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Abstract

Levitodynamics is a fast growing field that studies the levitation
and manipulation of micro- and nanoobjects, fuelled by both fun-
damental physics questions and technological applications. Due to
the isolated nature of trapped particles, levitated systems are highly
decoupled from the environment, and offer experimental possibilities
that are absent in clamped nanomechanical oscillators. In particular,
a central question in quantum physics is how the transition between
the classical and quantum world materializes, and levitated objects
represent a promising avenue to study this intermediate regime.

In the last years, most levitation experiments have been restricted
to optically trapped silica nanoparticles in vacuum, controlling the
particle’s position with intensity modulated laser beams. However,
the use of optical traps severely constrains the experiments that can
be performed, because few particle materials can withstand the optical
absorption and resulting heating in vacuum. This completely prevents
the use of objects with internal degrees of freedom, which—coupled to
mechanical variables—offer a clear path towards the study of quantum
phenomena at the macroscale.

In this thesis, we address these issues by considering other types
of trap and feedback schemes, achieving excellent control on the dy-
namics of optically active nanoparticles. With stochastic calculus,
simulations and experiments, we study the dynamics of trapped parti-
cles in different regimes, considering also a hybrid quadrupole-optical
trapping scheme. Then, using a Paul trap of our own design, we
demonstrate the trapping, interrogation and feedback cooling of a nan-
odiamond hosting a single NV~ center in vacuum, a clear candidate to
perform quantum physics experiments at the single spin level. Finally,
we discuss and implement an optimal controller to cool the center of
mass motion of an optically levitated nanoparticle. The feedback is
realized by exerting a Coulomb force on a charged particle with a pair
of electrodes, and thus requires no optics.



Resum

La levitodinamica és un camp de la fisica en rapida expansié que
estudia la levitacié i manipulacié de micro- i nano-objectes, empesa
per la possibilitat de solucionar trencaclosques de fisica fonamental i
de desenvolupar noves aplicacions tecnologiques. Gracies al gran ailla-
ment de les particules en levitacié, ’evoluci6 dels sistemes levitodina-
mics esta molt desacoplada del seu entorn. Per consegiient, permeten
fer experiments que no serien possibles en nanooscil-ladors mecanics
sobre substrat. En particular, una qiiestié central en fisica consisteix
en entendre com es produeix la transicié entre els mons classic i quan-
tic; els objectes en levitacié permeten estudiar aquest regim intermedi
de manera innovadora.

En els ultims anys, la majoria d’experiments de levitodinamica
s’han limitat a atrapar opticament particules de silice en el buit, tot
controlant la posici6 de la particula amb feixos laser modulats. Tot i
aixi, I'is de trampes optiques suposa un obstacle a 1’hora d’exportar
aquests experiments a régims més diversos perque, a baixes pressi-
ons, pocs materials sén capacos de suportar les altes temperatures
resultants de ’absorcié de llum laser. Aixo impedeix 1'as d’objectes
amb graus de llibertat interns, que —acoplats a variables mecaniques—
suposen un full de ruta clar per estudiar fenomens quantics a escala
macroscopica.

En aquesta tesi, adrecem aquestes qiiestions tot considerant altres
tipus de trampa i técniques de feedback, i assolim un control excel-
lent de la dinamica de nanoparticules opticament actives en levitacio.
Mitjangant calcul estocastic, simulacions i experiments, estudiem la
dinamica de les particules en régims diversos, adhuc considerant un
esquema hibrid de trampa de Paul-optica. A continuacié, utilitzant
una trampa de Paul, demostrem experimentalment ’atrapament, in-
terrogacié i feedback-cooling en el buit d’un nanodiamant que conté un
unic NV~ center, un clar candidat per a la realitzacié d’experiments de
fisica quantica amb un tnic spin. Finalment, estudiem i implementem
un controllador optim per a refredar el centre de massa d’una parti-
cula opticament levitada. El feedback es realitza exercint una forga de
Coulomb sobre una particula carregada positivament mitjangant un
parell d’electrodes, i per tant no requereix elements optics.
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Introduction

1.1 Accessing individual quantum systems

Quantum mechanics emerged at the beginning of the 20th century to
explain phenomena that collided with the traditional assumptions of clas-
sical mechanics and electromagnetism. Although it began as a completely
phenomenological set of postulates, it provided a framework to understand
black-body radiation [I], the photoelectric effect [2] and the spectral lines of
atomic hydrogen [3]. Thanks to the work of Heisenberg, Schrodinger, Dirac
and Von Neumann (among others), by 1935 it was an established and rigor-
ous theory, described by Hermitian operators on Hilbert spaces [4, 5] [, [7].

Since then, experimental control of quantum systems has been pursued
widely. Atomic physics helped provide a test bed for quantum mechanics,
studying the spectral lines of atomic ensembles and their interaction with
radiation. The advent of spectrally pure, tunable radiation sources [8] in
the 1960s, such as microwave oscillators and lasers, dramatically improved
the precision of these experiments.

Shortly after its inception, it was realized that quantum mechanics
should also apply to individual particles. If these particles were then cou-
pled to macroscopic systems, the predictions of the theory lead to extremely
bizarre consequences, as the the thought experiment of the cat that is dead
and alive at the same time perfectly exemplifies [9]. That caused great
distress to many physicists, among them Schrédinger, who wrote:

“We never experiment with just one electron or atom or (small)
molecule. In thought experiments, we sometimes assume that
we do; this invariably entails ridiculous consequences [...]” [10]

In spite of this, in the mid 1950s the seminal work of Wolfgang Paul, Hans
Dehmelt, et al. [? | made possible the first realizations of single particle

)



1. INTRODUCTION

traps. Although electrostatic trapping of charged particles is impossibleﬂ7
they recognized that particles could still be trapped in a saddle point of
a time-varying electric potential. The invention of ion traps constituted a
turning point in the history of physics. They offered a means to study and
test quantum mechanics with single constituents of matter, instead of with
ensembles.

The first single electron was trapped in 1973 by Wineland et al. [11]
using a Penning trap [12], and single ions followed seven years later [13], [14],
allowing the first studies of light-matter interaction at the single atom level.
Notorious examples include Doppler cooling of ion clouds [15, [16], in 1978,
and sideband cooling, first proposed in 1975 [I7] and attained 14 years later
by Diedrich et al. with a single "Hg™ ion [I8]. These advances allowed
physicists to work with single entities at the ground state, the first step
to address their quantum levels. This allowed the observation of quantum
jumps [19], of which Schrédinger had said 60 years before:

“If we are going to stick to this damned quantum-jumping, then I
regret that I ever had anything to do with quantum theory.” [20]

Around the same time, Ashkin proposed to use light as a trapping
mechanism for neutral particles. Using radiation pressure from a laser
beam, he was able to trap dielectric microparticles in liquid in 1970 [21].
In 1978, he proposed a method to stably trap, cool and manipulate sin-
gle atoms [22] that would inspire the first atom-trapping experiments of
1985 [23, 24), 25]. In parallel, Ashkin also obtained an optical trap created
with a single, tightly focused, laser beam [26]. This scheme is now known
as “optical tweezers”, and became a standard technique in biophysics and
biology [27, 28] 29] to manipulate and position micro-objects in liquid en-
vironments.

1.2 Quantum systems at a bigger scale

Outside of the life sciences, the trapping of large dielectric particles ini-
tially attracted little interest. This course of action would remain dormant
until the turn of the century when, with microscopic systems, the limits of
quantum mechanics started to be pushed towards larger masses.

One of the major motivations behind the research in small physical
systems is of a fundamental nature. For instance, in quantum mechanics
we seek to understand the evolution of the wave function, which gener-

'Due to the electrostatic potential being harmonic and satisfying the maximum prin-
ciple.



1.2. Quantum systems at a bigger scale

ally evolves deterministicallyﬂ Yet, actual measurements always find the
physical system in a definite state. To account for this discrepancy, the orig-
inal formulation of quantum mechanics divided the world into a quantum
system, evolving unitarily with the Schréodinger equation, and measuring
devices, that projected this wave into a single of its possible states. This
division, however, is arbitrary. In the words of John S. Bell:

“The concepts system, apparatus, environment, immediately im-
ply an artificial division of the world, and an intention to neglect,
or take only schematic account of, the interaction across the
split. [...] The first charge against measurement, in the funda-
mental axioms of quantum mechanics, is that it anchors there
the shifty split of the world into system and apparatus. A second
charge is that the word comes loaded with meaning from every-
day life, meaning which is entirely inappropriate in the quantum
context.” [30]

Another important question that is still being explored is how the tran-
sition between the classical and quantum world materializes. Thanks to
the experiments with single ions and atoms, it is now agreed upon that
the microscopic world obeys the laws of quantum mechanics. At the same
time, classical physics describes extremely well the evolution of systems big
enough to be visible. Thus, a natural question to ask is what theory should
be used in the intermediate regime. When is a system big enough to be
macroscopic? Does quantum mechanics extend to such systems as well?
These questions can be studied by working with devices that, although
small, are made of millions of atoms.

The study of small systems also opens up the possibility to develop
new technologies. Richard Feynman argued in his 1960 lecture “There’s
plenty of room at the bottom” [31] that there is a niche of opportunities
in the miniaturization and manipulation of the micro world. At the time
the lecture went largely unnoticed, but today it is cited by articles, grants
and proposalsﬂ The reason behind this recent interest is the emergence
of nanotechnology, that has brought about the possibility to create and
manipulate structures barely visible with an optical microscope, yet much
bigger than single molecules. A prime example is the transistor, which
in terms of impact is one of the most important inventions of the 20th
century [32] 33].

The same fabrication techniques can also be used to create miniatur-
ized optical cavities [34], mechanical oscillators [34], or superconducting

2 According to the Schrodinger equation as a linear superposition of different states.
3This manuscript is no different.



1. INTRODUCTION

circuits [35], which can be used in technological applications but also for
fundamental physics research. The latter reached a turning point in 2010,
when [microelectromechanical systems| (MEMS|) reached the ground state of
a macroscopic oscillator for the first time [36, 37, 38], indicating that quan-
tum mechanics might be a good representation of macroscopic reality. This
opened up possibilities to study quantum mechanics at larger scales than
was possible with single ions [39, [40] 411, [42].

These ground state cooling experiments [36] [37, [38] are excellent ex-
amples of electro- and optomechanical systems, where an electromagnetic
oscillator interacts with a mechanical oscillator. Electro- and optomechan-
ical systems have been very productive in the last years, in part due to the
large range of different effects that can be understood with the same sim-
ple formalism [34]|ﬂ The role of the mechanical oscillator can be taken by
devices as diverse as membrane resonators [43], cantilevers [36] or carbon
nanotubes [44], [45].

As of today, the most well-known optomechanical system is the
fterferometer Gravitational-Wave Observatory] (LIGO)), a large-scale exper-
iment made with several km long Fabry-Perot interferometers. The [LIGO|
entered the spotlight of modern research after its conceptual fathers were
awarded the Nobel prize in 2017, following the detection of a black hole
merger [46]. One year later, Arthur Ashkin was also recognized with a No-
bel prize for his invention of the optical tweezers [26, 27, 28, [47]. These two
fields, optomechanics and optical tweezers, might seem completely disparate
at first sight. However, the motion of a trapped particle in vacuum can be
often modelled as a harmonic oscillator. Therefore, levitated particles of-
fer an alternative platform to realize mechanical oscillators with very low
mechanical dissipation [48], and may be used in experiments on quantum
control with yet larger particles.

The seminal work of Ashkin already demonstrated the levitation of a
microparticle in high vacuum in 1976 [49]. One year later [50], he also
reported on feedback stabilization of its |center of mass| (CoM)). After this
pioneering works, the interest in levitating particles in vacuum remained
dormant for years, but it was revived 10 years ago with the proposals to
bring an optically levitated nanoparticle to the ground state [51], 52, [53].

1.3 Levitation of micro and nanoobjects

In 2010, a study of the transition between the ballistic and Brownian
regimes [54] resumed the experimentation of levitated particles in vacuum.

“In terms of relevance, the optomechanical Hamiltonian can be compared to the
Jaynes-Cummings Hamiltonian.

8



1.3. Levitation of micro and nanoobjects

Since then, both theoretical and experimental work with levitated particles
has grown extensively.

At high vacuum, levitated particles have single mechanical modes with
Q factors exceeding 10® [55], close to state-of-the-art [56, 57]. Thus,
they offer a promising avenue to study quantum mechanics in domains that
are particularly challenging for systems on a substrate. They are unique
in the possibility to perform free fall experiments, studies of the particle’s
rotation, and to engineer the trapping potentials dynamically. Furthermore,
concepts such as wave-matter interference [40, 58], the generation of cat
states [52] or the validity of collapse models [58, [59] are particularly suited to
experiments with levitated objects. However, investigating these questions
requires precise quantum control. For levitated particles, that still remains
in the future.

A path to achieve such control is the use of particles with internal degrees
of freedom. For instance, electron spins in the crystal lattice of a levitated
particle can potentially be coupled to the [CoM]| or to other mechanical de-
grees of freedom of the particle. If these spins can be accessed, their state
could be coherently transferred to the mechanical variables, leading to the
realization of superposition states at the macroscale.

Yet, at the beginning of this work this possibility was facing difficulties.
Because optical tweezers are very convenient to deployEL most recent levi-
tation experiments in vacuum made use of optically trapped nanoparticles.
Still, the absence of an efficient heat dissipation mechanism restricts optical
trapping in vacuum to just a few nanoparticle materialsﬁ [60], preventing
the use of objects with internal degrees of freedom—such as solid-state emit-
ters or spins—and also of other materials with large responses to light. The
reason for this is that at low pressures black body radiation becomes the
major contributor to internal energy loss; for many materials its rate is too
slow and when the bulk temperature increases the particle degrades.

This is the case of optically trapped nanodiamonds, whose levitation
faces issues already at ~ 50 mbar [61, 62]. Nanodiamonds are an extremely
interesting material to levitate, since they host many color center defects
with atom-like properties. Among these defects, the most well known is
the nitrogen vacancy] (NV]) center, a defect with an electron spin and very
convenient featuresﬂ Unfortunately, due to the mentioned difficulties, their
levitation in vacuum has remained largely unexplored.

A different strategy to bring nanodiamonds to vacuum is the use of ion
traps, which avoid heat by its use of electric fields. The approach is com-

5Technically easy setups and good nanoparticle position signals.

5The most common of them being SiOa.

"Electron transitions in the visible, hyperfine transitions at an easy to work with
frequency (2.87 GHz), and the possibility to initialize and read-out the spin state optically.

9



1. INTRODUCTION

plementary to optical tweezers, because the collection lens—mnecessary for
motion or fluorescence detection of the particle—can also be used to create
an optical trap if necessary. Since 2010, Paul traps have been used exten-
sively to levitate nanoparticles. A few examples of this are the experiments
of A. Kuhlicke with [NV]centers at ambient pressure [63], P. Nagornykh with
graphene microflakes [64], I. Alda with a surface trap [65], or J. Millen, with
a Paul trap in a Fabry-Perot cavity [66].

[CoM] cooling has also been pursued extensively in levitated systems
since, as previously discussed, the first step in many proposed quantum
experiments is bringing the system into the ground state of the motion.
Ongoing efforts can be divided in two directions: cavity cooling [67), 68, [69]
and feedback cooling [55] [70]. Up to this time, [parametric feedback cooling]
(PFC) [55] is still the standard technique for motion control of optically
levitated nanoparticles [71]. Yet, because is inherently nonlinear, it
becomes inefficient at small oscillation amplitudes, leading to difficulties
to decrease further the energy [71]. Likewise, laser light, which is the
common mechanism to exert forces onto the levitated particles, is a limiting
factor when working with particles that degrade at high temperatures.

Control theory, and optimal control in particular, may offer new strate-
gies to improve the cooling of levitated objects. Furthermore, the use of
electric fields presents a laser-free alternative to apply forces on trapped
particles, that can be easily implemented with standard electronic instru-
ments. By taking advance of the compensation electrodes, electric feedback
cooling could be implemented in Paul traps and optical tweezers experi-
ments in a completely analogous way.

At the beginning of this work, the use of linear, optimal control feedback
schemes to cool nanoparticles had remained unexplored. Similarly, no single
had yet been detected in a levitated nanodiamond in vacuum. Its
levitation, control and interrogation would mark an important milestone,
since this step is a fundamental requirement to realize single spin control
and coupling to mechanical variables.

10



1.4. Outline of the thesis

1.4 Outline of the thesis

In this thesis, we describe our work on the manipulation of trapped
particles with internal degrees of freedom in vacuum. To avoid heating
issues, we consider other types of trap beyond the common optical tweezers,
and implement a novel feedback scheme, achieving excellent control on the
dynamics of the trapped nanoparticle.

Our results offer new possibilities to work with truly isolated macro-
scopic systems at the quantum level, and do so in two main directions:
firstly, by demonstrating and proposing new ways to trap and interact with
internal energy levels, even in the case of particles hosting a single emitter;
secondly, by realizing a novel, easy to implement and very efficient feed-
back technique that, by relying on electric fields, can be implemented with
minimal optical requirements.

The thesis is divided in five main chapters, followed by a short Outlook
and a set of Annexes. The latter contains many details that are either
common in “Levitodynamics” or physics in general (in which case there is
no need to force the reader to go through them) or out of the scope of the
chapters. In any case, when it is required, references to specific parts of the
Annexes are included in the main text.

An overview of the chapters is detailed hereunder:

1. Chapter 1: Introduction.

2. Chapter 2: Fundamentals of particle trapping and details for two
types of particle traps: the Paul trap and the optical tweezers. For
both of them, the equations of motion are derived and solved, taking
into account Brownian effects due to the interaction of the particle
with gas molecules. Details of the experimental realization of the
traps are also included.

3. Chapter 3: Study of the dynamics of the[CoM|of a Brownian particle
levitated in a Paul trap, mostly focusing on the overdamped regime.
It includes a comparison of the theory with numerical simulations and
experimental data from the Paul trap.

4. Chapter 4: Realization of a hybrid quadrupole-optical trap. The
dynamics of the trapped particles are studied both theoretically and
experimentally, and include the trapping of gold nanoparticles.

5. Chapter 5: Demonstration of the trapping, interrogation and feed-
back cooling of a nanodiamond hosting a single NV~ center in vac-
uum, a clear candidate to perform quantum physics experiments at
the single spin level.

11
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6. Chapter 6: implementation and results of a [linear-quadratic regu-|
to cool the [CoM| motion of an optically levitated nanoparticle.
The feedback, realized with an [FPGA] exerts a Coulomb force on
a charged particle with a pair of electrodes. The cooling technique
achieves lower [CoM]| temperatures and shorter transients than previ-
ous optical schemes.

7. Chapter 7: Outlook.
8. Annexes:
a) A review of stochastic calculus, the formalism required to per-

form calculations with dynamic stochastic processes.

b) A review of the harmonic oscillator model. Notes on force sensing
and accelerometers are also included.

¢) Short review of optics, to be used as reference for the concepts
mentioned in the main text.

d) Common techniques for trapped particles, including signal cali-
bration and calculations of the temperature/energy.

e) Details of the calculations with the WKB method in chapter 3.

f) Fundamentals of control theory. To be used as a reference for
chapter 6.



Nanoparticle levitation

In this chapter, the fundamentals of particle trapping are in-
troduced for two types of particle traps: the Paul trap and
the optical tweezers. For both of them, the equations of mo-
tion are derived and solved, taking into account Brownian ef-
fects due to the interaction of the particle with gas molecules.
We also include details of the experimental realization of the
traps.

2.1 Introduction

A particle trap is a combination of force fields that capture and confine
particles of diverse nature. If left to freely evolve, the dynamics of a small
particle will constantly be perturbed by external forces, such as gravity,
collisions with molecules, or electrostatic fields, and those forces need to
be counteracted by the trap. There are several ways to accomplish this,
arising from different physical principles and resulting in a large variability
of features among different designs. For instance, some traps can control
and change the position of the particles. Others can be adapted to work at
different environments: particles can be trapped in liquid, in a gas or even
made to “levitate” in vacuum, often in an environment that remains highly
isolated from external influences.

Particle traps have a large number of scientific applications [12] 29, [72]
73, [74], among them mass spectrometry, basic physics research or—in the
case of atoms and ions—the control of quantum states. Different types of
trap exist [26] [75] [76], but in this work only two have been used and studied

13



2. NANOPARTICLE LEVITATION

in detail: the Paul trap, a member of the family of quadrupole ion traps—
used to trap charged particles—, and the optical tweezers, a particular type
of dipole trap—used for neutral or dielectric particles.

In a particle trap, the effect of the trapping fields results in “stable” trap-
pingﬂ This can be restated in a more precise way if one uses mathematical
terms: in a particle trap, the trap center is a critical point of the dynamical
system defined by the |center of mass| (CoM]) equations of motionEl, and this
critical point is stabld’}

The crux of the matter is then the following: how does one engineer a
field that leads to stable trapping? Restraining ourselves to the domain of
classical physics, ideally a trap should satisfy the following conditions:

1. As stated before, the point particle should be kept in a critical stable
point. Therefore, in the case of a perturbation, the trap would push
the particle back to the center.

2. The force should be created by a conservative field, resulting in a
well-defined energy.

3. If possible, the potential of the field should be quadratic in every axis.
In this case, the equation of motion becomes linear.

The last condition is not strictly necessary, but it vastly simplifies the study
of the system. A quadratic trap potential takes the expression

71{:,;372 k:yy2 k22

(bO(x?yv Z) - 9 92 92 ) (21)

where k; > 0. ®o(x,y, z) will then have a stable critical point at (z,y, z) =
(0,0,0), where we would like to load our particle. From Newton’s second
law, this would result in the equation of motion of a harmonic oscillator

(see [Annex B|). As we shall see in the following sections, however, these
conditions are not always satisfied.

LOtherwise it cannot be called a trap.

2A 3-dimensional system with z, y and z as parameters.

3In other words, the eigenvalues of the differential of the linearised system around the
critical point are all negative.

14



2.2. Quadrupole ion traps

2.2 Quadrupole ion traps

A quadrupole trap is a device that uses electric fields to trap charged
particles. Whether the particle is an electron, an ion or a nanoparticle with
a net charge, the functioning principle is the same: the charged particle feels
a force from an electromagnetic field following Lorentz’s law. Hence, the
particle’s [CoM] equations of motion can be obtained by solving Newton’s
second law.

However, creating a charged particle trap is not straightforward. In
electrostatics in vacuum, the electric potential satisfies Laplace’s equation

AD =0 (2.2)

inside its domain. Functions that satisfy Laplace’s equation are known as
harmonic functions, and they obey the following

Theorem 1 (Maximum principle). Let f be a function such that Af =0 on
some domain Q0 (such f is known as a harmonic function). Then, either f
is constant or it does not attain a mazimum (minimum) within Q. Any local
maximum (minimum) will be found on the boundary 02, and any critical
point inside  will be a saddle point.

In other words, any potential containing a maximum or a minimum (and
therefore, a locally stable critical point) will not be a harmonic function. For
instance, the previously introduced potential, ®¢(z,y, z), can’t be harmonic
since

AQy(z,y, 2) = kg + ky + k. > 0. (2.3)

The maximum principle goes beyond quadratic potentials, however. And
unfortunately, since electrostatic potentials are always harmonic functions,
a local minimum is impossible to achieve, whether the potential is locally
quadratic, quartic or of higher degree.

At this point, creating a trap for charged particles would appear to
be a lost cause. There is a workaround, nevertheless, if one relaxes the
assumptions a little. What is needed to “trap” a particle is not necessarily
a minimum, but rather a stable (i.e., bounded) orbit of the equations of
motion. Wolfgang Paul was the first to design a device that was able to
keep charged particles in “dynamic confinement”, and for his insight (and
experimental realizations) he was awarded the Nobel prize in 198@

The Paul trap uses electrodes in a quadrupole disposition to create an
electric potential with a local saddle point. A particle in this saddle (or

4That’s also why a family of ion traps are known as Paul traps.
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2. NANOPARTICLE LEVITATION
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Figure 2.1: Quadrupole ion trap scheme: sketch of a quadrupole ion trap
with a particle of positive charge (dark red). The electric field E (black arrows) is
generated by a quadrupole of endcaps. The polarity of the endcaps will oscillate
between positive and negative for every AC cycle.

hyperbolic) critical point will be unstably trapped, since any perturbation
will eject the particle along the unstable manifold. However, the equation
of motion has some stable solutions when the static boundary conditions
for the electric potential are replaced by oscillating boundary conditions,
V(t) = A-cos(wt). Intuitively, the integral curves around this critical point
will oscillate and alternate between being attractive and being repulsive.

2.2.1 Quadrupole ion trap equations

The ideal Paul trap with rotational symmetry creates a potential of the
form

Up + W, t |12
@(LIZ,y,Z) = OTOQCOSW(2Z2 - [L‘2 - y2)7 d= T?O + Z(%’ (24)

where zp and 7y are the distances from the center to the inner (upper and
lower) and ring end caps respectivelyﬂ (see Fig.[2.2)). For a particle of charge

®Notice that, in general, we may consider DC and AC terms.
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2.2. Quadrupole ion traps

Figure 2.2: Ring Paul trap: sketch of a Paul trap with rotational symmetry. The
parameters r and zo are the distance from the center to the ring and upper/lower
caps, respectively.

() and mass m this potential gives rise to the equations of motiorﬁ

z— %(U@ + Vo coswt)x =0, (2.5)
. Q
i — W(Ug + Vo coswt)y = 0, (2.6)
., 2Q
2+ W(UO + Vo coswt)z = 0. (2.7)

By an appropriate change of variables, with

Ay = Ay = 7_4QU0 a, = 78QU0 (2.8)
Y md2w?’ 2 md2w?’ ’
2QW —4QV w
e == 53 97 5o 7':5157 (2.9)

these equations can be transformed to the classical Mathieu equations

t; + (a; — 2q; cos 27)u; = 0. (2.10)

These (one for every axis) form a linear set of fordinary differential equations|
(ODEs|), non autonomous but involving only periodic functions on ¢. Thus,
according to Floquet’s theorem, there exists a basis of the space of solutions
consisting on functions of the form

wi () = e'To(r) wa(r) = e HP(—7), (2.11)

5This is just a trivial application of Newton’s second law and Lorentz force.
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2. NANOPARTICLE LEVITATION

Figure 2.3: Mathieu stability diagram: stability diagram for Mathieu’s equa-
tion for axial direction z (shaded regions are stable, white unstable).

where ¢ is a w-periodic function and the Lyapunov characteristic exponent
is p = a+if, with a(a,q), B(a,q) € R. Therefore, w(z) has the pseudo-
periodic propert

w(z +7) = e'w(z). (2.12)

The stability of the solutions depends on the values a and 3. Clearly, if a #
0, either wi(7) or wa(7) will increase exponentially, and the general solution
(a linear combination of both) will be unstable. As per 3, integer values
lead to degeneracy of eigenvalues, and thus to an independent solution that
grows linearly with 7, hence unstable. For this reason, 5(a,q) = n € N
defines the boundaries between stable and unstable regions. The common
operating regime of Paul traps can be seen in figure 2.4} in the case of
(linear) damping, a similar change of variables allows us to recover the
original Mathieu equations, with an identical region of stability, though
enlarged and slightly shifted.

The stable solutions of the Mathieu equation can be expressed in the
form of a Fourier series. A specially interesting case is the so called adiabatic
approximation. In this regime, the particle motion averaged over the high

“For a more complete and in-depth treatment of this, we refer to the “Charged particle
traps” book. For a detailed description of the Mathieu functions, see the NIST webpage
http://dlmf .nist.gov/|
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9.

Figure 2.4: Paul trap stability diagram: z axis (blue) and r axis (light yellow).
The stability region of the equation of motion is the intersection (marked in black)
of the stability diagrams in the r and z directions (see Fig. , because the
particle needs to be stable in every direction. The limit of the first stability region
for a = 0 is found at ¢ ~ 0.9080463.

frequency oscillation is governed by an effective potential energy

Q*EZ(r)

U.ea =
off Amw?

(2.13)

For this approximation to be valid in the Paul trap, it is required that
a,q < 1. Then, 5, which can be exactly calculated as a continued fraction
in terms of a and ¢ can be approximatedlﬂ as

2
B a+%. (2.14)

As a rule of thumb, this is valid as long as ¢, 4 < 0.2, ¢, < 0.4. For values
bigger than this, or for more accuracy, the fourth order approximation

(a— 1) (5a + 7)g*
b \/ 2a—-1)2—¢2 32(a—1)3(a—4) (2.15)

or more sophisticated methods [77] can be used. If a and ¢ are small,
then the coefficients of the Fourier expansion become rapidly smaller with
increasing n, and the particle motion simplifies to

ui(t) =G (1 - (‘gcoswt> cos Q;t, (2.16)

8This is known as the Dehmelt’s approximation.
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2. NANOPARTICLE LEVITATION

with Q = %" known as the secular or macromotion frequency; therefore,
because we are working in a stability region confined by 3, = 1, the secular
motion will always satisfy 2 < 5. Since it is assumed that § < 1, the
secular motion is slow compared with the superimposed micromotion (or
driving frequency) w. For the special case of a = 0 (i.e., no DC field applied

in the Paul trap electrodes)

LW 2% w QW QN\@QV():ZQ
T o2 md2w? 2v2  \2md2w’ T md2w Y
(2.17)

where Dehmelt’s approximation [12] has been used. Thus, from egs.
it is seen that increasing the driving frequency leads to a decrease of the
secular motion. To increaseﬂ ), the options would be either to increase the
voltage T Vp, get a higher charge to mass ratio T Q/m, decrease the trap
frequency | w or make the trap smaller. In any case, for the trap to be
stable we will need to always to keep track of the ¢, parameter, making
sure that ¢, < 0.908.

As a final note, it should be stressed that the regime of secular oscilla-
tions is only possible in vacuum. We experimentally observe that, at ambi-
ent pressure, damping due to air drag doesn’t allow the particle to oscillate
in this effective potential, although the trap stability region is enlarged [78].
A rigorous treatment of this case can be found at section “Stochastic dy]

[namics in a Paul trap[.

2.2.2 Design and simulation of the Paul trap

The first step in the design of a Paul trap is engineering a saddle electric
potential (a hyperbolic paraboloid). Paul’s original solution achieved this
by using hyperboloid shaped electrodes: an external one-sheet hyperboloid
and an internal two-sheet hyperboloid (one of which is grounded, usually
the external one, and the other connected to an AC source). This leads
to an exactly quadratic potential with a saddle point in the middlﬂ, and
therefore to linear equations of motion. However, it was soon realized that
this geometry could be considerably modified with negligible changes in the
particle dynamics, since the equations can be linearised close to the critical
point by taking only the first few terms of the power series expansion of the
potential. This led to some of today’s most used ion trap geometries:

9There are several reasons why this might be desirable: to avoid low frequency noise,
to get higher Q = %, to better resolve motional frequencies or to have deeper effective
potentials.

'0As can be seen by solving the partial differential equation with the electrodes as
boundary conditions; see Ref. [I2].
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Figure 2.5: Trap geometries: (a) Perfectly hyperbolic electrodes. (b) Classic
Paul trap. (c¢) Hyperbolic linear trap; confinement in the axial dimension is pro-
vided by the addition of electrodes held at a positive DC voltage. (d-e) Different
geometries of (topologically) ring traps and (f-g-h) topologically linear traps. Re-
produced from Brownnutt et. al [79] with permission from the authors, Copyright©
2011 by American Physical Society. All rights reserved.

e The end-cap trap, made with concentric cylinders with revolution sym-
metry. Because it has a single point with zero field (the center of
symmetry), it is used to trap single ions or particles.

e The linear trap, with its axial symmetry, designed for the trapping of
several particles at once, and usually with some kind of lateral caps
for axial confinement.

e Surface or planar designs, suited for on-chip or integrated traps.

Pictures of these designs can be found in Figure

In this thesis we have mainly worked with an end-cap Paul trap (por-
trayed in Fig. , which we have designed, simulated, built and incor-
porated into the experimental setup. We have chosen this design because
it offers a high level of confinement when compared to linear traps (which
have a weak axial potential) while allowing for excellent optical access to
the trapped particle, due to a largely free solid angle on the radial direction.
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2. NANOPARTICLE LEVITATION

Figure 2.6: Paul trap design: (a) Artistic representation of our end-cap Paul
trap design. The inner rods can be observed at the center of the revolution axis.
The white rectangle at the middle of the picture signals the region that is simulated

in Fig.

To simulate the Paul trap field'!] several steps have been carried out:

1. We chose the trap geometry, given the experiment constraints. As
stated, we are interested in working with single trapped particles with
internal degrees of freedom. For these needs the end-cap trap was the
best option.

