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Summary

From time to time humans and animals must respond to a certain stimulus that can be
ambiguous. In the old days, before the creation of video assistant referee, football referees
had a very hard life. One of the most popular plays in football history is the so-called “La
mano de dios” where Maradona used his hand to score a goal in the quarter-final match of
the 1986 World Cup. Based on what he saw, the referee incorrectly decided that Maradona
had not touched the ball with his hand and Argentina ended up winning the World Cup. The
decisions based on external stimuli (in this case visual) are what we call perceptual decision

making.

In this thesis, we studied how the brain makes perceptual decisions in experimental settings
where subjects have to make a categorical decision about a certain feature of the presented
stimulus. We studied the case where the stimulus is presented for a certain time controlled
by the experimenter. During the stimulus presentation, the subjects have to accumulate
evidence and when the stimulus ends, they need to choose between two possible

alternatives. These experiments are typically called 2-alternative forced choice tasks (2AFC).

From a computational point of view the accumulation of stimulus evidence in 2AFC tasks has
been studied intensively in the last decades. Canonical approaches to model this cognitive
function are based on diffusion processes that assume bounded or unbounded perfect
stimulus evidence accumulation. However, the relationship of such models with the
underlying neural circuitry is unclear. In this thesis, we study the accumulation process in
neurobiological models with attractor dynamics. Such models can actually be reduced to a
nonlinear diffusion process, which in the case of binary categorizations can be described by
a double well potential (DW). Despite the fact that the canonical and the neurobiological
models rely on different mechanisms, they can account for various behavioral aspects such

as performance or reaction time.

The first aim of this thesis was to derive behaviourally testable predictions of attractor
dynamics during a 2AFC task and compare them with models that assume other kinds of
dynamics (e.g. perfect integration). We found two signatures of attractor dynamics that can

be tested in behavioural experiments. Specifically, we found that: 1) The DW model had



different integration regimes, from transient (primacy) to leaky (recency) as the magnitude of
the stimulus fluctuations (o) or the stimulus duration (T) increased and 2) the DW had a

non-monotonic relation between the accuracy and the stimulus fluctuations.

The second final aim of this thesis is to qualitatively and quantitatively test the existence of
attractor dynamics. To this aim, we designed an experiment where we systematically
modified the magnitude of the stimulus fluctuations. Qualititatively, we could not identify
obvious signatures of attractor dynamics that allow us to distinguish between different
models. However, we quantitatively assessed the attractor dynamics and other plausible
neural mechanisms by developing a model-based analysis. Preliminary results suggest that
attractor dynamics can be important to explain the behavioural results in at least a fraction of

subjects.



1. Introduction

I would like to start my thesis with an insight: humans make decisions. Some of them are
important, whereas others are less important. For example, today while | was writing this
paragraph | made a critical decision for my life: | decided that it was time to clean up the
blankets that were on a chair in my bedroom for the last three months. It is funny because
today (September 6, 2019) was the first day during these three months that it was actually a
little bit chilly at night. But do not blame me, humans do not make optimal decisions (Barth,
Cordes, and Patalano 2018), or maybe they do (Brunton, Botvinick, and Brody 2013), who

knows? Well, | should probably stop procrastinating and start writing the introduction.

Spain has not had a government since the last elections in April. Today, two parties that in
principle want to implement similar progressive policies are negotiating to form it. It seems,
however, that they will not reach an agreement before the deadline to call for new elections.
If this finally happens, many former voters from the two parties are going to vote for the party
that they consider is not responsible for this disaster. Thus, they will have to decide based on
very little and manipulated information which of the two parties is more responsible for not
reaching an agreement. Although studying this type of decision is a very interesting problem,
it is not well suited for studying how brain circuits carry out these computations because
voters can base their decision on multiple sources of information which are hard to control
experimentally. In contrast, in perceptual decision making, subjects must base their
decisions on sensory information that is completely controlled by the experimenter. A famous
experiment is the motion discrimination task where subjects must decide if a cloud of dots is
moving towards the right or the left. Because experimenters can control all the details of the
stimuli, the subject’s responses, etc, we can try to infer how the brain is using these stimuli to

make a choices.

The canonical approaches to model perceptual decision making describe the dynamics of
the decision process with a simple heuristical linear equation. In contrast, biophysical
attractor models are complex and high dimensional but they explain the dynamics of the
decision process based on realistic neural circuits. Here, we explain that attractor biophysical
models can be reduced to a one dimensional nonlinear equation. The main goal of the thesis

is to find experimentally testable signatures of non-linear attractor dynamics in perceptual
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decision making and test them in a psychophysical experiment. To analyze the
psychophysical experiments, we are extending the attractor models to include different
plausible neural mechanisms and we are developing a fitting procedure to fit all these

mechanisms by maximum likelihood.

In this introduction, we first summarize the canonical and biophysical models for perceptual
decision making. Then, we explain what a psychophysical kernel is and why it is important
for understanding how the brain uses the stimulus to make decisions. Finally, we discuss

why the findings of our work are important.

Canonical models of perceptual decision making

In perceptual decision making, the standard approaches to model the dynamics of sensory
evidence accumulation during two alternative forced choice tasks (2AFC) are
one-dimensional drift diffusion processes. Specifically, the diffusion process describes the
dynamics of the decision variable (X). This decision variable represents the
moment-by-moment evidence for one alternative over the other. The mean sensory evidence
is generally modeled as a constant drift in this integration which also has a noise term,
reflecting fluctuations in the sensory input and internal noise in the decision process. We
define the canonical models as three drift diffusion models with different boundary
mechanisms: 1) The drift diffusion model with absorbing boundaries (DDMA) integrates the
stimulus evidence until the decision variable reaches an absorbing boundary. 2) The drift
diffusion model with reflecting bounds (DDMR) integrates the stimulus evidence with an
upper limit to the accumulated evidence for one of the choices imposed 3) The perfect
integrator (PI) perfectly integrates the stimulus evidence without bounds. In the three
models, the choice is given by the sign of the decision variable at the end of the trial (figure

la). The decision variable X therefore obeys the simple stochastic equation
T2 = p+ (o) (1)

where p is the drift and o is the standard deviation of the noise, modeled as Gaussian
stochastic process & with zero mean, unit variance and without temporal correlations (white
noise). For the purpose of this thesis, we separate the noise in two sources: 1) the internal
noise (o;) produced by the intrinsic variability of neurons as and inputs to the decision

circuit from other brain regions and 2) the stimulus fluctuations (o), which are proportional
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Figure 1 | Canonical models of perceptual decision making

a) Example of single traces of the decision variable for the canonical models: Top: in the perfect
integration model the decision variable is simply the integral of the stimulus. Middle: The drift diffusion
model with absorbing (DDMA) barrier perfectly integrates the evidence until it commits to a decision
when the decision variable reaches one of the bounds. Bottom: The drift diffusion model with
reflecting barrier perfectly integrates the evidence during the entire trial but the reflecting boundaries
introduces an upper limit to the accumulated evidence towards one of the choices. b) Psychophysical
kernels for the three diffusion models. Without bounds the model weights all the evidence equally.
With bounds the model shows primacy for absorbing and recency for reflecting boundaries. c)
Psychophysical kernel diagram for a toy model that perfectly integrates the evidence of the first half
of the trial but it omits the second half. Top: In red (blue) stimuli that give rise to a left (right) choice.
Note that in the first half of the trial, the blue stimuli tend to be positive whereas the red stimuli tend to
be negative. This structure is lost in the second half. Middle: The distributions of the left and right
stimuli during the first half are separable ( area under the ROC curve 0.64) whereas during the second
half, both distributions are equal.

to the variance of the stimulus and thus are controlled by the experimenters. We write the

total noise as the sum of a stimulus-dependent term and internal noise: c§(t) = o4&s +0,¢; .

The dynamics in equation 1 can be recast as the motion of a particle in a potential ¢(X):
e 10 )

where o(X) = - pX (figure 1a). The conceptual advantage of using a potential relies on the

fact that, ignoring the noise term, the dynamics of the decision variable always leads the

potential to decrease in time. Therefore, starting with an initial position on the potential, the



decision variable will always “roll downward” with only the noise fluctuations causing possible
motion upward along the potential. For the canonical models described in equation 2, the
potential is a linear ramp. In the case of absorbing boundaries, it has two vertical cliffs and
for reflecting boundaries two vertical walls (figure 1b insets). It is worth noting that the form of
the potential depends both on the properties of the stimulus and the intrinsic dynamics of the
integration process itself. Specifically, the steepness of the linear ramp p is just the mean
evidence in favor of one of the two possible choices; it is therefore an exogenous parameter.
On the other hand, the potential boundaries are a property of the intrinsic dynamics of the
model and hence do not depend, in principle, on the stimulus. To explain the effect of the
bounds in the decision process dynamics, we first need to define what a psychophysical

kernel is.

Psychophysical kernel

In perceptual decision tasks, subjects make choices based on stimulus evidence. One of the
goals in systems neuroscience is to reveal how the brain uses the stimulus evidence to
guide our behaviour. A useful analytical tool for this purpose is the psychophysical kernel
(PK) (Neri and Heeger 2002). In tasks where the stimulus duration is controlled by the
experimenters, the PK measures the average time-course of the impact of stimulus
fluctuations on choice. Classically, the PK has been computed by averaging the stimuli that
give rise to a right and left choice separately and subtracting them (Roozbeh Kiani, Hanks,
and Shadlen 2008; Okazawa et al. 2018). We are going to compute the PK as the temporal
evolution of the separability between the stimulus distributions that give rise to left and right
choices. This method has the advantage that the magnitude of the PK is interpretable and
comparable between different experiments (see methods, figure 2). To illustrate how the PK
works, we build a toy model that perfectly integrates the evidence of the first half of the
stimulus but it omits the second half. For this simple example, the PK is able to recover the

integration dynamics of the model (figure 1c).

