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Abstract

Business Intelligence (BI) tools support making better business decisions by
analyzing available organizational data. Data Warehouses (DWs), typically
structured with the Multidimensional (MD) model, are used to store data
from different internal and external sources processed using Extract-Transfo-
rmation-Load (ETL) processes. On-Line Analytical Processing (OLAP) queries
are applied on DWs to derive important business-critical knowledge. DW
and OLAP technologies perform efficiently when they are applied on data
that are static in nature and well organized in structure. Nowadays, Se-
mantic Web (SW) technologies and the Linked Data (LD) principles inspire
organizations to publish their semantic data, which allow machines to under-
stand the meaning of data, using the Resource Description Framework (RDF)
model. One of the reasons why semantic data has become so successful is
that managing and making the data available is low effort and does not rely
on a sophisticated schema.

In addition to traditional (non-semantic) data sources, the incorporation
of semantic data sources into a DW raises the additional challenges of schema
derivation, semantic heterogeneity, and schema and data management model
over traditional ETL tools. Furthermore, most SW data provided by business,
academic and governmental organizations include facts and figures, which
raise new requirements for BI tools to enable OLAP-like analyses over those
semantic (RDF) data. In this thesis, we 1) propose a layer-based ETL frame-
work for handling diverse semantic and non-semantic data sources by ad-
dressing the challenges mentioned above, 2) propose a set of high-level ETL
constructs for processing semantic data, 3) implement appropriate environ-
ments (both programmable and GUI) to facilitate ETL processes and evaluate
the proposed solutions. Our ETL framework is a semantic ETL framework
because it integrates data semantically. The following paragraphs elaborate
on these contributions.

We propose SETL, a unified framework for semantic ETL. The frame-
work is divided into three layers: the Definition Layer, ETL Layer, and Data
Warehouse Layer. In the Definition Layer, the semantic DW (SDW) schema,
sources, and the mappings among the sources and the target are defined.

iii



In the ETL Layer, ETL processes to populate the SDW from sources are de-
signed. The Data Warehouse Layer manages the storage of transformed se-
mantic data. The framework supports the inclusion of semantic (RDF) data
in DWs in addition to relational data. It allows users to define an ontology
of a DW and annotate it with MD constructs (such as dimensions, cubes, lev-
els, etc.) using the Data Cube for OLAP (QB4OLAP) vocabulary. It supports
traditional transformation operations and provides a method to generate se-
mantic data from the source data according to the semantics encoded in the
ontology. It also provides a method to connect internal SDW data with ex-
ternal knowledge bases. Hence, it creates a knowledge base, composed of
an ontology and its instances, where data are semantically connected with
other external/internal data. We develop a high-level Python-based pro-
grammable framework, SETL for performing the tasks mentioned above. A
comprehensive experimental evaluation comparing SETL to a solution made
with traditional tools (requiring much more hand-coding) on the use case of
Danish Agricultural and Business datasets shows that SETL provides better
performance, programmer productivity, and knowledge base quality. The
comparison between SETL and Pentaho Data Integration (PDI) in processing
a semantic source shows that SETL is 13.5% faster than PDI. In addition to
be faster than PDI, it deals with semantic data as first-class citizen, while PDI
does not contain specific operators for semantic data.

On top of SETL, we propose SETLCONSTUCT where we define a set of
high-level ETL tasks/operations to process semantic data sources. We divide
the integration process into two layers: the Definition Layer and Execution
Layer. The Definition Layer includes two tasks that allow DW designers
to define target (SDW) schemas and the mappings between (intermediate)
sources and the (intermediate) target. To create mappings among the sources
and target constructs, we provide a mapping vocabulary called Source-To-
Target Mapping (S2TMAP). Different from other ETL tools, we propose a
new paradigm: we characterize the ETL flow transformations at the Def-
inition Layer instead of independently within each ETL operation (in the
Execution Layer). This way, the designer has an overall view of the process,
which generates metadata (the mapping file) that the ETL operators will read
and parametrize themselves with automatically. In the Execution Layer, we
propose a set of high-level ETL operations to process semantic data sources.
In addition to the cleansing, join, and data type based transformation for se-
mantic data, we propose operations to generate multidimensional semantics
at the data level and to update the SDW to reflect changes in the sources.
In addition, we extend SETLCONSTRUCT for enabling automatic ETL execu-
tion flow generation (we call it SETLAUTO). Finally, we provide an extensive
evaluation to compare the productivity, development time, and performance
of SETLCONSTRUCT and SETLAUTO with the previous framework SETL. The
evaluation shows that SETLCONSTRUCT improves considerably over SETL in



terms of productivity, development time, and performance. The evaluation
shows that 1) SETLCONSTRUCT uses 92% fewer Number of Typed Characters
(NOTC) than SETL, and SETLAUTO further reduces the Number of Used Con-
cepts (NOUC) by another 25%; 2) usingSETLCONSTRUCT, the development
time is almost cut in half compared to SETL, and is cut by another 27% us-
ing SETLAUTO; 3) SETLCONSTRUCT is scalable and has similar performance
compared to SETL.

Finally, we develop a GUI-based semantic BI system SETLBI to define,
process, integrate, and query semantic and non-semantic data. In addition
to the Definition Layer and the ETL Layer, SETLBI has the OLAP Layer,
which provides an interactive interface to enable self-service OLAP analy-
sis over the semantic DW. Each layer is composed of a set of operations/-
tasks. We give an ontology to formalize the intra- and inter- layer connections
among the components of the layer. The ETL Layer extends the Execution
Layer of SETLCONSTUCT by adding operations to process non-semantic data
sources. We demonstrate the system using Bangladesh population census
2011 datasets.

The final solution of this thesis is the BI tool SETLBI . SETLBI facilitates
(1) DW designers with little/no SW knowledge to semantically integrate se-
mantic and/or non-semantic data and analyze it in OLAP style, and (2) SW
users with basic MD background to define MD views over semantic data for
enabling OLAP-like analysis. Additionally, SW users can enrich the gener-
ated SDW’s schema with RDFS/OWL constructs. Taking the framework as
a base point, researchers can aim to develop further interactive and auto-
matic integration framework for SDWs. This project bridges the traditional
BI technologies and SW technologies which in turn will open the door of
further research opportunities like developing machine-understandable ETL
and warehousing techniques.





Resumé

Business Intelligence (BI) værktøjer understøtter at tage bedre forretnings-
beslutninger, ved at analysere tilgængelige organisatoriske data. Data Ware-
houses (DWs), typisk konstrueret med den Multidimensionelle (MD) model,
bruges til at lagre data fra forskellige interne og eksterne kilder, der be-
handles ved hjælp af Extract-Transformation-Load (ETL) processer. On-Line
Analytical Processing (OLAP) forespørgsler anvendes på DWs for at udlede
vigtig forretningskritisk viden. DW og OLAP-teknologier fungerer effektivt,
når de anvendes på data, som er statiske af natur og velorganiseret i struktur.
I dag inspirerer Semantic Web (SW) teknologier og Linked Data (LD) prin-
cipper organisationer til at offentliggøre deres semantiske data, som tillader
maskiner at forstå betydningen af denne, ved hjælp af Resource Description
Framework (RDF) modellen. En af grundene til, at semantiske data er blevet
succesfuldt, er at styringen og udgivelsen af af dataene er nemt, og ikke er
afhængigt af et sofistikeret skema.

Ud over problemer ved overførslen af traditionelle (ikke-semantiske) data-
baser til DWs, opstår yderligere udfordringer ved overførslen af semantiske
databaser, såsom skema nedarvning, semantisk heterogenitet samt skemaet
for data repræsentation over traditionelle ETL værktøjer. På den anden side
udgør en stor del af den semantiske data der bliver offentliggjort af virk-
somheder, akademikere samt regeringer, af figurer og fakta, der igen giver
nye problemstillinger og krav til BI værktøjer, for at gøre OLAP lignende
analyser over de semantiske data mulige. I denne afhandling gør vi føl-
gende: 1) foreslår et lag-baseret ETL framework til at håndterer multiple
semantiske og ikke-semantiske datakilder, ved at svare på udfordringerne
nævnt herover, 2) foreslår en mængde af ETL operationer til at behandle
semantisk data, 3) implementerer passende miljøer (både programmerbare
samt grafiske brugergrænseflader), for at lette ETL processer og evaluere den
foreslåede løsning. Vores ETL framework er et semantisk ETL framework,
fordi det integrerer data semantisk. Den følgende sektion forklarer vores
bidrag.

Vi foreslår SETL, et samlet framework for semantisk ETL. Frameworket
er splittet i tre lag: et definitions-lag, et ETL-lag, og et DW-lag. Det seman-

vii



tiske DW (SWD) skema, datakilder, samt sammenhængen mellem datakilder
og deres mål, er defineret i definitions-laget. I ETL-laget designes ETL-
processer til at udfylde SDW fra datakilderne. DW-laget administrerer la-
gring af transformerede semantiske data. Frameworket understøtter inklud-
eringen af semantiske (RDF) data i DWs ud over relationelle data. Det giver
brugerne mulighed for at definere en ontologi for et DW og annotere med
MD-konstruktioner (såsom dimensioner, kuber, niveauer osv.) ved hjælp af
Data Cube til OLAP (QB4OLAP) ordforrådet. Det understøtter traditionelle
transformations operationer, og giver en metode til at generere semantiske
data fra de oprindelige data, i henhold til semantikken indkodet i ontolo-
gien. Det muliggør også en metode til at forbinde interne SDW data med
eksterne vidensbaser. Herved skaber det en vidensbase, der er sammensat af
en ontologi og dets instanser, hvor data er semantisk forbundet med andre
eksterne / interne data. Vi udvikler et høj niveau Python-baseret program-
merbart framework for at udføre de ovennævnte opgaver. En omfattende
eksperimentel evaluering, der sammenligner SETL med en traditionel løsning
(hvilket krævede meget manuel kodning), om brugen af danske landbrugs-
og forretnings datasæt, viser at SETL præsterer bedre, programmør produk-
tivitet og vidensbase kvalitet. Sammenligningen mellem SETL og Pentaho
Data Integration (PDI) ved behandling af en semantisk kilde viser, at SETL
er 13,5% hurtigere end PDI.

Udover SETL, foreslår vi SETLCONSTRUCT hvor vi definerer et sæt ETL-
operationer på højt niveau til behandling af semantiske datakilder. Vi deler
integrationsprocessen i to lag: Definitions-lag og eksekverings-lag. Definitions-
laget indeholder to opgaver, der giver DW designere muligheden for at de-
finere (SDW) skemaer, og kortlægningerne mellem kilder og målet. For
at oprette kortlægning mellem kilderne og målene, leverer vi et kortlægn-
ings ordforråd kaldet Source-to-Target Mapping (S2TMAP). Forskelligt fra
andre ETL-værktøjer foreslår vi et nyt paradigme: vi karakteriserer ETL-
flowtransformationerne i definitions-laget i stedet for uafhængigt inden for
hver ETL-operation (i eksekverings-laget). På denne måde har designeren
et overblik over processen, som genererer metadata (kortlægningsfilen), som
ETL operatørerne vil læse og parametrisere automatisk. I eksekverings-laget
foreslår vi en mængde høj niveau ETL-operationer til at behandle semantiske
datakilder. Udover rensning, sammenføjning og datatypebaseret transforma-
tioner af semantiske data, foreslår vi operationer til at generere multidimen-
sionel semantik på data-niveau og operationer til at opdatere et SDW for
at afspejle ændringer i kilde-dataen. Derudover udvider vi SETLCONSTRUCT
for at muliggøre automatisk ETL-eksekveringsstrømgenerering (vi kalder det
SETLAUTO). Endelig leverer vi en omfattende evaluering for at sammen-
ligne produktivitet, udviklingstid og ydeevne for scon og SETLAUTO med
den tidligere ramme SETL. Evalueringen viser, at SETLCONSTRUCT forbedres
markant i forhold til SETL med hensyn til produktivitet, udviklingstid og



ydeevne. Evalueringen viser, at 1) SETLCONSTRUCT bruger 92% færre antal
indtastede tegn (NOTC) end SETL, og SETLAUTO reducerer antallet af brugte
begreber (NOUC) yderligere med 25%; 2) ved at bruge SETLCONSTRUCT, er
udviklingstiden næsten halveret sammenlignet med SETL, og skæres med
yderligere 27% ved hjælp af SETLAUTO; 3) SETLCONSTRUCT er skalerbar og
har lignende ydelse sammenlignet med SETL.

Til slut udvikler vi et GUI-baseret semantisk BI system SETLBI for at
definere, processere, integrere og lave forespørgsler på semantiske og ikke-
semantiske data. Ud over definitions-laget og ETL-laget, har SETLBI et
OLAP-lag, som giver en interaktiv grænseflade for at muliggøre selvbetjen-
ings OLAP analyser over det semantiske DW. Hvert lag er sammensat af en
mængde operationer/opgaver. Vi udarbejder en ontologi til at formalisere
intra-og ekstra-lags forbindelserne mellem komponenterne og lagene. ETL-
laget udvider eksekverings-laget af SETLCONSTUCT ved at tilføje operationer
til at behandle ikke-semantiske datakilder. Vi demonstrerer systemet ved
hjælp af Bangladesh population census 2011 datasættet.

Sammenfatningen af denne afhandling er BI-værktøjet SETLBI . SETLBI
fremmer (1) DW-designere med ringe / ingen SW-viden til semantisk at in-
tegrere semantiske og / eller ikke-semantiske data og analysere det i OLAP
stil, og (2) SW brugere med grundlæggende MD-baggrund til at definere MD-
visninger over semantiske data, der aktiverer OLAP-lignende analyse. Deru-
dover kan SW-brugere berige det genererede SDW-skema med RDFS / OWL-
konstruktioner. Med udgangspunkt i frameworket som et grundlag kan
forskere sigte mod at udvikle yderligere interaktive og automatiske integra-
tionsrammer for SDW. Dette projekt bygger bro mellem de traditionelle BI-
teknologier og SW-teknologier, som igen vil åbne døren for yderligere forskn-
ingsmuligheder som at udvikle maskinforståelige ETL og lagerteknikker.





Resum

Les eines d’Intel·ligència Empresarial (BI), conegudes en anglès com Business
Intelligence, donen suport a la millora de la presa de decisions empresarials
mitjançant l’anàlisi de les dades de l’organització disponibles. Els magatzems
de dades, o data warehouse, (DWs), típicament estructurats seguint el model
Multidimensional (MD), s’utilitzen per emmagatzemar dades de diferents
fonts, tant internes com externes, processades mitjançant processos Extract-
Transformation-Load (ETL). Les consultes de processament analític en línia
(OLAP) s’apliquen als DW per extraure coneixement crític en l’àmbit empre-
sarial. Els DW i les tecnologies OLAP funcionen de manera eficient quan
s’apliquen sobre dades de natura estàtica i ben estructurades. Avui en dia,
les tecnologies de la Web Semàntica (SW) i els principis Linked Data (LD) in-
spiren les organitzacions per publicar les seves dades en formats semàntics,
que permeten que les màquines entenguin el significat de les dades, mit-
jançant el llenguatge de descripció de recursos (RDF). Una de les raons per
les quals les dades semàntiques han tingut tant d’èxit és que es poden ges-
tionar i fer que estiguin disponibles per tercers amb poc esforç, i no depenen
d’esquemes de dades sofisticats.

A més de les fonts de dades tradicionals (no semàntiques), la incorpo-
ració de fonts de dades semàntiques en un DW planteja reptes addicionals
tals com derivar-hi esquema, l’heterogeneïtat semàntica i la representació de
l’esquema i les dades a través d’eines d’ETL. A més, la majoria de dades SW
proporcionades per empreses, organitzacions acadèmiques o governamentals
inclouen fets i figures que representen nous reptes per les eines de BI per tal
d’habilitar l’anàlisi OLAP sobre dades semàntiques (RDF). En aquesta tesi, 1)
proposem un marc ETL basat en capes per a la gestió de diverses fonts de
dades semàntiques i no semàntiques i adreçant els reptes esmentats anterior-
ment, 2) proposem un conjunt d’operacions ETL per processar dades semàn-
tiques, i 3) la creació d’entorns apropiats de desenvolupament (programàtics
i GUIs) per facilitar la creació i gestió de DW i processos ETL semàntics, així
com avaluar les solucions proposades. El nostre marc ETL és un marc ETL
semàntic perquè Es capaç de considerar e integrar dades de forma semàntica.
Els següents paràgrafs elaboren sobre aquests contribucions.
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Proposem SETL, un marc unificat per a ETL semàntic. El marc es di-
videix en tres capes: la capa de definició, la capa ETL i la capa DW. A la
capa de definició, es defineixen l’esquema del DW semàntic (SDW), les fonts
i els mappings entre les fonts i l’esquema del DW. A la capa ETL, es dis-
senyen processos ETL per popular el SDW a partir de fonts. A la capa DW,
es gestiona l’emmagatzematge de les dades semàntiques transformades. El
nostre marc dóna suport a la inclusió de dades semàntiques (RDF) en DWs,
a més de dades relacionals. Així, permet als usuaris definir una ontologia
d’un DW i anotar-la amb construccions MD (com ara dimensions, cubs, niv-
ells, etc.) utilitzant el vocabulari Data Cube for OLAP (QB4OLAP). També
admet operacions de transformació tradicionals i proporciona un mètode per
generar semàntica de les dades d’origen segons la semàntica codificada al
document ontologia. També proporciona un mètode per connectar l’SDW
amb bases de coneixement externes. Per tant, crea una base de coneixe-
ment, composta per un ontologia i les seves instàncies, on les dades estan
connectades semànticament amb altres dades externes / internes. Per fer-
ho, desenvolupem un mètode programàtic, basat en Python, d’alt nivell, per
realitzar les tasques esmentades anteriorment. S’ha portat a terme un exper-
iment complet d’avaluació comparant SETL amb una solució elaborada amb
eines tradicional (que requereixen molta més codificació). Com a cas d’ús,
hem emprat el Danish Agricultural dataset, i els resultats mostren que SETL
proporciona un millor rendiment, millora la productivitat del programador i
la qualitat de la base de coneixement. La comparació entre SETL i Pentaho
Data Integration (PDI) mostra que SETL és un 13,5% més ràpid que PDI. A
més de ser més ràpid que PDI, tracta les dades semàntiques com a ciutadans
de primera classe, mentre que PDI no conté operadors específics per a dades
semàntiques.

A sobre de SETL, proposem SETLCONSTUCT on definim un conjunt de
tasques d’alt nivell / operacions ETL per processar fonts de dades semàn-
tiques i orientades a encapsular i facilitar la creació de l’ETL semàntic. Di-
vidim el procés d’integració en dues capes: la capa de definició i la capa
d’execució. La capa de definició inclou dues tasques que permeten definir
als dissenyadors de DW esquemes destí (SDW) i mappings entre fonts (o re-
sultats intermedis) i l’SDW (potencialment, altres resultats intermedis). Per
crear mappings entre les fonts i el SDW, proporcionem un vocabulari de map-
ping anomenat Source-To-Target Mapping (S2TMAP). A diferència d’altres
eines ETL, proposem un nou paradigma: les transformacions del flux ETL es
caracteritzen a la capa de definició, i no de forma independent dins de cada
operació ETL (a la capa d’execució). Aquest nou paradigma permet al dis-
senyador tenir una visió global del procés, que genera metadades (el fitxer de
mapping) que els operadors ETL individuals llegiran i es parametritzaran au-
tomàticament. A la capa d’execució proposem un conjunt d’operacions ETL
d’alt nivell per processar fonts de dades semàntiques. A més de la neteja,



la unió i la transformació per dades semàntiques, proposem operacions per
generar semàntica multidimensional i actualitzar el SDW per reflectir els can-
vis en les fonts. A més, ampliem SETLCONSTRUCT per permetre la generació
automàtica de flux d’execució ETL (l’anomenem SETLAUTO). Finalment, pro-
porcionem una àmplia avaluació per comparar la productivitat, el temps de
desenvolupament i el rendiment de SETLCONSTRUCT i SETLAUTO amb el marc
anterior SETL. L’avaluació demostra que SETLCONSTRUCT millora consider-
ablement sobre SETL en termes de productivitat, temps de desenvolupa-
ment i rendiment. L’avaluació mostra que 1) SETLCONSTRUCT utilitza un 92%
menys de caràcters mecanografiats (NOTC) que SETL, i SETLAUTO redueix
encara més el nombre de conceptes usats (NOUC) un altre 25%; 2) utilitzant
SETLCONSTRUCT, el temps de desenvolupament es redueix gairebé a la meitat
en comparació amb SETL, i es redueix un altre 27 % mitjançant SETLAUTO;
3) SETLCONSTRUCT es escalable i té un rendiment similar en comparació amb
SETL.

Finalment, desenvolupem un sistema de BI semàntic basat en GUI SETLBI
per definir, processar, integrar i consultar dades semàntiques i no semàn-
tiques. A més de la capa de definició i de la capa ETL, SETLBI té una capa
OLAP, que proporciona una interfície interactiva per permetre l’anàlisi OLAP
d’autoservei sobre el DW semàntic. Cada capa està composada per un con-
junt d’operacions / tasques. Per formalitzar les connexions intra i inter-capes
dels components de cada capa, emprem una ontologia. La capa ETL am-
plia l’execució de la capa de SETLCONSTUCT afegint operacions per processar
fonts de dades no semàntiques. Per últim, demostrem el sistema final mit-
jançant el cens de la població de Bangladesh (2011).

La solució final d’aquesta tesi és l’eina SETLBI . SETLBI facilita (1) als dis-
senyadors del DW amb pocs / sense coneixements de SW, integrar semànti-
cament les dades (semàntiques o no) i analitzar-les emprant OLAP, i (2) als
usuaris de la SW els permet definir vistes sobre dades semàntiques, integrar-
les amb fonts no semàntiques, i visualitzar-les segons el model MD i fer
anàlisi OLAP. A més, els usuaris SW poden enriquir l’esquema SDW generat
amb construccions RDFS / OWL. Prenent aquest marc com a punt de partida,
els investigadors poden emprar-lo per a crear SDWs de forma interactiva i
automàtica. Aquest projecte crea un pont entre les tecnologies BI i SW, i obre
la porta a altres oportunitats de recerca com desenvolupar tècniques de DW
i ETL comprensibles per les màquines.





Acknowledgements

Throughout this thesis, this is my favorite section because it allows me to
express my gratitude from the deepest region of my heart to those who en-
riched me by their co-operations, inspirations, knowledge, wisdom, experi-
ences, and positive vibes during my PhD journey.

Firstly, I would like to express my heartiest gratitude to my supervisor,
Professor Torben Bach Pedersen. I do not whether he was special to me, or
generally, he is like that. Either I am lucky, or as a result of my previous
good deeds, I found him as a supervisor. He plays a significant role as a
supervisor and true guardian during my PhD journey. I truly appreciate his
professionalism, sharp memory, outstanding skills in understanding my aca-
demic and personal issues, and instant replies to the queries. His concrete
and constructive comments, analytical skills, and visionary thinking helped
me to shape my research skills and guided me in the right direction. Next,
I would like to express my sincere gratitude to my co-supervisor, Professor
Katja Hose. Since the first day of my journey, she has been supportive and
taught me how to adapt with new social and research environments, do re-
search in a structured and disciplined way. Her expertise, ideas, experience,
wisdom, and organizing skills added new dimensions in my thought do-
main and improved my research quality. After that, I express my gratitude
to my Host University co-supervisor Professor Oscar Romero. I think he is
one of the very few persons who can understand my thinking and formu-
late it. I enjoyed each and every moment of working with him. He knows
how to bring out my full potential. His encouragement, energy, knowledge,
viewpoints, sense of humor, smiley face, ideas, analytical skills significantly
improved my research skills and motivated me a lot. In short, I learned a lot
of things in terms of academic, professional, and personal aspects from my
supervisors, which helped me to bring this thesis in this condition.

Further, I would like to thank all my colleagues and friends both at Aal-
borg University and Universitat Politècnica de Catalunya. A special thank
goes to Assorciate Professor Christina Thomsen for helping me in all IT4BI-
DC related administrative tasks. I would also remember Ilkcan Keles, Suela
Isai, Aamir Saleem, and S. R. Bhuvan for supporting me with their experi-

xv



ences and suggestions during my personal issues. I express my appreciation
and gratitude to Helle Schroll and Helle Westmark for their support regard-
ing the administrative matters. A special thank goes to Emil Riis Hansen for
translating the abstract of this thesis in Danish. Professor Oscar Romero also
deserves another thank for translating the abstract in Catalan. My thanks go
to the anonymous reviewers of the papers included in this thesis. I would
also like to give thanks to my PhD committee members: Professor Kristian
Torp (Aalborg University), Associate Professor Olap Hartig (Linkoping Uni-
versity), and Associate Professor Panagiotis Vassiliadis (University of Ioan-
nina).

I enjoyed working in both the Danish and Spanish environments. I made
a lot of friends during this PhD journey. I appreciate Danish cultures, tradi-
tions, laws (especially, Janteloven, law of Jante), and their mentality. There-
fore, My special thanks go to the Danish and Spanish governments to allow
me to continue my PhD in their respective countries.

Finally, I would like to offer my gratitude to the energy of God and God
Himself for everything, regardless of good and bad. Thanks for directing me
in the paths of beyond duality and equal vision.

Giving thanks to all again mentioned above, I end this section.

Rudra Pratap Deb Nath
Aalborg, July 28, 2020

This research has been funded by the European Commission through the Eras-
mus Mundus Joint Doctorate “Information Technologies for Business Intelligence” -
Doctoral College (IT4BI-DC).



Contents

Abstract iii

Resumé vii

Resum xi

Acknowledgements xv

Thesis Details xxi

I Thesis Summary 1

Aspects of Semantic ETL 3
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Background and Motivation . . . . . . . . . . . . . . . . 3
1.2 Semantic ETL . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Objectives of the Thesis . . . . . . . . . . . . . . . . . . . 7
1.4 Structure of the Thesis Summary . . . . . . . . . . . . . . 8

2 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 A Semantic ETL Framework for Semantic Data Warehouses . . 11

3.1 Motivation and Problem Statement . . . . . . . . . . . . 12
3.2 Use Case Description . . . . . . . . . . . . . . . . . . . . 12
3.3 SETL Overview . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Component Description . . . . . . . . . . . . . . . . . . . 15
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 High-Level ETL Constructs for Processing Semantic Data . . . 23
4.1 Motivation and Problem Statement . . . . . . . . . . . . 23
4.2 Layer-Based Semantic Data Integration Process . . . . . 24
4.3 The Definition Layer . . . . . . . . . . . . . . . . . . . . . 27
4.4 The Execution Layer . . . . . . . . . . . . . . . . . . . . . 31
4.5 Automatic ETL Execution Flow Generation . . . . . . . . 36

xvii



Contents

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5 A Semantic BI Tool and Its Application . . . . . . . . . . . . . . 41

5.1 Motivation and Problem Statement . . . . . . . . . . . . 41
5.2 Architecture of the System . . . . . . . . . . . . . . . . . 41
5.3 A Use Case Description . . . . . . . . . . . . . . . . . . . 44
5.4 Demonstration . . . . . . . . . . . . . . . . . . . . . . . . 45
5.5 Prototype Specifications . . . . . . . . . . . . . . . . . . . 47
5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . 48
7 Future Work Directions . . . . . . . . . . . . . . . . . . . . . . . 51
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

II Papers 57

A SETL: A Programmable Semantic Extract-Transform-Load Framework
for Semantic Data Warehouses 59
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2 Preliminary Definitions . . . . . . . . . . . . . . . . . . . . . . . 64
3 A Use case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4 SETL Framework Overview . . . . . . . . . . . . . . . . . . . . . 68
5 Definition Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1 SDW TBox Definition . . . . . . . . . . . . . . . . . . . . 71
5.2 Data Source . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3 Define Mapping . . . . . . . . . . . . . . . . . . . . . . . 77

6 ETL Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.1 Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2 Transformation . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3 Provenance Graph . . . . . . . . . . . . . . . . . . . . . . 87
6.4 External linking . . . . . . . . . . . . . . . . . . . . . . . . 87
6.5 Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.1 Definition Layer . . . . . . . . . . . . . . . . . . . . . . . . 90
7.2 ETL Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

8 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.1 Productivity . . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.2 Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
8.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 99

9 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

xviii



Contents

B High-Level ETL for Semantic Data Warehouses 113
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
2 Preliminary Definitions . . . . . . . . . . . . . . . . . . . . . . . 118

2.1 RDF Graph . . . . . . . . . . . . . . . . . . . . . . . . . . 118
2.2 Semantic Data Source . . . . . . . . . . . . . . . . . . . . 118
2.3 Semantic Data Warehouse . . . . . . . . . . . . . . . . . . 119

3 A Use Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4 Overview of the Integration Process . . . . . . . . . . . . . . . . 125
5 The Definition Layer . . . . . . . . . . . . . . . . . . . . . . . . . 127
6 The Execution Layer . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.1 Extraction Operations . . . . . . . . . . . . . . . . . . . . 138
6.2 Transformation Operations . . . . . . . . . . . . . . . . . 140
6.3 Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7 Automatic ETL Execution Flow Generation . . . . . . . . . . . . 148
7.1 Auto ETL Example . . . . . . . . . . . . . . . . . . . . . . 151

8 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
8.1 Productivity . . . . . . . . . . . . . . . . . . . . . . . . . . 154
8.2 Development Time . . . . . . . . . . . . . . . . . . . . . . 156
8.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 159

9 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
10 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . 165
A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

A.1 Semantics of the Execution Layer Operations . . . . . . . 166
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

C SETLBI : An Integrated Platform for Semantic Business Intelligence 187
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
3 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 191
4 Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

D Towards a Programmable Semantic Extract-Transform-Load Frame-
work for Semantic Data Warehouses 199
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
2 A Use case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
3 The SETL Framework . . . . . . . . . . . . . . . . . . . . . . . . 205

3.1 Ontology Definition . . . . . . . . . . . . . . . . . . . . . 206
3.2 Define Mapping . . . . . . . . . . . . . . . . . . . . . . . 207
3.3 Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
3.4 Transformation . . . . . . . . . . . . . . . . . . . . . . . . 209
3.5 External Linking . . . . . . . . . . . . . . . . . . . . . . . 210
3.6 Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

xix



Contents

4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
4.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 212
4.2 Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
4.3 Productivity . . . . . . . . . . . . . . . . . . . . . . . . . . 217

5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

xx



Thesis Details

Thesis Title: Aspects of Semantic Data
Ph.D. Student: Rudra Pratap Deb Nath
Supervisors: Prof. Torben Bach Pedersen, Aalborg University

Prof. Katja Hose, Aalborg University
Prof. Oscar Romero, Universitat Politècnica de Catalunya

The main body of the thesis consists of the following papers.
[A] Rudra Pratap Deb Nath, Katja Hose, Torben Bach Pedersen, and Oscar

Romero. “SETL: A programmable semantic extract-transform-load
framework for semantic data warehouses.”. In: Information Systems,
Vol.68, pp. 17–43, Elsevier, 2017.

[B] Rudra Pratap Deb Nath, Oscar Romero, Torben Bach Pedersen, and
Katja Hose. “High Level ETL for Semantic Data Warehouses”. Sub-
mitted to: Semantic Web Journal, IOS Press, 2020.

[C] Rudra Pratap Deb Nath, Katja Hose, Torben Bach Pedersen, Oscar
Romero, and Amrit Bhattacharjee. “SETLBI : An Integrated Platform
for Semantic Business Intelligence ”. In: Proceedings of the World Wide
Web Conference 2020, Taipei .

In addition to the main papers, Paper D has also been included. Paper
A is the extended version of Paper D, thus Paper D can be considered as a
subset of Paper A.

[D] Rudra Pratap Deb Nath, Katja Hose, and Torben Bach Pedersen: “To-
wards a Programmable Semantic Extract-Transform-Load Framework
for Semantic Data Warehouses”. In : Proceedings of the ACM Eighteenth
International Workshop on Data Warehousing and OLAP, DOLAP 2015,
Melbourne, VIC, Australia, pp.15-24, ACM, 2015.

This thesis has been submitted for assessment in partial fulfilment of the PhD
degree. The thesis is based on the submitted or published scientific papers,

xxi



Thesis Details

which are listed above. Parts of the papers are used directly or indirectly
in the summary of the thesis. As a part of the assessment, co-author state-
ments have been made available to the assessment committee and those are
also available at the at the Technical Faculty of IT and Design at Aalborg
University and the Department of Service and Information System Engineer-
ing at Universitat Politècnica de Catalunya. The permission for using the
published articles in the thesis has been obtained from the corresponding
publishers with the conditions that they are cited and DOI pointers and/or
copyrights/credits are placed prominently in the references.

Rudra Pratap Deb Nath
Aalborg University, July 28, 2020

xxii



Part I

Thesis Summary

1





Aspects of Semantic ETL

1 Introduction

1.1 Background and Motivation

Business Intelligence (BI) supports organizations by providing techniques
and tools to derive intelligent business decisions by analyzing their data [31].
In a BI system, data come from different data sources and are integrated
into a Data Warehouse (DW) for analytical purposes [35]. The integration
process for extracting data from different sources, translating it according to
the underlying semantics of the DW, and loading it into the DW is known
as Extract-Transform-Load (ETL). Typically, a DW is designed following the
Multidimensional (MD) model, where data are viewed in an n-dimensional
space, generally known as a data cube, composed of facts (the cells of the
cube) and dimensions (the axes of the cube) [39]. Dimensions are organized
into hierarchies (composed of a number of levels) to explore and (dis)aggrega-
te fact measures (e.g., numerical data) at various levels of detail. For exam-
ple, the Administrative hierarchy (ADM5 → ADM4 → ADM3 → ADM2 →
ADM1) of the Geography dimension allows to (dis)aggregate the population
of Bangladesh at various administrative levels of detail. The MD model en-
ables Online Analytical Processing (OLAP) [35] queries, where data cubes
are explored through user-friendly interfaces. Hence, OLAP has been widely
used by business and non-technical users for data analysis and decision-
making [54].

DW and OLAP technologies perform efficiently when they are applied on
data that are static in nature and well organized in structure [1]. Nowadays,
Semantic Web (SW) technologies and the Linked Data (LD) principles inspire
organizations to publish their business-related data, which allows machines
to understand the meaning of data. Therefore, besides analyzing internal
data available in a DW, it is often desirable to incorporate (external) semantic
data sources into the DW to derive the needed business knowledge. More-
over, most SW data provided by international and governmental organiza-
tions include facts and figures, which can be described in an MD manner to
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enable OLAP-like analyses [32]. The semantics of data in semantic sources
are specified by using Internationalized Resource Identifiers (IRIs), providing
common terminology, semantically linking with published information, and
providing further knowledge to allow reasoning [6].

Semantic data is expressed in Resource Description Framework (RDF) [57],
where each resource is described by a set of statements called triples. One
of the drawbacks of semantic data is that they are often described without
any schema (i.e., only instances are delivered, not the schema) or with an
incomplete schema. Moreover, different sources describe the same domain in
their own implicit schema, introducing semantic heterogeneity problems.

In addition to the traditional (non-semantic) data, the incorporation of
those (external) semantic data into a DW raises additional challenges of
schema derivation, semantic annotation, semantic heterogeneity, as well as
schema and data management model over traditional DW technologies and
ETL tools. The main drawback of a state-of-the-art Relational Database Man-
agement System (RDBMS)-based DW is that it is strictly schema dependent
and less flexible to evolving business requirements. To cover new business
requirements, every step of the development cycle needs to be updated to
cope with the new requirements. This update process is time-consuming and
costly and is sometimes not adjustable with the current setup of the DW;
hence, it introduces the need for a novel approach.

In summary, the limitations of traditional ETL tools to process semantic
data sources are: (1) they do not fully support semantic-aware data, (2) they
are entirely schema dependent (i.e., cannot handle data expressed without
any schema), (3) they do not focus on meaningful semantic relationships to
integrate data from disparate sources, and (4) they neither support to cap-
ture the semantics of data nor support to derive new information by active
inference and reasoning on the data [43].

Thus, a DW with semantic data sources in addition to traditional data
sources requires more powerful techniques to define, integrate, transform,
update, and load data semantically, which are the research challenges of this
thesis.

1.2 Semantic ETL

To build a DW system with heterogeneous (semantic and non-semantic) data
sources, the integration process should be able to deal with data semantics
as a first-class citizen. Semantic Web (SW) technologies fulfill these needs as
they allow to add semantics on both data and schema level in the integra-
tion process. SW technologies aim at presenting and exchanging data in a
machine-readable and understandable format.

On the SW, RDF is used for presenting and exchanging data in a machine-
readable format. In the RDF data model, information is presented in a set of
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1. Introduction

statements, called RDF triples. An RDF triple has three components: subject,
predicate, and object and is formally defined as: (v1, v2, v3) ∈ (I ∪ B)× I ×
(I ∪ B ∪ L), where I, B, L are a set of International Resource Identifiers (IRIs),
a set of blank nodes and a set of literals, respectively, and (I ∩ B∩ L) = ∅ [25].
An IRI is a string used to uniquely identify a resource on the Web. A blank
node serves as a locally-scoped identifier for a resource that is unknown to
the outer world, and literals are a set of lexical values [25]. An RDF triple
represents a relationship between its subject and object described by its pred-
icate.

To express richer constraints on data, formal languages such as RDF
Schema (RDFS) [58] and the Web Ontology Language (OWL) [44] are used
in combination with the RDF data model to define constraints that data
must meet. Moreover, the expressivity of the source with MD semantics
can be defined using the Data Cube (QB) [14] and Data Cube for OLAP
(QB4OLAP) [19] vocabularies. Therefore, users can define the schema of
a DW semantically. [39] refers to an MD DW that is semantically annotated
both at the schema and data level as a semantic DW (SDW). An SDW is based
on the assumption that the schema can evolve and be extended without af-
fecting the existing structure. Hence, it overcomes the problems triggered
by the evolution of an RDBMS-based data warehousing system. An SDW
is considered as a Knowledge Base (KB), typically composed of a TBox and
an ABox [39]. The TBox defines a domain in terms of concepts, properties,
and terminological axioms whereas the ABox consists of assertions of the
TBox [16]. Throughout this summary, “target schema”, “SDW schema”, and
“target TBox” are used interchangeably.

To populate an SDW from different data sources, the integration process
should consider the semantics of the data sources. Besides semantic sources,
an SDW should support non-semantic sources by defining a semantic layer
on top of the non-semantic sources. Besides cleansing and other traditional
transformations (renaming, join, grouping, sorting, date/string/numerical
transformations, etc.), the integration process should annotate MD seman-
tics at the data level as well. Furthermore, changes to the data should be
recorded and the semantic resources should be linked to external knowledge
bases. Once an SDW is built, the next task is to derive business knowledge
by evaluating OLAP queries on it.

Therefore, creating an SDW from heterogeneous (semantic and non-sema-
ntic) data sources requires an integration process. Figure 1 illustrates the
concept of semantic ETL. A semantic ETL process is an integration process
that fuses traditional DW and SW technologies to support, orchestrate, and
manage all integration tasks semantically to create an MD SDW from diverse
sources and to enable OLAP queries on it. The data in an MD SDW should be
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Fig. 1: Understanding the concept of Semantic ETL

linked with external knowledge bases available in Linked Open Data(LOD) 1.
In summary, the semantic ETL covers the following aspects:

1. Definition of an SDW TBox with MD semantics.2

2. Data extraction from semantic and non-semantic sources.

3. Definition of source-to-target mappings to automatically parameterize
the ETL operations.

4. A set of high-level conceptual ETL constructs (tasks/operations) to in-
tegrate semantic sources into an SDW.

5. Data transformation according to the (MD) semantics encoded into the
target TBox and the source-to-target mapping file.

6. Update of the SDW to reflect the data changed in the source over time.

7. Linking the internal data with external KBs.

8. Loading the transformed data into a triple store.

1https://lod-cloud.net/
2For a semantic ETL process, this aspect is a precondition step. Since there are no standard

tools to annotate an SDW with MD semantics in a correct and standard way, this aspect is
included as an integral part of the semantic ETL framework presented in this thesis.
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1. Introduction

9. Enabling OLAP queries on the SDW.3

1.3 Objectives of the Thesis

The hypothesis of this thesis is:
“In the context of highly heterogeneous data integration processes, considering

semantics as first-class citizen facilitates the integration process by providing au-
tomation and lower entry barriers for non-technical users."

The overall objective of this thesis is to develop a semantic ETL frame-
work. The following incremental sub-objectives (i.e., they build on top of the
previous ones) to meet this overall objective are defined:

1. Propose and develop an end-to-end semantic ETL framework to inte-
grate semantic and non-semantic sources into an SDW: The framework
should allow users to define the target TBox with MD semantics, ex-
tract semantic and non-semantic data, transform data according to the
semantics of the target TBox, link data with external KBs, and load
data into a triple store. The framework should be implemented using
a high-level language so that ETL developers can accomplish different
integration tasks considering semantics. A comprehensive experimen-
tal evaluation of the framework should be performed. This objective
covers the following aspects of semantic ETL pointed in Section 1.2: 1,
2, 5, 7, and 8.

2. Propose and develop a prototype of a set of basic high-level ETL con-
structs (tasks/operations) to process semantic data sources and inte-
grate semantic data into an SDW: Here, a set of ETL constructs (tasks/-
operations) is proposed so that other integration tools can utilize those
components to enable semantic integration. Further, three types of di-
mensional updates defined by Ralph Kimball in [34] should be applied
in the context of an SDW. Importantly, there should be a mechanism to
overcome manual mappings (typical of ETL tools) at the ETL operation
level. The prototype should be evaluated in terms of productivity, de-
velopment time and performance by comparing it with the framework
proposed in Objective 1. This objective covers the following aspects of
semantic ETL pointed in Section 1.2: 1, 2 (partly - only for semantic
data sources), 3, 4 , 5, 6, 7, and 8.

3. Propose and develop a prototype of a semantic BI tool (like traditional
BI tools) that supports, orchestrates, and manages all integration tasks
and enables self-service OLAP analysis over an SDW: This GUI-based
BI tool should enrich the framework of Objective 1 with the high-level

3In a traditional ETL, this aspect is outside of an ETL process. However, this aspect is
included here to validate the quality of the produced MD semantic data.
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ETL constructs discussed in Objective 2 and additionally add an OLAP
interface to enable self-service OLAP-analysis over an SDW. This objec-
tive covers the following aspects of semantic ETL pointed in Section 1.2:
1, 2, 3, 4, 5, 6, 8, and 9.

Aspects of Semantic ETL

Proposing a semantic ETL framework that integrates 
semantic and non-semantic sources into a semantic Data 

Warehouse and evaluation of the framework.

Proposing and formalizing the high-level ETL constructs 
required to process and integrate semantic data into a  

semantic Data Warehouse.

Developing a BI tool that facilitates to integrate 
heterogenous data semantically and enables self-service 

OLAP-analysis over a semantic Data Warehouse.

Paper B

Paper C

  Paper A Paper D  Paper A Paper D

Solutions
(Papers)

SETL

SETLCONSTRUCT

SETLBI

ObjectivesObjectivesObjectives

Fig. 2: The connections between the objectives and the outcomes of the thesis.

Figure 2 shows the connection between the objectives and the solutions
presented in this thesis. The right side of the figure shows how the papers
published in the context of this thesis build on top of and relate to each other.
For a complete reference of the papers here listed, check the Part II of this
thesis. Paper A proposes a semantic ETL framework to integrate semantic
and non-semantic data sources that sets the foundations for the rest of the
papers. Paper A is an extended version of the initial idea published in paper
D. Therefore, readers can skip Paper D when reading the thesis cover to cover.
Paper B introduces a set of high-level conceptual ETL constructs (tasks/op-
erations) to process semantic data sources. Paper C provides a semantic BI
tool that enables semantic integration and self-service OLAP analysis.

1.4 Structure of the Thesis Summary

The summary is divided into three parts: 1) the first part presents a semantic
ETL framework for integrating heterogeneous data in SDWs, 2) the second
part proposes a set of high-level ETL constructs (operations/tasks) to process
semantic data sources, and 3) finally, the third part provides a semantic BI
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2. State of the Art

tool and its application. Section 2 discusses the research related to the se-
mantic ETL. Section 3 presents the first part of the thesis whereas Section 4
and Section 5 summarize the second and third parts of the thesis respectively.
The contribution of the thesis are summarized in Section 6. Finally, Section 7
points to future work.

2 State of the Art

Nowadays, combining BI and SW technologies has become an emerging re-
search topic as it opens the door to interesting research opportunities. As
a DW deals with both internal and (increasingly) external data presented in
heterogeneous formats, especially in RDF format, semantic issues should be
considered in the integration process [1]. On the other hand, the availability
of SW data gives rise to new requirements for BI tools to enable OLAP-style
analysis over this type of data. Therefore, the existing research related to se-
mantic ETL is divided into two lines: 1) on the one hand, the use of SW tech-
nologies to physically integrate heterogeneous sources and 2) on the other
hand, enabling OLAP analysis over SW data.

A prominent research work following the first research line is [51], which
presents an ontology-based approach for enabling the construction of ETL
flows. At first, the schema of both the sources and the DW are defined by a
common graph-based model, named the datastore graph. Then, the seman-
tics of the datastore graphs of the data sources and the DW are described
by generating an (OWL-based) application ontology, and the mappings be-
tween the sources and the target are established through that ontology. They
address in this way the heterogeneity issues among the source and target
schemata and finally demonstrated how the use of an ontology enables a
high degree of automation from the source to the target attributes, along with
the appropriate ETL transformations. Nonetheless, computationally complex
ETL operations like slowly changing dimensions and the annotation of the
application ontology with MD semantics are not addressed in this research.
Therefore, OLAP queries cannot be applied on the generated DW.

Another existing work [5] aligned to this line has proposed a methodol-
ogy describing some important steps required to make an SDW, which en-
ables to integrate data from semantic databases. This approach also misses
the annotation of SDW with MD semantics. [52] has proposed an approach
to support data integration tasks in two steps: 1) constructing ontologies
from XML and relational sources and 2) integrating the derived ontologies
by means of existing ontology alignment and merging techniques. However,
ontology alignment techniques are complex and error-prone. [4] presents a
semantic ETL framework at the conceptual level. This approach utilizes the
SW technologies to facilitate the integration process and discusses the use
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of different available tools to perform different steps of the ETL process. [2]
presents a method to spatially integrate a Danish Agricultural dataset and a
Danish Business dataset using an ontology. The approach uses SQL views
and other manual processes to cleanse the data and Virtuoso for creating and
storing integrated RDF data. [36] presents UnifiedViews, an open-source ETL
framework that supports management of RDF data. Based on the SPARQL
queries, they define four types of Data Processing Units (DPUs): Extractor,
Transformer, Loader, and Quality Assessor. However, the DPUs do not sup-
port to generate MD RDF data.

About the second research line mentioned, a prominent study related
to it is [42], which outlines a semi-automatic method for incorporating SW
data into a traditional MD data management system for OLAP analysis. The
method the authors proposed here allows an analyst to accomplish the fol-
lowing tasks: 1) designing the MD schema from the TBox of an RDF dataset,
2) extracting the facts from the ABox of the dataset and populating the MD
fact table, and 3) producing the dimension hierarchies from instances of the
fact table and the TBox to enable MDX queries over the generated DW. How-
ever, the generated DW no longer preserves the SW data principles defined
in [27]; thus, OLAP analysis directly over SW data is yet to be addressed.
With the purpose of fixing this issue, [11] introduces the notion of a lens,
called the analytical schema, over the RDF dataset. An analytical schema is a
graph of classes and properties where each node of the schema presents a set
of facts that can be analyzed by traversing the reachable nodes. [28] presents
a self-service OLAP endpoint for an RDF dataset. This approach first su-
perimposes an MD schema over the RDF dataset. Then, a semantic analysis
graph is generated on top of that MD schema where each node of the graph
presents an analysis situation corresponding to an MD query, and an edge
indicates to a set of OLAP operations.

Both [11] and [28] require either a lens or a semantic analysis graph to de-
fine MD views over an RDF dataset. Since most published SW data contains
facts and figures, W3C recommends the Data Cube (QB) [14] vocabulary to
standardize the publication of SW data with MD semantics. Although QB
is appropriate to publish statistical data and several publishers (e.g., [47])
have already used the vocabulary for publishing statistical datasets, it has
limitations to define MD semantics properly. The QB4OLAP [19] vocabulary
enriches QB to support MD semantics by providing constructs to define 1) a
cube structure in terms of different level of dimensions, measures, and attach-
ing aggregate functions with measures and 2) a dimension structure in terms
of levels, level attributes, relationships and the cardinality of relationships
among the levels, and hierarchies of the dimension. Therefore, MD data can
be published either by enriching data already published using QB with di-
mension levels, level members, dimension hierarchies, and the association of
aggregate functions to measures without affecting the existing observations
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(for example, [56]) or using QB4OLAP from scratch (for example, [22], [30],
and [39]).

In [33], the authors have presented an approach to enable OLAP opera-
tions on a single data cube published using the QB vocabulary and shown the
applicability of their OLAP-to-SPARQL mapping in answering business ques-
tions in the financial domain. However, their OLAP-to-SPARQL mapping
may not result in the most efficient SPARQL query and requires additional
efforts and a longer time to get the results as they consider that the cube is
queried on demand and the DW is not materialized. The authors in [54, 55]
presented a semi-automatic method to enrich the QB dataset with QB4OLAP
constructs. Nevertheless, the OLAP interface of their system requires end
users to be familiar with either QL [10] or complex SPARQL queries to run
OLAP queries.

After analyzing the main efforts on the two research lines identified when
bridging DW and SW, we can draw some conclusions. Although each pa-
per described above addresses one or multiple aspects of a semantic ETL
framework, there is no single platform that supports all (target definition,
source-to-target mappings generation, ETL generations, target population,
evolution, update and OLAP-analysis). Further, there is no clear definition of
how to orchestrate such steps into a single end-to-end flow. This thesis aims
at developing a semantic ETL framework that supports, orchestrates, and
manages all integration tasks to create an SDW and enable OLAP queries
on it. To successfully reach the aim of the thesis, the framework has been
designed in an incremental manner. First, a Python based programmable
semantic ETL framework, named SETL is proposed in [39]. This is a kind
of semantic version of pygramETL [53], a programmable ETL framework for
traditional DWs. SETL provides various modules, classes, and methods to
1) extract semantic-aware data, geospatial data, and relational data, 2) in-
tegrate source data semantically using a target TBox defined with/without
MD semantics, 3) store the data as semantic data, and 4) linking internal SDW
data with external knowledge bases. Then, on top of SETL, SETLCONSTRUCT
is proposed in [17] where the set of basic high-level ETL tasks/operations
to process semantic data are discussed. Finally, a complete BI tool named
SETLBI is developed in [16], which facilitates end-users to integrate hetero-
geneous data semantically and query on integrated data using interactive
graphical interfaces.

3 A Semantic ETL Framework for Semantic Data
Warehouses

This section is a summary of Paper A [39].
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3.1 Motivation and Problem Statement

In addition to their internal organizational data, companies are (increasingly)
showing interest in the knowledge encoded in large semantically annotated
repositories that are locally or publicly available such as DBpedia [3], Free-
base [8], Eurostat 4 or the datasets available in Linked Open Data (LOD). For
example, a European company may want to analyze their internal product
sales based on population and sex in different regions, which is available in
Eurostat [17]. The use of SW technologies together with traditional DW tech-
nologies supports this open world scenario by addressing the limitations of
current database-centric ETL tools discussed in Section 1.1. Therefore, the
DW community is showing increasing interest in using SW technologies in
the integration process. In [1, 4, 51], authors have used SW technologies to
design conceptual frameworks of different phases of ETL processes; however,
no one has so far offered an integrated framework to build a Semantic DW
(SDW) that covers all integration phases, namely target definition, source to
target mappings, (semantic and non-semantic) source extraction, transforma-
tion, linking, and loading [39]. In this section, a semantic ETL framework
named SETL is presented. SETL allows to process and integrate heteroge-
neous data semantically by bridging SW and DW technologies. As discussed
later, SETL supports all integration phases.

The unique contributions of SETL are: 1) It allows users to define the
intensional knowledge (schema) of an SDW using ontological constructs.
Users can annotate the schema with MD constructs (facts, dimensions, lev-
els, cube, level attribute, and so on) using the QB [14] and QB4OLAP [19]
vocabularies. 2) It allows processing both semantic and non-semantic data
sources. A non-semantic data source is processed by creating a semantic
layer on top of it. 3) It provides functionality to generate data (in the form of
RDF triples) from diverse sources according to the semantics encoded in the
schema of the SDW. 4) It also provides functionality to connect internal data
with other internal/external data semantically [39]. A high-level Python-
based programmable framework is developed for performing the integration
tasks mentioned above. The programmable framework facilitates ETL devel-
opers by providing a higher abstraction level (in the form of modules, classes,
and methods) that lowers the entry barriers. The following sections describe
the use case used in this section, the architecture of SETL, the description of
SETL components, and an overall discussion.

3.2 Use Case Description

This section describes the source datasets and the final target TBoxes for in-
tegrating and understanding the MD knowledge of those datasets. The three

4https://ec.europa.eu/eurostat/web/nuts/linked-open-data
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datasets used in this paper are: 1) a Danish Agricultural Dataset (DAD) [21],
2) a Danish Business Dataset (DBD) [13], and 3) the European Union (EU)
Farm Subsidy (Subsidy) dataset (https://data.farmsubsidy.org/). The
datasets are integrated in two steps: 1) first, DAD and DBD are integrated to
produce a SDW called SETLKB, and 2) then an MD SDW is produced by in-
tegrating the Subsidy dataset and the produced SETLKB. In this chapter, the
focus is on the MD SDW part of the process; therefore, readers are directed
to the original papers [15, 39] for the first step of integration.

The EU Farm subsidies for Denmark are collected from https://data.

farmsubsidy.org/. This dataset has two MS Access database tables: Subsidy
and Recipient. The Subsidy table contains the amount of subsidies given to the
recipients in different years, whereas the Recipient table contains the informa-
tion of who receive the subsidies. In total, there are 4,392,390 and 342,786
distinct rows in the Subsidy and Recipient tables respectively.

sdw:Recipient

sdw:Day

sdw:Subsidy

sdw:Municipality

sdw:City

sdw:Region

sdw:Month

sdw:Year

sdw:Company

sdw:secondary
Activity

sdw:Main
Activity

sdw:Business
Format

sdw:Global 
Type

sdw:Recipient
Type

sdw:inCompany

sdw:payDate

sdw:payMonth

sdw:payYear

sdw:hasSecondary
Activity

sdw:hasMain
Activity

sdw:has
Format

sdw:inMunicipality

sdw:inCity

sdw:inRegion

sdw:hasRecipient
Type

sdw:hasGlobal
Type

sdw:givenTo

xsd:doublesdw:amountEuro

sdw:Beneficiary

sdw:Time

LEGEND

Class

Object Property

DataType Property

LEGEND

Class

Object Property

DataType Property

Dimension

Fig. 3: The target TBox to multidimensionally integrate Subsidy and SETLKB datasets. For the
sake of simplicity, the remaining data properties are not shown. (Adopted from [39])

The final target TBox, to multidimensionally integrate Subsidy and SETLK-
B datasets, is shown in Figure 3. Here, sdw:Subsidy is the central con-
cept, and it provides a general description of the features for the facts of
the MD SDW and the measure of facts (sdw:amountEuro) is shown as a
datatype property. There are two dimensions in this SDW: sdw:Time and
sdw:Benificiary. In Figure 3, the levels of each dimension are shown as
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a concept, and the hierarchies of each dimension—how the levels of each
dimension are connected to each other through object properties to create
different branches from sdw:Subsidy—are also shown.

3.3 SETL Overview

This section outlines the Semantic ETL Framework (SETL in short). To de-
sign an SDW, SETL follows a demand-driven approach. The two steps of
the demand-driven approach are: 1) requirements engineering: identifying and
analyzing the requirements of business users and decision makers, and 2)
data integration: building the target TBox and the ETL based on the gathered
requirements [23]. The first step is beyond the scope of this thesis, and SETL
focuses on the second step. In short, the integration steps SETL supports are:
defining a target TBox for the SDW based on the given requirements, extract-
ing data from multiple heterogeneous data sources, transforming source data
into RDF triples following the semantics encoded in the target TBox, linking
data internally and externally, and loading the data into a triple store, and/or
publishing the data on the Web as Linked Data [26, 29].