2. We defined Laplace’s equation with the chosen geometry as the bound-
ary conditions. One should always try to exploit the symmetries of
the problem, since every continuous symmetry transforms a n dimen-
sional problem to a n — 1 dimensional problem, which will be less
computationally intensive. For 3D or revolution symmetry problems,
such as the end-cap Paul trap, the finite element method (FEM) is
probably the best option, taking special care to use a finer mesh close
to the trapping regiorﬂ

HThe procedure is general enough to be applied in any quadrupole ion trap design.
12For planar traps, the NIST group has a very efficient Python code at GitHub. See
https://github.com/nist-ionstorage/electrode.
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2.2. Quadrupole ion traps

3. For each electrode, we simulated the electric potential inside the do-
main by setting the voltage in that electrode (i.e., the boundary condi-
tions of V') to 1 and the rest to zero. By the linearity of the equation,
a linear combination of these solutions will satisfy any set of boundary
conditions as long as the voltage is constant at every electrode, and
will therefore be a solution of the complete signal. If

AVi(z) =0 z€Q (2.18)

Vi=1l 2€0Q, Vi=0 0Qy '
and

AVi(z) =0 z2€Q (2.19)

Vj:l 1‘689]‘, VjIO an;,gj

then, U(z) = a- Vi(z) + b - Vj(z) will satisfy

AU(x)=0 z€f
U(I‘) =a x€ 0, U(l‘) =b xe€ 8Qj, U(I‘) =0 89]97&1',]‘
(2.20)

4. We tested a wide range of problem parameters. As it has been seen,
Uett(r) oc E2(r), so a good figure of merit is obtaining Ueg(r) as close
to a paraboloid as possible.

5. In general, once the design is final, the electric potential at any time
can be obtained (due to the aforementioned linearity) by multiplying
with the appropriate cosine factor.

We have performed FEM simulations of the end-cap trap in COMSOL
and compared the solution to the linear case in MATLAB. The final de-
sign is made of two inner steel rods (1 mm in diameter), connected to the
high voltage driving, and two outer steel cylinders that are grounded; the
inner and outer parts are separated by a ceramic MACORE tube. The
two assembled steel electrodes are separated by 1.4 mm and mounted on
a MACOR holder, which in turn is screwed over a three axis piezoelectric
stagﬂ Fig. shows a simulation of the trap design at the region marked
with a rectangle in Fig. and Fig. a picture of the trap inside the
vacuum chamber.

BTrademark for a machinable glass-ceramic, developed and sold by Corning Inc.
1T acknowledge the help of ICFO’s mechanical workshop, and especially of Xavi, in
building the trap.
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Figure 2.7: Paul trap simulation: (a) FEM simulation of the electric potential at
the trapping region (see Fig. for reference). The inner rod boundary condition
is set to 1 V and the outer cylinder is set to 0 V. The FEM simulation has been
performed in COMSOL and imported to MATLAB for analysis. (b) Comparison of
the electric potential along the two main directions 7 and z with a purely quadratic
potential. At the center of the trap, where the particle is confined, there is barely
any difference between the two.
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2.2. Quadrupole ion traps

Figure 2.8: Picture of the vacuum chamber: photography of the vacuum cham-
ber, showing the Paul trap in a white ceramic holder with its electric connections.

On the left (objective] (OBJ])) and right (collection lens) the optics components can

be seen. On the upper left part of the chamber, below the trap, three white cables
control the position of the piezoelectric stages.

Although in principle the design has perfect revolution symmetry around
its axis center, when the trap is realized slight mechanical misalignments
or differences in the assembly may lead to different secular frequencies in
the radial directions of a trapped particle. However, in our experiment we
haven’t accessed pressures that are low enough to differentiate these two
frequencies in the measured (since, at low pressures, the resonance
peaks are thinner and it is easier to tell them apart). Inwe discuss
an alternative design of the trap with cuts in the steel jackets, resulting in
different effective geometrical factors. With this change in the geometry, we
induce different secular frequencies and try to perform parametric feedback
cooling.
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2. NANOPARTICLE LEVITATION

2.3 Optical dipole traps

Optical dipole traps rely on the electric dipole interaction with far red-
detuned light to trap neutral particles in a light field, such as dielectric micro
and nanoparticles or atoms. The possibility of trapping neutral particles
with this force was first considered by Letokhov [80], who suggested that
atoms might be one-dimensionally confined at the nodes or antinodes of a
standing wave tuned far below or above the atomic transition frequency.
Later, A. Ashkin, who had already used the radiation pressure to trap
microparticles in 1970 [21] and pioneered the field of atom trapping [24} 25],
demonstrated the trapping of micron-sized particles in a single beam laser
light with the combined action of radiation pressure and the dipole force [26].
That was the first reported use of a single-beam gradient force trap, the
modern optical tweezers.

Optical tweezers are therefore a particular implementation of optical
dipole traps. They are scientific instruments that use a single, highly focused
laser beam to provide an attractive (or repulsive) force in 3 dimensions which
depends on the relative refractive index between particle and surrounding
medium. They are able to trap and manipulate small particles, whose size is
in the range of some hundreds of nanometers to microns, including dielectric
and absorbing particles, and have been particularly successful in studying
a variety of biological systems [29].

In the most general case, the optical force acting on a rigid object is de-
scribed by integrating Maxwell’s stress tensor over a surface enclosing the
object [8I]. The derivation of Maxwell’s stress tensor requires the knowl-
edge of the total (incident and scattered) vectorial electromagnetic field on
the integration surface, and may become very complicated for arbitrarily
shaped objects. In the following section we will derive the optical force in
a simplified scenario.

2.3.1 Optical dipole trap equations

To see how a dielectric particle can be trapped with light, let us focus
on the Rayleigh regime [81]: this means that a fundamental assumption
we make is that the particle is “significantly” smaller than the wavelength
of the trapping ligh@ which we assume is monochromatic. Nevertheless,
trapping can occur when the particle is of comparable size or even signifi-
cantly larger than the laser wavelength. For a detailed description of these
other regimes, see Volpe et al. [82].

5Here “significantly” is not well defined, but we can assume that the particle diameter
is ~ A/10 or smaller.
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2.3. Optical dipole traps

According to the Lorentz formula, a point particle with charge @ in the
presence of an electromagnetic field will experience the force

F:Q(E+(E><B>, (2.21)

where variables in bold represent 3-dimensional vectors x = (z,y,2). A
generic dielectric particle may not have a net charge but, since we are in
the Rayleigh regime by assumption, we may approximate the particle by a
dipole. Then, the previous expression can be expanded as

d(x; —x

7( ! 2) X B)

F=Q (E(xl) - Bl +

~Q (E(Xl) + ((x1 —x2) - V)E - E(x1) + dixi —x2) B>

dt

d(X1 — Xg) )

———=—=xB
dt x ’

where in the second equality we used a Taylor expansion of order 1. We
now rewrite ([2.22)) in terms of the electric dipole moment,

p=Qd=Q(x1 —x2). (2.23)

We also assume the particle response is linear, p = aE, where « is the
particle polarizability in Vacuum[l;gl

~Q((ba—x) VE+ (2.22)

2
n®—1
o= 47reoa3

(2.24)

and, in the last expression, a is the particle’s radius and n its refractive
index. Thus we obtain

d
F:(p~V)E+d—It)><B
—a (E-V)E+C$><B]. (2.25)

Finally, we apply the vector calculus identity (E-V)E =V (%E2) —E x
(V x E) and Faraday’s law, V x E = —%—?. Thus, equation ([2.25)) becomes

1 E
F=o QVE2—E><(V><E)+C(1R><B}
1, dB\ dE
—O[_§VE _EX(_dt>+thB:|
oltvpz 4 (E x B)} (2.26)
2 dt ' '

'The expression varies slightly when the particle is immersed in a medium with re-
fractive index different than one [82].
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The right hand part of this last equation is proportional to the Poynting
vector, and since the power of the laser is constant when sampling over fre-
quencies much smaller than the frequency of the laser’s light, the derivative
of this term averages to zero and the force can be written as

1
F = 5oNE?. (2.27)

This is known as the optical gradient force, and it shows that, at the end
of the day, trapping a dielectric particle is just a matter of engineering the
correct optical potential. However, in reality the laser beam also inflicts
another type of force, known as the scattering force, which works against
the gradient force in the axial direction of the trap. The reason why the
scattering force hasn’t appeared in the previous calculations is precisely due
to the ad-hoc nature of the derivation, which is only meant as a means to
gain some intuition. More rigorous derivations of the dipole force, which are
out of the scope of the thesis, can be found in many excellent reviews [81182].
For now, it is enough to know that the dipole force can be written as the
sum of two terms,

Fopt = Fgrad + Fsca‘w (2'28)
1
Fgrad = §O/VE2a (229)
o
Fscat = a//(JJ/J/O<S> - Z?V X (E X E*)7 (230)

where o = o/ + id”, w is the field angular frequency, o is the magnetic
permeability and (S) is the Poynting vector.

In practice, the scattering force acts as a force in the direction of the
laser beam, resulting in a particle equilibrium position that is displaced
slightly downstream of the intensity maximum. For low jnumerical aperture]
lenses, the scattering force is larger than the gradient force, and as a
result they are unable to trap particles. This is why most optical tweezers,
made of lenses or |objectives| (OBJs|), work with of at least 0.8.

2.3.2 Gaussian beam and linear approximation

To gain some intuition on how an optical trap scales with the system
parameters, we may approximate the trap by a Gaussian beam optical po-
tential in the three axes. Then, we can approximate even more by consider-
ing that the particle motion is confined around the optical maximum, thus
ending up with harmonic oscillator dynamics (see for details on
the model).

28



2.3. Optical dipole traps

2

1

\Ej/_ 0
N

1

2

2 -1 0 1 2
r (um)

Figure 2.9: Gaussian beam: Intensity of a simulated Gaussian beam around
focus. The light wavelength is A = 1064 nm and the NA = 0.8. To compensate for
the error of using the Gaussian beam at large [NAE, a correction factor ¢f = 1.5 is
introduced in wg = ﬁcf. The intensity values at the r and z cross-sections can

be found in Fig.

As before, though, one must remember that this is a very unrigorous
approach, that can only be justified as a quest for intuition. As we have seen,
single beam optical traps require large to trap particles (otherwise the
scattering force is too large and the gradient force too weak). However, the
Gaussian beam is the solution to the Helmholtz equation that is found by
applying the paraxial approximation, which breaks down precisely at large
[NAk. In other words, we will be using an approximation in a regime where
it should not be applied. One can then introduce ad-hoc factors to “correct”
for the induced errors, and this turns out to be a very fruitful approach to
simulate the dynamics, but it remains an approximation nonetheless.

Being aware of this, we can proceed with the computations. The Gaus-

sian beam (see [Annex C|) takes the expression
2

I(r,z) =1y (%)2 e_wér(z), (2.31)

2
where w(z) = wo/1 + (W) , Wy = ﬁ and [NA[is the numerical aper-

ture of the hypothetical lens creating the trap; the constant Iy can be found
by measuring the laser beam with a power meter, as Py = %TFI()QU%. Notice
that we are ignoring polarization effects that would break the symmetry in
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2. NANOPARTICLE LEVITATION

the r direction in two different z and y axis. A plot of the Gaussian beam
for NA = 0.8 can be found in Fig. 2.9 Its second order Taylor expansion
at the focus is

2Py (m-NA\? 8P /7 -NA\*r2
I(r,z) = — - ——
s A s A 2 (2.32)
4Py\? <7r-NA>6z2+O( 39 '
3 3 5 r°, 2°).
Then, the (linear) dipole force will be
1 21a’ (n? —1
F=_aVE’= —— | VI
2V c <n2+2>v (x)
L
T\ kyz )’
where
4
kr\ 2ra® (n? —1 (8%&%) (2.33)
k]~ ¢ n2 42 4Py\2 (ﬂ-NA)G ’ :
3 A

the intensity I = ceo| E?|, a is the particle radius and n the refractive index
of the nanoparticle material. Both the Gaussian beam force and its linear
approximation are plotted in Fig.

Thus, a particle trapped in a focused beam can be often approximated
as a harmonic oscillator. This is a basic assumption in almost every optome-
chanics [34, 67] experiment where the levitated particle takes on the me-
chanical oscillator’s role. Here, damping due to collisions with air molecules
is also modelled with a constant term, obtaining a linear constant coefficient
for the position of the particle x(t)

mi + y& + kx = F(t). (2.34)

In the equation, k = mw? is the strength of the restoring force, v the damp-
ing coefﬁcienﬂ, and F(t) an external driving force, possibly stochastic.

We need to keep in mind, though, that however useful in developing an
intuition, this is still a model, and may not always represent reality satisfac-
torily. For instance, it has been reported that thermal driving is enough to
induce nonlinearities in the dynamics of optically trapped particles in vac-
uum [83]. The assumptions of the model that is being used should always
be clear in case they need to be extended or reconsidered.

For instanced modelled with Stoke’s drag law v = 67 (r the particle’s radius and
1 the dynamic viscosity of the fluid).
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Figure 2.10: Gradient force in a Gaussian beam. (a) Intensity section in the
7 direction of the simulated Gaussian beam in Fig. 2.10] along with its quadratic
potential approximation. (b) Intensity section in the z direction of the simulated
Gaussian beam in Fig. [2.10] along with its quadratic potential approximation.
(c) Restoring force in the r direction of the previous optical potential and its
linear approximation. (d) Restoring force in the z direction of the previous optical
potential and its linear approximation.

2.4 Stochastic dynamics in a harmonic oscillator
trap

Often, as is the case for optically trapped particles, the dynamics of
the [center of mass| (CoM)|) are well approximated by the harmonic oscillator
model (an overview of which can be found at . However, when the
particles under study are small, with diameters below ~ 50 pm, one needs
to go a step beyond the classical noise-free model and take into account
the intrinsic randomness of the system due to the interaction of the particle
with gas or liquid molecules. These Brownian dynamics [84] are achieved
by adding a stochastic driving force F'(t) = on(t) to the equation of motion

mi + i + mwiz = on(t), (2.35)

with 7(t) a zero mean and unit standard deviation white noise and o =
v2kpgT~, expression obtained from a fluctuation-dissipation theorem (see
D.20f). A proper treatment of the equation requires the use of the Wiener

function and Ité calculus (see [Annex Al). However, thinking of it as white
noise generally provides a good intuition of its effect on the dynamics.
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2. NANOPARTICLE LEVITATION

Even though the stochastic equation without further approximations
can be solved in all generality, it is useful to consider the “overdamped”
regime first, in which the inertia term is discarded.

2.4.1 Overdamped regime

It is common to discard the second order term of the stochastic differ-
ential equation when it is “small” compared to the other termg™®, In this
case the equation takes the form of an |[Ornstein-Uhlenbeck| (OU|}'”| process

vE + kx = on(t), (2.36)
with 7 the damping constant and k = mw? the restoring force. In Ito’s
notation

dX; = —aX;dt + bdW;, (237)
witha=%>0,b= % The solution of this |stochastic differential equation|
(D) is

t
X = Xoe % +b / e~ t=s)law,. (2.38)
0

The autocorrelation of the process can be obtained by using It6’s isometry
on the last expression

Rets) = [ [ saaw, [ swjaw,
t

_ b2€7a(s+t) .E |:/ et qu/ e dWU:|
0 0

min(t,s)
_ b2€—a(s+t) .F [/ U pau du]
0

b? ; b?
—a(s+t) (,2min(s,t) _ —alt—s| _ _—a(t+s)
= 5q¢ (e 1) = 50 (e e )

When |t — s| = 0, the autocorrelation equals the variance of Xt@

E(X?) = L (1—e) = kiz; (1—e72). (2.39)

2a mwg

8This can be made rigorous as a perturbative problem, a regular perturbation problem.
However, this is not always the case when the parameter is multiplying the highest order
term of the equation. See Ref. [85] for more details

20Equivalently this can also be written as (X7).
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2.4. Stochastic dynamics in a harmonic oscillator trap

For small ¢, the variance takes the expression

2kpT o?
: 2y _ <iB 2y _ 2
%g%E(Xt) = t+0(t°) = 7225 + O(t), (2.40)
while for long times
kT
. 2\ _ B
th_{go E(X{) = —wg, (2.41)

as is expected from the equipartition theorem. As ¢ and s increase, the
second exponential summand of the process autocorrelation becomes arbi-
trarily small. The remaining part is a function of 7 = ¢ — s only; thus,

we can apply the Wiener-Khinchin theorem (see [Annex A.1.2)) to get an
analytical expression of the power spectrum of the process:

b2 —alT| b2
S(f)=F (2@6 > = m (2.42)

B o? _oim? (2.43)
TR+ 2w? w2 :

S(w)

where in the last expression we have reintroduced the mass, as it will help in
identifying similarities between this and the full second order system power
spectrum, and I' = «/m is the normalized damping.

As expected by Parseval’s theorem, the integral of the
(PSD) is

1 1 o2 /m? kgT
E(X2) = 7/5 dw = 7/ -
(X7 2 (@) 2w ) wi 4 2w? @ mwd’

recovering again the value expected by the equipartition theorem.

Observation: expression of the power spectral density has
two clear different regimes: at low frequencies, the a? term in the
denominator dominates and the spectrum is almost flat. At large
f, a? is negligible and the other term dominates. In a log-log scale
representation, the power spectrum looks like two straight lines (first
an horizontal line and then a decreasing line); the frequency at which

the behaviour changes is known as the corner frequency, w. = a =

2
kE_ %%

vy '
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2. NANOPARTICLE LEVITATION

2.4.2 Full 2nd order equation
The full equation takes the expression
mi + y& + kx = on(t). (2.44)

. . =
Performing a change of variables, x = ezm'z, we get

2
.. g 5Lt
_— = 2m t 2.45
miy + ( 4m> z1 = oemn'n(t), (2.45)
thus eliminating #. Setting a = %, b= 7 and rewriting the equation

k
m
as a first order linear system with

X = <iz> , (2.46)

where vy = Ty, we get in Itd’s notation

0 1 0
dX = (_a o) - Xdt + (beJnJ -dW,. (2.47)

The solution of a linear homogeneous [SDE] is
t t t
X, = edo AD . x4 o fy AL / e~ J A 5 (5)aw, (2.48)
0
where A(t) is the (generally vector) coefficient of X. For this a fun-
damental matrix solution of the associated homogeneous noise-free system
is
0 cos\/at sin+/at/\/a
- \—Vasiny/at  cosy/at |’

The determinant of this matrix is 1, so its inverse matrix will be

q)_l(t) _ e—fA(T)d'r — det (I)(t)_l . ( CoS \/575 —sin ﬁt/ﬁ)

(2.49)

Vasin \/at cosy/at

_ ( cosy/at  —sin \/675/\/6)
Vasin \/at cos y/at

and hence we can solve the complete system. We are interested in the first
component of X, the position (as we will be calculating the of the
trajectory of the particle)

a1(t) = (cos Vat sin/at/\/a) - (ﬁi%) n
(cosy/at  siny/at//a) ./Ot bz . (— sicrég/\f/zg{,\/a> aw..
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2.4. Stochastic dynamics in a harmonic oscillator trap

~yt

Finally, z1(t) = e2mz(t), so

z(t) 2672%» (cos Vat sin ﬁt/\/ﬁ) ’ <,U(0) _|m_(0'3:c(0)) +
) 2m / (250)
ot ) [ (A

0

We see that, after a transient time, only the term depending on dW,
remains, so the first moment of the process is zero. Now, applying [t6’s
isometry as before to calculate the covariance we get

y(t+s)

R(t,s):IE{ /0 ") aw, /O ) f(v)de} = P52 (cos+/@t sin~/at/+/a) -

min(t,s) sin? vau _sin/au cos Vau
/ em ' a NG dul - < 'Cos\/as >
0 — Snvautos vau ‘/Ef/flf)s Vau cos? \/au siny/as/+/a

‘E

This is a quite uninteresting calculation. As in the one-dimensional
process, one gets a term which only depends on the difference |t — s| = T,
and another which is multiplied by e~*+5l, that quickly vanishes. Setting
t = s we recover the variance,

kgT wi T2 r
E[X2 =22 [1—e T2 — —_ cos(2wit) + — sin(2wt 2.51
[X[] mwg ( e (w% 4w% cos(2wt) + S sin (2w t) , ( )

where we have defined w; = y/wg — (I'/2)? = y/a and used the normalized

damping constant I' = % As in the overdamped case,

ksT
lim E[X?] = 2,
t—o00 mwo

as expected from the equipartition theorem. However, more interesting is
the behaviour at short times,

lim B[ X?] =

t—0

—t O(t*).
3, L TOM)
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2. NANOPARTICLE LEVITATION

Observation: this value of the variance assumes that xg, vg, initial
conditions of the problem, are known. This may not be the case
for a real experiment in the lab. For instance, assume we have a
particle in an optical tweezer, and we want to calculate the
lsquare displacement| (MSD)),

E[(z(t) — (0))?] = E[z2(t) + 22(0) — 22(0)z(t)]. (2.52)
Then we distinguish two cases:
1. 2(0) is known, e.g. #(0) = 0. Then

E[22(t) + 22(0) — 22(0)z(t)] = E[22(t)] = O(£3).  (2.53)

2. z(0) is not known (or is uncontrolled), and we do the ensemble
average. Then

E[z2(t) + 2%(0) — 22(0)2(t)] = E[z%(t)] + E[2?(0)] — 2E[2(0)z(t)]

2%kpT )
- —2R(t) = :
2 (t) = O(#?)

We see, therefore, that the leading term of the series expansion of
the [MSD)] is different in each case. This is an important distinction
that is not clear in Tongcang Li et. al. [54].

If in the autocorrelation integral we keep only the term with 7 depen-
dency (since the term multiplied by e~l**s| will quickly decay), after some
simplification one gets

meQe%ﬁl 2 /amcos(+/a|T sin(y/a|T
(2amoslyilr) £ g

Worth mentioning is the value of the time constant of the exponential factor,
%: this value is proportional to the time needed for the autocorrelation to
get below a given thresholdEL otherwise known as losing the coherence of the
oscillation. A usual criterion is 3 time constants, with the autocorrelation
decreasing to below e™® < 5%. The number of oscillations of the system
during this time is

R(r) =

2T 3.2.f

31/f -~ £ Q. (2.55)

~

Ml E

2'Which is arbitrarily set.
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2.5. Conclusions

Thus, the O-factor can be understood as the number of oscillations of the
system under the presence of Brownian noise before the autocorrelation gets
below 5%

From the expression of the autocorrelation we see that R(t,7) = R(7):
therefore, the process is wide-sense stationary and the conditions to apply
the Wiener-Khinchin theorem are satisfied (see . The Fourier
transform of this autocorrelation function is the

7 166
T4+ 8(a+4m2f2)12 + 16(a — 472 f2)2

S(f) (2.56)

which, after replacing the variables and some rearranging takes the simpler

and more familiar expression

o2 /m?
(wE — w?)2 + TM2w?’

S(w) = (2.57)
where we have replaced the unitary ordinary frequency Fourier transform
(in terms of f) by the non-unitary angular frequency Fourier transform.
Thus, it is readily seen that this is the frequency response of a harmonic
oscillator to a flat-spectrum (white noise) driving force.

As in the overdamped case,
o?/m? kgT

1
E(X7?) = 7/ dw = 2.
(X0) 2 ) (W — w?)? + Mw? “ mw? (2:58)

as expected by the equipartition theorem.

2.5 Conclusions

In summary, in this chapter we have discussed the conditions that a
device needs to satisfy to constitute a particle trap, and have studied two
cases: the Paul trap, used for charged particles, and the optical tweezers,
for particles that can be approximated as dipoles. We have also described
in detail how to design and simulate a particular type of Paul trap, in our
case with an end-cap geometry.

The equations of motion of a trapped particle can often be approxi-
mated with a harmonic oscillator model and, when this is possible, it helps
tremendously in developing an intuition of the particle’s dynamics. For both
traps, we have explained under which conditions the harmonic oscillator is
a good representation of the system. Finally, we have taken into account
the Brownian effects that result from the interaction of the particle with

22The number of “coherent” oscillations.
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2. NANOPARTICLE LEVITATION

gas molecules. To include them in our analysis, we have used stochastic
calculus and It6 integrals instead of the more common Fourier transforms.
This has the advantage of making fully visible the transient behaviour of
the processes.

A fully stochastic treatment of the Paul trap equation still remains, since
in this chapter we have first approximated the equation with an effective
potential and then included the noise term. The case where the noise is
considered since the beginning will be studied in the next chapter.
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Stochastic dynamics in a Paul trap

In this chapter, we study the dynamics of the[center of masg

of a Brownian particle levitated in a Paul trap, an exam-
ple of non harmonic oscillator dynamic{%} We mostly focus
on the overdamped regime, comparing theory with numerical
simulations and experimental data from our Paul trap. We
find an exact analytical solution to the stochastic equation
of motion, expressions for the standard deviation of the mo-
tion, and thermalization times by using the method.
Finally, we prove the power spectral density of the motion
can be approrimated by that of an |Ornstein- Uhlenbeckl pro-
cess and use that to calibrate the motion of a trapped particle.
The contents of this section are based on Ref. [80].

?At least, not without the proper approximations. As we have seen
before, with the adiabatic approximation the dynamics become equiva-
lent to those of a particle oscillating in an effective potential.

3.1 Introduction

The invention of the quadrupole ion trap in the late 1950s had a tremen-
dous impact in physics [75], since it allowed the trapping of ions and,
thus, gave rise to the manipulation of individual quantum objects under
well-controlled conditions for the first time [87]. Naturally, after the first
demonstrations of ion trapping appeared, the study of the ion dynamics in
quadrupole traps increased at a vertiginous pace [88], 89, [00]. Despite this,
due to the very restrictive experimental conditions required for ion trapping,



3. STOCHASTIC DYNAMICS IN A PAUL TRAP

the pressure regimes dominated by damping and Brownian noise [91} [92]
did not receive much attention until optical tweezers detection techniques
were adapted to nanoparticles levitated in Paul traps [64], [65]. Further-
more, many recent studies with micro and nanoparticles in Paul traps were
mainly focused on the determination of the trapped object’s optical prop-
erties [93, 94] 95, 96] or in detecting small signals from internal degrees of
freedom [61], 63, [97), 98]. These experiments would benefit from a good un-
derstanding of the particle dynamics, since minimizing the variance of the
position greatly improves the particles’ signal collection.

The work detailed in this chapter tries to bridge this gap, by doing a
theoretical and experimental study of the dynamics of a particle levitated
in a Paul trap, starting from its stochastic differential equation. We find
the exact solution to the equation, expressions for the standard deviation
oy of the motion and thermalization times by using the WKB| method [99]
under two different limits. We then show that a naive description of the
dynamics based on the overdamped approximation—typically used by the
optical tweezers community—is not valid in the case of a Paul trap. Fi-
nally, we also prove that the motion’s [power spectral density] (PSD)) can be
approximated by that of an [Ornstein-Uhlenbeck| (OU)) process [100]. We
include a comparison of all the theory results with simulations and provide
an application example, using the expressions to calibrate the motion of a
trapped particle.

3.2 Theory

3.2.1 Analytical solution

The [CoM] motion along an axis of a classical particle levitated in a
quadrupole trap can be described [12] by the stochastic differential equation
of motion

my + vy — ecoswqt - y = on(t), (3.1)

where we have neglected DC electric fields. Here, m is the particle mass [101],
~ is the constant damping due to the interaction with residual gas molecules,
wyq is the trap driving frequency, epsilon is defined as

L Qv
sE

€

where @) is the particle charge, V' the trap voltage and d is the characteristic
size of the trap (related to the distance between electrodes), and finally on(t)
is a stochastic force, with 7n(¢) being a unit intensity Gaussian white noise
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3.2. Theory

and o = v/2kgT [102]. We notice that at the pressure regimes of this work
(ambient to low vacuum), the quadratic region of the electric potential in the
trap is much larger than the particle confinement. Therefore, the dynamics
along the different axes are uncoupled, and the 1D equation that we have
just presented is a good description for the motion along all of them [83].
An explicit expression for y(¢) can be obtained as follows. We introduce
the normalized damping I' = v/m and perform the change of variables

Y= e_gtyl, obtaining:

F2
miji — <m4 + ecoswdt> Yy = aegtn(t). (3.2)

Introducing a dimensionless time 7 = wqt/2 and defining

mwq

— Y1,

Y2 = B

we get to:

3.3
200 L, (27’) (8:3)
—ewd 77 _
wd wd

Notice that with @ = —T'?/w?, ¢ = 2¢/mw? we obtain the Mathieu equa-
tion at the left hand side of equation (3.3]), plus a noise term:

o + (@ — 2 - qcos(27)) yo =

20 I, <27’) ' (3.4)

We can now rewrite this equation as a first order linear system with ¥ =
(y2,v2) T, where vg = gjp. In Itd’s notation

0 1
dy' = (—a + 2q cos(27) 0) Ydr

0 . (3.5)
5 L. |-dW:

n the noise differential we used n (27) %dr = n(t)dt = dW; = ,/%dWT. The

wd

time change formula for Ité integrals was used, see Oksendal [I00], Theorem 8.5.7.
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3. STOCHASTIC DYNAMICS IN A PAUL TRAP

The fundamental matrix solution of the associated homogeneous noise-
free system is given by the Mathieu cosine and sine functions ﬂ

(1) = (C‘l’q(” SW(T)) . (3.6)

Caq(T) Saq(T)
Here, we refer to the Mathieu functions as solutions of Mathieu’s differential
equation

¥+ (a —2qcos(27))y =0, (3.7)

where a and ¢ are constant parameters. The stability of the solutions de-
pends on the values of these parameters, as seen before. Since it is a linear
2nd order differential equation, two independent solutions generate the lin-
ear space of all solutions of the homogeneous problem. More specifically, the
Mathieu functions c,4(7) and s, 4(7) are defined as the solutions of
with initial conditions (y,y) = (1,0) (for cq4(7)) and (y,9) = (0,1) (for
Sa,q(T)), in clear analogy to the standard cos(7) and sin(7) functions.

Now, with Liouville’s formula E| we see that the determinant of this
matrix is 1. Therefore its inverse is

O1(7) = det ®(r) "L - ( Sa.q(7) _Sw(T))

ag(7)  Caglr)
| Baq(T)  —Saq(T)
_<—%Aﬂ %dﬂ) (3.8)

and hence we can solve the complete system (see |[Annex Al). Solving for the
particle’s position we obtain

i (20) = (cent) 50a(r) - (240)) + (centr) 50000

T 2 B _
/ —o‘e“’du . Sa,q(u) qu’
0\ wd Caq(1)
which is the solution of (3.5). Undoing the time change and setting y, =

It .
“de2 y we obtain

(3.9)

n (0)

y(t) = €2 (cag(wat/2) Saqlwat/2))- (jdv(O)er ofdy(())> i
2 ¢, o (w Sq.q(w . taeg(r_t)- ~Saq(war/2)
o (can(wat/2) Saq(wat/2)) /0 <ca’q(wd7“/2) )dW”

(3.10)

2For a detailed discussion of the Mathieu equation and functions’ properties, see
http://dlmf.nist.gov/28.2.
Tt is also called the Wronskian of the system.
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which is an explicit analytical solution of equation (3.1)) and coincides with
the solution provided in Ref. [I03]. Notice that the initial condition terms
decay exponentially and do not affect the long term behaviour of the equa-
tion.

3.2.2 Approximate solution

Even though the solution in is exact, it is difficult to obtain useful
parameters from it—such as its moments’ asymptotic behaviour—without
numerical methods. At high pressures, one may be tempted to perform the
same approximation as in the previous section by discarding the highest or-
der term (inertia); this is common procedure in overdamped optical tweezers
systems. In the Paul trap case, this approximation leads to a solvable, easy
to evaluate analytical solution. However, even though at first sight the ex-
pression looks reasonable, the solution thus obtained is incorrect, since the
approximation in which it is based changes the asymptotic behaviour of the
dynamics. If inertia (mg) is neglected, Equation becomes

vy — ecoswqt - y = on(t). (3.11)

We will refer to this as the naive overdamped approximation. The solution
to this equation is:

< si b e ginwgr
y(t) _ e—m smwdt (y(o) + zA ewd d dWr) i (312)

Assuming y(0) = 0 for simplicity, we may apply [td’s isometry in (3.12]),
finding the following expression for the process variance:

€ o 2 t € o
E[yg(t)] — "i’d sinwgqgt <0’2/ e’idd smwdsd8> (313)
7" Jo

which grows with time as O(t). This behaviour is qualitatively different from
the one obtained with the solution to the full equation and indicates that, in
this case, the singular perturbation problem requires a more sophisticated
approach than just neglecting the highest order term.