In psychophysical experiments where the duration of the stimulus is controlled by the
experimenters, three qualitative classes of PK have been mainly reported: primacy (Roozbeh
Kiani, Hanks, and Shadlen 2008; Nienborg and Cumming 2009) or recency (Wyart, Myers,
and Summerfield 2015; Cheadle et al. 2014) when the subjects tend to give more weight to
early or late evidence and flat PK when the subjects equally weight the stimulus (Brunton,

Botvinick, and Brody 2013). The PK is a powerful analytical tool and it can be

10
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Figure 2 | Psychophysical kernel method

First the stimuli are categorized by the model or by a subject, then we compute the distribution for left
and right stimuli in each frame. The psychophysical kernel is the temporal evolution of the separability
between the right and left stimuli. We compute this separability with the area under the ROC curve.

useful for different analysis. For instance, it has been used to study the temporal evolution of
the stimulus fluctuations impact in confidence choices (Zylberberg, Barttfeld, and Sigman
2012). Other studies have used the PK to postulate their hypothesis. For example in
(Wimmer et al. 2015), the authors propose top-down signals as a possible mechanism to
explain primacy PK but constant choice probabilities in sensory areas. In another study, PK
from high and low confidence trials have been used to compare different models (Kawaguchi
et al. 2018). Finally, in a more recent study, PKs were used to show that rats can optimally
discount information in a dynamic environment where the old information may no longer be

relevant of the state of the world (Piet, El Hady, and Brody 2018).

All these examples show the potential of the PK to reveal the dynamics of the decision
making process, but the limitations of the PK have also been pointed out in (Okazawa et al.
2018). For example, the PK reflects both sensory and decision dynamics processes and
they can not be distinguished with the PK. Thus, a PK showing primacy can be explained by

adaptation in sensory neurons (Yates et al 2017) or by decision related mechanisms such as
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the accumulation to bound (Yates et al. 2017; Wimmer et al. 2015; Roozbeh Kiani, Hanks,
and Shadlen 2008).

Here, we are going to use the PK to understand how the statistical properties of the stimulus
and the model parameters can change the dynamics of the decision making process. We

start by explaining the impact of the decision boundaries in the canonical models on the PK.

Psychophysical Kernel for the canonical models

In the canonical models described above, the differences in the intrinsic dynamics introduced
by imposing absorbing or reflecting bounds, or removing the bounds altogether, strongly
influence the way the stimulus impacts the upcoming decision. Using the PK, we can
unequivocally characterize the integration dynamics resulting from each of the canonical
models: 1) the perfect integrator for which there are no bounds (figure 1a, top), 2) the DDM
with absorbing boundaries (figure 1a, middle) and 3) the DDM with reflecting boundaries
(figure 1a, bottom). In the case of the perfect integrator, the stimulus fluctuations are
weighted equally during the entire duration of the trial, leading to a flat PK (figure 1b, top).
When there are absorbing boundaries fluctuations late in the trial are unlikely to affect the
decision and therefore the PK shows a “primacy” effect (figure 1b, middle). On the other
hand, a “recency” effect is seen when boundaries are reflecting because early fluctuations

are largely forgotten once a boundary is reached (figure 1b, bottom).

Drift diffusion model with absorbing bounds: the standard cognitive model

Canonical models such as the DDM have proven very successful in fitting key features of
animal behavior in perceptual decision making tasks. The most common diffusion model is
the version with absorbing bounds (DDMA). The bounds provide a mechanism to commit to
a decision which it is useful to model reaction time tasks. In this type of task, the stimulus is
present until subjects make a choice. The reaction time is the time from the stimulus onset

until the decision is made.

The DDMA can be viewed as an implementation of the sequential probability ratio test
(Wald and Wolfowitz 1948). This test minimizes the number of random variables that need to
be observed to distinguish the true generative distribution between two possible options with

a certain level of accuracy controlled by the bounds. For each observed random variable, the
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decision variable is updated with the difference between the log-likelihood of the two
alternatives until the decision variable reaches the upper or the lower bound. In the DDMA,
the decision variable is updated at each time step with the instantaneous evidence from the
stimulus until the decision variable reaches one of the bounds. The two processes are
equivalent if the stimulus is the difference between the log-likelihoods probabilities of the left

and right choices.

Thus in the DDMA, larger bounds produce more accurate but slower decisions. This property
makes the DDMA a suitable model to study the speed-accuracy trade-off. It has been shown
that under time pressure, subjects can trade accuracy for speed, something that can be
accounted for in the DDM by decreasing the bounds (Duncan Luce 1991; Smith and Ratcliff
2004).

One of the great advantages of the DDM is that, due to its simplicity (e.g. the small number
of parameters) it can easily be fitted to reproduce the responses of a subject (Ratcliff and
Rouder 1998; Ratcliff and Tuerlinckx 2002). In order to correctly fit the accuracy and
reaction time distributions (for Reaction Time tasks) for error and correct trials with the
DDMA, we need to add two extra parameters. The first one is a non-decision time that
models the stimulus encoding time. It is an additive lag parameter that is added to the
diffusion reaction time. The second one is a bias in the starting point which is the value of the
decision variable before the stimulus onset. In addition, we also need to introduce
trial-to-trial variability in three different parameters: 1) the drift rate (u) which produces
longer reaction times for error trials (Ratcliff 1978) 2) the starting point which produces
faster reaction time in errors trials (Ratcliff and Rouder 1998) and 3) the non-decision time
which helps to fit the distributions of reaction times (Ratcliff and Tuerlinckx 2002). An
urgency signal mechanism (e.g. collapsing bounds or a gain parameter) has also been
proposed as a possible mechanism to account for the reaction time distributions
(Drugowitsch et al. 2012; Thura et al. 2012) but see also (Hawkins et al. 2015).

Although the absorbing bounds are a mechanism originally proposed to capture the moment
in which subjects commit to a decision in reaction time tasks, the DDMA has also been
applied in fixed duration task (Roozbeh Kiani, Hanks, and Shadlen 2008). Consistent with
the DDMA, in a motion discrimination task in which stimulus duration (T)is variable and
monkeys have to wait for stimulus offset to respond, the accuracy increases with the square

root of T for short trials but it plateaus when the trials are long enough (figure 4). For short

13
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trials, the evidence is perfectly integrated because the decision variable never reaches the
bounds. In this case, the accuracy increases with the square root of the T because the
mean accumulated evidence increases with T whereas the standard deviation increases
with the square root of T. For long stimuli, the decision variable reaches the bounds easily
and the accumulation of evidence finishes before the stimulus. Consequently the accuracy
tends to plateau (Roozbeh Kiani, Hanks, and Shadlen 2008).

The popularity of the DDMA has been growing in the last two decades. Not only because it
can fit the accuracy and the mean reaction time but also because the activity of neurons in
decision areas resembles a diffusion process with absorbing bounds. Various studies
(Roitman and Shadlen 2002; Roozbeh Kiani, Hanks, and Shadlen 2008), have shown that
the firing rate of neurons in several associative brain areas ramps up with the stimulus
presentation and it plateaus after 400 -500 ms. Similar to the bound in the DDMA, the
saturation firing rate is independent of the stimulus strength. Nevertheless, the DDMA is still
a cognitive model and it can not explain from a mechanistic point of view how the ramping

and the plateaus of the firing rate are produced.

Despite this limitation, many studies have used the DDMA to perform model based analysis
and try to relate the model parameters with different mechanisms. For instance, several
experiments have shown that the drift, the non-decision time or the bounds can change with
the age (Ratcliff, Thapar, and McKoon 2004; Thapar, Ratcliff, and McKoon 2003; Starns and
Ratcliff 2010). Different mechanisms of bias such as an initial offset or an asymmetric drift
rate have also been compared under the DDMA framework (Gold et al. 2008; Urai et al.
2019; Mulder et al. 2012). Finally, confidence judgements (Roozbeh Kiani, Corthell, and
Shadlen 2014) or changes of mind (Resulaj et al. 2009) have been studied with different
versions of the DDMA. For all these reasons, the drift diffusion model with absorbing barriers
is the standard cognitive model in perceptual decision making because it is simple, can be
easily fit to data and can be related to neuronal activity. However the relation between the
DDMA and the neural mechanisms remains at best heuristic and biophysical models are

needed to uncover the neural mechanisms underlying perceptual decision making.

