plots for AdaptivePELE-MSM

(a) 1UP (b) 2UP

Figure D.5: One-dimensional projection PMF for all the ligands used in the URO set in the
simulations with AdaptivePELE-MSM with 600 steps per epoch.
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D.1. PMF plots for URO system Chapter D. PMF plots for AdaptivePELE-MSM

(a) 4UP (b) 6UP

(c) 675 (d) 239

(e) 7UP

Figure D.6: One-dimensional projection PMF for all the ligands used in the URO set in the
simulations with AdaptivePELE-MSM with 600 steps per epoch.
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D.2. PMF plots for PR system Chapter D. PMF plots for AdaptivePELE-MSM

D.2 PMF plots for PR system

(a) STR (b) AS4

(c) HCY

Figure D.7: One-dimensional projection PMF for all the ligands used in the PR set in the
simulations with AdaptivePELE-MSM with 200 steps per epoch.
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D.2. PMF plots for PR system Chapter D. PMF plots for AdaptivePELE-MSM

(a) 356 (b) 400

Figure D.8: One-dimensional projection PMF for all the ligands used in the PR set in the
simulations with AdaptivePELE-MSM with 200 steps per epoch.

142



D.2. PMF plots for PR system Chapter D. PMF plots for AdaptivePELE-MSM

(a) STR (b) AS4

(c) HCY

Figure D.9: One-dimensional projection PMF for all the ligands used in the PR set in the
simulations with AdaptivePELE-MSM with 400 steps per epoch.
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D.2. PMF plots for PR system Chapter D. PMF plots for AdaptivePELE-MSM

(a) 356 (b) 400

Figure D.10: One-dimensional projection PMF for all the ligands used in the PR set in the
simulations with AdaptivePELE-MSM with 400 steps per epoch.
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D.2. PMF plots for PR system Chapter D. PMF plots for AdaptivePELE-MSM

(a) STR (b) AS4

(c) HCY

Figure D.11: One-dimensional projection PMF for all the ligands used in the PR set in the
simulations with AdaptivePELE-MSM with 600 steps per epoch.
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D.2. PMF plots for PR system Chapter D. PMF plots for AdaptivePELE-MSM

(a) 356 (b) 400

Figure D.12: One-dimensional projection PMF for all the ligands used in the PR set in the
simulations with AdaptivePELE-MSM with 600 steps per epoch.
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D.2. PMF plots for PR system Chapter D. PMF plots for AdaptivePELE-MSM

(a) STR (b) AS4

(c) HCY

Figure D.13: One-dimensional projection PMF for all the ligands used in the PR set in the
simulations with AdaptivePELE-MSM with 1000 steps per epoch.
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D.2. PMF plots for PR system Chapter D. PMF plots for AdaptivePELE-MSM

(a) 356 (b) 400

Figure D.14: One-dimensional projection PMF for all the ligands used in the PR set in the
simulations with AdaptivePELE-MSM with 1000 steps per epoch.

148



Appendix E

Thesis summary

E.1 Thesis summary

The advances in computing power have motivated the hope that computational methods
can accelerate the pace of drug discovery pipelines. For this, fast, reliable and user-friendly
tools are required. One of the fields that has gotten more attention is the prediction of
binding affinities. Two main problems have been identified for such methods: insufficient
sampling and inaccurate models.

This thesis is focused on tackling the first problem. To this end, we present the develop-
ment of efficient methods for the estimation of protein-ligand binding free energies. We
have developed a protocol that combines enhanced sampling with more standard sim-
ulations methods to achieve higher efficiency. First, we run an exploratory enhanced
sampling simulation, starting from the bound conformation and partially biased towards
unbound poses. Then, we leverage the information gained from this short simulation to
run longer unbiased simulations to collect statistics.

Thanks to the modularity and automation that the protocol offers we were able to test
three different methods for the long simulations: PELE, molecular dynamics and Adap-
tivePELE. PELE and molecular dynamics showed similar results, although PELE used
less computational resources. Both seemed to work well with small protein-fragment sys-
tems or proteins with not very flexible binding sites. Both failed to accurately reproduce
the binding of a kinase, the Mitogen-activated protein kinase 1 (ERK2). On the other
hand, AdaptivePELE did not show a great improvement over PELE, with positive results
for the Urokinase-type plasminogen activator (URO) and a clear lack of sampling for the
Progesterone receptor (PR).