Some physical intuition on why the approximation fails can be gained
noticing that in the absence of inertia or noise, no net force acts on average
over a cycle of the driving field. By linearity, superimposing a Brownian mo-
tion leads to a uniformly growing variance, thus avoiding a stable trapping
regime.

We thus provide an alternative approximate solution by following the
[WKB]| procedure to find the short and long term behaviour of the physically
relevant process variance (y%(t)).
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3. STOCHASTIC DYNAMICS IN A PAUL TRAP

With the WKB| computations, one seeks a solution of the form
—7/2K So
y(r)=¢e exp{ — +S1+... (3.14)

as a series in terms of k, known as the “small parameter”. Since the choice
of k has a certain degree of arbitrariness, we provide calculations for two &
alternatives. We then follow our analysis by further approximation, drop-
ping small terms of the series, and find that both choices lead to a result of
the same form. Numerical simulations serve as a final check for the validity
of the expressions.

For the first series, we use the particle mass m as the small parameter
k. In the second case, we rewrite eq. as

mo

K2 4 kg — B cos(27)y = 2 1/%17(7’), (3.15)

which is a reformulation of (3.1) where 7 = %dt as before, 8/ = % and
K= 7”2—‘:’;1 is the new small parameter.

At this point we introduce a set of parameter values, in accordance with
our experimental setup:

o T'=295 K (ambient temperature).

e Particle radius: we assume 100 nm < r < 1000 nm. From the radius,
m = %r?’p, where p is the material density. Assuming silica, this
results in m € [10717 10715] kg.

e v = 6mvr, where v = 18.6- 1076 Pa-s is the viscosity of air at ambient,
pressure. This gives v = 3.5- 107! kg/s. o = /2kgT is obtained
from the fluctuation-dissipation theorem (D.20)), o = 5.3 - 10716,

e wq/2m € (0.5, 20] kHz

e () is the net number of charges in the particle (assume 50 < @Q <
1000), V' the electric potential at the electrodes (500 < V' < 2000
volts) and d? a constant factor that takes into account the geometry
of the trap (0.1 nm < d < 1 mm). From these we calculate ¢ = %—X.
ecf4-107% 3.1079]

For these, k < 1 and thus ensure the validity of the method. The derivations
provided are completely general except when an approximation relies on
the specific values of the chosen parameters, in which case it is explicitly
indicated.
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3.2. Theory

The details of the WKB]| calculations, which are a bit tedious, can be
found in Instead, we proceed directly to discuss the results. Stat-
ing the problem with the initial conditions y(0) = v(0) = 0 for greater
clarity, the solution of the equation of motion is then found to be approxi-
mately:

t
y(t) ~ :/0 A9 . (3.16)

Here, W; is a Wiener process, the time integral of the white noise i driving

the equation of motion (see the [Annex A

¢
Wt:/ ns ds, (3.17)
0

and A is the larger of the two characteristic Floquet exponents. A can be
thought of as a thermalization rate: the time it takes for the particle to reach
“equilibrium” is proportional to 1/|\|. However, one should recall that the
Paul trap equation is non-autonomous and, therefore, the concepts from the
theory of stationary processes, when they apply, are only approximations.

The value of A depends on the way the limit is taken and how many terms
of the series expansion are considered (see , but in both cases it
is a negative number with a small absolute value that can be approximated
as

A (3.18)

Our numerical tests show that this is a good approximation when the equa-
tion parameters are similar to actual nanoparticle experiments [64) [65] [66),
97, 98], for pressures between a few millibars and ambient.

According to the It6 isometry [100], the variance of the approximate
solution equals

E[y2(t)] = (i)Q /0 2t=s) g = (z)z 1;&2'” (3.19)

It follows that

0,2

E[y*(t)] ~ 22 (3.20)

for t > 1/|\| and that the variance converges to this value in the limit
t — oo. For short times the diffusion term dominates and it grows linearly

E[y(t)?] ~ ()275. (3.21)
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Figure 3.1: Experimental setup (a) Setup sketch. A Paul trap, driven by a high
voltage sinusoidal signal, levitates a charged nanoparticle that is illuminated from
the left with a 980 nm diode laser. The scattered light is collected with an [objective]
and sent to a [quadrant photodiode (QPD) to detect the motion. The
measured signals are band-pass filtered (BPF|) and sent to a |Field-Programmable]
[Gate Array] (FPGA]), where they are further pre-processed and sent to a computer.
(b) Picture of the trap inside the vacuum chamber viewed from above, showing the
end-cap Paul trap electrodes and one of the compensation electrodes.

The actual duration of this regime depends on the exact physical parame-
ters. By taking values from common nanoparticle experiments [64) [65] [66),
97, 98], we find it should lie in the 1072 s to several seconds range (see Fig.
3.2).

Expression is approximately equal to the stationary solution of

the equation [100]

d$t = )\iL't + %th, (322)

which also describes optically trapped particles in the overdamped regime.
Therefore, the covariance of the process y(t) is approximately equal to the
covariance of the stationary process, found in the previous section:

0_2
Ely(®)y(u)] ~ 53 IA’e”“‘t'. (3.23)

By the Wiener-Khinchin theorem (Annex A.1.2)), the approximate
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Ispectral density| (PSD)) of y(t) is

oo ) 2
S, (w) = [ - e_“”t#we)‘m dt (3.24)
o\?2 1
=) —. 2
(’y) A2 4 w? (3.25)

We can provide a more detailed argument to this expression by using explicit
bounds on the error of the WKB]|approximation. For simplicity, we assume
that y(0) = ¢(0) = 0; the following calculation can be easily generalized to
the case of arbitrary initial conditions. We define the [PSD] as

2

-
/0 z(t)e ™t dt (3.26)

The expression for the expected value in (3.26]), before the limit is taken,
provides corrections to (3.24)), which go to zero as 7" — co. The calculation
relies on the It6 isometry and tedious but elementary integration. Its result
is:

0'2 1 AT'
where
22T 1
Ay =21
) 2\ (3.28)
ﬁ [)\ (e)‘T/ cosaT’ — 1) + we” sin wT'} .
w

It is clear that the correction ATT,' goes to zero, at the rate % (since the
characteristic exponent A is negative).
From (3.24), we clearly see that our parameter |A| corresponds to the

cut-off frequency of the trap [104].

3.3 Experimental methods

3.3.1 Setup

The experimental setup is displayed in Fig. We use a rotationally
symmetric end-cap Paul trap to levitate charged nanoparticles (silica and
polystyrene). It is designed to provide optical access and a linear electric
field in a large volume around the trapping region. The Paul trap is made of
two assembled steel electrodes separated by 1.4 mm mounted on a ceramic
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3. STOCHASTIC DYNAMICS IN A PAUL TRAP

holder. The oscillating field is created by a high voltage signal (sinusoidal
with frequency between 1-30 kHz, amplitude of 0.6-2 kVy,;,).

The nanoparticles, originally suspended in ethanol, are loaded into the
trap with a custom made electrospray at ambient pressure. This ensures
that particles are highly charged (50 < n < 1000 of net et charges in this
study, depending on the particle). The Paul trap is mounted on a piezo
stage inside a vacuum chamber, giving access to pressures below ambient
conditions. A laser, focused with an aspheric lens with low effective nu-
merical aperture (NA < 0.1), illuminates the particle. Its scattering signal
is collected in forward detection with an (0.8 and directed to
a [quadrant photodiode] (QPD)]) (see for details), giving signals
proportional to the particle motion in the 3 perpendicular directions x(t)
(parallel to trap axis), y(t) (gravity direction) and z(¢) (beam propagation).
These signals are sent to an [FPGA] and recorded in a computer.

3.3.2 Details of the numerical simulation

We have developed functions and libraries in C++ to generate sample
paths of a vector process (of arbitrary dimension) defined by a stochastic
differential equation

dX = a(t,X) dt + b(t, X) dW.

The simulation of X} is performed with a modified Runge-Kutta method for
stochastic differential equations [105] (strong order 1, deterministic order 2),
detailed at the end This particular method does not require any
non-zero derivatives of the diffusion term b(¢, X). Other methods (e.g. the
Milstein method) have strong order 1 but reduce to the Euler-Maruyama
method (strong order 0.5) when b(¢, X) is a constant.

Since the realizations of the process have a certain degree of randomness,
each of them will be different and many traces (usually around n = 1000)
need to be generated to estimate the process statistical moments

B[ (X0] =~ Y (X,

This is usually quite intensive in terms of processing power and computer
memory. For this reason, the main computation is coded in C++, while
MATLAB and Python are used for post-processing. The code and libraries
can be freely downloaded from https://github.com/gerardpc/sde_simulator.
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3.4. Results and discussion

3.4 Results and discussion

With the code we have simulated the stochastic differential equation to
check the validity of the approximate solution (3.16|) and the expression

(3.24) of the motion’s

We have also measured position traces from a real trapped particle,
computed the [PSD] and compared the results to the model to calibrate the
position signal (i.e., find the factor to convert a signal in volts to meters).
Finally, we have studied the dependence of o, = \/E[y2(t)] on the experi-
mental parameters wq and @ x V for long ¢ to ascertain the best regimes

for trapping in terms of particle confinement.

The behaviour of E[y?(#)] for common nanoparticle experimental param-
eters is displayed in Fig. [3.2 Subfigures (a) to (d) compare the diffusive
regime (¢ < 1/|A|) of the process variance to the expression for differ-
ent parameter choices. In all of our numerical experiments E[y?(¢)] closely
follows the "—;t trend. However, in some of them a small oscillation at wq
can be seen, which is not present in our model due to the approximations
of the WKB| method. These realizations of the process start with initial
conditions in the origin x(0) = 0, v(0) = 0, and represent the behaviour we
would expect from a cooled nanoparticle (for instance with feedback cooling
through the compensation electrodes [106]) after the cooling is turned off
att =0.

Fig. (e) and (f) show the long term trend of the position variance
(t > |A]). The diffusive regime and the asymptotic “equilibrium” value
found in are marked with red dashed lines, and the simulations are
found to follow these closely (the higher the number of averaged traces,
the smaller the variance of the simulation and the better the resemblance
with the model). We found a surprisingly long thermalization time for the
particle motion to reach equilibrium, that we have verified with numerical
simulations. Depending on the experimental conditions, it might take sec-
onds (as is the case of Fig. (f)) or even tens of seconds for common
values extracted from the literature. This is in stark contrast with optical
dipole traps. At ambient or low vacuum pressure regimes, a cooled optically
trapped nanoparticle reaches equilibrium in the timescale of microseconds.
The results indicate that one should be cautious when taking data from a
trapped particle on a Paul trap, since the process memory might be longer
than expected and the results could still be affected by the initial conditions.

Another interesting finding is that, in this regime, E[y?(¢)] does not
converge to the value expected from the equipartition theorem if one naively
uses the effective potential approximation for quadrupole traps. For a simple

harmonic oscillator, E[y?(t)] = kgT/m? (see [Annex D)), and using the
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Figure 3.2: Variance and reheating Comparison of numerical simulations of the
variance (in purple) with the analytical expressions (in red dashed lines) found
in the theory section. Sub-figures (a) to (d) show simulations of E[y?(t)] (starting
from (z,v) = (0,0) at t = 0) for t < 1/|)| in a range of typical experimental values,
proving the validity of the expressions for common nanoparticle experiments. The
insets in (a) and (d) show the oscillatory behaviour of the variance due to the trap
driving, along with confidence intervals of +1 standard error (these margins can’t
be seen in some of the figures, due to the oscillations being much larger than the
uncertainty). Figures (b) and (c), although similar at first sight, show very different
speeds in a reheating experiment. The last two sub-figures, (e) and (f), show
simulations of E[y?(¢)] for t > 1/|\|: thermalization around an equilibrium value
can be observed. The two figures portray a case where the oscillations dominate
(e) and a case where the oscillations are small with respect to the equilibrium value
(f). Again, the gray area around the variance (in purple) represents +1 standard
error. Simulation details: T = 295 K, Paul trap with f = 20 kHz, V = 1000 V.
(a) Pressure p = 101 mbar, particle with 7 = 100 nm, @ = 100 e*. (b) Pressure
p = 1010 mbar, particle with » = 500 nm, @ = 500 e*. (c) As (a) but p = 1010
mbar. (d) As (c) but 7 = 20 nm. (e) 7 = 100 nm, @ = 500 e™, p = 300 mbar and
V' =2000 V. (f) As (e) but p = 1010 mbar and V = 1000 V.
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Figure 3.3: Motion spectral densities Comparison of measurements and numer-
ical simulations of the power spectral densities (PSD), in blue, with the analytical
expressions (in red dashed lines) found in the theory section. (a) Measurement of
the PSD S, ,(w) in the trap radial directions z, y for a polystyrene particle of 243
nm in diameter (Paul trap with V"= 1000 V and f = 20 kHz, p = 100 mbar +30%
gauge uncertainty). A fit of the expression found in is superimposed, with
amplitude and corner frequency as free parameters. The fitted corner frequency,
A/27m ~ 420 Hz, is marked with a grey dashed line in the figure. From eq. we
recover a value of e compatible with the pressure, voltage and frequency of the trap.
(b) Simulation of the process with the expression in superimposed (dashed
red line) but no free parameters (using the values of the simulation: V' = 1000 V,
f = 20 kHz, p = 1010 mbar, resulting in A/27 ~ 10 Hz). Excellent agreement
between model and simulation is found except at w = wyq, since the trap driving is
suppressed in the Ornstein-Uhlenbeck model.
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3. STOCHASTIC DYNAMICS IN A PAUL TRAP

expression for the secular frequency of a weakly damped Paul trap [107]

ﬂq2 2

Q= —— — 2
2\ 2 Wi (3.29)
one finds that
kgT kT
Bl (0) = s = . (3.30)
m 2 (.2 __ 212

From Eq. (3.29), we see that the secular approximation breaks down if
212 /wﬁ > ¢2, as it is typically the case at ambient pressure. However,
Eq. (3.20) shows—with the support of numerical simulations—that

2 2
, o2y 8kpT [T
Ely ) = 5= m \ w2 | (3.31)

A refined approximation to the variance was given in Ref. [91]:

2
B2~ ol (D) p| | (3.32)
22 7 | 4o -
s\ W) e
wa

where Iy is the zeroth order modified Bessel function.

The approximation in , of course, is not valid for any choice of val-
ues in parameter space, since we have used several approximations based on
our own experiment. Nonetheless, it is a good approximation for nanoparti-
cles in Paul traps at ambient and similar pressure regimes, as long as the con-
dition I' > wq is fulfilled and the stability criteria of the Mathieu equation

are met [91], i.e., ¢ is not too larg (in particular, ¢ < 4/1+I'2/w3, since
in this case Ip ~ 1). Eq.|3.32/ has a minimum at gmi, = 1.518/1 + I'?/w?,

which finds the optimal sef ol parameters to maximize the confinement:

8kpT
=B (3.33)

E[y*(t)]min =
[y” ()] min mw
Therefore, we see that our approximation is valid when the parameters of
the system are tuned close to the optimal situation. In practice, when a
particle is injected into our trap we trap many more particles at once. The
one that we keep is the one with—visibly—the smallest motion amplitude.

4Note that in this case g, introduced in Chapter 2, may be above 0.9, because the
presence of damping displaces the stability region of the Mathieu equation. See Major et
al. [12] for reference.
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Figure 3.4: +/E[y2(t)] in equilibrium (a) Dependence of the characteristic time
to reach equilibrium, 7 = 1/|A|, with the pressure p and trap amplitude @ -V, for
a particle with radius » = 100 nm (initial conditions (x,v) = (0,0)). In the plot
axis, n. is the trapped particle’s net number of electron charges. (b) Dependence
of the confinement o, £ \/E[y2(t)] with the pressure p and trap amplitude @ - V
after equilibrium has already been reached (i.e., t > 7), for a particle with radius
r =100 nm. The confinement scales with the mass as 1/+/m, as can be seen from
eq. (3.31).

53



3. STOCHASTIC DYNAMICS IN A PAUL TRAP

At high pressures there is no secular oscillation: the motion is highly
damped and the only observed oscillation is due to the micromotion driving
at wq [65], responsible for the peak at wq in Figs.[3.3|(a) and (b). However, as
we have seen, the overdamped approximation cannot be straightforwardly
applied. This is in stark contrast with optical tweezers: for an optically
trapped particle in a regime where viscous forces dominate over inertia (i.e.,
at low Reynolds numbers), the acceleration term (mg) can be neglected. It
is assumed that the particle achieves a terminal velocity instantaneously at
every new position during its motion [82]. The approximation cannot be
performed in Paul traps, where inertia has a key role on the ponderomotive
force; this, in turn, is the responsible for the trapping mechanism [I0§].
Any attempt to neglect inertia would result in a vanishing ponderomotive
force, and the inclusion of the noise term in the equation of motion would
produce a solution where the particle diffuses away from the trap center
(see |Approximate solution)). Instead, the solution we present here, based
on eq. , represents a situation similar to the overdamped optical trap,
whose of the position is characterized by a cut-off frequency wy = k/~,
where k is the stiffness of the trap [I04]. In our description, the cut-off
frequency is given by the parameter |A|, so that the effective stiffness of the
damped Paul trap is given by:

me2 Q2V2
k= 7 = B T2 (3.34)

where the first equality clarifies the key effect of the mass on the trapping
mechanism, i.e., a massless particle experiences zero restoring or pondero-
motive force.

Figs. (a) and (b) show the motion of the process (in blue)
compared with the model (eq. (6.8)), red-dotted line) on a log—-log scale.
Subfigure (g) presents an actual measurement of a trapped particle, showing
a corner frequency around 400 Hz, after which the spectrum decays as
1/w?. The red line is a fit to eq. , which can be used to calibrate the
particle’s motion at ambient pressure. Experimentally, careful consideration
is required on how this measurement is performed. The common detection
technique, also adopted in this work, consists in focusing a laser on the
particle and collecting the scattering light. This induces an optical force
which can noticeably modify the dynamics. In our experiment, we have
resorted to an extremely low effective [NA] to minimize the effect of the
dipole potential. In Fig. [3.3|(b), a simulation of the process is compared to
the model without any free parameters. The agreement is excellent except
for the micromotion peak at wq, which is averaged out in the model (as
is expected when using an model). The peak’s energy is however a
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negligible contribution to the total E[y?(t)] and, hence, the expression
can be safely used for calibration.

Fig. displays the dependence of o, and the thermalization character-
istic time with the parameters that are accessible in the laboratory, namely
pressure and voltage. The functional dependence was introduced in equa-
tions and , and a relevant absence in those expressions is the
trap frequency: at the 50 mbar to 1010 mbar pressure regime we find that
wq has a negligible effect in the particle confinement. At the same time, oy
is approximately proportional to the pressure.

3.5 Conclusions

In conclusion, we have solved the general stochastic differential equation
of a nanoparticle in a Paul trap, found a calibration method for the motion
of a levitated nanoparticle at ambient/low vacuum pressures, and ap-
plied it to a real experiment. The [PSD]| expression has been obtained by
computing an alternative (approximate) solution to the equation of motion
with the [WKB| method. With it, we have proved that y(t) resembles an
|OU] process at pressures close to ambient conditions, and studied (y%(t)) for
short and long times.

We have complemented our theory results with thorough numerical ex-
periments that validate the derived analytical expressions. We have also
used our code to study the dependence of the particle confinement with the
Paul trap parameters.

Our findings caution against naively assuming that the effective poten-
tial model can be applied to any set of experimental parameters. Also, as we
have found out, particles may equilibrate to the thermal bath very slowly;
assuming that they thermalize faster than measurement time without the
proper checks might lead to wrong conclusions.

If these two points are under control, the next step for any levitation
experiment is the calibration of the particle’s motion, and the results of this
chapter provide a novel method to do so for particles in Paul traps. Our
results can also be readily applied to estimate and optimize the particle con-
finement, which would be especially relevant in experiments that crucially
depend on the particles’ signal collection.
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Hybrid trapping regimes

The levitation of particles in vacuum allows the study of the
physical properties of extremely isolated objects. In this chap-
ter, we study a hybrid nanoparticle trap by combining a Paul
trap with a weak but highly focused optical beam. We in-
vestigate the dynamics of trapped particles in the combined
potential, and assess the suitability of the trap as a platform
to levitate particle species that would otherwise suffer from
heat photo-damage.

4.1 Introduction

One of the major drivers of modern research is the possibility to trans-
form laboratory experiments into technology that can be used by society.
In physics, the development of novel applications starts by understanding
the fundamental properties and components of the system under consider-
ation. Its investigation requires good isolation from external elements and
good spatial localization. This poses a challenge for microscopic devices,
because they are commonly studied in a substrate and the system’s signal
and properties are strongly influenced by the environment [I09]. Moreover,
when the object is small, measuring a signal may become challenging due
to the presence of neighbouring noise sources. To overcome these difficul-
ties, the use of particle traps, that levitate objects in isolation, has become
common practice in different fields [49, 110} 11T, 1T12].

The trapping of micro- and nanoparticles can be achieved by different
means. Paul or radio-frequency (RF) traps use a combination of AC and
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DC electric fields for the confinement of charged particles [75]. Their use
for the study of micro and nanoparticles is nowadays widespread [95] 96}, [98],
112], [113), 114, 115]. For instance, there is a large field devoted to the study
of the optical properties of atmospheric aerosols—and of liquid droplets in
particular [93] [94]. Another possibility is the use of optical tweezers—or,
more generally, optical dipole traps—, that can trap dielectric particles near
the maximum of a light intensity distribution, like the focus of a strongly
focused laser beam [21], 26], [1T6]. Although mostly used to trap dielectric
microparticles suspended in a liquid [29], optical tweezers also allow the
levitation of micro and nanoparticles in air or vacuum [54, [61]. Both tech-
niques also allow the precise optical detection of the motion of the trapped
particles, a central concern in the emerging field of levitation optomechan-
ics [48].

Nevertheless, to study micro- and nanoobjects that interact with light
very strongly, such as highly absorbing materials or particles with internal
degrees of freedom, these two trapping techniques suffer from serious draw-
backs. Optical tweezers, on the one hand, require high intensities to trap,
with typical powers of ~ 100 mW in levitodynamics experiments. Such
powers induce heat to even low absorbing materials [60], which can lead to
high bulk temperatures and particle photo-damage already at pressures of
a few tens of millibars [62]. Thus, although they remain the best option
to interact with the particle’s degrees of freedom and control its dynamics,
they cannot be used at low pressures with most object materials, and un-
fortunately this is the most interesting regime for fundamental studies. On
the other hand, Paul traps have low particle confinement [65], and although
they do not induce heat to the trapped particles, they offer modest detection
signals and interaction strength to interrogate the levitated object. Hybrid
traps, which combine two types of fields, present a possible workaround
and have already demonstrated their flexibility with magneto-gravitational
traps, combining magnetic and gravitational fields [117, 118, [119], and in a
Paul trap in combination with a Fabry-Perot cavity [66] [120].

In this chapter, we describe our implementation and characterization of
a hybrid nanoparticle trap that combines a Paul trap with a weak but highly
focused optical beam. We demonstrate that this system is versatile both for
levitating and optically interrogating particles, especially those that suffer
from optical absorption. In particular, we have validated the system with
gold nanoparticles, nanodiamonds and crystals hosting rare earth ions. We
have also studied numerically and experimentally the particle dynamics in
terms of its position distribution in equilibrium, which we have used to
reconstruct the trapping potential.

58



4.2. Experimental setup and methods

4.2 FExperimental setup and methods

The experimental setup is displayed in Fig. The end-cap Paul trap
is designed to provide optical access and a linear electric field in a large
volume around the trapping region. It allows the levitation of charged
nanoparticles of various different materials, and we have experimented with
silica, gold, diamond and Er+ doped crystals. The Paul trap (driven by a
signal of frequency between 1 kHz — 30 kHz, and an amplitude of 0.6 kV
— 2 kVpp) is mounted on a piezo stage inside the vacuum chamber, giving
access to pressures down to 1076 mbar.

The nanoparticles are prepared in ethanol suspensions and then loaded
into the trap with a custom made electrospray at ambient pressure. The
electrospray ensures that particles are highly charged (50 < n < 1000 of
net et charges in this study, depending on the particle). To detect the
presence of trapped particles during the particle loading process, we use a
weakly focused 980 nm diode laser that illuminates the trapping volume
(focus spot > 10um). Once a single particle is on the trap, a 532 nm
laser is turned on, adding the optical potential to the hybrid trap. The
scattered 532 nm light is collected and directed to a quadrant photodiode,
returning electric signals that are proportional to the particle motion in the 3
perpendicular directions z(t) (parallel to trap axis), y(t) (gravity direction)
and z(t) (beam propagation). These signals are sent to an and
recorded in a computer. Additionally, if the particle has internal transitions
or interacts strongly with the 532 nm laser light (e.g. highly absorbing
materials like our gold nanorods), the fluorescence can also be collected and
sent to a light-tight box. There, we can measure it with a fluorescence
camera or a spectrometer.

When a particle is in levitation, stray DC fields may push it away from
the center of the Paul trap. The most common protocol to cancel these
fields consists on creating an opposite DC voltage with the compensation
electrodes, by checking that excess micromotion—a forced oscillation at the
trap driving frequency that can be seen as a peak in the motion’s
lspectral density] (PSD]))—is minimized. However, by adding a DC electric
field with the electrodes, a particle at the center of the optical trap will
move away from the focus. In other words, cancelling stray DC fields and
pushing the particle away from the focus have the same effect in detection:
one cannot say if a reduction in the micromotion peak is due to the particle
moving away from the detection beam or due to a proper compensation
of the DC fields. To decouple these two effects, we have chosen to detect
and move the particle with the same system: a 4f pair of lenses. Once
the particle is trapped with the 532 nm laser, a 4f system can adjust the
angle at which the laser beam enters the back of the trapping objective.
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Figure 4.1: Experimental setup (a) Artistic representation of the hybrid trap-
ping scheme. A charged nanoparticle sits at the minimum of the combined effective
potential. The Paul trap end-cap concept allows for good optical access to the par-
ticle’s signal. (b) Photo of the trap inside the vacuum chamber viewed from above,
showing a levitated particle in the hybrid trap. (c) Setup sketch. A Paul trap,
driven by a high voltage sinusoidal signal, levitates a charged nanoparticle. The
particle is illuminated from the left with a weakly focused 980 nm diode laser to
facilitate the loading process. Once the particle is in the trap, a 532 nm laser is
turned on, adding the optical potential to the hybrid trap. The scattered light is
collected with a 0.8 numerical aperture and sent to a
(QPD) to detect the particle’s motion. The measured signals are band-
pass filtered (BPF) and sent to an where they are further pre-processed
and sent to a computer. The 532 nm laser can also excite internal transitions, in
which case the collected fluorescence is sent to a light-tight box and measured with
a fluorescence camera or a spectrometer.
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Figure 4.2: Probability of survival of gold nanorods (a) Sketch of a nanorod
(33 nm x 63 nm in the trap. The particle can be illuminated with 532 nm or 1064
nm laser light. (b) Experimental probability of survival of a levitated gold nanorod
at the focus of the hybrid trap when the pressure is progressively reduced (using
532 nm light). Green color marks that all particles achieved said pressure, yellow
marks the survival of some (but not all) of the trapped particles, and red that no
particle could be brought to that pressure. Most of the gold nanoparticles are lost
around 1 mbar. We repeated the experiment with 1064 nm light, obtaining similar
results.

At the same time, we keep the particle at the optimal position for motion
detection.

4.3 Results and analysis

We have tested the hybrid trap with metallic particles, which by defi-
nition suffer from high optical absorption and hence heating. This scenario
is portrayed in Fig. (a). Gold nanorods of 33 nm x 63 nm were loaded
into the trap at ambient pressure, and later on brought to vacuum to assess
its survival and stability at low heat dissipation conditions. As can be seen
in Fig. 4.2 (b), the particles could be safely maintained in the trap down to
10 mbar. Below this pressure, and depending on the power of the optical
trap, the probability that the nanorods would disappear increased dramat-
ically. At ~ 1 mbar most of the studied particles vanished, except for low
optical powers. In this last case, it was not possible to maintain a stably
trapped particle, which hopped in and out of the focus intermittently and
thus received a considerably lower average power. We also observed that,
when the particles disappeared from the trap, the event happened rather
suddenly, without clear prior changes in particle brightness. We speculate
that this is due to the evaporation of the outer layer of the gold particle,
which leads to a sudden change in charge to mass ratio and the ensuing
particle ejection.
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The Langevin equation of motion of a particle in a hybrid trap can

be obtained with Newton’s 2nd law:
mi + ml'e — %coswdtn:%—o%V\E\Q = o (t). (4.1)

Here, z(t) is the[CoM|motion, m is the particle mass [I01] and T"is the damp-
ing due to the interaction with residual gas molecules. From the Paul trap,
wyq is the trap driving frequency, @ is the particle charge, V' the trap voltage
and d is the characteristic size of the Paul trap. Regarding the optical trap,
a is the particle polarizability and E = E(z,, 2) is the optical field, which
we approximate as a focused Gaussian Beam (see Supplemental material)
to perform numerical simulations. Finally, on(t) is a stochastic force, with
n(t) being a unit intensity Gaussian white noise and o = /2kgT7y [102].

In equation we have not consider gravity, which is small compared
to the electric force (from the Paul trap) and the gradient force (from the
optical tweezers field), nor the scattering force, that can be neglected for
tightly focused beams (as is our case). We have included a stochastic force to
account for the thermal coupling with the environment. Since both relevant
deterministic forces are gradients, the total potential will be the addition of
the two individual trap potentials. However, note that by working with low
optical powers, the levitated particle explores large regions of the optical
trap and the dipole force cannot be approximated as a linear restoring
force, as is common practice in optical tweezers experiments. The Paul
trap potential, being much larger, can still be safely approximated as a
quadratic (time-varying) potential.

If we consider the adiabatic approximation for the Paul trap (i.e., we ap-
proximate the time-varying potential by an effective constant potential) [86],
then, at equilibrium, z(t) will follow the Gibbs probability density function

poc(@) = 7 exp(~F (), (4.2)
where Z is a normalizing factor, 5 = 1/kgT, and ¥(z) is the combined
hybrid potential. Hence, by estimating po(z) and inverting Eq. , we
can recover the trap potential.

This process is shown in Fig. [£.3] with simulated time traces. Here, we
have studied theoretically the effects of a decrease in the optical field’s in-
tensity. The simulations reveal that when the laser power is below 8 mW,
the position histograms start to deviate noticeably from a normal distribu-
tion. This is due to a reduced particle confinement, that lets the particle
explore the nonlinearities away from the optical trap center. Eventually, at
sufficiently low powers, the particle starts leaving and re-entering the beam
focus.
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Figure 4.3: Surge of nonlinearities at low intensities. The plots shows nu-
merical simulations of the position density distribution ps,(x) of 100 nm dielectric
nanoparticles (no absorption considered) for decreasing optical powers in the hy-
brid trap (A = 1064 nm). Below 20 mW, a reduction in the laser power brings
about position distributions that deviate more and more from a normal distribu-
tion (quadratic potential case, exemplified with the upper left plot). At 1 mW, the
particle leaves and re-enters the beam focus intermittently, resulting in long tails

in peo ().

We observe a similar behaviour in the laboratory. Starting at a “high”
intensity state (e.g., 20 mW of 532 nm laser light), a progressive reduction
of the power will lead after some time to a blinking of the particle, which we
interpret as the particle hopping in and out of the optical trap. Experimen-
tally, the blinking starts at higher powers than in the simulations. However,
this is to be expected, since when the particle is not perfectly centred in the
Paul trap, the RF driving may push it away from the focus before than in
would happen in the more ideal simulated case.

The potential reconstruction from real trapped dielectric particles is
shown in Fig. [£.4] plotting the profiles obtained at different powers. The
potential has the shape of a dimple trap [121], consisting of a large, flatter
trapping volume (due to the Paul trap), superimposed to a tighter optical
dipole trap, as represented in Fig. (b).

In these time traces, we have filtered out the contribution of the driving
AC field, which is never completely eliminated through field compensation
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Figure 4.4: Potential reconstruction (a) Process of potential reconstruction. A
dielectric particle (1) oscillates in the hybrid potential (2). A time trace x(t) of
the trapped particle is measured for a few seconds (3). From the time trace, we
compute an histogram of the position (4) to estimate the Gibbs probability den-
sity function peo(z) (see Eq. ) From this density function, we may obtain
U(x) = % In (Zpoo(x)) (b) Reconstructed trap potentials for three different pow-
ers of 532 nm laser light (blue line). The dashed red lines are only a guide to the
eye for the Paul trap section of the combined potential. (c) Photographs (accom-
panied by sketch pictures) of the effect of a displacement between the optical and
electric quadrupole field. If this displacement is small, a particle in the potential
minimum (i.e., at the focus of the beam) will follow the intensity maximum. How-
ever, if the displacement is increased further, the Paul trap eventually pushes the
particle back to its center and the particle’s brightness decreases suddenly. The
photographs portray the Paul trap moving towards the incoming beam. In this
case, the maximum of the particle brightness takes place when the Paul trap and
the optical trap are slightly misaligned, and the Paul trap exactly compensates the
optical scattering force.
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and perturbs the results. The presence of non-linearities in the detection
system (i.e., in the correspondence between detected signal and position)
also poses a problem for such potential reconstructions. To correct for this,
in our experiment we have eliminated fractions of the recorded time traces
in which it is clear that the particle is away from the trap centre, and have
inverted the remaining data with the expression found in Gittes et al. [122].