Biophysical models of perceptual decision making

During the last two decades many studies have addressed the question of how a circuit

made of neurons with a time constant of tens of milliseconds can give rise to cognitive
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processes such as working memory or decision making which operate on a time scale of
seconds (Amit and Brunel 1997; Compte et al. 2000; Brunel and Wang 2001; Wang 2002). In
these studies, it has been proposed that this could be solved by strong recurrent connections
mediated by NMDA receptors. For illustration purposes, let us study a simple linear network
model with a single neural population described by its averaged firing rate r. Without
recurrent connections, the firing rate decays with the synaptic time constant and its dynamics

are governed by:
Ty =—r (3)
When we introduce recurrent connections the firing rate evolves according to the equation
Toyn 2 == (1~ Wrec)r 4)

The effective time scale of the network can be estimated by t,,, = Tgn/(1 — Wree) Where wyec
is the strength of the recurrent connections. If the strength of the recurrent connections is
wree = 1then all the possible firing rates are stable and the system becomes a line attractor.
In the case where w, <1, the network evolves towards an attractor state of r =0 with the
effective time constant t,,. If we consider NMDA receptors with long synaptic time
constants (ts, =100 ms) and w.. =0.9 the effective time scale is t,, =1s (Wang 2008;

Goldman, Compte, and -J. Wang 2009).

A popular biophysical model for perceptual decision making with slow attractor dynamics
was published in the early 2000s (Wang 2002). Wang’s attractor network consists of two
pools of excitatory spiking neurons and one pool of inhibitory spiking neurons. Each of the
excitatory pools is selective to one of the possible choices and has strong recurrent
connections (figure 3a). These two populations compete through the third pool of untuned

inhibitory neurons. Before the stimulus presentation, the firing rate of the two excitatory
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Figure 3 | Standard biophysical model for perceptual decision making

a) The standard biophysical model for perceptual decision making consists of two populations of
excitatory neurons with strong recurrecnt activity and an untuned inhibitory population. Each of the
excitatory population represents a possible choice and they compete through the inhibitory population.
b) Example of a single trial in the biophysical network. Bottom: Each of the excitatory populations
receives an input proportional to the instantaneous stimulus evidence for the choice that it represents.
Middle: When the stimulus is presented the two excitatory populations start increasing their firing rate
until one of them wins the competition and shuts down the other one. Top: Raster plot of each
population of ¢) Stable Firing rates for the excitatory populations when we slowly increase ( squares)
or decrease (crosses) the mean input. Note that there are symmetric stable firing rate where the blue
population win the competition in the winner-take-all regime (not shown).

populations is similar. With the stimulus presentation, the two excitatory populations receive
an input proportional to the evidence for left or right choice according to its selectivity. The
firing rate of both populations ramps up until one of the populations wins the competition.
When the stimulus ends, the network is able to maintain the decision in working memory
(figure 3b). To illustrate this dynamics, it is convenient to plot the rate of the stable states by
slowly increasing and decreasing the mean input to the network (figure 3c). When we
compute the stable states by increasing the inputs (squares in figure 3), the undecided
stable state where the firing rates of both populations are similar becomes unstable for
strong enough inputs. In contrast, when we compute the stable states by decreasing the
inputs (crosses in figure 3c), the decision states disappear. Critically, they do not disappear
for the same value of the input. As occurs in a system showing histeresis, there is a

multistable region where the decision and the undecided states are both stable. Without the
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stimulus Wang's attractor network is in the multistable region (green cross figure 3). With the
stimulus the network crosses the bifurcation to the winner-take-all region and it evolves
towards one of the decision states. When the stimulus is removed the network returns to the
original input but it remains in the decision state. Thanks to recurrent connections mediated
by NMDA with a long synaptic time scale, Wang’s attractor network has an effective long
time scale that allows for the integration of stimuli during hundreds of milliseconds. The
integration of the stimulus ends when the network reaches one of the attractors. This is
consistent with the experimental results where the accuracy of two monkeys performing a
direction discrimination task does not increase indefinitely with the stimulus duration (figure
4a) (Roozbeh Kiani, Hanks, and Shadlen 2008; Roitman and Shadlen 2002). Wang’s model
is also compatible with the empirical result that reaction times are longer for error than
correct trials (Roxin and Ledberg 2008; Roitman and Shadlen 2002) and the primacy
psychophysical kernels seen in motion discrimination tasks (Roozbeh Kiani, Hanks, and
Shadlen 2008; Nienborg and Cumming 2009). The advantage of the biophysical models is
that we can study the neural mechanisms underlying the behaviour results. Similar to
neurons in the lateral intraparietal cortex (LIP), the two populations of excitatory selective
neurons first ramp up together when the stimulus is presented until one of the population
wins the competition and shuts down the other one (Roozbeh Kiani, Hanks, and Shadlen
2008). In addition, as predicted by Wang’s model, neurons in LIP are also correlated with the
decision during a delay between the stimulus offset and the decision (Roozbeh Kiani, Hanks,
and Shadlen 2008). In sum, the standard biophysical model is able to explain different

behavioural and electrophysiological results.

Wang's network model has had a great impact on the study of the underlying neural
mechanisms of perceptual decision making. In (Wimmer et al. 2015), the authors added a
sensory level to the standard attractor network to show that constant choice probabilities in
sensory areas can be explained by top down inputs from decision areas. It has also been
useful to study the role of different brain areas in cognitive functions such as decision making
or working memory. For instance in (Jaramillo, Mejias, and Wang 2019) the authors found
that the pulvino-cortical pathway can control the effective connectivity within and across
cortical regions and modulate attention, decision making and working memory. The
coordination between different cortical areas during the computation of working memory and
decision making has been studied in (Murray, Jaramillo, and Wang 2017). The authors found

that prefrontal cortex should represent the decision variable more categorically than posterior
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Figure 4 | Monkeys can perfectly integrate evidence for short but not for long trials.

a) Discrimination threshold versus stimulus duration of monkeys performing the dots tasks in a
variable stimulus duration paradigm. The accuracy of monkeys increase similar to a perfect integration
model for short trials and it tends to plateau at longer trials, figure from (Roozbeh Kiani, Hanks, and
Shadlen 2008) b) Shape of the potential ¢(X) associated with the double well attractor model (black)
and the DDM with absorbing bounds (gray). The result in (a) can be explained by both the drift
diffusion model with absorbing bounds. Close to the bifurcation where the undecided states become
unstable, the potentials of both models are similar.

parietal cortex. In recent years, it has been reported that subjects tend to repeat or alternate
choices during a sequence of perceptual decisions (Akaishi et al. 2014; Braun, Urai, and
Donner 2018; Fritsche, Mostert, and de Lange 2017). One possible explanation for the
tendency to repeat is a slow decay of the decision state during the inter-trial interval. In other
words, when the next trial starts the firing rate of the population associated with the previous
choice could be still above the other one. Consistent with the model predictions, it was found
that repetition bias increases or decreases by depolarizing or hyperpolarizing respectively
with transcranial direct current stimulation over the left dorsolateral prefrontal cortex,
(Bonaiuto, de Berker, and Bestmann 2016). Different versions of the biophysical attractor
model have been able to explain the neural mechanisms underlying many different

behaviour and neurophysiological findings.

Line attractors (wy = 1) where first used in tasks that require storing a parametric values in
working memory such as spatial positions in a circle (Compte et al. 2000) or frequencies
(Machens, Romo, and Brody 2005). But can also be applied in tasks where a stimulus
needs to be integrated. We illustrate this using the same simple linear network model from

eguation 3
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Tone == (1= wrec) +1(0) (5)

With w,.. =1 the mean firing rate of the population is simply the integral of the stimulus

r=rtgn [T(dt (6)

In that case the model is a neuronal implementation of the perfect integrator model that we
described in the previous section. In the context of decision making, similar biophysical line
attractors model but with circular symmetry (ring attractor, (Compte et al. 2000)) have been
used in tasks with multiple choices. In (Furman and Wang 2008), different bumps of activity
compete through common inhibition to model a direction discrimination task with multiple
alternatives. In a more recent study (Wei and Wang 2015), the authors use a ring attractor to
model a task where the subjects could choose between the standard left and right choices or
a choice that gave a small but certain reward (Roozbeh Kiani and Shadlen 2009) . After the
stimulus, the authors add another bump between the two possible choices, this bump

represents the certain but small reward choice and competes with the other bumps.

A complication of this type of model is the need for fine tuning of the parameters. Because
the landscape must be completely flat, small asymmetries (~1%) in the connections can
produce a landscape with a few number of attractors (Brody, Romo, and Kepecs 2003;
Seung et al. 2000; Renart, Song, and Wang 2003). Possible solutions to this problem have
been proposed by adding a fast negative feedback to stabilize the memory (Lim and
Goldman 2013) or with bistable neurons (Koulakov et al. 2002) which change the landscape
from flat to a series of small attractors. However this mechanism disrupts the perfect
integration of evidence because stimuli below a threshold value fail to perturb the small
attractor and thus they are not integrated. Another limitation to perfectly integrating the
stimulus evidence is the internal noise. In the case of a completely flat potential all the
possible states are stable. Consequently any internal noise ( e.g. inputs from other brain
regions or intrinsic noise of the neurons) would be also integrated by the model. This would
produce a degradation of the stored values during the delay in working memory tasks.
Actually spatial memories do degrade over time (Funahashi, Bruce, and Goldman-Rakic
1989) and this degradation has been understood as a signature of line attractors (Wimmer et
al. 2014). Biophysical line attractors provide a framework to model the perfect accumulation

of evidence and to store parametric values in working memory.
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In contrast to the canonical models, biophysical attractor network models are high
dimensional and rather complicated. Line attractors are basically perfect integrators and can
easily be modelled by a one dimensional linear equation. In the next section, we explain
how the biophysical attractor network model for decision making can be reduced to a simple

one dimensional nonlinear equation.