As shown in Figure 4, SETL is divided into three layers (separated by red-
colored dotted lines): the Definition Layer, ETL Layer, and Data Warehouse
Layer. In the Definition Layer, an ETL designer defines the target TBox, data
sources, and the mappings among the source and target TBoxes. Using the
SDW TBox Definition component, the designer defines the target TBox based
on the requirements; the QB4OLAP vocabulary is used to annotate the target
TBox with MD semantics. The Define Mapping component is used to map
between a source and the target TBox. To create a semantic layer on top of a
non-semantic data source, the TBox Extraction component is used to extract
a TBox from a non-semantic data source. The R2RML component is used
to generate RDB to RDF Mapping Language (R2RML) mappings for a non-
semantic source, which is later used to generate RDF triples for the source
using an R2RML engine.

In the ETL Layer, the designer can design an ETL process to create the
ABox of the SDW from the available sources. The Extraction component re-
trieves data from the sources, which are further cleansed and formatted by
the Traditional Transformation component. Then, the Semantic Transformation
component transforms the data into RDF triples according to the semantics
encoded in the target TBox. As a sub-task, Semantic Transformation stores the
IRI information of each resource/data in the Provenance graph to preserve
the uniqueness of each resource. Internal data can be linked with other exter-
nal knowledge bases using the External Linking component. The RDF triples
can be dumped as a local file using the SaveToFile component. Finally, the
Load component loads the RDF triples, directly from the Semantic Transforma-
tion component or from the dumped file, into a triplestore that can be queried
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Fig. 4: SETL architecture. (Adopted from [39])

by end-users using OLAP or SPARQL queries. The intermediate results from
each phase are stored in a data staging area. As ETL is an iterative block
and repeated for each flow, a curved arrow is used in Figure 4. The Data
Warehouse Layer stores the RDF triples. Next, the components of each layer
are described in detail.

3.4 Component Description

This section describes the components of the Definition and ETL Layers.
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The Definition Layer

The Definition Layer is composed of four components: SDW TBox Definition,
TBox Extraction, Define Mapping and R2RML Mapper, and an overview of each
component is presented in the following paragraphs.

SDW TBox Definition As data sources are defined heterogeneously, it is
vital to capture the semantics of the data at the conceptual level. To design
an SDW, SETL uses ontological constructs (for example, Figure 3 shows the
ontology of the SDW of our use case). SETL uses RDFS/OWL to define the
formal semantics encoded in the ontology (TBox). In OWL, owl:Class and
rdfs:Property are used to define concepts and properties of the TBox. The
hierarchical relationships among the concepts and properties are presented
by rdfs:SubClassOf and rdfs:SubPropertyOf, respectively, and rdfs:domain

and rdfs:range are used to relate properties with concepts. As an SDW is
defined with multidimensional constructs, SETL uses QB and QB4OLAP vo-
cabularies to enrich the TBox with MD semantics.

In QB4OLAP, qb:DataStructureDefinition is used to define a cube/
cuboid structure in terms of dimensions/levels, measures, and attributes. A
dimension (defined by qb:DimensionProperty) is composed of hierarchies,
and a hierarchy (defined by qb4o:Hierarchy) logically orders the levels (de-
fined by qb4o:LevelProperty) as a means of establishing parent-child re-
lationships among the levels. A hierarchy is composed of hierarchy steps
(defined by qb4o:HierarchyStep). Each hierarchy step defines the parent
and child levels (through qb4o:parentLevel and qb4o:childLevel proper-
ties ), the roll-up relationship and the cardinality between the levels (using the
properties qb4o:rollup and qb4o:pcCardinality, respectively). The readers
are directed to [18] for further details.

Figure 5a shows the cube structure sdw:cube of our use case. The struc-
ture is composed of QB components (defined by a blank node in the figure).
Each QB component represents either a measure or a dimension. The aggre-
gate functions (e.g., qb4o:sum) associated with the measure (e.g., sdw:amoun-
teuro) also include in the measure component. A dimension component in-
cludes a dimension (e.g., sdw:Beneficiary) and its cardinality. The measure
can be analyzed according to different dimensions, e.g., sdw:Beneficiary,
sdw:Time. Figure 5b shows a fragment of the sdw:Beneficiary dimension.
The sdw:BusinessHierarchy hierarchy (sdw:Recipient → sdw:Company →
sdw:BusinessType) is composed of two hierarchy steps (defined by blank
nodes _:h1 and _:h2). Each hierarchy step defines its parent level, child
level, and the cardinality of their relationship.

Define Mapping A mapping defines the relationships between the elements
(either concepts or properties) of a source TBox and the corresponding ele-
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(a) A fragment of the cube structure. (b) Beneficiary dimension definition.

Fig. 5: Description of a part of the cube structure and a dimension of our running example using
QB4OLAP. (Reproduced from [39])

ments of the target TBox. Given a source and a target TBox TS and TT , a
mapping can formally be defined as

Map(TS, TT) = {(es1, et1, type)|es1 ∈ TS, et1 ∈ TT , type ∈ {≡,v,w}} (1)

Each 3-tuple (es1, et1, type) in Map(TS, TT) denotes that an element es1 of
TS is mapped to an element et1 of TT with the relationship type. The rela-
tionship can be either an equivalence relationship (es1 ≡ et1) or a subsumption
relationship (es1 v et1) or a supersumption relationship (es1 w et1) [38]. OWL
provides owl:equivalentClass for equivalence, and rdfs:subClassOf, and
rdfs:subPropertyOf for subsumption and supersumption relationships.

TBox Extraction As mappings are done at the TBox level, a further step is
necessary if the given source is either a non-semantic or a semantic source
defined without schema. Currently, we focus on the extraction from non-
semantic sources (e.g., relational, XML, and object-oriented). Extraction from
a semantic source, where only instances are delivered, not the schema, is
considered as a future work, addressed in Section 4. A TBox extraction pro-
cess f from a data source D is defined as f : D → T B where T B is the
TBox derivation of the data source D. SETL follows the derivation tech-
niques described in [52]. As an example, here we present the TBox extrac-
tion process for a relational data source RD as frd : S → T B, where S is
the schema of RD. S is composed of a set of tables T and a set of columns
C = {Ct|Ct is a set o f columns o f a table t ∈ T}. Table 1 summarizes
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the mappings between the elements of RD and the corresponding OWL con-
structs. Each table t ∈ T is an OWL class, each column (except foreign key
column) is a datatype property, and each foreign key FKt,t′ is an object prop-
erty. The domain and range of the properties are shown within a square
bracket in Table 1. Here, type(c) returns the data type of a column. To extract
a TBox from an XML source, readers are directed to [52].

x frd(x)
∀t ∈ T owl:class

∀c ∈ Ct

owl:DatatypeProperty

[rdfs:domain = frd(t),
rdfs:range=type(c)]

∀FKt,t′ ∈ Ct

owl:ObjectProperty

[rdfs:domain = frd(t),
rdfs:range= frd(t′)]

Table 1: TBox extraction function from RD. (Reproduced from [39])

R2RML Mapper R2RML is the W3C standard to express customized map-
pings from relational data sources to RDF [49]. The R2RML component is
used to map the relational data to RDF using the extracted TBox. since it is
possible that not all the input data is relevant, the R2RML component also
takes the output of the Define Mapping component as input. The mappings
are done by users. Note that, to map from other sources (XML, CSV, JA-
SON) to RDF, RML (https://rml.io/specs/rml/), which is the superset of
R2RML proposed to support other structured formats, can be used.

The ETL Layer

The ETL Layer is composed of five components: Extraction, Traditional Trans-
formation, Semantic Transformation, External Linking, and Load component. De-
tails are discussed below.

Fig. 6: The process of extraction from Non Semantic Data Source. (Reproduced from [39])

Extraction SETL allows extracting data from the available semantic and
non-semantic sources. SPARQL [24] is the W3C standard pattern matching
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language for querying a semantic source. It uses SELECT queries to retrieve
data and CONSTRUCT queries to produce an RDF graph (composed of a set
of RDF triples). SETL applies SPARQL queries to a local RDF file or through a
SPARQL endpoint to extract data from a semantic source. Figure 6 illustrates
the process of data extraction from a non-semantic source. There a semantic
version of the non-semantic source is created using an R2RML engine. An
R2RML engine takes a relational database and an R2RML mapping file as
input and generates an RDF dataset based on the mapping file [7]. Then,
the RDF version of the non-semantic source can be queried using SPARQL
queries.

Once the data is extracted, the next task is to transform the extracted
data (given in the CSV format) according to the semantics encoded in the
target TBox. SETL divides the transformation tasks into two components:
Traditional Transformation and Semantic Transformation.

Traditional Transformation The Traditional Transformation component in-
cludes operations from traditional ETL tools to performs the formatting and
cleansing tasks. SETL considers the following transformation tasks: duplicate
data removal, data normalization, renaming attributes, recalculating data, in-
tegrity constraints checking, data filtering, unique identifier generation, de-
fault value handling, and sorting/grouping/summarizing data. This com-
ponent outputs a set of tables, where each table corresponds to a concept
construct (e.g., an OWL class, an MD level, an MD cube/dataset) of the tar-
get TBox, and the columns and records of each table represent the proper-
ties/level attributes and instances of that concept.

_:Iri0

pro:generatedIRI

pro:sourcedataset

pro:originalIRI

rdf:type

http://extbi.lab.aau.dk/sdw/Recipient#291866http://sub/recipient#291866

https://data.farmsubsidy.org/ http://extbi.lab.aau.dk/sdw/Recipient

Fig. 7: An entry into the Provenance Graph. (Adopted from [39])

Semantic Transformation The Semantic Transformation component takes each
output table produced by the Traditional Transformation component and trans-
forms it into RDF data with MD semantics. The process is described in Al-
gorithm 1. The algorithm takes the following inputs: a table (table), the
name of a column in table (resourceKey) to be used to uniquely identify each
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Algorithm 1: createTriples. (Adopted from [39])
Input: table, resourceKey, onto, mapping, provGraph, datasetname
Output: T
begin

1 D ← createDictionary(table)
2 concepts← getMatchingConcepts(table, mapping)
3 foreach c ∈ concepts do
4 foreach r ∈ D do
5 sub← createInstanceIRI(c, resourceKey(r), provGraph)
6 T.addtriple(sub, rdf:type, c)
7 if (type(c) = qb4o:LevelProperty) then
8 T.addtriple(sub, qb4o:memberOf, c)

9 if (type(c) = qb:Observation) then
10 T.addtriple(sub, rdf:type, qb:Observation)
11 T.addtriple(sub, qb:dataSet, datasetname)

12 foreach (attribute, valuea) ∈ r do
13 if (valuea! = NULL) then
14 prop← getMatchingProperty(attribute,

mapping, property(c, onto))
15 T.addTriple(sub, prop, createObject(valuea))

16 return T

row, a target TBox (onto), a source-to-target mapping file (mapping), a prove-
nance graph (provGraph), and the name of the dataset (datasetname) to be
created. The first step is to create a temporal structure, a dictionary D (line
1), which is composed of (key, value) pairs. Each (key, value) pair represents
a distinct row r in table. key corresponds to r’s resourceKey value, and value
presents a list of (attribute, valuea) pairs, where each pair present one of r’s
cell. The next task is to identify the set of concepts in the target TBox that
map to table (line 2). Then, the algorithm runs for each target mapped con-
cept c ∈ C. For each entry in D, it creates a new resource and a triple
defining the new resource as an instance of c (lines 5-6). The createInstan-
ceIRI(c, resourceKey(r), provGraph) function first checks the availability of an
existing IRI for the instance in the Provenance Graph provGraph; if it finds
one, then returns it, otherwise creates a new one and updates the Provenance
Graph. The Provenance Graph is an RDF graph that stores the meta infor-
mation of the produced IRIs. Figure 7 illustrates an example entry of the
IRI http://extbi.lab.aau.dk/sdw/Recipient#291866, its type in the target
TBox, its original source dataset and IRI in the Provenance Graph. Based on
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the MD nature of c, the algorithm add QB4OLAP triples to define the MD se-
mantics in the resource (lines 7-11). Furthermore, for each (attribute, valuea),
a triple is created if valuea is not null and a mapping between attribute and
a property of c exists (lines 12-15). The function createObject(valuea) returns
either the literal valuea or a resource based on the type of property (datatype
or object).

External Linking The External Linking component links internal resources
with external resources. For a given internal resource in, SETL provides
an algorithm that extracts top k matching external resources either 1) from
an external knowledge base by submitting a query to its endpoint or 2) by
sending a web service request embedding in through the API (e.g., DBpedia
lookup API). To find potential links, for each external resource ex, the Jaccard
Similarity of between the semantic bags of in and ex are computed. The
semantic bag of a resource consists of triples describing the resource [40,
41, 50]. The pair of the internal and external resources is considered as a
match if the Jaccard Similarity exceeds a certain threshold. A triple with the
owl:sameAs property is created to materialize the link in the dataset for each
pair of matched internal and external resources.

Load SETL loads the transformed RDF triples and the triples generated in
the External Linking component into a triple store (Jena TDB) or saves them
to an RDF dump file. It supports two types of data loading: trickle load and
bulk load. In the trickle load mode, data are transformed and fed to the triple
store as it arrives without staging on a disk using SPARQL INSERT queries.
Alternatively, the bulk load mode writes the transformed triples into a file on
the disk, which is then loaded in the triple store in batch mode.

Tools⇒ SETL PDI (Kettle)
Task⇓ Used Tools Used Lnaguages LOC Used Tools Used Languages LOC
TBox with
MD semantics

Built-in SETL Python 312 Protege, SETL Python 312

Ontology
Parser

Built-in SETL Python 2 User Defined Class Java 77

Semantic Data Extraction
through SPARQL endpoint

Built-in SETL Python, SPARQL 2
Manually extraction
using SPARQL endpoint

SPARQL N/A

Semantic Data Extraction
from RDF Dump file

Built-in SETL Python 2 N/A N/A N/A

Reading
CSV/Database

Built-in Petl Python 2 Drag & Drop N/A
Number of

used Activity: 1

Cleansing Built-in Petl Python 36 Drag & Drop N/A
Number of

used Activity: 19
IRI Generation Built-in SETL Python 2 User Defined Class Java 22
Triple Generation Built-in SETL Python 2 User Defined Class Java 60
External Linking Built-in SETL Python 2 N/A N/A N/A
Loading as
RDF dump

Built-in SETL Python 1 Drag & Drop N/A
Number of

used Activity: 1
Loading to
Triple Store

Built-in SETL Python 1 N/A N/A N/A

Total LOC for the complete ETL process 401 471 LOC +4 N/A + 21 Activity

Table 2: Comparison between the ETL processes of SETL and PDI for SETLSDW. (Reproduced
from [39])
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3.5 Discussion

Each component of the SETL framework described in Section 3.3 is imple-
mented using Python because it supports programmer productivity and has
comprehensive standard libraries. For the implementation details, readers
are referred to Paper A [39]. SETL is compared to the state-of-the-art, namely,
ExtBI [2] and Pentaho Data Integration (PDI) [9]. As discussed in Section 3.2,
a knowledge base, SETLKB, is created using SETL, which is used to make
a comprehensive comparison with the process used in ExtBI. Readers are
directed to Paper A [39] for the detailed experiment and evaluation. The fol-
lowing are the main advantages of SETL compared to ExtBI. 1) SETL makes
the programmer more productive, as it uses only a fraction (570) of the Lines
of Code (LOC) of 1879+5 N/A5(by ExtBI) to complete the ETL process. 2)
SETL only requires programming in Python instead of 7 different languages
and tools. 3) The ETL process of SETL is run in a single pass, whereas ExtBI
could not run the ETL process in a single pass because of using different
tools and languages. 4) SETL produces a better knowledge base than the
one produced by ExtBI in terms of consistency, completeness, and external
linking.

In the second step of the use case data integration, discussed in Sec-
tion 3.2, an MD SDW is produced using SETL, and the process is compared
with PDI. Table 2 summarizes the tools, languages, and the LOC used to
process integration tasks by SETL and PDI 6. In total, PDI takes 471 LOC +
4 N/A + 21 Activity7 to run the ETL process, whereas SETL takes only 401
LOC to run the complete ETL process. Hence, SETL creates an MD SDW
with less number of LOC, user interactions than PDI where a user requires
to build their own Java class, plugins, and manual tasks to enable semantic
integration. As PDI does not allow all tasks related to semantic integration, a
part of the ETL process generated by SETL is compared with PDI (Details are
in [39]). SETL takes only 1644 seconds, where PDI takes 1903 seconds. Thus,
SETL is 13.5% faster than PDI.

In summary, this chapter proposes a semantic ETL Framework to inte-
grate semantic and non-semantic data sources. The experiments show that
the programmable framework performs better in terms of programmer pro-
ductivity, knowledge base quality, and performance. However, to use it, a
user requires a programming background. Although it enables to create an
ETL flow and provides methods by combining several tasks, there is a lack
of a well-defined set of basic semantic ETL operators that allow users more
control in creating their ETL process. Moreover, how to update the SDW to

5An N/A (Not Available) indicates that the task is done by either user interactions or man-
ually or is not supported by the process. Therefore, the LOC cannot be counted.

6https://github.com/pentaho
7An activity is an operation directly supported by PDI with a drag and drop facility
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synchronize it with the changes taking place in the sources is not discussed.
Further, in a data lake /big data environment, the data may come from het-
erogeneous formats, and the use of the relational model as the canonical
model may generate an overhead. Transforming JSON or XML data to rela-
tional to finally generate RDF can be avoided by using RDF as the canonical
model instead. Further, several works have discussed the appropriateness of
knowledge graphs for data integration purposes and, specifically, as a canon-
ical data model [12]. An additional benefit of using RDF as a canonical model
is that it allows adding semantics without being compliant to a fixed schema.

In Sections 4 and 5, the limitations identified in this discussion will be
further elaborated. Specifically, Section 4 presents a set of semantic ETL oper-
ators that can be used to generate semantically rich and complex ETL flows.
Doing so, the focus of the research moves from programmatic functions in
Python to orchestrating high-level operators. These operators are further de-
signed to use RDF as the canonical model. Also, some additional tasks to
facilitate SDW management are introduced, such as the update of dimen-
sional data to adapt to changes in the sources. In Section 5, a tool to perform
high-level OLAP operations on top of an SDW is presented. This way, the
user does not need to implement OLAP queries by means of SPARQL and
can directly use operators such as roll-up or drill-down.

4 High-Level ETL Constructs for Processing Seman-
tic Data

This section is a summary of Paper B [17].

4.1 Motivation and Problem Statement

Since there are a number of available RDF wrappers that can translate non-
semantic resources to semantic resources, this section focuses on processing
semantic sources and the usage of the RDF model as the canonical model in
the integration process. The rest of this section explains the improvements
introduced on top of SETL to remedy its main drawbacks identified in Sec-
tion 3.5. Although SETL integrates semantic and non-semantic data sources,
however, a set of high-level ETL constructs (tasks/operations) required to
process semantic data is missing. As a consequence, in SETL, an ETL de-
signer has to create specific handcode modules to deal with semantic data.
Moreover, the output of the Define Mapping component in Figure 4 does not
represent the complete scenario of the integration process, i.e., a mapping file
needs to be separately created for each extraction and transformation mod-
ule. Furthermore, there is a need to update the SDW to reflect the changes
that occur in the sources over time. Finally, SETL is developed in Python
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and requires a programming background to accomplish the integration tasks.
Therefore, users with no programming knowledge cannot use SETL.

Paper B defines the integration process based on two layers: the Definition
and the Execution Layer and a set of high-level ETL constructs (tasks/oper-
ations) for each layer, with the aim of overcoming the drawbacks identified
above for SETL. Different to SETL or other ETL tools, a new paradigm is pro-
posed: the ETL flow transformations are characterized at the Definition Layer
instead of independently within each ETL operation (in the Execution Layer).
This is done by generating a mapping file that gives an overall view of the
integration process. This mapping file is our primary metadata source and
will be read by the ETL operations, orchestrated in the ETL flow (Execution
Layer), to parametrize themselves. Thus, we are centralizing the creation of
the required metadata to automate the ETL process in the Definition layer.

To create the mapping file, we use our proposed source-to-target mapping
(S2TMAP) vocabulary. Besides other MD transformation operations, Paper B
also proposes an ETL operation that allows applying three types of dimen-
sion updates (Type 1, Type 2, and Type 3) to accommodate evolution in an
SDW, which were defined by Ralph Kimball in [34]. Furthermore, an ETL
operation to extract a TBox from a semantic source defined without schema
is also presented. Most importantly, an algorithm to automatically generate
ETL data flows from the mappings file is proposed. Finally, a GUI-based
prototype, named SETLCONSTRUCT , based on the innovative elements men-
tioned above, is introduced. Hence, developers with no programming back-
ground can accomplish the integration tasks by interacting with the system’s
interfaces. Moreover, developers can create ETL flows either manually using
drag-n-drop options or automatically using the auto ETL feature. The follow-
ing sections present the overview of the integration process, the component
description of each layer, and an overall discussion.

4.2 Layer-Based Semantic Data Integration Process

As discussed in Section 3.3, this thesis focuses on the data integration step
(step 2) of a demand-driven approach. Here, we introduce a two-layered in-
tegration process. In the Definition Layer, a single source of metadata truth
is defined. This includes: the target SDW, semantic representation of the
source schemas, and a source to target mapping file. Relevantly, the meta-
data created represents the ETL flow at the schema level. In the Execution
Layer, ETL data flows based on high-level operations are created. This layer
executes the ETL data flows for instances (i.e., at the data level). Moving
back to a kind of algebraic view of the ETL process gives freedom to the user
to express richer and complex flows. Importantly, the ETL operations will
read the metadata created and parameterize themselves automatically. Addi-
tionally, the Execution Layer automatically checks the correctness of the flow
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Fig. 8: The overall semantic data integration process. (Reproduced from [17])

created, by checking the compatibility of the output and input of consecutive
operators. Overall, the data integration process requires the following four
steps in the detailed order.

1. Defining the target TBox with MD semantics using QB and QB4OLAP
constructs. In addition, the TBox can be enriched with RDFS/OWL
classes and properties. However, SETLCONSTRUCT does not validate
the correctness of the added semantics beyond the MD model. This
step is done at the Definition Layer.

2. Extracting source TBoxes from the given sources. This step is done at
the Definition Layer.

3. Creating mappings among source and target constructs to characterize
ETL flows. The created mappings are stored using the S2TMAP vocab-
ulary proposed. This step is also done at the Definition Layer, too.

4. Populating the ABox of the SDW implementing ETL flows. This step is
done at the Execution Layer.
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Operation
Category

Operation
Name

Compatible
Successors

Objectives

Extraction GraphExtractor

GraphExtractor,
TBoxExtraction,
TransformationOnLiteral,
JoinTransformation,
LevelMemberGenerator,
ObservationGenerator,
DataChangeDetector,
UpdateLevel,
Loader

It retrieves an RDF graph in
terms of RDF triples from
semantic data sources.

Transformation

TBoxExtraction
It derives a TBox from a
given ABox.

TransformationOnLiteral

TransformationOnLiteral,
JoinTransformation,
LevelMemberGenerator,
ObservationGenerator,
Loader

It transforms the source data
according to the expressions
described in the source-to-target
mapping.

JoinTransformation

TransformationOnLiteral,
JoinTransformation,
LevelMemberGenerator,
ObservationGenerator,
Loader

It joins two data sources and
transforms the data according to
the expressions described in the
source-to-target mapping.

LevelMemberGenerator
(QB4OLAP construct)

Loader
It populates levels of the target
with the input data.

ObservationGenerator
(QB4OLAP construct)

Loader
It populates facts of the target
with the input data.

DataChangeDetector
LevelMemberGenerator,
UpdateLevel

It returns the differences between
the new source dataset and the old
one.

UpdateLevel Loader
It reflects the changes occurred in
the source data to the target level.

MaterializeInference Loader
It enriches the SDW by material-
izing the inferred triples.

ExternalLinking Loader
It links internal resources with
external KBs.

Load Loader It loads the data into the SDW.

Table 3: Summary of the ETL operations. (Reproduced from [17])

Figure 8 illustrates the whole integration process and how the constructs
of each layer communicate with each other. There are two types of con-
structs: tasks and operations. On the one hand, a task requires user interac-
tions with the interface of the system to produce an output. Intuitively, one
may consider tasks as the required metadata to automate operations. On the
other hand, from the given metadata, an operation automatically parameter-
izes itself and produces an output. The Definition Layer includes two tasks:
TargetTBoxDefinition and SourceToTargetMapping and the TBoxExtraction oper-
ation. These two tasks respectively address the first and third steps of the
integration process mentioned above, and the TBoxExtraction operation ad-
dresses the second step. This is the only operation shared by both layers (See
the input of SourceToTargetMapping in the figure). Therefore, the Definition
Layer creates three types of metadata: Target TBox (created by TargetTBoxDef-
inition), source TBoxes (create by TBoxExtraction), source-to-target mappings
(created by SourceToTargetMapping). The Execution Layer covers the fourth
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step of the integration process and includes a set of operations to create data
flows from the sources to the target. Figure 8 shows constructs (i.e., the Medi-
atory Constructs) used by the ETL constructs to communicate between them.
These mediatory constructs store the required metadata created to automate
the process. In the figure, Extop, Transop and Loadop are the set of extraction,
transformation, and load operations used to create the flows at the instance
level. The ETL data flows created in the Execution Layer are automatically
validated and to do that, the concept of compatible operations is defined.
Precisely, if an operation O1’s output is accepted by O2, , then we say O2 is
compatible with O1 and express it as O1 → O2.

Further, as discussed in Section 3.5, traditional ETL tools (e.g., PDI) do
not have ETL operations supporting the creation of an SDW. Here, a set of
ETL operations are proposed. Table 3 summarizes the operations introduced
based on their category, name, compatible successors, and objectives. Next,
we discuss the details of each layer.

4.3 The Definition Layer

This layer contains two tasks (TargetTBoxDefinition and SourceToTargetMap-
ping) and one operation TBoxExtraction. An overview of each construct is
presented below.

TargetTBoxDefinition The objective of this task is to define a target TBox
with MD semantics. The two main constructs of the MD structure are di-
mensions and cubes, which can be described using the QB and QB4OLAP
vocabularies. Section 5 described how QB and QB4OLAP are used to de-
scribe a target TBox with MD semantics. The same principles hold in this
task. Importantly, this task guarantees that any SDW target schema gener-
ated is QB4OLAP-compliant. In addition, the TBox can be enriched with
RDFS/OWL classes and properties. However, for this additional enrichment,
this task does not guarantee the correctness of the added semantics. Listing 1
represents the sdw:Time dimension and sdw:Subsidy cube of the use case de-
scribed in Section 3.2 in QB4OLAP. Importantly, we extended the QB4OLAP
vocabulary to enable updates in dimensions (for more details see [17]). There-
fore, the qb4o:updateType property is added to each level attribute (lines 36,
40, 44, 48, 52, and 56).

Listing 1: QB4OLAP representation of sdw:Time dimension and sdw:Subsidy cube. (Repro-
duced from [17])

1 PREFIX sdw: <http :// extbi.lab.aau.dk/ontology/sdw/>

2 PREFIX rdf: http :// www.w3.org /1999/02/22 -rdf -syntax -ns#

3 PREFIX rdfs: http ://www.w3.org /2000/01/ rdf -schema#

4 PREFIX qb: <http :// purl.org/linked -data/cube#>

5 PREFIX qb4o: <http :// purl.org/qb4olap/cubes#>

6
7 ## Time Dimension

8 sdw:Time rdf:type qb:DimensionProperty;
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9 rdfs:label "Time Dimension";

10 qb4o:hasHierarcy sdw:TimeHierarchy.

11
12 # Dimension Hierarchies

13 sdw:TimeHierarchy rdf:type qb4o:Hierarchy;

14 rdfs:label "Time Hierarchy";

15 qb4o:inDimension sdw:Time;

16 qb4o:hasLevel sdw:Day , sdw:Month , sdw:Year.

17
18
19
20 # Hierarchy levels

21 sdw:Day rdf:type qb4o:LevelProperty;

22 rdfs:label "Day Level";

23 qb4o:hasAttribute sdw:dayId , sdw:dayName.

24 sdw:Month rdf:type qb4o:LevelProperty;

25 rdfs:label "Month Level";

26 qb4o:hasAttribute sdw:monthId , sdw:monthName.

27 sdw:Year rdf:type qb4o:LevelProperty;

28 rdfs:label "Year Level";

29 qb4o:hasAttribute sdw:yearId , sdw:yearName.

30 sdw:All rdf:type qb4o:LevelProperty;

31 rdfs:label "ALL".

32
33 # Level attributes

34 sdw:dayId rdf:type qb4o:LevelAttribute;

35 rdfs:label "day ID";

36 qb4o:updateType qb4o:Type2;

37 rdfs:range xsd:String.

38 sdw:monthId rdf:type qb4o:LevelAttribute;

39 rdfs:label "Month ID";

40 qb4o:updateType qb4o:Type2;

41 rdfs:range xsd:String.

42 sdw:yearId rdf:type qb4o:LevelAttribute;

43 rdfs:label "year ID";

44 qb4o:updateType qb4o:Type2;

45 rdfs:range xsd:String.

46 sdw:dayName rdf:type qb4o:LevelAttribute;

47 rdfs:label "day Name";

48 qb4o:updateType qb4o:Type1;

49 rdfs:range xsd:String.

50 sdw:monthName rdf:type qb4o:LevelAttribute;

51 rdfs:label "Month Name";

52 qb4o:updateType qb4o:Type1;

53 rdfs:range xsd:String.

54 sdw:yearName rdf:type qb4o:LevelAttribute;

55 rdfs:label "year Name";

56 qb4o:updateType qb4o:Type1;

57 rdfs:range xsd:String.

58
59 #rollup relations

60 sdw:payMonth rdf:type qb4o:RollupProperty.

61 sdw:payYear rdf:type qb4o:RollupProperty.

62 sdw:payAll rdf:type qb4o:RollupProperty.

63
64 # Hierarchy Steps

65 _:ht1 rdf:type qb4o:HierarchyStep;

66 qb4o:inHierarchy sdw:TimeHierarchy;

67 qb4o:childLevel sdw:Day;

68 qb4o:parentLevel sdw:Month;

69 qb4o:pcCardinality qb4o:OneToMany;

70 qb4o:rollup sdw:payMonth.

71
72
73 _:ht2 rdf:type qb4o:HierarchyStep;

74 qb4o:inHierarchy sdw:TimeHierarchy;

75 qb4o:childLevel sdw:Month;

76 qb4o:parentLevel sdw:Year;

77 qb4o:pcCardinality qb4o:OneToMany;

78 qb4o:rollup sdw:payYear.

79
80 ## Subsidy Cube

81 sdw:amounteuro rdf:type qb:MeasureProperty;

82 rdfs:label "subsidy amount"; rdfs:range xsd:Double.

83 sdw:SubsidyStructure rdf:type qb:DataStructureDefinition;

84 qb:component[qb4o:level sdw:Recipient ];

85 qb:component[qb4o:level sdw:Day];

86 qb:component[qb:measure sdw:amounteuro; qb4o:aggregateFunction qb4o:sum , qb4o:avg].

87
88 # Subsidy Dataset

89 sdw:Subsidy rdf:type qb:Dataset;

90 rdfs:label "Subsidy dataset";

91 qb:structure sdw:SubsidyStructure;
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TBoxExtraction After defining a target TBox, the next step is to extract
source TBoxes. Typically, in a semantic source, the TBox and ABox of the
source are provided. Therefore, no external extraction task/operation is re-
quired. However, sometimes, the source contains only the ABox, and no
TBox. In that scenario, an extraction process is required to derive a TBox
from the ABox. We formally present the TBox extraction operation from a
given ABox ABox as fABox2TBox : ABox → TBox. The derived TBox is de-
fined in terms of the following TBox constructs: A set of concepts C, a set of
concept taxonomies H, a set of properties P, and the sets of property domains
(D) and ranges (R). The following steps describe the process to derive each
TBox element for TBox.

1. C: By checking the unique objects of the triples in ABox where rdf:type

is used as a predicate, C is identified.

2. H: The taxonomies among concepts are identified by checking the in-
stances they share among themselves. Let C1 and C2 be two concepts.
One of the following taxonomic relationships holds between them: 1)
if C1 contains all instances of C2, then we say C2 is a subclass of C1 (C2
rdfs:subClassOf C1); 2) if they do not share any instances, they are
disjoint (C1 owl:disjointWith C2); and 3) if C1 and C2 are both a sub-
class of each other, then they are equivalent (C1 owl:equivalentClass

C2).

3. P, D, R: By checking the unique predicates of the triples, P is derived.
A property p ∈ P can relate resources with either resources or literals.
If the objects of the triples where p is used as predicates are IRIs, then
p is an object property; the domain of p is the set of the types of the
subjects of those triples, and the range of p is the types of the objects of
those triples. If the objects of the triples where p is used as predicates
are literals, then p is a datatype property; the domain of p is the set of
types the subjects of those triples, and the range is the set of data types
of the literals.

SourceToTargetMapping Once the target and source TBoxes are defined, the
next task is to characterize the ETL flows at the Definition Layer by creating
source-to-target mappings. Because of the heterogeneous nature of source
data, mappings among sources and the target should be done at the TBox
level. In principle, mappings are constructed between sources and the tar-
get; however, since mappings can get very complicated, we allow to create
a sequence of SourceToTargetMappings whose subsequent input is generated
by the precedent operation. The communication between these operations is
by means of a materialized intermediate mapping definition and its meant to
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Fig. 9: Pictorial summary of the key terms and their relationship of the S2TMAP vocabulary.
(Reproduced from [17])

facilitate the creation of very complex flows (i.e., mappings) between source
and target.

A source-to-target mapping is constructed between a source and a target
TBoxes, and it is composed of a set of concept-mappings. A concept-mapping
defines 1) a relationship (equivalence, subsumption, supersumption, or join)
between a source and the corresponding target concept, 2) which source in-
stances are mapped (either all or a subset defined by a filter condition), 3)
the rule to create the IRI for target concept instances, 4) the source and target
ABox locations, 5) the common properties between two concepts if their re-
lationship is join, 6) the sequence of ETL operations required to process the
concept-mapping, and 7) a set of property-mappings for each property hav-
ing the target concept as a domain. A property-mapping defines how a target
property is mapped from either a source property or an expression over prop-
erties. The formal definition of a source-to-target mapping is given in [17].
To implement the source-to-target mappings, a Source-To-Target Mapping
(S2TMAP) vocabulary is proposed. Figure 9 is the pictorial presentation of
the key terms used in S2TMAP. Table 4 describes the key terms of S2TMAP.
Listing 2 presents a snapshot of a mapping between a source and a target
TBoxes.
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Listing 2 An S2TMAP representation of a source-to-target mapping. (Adopted from [17])

1 PREFIX onto: <http :// extbi.lab.aau.dk/ontology/>

2 PREFIX bus: <http :// extbi.lab.aau.dk/ontology/business/>

3 PREFIX sub: <http :// extbi.lab.aau.dk/ontology/subsidy/>

4 PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

5 PREFIX rdfs: <http ://www.w3.org /2000/01/ rdf -schema#>

6 PREFIX map: <http :// extbi.lab.aau.dk/ontology/s2tmap/>

7 PREFIX sdw: <http :// extbi.lab.aau.dk/sdw >

8 PREFIX : <http :// extbi.lab.aau.dk/ontology/s2map/example#>

9
10 ## MapDataset

11 :mapDataset1 rdf:type map:Dataset;

12 rdfs:label "Map -dataset for subsidy and subsidyMD ontology";

13 map:sourceTBox "/map/subsidyTBox.ttl";

14 map:targetTBox "/map/subsidyMDTBox.ttl".

15
16 #concept -mapping: Populating the sdw:Recipient level

17 :Recipient_RecipientMD rdf:type map:ConceptMapping;

18 rdfs:label "Level member generation";

19 map:mapDataset :mapDataset1;

20 map:sourceConcept sub:Recipient;

21 map:targetConcept sdw:Recipient;

22 map:sourceLocation "/map/subsidy.nt";

23 map:targetLocation "/map/sdw";

24 map:relation owl:equivalentClass;

25 map:mappedInstance "All";

26 map:targetInstanceIRIValueType map:Property;

27 map:targetInstanceIRIValue sub:recipientID;

28 map:operation _:opSeq1.

29 _:opSeq1 rdf:type rdf:Seq;

30 rdf:_1 map:LevelMemberGenerator;

31 rdf:_2 map:Loader.

32
33 # property -mappings under :Recipient_RecipientMD

34 :companyId_company rdf:type map:PropertyMapping;

35 rdfs:label "property -mapping for companyId";

36 map:conceptMapping :Recipient_RecipientMD;

37 map:targetProperty sdw:hasCompany;

38 map:sourceType4TargetPropertyValue map:Property;

39 map:source4TargetPropertyValue sub:companyId;

40 :cityId_city rdf:type map:PropertyMapping;

41 rdfs:label "property -mapping for cityId";

42 map:conceptMapping :Recipient_RecipientMD;

43 map:targetProperty sdw:inCity;

44 map:sourceType4TargetPropertyValue map:Property;

45 map:source4TargetPropertyValue sub:city;

46 ..........

47 ..

4.4 The Execution Layer

In the Execution Layer, ETL flows are constructed to populate an MD SDW.
Table 3 summarizes the set of ETL operations. Developers can use either
of the following options: (i) The recommended option is that given a TBox
construct, a mapping file and the IRI graph, the automatic ETL execution
flow generation process (described in Section 4.5) will automatically extract
the parameter values from the mapping file. (ii) They can manually set input
parameters at the operation level. Here, we give a high-level overview of
each operation category-wise.

Extraction

Extraction is the data retrieval process from sources. Here, we introduce two
extraction operation for semantic sources: (i) GraphExtractor - to form/extract

8Key terms are the concepts and properties used in the vocabulary. Here, properties are
presented with the italic form to distinguish them from the classes of the vocabulary.
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Category Key Term 8 Description

Map-Dataset (For each
mapping between a source

and a target TBox, we
create a map-dataset)

map:MapDataset
A source-to-target mapping is created
as an instance of this class.

map:sourceTBox,
map:targetTBox

A map dataset is connected to its source and
target TBoxes through the map:sourceTBox
and map:targetTBox properties.

map:sourceLocation,
map:targetLocation

A map dataset points to the locations of the source
and target ABoxes using the map:sourceLocation
and map:targetLocation properties.

Concept-Mapping (For each
mapping between a source

and a target concept,
we create a concept-mapping)

map:ConceptMapping
A concept-mapping between a source and
target concept is initialized by this class.

map:Concept
A map concept can be either an OWL
concept or an MD level or a qb dataset.

map:sourceConcept,
map:targetConcept

The source and target concepts of a
concept-mapping is connected through the
map:sourceConcept and map:targetConcept properties.

map:mapdataset
This property connects a concept-mapping
to its map dataset.

map:relation
Through it, a relationship between the source
and target concept is defined. A relationship can be either
rdfs:subClassOf, or rdfs:subPropertyOf or owl:equivalentClass.

map:mappedInstance
It indicates whether all source instances or
a subset of them are mapped to the target.

map:targetInstanceIri
Type

It indicates the rule to create target instance IRIs.
It can be created either incrementally,
or by using source IRI or by an expression or
based on a source property value.

map:targetInstanceIri
Value

It defines the expression or the source property
to be used to create target instance IRIs.

map:commonProperty,
map:sourceCommon
Property, map:target
CommonProperty

These properties are used to define the common properties
between the source and target concepts of a concept-mapping.

map:operation
Using this operation a concept-mapping indicates a
sequence of ETL operations by which it will be processed.

Property-Mapping (For each
property related to the target

concept in a concept-mapping,
we define a property-mapping

associated with it)

map:PropertyMapping
It is used to define a property-mapping between
a target property and a source property or an expression.

map:Property
It is used to instantiate a property. The property can be
either a data type property, or an object property, or a
level attribute, or a roll-up relation, or even a level property.

map:sourceType4Target
PropertyValue

It defines the source type of a target property. It can either
be a source property or an expression over the properties.

map:source4Target
PropertyValue

It defines either an expression or the source property
to be used to create the target property-values.

map:conceptMapping
A property-mapping is connect to a concept-mapping
using this property.

Table 4: Description of the key terms of S2TMAP vocabulary.

an RDF graph from a semantic source, and (ii) TBoxExtraction - to derive a
TBox from a semantic source described in Section 5. As such, this is the only
operation of the Execution Layer generating metadata stored in the Media-
tory Constructs.

GraphExtractor(Q, G, outputPattern, tABox) Since the data integration pro-
cess proposed in this paper uses RDF as the canonical model, we extract/-
generate RDF triples from the sources with this operation. GraphExtractor is
functionally equivalent to SPARQL CONSTRUCT queries [37]. Given a query
pattern Q, an RDF graph G, output triple Patterns outputPattern, and the out-
put location tABox, GraphExtractor operation performs a pattern matching
operation over the given source G (i.e., finds a map function binding the
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variables in query pattern Q to constants in G), and then, for each binding, it
creates triples according to the triple templates in outputPattern. Finally, the
operation stores the output in the path tABox.

Transformation

Transformation operations transform the extracted data according to the se-
mantics of the SDW. Here, we define the following semantic-aware ETL trans-
formation operations.

TransformationOnLiteral(sConstruct, tConstruct, sTBox, sABox propertyMap-
pings, tABox) As described in the SourceToTargetMapping task, a target prop-
erty (in a property-mapping) of a construct (i.e., a level, a QB dataset, or a
concept) can be mapped to either a source concept property or an expres-
sion over the source properties. An expression allows arithmetic operations,
datatype (string, number, and date) conversion and processing functions, and
group functions (sum, avg, max, min, count) as defined in SPARQL [24].
Given a source and target TBox construct sConstruct and tConstruct, a source
TBox and ABox tABox and sABox, a set of property-mappings propertyMap-
pings, and the output location tABox, this operation transforms (or directly re-
turns) the sABox triple objects according to the expressions (defined through
map:source4TargetPropertyValue) in propertyMappings and stores the triples
in tABox. This operation first creates a SPARQL SELECT query based on the
expressions defined in propertyMappings, and then, on top of the SELECT
query, it forms a SPARQL CONSTRUCT query to generate the transformed
ABox for tConstruct.

JoinTransformation(sConstruct, tConstruct, sTBox, tTBox, sABox, tABox,
comProperty, propertyMappings) A TBox construct (a concept, a level, or a
QB dataset) can be populated from multiple sources. Therefore, an operation
is necessary to join and transform data coming from different sources. Two
constructs of the same or different sources can only be joined if they share
some common properties. Given two constructs sConstruct and tConstruct,
their TBoxes sTBox and tTBox, their instances sABox and tABox, a set of com-
mon properties comProperty, and their set of property-mappings propertyMap-
pings, this operation joins two constructs based on comProperty, transforms
their data based on the expressions (specified through map:source4TargetPr-

opertyValue) defined in propertyMappings, and updates tABox based on the
join result. It creates a SPARQL SELECT query joining two constructs us-
ing either AND or OPT features, and on top of that query, it forms a SPARQL
CONSTRUCT query to generate the transformed tABox.
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LevelMemberGenerator(sConstruct, level, sTBox, sABox, tTBox, iriValue, iri-
Graph, propertyMappings, tABox) In QB4OLAP, dimensional data are phys-
ically stored in levels. A level member, in an SDW, is described by a unique
IRI and its semantically linked properties (i.e., level attributes and rollup
properties). This operation generates data for a dimension schema. Given a
source construct sConstruct, a target level9 level, the source TBox and ABox
sTBox and sABox, the SDW’s TBox tTBox, a rule10 to create IRIs for its level
members iriValue, the IRI graph11 within which to look up IRIs, iriGraph, a set
of property-mappings propertyMappings, and the target ABox location tABox,
LevelMemberGenerator operation generates QB4OLAP-compliant triples for the
level members of level based on the semantics encoded in tTBox and stores
them in tABox.

ObservationGenerator(dataset, tTBox, sABox, iriValue, iriGraph, propertyMap-
pings, tABox) In QB4OLAP, an observation represents a fact. A fact is
uniquely identified by an IRI, which is defined by a combination of sev-
eral members from different levels and contains values for different mea-
sure properties. This operation generates data for a cube schema defined.
Given a target dataset dataset, the SDW TBox tTBox, its source instances
sABox, a rule to create IRIs for observations iriValue, the IRI graph iriGraph, its
property-mappings set propertyMappings, and the target ABox location tABox,
ObservationGenerator generates QB4OLAP-compliant triples for observations
of dataset based on the semantics encoded in tTBox and stores them in tABox.

ChangedDataCapture(nABox, oABox, flag) In a real-world scenario changes
occur in a semantic source both at the schema and instance level. Therefore,
an SDW needs to take action based on the changed schema and instances.
The adaption of the SDW TBox with the changes of source schemas is an
analytical task and requires the involvement of domain experts, therefore, it
is out of the scope of this thesis. Here, only the changes at the instance level
are considered. From the given inputs, ChangedDataCapture outputs either 1)
a set of new instances (in the case of SDW evolution, i.e., flag=0) or 2) a set
of updated triples —the existing triples changed over time— (in the case of
SDW update, i.e., flag=1) and overwrites oABox. This is done by means of the
set difference operation. This operation must then be connected to either Lev-
elMemberGenerator to create the new level members or updateLevel (described
below) to reflect the changes in the existing level members.

9A level is termed as a level property in QB4OLAP, therefore, we use the term “level" and
“level property" interchangeably.

10A rule can be either a source property, an expression or incremental, as described in Sec-
tion 4.3.

11The IRI graph is an RDF graph that keeps a triple for each resource in the SDW with their
corresponding source IRI.
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UpdateLevel(level, updatedTriples, sABox tTBox, tABox, propertyMappings,
iriGraph) Based on the triples updated in the source ABox sABox for the
level level (generated by ChangedDataCapture), this operation updates the tar-
get ABox tABox to reflect the changes in the SDW according to the semantics
encoded in the target TBox tTBox and level property-mappings propertyMap-
pings. Here, we address three update types (Type1-update, Type2-update,
and Type3-update), defined by Ralph Kimball in [34] for a traditional DW, in
an SDW environment. The update types are defined in tTBox for each level
attribute of level (as discussed in Section 4.3). As we consider only instance
level updates, only the objects of the source updated triples are updated. To
reflect a source updated triple in level, the level member using the triple to
describe itself, will be updated. In short, the level member is updated in the
following three ways: 1) A Type1-update simply overwrites the old object
with the current object. 2) A Type2-update creates a new version for the level
member (i.e., it keeps the previous version and creates a new updated one).
It adds the validity interval for both versions. Further, if the level member is
a member of an upper level in the hierarchy of a dimension, the changes are
propagated downward in the hierarchy, too. 3) A Type3-update overwrites
the old object with the new one. Besides, it adds an additional triple for each
changed object to keep the old object. The subject of the additional triple is
the instance IRI, the object of the triple is the old object, and the predicate is
concat(oldPredicate, "oldValue").

Listing 3 describes how different types of updates work by considering
two members of the sdw:Recipient level (lines 1-10). Suppose the address
of the second member (lines 7-10) is changed to “Torninglundvej 23" from
“Torninglundvej 9". A Type1-update simply overwrites it (line 22). A Type2-
update creates a new version (lines 50-56). Both old and new versions contain
validity information (lines 46-48 and lines 54-56). A Type3-update overwrites
the old address (line 34) and adds a new triple to record the old address (line
35).

Listing 3 An example of different types of updates.

1 sdw:Recipient Level

2
3 sdw:Recipient #76291 rdf:type qb4o:LevelMember;

4 qb4o:member sdw:Recipient;

5 sdw:name "R. Nielsen";

6 sdw:add "Lyngbyvej 369".

7 sdw:Recipient #86646 rdf:type qb4o:LevelMember;

8 qb4o:member sdw:Recipient;

9 sdw:name "A. Jochimsen";

10 sdw:add "Torninglundvej 9".

11
12 After type1 update

13
14 sdw:Recipient #76291 rdf:type qb4o:LevelMember;

15 qb4o:member sdw:Recipient;

16 sdw:name "R. Nielsen";

17 sdw:add "Lyngbyvej 369".

18
19 sdw:Recipient #86646 rdf:type qb4o:LevelMember;

20 qb4o:member sdw:Recipient;

21 sdw:name "A. Jochimsen";

22 sdw:add "Torninglundvej 23".
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23
24 After type3 update

25
26 sdw:Recipient #76291 rdf:type qb4o:LevelMember;

27 qb4o:member sdw:Recipient;

28 sdw:name "R. Nielsen";

29 sdw:add "Lyngbyvej 369".

30
31 sdw:Recipient #86646 rdf:type qb4o:LevelMember;

32 qb4o:member sdw:Recipient;

33 sdw:name "A. Jochimsen";

34 sdw:add "Torninglundvej 23";

35 sdw:add_oldValue "Torninglundvej 9".

36 After type2 update

37 sdw:Recipient #76291 rdf:type qb4o:LevelMember;

38 qb4o:member sdw:Recipient;

39 sdw:name "R. Nielsen";

40 sdw:add "Lyngbyvej 369".

41
42 sdw:Recipient #86646 rdf:type qb4o:LevelMember;

43 qb4o:member sdw:Recipient;

44 sdw:name "A. Jochimsen";

45 sdw:add "Torninglundvej 9";

46 sdw:fromDate ``0000-00-00";

47 sdw:toDate ``2016-09-25";

48 sdw:status ``Expired".

49
50 sdw:Recipient #86646 _2016_09_26 rdf:type qb4o:LevelMember;

51 qb4o:member sdw:Recipient;

52 sdw:name "A. Jochimsen";

53 sdw:add "Torninglundvej 23";

54 sdw:fromDate ``2016-09-26";

55 sdw:toDate ``9999-12-31";

56 sdw:status ``Current".

MaterializeInference(ABox, TBox) This operation infers new information
that has not been explicitly stated in an SDW. It analzses the semantics en-
coded into the SDW and enriches the SDW with the inferred triples. A subset
of the OWL 2 RL/RDF rules, which encodes part of the RDF-Based Seman-
tics of OWL 2 [48], are considered here. The reasoning rules can be applied
over the TBox TBox and ABox ABox separately, and then together. Finally,
the resulting inference is asserted in the form of triples, in the same spirit as
how SPARQL deals with inference.

ExternalLinking (intResource, externalDataSource) This operation links the
internal resource intResource with the resources from external data source ex-
ternalDataSource. This operation applies the process described in Section 4.2.

Load

Loader(tripleSet, tsPath) An SDW is represented in the form of RDF triples
and the triples are stored in a triple store (e.g., Jena TDB). Given a set of
RDF triples tripleSet and the path of a triple store tsPath, this operation loads
triplesSet in the triple store.

4.5 Automatic ETL Execution Flow Generation

Since ETL flows are characterized at the Definition Layer by means of the
source-to-target mappings file, the ETL flows in the Execution Layer can be
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generated automatically. This way, we can guarantee the created flows are
sound and free the user from creating the ETL flows. Note that this is pos-
sible because the Mediatory Constructs contain all the required metadata to
automate the process.

Algorithm 2: CreateETL (Reproduced from [17])
Input: TargetConstruct x, MappingFile G, IRIGraph GIRI
Output: A set of ETL flows E
begin

1 nodetarget ← find(x, G)
2 ?cmaps ←findConMap((nodetarget, G)

/* In G : nodetarget
map:targetConcept←−−−−−−−−−−−?cmaps ; |?cmaps| ≥ 0 */

3 E← createSet()
4 if (?cmaps 6= ∅) then
5 foreach c ∈?cmaps do
6 sc ← createStack()
7 sc ← CreateAFlow(c, sc, G, GIRI)
8 E.add(sc)

9 return E

Algorithm 2 shows the steps required to create ETL data flows to populate
a target construct (a level, a concept, or a dataset). As inputs, the algorithm
takes a target construct x, the mapping file G, and the IRI graph GIRI , and it
outputs a set of ETL data flows E. At first, it locates x in G (line 1) and gets
the concept-mappings where nodetarget participates (line 2). As a (final) target
construct can be populated from multiple sources, it can be connected to
multiple concept-mappings, and for each concept-mapping, it creates an ETL
data flow by calling the function12 CreateAFlow (lines 5-8). Algorithm 3
generates an ETL data flow for a concept-mapping c and recursively does so if
the current concept-mapping source element is connected to another concept-
mapping as, until it reaches a source element. Algorithm 3 recursively calls
itself and uses a stack to preserve the order of the partial ETL data flows
created for each concept-mapping. Eventually, the stack contains the whole
ETL data flow between the source and target schema.

Algorithm 3 works as follows. The sequence of operations in c is pushed
to the stack after parameterizing it (lines 1-2). Algorithm 4 parameterizes
each operation in the sequence, as described in Section 6 and returns a stack
of parameterized operations. As inputs, it takes the operation sequence, the
concept-mapping, the mapping file, and the IRI graph. For each operation,

12Here, functions used in the algorithms are characterized by a pattern over G, shown at its
side as comments in the corresponding algorithm.
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Algorithm 3: CreateAFlow (Reproduced from [17])
Input: ConceptMapping c, Stack sc, MappingFile G, IRIGraph GIRI
Output: Stack sc
begin

1 ops← findOperations(c, G)

/* In G : c
map:operation−−−−−−−−−→ ops */

2 sc. push(Parameterize(ops, c, G, GIRI))
/* Push parameterized operations in sc */

3 scon← findSourceConcept(c, G)

/* In G : c
map:sourceConcept−−−−−−−−−−−→ scon */

4 ?sconmap ← findConMap(scon, G)

/* In G : scon
map:targetConcept←−−−−−−−−−−−?sconmap; |?sconmap| ≤ 1 */

5 if (|?sconmap| = 1) then
6 CreateAFlow(nc ∈?sconmap, sc, G)

/* recursive call with nc */

7 sc.push(StartOp)
/* Push the ETL start operation to sc */

8 return sc

it uses the parameterizeOp(op, G, loc(cm), GIRI) function to automatically
parameterize op from G (as all required parameters are available in G) and
push the parameterized operation in a stack (line 2-7). Note that, for the first
operation in the sequence, the algorithm uses the source ABox location of the
concept-mapping (line 4) as an input, whereas for the remaining operations,
it uses the output of the previous operation as input ABox (line 6). Finally,
Algorithm 4 returns the stack of parameterized operations.

Then, Algorithm 3 traverses to the adjacent concept-mapping of c con-
nected via c’s source concept (line 3-4). After that, the algorithm recursively
calls itself for the adjacent concept-mapping (line 6). Note that, here, we
set a restriction: except for the final target constructs, all the intermediate
source and target concepts can be connected to at most one concept-mapping.
This constraint is guaranteed when building the metadata in the Definition
Layer. Once there are no more intermediate concept-mappings, the algorithm
pushes a dummy starting ETL operation (StartOp) (line 7) to the stack and
returns it. StartOp can be considered as the root of the ETL data flows that
starts the execution process. The stacks generated for each concept-mapping
of nodetarget are added to the output set E (line 8 in Algorithm 2).
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Algorithm 4: Parameterize (Reproduced from [17])
Input: Seq ops, ConceptMapping cm, MappingFile G, IRIGraph GIRI
Output: Stack, sop
begin

1 sop ← createStack()
2 for (i = 1 to length(ops)) do
3 if (i = 1) then
4 parameterizeOp(op[i], G, loc(cm), GIRI)
5 sop.push(op[i])

6 parameterizeOp(op[i], G, outputPath(op[i− 1]), GIRI)
7 sop.push(op[i])

8 return sop

4.6 Discussion

A GUI-based prototype, named SETLCONSTRUCT is developed by imple-
menting the approach presented in this chapter. Like other traditional tools
(e.g., PDI), SETLCONSTRUCT allows users to create ETL flows by dragging,
dropping, and connecting the ETL operations. Therefore, developers do
not require a programming background. Furthermore, it provides an in-
terface to create automatic ETL flows discussed in Section 4.5 (we call it
SETLAUTO). Both systems are compared with the previous programmable
framework SETL. To evaluate the completeness (with regard to real use cases)
and correctness of the ETL constructs, an MD SDW is created with the use
case described in Section 3.2. Table 5 summarizes the effort required by
the developer to create different ETL tasks using SETL, SETLCONSTRUCT ,
and SETLAUTO. The developer effort is measured in terms of the Num-
ber of Typed Characters (NOTC) for SETL and in the Number of the Used
Concepts13 (NOUC) for SETL and SETLAUTO. The evaluation shows that
SETLCONSTRUCT improves considerably over SETL in terms of productivity,
development time, and performance. The evaluation shows that 1) SETLCON-

STRUCT uses 92% fewer NOTC than SETL, and SETLAUTO further reduces
NOUC by another 25%; 2) using SETLCONSTRUCT, the development time
is almost cut in half compared to SETL, and is cut by another 27% using
SETLAUTO; 3) SETLCONSTRUCT is scalable and has similar performance com-
pared to SETL [17]. Readers are directed to [17] for a detailed explanation of
this evaluation.