4.4 Conclusions

In conclusion, we have built a hybrid nanoparticle trap by combining a
Paul trap with a weak but highly focused optical beam, and we have proved
its suitability as an experimental platform to trap particle species with large
optical responses [98| 123, [124].

We have put our platform to the test with gold, diamond and Erbium
doped nanoparticles, trapping them and detecting its signal at optical pow-
ers below 10 mW, which are low when compared to typical optical tweezers
powers (~ 100 mW). We have also verified that the hybrid scheme easily
allows a reduction of the vacuum pressure, even below ~ 10 mbar with gold
nanorods. This contrasts with previous optical levitation experiments in
vacuum, where due to optical absorption of the trapped particles [60} 125],
the range of materials was limited to just a few options. Moreover, we no-
tice that there is still scope to reduce the heating, since in most experiments
the presence of the optical field is only required to perform short measure-
ments. To keep the particles in levitation the Paul trap suffices, allowing
for arbitrarily long levitation times.

We have also used the measured position traces to reconstruct the ef-
fective potential with the Boltzmann—Gibbs distribution, and compared the
results to numerical simulations of the stochastic equation of motion. As is
intuitively expected, the trap potential has a dip in the middle, due to the
optical field. Such calculations are a possible way to measure the nonlinear
terms of the optical intensity series expansion, which may be of utility when
trying to engineer specific trap potentials.

In the last decade, the study of levitated nanoparticles [48] has experi-
enced a large growth. In the coming years, the field will need to adapt to
regimes where other schemes find difficulties, and a particularly promising
direction is the study of isolated particles that strongly interact with light,
such as metals [I126] or particles with internal degrees of freedom [98) 124].
Prime examples of these are diamonds with color centers, quantum dots or
crystals hosting rare earth ions. Due to its versatility, the studied hybrid
platform is ideally suited to investigate such small objects, which live in a
domain that is mostly classical but, still, not completely free of quantum
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effects.
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Trapping and interrogation of a single NV
In vacuum

Inefficient heat dissipation of optically trapped particles in
vacuum s a challenge for levitation experiments aiming to
study quantum physics. Most nanoobjects, even with low ab-
sorbing materials, experience photo-damage in optical traps.
In this chapter we present our results of levitation in vac-
uum and [CoM| feedback cooling of a nanodiamond hosting a
single [nitrogen vacancy center, using a Paul trap to avoid
heating issues. The feedback motion control enables us to
optically interrogate and characterize the emitter response.
The developed platform is applicable to a wide range of other
nanoobjects and represents a promising step towards coupling
internal and external degrees of freedom.

The contents of this chapter are based on Ref. [98], article
published in Nano letters.

5.1 Introduction

Optomechanics offers a toolbox to investigate classical and quantum me-
chanical oscillators in a highly controlled way. Nevertheless, the controlled
generation of arbitrary superpositions of motional states [127], which would
be of high interest to both fundamental physics and quantum technology,
still remains in the future due to its very demanding technical requirements.
An exciting route towards these ends is the use of nanoscale mechanical res-
onators containing internal degrees of freedom [128), 129} [130], whose energy
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levels can be coupled to the motion of the oscillator. This scheme would
allow state transfer or cooling and outperform classical resonators, for in-
stance as ultra-precise sensors [128].

In this regard, nanomechanical resonators based on nanoparticles levi-
tated in vacuum are especially attractive, because they are highly decoupled
from the environment due to the absence of clamping, and hence exhibit
very large Q-factors, even at moderate pressures. In optical traps, optical
forces can be used to efficiently cool the nanoparticle [center of mass| (CoM])
motion and thus reduce the influence of thermal noise [59] [70]. Neverthe-
less, one could add even further functionality and control to the platform by
levitating nanoobjects with tailored specific properties. For instance, levi-
tated particles with internal degrees of freedom (DOF), such as controllable
spin systems, have the potential to be used in matter-wave interferome-
try [I31, 132, 133].

However, the optical levitation of nanoparticles with internal DOF faces
some challenges [62] [134]: on the one hand, large optical trapping powers
introduce a big constraint on the type of particles that can be levitated in
vacuum, since heat from residual absorption of the trapping laser cannot
be efficiently dissipated at low pressures. On the other hand, high vacuum
levels are necessary for maintaining motion coherence and attaining large Q-
factors. Hence, to avoid photo-damage, other methods to levitate particles
with internal DOF are needed.

An alternative approach to optical trapping is the use of Paul traps [75],
which have been widely applied to manipulate individual ions. The main
appeal of Paul traps is the possibility to levitate charged particles without
the aid of optical fields [64] 65 66], thereby widening the range of their
constitutive materials. Paul traps are thus well suited for the levitation of
particles with optical defects, like nanodiamonds hosting [nitrogen vacancy]|
centers. centers are optical emitters formed by a nitrogen impu-
rity and a vacancy in the crystal lattice of diamond [135]. centers are
attractive because they are a stable source of single photons even at room-
temperature, whose electron spin can be optically addressed and possesses
long coherence times [I36]. They have already been successfully used as a
qubit [137, [138] 139] and are excellent candidates for sensing electric and
magnetic fields by either using Stark or Zeeman shifts [140} 141}, [142]. So far,
Paul traps have been used to trap and optically interrogate small nanodia-
mond clusters at ambient pressures [63] and larger microdiamonds [97] host-
ing multiple centers. Nevertheless, levitation and detection of a single
[NV] center in vacuum, in a strongly underdamped regime of the nanopar-
ticle’s oscillation, has not yet been achieved, requiring a further level of
control on the particle dynamics compatible with single photon optical de-
tection.
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Figure 5.1: Experiment sketch: artistic representation of the trapping scheme.
A charged nanodiamond containing a single [NV] center sits at the minimum of
the effective potential of a Paul trap. The nanodiamond is illuminated with a
continuous wave 532 nm laser with a high numerical aperture|jobjective]
lens. The fluorescence emitted by the center is collected using the same [OBJ]
The simplified atomic structure of the [NV] center is also shown.

In this chapter, we detail our efforts towards coupling internal DOFs
with the oscillator’s [CoM] motion, by achieving two key experimental re-
quirements. Firstly, we demonstrate levitation in high vacuum of a nanodi-
amond hosting a single [NV] center. By trapping with a Paul trap, we avoid
particle photo-damage, and with low optical intensity are able to measure
the single photon emission and monitor the nanodiamond’s [CoM] mo-
tion (see Figure . Secondly, we implement a feedback scheme to reduce

the effective temperature of its motion (see|[Annex D)), thus improving

the particle’s stability and confinement at low pressures.

5.2 The NV center

The [nitrogen vacancy| center, or center, is a type of point defect in
the diamond lattice, consisting of a substitutional nitrogen atom adjacent
to a carbon vacancy (see Figure|5.2|(a)). It is the most studied and well un-
derstood of the diamond color defects, particularly regarding its electronic
energy level structure. In an the transition from the ground state to
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Figure 5.2: Structure of the center (a) Simplified atomic structure of
the center. (b) Schematic energy level structure of the center, showing
electron transitions and hyperfine splitting of the ground state. Values obtained
from [144].

the excited state can be non-resonantly excited with a green laser, since
the zero phonon line (ZPL) (consisting of ~ 5% of the total fluorescence
emission at room temperature) stands at 637 nm. A schematic energy level
structure of the is portrayed in Fig. |5.2 (b).

The [NV] center is a very convenient defect to work with in levitody-
namics, since its electronic spin can be read-out and manipulated optically,
vastly facilitating the realization of quantum physics experiments or of other
applications in quantum information processing. This happens because the
ground state of the , a triplet, has a single zero-field splitting of 2.87
GHz due to spin-spin interaction (£1 — 0), and the different hyperfine
levels also have different luminescences depending on the spin orientation.
Thus, since optical transitions must preserve the total spin, the electron
spin can be measured by just monitoring the fluorescence intensity, making
it easy to detect, for instance, Rabi oscillations [143].

The degeneracy between the mgs = +1 states can be broken under the
influence of a magnetic field due to the Zeeman effect, which to first order
is

AE = msgupB, (51)

where ¢ is the anomalous gyromagnetic ratio and up the Bohr magneton.
This expression suggests a way in which a magnetic field can couple the spin
and a mechanical degree of freedom, such as a translational or a rotational
variable, of a levitated diamond hosting a The first step towards single
spin quantum levitodynamics experiments is the detection of a levitated
single [NV]in vacuum, to which we dedicate the rest of the chapter.
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5.3. Trapped particle dynamics

5.3 Trapped particle dynamics

The [CoM] equation of motion of a particle levitated in a revolution sym-
metry Paul trap can be found by calculating the force experienced by a
charged particle in the Paul trap time-dependent electric potential [75]:

_ Vhcoswt

)
2d?

(22% —r?). (5.2)
where Vj is the voltage amplitude, w the driving frequency, ¢ the time
variable, d a geometric constant with length units and z, r are cylindrical
coordinates. Even though the particle’s Hamiltonian H (t) is explic-
itly time-dependent, under certain general conditions the motion can be
averaged over the high frequency w [12]. This is known as the adiabatic
approximation and ensures that the particle is governed by an effective po-
tential Ueg = %Q?l‘% for every axis x;, where €); is known as the secular
frequency of the i-th axis; more details can be found in

Therefore, for low frequencies the full equation of motion for the parti-
cle’s [CoM] along the z axis can be simplified in the following way

2qV,

cos(wt)zdt = odW;  —  dp, + ydz + kegz = odWy,
(5.3)

where p, is the momentum in the z direction, v the damping constant,
q the charge of the particle, ko = mQ? the restoring force of the effective
potential and cdW; a stochastic force with standard deviation o, associated
with the damping via the fluctuation-dissipation relation ¢ = +/2kgT7,
where kp is Boltzmann’s constant and 7' is temperature [102]. By reducing
the pressure and hence 7, the motion decoherence is reduced, while the
inversely proportional Q-factor of the oscillator increases. This is why a
trapping scheme capable of bringing particles to low pressures is appealing.

5.4 Experimental methods

5.4.1 Paul trap

Our trap design (see Figure ) has an endcap geometry for good
optical access. It is made of two assembled steel electrodes separated by
1.4 mm mounted on a ceramic holder; the design specifics can be found
in These electrodes are mounted on a three axis piezoelectric
stage (Figure ) and driven by a high voltage signal generated by a
[Field-Programmable Gate Array| card and a high voltage amplifier
(Matsusada AMT-1B60). Theacts as a wave generator, and provides
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a sinusoidal output at adjustable frequency and amplitude. Usual working
parameters in our experiment are driving frequency w/2m = 20 kHz and
amplitude Vj in the range of 0.75 kV, to 2 kV,,. Two extra rods pointing
towards the center of the trap act as compensation electrodes and are used
to eliminate stray fields—thus minimizing residual micromotion driving.

5.4.2 Particle dispersion and electrospray

We have used a custom made electrospray to load particles into the trap
at ambient pressure. The particles were injected with the electrospray by
activating a 3 kV voltage source and then pumping the dispersion. A few
milliseconds after, they would pass through the center of the trap potential,
and a few of them would lose enough energy (due to air damping) to stay
trapped in the potential. In fact, it was usual to trap several at once. Excess
particles were pushed out of the trap by carefully reducing the voltage and,
after only a single particle remained, the electrospray was removed and the
vacuum chamber closed.

The charge of the trapped particles can be estimated by assuming the
particle’s mass, a reasonable assumption given the fact that we filtered the
particles by size with a porous filter. As we have seen, in the underdamped
regime (i.e., low damping by air molecules), the equation of motion for
the [center of mass| (CoM]) of the particle is described by the Mathieu [12]

equation,

(1) — 2q - cos(2T)u(t) = 0, (5.4)
where
a 2QV
9= B (5.5)

Here, @ is the particle charge (not to be confused with the Q-factor), V' the
voltage, m the particle mass, d a geometrical parameter (which is constant
and can be calculated for a given trap) and w the driving angular frequency.
Since we set the voltage and frequency, the only unknown parameter is Q.
Thus, if the parameter ¢ can be measured, we can solve equation for
() and find the particle charge.

This parameter ¢ can be found indirectly. Firstly, we measure the ratio
between the particle secular frequency 2 and the driving frequency, g = 2%.
B is a characteristic exponent of the Mathieu’s equation, and is a function
of ¢ only: 3(q). Therefore, by numerically inverting the expression 5(q) we
get ¢(f). Finally, by plugging the obtained value and calculating

q(B)md*w?

@=""y

(5.6)
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we can estimate the particle charge. Usual elementary charge numbers that
we have measured this way lay in the range of 40 to 150 e™.

The particles consisted of nanodiamonds that we bought from Adamas
Nanotechnologies (40 nm in diameter, 1-4 , and were suspended in
ethanol in a ratio of 20 ul of the commercial dispersion for every 40 ml of
ethanol. To avoid particle clustering, we utilised a syringe filter with 100 nm
pore size and sonicated the dispersion for 10 minutes before the experiment.

After the spraying, trapping events were monitored with a CMOS cam-
era, using the scattering from a weakly focused 980 nm laser (Figure |5.3b).
The Paul trap can be subsequently moved with the piezoelectric stages to
bring the particle into the focus of a high pumerical aperture| (NAJ) mi-
croscope [objective] (OBJ]) (Olympus LMPLFLN 100x). The is used to
illuminate the nanodiamond with a 532 nm laser, thus exciting the [NV]tran-
sition, and also to collect the emitted fluorescence. The fluorescence light
is then directed towards a light-proof box, where it is selectively analysed
with an felectron multiplying camera] (EMCCD)) (Andor iXon+ EMCCD), a
spectrometer (Acton Spectrapro 2500i), or coupled into low dark-counts sin-
gle photon javalanche photodiodes| (APDs)) (Perkin Elmer SPCM-AQR-14).
When the where used, single photon counting was performed with a
PicoHarp 300 system. Due to the low intensity of the two laser beams, we
did not detect any effect of the dipole force on the particle dynamics in the
Paul trap.

5.4.3 Fluorescence detection

After trapping, we characterized the fluorescence emission of the loaded
nanodiamonds at ambient pressure. For a given particle, we first collect the
fluorescence with the [OBJ] and with a confocal microscope and a series of
filters we eliminate unwanted sources of light that would add noise to the
measurements (see for details). Preliminary fluorescence imaging
of the particles is performed with the [EMCCD]| camera. If fluorescence is
detected (sometimes the trapped particles have no emitters), we direct the
beam to a pair of single photon detectors set up in a [Hanbury, Brown and|
configuration and study the emitters photon statistics [145].
This setup is used to measure the time dependent intensity correlation func-
tion, defined as

GCI)I(t+T):)
(@ -
where [ is the intensity operator and (: ... :) indicates normal ordering. For

a single photon emitter, g(®(0) = 0 and for two or more (equal) emitters
g (0) > 0.5. External contributions can lead to a ¢®)(0) > 0 even though

g?(r) 2

(5.7)
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Figure 5.3: Experimental setup: (a) Sketch of the experimental setup. A 532
nm continuous wave laser excites the [NV] center. The emitted fluorescence is col-
lected back through the same microscope (Olympus long working
distance, 0.8), filtered, and sent to a light-proof box for fluorescence detection.
The particle’s motion is monitored by focusing a 980 nm laser onto the particle
and detecting the forward scattered light with a [quadrant photodiode] (QPD]). (b)
Camera image of the trap viewed from above, showing the end-cap Paul trap elec-
trodes, compensation electrodes, and the lens. (c) Signal processing blocks of
the feedback system. The particle’s motion z(t) is digitally acquired in the
and band-pass filtered to eliminate noise and unwanted modes. Then, its deriva-
tive (t) is numerically calculated and the product z(t)&(t) is used to modulate the
amplitude of the driving radio frequency signal. The modulation amplitude and
delay are set to values that minimize the mode energy. (d) Cutaway of a Paul trap
electrode. Particles are levitated at the trap’s center of symmetry, above the inner
rod. The trapping pseudo-potential is generated by grounding the outer electrodes
and applying the driving radio-frequency signal V() to the inner ones; a white
alumina tube is used for electrode insulation.
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the main contribution stems from a single emitter, which is ensured by
g? (0) < 0.5 [146]. This condition is the criterion we use to identify trapped
nanodiamonds holding single NVk.

In a real experiment one never has access to the clean ¢(®)(7) function.
Instead, for continuous excitation, we measure the joint second order corre-
lation function of the emitter (with intensity (ns) = s) and the background
noise (with intensity (np) = b). Its expression will be

g@ = ((s(t) +b(t)) (s(t +7) + b(t +7)))

Gsp = (S+b)2 ’ (5'8)
2 (2) | 12

(2)  s°gs  +b"+2sb

Isb = (8+b)2 ) (59)

(2)

where (...) indicate expected values, g5~ is the emitter second order corre-
lation function and it has been assumed that
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e The background noise is quantum mechanically uncorrelated with the
emitter fluorescence

e The background noise has Poisson statistics, gl()Q) =1.

Therefore, by measuring s and b it is possible to correct gi? (which is
the function measured in our single photon counting system) to obtain the
emitter gg).

Analogously, by defining p = we obtain

_S_
s+b>

@ _ 9P+ -1

9s 2

; (5.10)

Background noise was measured to be 150 + f(I) counts per second,
where 150 counts per second was the average dark count rate in our
and f(I) was a pumping laser intensity dependent fluorescence contribution,
due to optical elements in our setup.

After the measurements were corrected for background noise, the sets
of experimental ¢((7) functions were fitted with a least squares criterion
to a modified three-level model [147]

17l _ll
O (r) =1+ 12 (Ce—n _(1+c)e Tz). (5.11)

Since we do not measure g(® (1) but ¢®(7) * h(7), where h(r) is the
system instrument response function, we fit the data with ¢(®(7) % h(7)
instead. With the obtained parameters, we calculate g(2) 0)=1- pfc to de-
termine whether the emitter is a single photon source or not. The confidence
levels for ¢(?)(0) with +o were calculated from the inferred p s distribution.
Measurements of three particles are shown in Figure

We detected several single [NVE in trapped nanodiamonds, with usual
count rates of 2000 to 7000 counts per second at excitation powers between 1
mW and 5 mW. Even though the rotation of the trapped nanodiamonds has
not been studied in this experiment, measuring and controlling the crystal
Fuler angles will be important for coupling internal and external degrees
of freedom, as the spin interaction depends on the orientation. This
control could be implemented by using elongated nanodiamonds, whose
birefringence would transduce the particle’s rotation into a modulation of
the intensity and a change in the light polarization [126, 148 [149].

When a single [NV] was detected, we proceeded to eliminate stray DC
fields that pushed the particle slightly away from the center of the trap.
This helped to minimize the micromotion driving, and thus the stability
of the particle at low pressures. The procedure consisted in sweeping a
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Figure 5.4: Intensity correlation measurements. (a) Single g (1) mea-
surement along with a saturation curve (taken to determine the optimal excitation
power: a trade-off between photon counts and heating induced to the particle).
When detect a photon (i.e., an incoming photon excites an electron of the
detector semiconductor to the conduction band), they often emit some fluorescence,
which—depending on the wavelength and intensity—can be detected by the oppo-
site[APD] This results in wrong photon counts, since they are mixed with those of
the emitter. In our experiment, one of the (a PicoQuant had espe-
cially intense fluorescence emission after photon detection in the visible. However,
these “intruder” photons were easy to spot, since they appeared as peaks in the
g (7) measurements. Such fluorescence photons were detected by thewith
always the same delay: the time required to travel the distance between the Pico-
Quant and the other APD (Perkin Elmer). This is why two sets of data—one
at each side of the dip—have been deleted in the plot. The PicoQuant [APD] was
replaced shortly after by a Perkin Elmer identical to the other one (same
model); this vastly reduced the problem of spurious detection. (b) and (c) show
further measurements of a 2 [NV]and a single [NV] nanodiamond
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range of volts (between -5 V and 5 V) for each of the three compensation
electrodes, setting on the values that minimized the micromotion peak in
the motion [PSD] This had to be repeated for every new particle, since it
was prone to drifting and sign changes; the most likely cause for this was
the introduction of charged particles in the chamber during the use of the
electrospray, since this could change the static electric field in the trapping
region. However, by following the described compensation procedure, parti-
cles could be stably trapped at ambient pressure over very long times: some
levitated nanodiamonds were kept for weeks, until they were deliberately
substituted by other nanocrystals.

5.4.4 Motion PSD and feedback

At ambient pressure, the stochastic forces due to the interaction of the
particle with air molecules damp oscillations and lead to overdamped Brow-
nian dynamics, as we have seen in Thus, when a trapped single
[NV]is detected, we decrease the pressure to bring the chamber to vacuum.
The voltage amplitude used to trap particles is 2 kV,,,, but Paschen’s law
(see Fig. predicts a minimum of the breakdown voltage of air at 750
Vpp [I50]. At the right pressure (which in our case is ~ 10 mbar), voltages
above this value will ignite a plasma, leading to particle loss. Consequently,
while decreasing the pressure we also reduce the voltage amplitude below
750 Vpp; at pressures lower than 5 - 107! mbar the voltage amplitude can
be safely increased again.

At these low pressures, under the adiabatic approximation, the
[spectral density] (PSD]) of the particle’s takes the expression
2

o?/m

(%) @2+ (@2 - )

S, (Q) = (5.12)

where m is the particle’s mass, o = /2kgT"y is the Brownian noise standard
deviation, €); is the secular angular frequency of the oscillator and its Q-
factor represents the number of “coherent” oscillations of the particle. By
introducing the normalized damping constant I' = ;L which for low damp-
ing corresponds to the full width at half maximum of the oscillator transfer
function, the O-factor is defined as Q = % By fitting the measured
to expression , we can indirectly measure the value of Q and €);.

For pressures below 1 mbar, the Q-factor (or autocorrelation length) of
the particle’s motion is sufficiently large to activate the cooling and reduce
the energy of the particle. The feedback system, described in Figure 5.3k,
is a type of [parametric feedback cooling] (PFC]) and is implemented in the
following way: a 980 nm laser is focused with a low effective and su-
perimposed with the focus of the trap’s center. The focused light, together
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10° ! ! !
: : . — He
— Ne
— Ar
: : : — H,
107 b ........................ ....... e

V, (Volt)

i i
10! 10° 10! 10° 10°
pd [Torr cm]

Figure 5.5: Paschen’s law: Paschen curves obtained for helium, neon, argon, hy-
drogen and nitrogen. The vertical axis indicates the breakdown voltage—the min-
imum voltage that causes air to become a plasma (i.e., electrically conductive)—
between two parallel metal plates as a function of the pressure times the dis-
tance between the plates. Image by Krishnavedala, under the Creative Commons
Attribution-Share Alike 4.0 International license.

with the light scattered by the particle, are collected by the [OBJ] The 980
nm light is then directed onto a [quadrant photodiode (QPD]), which ex-
tracts signals that are proportional to the particle’s position V;(t) o< z;(t)
for the i-th axis. For the z and y axis, this signal is obtained via differential
measurements of the intensity on the quadrants. Conversely, the dynamics
in z are detected from a modulation on the total intensity, resulting from
the interference between the laser beam and the position dependent particle
scattering (see. These signals are fed to the and processed
(Figure ) Then, the modulates the amplitude of the driving
voltage to cool down the energy of the motion ¢ [64]. The driving
signal applied to the inner rod has the expression

V) = Vo1 + & - Vi(t)Vi(t)) cos(wt), (5.13)
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where Vj is the driving amplitude and & is the modulation depth, which is
experimentally determined.

Since the feedback is a parametric modulation, V' (t) will enter the equa-
tion of motion as a product with x(t)

d2
de + Q% = —f(t)z, (5.14)

where f(t) = k- V(t)V(t). Equation is a simplified version of our
system, but is enough to understand the idea behind parametric cooling (or,
alternatively, driving). Eq. represents a simple harmonic oscillator
being driven by a signal f(¢)z that is proportional to its own response x.
Since the particle motion x(¢) has a peak at § (corresponding to its secular
frequency), z(t) ~ Acos Q. Therefore,

f(t)x(t) o< A(cos QU + cos 3Qt), (5.15)

by a simple trigonometric identity. The 3€); is off-resonance of the oscillator
transfer function, and this component can be neglected. In contrast, the
component at 2 will be on resonance, and have a large effect on the dynam-
ics. Thus, the parametric modulation will have approximately a driving
effect on the motion of the particle: by adjusting the delay accordingly (in
phase or at push-pull), we can either excite or damp the particle oscillations.

To cool the motion along the z, y and z axes with [PFC] the secular
frequencies of the trap need to be different for every direction. Otherwise,
cooling one axis could result in heating another that shares the same fre-
quency. This is because the motion of the translational modes is uncoupled,
and therefore the phase between them is undefined.

The measurements of this chapter have been realized in a trap with
perfect revolution symmetry, and thus, trapped particles had equal eigen-
frequencies at the radial directions. However, this symmetry can be broken
with a slightly different geometry. By modifying the electrodes—for in-
stance, introducing a “cut” on the outer metal cylinder [64]—, the effective
electric field perceived by the particle changes, separating all three frequen-
cies.

We explored this idea by introducing cuts into the trap steel jackets,
and built a new design that separated the two radial eigenfrequencies. This
design is shown in Figure Nevertheless, it was decided that a better ap-
proach to cooling would be the use of (separately controlled) compensation
electrodes. This will be the topic of the next chapter.
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Figure 5.6: Paul trap with broken symmetry: (a) Perspective of the trap. It
includes a small cut of the outer steel jackets along the vertical direction, resulting
in a slightly smaller y eigenfrequency. (b) Plan of the trap. The rods on the left
and right side of the ceramic mount are used to drive the trap’s electric field. On
the upper side, the compensation electrodes can be seen, forming and angle of 45°
with respect to the z direction. (c) Elevation of the trap.
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5.5 Results and discussion

Observed secular frequencies in the trap axis direction (for V,, = 750)
are specified in Table

Table 5.1: Secular oscillation frequencies, observed in trapped nanodiamonds.

Min. freq Typical Max. freq

- (1.5 kHz, 6 kHz) 15 kHZ

Particles at low pressures were much more stable when stray fields had
been cancelled with the compensation electrodes. Without 532 nm excita-
tion light and only some weak 980 nm illumination to detect the [CoM] we
were able to trap nanodiamonds at pressures as low as 10™3 mbar, where
the particle’s oscillating motion attained Q-factors above 103 (Figure );
at lower pressures the nanodiamonds generally became unstable. The can-
cellation of the stray fields was also required for feedback cooling. With it,
the energy of the axial[CoM|mode could be reduced to a fraction of its value
at thermal equilibrium

<mQ2x2> = kgT, (5.16)

expected by the equipartition theorem (see for details on the
trapped particle effective temperature). Figure shows the effect of the
feedback on a nanodiamond levitated at 5 - 10! mbar, demonstrating a
reduction of energy of the eigenmode.

We thus achieved energy reductions of 6 to 9 dB at pressures between
1072 mbar and 10~ mbar, which corresponds to effective temperatures in
the range of 75 K to 38 K. This reduction in energy is partly limited by the
signal to noise ratio (SNR) from the signal measured using the but
the biggest restriction is the level of vacuum. Indeed, at lower pressures
the particle’s motion is more predictable and the feedback performance
improves.

The pressure level is, however, limited by diamond photo-degradation.
Although nanodiamonds in Paul traps do not inherently suffer from heating
due to optical absorption, a certain amount of optical power is required to
interact with the single center, whether for excitation or for motion
detection. As a result, laser power must be high enough for a good SNR,
yet sufficiently low to avoid heating up the particle excessively. At ambi-
ent pressure, this limitation is not present since the interaction with air
molecules not only damps oscillations but is also sufficiently high to keep
the particle’s lattice temperature at equilibrium with the environment. It
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must be noticed, nevertheless, that heating is not a problem in more general
scenarios. In this experiment, we have used continuous wave illumination
of the nanodiamond, but once a single NV is detected, we can simply use
pulsed schemes to readout and manipulate the NV spin. In this case, the
laser would be off most of the time.

In order to probe the capacity of the nanodiamond to withstand heat
dissipation, we performed ¢(® (1) measurements at different pressures. We
obtained stable fluorescence counts up until the 10~ mbar to 5-10~! mbar
range, with 1 to 3 mW of 532 nm power; no signature of quenching due to
high temperatures was observed under these conditions [I51]. At this point,
a progressive decrease in the scattering signal was apparent, indicating a
possible shrinking of the nanodiamonds.

Figure shows the ¢(®)(7) measurement and spectrum of a single
in a nanodiamond trapped at 0.5 mbar, the same on which we applied the
feedback shown in Figure[5.7d. Figure[5.8b shows the fluorescence emission
spectrum obtained for this [NV] The two peaks at A = 620 nm are caused
by Raman scattering (OH stretching) of ethanol traces [I52] present in the
nanodiamonds.

5.6 Conclusions

In conclusion, we have demonstrated stable trapping of nanodiamonds
and optical readout of a single center at pressures down to 5 - 107!
mbar. This is two orders of magnitude lower than previously attained with
optical traps [62], where thermal damage limits access to higher vacuum
levels. Furthermore, our platform enables us to cool down the particle’s
translational modes via parametric feedback.

In future experiments, the experimental setup can be improved in var-
ious ways. Firstly, to attain control over the spin system of the levitated
[NV] center, we will need to design and add a microwave antenna in the trap.
Secondly, to perform spin echo experiments, the continuous illumination
with 532 nm light, that we have used in this experiment and is the major
reason for particle degradation at vacuum, will not be required; instead,
shorter m and 7/2 pulses (necessary for initialization, driving and readout)
will suffice, allowing us to work at even lower pressures. Finally, a new type
of linear feedback (unlike the nonlinear parametric feedback) can be im-
plemented by acting on the particle through the compensation electrodes.
This will be the topic of the next chapter.

Having such a high level of control of a particle hosting emitters is
a decisive step towards achieving strong coupling between a spin and the
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Figure 5.7: Motion and feedback: measurements of the particle’s motion and
feedback. The translational modes are driven by thermal noise, which is dominant
for Brownian particles such as 40 nm nanodiamonds. (a) [power spectral density|
in log-scale of the particle’s showing increasingly better defined reso-
nance peaks at lower pressures. Approximate values of the powers at the peaks are
normalized to the first plot maximum; the area under the curves is proportional
to the particle’s [CoM] temperature. The flat part of the spectrum is dominated
by laser shot noise. (b) Q-factor inferred by fitting the measured of a single
nanodiamond at different pressures to the one expected from a harmonic oscillator
driven by Brownian noise (see eq. ) The bigger error bars at low pressures
are due to fitting uncertainties, since most of the oscillator response is buried in
the noise floor. (c¢) and (d): Temperature reduction of the energy in the eigenmode
by a factor of 4, corresponding to a temperature of 75 K. In panel ¢) the feedback
is off (no potential modulation) while it is on in panel d) (potential modulated at
2Q)). The measurements are performed on a 40 nm diamond at 5 - 10~! mbar at
the same time as a ¢(®)(7) intensity correlation measurement was being taken (see

Figure .
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Figure 5.8: Cooled single |NV g? (1) measurement. (a) ¢g®)(7) intensity
correlation measurement of the INV[~ fluorescence of a nanodiamond with applied
feedback (data shown in Figure[5.7). The correlation measurement is fitted with a
modified three-level model [I47] convoluted with the instrument response function,
with ¢(®(7) showing a minimum at 0.4 +0.1, and thus the presence of a single
center. Other ¢(®)(7) measurements for different nanodiamonds are shown in Fig.
5.4 (b) Fluorescence emission spectrum of the single @ center. The two peaks at
625 nm are due to Stokes Raman scattering, and indicate the presence of ethanol
traces from the electrospray in the particle.

particle’s mechanical degrees of freedom [128], 153, [154], a clear path towards
observing and studying quantum phenomena at the macroscopic level.
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Optimal control of an optically levitated

In this chapter we discuss the results obtained using a[linear]
[quadratic requlator] controller to cool the[center of masd mo-
tion of an optically levitated nanoparticle. The feedback,
with gains automatically optimized by gradient descent, ex-
erts a Coulomb force on a charged particle with a pair of
electrodes that are controlled with an [FPGA]l The cooling
technique requires less optics than former optical feedback
schemes, achieves lower [CoM| temperatures and has shorter
transients. The technical details of the implementation on
the are also discussed.