One dimensional neurobiological models of perceptual decision making

Canonical models for perceptual decision making are simple and can fit several aspects of
experimental data, such as performance and mean reaction times. Biophysical models
provide a framework to study the neural mechanisms underlying perceptual decisions but
they are rather complicated and high dimensional and hence difficult to fit. In what follows,
we consider a one dimensional diffusion process for the decision variable (X) which can be
formally derived from higher-dimensional neuronal models, and yet which is still described by
the diffusion of a particle in a potential (equation 2) (Roxin and Ledberg 2008). In particular,
inhibition-mediated winner-take-all attractor dynamics observed in network models of 2AFC

contributes to the potential ¢, and one finds

X2 X4 X6
O(X) = —pX — S+ S ™

Where pis proportional to the difference in inputs to the two selective excitatory population
in the biophysical network model, thus it represents the strength of the stimulus evidence.
The parameter c, is proportional to the difference between the mean input to both population
and the input at the bifurcation, Finally, the parameters c, and ¢, are non-trivial functions of
the network. The temporal evolution of the stable states with the stimulus is the same as in
the biophysical attractor network model for decision making. The parameter c, controls the
stable states of the network (figure 5b). Before the stimulus presentation the decision
variable remains in the undecided state because it is stable (c2 < 0). With the presentation
of the stimulus, the system crosses the bifurcation (c, > 0), the undecided state becomes
unstable and the decision variable evolves towards one of the two decision states. Finally,
after the stimulus the decision states remain stable representing some sort of memory state

which can hold on the information of the decision in the absence of any external input. .
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Figure 5 | Bifurcation diagram of the models with winner take all dynamics.

a and b) Before the stimulus the system is in the undecided state (black solid dot). When the stimulus
is presented , the undecided state becomes unstable (white dot) and the only two possible stable
states are the decision states (red and turquoise dots). After stimulus offset, depending on the
network parameters, either there still exist decision states (b) or the only attractor of the network is
again the undecided state. (a) Insets along the x-axis, illustrate the landscape of the equivalent
potential of the system with (right) and without (left) stimulus.

When focusing on the study the dynamics of perceptual decisions without the need of
working memory (chapter 1 and 3), we will use the simpler case where the decision states

are unstable after the stimulus:

0 = —pX- L+ e (8)
with ¢,,c, >0 (figure 5a). In chapter 2 we will investigate the case in which the perceptual
categorization needs to be maintained in the absence of any input. For this, we will compare
the full model given by equation 7. Whether the biophysical network dynamics are correctly
described by 7 or 8 depends on the specific choice of network parameters (Roxin and
Ledberg 2008). The resulting potential has two local minima corresponding to patterns of
neuronal activity which represent the two possible choices. We call this model the double

well model (DWM)

The models represented by a potential of the form given in equations 7 and 8 have the

advantage that they are simple, can be fitted to data and the relation between the
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parameters of the potential ¢(X) and the neural mechanisms in the corresponding

biophysical model is well characterized (Roxin and Ledberg 2008).

Classical view of perceptual decision making

The classical view of perceptual decision making is that decision areas integrate the decision
evidence provided by the stimulus represented in sensory areas up to a decision threshold.
This view is based on a series of motion discrimination experiments in monkeys (Roitman
and Shadlen 2002; Roozbeh Kiani, Hanks, and Shadlen 2008; Nienborg and Cumming
2009; Britten et al. 1992; Shadlen and Newsome 2001). On the one hand, they found that
the firing rate of neurons in sensory areas (medial temporal cortex, MT) were proportional to
the strength of the stimulus evidence (i.e. the motion direction). On the other hand, they
found that the firing rate in decisions areas (Lateral intraparietal cortex) ramped up with the
stimulus presentation as if they were integrating the stimulus evidence from the sensory
areas. In addition, they found that the slope of the ramping activity depended on the
stimulus strength but then it saturated to a value of the firing rate that was independent of the

stimulus strength. This feature was indicative of the presence of absorbing bounds.

New experiments in humans, rats and monkeys have however challenged this view. In a
landmark study (Brunton, Botvinick, and Brody 2013) used model based behavioral analysis
to show that humans and rats can perfectly integrate evidence without bounds. The
experimenters used the so-called clicks task where two streams of poisson auditory or visual
clicks are played at different rates. The subjects had to choose the stream with a higher rate.
Another experiment using the same task has however recently challenged this result (Keung,
Hagen, and Wilson 2019). This time the experimenters found different sources of
suboptimally including psychophysical kernels across human subjects with different temporal
profiles (Keung, Hagen, and Wilson 2019). Consistent with perfect integration of evidence
without bounds, a recent study has shown that humans can perfectly integrate the contrast
of a sequence of gratings even when the stimulus is interrupted by long delays (up to 8 s)
(Waskom and Kiani 2018). Although monotonically increasing psychophysical kernels
showing a recency effect can not be explained by a model with absorbing bounds, they
have also been reported in direction (Cheadle et al. 2014; Wyart, Myers, and Summerfield
2015) or brightness discrimination tasks (Bronfman, Brezis, and Usher 2016). More recent
studies using motion discrimination experiments have also challenged the classical

framework by showing that the primacy psychophysical kernels could be more related to
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sensory adaption than to a bound mechanism (Yates et al. 2017). Other experiments have
shown that the activity of neurons in decision areas is not only related to the integral of the
stimulus but also to other mechanisms such as an urgency signal (Park et al. 2014; Thura et
al. 2012). In summary, it seems that the classical framework of how the brain makes
decisions is too simple to account for all the behaviours and electrophysiological findings in
the literature. Thus other mechanisms needs to be studied to complete the classical model

for decision making.

Thesis goals

During the 2017 summer, | attended the cognitive computational neuroscience summer
school in Shanghai. There, we had a series of lectures about perceptual decision making,
and Mike Shadlen and Xiao-Jing Wang, among others, presented their work. Surprisingly,
both used the result showing the dependence of the monkeys accuracy on the duration of
the dots stimulus ( see figure 4a) to support their preferred models, namely the drift diffusion
model with absorbing bounds (DDMA) and the double well model (DWM), respectively. As
we already explained, the DDMA and the double well model can perfectly integrate
evidence for short but not for long stimulus durations. Both models can also fit the mean
reaction time for error and correct trials. This is explained by the fact that in a certain
parameter regime their dynamics can be similar (figure 4b) (Bogacz et al. 2006). However,
the shape of the potentials associated with these two models are in general different: while
the DWM has non-linear terms, the DDMA is linear with the only non-linearity represented by
the decision bounds. But theoretical predictions that could be used to test this nonlinearities

in the potentials have remained elusive.

As already mentioned, the canonical models are widely used because, in contrast to
biophysical models, they are simple and easy to fit to data. In a recent review about
sequential sampling models (Forstmann, Ratcliff, and -J. Wagenmakers 2016), Forstmann
and co-authors wrote “Unfortunately, the Wang model is relatively complex, and at this point
it is not possible to use it to fit data” (Forstmann, Ratcliff, and -J. Wagenmakers 2016),. The
one-dimensional model described by equation 8 has been qualitatively fitted in reaction time
tasks (Roxin and Ledberg 2008). But it is unclear how to fit these models using a more

rigorous maximume-likelihood approach.

The goals of this thesis are:
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Study the non-linear dynamics of the DWM models and find specific signatures of
attractors dynamics that are experimentally testable. Ideally, these predictions should
be able to qualitatively distinguish between the DWM and the canonical models.

Design an experiment to qualitatively and quantitatively test the attractor dynamics in
perceptual decision making. We aim to test experimentally test the qualitative
signatures of attractor dynamics. In addition, we want to develop a maximum
likelihood maximization to fit the DWM. The procedure should be general enough to
be able to add extra mechanisms that have been shown that could play a critical role
in perceptual decision such as different types of biases, adaptation or an urgency
signal. Then using a model-based approach, we aim to quantitatively differentiate

between these distinct mechanisms.
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2. Flexible categorization in perceptual

decision making

Summary

Canonical approaches to model perceptual decision making are based on diffusion
processes that assume bounded or unbounded perfect integration of the stimulus. Here we
study the integration process in neurobiological models with winner-take-all dynamics that
can be reduced to a diffusion process. The key difference between these models and the
canonical ones is the shape of the potential landscape along which the decision dynamics
evolves. Whereas the models with winner-take-all dynamics have a nonlinear potential, the
canonical models have a linear potential, which in principle allows for perfect integration the
evidence. To study the implications of the winner-take-all dynamics in the integration of
evidence, we use stimuli with different magnitudes of fluctuations. This led us to discover a
new integration regime not present in canonical diffusion models, which we call flexible
categorization. In this regime, fluctuations late in the trial robustly generate decision
reversals by overcoming the internal attractor dynamics when the initial choice is incorrect.
One signature of winner-take-all dynamics is a non-monotonic dependence of the accuracy
and the response consistency on the stimulus fluctuations. Another is a transition in the
temporal weighting of the stimulus impact on the upcoming choice from primacy to recency
as a function of the trial duration or the magnitude stimulus fluctuations. We found evidence
for such a transition in data from a series of psychophysical experiments where subjects
made decisions about the average brightness level of two disks for different stimulus
duration T=1,2,3 and 5 s.
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Results

Changing the stimulus statistics reveals the dynamics of the decision variable

In typical settings, the stimulus statistics is under the control of the experimenter and can
reveal the dynamics of the decision variable. We thus investigated how the psychophysical
kernel (PK) for the three DDM models depends on the stimulus fluctuations (og) while
keeping the magnitude of the internal noise (o;) constant (figure 6). In order to quantify
changes in the PK, we calculated both its normalized area, which is a measure of the overall
impact of stimulus fluctuations on the upcoming decision (figure 6d; Methods), as well as a
primacy-recency index, which ranged from -1 (extreme recency) to 1 (extreme primacy). For
very weak stimulus fluctuations all three models are equivalent because the bounds are
never reached; in particular the PK is flat, the primacy-recency index is therefore zero (figure
6e) and the normalized area is small because the dynamics is driven by internal noise. As
stimulus fluctuations increase, the PK of the DDM with absorbing bounds becomes more
markedly primacy-laden, leading to an increasing primacy-recency index. In a similar vein,
the primacy-recency index for the DDM with reflecting bounds decreases, indicating
enhanced recency. The primacy-recency index for the perfect integrator always remains zero
because the PK is always flat. The normalized PK area increases monotonically with the
ratio og/o;. For the DDM with bounds, the bounds are reached more often as o4 increases,
which complicates the integration of the stimulus and consequently the normalized PK area
decreases. In sum, the dynamics of evidence accumulation in the DDMs remains

gualitatively the same when changing the strength of stimulus fluctuations.