In summary, this chapter proposes a set of high-level ETL constructs to

13A concept in SETLCONSTRUCT is a pop-up window used to define a basic element of an ETL
construct (e.g., a concept-mapping, property-mapping, map-dataset, cube structure, dimension,
dimension, an ETL operation, etc.)
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Tool⇒ SETL
SETLCONSTRUCT SETLAUTO

NOUC
Components of each Concept

NOUC
Components of each concept

ETL Task ⇓ Sub Construct
Procedures/
Data Structures

NUEP NOTC Task/Operation Clicks Selections NOTC Clicks Selections NOTC

TBox with
MD Semantics

Cube Structure

Concept(),
Property(),
BlankNode(),
Namespaces(),
conceptPrope-
rtyBindings(),
createOntology()

1 665

TargetTBox-
Definition

1 9 9 7 1 9 9 7
Cube Dataset 1 67 1 2 2 18 1 2 2 18
Dimension 2 245 2 3 4 12 2 3 4 12
Hierarchy 7 303 7 4 6 18 7 4 6 18
Level 16 219 16 4 5 17 16 4 5 17
Level Attribute 38 228 38 4 3 15 38 4 3 15
Rollup Property 12 83 12 2 1 7 12 2 1 7
Measure
Property

1 82 1 4 3 25 1 4 3 25

Hierarchy Step 12 315 12 6 6 6 12 6 6 6
Prefix 21 74 21 1 0 48 21 1 0 48

Total (for the Target TBox ) 1 24509 101 382 342 1905 101 382 342 1905

Mapping
Generation

Mapping
Dataset

N/A 0 0 SourceTo-
Target-
Mapping

5 1 2 6 3 1 2 6

Concept-mapping dict() 17 243 23 9 10 0 18 12 10 15
Property-mapping N/A 0 0 59 2 2 0 44 2 2 0

Total (for the Mapping File) 1 2052 87 330 358 30 65 253 274 473
Semantic Data
Extraction from
an RDF Dump file

N/A query() 17 40 GraphExtractor 17 5 0 30 1 Auto Generation

Semantic Data
Extraction through
a SPARQL endpoint

N/A
ExtractTriples-
FromEndpoint()

0 100 GraphExtractor 0 5 0 30 0 Auto Generation

Cleansing N/A Built-in Petl functions 15 80
Transformation-
OnLiteral

5 12 1 0 1 Auto Generation

Join N/A Built-in Petl functions 1 112
Join-
Transformation

1 15 1 0 1 Auto Generation

Level Member
Generation

N/A
createDataTripleToFile(),
createDataTripleTo-
TripleStore()

16 75
LevelMember-
Generator

16 6 6 0 1 Auto Generation

Observation
Generation

N/A
createDataTripleToFile(),
createDataTripleTo-
TripleStore()

1 75
Observation-
Generator

1 6 6 0 1 Auto Generation

Loading as
RDF Dump

N/A
insertTriplesIntoTDB(),
bulkLoadToTDB()

0 113 Loader 0 1 2 0 0 Auto Generation

Loading to
a triple store

N/A
insertTriplesIntoTDB(),
bulkLoadToTDB()

17 153 Loader 17 1 2 0 1 Auto Generation

Auto ETL
Generation

N/A N/A N/A N/A CreateETL 1 N/A N/A N/A 1 21 16 0

Total (for the Execution Layer Tasks) 1 2807 57 279 142 363 58 21 16 0
Total
(for the whole ETL Process)

29358 245 991 826 2298 224 656 632 2378

Table 5: Comparison among the productivity of SETL, SETLCONSTRUCT, and SETLAUTO for the
SETLSDW. (Reproduced from [17])

integrate semantic data sources. The overall integration process uses RDF
as the canonical model, and it is divided into the Definition and Execution
Layer. In the Definition Layer, developers create the metadata (target and
source TBoxes, and source-to-target mappings), while in the Execution Layer,
the data flows are generated. We propose a set of high-level ETL operations
for semantic data that can be used to create ETL flows in the Execution Layer.
As we characterize the transformations in the Definition Layer in terms of
source-to-target mappings at the schema level, we are able to propose an
automatic algorithm to generate ETL data flows in the Execution Layer.

Further, the developed prototype, SETLCONSTRUCT , facilitates users to
accomplish integration tasks by using GUIs. Therefore, no programming
knowledge is required. However, SETLCONSTRUCT only considers semantic
data as source data. As explained in our overall vision presented in Chapter
3, it should consider non-semantic data as well. Besides, an ontology showing
the connections among the ETL constructs of different layers would be ad-
visable. On top of that, an OLAP tool connecting automatically to SDWs and
enabling traditional OLAP is required to lower the entry barrier for OLAP
users, not proficient in SW formalisms, such as RDF and SPARQL. Indeed,
the current prototype presented in this chapter requires being able to trigger
SPARQL queries with OLAP-like semantics to perform OLAP to the SDW. In
Section 5, a semantic ETL and Business Intelligence tool, named SETLBI , is
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proposed and developed to address the limitations just discussed.

5 A Semantic BI Tool and Its Application

This section is a summary of Paper C [16].

5.1 Motivation and Problem Statement

The popularity of the SW and LD encourages organizations to organize and
publish data using the RDF model. This growth poses new requirements to
Business Intelligence (BI) tools to integrate those data into an MD DW and en-
able On-Line Analytical Processing (OLAP)-like analysis over RDF data [16].
Although [42] outlines a semi-automatic method to incorporate RDF data into
a traditional RDBMS-centric MD DW, the generated DW no longer maintains
the SW data principles. Therefore, native OLAP-style analysis over an RDF
dataset remains unaddressed. In [11, 28, 55], the authors have proposed ap-
proaches to enable OLAP analysis over RDF data. However, either they do
not allow users to create their own OLAP queries or require end-users to be
familiar with QL [10] or complex SPARQL queries.

Existing research focuses on either one or more parts of the aimed prob-
lem (i.e., semantic data integration and enabling OLAP analysis on the in-
tegrated data), but there is no single solution that supports all the steps
to integrate heterogeneous data semantically in a DW and enabling OLAP
queries on it. In this chapter, a GUI-based semantic BI tool named Seman-
tic ETL and Business Intelligence (SETLBI) is presented, which allows users
to define, map, process, integrate, and query data semantically. SETLBI ex-
tends SETLCONSTRUCT by 1) adding operations to process non-semantic data
sources in the ETL Layer, 2) adding an OLAP Layer that allows users to cre-
ate OLAP queries using a GUI, without requiring SPARQL knowledge, 3)
providing an ontology, which shows the compatibility among the constructs
of different layers, and 4) evaluating and demonstrating the system with a
new use case (Bangladesh population and housing census). The following
sections present the architecture of SETLBI , a use case description, demon-
stration, and an overall discussion.

5.2 Architecture of the System

Figure 10 shows that SETLBI is organized into three layers: the Definition
Layer, ETL Layer, and OLAP Layer. First two layers, described in Sections 3
and 4, are used to semantically integrate data from heterogeneous sources
and map to the Definition and Execution Layers presented in chapter 4. The
orange-colored constructs are the new ETL constructs introduced over Pa-
per B. The OLAP Layer enables the self-service analysis over the produced
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MD SDW. The connections among the ETL constructs (tasks/operations) of
inter- and intra-layers are shown, in Figure 10, by using an ontology, where a
class represents an ETL construct (a task/operation) of a layer and an arrow
represents the relationship between two constructs of layers. The following
paragraphs describe the layers in detail.

setl:Loader

setl:Start

      setl:TargetTBoxDefinition      setl:Source2TargetMapping setl:targetTBox

ETL Layer

Definition 
Layer

setl:targetTBox
setl:sourceTBox/
Setl:targetTBox

OLAP Layer setl:CubeExtractor
setl:OlapQueryGeneration
ByMDConstructSelection

setl:ResultGenerator setl:mdConstruct

setl:target

setl:Target
ABox

setl:olapQuery

setl:targetTBox

setl:NonSemantic
ToTBoxDeriver

setl:ABoxToTBox

TBox Derivation Operations

setl:LevelEntryGenerator

setl:ObservationGenerator

setl:InstanceGenerator

setl:UpdateLevel

MD Transformation Operations

setl:LevelEntryGenerator

setl:ObservationGenerator

setl:InstanceGenerator

setl:UpdateLevel

MD Transformation Operations

LEGEND

Operation Class

Layer

Triggering 
Operation Class

Property

Task

setl:Transformation
OnLiteral

setl:JoinTransformation

Transformation Operations

setl:Transformation
OnLiteral

setl:JoinTransformation

Transformation Operations

setl:sourceABox

setl:Transformation
OnLiteral

setl:JoinTransformation

Transformation Operations

setl:sourceABox

setl:RDFWrapper

setl:GraphExtractor

Extraction Operations

setl:DBExtractor

RDF Triples Extraction Operations

setl:source
ABox

setl:sourceABox

setl:datainCSV

setl:finalTarget
Mapping

setl:Intermmediate
TargetMapping

setl:source
ABox

Operation
 Group

setl:datainCSV

Fig. 10: The ontology shows the constructs of each layer and their connections and depicts
the overall workflow in each layer. Only operations having a direct incoming arrow from
setl:Start can be a part of an ETL flow. (Adopted from [16])

Fig. 11: The workflows for Source2Target Mapping(A) and the OLAP Query Generation (B)
operation. The rectangles, user icons and curved arrows represent automatic, user-required and
iterative tasks. (Reproduced from [16])

The Definition Layer is composed of two tasks: setl:TargetTBoxDefinit
ion and setl:SourceToTargetMapping. The first task supports designing
the TBox of an SDW with MD semantics, and users can define/edit new/ex-
isting data structures, cubes, cuboids, levels, level attributes, roll-up prop-
erties, measures using a GUI. Internally, the task translates the user’s input
into equivalent QB, QB4OLAP, and RDFS/OWL statements and produces
an RDF file. The second task supports creating mappings across the con-
structs of (intermediate) source and target by providing a GUI. The overall
workflow to create a source-to-target mapping is illustrated in Figure 11. At
first, a user selects the source and target TBoxes to be mapped, then create
a mapping dataset. Under a mapping dataset, the user can create one or
more concept-mappings, and each concept mapping contains one or more
property-mappings. Internally, the task interprets the user’s input with our
own OWL-based Source-to-Target Mapping (S2TMAP) vocabulary and pro-
duces a mapping file in RDF.
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The ETL Layer includes a set of ETL operations. Based on their function-
ality, we divide them into five groups: TBox Derivation Operations, Extraction
Operations, Transformation Operations, MD Transformation Operations, and Load
operations [16]. There are two operations in the TBox Derivation Operations
group: 1) setl:NonSemanticToTBoxDeriver: It allows to derive TBoxes from
non-semantic (CSV, XML, JSON and Database) sources. This ETL construct
is missing in Paper B and introduced here to support non-semantic sources.
2) setl:ABoxToTBoxDeriver: It derives TBox from an RDF file containing
only assertions. In the Extraction Operations group, setl:GraphExtractor ex-
tracts RDF triples from a semantic source based on a query. It is equivalent
to GraphExtraction operation in Paper B. To support non-semantic source,
this group introduces two additional ETL operation of the set of ETL con-
structs proposed in Paper B: setl:RDFWrapper and setl:DBExtractor. The
setl:RDFWrapper operation converts the data of a non-semantic (CSV, XML,
JSON, Database) into equivalent RDF triples. As setl:RDFWrapper needs
RML definitions, we give a GUI in the Definition Layer to define RML def-
initions14. setl:DBExtractor extracts data from a RDBMS Database source
based on a query and outputs in CSV Format. The Transformation Operations
group supports group functions (sum, avg, count) as well as string, numeric,
and date based transformation on RDF property-values according to the in-
termediate mappings using setl:TransformationOnLiteral and joins be-
tween two RDF sources using setl:JoinTransformation. In the MD Trans-
formation Operations group, setl:LevelMemberGenerator, setl:Observatio-
nGenerator, and setl:InstanceGenerator create level members, observa-
tions and instances respectively to generate the ABox of a SDW according to
the semantics encoded in the TBox. The setl:InstanceGenerator operation
is also an extension over Paper B. This operation is required to create the
instances of an OWL concept. Each operation in the MD Transformation Oper-
ations group supports both RDF and CSV input. setl:UpdateLevel updates
the target level members to reflect the changes in a source to the target. In the
Load operations group, setl:Loader loads RDF data into either a local RDF
file or Jena TDB triplestore. The GUI of the ETL Layer allows users to drag
and drop operations to create ETL flows.

Given either a local RDF file or a SPARQL endpoint containing an SDW,
the OLAP Layer allows users to create OLAP queries using a GUI. This layer
shows the cubes contained in the SDW. By selecting a cube, users can retrieve
the cube structure composed of dimensions, hierarchies, levels, measures and
aggregate functions. Then, users create and issue OLAP queries to explore
and aggregate measures at various level of details by selecting different cube
components. Figure 11 (B) illustrates how to create an OLAP query. Other
OLAP operations, such as slice and dice queries are generated by adding

14This version only allows R2RML
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conditions on the selected levels. Internally, the system translates the OLAP
query generated from the selections into an equivalent SPARQL query [20].
Therefore, no SPARQL or QL knowledge is necessary.
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Fig. 12: The ontology of the Bangladesh census 2011 dataset C01.

5.3 A Use Case Description

This section describes the source datasets and the target TBox for integrating
and understanding the encoded knowledge of those datasets. We consider
the population and housing Census 2011 datasets from Bangladesh Bureau
of Statistics (BBS). The datasets are available in http://203.112.218.65:

8008/Census.aspx?MenuKey=89. In these datasets, the entire population and
housing stock of Bangladesh are recorded based on characteristics such as
geographic, demographic, social and economic, household, and family sta-
tus. There are 15 datasets (CO1 to C015) given in tabular format. The ob-
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jective is to publish those census data in an OLAP-compliant LOD format
to enable decision making. From the datasets, we create 50 levels and 18
dimensions and a cube from each dataset. All cubes are independent, how-
ever they share some dimensions among them. Figure 12 represents the
schema of the dataset C01, where the population is counted based on ge-
ography, living position, and residence dimensions. In Figure 12, the con-
cept onto:PopulationC01 represents the factual concept of the dataset and
mdProperty:#ofPeople is the measure. The dataset contains three dimen-
sions (shown by a box with dotted line): mdStructure:GeographyDimension,
mdStructure:ResidenceDimension, and mdStructure:LivingPositionDime-

nsion. Each level of the dimensions is represented by a concept and the hi-
erarchies of the each dimensions are also shown.

5.4 Demonstration

This section demonstrates how an ETL developer uses SETLBI to create an
SDW for the use case. As the data are given in PDF format, the first task is to
convert them into CSV format before using the system. Then, (s)he performs
the following steps in order.

Fig. 13: The interface to define Target TBox. (Reproduced from [16])

The Definition Layer At first, the developer creates the target TBox using
the GUI shown in Figure 13. The rightmost panel is used to create TBox con-
structs (e.g., cubes, dimensions, levels, hierarchies, OWL classes, properties,
etc.). A pop-up window to create a cube is shown in panel 2. (S)he can edit
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any existing constructs using panel 3. Panel 4 shows the RDF triples gener-
ated internally from the user inputs. The next task is to derive the TBox from
a CSV file using setl:NonSemanticToTBoxDeriver. Once source and target
TBoxes are defined, then, (s)he needs to create a source-to-target mapping.
At first, (s)he has to create a map-dataset; then under the map-dataset, the
designer can create a concept-mapping using the GUI shown in Figure 14.
The leftmost panel shows the source TBox and the rightmost one shows the
target TBox. The middle panel is used to define the different constructs of
a concept-property mapping. Once the button +Map Property is clicked the
property-mapping panel will be appeared.

Fig. 14: The interface to define mappings. (Reproduced from [16])

The ETL Layer The next task is to create the ETL data flows. The GUI of
the ETL Layer is shown in Figure 15. The leftmost panel shows different ETL
operations that can be dragged and dropped to panel 2 to create ETL data
flows. After executing the flows, the status of the ETL flows will be shown in
panel 3. Potentially, the developer may decide to automatically generate the
ETL flows from the metadata created in the Definition Layer as explained in
Section 4.5.

The OLAP Layer Once the SDW is created, the next task is to issue the
OLAP queries using the GUI of the OLAP Layer, shown in Figure 16. Panel
1 shows the cube structure in terms of dimensions, hierarchies, levels and
measures with the associated aggregate functions. The developer can create
queries by clicking different levels of hierarchies and measures. (S)he can
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Fig. 15: The interface to create ETL flows. (Reproduced from [16])

Fig. 16: The interface to create and run OLAP queries. (Reproduced from [16])

filters the selection based on different conditions. The middle panel enables
it. The summary of the selections will be shown in panel 3. Then, (s)he can
run the query and get result of the query.

5.5 Prototype Specifications

The system is developed in Java 8. All GUIs are implemented in Standard
Widget Toolkit (SWT). Jena 3.4.0 is used to process, store, and query RDF
and as a triple store, Jena TDB is used. A comprehensive video explain-
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ing the functionalities of SETLBI is available at http://extbi.cs.aau.dk/

SETLBI/index.php and https://www.youtube.com/watch?v=9-a4MVHqZow&

feature=emb_logo. The source codes, examples, and developer manual are
available at https://github.com/bi-setl/SETL.

5.6 Discussion

This chapter presented an end-to-end semantic BI tool, SETLBI . SETLBI en-
riches the SETL framework described in Section 3 with the ETL constructs
described in Section 4. In addition, it introduces new operations to the set
of ETL operations described in Section 4.4 to enable non-semantic sources in
the integration process. On top of that, it enables native OLAP-like analysis
over an SDW. To show the relevance of SETLBI in real-world cases, we have
used it to create an MD SDW for the Bangladesh population and housing
census 2011 data. It has been shown how users can use the different layers
of SETLBI to accomplish their integration tasks. In summary, it fulfills all the
aspects of an end-to-end semantic ETL framework, as discussed in Section
1.3. SETLBI bridges the two lines of research discussed in Section 2: It facili-
tates (1) DW designers with little/no SW knowledge to semantically integrate
semantic and/or non-semantic data and analyze it in OLAP style, and (2) SW
users with basic MD background to define MD views over semantic data for
enabling OLAP-like analysis [16].

6 Summary of Contributions

The overall objective of the thesis was to propose and develop a semantic ETL
framework covering the nine aspects pointed out in Section 1.2. This thesis
fulfills the objective incrementally. It proposes: (1) a framework to integrate
semantic and non-semantic data into SDWs, (2) a set of basic high-level ETL
constructs for processing semantic data and an approach to automate the
execution flows, and (3) develops a GUI-based BI tool that allows integrat-
ing semantic and non-semantic data into an SDW and enables native OLAP-
queries on SDWs. The main body of the thesis is composed of four papers.
Paper A is published as an extension of Paper D; therefore, to present the
contributions of each paper coherently, Paper D is listed first. A summary of
the contributions of each paper is given below.

• Paper D [15] proposes SETL, a Python-based programmable semantic
ETL framework. The framework supports the inclusion of semantic
(RDF) data into DWs in addition to relational data. It allows users to
define an ontology for a DW. Note that this version of SETL does not
allow users to create a DW with multidimensional semantics. It pro-
vides a semantic transformation algorithm to generate semantic data
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from the source data according to the semantics encoded in the on-
tology. It also provides a method to connect internal DW data with
external knowledge bases. Hence, it creates a knowledge base com-
posed of an ontology and its instances where data are semantically
connected with other external/internal data. A comprehensive experi-
mental evaluation comparing SETL to a solution using traditional tools
on the use case of Danish Agricultural and Business datasets shows
that SETL provides better performance, programmer productivity, and
knowledge base quality [15].

• Paper A [39] significantly extends Paper D [15]. Here, we redefine
the architecture of SETL by 1) dividing it into three layers: the Defi-
nition Layer, ETL Layer, and Data Warehouse Layer, 2) adding a sub-
component QB4OLAP for defining a target TBox (schema) with mul-
tidimensional (MD) semantics, 3) adding a semantic layer on top of
non-semantic sources, and 4) adding a provenance graph to capture
provenance information of IRIs. The design and implementation of the
framework are presented separately. The design section includes the
formal description of the components of the architecture. The version
of the semantic transformation algorithm in Paper D is updated to re-
flect the MD semantics encoded in the target TBox at the data level. The
developed Python-based programmable framework helps developers
by providing a higher-level abstraction that lowers the entry barriers.
Thus, one of the contributions is to automatically map the high-level
abstraction to executable code [39]. For evaluating SETL, an SDW is
created with MD semantics by integrating the Danish Business dataset
and an EU subsidy dataset using SETL and compare the process with
other tools/solutions. The evaluation shows that SETL represents a
considerable improvement over the competing solutions/tools in terms
of programmer productivity, knowledge base quality, and performance.
SETL sets the foundations for the rest of the papers.

• Paper B [17] outlines an integration process, focusing on the usage
of RDF as the canonical model, to integrate data from semantic data
sources into an SDW. The overall integration process is divided into
two layers: the Definition Layer and the Execution Layer. This paper
proposes a set of high-level ETL constructs (tasks/operations) for each
layer to process semantic data. The Definition Layer includes two tasks
and one ABox-to-TBox derivation operation. The two tasks allow ETL
designers to define target schemas and mappings between semantic
data sources and the target schemas, whereas the ABox-to-TBox opera-
tion derives a TBox from a given ABox. A mapping vocabulary called
S2TMAP is proposed here to enable semantic annotations of the map-
pings. In the Execution Layer, a set of high-level ETL operations are
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proposed to process semantic data sources. In addition to the cleansing,
join, group, and data type based transformations for semantic data, op-
erations are proposed to create multidimensional semantics at the data
level and to update the SDW to reflect the changes of source data. Here,
we show how different types of updates [35] used in traditional DW can
be applied to an SDW. Different from SETL and other ETL tools, this
layer proposes a new paradigm: the ETL flow transformations are char-
acterized at the Definition Layer instead of independently within each
ETL operation (in the Execution Layer). Thus, we are able to propose
an algorithm to automatically generate ETL data flows in the Execu-
tion Layer. Finally, a GUI-based prototype, named SETLCONSTRUCT is
developed by implementing all the ETL constructs proposed here. We
provide an extensive evaluation to compare the productivity, quality,
and performance of the proposed ETL operations with the previous
framework SETL [39]. The evaluation shows that SETLCONSTRUCT im-
proves considerably over SETL in terms of productivity, development
time, and performance. The evaluation shows that 1) SETLCONSTRUCT
uses 92% fewer NOTC than SETL, and SETLAUTO (the extension of
SETLCONSTRUCT that enables automatic ETL execution flow generation)
further reduces NOUC by another 25%; 2) using SETLCONSTRUCT, the
development time is almost cut in half compared to SETL, and is cut
by another 27% using SETLAUTO; 3) SETLCONSTRUCT is scalable and has
similar performance compared to SETL [17].

• Paper C [16] presents the SETLBI (Semantic Extract-Transform-Load
and Business Intelligence) integration platform that (1) covers all phases
of integration: target definition, source-to-target mappings, semantic
and non-semantic source extraction, data transformation, target popu-
lation, and update and (2) enables OLAP-like analyses over an SDW.
SETLBI is organized into three layers: the Definition Layer, ETL Layer,
and OLAP Layer. Each layer is composed of a set of tasks/operations.
The intra- and inter-layer connections among the constructs of layers
are presented using an ontology. In addition to the ETL operations
proposed in the Execution Layer of Paper B, the ETL Layer includes
operations to process non-semantic data sources. The OLAP Layer pro-
vides a GUI to enable self-service OLAP analysis over an SDW. We use
the Bangladesh 2011 population census data as a use case to demon-
strate SETLBI . Using SETLBI , we generate an SDW with census data
that can be analyzed using OLAP queries.

The problem that motivated the thesis was twofold: 1) the integration of
semantic and non-semantic data into an MD DW semantically, and 2) en-
abling OLAP analysis over SW data. The solutions to this problem will fuse
the benefits of BI and SW technologies; thus, both BI and SW communi-
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7. Future Work Directions

ties will benefit. We set a hypothesis for the thesis “In the context of highly
heterogeneous data integration processes, considering semantics as first-class citizen
facilitates the integration process by providing automation and lower entry barri-
ers for non-technical users." In this direction, as an output, Paper A provides
a Python-based programmable framework SETL that provides a number of
powerful modules, classes, and methods. SETL allows ETL developers to
integrate semantic and non-semantic data programmatically. Paper B pro-
vides a GUI-based prototype SETLCONSTRUCT , which allows non-technical
users to integrate semantic data in an SDW where the RDF model is used
as the canonical model to make semantics as first-class citizen. Importantly,
SETLCONSTRUCT allows automatic ETL data flows generation. Paper C pro-
vides the final contribution of this thesis: the BI tool SETLBI . SETLBI facili-
tates (1) DW designers with little/no SW knowledge to semantically integrate
semantic and/or non-semantic data and analyze it in OLAP style, and (2) SW
users with basic MD background to define MD views over semantic data for
enabling OLAP-like analysis [16]. Additionally, SW users can enrich the gen-
erated SDW’s schema with RDFS/OWL constructs. Using the developed tool
we generated an MD SDW using real-world data. Therefore, we empirically
prove the hypothesis of this thesis by creating a system that fulfills all identi-
fied aspects of semantic ETL.

7 Future Work Directions

Due to the popularity and high acceptance rate of SW and LD, nowadays,
technologies are shifting from a database centric concept to a knowledge base
centric concept, where semantic data play an important role. This project
will be a guideline for accelerating this shifting process. Taking the proposed
framework SETL as a foundation, researchers can aim to develop further in-
teractive and automatic integration frameworks for the Big Data and Data
Lake environments. This project bridges the traditional BI technologies and
SW technologies, which in turn will open the door for further research op-
portunities like developing machine-understandable ETL and warehousing
techniques. In the following, we give specific pointers to future work.

SETL uses a demand-driven approach to design an (MD) SDW, i.e., based
on user requirements, a DW designer designs the TBox of an SDW. The
framework can be extended to follow a source-driven approach where dif-
ferent source schemas are aligned and merged to produce a single source of
truth (the target TBox). Different ontology matching and merging techniques
can be utilized to (semi)automatically create the target TBox.

SETLCONSTRUCT allows users to create source-to-target mappings manu-
ally. However, an algorithm can be developed to create the mappings (semi-)
automatically. Another extension of this work is to define the formal se-
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mantics of the operations using an ontology and mathematically prove the
correctness and completeness of the proposed ETL constructs.

To enable the utmost benefit of Exploratory OLAP, the system should
explore SW search engines, data hubs, and knowledge bases and dynamically
suggest relevant data sources to enrich MD constructs and evolve the target
schema.

We use the Jena TDB triplestore to load an SDW. Other triple stores
and/or graph databases can be explored to get better loading and query
performance. Also, exploring the physical optimization of named graphs can
be an interesting extension.

The source-to-target mappings act as a mediator to generate data accord-
ing to the semantics encoded in the target. Therefore, the next extension of
this work is to extend the framework from purely physical to also virtual
data integration where instead of materializing all source data in the DW,
ETL processes will run based on users’ demands. When considering virtual
data integration, it is important to develop query optimization techniques for
OLAP queries on virtual semantic DWs, similar to the ones developed for
virtual integration of data cubes and XML data [45, 46, 59].

The next task also includes publishing the Bangladesh census and eco-
nomic data in OLAP-complaint LOD format by linking it with other knowl-
edge base resources to show the advantages of SDW over the existing solu-
tions.

Another interesting work will be to apply this layer-based integration pro-
cess in the Big Data and Data Lake environment. The metadata produced in
the Definition Layer can be used as the basis to develop advanced catalog
features for Data Lakes.
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Abstract

In order to create better decisions for business analytics, organizations increasingly
use external structured, semi-structured, and unstructured data in addition to the
(mostly structured) internal data. Current Extract-Transform-Load (ETL) tools are
not suitable for this “open world scenario” because they do not consider semantic
issues in the integration processing. Current ETL tools neither support processing
semantic data nor create a semantic Data Warehouse (DW), a repository of semanti-
cally integrated data. This paper describes our programmable Semantic ETL (SETL)
framework. SETL builds on Semantic Web (SW) standards and tools and supports
developers by offering a number of powerful modules, classes, and methods for (di-
mensional and semantic) DW constructs and tasks. Thus it supports semantic data
sources in addition to traditional data sources, semantic integration, and creating
or publishing a semantic (multidimensional) DW in terms of a knowledge base. A
comprehensive experimental evaluation comparing SETL to a solution made with
traditional tools (requiring much more hand-coding) on a concrete use case, shows
that SETL provides better programmer productivity, knowledge base quality, and
performance.
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1. Introduction

1 Introduction

Business Intelligence (BI) tools support intelligent business decisions by an-
alyzing available organizational data. Data Warehouses (DWs) are used to
store large data volumes from different operational databases in enterprises,
and On-Line Analytical Processing (OLAP) queries are applied on DWs to
answer business analytical questions. Extract-Transform-Load (ETL) is the
backbone process of a DW, and the ETL design and deployment takes up
to 80% of the time in DW projects [49]. To support data analyses or OLAP
queries on it, the underlying schema of a DW is represented using the Mul-
tidimensional (MD) model. In the MD model, data are categorized as either
facts with associated numerical measures or dimensions that characterize the
facts [28]. This model represents any interesting observation of the domain
(i.e., measures) in its context (i.e., dimensions) [1].

Nowadays, the Web is also an important source of information. Moreover,
Semantic Web (SW) technologies and the Linked Data (LD) principles inspire
organizations to publish and share their data using the Resource Description
Framework (RDF) [61]. The role of data semantics in such sources is de-
fined by different facets: using Internationalized Resource Identifiers (IRIs)
to uniquely identify resources globally, providing common terminology, se-
mantically linking published information, and providing further knowledge
to allow reasoning [9]. The number of semantic data sources is ever increas-
ing over time, and the growth rate of the data in the SW is faster than the
computational power of computers [32]. As a result, besides analyzing inter-
nal data available in a DW, it is essential to incorporate external data from
various (semantic) sources into the DW to derive the needed business knowl-
edge. For example, companies want to include product reviews, customer
complains, competitors’ status from the Web in their analytical process be-
sides the internal sales and customer data [1].

The inclusion of external data, especially RDF data, however, raises sev-
eral challenges for integration and transformation in comparison to the tradi-
tional ETL process. One of the drawbacks of using RDF data in the corporate
analysis process is that data sometimes do not have any schema (e.g., only
instances are delivered with implicit schema) [12], have a poor schema where
not all the schema constructs are explicitly defined (e.g., only taxonomies are
depicted), or complex schema (e.g., other more expressive ontological lan-
guages, such as OWL, are used). Unlike the relational data model, the RDF
data model does not impose a common schema for all instances. In contrast,
it provides flexible means to tackle different schema information as well as
its evolution. This flexible nature of the RDF data model makes it suitable for
representing and exchanging data in the SW. However, different sources may
describe the same data in different ways, introducing semantic heterogeneity
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problems. Therefore, to build a successful DW system with heterogeneous
data, the integration process should be able to deal with data semantics as
a first-class citizen. Traditional ETL tools are unable to process such exter-
nal data because they (1) do not support semantic data sources, i.e., they are
not prepared to deal with semantic heterogeneity, (2) are entirely schema-
dependent, and (3) do not focus on meaningful semantic relationships to
integrate data from disparate sources [7]. Thus, a DW with both internal
and external (semantic) data requires more powerful tools to define, enrich,
integrate, and transform data semantically.

Until now, the DW community has timidly used SW technologies for con-
sidering the semantic issues in a DW [64], e.g., for data integration or de-
scribing the DW. SW technology aims at converting the ‘Web of Documents’
to the ‘Web of Data’ where data are presented and exchanged in a machine-
readable and understandable format. In the SW, RDF is used for presenting
and exchanging data in a machine-readable format. To express richer con-
straints on data, formal languages such as RDF Schema (RDFS) [62] and Web
Ontology Language (OWL) [37] can be used in combination with the RDF
data model to define Knowledge Bases (KBs). Although [1, 7, 50] have used
SW technologies to design conceptual frameworks of different phases of ETL
processes, no one has so far offered an integrated and implemented frame-
work to build a Semantic DW (SDW) that covers all of the phases of updating
of sources, extraction, validation, and integration in one integrated platform.

This paper presents Semantic ETL (SETL), a unified framework for pro-
cessing and integrating data semantically by bridging SW and DW technolo-
gies. SETL uses and extends SW tools and standards to overcome the limita-
tions of the traditional ETL tools. Using SETL, the BI community can benefit
by including semantic annotated data in their analytical processes and the
SW community can benefit by having an MD view over semantic data for en-
abling OLAP-like analysis. Hence, it supports publishing better quality RDF
datasets as well. The novel contributions of this paper are:

- We propose SETL, a unified framework for semantic ETL. The main
tasks can be conducted within the framework are given below:

(a) In addition to traditional relational data, SETL allows including se-
mantically annotated data (RDF data) in the analytical process. To
process a Non Semantic Data Source, it builds a semantic layer
on top of the source.

(b) To integrate data from disparate data sources, the user can define
the intensional knowledge of SDW in the form of a terminology
(TBox) [6] using the ontological constructs. In addition, it pro-
vides functionality to annotate the TBox with MD constructs, such
as, dimensions, facts, levels, etc. Here, we use the QB4OLAP vo-
cabulary [21] to define the MD constructs.
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(c) SETL provides functionality to produce semantic data (in RDF
triples format) from the source data according to the (MD) seman-
tics encoded in the TBox of the SDW.

(d) SETL creates a SDW, a KB, composed of a TBox annotated with-
/without MD constructs and an ABox (the instances of the TBox).
It also provides functionality to semantically connect internal data
with other internal/external data.

- We develop a high-level Python-based programmable framework that
provides a number of powerful modules, classes, and methods for per-
forming the tasks mentioned above. It facilitate developers by provid-
ing a higher abstraction level that lowers the entry barriers. Thus, one
of the contributions is to automatically map the high-level abstraction
to executable code.

- Using SETL, we perform a comprehensive experimental evaluation by
producing an MD SDW that integrates a Semantic and Non Semantic

Data Sources. The evaluation shows that SETL improves considerably
over the competing solutions/tools in terms of programmer productiv-
ity, KB quality, and performance.

This paper very significantly extends an earlier workshop paper [17] by
(1) adding a sub-component QB4OLAP in the architecture of SETL that allows
to define a target TBox with MD constructs, (2) adding a semantic layer on
top of a Non Semantic Data Source, (3) extending the use case for creating
an MD SDW which integrates a Semantic Data Source and a Non Semantic

Data Source, (4) updating the semantic transformation algorithm to produce
RDF triples according to MD constructs, (5) introducing a provenance graph
for tracking how the IRIs used in the SDW are generated, and (6) comparing
the experiment with other ETL tools/solutions.

The remainder of the paper is organized as follows. We discuss the termi-
nologies and the notations used throughout the paper in Section 2. Section 2
details the source datasets and the target TBoxes of the SDW that we use
as the running example. Section 3 gives an overview of SETL and its com-
ponents. Section 5 describes the Definition Layer of SETL framework. The
ETL Layer of the framework is described in Section 6. Section 7 describes
the implementation of the framework in details. We evaluate SETL in terms
of productivity, quality, and performance in Section 4. Section 5 describes
related work. Finally, we conclude and give pointers to future work in Sec-
tion 6.
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2 Preliminary Definitions

In this section, we give the definitions of the notions and terminologies used
throughout the paper.

RDF Graph An RDF graph can be represented as a set of statements, called
RDF triples. The three elements of a triple are subject, predicate, and object,
respectively, and a triple represents a relationship between its subject and
object by its predicate. Let I, B, and L be the sets of IRIs, blank nodes,
and literals, respectively, where we denote the set of RDF terms (I ∪ B ∪ L)
as T and (I ∩ B ∩ L) = ∅. An IRI is an unique identifier that can be used to
identify a resource globally (Web-scope). Blank nodes serve as locally-scoped
identifier for resources that are unknown to the outside world. Literal are a
set of lexical values enclosed with inverted commas. An RDF triple is defined
as a 3-tuple (s, p, o), where s ∈ (I ∪ B), p ∈ I, and o ∈ (I ∪ B ∪ L). An RDF
graph G is a set of RDF triples, where G ⊆ (I ∪ B)× I × T [24].

Knowledge Base A Knowledge Base (KB) is typically composed of two
Components: TBox and ABox. The TBox introduces the domain terminol-
ogy. The ABox is the set of assertions representing individuals or instances.
The ABox assertions must follow the TBox [6]. In this paper, we assume the
components of a KB are described by a set of RDF triples, i.e., a KB is an RDF
graph without distinguishing classes and instances.

The TBox is defined as a 3-tuple:

TBox = (C, P, AO)

where C, P, and AO are the sets of concepts, properties, and terminological
axioms, respectively. A concept provides a general description of the fea-
tures for similar types of resources. We use the terms “concept” and “class”
interchangeably. Similar to other ontological formalisms, in this paper, we
distinguish between object and datatype properties, depending on the RDF
element used as object in the RDF triple. An object property relates concept
instances, represented as IRIs, while a datatype property is used to associate
instances to literals. AO describes a domain’s concepts, properties, and the
relationships among them. RDF-schema (RDFs) and the Web Ontology Lan-
guage (OWL) provide basic constructs to define the TBox of a KB.

3 A Use case

This section describes the source datasets, and the TBoxes for integrating
and understanding the knowledge of those datasets, used as the running
example in this paper. We consider three Datasets: a Danish Agricultural
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dataset (DAD) [22], a Danish Business dataset (DBD) [14], and a European
Union (EU) Farm Subsidy (Subsidy) dataset and integrate the datasets in
two steps. First, we integrate the DAD with DBD to (re-)produce a SDW
(called SETLKB) from the earlier paper [4]. Second, by integrating the
Subsidy dataset and the produced SETLKB (which is considered as an ex-
ternal Semantic Data Source), we build the final MD SDW. In our context,
the integration of different sources is achieved in an iterative and incremental
manner. As proposed in [2], each iteration integrates a new source with the
results of the previous integration (a single existing source table in the first
iteration).

We build the SDW instead of a traditional DW because we want to pub-
lish the resulting DW on the Web in a format that other sources can easily
integrate and make use of. SDW follows Linked Open Data (LOD) principles
and provides IRIs that other people and sources can dereference and there-
fore receive information from them without having to issue an analytical
query. Besides, it provides links to other Web accessible datasets. There-
fore, in principle, we could even issue queries involving remote data at other
sources, which is something that a traditional DW cannot handle. Thus, our
approach enables analyzing situational data (from external datasets) to per-
sonalize the user analysis, as discussed in [1, 2].

The DAD consists of three smaller Datasets: Field, Organic Field, and Field
Block. All the datasets are available in Shape [48] format. The Field dataset
has 9 attributes and contains all registered fields in Denmark. This dataset
overall contains information about 641,081 fields. The Organic Field dataset
has 12 attributes and contains information about 52,060 organic fields. The
Field Block dataset has 12 attributes for 314,648 field blocks [4].

The DBD is provided in CSV format. The dataset consists of two sub
Datasets: Company and Participant. The Company dataset consists of 59 at-
tributes and contains information about 603,667 companies and 659,639 pro-
duction units. The Participant dataset describes the relations that exist be-
tween a participant and a legal unit [4]. Figure A.1 shows how the datasets
are connected to each other.
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Fig. A.1: The schemas of the DAD and DBD datasets. Field, Field Block and Organic Field are
spatially connected [4].

Fig. A.2: The conceptual schema of the Subsidy dataset. For simplicity, we do not show all
columns.

Every year the EU provides subsidies to the farms of its member countries.
We collect EU Farm subsidies for Denmark from http://data.farmsubsidy.

org/index.html?prefix=Raw/2014/. The dataset contains two MS Access
database Tables: Recipient and Subsidy. The Recipient table contains the infor-
mation of 342,786 recipients who receive the subsidies and the Subsidy table
contains the amount of subsidy given to the recipients in different years. In
total, the Subsidy table contains 4,392,390 distinct records. The conceptual
schema of the Subsidy dataset is shown in Figure A.2.

To integrate the DAD and DBD datasets, we need to define a TBox of the
SDW. The TBox of the SDW is illustrated in Figure A.3. This is an updated
version of the TBox (ontology) described in [4]. We start the description
from the bus:Ownership concept. This concept contains information about
the owners of companies, the type of the ownership, and the start date of
the company ownership. This concept is related to the bus:Owner concept
through the bus:isOwnedBy property. The bus:Owner includes the details
of the owners. The bus:Ownership has a one-to-many relationship with the
bus:Company concept and they are related to each other through the prop-
erty bus:hasCompany. The bus:Company concept is related to the concepts
bus:BusinessFormat and bus:ProductionUnit. The concepts bus:Company

and bus:ProductionUnit are also related to the bus:Activity concept throu-
gh one main activity and/or through one to three secondary activities. Each
company and each production unit have a postal address and an official
address. Therefore, both concepts are related with the bus:Address con-
cept. Each address has an address feature and it is contained within a par-
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Fig. A.3: The TBox for the Danish Agricultural dataset and Danish Business dataset. The arrows
show the cardinality of the relationship. Because of the large number of concept data type
properties, they are not included in the figure.

ticular municipality. The bus:Company concept is also related to the con-
cept agri:OrganicField through the relation bus:owns as each company
may contain one or more organic fields. Through this relation, the busi-
ness and agricultural datasets are connected. The agri:Field concept de-
fines the structure for all the registered agricultural fields of Denmark. Thus,
agri:OrganicField is a subclass of agri:Field. The agri:Field is also
equivalent to the UN definition of a European field. A field produces a
crop, thus, agri:Field is connected to agri:Crop. A field is contained
within a field block. Each field block has an application. The concepts
bus:AddressFeature, bus:Municipality, agri:Field, agri:FieldBlock are
defined as subclasses of the GeoNames:Feature concept in the GeoNames on-
tology. According to the semantics encoded in the TBox, we produce a SDW
named SETLKB.

We create an MD SDW by integrating the produced SETLKB and the
Subsidy dataset. The Recipient table in the Subsidy dataset contains the in-
formation of recipient id, name, address, and etc. From the SETLKB, we
can extract information of the owner of a company who may receive the
EU farm subsidy. The TBox of the SDW is shown in Figure A.4, where the
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Fig. A.4: The TBox of our example SDW. Because of the large number, not all data properties of
the dimensions/levels are shown.

concept sdw:Subsidy represents the factual concept1 of the MD SDW and
sdw:amounteuro is the measure. The SDW has two Dimensions: sdw:Benefi-
ciary and sdw:Time. The dimensions are shown by a box with dotted line
in Figure A.4. Here, each level of the dimensions is represented by a concept
and the hierarchies of the dimensions, i.e., how the levels of the dimensions
are connected to each other through object properties, are also shown.

4 SETL Framework Overview

In this section, we present the overview of our Semantic ETL framework
(SETL in short). SETL follows a demand-driven approach to design a (MD)
SDW. The first step of this approach is to identify and analyze the informa-

1A factual concept is the concept that provides a general description of the features for the
facts of the DW.
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tion requirements of business users and decision makers. Then, based on the
gathered requirements, the next two steps of the DW are to build the DW
schema and to build the ETL [23]. As the data in a SDW should be seman-
tically connected, we assume the SDW to be a KB and it allows to produce
an MD schema for the SDW to benefit from OLAP. The semantic ETL pro-
cess populates the SDW from the data sources according to the semantics
captured in the schema.

Our discussion focuses on SETL’s architecture and its main components
that support the different steps of creating a SDW. Requirement engineer-
ing (RE) is the process of identifying the needs of involved stakeholders and
modeling and documenting those requirements in a form that is comprehen-
sible, analyzable and communicable [34]. RE in the DW is itself a research
topic and it is beyond the scope of this paper. We direct readers to [23, 34]
for RE. The main steps that SETL supports are: defining a TBox for the SDW
based on the domain of interest, extracting data from multiple heterogeneous
data sources, transforming the source data into RDF triples according to the
target TBox, linking the data internally and externally, and loading the data
into a triple store, and/or publishing the data on the Web as Linked Data
(LD).

Figure A.5 illustrates how the components of SETL framework are con-
nected to each other. We divide the framework into three Layers: Defini-
tion Layer, ETL Layer, and Data Warehouse Layer. The red-colored dashed
lines in Figure A.5 separate the layers. In the Definition Layer, the SDW
schema, sources, and the mappings among the sources and the target are de-
fined. The SDW TBox Definition component is used to define a TBox describ-
ing the relevant data and the SDW schema based on the requirements. The
sub-component QB4OLAP is used to define the MD semantics of the SDW.
Using the Define Mapping component, the user can define the mappings be-
tween a source TBox and the target TBox. To map between a Non Semantic

Data Source and the target TBox, the TBox Extraction component generates
a TBox representing the Non Semantic Data Source. In the ETL Layer, an
ETL process to populate the SDW from sources are designed. The Extraction
component extracts data from multiple sources, the Traditional Transformation
component cleanses and formats (e.g., unique value generation, null value
handling, noisy data filtering etc.) the extracted data and stores them in a
Staging Area. The Staging Area is a storage used to keep the intermedi-
ate results of the ETL sub-processes. Then, the Semantic Transformation con-
verts the data into RDF triples according to the target TBox. As a sub-task
Semantic Transformation stores the meta information of concepts, properties,
instances, and IRIs used in the SDW into the Provenance Graph. The Exter-
nal Linking component links the resources in the created RDF dataset to other
external resources. The SaveToFile component writes the created RDF dataset
into a file on disk. Finally, the Load component can either directly load the
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Fig. A.5: SETL architecture.
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RDF triples created by the Semantic Transformation component or load from
the RDF dump file into the triple store, which can directly be queried
by the user. Extraction-Transformation-Load is an iterative block repeated
for each ETL flow (shown as a curved arrow in Figure A.5). The Data Ware-
house Layer concerns where the transformed semantic data should be stored.
SPARQL queries can be used to analyze the stored data. The SDW defined
in MD fashion can also be integrated with an OLAP tools to perform OLAP
queries. Here, we focus on building an ETL process. The following sections
describe the Definition Layer and ETL Layer along with their components in
more details.

5 Definition Layer

In this section, we describe the Definition Layer of SETL. This layer integrates
different components required to define the schema of a SDW, to define the
different sources that feed data in the SDW, and to define the mappings be-
tween the sources and the target. The following sections describe the different
components of the Definition Layer.

5.1 SDW TBox Definition

The data in a SDW are semantically connected with other internal and/or
external data. Therefore, capturing the semantics of the data at the concep-
tual level is indispensable. SETL uses ontological constructs to design a SDW
(in our context the SDW TBox) because of the following reasons. First, on-
tologies allow for a semantic integration of disparate data sources as we can
explicitly define how two concepts of an ontology are structurally related and
how they are associated with different properties. Second, given the cubes
share dimensions, it facilitates drill-across operations [3] by basic graph op-
erations during the integration of cubes. Third, it is machine-readable and
allows us to automate the ETL modelling tasks. Fourth, compared to other
representations, it is easier to evolve the DW. Fifth, it allows to preserve the
semantics of the Semantic Data Sources.

As mentioned in Section 2, some standard languages, such as RDFS or
OWL can be used to describe a TBox. They both provide basic constructs to
define the formal semantics of the TBox. OWL uses owl:Class and rdfs:Prop

erty to define concepts and properties of the TBox, uses rdfs:subClassOf

and rdfs:subPropertyOf to define hierarchical relationships among concepts
and among properties, respectively, and uses rdfs:domain and rdfs:range

to associate properties with concepts.
On-Line Analytical Processing (OLAP) is a technology to analyze the data

available in a DW to support decision making [59]. As OLAP is on-line, it
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should provide answers quickly. To enable OLAP queries, the DW is rep-
resented using the MD model. The central attraction of the MD model of a
business is its simplicity and the easy and intuitive way of making analytical
queries [29]. In the MD model, data are viewed in an n-dimensional space,
usually known as a data cube, composed of facts (the cells of the cube) and
dimensions (the axes of the cube). A fact is the interesting thing or process
to be analyzed (for example, analysis of subsidy given by the EU) and the
attributes of the fact are called measures (e.g., amount of subsidy), usually
represented as numeric values. A dimensions is organized into hierarchies,
composed of a number of levels, which permit users to explore and aggre-
gate measures at various levels of detail. For example, the Address hierarchy
(recipient→ Municipality→ Region→ Country) of the Beneficiary dimension
allows to aggregate the subsidy amount at various levels of detail. Therefore,
to enable OLAP, we support the MD representation of the SDW.

Although the version of the framework described in the workshop pa-
per [17] allows to define a TBox using OWL, it does not support to define MD
constructs. We extend this version by adding the QB4OLAP sub-component
to support MD constructs. To describe the MD semantics at the TBox level,
we use the QB4OLAP vocabulary [20]. QB4OLAP is used to annotate the
TBox with MD constructs and is based on the RDF Data Cube (QB) which
is the W3C standard to publish MD data on the Web [15]. The QB is mostly
used for analyzing statistical data and does not adequately support OLAP
MD constructs. Therefore, we direct to QB4OLAP. Figure A.6 depicts the
QB4OLAP vocabulary [20]. The terms prefixed with “qb:” are from the orig-
inal QB vocabulary, and QB4OLAP terms are prefixed with “qb4o:” and dis-
played with gray background. Capitalized terms represent RDF classes, and
non-capitalized terms represent RDF properties. Capitalized terms in italics
represent classes with no instances. An arrow with black triangle head from
class A to class B, labeled pro means that pro is an RDF property with domain
A and range B. White triangles represent sub-classes or sub-properties.

In QB4OLAP, the concept qb:DataStructureDefinition is used to de-
fine the structure of a cube in terms of dimensions, measures, and attributes.
To define dimensions, levels, level-attributes and hierarchies, the concepts
qb4o:DimensionProperty, qb4o:LevelProperty, qb4o:LevelAttribute, and
qb4o:Hierarchy are used, respectively. The association between a level-
attribute and a level is defined by qb4o:hasAttribute property. The hier-
archies are connected with dimensions via the property qb4o:hasHierarchy.
Hierarchies are composed of pairs of levels, which are defined by the con-
cept qb4o:HierarchyStep. The reason of defining the hierarchy as a col-
lection of pairs is to establish a rollup relationship between the levels of a
pair. A rollup relation is defined by qb4o:RollupProperty and the cardinal-
ity of the rollup relation is stated using the qb4o:pcCardinality. Each pair
of levels is connected to a rollup relation via qb4o:rollup. The role of the
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qb:DataSet

qb:Observation

qb:Slice

qb:SliceKey

qb:AttributeProperty

qb:MeasureProperty

qb:CodedProperty

skos:ConceptScheme

sdmx:Collection

skos:Concept

qb:codeList

qb:sliceKeyqb:structure

qb:dataSet qb:observation

qb:sliceStructureqb:slice

qb:componentProperty

qb:concept

qb:ComponentProperty

qb:componentProperty

qb:subSlice

qb4o:LevelMember

qb4o:AggregateFunction

qb4o:memberOf

skos:broader

qb:HierarchicalCodeList

<<union>>

qb:DimensionProperty

qb4o:hasLevel

qb4o:hasHierarchy
qb4o:inDimension

qb:component

qb4o:Max

qb4o:Avg

qb4o:Count

qb4o:Min

qb4o:Sum

qb4o:Cardinality

qb4o:OneToOne

qb4o:OneToMany

qb4o:ManyToOne

qb:ComponentSpecification

qb:componentRequired:boolean
qb:componentAttachment:rdfs:Class

qb:order: xsd:int

qb4o:pcCardinality

qb4o:HierarchyStep

qb4o:ManyToMany

qb4o:childLevel

qb4o:parentLevel

qb:dimension

qb:attribute

qb:measure

qb4o:level

qb4o:cardinality

qb4o:aggregateFunction

qb4o:hasAttribute

qb4o:isCuboidOf

qb4o:Hierarchy

qb4o:inHierarchy
qb4o:LevelProperty

qb4o:LevelAttribute

qb4o:inLevel

qb:DataStructureDefinition

Fig. A.6: QB4OLAP vocabulary.

levels of a pair is distinguished using the property qb4o:parentLevel and
qb4o:childLevel. Pairs are connected with hierarchies through the property
qb4o:inHierarchy [20]. Therefore, the set of concepts C and the set of prop-
erties P in the TBox contains Cm ⊂ C and Pm ⊂ P created from the QB4OLAP
constructs, where
Cm = {qb:DataStructureDefinition, qb4o:DimensionProperty, ..}
and Pm = {qb4o:hasAttribute, qb4o:hasHierarchy, qb4o:inHierarchy, ..}.

Figure A.7a shows a part of the QB4OLAP cube structure for our use case.
A cube may have several dimensions and measures. The cube (sdw:cube)
has a set of components (blank nodes), which represent different measures,
dimensions, attributes, levels, and so on. A measure has a property to
store numerical values in the dataset (e.g., sdw:amount) and an aggrega-
tion function (e.g., qb4o:sum). A measure can be analyzed according to
different dimensions, e.g., sdw:Beneficiary, sdw:Time. Figure A.7b illus-
trates a segment of sdw:Benificiary dimension. It has a hierarchy named
sdw:BusinessHierarchy, which is composed of two hierarchy steps, namely
_:h1 and _:h2. Each hierarchy-step maintains the roles between the levels
it contains, e.g., _:h1 contains two levels, namely, sdw:BusinessType, and
sdw:Company, and the parent and the child of _:h1 are sdw:BusinessType,
and sdw:Company, respectively. The cardinality of the step is defined by
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(a) A fragment of the cube structure. (b) Beneficiary dimension definition.

Fig. A.7: Description of a part of the cube structure and a dimension of our running example
using QB4OLAP.

qb4o:pcCardinality.
SETL allows users to define a TBox manually. It allows to define var-

ious ontological constructs, such as, concepts, properties, and blank nodes
individually as well as to capture how they relate to each other. The user
first defines concepts and properties individually and then explicitly con-
nects particular concepts to a set of properties. The MD constructs, such
as, dimensions, levels, factual concepts, hierarchies, cube structures, cubes
are represented by annotating the concepts of the TBox using the QB4OLAP
vocabulary. In order to denote a particular MD construct, the concept is an-
notated as a member of corresponding QB4OLAP class. For example, the
triples (sdw:Beneficiary rdf:type owl:Class, qb4o:DimensionProperty.)
represent that the concept sdw:Beneficiary is annotated as a dimension of
the target TBox. At first, the user defines the concepts for dimensions, levels,
level attributes, measures, and hierarchies, and then based on the defined
concepts, the structure of the data cube, dataset and factual concept are de-
fined. Internally, SETL indexes the set of properties connected to a particular
concept. As user can also define a TBox using other ontology editors, such
as Protege, SETL also allows to parse a given TBox.

5.2 Data Source

A data source is the source of data that can be used to populate a DW. We
define a data source as a 2-tuple:

D = (ds, type)

where ds is the formal definition of the data source and type is the type
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of the data source. The types of a data source can be either a Semantic Data

Source (ss) or a Non Semantic Data Source (ns).

Fig. A.8: A segment of SETLKB TBox.

Semantic Data Source. A Semantic Data Source is a typical KB, which
is discussed in Section 2. Therefore, a Semantic Data Source is defined as
D = (KB, ss). Figure A.8 depicts a part of TBox shown in Figure A.3. The
semantic graph to logically define a part of TBox and ABox of Figure A.8
is depicted in Figure A.9. In Figure A.9, the segment of the graph above the
vertical dashed line represents the TBox and below the dashed line represents
sample instances (i.e., ABox). The semantic graph (RDF graph) is considered
as a directed label graphs which conceptualize an RDF dataset. In the graph,
subjects and objects of RDF triples are drawn by the labeled vertices and
predicates are shown as directed labeled edges. To differentiate between the
TBox and ABox, we draw the instances in ABox with rectangle, and literal-
vertices with simple text.

Typically, an RDF dataset is physically stored as an RDF dump file or in
a triple store, for instance, Jena TDB, Virtuoso, Sesame store [10].

Non Semantic Data Source. A Non Semantic Data Source can be a re-
lational database (RD), a shapefile, an XML file, an object-oriented database,
or a CSV. However, the current version of SETL supports RD, shapefile, and
CSV, and the framework is designed in a way that allows it to be easily ex-
tended to support other formats as well.