The contents of this section are based on Ref. [106], article
published in Physical Review Letters.

6.1 Introduction

particle

Levitated particles [I55] are highly isolated and decoupled systems. As
such, they offer new platforms to test quantum mechanics at the mesoscopic
scale. However, the experimental possibilities with levitated particles go
beyond those of clamped optomechanical systems, since they can be used
to study internal phonons, quantized internal degrees of freedom [98], [124]

and matter-wave interferometry.

As with clamped resonators, a general prerequisite of these experimental
proposals is the ground state of motion, which—for levitated systems—had
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not yet been achieved at the beginning of this thesis. Ongoing efforts con-
centrate on cavity [67, 69] and feedback [55] [70] cooling of the [center of]
@ motion of optically levitated particles, with [parametric feed-
back cooling] (PFC)) [55] being the current standard technique for motion
control and the only to report sub mK temperatures [71]. An all-electrical
feedback approach for highly charged particles has also been proposed [156]
based on the recent development of charge control in nanoparticles [I57, [158]
but, from a design point of view, it is a good idea to separate the feedback
force and the trapping potential, since this will add flexibility to the system
and allow for more sophisticated feedback schemes, such as[optimal controll
protocols [I59] (see for details).

For linear observable and noiseless systems, the [OC|law is known as the
llinear-quadratic regulator| (LQRYJ) and is widely utilized in larger mechani-
cal systems [159]. It guarantees that a dynamical system will minimize its
energyﬂ in the fastest way possible. For a levitated nanoparticle, the
takes the law of a proportional-derivative controller with optimal gain co-
efficients. These can be determined analytically, but an additional
algorithm can autonomously find the optimal gains without
prior knowledge of the system parameters. The adaptiveness of the feed-
back is an especially relevant feature in more sophisticated schemes; for
instance, the introduction of a Kalman filter [I60] where the coefficients
have a high degree of uncertainty, can transform the tuning of the feedback
into a high dimensional optimization problem. If different particle species,
pressures and regimes need to be accessed, a [MI] algorithm might become
indispensable.

In this chapter we present the results of our experiment on feedback
cooling and control of a mode of the [CoM| motion of an optically levi-
tated charged nanoparticle. As the main novelty of our work, we have used
a [MI] controlled feedback, exerted by electric fields through
[Programmable Gate Array] (FPGA) controlled electrodes. This scheme is
considerably easier to implement than previous optically-based feedback
schemes [55}, [70] and, importantly, can be included in Paul trap experiments
in a completely analogous way.

With a considerably simple experimental setup, the [LQR]in our exper-
iment yielded [CoM]| temperatures that are between one and two orders of
magnitude lower than m [55] over the 10~! mbar to 10~7 mbar range
in which we performed the experiment, and had transients 10 to 600 times
faster than regular [cold damping] (CD]). As we will discuss, the cooling is
eventually limited by the detection noise floor, yielding a minimum temper-
ature of 5 mK at 3 x 1077 mbar.

'Defined in a way that will be made precise in the next section.
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6.2 Theory

The [CoM] motion along the z-axis of an optically levitated particle can
be described by the stochastic differential equation

§+ T + wiz = %n(t) +u(t), (6.1)

where m is the particle mass [101], " is the normalized damping term due
to the interaction with residual gas molecules, wq is the oscillator’s natural
frequency, on(t) is a stochastic force with zero mean and autocorrelation
R(7) = 0%§(7), associated with the damping via the fluctuation-dissipation
relation [102] o = /2kgT'mI’, and u(t) is an externally applied feedback
force of arbitrary form. Experimentally, the velocity v(t) = #(t) is inacces-
sible. We can only measure a noisy position, z(t) = z(t) + £(t), where z(¢)
is the observed position (not to be confused with the motion along the Z
axis) and &(t) is detection noise, in our case dominated by shot noise.

If equation describes the system evolution accurately, there exists
an law [159] u(t) that minimizes the expected energy functional

J=E [ /O ! (a:Z(t) + qu(w(t))) dt] ; (6.2)

where p is a weighting parameter and 7 is the energy integration time;
both can be chosen at will, in a trade-off that the feedback designer will
need to settle. The expression of u(¢) that minimizes J is given by the
controllerﬂ [159]:

u(t) = K - (igg) K= (k ki), (6.3)

where K is a constant matrix whose coefficients can be calculated numeri-
cally (see the simulations section).

We can make p almost arbitrarily small because we don’t need to worry
about the energy spent on the control signal u(t). It is quite intuitive to
see that, the smaller the value of p, the better the performance of the feed-
back but also the higher the energy requirements. In general, however, one
cannot afford to “ignore” the feedback contribution. In bigger, macroscopic
feedback systems (for instance at the industrial scale) a small prefactor p in
u(t) can result in large fuel expenses or unpleasant surprises in the electricity
bill.

In our experiment the only restriction is that the generated feedback
signals are below the 1 V level, the maximum voltage allowed in the FPGA]

2See for details.
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(Red Pitaya STEMlab board) analog output. In practice, as observed in
our simulations, this is always the case for p > 10™%. Then, for a fixed T,
the [OC] law will minimize an expression that is approximately proportional
to the particle energy, J oc (x2(t)). As a corollary, a proportional-derivative
controller with expression u(t) = kpx(t) + kqv(t) will minimize the energy
among all other possible feedback protocols w(z(t)), either linear or non-
linear [I59]. In particular, a linear feedback scheme should outperform
PEC| [55], which relies on a modulation of the potential. The case where
only a damping term is considered (k, = 0) is usually known as [161].
While the final minimal temperature for CD and in most experimental
conditions is the same, the [LQR] has significantly shorter transient times,
since by definition it minimizes energy over tim

The optimal controller can be separated in two steps: firstly, an optimal
phase state estimator, known as Kalman filter [160, 162 [163] (see,
that will produce estimates of (z(t),v(t)) given noisy position measurements
z(t); secondly, an optimal feedback based on . The combination
of both is known as a|linear-quadratic Gaussian regulator| (LQG]) controller.
In our experiment, instead of a Kalman filter, we approximate the phase
space coordinates as

(2(t),0(t)) = (2(t), —woz(t — ¢/wo)), (6.4)

with ¢ = 7/2. Not using a Kalman filter yields higher tempera-
tures, but results in a considerably simplified digital signal processing unit.
Additionally to the feedback we have implemented a[ML]algorithm that au-
tonomously optimizes the parameters (kyp, kq) by minimizing (z(t)), adapt-
ing itself to different experimental conditions.

6.2.1 Spectral densities and T.g

Introducing the expression of u(t) given by a controller in the previ-
ous equation of motion (i.e., a proportional-derivative feedback controller),
we obtain the stochastic differential equation

i + D+ wie = —(t) = k(e +§(0) = ka(0(®) + @), (65)

where k, and kq are the feedback gains and {(t) is a signal representing mea-
surement noise. The model described by eq. is accurate as long as the
optical field is well approximated by a quadratic potential. This is usually
the case at pressures above 50 mbar, where the viscous damping dominates
the particle’s dynamics, and is also a good description at lower pressures

3See for details on the temperature definition.
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when the feedback u(t) restricts the particle’s motion to the vicinity of the
optical trap center.
Taking the Fourier transform of (6.5]), defining

F(E(t) = Ae(w

~—

and solving for X (w) we get

o/m
B+ hy— ) + i@+ k) )
(p + ihaw) A ()

B (wg + kp — w?) +iw(l + kq) (6.6)

X(w) =

Equivalently, the Fourier transform including the measurement noise
will be
o/m
(wE + kp — w?) 4+ iw(T + kq)
(wE — w?) + iwl
(wE + kp — w?) +iw(T + kq)

X(w) +Ae(w) =

Ay (w)+

Ag(w). (6.7)

By using S, (w) = E(] X (w)|?) and the fact that £(¢) and 7(t) are uncor-
related we find the [PSD of both the real position and the position that is
measured with the [T] detector:

o?/m?
S =
() (W +kp —w?)2+ (T + k‘d)2w2+
k2 + k2w?
2 p22d 2 202’ (6.8)
(wg + kp —w?)2 4+ (I' + kq)?w
0'2/m2
S _
L B N G (A A
(wE — w?)? + TW? 9

B+ ky P2+ (T + )% 7€ (69
where S¢(w) = 02 is the detection noise level (constant at the spectral range
of interest in our experiment). The second term of the absent in freely
oscillating particles, is due to the introduction of noise by the feedback and
becomes dominant for large k,, kq gains. The feedback also introduces a
correlation between detection noise and position, affecting the [PSD] shape
measured through the detector and making it differ from the
real position expression in eq. (6.8)). For small kq the mentioned differ-
ence between Sy, (w) and Sz(w) is negligible. However, for larger values of
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kq the correlation of detection noise and z(t) will produce a reduction or
squashing of the noise floor around wy in Sy, (w). To avoid underestimations
of the particle’s energy, we introduce a second, [out-of-loop| (OoLl), detector
with uncorrelated noise. The [Ool] which was omitted in previous levito-
dynamics feedback cooling experiments [55] [70} [71], is commonly found in
optomechanics experiments with feedback-cooled clamped oscillators.

If we define 5(t) as the measurement noise in an detector (i.e., not
used in the feedback system), we can obtain the new measured with a
completely analogous derivation as before

02/m2
Soo =
0oL (w) (Wi +kp —w?)24+ (T + kd)2w2+
kg + kﬁwQ

2, 2
. 6.10
(g + kp — w?)2 + (T + kq)2w? 7e T (6.10)

In this experiment, however, we haven’t used the real particle velocity.
Instead, we have approximated

v(t) ~ wox(t — 1), (6.11)
where 7 = ¢/wg and ¢ = 7/2. By using the fact that F(z(t — 7)) =

e~™T X (w) we may obtain new expressions for the [PSD5. Considering only
a derivative gain kq and defining

G(w) = (wE — kqcos(wT) — w?)? + (Tw + wokq sin(wT))?, (6.12)
then the new [PSD] expressions will be

o?/m? Wik} ,

Siw) = 7 ot et (6.13)
Sia ) = T + O (6.14)
SooL(w) = % + 20(—302 +03. (6.15)

These [PSDE are very similar to the ones found before for values of w
close to wy as long as ¢ is exactly m/2. Nevertheless, for values smaller or
larger than /2 the resulting will have a small asymmetry, very visible
in the [[T] noise squashing. Figure [6.1] shows the resulting theoretical [PSDE
with a properly tuned delay, whereas the case of ¢ # /2 is displayed in
Fig. Experimental data with different delay values is shown in Fig.
showing good agreement with the derived expressions.
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Figure 6.1: Motion [PSDk with perfect delay. Theoretical [PSD| of the [CoM]
motion in the presence of gl with a perfectly adjusted delay ¢ = /2.

(a) The plot shows three [PSDp: the partlcle s [PSD| without taking into account
measurement noise, the real S’ (w) and the signal Sj; (w) measured in the [o
[of-Toopl The [PSD] S, (w) would practically overlap with S’ (w). (b) Comparison of
the [PSD] signals measured in the [[[] detector and [Ool] detector, showing perfect
squashing symmetry in the IL.

Using the equipartition theorem, we define the mode effective tempera-

ture (see (D.23)) in [Annex D) as

mwg (z?)

T =
eff kB

(6.16)

An expression of this temperature can be obtained integrating in the fre-
quency domain, since the Fourier transform is unitar

mw
Tog=—2 / 1
ot = o Sa( (6.17)

4This result is known as Parseval’s theorem.
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Figure 6.2: PSDs with incorrect delay. Theoretical [PSD]of the[CoM] motion in
the presence of [cold damping] with a smaller/larger than 7/2 delay. (a) The plot
shows three [PSDk: the particle’s [PSD] without taking into account measurement
noise, the real S/, (w) and the signal S{,,; (w) measured in the jout-of-loop| (OoL)),
for a delay of 0.8-7/2. (b) The plot shows three [PSDp: the particle’s [PSD| without
taking into account measurement noise, the real S, (w) and the signal S{  (w)
measured in the [OoL] for a delay of 1.2 - 7/2. (c) Comparison of the signals
measured in the [[T] detector and [Ool] detector, showing asymmetry in the IL, for a
delay of 0.8 - /2. (d) Comparison of the signals measured in the [[[] detector
and detector, showing asymmetry in the IL, for a delay of 1.2 - /2.
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Figure 6.3: Effect of delay in the feedback. Experimental [PSDE recorded with
the [IL]| detector for large kq gains (k, = 0), showing squashing of the noise floor.
The center [PSD]displays a symmetrical squashing dip, corresponding to a feedback
delay that is correctly tuned. Decreasing (left or increasing (right the
value of the delay leads to squashing asymmetry, as predicted in equations [6.15]
and plotted in Fig.

Using the following integral expressions

1 /oo 1 4 1
— W= —
21 oo (w2 — wi)? + Mw? 2w3T

1 [o° w? 1
7/ 22 5 AW = o0
27 J oo (w? —w§)?2 +T%w 2r

we find

B mwg ( o?/m? + kgag k:?lag (6.18)
( ’ '

T —
T kg \ (W2 + k)T +ka) (T + k)

which coincides with the expression for found in [164] when k, = 0. We
use expression ((6.18) to compare the measured temperatures with theoret-
ical values in terms of ky, kq.

6.2.2 Simulations of the LQG
The [LQG| minimizes the functional

J=E l/OT (932(75) + pu2(az(t))> dt] , (6.19)
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but since we can make p arbitrarily small, then, for a fixed T,

T
J~TE [z{ /0 x2(t)dt1 o (22(8)). (6.20)

In other words, for p < 1 the LQG] minimizes the energy functional among
all other feedback laws (a similar argument can be made for n-dimensional
linear systems). Since we have used some approximations (i.e., no Kalman
filter) in the actual implementation of the feedback scheme, we use simula-
tions of the [LQG| as a benchmark for comparison.

The simulations of the [LQG| have been performed in MATLAB and
consist of a three step process:

1. We generate a signal z(t) to emulate the particle’s position. After
that we simulate and add a measurement noise, obtaining z(t), thus
taking into account the two dominant noise sources (shot noise and
electronic noise) in the measured signal.

2. The signal Z(¢) is reconstructed from z(¢) by a Kalman filter.

3. We add a feedback step with a [LQR] We first calculate ki, kq by
solving the Riccati equation, as described in [165], and calculate w(t)
as in equation . We add u(t) to the equation of motion when the
simulated feedback is “turned on”.

Finally, we compare the results of the [LQR|with the ones where different
values of k, and kq are used.

The signal z(t) simulation is performed with a Runge-Kutta method of

strong order 1 [105) [166] (see [Annex Al). As described before, the equation
of motion of the [CoM] of the levitated nanoparticle is

dﬂl‘t = Utdt s (621)
mdv, = =V (x¢)dt — mIvdt + odWy + mu(t)dt , (6.22)

where
U(z) = muwd (2) (6.23)

and higher terms of the series expansion of the optical potential have not
been considered because when the feedback is on the particle’s motion is
restricted to the vicinity of the potential minimum.

The rest of the values needed to perform the simulations (i.e., m, I', o,
o¢, and the electronic noise) have been calculated assuming:
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A temperature T = 295 K.

A spherical silica particle of radius 117.5 nm and density 2200 kg/m?3.

v = mlI follows Stoke’s drag force, and is linear with the pressure for
moderate levels of vacuum.

e The noise intensity o satisfies the fluctuation-dissipation relation, i.e.,

o =+2kgT'ml.
o ag ~ 6 x 10~2* m2/Hz, the noise floor of our balanced detectors.

e The Red Pitaya analog output electronic noise approximately follows
a normal distribution with ogp = 1 mV. The digital discretization
noise has also been taken into account.

6.3 Experimental methods

6.3.1 Optical setup

The experimental setup is displayed in Fig. A silica nanoparticle
(diameter 235 £ 11 nm) is loaded at ambient pressure into a single beam
optical trap inside a vacuum chamber (wavelength A = 1064 nm, power
P ~ 75 mW, NA = 0.8). The charge @ of the particle, fixed
to —50 net e’ in this experiment, is controlled [I01, [158] with a corona
discharge on a bare electrode. Along the horizontal direction x, a pair
of electrodes separated by dg form a parallel-plate capacitor around the
particle position (Fig.|6.4(b)). Applying a voltage V (t), we create a feedback
force u(t) =~ QV (t)/de on the particle.

Balanced photodiodes (see monitor the oscillation of the par-
ticle over all three degrees of freedom. Along the two oscillation modes per-
pendicular to  we perform m [55] to avoid any possible cross-coupling
without between different translation modes and maintaining the motion in
these two directions in the linear regime. The 2 [CoM] motion is monitored
with two photodiodes: the first, an [[[] detector, generates the feedback
signal, whereas the [OoL] detector solely records data.

6.3.2 FPGA feedback

The [[[] 2 signal is processed in the [FPGA] where it is separated into
#(t) and 0(t) after a —90° shift, amplified with the feedback gains kp, kq
and summed back together. The resulting u(t) feedback signal is sent to the
electrodes. The gains are controlled from the board CPU, either manually
or with an autonomous [MI] algorithm that estimates the particle energy
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Figure 6.4: Experimental setup (a) Photograph of the setup inside the vacuum
chamber. The purple glow on the right is a plasma generated to control the par-
ticle’s charge (b) Close-up image of the trapping region with a simulation of the
electric field for an applied DC voltage of 1 V. (c¢) Setup sketch. A microscope
is used to trap a silica nanoparticle. The scattered light is col-
lected and sent to a balanced photodiode to detect the motion. The z-motion
signal is band-pass filtered and sent to t where the signal
is calculated. The output is low-pass ﬁltered (LPF]) and sent to the electrodes
to cool the motion electrically. The R] parameters are controlled with a [MI]
routine that runs on the board CPU. [FLC] is used to modulate the laser light
with an electro-optic modulator (EOM) and cool the two other axes during all the
measurements.
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from the [Ool] signal and uses a stochastic gradient descent technique to
find the gain values that minimize it [167].

The (Red Pitaya STEMlab board) bitstream has been created in
Vivado Design Suite, combining Xilinx IP cores and custom Verilog code.
The feedback law (gains, delay, machine learning on/off, etc.) is controlled
from the Red Pitaya CPU board with custom made C code that communi-
cates with the through registers. Links to all the code and
CPU controller) can be found at:

— https://github.com/gerardpc/Red-Pitaya-Levitodynamics-Feedback. It
can be downloaded and freely used.

6.3.3 Machine learning algorithm

We use a form of stochastic gradient descent [167] for the adaptive feed-
back algorithm. The objective function to be minimized is an estimation of
the particle energy, calculated as

L(Ky, Ka) = h+ (1)) ~ (2*(1)), (6.24)

where K, K4 are the constants k, and kq in internal units (i.e.,
the values introduced with the software), {(¢) is the signal measured in the
detector after an analog band-pass filter, and h[n] is a low-pass
digital infinite impulse response filter of order 1. This [LPF]is implemented
in the[FPGA|and has a cut-off frequency f. = 0.3 Hz, designed to eliminate
the fast fluctuations and, thus, the time dependency on L.

Experimentally, the [Ool] signal is fed into a second [FPGA] input, and
L is continuously calculated. The updated values of L are written into a
register at 62.5 MHz, and custom-made software designed to control the
(running on the board CPU) reads the current energy value. The
program decides the new values of K, K4 according to

(Kpln], Kalnl) = (Kpln — 1], Kafn — 1)) ~ 6V L, (6.25)

where the step size § has been chosen to ensure convergence and reasonable
speeds and the gradient of L is approximated as

VL(Kp[n], Ka[n]) =~ ( L(Kp[n},2Kd[T[L]()I)£7%(Kp[n},Kd[n])

Kq[n]

L(2Kp[n], Ka[n]) ~ L(Kp[n], Ka[n])
(6.26)

by exploring for a short time different values of K, and Kj.
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Figure 6.5: algorithm (a) ML routine adapting to the optimal kq while the
pressure in the chamber is reduced from p = 10 mbar to p = 10~° mbar. Points in
the same segment are measured at constant pressure. (b) Convergence of the ML
routine (started at t = 0) to the optimal gain in a few steps at p = 3 x 10~¢ mbar,
for five uncooled z initial conditions. All reach similar final energy values (value
of kq in units is displayed), but slightly differ in the converged gains. Each
section represent 3 second iteration steps during which kq has been left constant
(for clarity). Data is smoothed with a moving average filter and separated on the
vertical axis by a constant factor for readability. (c) Setup and processing details
of the algorithm. The signal is sent to the (through a different input
than the feedback signal), where the mode energy is estimated. A stochastic
gradient descent algorithm, running on the CPU, optimizes the values of &, kq.
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6.4 Results

6.4.1 Data evaluation details

We estimate the conversion factor between the [FPGA|software gain K,
K4 (in arbitrary units) and kp,, kq as defined in equation (6.3)) by

55bits 10V 577ne~ 10° nm
k., ~ K, =334 x 108K 6.27
P T m 32763bits ¢ m m P % b (6:27)
3.34108
kq ~ K4 =4.26 x 10°Ky, (6.28)
wo

where G accounts for the electronic gain in our setup, m ~ 2 x 10717 kg is
the mass of the particle used throughout the chapter, e~ the electron charge
and n = 50 the number of elementary charges in our particle.

To estimate the energy of the particle’s  mode, the [OoL][PSD]is back-
ground corrected by subtracting the detection noise floor and then the un-
calibrated area of the[PSD|is summed up over a region of interest of approx-
imately +15 kHz. The calibration (i.e., Volts to m?/Hz conversion factor,
see is obtained by calculating the area of a at 50 mbar with-
out any feedback, assuming that it is thermalized at a room temperature of
T = 295 K (nonlinear terms of the optical field expansion have contributions
way below experimental error at this pressure). Dividing the respective ar-
eas and multiplying with the room temperature yields the effective mode
temperature.

The uncertainty in the evaluation of temperature is calculated by taking
into account the uncertainties of the [PSD] noise floor and calibration factor.
They are displayed as error bars in the figure plots.

6.4.2 Experimental results

Cold damping measurements (kp, kq manually set) at pressures rang-
ing from 1072 mbar to 10~7 mbar are shown in Fig. Figures (a)
and [6.6(b) display the double sided Sl (w) and SO°U(w), measured
from the [[T] and [Ool] detectors respectively. For strong feedback gains in
the order of kg = 1 krad/s the energy of the mode becomes comparable
to the noise energy. In contrast to the [Dol] measurement, on the [[Lj[PSDp
we observe squashing of the noise floor due to the correlation of detector
noise and particle signal. Noise squashing was previously observed in other
systems [164] [168), 169] but never in feedback cooled levitated nanoparti-
cles. In Fig. (c) we plot the minimum temperature for different
pressures, achieving temperatures between one and two orders of magni-

tude lower than [PFC| [55], since is nonlinear and becomes inefficient
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for small x(t). Below p < 1075 mbar T, is not reduced as efficiently as at
higher pressures, suggesting the detectors noise floor ag as the main limiting
factor at this pressure range. In Fig. (d) we show Tog(kq) at 3 x 1077
mbar, achieving a minimum Teg = 5.1 & 0.5 mK. The qualitative temper-
ature behaviour agrees with theory, although the expected optimal kq is a
factor 3.4 larger than measured and the minimum 7Tug is approximately 10
times larger than predicted with the theoretical expression of Teg (see eq.
(6.18])). Since at these temperatures the motion are close to the noise
floor, this could be due to noise correlations or [PFC] effects unaccounted for
in the model.

In Fig. [6.5 we present time traces with the [MI] adaptive algorithm
on. Figure (a) displays the particle’s temperature as pressure is reduced,
showing how the algorithm adapts kq to different conditions starting from a
hot particle (individual data points are recorded at constant pressure while
the algorithm is in standby). At 1075 mbar, temperatures lie in the 1072
K range, recovering the results obtained with the [CD] pressure scan. Figure
6.5(b) shows how the algorithm converges to similar final temperatures for
five identical initial conditions. Fluctuations of the estimated energy result
in a “noisy” convergence of the algorithm around the optimum, a charac-
teristic feature of stochastic gradient descent based techniques. A block
diagram of the algorithm processing details is sketched in Fig. [6.5

Finally, introducing a k, term, we investigate (Fig. the full
and the difference in transient times in comparison to [CD} we also compare
the results with full system simulations of the [LQG]| (see [Annex F| for de-
tails). An increase in k, leads to faster cooling, as shown in Fig. [6.7(a).
Here, the ratio of decay times between tep and [OCfs trqr
with increasing values of k, is plotted for different values of kq, showing
decay times a factor 10 to 600 shorter. Three experimental sample paths
serve as examples in Fig. [6.7(b). Reducing the time required to transi-
tion between different thermal states is beneficial in experiments where the
feedback signal needs to adapt quickly to avoid particle loss or where high
repetition rates are required. However, as shown in Fig. [6.7|(c), the experi-
mental transient times that we observe are still orders of magnitude longer
than the simulated [LQG] We believe this is due to the introduction of the
delays to approximate v(t), which reduce the correlation between feedback
signal and actual phase space variables.

6.5 Conclusions

In summary, we have demonstrated a novel feedback cooling technique
for levitated nanoparticles based on an adaptive optimal protocol, using
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Figure 6.6: Cold damping: k, = 0 and varying kq. (a) of the motion in
the x direction recorded from the [[[] detector signal at various gains for a particle
at p = 1075 mbar. For large kq, S.(w) shows noise squashing. (b) of the
motion in the z direction simultaneously recorded with the [OoL] detector. Noise
squashing is avoided. (¢) Minimum temperature achieved at different pressures
for the optimal kq (OoL detector). The lowest temperature, Teg = 5.1 £+ 0.5 mK,
is reached at 3 x 107 mbar. (d) Temperature vs. kq gain at 3 x 10~ mbar,
displaying an optimal gain minimum at kq ~ 700 rad/s, where Teg = 5.1 £0.5 mK
(OoL detector). Eq. predicts a qualitative behaviour in accordance with
data, with optimal kq a factor 3.4 larger than measured.
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Figure 6.7: controller (a) Ratio t,qr/tcp of the decay times (energy re-
duced to 1/e) of a controller having both K, and K4 (gain values in arbitrary
units) and of (k, = 0) for a pressure p = 107° mbar. The
figure displays how the transient times can be reduced by adding a K, term to the
feedback controller. Lines connecting points are added as guides to the eye. (b)
Experimental sample traces of the transients after turning on the feedback (¢ = 0)
for a fixed value of kq. The transients are reduced by increasing kp. (c) Numerical
simulation of controllers approaching the k" optimal value. From red (smaller
kp) to yellow (larger and closer to k?®). The simulations show how the minimum
stationary energy can be reached in a fraction of one oscillation period when &, is
properly tuned. In our measurements we never reach us transients, due to the use
of artificial delays to approximate v(t).
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electric fields to act on charged particles. Our feedback scheme, which only
requires an [FPGA] and electrodes in the vicinity of the levitated particle,
stands out for its robustness and simplicity, and can be easily extended to 3D
cooling. Importantly, the usage of [Ool] detection addresses the limitations
of prior implementations [70, [71], preventing potential energy underestima-
tions and hence providing a more accurate temperature readout. In the
present experiment we reached a temperature of 5 mK at 3 x 10~7 mbar,
corresponding to an occupation number below 1000 phonons.

Shot noise and the optical setup measurement efficiency set the limit
for the lowest achievable temperature. However, since detection was not
optimized in our work, this leaves potential for future improvements. A
possibility to improve the detection efficiency would be exploiting cavity
enhanced detection schemes. If, in addition, the experiment is performed at
ultra-high vacuum, occupation numbers can be brought down by a factor
10% or 103, making ground state cooling attainable [T170].

In our scheme, the transients between thermal and cooled states are at
least one order of magnitude shorter than in regular |cold damping] (CD)).
This feature may be important in experiments where sudden changes (such
as varying optical potentials when approaching a surface or nanostructure)
might lead to particle loss. Furthermore, the [MIL] algorithm optimizes the
cooling performance continuously, adapting to different regimes without re-
quiring prior knowledge of the initial particle state within 7, <5 s. This
makes it especially suitable for experiments with slowly varying conditions,
such as pressure or intensity, minimizing the need for continuous realign-
ment and feedback optimization. Future extension to control (see
will reduce the minimum achievable temperature two-fold, since
the use of a Kalman filter will produce optimal estimates of v(t) (see
, reducing the effect of measurement noise, and eliminate the need
for artificial delays in the system. The introduction of further parameters
from the Kalman filter will make the [MI] algorithm indispensable, since
optimization will become a high dimensional problem.

We anticipate that the presented adaptive feedback technique will be
implemented in a diverse range of levitodynamics experiments, since it can
be easily miniaturized and automated. It can be a significant addition
in studies requiring robustness and high repetition rates, like the planned
future space mission MAQRO [I71], or in small devices, such as force and
inertial sensors [172] based on levitated objectﬂ

5See the last section of for details.
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Outlook

Ten years have passed since the emergence of modern levitation of micro
and nanoparticles in vacuum. During this time, several groups have joined
the field, and many techniques—specific to levitated particles—have been
developed; the amount of published work is today quite remarkable. A
prime example of this is the recent achievement of the motional ground
state in a levitated particle, a long-sought milestone [I73]. With all these
signs of maturity, it is now fair to reflect back on the progress, contributions
and future perspectives of particle levitation. We should ask ourselves: what
have we learnt? What can we study that is unique to our systems? How
should we steer our future efforts?

Currently, the study of levitated objects constitutes a relatively small
fraction of research in optomechanics. Still, like any scientific enterprise,
there is hope that novel contributions to fundamental research will come
out of it. The possibility to develop applications with an impact in everyday
life is also being explored. We must keep in mind, however, that reaching
the current state (and what lays ahead) requires considerable time. Re-
call, as recounted in the introduction, that optomechanics and nanoparticle
levitation is built upon many previous scientific contributions: the ones of
scientists like A. Ashkin, V. Braginsky, D. Wineland or W. Paul. Their
ideas entered our collective knowledge decades ago, but at the time it was
hard to imagine many of the applications that would result.

After the years of lethargy that followed the papers of Ashkin, the levita-
tion of nanoparticles in vacuum was reinitiated by the works of T. Li [54] [70]
and J. Gieseler [55], [83]. Since then, the results of this harvest haven’t pro-
duced radically new insights into the laws of physics, but it would be unjust
to say that the field has not advanced. In just a few years, the experimen-
tal know-how has increased tremendously, and proposals that a few years
ago appeared to be hard are now within reach. In other words, levitation

105



7. OUTLOOK

optomechanics is showing signs of “ripeness”, and physically novel results
can be expected in the next decade.

In the following paragraphs, we present possible directions, experiments
and applications of systems realized with levitated particles. We also discuss
its potential impact.

7.1 Quantum mechanics with levitated particles

Levitated particles have several advantageous features when compared
to clamped resonators. They naturally have a single mechanical mode per
axis and are highly isolated from its environment. On top of that, in lev-
itated systems the trapping potential can be modulated over time, and
virtually any type of material or geometry can be used—something that,
due to fabrication constraints, is not possible in Being completely
detached from any substrate, levitated objects allow us to envision matter-
wave interference experiments at a greater scale than ever beforeﬂ They
also offer an ideal platform to construct macroscopic cat states [52], assess
the validity of collapse models [58, [59], and study quantum decoherence
mechanisms [58].

By extending the range of materials, trapped nanoparticles also enable
us to work with internal spins and emitters. In a recent experiment, an
ensemble of internal spins was coupled to a torsional degree of freedom of
a levitated microdiamond [I75]; however, scaling this coupling down to the
single defect level to produce pure quantum states will require more work.
In this thesis [98], we have reported on the first part of this landmark by
demonstrating the detection of a single levitated in vacuum [98]. Other
degrees of freedom specific to levitated objects are Euler angles, in studies
of rotation [176) [I77], or lattice phonons, that due to its scale and decou-
pling from the environment may behave in unexpected or counter-intuitive
ways [I78]. All these possibilities require the realization of arbitrary quan-
tum states and their precise control thereafter, something that, so to say, is
still in the field’s wish list.

The ground state of a macroscopic system was achieved for the first
time ten years ago [36] 37, B8], in experiments with these works
established that quantum mechanics is a good description of reality at the
“macro” scale. Hence, even though the recently achieved sideband cooling
ground state of a levitated particle [I73] marks an extraordinary milestone,
it mostly represents a proof-of-concept of the experiments that may lie in
the future. Still, this study and similar cavity-based efforts [179] [I80] have

'So far, the heaviest objects to be used in such experiments are organic molecules [174],
in the group of Markus Arndt.
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demonstrated that the ground state of the motion can be achieved with a
setup at room temperature. This is a technical novelty in optomechanics
that can simplify the study of the classical to quantum transition.