In contrast, the double well model (DWM) has a much richer dynamical repertoire as a
function of stimulus fluctuation strength than the canonical models. Specifically, the presence
of two potential wells allows for the possibility of sudden transitions between states. That is,
the model can account for “changes of mind” (figure 7a) (Resulaj et al. 2009; Roozbeh Kiani
et al. 2014) by virtue of stochastic transitions between distinct attracting states. For a fixed
stimulus duration, such transitions become more likely as the strength of stimulus
fluctuations is increased. The same effect can be achieved by extending the trial duration.
For a fixed strength of stimulus fluctuations the rate of transitions remains constant but
because the trials are longer the transitions become more likely. The transition dynamics in

the DWM play a major role in shaping the PK (figure 7b,c,d). For weak stimulus fluctuations
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Figure 6 | Dependence of the time course of evidence integration on the magnitude of stimulus
fluctuations.

(a) Single-trial traces of the decision variable x for low and high stimulus fluctuations with a constant
level of internal noise. Top: The perfect integrator integrates the whole stimulus, corresponding to a
diffusion process with a flat potential (insets). The slope depends on the signal, in this case p=0 .
Center: The DDM with absorbing bounds integrates the stimulus as the perfect integrator until it
reaches the positive or negative bound. These absorbing bounds are represented as infinitely deep
wells (inset). Bottom: The DDM with reflecting bounds perfectly integrates the stimulus within the two
bounds. If a bound is reached, no more evidence is accumulated in favor of the corresponding choice
option (inset). (b) Psychophysical Kernels (PK) for the three canonical models with different stimulus
fluctuations: og = 0.09, 0.15,0.25, 0.53 and a fixed value of internal noise o; = 0.1. Here we assumed
that o; is small enough to not reach the bounds by itself. (¢) Normalized PK area for the Perfect
Integrator increases monotonically with the ratio o/0; . For DDM models with bounds, it decreases for
strong og because the bounds are reached earlier which complicate the integration. (d)
Primacy-recency index (Methods) for the three canonical models.

transitions do not occur and the choice tends to be determined by fluctuations early in the

trial which drive the model to one of the two wells. When transitions occur readily, it is those
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fluctuations which come late in the trial which determine the final state of the system; hence
the PK shows recency. Therefore, as the strength of stimulus fluctuations increases, and
hence as transitions become more likely, the PK switches from primacy to recency, passing
through an intermediate regime in which the PK is mixed, but not necessarily flat (figure 7b,
red line). This new regime is unique to the DWM, and we call it “flexible categorization”
because it allows the sensory input to overcome the internal attractor dynamics. In this
regime, stimulus fluctuations impact the choice over the whole trial (the PK does not decay
to chance level at any time). The overall impact of the stimulus fluctuations, quantified by the
normalized PK area, also changes with the strength of the stimulus fluctuations (figure 7d):
For weak stimulus fluctuations the decision is mostly driven by internal fluctuations and the
normalized PK area tends to zero. In contrast, for strong stimulus fluctuations the decision is
completely driven by the stimulus fluctuations but only for those which come late in the trial.
Consequently the normalized PK area decreases. The PK area peaks in the flexible
categorization regime where the overall impact of the stimulus fluctuation on choice is
maximal. Once again, alternatively, for fixed stimulus fluctuations strength one sees the
same progression of the PK as the trial duration is increased (figure 7b,e,f). However, the
normalized PK area monotonically decreases with the stimulus duration, because although
the ratio between stimulus and internal fluctuations is constant, for longer trials the internal
dynamics has the chance to impact the choice more. The DWM model has different
integration regimes (primacy, flexible categorization and recency) that are controlled by the

transition rates between attractors.

Decision accuracy in models of evidence integration

For the double well model (DWM), changing the strength of stimulus fluctuations o also
has a highly non-trivial effect on the probability of a correct choice (figure 8). Strikingly, the
accuracy exhibits a non-monotonic dependence on the strength of stimulus fluctuations
(figure 8a). That is, although the accuracy tends - as expected - to worsen for increasing
stimulus fluctuations, it actually improves over a limited range of og’s. We noted previously
that the progression from primacy to recency in the PK as a function of o4 was due to the
occurrence of transitions from one potential well to the other, corresponding to
changes-of-mind. This is also the mechanism underlying the observed non-monotonicity in
the accuracy. Specifically, on those trials in which the first visited well is in error, sufficiently
strong stimulus fluctuations can lead to a correcting transition, thereby improving the

accuracy on average over trials. On the other hand, If the first well visited is correct, then a
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Figure 7 | Time course of evidence accumulation in the double-well model.

(a) Single-trial traces of the decision variable for the DWM. with low (black) and intermediate (red)
stimulus fluctuations magnitude o . Reversals (change of mind) are only possible for strong enough
0s. (b) The PK changes form primacy to recency with oy (top; o5 =0.0025,0.02,0.59 and 1 with
0, =0.1) and stimulus duration T (bottom;T = 0.5,1and 2.5s with o5 =0.59 and o; =0.1). (c, d) The
Primacy-recency index (PRI) (¢) and normalized PK area (d) quantifies the change from primacy
(PRI > 0) to rencency (PRI <0) as a function of o . (e, f) Primacy-recency index (e) and normalized
PK area (f) as a function of stimulus duration T.

transition from the deeper correct well to the error well is much less likely. It is the large
difference between the likelihood of correcting- versus error-generating-transitions that leads
to the non-monotonic dependence. This difference is maximum in the flexible categorization
regime (primacy-recency index=0 figure 8c) where the fluctuations can impact the choice
over the whole trial (figure 8a insets). For weaker stimulus fluctuations, in the primacy
regime, there are no correcting nor error generating-transitions. For stronger stimulus
fluctuations, in the recency regime, both types of transitions are activated (figure 8b).

To be more quantitative, we used Kramers reaction-rate theory (Kramers 1940) to calculate
the probability P, (Pg.) of finding the system in the correct (error) well at the end of a trial
with any duration T when the first well visited was the error (correct) one (Methods) . We
found that the probability of a correcting transition P .. increases steeply as a function of
stimulus fluctuations even before P ,.reaches non-negligible values (figure 8b) and that

correcting transitions are exponentially more likely than error-generating ones (Methods).
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Figure 8 | Impact of stimulus fluctuations on choice accuracy in the DWM.

(a) There is a local maximum of the accuracy with the magnitude of the stimulus fluctuations. For
simplicity, we fixed the internal noise to zero (o, = 0).The mean evidence was p = 0.15. The solid line
is the analytically probability of a correct decision (Methods) and the dots are from numerical
simulations. The insets show the PK for three different values of o .(b) Probability to finish the trial in
the correct (P ; green) or incorrect (P ..; black) well when the opposite has been visited first.
Insets: Sequence of transition activations as o increases. : i) For very low o, the system always
evolve towards the correct well, ii) As o increases, it is possible that the systems visits the incorrect
well but neither transitions (correcting or error) are activated, ii) For stronger oy, the correcting
transition (green arrow) are activated iii) Finally for strong o5, both transitions are activated.

(c) The PK become monotonically recency as o5 increases. The flexible categorization regime with
PRI close to zero coincides with the local maximum in accuracy.d) Decision accuracy as a function of
o for different stimulus durations T. The accuracy for any stimulus duration lies between the
probability to first visit the correct attractor (P.,) and the stsionat probability of correct P .
Increasing o, drives the system from the initial state to the stationary state enhancing the
performance. (e)For higher o;, the local maximum in the accuracy occurs already for smaller values
of a5 . For very large o, (green lines), the internal noise alone is sufficient to generate state transitions
and the local maximum in accuracy is not observed. (f) Accuracy for the canonical models (perfect
integrator, DDM with absorbing and reflecting bounds) always decreases monotonically with o .
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The resulting decision accuracy can then be understood in terms of these probabilities and

the probability to first visit the correct well by writing
Pe=Pco(1-Pyr)+*(1-Po)Pcp €)

where P is the probability of correct at the end of the trial and P is the probability of first

visiting the correct well (Methods). This non trivial effect of the accuracy with the stimulus
fluctuations is a direct consequence of attractor dynamics. The accuracy of the canonical

models decays monotonically with the stimulus fluctuations (figure 8f).