For an RD, D = (R, ns), and R can be further defined as R = (S ,D),
where S and D represent the schema and data of R. To give the formal
definition of a RD, we use the notation from [56]. An RD is composed of a set
of tables T . Each t ∈ T can be defined by 2-tuples: t = ((Ct, PKt, FKt), Rt),
where
−(Ct, PKt, FKt) denotes the schema of the table t
−Ct is the set of all columns of t
−PKt is the set of all primary key columns of t
−FKt is the set of foreign keys
−Rt is the set of rows in t , which represents the data of table t .
Each foreign key FKt,t′ ∈ FKt is a subset of one or more columns and holds

75



Paper A.

Fig. A.9: Semantic graph to represent a portion of TBox and ABox of Figure A.8.

∀FKt,t′ ∈ FKt, ∀r ∈ Rt : ∃t′ ∈ T , ∃r′ ∈ Rt′ where r(FKt,t′ = r′(PKt′)), i.e., each
foreign key of a table must be a primary key of same/other table.

(a) Subsidy

subsidyId paidTo amount
10611390 366894 617308
10611402 362146 6310

(b) Recipient

recipientId name address

362146 Jan’S Værksted
Gammel
4

366894
Videncentret
For Landbrug

Agro
Park 15

Table A.1: The sample data of Subsidy dataset

Therefore, considering all tables T in the RD, D becomes

D = ((
⋃

t∈T (Ct, PKt, FKt)), (
⋃

t∈T (Rt))), ns).

Figure A.2 shows the conceptual schema of the Subsidy dataset. Table A.1
shows some sample data of Subsidy and Recipient tables. We can define the
Subsidy database as

Subsidy = (({({subsidyId, paidTo, amount}, {subsidyId}, {paidTo}),
({recipientId, name, address}, {recipientId}, {})}), ({(“10611390”, “3668
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94”, “617308”), (“10611402”, “362146”, “6310”)}, {(“362146”, “Jan′SVrksted”,
“Gammel4”), (“366894”, “VidencentretForLandbrug”, “AgroPark15”)}), ns).

Typically, the tables of a RD are stored in a Relational Database Manage-
ment System (RDBMS), for example, PostgreSQL, Oracle RDBMS, Microsoft
SQL server etc.

A shapefile [48] is a file format that stores geometric location and attribute
information of geographic features in vector format. Points, lines, and poly-
gons can be used to describe a geographic feature. It can also be represented
in the format of a table. This table is just like any other relational table except
it contains a special geometry column. This column stores the actual geome-
try shape of geographic data. These are the edges and vertices locations that
make up the spatial data. Typically, all the other columns in this table are the
attributes information associated with the spatial data.

A CSV file is a comma separated values file, which allows data to be saved
in a table structured format. Each line of the file is a row of the table and
each row consists of one or more fields, separated by commas. Thus, shape
and CSV files can be formalized using the notation of RD.

5.3 Define Mapping

A relationship between semantically similar but autonomously designed data
needs to be established [54]. As data sources are highly heterogeneous in syn-
tax, mapping should be done between sources and the target at the schema
level. Mappings define the relationship between the elements (either con-
cepts or properties) of a source and the corresponding elements in the target
TBox [18].

Given two TBoxes TS and TT , a mapping maps an element in TS to the
corresponding element in TT . TS and TT are called the source TBox and target
TBox, respectively. We formally define an TBox Mapping as

Map(TS, TT) = {(es1, et1, typei)|es1 ∈ TS, et1 ∈ TT , typei ∈ {skos : exact,
skos : narrower, skos : broader, owl : sameAs, rdfs : subClassOf,

rdfs : subPropertyOf}}.

Each 3-tuple (es1, et1, typei) in Map(TS, TT) represents that es1 in TS is mapped
to et1 in TT with the relationship typei. The relationship can be either equiva-
lence relationship (es1 ≡ et1) or subsumption relationship (es1 v et1) [33]. Dif-
ferent knowledge representation languages use different properties to repre-
sent equivalence and subsumption relationships. Therefore, the set of properties
supporting the (equivalence and subsumption) relationships can be extended,
but in the current version, we use, skos : exact, and owl : sameAs to represent
equivalence relationship and skos : narrower, skos : broader, rdfs:subCl-
assOf, and rdfs : subPropertyOf are used to represent subsumption relation-
ship.
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(a) TS : Source TBox. (b) TT : Target TBox.

Fig. A.10: Fragments of a source and the target TBoxes to be mapped. Same colors across the
TBoxes indicate mapped elements.

Figure A.10 shows the fragments of a source TBox (Figure A.10a) and the
target TBox (Figure A.10b). The mappings from the source TBox to the target
TBox are shown in Table A.3. SETL allows users to define the mappings
manually to keep them up to date with the needs of end-users.

Entity in TS Mapped entity in TT Relation
bus:Owner sdw:Recipient subsumption (bus:Owner w sdw:Recipient)
bus:Activity sdw:MainActivity subsumption (bus:Activity w sdw:MainActivity)
bus:Activity sdw:SecondaryActivity subsumption (bus:Activity w sdw:SecondaryActivity)
bus:hasCompany sdw:hasCompany equivalence
bus:hasPrimaryActivity sdw:hasPrimaryActivity equivalence
bus:hasSecondaryActivity sdw:hasSecondaryActivity equivalence
bus:BusinessFormat sdw:BusinessType equivalence
bus:hasFormat sdw:inCompany equivalence

Table A.3: Mapping example from the source TBox to the target TBox

Mapping for Semantic Data Source. As the schema of a Semantic Data

Source is defined using a TBox and we assume that the TBox is integrated
in the source, no additional step is required to define the mappings between
the source and target TBoxes. However, as discussed in Section 1, sometimes
RDF datasets do not include an explicit schema. In that case, a TBox should
be derived from the RDF [12]. Currently, SETL does not provides this facility.
It will be addressed in future.

Mapping for Non Semantic Data Source. In Figure A.5, it is shown
that the Define Mapping component takes a source and the target TBoxes as
input and outputs the mapped elements across the TBoxes. Thus, a further
step is required to extract the TBox from a Non Semantic Data Source. The
following paragraph defines how a TBox is defined as a semantic layer on
top of the underlying Non Semantic Data Source.

TBox Extraction TBox Extraction is the process of constructing a TBox
(semi-) automatically from a given data source [39]. We define the extraction
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process f from a data source D by:

f : D → T B

where T B is the TBox derived from D. Given the heterogeneous types of
sources (e.g., relational, xml, object-oriented) from where the ontologies to be
derived, an instance of f should be defined for each type of sources [56].

x frd(x)
∀t ∈ T owl:class

∀c ∈ Ct

owl:DatatypeProperty

[rdfs:domain = frd(t),
rdfs:range=type(c)]

∀FKt,t′ ∈ Ct

owl:ObjectProperty

[rdfs:domain = frd(t),
rdfs:range= frd(t′)]

Table A.4: TBox extraction function from RD

Using the notation of a RD described in Section 5.2, we define the TBox
extraction function for a RD as frd : S → T B, where S is the schema of the
given RD, composed of set of tables T . For this function, we also use the
notation and process from [56]. Table A.4 shows the mapping between the
elements of a RD schema and corresponding OWL constructs. Each table
t ∈ T of the RD is mapped to an OWL class, each column c ∈ Ct is mapped
to a datatype property, and each foreign key FKt,t′ ∈ Ct is mapped to an
object property. The additional properties (e.g., rdfs:domain, rdfs:range)
related to the main property are shown within a square bracket in Table A.4.
For example, for an OWL property, the domain and range are also shown
in Table A.4. Figure A.11 shows the extracted TBox of the Subsidy database
shown in Figure A.2.

Fig. A.11: The extracted Subsidy TBox.
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To map the relational data to RDF data using the extracted TBox the
R2RML Mapper component is used. This component uses the R2RML map-
ping language, which is a W3C standard to define customized mappings
from relational data to RDF [43]. This mapping is done by users. As all re-
lational data may not be relevant to the target, we also consider the output
of Define Mapping component in the R2RML Mapper (shown in Figure A.5) to
map only the relevant data. An R2RML mapping is itself represented as an
RDF graph. Listing A.1 shows a segment of the R2RML mapping between the
Subsidy dataset (in Table A.1) and the Subsidy TBox (shown in Figure A.11).
An R2RML mapping document consists of one or more structures called
TripleMaps (e.g., sub:subsidyMap and sub:recipentMap in Listing A.1). The
rr:TriplesMap class consists of three properties, namely, rr:logicalTable,
rr:subjectMap, and rr:predicateObjectMap. Each TripleMap contains a
reference to a logical table (e.g., Subsidy, Recipient) using the property rr:lo-

gicalTable (lines 5-6). A logical table can be a table, or a view or a SQL
query. The property rr:subjectMap specifies the target class of TBox and the
IRI generation process for each row (lines 7-10). The RDF triples generated
from a row share the same subject. The property rr:predicateObjectMap

defines a target property and the generation of the value of the property
using rr:objectMap. The type of the RDF terms is either a constant, or a
template, or a column value. A constant-valued term map always generates
the same RDF terms. PredicateMaps are usually constant-valued (line 12). If
the term map is a column-valued, the values in the specified column of the
logical table will be used to generate the terms (lines 13-14). If it is template-
valued, the terms will be generated based on the given template. A template
is a string that concatenates several columns names or the base IRI and the
values of one or more column names to generate unique IRIs. Line (8-9) cre-
ates IRIs for the subject of the triple using rr:template term map. The term
map also have specified term type (IRI, Blank node, or Literal) [47].

Listing A.1: An R2ML mapping from Subsidy TBox to Subsidy relational data.

1 @prefix rr: <http ://www.w3.org/ns/r2rml\#>.

2 @prefix sub: <$http :// extbi.lab.aau.dk/ontology/sub/> .

3 sub:subsidyMap

4 a rr:TriplesMap ;

5 rr:logicalTable [

6 rr:tableName 'Subsidy ' ] ;

7 rr:subjectMap [

8 rr:template 'http :// extbi.lab.aau.dk/

9 ontology/sub/subsidy /{ subsidyId}' ;

10 rr:class sub:Subsidy ; ] ;

11 rr:predicateObjectMap [

12 rr:predicateMap [rr:constant sub:subsidId

13 ];

14 rr:objectMap [

15 rr:column 'subsidyId ' ;

16 rr:termType rr:Literal ;] ;

17 ];

18 rr:predicateObjectMap [

19 rr:predicateMap sub:paidTo ;

20 rr:objectMap [

21 rr:template 'http :// extbi.lab.aau.

22 dk/ontology/sub/recipient /{ paidTo}' ; ] ;

23 ];

24 rr:predicateObjectMap [
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25 rr:predicateMap sub:amounteuro ;

26 rr:objectMap [

27 rr:template "{amounteuro }.00" ;

28 rr:termType Literal ;] ;

29 ];

30 sub:recipientMap

31 a rr:TriplesMap ;

32 ....

6 ETL Layer

In this section, we describe the ETL Layer of SETL. This layer integrates dif-
ferent components to design an ETL process to populate the SDW from dif-
ferent data sources. The following sections describe the different components
in details.

6.1 Extraction

Extraction is the process of acquiring data from sources. In this section we de-
scribe how to extract data from Semantic Data Sources and Non Semantic

Data Sources.
Extraction from Semantic Data Source. SPARQL is the standard pat-

tern matching language for querying a Semantic Data Source. It uses SE-
LECT query to retrieve the desired output from the source. The output of the
SPARQL SELECT query is a bag of bindings for the variables in the SPARQL
query pattern. Unlike SELECT query, the SPARQL CONSTRUCT query is
used to construct the triples from the Semantic Data Source, i,e., the output
of the query itself is an RDF graph. As we need to retrieve the triples from a
Semantic Data Source, in this section, we discuss the semantics of the basic
SPARQL CONSTRUCT query.

To define the basic semantics of SPARQL CONSTRUCT query, we need
to introduce the notion of triple patterns and basic graph pattern (BGP). A
triple pattern is an RDF triple which allows query variables in any position
of the triple, i.e., tp ∈ (I ∪ B ∪ V)× (I ∪ V)× (I ∪ B ∪ L ∪ V), where V is a
set of query variables that range over all RDF terms T, and V ∩ T = ∅. A
query variable v ∈ V is led by the symbol ′?′, e.g., (?s p o). A BGP is a
set of triple patterns connected via logical conjunctions. The SPARQL graph
pattern expression is defined based on BGP.

The execution of triple patterns against a Semantic Data Source pro-
duces a set of solution mappings. A solution mapping µ is a partial function
that maps V to T, µ : V → T. The domain of µ, denoted by dom(µ), is the
subset of V for which µ is defined.

Let K and tp be a Semantic Data Source and a triple pattern, and var(tp)
denotes the set of query variables tp contains. The evaluation of tp against K
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is the set of all mappings that can map tp to a triple contained in K, i.e.,

JtpKK = {µ | dom(µ) = var(tp) and µ(tp) ∈ K}.

where µ(tp) is the triple obtained by replacing the variables in tp accord-
ing to µ. The SPARQL CONSTRUCT query makes the class of queries whose
inputs and answers are RDF graphs [31]. Therefore, we define the answer
ans(tp,K) of the SPARQL CONSTRUCT query as a set of triples matched tp
in K , i.e.,

ans(tp,K) = {µ(tp) | µ ∈ JtpKK and µ(tp) ∈ K}.

If B = {tp1, tp2, tp3, ...} is a BGP, then the evaluation of B over K is

JBKK = {µ | dom(µ) = var(B) and µ(B) ⊆ K}.

Here, µ(B) is the set of triples obtained by replacing the variables in the
triple patterns of B according to µ. Therfore, the answer ans(B,K) of the
query is

ans(B,K) = µ(B) =
⋃

tpi∈B
{µ(tpi)|µ ∈ JBKK and µ(tpi) ∈ K)}.

Consider the Semantic Data Source shown in Figure A.9 and we want
to construct the triples for the properties of bus:Company. Here, tcp =
(?property rdfs : domain bus : Company), dom(µ) = ?property. The evalua-
tion of tcp over DAB is

JtcpKDAB = {{?property→ bus : hasFormat},
{?property→ bus : officialAddress},
{?property→ bus : postalAddress},

{?property→ bus : hasPrimaryActivity},
{?property→ bus : hasSecondaryActivity}}.

The answer ans(tcp, DAB) of the query is the set of following triples.

bus:hasFormat rdfs:domain bus:Company .
bus:officialAddress rdfs:domain bus:Company .
bus:postalAddress rdfs:domain bus:Company .
bus:hasPrimaryActivity rdfs:domain bus:Company .
bus:hasSecondaryActivity rdfs:domain bus:Company .

Typically, data from a Semantic Data Source is retrieved by applying
queries to a local RDF file or through a SPARQL endpoint. When the out-
put of a given query is very big or if it is required to extract all triples from
the Semantic Data Source, a simple download strategy might fail because
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Algorithm 5: TripleExtraction.
Input: endpoint, batchsize
Output: tripleset
begin

1 P← retrieveDistinctProperty(endpoint)
2 foreach property p ∈ P do
3 x ← retrieveNumberO f Triples(p, endpoint);
4 for count← 0 to x/batchsize do
5 tripleset←

tripleset + retrieveTriples(count, batchsize, endpoint);

6 return tripleset

some SPARQL endpoints restrict result sizes; DBpedia [16], for instance, does
not allow more than 10,000 result triples at a time. To overcome this limita-
tion, we design Algorithm 5. The algorithm takes a sparqlEndpoint URL and
a batchsize (indicating how many triples to extract at a time) as parameters
and returns the extracted triples. In line 1, the algorithm extracts all distinct
properties in the KB. Then, for each property (lines 2-3), the algorithm deter-
mines the number of triples containing the property as predicate. Based on
this number the algorithm determines how many queries need to be sent to
receive all these triples and executes the queries (lines 4-5). This is done by
sorting the triples by subject, using batchsize in the LIMIT clause, and using
the iteration number multiplied by the batchsize as OFFSET.

Extraction from Non Semantic Data Source.

Fig. A.12: The process of extraction from Non Semantic Data Source.

Figure A.12 shows the process of extraction from a Non Semantic Data

Source. At first, we make a semantic version of the Non Semantic Data

Source using the R2RML Engine. The R2RML Engine component is typically
an R2RML processor that takes a relational database and an R2RML map-
ping document as input and outputs an RDF graph according to the mapping
document [63]. Hence, the data of the Non Semantic Data Source are con-
verted into RDF dataset which can simply be queried using SPARQL queries
discussed in the Section 6.1. The following triples are the sample output of
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the R2ML Engine component with the input Listing A.1 and Table A.1.

sub:subsidy/10611390 sub:subsidyId 10611390 .
sub:subsidy/10611390 sub:paidTo sub:recipient/366894 .
sub:subsidy/10611390 sub:amount 617308 .
sub:subsidy/10600402 sub:paidTo sub:recipient/362146 .
sub:subsidy/10600402 sub:amount 6010 .
......

6.2 Transformation

In the data transformation process, the extracted source data are transformed
in a way such that it can easily be fed to the SDW. To ensure that data in
the SDW are consistent with the semantics of its TBox, i.e., ABox follows
TBox, we divide the transformation tasks into two Components: Traditional
Transformation, and Semantic Transformation. The following sections detail the
components.

Traditional Transformation. Traditional Transformation includes opera-
tions known from traditional ETL tools, such as cleansing the data and for-
matting the source data according to the target schema. This includes re-
moving duplicate data, recalculating data, normalizing data, renaming at-
tributes, checking integrity constraints, refining data, unique identifier gen-
eration, creating new attributes based on existing attributes, null value and
default value handling, noisy data filtering, sorting data, and grouping/sum-
marizing data [40]. In this component, the data related to each concept of the
target TBox are stored in a separate table where the columns of the table
represents the properties associated with the concept and the records of the
table represent the instances of the concept. The transformed data are kept
into a Staging Area. The Staging Area is an intermediate storage where
the intermediate results of each process are stored. This can prevent the loss
of transformed data in case of the failure of the loading process.

Semantic Transformation. Semantic Transformation includes operations to
create RDF triples according to the semantics of the target TBox from the data
output by the Traditional Transformation component.

Algorithm 6 describes the steps of converting a table (table) (from Tradi-
tional Transformation) into a set of RDF triples (T). As additional inputs, the
algorithm takes the name of an attribute in the table (resourceKey) that can
be used to uniquely identify each row, a target TBox (onto), mapping files be-
tween the sources and the target (mapping), a provenance graph (provGraph)
and datasetname is the name of the dataset to be created. It is an instance of
qb:Dataset. The values of resourceKey will be used to create resource identi-
fiers. The provGraph is required to search for an existing IRI and to store the
information of how the IRIs are formulated and its original source (literal/IRI
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Algorithm 6: createTriples.
Input: table, resourceKey, onto, mapping, provGraph, datasetname
Output: T

begin
1 D ← makeDictionary(table)
2 concepts← getMatchingConcepts(table,mapping, concepts(onto))

3 foreach c ∈ concepts do
4 foreach r ∈ D do
5 sub← createInstanceIRI(c, resourceKey(r), provGraph)
6 if !(propertyTable(table)) then
7 obj← createConceptIRI(c, provGraph)
8 T.addtriple(sub, rdf:type, obj)
9 if (type(c) = qb4o:LevelProperty) then

10 T.addtriple(sub, qb4o:memberOf, obj)

11 if (type(c) = qb:Observation) then
12 T.addtriple(sub, rdf:type, qb:Observation)
13 T.addtriple(sub, qb:dataSet, datasetname)

14 foreach (attribute, value) ∈ r do
15 if (value! = NULL) then
16 prop← getMatchingProperty(attribute,

17 mapping, property(c, onto))
18 T.addTriple(sub, createPropertyIRI(c, prop, provGraph),

createObject(value))

19 return T

and dataset) information. We describe the Provenance Graph in Section 6.3.
At first, a dictionary D is created based on the input table (line 1). D

consists of (key, value) pairs for each row r in table; the key corresponds to
r’s resourceKey value. The value in turn corresponds to a list of (attribute,
value) pairs where each pair represents one of r’s cells.

The next step is to determine which concepts in the target TBox the in-
formation contained in the table correspond to (line 2). Based on this in-
formation, the algorithm runs through each such concept c. Some tables in
relational databases do not directly correspond to a concept, instead they
represent many-to-many relationships between instances of concepts (entity
types). Hence, only for those tables that directly correspond to a concept,
the algorithm creates a new resource for each entry in the dictionary D and
a triple (with rdf:type as predicate) that defines the new resource as an
instance of the concept (lines 6-8). To create an instance IRI, the createInstan-
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ceIRI() function (in line 5) first checks the Provenance Graph whether there
is an existing IRI for the instance; if it finds an existing one, then returns
it, else creates new one and updates the Provenance Graph. Different type
of resources (i.e, concept, property, instance), takes different parameters to
create new IRIs. Table A.5 shows the parameters to create different type of
resources.

Type of IRI
Base
IRIs

Concept
Name

Property
Name

Property
Range Name

Value(s)
Resource
Key(s)

Concept IRI Y Y
Property IRI Y Y Y
Object Property value IRI Y Y Y
Instance IRI Y Y Y

Table A.5: Required parameters for creating different types of IRIs

If the concept c is a qb4o:LevelProperty, then a triple saying that the
new resource is a member of the level property c is added (lines 9-10).
If the concept c is a factual concept, i.e., a qb:Observation, then the re-
source is added as a qb:Observation and the qb:dataSet of the resource
is datasetname (lines 11-13). Furthermore, for each (attribute, value) pair for
which the attribute is defined as a match of one of c’s properties and value is
not null, a triple encoding this information is created (lines 14-18). Depend-
ing on the type of property (data type or object), the object of the created
triple either corresponds to a literal or a resource. For example, the values
of sdw:hasrecipient are resources and the values of sdw:amounteuro are
literals.

The computational complexity of Algorithm 6 depends on its constituents:
the number of concepts in the target TBox matched with the input table, and
the size of the given table. For each row of the input table, the makeDictionary
operation creates an entry for the dictionary D. Therefore, line 1 takes O(N)
complexity, where N is the number of rows in the table. The loop depends
on the number of concepts matched with the table. In the worst case, the
number of concepts in the target TBox matched with the table is equivalent
to the number of concepts in the target TBox. Let say C is the number of
concepts in the target TBox matched with the input table. The for loop in line
4 is executed for each entry in D, therefore, it takes O(N) time. The for loop
in lines 14-18 is executed for each attribute of the table and it takes O(M)
time, where M is the number of attributes in table. Thus, the total time for
Algorithm 6 is O(N) + O(CNM) = O(CNM) in worst case, where C is the
number of concepts in the target TBox, N is the size of the dictionary, and m
is the average size of the entries of the dictionary. The best case is O(NM)
where, C = 1.
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6.3 Provenance Graph

The provenance graph is an RDF graph that stores the meta information of
concepts, properties, instances and IRIs of resources used in a SDW. At this
version, we only consider the provenance of IRIs, and the provenance graph
contains the type of resource it indicates in the target, its prefix (base IRI),
its source dataset, and the original IRI or the original literal corresponding to
each IRI. The type of a resource is either a concept, a property or an instance.
For example, an IRI can be generated for a concept Company, for a property
hasCompany, or for an instance of Company DanskBank. The prefix is the
base IRI of the target. The graph is queried using SPARQL query. Figure A.13
shows how an IRI is represented in the IRI provenance graph. The blank node
represents that the IRI is an instance of sdw:Day. The literal used to generate
the IRI is shown as the value of pro:originalLiteral which is taken from
the subsidy dataset. The URL of the subsidy dataset are shown as the value
of pro:sourcedataset. The new generated IRI is shown as the value of the
pro:generatedIRI property. This graph needs to be built by semantic-ETL
processes.

Fig. A.13: An IRI represented in the provenance graph.

6.4 External linking

Algorithm 7 formalizes the steps required to link an internal resource to ex-
ternal resources. It takes intResource, externalDataSource flag, and k as input
parameters. intResource is a given internal resource that we want to find ex-
ternal links for, and externalDataSource can be either a keyword search API
or the SPARQL endpoint of a KB. In our DOLAP workshop paper [17], we
use the Sindice API [57] as a default API, However, the service of the API
is currently stopped by its provider. Therefore, in this version, we replace
the default API with the DBpedia Lookup API 2). flag indicates whether the
target external source is a search API ( f lag = 0) or an external KB ( f lag = 1),
and k is the number of top k IRIs that we want to retrieve.

At first, the algorithm creates a semantic bag (sbinternal) for the internal re-
source (line 1). Such a semantic bag consists of triples describing the internal

2https://github.com/dbpedia/lookup

87



Paper A.

Algorithm 7: LinkToExternalResources.
Input: intResource, externalDataSource, f lag, k
Output: L

begin
1 sbinternal ← semanticBag(intResource)
2 if f lag = 0 then

E← search(intResource, externalDataSource, k)
3 else

E← search(intResource, externalDataSource, query, k)
4 foreach extResource ∈ E do
5 extTriples← retrieveTriples(extResource)
6 sbexternal ← semanticBag(extTriples)
7 if match(sbinternal , sbexternal) > δ then
8 alignedPairs← alignedPairs ∪ (intResource, extResource)

9 alignedPairs← userInteraction(alignedPairs)
10 foreach pair ∈ alignedPairs do
11 L.addTriple(intResource, owl:sameAs, extResource)
12 ER← getEquivalentResource(extResource)
13 foreach equiResource ∈ ER do
14 L.addTriple(intResource, owl:sameAs, equiResource)

15 return L

resource. Then, if externalDataSource is a search API, then a web service re-
quest embedding the intResource is sent through the API for the top k match-
ing external resources (line 2). If externalDataSource is the SPARQL endpoint
of a KB, then it submits a query to the endpoint for retrieving top k matching
external resources (line 3). An example query is shown in Listing A.2. The
query retrieves top-20 resources from a KB which are the subjects of triples
whose objects are literals containing the string "obama" most. For each exter-
nal resource (extResource), the algorithm retrieves triples describing it (line
5), creates a semantic bag (sbexternal) from them (line 6), and compares the bag
to the one created for the internal resource (line 7). If the Jaccard Simarity
(see Equation A.1) between the two semantic bags exceeds a certain threshold
δ, the internal and external resource are considered a match (lines 7-8).

J(sbinternal , sbexternal) = |
sbinternal ∩ sbexternal
sbinternal ∪ sbexternal

| (A.1)

After having identified all candidate pairs, the user can optionally interact
with the system and filter pairs. Then, for each pair of internal and external
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resources, a triple with the owl:sameAs property3 is created to materialize
the link in the dataset (line 11). Finally, the algorithm also retrieves the set
of resources from the KB that are already linked to the external resource via
by owl:sameAs property and materializes the links to the internal resource as
well (lines 12-14).

The computational complexity of Algorithm 7 depends on its constituents:
the generation of semantic bags, the similarity computation, and the number
of aligned pairs. A semantic bag of a resource is created from the RDF graph
of the resource [45, 46]. The set of triples describing the resource defines the
RDF graph of that resource. Therefore, a semantic bag creation takes O(N)
time complexity where N is the size of the graph. Hence, line 1 takes O(N)
time. The given internal source is compared to every external source. There-
fore, the loop in line 4 is executed O(K) times where K is the number of
external sources, and since each semanticBag operation takes O(N) time, the
total time for all calls to semanticBag is O(NK). The match operation matches
the semantic bags of two resources and takes O(N2) time. Therefore, the total
time of the loop lines 4-8 is O(KN + KN2) = O(KN2). The maximum num-
ber of aligned pairs can be the equivalent of the number of external sources
K. Hence, the total time for the loop in lines 10- 14 is O(KR), where R is
the average number of equivalent resources of each aligned external sources.
Thus, the total time for Algorithm 7 is O(N + KN2 + KR) = O(K(N2 + R)),
where K, N, R are the number of external resources, N is the average size
of the RDF graphs, and R is the average number of resources same as with
external resources.

Listing A.2: An example SPARQL query for keyword based searching.

1 SELECT ?sub (count(?sub) as ?count)

2 WHERE {

3 ?sub rdf:type ?class.

4 ?sub ?pro ?label.

5 Filter regex(?label , "obama", "i")

6 }

7 group by ?sub

8 order by desc(?count)

9 limit 20

6.5 Load

This component loads the RDF triples created by Semantic Transformation into
a triple store or saves to an RDF dump file. SETL currently uses Jena TDB [27]
as a triple store and allows loading data batch-wise. It provides two kinds of
load, namely, trickle load and bulk load. The trickle load mode transforms
and feeds data as it arrives from the previous transformation step without
staging on disk using SPARQL INSERT queries. As it provides concurrent

3An owl:sameAs property indicates that two IRI references refer to the same real world
object. Hence, subject and object IRIs of a triple with owl:sameAs are considered linked.
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processing and loading, therefore, it takes long time to store whole dataset
because it includes process and loading time. In bulk load mode, the triples
are written into a file on disk after transformation and then loaded batch-wise
into the triple store.

7 Implementation

We implement the SETL framework, discussed in Sections 4, 5, 6, using
Python [42]. The reasons for choosing Python are its comprehensive standard
libraries and its support to programmer productivity [55]. The following sec-
tions discuss how we implement the main components of the framework.

7.1 Definition Layer

SDW TBox Definition . We define three Python Classes: Concept, Property,
BlankNode to give the structure of concepts, properties and blank nodes of
a TBox, respectively. These classes play a meta modeling role and the user
can instantiate the classes to define their TBox constructs, such as, concept,
property, and blank node. The user can define the MD constructs, such as,
cube, dimensions, level, factual concept, and hierarchies by instantiating the
Concept class. Listing A.3 shows a segment of Python script to create a TBox
of our running example. It shows how to define different MD constructs,
such as, dimension (lines 1-4), level (lines 5-7), hierarchy (lines 8-11), hi-
erarchy step (lines 12-17), level attributes (lines 18-27), measure (lines 28-
32), cube structure (lines 33-40 ), cube (lines 41-43), factual concept(43-44).
To internally connect each concept with an explicit set of properties, such
as data type property, level attribute, object property, functional property,
inverse-functional property, SETL offers a method conceptPropertyBinding()
which takes the list of all concepts, properties and blank nodes as parameters
(line 51). The method createTriples() creates the triples according to the TBox
(line 53).

Listing A.3: A segment of Python script to create the TBox of our running example.

1 # Defining Time Dimension

2 Time=Concept(name=`PayDate ',_base_iri=`sdw:')

3 Time.setrdfType ([`owl:class',`qb:DimensionProperty '])

4 Time.setqb4oHasHierarchy(`sub:TimeHierarchy ')

5 Time.setrdfsLabel(```PayDate"@en')

6 # Defining levels for Time Dimension

7 Day=Concept(name=`Day',_base_iri=`sdw:')

8 Day.setrdfType ([`owl:class ',`qb4o:LevelProperty '])

9 Day.setrdfsLabel(```Day"@en ')

10 Month=Concept(name=`Month ',_base_iri=`sdw:')

11 Day.setrdfType ([`owl:class ',`qb4o:LevelProperty '])

12 Day.setrdfsLabel(```Month"@en')

13 # Defining a time hierarchy

14 TimeHier=Concept(name=`TimeHier ',_base_iri=`sdw:')

15 TimeHier.setrdfType ([`owl:class ',`qb4o:Hierarchy '])

16 TimeHier.setqb4oHasLevel ([`sdw:day',`sdw:Month'}}

17 TimeHier.setqb4oInHierarchy ([`b_t1'}}

18 # Defining a hierarcy step

19 b_t1=BlankNode(name=`_:t1')

90



7. Implementation

20 b_t1.setrdfType(`qb4o:HierarchyStep ')

21 b_t1.setqb4oparentLevel(`sub:Month ')

22 b_t1.setqb4ochildLevel(`sub:Day')

23 b_t1.setqb4opcCardinality(`OneToMany ')

24 b_t1.setqb4oinHierarchy(`sdw:TimeHier ')

25 # Defining level attributes

26 hasMonth=Property(name=`hasMonth ',_base_iri=`sdw:')

27 hasMonth.setrdfType ([`owl:ObjectProperty ',

28 `qb4o:LevelAttribute '])

29 hasMonth.setrdfsRange(`sdw:Month ')

30 hasMonth.setrdfsDomain(`sdw:Day')

31 paydate=Property(name=`paydate ',_base_iri=`paydate ')

32 paydate.setrdfType ([`owl:objectProperty ',

33 `qb4o:levelAttribute '])

34 paydate.setrdfsDomain(`sdw:Subsidy ')

35 paydate.setrdfsRange(`sdw:Day')

36 amount=Property(name=`amounteuro ',_base_iri=`sdw')

37 amount.setrdfType ([`owl:datatypeProperty ',

38 `qb:MeasureProperty '])

39 amount.setrdfsDomain(`sdw:Subsidy ')

40 amount.setrdfsRange(`xsd:double ')

41 # Defining a data structure definition

42 cubestruct=Concept(name=`cubestruct ',_base_iri=`sdw:')

43 cubestruct.setrdfType ([`owl:Class',

44 `qb:DataStructureDefinition '])

45 cubestruct.setqbComponent ([`b_d',`b_m'])

46 b_d=BlankNode(name=`_d')

47 b_d.setqbdimension(`sdw:Time')

48 b_m=BlankNode(name=`_m')

49 b_m.setqbmeasure(`sdw:amount ')

50 # Defining a cube

51 cube=Concept(name=`dataset ',_base_iri=`sdw:')

52 cube.setrdfType ([`owl:Class',`qb:DataSet '])

53 cube.setqbstructure(`sdw:cubestruct ')

54 # Defining factual concept

55 Subsidy=Concept(name=`Subsidy ',_base_iri=`sdw:')

56 Subsidy.setrdfType ([`owl:Class',`qb:Observation '})

57 # Defining list for concepts , properties , and blank node

58 conceptList=list()

59 propertylist=list()

60 blankList=list()

61 # Extending the lists

62 conceptList.extend ([Time ,Day ,TimeHier ])

63 propertyList.extend ([hasMonth ,amount ,paydate ])

64 blankList.extend ([b_t1 ,b_d ,b_m])

65 # Establishing relationships among the elements

66 conceptPropertyBinding(conceptList ,propertyList ,blankList)

67 # Generating triples for the tbox

68 createTriple(conceptlist ,propertyList ,BlankList)

We also define a Python class named ParseOntology(object) to parse a
given TBox. The user can instantiate it by passing the path of the given TBox.
It provides several methods (getConcepts(), getDataProperties(), getProperties(),
and etc.) to process the TBox.

Define Mapping. To define the mappings between the elements (con-
cepts and properties) of a source TBox and the target TBox, we use a Python
dictionary which is composed of (key, value) pairs. The key of a pair is the
source element and the value of the pair is a list which contains the corre-
sponding target element and relationship type (lines 1-8 in Listing A.4). The
relationship type is presented using sup, sub, and equi. Here, sup means that
the source concept is the super class of the target concept, sub means source
concept is the sub class of the target concept, and equi means equivalence
relationship. We also define the mappings between all source TBoxes and
the target TBoxusing a Python dictionary whose keys are the source TBoxes
names and the values are the individual source and target mapping dictio-
nary (lines 9-10). Currently, SETL supports basic mapping, however, in the
future we will allow it to support complex mappings, for example, mapping
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a property of a source TBox to a concept of the target TBox.

Listing A.4: Python script for defining mapping.

1 bus_sdw=dict()

2 bus_sdw={`bus:Owner':[`sdw:Recipient ', sup],

3 `bus:Activity ':[`sdw:mainActivity ', `sup'],

4 `bus:Activity ':[`sdw:SecondaryActivity ', `sup'],

5 `bus:hasCompany ':[`sdw:hasCompany ',`equi'],

6 `bus:hasPrimaryActivity ':[`sdw:hasPrimaryActivity ',`equi']

7 ,`bus:BusinessFormat ':[`sdw:BusinessType ',`equi'],

8 `bus:hasFormat ': [`sdw:inCompany ',`equi']}

9 mapping=dict()

10 mapping[`bus']= bus_sdw

For processing a Non Semantic Data Source, users can define a TBox
representing the source using the classes of SDW TBox Definition. Then, the
mapping between the target and the extracted TBox can be defined using
Python dictionary. For converting the Non Semantic Data Source into RDF
triples based on R2RML mapping, we implement the simple algorithms of
R2RML processor provided in [63].

7.2 ETL Layer

SETL enables the extraction of data from a KB through SPARQL endpoints,
RDF files, relational databases, CSV files, and shapefiles. The framework
is designed in a way that allows it to be easily extended to support other
formats.

Extraction from a SPARQL endpoint. Using the SPARQLWrapper [51]
library, we extract data/triples from a KB by applying queries through a
SPARQL endpoint.

Extraction from an RDF file. We use the RDFLib library [44] to execute a
query on a local RDF file. If the RDF file is too large to fit into main memory,
we split the file into several smaller files, execute the query on the smaller
files, and then combine the partial results. However, this method can only be
used for simply queries, such as retrieving all triples with a particular pred-
icate. More complex queries involving joins need to be handled differently,
e.g., by loading the data into a local SPARQL endpoint first and using the
method described in the previous paragraph.

Extraction from a relational database or a CSV file. SETL is based on
Petl [40], which is a traditional ETL Python package including a rich set of
methods to perform extraction, cleansing, and transformation based on rela-
tional databases and CSV files. Making use of these methods, SETL provides
the functionality as well.

Extraction from a shapefile. To read data from a shapefile, we use the
pyshape [41] library. Internally, SETL can store the data of a shapefile either
in a file or in a database table. SETL provides methods to automatically create
a table in a database based on the structure of a shapefile and to insert the
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data from the shapefile into the created table. It also provides a method to
store the attribute information of a shapefile in CSV format.

Figure A.1 shows that there is no direct connection between Field and
OrganicField, neither between Field and FieldBlock. In the target TBox (Fig-
ure A.3), however, we have defined connections, e.g., agri:Field and agri:Or

ganicField are connected through the owl:sameAs property and agri:Field

Block and agri:Field are connected via the agri:contains property. These
connections are computed based on a spatial join that SETL computes during
the extraction process for pairs of shapefiles. We use the ArcPy [5] library to
perform the spatial join analysis.

Transformation. To perform the operations related to Traditional Trans-
formation, described in the 2nd paragraph of Section 6, we again use the
Petl [40] library. For creating RDF triples according to the target TBox based
on the data output from the Traditional Transformation component, we de-
velop a Python method, named createTriples(table, resourceKey, onto, mapping,
provGraph, filepath) that implements Algorithm 6, where the parameters main-
tain the same meanings as Algorithm 6. Additionally, it requires a parameter
f ilepath, the location of the file, to store the generated RDF triples.

External Linking. We develop a method named link(intResource, extSource,
flag, k) that implements Algorithm 7. We use Python built-in requests library
to retrieve the top-k related resources of inResource through DBpedia Loopup
API in JSON format. Sometimes the queries submitted to a SPARQL endpoint
result in timeout error. For this reason, we download the RDF dump files of
the selected KB and store them to a triple store locally for accessing it through
local SPARQL endpoint.

Load. Bulk load stores the RDF triples from a file (created by createTriple
() method) to the triple store. To support bulk load, SETL offers two methods:
bulkTDBLoader (tdblocation, filePath, batchsize) and bulkSPARQLInsert(tdbloc
ation, filePath, batchsize, database). The BulkTDBLoader is used to load data
from a file on disk into a triple store using the jena TDBLoader command.
The parameter tdblocation denotes the location of a TDB database, the filePath
is the path to the triple file, and batchsize is the number of triples to be fed
into the store at a time. The BulkSPARQLInsert is similar to BulkTDBLoader but
defines SPARQL INSERT statements to load triples instead of using the jena
TDBLoader command. It additionally requires the name of the database as
parameter. Unlike bulk load, which loads the triples from a file, trickle load
converts the cleansed and transformed data into triples and subsequently
loads them into a triple store holding the triples in main memory. The
trickleload(table, resourceKey, onto, mapping, provGraph, tdblocation, batchsize)
method has same parameters like createTriple() method. In addition, it takes
tdblocation and batchsize as input parameters to directly load the triples into
the triple store.

93



Paper A.

8 Evaluation

To evaluate SETL, as discussed in Section 2, we first create a SDW called
SETLKB applying the proposed ETL process on sources covering Danish
agricultural and business information. Then, we create an MD SDW called
SETLSDW using SETL by integrating SETLKB and the Subsidy dataset. We
create SETLKB in order to be able to compare it with an existing dataset in-
tegrating DAD and DBD [4] that has been created in a manual process by
using a broad range of different tools. In contrast, SETL allows to perform
this process mostly automatically with minimal user interaction. This allows
us to compare the different ETL processes as well as the RDF datasets them-
selves. Furthermore, to show the strength of SETL over the non-semantic
traditional data integration tools, we also re-create SETLSDW using Pentaho
Data Integration (PDI, also called Kettle) [11] and compare the productivity
and the performance of the processes with SETL.

Table A.6 shows the description of SETLKB and SETLSDW. As DAD and
DBD do not have any numerical measures, we do not model SETLKB in an
MD fashion. On the other hand, SETLSDW is defined with MD constructs. It
has 4,392,390 facts, 2 dimensions, 9 hierarchies, and 15 levels.

In the following, we refer to the dataset published by [4] as ExtBIKB. Our
evaluation concentrates on three aspects: productivity, i.e., to what extent
SETL eases the work of a user when performing an ETL task to produce
a SDW, quality of the produced datasets, and performance, i.e., the time
required to run the processes.

We run the experiment on a HP ProLiant DL385 server with an AMD
Opteron(tm) processor 6376 with 32 cores (only 1 core is used in the experi-
ments); it has 256 GB DDR3 RAM and is running Ubuntu 14.04.1 LTS (Trusty
Tahr). The data is stored on an 1-TB SCSI disk running in an HP Smart Array.

Dataset
# of
RDF
Triples

# of
Concepts

# of
Datatype
Properties

# of
Object
Properties

# of
External
Linkings

# of
Dimensions

# of
Levels

# of
Level
Attributes

# of
Hierarchies

# of
Observations

SETLKB 34,177,652 16 76 22 14,153 - - - - -
SETLSDW 54,995,678 54 63 16 3,538 2 15 58 9 4,392,390

Table A.6: Description of SETLKB and SETLDW.

8.1 Productivity

One of the main advantages of working with SETL is that all the phases of
an ETL process can easily be maintained and implemented using Python.
SETL offers high-level classes and functionality for development of semantic
ETL processes. Using SETL the users can write their own code to create an
ETL process in Python. Therefore, it allows extensibility. The modularized
structure of SETL allows users to call different modules simply by passing ar-
guments. Hence, it hides the complexity of the processes from the users. For
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example, to populate the SDW with transformed data, the user just write one
line of code to call the method createTriples(table, resourceKey, onto, mapping,
provGraph, filepath) by passing the required arguments, where the parameters
maintain the same meanings as Algorithm 6. Concretely, SETL uses 224 lines
of code to implement Algorithm 6. Hence, it provides a higher level abstrac-
tion to the user by hiding details. Table A.7 summarizes the tools, languages,
and the Lines Of Code (LOC) used to produce the SETLKB dataset using
SETL and the ExtBIKB dataset using the process described in [4]. To pro-
cess a shapefile, SETL provides methods to automatically create and insert
data into PostgreSQL. It uses only 2 lines of Python code. To perform spa-
tial intersection operation between two shapefiles, SETL uses the ArcPy [5]
library, which is faster than ArcGIS [19] which is used in [4]. On the other
hand, the ETL process used in [4] converts the shapefile into PostgreSQL
table using the PostgreSQL tool shp2pgsql. To make it compatible with vt-
SQL, they have performed some find-replace actions. For performing, spatial
operation, they use ArcGIS [19]. For filtering inconsistent values, unknown
characters and for correcting candidate keys, we use different methods from
the Petl library [40], which are efficient and easy to access. To cleanse our all
dataset, SETL only takes 173 lines of code. On the other hand, the [4] uses
different MySQL views and hand-crafted methods to cleanse the data, and
it takes 360 LOC. To generate triples for all data sources, SETL takes only
109 LOC whereas [4] uses 1,511 LOC. SETL only takes two line of codes to
call the external linking procedure. On the hand, [4] does not support any
linking process. The last row of Table A.8 shows the total number of LOC.
SETL takes in total 570 LOC to make the ETL process where 286 LOC is used
to build the TBox. On the other hand, for ExtBI, we sum only the LOC of
Cleansing and Triple Generation because we can not count the LOC for other
processes, hence, the sum is 1879 + 5NA. In summary, SETL is significantly
more productive, using only a fraction of the LOC of 1879 + 5NA and using
only Python instead of 7 different languages and tools.

PDI contains a rich set of data integration functionality to create an ETL
solution for non-semantic data sources. However, it does not support any
functionality to support semantic integration. We use PDI in combination
with other tools and manual tasks to re-create SETLSDW. Table A.8 shows the
comparison between the ETL processes of SETL and PDI to create SETLSDW.
SETL provides built-in classes to annotate MD constructs with a TBox. On
the other hand, PDI does not support to define a TBox. To create SETLSDW
using PDI, we use the TBox created by SETL. SETL provides built-in classes
to parse a given TBox and users can use different methods to parse the TBox
based on their requirements. In PDI, we implement a Java class to parse the
TBox created by SETL which takes an RDF file containing the definition of
a TBox as input and outputs the list of concepts and properties contained
in the TBox. The class also includes the functionality to internally connects
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the concepts and properties of the TBox. PDI is a non-semantic data integra-
tion tools, thus, it does not support to process semantic data. In this case,
we manually extract data from SPARQL endpoints and materialize them in
a relational database to further processing. PDI provides drag & drop func-
tionality to process database and CSV files. On the other hand, SETL pro-
vides methods to extract semantic data either from a SPARQL endpoint or
an RDF dump file batch-wise. SETL allows users to create an IRI by sim-
ply passing argument to the createIRI () method. Moreover, SETL supports
to update the provenance graph to store the provenance information of IRIs.
On the other hand, PDI does not include any functionality to create IRIs for
resources. We define a 23 line of Java class to enable the creation of IRIs for
resources. To generate triples from the source data based on the MD seman-
tics of the target TBox, SETL provides createTriple() method; users can just
call it by passing required arguments. On the other hand, we develop a Java
class of 60 lines to create the triples for the sources. PDI does not support
to load data directly to a triple store which can easily be done by SETL. Fi-
nally, we could not run the ETL process of PDI automatically (i.e., in a single
pass) to create the SETLSDW. We make it with significant number of user
interactions. In total SETL takes 401 LOC to run the ETL, where PDI takes
471LOC + 4NA + 21Activity. Thus, SETL creates an MD SDW with mini-
mum number of LOC, user interactions comparing to PDI where users have
to build their own Java class, plugin, and manual tasks to enable semantic
integration.

Tools SETL ExtBI
Task Used tools Used language LOC Used tools Used language LOC
TBox Definition Built-in SETL Python 286 Virtuoso, Protege Not Applicable (NA) NA
CSV Built-in Petl Python 2 MySQL,vtSQL SQL NA

Reading Shapefile Built-in SETL Python 3
ArcGIS,PostgreSQL,
shp2pgsql

NA NA

Spatial join Built-in ArcPy Python 2 ArcGIS NA NA
Cleansing Built-in Petl Python 173 MySQL, Google refine SQL 360
Triple Generation Built-in SETL Python 2 Virtuoso iSQL 1511
External Linking Built-in SETL Python 2 NA NA NA
Loading Built-in SETL Python 1 Virtuoso iSQL 4

Total LOC for the complete ETL process 570 1879 + 5 NA4

Table A.7: Comparison between the ETL processs of SETL and [4].

8.2 Quality

In this section, we examine the extent to which the produced triples are con-
sistent, complete, interpretable, fresh, and semantically linked [53]. We com-
pare the result created with SETL (SETLKB) to ExtBIKB.

Consistency. According to the definition, an object property relates in-
stances of two classes, i.e, if x is a value of an object property, there must
exist at least one triple whose subject is x. We found out that for a sig-
nificant number of values for the object properties bus:postalAddress and
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Tools SETL PDI (Kettle)
Task Used Tools Used Lnaguages LOC Used Tools Used Languages LOC
TBox with
MD semantics

Built-in SETL Python 312 Protege, SETL Python 312

Ontology
Parser

Built-in SETL Python 2 User Defined Class Java 77

Semantic Data Extraction
through SPARQL endpoint

Built-in SETL Python, SPARQL 2
Manually extraction
using SPARQL endpoint

SPARQL NA

Semantic Data Extraction
from RDF Dump file

Built-in SETL Python 2 NA NA NA

Reading
CSV/Database

Built-in Petl Python 2 Drag & Drop NA
Number of

used Activity: 1

Cleansing Built-in Petl Python 36 Drag & Drop NA
Number of

used Activity: 19
IRI Generation Built-in SETL Python 2 User Defined Class Java 22
Triple Generation Built-in SETL Python 2 User Defined Class Java 60
External Linking Built-in SETL Python 2 NA NA NA
Loading as
RDF dump

Built-in SETL Python 1 Drag & Drop NA
Number of

used Activity: 1
Loading to
Triple Store

Built-in SETL Python 1 NA NA NA

Total LOC for the complete ETL process 401 471 LOC +4 NA + 21 Activity

Table A.8: Comparison between the ETL processes of SETL and PDI for SETLSDW.

bus:officialAddress, ExtBIKB does not contain such information. There
are 83,302 bus:officialAddresses and 34 bus:postalAddresses that are
not used as a subject of any triple in ExtBIKB. In SETLKB, on the other hand,
all bus:officialAddresses and bus:postalAddresses have correctly been
related to the bus:Address concept. Hence, data consistency is completely
maintained in SETLKB.

Information loss. In ExtBIKB, fields that do not produce any crop are
not represented. This affects 2,650 instances of the concept agri:Field. Sim-
ilarly, instances of agri:OrganicField that have the value “999999-99” for
the agri:FieldBlock property are not represented in ExtBIKB. This affects
1,213 instances. For SETLKB on the contrary, we do not want to miss any
agri:Field or agri:OrganicFields instance even though they do not have
crop information. Hence, in the cleansing step, we replace the value “999999-
99” with NULL. If an instance of a concept contains NULL or an unknown
value for a property, the createTriples () method (described in Section 6) sim-
ply does not produce a triple for that property. This is how SETLKB ensures
data completeness.

In the original raw datasets, we can find out since when a legal unit be-
longs to an owner. This is not possible in ExtBIKB if an owner owns more
than one company. We fix this issue by extending the target TBox. In ad-
dition, we also add the information related to the type of the owner, i.e.,
whether the owner is a person or another company, both are missing in
ExtBIKB.

Furthermore, the main and secondary activity of a company or produc-
tion unit are treated as the same activity in the ExtBIKB. In SETLKB, the con-
cepts bus:Company and bus:ProductionUnit are connected to bus:Activity

through two object properties: bus:hasMainAcitivity and bus:hasSecondar

yActivity. Thus, SETLKB provides more information than ExtBIKB.
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Redundant triples. If a property is inversely connected to another prop-
erty, then storing the same types of triples for both properties, simply by
interchanging the subject and predicate of the triples, makes a KB redun-
dant. The properties bus:belongsTo and bus:hasProductionUnit are in-
versely connected to each other and relate the concepts bus:Company and
bus:ProductionUnit. In ExtBIKB, triples are stored for both properties sep-
arately, which produces extra 659,639 triples. On the other hand, we create
triples only for bus:belongsTo property. Hence, SETLKB reduces redun-
dancy.

External linking. We enhance SETLKB by linking it to external knowl-
edge bases at instance level. Section 6.4 describes the linking process. On the
other hand, ExtBIKB is not connected with other external knowledge bases
at instance level. We run the linking process only for instances of agri:Crop,
agri:FieldBlockApplication, bus:BusinessFormat, and bus:Municipality

because for instances of other concepts, DBpedia [16] does not contain rele-
vant information. Note that the following results are produced by the au-
tomatic matching process without any pre-filtering by the user (which is
mentioned as an optional step in Section 6.4). Table A.9 shows the different
types of concepts for which we run the linking process, their total number
of internal instances, the number of internal instances linked to the exter-
nal resources, the number of external resources connected to the internal
instances, and the accuracy rate of the linking. In total, 196 instances of
SETLKB are linked to 9,618 external resources. To evaluate the linking pro-
cess, we randomly chose 5% of the triples that linked internal and external
resources and manually evaluated their correctness. The accuracy rate in Ta-
ble A.9 shows the accuracy rate in percentage. We only consider the values
of rdfs:comment, rdfs:label and rdf:description in the semantic bags of
compared resources in order to make the process faster. One of the reasons
having the low accuracy rate for some cases is the language. The description
of each instance is translated from Danish to English using Google Translate
API, which sometimes fails to give accurate translation.

Listing A.5: The SPARQL query that connects SETLKB with DBpedia to retrieve the description
of top-3 municipalities where most of the companies belongs to.

1 PREFIX bus:<http :// extbi.lab.aau.dk/ontology/business/>

2 PREFIX dbo:<http :// dbpedia.org/ontology/>

3 PREFIX owl:<http ://www.w3.org /2002/07/ owl#>

4
5 select ?municipality ?abstract

6 where {

7 {select ?municipality count (*)

8 where {

9 ?company a bus:Company.

10 ?company bus:officialAddress ?address.

11 ?address bus:positionedAt ?addFeature.

12 ?addFeature bus:inMunicipality ?municipality .}

13 Group by ?municipality

14 order by desc(count (*))

15 limit 3

16 }

17 ?municipality owl:sameAs ?db.

18 SERVICE <http :// dbpedia.org/sparql?default -graph -uri=
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19 http :// dbpedia.org > { ?db dbo:abstract ?abstract .

20 FILTER (lang(? abstract) = 'en')}

21 }

Because of being linked with external resources, users can analyze SETLKB
based on external knowledge bases as well. Listing A.5 shows an SPARQL
query that retrieves the descriptions of top-3 Danish municipalities from DB-
pedia with the most companies in them. The query returns eight entries. The
first 3 entries describe Copenhagen, next 2 entries describe Aarhus, and the
last 3 entries describe Aalborg. This query cannot be answered by ExtBIKB.

Concept
# of
instances

Linked
instances

External
resources

Accuracy

agri:Crop 244 95 5,309 83%
bus:BusinessFormat 30 16 976 66%
agri:FieldBlockApplication 17 6 403 43%
bus:Municipality 98 79 2,930 73%
Total 389 196 9,618 66.25%

Table A.9: Linking local resources to external resources.

Based on these findings, we can conclude that SETLKB is more consis-
tent, complete, and resourceful than ExtBIKB. Table A.10 summarizes some
notable triple-wise differences between SETLKB and ExtBIKB.

Concept(c)/
Property(p)

# of Triples
SETLKB

# of Triples
ExtBIKB

Comments

Whole KB 34,177,652 32,457,657 SETLKB is the updated version.
External Linking 9,618 0 No instance is linked with external sources in ExtBIKB.
Company(c) 603,667 603,668 One duplicate triple in ExtBIKB.

Address(c) 499,850 497,938
In ExtBIKB, Address concept were not mapped with the
postal address of Danish Business dataset.

Field(c) 52,060 50,842 ExtBIKB used poor cleansing techniques.
OrganicField(c) 613,903 611,093 ExtBIKB used poor cleansing techniques.
belongsTo(p) 659,638 659,640 Two duplicate triples in ExtBIKB.
hasProductionUnit(p) 0 659,640 belongsTo and hasProductionUnit are inversely connected.
hasOwnerType(p) 353,954 0 ExtBIKB did not include owner type information.

Table A.10: Comparison between SETLKB and ExtBIKB.

8.3 Performance

In this section, we discuss the time required for different sub-processes to
create SETLKB and SETLSDW using SETL, the performance of different sub-
process, and the comparison of performance with the previous solution [4]
and PDI.

Runtime of the different phases. Figure A.14 and A.15 illustrate the time
and the percentage of the total time that each phase of the ETL processes of
SETLKB and SETLSDW respectively accumulated. The figures show both
the time for each phase in separate and the overall runtime of the complete
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Fig. A.14: Time for the ETL process to create SETLKB. s and h stand for second and hour
respectively.

Fig. A.15: Time for the ETL process to create SETLSDW.

process. The times represent averages over 5 test runs. As SETL automatically
connects all the phases, the end time of one phase becomes the starting time
of the next. Figure A.14 and A.15 also show the materialized output with the
data size of each phase.