A different path towards the ground state is feedback cooling. The
approach introduced in this thesis—cooling a charged levitated particle
through electric fields—has also proved to be extremely efficient and fruit-
ful [106], T81]; less than one year after its appearance, it has already produced
occupation numbers (n) < 10 [I82]. If particle detection is improved, the
pressures are lowered to ultra-high vacuum conditions and better FPGA
electronics are introduced (i.e., better boards with negligible signal delays
and optimal state estimation [160]), electric feedback cooling has the po-
tential to become the easiest and cheapest way to achieve the ground state
in any physics experiment so far. Furthermore, it has the potential of be-
ing used in more general systems, such as in recently proposed levitated
electromechanical systems [156].

7.2 Stochastic thermodynamics with levitated
particles

For a long time, it was believed that the correlations between the phase
space variables (x, v) of a Brownian process were too fast to be measur-
able in practice. However, more than 100 years after Einstein’s seminal
paper [I83], the first experimental observations of these short-time cor-
relations were achieved with optical tweezers, levitating a microsphere in
vacuum [54]. This work paved the way of many more studies of stochastic
processes with single levitated particles.

During these last years, many different equations of motion—including
linear and nonlinear terms—and measurements of stochastic thermody-
namic quantities, such as energy or work, have been realized with levitated
particles [I84]. Feedback control has been included often, either for automa-
tion of the experiment or to realize more complex processes.

Most of these works were carried out in the underdamped regime which,
before the advent of levitated particles, was largely inaccessible. This al-
lowed the verification of classical models for thermal noise, the comparison
of different formalisms for stochastic processes’] and also generalized the
use of computer simulations to predict and check the results. Moreover, by
working at the single particle level, it improved our understanding of time
and noise as memory-erasing features in ergodic processes; in the past, this
had been obfuscated by the need to work with ensembles.

2E.g. the Focker-Planck equation or stochastic calculus with the It6 integral.
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With the classical thermodynamics models firmly established, an in-
teresting research direction for statistical physics with levitated particles
involves entering the quantum regime. In this domain, not only the con-
cepts are more complex to realize on computers, but often it is not even
clear what the evolution equations are. Working with quantum Brownian
particles would allow the study of non-thermal quantum noise sources, the
exploration of the constraints on the efficiency of non-Markovian quantum
engines or investigating information extraction in the presence of uncer-
tainty relations.

7.3 Sensing with levitated particles

Levitated objects are suited to perform sensing experiments or even
to develop commercial sensor devices. As an example, levitated particles
hosting atom-like defects in the crystal lattice have been used to perform
thermometry [I85]; they can also sense electromagnetic fields [141], [142], via
the split of the electron energy levels. However, performing an experiment
is different from developing a robust, marketable product. In technological
applications one has to ponder not only whether the application is possible,
but also if there is a market for it. In the latter case, perhaps there are
already cheaper products that carry out the same job.

Force and acceleration sensors are often proposed as possible applica-
tions of levitated particles. Nevertheless, the two are fundamentally dif-
ferent cases [I806]: force sensing is the detection of forces g(t) acting upon
the oscillator’s mass, whereas in an accelerometer the driving acts on the
housing instead of on the oscillator itself. This has consequences in the
sensitivity of the device, which is ultimately limited by thermal noise and
integration time. In a force sensor, the sensitivity scales with the sensor’s
mass m: the smaller the mass, the smaller the force that can be detected.
In an accelerometer it is the other way around: the minimum acceleration
that can be detected scales inversely with the mass. For this reason, when
building an accelerometer, engineers include a mass that is as large as possi-
ble; in levitated particles, this mass is rather small when compared to larger
devices made with

One should notice that the sensor’s sensitivity does not only depend on
the mass. Eventually, it is also limited by the mechanical stability of the
system, which is not accounted for in a harmonic oscillator modeﬂ For
instance, jitter in the resonance frequency might result in a decrease of the
sensitivity or in incorrect values of the measured driving intensity. Active
stabilization through feedback is a potential route towards sensors based

3See the last section of for details.
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on levitated particles. With a “cold damping” [106], the resonance peak
is broadened (reducing the relative effect of jitter), the nonlinearities are
minimized and the memory of the system is shortened (i.e., signal remnants
from some past event are quickly eliminated).

Due to the small masses demonstrated so far, the development of a
commercial accelerometer based on levitated nanoparticles might find some
initial difficulties; its prospects will improve if means to work with larger
particles are found. But, even if levitation is restricted to small particles,
their use as torque sensors may find some advantages over commercial de-
vices, specially since they offer possibilities (rotation control and free fall)
that are completely absent in[MEMS] For example, torque could be detected
as a coupling between axes during short, repeated free fall experiments.
Regarding force sensing, levitated particles constitute a good compromise
between a small mass and ease of use; atoms and ions have smaller masses,
but are way more restrictive in the experimental conditions. To use them
as force sensors, the first important question that needs to be answered is
which force is to be measured. For instance, approaching devices in the
vicinity of levitated particles can be quite complex, but if this problem is
solved [I87], levitated particles can open up the exploration of short-range
interactions [I88], such as the Casimir force. Alternatively, they can be used
to measure static forces, for example by detecting displacements in the trap
center [189, [190] or, again, with free fall experiments [191].
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Glossary

Optical intensity.

Charge.

Power spectral density of z(t).
Temperature.

Wiener process.

Normalized damping ~/m.

Paul trap secular frequency.
Electric potential.

Energy potential.

Electric permittivity in vacuum.
White noise process.

Damping.

Expected value, ensemble average.
Q-factor wy/T.

Magnetic permeability in vacuum.
Angular frequency variable.
Natural angular frequency.
Driving angular frequency.
“Proportional to” symbol.
Noise intensity.

Magnetic field.

Electric field.

New definition.

Intensity correlation.
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GLOSSARY

Boltzmann’s constant.

Mass.

Position along the radial direction.
Time variable.

Velocity.

Gaussian beam width.

Position along the x direction.
Position along the y direction.
Position along the z direction.

v s g S Ty
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APD
BPF

CD
CoM

EMCCD

FPGA

HBT
IL
LIGO

LPF
LQG

LQR

Acronyms

avalanche photodiode. @7

band pass filter. @7

cold damping. [86}, [88) 102‘,3:103
center of mass. [8H12| (L4} [15] [31]

%% % [72} [77, [78, BT}, B3} B5H88}, BT} P2}

electron multiplying camera.

Field-Programmable Gate Array.

% 60 [T [ 78} B3 B 23 2% 102 (105}

Hanbury, Brown and Twiss. [73]

in-loop. 973, 75 S 9 [0

Laser Interferometer Gravitational-Wave Ob-
servatory.

low pass filter. @

linear-quadratic Gaussian regulator. [87]
linear-quadratic regulator. [12] [85H38] [94] [06]
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ACRONYMS

MEMS

ML
MSD

NA

NV

OBJ
(0]6)
ODE
OoL
ou
PFC

PSD

QPD
SDE

WKB
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microelectromechanical systems. [ [106]

[TO8}, (109
machine learning. @, @ |§_8|, @7 @

mean square displacement.

numerical aperture. 28] [29] [69] [73] [74]

7
nitrogen vacancy. [9}, [I0} [67H70} [73H77], [B1} [82]
B4 (108, , [T5]

objective. 25 25} [0, S} 60} 6% 73 73 73
optimal control. [86)

ordinary differential equation. [17], [30}
out-of-loop. @—@ 95| 0799} [LO1] [10
Ornstein-Uhlenbeck. 39, 140 [46]

parametric feedback cooling. [10] [77], [79] [86]
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stochastic differential equation. @ @
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Review of stochastic calculus

A.1 Stochastic calculus theory

A.1.1 The Wiener process

Given a probability space (2, F, P) and a measurable space (S,X), a
collection of S-valued random variables on 2, indexed by a totally ordered
set T (the “time”) is called an S-valued stochastic process. That is, a col-
lection of random variables representing the evolution of some system of
random values over time.

A stochastic process can be characterized by several common properties:

e Stationarity. A stationary process is a stochastic process whose un-
conditional joint probability distribution does not change when shifted
in time. A wide-sense stationary process is a process X; such that its
first two moments are constant, i.e., the expected value is constant
E[X:] = p and its autocorrelation E[X;X;,] = R(7) is a function of
7 only.

e FErgodicity. A stationary random process X; is ergodic if its time
average

1 ot
avg = lim —/ X dt (A.1)
0

t—oo T’

is the same as its average over the probability space E[X;] (also known
as its ensemble average in physics).

e The Markovian property. A process has the Markovian property (i.e.,
it is a Markov process) if, for each A € ¥ and each s,t € T with s < ¢,

P(X, € A|F,) = P(X; € A|X,).
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Loosely speaking, this means that one can make predictions for the
future of the process based solely on its present state just as well as
one could knowing the process’s full history. For this reason they
are usually called memoryless processes. An important example of
Markov processes are Markov chains, where the process undergoes
transitions between a finite set of states. They can be modelled with
the master equation

where in this case A is time independent.
e The martingale property. A stochastic process is a martingale if
E(Xt, 0, | Xy X)) = Xy,
for increasing times t; < ... < t, < tp11, S0 the expected value of the
process at any point in the future is exactly the current value of the
process.

The Wiener process, commonly written W, is an important example of
continuous stochastic process, since many other processes can be defined
from it. It is characterised by the following properties:

1. Wy = 0 almost surely.

2. W, — Wy is normally distributed with g = 0 and o2 =u—t.

3. W4 has independent increments: if 0 < s < t < w then W,, — W} is
independent of W; — W.

4. Wy is continuous in ¢ with probability 1.
The process also satisfies
cov(Ws, Wy) = min(s, t)
(this follows from the fact that non-overlapping increments are independent)
and has quadratic variation [X;, X;] = t. The Wiener process can also be
thought of as the integral of a Gaussian white noise process, so that if n(¢)

is white noise, the formal substitution n(t)dt = dW; can be made.
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A.1. Stochastic calculus theory

A.1.2 The Wiener-Khinchin theorem

The Wiener—Khinchin theorem relates the autocorrelation function of a
wide-sense stationary stochastic process x;

Rz (7) = Elz(t)z(t + 7)] (A.2)
to the spectral density
Sea(w) =E [|#(w) ] (A3)

via the Fourier transform
400 .
Sea(T) = Ra.(f)e 2T df, (A.4)

—0o0

by observing that

1 T . T o,
—/ x*(t)e™! dt/ z(t)e ™t dt’]
T Jo 0
1 T T . ,
_ 2 / / E [o*(8)x(¢)] =) dedt’. (A.5)
TJo Jo

In the last expression, one can make the change of variables 7 = t — t/,
and with the limits of integration approaching infinity, the resulting power
spectral density S;,(w) and the autocorrelation function Ry, (7) become
Fourier transform pairs. In this thesis, all the spectral densities are assumed
to be two-sided.

Recall that the Fourier transform of a continuous function x(¢) is defined
as

400 .
i = [ g e

—0o0

This transformation replaces the time variable by a frequency variable
t — f. Another usual definition, and the one that we follow in this thesis,
uses w instead of 27 f: in this case the inverse Fourier transform needs a
1/2m multiplying factor, and g(f) = (55 )-

A.1.3 1It6 calculus

The Ito integral is defined as
T
/0 F(W,.t) AW,
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where X; = f(W;,t) and the integral is interpreted as the limit of

k—1
Z Xti (Wtz’+1 - Wtz’) :
=0

It has the important property of producing martingales when f(W;,t) is
square integrable. The Stratonovich integral, on the other hand, is defined
as

k—1
Xti + Xti
g % (Wti+1 - Wti) :

Stratonovich integrals obey the ordinary chain rule, whereas It6 integrals
obey It6’s lemma. Conversion between the two is obtained with the expres-
sion

Taf

/th,)oth 5|

2w, dt+/ F(Wh, ) dW.

The most general stochastic differential equation takes the expression
dXt = b(t, Xt)dt + O'(t, Xt)th,

where dt is the time differential and dW; is the differential of a Wiener
process. This has to be understood as an integral equation, as stochastic
processes are not, in general, differentiable. The differentials notation is
just a convenient (and shorter) way to express the same idea. If this is not
said specifically, the integral with respect to dW; will always be taken in
1t6’s sense.

In stochastic calculus, the equivalent of the chain rule is known as [td’s
lemma: let Yy = g(t, X;), where X; is an Ito process defined by a SDE.
Then, Y; is also an Ité process and

a dg 19%

where (dX;)? is computed according to the rules dt-dt = dt-dW; = dW;-dt =
0, dW; - dW; = dt. More generally, dX, - dY; = d[X,Y];.

Generally, there is no explicit solution for SDEs. However, it is possible
to find one in the linear case, which has the following equation:

dy; = (t Xy) - (dXy)?,

dX; = (A(t)X, + a(t)) dt + o (t)dWs, (A.6)

In the scalar case, A(t) and a(t) are numerical coefficients; in the general
multivariate case A(t) is a matrix and a(t) is a vector. In the scalar case,
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we may find the solution by the following transformation and It6’s lemma:
d (e A0 x,) = —A(t)e [ A X at 4 = ] AU,
= = JADE (A X,dt + dX,) .
Therefore
ef At)dt | g (effA(t)dth) _
dX; — A(t) X dt = a(t)dt 4+ o(t)dW;
and
d (e_ fA(t)tht) = = J AW (a(t)dt + o(t)dWy),
so an explicit solution to the SDE will be
X, = efot A@dt x oy efot A(t)dt

: </Ot e_fA(S)dsa(S)ds + /Ot e_fA(s)dSO’(S)dWS> .

In what follows we mention some remarkable SDEs:

(A7)

e Standard Brownian motion
dX; = odW;

so X; = oW,;. In physics, E(X?) = 2Dt, where D is known as the
diffusion constant or diffusivity. Therefore, in this case 02 = 2D.

e Ornstein-Uhlenbeck process
dXy =0(p — Xy) dt + o dWy,

which is the only non-trivial, Gaussian, stationary and Markovian
process. The solution of the SDE is

t
X, = Xoe %+ u(1—e7%) + e_at/ oel dW.
0

This process is used to describe the evolution of a free Brownian par-
ticle

dz = vdt,
1

dv = — (—yvdt + odWy) .
m
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Since the process must satisfy the equipartition theorem, it can be
seen that o = /2ykgT. This relation is known as the fluctuation-
dissipation theorem, and similar expressions can be obtained for other
systems and degrees of freedom (such as electric circuits). From
E(X?) = 2Dt, we obtain the following result
p-al
Y

sometimes known as Stokes-Einstein relation.

e [t6 diffusions are SDEs where the functions b(X;) and o(X;) don’t
have explicit ¢ dependence

dX; = b(X,) dt + o(X;) dW,.

It6 diffusions are always Markov processes (since they have the strong
Markov property).

During calculations with stochastic processes defined by SDEs, it is com-
mon to use the following identities and theorems:

o Let X; = [ f(s)dW;. If f(s) is deterministic, then X, will follow a
zero mean normal distribution with variance

B = [ (67 as

so, in particular, the expected value of the integral of a deterministic
function by dWy will always be zero.

e The time change formula for Itd integrals is

Qi t
v(s,w)dWs :/ v(ap,w)y /ol AW,
| sy aw = [Co(arw)y

where o/, is the derivative with respect to r of a(r,w) = s.

e [to’s isometry: let Xy be a predictable process (al continuous processes

are predictable). Then
T
=R [ / X? dt] :
0

(/OTXtth>2

By applying the polarization identity we get the more general result

E [ [ saw, [ g dWU] _E [ L™ st du] ,

where f(t) and g(t) are stochastic processes. The Itd isometry is often
used to calculate covariances of stochastic processes.

E
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e By Fubini’s theorem,

dE(f (X)) = E(df(Xq))-

This needs to be understood in the integral sense, and can be used to
calculate statistical moments (e.g., f(X;) = X?).

A.1.4 Advanced topics

It is fundamental for many applications to associate a second order par-
tial differential operator (i.e., a 2nd order differential equation) to It6 dif-
fusions. For an It6 diffusion (X¢):>0, with Xo = x, we define the generator
A by

In this equation f(z) is introduced without much intuition, but as it will be
seen later, it is used to study the moments of the process and its probability
density function. By Taylor’s formula, equation (A.8)) can be understood as

E*f(X1) =~ f(z) +tAf(z)

for small ¢ > 0, so the generator essentially describes the movement of the
process in an infinitesimal time interval. The set of all functions f for which
this limit exists at a point x is denoted D4 (x), while D4 denotes the set
of all f for which the limit exists for all x € R. One can show that all
compactly-supported C? functions belong to D4 and

82 f

Z bi Z )ii Bmrom; @

Several important results and theorems use the concept of the generator:
e Dynkin’s formula: Let X; be a R valued Itd diffusion, let 7 be a

stopping time with E*(7) < oo, and let f be C? with compact support.
Then

BYf(X0) = £(o) + B | [ Af() as).

Dynkin’s formula can be seen as a stochastic generalisation of the
fundamental theorem of calculus.
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e Kolmogorov’s backward equation: the Kolmogorov backward equation

describes the evolution of the statistics (i.e., moments) of a stochastic
process. Let X; be a Markov process, such as an It6 diffusion. If we
define u(t, r) = E*(f(Xt)), with f € C?(R"), then

0
au _ Au t>0 zeR”
ot
u(0,z) = f(x) xeR"
This equation is usually seen with an end condition and a negative sign
in front of the time derivative. This can be recovered by performing
the change t — T —t.
0
~ U A t>0,zecR"
ot
uw(T,z) = f(x) xeR"

This equation can be particularised when f is the indicator function
Ip of some set B. Then

u(r,y) = Ey(Ip(Xr)) = P(X1 € B|X, =)

by the properties of the indicator function. Thus, the backward Kol-
mogorov equation can be written for transition probabilities
oP
—EzAP 0<t<T,zeR"
P(T,z) = Ip(x) xeR"

with P(t,xz) = P(Xr € B|X; = x), and also as densities, if they exist.

Kolmogorov’s forward equation, also known as the Fokker-Planck equa-
tion, is a partial differential equation that describes the time evolution
of the probability density function (if it exists) of a stochastic process.
Let A* be the adjoint operator of A, defined by

2
A fw) = = @)+ 5 X 5 ),

where a;; = > 0ix0jk. Then, the forward Kolmogorov equation for
a Markov process is

3pg£ z) = A*p(t, x) t>0 zeR"

p(0,z) = f(x) reR"




A.2. Simulation of stochastic differential equations

e Let X; be an It6 diffusion satisfying the SDE

dXt = —V\I}(Xt) dt + 2B_1 th,

where 3 > 0 plays the role of an inverse temperature and ¥ : R — R
is a scalar potential satisfying suitable smoothness and growth con-
ditions. Then, the Fokker-Planck equation has a unique stationary
solution (an invariant measure, or density distribution without time
dependency) known as the Gibbs distribution:

poo () = Z 7V exp(—pY(z))

where Z is the partition function and is given by
Z :/ exp(—p¥(x)) dz.
Rn

o Feynman-Kac formula: the Feynman-Kac formula is a slight general-
isation of the Kolmogorov backward equation. Let X; be a Markov
process (notice that usually Markov processes are Itd diffusions) sat-
isfying

dXt = b(Xt, t) dt + O'(Xt, t) th

Then the conditional expectation

T .
u(z,t) =K [/ e_ft V(Xr,7) de(XT,r)dr—i—
¢

T
e_ft V(X7.7) dTw(XT)‘Xt =z

satisfies the following PDE

Ou ou 1 5 O*u _
5t + b(x,t) e + 50°(x,t) 92 V(z,t)u+ f(z,t) =0

u(z, T) = () reR

A.2 Simulation of stochastic differential
equations
The fundamental idea behind all techniques for simulating SDEs is the
fact that variances are additive, while standard deviations are not. There-

fore, since W; ~ v/t - N(0,1), after a discretization dt in the time variable
has been introduced,
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In other words, the differential of the Wiener process is proportional to v/dt
instead of proportional to dt, which at first sight would seem more intuitive.
To see that this is indeed the case, let us take a process defined by
the recursive equation X;11 = X; + R;+1VAt, where R; are independent
identically distributed normal random variables. After two steps, we have

Xo=Xo+ (Rl + Rz)vAt.

But R; + R» is normal with variance 2, so we can write it as V2R, where
Ryi5 ~ R;. Thus, we get

Xo=Xo+ \@Ru\/ At = Xy + R1oV2AL,

which is exactly the same as taking a single time step of twice the length.
This doesn’t happen if one takes the stochastic component to be R;At
instead, since the variances add up linearly. After n time steps we will have
accumulated a variance of no?.

Now, assume X,, is an approximation (which we obtained by whatever
means) of a continuous time process X; defined by a SDE, which at discrete
time steps takes the values X (). Clearly, both X, and X(¢,) are random
variables, so in what sense does | X,, — X (,,)| — 0 as At — 07

There are many, non-equivalent, definitions of convergence for sequences
of random variables, but the two most common and useful in numerical

SDEs are

e Weak convergence, which captures the error of the mean. A method
is said to be weakly convergent if

Jim [E(X5) — E(X(ta))] = 0.

Weak convergence captures the average behaviour.

e Strong convergence, which captures the mean of the error:

lim E|X,, — X(t,)| =0.

At—0 | " ( n)|

Strong convergence is important to follow paths accurately: that
means that, given a certain W, driving the process of the SDE, a
method using a discretization of the same Wiener process will con-
verge to the original, time-continuous, sample path.

Strong and weak convergence orders (which we will call p and ¢) do not need
to be the same, but strong convergence always implies weak convergence,
sop<gq.
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A.2.1 Methods for SDEs

The Euler-Maruyama method (also called the Euler method) is the most
basic numerical method for SDEs. It is a simple generalization of the Euler
method for ordinary differential equations to stochastic differential equa-
tionsEL and has a weak order of 1 and a strong order of 1/2. Consider the

SDE
dXt = G(Xt) dt + b(Xt) th,

with initial condition Xy, and suppose that we wish to solve this SDE on
an interval of time [0, T]. Then, the Euler-Maruyama approximation to the
true solution X; is the Markov chain defined as

Yii1 = Yo +a(Yy,) At + 0(Y,) AW,
where
AWy =W o — W,

and the time variable ¢ has been discretized in At segments. The random
variables AW,, ~ N (0, At) are independent and identically distributed nor-
mal variables.

Several generalizations to SDEs exist for deterministic Runge-Kutta
methods, although they become increasingly convoluted for moderate or-
ders. A method of strong order 1 is detailed here, which reduces to the
Improved Euler scheme for deterministic ODEs[105].

Consider the vector stochastic process X(t) € R™ that satisfies the gen-
eral It6 SDE

dX = a(t,X) dt + b(t, X) dW,

where drift a and diffusion b are sufficiently smooth functions of their ar-
guments. Given a time step At and the value X(¢;) = X, then X (t511) is
calculated recursively with

K = a(tg, Xp) At + (AW, — SpVAL) - b(ty, Xk),
Ko = a(tps1, Xi + Ki)At + (AW + SpVAL) - b(tgy1, Xk + Ky),

1

where AW}, is calculated as detailed above, and S, = +1, each with prob-
ability 1/2. Setting Sy = 0 will approximate X; in the Stratonovich sense.

!Beware: this means that, for small noise, this method can be expected to behave as
the Euler method for deterministic ODEs, i.e., converge very slowly. In such cases, strong
methods of higher order should be used.
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The harmonic oscillator model

B.1 Linear time-invariant systems

A linear constant-coefficient ordinary differential equation, defined by a
linear polynomial in the unknown function z(t) and its derivatives, takes
the form

I (m,x’,x”, R x(")> = g(t), (B.1)

where f(...) is a linear function and we added a non-homogeneous term
g(t). If we now Fourier transform both sides of the equation, we get

p(iw) X (w) = G(w),

where p(iw) is the characteristic polynomial of the differential equation and
X(w) and G(w) are the Fourier transforms of z(t) and g¢(t) respectively.
Therefore

where we defined the frequency response (or transfer function) H(w) = -+

p(iw)
By the convolution theorem, if we apply the inverse Fourier transform we

obtain

Here, h(t) is known as the impulse response of the system, and is used to
find z(t) for an arbitrary driving g(t).
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B.2 The harmonic oscillator

The harmonic oscillator is a 2nd order constant coefficient linear ODE
that can be used as a first approximation or a paradigmatic model of most
simple oscillatory systems. In the most general case, starting from Newton’s
second law, the equation reads

md + ml'z + kx = F(t),

where mI'% is a damping force, kx is a restoring forcdﬂ (of arbitrary origin)
and F(t) a driving force.

Conserved quantities

When I' = F(t) = 0, the system is Hamiltonian, and its energy takes
the form
2

D 1
H = % + imwng,

%; it can be proved that this is the only conserved quantity

where wy =
of the system (Hamiltonian systems with 2n degrees of freedom can have, at
most, n constants of motion). The equality between energy and Hamiltonian
is justified because H doesn’t explicitly depend on ¢.

The first summand is the kinetic energy, and the second the (restor-
ing force) potential energy. When feedback is introduced to the system,
H = H(t), energy conservation cannot be taken for granted, as in general

feedback can lead to cooling, heating, chaotic motion, etc.

Deterministic solution

Damped harmonic oscillator: If F(t) is zero, we define the natural

frequency wg = \/%, the damping ratio
¢ = mD T
“Vk2 T 2w

_wo _ 1
Q*?*zg'

and the quality factor

'For now we are ignoring the fact that a damping force leads to a Brownian random
force, due to the fluctuation-dissipation theorem. Since this force scales with \/m, the
randomness doesn’t need to be taken into account for large oscillator masses, but will be
relevant in micro and nanoparticles.
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B.2. The harmonic oscillator

The Q-factor can be understood in different (but mostly equivalent) man-
ners. One way, that will be discussed later, is as the number of “coherent”
oscillations of the system. A different definition is as the fraction of the
energy I stored in the system versus the energy dissipated AE in a period
79 of the oscillation, as

2nE 2w __ wo
AE 1—¢Tto © T

Q=

The last approximation comes from an order one Taylor expansion, so when
I" is small one recovers the previous quality factor definition. Using these
parameters, the ODE now takes the form

d%x dx 9

— +I'— 4+ wiz =0.

ez " dr 0
The value of the damping ratio ¢ critically determines the behaviour of the
system. A damped harmonic oscillator can be

e Overdamped, Q < 0.5. The system exponentially decays to zero with-
out oscillating. The case @ = 0.5 is usually called critically damped
and is the boundary between oscillation and no oscillation.

e Underdamped, Q > 0.5. The system oscillates at w1 = wp+/1 — Q2?/4,
so the smaller the damping the closer the oscillation frequency to the
natural frequency of the oscillator. The sinusoid has an exponential

decayof)\:;—é:g

Driven harmonic oscillator: In the case of a sinusoidal driving force:

2
((117? + Fi—f +wiz = %Fo sin(wt),
where Fj is the driving amplitude and w is the driving frequency for a
sinusoidal driving mechanismP}

The general solution is a sum of a transient term that depends on initial
conditions, and a steady state that is independent of initial conditions and
depends only on the driving amplitude Fpy, driving frequency w, natural
angular frequency wg, and I'. The transient solutions are the same as the
unforced (Fp = 0) harmonic oscillator and represent the systems response
to other events that occurred previously. However, they typically die out
rapidly enough that they can be ignored.

2The characteristic time is 7 = 1/

3This type of system appears in AC driven inductor-capacitor systems and in driven
spring systems having internal mechanical resistance or external, like a particle in an
optical trap.
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B. THE HARMONIC OSCILLATOR MODEL

The steady-state solution is proportional to the driving force with an
induced phase change of ¢:

x(t) = 5—0 sin(wt + ¢),

is the phase of the oscillation relative to the driving force, if the arctan(-)
value is taken to be between -180 degrees and 0 (that is, it represents a
phase lag, for both positive and negative values of the arctan argument).

These last two expressions are obtained from the complex transfer func-
tion

1
m(wg — w? + iwl)’

H(w) =
the power transfer function being

1/m?
[H(@)* = 20,2 2 ,2)%
Iw? + (w§ — w?)

For a particular driving frequency, called the resonance or resonant fre-

quency
/ / 1
Wy = Wo 1—2C2:w0 1—@,

the amplitude of x(t) (for a fixed Fy) becomes maximum, and

4Q* Q?

~

H(w)|* = :
[H (wr)] m2(49% — Nwd — m2w}

The last approximation only holds for large Q factors; notice that the ratio
between the power transfer function at w, and at zero is H(w,)?/H(0)? ~

Q.
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B.3. Sensing with the harmonic oscillator

The resonance effect only occurs when Q > v/2/2, i.e., for significantly
underdamped systems. For strongly underdamped systems the value of the
amplitude can become quite large near the resonance frequency.

We can calculate the half width half maximum (HWHM) by imposing
Z2 to be half of the value at resonance. The angular frequencies thus

obtained are
2
w 1

and by approximating |/ Q2 — i ~ Q. w, ~ wy and applying the Taylor

series expansion of the square root in wg4/1 + é , we obtain

wo — w1 wo 1 1 1 1 1
W = 205 = D (14 g g 0 (o))
o wo _ r
=503
This shows that increasing Q (or, equivalently, decreasing I') reduces the
width of the frequency response of the oscillator. Therefore, a high O is

particularly important when trying to detect frequency shifts.

B.3 Sensing with the harmonic oscillator

B.3.1 Principles of force sensing

The harmonic oscillator is a 2nd order constant coefficient linear ordi-
nary differential equation. In the most general case, the equation reads

mi + mli + mwiz = g(t), (B.2)

where mI'% is a damping force, mw3z is a restoring force and g(t) is an

(external) driving force. Force sensing is the detection of these forces g(t)
acting upon the oscillator’s massﬂ Since the harmonic oscillator is a linear
time-invariant system (see the section), the response of the system to
a deterministic (arbitrary) driving function g(¢) will be

z(t) = h(t) = (), (B.3)
where h(t) is the impulse response of the system. By the convolution theo-
rem, X (w) = H(w) - G(w), where the capital letters indicate Fourier trans-
forms. Recall the transfer function of the harmonic oscillator is

1/m
H(w) = .
@) wg — w? + iwl'?

“This section is based in the article [I86]

135



B. THE HARMONIC OSCILLATOR MODEL

If the driving function is stochastic, but wide sense stationaryP} this
equality still holds in the power spectral density (PSD) sense

Soz(w) = |H(W)|2 + Sgg(w).

Therefore, given a certain experimentally measurable x(t), to obtain its
originating S,y we would need to calculate

Sgg(w) = |H(w)|_2 : Sxa:(w) (B.4)

In a more realistic scenario, the oscillator will be driven by thermal
noiseﬁ, a stochastic driving that can be modelled as a white noise w(t) with
zero mean and autocorrelation function R, (7) = 0%6(7). There will also
be a random noise u(t) originating from our measuring device, that we can
consider additive Gaussian white noise (AGWN) (with R,(7) = 036(7)),
summed after the harmonic oscillator frequency response. Therefore, the
measured power spectral density of a driving force g(t) is

Siz = ‘H(W)Psgg + ’H(W)PSww + Suu = ’H(W)|2Sgg + ’H(W)‘ZU% + 057
and our estimate of Sy, will be

[H(@)[ 72+ Sap = |H(w)| 2 (|H(w)[2Sg + |H(w)Po? + 03
= Sgg + 0% + | H(w)| 3. (B.5)

In this expression Sy, is deterministic, o? comes from the thermal noise and

is independent of w and |H (w)| =203 has explicit w dependency. The signal
to noise ratio (SNR), defined as the square rootﬂ of the ratio of the signal
and noise powers, will thus take the expression

S
SNR = 99 .
\/o—% + |H(w)| 203

This expression is bounded by % this is a hard limit that cannot be
1

improved with this system and assumptions. However, the |H (w)| 203 term
can be minimised by using w at resonance.

5This assumption is important, since the following expressions assume no transient
behaviours. When I' < 1, past transients can contaminate the signal, leading to worse
signal to noise ratio (SNR) than expected.

6As can be seen by the fluctuation-dissipation theorem . The engineer /scientist
should decide whether this Brownian noise can be neglected or should be taken into
account, depending on the harmonic oscillator’s mass.