In order to make precise experimental predictions, it is important to understand how this

non-monotonic dependence of the accuracy changes with the other stimulus parameter: 1)
Above a critical value of p,. = 542\/% , the probability to first visit the error well is too small and

the correcting transitions become rare and rare (second term equation 9, methods). 2) To
investigate the impact of the stimulus duration (T), we rewrite equation 9 in terms of the
stationary probability of correct (P ,), the probability to first visit the correct well (P ,) and
T:

P.= PC’Oexp(— kT)+ P - s(1 = exp(= kT)) (20)
Where k is the sum of the transition rate. As expected, the probability of a correct choice

tends simply to the probability of first visiting the correct well (P~ - P, ) in the limit T - 0,
and it tends to the stationary probability P., when T - . Note that P ,and P .«

decrease monotonically with the strength of the stimulus fluctuations. However, for

intermediate values, when kT ~ 1 the system jumps very quickly from P to P, . As the

stimulus duration increases, the strength of the stimulus fluctuations needed to jump from

P, to P, decreases and consequently the bump in accuracy is shifted towards weaker

stimulus fluctuations values (figure 8d, Methods). Finally, it is also important to understand
how the parameters that are not under the control of the experimenter such as the strength
of the internal fluctuations affects the accuracy bump. Here, we assumed that the two
sources of fluctuations, internal and stimulus-dependent are mathematically equivalent
(o(t) = 0485 +0,;). Thus as we increase the strength of internal fluctuations, the region
that can be explored with the stimulus fluctuations is cropped from the left and it can be the
case that the bump disappears because the internal fluctuations are too strong ( figure 8e,

see Methods for the computation of the critical value). To summarize, the accuracy bump
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will be higher for long trials and intermediate values of the accuracy but it can be the case

that we do not see it because the internal fluctuations are too strong.

Consistency in models of evidence integration

In order to better understand how internal noise (controlled by o, ) and stimulus fluctuations (
controlled by o) influence the final choice outcome we studied the self-consistency of the
double well model (DWM), that is how consistently an identical stimulus yields the same
choice outcome. In the absence of internal noise the decision process is deterministic and
consistency is 1. If the final decision does not depend on the stimulus at all, the consistency
will be 0.5. Experimentally, consistency can be measured from the behavioral reports to
identical repetitions of stimuli, the so-called double-pass method (Nienborg and Cumming
2009; Neri and Levi 2006). We used the same method in the DWM and explored how
consistency depends on o and o, (figure 9). Note that here we only used stimuli with
exactly zero mean signal in order to avoid a trivial increase of consistency with o due to
larger deviations from the average, i.e we introduced correlations in the stimuli such that the
mean of each stimulus is exactly 0 (methods). As expected, we found that the consistency is
close to 0.5 if o4 is small compared to o;, and that it increases with increasing og (figure
8a). However, despite this general increase with o5, we find a striking drop in consistency
for a range of ogvalues and not too high values of internal noise o;. Thus, consistency in
the DWM can depend non-monotonically on the strength of stimulus fluctuations, a similar
effect as we had observed for choice accuracy but now with a dip instead of a bump shape.

To understand this effect, we studied the time-course of the decision variable X over many
repetitions of a single stimulus, i.e. for a single realization of the stimulus fluctuations (figure
8b). By re-scaling the amplitude of the stimulus, we realized different strengths of the
stimulus fluctuations og. For fixed o, and increasing oy, we found four different regimes:
For very small o the internal noise is the dominant factor, both choice outcomes were
equally likely and consistency was 0.5 (figure 8b,i). In the next regime (ii), stimulus
fluctuations determined the first visited well and decision reversals were not activated,
yielding a high consistency (figure 8b,ii). Even higher o revealed a regime where
transitions can occur but only when internal noise and the stimulus fluctuations together
produced a large fluctuation (figure 8b,iii). The necessary contribution of the internal noise,
that varies from trial to trial, leads to a lower consistency. Finally, once that o4 was large

enough to activate the reversals on its own, consistency increased again (figure 8b,iv). To
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Figure 9 | Dependence of choice consistency on stimulus fluctuations.

(a) In general, the consistency increase with the stimulus fluctuations (og) but for the double well
model there is a drop in consistency for a range of o,. This occurs when the internal noise by itself is
not strong enough to produce transitions. (b) For a fixed stimulus, we computed the temporal
evolution of the decision variable probability distribution, P (X, ) for different o5 and a constant value
of the internal noise, o; =0.14: i) For very weak og, the choice is driven by the internal noise (o;)
and the consistency is very low (53.2 %), ii) In the regime where o determines the first visited well
(og >>0;) but it is not strong enough to produce transitions, the consistency is very high (97.8%) . iii)
When o is almost strong enough to produce transitions by itself, the transitions occur only when o;
and og together produced a large fluctuation. Because the internal noise have again impact on the
choice, the consistency decreases (64.5%). iv) Finally, when o4 is strong enough to produce
transition by itself the accuracy is again very high (100%) (c) Py, (0s,0;) is the probability to finish the
trial in the right well when we initialize the trial in the Left well. The difference between P, (dg,0;)
and P, (05,0, =0) indicates how important is the internal noise to produce transitions. Thus if this
difference increases, the consistency decreases. (d) The consistency for the canonical models
increases monotonically with the stimulus fluctuations. The consistency of the perfect integration is
trivially always at chance level because we introduce correlations in the stimuli such that the total
evidence is zero.
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confirm that this is the underlying mechanism of the observed drop in consistency, we plotted
the difference between the reversal probabilities with and without internal noise and found
that indeed this difference is maximal for the values of o that showed the drop in
consistency (figure 8c). Because it depends on the probability of decision reversals this
non-trivial drop in consistency is thus again a direct consequence of the nonlinear evidence
accumulation in the DWM and it can therefore not occur in any of the DDMs (figure 8d).

Spiking network

We reproduce the theoretical predictions from the one dimensional version of the attractor
model with a biophysical attractor network (methods). The network consists of two
populations of excitatory neurons (N, = 1000) that are selective to one of the two possible
choices and an untended inhibitory population (N; = 500). In addition, we add three untuned
external populations that project to each of the populations of the decision circuit. As in
Wang’'s model the two populations of excitatory neurons compete through the inhibitory
population. We set the network close to the winner-take-all bifurcation to achieve relatively
slow dynamics that allows the network to integrate the stimuli over hundreds of milliseconds.
In figure 10, we show two single trials for weak and intermediate magnitudes of the stimulus
fluctuations (o). For weak oy, the network arrives to one of the attractor and it remains
there for the entire trial. For the intermediate oy, the network is able to correct an initial
error in the categorization. Similarly, to the one dimension version of the model, the
transitions between attractor states produce a change from primacy to recency in the
psychophysical kernel with the stimulus fluctuations (figure 11a). As we explained, the
underlying mechanism of this change is an increase in the number of transitions between
attractor states due to an increase of the transition rates. The number of transitions between
states also increases with the stimulus duration even when the transition rates are fixed
(constant o). Thus the network shows again a change from primacy to recency
psychophysical kernels with the stimulus duration (figure 11b). Finally, the biophysical
attractor network has also a non-monotonic relation between the accuracy and the stimulus
fluctuations (figure 12). The local maximum shifts towards smaller values with the stimulus
duration. Thus we are able to reproduce the signatures of attractor dynamics that we found
in the one dimensional version of the model using a biophysical attractor network with

realistic parameters.
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Figure 10 | Single trials of the spiking attractor network with low an intermediate level of
stimulus fluctuations

Bottom: Stimulus for right (red) and left (blue) population for weak (a, o5 =8) and intermediate (b,
0, =16) magnitudes of the stimulus fluctuations. Intermediate: Firing rate of the excitatory
populations. For strong enough values of stimulus fluctuations. In (b) there is a correcting change of
mind. Top: Raster plots for 200 neurons from each of the two populations of excitatory neurons. In
each row, we plot the spikes of one neuron with a small dot.

Testing model predictions in a perceptual decision task

We tested a key prediction of the double well model (DWM), namely that the observed
dynamics of evidence accumulation depends on the stimulus duration (figure 7b bottom): for
short durations the early part of the stimulus should have the highest impact on the final
choice and for long durations the late part should have the highest impact. Thus, depending
on stimulus duration, PKs in the DWM change from primacy over flexible categorization to
recency. To test this prediction, we used data from an experiment in which human subjects
performed a brightness discrimination task with variable stimulus duration between 1 s and 5
s (Bronfman, Brezis, and Usher 2016) . Confirming previous analyses (Bronfman, Brezis,
and Usher 2016), Psychophysical kernels (PK) of human subjects changed from primacy to
recency with increasing stimulus durations (Fig. top). To compare these observations to the
predictions of the DWM, we simulated the PKs of the DWM using the same stimuli that were
presented to the human subjects (methods). We found that the PKs for different stimulus
durations obtained in the DWM were very similar to the experimental data. Note that while
the PK changes are gqualitatively the same in the experiment and in the DWM, we did not

quantitatively fit the model to the experimental data (methods). The important point here is
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Figure 11 | Flexible evidence accumulation in a spiking neural network model.

a) The psychophysical kernels change from primacy to recency with the magnitude of the stimulus
fluctuations, o4 =4,8 and 40. b) For intermediate magnitude of the stimulus fluctuations (o = 8), the
psychophysical kernel changes from primacy to recency with the stimulus duration T =1,3 and 6.
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Figure 12 | Non-monotonic relation of the accuracy with the stimulus fluctuations

a) The accuracy increases for a range of stimulus fluctuations. The Insets show the psychophysical
kernels for different o5. The local maximum in accuracy coincides with the flexible categorization
regime where the psychophysical kernels is above chance during the entire trial. b) The local
maximum in accuracy is shifted towards smaller stimulus fluctuations with the stimulus duration.
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that these results were obtained with fixed model parameters for all stimulus durations. Thus,

the dependence of the shape of PKs on stimulus duration does not necessarily indicate a

change in the dynamics of evidence integration per se. Rather, fixed, but nonlinear internal

accumulation dynamics in the DWM parsimoniously account for the observed PK changes

without the need for a modulation of internal dynamics.