Figure A.14 shows that the Extraction and Traditional Transformation phase
take 37% of the total time. This phase takes the longest time comparing to
other phases because of the following reasons. First, the DAD is given with
three Shapefiles: Field, Organic Field, and Field Block; therefore, we need to
do some preprocessing tasks to extract the attribute information from the
files and to keep them into a PostgreSQL database. Second, we perform two
spatial join operations: between Field and Field Block, and between Field and
Organic Field datasets. To perform the spatial join operations, we use ArcPy
library which takes 30% time of this phase which is out of our control. Third,
we extract a TBox from the dataset and based on the source-target mappings,
we keep the data into 9 smaller tables. We perform extensive cleansing oper-
ations for correcting candidate keys, fixing inconsistent and incomplete data,
and filtering noisy data which are also time intensive. Fourth, we also fix and
filter the noisy, inconsistent and incomplete data from Company and Partic-
ipant datasets and split the two datasets into 19 smaller tables according to
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the source-target mappings which are also time consuming.
The Semantic Transformation process is time-intensive because all the data

needs to be processed and matched to the TBox of the SETLKB. In Section 3.4,
we discuss the computational complexity of Semantic Transformation which
depends on the three nested loops. The first loop iterates for the number of
concepts in the target TBox matched with the input table. The second loop
repeats for each row of the input table. Further, each iteration creates an
IRI for each row of the table and updates the Provenance Graph. The third
loop iterates for each value of a row, and Semantic Transformation creates a
separate triple for each value in the SDW according to the semantics encoded
in the target TBox. On the other hand, the building block of a traditional DW
is tuple which contain multiple values. Many triples of SDW are kept into
a tuple of a traditional DW table. This is why our SDW takes longer time
comparing to the traditional DW.

The total time required for the Linking process is 3,657 seconds. All the in-
formation of the resources are given in Danish, so we first translate the name
of the resource into English, then use DBpedia Lookup API to retrieve the
top 20 relevant resources. Eventually, we use our instance matcher described
in Section 6.4 to link the internal and external resources. The computational
complexity depends on the number of external resources to be matched, the
average size of the RDF graphs of internal and external resources, and the
number of resources same as external sources. As we consider the seman-
tic bags of two resources in the matching operation, we need to retrieve the
RDF graph of each external resource from DBpedia through its SPARQL end-
point. Moreover, the matching operation is time consuming because it takes
O(N2) complexity, where N is the average size of the RDF graphs of internal
and external resources. Table A.11 shows the time consumed for linking the
instances of each concept. In summary, SETLKB is linked to 9,618 external
resources. To load all triples at a time, the BulkTDBLoader takes 936 seconds
which is almost 7% of the total time. For loading triples into a triplestore, we
depend on the native loading commands of the underlying triplestore. The
elapsed time depends on the internal strategy of the triplestore which is also
out of control. We have discussed the performance of the different loading
methods in the earlier workshop paper [17].

In Figure A.15, it is shown that the ETL process takes SETLKB and the
Subsidy dataset as input. the Extraction and Traditional Transformation phase
includes time for 1) Filtering the noisy data from the Subsidy dataset (2.3 GB
in size), 2) converting the Subsidy dataset into RDF according to the R2RML
mapping, 3) extracting data from the Semantic Data Sources through its
SPARQL endpoints, and 4) stores them into the Staging Area based on the
source-target mappings. The Semantic Transformation makes the RDF triples
based on the MD semantics encoded in the target. Here, we only link the
instances of sdw:Municipality with the external resources. In total, the ETL
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process for creating SETLSDW takes 10,820 seconds.

Concept Time(in seconds)
agri:Crop 1,925
bus:BusinessFormat 504
agri:FieldBlockApplication 63
bus:Municipality 1,165
Total 3,657

Table A.11: Time required for the linking process.

Performance analysis of Semantic Transformation. Figure A.16 shows
the performance of our Semantic Transformation method. To evaluate the
method, we consider the factual concept sdw:Subsidy from SETLSDW and
the central concept sub:Company from SETLKB because sub:Company also
acts as a super class of the sdw:Company level of SETLSDW. Figure A.16a
shows the number of triples generated with the increasing input data size,
and Figure A.16b shows the processing time with the increasing input data
size. With the increase of input data size, the number of generated triples
(shown in Figure A.16a) and the processing time (shown in Figure A.16b)
increase almost linearly for both concepts. In general, the processing time
and the number of generated triples depends on the nature of the input data,
e.g., whether it corresponds to a fact entry, a dimension entry or a level en-
try, how big the value of each attribute is. Figure A.16 summarizes that the
number of triples generated per data size and the data processing rate for
sub:Company are higher than that of sdw:Subsidy. This is because each entry
of sdw:Subsidy only contains a measure property and the pointers to two di-
mensions, namely, sdw:Beneficiary and sdw:Time. Therefore, sdw:Subsidy
is straightforward to process while sub:Company requires more effort as it
involves 17 properties with relatively long strings, such as address, name,
email, etc. Table A.12 reports the performance of Semantic Transformation for
sdw:Subsidy and sub:Company using different comparison metrics. Triple
generate rate of Semantic Transformation for sdw:Subsidy is 4.9 times higher
than that of sub:Company. sdw:Subsidy has a higher data process rate (i.e.,
the amount of data that can be processed per time) than sub:Company. To
process 1 MB input data, sdw:Subsidy takes 4.8 seconds while sub:Company

takes 8.7 seconds. We also compare the number of triples per (1 MB) data
size for both input and output data size. 1 MB of the output file generated for
sdw:subsidy contains 6,134 triples where sub:Company contains 5,393 triples.
The output file size for sdw:Subsidy is 31 times larger than the input data
size. On the other hand, the output file for sub:Company is 12 times larger
than its input file.
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(a) Number of triples vs data size. (b) Processing time of increasing data.

Fig. A.16: Performance of Semantic Transformation based on the number of generated triples and
processing time with increasing data size.

Comparison between SETL and ExtBI [4] To make it comparable with the
results of [4], we also run the computer on our local machine which is 2.10
GHz Intel Core i7-2600 processor with 8 GB RAM operated by Windows
7 and similar to the machine used by ExtBI. Table A.13 shows the time in
seconds takes different sub-processes of the ETL processes. In this case, we do
not run the External Linking process. SETL takes more time in data cleansing
step comparing to ExtBI. This is because we handle the null value and other
unknown values which are simply discarded in ExtBI. On the other hand,
our createTriple() method takes less time to make the RDF dump although
we create 2M more triples than ExtBI shown in Table A.10. Loading RDF
triples more time as we load more triples than ExtBI. In summary, SETL
takes 5,725.05 seconds where ExtBI takes 6,141.56 seconds, i.e., SETL takes
6.7% less time than ExtBI.

Comparison between SETL and PDI in processing sdw:Subsidy To com-
pare the performance of SETL with a Non-semantic data integration tool,
we choose PDI. We populate the SDW for sdw:Subsidy concept using PDI.
Figure A.17 shows the ETL flow for sdw:Subsidy built on PDI. The TBox Ex-
traction, R2RML Mapping, Extraction using SPARQL steps are ignored in this
flow as those sub-processes cannot be implemented using PDI, i.e., the ETL
run with PDI starts by taking the Subsidy dataset transformed into a seman-
tic source. To run the process PDI takes 1, 903 seconds. On other hand, SETL
takes 2, 221 seconds to complete the process which includes all sub-processes
starting from TBox Extraction to Load. If we run the ETL using SETL by skip-
ping he sub-processes skipped by PDI, then SETL takes only 1, 644 seconds.
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Comparison Metrics sdw:Subsidy sub:Company
Triple generate rate
(triples/second)

39816.47 8089.80

Data process rate
(data size/second)

0.22MB 0.11MB

Data process time (time to
process unit data size (in MB))

4.80s 8.70s

Average time for generating a triple 25.20µs 120 µs
Number of triples per
input unit data size (in MB)

190986.40 69961.85

Number of triples
per output data size (in MB)

6134 5393

Output data size
and input data size ratio

31 12

Table A.12: Comparison to process the factual concept and a level of the running example by
Semantic Transformation.

Tools
Data Cleansing
(excluding Spatial join)

Load Ontology
Load
Mappings

Dump
RDF

Load RDF Total

ExtBI 603.35 1.01 12.35 4,684.82 840.04 6,141.56
SETL 726 1.05 0 4,208 970 5,725.05

Table A.13: Comparison between SETL and ExtBI [4].

SETL takes 577 seconds for the sub-processes TBox Extraction, R2RML Map-
ping, and Extraction from semantic source. Thus, SETL is 259 seconds (13.5%)
faster than PDI.

Fig. A.17: ETL flow of PDI to populate sdw:Subsidy.

9 Related Work

This section discusses the state of the art in the area of semantic ETL to build
a semantic DW and to integrate and publish data as Linked Open Data (LOD)

104



9. Related Work

from multiple sources.
Recently, the use of SW technology in data warehouses has become pop-

ular. Some approaches have used ontologies as a data integration method for
mapping between sources and target whereas others have considered a data
warehouse as a repository of ontologies and its instances.

In [49, 50], an OWL ontology is used to link the schemas of semi-structured
and structured data to a target DW schema. At first, the schemas of the data
sources and the DW are described by a common graph-based model named
datastore graph. Then, an application ontology is constructed to describe the
semantics of the data sources and the DW, and mapping between them can
be done through that ontology. In this way, the heterogeneity issues among
the schemas of sources and target have been resolved. In this work, it is as-
sumed that source and target schemas are known beforehand. However, it
does not consider the MD view over the DW. In [52], the authors have shown
that an ontological approach can automate and minimize the maintenance
cost of the evolution of a DW schema. Here, they define every design step of
DW using ontology.

A framework for designing semantic DW has been proposed in [36]. Here,
the usage of SW languages to integrate distributed DWs and to automate the
ETL process of a DW has been discussed. The DW has been considered
as a repository of ontologies and semantically annotated data sources. [8]
proposes a methodology describing important steps required to create a se-
mantic DW that enables to integrate data from semantic databases, which is
composed of an ontology and its instances. A multidimensional (MD) frame-
work has been proposed in [35] to analyze semantic data that are provided by
the SW and that are annotated by application and domain ontologies. It al-
lows to build and populate a DW from both the analyst requirements and the
knowledge encoded in the ontologies. In [56], authors have proposed a so-
lution for supporting data integration tasks by constructing ontologies from
XML and relational sources and integrating the derived ontologies by means
of existing ontology alignment and merging techniques. However, ontology
alignment technique itself is a difficult and error-prone process [58].

In the past couple of years, publishing data in a machine-readable format
has become more popular and (Linked Open Data) LOD has emerged as a
way to share such data across Web sources. [60] presents a process to pub-
lish governmental data as LOD and [4] discusses how to spatially integrate
and publish a Danish Agricultural dataset and a Danish Business dataset as
LOD. The approach uses views to cleanse the data and Virtuoso for creating
and storing RDF data. To integrate data from heterogeneous sources and
publish those data as LOD, a semantic ETL framework is presented in [7]
at conceptual level. The approach uses the semantic technology to facilitate
the integration process and discusses the use of different tools to accomplish
the different steps of the ETL process. To enable warehouse-style analysis
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over RDF data, some approaches [13, 26] propose the use of a native RDF
data warehouse. To analyze an RDF graph, [13] introduced a lens named
analytical schema, which is a graph of classes and properties. Each node
of the schema represents a set of facts, which can be analyzed by exploring
the reachable nodes. To enable OLAP-style analysis over Linked Data (LD),
W3C recommend RDF Data Cube Vocabulary (QB vocabulary) to describe
the RDF data in MD fashion [15]. However, it has limitations to fully define
the traditional MD constructs and it is mostly used to present the statistical
data as LD. In [21], authors propose QB4OLAP model by extending the QB
model to annotate an existing graph with MD constructs. To enable OLAP
over LD datasets which contains numerical values, even if they are not an-
notated either QB or QB4OLAP, in [30], authors proposed a SPARQL-based
ETL framework.

Because of the decentralized structure and dynamic nature of LOD, some-
times it is required to integrate external sources in a federated way. Unlike
DW, data federation avoids the need of materializing integrated data into a
centralized warehouse. It emphasizes on logical rather than physical inte-
gration of data. In [38], authors have proposed a theoretically well-founded
approach to the logical federation of OLAP and XML data sources. A set of
query processing strategies for executing OLAP-like SPARQL queries over a
federation of SPARQL endpoint has been proposed in [25]. However, feder-
ation techniques have an additional number of unique challenges on several
levels. Participating sources in a federation are autonomous, i.e., they might
be unavailable at some point or change their data. So, for query process-
ing, federations introduce delays because of the distribution and there is no
guarantee that the data is still available or in the same state as when the
federation was created - both schema and data might have changed so that
the integration rules might no longer be valid. So, a standard approach is to
avoid federations and have a local copy of the data which is the focus of this
study. This guarantees that the data will be available and an answer to a user
query can be computed efficiently. Moreover, scalability is indeed a problem
for analytical queries in federations [25].

As data become outdated due to updates in the sources, using different
tools for extraction, validation, and integration becomes very tedious and
time consuming. Hence, a framework is necessary that makes it possible
to accomplish every step in a single platform. Although the state-of-the-
art approaches provide different conceptual frameworks, there is no imple-
mented programmable framework that facilitates the developers by provid-
ing required tools, classes, and methods to build ETL process with the goal
of either creating a semantic multidimensional DW or publishing the seman-
tically integrated data as LOD. Hence, this paper discusses a semantic ETL
framework, SETL, which provides various modules, classes, and methods to
extract semantic-aware data, geo-spatial data, and other traditional data, to
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integrate source data semantically using a target TBox defined with/with-
out MD constructs, and to store the data as semantic data. SETL facilitates
developers to build a semantic DW using a single platform instead of using
different tools and a manual process.

10 Conclusion

Building a DW integrating internal and external data published in different
formats requires semantic integration. Here, we have proposed and devel-
oped a programmable framework, named Semantic ETL (SETL) that facili-
tates users to build a (MD) SDW. SETL uses TBox as an underlying schema
to integrate heterogeneous data sources. To annotate the target TBox with
MD constructs, it uses the constructs of QB4OLAP model. It allows to pro-
cess both semantic and Non Semantic Data Sources. In order to process
a Non Semantic Data Source, it builds a semantic layer on top of the Non

Semantic Data Source. Eventually, it stores the data as RDF triples based
on the MD semantics encoded in the target TBox. It also allows to link the
internal resources with external resources. In order to evaluate our frame-
work, we produced a SDW by integrating a semantic and a Non Semantic

Data Sources. In Section 4, we show that SETL has good performance for
all the steps and is faster than the competing tools/solutions.

The model behind a triplestore is an RDF graph. Another issue is how to
implement physically the store. We can choose graph, relational or Hadoop,
but in this paper, we focus on increasing the abstraction level and thus the
user productivity. Therefore, physical or platform-dependent optimizations
remain for the future. Our future research also includes proposing a well-
defined set of basic semantic ETL operators that can be combined to perform
any semantic ETL operations. Besides, developing techniques to explore the
Linked Open Data cloud for the related dimensions and level and linking
them with the internal ones are also in our consideration.
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Abstract

The popularity of the Semantic Web (SW) encourages organizations to organize and
publish data using the RDF model. This growth poses new requirements to Business
Intelligence (BI) technologies to enable On-Line Analytical Processing (OLAP)-like
analysis over RDF data. The incorporation of semantic data into a Data Warehouse
(DW) is not supported by the traditional Extract-Transform-Load (ETL) tools be-
cause they do not consider semantic issues in the integration process. In this paper,
we propose a layer-based integration process and a set of high-level RDF-based ETL
constructs required to define, map, extract, process, transform, integrate, update, and
load (multidimensional) semantic data. Different to other ETL tools, we automate
the ETL data flows by creating metadata at the schema level. Therefore, it relieves
ETL developers from the burden of manual mapping at the ETL operation level.
We create a prototype, named Semantic ETL Construct (SETLCONSTRUCT), based
on the innovative ETL constructs proposed here and it is also extended to generate
automatic ETL data flows (we call it SETLAUTO) . To evaluate SETLCONSTRUCT
and SETLAUTO, we create a multidimensional semantic DW by integrating a Dan-
ish Business Dataset and an EU Subsidy dataset using it and compare it with the
previous programmable framework SETLPROG in terms of productivity, develop-
ment time and performance. The evaluation shows that 1) SETLCONSTRUCT uses
92% fewer Number of Typed Characters (NOTC) than SETLPROG, and SETLAUTO
further reduces the Number of Used Concepts (NOUC) by another 25%; 2) using
SETLCONSTRUCT, the development time is almost cut in half compared to SETLPROG,
and is cut by another 27% using SETLAUTO; 3) SETLCONSTRUCT is scalable and has
similar performance compared to SETLPROG.

The layout has been revised.



1. Introduction

1 Introduction

Semantic Web technologies enable adding a semantic layer over the data;
thus, the data can be processed and effectively retrieved by both humans and
machines. The Linked Data (LD) principles are the set of standard rules to
publish and connect data using semantic links [23]. With the growing popu-
larity of the SW and LD, more and more organizations natively manage data
using SW standards, such as Resource Description Framework (RDF), RDF-
Schema (RDFs), the Web Ontology Language (OWL), etc. [13]. Moreover,
one can easily convert data given in another format (database, XML, JSON,
etc.) into RDF format using an RDF wrapper. As a result, a lot of seman-
tic datasets are now available in different data portals, such as DataHub1,
Linked Open Data Cloud 2 (LOD), etc. Most SW data provided by interna-
tional and governmental organizations include facts and figures which give
rise to new requirements for Business Intelligence (BI) tools to enable analy-
ses in the style of Online Analytical Processing (OLAP) over those semantic
data [30].

OLAP is a well-recognized technology to support decision making by an-
alyzing data integrated from multiple sources. The integrated data are stored
in a Data Warehouse (DW), typically structured following the Multidimen-
sional Model (MD) that represents data in terms of facts and dimensions to
enable OLAP queries. The integration process for extracting data from dif-
ferent sources, translating it according to the underlying semantics of the
DW, and loading it into the DW is known as Extract-Transform-Load (ETL).
One way to enable OLAP analysis over semantic data is by extracting those
data and translating them according to the DW’s format using a traditional
ETL process. [40] outlines such a type of semi-automatic method to inte-
grate semantic data into a traditional RDBMS-centric MD DW. However, the
process does not maintain all the semantics of data as they are conveying
in the semantic sources; hence the integrated data no more follow the SW
data principles defined in [24]. The semantics of the data in a semantic data
source is defined by 1) using Internationalized Resource Identifier (IRIs) to
uniquely identify resources globally, 2) providing common terminology, 3)
semantically linking with published information, and 4) providing further
knowledge (e.g., logical axioms) to allow reasoning [7].

Therefore, considering semantic issues in the integration process should
be emphasized. Moreover, initiatives such as Open Government Data3 en-
courage organizations to publish their data using standards and non-propriet-
ary formats [55]. The integration of semantic data into a DW raises the
challenges of schema derivation, semantic heterogeneity, semantic annota-

1https://datahub.io/
2https://lod-cloud.net/
3https://opengovdata.org/
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tion, linking as well as the schema and data management system over tra-
ditional DW technologies and ETL tools. The main drawback of a state-of-
the-art Relational Database Management System (RDBMS)-based DW is that
it is strictly schema dependent and less flexible to evolving business require-
ments. To cover new business requirements, every step of the development
cycle needs to be updated to cope with the new requirements. This update
process is time-consuming as well as costly and is sometimes not adjustable
with the current setup of the DW; hence it introduces the need for a novel
approach. The limitations of traditional ETL tools to process semantic data
sources are: (1) they do not fully support semantic-aware data, (2) they are
entirely schema dependent (i.e., cannot handle data expressed without pre-
defined schema), (3) they do not focus on meaningful semantic relationships
to integrate data from disparate sources, and (4) they neither support to cap-
ture the semantics of data nor support to derive new information by active
inference and reasoning on the data.

Semantic Web technologies address the problems described above, as they
allow adding semantics at both data and schema level in the integration pro-
cess and publish data in RDF using the LD principles. On the SW, the RDF
model is used to manage and exchange data, and RDFS and OWL are used
in combination with the RDF data model to define constraints that data must
meet. Moreover, QB [9] and QB4OLAP [15] vocabularies can be used to
define data with MD semantics. [37] refers to an MD DW that is semanti-
cally annotated both at the schema and data level as a Semantic DW (SDW).
An SDW is based on the assumption that the schema can evolve and be
extended without affecting the existing structure. Hence, it overcomes the
problems triggered by the evolution of an RDBMS-based data warehousing
system. In [37], we proposed SETL (throughout this present paper, we call
it SETLPROG), a programmable semantic ETL framework that semantically
integrates both semantic and non-semantic data sources. In SETLPROG, an
ETL designer has to create hand-code specific modules to deal with semantic
data. Thus, there is a lack of a well-defined set of basic ETL constructs that
allow developers having a higher level of abstraction and more control in
creating their ETL process. In this paper, we propose a strong foundation for
an RDF-based semantic integration process and a set of high-level ETL con-
structs that allows defining, mapping, processing, and integrating semantic
data. The unique contributions of this paper are:

1. We structure the integration process into two layers: Definition Layer
and Execution Layer. Different to SETL or other ETL tools, here, we
propose a new paradigm: the ETL flow transformations are character-
ized once and for all at the Definition Layer instead of independently
within each ETL operation (in the Execution Layer). This is done by
generating a mapping file that gives an overall view of the integration
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process. This mapping file is our primary metadata source, and it will
be fed to the ETL operators, orchestrated in the ETL flow (Execution
Layer), to parametrize themselves automatically. Thus, we are unifying
the creation of the required metadata to automate the ETL process in
the Definition layer. We propose an OWL-based Source-To-target Map-
ping (S2TMAP) vocabulary to express the source-to-target mappings.

2. We provide a set of high-level ETL constructs for each layer. The Def-
inition Layer includes constructs for target schema4 definition, source
schema derivation, and source-to-target mappings generation. The Ex-
ecution Layer includes a set of high-level ETL operations for semantic
data extraction, cleansing, joining, MD data creation, linking, inferenc-
ing, and for dimensional data update.

3. We propose an approach to automate the ETL execution flows based on
metadata generated in the Definition Layer.

4. We create a prototype SETLCONSTRUCT, based on the innovative ETL
constructs proposed here. SETLCONSTRUCT allows creating ETL flows by
dragging, dropping, and connecting the ETL operations. In addition, it
allows creating ETL data flows automatically (we call it SETLAUTO).

5. We perform a comprehensive experimental evaluation by producing
an MD SDW that integrates an EU farm Subsidy dataset and a Dan-
ish Business dataset. The evaluation shows that SETLCONSTRUCT im-
proves considerably over SETLPROG in terms of productivity, develop-
ment time, and performance. In summary: 1) SETLCONSTRUCT uses
92% fewer Number of Typed Characters (NOTC) than SETLPROG, and
SETLAUTO further reduces the Number of Used Concepts (NOUC) by
another 25%; 2) using SETLCONSTRUCT, the development time is almost
cut in half compared to SETLPROG, and is cut by another 27% using
SETLAUTO; 3) SETLCONSTRUCT is scalable and has similar performance
compared to SETLPROG.

The remainder of the paper is organized as follows. We discuss the termi-
nologies and the notations used throughout the paper in Section 2. Section 3
explains the structure of the datasets we use as use case. Section 4 gives
the overview of an integration process. The description of the Definition
Layer and Execution Layer constructs are given in Sections 5 and 6, respec-
tively. Section 7 presents the automatic ETL data flow generation process. In
Section 8, we create an MD SDW for a use case using SETLCONSTRUCT and
compare the process with SETLPROG using different metrics. The previous
research related to our study is discussed in Section 9. Finally, we conclude
and give pointers to future work in Section 10.

4Here, we use the terms “target" and “MD SDW" interchangeably.
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2 Preliminary Definitions

In this section, we provide the definitions of the notions and terminologies
used throughout the paper.

2.1 RDF Graph

An RDF graph is represented as a set of statements, called RDF triples. The
three parts of a triple are subject, predicate, and object, respectively, and a
triple represents a relationship between its subject and object described by its

predicate. Each triple, in the RDF graph, is represented as subject
predicate−−−−→

object, where subject and object of the triple are the nodes of the graph, and
the label corresponds to the predicate of the triple. Given I, B, and L are the
sets of IRIs, blank nodes, and literals, and (I ∩ B ∩ L) = ∅, an RDF triple is
(s, p, o), where s ∈ (I ∪ B), p ∈ I , and o ∈ (I ∪ B ∪ L). An RDF graph G is a
set of RDF triples, where G ⊆ (I ∪ B)× I × (I ∪ B ∪ L) [22].

2.2 Semantic Data Source

We define a semantic data source as a Knowledge Base (KB) where data are
semantically defined. A KB is composed of two components, TBox and ABox.
The TBox introduces terminology, the vocabulary of a domain, and the ABox
is the assertions of the TBox. The TBox is formally defined as a 3-tuple:
TBox = (C, P, AO), where C, P, and AO are the sets of concepts, properties,
and terminological axioms, respectively [4]. Generally, a concept5 provides a
general framework for a group of instances that have similar properties. A
property either relates the instances of concepts or associates the instances of
a concept to literals. Terminological axioms are used to describe the domain’s
concepts, properties, and the relationships and constraints among them. In
this paper, we consider a KB as an RDF graph; therefore, the components
of the KB are described by a set of RDF triples. Some standard languages
such as Resource Description Framework Schema (RDFS) and Web Ontology
Language (OWL) provide standard terms to define the formal semantics of
a TBox. In RDFS, the core classes rdfs:Class, and rdf:Property are used
to define the concepts and properties of a TBox; one can distinguish between
instances and classes by using the rdf:type property, express concept and
property taxonomies by using rdfs:subClassOf and rdfs:subPropertyOf,
and specify the domain and range of properties by using the rdfs:domain

and rdfs:range properties. Similarly, OWL uses owl:Class to define con-
cepts and either owl:DataTypeProperty or owl:ObjectProperty for prop-
erties. In addition to rdfs:subClassOf, it uses owl:equivalentClass and

5In this paper, we use the terms “concept" and “class" interchangeably.

118



2. Preliminary Definitions

owl:disjointWith constructs for class axioms to give additional characteris-
tics of classes. Property axioms define additional characteristics of properties.
In addition to supporting RDFS constructs for property axioms, OWL pro-
vides owl:equivalentProeprty and owl:inverseOf to relate different prop-
erties, provides owl:FunctionalProperty and owl:InverseFunctionalProp-

erty for imposing global cardinality constraints, and supports owl:Symmetri-
cProperty and owl:TransitivityProperty for characterizing the relation-
ship type of properties. As a KB can be defined by either language or both,
we generalize the definition of C and P in a TBox T as C(T) = {c| type(c) ∈
P({rdfs:Class, owl:Class})} and P(T) = {p| type(p) ∈ P({rdf:Property,
owl:ObjectProperty, owl:DatatypeProperty})}, respectively, where type(x)
returns the set of classes of x, i.e., (x rdf:type ?type(x))— it returns the set of
the objects of the triples whose subjects and predicates are x and rdf:type,
respectively— and P(s) is the power set of s.

2.3 Semantic Data Warehouse

A semantic data warehouse (SDW) is a DW with the semantic annotations.
We also considered it as a KB. Since the DW is represented with Multidi-
mensional (MD) model for enabling On-Line Analytical Processing (OLAP)
queries, the KB for an SDW needs to be defined with MD semantics. In
the MD model, data are viewed in an n-dimensional space, usually known
as a data cube, composed of facts (the cells of the cube) and dimensions
(the axes of the cube). Therefore, it allows users to analyze data along
several dimensions of interest. For example, a user can analyze sales of
products according to time and store (dimensions). Facts are the interest-
ing things or processes to be analyzed (e.g., sales of products) and the at-
tributes of the fact are called measures (e.g., quantity, amount of sales), usu-
ally represented as numeric values. A dimension is organized into hierar-
chies, composed of several levels, which permit users to explore and aggre-
gate measures at various levels of detail. For example, the location hierarchy
(municipality → region → state → country) of the store dimension allows to
aggregate the sales at various levels of detail.

We use the QB4OLAP vocabulary to describe the multidimensional se-
mantics over a KB [15]. QB4OLAP is used to annotate the TBox with MD
components and is based on the RDF Data Cube (QB) which is the W3C
standard to publish MD data on the Web [12]. The QB is mostly used for
analyzing statistical data and does not adequately support OLAP MD con-
structs. Therefore, in this paper, we choose QB4OLAP. Figure B.1 depicts
the ontology of QB4OLAP [55]. The terms prefixed with “qb:” are from the
original QB vocabulary, and QB4OLAP terms are prefixed with “qb4o:” and
displayed with gray background. Capitalized terms represent OWL classes,
and non-capitalized terms represent OWL properties. Capitalized terms in
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italics represent classes with no instances. The blue-colored square in the
figure represents our extension of QB4OLAP ontology.

qb:DataStructureDefinition

qb:DataSet

qb:Observation

qb:SliceKey

qb:Slice

qb:ComponentProperty
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Fig. B.1: QB4OLAP vocabulary.

In QB4OLAP, the concept qb:DataSet is used to define a dataset of obser-
vations. The structure of the dataset is defined using the concept qb:DataStr-
uctureDefinition. The structure can be a cube (if it is defined in terms of
dimensions and measures) or a cuboid (if it is defined in terms of lower levels
of the dimensions and measures). The property qb4o:isCuboidOf is used to
relate a cuboid to its corresponding cube. To define dimensions, levels and hi-
erarchies, the concepts qb4o:DimensionProperty, qb4o:LevelProperty, and
qb4o:Hierarchy are used. A dimension can have one or more hierarchies.
The relationship between a dimension and its hierarchies are connected via
the qb4o:hasHierarchy property or its inverse property qb4o:inHierarchy.
Conceptually, a level may belong to different hierarchies; therefore, it may
have one or more parent levels. Each parent and child pair has a cardinality
constraint (e.g., 1-1, n-1, 1-n, and n-n.) [55]. To allow this kind of complex
nature, hierarchies in QB4OLAP are defined as a composition of pairs of
levels, which are represented using the concept qb4o:HierarchyStep. Each
hierarchy step (pair) is connected to its component levels using the properties
qb4o:parentLevel and qb4o:childLevel. A rollup relationship between two
levels are defined by creating a property which is an instance of the concept
qb4o:RollupProperty; each hierarchy step is linked to a rollup relationship
with the property qb4o:rollup and the cardinality constraint of that rela-
tionship is connected to the hierarchy step using the qb4o:pcCardinality
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property. A hierarchy step is attached to the hierarchies it belongs to using
the property qb4o:inHierarchy [15]. The concept qb4o:LevelAttributes is
used to define attributes of levels. We extend this QB4OLAP ontology (the
blue-colored box in the figure) to enable different types of dimension up-
dates (Type 1, Type 2, and Type 3) to accommodate dimension update in an
SDW, which are defined by Ralph Kimball in [32]. To define the update-
type of a level attribute in the TBox level, we introduce the qb4o:UpdateType

class whose instances are qb4o:Type1, qb4o:Type1 and qb4o:Type3. A level
attribute is connected to its update-type by the property qb4o:updateType.
The level attributes are linked to its corresponding levels using the property
qb4o:hasAttribute. We extend the definition of C and P of a TBox, T for an
SDW as

C(T) = {c| type(c) ∈ P({rdfs:Class, owl:Class, qb:DataStructureDef-

inition, qb:DataSet, qb:DimensionProperty, qb4o:LevelProperty,

qb4o:Hierarchy, qb4o:HierarchyStep})} (B.1)

P(T) = {p| type(p) ∈ P({rdf:Property, owl:ObjectProperty,

owl:DatatypeProperty, qb4o:LevelAttribute,

qb:MeassureProperty, qb4o:RollupProperty})} (B.2)

3 A Use Case

We create a Semantic Data Warehouse (SDW) by integrating two data sources,
namely, a Danish Agriculture and Business knowledge base and an EU Farm
Subsidy dataset. Both data sources are described below.

Description of Danish Agriculture and Business knowledge base The
Danish Agriculture and Business knowledge base integrates a Danish Agri-
cultural dataset and a Danish Business dataset. The knowledge base can
be queried through the SPARQL endpoint http://extbi.lab.aau.dk:8080/
sparql/. In our use case, we only use the business related information from
this knowledge base and call it the Danish Business dataset (DBD). The rel-
evant portion of the ontology of the knowledge base is illustrated in Figure
B.2. Generally, in an ontology, a concept provides a general description of
the properties and behavior for the similar type of resources; an object prop-
erty relates among the instances of concepts; a data type property is used to
associate the instances of a concept to literals.

We start the description from the concept bus:Owner. This concept con-
tains information about the owners of companies, the type of the owner-
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Fig. B.2: The ontology of the Danish Business dataset. Due to the large number of datatype
properties, they are not included.

ship, and the start date of the company ownership. A company is con-
nected to its owner through the bus:hasOwner property. The bus:Company

concept is related to bus:BusinessFormat and bus:ProductionUnit through
the bus:hasProductionUnit and bus:hasFormat properties. Companies and
their production units have one or more main and secondary activities. Each
company and each production unit has a postal address and an official ad-
dress. Each address is positioned at an address feature, which is in turn
contained within a particular municipality.

Description of the EU subsidy dataset Every year, the European Union
provides subsidies to the farms of its member countries. We collect EU
Farm subsidies for Denmark from https://data.farmsubsidy.org/Old/.
The dataset contains two MS Access database tables: Recipient and Payment.
The Recipient table contains the information of recipients who receive the
subsidies, and the Payment table contains the amount of subsidy given to
the recipients. We create a semantic version of the dataset using SETLPROG
framework [36]. We call it the Subsidy dataset. At first, we manually define
an ontology, to describe the schema of the dataset, and the mappings between
the ontology and datatabase tables. Then, we populate the ontology with the
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Fig. B.3: The ontology of the Subsidy dataset. Due to the large number of datatype properties,
all are not included.

instances of the source database files. Figure B.3 shows the ontology of the
Subsidy dataset.

Example 1. Listing B.1 shows the example instances of (bus:Company) the
Danish Business dataset and (sub:Recipient and sub:Subsidy) the EU Sub-
sidy dataset.

Listing B.1: Example instances of the DBD and the Subsidy dataset.

1 ### Business Dataset

2 PREFIX rdf: <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#>

3 PREFIX bus: <http :// extbi.lab.aau.dk/ontology/business/>

4 PREFIX company: <http :// extbi.lab.aau.dk/ontology/

5 business/Company#>

6 PREFIX activity: <http :// extbi.lab.aau.dk/ontology/

7 business/Activity#>

8 PREFIX businessType: <http :// extbi.lab.aau.dk/ontology/

9 business/BusinessType#>

10 PREFIX owner: <http :// extbi.lab.aau.dk/ontology/

11 business/Owner#>

12 ## Examples of bus:Company instances

13 company :10058996 rdf:type bus:Company;

14 bus:companyId 10058996;

15 bus:name "Regerupgard v/Kim Jonni Larsen";

16 bus:mainActivity activity :11100;

17 bus:secondaryActivity activity :682040;

18 bus:hasFormat businessType:Enkeltmandsvirksomhed:

19 bus:hasOwner owner :4000175029 _10058996;

20 bus:ownerName "Kim Jonni Larsen";

21 bus:officialaddress "Valsomaglevej 117, Ringsted".

22 company :10165164 rdf:type bus:Company;

23 bus:companyId 10165164;

24 bus:name "Idomlund 1 Vindmollelaug I/S";

25 bus:mainActivity activity :351100;

26 bus:hasFormat businessType:Interessentskab;

27 bus:hasOwner owner :4000170495 _10165164;

28 bus:ownerName "Anders Kristian Kristensen";

29 bus:officialaddress "Donskaervej 31,Vemb".

30 ---------------------------------------------------------

31 ---------------------------------------------------------

32 ### Subsidy Dataset

33 PREFIX rdf: <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#>

34 PREFIX sub: <http :// extbi.lab.aau.dk/ontology/subsidy/>

35 PREFIX recipient: <http :// extbi.lab.aau.dk/ontology/

36 subsidy/Recipient#>

37 PREFIX subsidy: <http :// extbi.lab.aau.dk/ontology/

38 subsidy/Subsidy#>

39 ## Example of sub:Recipient instances.

40 recipient :291894 rdf:type sub:Recipient;

41 sub:name "Kristian Kristensen";

42 sub:address "Donskaervej 31,Vemb";

43 sub:municipality "Holstebro";

44 sub:recipientID 291894;

45 sub:zipcode 7570.

46 ## Example of sub:Subsidy instances.
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47 subsidy :10615413 rdf:type sub:Subsidy;

48 sub:paidTo recipient :291894;

49 sub:amountEuro "8928.31";

50 sub:payDate "2010 -05 -25";
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Fig. B.4: The ontology of the MD SDW. Due to the large number, data properties of the dimen-
sions are not shown.

Description of the Semantic Data Warehouse Our goal is to develop an
MD Semantic Data Warehouse (SDW) by integrating the Subsidy and the
DBD datasets. The sub:Recipient concept in the Subsidy dataset contains
the information of recipient id, name, address, etc. From bus:Company in the
DBD, we can extract information of an owner of a company who received
the EU farm subsidies. Therefore, we can integrate both DBD and Subsidy
datasets. The ontology of the MD SDW to store EU subsidy information
corresponding to the Danish companies is shown in Figure B.4, where the
concept sdw:Subsidy represents the facts of the SDW. The SDW has two
dimensions, namely sdw:Benificiary and sdw:Time. The dimensions are
shown by a box with dotted-line in Figure B.4. Here, each level of the di-
mensions are represented by a concept, and the connections among levels are
represented through object properties.
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4 Overview of the Integration Process
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Fig. B.5: The overall semantic data integration process. Here, the round-corner rectangle, data
stores, dotted boxes, ellipses, and arrows indicate the tasks, semantic data sources, the phases of
the ETL process, ETL operations and flow directions.

In this paper, we assume that all given data sources are semantically de-
fined and the goal is to develop an SDW. The first step of building an SDW is
to design its TBox. There are two approaches to design the TBox of an SDW,
namely source-driven and demand-driven [54]. In the former, the SDW’s
TBox is obtained by analyzing the sources. Here, ontology alignment tech-
niques [35] can be used to semi-automatically define the SDW. Then, design-
ers can identify the multidimensional constructs from the integrated TBox
and annotate them with the QB4OLAP vocabulary. In the latter, SDW design-
ers first identify and analyze the needs of business users as well as decision
makers, and based on those requirements, they define the target TBox with
multidimensional semantics using the QB4OLAP vocabulary. How to design
a Target TBox is orthogonal to our approach. Here, we merely provide an
interface to facilitate creating it regardless of whatever approach was used to
design it.

After creating the TBox of the SDW, the next step is to create the ETL
process. ETL is the backbone process by which data are entered into the
SDW and the main focus of this paper. The ETL process is composed of
three phases: extraction, transformation, and load. A phase is a sub-process
of the ETL which provides a meaningful output that can be fed to the next
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phase as an input. Each phase includes a set of operations. The extraction
operations extract data from the data sources and make it available for further
processing as intermediate results. The transformation operations are applied
on intermediate results, while the load operations load the transformed data
into the DW. The intermediate results can be either materialized in a data
staging area or kept in memory. A data staging area (temporary) persists
data for cleansing, transforming, and future use. It may also prevents the
loss of extracted or transformed data in case of the failure of the loading
process.

As we want to separate the metadata needed to create ETL flows from
their execution, we introduce a two-layered integration process, see Figure B.5.
In the Definition Layer, a single source of metadata truth is defined. This in-
cludes: the target SDW, semantic representation of the source schemas, and
a source to target mapping file. Relevantly, the metadata created represents
the ETL flow at the schema level. In the Execution Layer, ETL flows based
on high-level operations are created. This layer executes the ETL flows for
instances (i.e., at the data level). Importantly, each ETL operation will be fed
the metadata created to parameterize themselves automatically. Additionally,
the Execution Layer automatically checks the correctness of the flow created,
by checking the compatibility of the output and input of consecutive opera-
tors. Overall the data integration process requires the following four steps in
the detailed order.

1. Defining the target TBox with MD semantics using QB and QB4OLAP
constructs. In addition, the TBox can be enriched with RDFS/OWL
classes and properties. However, we do not validate the correctness of
the added semantics beyond the MD model. This step is done at the
Definition Layer.

2. Extracting source TBoxes from the given sources. This step is done at
the Definition Layer.

3. Creating mappings among source and target constructs to characterize
ETL flows. The created mappings are stored using the S2TMAP vocab-
ulary proposed. This step is also done at the Definition Layer.

4. Populating the ABox of the SDW implementing ETL flows. This step is
done at the Execution Layer.

Figure B.5 illustrates the whole integration process and how the constructs
of each layer communicate with each other. Here, we introduce two types of
constructs: tasks and operations. On the one hand, a task requires developer
interactions with the interface of the system to produce an output. Intuitively,
one may consider the tasks output as the required metadata to automate op-
erations. On the other hand, from the given metadata, an operation produces
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an output. The Definition Layer consists of two tasks (TargetTBoxDefinition
and SourceToTargetMapping) and one operation (TBoxExtraction). These two
tasks respectively address the first and third steps of the integration pro-
cess mentioned above, while the TBoxExtraction operation addresses the sec-
ond step. This is the only operation shared by both layers (see the input of
SourceToTargetMapping in Figure B.5). Therefore, the Definition Layer creates
three types of metadata: target TBox (created by TargetTBoxDefinition), source
TBoxes (create by TBoxExtraction), and source-to-target mappings (created by
SourceToTargetMapping). The Execution Layer covers the fourth step of the
integration process and includes a set of operations to create data flows from
the sources to the target. Figure B.5 shows constructs (i.e., the Mediatory
Constructs) used by the ETL task/operations to communicate between them.
These mediatory constructs store the required metadata created to automate
the process. In the figure, Extop, Transop, and Loadop are the set of extraction,
transformation, and load operations used to create the flows at the instance
level. The ETL data flows created in the Execution Layer are automatically
validated by checking the compatibility of the operations. Precisely, if an op-
eration O1’s output is accepted by O2, then we say O2 is compatible with O1
and express it as O1 → O2.

Since traditional ETL tools (e.g., PDI) do not have ETL operations sup-
porting the creation of an SDW, we propose a set of ETL operations for each
phase of the ETL to process semantic data sources. The operations are cat-
egorized based on their functionality. Table B.1 summarizes each operation
with its corresponding category name, compatible successors, and its objec-
tives. Next, we present the details of each construct of the layers presented
in Figure B.5.

5 The Definition Layer

This layer contains two tasks (TargetTBoxDefinition and Source2TargetMapping)
and one operation TBoxExtraction. The semantics of the tasks are described
below.

TargetTBoxDefinition The objective of this task is to define a target TBox
with MD semantics. There are two main components of the MD structure:
dimensions and cubes. To formally define the schema of these components,
we use the notation from [9] with some modifications.

Definition 1. A dimension schema can formally be defined as a 5-tuple
(Dname,L,→,H,FR) where (a) Dname is the name of the dimension; (b) L
is a set of level tuples (Lname, LA) such that Lname is the name of a level and
LA is the set of attributes describing the level Lname. There is a unique bottom
level (the finest granularity level) Lb, and unique top level (the coarsest one)
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Operation
Category

Operation
Name

Compatible
Successors

Objectives

Extraction GraphExtractor

GraphExtractor,
TBoxExtraction,
TransformationOnLiteral,
JoinTransformation,
LevelMemberGenerator,
ObservationGenerator,
DataChangeDetector,
UpdateLevel,
Loader

It retrieves an RDF graph in
terms of RDF triples from
semantic data sources.

Transformation

TBoxExtraction
It derives a TBox from a
given ABox.

TransformationOnLiteral

TransformationOnLiteral,
JoinTransformation,
LevelMemberGenerator,
ObservationGenerator,
Loader

It transforms the source data
according to the expressions
described in the source-to-target
mapping.

JoinTransformation

TransformationOnLiteral,
JoinTransformation,
LevelMemberGenerator,
ObservationGenerator,
Loader

It joins two data sources and
transforms the data according to
the expressions described in the
source-to-target mapping.

LevelMemberGenerator
(QB4OLAP construct)

Loader
It populates levels of the target
with the input data.

ObservationGenerator
(QB4OLAP construct)

Loader
It populates facts of the target
with the input data.

DataChangeDetector
LevelMemberGenerator,
UpdateLevel

It returns the differences between
the new source dataset and the old
one.

UpdateLevel Loader
It reflects the changes occurred in
the source data to the target level.

MaterializeInference Loader
It enriches the SDW by material-
izing the inferred triples.

ExternalLinking Loader
It links internal resources with
external KBs.

Load Loader It loads the data into the SDW.

Table B.1: Summary of the ETL operations.
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denoted LAll , such that (LAll , ∅) ∈ L; (c) → is a strict partial order on L.
The poset (L,→) can be represented as a directed graph where each node
represents an aggregation level L ∈ L, and every pair of levels (Li, Lj) in the
poset are represented by a directed edge from the finer granularity level Li
to the coarser granularity level Lj, which means that Li rolls up to Lj or Lj
drills down to Li. Each distinct path between the Lb and LAll is called a hier-
archy; (d) H is a set of hierarchy tuples (Hname, HL) where Hname is the name
of a hierarchy and HL ⊆ L is the set of levels composing the hierarchy; (e)
FR is a set of roll-up relations. A roll-up relation is a mathematical relation
that relates between the members of two adjacent levels in the hierarchy, i.e,
RUP(Li ,Lj)

∈ FR = {(lmi, lmj) | lmi ∈ Li and lmj ∈ Lj and (Li, Lj) ∈ (L,→)}.

Example 2. Figure B.4 shows that our use case MD SDW has two dimensions:
sdw:Time and sdw:Ben

eficiary. The dimension schema of sdw:Time is formally defined as follows:

1. Dname = sdw:Time,

2. L = {(sdw:Day, 〈sdw:dayId, sdw:dayName〉), (sdw:Month, 〈sdw:monthId,
sdw:monthName〉), (sdw:Year, 〈sdw:yearId, sdw:yearName〉)},

3. (L,→) = {(sdw:Day, sdw:Month), (sdw:Month, sdw:Year),
(sdw:Year, sdw:All)},

4. H = {sdw:TimeHierarchy, {sdw:Day, sdw:Month, sdw:Year, sdw:All}},
and

5. FR = {
RUP(sdw:Day,sdw:Month) = sdw:payMonth,
RUP(sdw:Month,sdw:Year) = sdw:payYear,
RUP(sdw:Year,sdw:All) = sdw:payAll}.

Definition 2. A cube schema is a tuple (Cname,Dlb ,M, FA), where (a) Cname
is the name of the cube; (b) Dlb is a finite set of bottom levels of dimensions,
with |Dlb | = n, corresponding to n bottom levels of n dimension schemas
different from each other; (c) M is a finite set of attributes called measures,
and each measure m ∈ M has an associated domain Dom(m); and (d) FA is
a mathematical relation that relates each measure to one or more aggregate
function in A = {SUM, MAX, AVG, MIN, COUNT.}, i.e., FA ⊆M×A.

Example 3. The cube schema of our use case, shown in Figure B.4, is formally
defined as follows:

1. Cname = sdw:Subsidy,

2. DL = {sdw:Day, sdw:Recipient},
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3. M = {sdw:amounteuro}, and

4. FA = {(sdw:amounteuro, SUM), (sdw:amounteuro, AVG)}).

In Section 2.3, we discussed how the QB4OLAP vocabulary is used to
define different constructs of an SDW. Listing B.2 represents the sdw:Time

dimension and sdw:Subsidy cube in QB4OLAP.

Listing B.2: QB4OLAP representation of sdw:Time dimension and sdw:Subsidy cube.

1 PREFIX sdw: <http :// extbi.lab.aau.dk/ontology/sdw/>

2 PREFIX rdf: http :// www.w3.org /1999/02/22 -rdf -syntax -ns#

3 PREFIX rdfs: http ://www.w3.org /2000/01/ rdf -schema#

4 PREFIX qb: <http :// purl.org/linked -data/cube#>

5 PREFIX qb4o: <http :// purl.org/qb4olap/cubes#>

6
7 ## Time Dimension

8 sdw:Time rdf:type qb:DimensionProperty;

9 rdfs:label "Time Dimension";

10 qb4o:hasHierarcy sdw:TimeHierarchy.

11
12 # Dimension Hierarchies

13 sdw:TimeHierarchy rdf:type qb4o:Hierarchy;

14 rdfs:label "Time Hierarchy";

15 qb4o:inDimension sdw:Time;

16 qb4o:hasLevel sdw:Day , sdw:Month , sdw:Year.

17
18 # Hierarchy levels

19 sdw:Day rdf:type qb4o:LevelProperty;

20 rdfs:label "Day Level";

21 qb4o:hasAttribute sdw:dayId , sdw:dayName.

22 sdw:Month rdf:type qb4o:LevelProperty;

23 rdfs:label "Month Level";

24 qb4o:hasAttribute sdw:monthId , sdw:monthName.

25 sdw:Year rdf:type qb4o:LevelProperty;

26 rdfs:label "Year Level";

27 qb4o:hasAttribute sdw:yearId , sdw:yearName.

28 sdw:All rdf:type qb4o:LevelProperty;

29 rdfs:label "ALL".

30
31 # Level attributes

32 sdw:dayId rdf:type qb4o:LevelAttribute;

33 rdfs:label "day ID";

34 qb4o:updateType qb4o:Type2;

35 rdfs:range xsd:String.

36 sdw:monthId rdf:type qb4o:LevelAttribute;

37 rdfs:label "Month ID";

38 qb4o:updateType qb4o:Type2;

39 rdfs:range xsd:String.

40 sdw:yearId rdf:type qb4o:LevelAttribute;

41 rdfs:label "year ID";

42 qb4o:updateType qb4o:Type2;

43 rdfs:range xsd:String.

44 sdw:dayName rdf:type qb4o:LevelAttribute;

45 rdfs:label "day Name";

46 qb4o:updateType qb4o:Type1;

47 rdfs:range xsd:String.

48 sdw:monthName rdf:type qb4o:LevelAttribute;

49 rdfs:label "Month Name";

50 qb4o:updateType qb4o:Type1;

51 rdfs:range xsd:String.

52 sdw:yearName rdf:type qb4o:LevelAttribute;

53 rdfs:label "year Name";

54 qb4o:updateType qb4o:Type1;

55 rdfs:range xsd:String.

56
57 #rollup relations

58 sdw:payMonth rdf:type qb4o:RollupProperty.

59 sdw:payYear rdf:type qb4o:RollupProperty.

60 sdw:payAll rdf:type qb4o:RollupProperty.

61
62 # Hierarchy Steps

63 _:ht1 rdf:type qb4o:HierarchyStep;

64 qb4o:inHierarchy sdw:TimeHierarchy;

65 qb4o:childLevel sdw:Day;

66 qb4o:parentLevel sdw:Month;

67 qb4o:pcCardinality qb4o:OneToMany;

68 qb4o:rollup sdw:payMonth.

69 _:ht2 rdf:type qb4o:HierarchyStep;
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70 qb4o:inHierarchy sdw:TimeHierarchy;

71 qb4o:childLevel sdw:Month;

72 qb4o:parentLevel sdw:Year;

73 qb4o:pcCardinality qb4o:OneToMany;

74 qb4o:rollup sdw:payYear.

75 _:ht2 rdf:type qb4o:HierarchyStep;

76 qb4o:inHierarchy sdw:TimeHierarchy;

77 qb4o:childLevel sdw:Year;

78 qb4o:parentLevel sdw:All;

79 qb4o:pcCardinality qb4o:OneToMany;

80 qb4o:rollup sdw:payAll.

81
82 ## Subsidy Cube

83 sdw:amounteuro rdf:type qb:MeasureProperty;

84 rdfs:label "subsidy amount"; rdfs:range xsd:Double.

85 sdw:SubsidyStructure rdf:type qb:DataStructureDefinition;

86 qb:component[qb4o:level sdw:Recipient ];

87 qb:component[qb4o:level sdw:Day];

88 qb:component[qb:measure sdw:amounteuro;

89 qb4o:aggregateFunction qb4o:sum , qb4o:avg].

90 # Subsidy Dataset

91 sdw:SubsidyMD rdf:type qb:Dataset;

92 rdfs:label "Subsidy dataset";

93 qb:structure sdw:SubsidyStructure;

TBoxExtraction After defining a target TBox, the next step is to extract
source TBoxes. Typically, in a semantic source, the TBox and ABox of the
source are provided. Therefore, no external extraction task/operation is re-
quired. However, sometimes, the source contains only the ABox, and no
TBox. In that scenario, an extraction process is required to derive a TBox
from the ABox. We formally define the process as follows.

Definition 3. The TBox extraction operation from a given ABox, ABox is de-
fined as fABox2TBox(ABox) → TBox. The derived TBox is defined in terms
of the following TBox constructs: a set of concepts C, a set of concept tax-
onomies H, a set of properties P, and the sets of property domains D and
ranges R. The following steps describe the process to derive each TBox ele-
ment for TBox.

1. C: By checking the unique objects of the triples in ABox where rdf:type

is used as a predicate, C is identified.

2. H: The taxonomies among concepts are identified by checking the in-
stances they share among themselves. Let C1 and C2 be two concepts.
One of the following taxonomic relationships holds between them: 1)
if C1 contains all instances of C2, then we say C2 is a subclass of C1 (C2
rdfs:subClassOf C1); 2) if they do not share any instances, they are
disjoint (C1 owl:disjointWith C2); and 3) if C1 and C2 are both a sub-
class of each other, then they are equivalent (C1 owl:equivalentClass

C2).

3. P, D, R: By checking the unique predicates of the triples, P is derived.
A property p ∈ P can relate resources with either resources or literals.
If the objects of the triples where p is used as predicates are IRIs, then
p is an object property; the domain of p is the set of the types of the
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subjects of those triples, and the range of p is the types of the objects of
those triples. If the objects of the triples where p is used as predicates
are literals, then p is a datatype property; the domain of p is the set of
types the subjects of those triples, and the range is the set of data types
of the literals.

SourceToTargetMapping Once the target and source TBoxes are defined, the
next task is to characterize the ETL flows at the Definition Layer by creating
source-to-target mappings. Because of the heterogeneous nature of source
data, mappings among sources and the target should be done at the TBox
level. In principle, mappings are constructed between sources and the tar-
get; however, since mappings can get very complicated, we allow to create
a sequence of SourceToTargetMapping definitions whose subsequent input is
generated by the preceding operation. The communication between these
operations is by means of a materialized intermediate mapping definition
and its meant to facilitate the creation of very complex flows (i.e., mappings)
between source and target.

A source-to-target mapping is constructed between a source and a tar-
get TBox, and it consists of a set of concept-mappings. A concept-mapping
defines i) a relationship (equivalence, subsumption, supersumption, or join)
between a source and the corresponding target concept, ii) which source in-
stances are mapped (either all or a subset defined by a filter condition), iii)
the rule to create the IRI for target concept instances, iv) the source and tar-
get ABox locations, v) the common properties between two concepts if their
relationship is join, vi) the sequence of ETL operations required to process
the concept-mapping, and vii) a set of property-mappings for each property
having the target concept as a domain. A property-mapping defines how a
target property is mapped from either a source property or an expression
over properties. Definition 4 formally defines a source-to-target mapping.

Definition 4. Let TS and TT be a source TBox and a target TBox. We formally
define a source-to-target mapping as a set of concept-mappings, wherein
each concept-mapping is defined with a 10-tuple formalizing the elements
discussed above (i-vii):

SourceToTargetMapping(TS, TT) = {(cs, relation, ct, loccs , locct , mapIns,
pmap, tiniri, pcom, op)}.

The semantics of each concept-mapping tuple is given below.

- cs ∈ C(TS) and eti ∈ C(TT) are a source and a target concept respec-
tively, where C(T) defined in Equation B.1.

- relation ∈ {≡,v,w, ./} represents the relationship between the source
and target concept. The relationship can be either equivalence (esi ≡ eti ),
supersumption (esi w eti ), subsumption (esi v eti ), or join (esi ./ eti ). A
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join relationship exists between two sources when there is a need to
populate a target element (a level, a (QB) dataset, or a concept) from
multiple sources. Since a concept-mapping represents a binary rela-
tionship, to join n sources, an ETL process requires n− 1 join concept-
mappings. A concept-mapping with a join relationship requires two
sources (i.e., the concept-mapping source and target concepts) as input
and updates the target concept according to the join result. Thus, for
multi-way joins, the output of a concept-mapping is a source concept of
the next concept-mapping. Note that, a join relationship can be natural
join (./), right-outer join (./ ), or left-outer join ( ./).

- loccs and locct are the locations of source and target concept ABoxes.

- mapIns ∈ ({All} ∪ FilterCondition) indicates which instances of the
source concept to use to populate the target concept; it can either be
all source instances or a subset of source instances defined by a filter
condition.