"We use the square root to work with force units, instead of power units. This is, of
course, arbitrary.
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B.3. Sensing with the harmonic oscillator

In any case, to get the minimum measurable force g(t) we have to set
a limit to what we can detect: usually this limit is SNR > 18 From this
inequality we can obtain a bound for g(¢), which is where the minimum
sensitivity expressions come from. Using the fluctuation-dissipation rela-
tionship o1 = +/2mI'kgT and |H(w)|? at its maximum (i.e., at resonance)
we get

\/ g > \/0% + [H(w)| 203
m2(4Q2 — 1)wi

~ \/2mI‘k:BT + o3m2wil?,
(B.6)

where after the inequality we assumed resonance, and the last equality is
a good approximation for large enough Q. Whether we are measuring at
resonance or not, if the measuring noise is very small compared to the
thermal noise, the second term in the square root may be negligible, in
which case we obtain the following expression for the amplitude spectral
density (ASD)

ASD = 2mTkgT. (B.7)

The “minimum resolvable” [192] force or force sensitivity is hence defined
as the root mean square of the noise power spectral density (i.e., the ASD
is just the square root of the PS[ﬂ). Notice that smaller sensitivity values
are better, since the benchmark is the smallest signal that can be detected.

Expression is useful to get an intuition of how the sensitivity scales
with the oscillator parameters. For example, a smaller mass results in a bet-
ter sensitivityiﬂ Bear in mind, however, that is just an approximation
and the full sensitivity has w dependency,

ASD = \/o? + [H(w)|"203.  (N/ViIz) (B.8)

If we further integrate the power only on an interval of length A f in the
Fourier domaiﬂ, we obtain

Gunin = /20 [ Sqq > VAT ATRpT.

8 Again, this limit is arbitrary: in principle if the system is ergodic and the driving
force periodic, signals of any SNR can be detected.
9For reference, check the LISA Pathfinder paper.

10 Assuming, of course, that noise has no m dependency. For instance, with opti-
cally levitated nanoparticles, decreasing the mass increases the measurement noise, since
smaller particles scatter less light. Thus, to obtain a signal that is comparable to that
of bigger particles, we will need to amplify the measured signal, hence also amplifying
measurement noise.

1 As is done in ref. [193].
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B. THE HARMONIC OSCILLATOR MODEL

This expression of gmin is also sometimes known as the force sensitivity of
the system. Nevertheless, the previous ASD definition can (and is) also used
under the same name. In general, the use of the force sensitivity defined
as the ASD (and not as this gmin) should always be preferred, since its
value doesn’t depend on how long the measurement is, it doesn’t make any
assumptions on the bandwidth of the signal and any information of different
sensitivities at different w values is not lost.

It is worth pointing out that if one assumes that measurement noise
can be neglected, the sensitivity is the same for all frequencies: it doesn’t
matter if one measures at resonance or out of i@ This happens because the
oscillator gain affects thermal noise and driving signal equally and the SNR
stays constant. Therefore, for a fixed m, the obvious knobs for reducing the
ASD are decreasing the temperature 7" and/or T'.

B.3.2 The case of a harmonic oscillator with jitter

If the response function of the harmonic oscillator jitters (i.e., is not
constant with time), we can model the sensitivity in probabilistic terms.
Assume the jittering is due to a stochastic natural frequency of the oscillator
QIE, that now fluctuates with time, but has a certain stationary, well-known
probability density function fo(u). Then, the value of the ASD from
will also be stochastic, but we can still calculate its statistical moments. In
particular, the expected value of the sensitivity will be

E[ASD(w)] = E (\/a% I |H(w)\—2a§> (B.9)

= [" o H@ 0 fawdu. (B10)

Clearly this value depends on w, since the expected sensitivity will not be
the same for every frequency. However, if, as before, measurement noise
can be neglected, then

EASD@)) = [ \/ot+ [HWI03 - falwdu (B
:/O:O\/;%-fg(u)du.zal, (B.12)

recovering the expression of (B.7]). Intuitively, this means that if the natural
frequency €2 jitters only in a region where thermal noise is still dominant (for

12Tn fact, measuring at resonance may be a bad idea if the driving signal has a big
bandwidth, since the phase response changes a lot around the resonance peak.
13In contrast with the previous wo.

138



B.3. Sensing with the harmonic oscillator

instance the standard deviation of the natural frequency, oq, is less than
I'/2), the sensitivity is not affected, even if the force amplitude fluctuates
due to the jitter. However, the actual value of the measured force will be
affected if one naively uses equation without taking into account that
H(w) is stochastic. To calculate the real expected force, we will need to,
again, find the expected value of H(w)

VSag@) = VE(H@)[72) - Sza(w), (B.13)

which can be thought of as an effective response function obtained by aver-
aging the instantaneous responses at different times.

Real oscillators, and especially small ones (which are more susceptible to
perturbations), will always have some jitter. The importance of the effect
depends on the parameters of the oscillator: for instance, the effect can
be neglected when the damping is large and the oscillator’s width is much
broader than the jitter (i.e., I' > o). However, for strongly underdamped
systems—which have a very narrow response peak—, jitter needs to be taken
into account. Beyond the probabilistic treatment that we just described,
it is advisable to have some way of artificially increasing the damping in
the harmonic oscillator. As long as this extra damping does not induce
additional noise (i.e., it is a cold damping [106]), this has several advantages:

e Since the peak is broadened, the relative effect of jitter is reduced.

e As long as thermal noise is still considerably larger than measurement
noise, the SNR (i.e., the sensitivity) will not be affected.

e It will reduce the effect of non-linearities in the oscillator. Low dissi-
pation systems with narrow resonances are prone to large oscillation
amplitudes: in this case, non-linearities can dominat

e [t will also reduce the memory of the system. Recall that, the lower
the damping, the longer the memory of the impulse response. In
practical terms, this means that if no additional damping is included
we will keep measuring signal remnants from some past event long
after the driving has stopped.

One possibility to implement this damping is by adding a feedback force
F = —mkyx. The equation of motion becomes

mi + mld + mwie = —mkyt, (B.14)

M The video of an oscillating bridge|is a classical example.
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B. THE HARMONIC OSCILLATOR MODEL

resulting in a new transfer function
1/m
wid — w? +iw(l + kg)?’

H(w) =

which has a bigger effective damping than before, while the thermal noise
will still have spectral density +/2kgT'mI’. Real feedback systems will never
be completely noise-free, but for small gains the effect of this noise is neg-

ligible (see [Chapter 4] or the supplementary material of [106]).

B.3.3 Sensing a perfectly sinusoidal force

Assume now the force g(¢t) we want to measure is a sinusoid, with a
constant phase relation to a controlled reference signal (i.e., it is a perfect
sinusoid). In this case, the sensitivity to this signal can be greatly increased
if instead of working with PSDs one averages the Fourier transform mea-
surements (note that this gives (N/v/Hz) units directly). The argument is
described in what follows: the measured signal m(t) will take the expression

m(t) = (g(t) + w(t)) * h(t) + u(t)

where, as before, g(t) is the driving force, w(t) is a white thermal noise and
u(t) is an AWGN from the measuring device. By assumption, g(t) = cos wgt.
Then, if we take the Fourier transform of the previous expression we get

F ((g(t) +w(t)) * h(t) + u(t)) = F (g(¢t) * h(t))+F (w(t) = h(t))+F (u(?))
=7m(0(w —wq) +0(w+wyg)) - Hw) + F (ut)) +

F ((cos \/atsm\/ﬁt/\/a) ./O b= (1) . ( sgz){/%f) dW)

where we have used the properties of the Fourier transform, in the second
summand we have substituted by the solution of a thermally driven har-
monic oscillator (see for the derivation), a = w? — I'?/4 and W,
is a Wiener process parametrized by the time r. Finally, taking expected
values

E[F ((9(t) + w()) * h(t) + u(t))] = E[r(d(w — wa) + 6(w + wa)) - H(w)+

F <<cos Vat sin \/at/\/a) -/Ot ez (=) . <_ SZICI)S\(/%f) dW) + F (u(t))]

=7(0(w — wq) + 0w+ wq)) - H(w)+

((cosftsmft/f [/ bez(r—1) <_S;I:)S\(/i1/a\f> dW])

+ F (B[u(t)]) = n(6(w — wa) + 8w+ wa)) - Hw),
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since the expected values of an It6 integral and u(t) are zero. If we are per-
fectly rigorous, Fubini’s theorem can’t be applied with delta distributions;
nonetheless, the calculation can be repeated in complete analogy with sinc
functions instead. Sinc functions appear as the Fourier transforms of finite
rectangular windows, and are unavoidable in actual measurementsiﬂ
Thus, defining the SNR as the ratio between expected driving signal
amplitude and expected noise amplitude in the frequency domain, we find
that the value goes to infinity. A more accurate analysis should compare
not the ratio of the expected values but the ratio of the signal and noise
random variables themselves (which, to a good approximation, should follow
a Cauchy distributionED. However, this section is enough to show that if
more information about the driving force is known (in this case, the fact that
the force is sinusoidal), we don’t need to restrict ourselves to the sensitivity
described in eq. and more intelligent approaches might exist.

B.4 Accelerometers

In the last section we saw the expressions for the sensitivity and response
of the harmonic oscillator when subjected to an external driving. In a
situation where the driving acts on the housing of the oscillator instead of
on the oscillator itself, the equation of motion for the harmonic oscillator is
modified to

mi +mla +mwie =0 — mi +ml(d — ) +mwi(z —y) =0 (B.15)

where y(t) is the motion of the housing. By rewriting the equation in terms
of z = x — y, which is the quantity that we will measure, we obtain the
equation

mz +mlz + mwiz = —mj. (B.16)

Therefore, the transfer function for y(t), as compared with a regular
harmonic oscillator, will take the modified expression

—w?
H = . B.17
() wd — w? + iwl? ( )

15Gince every real measurement will be a finite time measurement. Therefore, the
measured signal of an arbitrary f(¢) will in fact be f(¢) - II(¢) (II(¢) being a rectangular
window), and by the convolution theorem the Fourier transform of the measurement will
be F(w) * sinc(w). This avoids the infinite values from the delta distribution.

16The Cauchy distribution appears as the ratio of two normally distributed random
variables and has undefined (i.e., going to infinity) statistical moments.
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Power transfer function

H(w) (m*/N?)

10° 10
w (27 Hz)

Figure B.1: Oscillator response H(f), for arbitrary wy and T, to a housing motion
y(t) (seismometer regime).

Note that, for large values of w, H(w) ~ 1. Therefore, for frequencies
significantly above resonance, the accelerometer has a flat response and
behaves approximately as a Dirac delta:

Z(w) = H<w)Y(w) —w>wo Y(w)

z(t) ~ y(t).

In this range of operation, the oscillator behaves as a seismometer: it mea-
sures the displacement of the housing (see Fig. [B.1]).

To understand the accelerometer regime, lets assume we have an arbi-
trary housing motion y(¢). The response in terms of the power spectral
densities will be

w4

(WE — w?)? + 2?2 ’

S.x(w) = Syy(w). (B.18)

But since —w?Y (w) = A(w), where Y (w) and A(w) are the Fourier trans-
forms of y(t) and the acceleration a(t) = (), the response to an acceleration
§(t) will be

wt S, ( ) 1
. w) =
(wE — w?)? + IMw? vy (wE — w?)? + IMw?

Sez(w) = - Spa(w).

(B.19)
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Power transfer function

is

H(w) (m”/N%)

10° 10°
w (27 Hz)

Figure B.2: Oscillator response H(f), for arbitrary wy and T', to the acceleration
of the housing a(t) (accelerometer regime).

In other words, the response of z(t) to an acceleration of the housing
is, except for the missing 1/m? factor, the same as the response of a force
acting on the harmonic oscillator, as plotted in Fig. Now, the response
of the harmonic oscillator is flat at low frequencies (i.e., below resonance)

1

H(W)w%() = "3

“o
and this is the frequency band where most of the accelerometers work.
Like in seismometers, this is a relevant point: working in a regime where
the impulse response is approximately a Dirac delta is necessary when the
driving force isn’t restricted to a small bandwidth (otherwise, to recover
a(t) out of z(t), some sort of deconvolution may be needed, which is an
ill-posed problem that should be avoided if possible).

Assuming the housing mass is large enough, the stochastic component
of y(t) due to Brownian noise can be neglected. However, Brownian noise
will still drive the harmonic oscillator itself"]

mz +mlz + mwiz = w(t).
Therefore, repeating the analysis of the force sensing section we obtain

S.. =m? |H(w)|*Sua + |H(w)|*07, (B.20)

"Note that an important approximation is being done here: we assume that the
acceleration leaves the statistical properties of Brownian noise unchanged. For large
accelerations this approximation may not hold.
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where H(w) is the response of the harmonic oscillator including the 1/m?

Saam?
2

factor. Thus, neglecting the measurement noise, SNR = 43 SO
1
2kgTT
ASD = /S, = B (B.21)
m

This means that larger masses will push down the value of the minimum
detectable accelerations.
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Review of optics

C.1 Ray optics and basic concepts

Lenses

A lens is a transmissive optical device that focuses or disperses a light
beam by means of refraction. If the lens is convex, a collimated beam of
light passing through the lens converges to a spot (a focus) behind the lens.
In this case, the lens is called a positive or converging lens. The distance
from the lens to the spot is the focal length of the lens, which is commonly
abbreviated f in diagrams and equations. A lens can focus light from and
object to form an image.

If distances from the object to the lens and from the lens to the image are
d, and d; respectively, for a lens of negligible thickness, in air, the distances

do

J

Figure C.1: Thin lens: sketch of a lens focusing an object to an image plane, with
the relevant parameter names and light lines for ray tracing.
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are related by the thin lens formula

111
do dz_f,

Hence, an image will be formed at the plane d; (since every point from the
object plane will be focused in a point of the image plane). This can be
seen by putting a sheet of paper at the image plane: if the object is bright
enough (for instance, it is illuminated), then an image will be projected on
the sheet. Putting the sheet at any other position will result in a blurred
image.

Two relevant cases of the thin lens formula are the following

e If the object is at infinity, the image will be formed at exactly the
focal plane, d, = f (and vice versa).

e If the object is at distance 2f, the image will also be formed at 2f.

Magnification

In an optical system where and object is imaged, magnification is defined
as the ratio of the image height with respect to the object height

do  f—dy

For a system of several lenses, the image of a lens will become the object of
the following lens. By induction, this means that the combined magnifica-
tion will be the product of magnifications,

M =[] M.
i

Both the single thins lens formula and the magnification formula will be
specially relevant when designing an imaging system (such as a microscope).
The product of the total magnification by the size of the object will need
to fit (i.e., be smaller than, but not too much) the camera chip where the
image will be formed.
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|y

Figure C.2: 6 and NA of a thin lens.

Numerical aperture

In most areas of optics, the numerical aperture of an optical system such
as an objective is defined by

NA = nsinf,

where n is the refractive index of the medium in which the lens is working (1
for air, 1.33 for water, 1.5 for a glass or immersion oil) and 6 is the maximal
half-angle of the cone of light that can enter or exit the lens.

The use of a high NA lens will result in the collection of a high fraction
of the cone of light emitted by the point source in the focus. For a given
half angle 6, the fraction of the light collected will be

1 —cosf
2

For instance, a lens with NA = 0.9 (resp. 0.8, 0.7, 0.5) will collect 0.28 (0.2,
0.14, 0.07) of the light.

In photography the f-number or N is used instead, defined as N = %,
with f the lens focal length and D its diameter. As can be seen with a
first order Taylor approximation, N =~ ﬁﬂ The depth of field (DOF)H
decreases by either increasing the NA (which can be modified by adding an
aperture after the objective lens) or increasing the image magnification.

Objectives

An objective is an optical element that gathers light from a close object.
Objectives can be a single lens or mirror, or combinations of several optical

!This expression, which ignored higher order terms of the expansion of the sin and
arctan functions, is often the right one when the lens is corrected for coma and spherical
aberration.

2The DOF is the distance about the Plane of Focus (POF) where objects appear
acceptably sharp in an image.
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elements, and are used in microscopes, telescopes, cameras, etcﬂ What sets
them apart from other simple lenses is their degree of correction for different
kinds of optical aberration (mainly spherical and chromatic). Depending on
their characteristics (from cheaper to more expensive), they are classified
as

1. Achromat: corrected for spherical aberration at 1 wavelength, for
chromatic aberration at 2. Not corrected for field curvature.

2. Plan Achromat: like an achromat but with field curvature correction.

3. Fluorite (or semi-apochromat): corrected in 2-3 colors both in spher-
ical and chromatic aberration. Not corrected for field curvature.

4. Plan Fluorite: like a fluorite but with field curvature correction.

5. Plan Apochromat: chromatic aberration correction at 4 wavelengths
and spherical aberration correction usually at 3 wavelengths.

Microscope objectives are characterized by two parameters: magnifi-
cation and numerical aperture (defined as in the previous section). The
magnification typically ranges from 4x to 100x, and is multiplied with the
magnification of the eyepiece to determine the overall magnification. How-
ever, not all objectives make an image of an object at a fixed focal length:
in fact, this is a constraint that severely limits the size of the microscope
and prevents the use of other optical elements after it. Newer (and better)
objectives are infinity corrected, and have an image distance that is set to
infinity (i.e., they collimate the light emitted at the focal plane). Therefore,
they require a tube lenﬂ placed within the body tube between the objective
and the eyepieces, to produce the intermediate imageﬂ The Infinity optical
system allows auxiliary components (such as illuminators, polarizers, etc.)
to be added into the parallel optical path between the objective and the
tube lens with only a minimal effect on focus.

Microscopy basics

A microscope is an instrument used to see objects that are too small to
be seen by the naked eye. A microscope system usually places the sample
to be studied at the focal plane of the first optical component.

3Main manufacturers are Olympus, Nikon, Meiji, Leica and Zeiss.

4The position of which depends on the objective manufacturer, but lies in the range
of 180 mm.

5Since, of course, if there is no image, magnification can’t be calculated.
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Infinity optical system

Objective Eyepiece

Finite optical system
Objective Eyepiece

Figure C.3: Infinity corrected system. Comparison between finite and infinity
corrected objectives. For an infinity corrected system, the light from the object
plane is perfectly collimated, and therefore the optical system can be of arbitrary
length. For a finite system, the microscope tube is fixed to the objective conjugate
focal length.

In order to improve specimen contrast or highlight certain structures in
a sample, different techniques must be used. Some of them are listed in the
following:

e Bright field: sample contrast comes from absorbance of light in the
sample.

e Dark field: sample contrast comes from light scattered by the sample.

e Phase contrast illumination: sample contrast comes from interference
of different path lengths of light through the sample.

e Confocal microscopy: it uses a scanning point of light and a pinhole
to prevent out of focus light from reaching the detector (only light
emitted in the focal volumeﬂ is collected). Compared to full sample
illumination, confocal microscopy gives higher resolution, and signif-
icantly improves optical sectioning. It is commonly used where 3D

6See the [Gaussian beam| section.
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pinhole

detector

Figure C.4: Principle of confocal microscopy: a spatial pinhole blocks out-of-
focus light in image formation.

structure is important. See Fig. [C.I] for a sketch of the optical setup
in a confocal microscope.

C.2 Fourier optics

Fourier optics is the study of classical optics using Fourier transforms
(FTs), in which the wave is regarded as a superposition of plane waves
that are not related to any identifiable sources; instead they are the natural
modes of the propagation medium itself. Any curved phase front may be
synthesized from an infinite number of these “natural modes”.

Light can be described as a waveform propagating through free space
(vacuum) or a material medium (such as air or glass). The (real valued)
amplitude of one wave component is represented by a scalar wave function
u that depends on both space and time:

u = u(r,t),
where
r= (l‘ay7 Z)

represents position in three dimensional space, and t represents time. The
wave equation satisfied by these waveforms is

1 9
<V2 — 626152> u(r,t) =0.
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If one assumes the waveforms have a fixed frequency, i.e.,

u(r,t) = Re {w(r)ej“t} ,

then the wave equation yields the time-independent form of the wave equa-
tion, also known as the Helmholtz equation:

(V2+ k) p(x) =0

where k = = = 27” is the wave number and #(r) is the time-independent,
complex-valued component of the propagating wave. Note that the propa-
gation constant, k, and the frequency, w, are linearly related to one another,
a typical characteristic of transverse electromagnetic (TEM) waves in ho-
mogeneous media.

A general solution to the Helmholtz equation in rectangular coordinates
for a wave that propagates along z may be formed as a weighted superpo-
sition of all possible elementary plane wave solutions as:

+oo  pHoo . .
Y(x,y, 2) :/ / \I’o(kz,ky) oJ (kaz+kyy) 6igz,/k2‘_kg—k§ dkydk,.
Next, let ¢o(x,y) = ¢¥(x,y, 2)|,=0. Then

+o0 +o0o .
Yo(z,y) :/ / o (ky, ky) od (ke +kyy) dk,dk,.

This plane wave spectrum representation of the electromagnetic field is the
basic foundation of Fourier optics, because when z = 0, the equation above
simply becomes a Fourier transform (FT) relationship between the field and
its plane wave content. Thus Wo(ky, ky) = F{vo(z,y)}.

Note that when k2 + ki > k2 the plane waves are evanescent (decay-
ing), so that any spatial frequency content in an object plane transparency
which is finer than one wavelength will not be transferred over to the image
plane, simply because the plane waves corresponding to that content cannot
propagate.

Diffraction limit

The resolution of an optical imaging system (a microscope, telescope,
or camera) can be limited by factors such as imperfections in the lenses,
misalignment or seeing. However, there is a fundamental maximum to the
resolution of any optical system which is due to diffraction. This limit
requires a formalism (Fourier optics) that goes beyond ray optics, where
there is no such limit.
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An optical system with the ability to produce images with angular res-
olution as good as the instrument’s theoretical limit is said to be diffrac-
tion limitedm Using the Fraunhofer diffraction equation, we see that if a
monochromatic plane wave is incident on a circular aperture (and almost
any optical system will have that kind of aperture), an Airy diffraction
pattern spot will be formed at inﬁnityﬂ with size

C1.220 )
()0_ _D )

where ¢ is the angle between the optical axis and the first minima, A is the
wavelength, D is the lens or aperture diameter and the 1.22 factor arises
from the Bessel functions. This angle, according to Rayleigh’s cm’tem’onﬂ,
is the angular resolution of our system, since two point sources separated
by less than ¢ will appear as the same. We can transform this angular
resolution to a spatial resolution by considering that the diffraction spot is
at distance f from the aperture, where it has been focused by a lenﬂ By
approximating % ~ NA and 0-2f ~ d, where d is the diameter of the spot,
we find

122

d
NA

As will be seen later (see equation ), this diameter is not the same
as the spot size of a Gaussian Beam, even though it is of a similar size.
This should be expected, however, since we assumed a plane wave was
illuminating the aperture. For a collimated laser beam, in order to make
use of the full NA of a lens, the incident field has to fill or overfill the back-
aperture (as a rule of thumb, an overfilling factor of 2 is enough); if the
lens is not completely filled, the size of the spot can be considerably larger
than the expected diffraction limit. If the back aperture is infinitely filled,
locally the illumination will be a plane wave, and the diffraction limit spot
will be exactly recovered.

It is worth noting that this is a physical limit. This means that, even though there
is a limitation to the minimum size a focused spot can have, once a image of it is taken,
it can be digitally deconvolved with the point spread function of the system to increase
the image resolution (sometimes by a factor 10 or more).

8Here infinity means VZV—; < 1, where W is the aperture or slit size, ! is the distance
from the aperture and A the wavelength.

9Which is an arbitrary limit, but is quite close to the minimum resolution humans
can discern.

10A lens is also an aperture, and since at the focus all plane waves have the same
phase, this is equivalent to viewing the wave at infinity as in Fraunhofer’s diffraction.

152



C.2. Fourier optics

'Input" plane, containing one Multiplicative transmission mask,
of the two functions to be containing FT G (ky,k,) of 2™

cross-correlated, f(x,y), say. function, g(z.y).

Correlation of f(z,y) and

g(x,y) appears in this plane.

FT of f(x,y) i.e. F(ky,ky)is

formed in this plane.
NS

”&
‘fo

4f long

Figure C.5: 4f system: scheme of a 4f correlator, with explanation of the effect
for every. Image by Rswarbrick, under the Creative Commons CCO 1.0 license.

Optical systems in Fourier optics

Under this formalism, an optical system will consist of an input plane,
and output plane, and a set of components that transforms the image f
formed at the input into a different image g formed at the output. The
output image is related to the input image by convolving the input image
with the optical impulse response, h (known as the point-spread function,
for focused optical systems). The impulse response uniquely defines the
input-output behaviour of the optical system. By convention, the optical
axis of the system is taken as the z-axis. As a result, the two images and
the impulse response are all functions of the transverse coordinates, x and

1.
9(x,y) = h(z,y) * f(z,y).

The impulse response of an optical imaging system can be determined by

measuring the output plane field which is produced when an ideal mathe-

matical point source of light is placed in the input plane (usually on-axis).
Two simple types of system stand out

1. Simple lens: if a transmissive object is placed one focal length in
front of a lens, then its Fourier transform will be formed one focal
length behind the lens.
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2. 4f system: a 4f system with two identical lenses can be used to
control the angle of incidence of a beam at z = 4f (see figure ,
as for instance the angle of illumination of the back aperture of an
objective. By shining a laser beam on a mirror at z = 0, an image will
be formed at z = 4f at the same height and angle as the one in the
mirror. However, the ray optics formalism is enough to see that this
will be the case; 4 f systems can also be used as correlators, and for this
Fourier optics are needed. A plane wave is assumed incident from the
left and a transparency containing one 2D function, f(z,y), is placed
in the input plane of the correlator, located one focal length in front of
the first lens. The transparency spatially modulates the incident plane
wave in magnitude and phase, and in so doing, produces a spectrum
of plane waves corresponding to the FT of the transmittance function.
That spectrum is then formed as an image one focal length behind the
first lens, as shown in figure A transmission mask containing the
FT of the second function, g(x,y), is placed in this same plane, one
focal length behind the first lens, causing the transmission through the
mask to be equal to the product, F(ky,ky) - G(ksz, ky). This product
now lies in the input plane of the second lens (one focal length in
front), so that the FT of this product (i.e., the convolution of f(z,y)
and g(z,y)), is formed in the back focal plane of the second lens.

C.3 The Gaussian beam

The Gaussian beam is a transverse electromagnetic (TEM) mode, a
solution to the paraxial Helmholtz equation. The interest in this family
of solutions arises in problems involving compact beams, where the optical
power is rather closely confined along an axis as with laser beams.

Its intensity takes the expression

_|Re(ExH*)| _|E(r,2)]* wo \? —2r2
I(r,z) = 5 = T Iy (10(2)> exp (w(z)Q> ,

where 7 is the radial distance from the center axis of the beam, z is the axial

2
distance from the beam’s focus and w(z) = wo /1 + (i) is the radius at

which the field amplitude (resp. intensity) decays to 1/e (resp. 1/e?). The
Rayleigh range zp is defined as the distance where the intensity has decayed
to half of the intensity at z = 0 (and therefore the area of the cross section
has doubled since, by energy conservation, total intensity should be constant
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C.3. The Gaussian beam

Figure C.6: Gaussian beam: width w(z) as a function of the distance z along
the beam. In the picture, wg is the beam waist, b the depth of focus and zp the
Rayleigh range, © total angular spread.

for every plane):

The depth of focus is usually defined as 2zp.
The numerical aperture of the beam is also defined as NA = sin@
Then we also have

A
7 - NA

wo = (Cl)

The spot size can be measured in several different ways, but the defini-
tion is always proportional to the waist size wg. The FWHM is related to
this via

~ FWHM

w(z) = =2 - wy=d~17-FWHM.
&)= oz 0

Coupling light into fibers
We distinguish two cases, depending on the fiber type:

e Multimode fiber: coupling light into a multimode fiber is straight-
forward. The focused spot needs to be comparable (or smaller) to the
core size of the MM fiber, and the incident cone angle should be equal
or smaller to the acceptance cone (input NA < fiber NA).

11n this case this factor doesn’t come from a lens; instead, it is characteristic of each
Gaussian beam, since every 0 will generate a different solution to the paraxial Helmholtz
equation. However, this is sometimes assumed to be the case: experimentally, we can
calculate our wo and zgr by plugging in the NA of our focusing objective.
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e Single mode fiber: for a single mode fiber, to maximize the coupling,
the incident field distribution should match the fiber mode distribu-
tion. This can be checked by illuminating the fiber from the other side
and comparing the sizes of the input and output beams. It can also be

calculated as follows for a step index fiber: wgy can be approximated
by

1.619  2.879
UJQ:T<O65+‘/15+‘/6>,

where 7 is the fiber core radius and

V = %Tava —ng? = %TGNA

is the V-number of the fiber (n; is the core refractive index and nq
is the cladding refractive index of the fiber). Therefore, applying
equation (C.1)), we will need a lens with NA
A
NA=—
WO

to match the fiber. Equivalently, given a certain lens with focal length
f, we will need an incident beam of radius

A

W

R~

C.4 Detection techniques

Homodyne and heterodyne detection are methods for extracting signals
encoded as a modulation (of either phase, frequency or both) of electromag-
netic radiation. Although in this section it is assumed that the carrier wave
is in the visible spectrum, the exact same principles apply for electric and
radiowave signals.

Keep in mind that optical detectors, such as a photodiode, detect inten-
sities, I(t) o< E?(t), instead of pure electromagnetic fields. In other words,
optical detectors measure the squares of the electromagnetic fields. Thus,
the signal acquires a component at double the field’s frequency (which is not
detected, since it is always out of the detector bandwidth), and a component
close to zero frequency, which is converted into an electric signal.

C.4.1 Homodyne detection

Homodyne detection (Fig. [C.7)) is used to extract a signal 6(t) en-
coded as modulation of the phase by comparing the modulated signal with
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4

G/
VA
7

Figure C.7: Homodyne detection. Sketch of a homodyne detector, where the
modulated field signal E(t) is created after passing through an oscillator, marked
with a “~” symbol.

a standard oscillation that would be identical to the signal if it carried null
information.

In homodyne detection, the field signal E,(t) = Escos(wt + 6(t)) and
the local oscillator signal field E}(t) = Ej, cos(wt) are overlapped at a 50%
reflecting beam splitter, and the two interfered fields are detected at two
different photodiodes and subtracted. Notice that the two fields Fj and FEj
need not have the same amplitude. The fields after the beam splitter are

_Eh+Es

El_ \/i Y
_Eh_Es

By ==

Thus, after subtraction (and some basic trigonometry) the detected signal
will be

1
I x QESE;L cos(6(t)).

C.4.2 Heterodyne detection

In heterodyne detection (Fig. , the incoming signal is compared
with a standard or reference signal from a “local oscillator” (LO), which
would have a fixed offset in frequency and phase from the signal if the
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Ideal mixer
(multiplier)
Input Output
signal > > signal
f=w f=wrw,
Local
oscillator
f= Wy

Figure C.8: Heterodyne detection. Sketch of a heterodyne mixer, which multi-
plies the incoming and local oscillator signals. Heterodyning is almost universally
used to down-convert the frequency of the signal: for this reason only the w; — wp,
term (and not the w; + wy, term) is considered; the second is usually filtered out.

latter carried null information (i.e., if the carrier were a pure sinusoid).
“Heterodyne” signifies more than one frequency, in contrast to the single
frequency employed in homodyne detection.

In heterodyne detection, the amplitude of the down-mixed difference
frequency can be larger than the amplitude of the original signal itself

I o [E; cos(wit + 0(t)) + By, cos(wpt)]?

x %E? + %Eg + 2E}, E; cos(wit + 0(t)) cos(wpt).

The first two terms of the detected signal are proportional to the average
(DC) energy flux absorbed. The third term is time varying and creates
the sum and difference frequencies and, as can be seen, the larger the LO
amplitude, the larger the difference-frequency amplitude (hence, there is
gain in the conversion process itself). In the optical regime, the sum fre-
quency will be too high to pass through the subsequent electronics, and
only the difference frequency (containing the useful phase information) and
DC components will be detected.

158



Trapped particles techniques

D.1 Position detection

The motion of trapped particles can be obtained with a quadrant photo-
diode (QPD); other motion detector schemes, such as balanced photodiodes,
use essentially the same technique, although the measuring apparatus is in
a different configuration.

The QPD is divided in four quadrants (A, B, C' and D) and has three
different outputs:

e X=(A+D)— (B+0C),
oY =(A+B)—(C+D),
¢« SUM=A+B+C+D.

The particle scatters laser beam light in the Rayleigh/Mie regime, and this
light, jointly with the remaining unscattered light from the laser, is colli-
mated and projected into the QPD. To first order, the scattering profiles
calculated in the QPD (X, Y and SUM) are linear with the particle’s po-
sition (x,y, z) in a region close to its center, as long as the beam is well
aligned and other conditions are fulﬁlled[ﬂ This means that if the particle
doesn’t move “too much”, staying in a mostly linear operation region, the
measured electrical signals are proportional to the position, V' (t) = S - z(t).

The |Signal calibration] section details the procedure to obtain the cali-
bration factor S.