Increasing stimulus duration T

0.7 7

Humans subjects

Psychophysical Kernel
o
~l

ouble Well Model
0.6 -
0.51--- ——Qﬁﬁéﬁ W

0O 05 10 10 20 15 30
Time (s)

Figure 13 | Decision dynamics of the double well model explains experimentally observed

changes from primacy to recency with increasing stimulus duration.

Comparison of psychophysical kernels (PK) for different stimulus durations, obtained from human
observers (N =21) (top) performing a brightness dicrimination task (Bronfman, Brezis, and Usher
2016)and in the DWM (bottom). The PKs of the DWM were computed with the same stimuli

presented to the human subjects (methods).
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Discussion

In this chapter, we have shown that the winner-take-all models with attractor dynamics can
operate in distinct regimes: primacy, flexible categorization and recency. The canonical
models with absorbing or reflecting boundaries can reproduce primacy and recency
psychophysical kernel (PK). But they can not reproduce the non-monotonic PK which is a
signature of attractor dynamics. Here we have explained the dependence of these
integration regimes to the stimulus parameters. But similarly analysis can be done with
internal parameters that are not under the control of the experimenter. For example,
increasing the internal noise has also the effect of changing the PK from primacy to recency.
Because the two sources of noise are mathematically identically, we could swap their values
and the dynamics will be exactly the same. However, as the internal noise become stronger
the psychophysical kernel area would decrease. Another important parameter is the c, which
controls the height of the barrier. For small barriers the transitions are likely and the PK is
recency. As the barrier increases, the transitions become more unlikely and the PK becomes

more primacy. Thus the shape of the PK depends on the ratio between the total noise

o= \/ozs + ol? and the height of the barrier c,. The parameter c, is simply the distance of

the state of the network to the bifurcation point (Roxin and Ledberg 2008). As the system
moves away from the bifurcation (increase c, ), the wells become deeper and the dynamics
is more categorical. The height of the barrier could be controlled by an untuned input to the
decision network from another brain circuit and it could be a possible mechanism to

implement an urgency signal (Cisek, Puskas, and EI-Murr 2009; Thura et al. 2012).

Several psychophysical studies have shown different types of psychophysical kernels. In the
classic random dot experiment, monkeys and humans have the tendency to give more
weight to the early than late evidence (primacy PK) (Roozbeh Kiani, Hanks, and Shadlen
2008; Nienborg and Cumming 2009; Zylberberg, Barttfeld, and Sigman 2012). However,
other experiments in similar tasks show recency PK (Cheadle et al. 2014; Wyart, Myers, and
Summerfield 2015). Finally, the optimal PK which equally weights the evidence has also
been reported in rats and humans (Brunton, Botvinick, and Brody 2013; Wyart et al. 2012),
These different behaviours can be explained by different canonical model with absorbing
bounds (primacy), reflecting bounds (recency) and without bounds (flat). In contrast, the
double well model (DWM) has different integration regime with primacy, recency and almost

flat PK. Then the DWM seems difficult to falsify because it is able to explain all possible PK.
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However, we test a very specific prediction about how the PK should change with the
stimulus duration and we found that subjects tend to be primacy for short trials and recency

for long trials (Bronfman, Brezis, and Usher 2016) as predicted by the DWM.

In (Bronfman, Brezis, and Usher 2016), the authors of the paper propose a model that
change from inhibition dominated to leaky dominated by changing the parameters during the
stimulus. In the framework of the DWM, this is equivalent to an opposite urgency signal for
which the height of the barrier decreases during the trial, even to negative values where the
two stable states which represent the two possible choices merge into one single state. We
proposed the transitions between wells as a possible mechanism to explain the change from
primacy to recency without the need to change the parameters during the trial. These
transitions represent changes of mind that have been reported in reaction time task (Resulaj
et al. 2009; van den Berg et al. 2016) and also in tasks where the stimulus duration was
controlled by the experimenters (Roozbeh Kiani et al. 2014). Changes of mind are normally
reported in a small fraction of trials, our hypothesis is that with long enough trials or strong

enough stimulus fluctuations these transitions should become more likely.

Transitions from wells in bistable systems (double well) have been intensively studied and
have many applications in different fields, see (Schneider 1994) for a review. These
transitions are also the underlying mechanism for the increase in accuracy when the signal
to noise ratio of the stimulus decreases (figure 8). Specifically, the accuracy increases in the
range of o5 where the probability of correcting transitions is much higher than error
transitions. The same mechanism drives the classic stochastic resonance (Gammaitoni et
al. 1998). Put simply, for a particle moving in a double well potential with a periodic signal
that raises and lowers the right and the left wells in an antisymmetric manner, there is a
suitable magnitude of noise which allows for the system to follow the signal (i.e. escape from
the well when it becomes a local minimum, figure S1). For weak noise, the particle is unable
to follow the signal because it can not escape from the local minimum and consequently it
remains always in the same well. In the other extreme regime, for strong noise, the particle
escapes easily from both wells and the position of the particle is driven by the noise and not
by the periodic signal. The difference between our task and the classic stochastic resonance
is that in our case the global maximum (the correct well) does not change during the stimulus
and the particle starts in the unbiased position. In our task, when the trial starts the particle
is in unbiased position X, =0 which belongs to the basis of attraction of the correct well. In

the deterministic case with ¢ =0, the particle rolls down to the correct attractor (note that
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only when the signal is zero p =0, the unbiased position coincides with the maximum of the
potential). Thus in contrast to classic stochastic resonance, in our case the maximum in
accuracy is always at zero noise level and the maximum produced by the correcting
transition is only a local maximum. The effect of stochastic resonance has been used to
explain many phenomena in physics and also in neuroscience (Gammaitoni et al. 1998). For
example it has been used to explain neurophysiological experiments studying interspike
intervals under periodic stimulation (Longtin, Bulsara, and Moss 1991; Gammaitoni et al.
1998). More recently has also been applied to evidence accumulation tasks, to enhance the
accumulation drift rate for stimuli just below the perceptual threshold with transcranial
random noise stimulation (van der Groen et al. 2018). However, to the best of our knowledge
it has never been reported that the accuracy in perceptual decision making increases as the

signal to noise ratio of the stimulus decreases.

Our results show that the accuracy and the consistency of the DWM changes
non-monotonically ~ with the stimulus fluctuations (og). Both predictions could be
experimentally tested. In that case, the experimenters should take into account the fact that
these non-monotonic effects are limited to a range of og which depend on internal
parameters such as the internal noise and the height of the barrier. At the same time these
internal parameters can be different for different subjects. Thus one expects to find the
non-monotonic relation of consistency and accuracy with o4 only in a fraction of subjects.
Additionally, for the case of consistency, we found a large variability across stimuli, stimuli
that presented a large dip in consistency while others almost do not show it. The consistency
of the average stimuli is presented in figure 9a, but we also show in figure 9b the consistency
of one example stimulus for which the dip in consistency is much deeper, from almost 100 %
to less than 65%. One possible strategy would be to first fit the double well model to each
subject and then use simulations of the fitted potentials to identify those stimuli with deeper

dips.

The relation between the canonical models and the models with attractor dynamics has been
studied extensively (Wang 2002; Gold and Shadlen 2007; Bogacz et al. 2006; Ratcliff and
Smith 2004). Up until now, most of these studies have been focus to understand under which
parameter regimes the models were equivalent. In this first chapter, we emphasized the
differences between these models and we make experimentally testable predictions to

distinguish between them. We also showed that the new integrations regime of the DWM
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can explain psychophysical data that was previously understood as evidence against the

attractor models.
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Methods

Model simulations

To compute the PK, the accuracy and the consistency of the different models we solved 2
using the Euler method:

X(t+ 1) = x(0) - Atdg/dX +VAt(o,E(t) + 0,&(1) (11)
with At =1/40.