- pmap = {(pcs , pct)} is a set of property-mappings across the properties
of cs and ct. pcs can be a property from property(cs) or an expres-
sion over the elements of exp(property(cs) ∪ property(ct)) and pct is a
property from property(ct). Here, property(c) returns the union of the
set of properties which are connected with concept c either using the
rdfs:domain or qb4olap:inLevel properties, or the set of rollup prop-
erties related to c. An expression allows to apply arithmetic operations
and/or some high-level functions for manipulating strings, data types,
numbers, dates defined as standard SPARQL functions in [21] over the
properties.

- tiniri indicates how the unique IRIs of target instances are generated.
The IRIs can be either the same as the source instances, or created using
a property of cs, or using an expression from exp(property(cs)), or in
an incremental way.

- pcom = {(scomi, tcomi)|scomi ∈ (property(esi ), tcomi ∈ property(eti ))}
is a set of common property pairs. In each pair, the first element is a
source property and the second one is a target property. pcom is required
when the relationship between the source and target concept is a join.

- op is an ETL operation or a sequence of ETL operations required to
implements the mapping element in the ABox level. When op is a se-
quence of ETL operations, the location of the input ABox location for
the first operation in the sequence is loccs ; the subsequent operations in
the sequence take the output of their preceding operation as the input
ABox. This generation of intermediate results is automatically handled
by the automatic ETL generation process described in Section 7.
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In principle, an SDW is populated from multiple sources, and a source-
to-target ETL flow requires more than one intermediate concept-mapping
definitions. Therefore, a complete ETL process requires a set of source-to-
target mappings. We say a mapping file is a set of source-to-target mappings.
Definition 5 formally defines a mapping file.

Definition 5. Mapping f ile =
⋃

i∈S SourceToTargetMapping(Ti, Tj), where S
is the set of all sources and intermediate results schemas, and j the set of all
intermediate results and the target schemas.
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Fig. B.6: Graphical overview of key terms and their relationship to the S2TMAP vocabulary.

To implement the source-to-target mappings formally defined above, we
propose an OWL-based mapping vocabulary: Source-to-Target Mapping
(S2TMAP). Figure B.6 depicts the mapping vocabulary. A mapping between a
source and a target TBox is represented as an instance of the class map:MapDat-
aset. The source and target TBoxes are defined by instantiating map:TBox,
and these TBoxes are connected to the mapping dataset using the proper-
ties map:sourceTBox and map:targetTBox, respectively. A concept-mapping
(an instance of map:ConceptMapping) is used to map between a source and
a target concepts (instances of map:Concept). A concept-mapping is con-
nected to a mapping dataset using the map:mapDataset property. The source
and target ABox locations of the concept-mapping are defined through the
map:sourceLocation and map:targetLocation properties. The relationship
between the concepts can be either rdfs:subClassOf, or map:join, or owl:e-
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quivalentClass, and it is connected to the concept-mapping via the map:rel-
ation property. The sequence of ETL operations, required to implement the
concept-mapping at the ABox level, is defined through an RDF sequence. To
express joins, the source and target concept in a concept-mapping represent
the concepts to be joined, and the join result is stored in the target concept as
an intermediate result. In a concept-mapping, we, via map:commonProperty,
identify the join attributes with a blank node (instance of map:CommonProperty)
that has, in turn, two properties identifying the source and target join at-
tributes; i.e., map:commonSourceProperty and map:commonTargetProperty.
Since a join can be defined on multiple attributes, we may have multiple
blank node definitions. The type of target instance IRIs is stated using the
property map:TargetInstanceIRIType. If the type is either map:Property or
map:Expression, then the property or expression, to be used to generate the
IRIs, is given by map:targetInstanceIRIvalue.

To map at the property stage, a property-mapping (an instance of map:Pro-
pertyMapping) is used. The association between a property-mapping and a
concept-mapping is defined by map:conceptMapping. The target property of
the property-mapping is stated using map:targetProperty, and that target
property can be mapped with either a source property or an expression. The
source type of target property is determined through map:sourceType4Targe-

tProperty property, and the value is defined by map:source4TargetPropert-

yValue.

Example 4. Listing B.3 represents a snippet of the mapping file of our use
case MD SDW and the source datasets. In the Execution Layer, we show
how the different segments of this mapping file will be used by each ETL
operation.

Listing B.3: An S2TMAP representation of the mapping file of our use case.

1 PREFIX onto: <http :// extbi.lab.aau.dk/ontology/>

2 PREFIX bus: <http :// extbi.lab.aau.dk/ontology/business/>

3 PREFIX sub: <http :// extbi.lab.aau.dk/ontology/subsidy/>

4 PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

5 PREFIX rdfs: <http ://www.w3.org /2000/01/ rdf -schema#>

6 PREFIX map: <http :// extbi.lab.aau.dk/ontology/s2tmap/>

7 PREFIX sdw: <http :// extbi.lab.aau.dk/sdw >

8 PREFIX : <http :// extbi.lab.aau.dk/ontology/s2map/example#>

9 ## MapDataset

10 :mapDataset1 rdf:type map:Dataset;

11 rdfs:label "Map -dataset for business and subsidy ontology";

12 map:sourceTBox "/map/businessTBox.ttl";

13 map:targetTBox "/map/subsidyTBox.ttl".

14 :mapDataset2 rdf:type map:Dataset;

15 rdfs:label "Map -dataset for subsidy and subsidyMD ontology";

16 map:sourceTBox "/map/subsidyTBox.ttl";

17 map:targetTBox "/map/subsidyMDTBox.ttl".

18 ## ConceptMapping: Joining Recipient and Company

19 :Recipient_Company rdf:type map:ConceptMapping;

20 rdfs:label "join -transformation between

21 bus:Company and sub:Recipient";

22 map:mapDataset :mapDataset1;

23 map:sourceConcept bus:Company;

24 map:targetConcept sub:Recipient;

25 map:sourceLocation "/map/dbd.nt";

26 map:targetLocation "/map/subsidy.nt";

27 map:relation map:rightOuterjoin;

28 map:mappedInstance "All";
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29 map:targetInstanceIRIUniqueValueType map:SameAsSourceIRI;

30 map:operation _:opSeq;

31 map:commonProperty _:cp1 , _:cp2.

32 _:opSeq rdf:type rdf:Seq;

33 rdf:_1 map:joinTransformation.

34 _:cp1 map:sourceCommonProperty bus:ownerName;

35 map:targetCommonProperty sub:name.

36 _:cp2 map:sourceCommonProperty bus:officialAddress;

37 map:targetCommonProperty sub:address.

38
39 #concept -mapping: Populating the sdw:Recipient level

40 :Recipient_RecipientMD rdf:type map:ConceptMapping;

41 rdfs:label "Level member generation";

42 map:mapDataset :mapDataset2;

43 map:sourceConcept sub:Recipient;

44 map:targetConcept sdw:Recipient;

45 map:sourceLocation "/map/subsidy.nt";

46 map:targetLocation "/map/sdw";

47 map:relation owl:equivalentClass;

48 map:mappedInstance "All";

49 map:targetInstanceIRIValueType map:Property;

50 map:targetInstanceIRIValue sub:recipientID;

51 map:operation _:opSeq1.

52 _:opSeq1 rdf:type rdf:Seq;

53 rdf:_1 map:LevelMemberGenerator;

54 rdf:_2 map:Loader.

55 #concept -mapping: Populating the cube dataset

56 :Subsidy_SubsidyMD rdf:type map:ConceptMapping;

57 rdfs:label "Observation generation";

58 map:mapDataset :mapDataset2;

59 map:sourceConcept sub:Subsidy;

60 map:targetConcept sdw:SubsidyMD;

61 map:sourceLocation "/map/subsidy.nt";

62 map:targetLocation "/map/sdw";

63 map:relation owl:equivalentClass;

64 map:mappedInstance "All";

65 map:targetInstanceIRIUniqueValueType map:Incremental;

66 map:operation _:opSeq2.

67 _:opSeq2 rdf:type rdf:Seq;

68 rdf:_1 map:GraphExtractor;

69 rdf:_2 map:TransformationOnLiteral;

70 rdf:_3 map:ObservationGenerator;

71 rdf:_4 map:Loader.

72 ## property -mapping under :Recipient_Company

73 :companyID_companyID rdf:type map:PropertyMapping;

74 rdfs:label "property -mapping for companyID";

75 map:conceptMapping :Recipient_Company;

76 map:targetProperty sub:companyId;

77 map:sourceType4TargetPropertyValue map:Property;

78 map:source4TargetPropertyValue bus:companyId.

79 :businessType_businessType rdf:type map:PropertyMapping;

80 rdfs:label "property -mapping for business type";

81 map:conceptMapping :Recipient_Company;

82 map:targetProperty sub:businessType;

83 map:sourceType4TargetPropertyValue map:Property;

84 map:source4TargetPropertyValue bus:hasFormat.

85 :address_city rdf:type map:PropertyMapping;

86 rdfs:label "property -mapping for city";

87 map:conceptMapping :Recipient_Company;

88 map:targetProperty sub:cityId;

89 map:sourceType4TargetPropertyValue map:Expression;

90 map:source4TargetPropertyValue STRAFTER(sub:address ,",").

91 :name_name rdf:type map:PropertyMapping;

92 rdfs:label "property -mapping for name";

93 map:conceptMapping :Recipient_Company;

94 map:targetProperty sub:name;

95 map:sourceType4TargetPropertyValue map:Property;

96 map:source4TargetPropertyValue sub:name.

97 # property -mappings under :Recipient_RecipientMD

98 :companyId_company rdf:type map:PropertyMapping;

99 rdfs:label "property -mapping for companyId";

100 map:conceptMapping :Recipient_RecipientMD;

101 map:targetProperty sdw:hasCompany;

102 map:sourceType4TargetPropertyValue map:Property;

103 map:source4TargetPropertyValue sub:companyId;

104 :cityId_city rdf:type map:PropertyMapping;

105 rdfs:label "property -mapping for cityId";

106 map:conceptMapping :Recipient_RecipientMD;

107 map:targetProperty sdw:inCity;

108 map:sourceType4TargetPropertyValue map:Property;

109 map:source4TargetPropertyValue sub:city;

110 :name_name rdf:type map:PropertyMapping;

111 rdfs:label "property -mapping for name";

112 map:conceptMapping :Recipient_RecipientMD;

113 map:targetProperty sdw:name;
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114 map:sourceType4TargetPropertyValue map:Property;

115 map:source4TargetPropertyValue sub:name

116 # property -mappings under :Subsidy_SubsidyMD

117 :Recipient_recipientId rdf:type map:PropertyMapping;

118 rdfs:label "property -mapping for recipient in sdw:Subsidy";

119 map:conceptMapping :Subsidy_SubsidyMD;

120 map:targetProperty sdw:Recipient;

121 map:sourceType4TargetPropertyValue map:Property;

122 map:source4TargetPropertyValue sub:paidTo.

123 :hasPayDate_Day rdf:type map:PropertyMapping;

124 rdfs:label "property -mapping for Day of sdw:SubsidyMD";

125 map:conceptMapping :Subsidy_SubsidyMD;

126 map:targetProperty sdw:Day;

127 map:sourceType4TargetPropertyValue map:Expression;

128 map:source4TargetPropertyValue

129 "CONCAT(STR(DAY(sub:payDate)),"/",

130 STR(MONTH(sub:payDate)),"/",STR(YEAR(sub:payDate )))".

131 :amountEuro_amountEuro rdf:type map:PropertyMapping;

132 rdfs:label "property -mapping for amountEuro measure";

133 map:conceptMapping :Subsidy_SubsidyMD;

134 map:targetProperty sdw:amountEuro;

135 map:sourceType4TargetPropertyValue map:Property;

136 map:source4TargetPropertyValue sub:amountEuro.

:Subsidy_
SubsidyMD

/map/
subsidy.nt

/map/
dbd.nt

/map/subsidy.nt

/map/sdw

 Sources

SDW

/map/temp.nt (IR)

JoinTransformation

LevelMemberGenerator

Loader

/map/subsidy.nt

/map/temp1.nt (IR)

/map/temp2.nt (IR)

TransformationOnLiteral

ObservationGenerator

Loader

GraphExtractor

:Recipient_
Company

:Recipient_
RecipientMD

DAG

Fig. B.7: The conceptual presentation of Listing B.3.

A mapping file is a Directed Acyclic Graph (DAG). Figure B.7 shows the
DAG representation of Listing B.3. In this figure, the sources, intermediate
results and the SDW are denoted as nodes of the DAG and edges of the DAG
represent the operations. The dotted-lines shows the parts of the ETL covered
by concept-mappings, represented by a rectangle.

6 The Execution Layer

In the Execution Layer, ETL data flows are constructed to populate an MD
SDW. Table B.1 summarizes the set of ETL operations. In the following,
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we present an overview of each operation category-wise. Here, we give the
intuitions of the ETL operations in terms of definitions and examples. To
reduce the complexity and length of the paper, we place the semantics of the
ETL operations in Section A. In this section, we present the signature of each
operation. That is, the main inputs required to execute the operation and the
produced outcome. As an ETL data flow is a sequence of operations and an
operation in the sequence communicates with its preceding and subsequent
operations by means of materialized intermediate results, all the operations
presented here have side-effects.

Developers can use either of the two following options: (i) The recom-
mended option is that given a TBox construct aConstruct (a concept, a level, or
a QB dataset) and a mapping file aMappings generated in the Definition Layer,
the automatic ETL execution flow generation process will automatically ex-
tract the values for operations’ parameters from aMappings (see Section 7 for
a detailed explanation of the automatic ETL execution flow generation pro-
cess). (ii) They can manually set input parameters at the operation level. In
this section, we follow the following order to present each operation: 1) we
first give a high-level definition of the operation; 2) then, we define how the
automatic ETL execution flow generation process parameterizes the opera-
tion from the mapping file, and 3) finally, we present an example showing
how developers can manually parameterize the operation. When introducing
the operations and referring to its automatic parametrization, we will refer to
aMappings and aConstruct as defined here. Note that each operation is bound
to exactly one concept-mapping at a time in the mapping file (discussed in
Section 7).

6.1 Extraction Operations

Extraction is process of data retrieval from the sources. Here, we introduce
two extraction operations for semantic sources: (i) GraphExtractor - to for-
m/extract an RDF graph from a semantic source and (ii) TBoxExtraction - to
derive a TBox from a semantic source as described in Section 5. As such,
TBoxExtraction is the only operation in the Execution Layer generating meta-
data stored in the Mediatory Constructs (see Figure B.5).

GraphExtractor(Q, G, outputPattern, tABox) Since the data integration pro-
cess proposed in this paper uses RDF as the canonical model, we extract/-
generate RDF triples from the sources with this operation. GraphExtractor is
functionally equivalent to SPARQL CONSTRUCT queries [34].

If the ETL execution flow is generated automatically, the automatic ETL
execution flow generation process first identifies the concept-mapping cm

from aMappings where aConstruct appears (i.e., in aMapping, cm
map:targetConcept−−−−−−−−−−→
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aConstruct) and the operation to process cm is GraphExtractor (i.e., GraphEx-
tractor is an element in the operation sequence defined by the map:operation

property). Then, it parametrizes GraphExtractor as follows: 1) G is the loca-
tion of the source ABox defined by the property map:sourceLocation of cm;
2) Q and outputPattern are internally built based on the map:mappedInstance

property, which defines whether all instances (defined by "All") or a subset
of the instances (defined by a filter condition) will be extracted; 3) tABox is
the location of target ABox defined by the property map:targetLocation.
A developer can also manually set the parameters. From the given inputs,
GraphExtractor operation performs a pattern matching operation over the
given source G (i.e., finds a map function binding the variables in query
pattern Q to constants in G), and then, for each binding, it creates triples ac-
cording to the triple templates in outputPattern. Finally, the operation stores
the output in the path tABox.

Example 5. Listing B.1 shows the example instances of the Danish Business
Dataset (DBD). To extract all instances of bus:Company from the dataset, we
use the GraphExtractor(Q, G, outputPattern, tABox) operation, where

1. Q=((?ins,rdf:type,bus:Company) AND (?ins,?p,?v)),6

2. G="/map/dbd.ttl",

3. outputPattern= (?ins,?p,?v),

4. tABox="/map/com.ttl"7.

Listing B.4 shows the output of this operation.

Listing B.4: Example of GraphExtractor.

1 company :10058996 rdf:type bus:Company;

2 bus:name "Regerupgard v/Kim Jonni Larsen";

3 bus:mainActivity activity :11100;

4 bus:secondaryActivity activity :682040;

5 bus:hasFormat businessType:Enkeltmandsvirksomhed:

6 bus:hasOwner owner :4000175029 _10058996;

7 bus:ownerName "Kim Jonni Larsen";

8 bus:address "Valsomaglevej 117, Ringsted".

9 company :10165164 rdf:type bus:Company;

10 bus:name "Idomlund 1 Vindmollelaug I/S";

11 bus:mainActivity activity :351100;

12 bus:hasFormat businessType:Interessentskab;

13 bus:hasOwner owner :4000170495 _10165164;

14 bus:ownerName "Anders Kristian Kristensen";

15 bus:address "Donskaervej 31,Vemb".

TBoxExtraction is already described in Section 5, therefore, we do not repeat
it here.

6To make it easily distinguishable, here, we use comma instead of space to separate the
components of a triple pattern and an RDF triple.

7We present the examples in Turtle format for reducing the space and better understanding.
In practice, our system prefers N-Triples format to support scalability.
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6.2 Transformation Operations

Transformation operations transform the extracted data according to the se-
mantics of the SDW. Here, we define the following semantic-aware ETL trans-
formation operations: TransformationOnLiteral, JoinTransformation, LevelMem-
berGenerator, ObservationGenerator, ChangedDataCapture, UpdateLevel, External
linking, and MaterializeInference. The following describe each operation.

TransformationOnLiteral(sConstruct, tConstruct, sTBox, sABox propertyMap-
pings, tABox) As described in the SourceToTargetMapping task, a property
(in a property-mapping) of a target construct (i.e., a level, a QB dataset, or
a concept) can be mapped to either a source concept property or an expres-
sion over the source properties. An expression allows arithmetic operations,
datatype (string, number, and date) conversion and processing functions, and
group functions (sum, avg, max, min, count) as defined in SPARQL [21].
This operation generates the instances of the target construct by resolving
the source expressions mapped to its properties.

If the ETL execution flow is generated automatically, the automatic ETL
execution flow generation process first identifies the concept-mapping cm
from aMappings, where aConstruct appears and the operation to process cm is
TransformationOnLiteral. Then, the process parametrizes TransformationOnLit-
eral as follows: 1) sConstruct and tConstruct are defined by map:sourceConcept

and map:targetConcept; 2) sTBox is the target TBox of cm’s map-dataset,
defined by the property map:sourceTBox; 3) sABox is the location of the
source ABox defined by map:sourceLocation; 3) propertyMappings is the set
of property-mappings defined under cm; 4) tABox is the location of the tar-
get ABox defined by map:targetLocation. A developer can also manually
set the parameters. From the given inputs, this operation transforms (or di-
rectly returns) the sABox triple objects according to the expressions (defined
through map:source4TargetPropertyValue) in propertyMappings and stores
the triples in tABox. This operation first creates a SPARQL SELECT query
based on the expressions defined in propertyMappings, and then, on top of
the SELECT query, it forms a SPARQL CONSTRUCT query to generate the
transformed ABox for tConstruct.

Example 6. Listing B.5 (lines 16-19) shows the transformed instances after
applying the operation TransformationOnLiteral(sConstruct, tConstruct, sTBox,
sABox, PropertyMappings, tABox), where

1. sConstruct = tConstruct=sub:Subsidy,

2. sTBox="/map/subsidyTBox.ttl",

3. sABox= source instances of sub:Subsidy (lines 47-50 in Listing B.1),
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4. propertyMappings = lines 2-14 in Listing B.5,

5. tABox="/map/temp1.ttl".

Listing B.5: Example of TransformationOnLiteral.

1 ## Property -mappings input

2 :hasPayDate_Day rdf:type map:PropertyMapping;

3 map:targetProperty sub:hasPayDate;

4 map:sourceType4TargetPropertyValue map:Expression;

5 map:source4TargetPropertyValue "CONCAT(STR(DAY(hasPayDate )),

6 "/", STR(MONTH(hasPayDate )),"/",STR(YEAR(hasPayDate )))".

7 :Recipient_recipientId rdf:type map:PropertyMapping;

8 map:targetProperty sub:hasRecipient;

9 map:sourceType4TargetPropertyValue map:Property;

10 map:source4TargetPropertyValue sub:hasRecipient.

11 :amountEuro_amountEuro rdf:type map:PropertyMapping;

12 map:targetProperty sub:amountEuro;

13 map:sourceType4TargetPropertyValue map:Expression;

14 map:source4TargetPropertyValue "xsd:integer(sub:amountEuro)".

15 ## sub:Subsidy instances after TransformationOnLiteral.

16 subsidy :10615413 rdf:type sub:Subsidy;

17 sub:hasRecipient recipient :291894;

18 sub:amountEuro 8928;

19 sub:hasPayData "25/25/2010".

JoinTransformation(sConstruct, tConstruct, sTBox, tTBox, sABox, tABox,
comProperty, propertyMappings) A TBox construct (a concept, a level, or
a QB dataset) can be populated from multiple sources. Therefore, an oper-
ation is necessary to join and transform data coming from different sources.
Two constructs of the same or different sources can only be joined if they
share some common properties. This operation joins a source and a target
constructs based on their common properties and produce the instances of
the target construct by resolving the source expressions mapped to target
properties. To join n sources, an ETL process requires n-1 JoinTransformation
operations.

If the ETL execution flow is generated automatically, the automatic ETL
execution flow generation process first identifies the concept-mapping cm
from aMappings, where aConstruct appears and the operation to process cm
is JoinTransformation. Then it parameterizes JoinTransformation as follows: 1)
sConstruct and tConstruct are defined by the map:sourceConcept and map:tar-

getConcept properties; 2) sTBox and tTBox are the source and target TBox of
cm’s map-dataset, defined by map:sourceTBox and map:targetTBox; 3) sABox
and tABox are defined by the map:sourceLocation and map:targetLocation

properties; 4) comProperty is defined by map:commonProperty; 5) propertyMap-
pings is the set of property-mappings defined under cm.

A developer can also manually set the parameters. Once it is parameter-
ized, JoinTransformation joins two constructs based on comProperty, transforms
their data based on the expressions (specified through map:source4TargetPr-

opertyValue) defined in propertyMappings, and updates tABox based on the
join result. It creates a SPARQL SELECT query joining two constructs us-
ing either AND or OPT features, and on top of that query, it forms a SPARQL
CONSTRUCT query to generate the transformed tABox.
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Example 7. The recipients in sdw:Recipient need to be enriched with their
company information available in the Danish Business dataset. Therefore, a
join operation is necessary between sub:Recipient and bus:Company. The
concept-mapping of this join is described in Listing B.3 at lines 19-37. They
are joined by two concept properties: recipient names and their addresses
(lines 31, 34-37). We join and transform bus:Company and sub:Recipient

using JoinTransformation(sConstruct, tConstruct, sTBox, tTBox, sABox, tABox,
comProperty, propertyMappings), where

1. sConstruct= bus:Company,

2. tConstruct= sub:Recipient,

3. sTBox= "/map/businessTBox.ttl",

4. tTBox= "/map/subsidyTBox.ttl",

5. sABox= source instances of bus:Company (lines 13-29 in Listing B.1),

6. tABox= source instances of sub:Recipient (lines 40-45 in Listing B.1),

7. comProperty = lines 31, 34-37 in Listing B.3,

8. propertyMappings = lines 73-96 in Listing B.3.

Listing B.6 shows the output of the joinTransformation operation.

Listing B.6: Example of JoinTransformation.

1 ## Example of sub:Recipient instances.

2 recipient :291894 rdf:type sub:Recipient;

3 sub:name "Kristian Kristensen";

4 sub:cityId "Vemb";

5 sub:companyId company :10165164;

6 sub:businessType businessType:Interessentskab.

LevelMemberGenerator(sConstruct, level, sTBox, sABox, tTBox, iriValue, iri-
Graph, propertyMappings, tABox) In QB4OLAP, dimensional data are phys-
ically stored in levels. A level member, in an SDW, is described by a unique
IRI and its semantically linked properties (i.e., level attributes and rollup
properties). This operation generates data for a dimension schema defined in
Definition 1.

If the ETL execution flow is generated automatically, the automatic pro-
cess first identifies the concept-mapping cm from aMappings, where aCon-
struct appears and the operation to process cm is LevelMemberGenerator. Then
it parameterizes LevelMemberGenerator as follows: 1) sConstruct is the source
construct defined by map:sourceConcept; 2) level is the target level8 defined

8A level is termed as a level property in QB4OLAP, therefore, throughout this paper, we use
both the term “level" and “level property" interchangeably.

142



6. The Execution Layer

by the map:targetConcept property; 3) sTBox and tTBox are the source and
target TBoxes of cm’s map dataset, defined by the properties map:sourceTBox
and map:targetTBox; 4) sABox is the source ABox defined by the property
map:sourceLocation; 5) iriValue is a rule9 to create IRIs for the level mem-
bers and it is defined defined by the map:TargetInstanceIriValue property;
6) iriGraph is the IRI graph10 within which to look up IRIs, given by the de-
veloper in the automatic ETL flow generation process; 7) propertyMappings is
the set of property-mappings defined under cm; 8) tABox is the target ABox
location defined by map:targetLocation.

A developer can also manually set the paramenters. Once it is parameter-
ized, LevelMemberGenerator operation generates QB4OLAP-compliant triples
for the level members of level based on the semantics encoded in tTBox and
stores them in tABox.

Example 8. Listing B.3 shows a concept-mapping (lines 40-54) describing
how to populate sdw:Recipient from sub:Recipient. Listing B.7 shows
the level member created by the LevelMemberGenerator(level, tTBox, sABox, iri-
Value, iriGraph, propertyMappings, tABox) operation, where

1. sConstruct= sub:Recipient,

2. level= sdw:Recipient,

3. sTBox= "/map/subsidyTBox.ttl",

4. sABox= "/map/subsidy.ttl", shown in Example 7,

5. tTBox = "/map/subsidyMDTBox.ttl",

6. iriValue = sub:recipientID,

7. iriGraph = "/map/provGraph.nt",

8. propertyMappings= lines 98-115 in Listing B.3,

9. tABox="/map/temp.ttl".

Listing B.7: Example of LevelMemberGenerator.

1 PREFIX sdw: <http :// extbi.lab.aau.dk/ontology/sdw/>

2 PREFIX recipient: <http :// extbi.lab.aau.dk/ontology

3 /sdw/Recipient#>

4 PREFIX company: <http :// extbi.lab.aau.dk/ontology

5 /sdw/Company#>

6 PREFIX city: <http :// extbi.lab.aau.dk/ontology

7 /sdw/City#>

8 ## Example of a recipient level member.

9A rule can be either a source property, an expression or incremental, as described in Sec-
tion 5.

10The IRI graph is an RDF graph that keeps a triple for each resource in the SDW with their
corresponding source IRI.
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9 recipient :291894 rdf:type qb4o:LevelMember;

10 qb4o:memberOf sdw:Recipient.

11 sdw:name "Kristian Kristensen";

12 sdw:inCity city:Vemb;

13 sdw:hasCompany company :10165164.

ObservationGenerator(sConstruct, dataset, sTBox, sABox, tTBox, iriValue,
iriGraph, propertyMappings, tABox) In QB4OLAP, an observation repre-
sents a fact. A fact is uniquely identified by an IRI, which is defined by a
combination of several members from different levels and contains values
for different measure properties. This operation generates data for a cube
schema defined in Definition 2.

If the ETL execution flow is generated automatically, the way used by
the automatic ETL execution flow generation process to extract values for
the parameters of ObservationGenerator from aMappings is analogous to Lev-
elMemberGenerator. Developers can also manually set the parameters. Once it
is parameterized, the operation generates QB4OLAP-compliant triples for ob-
servations of the QB datasetdataset based on the semantics encoded in tTBox
and stores them in tABox.

Example 9. Listing B.8 (lines 21-25) shows a QB4OL-AP-compliant obser-
vation create by the ObservationGenerator(sConstruct, dataset, sTBox, sABox,
tTBox, iriValue, iriGraph, propertyMappings, tABox) operation, where

1. sConstruct=sub:Subsidy,

2. dataset= sdw:SubsidyMD,

3. sTBox="/map/subsidyTBox.ttl"

4. sABox= "/map/subsidy.ttl", shown in Example 6,

5. tTBox = "/map/subsidyMDTBox.ttl", shown in Listing B.2,

6. iriValue = "Incremental",

7. iriGraph = "/map/provGraph.nt",

8. propertyMappings= lines 8-19 in Listing B.8,

9. tABox= "/map/temp2.ttl".

Listing B.8: Example of ObservationGenerator.

1 PREFIX sdw: <http :// extbi.lab.aau.dk/ontology/sdw/>

2 PREFIX subsidy: <http :// extbi.lab.aau.dk/ontology

3 /sdw/Subsidy#>

4 PREFIX recipient: <http :// extbi.lab.aau.dk/ontology

5 /sdw/Recipient#>

6 PREFIX day: <http :// extbi.lab.aau.dk/ontology/sdw/Day#>

7 ## Property -Mappings

8 :recipientId_Recipient rdf:type map:PropertyMapping;

9 map:targetProperty sdw:Recipient;
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10 map:sourceType4TargetPropertyValue map:Property;

11 map:source4TargetPropertyValue sub:hasRecipient.

12 :hasPayDate_Day rdf:type map:PropertyMapping;

13 map:targetProperty sdw:Day;

14 map:sourceType4TargetPropertyValue map:Property;

15 map:source4TargetPropertyValue sub:hasPaydate.

16 :amountEuro_amountEuro rdf:type map:PropertyMapping;

17 map:targetProperty sdw:amountEuro;

18 map:sourceType4TargetPropertyValue map:Property;

19 map:source4TargetPropertyValue sub:amountEuro.

20 ## Example of observations

21 subsidy:_01 rdf:type qb4o:Observation;

22 inDataset sdw:SubsidyMD;

23 sdw:hasRecipient recipient :291894;

24 sdw:amountEuro "8928.00";

25 sdw:hasPayData day :25/25/2010.

ChangedDataCapture(nABox, oABox, flag) In a real-world scenario changes
occur in a semantic source both at the schema and instance level. Therefore,
an SDW needs to take action based on the changed schema and instances.
The adaption of the SDW TBox with the changes of source schemas is an
analytical task and requires the involvement of domain experts, therefore, it
is out of the scope of this paper. Here, only the changes at the instance level
are considered.

If the ETL execution flow is generated automatically, the automatic pro-
cess first identifies the concept-mapping cm from aMappings, where aCon-
struct appears and the operation to process cm is ChangedDataCapture. Then,
it takes map:sourceLocation and map:targetLocation for nABox (new di-
mensional instances in a source) and oABox (old dimensional instances in a
source), respectively, to parameterize this operations. flag depends on the
next operation in the operation sequence.

Developers can also manually set the parameters. From the given inputs,
ChangedDataCapture outputs either 1) a set of new instances (in the case of
SDW evolution, i.e., flag=0) or 2) a set of updated triples —the existing triples
changed over time— (in the case of SDW update, i.e., flag=1) and overwrites
oABox. This is done by means of the set difference operation. This opera-
tion must then be connected to either LevelMemberGenerator to create the new
level members or updateLevel (described below) to reflect the changes in the
existing level members.

Example 10. Suppose Listing B.6 is the old ABox of sub:Recipient and the
new ABox is at lines 2-10 in Listing B.9. This operation outputs either 1) the
new instance set (in this case, lines 12-15 in the listing) or 2) the updated
triples (in this case, line 17).

Listing B.9: Example of ChangedDataCapture.

1 ## New snapshot of sub:Recipient instances.

2 recipient :291894 rdf:type sub:Recipient;

3 sub:name "Kristian Jensen";

4 sub:cityId "Vemb";

5 sub:companyId company :10165164;

6 businessType:Interessentskab.

7 recipient :301894 rdf:type sub:Recipient;

8 sub:name "Jack";
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9 sub:cityId "Aalborg";

10 sub:companyId company :100000.

11 ## New instances to be inserted

12 recipient :301894 rdf:type sub:Recipient;

13 sub:name "Jack";

14 sub:cityId "Aalborg";

15 sub:companyId company :100000.

16 ## Update triples

17 recipient :291894 sub:name "Kristian Jensen".

UpdateLevel(level, updatedTriples, sABox tTBox, tABox, propertyMappings,
iriGraph) Based on the triples updated in the source ABox sABox for the
level level (generated by ChangedDataCapture), this operation updates the tar-
get ABox tABox to reflect the changes in the SDW according to the semantics
encoded in the target TBox tTBox and level property-mappings propertyMap-
pings. Here, we address three update types (Type1-update, Type2-update,
and Type3-update), defined by Ralph Kimball in [32] for a traditional DW, in
an SDW environment. The update types are defined in tTBox for each level
attribute of level (as discussed in Section 2.3). As we consider only instance
level updates, only the objects of the source updated triples are updated. To
reflect a source updated triple in level, the level member using the triple to
describe itself, will be updated. In short, the level member is updated in the
following three ways: 1) A Type1-update simply overwrites the old object
with the current object. 2) A Type2-update creates a new version for the level
member (i.e., it keeps the previous version and creates a new updated one).
It adds the validity interval for both versions. Further, if the level member is
a member of an upper level in the hierarchy of a dimension, the changes are
propagated downward in the hierarchy, too. 3) A Type3-update overwrites
the old object with the new one. Besides, it adds an additional triple for each
changed object to keep the old object. The subject of the additional triple is
the instance IRI, the object of the triple is the old object, and the predicate is
concat(oldPredicate, "oldValue").

If the ETL execution flow is generated automatically, this operation first
identifies the concept-mapping cm from aMappings, where aConstruct appears
and the operation to process cm is UpdateLevel. Then it parameterizes Lev-
elMemberGenerator as follows: 1) level is defined by the map:targetConcept;
2) sABox is old source data; 3) updatedTriples is the source location defined by
map:sourceLocation; 4) tTBox is the target TBox of cm’s map-dataset, defined
by the property map:targetTBox; 5) tABox is defined by map:targetLocation;
6) propertyMappings is the set of property-mappings defined under cm; 7) iri-
Graph is given by developer in the automatic ETL flow generation process.

Example 11. Listing B.10 describes how different types of updates work by
considering two members of the sdw:Recipient level (lines 2-11). As the
name of the second member (lines 7-11) is changed to “Kristian Jensen" from
“Kristian Kristensen", as found in Listing B.9. A Type1-update simply over-
writes the existing name (line 20). A Type2-update creates a new version
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(lines 39-46). Both old and new versions contain validity interval (lines 35-
37) and (lines 44-46). A Type3-Update overwrites the old name (line 56) and
adds a new triple to keep the old name (line 57).

Listing B.10: Example of different types of updates.

1 ## sdw:Recipient Level

2 recipient :762921 rdf:type qb4o:LevelMember;

3 qb4o:member sdw:Recipient;

4 sdw:name "R. Nielsen";

5 sdw:cityId city:Lokken;

6 sdw:hasCompany company :10165164.

7 recipient :291894 rdf:type qb4o:LevelMember;

8 qb4o:memberOf sdw:Recipient.

9 sdw:name "Kristian Kristensen";

10 sdw:cityId city:Vemb;

11 sdw:hasCompany company :10165164.

12 ## After type1 update

13 recipient :762921 rdf:type qb4o:LevelMember;

14 qb4o:member sdw:Recipient;

15 sdw:name "R. Nielsen";

16 sdw:cityId city:Lokken;

17 sdw:hasCompany company :10165164.

18 recipient :291894 rdf:type qb4o:LevelMember;

19 qb4o:memberOf sdw:Recipient.

20 sdw:name "Kristian Jensen";

21 sdw:cityId city:Vemb;

22 sdw:hasCompany company :10165164.

23 ##After type2 update

24 recipient :762921 rdf:type qb4o:LevelMember;

25 qb4o:member sdw:Recipient;

26 sdw:name "R. Nielsen";

27 sdw:cityId city:Lokken;

28 sdw:hasCompany company :10165164.

29
30 recipient :291894 rdf:type qb4o:LevelMember;

31 qb4o:memberOf sdw:Recipient.

32 sdw:name "Kristian Kristensen";

33 sdw:cityId city:Vemb;

34 sdw:hasCompany company :10165164.

35 sdw:fromDate ``0000-00-00";

36 sdw:toDate ``2017-09-25";

37 sdw:status ``Expired".

38
39 recipient :291894\ _2017\_09\_26 rdf:type qb4o:LevelMember;

40 qb4o:memberOf sdw:Recipient.

41 sdw:name "Kristian Jensen";

42 sdw:cityId city:Vemb;

43 sdw:hasCompany company :10165164;

44 sdw:fromDate ``2017-09-26";

45 sdw:toDate ``9999-12-31";

46 sdw:status ``Current".

47 ## After type3 update

48 recipient :762921 rdf:type qb4o:LevelMember;

49 qb4o:member sdw:Recipient;

50 sdw:name "R. Nielsen";

51 sdw:cityId city:Lokken;

52 sdw:hasCompany company :10165164.

53
54 recipient :291894 rdf:type qb4o:LevelMember;

55 qb4o:memberOf sdw:Recipient.

56 sdw:name "Kristian Jensen";

57 sdw:name_oldValue "Kristian Kristensen";

58 sdw:cityId city:Vemb;

59 sdw:hasCompany company :10165164.

Besides the transformation operations discussed above, we define two
additional transformation operations that cannot be run by the automatic
ETL dataflows generation process.

ExternalLinking (sABox, externalSource) This operation links the resources
of sABox with the resources of an external source externalSource. external-
Source can either be a SPARQL endpoint or an API. For each resource inRes ∈
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sABox, this operation extracts top k matching external resources either 1) sub-
mitting a query to externalSource or 2) by sending a web service request em-
bedding inRes through the API (e.g., DBpedia lookup API). To find a potential
link for each external resource exRes, the Jaccard Similarity of the semantic
bags of inRes and exRes is computed. The semantic bag of a resource con-
sists of triples describing the resource [38, 39, 50]. The pair of the internal
and external resources is considered as a match if the Jaccard Similarity ex-
ceeds a certain threshold. A triple with the owl:sameAs property is created to
materialize the link in sABox for each pair of matched internal and external
resources.

MaterializeInference(ABox, TBox) This operation infers new information
that has not been explicitly stated in an SDW. It analyzes the semantics en-
coded into the SDW and enriches the SDW with the inferred triples. A subset
of the OWL 2 RL/RDF rules, which encodes part of the RDF-Based Seman-
tics of OWL 2 [45], are considered here. The reasoning rules can be applied
over the TBox TBox and ABox ABox separately, and then together. Finally,
the resulting inference is asserted in the form of triples, in the same spirit as
how SPARQL deals with inference.

6.3 Load

Loader(tripleSet, tsPath) An SDW is represented in the form of RDF triples
and the triples are stored in a triple store (e.g., Jena TDB). Given a set of RDF
triples triplesSet and the path of a triple store tsPath, this operation loads
triplesSet in the triple store.

If the ETL execution flow is generated automatically, this operation first
identifies the concept-mapping cm from aMappings, where aConstruct ap-
pears and the operation to process cm is Loader. Then, it takes values of
map:sourceLocation and map:targetLocation for the parameters tripleSet
and tsPath.

7 Automatic ETL Execution Flow Generation

We can characterize ETL flows at the Definition Layer by means of the source-
to-target mapping file; therefore, the ETL data flows in the Execution Layer
can be generated automatically. This way, we can guarantee that the cre-
ated ETL data flows are sound and relieve the developer from creating the
ETL data flows manually. Note that this is possible because the Mediatory
Constructs (see Figure B.5) contain all the required metadata to automate the
process.
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Algorithm 8: CreateETL
Input: TargetConstruct x, MappingFile G, IRIGraph GIRI
Output: A set of ETL flows E
begin

1 nodetarget ← find(x, G)
2 ?cmaps ←findConMap((nodetarget, G)

/* In G : nodetarget
map:targetConcept←−−−−−−−−−−−?cmaps ; |?cmaps| ≥ 0 */

3 E← createSet()
4 if (?cmaps 6= ∅) then
5 foreach c ∈?cmaps do
6 sc ← createStack()
7 sc ← CreateAFlow(c, sc, G, GIRI)
8 E.add(sc)

9 return E

Algorithm 9: CreateAFlow

Input: ConceptMapping c, Stack sc, MappingFile G, IRIGraph GIRI
Output: Stack sc
begin

1 ops← findOperations(c, G)

/* In G : c
map:operation−−−−−−−−−→ ops */

2 sc. push(Parameterize(ops, c, G, GIRI))
/* Push parameterized operations in sc */

3 scon← findSourceConcept(c, G)

/* In G : c
map:sourceConcept−−−−−−−−−−−→ scon */

4 ?sconmap ← findConMap(scon, G)

/* In G : scon
map:targetConcept←−−−−−−−−−−−?sconmap; |?sconmap| ≤ 1 */

5 if (|?sconmap| = 1) then
6 CreateAFlow(nc ∈?sconmap, sc, G)

/* recursive call with nc */

7 sc.push(StartOp)
/* Push the ETL start operation to sc */

8 return sc

Algorithm 8 shows the steps required to create ETL data flows to populate
a target construct (a level, a concept, or a dataset). As inputs, the algorithm
takes a target construct x, the mapping file G, and the IRI graph GIRI , and it
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Algorithm 10: Parameterize

Input: Seq ops, ConceptMapping cm, MappingFile G, IRIGraph GIRI
Output: Stack, sop
begin

1 sop ← createStack()
2 for (i = 1 to length(ops)) do
3 if (i = 1) then
4 parameterizeOp(op[i], G, loc(cm), GIRI)
5 sop.push(op[i])

6 parameterizeOp(op[i], G, outputPath(op[i− 1]), GIRI)
7 sop.push(op[i])

8 return sop

outputs a set of ETL data flows E. At first, it locates x in G (line 1) and gets
the concept-mappings where nodetarget participates (line 2). As a (final) target
construct can be populated from multiple sources, it can be connected to
multiple concept-mappings, and for each concept-mapping, it creates an ETL
data flow by calling the function11 CreateAFlow (lines 5-8). Algorithm 9
generates an ETL data flow for a concept-mapping c and recursively does so if
the current concept-mapping source element is connected to another concept-
mapping as, until it reaches a source element. Algorithm 9 recursively calls
itself and uses a stack to preserve the order of the partial ETL data flows
created for each concept-mapping. Eventually, the stack contains the whole
ETL data flow between the source and target schema.

Algorithm 9 works as follows. The sequence of operations in c is pushed
to the stack after parameterizing it (lines 1-2). Algorithm 10 parameterizes
each operation in the sequence, as described in Section 6 and returns a stack
of parameterized operations. As inputs, it takes the operation sequence, the
concept-mapping, the mapping file, and the IRI graph. For each operation,
it uses the parameterizeOp(op, G, loc(cm), GIRI) function to automatically
parameterize op from G (as all required parameters are available in G) and
push the parameterized operation in a stack (line 2-7). Note that, for the first
operation in the sequence, the algorithm uses the source ABox location of the
concept-mapping (line 4) as an input, whereas for the remaining operations,
it uses the output of the previous operation as input ABox (line 6). Finally,
Algorithm 10 returns the stack of parameterized operations.

Then, Algorithm 9 traverses to the adjacent concept-mapping of c con-
nected via c’s source concept (line 3-4). After that, the algorithm recursively

11Here, functions used in the algorithms are characterized by a pattern over G, shown at its
side as comments in the corresponding algorithm.
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Fig. B.8: The graph presentation of a part of Listing B.3.

calls itself for the adjacent concept-mapping (line 6). Note that, here, we
set a restriction: except for the final target constructs, all the intermediate
source and target concepts can be connected to at most one concept-mapping.
This constraint is guaranteed when building the metadata in the Definition
Layer. Once there are no more intermediate concept-mappings, the algorithm
pushes a dummy starting ETL operation (StartOp) (line 7) to the stack and
returns it. StartOp can be considered as the root of the ETL data flows that
starts the execution process. The stacks generated for each concept-mapping
of nodetarget are added to the output set E (line 8 in Algorithm 8). The follow-
ing section shows this process with an example of our use case.

7.1 Auto ETL Example

In this section, we show how to populate sdw:Recipient level using Cre-
ateETL (Algorithm 8). As input, CreateETL takes the target construct sdw:R-
ecipient, the mapping file Listing B.3 and the location of IRI graph “/map/
provGraph.nt". Figure B.8 presents a part (necessary to explain this pro-
cess) of Listing B.3 as an RDF graph. As soon as sdw:Recipient is found in
the graph, the next task is to find the concept-mappings that are connected to
sdw:Recipient through map:targetConcept (line 2). Here, ?cmaps={:Recipie-
nt_RecipientMD}. For :Recipient_RecipientMD, the algorithm creates an
empty stack sc and calls CreateAFlow (:Recipient_RecipientMD, sc, List-
ing B.3) (Algorithm 9) at lines 6-7.

CreateAFlow retrieves the sequence of operations (line 1) needed to pro-
cess the concept-mapping, here: ops=(LevelMemberGenerator; Loader) (see Fig-
ure B.8). Then, CreateAFlow parameterizes ops by calling Parameterize

(Algorithm 10) and then pushes the parameterized operations to sc (line 2).
Parameterize creates an empty stack sop (line 1) and for each operation in
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ops it calls the parameterize() method to parameterize the operation us-
ing the concept-mapping information from Listing B.3, the source location
of the concept-mapping, and the IRI graph, and then it pushes the param-
eterized operation in sop (lines 2-7). After the execution of the for loop in
Parameterize (line 2-7), the value of the stack sop is (Loader("/map/temp.nt",
"/map/sdw"); LevelMemberGenerator(sub:Recipient,sdw:Recipient, "/map/
subsidyTBox.ttl", "/map/subsidy.nt", "/map/subsidyMDTBox.ttl", sub:reci-
pientID, "/map/provGraph.nt", propertyMappings12, "/map/temp.nt")),
which is returned to line 2 of CreateAFlow. Note that the output path of
LevelMemberGenerator(..)13 is used as the input source location of Loader(..).
CreateAFlow pushes the parameterized operations to sc (line 2), hence sc=
(LevelMemberGenerator(..); Loader(..)).

Then, CreateAFlow finds the source concept of :Recipient_RecipientMD
(line 3), which is sub:Recipient; retrieves the concept-mapping :Recipient

_Company of sub:Recipient from Listing B.3 (line 4); and recursively calls it-
self for :Recipient_Company (lines 5-6). The operation sequence of :Recipie-
nt_Company (line 1) is (JoinTransformation) (see Figure B.8), and the call of Pa-
rameterize at line 2 returns the parameterized JoinTransformation(bus:Company,
Sub:Reicipient, "/map/dbd.nt","/map/subsidy.nt", comProperty14, prop-
ertyMappings15) operation, which is pushed to the stack sc, i.e., sc= (Join-
Transformation(...); LevelMemberGenerator(...); Loader(...)). The source concept
bus:Company is not connected to any other concept-mapping through the
map:targetConcept property in the mapping file. Therefore, CreateAFlow

skips lines 5 and 6. After that, it pushes the start operation (StartOp) in
sc, i.e., sc= (StartOp, JoinTransformation(..); LevelMemberGenerator(..); Loader(..))
and returns it to CreateETL (Algorithm 8) at line 7. Then, CreateETL
adds it to the set of ETL data flows E and returns it (line 9). Therefore, the
ETL data flow to populate sdw:Recipient is StartOp ⇒JoinTransformation(..)
⇒LevelMemberGenerator(..) ⇒Loader(..).

8 Evaluation

We created a GUI-based prototype, named SETLCONSTRUCT [13] based on the
different high-level constructs described in Sections 5 and 6. We use Jena
3.4.0 to process, store, and query RDF data and Jena TDB as a triplestore.
SETLCONSTRUCT is developed in Java 8. Like other traditional tools (e.g.,
PDI [8]), SETLCONSTRUCT allows developers to create ETL flows by dragging,
dropping, and connecting the ETL operations. The system is demonstrated

12Here, lines 95-112 in Listing B.3.
13(..) indicates that the operation is parameterized.
14lines 32,36-39 in Listing B.3.
15lines 76-93 in Listing B.3.
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Table B.2: Comparison among the productivity of SETLPROG, SETLCONSTRUCT, and SETLAUTO
for the SETLSDW.
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in [13]. On top of SETLCONSTRUCT, we implement the automatic ETL exe-
cution flow generation process discussed in Section 7; we call it SETLAUTO.
The source code, examples, and developer manual for SETLCONSTRUCT and
SETLAUTO are available at https://github.com/bi-setl/SETL.

To evaluate SETLCONSTRUCT and SETLAUTO, we create an MD SDW by
integrating the Danish Business Dataset (DBD) [3] and the Subsidy dataset
( https://data.farmsubsidy.org/Old/), described in Section 2. We choose
this use case and these datasets for evaluation as there already exists an MD
SDW, based on these datasets, that has been programatically created using
SETLPROG [37]. Our evaluation focuses on three aspects: 1) productivity, i.e.,
to what extent SETLCONSTRUCT and SETLAUTO ease the work of a developer
when developing an ETL task to process semantic data, 2) development time,
the time to develop an ETL process, and 3) performance, the time required to
run the process. We run the experiments on a laptop with a 2.10 GHz Intel
Core(TM) i7-4600U processor, 8 GB RAM, and Windows 10.

8.1 Productivity

SETLPROG requires Python knowledge to maintain and implement an ETL
process. On the other hand, using SETLCONSTRUCT and SETLAUTO, a devel-
oper can create all the phases of an ETL process by interacting with a GUI.
Therefore, they provide a higher level of abstraction to the developer that
hides low-level details and requires no programming background. Table B.2
summarizes the effort required by the developer to create different ETL tasks
using SETLPROG, SETLCONSTRUCT, and SETLAUTO. We measure the developer
effort in terms of Number of Typed Characters (NOTC) for SETLPROG and
in Number of Used Concepts (NOUC) for SETLCONSTRUCT and SETLAUTO.
Here, we define a concept as a GUI component of SETLCONSTRUCT that opens
a new window to perform a specific action. A concept is composed of sev-
eral clicks, selections, and typed characters. For each ETL task, Table B.2
lists: 1) its sub construct, required procedures/data structures, number of
the task used in the ETL process (NUEP), and NOTC for SETLPROG; 2) the re-
quired task/operation, NOUC, and number of clicks, selections, and NOTC
(for each concept) for SETLCONSTRUCT and SETLAUTO. Note that NOTC de-
pends on the user input. Here, we generalize it by using same user input for
all systems. Therefore, the total NOTC is not the summation of the values of
the respective column.

To create a target TBox using SETLPROG, an ETL developer needs to use
the following steps: 1) defining the TBox constructs by instantiating the Con-
cept, Property, and BlankNode classes that play a meta modeling role for the
constructs and 2) calling conceptPropertyBinding() and createTriples(). Both pro-
cedures take the list of all concepts, properties, and blank nodes as param-
eters. The former one internally connects the constructs to each other, and
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the latter creates triples for the TBox. To create the TBox of our SETLSDW
using SETLPROG, we used 24,509 NOTC. On the other hand, SETLCONSTRUCT
and SETLAUTO use the TargetTBoxDefinition interface to create/edit a target
TBox. To create the target TBox of our SETLSDW in SETLCONSTRUCT and
SETLAUTO, we use 101 concepts that require only 382 clicks, 342 selections,
and 1905 NOTC. Therefore, for creating a target TBox, SETLCONSTRUCT and
SETLAUTO reduce use 92% fewer NOTC than SETLPROG.

To create source-to-target mappings, SETLPROG uses Python dictionaries
where the keys of each dictionary represent source constructs and values are
the mapped target TBox constructs, and for creating the ETL process it uses
23 dictionaries, where the biggest dictionary used in the ETL process takes
253 NOTC. In total, SETLPROG uses 2052 NOTC for creating mappings for
the whole ETL process. On the contrary, SETLCONSTRUCT and SETLAUTO use
a GUI. In total, SETLCONSTRUCT uses 87 concepts composed of 330 clicks, 358
selections, and 30 NOTC. Since SETLAUTO internally creates the intermediate
mappings, there is no need to create separate mapping datasets and concept-
mappings for intermediate results. Thus, SETLAUTO uses only 65 concepts re-
quiring 253 clicks, 274 selections, and 473 NOTC. Therefore, SETLCONSTRUCT
reduces NOTC of SETLPROG by 98%. Although SETLAUTO uses 22 less con-
cepts than SETLCONSTRUCT, SETLCONSTRUCT reduces NOTC of SETLAUTO by
93%. This is because, in SETLAUTO, we write the data extraction queries in
the concept-mappings where in SETLCONSTRUCT we set the data extraction
queries in the ETL operation level.

To extract data from either an RDF local file or an SPARQL endpoint,
SETLPROG uses the query() procedure and the ExtractTriplesFromEndpoint()
class. On the other hand, SETLCONSTRUCT uses the GraphExtractor operation.
It uses 1 concept composed of 5 clicks and 20 NOTC for the local file and 1
concept with 5 clicks and 30 NOTC for the endpoint.

SETLPROG uses different functions/procedures from the Petl Python li-
brary (integrated with SETL) based on the cleansing requirements. In SETLC-

ONSTRUCT, all data cleansing related tasks on data sources are done using
TransformationOnLiteral (single source) and JoinTransformation (for multi-source).
TransformationOnLiteral requires 12 clicks and 1 selection, and JoinTransforma-
tion takes 15 clicks and 1 selection. To create a level member and observation,
SETLPROG uses createDataTripleToFile() and takes 125 NOTC. The procedure
takes all the classes, properties, and blank nodes of a target TBox as input;
therefore, the given TBox should be parsed for being used in the procedure.
On the other hand, SETLCONSTRUCT uses the LevelMemberGenerator and Ob-
servationGenerator operations, and each operation requires 1 concept, which
takes 6 clicks and 6 selections. SETLPROG provides procedures for either bulk
or trickle loading to a file or an endpoint. Both procedures take 113 and 153
NOTC, respectively. For loading RDF triples either to a file or a triple store,
SETLCONSTRUCT uses the Loader operation, which needs 2 clicks and 2 selec-
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tions. Therefore, SETLCONSTRUCT reduces NOTC for all transformation and
loading tasks by 100%.

SETLAUTO requires only a target TBox and a mapping file to generate
ETL data flows through the CreateETL interface, which takes only 1 concept
composed of 21 clicks and 16 selections. Therefore, other ETL Layer tasks
are automatically accomplished internally. In summary, SETLCONSTRUCT uses
92% fewer NOTC than SETLPROG, and SETLAUTO further reduces NOUC by
another 25%.

8.2 Development Time

We compare the time used by SETLPROG, SETLCONSTRUCT, and SETLAUTO
to build the ETL processes for our use case SDW. As the three tools were
developed within the same project scope and we master them, the first author
conducted this test. We chose the running use case used in this paper and
created a solution in each of the three tools and measured the development
time. We used each tool twice to simulate the improvement we may obtain
when we are knowledgeable about a given project. The first time it takes
more time to analyze, think, and create the ETL process, and in the latter, we
reduce the interaction time spent on analysis, typing, and clicking. Table B.3
shows the development time (in minutes) for main integration tasks used by
the different systems to create the ETL processes.

Tool
Iteration
Number

Target
TBox
Definition

Mapping
Generartion

ETL
Design

Total

SETLPROG 1 186 51 85 322
SETLPROG 2 146 30 65 241
SETLCONSTRUCT 1 97 46 35 178
SETLCONSTRUCT 2 58 36 30 124
SETLAUTO 1 97 40 2 139
SETLAUTO 2 58 34 2 94

Table B.3: ETL development time (in minutes) required for SETLPROG, SETLCONSTRUCT, and
SETLAUTO.

SETLPROG took twice as long as SETLCONSTRUCT and SETLAUTO to de-
velop a target TBox. In SETLPROG, to create a target TBox construct, for
example a level l, we need to instantiate the Concept() class for l and then
add its different property values by calling different methods of Concept().
SETLCONSTRUCT and SETLAUTO create l by typing the input or selecting from
the suggested items. Thus, SETLCONSTRUCT and SETLAUTO also reduce the
risk of making mistakes in an error-prone task, such as creating an ETL. In
SETLPROG, we typed all the source and target properties to create a map-
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Fig. B.9: The segment of the main method to populate the sdw:SubsidyMD dataset and the
sdw:Recipient using SETLPROG.

ping dictionary for each source and target concept pair. However, to create
mappings, SETLCONSTRUCT and SETLAUTO select different constructs from a
source as well as a target TBox and only need to type when there are ex-
pressions and/or filter conditions of queries. Moreover, SETLAUTO took less
time than SETLCONSTRUCT in mapping generation because we did not need
to create mappings for intermediate results.