!See “Optical Tweezers” [82], by G. Volpe et. al., for more details.
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D.2 Particle statistics

D.2.1 The Canonical ensemble

The Gibbs distribution (or Boltzmann-Gibbs distribution, or Gibbs mea-
sure) is the probability distribution that gives the probability of a certain
state as a function of that state’s energy and temperature (the temperature
of the thermal bath)ﬂ It takes the expression

P(X = 2) = — exp(~8H (p,q), (D.1)

where 2 is the variable space domain, Z

Z = /n exp(—BH (p,q)) (D.2)

is a normalizing factor (the partition function or “state counting function”
in the discrete case), § = kBLT and E(x) is the energy of the state x; in
the discrete case, the number of particles N also enters the expression of
Z. This is the basic distribution of the Canonical ensemble: almost every
relevant quantity that describes the system statistics can be derived from
this expression.

In the case of a trapped particle, the distribution represents the prob-

ability density that a particle is in position z, given its trapping potential
U(x):

poc() = 7 exp(~ U (). (D.3)
This expression can also be obtained as the invariant measure of an Ito
diffusion defined by a gradient flow (see the SDE section [LINK]). In other
words, given a gradient flow, the probability density function ps () of the
equation variable z(t) will converge towards , rightfully earning the
name of equilibrium.

This is a especially relevant fact for particles trapped in a potential:
it implies that, other than the particle dynamics being well described by
a (stochastic) gradient flow, the canonical ensemble doesn’t require any
further assumptions. In particular, ergodicity is a corollary of the type of
system, not a different requirement. For instance, in the linear equation
case, the dynamics form a (multivariate) Ornstein-Uhlenbeck model, which
is provably [194] geometrically ergodic.

2Interestingly, this distribution arises in machine learning as the equilibrium solution
of a stochastic gradient descent. A way to derive it is to write the SDE of a gradient flow
and apply the Feynman-Kac or Kolmogorov backward equation. See
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D.2.2 Equipartition theorem

As we have seen, the canonical ensemble is normalized such that
% / e PHPO g = 1, (D.4)

Using integration by parts for a phase-space variable x, the above can be
written as,

1 He—BH(/p,9)
—BH(p,q) g7 — H(p,q9) S
Z/ dl’ = /dxke |dT, Z/:ck T ar, (D.5)

where dI'y = dI'/dxy, i.e., the first integration is not carried out over xy.
Performing the first integral between two limits ¢ and b and simplifying the
second integral yields the equation

1 k=b 1 OH
—BH (p,q) —BH(p,q) —
~ / [e xk] UYE S /e .3 T dr = 1. (D.6)

The first term is usually zero, either because xj is zero at the limits, or
because the energy goes to infinity at those limits. In that case, the equipar-
tition theorem for the canonical ensemble follows immediately

OH 1
—BH(p,9) ;. dp — V=1 =kpT. D.
Z / (o axk> 3= "B (D7)
The general expression of the equipartition theorem is then
OH
<x’”67n> = SpnkpT. (D.8)

Here, the averaging symbolized by (...) is the ensemble average taken over
the canonical ensemble. The ensemble average can be calculated over the
phase space (different samples) or over time as long as the system is ergodicﬂ,
as is the case for the OU particle model.

For a particle in a quadratic potential, the Hamiltonian is

H = %mv2 + U(z) = %mv%mwgﬁ (D.9)

Therefore,
(2920) = (muge®) = ko, (D.10)
(I = (me?) = ko, (D.11)

which are the classic expressions of the equipartition theorem.

3This condition is usually close to impossible to prove (often one just assumes this is
the case).
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D.2.3 Signal calibration
At equilibrium, by the equipartition theorem

(V?) = §2(g2) = BT (D.12)

mw?’

where T is the ambient temperature, m is the mass particle (that can be
calculated by several methods)lﬂ and w can be measured from the PSD.
Therefore

kgT

2 __
5= mw?(V2)’

(D.13)
providing a way to transform between voltage and position.

D.2.4 Fluctuation-dissipation theorem

A free Brownian particle satisfies the following equation of motion
dr = vdt,

1
dv = — (—yvdt + odWy) .
m

Given the mass m and the drag ~, it is possible to determine the value of o
by forcing the system to obey the equipartition theorem. To solve for o we
only need to focus on the second equation, since it is decoupled from the
first one:

mo + v = on(t), (D.14)
or, in It6’s notation,
dvy = —ave dt + bdWs, (D.15)
with a = = >0, b = Z. The solution of this SDE is
t
vy = voe ™ + b/ e~ =)W, (D.16)
0

and applying It6’s isometry

E[v?] = gz (1—e2). (D.17)

4For instance, using the provider’s density and radius, calculating the radius from
autocorrelation/PSD measurements and obtaining m with the density, or following the
procedure described in section ‘{Determination of the massJ"
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For long times

5 b2 o?
tlggoE[vt] =% 2vm’ (D.18)
and, since by the equipartition theorem
kgT
2 B
== D.19
) =2 (D.19)

we find

o = /2ksT, (D.20)

known as the fluctuation-dissipation theorem because it relates the fluctu-
ation force with the dissipation or drag.

D.2.5 COM temperature and phonons

Strictly speaking, the thermodynamic temperature is only defined when
the particle is in thermodynamic equilibrium, where the quantum state is
of the Gibbs form

o—H/kpT

p = W. (D.21)

Here, H is the Hamiltonian and T is the temperature. However, in general
a cold trapped atom or particle will not be in thermodynamic equilibrium.

A more interesting quantity that does not require a thermodynamic
equilibrium is the average number of vibrational excitations of the particle
motion. This is also known as the phonon occupation number, and is often
denoted by 7 or (n). When the atom/nanoparticle is close to the potential
minimum of a deep trap, the oscillations can be treated as approximately
harmonic. In that case, the average number of vibrational excitations at
thermal equilibrium is given by the Bose-Einstein statistics,

(B) 1 1 1

= 5+ ST (D.22)

where w/27 is the frequency of harmonic oscillationﬂ In the limit of high
temperature this reduces to the equipartition expression (via first order
Taylor expansion)

<E> = hw<n>eq ~ kpT, (D.23)

Note that the energy E,, is proportional to n plus a constant 1/2 factor: this constant
factor makes no contribution to any statistical properties and can be ignored.
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where (E) is the average energy. Therefore, given an experimentally deter-
mined (n), one can obtain an effective temperature according to the above
formulae, whether or not the system is truly at equilibrium.

In the limit of low temperatures the previous expression reduces to E =
%hw, the ground-state energy of the quantum harmonic oscillator.

D.3 Determination of the mass

To determine the mass of an optically trapped particle, we follow the
procedure described in F. Ricci et. al. [I0I]. The method requires setting
the net number of charges of the trapped particle to a known value, which we
achieve with the creation of a plasma dischargeﬂ The mass can be obtained
by comparing the ratio of two different effects on the particle dynamics: the
(stochastic) thermal driving and the force created by a finely calibrated
electric field.

Since the motion of the particle in the optical trap without any driving
is purely thermal, its PSD S,(w) is well approximated by a Lorentzian
function

o2 /m?

(w? — wd)? + IM2w?’

Syp(w) = (D.24)

From an experimental measurement of S"(w) we can extract the value
of St (wg;) and perform maximum likelihood estimation to obtain the val-
ues of wy and I' as fitting parameters. Introducing an electric driving, we
determine the magnitude of the driven resonance S,(wq;) and calculate the
electrical contribution S¢'(wy;) = Sy (wWar) — S (wWar).

The mass of the particle can ultimately be calculated considering the

el _ qth .
ggfh(wdr) = S5y . Note that S¢! scales as m™! while St
o (war) Sy W=Wdr

scales as m~2. Thus, from their ratio we obtain:

ratio Rg =

ngqg E2T
m—

= D.25
8 kgT T Rs’ ( )

where n, is the number of elementary charges, ¢. the electron charge, Ey
the electric field amplitude, 7 the trace integration time, kg Boltzmann’s
constant, I" the damping and Rg the previously calculated ratio.

SWe control the charges as in Ref. [158]: after the plasma is created, the charge is
monitored with single electron precision by driving the particle at a specific frequency war
and looking at the amplitude jumps.

164



WKB calculations

E.1 First small parameter

We study the dynamics of a trapped particle, satisfying the equation of
motion

mij + vy — ecos(wqt)y = on;. (E.1)

Here, v, €, wq and o are constants and 7; denotes a unit intensity white
noise; 7 is related to the I' of the main text by v = I'm. m is the particle’s
mass and we are interested in small values of m. We are thus going to
conduct an asymptotic analysis of the solutions to as m — 0. The
primary object of study is the variance of the particle’s position, i.e., the
expected value of (y(t) — p)? where p; denotes the expected value of y(t).
In the case when y(0) = ¢(0) = 0, we have u; = 0 and the variance is
equal to the second moment E [y(t)%]. Here (and in all the text) E denotes
expected value.
First, we are going to study the homogeneous equation:

my + vy — e cos(wat)y = 0. (E.2)

This second-order equation has two linearly independent solutions. We want
to find their approximate expressions, in order to study the solution of the
randomly perturbed equation (E.I]). To do this we first postulate that y(t)
has the form

i
t) = ——1 t E.3
y(t) exp( 2m>u() (E-3)
and substitute into (E.2) obtaining

mi, = (2;721 + ecos(wdt)> u. (E.4)
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Multiplying both sides by m, we rewrite (E.4)) as

2
m?i, = (1 + me cos(wdt)> u. (E.5)

We will study the last equation, by the WKB method. Using the ansatz
1
u(t) = exp <mSO(t) + S1(t) + mSa(t) + .. ) (E.6)
we get
. 1. N N 1. . . 2
U = ES@-{—Sl—i—mSz—l-... u + ESD‘}'Sl"‘mSQ"‘... u. (E.7)
Substituting this formula into equation (E.5) and dividing by u we obtain
5 (1 N N 5 (1 . . ) 2
m—Sog+S1+mSe+... | +m“ | —So+51 +mSs+ ...
m m
-2
=7 + mecos(wqt). (E.8)

We now compare the coefficients of the same powers of m on both sides of

this equation. In order m® we obtain
-\ 2 ’)/2
($0) = T (E.9)
This equation has two solutions, Sy = 3 and Sy = —3. Let us start from
the first case, so that
_
So(t) = §t. (E.10)

Comparing the terms proportional to m! on both sides of (E.§]), we obtain
S;() + 25051 = GCOS(wdt). (E.ll)
Substituting Sy(¢) from (E.10) we obtain

Si(t) = ’yTeud sin(wqt). (E.12)

Next, comparing the terms proportional to m? on both sides of (E.§)), we
find

.. S\ 2 .
ST+ (Sl) + 25055 = 0. (E.13)
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Substituting the calculated expressions for Sp and S from (E.10) and (E.12])
and solving for S2 we obtain

Sy = %d sin(wat) — 2; (1 + cos(2wat)) (E.14)
and after integration
¢ 2 2
Sa(t) = 2 cos(wqt) — 250 T Ty sin(2wqt). (E.15)

Substituting the derived expressions for Sp,S; and S into (E.6) and ne-
glecting the higher order terms of the series in the exponent, we obtain
for the first of two linearly independent solutions of (E.5)) the approximate
formula

2

v me € .
1) ~ —_— — — |t + — t)—
u(t) ~ exp l(Qm 53 ) + e sin(wqt)

) (E.16)

me me

— cos(wqt) — —5— sin(2wqt) | .
" cos(unt) - g sin >]
We now multiply u(t) by exp (—ﬁt) and drop from the expression in the
exponent of (E.16)) the periodic terms proportional to m (a fuller justifica-
tion of this step will be given below) to obtain an approximate expression
for the first of two linearly independent solutions of the equation (E.2)):

2

y1(t) ~ exp [(—g:;) t+ sin(wdt)] . (E.17)

YWd
An approximation of the second one follows from the choice

So = —gt (E.18)

instead of (E.10). A calculation fully analogous to the one presented above
leads to
2

yo(t) ~ exp l(— v ) t sin(wdt)] . (E.19)

m o 293 Ywd

Our approximate formulae are in agreement with Floquet theory, according
to which two linearly independent solutions of eqn. Eq. (E.2|) can be chosen
in the form

y;j(t) = exp (Ajt) Pj(t) (E.20)
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for j = 1,2, where P; are i—Z-periodic functions. A\ and Ao are the charac-
teristic exponents of the equation. The above statement is true whenever
the characteristic exponents are distinct, which is clearly the case here. In
what follows, only the values of \; are going to play a role, since the periodic
factors P; are bounded. This is the reason why we could omit corrections
of order m to the exponents in (E.17) and (E.17)). Explicitly, we have seen

that, according to the WKB approximation:

AL R —;r:j, (E.21)
Ao & —% + gﬁ (E.22)
Pi(t) = exp (ffwd sin(wdt)> , (E.23)
Pa(t) = exp <_’Y¢€Ud sin(wdt)> . (E.24)

We now use these values to study the behaviour of solutions to the ran-
domly perturbed equation . This can be done directly, using variation
of constants method for the inhomogeneous second order equation .
According to this method, has a particular solution equal to

v = [ A O - nORe) Snds (B2
where

A(s) = y1(s)g2(s) — 91(s)y2(t)- (E.26)

Below we derive the same expression in a different way. First, we rewrite
our equation as a system:

g =, (E.27)

€ g
v=—y— vt — . (E.28)
m” m  m

Introducing the vector of dynamical variables

x = (Z) : (E.29)

A(t) = <e cos(wat) _7> (E.30)

the matrix
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E.1. First small parameter

and the noise vector

h(t) = (UO ) (E.31)

we can rewrite the above system as
x(t) = A(t)x(t) + h(t). (E.32)

If y1 and yo are two linearly independent solutions of the homogeneous
equation (E.2)), then the matrix

_ () ya(t)
Q“)‘(w) m(t)) (E.33)

is a fundamental matrix of the homogeneous system

x(t) = A(t)x(t) (E.34)

Q(t) = A(1)Q(t). (E.35)

The solution of the inhomogeneous system can be written as

x() = QHQO) 'x(0) + [ @A) Thds  (B.36)

This follows from the variation of constants formula and can be easily ver-
ified by direct differentiation. Note that because both characteristic expo-
nents are negative, the entries of Q(t) decay exponentially, and so does the
first term in the above formula. Note also, that if the particle is initially at
y = 0 with zero velocity, than x(0) = 0 and this first term vanishes. In any
case, the asymptotic behaviour of the solution is determined by the second
term.
We have

B Py (t)eM? Py(t)er?t
Q(t) = <P1(t)e)‘1t1+ )\1P1(t)6>‘1t P2(t>e>\2t2+ /\QPQ(t)e)‘2t) . (E.37)

Hence

A(t) = det{Q}(t)

= (A = dg) PO Po(t) = (Pi(0) Palt) = Pu(0)Pa(1)) ] (E:38)
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To leading order, we thus have
A(t) & —(A\ — A)eM AP (1) Py(t) ~ — L exp (-%) . (E.39)
m m

Now,

>, (5)e28 s)er2s  —Py(s)er2s
Q(S)_l = A(S)_l (_P;él((i)ehs—i__)\ilpfgl((;)6)\13 P]j?i)i)‘ls ) . (E.40)

We want to study the first component of the vector x(¢) in (30) Since the
first component of the noise vector h(s) in (25) equals 0, to calculate the
first component of the integral in , we need to multiply the (1,2)-
element of the matrix Q(¢)Q(s)~! by Zn, and integrate over s from 0 to t.
The (1,2)-matrix element of Q(¢)Q(s)~! equals

(QUWAE™), , = A6 [FAGREND 1 B ()],

(E.41)

1,2

Approximating A(s) by its leading term, according to (E.39)), we obtain

MR ey P e
t D ~= 1(t=s) _ Aa(t ﬂ : E.42
(@)™, ,~ = |50 e (.42)
The factors Pi(t)/Pi(s) and Ps(t)/Ps(s) are of order 1 and, in fact, quite
close to 1, since for the considered values of the parameters, ,y;d is of the

order of 1072 (see (E.21))). Of the two exponential factors, eM(t=35) and
e*2(t=9) the second decays much faster with ¢ — s and is negligible for small
m. We are thus left with the following approximation to y(¢) (for simplicity
we consider the initial conditions y(0) = v(0) = 0):

g

t t
y(t) =~ —/ M=) ds = f/ M=) quy,, (E.43)
0 Y Jo

where the last expression is a stochastic integral with respect to the Wiener
process Wy, formally (and in the sense of distribution theory) satisfying

dgtvt = n;. The It isometry implies that

E |y(t)?] ~ (i)2 /0 fen(=s) g (E.44)

Extending the integral on the right-hand side of the above equation to
infinity, we obtain an approximate bound

o? a2y

E {y(t)ﬂ < T = e (E.45)
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Rather than substituting specific values of the physical parameters, we com-
pare (the square root of) this result to the experimental value of the standard
deviation in order to estimate the value of the particle’s actual mass.

We note that, since the exponent A; is very close to zero, for small times
t the integrand e?** is close to 1 and the approximate value of the variance
is

E [y(h?] ~ Z5t. (E.46)
Y
This is a good approximation (first term of the Taylor expansion) as long as
A1t < 1, thus introducing a time scale 7 = )\% For times much smaller than
7 the variance grows approximately linearly with ¢, so the equation describes
diffusion; for times larger than 7, localization effects become pronounced.
It is interesting to compare the results of the above calculation with
those obtained from a different limit, used in the reference [91].

E.2 Second small parameter

We rewrite eq. (3.1) as
mo  [w
K2 4 kg — B cos(27)y = g ?dn(T), (E.47)

which is a reformulation of (3.1) where 7 = wTdt as before, 3/ = % and

K = ";‘:’Yd is the new small parameter. With this new small parameter, we

start by dividing eq. (E.47) by x? and transforming it into the system

— —

z(1) = A(n)Z+ f(7), (E.48)

where

) B 0 1
v < (1) ) A= ( B cos(27)/K2 —1/k )

. 0
0= ()

Let ®(7) be a principal fundamental matrix solution when f(7) = 0.
Then the general solution is

—

#(r) = B()E(0) + /0 "B () (s) " fs) ds. (E.49)

171



E. WKB CALCULATIONS

From the previous derivation, the two linearly independent solutions of

[EAT) are

1
1

z12(T) = (i +4 Cos(27)>

(E.50)
T [T\ sz
cexp | —— + — - cos(27)dr | .
P\ Tk Va
Taylor expanding this expressionlﬂ gives
1\ 7 T
x1,2(7) = () cexp (——
4T ( 2/<;) 1 \ (E.51)
- exp (:tl/ (1 + (' cos(27) — ﬁ’gm dT)) .
K Jo 2 2
This results in
1\ 7 T
z1,2(7) = (4> " €Xp (*%)
(E.52)

T f'sin(27) 5'27 (8')? sin(47)
~exp<:|: (2/4:+ 2K 2%k 8K ))

Using 7 = 4t g/ = M€ o = M@ and substituting into eq. (E.52)), we find
g 2 2y

72 9
(approximate) explicit expressions for the two fundamental solutions,

1
1\ 1 i 2
= () 1 exp <e sin(wat) m63t> (F.53)
way 2]

and

(1)‘i esp (2 colent)y (E54)

m wqy

If Pi(7)eM7, Py(1)e?2™ represent two linearly independent solutions of the
homogeneous equation, then

i e IPy () Pi(s) — eI P (1) Py(s)
(201276),2 = B F0) + AaPlo)) — ) PLo) + 2P

7777.62(7:75)

N ——e @, (E.55)

L This is justified because 8’ < 1.
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We still need to solve the inhomogeneous equation, for which we compute

/OT ((I)(T)U(S)‘I)(S)—l)lz fa(s)n(s)ds

—me2(r—s)

T mwq 40 wd &
~ — wqy d
e T () as

—me (T s)
—e war? ds. E.56
-2 n(s) (E.56)

This provides us with an explicit solution of the process z(t) in terms
of elementary functions, and we may use it to calculate the variance of the

process E| Applying the It6 isometry to eq. (E.56)), we get

—me (7 s) 2
[/ 1/—6 war® s] (E.57)
0 7Y\ Wd

—2me? (‘r s)

= ——e @ar’  ds. (E.58)
0 72wy
Using s = —t we finally obtain
o 2 % —mth
E[y2(t)] ~ <> 4T g, (E.59)
Y 0

This is in agreement with what was obtained from the small mass limit.

2The first moment is E[z(t)] = 0, by the properties of the It6 integral with respect to
a Wiener process.
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Control theory

F.1 Introduction

Assume we have a time series (i.e., data indexed by time), generated by
some underlying system, and that this data may contain additional statisti-
cal noise or other inaccuracies. In the context of state space representation,
we may suppose that our system is well modelled by the equations

%x(t) — A(H)x(t) + B(t)u(t) + w(t), (F.1)

2(t) = H(t)x(t) + v(t), (F.2)

where x(t) is the state vector (the true state of the system), z(t) is the
observation vector (the observed state of the system, or “output”), u(t)
is the control vector (the “input” to our system), A(t) is the state tran-
sition matrix (a model for the underlying dynamical system), B(¢) is the
control-input matrix (how we can act on the system), H(¢) is the observa-
tion model (what we observe out of x(¢)) and w(t) and v(¢) are the process
and observation noise, respectivel

The state of a deterministic system completely describes the system at
any given time. In particular, no information on the past of a system is
needed to help in predicting the future, if the states at the present time
are known and all current and future values of the control variables (those
whose values can be chosen) are also known. In essence, it is an initial value
problem, and the initial values completely determine the system evolution.

State space models can be given in three completely equivalent forms:

!The system has been modelled as a continuous, differential equation in this example.
For this case, the associated Kalman filter is known as the Kalman-Bucy filter. However,
everything can be rewritten for discrete processes in a totally analogous way.
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F. CONTROL THEORY

e Differential equation form, with all its variants (continuous time and
discrete time).

e Transfer function form, in the Laplace or z transform domains.

e Impulse response form, by undoing the Laplace or z transforms.

F.2 Observability

A system is said to be observable if, for any possible sequence of state and
control vectors (the latter being variables whose values one can choose), the
current state x(t) can be determined in finite time using only the outputs
z(t). Less formally, this means that one can determine the behaviour of the
entire system from the system’s outputs, even in the case where z(t) is of
lower dimension than x(t).

A continuous time-invariant linear state-space model is observable if and
only if

H

H-A
rank i =n, (F.3)

H-A"!

where rank is the number of linearly independent rows in a matrix, and
where n is the number of state variables.

F.3 Controllability

Roughly, the concept of controllability denotes the ability to move a
system around its configuration space using only certain admissible manip-
ulations. The controllability property plays a crucial role in many control
problems, such as stabilization of unstable systems by feedback, or optimal
control.

The state controllability condition implies that it is possible—by the
admissible inputs u(t)—to steer the states x(t) from any initial value xq to
any final value within some finite time window. A continuous time-invariant
linear state-space model is controllable if and only if

B A'B - A"L.B|=n (F.4)
Controllability and observability are dual aspects of the same problem.
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F.4 The Kalman filter

The Kalman filter is a recursive algorithm that uses the observed data
z(t) and the (assumed) dynamical model A(t), and provides estimates of
the state of the process, in a way that minimizes the mean of the squared
erroi]

In most applications, the internal state is much larger (more degrees of
freedom) than the few observable parameters which are measured. However,
by combining a series of measurements, the Kalman filter can estimate
the entire internal state. In other words, the Kalman filter is a full state
estimator (and the best at it, in the L? sense). It requires, however, that
the system is observable, as defined before. If the system has unobservable
states, the filter will simply not work.

The Kalman filter allows us to

e Compute the sequence of distributions of the current state (i.e., tak-
ing into account all uncertainties), given all observations until now,
for each time period. This gives us an estimate of the unobservable
state x(t) in a way that doesn’t depend on future data. Intuitively,
the Kalman filter helps recover x(t) from z(t) and reduces the mea-
surement noise.

e Compute the likelihood of the data. This allows us to perform maxi-
mum likelihood estimation and fit the model.

The Kalman filter is an extension of the sequential minimum mean
square error (MMSE) estimatoxﬂ in which instead of a fixed parameter,
we may have time-varying parameters: the price to pay is that a dynamical
model of the system must be knowrﬁ It is also a recursive estimator: this
means that only the estimated state from the previous time step and the
current measurement are needed to compute the estimate for the current
state.

Below, some properties of the Kalman filter are listed:

e It is a time-varying filter (the Kalman gain changes with n).

2For a nice, visual introduction to this filter, follow this link.

3In the linear case, the MMSE estimator (or LMMSE) is also known as the Wiener
filter. The Wiener filter can only be applied to wide-sense stationary signals, whereas
the Kalman filter applies also to non-stationary signals that can be characterized by a
dynamical model.

“The block diagrams of both (Kalman and MMSE estimator) are nearly identical
except for the Az~* feedback box in the Kalman filter, which for the MMSE estimator is
just a z=! box. A is the dynamical model’s state-transition matrix
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Prediction step

Prior k led
riov no:: setagt: — P hiced on e.g.
. Xk—1|k—1 physical model
Next timestep li)klk—l
k+k+1 Xk|k—1
Pk|k Update step Measurements

e -<—Compare prediction <«—
iclk to measurements Yk »
Output estimate
. of state

Figure F.1: A step of the Kalman filter. The Kalman filter keeps track of the
estimated state of the system and the variance or uncertainty of the estimate. The
estimate is updated using a state transition model and measurements. Zy;_; de-
notes the estimate of the system’s state at time step k before the k-th measurement
yr has been taken into account. Pp,_; is the corresponding uncertainty. Image
by Petteri Aimonen, under the Creative Commons CCO 1.0 license.

e The Kalman filter computes and uses its performance measure M[n|n].
e The prediction increases the error, the update decreases the error.

e Asn — oo, the Kalman filter reaches a “steady-state” and becomes a
linear, time invariant filter (i.e., K[n] constant, P[n|n]| constant).

e If a) the model perfectly matches the real system, b) the entering noise
is white (uncorrelated) and c) the covariances of the noise are exactly
known, then the KF is the optimal (MMSE) state estimator. In the
non-Gaussian case, the KF is still the best linear LMMSE.

e M[n|n — 1], M[n|n], K[n] can be computed off-line (ahead of time).

F.4.1 Kalman equations

The state of the filter is represented by two variables: Xj;, is the pos-
teriori state estimate at time k given observations up to and including at
time k, and Py, is the posteriori error covariance matrix (a measure of the
estimated accuracy of the state estimate).

The Kalman filter can be written as a single equation, but it is most
often conceptualized as two distinct phases: “predict” and “update”. The
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predict phase uses the state estimate from the previous time step to pro-
duce an estimate of the state at the current time step. This predicted state
estimate is also known as the a priori state estimate because, although it
is an estimate of the state at the current time step, it does not include
observation information from the current time step. In the update phase,
the current a priori prediction is combined with current observation infor-
mation to refine the state estimate. This improved estimate is termed the
a posteriori state estimate.

Typically, the two phases alternate, with the prediction advancing the
state until the next scheduled observation, and the update incorporating the
observation. However, this is not necessary; if an observation is unavailable
for some reason, the update may be skipped and multiple prediction steps
performed. Likewise, if multiple independent observations are available at
the same time, multiple update steps may be performed (typically with
different observation matrices Hy.

Filter steps

Initialization In order to start using the Kalman filter, one must model
the process in accordance with the framework of the Kalman filter. This
means specifying the following matrices:

1. Ay, the state-transition model.

2. Hp, the observation model.

3. Qp, the covariance of the process noise.

4. Ry, the covariance of the observation noise.

5. By, the control-input model, for each time-step as described below.

Prediction The prediction phase advances the state estimate until the
next scheduled observation.

1. Predict the state estimate:

Xik—1 = AkXp_1p—1 + Bruy. (F.5)
2. Predict the error covariance:

Pip—1 = ArPr_11AL + Qu. (F.6)
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Update The update incorporates the observation to improve the esti-

mates.

1. Innovation (pre-fit residual):

Vi = 2k — HpXpjp—1-
2. Innovation covariance:

S = Ry, + Hy Py HY.

3. Optimal Kalman gain:

Ky =Py HL S,
4. Updated state estimate:

Rk = Xpjk—1 T Ki¥.
5. Updated estimate covariance:

Py = (I — KpHp )Py (I - KeHy) " + KRy KY

(F.10)

(F.11)

The formula for the updated estimate covariance above is valid for any
gain K. For the optimal Kalman gain the formula further simplifies

to

P = (I — KpHy)Pppp_1,

(F.12)

in which form it is most widely used in applications. However, one
must keep in mind that it is valid only for the optimal gain that

minimizes the residual error.
6. Post-fit residual:

Yijk = 2k — HpXpp-

(F.13)

Invariants If the model is accurate, and the values for Xg|g and Pg|g ac-
curately reflect the distribution of the initial state values, then the following

invariants are preserved:
Elxr — Xpje] = E[xx — Xgjp-1] =0
Efyx] = 0.
That is, all estimates have a mean error of zero. Also
P = cov(xy — Xip)
Ppr—1 = cov(x — Xpjp—1)

Sk = COV(yk),

so covariance matrices accurately reflect the covariance of estimates.
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F.4.2 Estimation of the noise covariances Q; and Ry

Practical implementation of the Kalman Filter is often difficult due to
the difficulty of getting a good estimate of the noise covariance matrices
Qi and Ry. One practical approach to do this is the autocovariance least-
squares (ALS).

F.5 Optimal control

Optimal control deals with the problem of finding a control law u(t) for
a given system such as the one described in eqgs. , such that a certain
optimality criterion is achieved. Optimal control problems include a cost
functional J—which is a function of the state and control variables—that
needs to be minimized among all the possible trajectories by choosing the
adequate control law u(t).

A special case of the the deterministic optimal control problem is the
linear quadratic optimal control problem. The LQ problem arises when
trying to minimize the quadratic continuous-time cost functional

T = X" (t)8xlty) + 4 / YT OQUx(M) + T (OR(Bu) ] d. (F.14)

to

F.5.1 LQR controller

A particular form of the LQ problem that arises in many control system
problems is that of the linear quadratic regulator (LQR), where all of the
matrices are constant, the initial time is arbitrarily set to zero, and the
terminal time is taken in the limit ¢y — oo (known as infinite horizon). The
cost functional then becomes

J=1 /0 T IxT(H)Qx(t) + uT(HRu(t)] dt, (F.15)

subject to the first-order dynamic constraints of .

In the finite-horizon case, the matrices Q and R are positive semi-
definite and positive definite, respectively. In the infinite-horizon case,
however, they are not only positive-semidefinite and positive-definite, re-
spectively, but are also constant. Furthermore, in order to ensure that the
cost function is bounded, the system must be controllable.

Note that, if Q and R are identity matrices (possibly times a constant),
the functional becomes

1 (T
T =5 | I+ ol ar, (F.16)
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since, by linearity, we can rescale the functional and be left only with the
parameter p € R. Therefore, minimizing J can be thought of physically as
attempting to minimize a weighted sum of the system and control energies.

It has been shown [195] that the LQ (or LQR) optimal control has the
feedback form

u(t) = —K(t)x(t), (F.17)
where K(t) is a properly dimensioned matrix, given by
K(t) = R'BTS(t), (F.18)

and S(¢) is the solution of the differential Riccati equation. The differential
Riccati equation is given as

S(t) = —S(t)A — ATS(t) + S(tH)BR'BTS(t) — Q. (F.19)

For the infinite horizon LQR problem, the differential Riccati equation is
replaced with the algebraic Riccati equation, with expression

0=-SA-ATS+SBR'B'S-Q. (F.20)

F.5.2 LQG controller

The linear—quadratic-Gaussian (LQG) control problem concerns linear
systems driven by additive white Gaussian noise. As in the previous deter-
ministic case, the problem is to determine a feedback law that is optimal,
in the sense of minimizing the expected value of a quadratic cost criterion,
E[J]. In this stochastic version of the problem, not only the dynamics are
driven by noise, but output measurements are also assumed to be corrupted
by Gaussian noise.

Under these assumptions, the control law which minimizes E[7] is known
as the LQG controller, is unique and it happens to be simply a combina-
tion of a Kalman filter together with a linear—quadratic regulator (LQR);
this is a very strong and practical 1"(—:-Sult[§]7 because it is not obvious at all
that the solution to the general problem should be the combination of the
solutions of the two restricted problems (optimal estimation and optimal
feedback). The separation principle states that the state estimator and the
state feedback can be designed independently, which from an engineering
point of view is very convenient.

However, unlike the LQR, the LQG may become unstable if there is
uncertainty (and therefore error) in the system parameters used in designing
the control law. This was proved by J. Doyle in [196[]] and lead to the
development of the field of Robust control [197].

5And also very cool.
SWith the shortest abstract I have ever seen, namely “There aren’t any”.
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