We demonstrated the importance of a well-designed suite of test systems for the devel-
opment of new methods. Through the use of a diverse benchmark of protein systems we
have established the cases in which the protocol is expected to give accurate results, and
which areas require further development. This benchmark consisted of four proteins, and
over 30 ligands, much larger than the test systems typically used in the development of
pathway-based free energy methods.
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E.2. Resum de la thesis Chapter E. Thesis summary

In summary, the methodology developed in this work can contribute to the drug discovery
process for a limited range of protein systems. For many others, we have observed that
regular unbiased simulations are not efficient enough and more sophisticated, enhanced
sampling methods are required.

E.2 Resum de la thesis

Els grans avenços en la capacitat de computació han motivat l’esperança que els mètodes
de simulacions per ordinador puguin accelerar el ritme de descobriment de nous fàrmacs.
Per a què això sigui possible, es necessiten eines ràpides, acurades i fàcils d’utilitzar. Un
dels problemes que han rebut més atenció és el de la predicció d’energies lliures d’unió
entre proteïna i lligand. Dos grans problemes han estat identificats per a aquests mètodes:
la falta de mostreig i les aproximacions dels models.

Aquesta tesi està enfocada a resoldre el primer problema. Per a això, presentem el de-
senvolupament de mètodes eficients per a l’estimació de d’energies lliures d’unió entre
proteïna i lligand. Hem desenvolupat un protocol que combina mètodes anomenats en-
hanced sampling amb simulacion clàssiques per a obtenir una major eficiència. Els mè-
todes d’enhanced sampling són una classe d’eines que apliquen algun tipus de pertorbació
externa al sistema que s’està estudiant per tal d’accelerar-ne el mostreig.

En el nostre protocol, primer correm una simulació exploratòria d’enhanced sampling,
començant per una mostra de la unió de la proteïna i el lligand. Aquesta simulació esta
parcialment esbiaixada cap a aquells estats del sistema on els dos components es troben
més separats. Després utilitzem la informació obtinguda d’aquesta primera simulació més
curta per a córrer una segona simulació més llarga, amb mètodes sense biaix per obtenir
una estadística fidedigna del sistema.

Gràcies a la modularitat i el grau d’automatització que la implementació del protocol
ofereix, hem pogut provar tres mètodes diferents per les simulacions llargues: PELE,
dinàmica molecular i AdaptivePELE. PELE i dinàmica molecular han mostrat resultats
similars, tot i que PELE utilitza menys recursos. Els dos han mostrat bons resultats en
l’estudi de sistemes de fragments o amb proteïnes amb llocs d’unió poc flexibles. Però,
els dos han fallat a l’hora de reproduir els resultats experimentals per a una quinasa, la
Mitogen-activated protein kinase 1 (ERK2). D’altra banda, AdaptivePELE no ha mostrat
una gran millora respecte a PELE, amb resultats positius per a la proteïna Urokinase-type
plasminogen activator (URO) i una clara falta de mostreig per al receptor de progesterona
(PR).

En aquest treball hem demostrat la importància d’establir un banc de proves equilibrat
durant el desenvolupament de nous mètodes. Mitjançant l’ús d’un banc de proves divers
hem pogut establir en quins casos es pot esperar que el protocol obtingui resultats acu-
rats, i quines àrees necessiten més desenvolupament. El banc de proves ha consistit de
quatre proteïnes i més de trenta lligands, molt més dels que comunament s’utilitzen en
el desenvolupament de mètodes per a la predicció d’energies d’unió mitjançant mètodes
basats en camins (pathway-based).
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E.2. Resum de la thesis Chapter E. Thesis summary

En resum, la metodologia desenvolupada durant aquesta tesi pot contribuir al procés de
recerca de nous fàrmacs per a certs tipus de sistemes de proteïnes. Per a la resta, hem
observat que els mètodes de simulació no esbiaixats no són prou eficients i tècniques més
sofisticades són necessàries.
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