To create ETL data flows using SETLPROG, we had to write scripts for
cleansing, extracting, transforming, and loading. SETLCONSTRUCT creates ETL
flows using drag-and-drop options. Note that the mappings in SETLCONSTRUCT
and SETLAUTO use expressions to deal with cleansing and transforming re-
lated tasks; however, in SETLPROG we cleansed and transformed the data
in the ETL design phase. Hence, SETLPROG took more time in designing
ETL compared to SETLCONSTRUCT. On the other hand, SETLAUTO creates
the ETL data flows automatically from a given mapping file and the tar-
get TBox. Therefore, SETLAUTO took only two minutes to create the flows.
In short, SETLPROG is a programmatic environment, while SETLCONSTRUCT
and SETLAUTO are drag and drop tools. We exemplify this fact by means of
Figures B.9 and B.10, which showcase the creation of the ETL data flows
for the sdw:SubsidyMD dataset and the sdw:Recipient level. To make it
more readable and understandable, we add comments at the end of the
lines of Figure B.9 and in each operation of Figure B.10. In summary, us-
ing SETLCONSTRUCT, the development time is cut in almost half (41% less
development time than SETLPROG); and using SETLAUTO it is cut by another
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Fig. B.10: The ETL flows to populate the sdw:SubsidyMD dataset and the sdw:Recipient level
using SETLCONSTRUCT.
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27%.

Performance
Metrics

Systems
Extraction and
Traditional
Transformation

Semantic
Transformation

Loading
Total
Processing
Time

Processing
Time (in minutes)

SETLPROG 33 17.86 21 71.86
SETLCONSTRUCT 43.05 39.42 19 101.47

Input
Size

SETLPROG
6.2 GB (Jena TDB)
+ 6.1 GB (N-Triples)

496 MB
(CSV)

4.1 GB
(N-Triples)

SETLCONSTRUCT
6.2 GB (Jena TDB)
+6.1 GB (N-Triples)

6.270 GB
(N-Triples)

4.1 GB
(N-Triples)

Output
Size

SETLPROG 490 MB (CSV)
4.1 GB
(N-Tripels)

3.7 GB
(Jena TDB)

SETLCONSTRUCT
6.270 GB
(N-Triples)

4.1 GB
(N-Triples)

3.7 GB
(Jena TDB)

Table B.4: ETL execution time required for each sub-phase of the ETL processes created using
SETLPROG and SETLCONSTRUCT.
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8.3 Performance

Since the ETL processes of SETLCONSTRUCT and SETLAUTO are the same and
only differ in the developer effort needed to create them, this section only
compares the performance of SETLPROG and SETLCONSTRUCT. We do so by
analyzing the time required to create the use case SETLSDW by executing
the respective ETL processes. To evaluate the performance of similar types of
operations, we divide an ETL process into three sub-phases: extraction and
traditional transformation, semantic transformation, as well as loading and
discuss the time to complete each.

Table B.4 shows the processing time (in minutes), input and output size of
each sub-phase of the ETL processes created by SETLPROG and SETLCONSTRUCT.
The input and output formats of each sub-phase are shown in parentheses.
The extraction and traditional transformation sub-phases in both systems
took more time than the other sub-phases. This is because they include time
for 1) extracting data from large RDF files, 2) cleansing and filtering the noisy
data from the DBD and Subsidy datasets, and 3) joining the DBD and Subsidy
datasets. SETLCONSTRUCT took more time than SETLPROG because its Trans-
formationOnLiteral and JoinTransformation operations use SPARQL queries to
process the input file whereas SETLPROG uses the methods from the Petl
Python library to cleanse the data extracted from the sources.

SETLCONSTRUCT took more time during the semantic transformation than
SETLPROG because the operations of SETLCONSTRUCT take RDF (N-triples)
files as input, which are larger in size compared to the CSV files (see Ta-
ble B.4), the input format of the semantic transformation process of SETLPROG.
To ensure our claims, we run an experiment for measuring the performance
of the semantic transformation procedures of SETLPROG and the operations
of SETLCONSTRUCT by taking CSV files as inputs instead of RDF ones. Fig-
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ure B.11 shows the processing time taken by SETLCONSTRUCT operations and
SETLPROG procedures to create level members and observations with increas-
ing input size. In the figure, LG and OG represent level member generator
and observation generator operations (in case of SETLCONSTRUCT) or proce-
dures (in case of SETLPROG).

In summary, to process an input CSV file with 500 MB in size, SETLCONST-

RUCT takes 37.4% less time than SETLPROG to create observations and 23,4%
less time than SETLPROG to create level members. The figure also shows that
the processing time difference between the corresponding SETLCONSTRUCT
operation and the SETLPROG procedure increases with the size of the input. In
order to guarantee scalability when using the Jena library, a SETLCONSTRUCT
operation takes the (large) RDF input in the N-triple format, divides the file
into several smaller chunks, and processes each chunk separately. Figure B.12
shows the processing time taken by LevelMemberGenerator and Observation-
Generator operations with the increasing number of triples. We shows the
scalability of the LevelMemberGenerator and ObservationGenerator because they
creates data with MD semantics. The figure shows that the processing time of
both operations increase linearly with the increase in the number of triples,
which ensures that both operations are scalable. SETLCONSTRUCT takes less
time in loading than SETLPROG because SETLPROG uses the Jena TDB loader
command to load the data while SETLCONSTRUCT programmatically load the
data using the Jena API’s method.

In summary, SETLPROG and SETLCONSTRUCT have similar performance
(29% difference in total processing time). SETLCONSTRUCT uses RDF as a
canonical model, which makes it more general and powerful than SETLPROG.

Besides the differences of the performances already explained in Table B.4,
SETLCONSTRUCT also includes an operation to update the members of the
SDW levels, which is not included in SETLPROG. Since the ETL process for our
use case SDW did not include that operation, we scrutinize the performance
of this specific operation of SETLCONSTRUCT in the following.

Performance analysis of UpdateLevel operation Figure B.13 shows the
performance of the UpdateLevel operation. To evaluate this operation, we
consider two levels: mdProperty:Recipient and mdProperty:City. We con-
sider these two levels because mdProperty:Recipient is the largest level (in
terms of size) in our use case, and mdProperty:City is the immediate up-
per level of mdProperty:Recipient in the mdStructure:Address hierarchy
of the dimension mdProperty:Beneficiary. Therefore, we can record how
the changes in cities propagate to recipients, especially in Type2-update. The
sdw:Recipient level is the lowest granularity level in the mdStructure:Addre-
ss hierarchy; therefore, changes in a recipient (i.e., a member of sdw:Recipie-
nt) only affect that recipient. Figure B.13a shows the processing time with
the increasing number of recipients. As a Type2-update creates a new ver-
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Fig. B.13: Performance of UpdateLevel based on processing time and target ABox size with the
changing of the sdw:Recipient and sdw:City members.

sion for each changed level member, it takes more time than a Type1-update
and a Type3-update. A Type3-update takes more time than a Type1-update
because it keeps the record of old property values besides the current ones.
Figure B.13b shows how the size of the target ABox increases with the in-
creasing number of recipients. The target ABox size increases linearly with
the increasing number of recipients (see Figure B.13b) for Type2-update and
Type-3 updates because they keep additional information. However, the tar-
get ABox size decreases with the increasing number of recipients for Type1-
updates; this is because the current property-values are smaller than the older
ones in size.

Figure B.13c shows the processing time when increasing the number of
updated cities. Since sdw:City is the immediate upper level of sdw:Recipient
in the mdStructure:address hierarchy, to reflect a changed city in the target
ABox, a Type2-update creates new versions for itself as well as for the recipi-
ents living in that city. Therefore, a Type2-update takes more processing time
in comparison to a Type1-update and a Type-3 update. Figure B.13d shows
the target ABox size with the increasing number of cities. The figure shows
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that the target ABox size for Type2-updates increases slowly within the range
from 120 to 160 (X-axis), and it indicates that the changed cities within this
range contain fewer recipients than the cities in other ranges.

In overall, we conclude that SETLPROG and SETLCONSTRUCT have sim-
ilar performance and SETLCONSTRUCT is a scalable framework. Moreover,
SETLCONSTRUCT supports the SDW’s update.

9 Related Work

Nowadays, combining SW and BI technologies is an emerging research topic
as it opens interesting research opportunities. As a DW deals with both
internal and (increasingly) external data presented in heterogeneous formats,
especially in the RDF format, semantic issues should be considered in the
integration process [1]. Furthermore, the popularity of SW data gives rise to
new requirements for BI tools to enable OLAP-style analysis over this type of
data [29]. Therefore, the existing research related to semantic ETL is divided
into two lines: 1) on the one hand, the use of SW technologies to physically
integrate heterogeneous sources and 2) on the other hand, enabling OLAP
analysis over SW data.

One prominent example following the first research line is [52], which
presents an ontology-based approach to enable the construction of ETL flows.
At first, the schema of both the sources and the DW are defined by a com-
mon graph-based model, named the datastore graph. Then, the semantics
of the datastore graphs of the data sources and the DW are described by
generating an (OWL-based) application ontology, and the mappings between
the sources and the target are established through that ontology. In this
way this approach addresses heterogeneity issues among the source and tar-
get schemata and finally demonstrates how the use of an ontology enables a
high degree of automation from the source to the target attributes, along with
the appropriate ETL transformations. Nonetheless, computationally com-
plex ETL operations like slowly changing dimensions and the annotation of
the application ontology with MD semantics are not addressed in this work.
Therefore, OLAP queries cannot be applied on the generated DW.

Another piece of existing work [6] aligned to this line of research proposes
a methodology describing some important steps required to make an SDW,
which enables to integrate data from semantic databases. This approach also
misses the annotation of the SDW with MD semantics. [53] has proposed
an approach to support data integration tasks in two steps: 1) constructing
ontologies from XML and relational sources and 2) integrating the derived
ontologies by means of existing ontology alignment and merging techniques.
However, ontology alignment techniques are complex and error-prone. [5]
presents a semantic ETL framework at the conceptual level. This approach
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utilizes the SW technologies to facilitate the integration process and discusses
the use of different available tools to perform different steps of the ETL pro-
cess. [3] presents a method to spatially integrate a Danish Agricultural dataset
and a Danish Business dataset using an ontology. The approach uses SQL
views and other manual processes to cleanse the data and Virtuoso for cre-
ating and storing integrated RDF data. [33] presents UnifiedViews, an open-
source ETL framework that supports management of RDF data. Based on
the SPARQL queries, they define four types of Data Processing Units (DPUs):
Extractor, Transformer, Loader, and Quality Assessor. However, the DPUs do
not support to generate MD RDF data.

In the second line of research, a prominent paper is [40], which outlines
a semi-automatic method for incorporating SW data into a traditional MD
data management system for OLAP analysis. The proposed method allows
an analyst to accomplish the following tasks: 1) designing the MD schema
from the TBox of an RDF dataset, 2) extracting the facts from the ABox of
the dataset and populating the MD fact table, and 3) producing the dimen-
sion hierarchies from instances of the fact table and the TBox to enable MDX
queries over the generated DW. However, the generated DW no longer pre-
serves the SW data principles defined in [24]; thus, OLAP analysis directly
over SW data is yet to be addressed. To address this issue, [10] introduces the
notion of a lens, called the analytical schema, over an RDF dataset. An ana-
lytical schema is a graph of classes and properties, where each node of the
schema presents a set of facts that can be analyzed by traversing the reachable
nodes. [25] presents a self-service OLAP endpoint for an RDF dataset. This
approach first superimposes an MD schema over the RDF dataset. Then, a
semantic analysis graph is generated on top of that MD schema, where each
node of the graph represents an analysis situation corresponding to an MD
query, and an edge indicates a set of OLAP operations.

Both [10] and [25] require either a lens or a semantic analysis graph to de-
fine MD views over an RDF dataset. Since most published SW data contains
facts and figures, W3C recommends the Data Cube (QB) [12] vocabulary to
standardize the publication of SW data with MD semantics. Although QB
is appropriate to publish statistical data and several publishers (e.g., [44])
have already used the vocabulary for publishing statistical datasets, it has
limitations to define MD semantics properly. The QB4OLAP [16] vocabulary
enriches QB to support MD semantics by providing constructs to define 1)
a cube structure in terms of different level of dimensions, measures, and at-
taching aggregate functions with measures and 2) a dimension structure in
terms of levels, level attributes, relationships, the cardinality of relationships
among the levels, and hierarchies of the dimension. Therefore, MD data can
be published either by enriching data already published using QB with di-
mension levels, level members, dimension hierarchies, and the association of
aggregate functions to measures without affecting the existing observations
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[55] or using QB4OLAP from scratch [18, 26, 37].
In [31], the authors present an approach to enable OLAP operations on

a single data cube published using the QB vocabulary and shown the appli-
cability of their OLAP-to-SPARQL mapping in answering business questions
in the financial domain. However, their OLAP-to-SPARQL mapping may not
result in the most efficient SPARQL query and requires additional efforts and
a longer time to get the results as they consider that the cube is queried on
demand and the DW is not materialized. While some approaches have pro-
posed techniques to optimize execution of OLAP-style SPARQL queries in a
federated setting [27], others have considered view materialization [17, 28].
The authors in [55] present a semi-automatic method to enrich the QB dataset
with QB4OLAP terms. However, there is no guideline for an ETL process to
populate a DW annotated with QB4OLAP terms.

After analyzing the two research lines, we can draw some conclusions. Al-
though each approach described above addresses one or more aspects of a se-
mantic ETL framework, there is no single platform that supports them all (tar-
get definition, source-to-target mappings generation, ETL generations, MD
target population, and evolution). To solve this problem, we have proposed a
Python-based programmable semantic ETL (SETLPROG) framework [37] that
provides a number of powerful modules, classes, and methods for perform-
ing the tasks mentioned above. It facilitates developers by providing a higher
abstraction level that lowers the entry barriers. We have experimentally
shown that SETLPROG performs better in terms of programmer productiv-
ity, knowledge base quality, and performance, compared to other existing
solutions. However, to use it, developers need a programming background.
Although SETLPROG enables to create an ETL flow and provides methods by
combining several tasks, there is a lack of a well-defined set of basic semantic
ETL constructs that allow users more control in creating their ETL process.
Moreover, how to update an SDW to synchronize it with the changes taking
place in the sources is not discussed. Further, in a data lake/big data envi-
ronment, the data may come from heterogeneous formats, and the use of the
relational model as the canonical model may generate an overhead. Trans-
forming JSON or XML data to relational data to finally generate RDF can be
avoided by using RDF as the canonical model instead. To this end, several
works have discussed the appropriateness of knowledge graphs for data in-
tegration purposes and specifically, as a canonical data model [11, 48, 49].
An additional benefit of using RDF as a canonical model is that it allows
adding semantics without being compliant to a fixed schema. The present
paper presents the improvements introduced on top of SETLPROG to remedy
its main drawbacks discussed above. As there are available RDF Wrappers
(e.g., [14, 51]) to convert another format to RDF, in this paper, we focus on
only semantic data and propose an RDF-based two-layered (Definition Layer
and Execution Layer) integration process. We also propose a set of high-level
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ETL constructs (tasks/operations) for each layer, with the aim of overcoming
the drawbacks identified above for SETLPROG. We also provide an operation
to update an SDW based on the changes in source data. On top of that, we
characterize the ETL flow in the Definition Layer by means of creating an
RDF based source-to-target mapping file, which allows to automate the ETL
execution flows.

10 Conclusion and Future Work

In this paper, we proposed a framework of a set of high-level ETL constructs
to integrate semantic data sources. The overall integration process uses the
RDF model as canonical model and is divided into the Definition and Ex-
ecution Layer. In the Definition Layer, ETL developers create the metadata
(target and source TBoxes, and source-to-target mappings). We propose a
set of high-level ETL operations for semantic data that can be used to create
ETL data flows in the Execution Layer. As we characterize the transforma-
tions in the Definition Layer in terms of source-to-target mappings at the
schema level, we are able to propose an automatic algorithm to generate
ETL data flows in the Execution Layer. We developed an end-to-end pro-
totype SETLCONSTRUCT based on the high-level constructs proposed in this
paper. We also extended it to enable automatic ETL execution flows genera-
tion (and named it SETLAUTO). The experiment shows that 1) SETLCONSTRUCT
reduces the Number of Typed Characters (NOTC) of SETLPROG by 92% and
SETLAUTO reduces the Number of Used Concepts (NOUC) by 25% compared
to SETLCONSTRUCT; 2) using SETLCONSTRUCT, the development time is cut in
almost half compared to SETLPROG, which is further cut by another 27% us-
ing SETLAUTO; 3) SETLCONSTRUCT is scalable and have similar performance
compared to SETLPROG.

An extension of this work is to define the formal semantics of the opera-
tions using an ontology and mathematically prove the correctness and com-
pleteness of the proposed ETL constructs. The source-to-target mappings act
as a mediator to generate data according to the semantics encoded in the
target. Therefore, we plan to extend our framework from purely physical to
also virtual data integration where instead of materializing all source data
in the DW, ETL processes will run on demand. When considering virtual
data integration, it is important to develop query optimization techniques for
OLAP queries on virtual semantic DWs, similar to the ones developed for vir-
tual integration of data cubes and XML data [41, 42, 56]. Another interesting
work will be to apply this layer-based integration process in a Big Data and
Data Lake environment. The metadata produced in the Definition Layer can
be used as basis to develop advanced catalog features for Data Lakes. Fur-
thermore, we plan to investigate how to integrate provenance information
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into the process [2]. Another aspect of future work is the support of spa-
tial data [19, 20]. We will also develop a new implementation with scalable,
parallel ETL computing and optimize the operations.

A Appendix

A.1 Semantics of the Execution Layer Operations

In this section, we provide the detailed semantics of the ETL operations de-
scribed in Section 6. The operations depend on some auxiliary functions.
Here, we first present the semantics of the auxiliary functions and then the
semantics of the operations. We present each function and operation in terms
of input Parameters and semantics. To distinguish the auxiliary functions
from the operations, we use small capital letters to write an auxiliary func-
tion name, while an operation name is written in italics.

Auxiliary Functions

executeQuery(Q, G, outputHeader) This function provides similar function-
ality as SPARQL SELECT queries.

Input Parameters: Let I, B, L, and V be the sets of IRIs, blank nodes,
literals, and query variables. We denote the set of RDF terms (I ∪ B∪ L) as T
for an RDF graph G. V is disjoint from T. A query variable v ∈ V is prefixed
by the symbol ′?′. A query pattern Q can be recursively defined as follows16:

1. An RDF triple pattern tp is a query pattern Q. A tp
17 allows query

variables in any positions of an RDF triple, i.e., tp ∈ (I ∪ B ∪V)× (I ∪
V)× (T ∪V).

2. If Q1 and Q2 are query patterns, then (Q1 AND Q2), (Q1 OPT Q2),
and (Q1 UNION Q2) are also query patterns.

3. If Q is a query pattern and Fc is a filter condition then (Q FILTER Fc)
is a query pattern. A filter condition is constructed using elements
of the set (T ∪ V) and constants, the equality symbol (=), inequality
symbols (<,≥,≤,>), logical connectivities (¬,∨,∧), unary predicates
like bound, isBlank, and isIRI plus other features described in [46].

G is an RDF graph over which Q is evaluated and outputHeader is an output
header list, which is a list of query variables and/or expressions over the

16We follow the same syntax and semantics used in [43] for a query pattern.
17To make it easily distinguishable, here we use comma to separate the components of a triple

pattern and an RDF triple.
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variables used in Q. Here, expressions are standard SPARQL expressions
defined in [21].

Semantics: For the query pattern Q, let µ be a partial function that maps
var(Q) to T, i.e., µ : var(Q) → T. The domain of µ, denoted by dom(µ), is
the set of variables occurring in Q for which µ is defined. We abuse notation
and say µ(Q) is the set of triples obtained by replacing the variables in the
triple patterns of Q according to µ. The semantics of the query pattern are
recursively described below.

1. If the query pattern Q is a triple pattern tp, then the evaluation of Q
against G is the set of all mappings that can map tp to a triple contained
in G, i.e., JQKG = JtpKG = {µ | dom(µ) = var(tp) ∧ µ(tp) ∈ G}.

2. If Q is (Q1 AND Q2), then JQKG is the natural join of JQ1KG and JQ2KG,
i.e., JQKG = JQ1KG ./ JQ2KG = {µ1 ∪ µ2 | µ1 ∈ JQ1KG, µ2 ∈ JQ2KG,
µ1 and µ2 are compatible mappings, i.e., ∀?x ∈ dom(µ1)∩ dom(µ2), µ1(?x) =
µ2(?x)}.

3. If Q is (Q1 OPT Q2), then JQKG is the left outer join of JQ1KG and JQ2KG,
i.e., JQKG = JQ1KG =./ JQ2KG = (JQ1KG ./ JQ2KG) ∪ (JQ1KG \ (JQ2KG).

4. If Q is (Q1 UNION Q2), then JQKG = JQ1KG ∪ JQ2KG = {µ | µ ∈
JQ1KG or µ ∈ JQ2KG }.

5. If Q = (Q1 FILTER Fc), then JQKG = {µ | µ ∈ JQ1KG ∧ µ |= Fc},
where a mapping µ satisfies a filter condition Fc, denoted by µ |= Fc.

This function returns a set of tuples where each tuple contains the values of
the variables and/or the values derived by solving the expressions defined
in outputHeader according to µ.

getPropertiesFromExpressions(sTBox, exps) An expression is a combina-
tion of one or more properties, operators, and SPARQL functions defined
in [21]. This function returns a subset of properties of a source TBox that are
used in the given expressions.

Input Parameters: sTBox is a TBox and exps is a set of expressions.
Semantics: For each exp ∈ exps, this function computes the intersection

of the set of IRIs used in exp and the set of properties of sTBox. Then, it
returns the union of all intersection sets. Here, returnIRIs(exp) returns the
set of IRIs used in exp and P(t) is defined in Equation B.2. The semantic is
defined as follows:

getPropertiesFromExpressions(sTBox,

exps) =
⋃

exp∈exps
returnIRIs(exp) ∩ P(sTBox).
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This function returns a set of properties.
validateExpressions(exps,Q, flag) The source expressions/properties (defined
by map:source4TargetPropertyValue) in property-mappings contains prop-
erties. However, the outputHeader parameter of executeQuery() allows only
query variables. Therefore to extract data from an RDF graph using exe-
cuteQuery(), the properties used in the expressions/properties of property-
mappings should be replaced by corresponding query variables. On the other
hand, to match the expressions/properties used in outputHeader of execute-
Query() with the expressions/properties (defined by map:source4TargetPro-

pertyValue) in property-mappings , the query variables used in expression-
s/properties need to be replaced by the corresponding properties. Given
a set of expressions, a query pattern, and a flag, this function replaces the
used term (either IRI or query variables) in expressions with alternative ones
from the query pattern based on the flag and returns a list of the validated
expressions.

Input Parameters: exps is a list of expressions, Q is a query pattern,
and flag indicates whether it will replace the IRIs (flag=1) or query variables
(flag=0) used in exps.

Semantics: If flag=1 the function replaces the exps IRIs with the corre-
sponding query variables used in Q. For each IRI iri used in an expression,
validateExpressions replaces iri with the object of the triple pattern whose
predicate is iri in Q. Finally, it returns the list of expressions, where each
expression does not contain any IRIs.

If flag=0 the function replaces the exps query variables with the corre-
sponding predicate IRIs used in Q. For each query variable ?q used in an
expression, it replaces ?q with the predicate of the triple pattern whose object
is ?q in Q. Finally, it returns the list of expressions, where each expression
does not contain any query variables.

mappedSourceInstances(sc, sTBox, sABox, propertyMappings) This function re-
turns a dictionary describing the instances of a source concept.

Input Parameters: sc is a source construct, sTBox and sABox are the
source TBox and ABox, propertyMappings is a set of property-mappings.

Semantics: At first, this function retrieves instances of sc with their cor-
responding properties and values. Here, we consider only those properties
that are directly mapped to target properties and/or used in source expres-
sions. Both the properties and expressions are defined in propertyMappings
by map:source4TargetPropertyValue. Then, it creates a dictionary, a set
of (key, value) pairs. In a pair, key represents an instance IRI and value in
turn represents a set of (pi, vi) pairs, where pi represents a property and vi
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represents a value for pi. It is explained as follows:

mappedSourceInstances(sc, sTBox, sABox, propertyMapping) = dictionary(

executeQuery((?i, rdf:type18, sc)AND(?i, ?p, ?v)FILTER

(?p ∈ getPropertiesFromExpressions(sTBox,

mappedExpressions(sc, propertyMappings)))), sABox, (?i, ?p, ?v))).

Here, mappedExpressions(sc, propertyMappings) returns the set of source
properties/expressions (defined by map:source4TargetPropertyValue) used
in propertyMappings. The dictionary((?i, ?p, ?v)) function first groups the input
tuples by ?i and then for each instance i ∈?i, it creates a set of (pi, vi) pairs,
where pi is a property of i and vi is the value for pi. Finally, mappedSource-
Instances(..) returns the dictionary created.

generateIRI(sIRI, value, tType, tTBox, iriGraph ) Every resource in an SDW is
uniquely identified by an IRI defined under the namespace of the SDW. This
function creates an equivalent target IRI for a source resource. Additionally,
it keeps that information in the IRI graph.

Input Parameters: sIRI is the source IRI, value is the literal to be used to
ensure the uniqueness of the generated IRI, tType is the type of the generated
IRI in tTBox, tTBox is the target TBox, and iriGraph is the IRI graph. The IRI
graph is an RDF graph that keeps a triple for each resource in the SDW with
their corresponding source IRI.

Semantics: Equation B.3 formulates how to create the IRI. First, the func-
tion checks whether there is an equivalent IRI for sIRI in iriGraph using
lookup(sIRI, iriGraph). It returns the target IRI if it finds an existing IRI in
iriGraph; otherwise, it generates a new IRI by concatenating prefix(tTBox) and
validate(value) for a target concept or property, or creates an instance IRI
by concatenating tType and validate(value). Here, prefix(tTBox) returns the
namespace of tTBox; concat() concatenates the input strings; validate(value)
modifies value according to the naming convention rules of IRIs described
in [47]; C(T) and P(T) are defined in Equation B.1 and B.2. Upon the cre-
ation of the IRI, this function adds an RDF triple (tIRI owl:sameAs sIRI) to
iriGraph.

generateIRI(sIRI, value, tType, tTBox, iriGraph )=


lookup(sIRI, iriGraph) i f lookup(sIRI, iriGraph)! =
NULL

concat(tType, “#”,
validate(value)) i f lookup(value, iriGraph) =

NULL ∧ tType ∈ (C(tTBox)
∪P(tTBox))

concat(pre f ix(tTBox),
“#”, validate(value)) i f lookup(sIRI, iriGraph) =

NULL ∧ tType /∈ (C(tTBox)
∪P(tTBox))

(B.3)
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This function returns an IRI.

tuplesToTriples(T, tc, Q, propertyMappings, (i, exp1, .., expn)) As the canoni-
cal model of our integration process is RDF model, we need to convert the
instance descriptions given in the tuple format into equivalent RDF triples.
This function returns a set of RDF triples from the given set of tuples.

Input Parameters: T is a set of tuples (1st normal form tabular format),
tc is a target construct, Q is a query pattern, propertyMappings is a set of
property-mappings, and (i, exp1, .., expn) is the tuple format.

Semantics: Equation B.4 shows the semantics of this function. Each tuple
of T represents an instance-to-be of the target construct tc, and each expres-
sion (expi) and the value of the expression (val(expi)) represent the corre-
sponding target property and its value of the instance. Here, val(expi) is
the value of an expression in a source tuple. As an expression can contain
query variables and expressions used in propertyMappings do not use query
variables, validateExpressions(expi, Q, 0) replaces the query variables with
equivalent properties from Q, and return(x, propertyMappings) returns the tar-
get construct mapped to source construct x from propertyMappings.

tuplesToTriples(T, tc, Q, propertyMappings, (i, exp1, .., expn)) =⋃
(val(i),val(exp1),..,val(expn))∈T

{{(val(i), rdf:type, tc))} ∪

n⋃
p=1

{(val(i), return(validateExpressions

(expp, Q, 0), propertyMappings), val(expi))}} (B.4)

This function returns a set of RDF triples.

Execution Layer Operations

This section gives the semantics of each operation category-wise.

Extraction Operations

GraphExtractor(Q, G, outputPattern, tABox) This operation is functionally equiv-
alent to SPARQL CONSTRUCT queries to extract data from sources.

Input Parameters: Q is a query pattern as defined in ExecuteQuery(). G
is an RDF graph over which Q is evaluated. The parameter outputPattern is
a set of triple patterns from (I ∪ B ∪ var(Q))× (I ∪ var(Q)× (T ∪ var(Q)),
where var(Q) ⊆ V is the set of query variables occurring in Q. Here, I, B, T,
and V are the sets defined in ExecuteQuery(). The parameter tABox is the
location where the output of this operation is stored.
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Semantics: This operation generates the output in two steps: 1) First,
Q is matched against G to obtain a set of bindings for the variables in Q
as discussed in ExecuteQuery(). 2) Then, for each variable binding (µ), it
instantiates the triple patterns in outputPattern to create new RDF triples.
The result of the query is a merged graph, including all the created triples for
all variable bindings, which will be stored in tABox. Equation B.5 formally
defines it.

GraphExtractor(Q, G, outputPattern, tABox) =⋃
th∈outputPattern

{µ(th) | µ ∈ JQKG ∧ µ(th) is a well − f ormed RDF triple}.

(B.5)

Transformation Operations

TransformationOnLiteral(sConstruct, tConstruct, sTBox, sABox,propertyMappings,
tABox) This operation creates a target ABox from a source ABox based on

the expressions defined in property-mappings.
Input Parameters: sConstruct and tConstruct are a source and target TBox

construct, sTBox and sABox are the source TBox and ABox, propertyMappings
is a set of property-mappings, and tABox is the output location.

Semantics: First, we retrieve the instances of sConstruct ins(c) from sABox
using the executeQuery() function, which is formally described as follows:

ins(c)=executeQuery(q(c), sABox,(?i, validateExpressions(list(cElements),
q(c), 1)).
Here:

- c = sConstruct.
- q(c)=(((?i, rdf:type, c) AND (?i,?p,?v)) FILTER (?p ∈ cProperties)) is a

query pattern.
- cProperties= getPropertiesFromExpressions(sTBox, cElements) is the set

of source properties used in source expressions defined in propertyMap-
pings.

- cElements=executeQuery((?pm, map:source4TargetPropertyValue, ?sp),
propertyMappings, ?sp) is the set of source expressions in propertyMap-
pings defined by map:source4TargetPropertyValue.

- validateExpressions(list(cElements),q(c),1) replaces the source proper-
ties used in cElements with the corresponding query variables from q(c)
as outputHeader parameter executeQuery() does not allows any prop-
erties. Since validateExpressions takes a list of expressions as a pa-
rameter, list(cElement) creates a list for scElements.

Now, we transform all tuples of ins(c) into equivalent RDF triples to get
tABox, i.e.,

output = tuplesToTriples(ins(c), tConstruct, q(c), (?i, exp1, , .., expn)).
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The output of this operation is output, a set of RDF triples, which will be
stored in tABox.

JoinTransformation(sConstruct, tConstruct, sTBox, tTBox, sABox, tABox, comProp,
propertyMappings) This operation joins and transforms the instances of source

and target based on property-mappings.
Input Parameters: sConstruct and tConstruct are a source and target19

TBox construct, sTBox and tTBox are the source and target TBoxes;; sABox
and tABox are the source and target ABoxes; comProp is a set of common
properties between tConstruct and sConstruct and propertyMapping is the set
of property-mappings.

Semantics: At first, we create an ABox by taking the set union of in-
stances (including their properties and values) of both sConstruct and tCon-
struct and apply a query on the ABox using the executeQuery() function.
The query pattern of the function joins the instances of two concepts based
on their common properties and finally the function returns a set of tar-
get instances ins(sc,tc) with the values of the source expressions (defined by
map:source4TargetPropertyValue) in propertyMappings. As the query pat-
tern includes triple patterns from both sConstruct and tConstruct, the source
expression can be composed of both source and target properties. This is
described as follows:

ins(tc,sc)=executeQuery ((q(tc) OPT q(sc)), union(extractIns(tc,tABox),
extractIns(sc,sABox)), (?i, validateExpressions(scElements, (q(tc) OPT q(sc)),
1)).
Here:

- tc=tConstruct and sc=sConstruct.
- q(tc)=((?itc, rdf:type, tc) AND (?itc,?ptc, ?vtc) tpcom(?itc,“target", com-

Prop) FILTER(?ptc ∈ tcProperties)) is a query pattern.
- tpcom(?itc, target, comProp) is a function that joins a triple pattern (

i.e., AND (?itc, scomi, ?scomi)) in q(tc) for each pair (scomi, tcomi) ∈
comProp.

- tcProperties= getPropertiesFromExpressions(tTBox, scElements) rep-
resents the set of source properties used in source expressions.

- q(sc)=((?isc, rdf:type, sc) AND (?isc, ?psc, ?vsc) spcom(?isc,“source", com-
Prop) FILTER (?psc ∈ scProperties)) is the query pattern.

- spcom(?isc, “source”, comProp) is a function that joins a triple pat-
tern ( i.e., AND (?isc, tcomi, ?scomi)) in q(sc) for each pair (scomi, tcomi)
∈ comProp .

- scProperties= getPropertiesFromExpressions(sTBox, scElements) rep-
resents the set of source properties used in source expressions.

19The term target here does not mean target schema but in the sense it is defined in concept-
mappings. Source and target both can be either source concepts or intermediate concepts (from
an intermediate result).
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- scElements=executeQuery((?pm, map:source4TargetPropertyValue, ?sp),
propertyMappings, ?sp) is the set of source expressions in propertyMap-
pings defined by map:source4TargetPropertyValue.

- extractInstance(c, abox)=executeQuery(((?i, rdf:type, c) AND (?i,?p,?v)),
abox,(?i, ?p, ?v)) retrieves the instances (with their linked properties and
values) of the concept c from the given ABox abox.

- union(s1, s2) returns the set union of two given sets s1 and s2.
- validateExpressions(list(scElements), q(sc,tc) ,1) replaces the source prop-

erties used in scElements with the corresponding query variables from
q(tc,sc) as the outputHeader parameter of executeQuery() does not allow
any properties. Since validateExpressions takes a list of expressions
as a parameter, list(cElement) creates a list for scElements.

Now, we transform all tuples of ins(sc, tc) into equivalent RDF triples to get
the transformed tABox, i.e.,

output=tuplesToTriples(ins(tc,sc), tConstruct, q(tc,sc), (?i, exp1, , .., expn)).
The output of this operation is output, a set of RDF triples, which will be

stored in tABox.

LevelMemberGenerator(sConstruct, level, sTBox, sABox, tTBox, iriValue, iriGraph,
propertyMappings, tABox) The objective of this operation is to create QB4OLAP-
complaint level members.

Input Parameters: sConstruct is the source construct, level is a target level,
sTBox and sABox are the source TBox and ABox, iriValue is the rule of creating
level members’ IRIs, iriGraph is the IRI graph, proeprtyMappings is a set of
property-mappings, and tABox is the output location.

Semantics: First, we retrieve the instances of sConstruct with their prop-
erties and values, i.e.,

Ins = mappedSourceInstances(sConstruct, sTBox, sABox,

propertyMappings) (B.6)

To enrich level with the dictionary Ins, we define a set of triples LM by
taking the union of IdentityTriples (for each (i,pv) pair in Ins) and the union of
DescriptionTriples (for each (pi, vi) pair in pv). Equation B.7 defines LM.

LM =
⋃

(i,pv)∈Ins

(IdentityTriples ∪
⋃

(pi ,vi)∈pv

DescriptionTriple) (B.7)

Here:

IdentityTriples = {(lmIRI, rdf:type, qb4o:LevelMember),
(lmIRI, qb4o:memberOf, level)} (B.8)
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lmIRI =



i i f iriValue = “sameAs
SourceIRI”

generateIRI(i, resolve(i, pv, iriValue),
range(level, tTBox, iriGraph), tTBox)

i f range(level, tTBox)!
= NULL

generateIRI(i, resolve(i, pv, iriValue),
level, tTBox, iriGraph)

i f range(level, tTBox)
= NULL

(B.9)

DescriptionTriple =



{(lmIRI, return(pi , property−
Mappings), generateIRI(vi ,
iriValue(vi), range((return(
vi , propertyMappings),
tTBox), tTBox, iriGraph))} i f targetType(return(vi ,

propertyMappings), tTBox)
∈ {rollupProperty, ObjectP−
roperty}

{(lmIRI, return(pi ,
propertyMappings), vi)} i f targetType(pi , propertyMap−

pings, tTBox) = levelAttribute

(B.10)

Each instance of sConstruct is a qb4o:LevelMember and a member of level;
therefore, for each instance of sConstruct, LM in Equation B.7 includes two
identity triples, described in Equation B.8. Equation B.9 describes how to
create an IRI for a level member. As we described in Section 5, the rule for
creating IRIs can be different types. If iriValue is "sameAsSourceIRI" then the
function returns the source IRI; otherwise it resolves value of iriValue us-
ing the resolve(i, pv, iriValue) function—this function returns either the value
of a property/expression or next incremental value—, and finally it cre-
ates a new IRI by calling the generateIRI() function. As some datasets
(e.g., [18]) use the IRI of the level to create the IRIs of its members, whereas
others (Eurostat (https://ec.europa.eu/eurostat/data/database), Greece
(http://linked-statistics.gr/) linked datasets) use the IRI of the range
of the level, we generalize it using Equation B.9. If a range exists for the
target level, the IRI of that range is used as a target type— the type of the
resources for which IRIs will be created— for creating IRIs for the members
of that level (second case in Equation B.9); otherwise, the level’s IRI is used
as a target type (third case in Equation B.9). Here, range(level, tTBox) returns
the range of level from tTBox.

Equation B.10 creates a triple for each (pi, vi) pair of Ins. If pi corresponds
to either an object property or a rollup property in tTBox, then a new IRI is
created for vi and the target type of the IRI is the range of the target construct
that is mapped to pi (first case in Equation B.10). Here, return(x, mappings)
function returns the target construct that is mapped to x from the set of
property-mappings mappings; targetType(x, tTBox) returns the type of a tar-
get construct x from tTBox; and iriValue(v) retrieves the value to be used to
create the IRI. If v is a literal, it simply returns it, otherwise, it splits v by
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either “/" or “#" and returns the last portion of v. If pi corresponds to a level
attribute (i.e., datatype property), then the object of the triple generated for
the level member will be the same as v (second case in Equation B.10).

The output of this operation is LM and the operation stores the output in
tABox.

ObservationGenerator(sConstruct, dataset, sTBox, sABox, tTBox iriValue, iriGraph,
propertyMappings, tABox): This operation creates QB4OLAP-complaint ob-

servations from the source data.
Input Parameters: sConstruct is the source construct, dataset is a target QB

dataset, sTBox and sABox are the source TBox and ABox, iriValue is the rule
of creating level members’ IRIs, iriGraph is the IRI graph, proeprtyMappings is
a set of property-mappings, and tABox is the output location.

Semantics: First, we retrieve the instances of sConstruct with their prop-
erties and values using Equation B.6. To populate dataset with the dictionary
Ins, we define a set of triples OB which is equivalent to LM in Equation B.7.

IdentityTriples = {(oIRI, rdf:type, qb:Observation), (oIRI, qb:dataset, dataset)}
(B.11)

oIRI =


i i f iriValue = “sameAs

SourceIRI”
generateIRI(i, resolve(i, pv,
iriValue), dataset, tTBox, iriGraph) otherwise

(B.12)

DescriptionTriple =


{(oIRI, return(pi ,
propertyMappings), lmIRIo)} i f targetType(return(pi ,

propertyMappings), tTBox)
= LevelProperty

{(oIRI, return(pi ,
propertyMappings), vi)} i f targetType(return(pi ,

propertyMappings), tTBox)
= MeasureProperty

(B.13)

lmIRIo =



generateIRI(vi , iriValue(vi),
range(return(pi , property−
Mappings), tTBox),
tTBox, iriGraph) i f range(return(pi , propertyM

appings), tTBox))! = NULL
generateIRI(vi , iriValue(vi),
return(pi , propertyMappings)
, tTBox, iriGraph) i f range(return(pi , propertyM

appings), tTBox)) = NULL

(B.14)

Each instance of sConstruct is a qb:Observation and the QB dataset of
that observation is dataset; therefore, for each instance of sConstruct, OB in
Equation B.7 includes two identity triples. Equation B.11 redefines Equa-
tion B.8 for OB. Equation B.12 describes how to create an IRI for an observa-
tion. If iriValue is “sameAsSourceIRI" then the function returns the source IRI;
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otherwise it generates an observation IRI by calling the generateIRI() func-
tion. Equation B.13 redefines Equation B.10 for OB. For each (pi, vi) in the
dictionary, the equation creates a triple. If pi represents a level in the target,
the predicate of the triple is the corresponding level of pi and the object of
the triple is a level member of that level. Equation B.14 shows how to create
the IRI for the object (level member) of that triple. If pi represents a measure
property in the target, the predicate of the triple is the corresponding target
measure property of tTBox and the object of the target triple is similar to vi.

The output of this operation is OB, which will be stored in tABox.

ChangedDataCapture(nABox, oABox, flag) This operation triggers either the SDW
evolution (i.e., enriched with new instances) or update (i.e., reflect the changes
in the existing instances).

Input Parameters: nABox and oABox are the sets of triples that represent
the new source data and the old source data, flag indicates the type of differ-
ence the operation will produced. If flag= 0, the operation produces the new
instances, and if flag= 1, the operation produces the set of updated triples
(i.e., the triples in oABox updated in nABox).

Semantics: Here, nABox and oABox both are a set of triples where first
element of each triple corresponds to a level member in the target, second
element represents a property (either a level attribute or a rollup property)
and the third element represents a value of the property for that instance.
First, we retrieve the sets of instances from nABox and oABox using the exe-
cuteQuery() function, shown as follows:

InsnABox = executeQuery((?i, rdf:type, ?v), nABox, ?i)
InsoABox = executeQuery((?i, rdf:type, ?v), oABox, ?i)

The set difference of InsnABox and InsoABox gets the new instances, i.e.,
Insnew = InsnABox − InsoABox. We get the description (properties and their
values) of new instances using Equation B.15.

InsDesnew =
⋃

i∈Insnew

executeQuery((?s, ?p, ?v)

FILTER(?s = i)), nABox, (?s, ?p, ?v)) (B.15)

To get the triples that are changed over time, we first remove the descrip-
tion of new instances (derived in Eq. B.15) from newABox i.e., InsDesold =
newABox − InsDesnew; then get the set of changed triples by taking the set
difference of InsDesold and oldABox, i.e.,

ChangedTriples = InsDesold − oldABox.
If (flag=0) then the output is InsDesnew, else ChangedTriples. The output

overwrites oABox.

updateLevel(level, updatedTriples, sABox, tTBox, tABox, propertyMappings, iriGraph)
This operation reflect the changes in source to the SDW.
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Input Parameters: level is a target level, updatedTriples is the set of updated
triples (generated by the ChangedDataCapture operation), sABox is the source
data of level, tTBox and tABox are the target TBox and ABox, propertyMappings
is the set of property-mappings, and iriGraph is the IRI graph.

Semantics: As we consider that the changes only occur at the instance
level, not at the schema level, only the 3rd elements (objects) of the triples of
sABox and updatedTriples can be different. For the simplicity of calculation,
we define sABox, and updatedTriples as the following relations:

sABox = (instance, property, oldVal)
updatedTriples = (instance, property, newVal)
This operation updates tABox by deleting invalid triples from tABox and

inserting new triples that reflect the changes. As SPARQL does not sup-
port any (SQL-like) update statement, we define two sets DeleteTriples and
InsertTriples that contain the triples to be deleted from tABox and inserted to
tABox, respectively. To get the final tABox, we first take the set difference be-
tween tABox and DeleteTriples using Equation B.16 and then, take the union
of tABox and InsertTriples using Equation B.17.

tABox = tABox− DeleteTriples (B.16)

tABox = tABox ∪ InsertTriples (B.17)

To get the updated objects and old objects of triples for source instances,
we take the natural join between updateddTriples and sABox, i.e.,

NewOldValues = updatedTriples 1 sABox (B.18)

We define DeleteTriples and InsertTriples as

DeleteTriples =
⋃

(i,p,nV)∈ updatedTriples

del(i, p, nV) (B.19)

InsertTriples =
⋃

(i,p,nV,oV)∈ NewOldValues

in(i, p, nV, oV) (B.20)

The del(i, p, nV) and in(i, p, nV) functions depends on the update type of
the level attribute corresponding to p. We retrieve the update type of the
level attribute from tTBox using Equation B.21. The updateType(prop,tTBox)
function returns the update type of a level attribute prop from tTBox (see the
blue-colored rectangle of Figure B.1).

updateType = (updateType(return(p, propertyMappings), tTBox)) (B.21)

In the following, we describe how the functions, del(i, p ,nV) and in(i,p,nV,oV)
are defined for different values of updateType.
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If updateType= Type-1 update
If updateType is Type-1 update, the new value of the property will replace

the old one. Therefore, the triple holding the old value for the property
will be deleted from tABox and a new triple with the updated value of the
property will be inserted into tABox. Equation B.22 defines del(i, p, nV) for
the Type-1 update. For an instance i in the source, the existing equivalent
IRI in the target can be retrieved from the IRI graph iriGraph, i.e., IRIi =
lookup(i, iriGraph). return(p, propertyMappings) in Equation B.22 returns the
target level attribute that is mapped to p from propertyMappings.

del(i, p, nV) = executeQuery(((?i, ?p, ?val)FILTER (?i = IRIi &&

?p = return(p, propertyMappings))), tABox, (?i ?p ?val)) (B.22)

Equation B.23 describes how to create an RDF triple for the Type-1 up-
date. First, we retrieve the equivalent value of oV in the target using Equa-
tion B.24. As the retrieved value can be either a literal or an IRI, we create the
object of the triple by replacing the oV portion of that value with nV. The re-
place(org_str, search_pattern, replace_pattern) function updates the string org_str
by replacing the substring search_pattern with replace_pattern. The subject of
the output RDF triple is the level member equivalent to i and the predicate is
the target property equivalent to p.

in(i, p, nV, oV) = {(IRIi, return(p, mapping), replace(targetValue(i, p),

oV, nV)} (B.23)

where,
targetValue(i, p) = executeQuery((IRIi, return(p, mapping), ?v),

tABox, ?v) (B.24)

If updateType= Type-3 update
Like the Type-1 update, Type-3 update also replaces the old property

value with the current one. Besides, it also keeps the old property value as
the latest old property value. Therefore, the triples that contain the current
and old property value should be removed from the target. Equation B.25 de-
fines del(i,p,nV) for the Type-3 update, which retrieves the triples containing
both current and old property values.

As besides new value Type-3 keeps the latest old value of the property
by adding another property, we define in(i,p,nV,oV) in Equation B.26 which
creates a triple for the new value and a triple for the old one. For a prop-
erty property, concat(property, “_oldValue") creates a property to contain the
old value of the property by concatenating the “_oldValue” with property.
The function targetValue(i, p) returns the objects of triple whose subject and
predicate are corresponds to i and p, defined in Equation B.24.
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del(i, p, nV) = executeQuery(((?i, ?p, ?val)FILTER(?i = IRIi &&

?p ∈ (return(p, propertyMappings), concat(return(p,

propertyMappings), “_oldValue”))), tABox, (?i, ?p, ?val)) (B.25)

in(i, p, nV, oV) = {(IRIi, return(p, mapping), replace(targetValue(i, p),

oV, nV), (IRIi, concat(return(p, propertyMappings), “_oldValue”),

targetValue(i, p))} (B.26)

If updateType= Type-2 update
In Type-2 update, a new version for the level member is created (i.e., it

keeps the previous version and creates a new updated version). Since the va-
lidity interval (defined by type2:toDate) and status (defined by type2:status)
of the previous version need to be updated, triples describing the validity
interval and status of the previous version should be deleted from tABox.
Equation B.27 defines del(i, p, nV) for Type-2 update. The first operand of the
union in Equation B.27 retrieves the expired triples of IRIi (the level member
corresponding to i) from tABox. As the level of IRIi can be an upper level in
a hierarchy, the validity intervals and the status of the level members of lower
levels referring to IRIi need to be updated, too. Therefore, the current valid-
ity intervals and status of the associated level members will also be deleted.
The second operand of union in Equation B.27 getExpiredTriplesAll(IRIi) re-
turns the set of expired triples of the members of all lower levels referring
to IRIi (described in Equation B.28). The function getTriplesImmediate(IRIi)
returns the set of expired triples of the members of immediate child level
referring to IRIi (described in Equation B.29).

del(i, p, nV) = executeQuery(((IRIi, ?p, ?val)FILTER (?p ∈ (type2:

toDate, type2:status))), tABox, (IRIi, ?p, ?val))∪
getExpiredTriplesAll(IRIi) (B.27)

getExpiredTriplesAll(IRIi) =⋃
(ic p v) ∈ getExpiredTriplesImmediate(IRIi)

getExpiredTriplesAll(ic) (B.28)

getExpiredTriplesImmediate(IRIi) = executeQuery((?ic, ?p, IRIi) AND

(?ic, rdf:type, qb4o:LevelMember) AND (?ic, ?p, ?v) FILTER (?p ∈
(type2:toDate, type2:status))), tABox, (?ic, ?p, ?val)) (B.29)
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To reflect the changes in the target, a new version of the level member (with
the changed and unchanged property values) is created. Equation B.30 de-
fines in(i,p,nV,oV) for Type-2 update. The IRI for the new version of IRIi is
newIRIi = updateIRI(IRIi, iriGraph). The updateIRI(iri, iriGraph) function up-
dates the existing IRI iri by appending the current date with it and returns
the updated one. An RDF triple is generated for nV, where the object is
composed by replacing the old value with the new value, the predicate is the
target level attribute equivalent to p, and the subject is newIRIi (first operand
of the union operation in Equation B.30). The call of update2Insert(irio, irin,cp)
in Equation B.30 returns the triples required to reflect the changes in tABox.
Here, irio and irin are the old and new version (IRI) of a level member
and cp is the predicate of the updated triple (i.e., the property whose value
has been changed). The values of type2:status for new and existing ver-
sions are set to “Current" and “Expired", respectively. The validity interval
of existing version is ended on sysdate()-1 and the validity interval of new
version is from sysdate() to “9999-12-31". The sysdate() returns the current
date in year-month-day format as we consider that at most one update oper-
ation can be applied on the SDW in a day. The value “9999-12-31" in the
type2:toDate indicates that the instance is still valid; this is a usual no-
tation in temporal databases [54]. As the new version of the level mem-
ber also contains the triples for its unchanged properties, we retrieve the
triples of a level member’s old version irio with unchanged properties using
retrieveTriples(irio, cp) which returns all triples of irio except the triples with
the properties cp (changed property), type2:toDate, type2:fromDate, and
type2:status (described in Equation B.32). We replace the IRI of old version
with the new one using the replace() function. To propagate the current ver-
sion to its descendants (i.e., the level members those are associated to irio);
the function updateAssociates(irio, irin) creates new versions for the associated
members of all lower levels in the hierarchy so that they refer to the correct
version (described in Eq. B.33). The function getAssociates(irio) returns the set
of triples that describe the members that are connected to irio with a prop-
erty. For each member connected to irio, we create a new version of it and
also recursively update the members dependent on it using Equation B.35.

in(i, p, nV, oV) = {(newIRIi, return(p, propertyMappings),

replace(targetValue(i, p), oV, nV)} ∪
update2Insert(IRIi, newIRIi, return(p,

propertyMappings)) (B.30)

180



References

update2Insert(irio, irin, cp) = {(irio, type2:status, “Expired”),

(irio, type2:toDate, sysdate()− 1), (irin, type2:fromDate, sysdate()),

(irin, type2:toDate, “9999− 12− 31”), (irin, type2:status, “Current”)}
∪ replace(retrieveTriples(irio, cp), irio, irin)) ∪ updateAssociates(irio, irin)

(B.31)

retrieveTriples(lm, cp) = executeQuery(((lm, ?p, ?v) FILTER (?p /∈
(cp, type2:toDate, type2:fromDate, type2:status))),

tABox, (lm, ?p, ?v)) (B.32)

updateAssociates(irio, irin) = ⋃
(ic ,p)∈getAssociates(irio)

recursiveUpdate(ic, p) (B.33)

getAssociates(irio) = executeQuery(((?ic, ?p, irio) AND (?ic, rdf:type,

qb4o:LevelMember)), tABox, (?ic, ?p)) (B.34)

recursiveUpdate(ic, p) = {(updateIRI(ic, iriGraph), p, ic)} ∪
update2Insert(ic, updateIRI(ic, iriGraph), p) (B.35)

This operation updates the target ABox, tABox.
We refer to [37] for the semantics of the ExternalLinking operation and

to [22] for the semantics of the MaterializeInference operation.
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Abstract

With the growing popularity of Semantic Web technologies, more and more orga-
nizations natively manage data using Semantic Web standards, in particular RDF.
This development gives rise to new requirements for Business Intelligence tools to
enable analyses in the style of On-Line Analytical Processing (OLAP) over RDF
data. In this demonstration, we therefore present the SETLBI (Semantic Extract-
Transform-Load and Business Intelligence) integration platform that brings together
the Semantic Web and Business Intelligence technologies. SETLBI covers all phases
of integration: target definition, source to target mappings generation, semantic and
non-semantic source extraction, data transformation, and target population and up-
date. It facilitates Data Warehouse designers to build a semantic Data Warehouse,
either from scratch or by defining a multi-dimensional view over existing RDF data
sources, and further enables OLAP-style analyses.
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1. Introduction

1 Introduction

Business Intelligence tools allow integrating and analyzing data from mul-
tiple sources to facilitate business decisions, often in the style of On-Line
Analytical Processing (OLAP). The integrated data are organized in a Data
Warehouse, typically designed following the Multidimensional Model (MD),
which represents data in terms of facts and dimensions. As source data can
be structured, semi-structured, unstructured, or semantic, it is important to
consider semantic issues in the integration process, which is typically ig-
nored by traditional (RDBMS-centric) data integration tools [1]. On the other
hand, initiatives such as Open Government Data (https://opengovdata.
org/) encourage organizations to publish their data using standards and non-
proprietary formats [16]. Semantic Web standards fulfill these needs as they
allow adding semantics on both data and schema level in the integration pro-
cess and publish data in RDF using Linked Data principles [5]. To bridge this
gap, we present SETLBI , a tool that combines Semantic Web and Business
Intelligence technologies to define, process, integrate, and query semantic
data.

In the remainder of this paper, we refer to a semantically annotated Data
Warehouse as a semantic DW and represent it as a knowledge base in RDF
composed of two components: ABox and TBox [12]. The TBox defines a do-
main in terms of concepts, properties, and terminological axioms whereas
the ABox consists of assertions of the TBox. To define the expressivity of the
knowledge base with MD semantics, SETLBI uses the Data Cube (QB) [4] and
QB4OLAP [6] vocabularies. In doing so, we can elegantly define a TBox with
essential Data Warehouse concepts, such as cube structures, dimensions, lev-
els, level attributes, OLAP operations, and complex hierarchies. On the other
hand, SETLBI also allows to enrich the TBox with RDFS/OWL classes and
properties. To create the ABox from (non-)semantic sources, we introduce
a set of basic semantic ETL operations that can be connected and pipelined
to orchestrate an ETL flow from the data sources to the semantic DW. Finally,
SETLBI provides an interactive interface to enable self-service OLAP analysis
over the semantic DW.

In summary, SETLBI enables (i) users with a background in Data Ware-
housing but little-to-no background in Semantic Web technologies to seman-
tically integrate semantic and/or non-semantic data and analyze it in OLAP-
style, and (ii) users with basic background in Semantic Web and Data Ware-
house technologies to define multidimensional views over semantic data and
run OLAP-like analysis. Additionally, users can enrich the generated TBox
with RDFS and OWL constructs.
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2 Related Work

Nowadays, the fusion of Semantic Web and Data Warehouse technologies has
become popular. There are two lines of research in this direction: 1) use of
ontologies as a canonical data model to physically integrate heterogeneous
sources, and 2) specific approaches enabling OLAP analysis over semantic
data.

A prominent study [14] related to the first line presents an ontology-
based approach for facilitating the construction of an ETL flow. At first, each
schema of (structured or semi-structured) data sources and the data ware-
house is described by a common graph-based model named the datastore
graph. Then, an (OWL-based) application ontology is generated to describe
the semantics of the datastore graphs of data sources and Data Warehouse,
and mappings between the sources and the Data Warehouse are formulated
through the ontology. In this way, they have resolved the heterogeneity is-
sues among the source and target schemata and finally showed how the use
of ontologies enables a high degree of automation of ETL flows. However,
the integrated data are not annotated with MD semantics to enable OLAP
queries.

Related work [13] addressing the second line of research presents a semi-
automatic method for inclusion of Semantic Web data into a traditional MD
data management system for OLAP analysis. The authors present a method-
ology which allows a) the analyst to design the MD schema from the TBox
of an RDF dataset, b) to populate the MD fact table after extracting the facts
from the ABox of the dataset, c) to generate the dimension hierarchies from
instances of the fact tables and the TBox so that it enables MDX queries over
the data warehouse. However, they have not shown how to update the Data
Warehouse with the change of data in a RDF data source. Most importantly,
the generated Data Warehouse no longer maintains the Semantic Web data
principles; therefore, OLAP-style analysis directly over an RDF dataset re-
mains unaddressed. To address this issue, [3] has introduced a notion of lens
called the analytical schema over the RDF dataset, which is a graph of classes
and properties. Each node of the schema presents a set of facts that can be
analyzed by exploring the reachable nodes.

To enable self-service OLAP analysis over RDF datasets, an OLAP end-
point has been presented in [7]. At first, they superimpose an MD schema
over an RDF dataset. Then, semantic analysis graphs are built on top of
the MD schema where each node of the graph presents an analysis situation
corresponding to a MD query and an edge corresponds to a set of OLAP
operations. However, it does not allow end-users to create their own OLAP
queries. In [3] and [7], analysts need to create either a lens or a semantic
analysis graph to define MD view over a RDF dataset. As a major portion of
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the published (statistical) Linked Data contains facts and figures, W3C rec-
ommends QB [4] vocabulary as a standard to describe data in a MD fashion.

[10] has investigated OLAP operations on a single data cube published
with QB vocabulary and shown the applicability of their OLAP-to-SPARQL
mapping in answering business questions. Although QB is appropriate to
publish statistical data, it has limitations to represent MD semantics prop-
erly. QB4OLAP [6] extends QB by providing constructs to define a dimen-
sion structure (in terms of levels, the relationship between the levels, and
hierarchies of the dimension), a cube structure in terms of different levels
of dimensions, measures, and attaching aggregate functions with measures.
In [15] and [16], the authors presented a method to semi-automatically enrich
the QB dataset with QB4OLAP constructs. However, to run OLAP queries us-
ing the OLAP interface of their system, it requires end users to be familiar
with either QL [2] or complex SPARQL queries.

[8, 9] has proposed a set of query processing strategies for executing
OLAP-like SPARQL queries over a federation of SPARQL endpoints. Here,
they use QB4OLAP constructs to annotate the conceptual global schema with
MD semantics. However, participating sources in a federation might be un-
available at some point. Data and schemata of the sources might have evolved
since the federation was created; thus, integration rules might no longer be
valid or history of the data will be lost. Therefore, the standard approach is
to avoid federation and have a local copy of the data which is the focus of
this research.

The related approaches discussed in this section address one or more
parts of our aimed problem, but there is no single solution that supports
all the steps (target definition, mappings, ETL generation, target population,
evolution and update) necessary to integrate heterogeneous data semanti-
cally in a semantic DW and enabling OLAP queries on it. SETLBI bridges
the two lines of research by defining the TBox of a semantic DW with MD se-
mantics using QB and QB4OLAP constructs, providing RDF-based semantic
integration operations to populate/evolve/update the ABox of the semantic
DW from heterogeneous sources and allowing users to create OLAP queries
by using different MD constructs of the semantic DW.

3 System Architecture

The data integration process using SETLBI requires the following steps: 1)
defining a target TBox with MD semantics using QB and QB4OLAP con-
structs, 2) generating mappings from sources to target, 3) populating the tar-
get ABox from the available data sources, and 4) issuing OLAP queries on the
semantic DW. Based on the integration steps, we organize SETLBI into three
layers: the Definition Layer, ETL Layer, and OLAP Layer, see in Figure C.1.
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Fig. C.1: The ontology shows the components of each layer and their connections. The ar-
rows from/to an operation group represent the arrows from/to each individual operation of the
group.

Fig. C.2: The workflows for Source2Target Mapping(A) and OLAP Query Generation (B) op-
eration. The rectangles, user icons and curved arrows represent automatic, user-required and
iterative tasks.

Each layer has a set of tasks and/or operations to accomplish certain inte-
gration steps. A task requires user interactions with the system’s interface to
produce an output while from the given inputs, an operation automatically
produces an output. Intuitively, one may consider tasks as defining the re-
quired metadata to automate ETL operations. The Definition Layer covers
the first two steps of the integration process and allows users to define the
metadata (target schemas with MD semantics and semantic-aware mappings
between the sources and target) of the integration process. The ETL Layer
covers the third step of the integration process and includes a set of ETL op-
erations to create data flows from sources to target. The OLAP Layer allows
users to analyze semantic DW cubes using a GUI (the final step of the integra-
tion process). The inter- and intra-layer connections among the components
(operations/tasks) of layers are shown in the ontology in Figure C.1 where
each component is considered as a class and relationships between compo-
nents are presented with arrows. In the following, we describe the layers in
more detail.

The Definition Layer includes two tasks: setl:TargetTBoxDefi nition

and setl:Source2TargetMapping. The former supports designing the TBox
of a knowledge base with MD semantics and is implemented with a GUI
where users can define/edit new/existing cubes, cuboids, dimensions, levels,
level attributes, and measures. Internally, the operation annotates the user’s
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input with QB, QB4OLAP and OWL constructs and generates an RDF file.
Hence, it relieves TBox designers from the need to learn QB and QB4OLAP
vocabularies. The latter also provides a GUI to create mappings across the
constructs of (intermediate) source and target TBoxes. Intermediate map-
pings are required when there is a need of (string/numerical/ date) transfor-
mation on RDF literals or join of the sources. Hence, it relieves the user from
the burden of manual mappings at the ETL operation level.

Figure C.1 shows how the intermediate mappings or final mappings are
connected to the ETL Layer operations. The overall workflow of this opera-
tion is illustrated in Figure C.2 (A); internally, it creates a mapping file from
the user’s input in RDF format with our own OWL-based mapping vocab-
ulary S2TMAP (https://github.com/bi-setl/SETL) that allows defining a
property-level mapping under a concept-level mapping, which is in turn de-
fined under a mapping dataset. Different to other ETL tools, this layer pro-
poses a new paradigm: we characterize the ETL flow transformations at the
Definition Layer instead of independently within each ETL operation (in the
ETL layer). This way, the user has an overall view of the process, which
generates metadata (the mapping file) that the ETL operators will read and
parametrize themselves with automatically.

The ETL Layer is composed of a set of ETL operations. Based on their
functionality, we categorize the operations into five groups: TBox Deriva-
tion Operations, Extraction Operations, Transformation Operations, MD Trans-
formation Operations, and Load operation. In the TBox Derivation Operations
group, setl:NonSemanticToTBoxD eriver derives TBoxes from non-semantic
(CSV, XML, JSON and Database) sources and setl:ABoxToTBoxDeriver de-
rives a TBox from an RDF file containing only assertions. In Extraction
Operations, setl:RDFWrapper wraps up data from non-semantic sources to
RDF triples; setl:SemanticSourceExtractor extracts RDF trip-les from an
RDF data source, and setl:DBExtractor extract data in CSV format from
a Database source. The Transformation Operations group supports numeric,
string and date based transformation on the values of RDF properties accord-
ing to the intermediate mappings using setl:TransformationOnLiteral and
joins between two RDF sources using setl:JoinTransformation. The MD
Transformation Operations group includes setl:LevelEntryGenerator, setl:
FactEntryGenerator, and setl:InstanceGenerator to create level mem-
bers, observations and instances to create the ABox of a semantic DW ac-
cording to the semantics encoded in the TBox. Those operations support
both RDF and CSV input. To reflect the changes in a source to the target,
the setl:UpdateDimensionalCo nstruct operation updates the target level
members accordingly. This operation supports three types of updates (Type
1, Type 2, and Type 3) defined by Ralph Kimball in [11] for a semantic DW.
setl:Load loads RDF data into either a local RDF file or Jena TDB triple
store. Users can drag and drop operations to create ETL flows.
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The OLAP Layer takes a local RDF file or SPARQL endpoint containing a
semantic DW, and allows users to create OLAP queries using a GUI. Users first
extract the cube structure composed of dimensions, hierarchies, levels, mea-
sures and aggregate functions. Then, users create and issue OLAP queries
to explore and aggregate measures at various level of details. Figure C.2 (B)
shows how to create an OLAP query, similar to any traditional OLAP tool.
Users can create slice and dice queries adding conditions on selected levels.
Internally, we translate the OLAP query generated from the selections into
an equivalent SPARQL query. Hence, the users are released of the burden
of learning SPARQL. The system is developed in Java 8. All GUIs are imple-
mented in SWT. To process, store and query RDF, we use Jena 3.4.0. As a
triple store, we use Jena TDB.

A comprehensive video of SETLBI and its functionality is available at
http://extbi.cs.aau.dk/SETLBI/index.php. The source code is also avail-
able in https://github.com/bi-setl/SETL.

4 Demonstration

Inspired by the Linked Data principles, the Bangladesh Bureau of Statistics
(BBS) wants to publish the 2011 population census in an OLAP-compliant
Linked Open Data-format to enable decision making. The dataset consists
of 12 smaller datasets where each of them contains approx. 130,000 obser-
vations. In this demonstration, we show how a user uses SETLBI layers
to accomplish the integration steps (discussed in Section 3), starting with
extracting census data in PDF format from the http://203.112.218.65:

8008/Census.aspx?MenuKey=89 BBS website and converting to CSV. Confer-
ence demo users can interact with the system as outlined below.

The Definition Layer: First, the user generates a TBox using the GUI
shown in Figure C.3 which allows to create either a new TBox or edit an
existing one. (S)he creates any TBox constructs using panel 1 and a cube
using panel 2. The rightmost panel is the edit panel where any property with
its corresponding values can be added or deleted. The middle panel shows
the generated RDF model for the TBox in Turtle format.

The next task is to map the source and target TBoxes. First, the user cre-
ates a source TBox from the CSV files using setl:NonSeman ticToTBoxDeriver

(ETL Layer). Figure C.4 shows how to map between source and target TBoxes.
The left panel shows the tree of source TBox constructs while the right panel
shows that of the target. The middle panel shows how to create a mapping
between a source concept and a target cube. In short, this concept mapping
tells under which map dataset it is, whether source instances are fully or
partially mapped with the target, and how to generate target observation
IRIs. Then, (s)he map properties of the source and target concepts by using
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4. Demonstration

Fig. C.3: The interface to define Target TBox.

Property Mapping window.

Fig. C.4: The interface to define mappings.

The ETL Layer: Figure C.5 shows how to create an ETL flow for populat-
ing the target ABox. LevelEntryGenerator and FactEntryGenerator are used to
create Level members with their corresponding property values and observa-
tions according to the target semantics. The leftmost panel encapsulates the
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Fig. C.5: The interface to create ETL flows.

ETL operations. The user can drag and drop the operations in the ETL flow
panel. The lowermost panel shows the ETL status.

Fig. C.6: The interface to create and run OLAP queries.

The OLAP Layer: Then the user uses Figure C.6 to load the semantic DW
from a SPARQL endpoint or a local RDF file. The leftmost panel shows the
cube structure of the corresponding dataset. (S)he can roll-up, drill-down
by clicking the desired dimension hierarchy levels. The middle panel allows
slicing and dicing according to the property values. The right panel shows
the summary of the selections. Then the user generate the equivalent OLAP
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query and finally click Get Result to show the result panel.
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Abstract

In order to create better decisions for business analytics, organizations increasingly
use external data, structured, semi-structured and unstructured, in addition to the
(mostly structured) internal data. Current Extract-Transform-Load (ETL) tools are
not suitable for this “open world scenario” because they do not consider semantic
issues in the integration process. Also, current ETL tools neither support process-
ing semantic-aware data nor create a Semantic Data Warehouse (DW) as a semantic
repository of semantically integrated data. This paper describes SETL: a (Python-
based) programmable Semantic ETL framework. SETL builds on Semantic Web
(SW) standards and tools and supports developers by offering a number of pow-
erful modules, classes and methods for (dimensional and semantic) DW constructs
and tasks. Thus it supports semantic-aware data sources, semantic integration, and
creating a semantic DW, composed of an ontology and its instances. A comprehen-
sive experimental evaluation comparing SETL to a solution made with traditional
tools (requiring much more hand-coding) on a concrete use case, shows that SETL
provides better performance, knowledge base quality and porgrammer productivity.
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1. Introduction

1 Introduction

Business Intelligence (BI) tools support intelligent business decisions by an-
alyzing available organizational data. Data Warehouses (DWs) are used to
store the large data volumes from different operational databases in enter-
prises and On-Line Analytical Processing (OLAP) queries are applied on
DWs to answer business questions. Extract-Transform-Load (ETL) is the
backbone process of a DW. The strength of a DW depends on how good
its ETL process is. Extraction retrieves data from appropriate data sources.
Transformation converts the source data according to the target schema of
the DW, typically either a star or snowflake schema. Loading stores the trans-
formed data into the DW. DW/OLAP technologies perform efficiently when
they are applied on data that are static in nature and well-organized in struc-
ture.

Nowadays, the Web is also an important source of business information.
Moreover, Semantic Web (SW) technologies and the Linked Data (LD) prin-
ciples inspire organizations to publish their business-related data using the
Resource Description Framework (RDF) [29]. As a result, besides analyzing
internal data available in a DW, it is often desirable to incorporate external
data from various (semantic) sources into the DW to derive the needed busi-
ness knowledge.

The inclusion of external data, especially RDF data, however, raises sev-
eral challenges for integration and transformation in comparison to the tradi-
tional ETL process. One of the drawbacks of using RDF data in the corporate
analysis process is that the data sometimes do not have any schema, or only
have a poor or complex schema. Moreover, different sources describe the
data in their own way, introducing heterogeneity problems. Therefore, to
build a successful data warehouse system with these heterogeneous data, the
integration process should emphasize the semantic relationship of the data.
Traditional ETL tools are unable to process such external data because they
(1) do not support semantic-aware data, (2) are entirely schema-dependent,
(3) do not focus on meaningful semantic relationships to integrate data from
disparate sources [4], and (4) do not support deriving new information by
active inference and reasoning on the data. Thus, a DW with both internal
and external (semantic) data requires more powerful tools to define, integrate
and transform data semantically.

SW technology was introduced with the vision of converting the ‘Web of
Documents’ to the ‘Web of Data’ where data are presented and exchanged in
a machine-readable and understandable format, and data are integrated with
each other semantically. The journey towards this vision is quite successful,
and a number of standards, languages, and tools have been developed to
express semantic-based metadata. To give a common framework for present-
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ing and exchanging data in a machine-readable format in the SW, RDF is
used for its simple and flexible format. In the RDF data model, informa-
tion is represented in statements, called RDF triples. The three parts of a
triple are subject, predicate, and object, respectively. An example triple is
(v1, v2, v3) ∈ (I ∪ B)× I × (I ∪ B ∪ L), where I, B, L are a set of IRIs, a set of
Blank nodes and a set of Literals, respectively, and (I ∩ B ∩ L) = ∅ [12]. An
IRI (Internationalized Resource Identifier) is a string used to uniquely iden-
tify a resource on the Web. To make the contents machine understandable,
formal languages such as RDF Schema (RDFS) [30] and Web Ontology Lan-
guage (OWL) [17] can be used in combination with the RDF data model to
define schemata and ontologies. OWL also provides a rich set of vocabular-
ies for defining meaningful relationships between resources and for deriving
new information using description logic (DL) inferencing techniques.

Until now, the DW community has used SW technologies only for a few
things [31], e.g., for data integration or describing the DW. Although [1, 4, 23]
have used SW technologies to design conceptual frameworks of different
phases of ETL processes, no one has so far offered an integrated and im-
plemented framework to build a semantic DW that covers all of the phases of
updating of sources, extraction, validation, and integration, in one integrated
platform. This paper presents SETL, a unified framework for processing and
integrating data semantically by bridging SW and DW technologies. SETL
uses and extends SW tools and standards to overcome the limitations of the
traditional ETL tools. The novel contributions of this paper are:

- We propose SETL, a unified Python-based programmable semantic ETL
framework. SETL helps developers creating semantic DWs by offering
following facilities: (a) In addition to traditional relational data, SETL
allows including semantically annotated data (RDF data) in the ana-
lytical process. (b) SETL allows integrating and processing data from
disparate data sources semantically. To integrate data from disparate
data sources, the user can define an ontology for the DW. SETL also
provides a method to produce semantic data (in RDF triples format)
from the source data according to the semantics encoded in the ontol-
ogy. (c) SETL creates a semantic DW, composed of an ontology and
its instances, where data are semantically connected with other internal
and/or external data.

- Using SETL, we perform a comprehensive experimental evaluation by
(re-)producing a knowledge base (KB) that integrates a Danish Agricul-
tural dataset and a Danish Business dataset. The evaluation shows that
SETL improves considerably over an earlier solution (using standard
technologies necessitating significant hand-coding) in terms of perfor-
mance, knowledge base quality and programmer productivity.
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2. A Use case

The remainder of the paper is organized as follows. Section 2 outlines
the source datasets and the target ontology of the DW that we use as the
running example throughout the paper. Section 3 describes SETL and its
components. We evaluate SETL in terms of performance, quality and pro-
ductivity in Section 4. Section 5 describes related work. Finally, we conclude
and give pointers to future work in Section 6.

2 A Use case

This section describes the source datasets, and the target ontology for in-
tegrating and understanding the knowledge of those datasets, used as the
running example of the paper. We consider a Danish Agricultural dataset
(DAD) [11] and a Danish Business dataset (DBD) [7]. By integrating the agri-
cultural data with the business data and other external data, we (re-)produce
a KB on which queries can be applied to get analytical information.

The Danish Agricultural dataset consists of three smaller datasets namely,
Field, Organic Field, and Field Block. All the datasets are available in Shape [21]
format. The Field dataset has 9 attributes and contains all registered fields
in Denmark. This dataset overall contains information about 641,081 fields.
The Organic Field dataset has 12 attributes and contains information about
52,060 organic fields. The Field Block dataset has 12 attributes for 314,648 field
blocks [2].

The Danish Business dataset is provided in CSV format. The dataset
consists of two sub-datasets namely, Company and Participant. The Company
dataset consists of 59 attributes, and contains information about 603,667 com-
panies and 659,639 production units. The Participant dataset describes the re-
lations that exist between a participant and a legal unit [2]. Figure D.1 shows
how the datasets are connected to each other.

Fig. D.1: The schemas of the DAD and DBD datasets. Field, Field Block and Organic Field are
spatially connected [2].

To integrate the datasets. we need to develop a target ontology. We choose
using an ontology to design the DW schema rather than other models such
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Fig. D.2: The target ontology of the Danish Agricultural dataset and Danish Business dataset.
The number on an arrow indicates the cardinality of the relationship. Because of the large
number of concept data type properties, they are not included in the figure.

as star or snowflake schema, or conceptual multidimensional model because
an ontology allows to integrate disparate data sources semantically. In an
ontology, a concept provides a general description of the properties and be-
havior for the similar type of resources; an object property relates among
the instances of concepts; a data type property is used to associate the in-
stances of a concept to literals. The target ontology used to integrate the
Danish Agricultural dataset and the Danish Business dataset is illustrated
in Figure D.2. This is an updated version of the ontology described in [2].
We start the description from the bus:Ownership concept. This concept con-
tains information about the owners of companies, the type of the ownership,
and the start date of the company ownership. This concept is related to
the bus:Owner concept through the bus:isOwnedBy property. The bus:Owner

includes the details of the owners. The bus:Ownership has a one-to-many
relationship with the bus:Company concept and they are related to each other
through the property bus:hasCompany. The bus:Company concept is related
to the concepts bus:BusinessFormat and bus:ProductionUnit. The concepts
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bus:Company and bus:ProductionUnit are also related to the bus:Activity

concept through one main activity and/or through one-three secondary ac-
tivities. Each company and each production unit have a postal address and
an official address. Therefore, both concepts are related with the bus:Address
concept. Each address is positioned at an address feature, which is, in turn,
contained within a particular municipality. The bus:Company concept is also
related to the concept bus:OrganicField through the relation bus:owns as
each company may contain one or more organic field. By this relation, the
business and agricultural datasets are connected. The bus:Field concept
contains all the registered agricultural fields of Denmark. Thus, bus:Organic
Field is a subclass of bus:Field. The bus:Field is also equivalent to the
UN definition of a European field. A field produces a crop. A field is con-
tained within a field block. Each field block has an application. The concepts
bus:AddressFeature, bus:Municipality, agri:Field, agri:FieldBlock are
defined as subclasses of the GeoNames:Feature concept in the GeoNames
ontology.

3 The SETL Framework

In this section, we present our Semantic ETL framework (SETL in short) that
we implemented in Python. Our discussion focuses on SETL’s architecture
and its main methods that support the different phases of a semantic ETL
process and produce a semantic data warehouse based on RDF triples. The
main phases are: defining a target ontology based on the domain of interest,
extracting data from multiple heterogeneous data sources, transforming the
source data into RDF triples according to the target ontology, and loading
the data into a triple store, and/or publishing the data on the Web as Linked
Data.

Figure D.3 illustrates how SETL’s components are connected to each other.
SETL follows a demand-driven approach, i.e., a data warehouse is designed
by identifying the information requirements of users and decision makers [5].
Based on the requirements, an ontology describing the relevant data and the
target data warehouse can be defined using the Ontology Definition module.
The Define Mapping module is used to define the mappings between the data
sources and the target ontology. The Extraction module then extracts data
from multiple sources, the Traditional Transformation module cleanses and for-
mats the extracted data, and the Semantic Transformation converts the data
into RDF triples according to the target ontology. The External Linking mod-
ule links the resources in the created RDF dataset to other external resources.
Finally, the Writing module can write the created RDF dataset into a file on
disk and the Loading module can directly load the created RDF dataset into a
triple store, which can directly be queried by the user. The following sections
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Fig. D.3: SETL architecture.

describe the components in more detail.

3.1 Ontology Definition

SETL uses an ontology to design a data warehouse schema rather than other
models, such as a star schema, a snowflake schema, or a multidimensional
model because of the following reasons. First, ontologies allow for a seman-
tic integration of disparate data sources as we can explicitly define how two
concepts of an ontology are structurally related, what type of relationship
they have, and whether the relationship is symmetric, reflexive, or transitive.
Second, unlike other models, multiple central concepts can easily be sup-
ported. Third, an ontology allows for including inference rules to derive new
information based on the data that is available.

SETL allows to define various concepts, properties, and blank nodes of
an ontology individually as well as to capture how they relate to each other.
The user first defines concepts and properties in separate and then explicitly
connects particular concepts to a set of properties. Internally, SETL indexes
the set of properites connected to a particular concept. The following triples,
for instance, represent the fact that agri:produces is an object property and
its domain is the concept agri:Field.
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agri:produces rdf:type owl:objectProperty.

agri:produces rdfs:Domain agri:Field.

Thus, internally each concept is explicitly connected to a set of properties,
such as data type properties, object properties, functional and inverse func-
tional properties.

3.2 Define Mapping

This component defines the mappings between the source datasets and the
target ontology (defined using the Ontology Definition module described in
Section 3.1). Based on this mapping, the extraction process retrieves data
from different sources. We use methods from the Petl [18] library to define
mappings between data sources and the target ontology.

3.3 Extraction

SETL enables the extraction of data from a knowledge base through SPARQL
endpoints, RDF files, a search engine such as Sindice [27], relational databases,
CSV files, and shapefiles. The framework is designed in a way that allows it
to be easily extended to support other formats.

Extraction from a SPARQL endpoint. Using the SPARQLWrapper [24]
library, we can extract data from a knowledge base by applying queries
through a SPARQL endpoint. However, when the output of a given query
is very big or if it is required to extract all triples from a knowledge base,
a simple download strategy might fail because some SPARQL endpoints re-
strict result sizes; DBpedia [8], for instance, does not allow more than 10,000
result triples at a time.

Therefore, SETL provides a class named ExtractTriplesFromEndpoint which
includes different methods to extract data and triples, for instance, by exe-
cuting a query on a SPARQL endpoint. In a straightforward case, the query
selects all triples but due to the result size limitation receives the results in
batches. The different steps of the method are formalized in Algorithm 11.
The algorithm takes a sparqlEndpoint URL and a batchsize (indicating how
many triples to extract at a time) as parameters and returns the extracted
triples. In line 1, the algorithm extracts all distinct properties in the knowl-
edge base. Then, for each property (lines 2–3), the algorithm determines the
number of triples containing the property as predicate. Based on this num-
ber the algorithm determines how many queries need to be sent to receive
all these triples and executes the corresponding number of triples (lines 4–5).
This is done by sorting the triples by subject, using batchsize in the LIMIT
clause, and using the iteration number multiplied by the batchsize as OFF-
SET.
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Algorithm 11: TripleExtraction.
Input: endpoint, batchsize
Output: tripleset
begin

1 P = retrieveDistinctProperty(endpoint)2 foreach property p ∈ P do
3 x = retrieveNumberO f Triples(p, endpoint);
4 for count← 0 to x/batchsize do
5 tripleset+ = retrieveTriples(count, batchsize, endpoint);

6 return tripleset

Extraction from an RDF file. We use the RDFLib library [20] to execute a
query on a local RDF file. If the RDF file is too large to fit into main memory,
we split the file into several smaller files, execute the query on the smaller
files, and then combine the partial results. However, this method can only be
used for simply queries, such as retrieving all triples with a particular pred-
icate. More complex queries involving joins need to be handled differently,
e.g., by loading the data into a local SPARQL endpoint first and using the
method described in the previous paragraph.

Extraction using semantic search engine. Currently, SETL supports
extraction using the Sindice [27] search engine. To do so, the user provides a
keyword or resource name that we want to retrieve information for. Based on
this, SETL retrieves a list of relevant resource URLs from Sindice. The user
can then manually select a list of URLs which are then used to retrieve triples
involving them.

Extraction from a relational database or a CSV file. SETL is based on
Petl [18], which is a traditional ETL Python package including a rich set of
methods to perform extraction, cleansing, and transformation based on rela-
tional databases and CSV files. Making use of these methods, SETL provides
the functionality as well.

Extraction from a shapefile. A shapefile [21] is a file format that stores
geometric location and attribute information of geographic features in vec-
tor format. Points, lines, and polygons can be used to describe a geographic
feature. To read data from a shapefile, we use the pyshape [19] library. Inter-
nally, SETL can store the data of a shapefile either in a file or in a database
table. SETL provides methods to automatically create a table in a database
based on the structure of a shapefile and to insert the data from the shape-
file into the created table. It also provides a method to store the attribute
information of a shapefile in CSV format.

Figure D.1 shows that there is no direct connection between Field and
OrganicField, neither between Field and FieldBlock. In the target ontology
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(Figure D.2), however, we have defined connections, e.g., agri:Field and
agri:OrganicField are connected through the owl:sameAs property and
agri:FieldBlock and agri:Field are connected via the agri:contains prop-
erty. These connections are computed based on a spatial join that SETL
computes during the extraction process for pairs of shapefiles. We use the
ArcPy [3] library to perform the spatial join analysis.

3.4 Transformation

We divide the transformation tasks into two categories: Traditional Transfor-
mation and Semantic Transformation. Traditional Transformation includes op-
erations known from traditional ETL tools, such as cleansing the data and
formatting the source data according to the target schema. This includes
removing duplicate data, normalizing data, renaming attributes, checking
integrity constraints, refining data, creating new attributes based on existing
attributes, sorting data, and grouping data [4]. SETL is using the Petl [18]
library to implement the above mentioned operations.

Semantic Transformation includes operations to create RDF triples accord-
ing to the target ontology based on the data output by the Traditional Trans-
formation component. To perform this task, SETL provides two methods:
createTriples and trickleLoad. The createTriples method transforms the data into
triples and writes them to disk. Afterwards, the bulkload methods (discussed
in Section 3.6) can be used to load the data into a triple store. The trickleLoad
method converts the cleansed and transformed data into triples and subse-
quently loads them into a triple store holding the triples in main memory.
The core mechanism of creating RDF triples creation is sketched in Algo-
rithm 12.

Algorithm 12 describes the steps of converting a relational table (table)
into a set of RDF triples (T). As additional input, the algorithm needs the
name of an attribute in the table (resourceKey) that can be used to uniquely
identify each row. In addition, its value will be used to create resource iden-
tifiers. At first, a dictionary D is created based on the input table (line 1). D
consists of (key, value) pairs for each row r in table; the key corresponds to
r’s resourceKey value. The value in turn corresponds to a list of (attribute,
value) pairs where each pair represents one of r’s cells. The next step is to
determine which concepts in the target ontology the information contained
in the table correspond to (line 2). Based on this information, the algorithm
runs through each such concept c. Some tables in relational databases do not
directly correspond to a concept, instead they represent many-to-many rela-
tionships between instances of concepts (entity types). Hence, only for those
tables that directly correspond to a concept, the algorithm creates a new re-
source for each entry in the dictionary and a triple (with rdf:type as predi-
cate) that defines the new resource as an instance of the concept (lines 5–6).
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Algorithm 12: createTriples.
Input: table, resourceKey
Output: T
begin

1 D = makeDictionary(table)2 concepts =
getMatchingConcepts(table,conceptList)3 foreach c ∈ concepts do

4 foreach r ∈ D do
5 if !(propertyTable(table) then
6 T.addtriple(getIRI(r), rdf:type, getConceptIRI(c))

7 foreach (attribute, value) ∈ r do
8 if value! = NULL and

matchesDe f inedProperty(attribute, c) then
9 T.addTriple(getIRI(r), getPropertyIRI(a, c),

createObject(value))

10 return T

Furthermore, for each (attribute, value) pair for which the attribute is defined
as a match of one of c’s properties and value is not null, a triple encoding this
information is created (lines 7–9). Depending on the type of property (data
type or object), the object of the created triple either corresponds to a literal
or a resource.

3.5 External Linking

Algorithm 13 formalizes the steps required to link an internal resource to ex-
ternal resources. It takes intResource, searchEngine, and k as input parameters.
intResource is a given internal resource that we want to find external links
for, searchEngine is the link of a Semantic Web search engine (in our current
implementation, we use Sindice [27]), and k is the number of top-k URLs that
we want to retrieve.

At first, the algorithm creates a semantic bag (sbinternal) for the internal
resource (line 1). Such a semantic bag consists of the objects of triples de-
scribing the internal resource. Then, the search engine is queried for the top-k
matching external resources (line 2). For each external resource (extResource),
the algorithm retrieves triples describing it (line 4), creates a semantic bag
(sbexternal) for them (line 5), and compares the bag to the one created for the
internal resource (line 6). If the Jaccard simarity (see Equation D.1) between
the two semantic bags exceeds a certain threshold δ, the internal and external
resource are considered a match (lines 6–7).
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Algorithm 13: LinkToExternalResources.
Input: intResource, searchEngine, k
Output: T
begin

1 sbinternal = semanticBag(intResource)
2 E = search(intResource, searchEngine, k)
3 foreach extResource ∈ E do
4 extTriples = retrieveTriples(extResource)
5 sb2 = semanticBag(extTriples)
6 if match(sbinternal , sbexternal) > δ then
7 alignedPairs∪ = (intResource, extResource)

8 alignedPairs = userInteraction(alignedPairs)
9 foreach pair ∈ alignedPairs do

10 T.addTriple(intResource, owl:sameAs, extResource)
11 ER = getEquivalentResource(extResource)
12 foreach equiResource ∈ ER do
13 T.addTriple(intResource, owl:sameAs, equiResource)

14 return T

J(sbinternal , sbexternal) = |
sbinternal ∩ sbexternal
sbinternal ∪ sbexternal

| (D.1)

After having identified all candidate pairs, the user can optionally interact
with the system and remove pairs. Then, for each pair of internal and external
resources, a triple with the owl:sameAs property1 is created to materialize
the link in the dataset (line 10). Finally, the algorithm also retrieves the set
of resources from the search engine that are already linked to the external
resource and materializes the links to the internal resource as well (lines 11-
13).

3.6 Loading

SETL currently uses Jena TDB [14] as a triple store and allows loading data
batch-wise. SETL supports trickle load and bulk load. The trickle load mode
transforms and feeds data as it arrives from the previous transformation
step without staging on disk using SPARQL insert queries. In bulk load
mode, the triples are written into a file on disk after transformation and then
loaded batch-wise into the triple store. To support bulk load, SETL offers

1An owl:sameAs property indicates that two IRI references refer to the same real world
object. Hence, subject and object IRI of a triple with owl:sameAs are considered linked.
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two methods: bulkTDBLoader (tdblocation, filePath, batchsize) and bulkSPAR-
QLInsert(tdblocation, filePath, batchsize, database). The BulkTDBLoader is used to
load data from a file on disk into a triple store using the TDBLoader. The pa-
rameter tdblocation denotes the location of a TDB database, the filePath is the
path to the triple file, and batchsize is the number of triples to be fed into the
store at a time. The BulkSPARQLInsert is similar to BulkTDBLoader but defines
SPARQL insert statements to load triples instead of using the TDBLoader. It
additionally requires the name of the database as parameter.

4 Evaluation

To evaluate SETL, we applied the proposed ETL process on sources covering
Danish agricultural and business information. We chose this use case and
these datasets for evaluation as there exists an RDF dataset based on these
sources [2] that has been created in a manual process by using a broad range
of different tools. In contrast, SETL allows to perform this process mostly
automatically with minimal user interaction. This allows us to compare the
different ETL processes as well as the RDF datasets themselves. In the follow-
ing, we refer to the dataset published by [2] as ExtBIKB and the one created
by SETL as SETLKB. Our evaluation concentrates on three aspects: the time
required to run the processes, quality of the produced datasets, and produc-
tivity, i.e., to what extent SETL eases the work of a user when performing an
ETL task to produce RDF datasets.

We run the experiment on a HP ProLiant DL385 server with an AMD
Opteron(tm) processor 6376 with 32 cores (only 1 core is used in the experi-
ments); it has 256 GB DDR3 RAM and is running Ubuntu 14.04.1 LTS (Trusty
Tahr). The data is stored on an 1-TB SCSI disk running in an HP Smart Array.

4.1 Performance

In this section, we discuss the time required for different sub-processes to
create SETLKB using SETL and the performance of different loading meth-
ods.

Runtime of the different phases. Figure D.4 illustrates the time that
each phase of the ETL process requires; the figure shows both the time for
each phase in separate and the overall runtime of the complete process. The
times represent averages over 5 test runs. As SETL automatically connects all
the phases, the end time of one phase becomes the starting time of the next.
Figure D.4 also shows the materialized output of each phase.

The Extraction and Traditional Transformation phases take a relatively long
time because they involve performing two spatial join operations for the agri-
culture datasets. The Semantic Transformation process is time-intensive be-
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Fig. D.4: Required time for the ETL process.

cause all the data needs to be processed and matched to the schema of the
target ontology. The total time required for the Linking process is 3,979 sec-
onds. Table D.1 shows the time consumed for linking the instances of each
concept. In summary, SETLKB is linked to 14,153 external resources. To load
all triples at a time, the BulkTDBLoader takes 970 seconds. We discuss the
performance of the different methods in the following section.

concept time(in seconds))
Crop(C) 2,086
BusinessFormat(BF) 692
FieldBlockApplication(FBA) 95
Municipality(M) 1,106
total 3,979

Table D.1: Time required for the linking process.

Performance of different loading methods. As described in Section 3.6,
SETL provides three different loading methods: TrickleLoad, BulkTDBLoader,
and BulkSPARQLInsert. All these methods support batch-wise loading. In the
following, we first compare the three methods based on their loading time.
Then, we evaluate the performance of the trickle load in more detail and
finally the bulk load.

Figure D.5 shows the loading times for the different loading methods for
different batch sizes. To make the times comparable to trickle load, we add
the time required to perform Semantic Transformation with the loading time
of the bulk load’s methods. The y-axis indicates the required time to load
the set of triples in seconds, and the x-axis indicates the batch size, which is
measured in number of triples. The results show that all methods take less
time with increasing batch size. With a batch size of 6K, BulkTDBLoader takes
3.5 times more time than the other methods. However, as batch size increases
from 6K to 1M, the runtime decreases significantly. With a batch size 1 mil-
lion (1M) to 32 million (32M), the loading time of BulkTDBLoader becomes
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Fig. D.5: Total runtime for batch-wise loading.

Fig. D.6: Loading time per triple for trickle load.

Fig. D.7: Load rate for bulk load.
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nearly stable and BulkTDBLoader becomes two times faster than other two
methods. This is because TDBLoader is especially implemented for loading
big files; therefore, it performs better with larger batch sizes. On the other
hand, TrickleLoad is slightly better than BulkSPARQLInsert in all cases. This
is because BulkSPARQLInsert reads the triples from disk, where TrickleLoad
uses memory as intermediate storage. In this experiment, we find that all
methods take lowest time to load with a batch size of 16M. In summary, we
recommend BulkTDBLoader for large files and BulkSPARQLInsert for smaller
files. Trickle load is preferable when concurrent processing and loading is
required.

Figure D.6 illustrates the time trickle load requires to load increasing
numbers of triples. Here, the lines indicate different batch sizes. We cal-
culate the time t = T/N, where T is the total time required to load N triples.
The figure shows that with the increase in the number of loaded triples, the
time increases almost linearly. For the trickle loads with the base sizes 6K
and 40K, the constant startup cost is 10 million triples.

Figure D.7 shows the loading rate in terms of the number of triples loaded
per second (TPS) for different batch sizes of the bulk load. The figure shows
that with an increasing number of loaded triples, TPS increases until a certain
point for BulkTDBLoader. After that point, TPS decreases with the increase in
the number of loaded triples. This is mainly because of the internal indexing
strategy of Jena TDB [14]. It also depends on the size of the triples to be
loaded. On the other hand, for BulkSPARQLInsert, the number of triples per
second gently decreases with the an increase in the number of loaded triples.

4.2 Quality

In this section, we examine the extent to which the produced triples are con-
sistent, complete, interpretable, fresh, and semantically linked [26]. We com-
pare the result created with SETL (SETLKB) to ExtBIKB.

Consistency. According to the definition, an object property relates in-
stances of two classes, i.e, if x is a value of an object property, there must
exist at least one triple whose subject is x. We found out that for a sig-
nificant number of values for the object properties bus:postalAddress and
bus:officialAddress, ExtBIKB does not contain such information. There
are 83,302 bus:officialAddresses and 34 bus:postalAddresses that are
not used as a subject of any triple in ExtBIKB. In SETLKB, on the other hand,
all bus:officialAddresses and bus:postalAddresses have correctly been
related to the bus:Address concept. Hence, data consistency is completely
maintained in SETLKB.

Information loss. In ExtBIKB, fields that do not produce any crop are
not represented. This affects 2,650 instances of the concept agri:Field. Sim-
ilarly, instances of agri:OrganicField that have the value “999999-99” for
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the agri:FieldBlock property are not represented in ExtBIKB. This affects
1,213 instances. For SETLKB on the contrary, we do not want to miss any
agri:Field or agri:OrganicFields instance even though they do not have
crop information. Hence, in the cleansing step, we replace the value “999999-
99” with NULL. If an instance of a concept contains NULL or an unknown
value for a property, the createTriples method (described in Section 3.4) simply
does not produce a triple for that property. This is how SETLKB ensures data
completeness.

In the original raw datasets, we can find out since when a legal unit be-
longs to an owner. This is not possible in ExtBIKB if an owner owns more
than one company. We fixed this issue by extending the target ontology.
In addition, we also add the information related to the type of the owner,
i.e., whether the owner is a person or another company, both are missing in
ExtBIKB.

Furthermore, the main and secondary activity of a company or produc-
tion unit are treated as the same activity in the ExtBIKB. In SETLKB, the con-
cepts bus:Company and bus:ProductionUnit are connected to bus:Activity

through two object properties: bus:hasMainAcitivity and bus:hasSecondar

yActivity. Thus, SETLKB provides more information than ExtBIKB.
Redundant triples. If a property is inversely connected to another prop-

erty, then storing the same types of triples for both properties, simply by
interchanging the subject and predicate of the triples, makes a KB redun-
dant. The properties bus:belongsTo and bus:hasProductionUnit are in-
versely connected to each other and relate the concepts bus:Company and
bus:ProductionUnit. In ExtBIKB, triples are stored for both properties sep-
arately, which produces extra 659,639 triples. On the other hand, we create
triples only for bus:belongsTo property. Hence, SETLKB reduces redun-
dancy.

External linking. We enhance our knowledge base by linking it to
other external resources at instance level. Section 3.5 describes the linking
process. We run the linking process only for instances of agri:Crop (C),
agri:FieldBlockApplication (FBA), bus:BusinessFormat (BF), and bus:Mu

nicipality (M) because for instances of other concepts, Sindice [27] does not
contain relevant information. Note that the following results are produced by
the automatic matching process without any pre-filtering by the user (which
is mentioned as an optional step in Section 3.5). Table D.2 shows the different
types of concepts for which we run the linking process, their total number
of instances, the number of internal instances linked to external resources,
the number of external resources connected to an internal instance, and the
accuracy rate of the linking.

In total, 202 instances of SETLKB are linked to 14,153 external resources.
To evaluate the linking process, we randomly chose 5% of the triples that
linked internal and external resources and manually evaluated their correct-
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ness. The accuracy rate (AR) in Table D.2 shows the accuracy rate in per-
centage. One of the reasons having the low accuracy rate for some cases is
the language. The description of each instance is translated from Danish to
English using google translator API, which sometimes fails to give accurate
translation.

Concept
# of
inst.

Linked
inst.

External
resources

AR

C 244 97 7,602 68%
BF 30 19 1,770 39%
FBA 17 6 1,243 29%
M 98 80 3,538 57%
Total 389 202 14,153 54.9%

Table D.2: Linking local resources to external resources – AR stands for accuracy rate.

Based on these findings, we can conclude that SETLKB is more consistent,
complete, and resourceful than ExtBIKB. Table D.3 summarizes some notable
triple-wise differences between SETLKB and ExtBIKB.

Concept(c)/
Property(p)

# of triples
SETLKB

# of triples
ExtBIKB

Comments

Whole KB 34,177,652 32,457,657 SETLKB is the updated version.
External linking 14,153 0 No instance is linked with external sources in ExtBIKB.
Company(c) 603,667 603,668 One duplicate triple in ExtBIKB.

Address(c) 499,850 497,938
In ExtBIKB, Address concept were not mapped with the
postal address of Danish Business dataset.

Field(c) 52,060 50,842 ExtBIKB used poor cleansing techniques.
OrganicField(c) 613,903 611,093 ExtBIKB used poor cleansing techniques.
belongsTo(p) 659,638 659,640 Two duplicate triples in ExtBIKB.
hasProductionUnit(p) 0 659,640 belongsTo and hasProductionUnit are inversely connected.
hasOwnerType(p) 353,954 0 ExtBIKB did not include owner type information.

Table D.3: Comparison between SETLKB and ExtBIKB

SETL ExtBI
Task Used tools Used language LOC Used tools Used language LOC
Ontology Defining Built-in SETL Python 286 Virtuoso, Protege Not Applicable -
CSV Build-in Petl Python 2 MySQL,vtSQL SQL -

Reading Shapefile Build-in SETL Python 3
ArcGIS,PostgreSQL,
shp2pgsql

Not Applicable -

Spatial join Built-in ArcPy Python 2 ArcGIS Not Applicable -
Cleansing Built-in Petl Python 85 MySQL, Google refine SQL 360
Triple Generation Built-in SETL Python 61 Virtuoso iSQL 1511
Loading build-in SETL Python 4 Virtuoso iSQL 4

Table D.4: Comparison between the ETL processs of SETL and [2]

4.3 Productivity

One of the main advantages of working with SETL is that all the phases of
an ETL process can be easily maintained and implemented using Python. Ta-
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ble D.4 summarizes the tools, languages, and the lines of code (LOC) used
to produce the SETLKB dataset using SETL and the ExtBIKB dataset using
the process described in [2]. To process a shapefile, SETL provides meth-
ods to automatically create and insert data into PostgreSQL. It uses only 2
lines of Python code. To perform spatial intersection operation between two
shapefiles, SETL uses the ArcPy [3] library, which is much more faster than
ArcGIS [9] which is used in [2]. On the other hand, the ETL process used
in [2] converts the shapefile into PostgreSQL table using the PostgreSQL tool
shp2pgsql. To make it compatible with vtSQL, they performed some find-
replace actions. For performing, spatial operation, they used ArcGIS [9]. For
filtering inconsistent values, unknown characters and for correcting candi-
date keys, we use different methods from the Petl library [18], which are
efficient and easy to access. It takes only 85 lines of code. On the other hand,
the [2] used different MySQL views and hand-crafted methods to cleanse
the data, and it took 360 LOC. To generate triples for all data sources, SETL
takes only 85 LOC whereas [2] uses 1,511 LOC.

5 Related Work

This section discusses the state of the art in the area of semantic ETL to build
a semantic DW and to integrate and publish data as Linked Open Data (LOD)
from multiple sources.

Recently, the use of SW technology in data warehouses has become pop-
ular. Some approaches have used ontologies as a data integration method for
mapping between sources and target whereas others have considered a data
warehouse as a repository of ontologies and its instances.

In [22, 23], an OWL ontology is used to link the schemas of semi-structured
and structured data to a target DW schema. At first, the schemas of the data
sources and the DW are described by a common graph-based model named
datastore graph. Then, an application ontology is constructed to describe the
semantics of the data sources and the DW, and mapping between them can be
done through that ontology. In this way, the heterogeneity issues among the
schemas of sources and target have been resolved. In this work, it is assumed
that source and target schemas are known beforehand. In [25], the authors
have shown that an ontological approach can automate and minimize the
maintenance cost of the evolution of a DW schema.

A framework for designing semantic DW has been proposed in [16]. Here,
the usage of SW languages to integrate distributed DWs and to automate the
ETL process of a DW has been discussed. The DW has been considered
as a repository of ontologies and semantically annotated data sources. [5]
proposes a methodology describing important steps required to create a se-
mantic DW that enables to integrate data from semantic databases, which is
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composed of an ontology and its instances. A multidimensional (MD) frame-
work has been proposed in [15] to analyze semantic data that are provided
by the SW and that are annotated by application and domain ontologies. It
allows to build and populate a DW from both the analyst requirements and
the knowledge encoded in the ontologies. To enable warehouse-style analysis
over RDF data, some approaches [6, 13] propose the use of a native RDF data
warehouse. To analyze an RDF graph, [6] introduced a lens named analytical
schema, which is a graph of classes and properties. Each node of the schema
represents a set of facts, which can be analyzed by exploring the reachable
nodes.

In the past couple of years, publishing data in a machine-readable format
has become more popular and (Linked Open Data) LOD has emerged as a
way to share such data across Web sources. [28] presents a process to pub-
lish governmental data as LOD and [2] discusses how to spatially integrate
and publish a Danish Agricultural dataset and a Danish Business dataset as
LOD. The approach uses views to cleanse the data and Virtuoso for creating
and storing RDF data. To integrate data from heterogeneous sources and
publish those data as LOD, a semantic ETL framework is presented in [4] at
conceptual level. The approach uses the semantic technology to facilitate the
integration process and discusses the use of different tools to accomplish the
different steps of the ETL process.

As data become outdated due to updates in the sources, using different
tools for extraction, validation, and integration becomes very tedious and
time consuming. Hence, a framework is necessary that makes it possible
to accomplish every step in a single platform. Although the state-of-the-
art approaches provide different conceptual frameworks, there is no imple-
mented programmable framework that facilitates the developers by provid-
ing required tools, classes, and methods to build ETL process with the goal
of either creating a semantic DW or publishing the semantically integrated
data as LOD. Hence, this paper discusses a semantic ETL framework, SETL,
which provides various modules, classes, and methods to extract semantic-
aware data, geo-spatial data, and other traditional data, to integrate source
data semantically using a target ontology, and to store the data as seman-
tic data. SETL facilitates developers to build a semantic DW using a single
platform instead of using different tools and a manual process.

6 Conclusion

Building a DW with the organizational internal and external data published
in different formats requires semantic integration. Here, we have proposed
and developed a programmable framework, named semantic ETL (SETL)
that facilitates users to build a semantic DW. SETL uses ontology as a un-
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derlying schema to integrate heterogeneous data sources. Besides traditional
data format, SETL can process semantic-aware data. Eventually, it stores the
data as RDF triples. It also allows to link the internal resources with ex-
ternal resources. In order to evaluate our framework, we (re-)produced a
knowledge base by integrating a Danish Agricultural dataset and a Danish
Business dataset using SETL; then we compared SETL’s KB (SETLKB) and
development process with that of ExtBI. In Section 4, we showed the perfor-
mance of our trickle load and bulk load. Comparing to ExtBIKB, SETLKB KB
is more consistent, informative and normalized. SETL also provides better
productivity than the tools used by ExtBI.

We will augment the Ontology Definition module with QB4OLAP [10] vo-
cabularies to enable OLAP-like analysis. Our future research includes auto-
matic recommendation of an ontology for integration by analyzing the struc-
tures of the given data sources, automatic mapping between sources and tar-
get ontology, recommendation of relevant sources, and designing semantic
ETL operations. We also have a plan to make the GUI version of SETL.
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over Semantic Graphs,” in WWW, 2014, pp. 467–478.

[7] “Danish Central Company Registry (CVR) Data, http://cvr.dk/.”

[8] “DBpedia, http://dbpedia.org/.”

[9] “Esri, Arcgis. http://www.esri.com/software/arcgis.”

[10] L. Etcheverry, A. Vaisman, and E. Zimányi, “Modeling and Querying Data Ware-
houses on the Semantic Web Using QB4OLAP,” in DaWak, 2014, pp. 45–56.

[11] “Ministry of Food, Agriculture and Fisheries of Denmark, http://en.fvm.dk/.”

[12] A. Harth, K. Hose, and R. Schenkel, Linked Data Management. CRC Press, 2014.

[13] K. A. Jakobsen, A. B. Andersen, K. Hose, and T. B. Pedersen, “Optimizing RDF
Data Cubes for Efficient Processing of Analytical Queries,” in COLD, 2015.

220

http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#//000v00000001000000
http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#//000v00000001000000
http://cvr.dk/
http://dbpedia.org/
http://www.esri.com/software/arcgis.
http://en.fvm.dk/


References

[14] “Apache Jena TDB, https://jena.apache.org/documentation/tdb/.”

[15] V. Nebot and R. Berlanga, “Building Data Warehouses with Semantic Web Data,”
DSS, vol. 52, no. 4, pp. 853–868, 2012.

[16] V. Nebot, R. Berlanga, J. M. Pérez, M. J. Aramburu, and T. B. Pedersen, “Multi-
dimensional Integrated Ontologies: a Framework for Designing Semantic Data
Warehouses,” JDS, vol. XIII, pp. 1–36, 2009.

[17] “OWL Web Ontology Language, www.w3.org/TR/owl-ref/.”

[18] “Petl - Extract, Transform and Load (Tables of Data), https://petl.readthedocs.
org/en/latest/.”

[19] “Pyshp, https://code.google.com/p/pyshp/.”

[20] “Rdflib, https://github.com/RDFLib/rdflib.”

[21] “ESRI, Shapefile Technical Description, INC, 1998.”

[22] D. Skoutas and A. Simitsis, “Designing ETL Processes using Semantic Web Tech-
nologies,” in DOLAP, 2006, pp. 67–74.

[23] ——, “Ontology-based Conceptual Design of ETL Processes for both Structured
and Semi-structured Data,” IJSWIS, vol. 3, no. 4, pp. 1–24, 2007.

[24] “SPARQLWrapper, http://rdflib.github.io/sparqlwrapper/.”

[25] M. Thenmozhi and K. Vivekanandan, “An Ontological Approach to Handle Mul-
tidimensional Schema Evolution for Data Warehouse,” IJDMS, vol. 6, no. 4, pp.
33–52, 2014.

[26] V. Theodorou, A. Abelló, and W. Lehner, “Quality Measures for ETL Processes,”
in DaWaK, 2014, pp. 9–22.

[27] G. Tummarello, R. Delbru, and E. Oren, “Sindice. com: Weaving the open linked
data,” in ISWC, 2007.

[28] B. Villazón-Terrazas, L. M. Vilches-Blázquez, O. Corcho, and A. Gómez-Pérez, “A
Methodological Guidelines for Publishing Government Linked Data,” in Linking
government data, 2011, pp. 27–49.

[29] “W3C. Resource Description Framework, http://www.w3.org/RDF/.”

[30] “W3C. Resource Description Framework Schema, http://www.w3.org/TR/
rdf-schema/.”

[31] M. E. Zorrilla, J.-N. Mazón, Ó. Ferrández, I. Garrigós, F. Daniel, and J. Trujillo,
Business Intelligence Applications and the Web: Models, Systems and Technologies.
Business Science Reference, 2012.

221

https://jena.apache.org/documentation/tdb/
www.w3.org/TR/owl-ref/
https://petl.readthedocs.org/en/latest/
https://petl.readthedocs.org/en/latest/
https://code.google.com/p/pyshp/
https://github.com/RDFLib/rdflib
http://rdflib.github.io/sparqlwrapper/
http://www.w3.org/RDF/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/

	Abstract
	Resumé
	Resum
	Acknowledgements
	Contents
	Thesis Details
	I Thesis Summary
	Aspects of Semantic ETL
	1 Introduction
	1.1 Background and Motivation
	1.2 Semantic ETL
	1.3 Objectives of the Thesis
	1.4 Structure of the Thesis Summary

	2 State of the Art
	3 A Semantic ETL Framework for Semantic Data Warehouses
	3.1 Motivation and Problem Statement
	3.2 Use Case Description
	3.3 SETL Overview
	3.4 Component Description
	3.5 Discussion

	4 High-Level ETL Constructs for Processing Semantic Data
	4.1 Motivation and Problem Statement
	4.2 Layer-Based Semantic Data Integration Process
	4.3 The Definition Layer
	4.4 The Execution Layer
	4.5 Automatic ETL Execution Flow Generation
	4.6 Discussion

	5 A Semantic BI Tool and Its Application
	5.1 Motivation and Problem Statement
	5.2 Architecture of the System
	5.3 A Use Case Description
	5.4 Demonstration
	5.5 Prototype Specifications
	5.6 Discussion

	6 Summary of Contributions
	7 Future Work Directions
	References


	II Papers
	A SETL: A Programmable Semantic Extract-Transform-Load Framework for Semantic Data Warehouses
	1 Introduction
	2 Preliminary Definitions
	3 A Use case
	4 SETL Framework Overview
	5 Definition Layer
	5.1 SDW TBox Definition
	5.2 Data Source
	5.3 Define Mapping

	6 ETL Layer
	6.1 Extraction
	6.2 Transformation
	6.3 Provenance Graph
	6.4 External linking
	6.5 Load

	7 Implementation
	7.1 Definition Layer
	7.2 ETL Layer

	8 Evaluation
	8.1 Productivity
	8.2 Quality
	8.3 Performance

	9 Related Work
	10 Conclusion
	References

	B High-Level ETL for Semantic Data Warehouses
	1 Introduction
	2 Preliminary Definitions
	2.1 RDF Graph
	2.2 Semantic Data Source
	2.3 Semantic Data Warehouse

	3 A Use Case
	4 Overview of the Integration Process
	5 The Definition Layer
	6 The Execution Layer
	6.1 Extraction Operations
	6.2 Transformation Operations
	6.3 Load

	7 Automatic ETL Execution Flow Generation
	7.1 Auto ETL Example

	8 Evaluation
	8.1 Productivity
	8.2 Development Time
	8.3 Performance

	9 Related Work
	10 Conclusion and Future Work
	A Appendix
	A.1 Semantics of the Execution Layer Operations

	References

	C SETLBI: An Integrated Platform for Semantic Business Intelligence
	1 Introduction
	2 Related Work
	3 System Architecture
	4 Demonstration
	References

	D Towards a Programmable Semantic Extract-Transform-Load Framework for Semantic Data Warehouses
	1 Introduction
	2 A Use case
	3 The SETL Framework
	3.1 Ontology Definition
	3.2 Define Mapping
	3.3 Extraction
	3.4 Transformation
	3.5 External Linking
	3.6 Loading

	4 Evaluation
	4.1 Performance
	4.2 Quality
	4.3 Productivity

	5 Related Work
	6 Conclusion
	References