In the next table, we summarize the parameters used in each figure

H c, Cy T o, T Bound
Figure 6 0 - - 200 ms 0.1 1000 ms 0.5
Figure 2 0 2 4 200 ms 0.1 1000 ms -
Figure 3 DWM 0.15 2 4 200 ms 0.1 2000 ms -
Figure 8 DDMs 0.05 - - 200 ms 0 2000 ms 0.5
Figure 9 DWM 0 2 4 200 ms - 1000 ms -
Figure 9 DDMs 0 - - 200 ms 0.08 1000 ms 0.5
Figure 13 - 1.6 4 200 ms 0.3 - -
Figure 14 0.15 2 4 10 ms 0.3 240 ms -

In figure 9, we only use stimuli with exactly zeros mean evidence, jS(t)dtz 0. For each

stimulus i, we first created a stream of normal random variables y,(t). Then we z-score y

and we multiplied by oy :
S U
Si(0) = o257 (12)
After this transformation, the mean and standard deviation of S, are exactly 0 and oy

respectively.
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Psychophysical kernel

We measure the impact of stimulus fluctuations during the course of the trial on the eventual
decision by means of the so-called psychophysical kernel (PK). Put simply, given a fixed
mean signal, some stimulus realizations may favor a rightward choice (say a positive
decision variable) and others a leftward one. If this is the case, and we sort the stimuli over
many trials by decision, we will see a clear separation which can be quantified via a ROC
analysis. Mathematically, for each trial i, we subtract the mean evidence (y;) of each trial
s;(t) = p; + 05&; to avoid that the distributions of stimuli that produce a left and right choices
are trivially separated by its mean evidence:
$(0 = 5,0~ 1 (13)

With 3;(t) = 0,&; are simply the stimulus fluctuations. Then, for each time t, we compute the
probability distribution function of the stimuli that produce a right (f(($z(¢))) or left ( f((5,() )
choice. The PK is the temporal evolution of the area under the ROC curve between these

two distributions

PK(0) = auc (f($z(®),f(5.(0) ) (14)

Normalized psychophysical kernel area and primacy-recency index

In order to quantify changes in the PK, we characterized the PK with two measures:
1) The Normalized PK area is a measure of the overall impact of stimulus fluctuations on the
upcoming decision, it ranges from 0 ( No impact) to 1 ( the stimulus fluctuations are perfectly

integrated to make a choice).

T
[ PK(t) dt-0.5T

NPKA = +—= (15)
J;PKPI(t,c,-:O) dt-0.5T

Where T is the stimulus duration. NPKAis the PK area normalized by the PK area of a
Perfect Integrator in the absence of internal noise (o, =0). NPKA is a measure of the
overall impact of stimulus fluctuations on the upcoming decision and it ranges from 0 ( No

impact) to 1 ( the stimulus fluctuations are perfectly integrated to make a choice).

2) Primacy-recency index:
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T
PRI = [ @()NPK(t) dt (16)
0

with

NPK(I) — TPK!I -0.5T (17)
[ PK(6)dt 05T
0

o(t)=1- 2t (18)

Where NPK(t) is the PK with normalized area to 1 and (t)is the weighting function that
linearly decrease with time from 1 to -1. First we normalized the PK area to factor out the
effect of the PK area because we want to measure the PK shape without taking into account
the total area. The role of the linear weighting function is to weigh the early (late) regions
with positive (negative) values. The PRI ranges from -1 (extreme recency) to 1 (extreme

primacy).
In figure 15, we define the Primacy-Recency Index

_ Bhy
PRI = g1 (19)

Where f;and B, are the coefficients of a logistic regression with the coherence of the first
and second pulse as predictors:

logit(P ;) = B, + B,coh, + B,coh, (20)

Accuracy for the DWM

To compute the accuracy for the DWM, we assume that the time spent in the unstable region
is much shorter than the time spent in one of the attractors. This assumption allows us to
treat the system as a Continuous Markov Chain (CMC) with only two possible states correct
and error. The first step is to compute the probability of first visiting the correct attractor
which will be used as the initial state of the CMC (Gardiner 1985)
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(21)

where ¢ is the potential in Eq. 3,x. and x; are the x values of the correct and incorrect
attractors whereas x, = 0is the initial position of x.
The integrals of P, can be computed assuming that the term x* is very small for values of

X, =0

_ ef(Burt))er (2 ()

T (F ) 62) )

The second step is to compute the correcting and error transition rates (Gardiner 1985,
Kramer 1949)

O] 2e0e)
_ V]eeee)] exp(2eu) 00

kCE 2n or+a2 (23)
_ /|ox)etx)| “2(9(x)-0(x))
kee = 7 exp( ) (24)

With the transitions rates we can compute the probability of making a correcting transition

and the probability to remain in the correct attractor at the end of the trial (Durrett 2016):
Pc(T) =P s(1—exp(-kT)+ exp(— kT ) (25)
Pcp(T) =P (1 - exp(-kT)) (26)

where k = kcp +kge, T is the stimulus duration and P = —L_ js the probability of

kCE+kEC
correct at the stationary state (T — o). Finally, the probability of correct given the model and
stimulus parameters (c,, c,, o1, 0g and T)

Pe=PcoPcct(1=Pco)Pcr (27)
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Thus the probability of correct is the probability to first visit the correct attractor and remain in

it (PP cc) plus the probability to first visit the error attractor and correct the initial decision

( (1_PC,O)PCE )-

To be more quantitative, if the first well visited is not the correct one, then the probability of
finding the state in the correct well at time T is given by Eqg. X (2 equations above). The
probability of finding the state of the system in the error well if the initial well is correct is

given by
P = kyc(1-exp(- KT))k (28)
The ratio of these probabilities is
Pcp/Ppc « exp(2(9(Xg) — 9(X))/0?) (29)
which shows that correcting transitions are exponentially more likely than error-generating

ones, as long as stimulus fluctuations are not too large. In particular, for weak stimulus

strength ., this ratio is

Pop/Pge = exp(4p\/cz/c4/02)

(30)

These probabilities are illustrated in Fig.4B; P (green) increases steeply as a function of

stimulus fluctuations even before P .- reaches non-negligible values.

Asymptotic analysis

Here we investigate the range of parameters where the accuracy is non-monotonic with the
stimulus fluctuations. Concretely, we compute the critical values of p.and o, beyond which
the performance decays monotonically with og. First, we compute the positions of the
attractors when p<<1 by finding the potential roots of order U(e?) using p=¢ep and
X = XO + €X1

Xo = \/Ej + 4 1+ 9(e2) (31)

2c,
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R e G (32)

X

b=t ) (33)
Where x, is the x position of the unstable state ( x;, =0 when p =0) and x. (x;) are the

positions of the correct (error) attractor. Plugging these attractor positions into equations 23

and 24, the transitions rate for small values of p are

kep = 723-6 20264602\/&1 (34)
Tci-e_?i??ze_% = (35)

If there is a non monotonicity of the accuracy with o2 (02 = 0§+0§), we should find a

maximum of the probability of correct when the error attractor was first visited (equation 26 ).

Pep= 2—2;%(1 —e kT (36)
Ve, &

k=kep +kpe = TZ = cosh(ap) (37)
Where a = 2;1\/-Z and B ==. To check the existence of a local maximum we derive P -
respectto o

Tk == 25t = a(1 - tanh(aB) ) (1 - e *T) + §Te T = 0 (38)

& = 2o I =

@# = (asinh(ap) - 2C4COSh(ClB))€ (39)

For small values of p both equations can be approximated by

ngE =a (1 _e—kT) + (tjﬂé Te kT (40)
Bc
_ NG c3 2(‘4
= e “

For small values of o,1-¢*T = 0. However there is always a large enough T so that

1-e*T = 1. The local maximum of the accuracy must be in the region where these two
2

B2
effects are of the same order kT ~ 0(1). Thus we defined T = ; and e ie = ¢y . Plugging

these into equation 40
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ﬁﬂ=a(1—e oyt +-\/Ln—cie VT =0 (42)

To have a maximum of P .., there must be a solution to the following implicit equation
z= -Llog(l + -‘2\/-2 4) (43)

Where z = “%1 , using the definitions of t and y, there is a maximum of P . at

2

GMAX 2C4 [og (1 (44)

Where z,is the solution of the implicit equation 43.

Similarly, to find the maximum of the accuracy we derive equation 27 respect to o
e = 24 [P jexp(~kT) +P | (45)

Where we rewrite equation 27 as a function of P, and P ., is the probability to first visit the

correct attractor . As long as f(?“» 1(and similarly for x;), equation 22 is well

approximated by

Pco= 3 (1 + erf(% (Xo + f;))) (46)

In the range of parameters where p is small and B is large we can assume that Bu2<<1,

\/Ep <<1 and p B >>1. Using these inequalities, equation 45 can be simplified to

& =a(1 - tanh(ap) ) (1 - e 1)+ 3§ Te* T =0 (47)

With these simplifications the derivative dd%c is equivalent to the derivative % (equation

40) with a % factor in the second term. This factor modifies the implicit equation 43 to

z=%log(1+ % -“) (48)

cyH
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Then the critical value of the internal noise for which accuracy decreases monotonically with

the stimulus fluctuations is

2

_9_ 1
0t = 2_sz:log(22 (49)

nzZg

By expanding in Taylor series equation 48, log(1+x)=x—’;—z+9(x3) we found an

approximate solution of the implicit equation
_ 16V2p2c T, _ Ty
z9= Sy fan (1 den/2h) (50)

Because z, must be positive there is a critical value of pfor which the accuracy also

decreases monotonically with the stimulus fluctuations

he = 3/ (51)

Psychophysical data and model fitting

In figure 13, we used data from experiments 1 and 4 from (Bronfman, Brezis, and Usher
2016) with a total of N =21 humans subjects. The data can be accessed here:
https://doi.org/10.1371/journal.pcbi.1004667.

The stimuli consisted of two brightness-fluctuating round disks. At each time frame (100 ms).

the brightness level of each disk was updated from a generative gaussian distribution. The
generative distributions for both the disks had the same variance but different mean (high or
low). At the end of the stimulus, the subjects had to report the disk with an overall higher
brightness (higher mean of the generative gaussian distribution). Trials were separated into
5 equal length segments, in 80 % of the trials, a congruent or incongruent pulse of evidence
was presented at a random segment. This increase or decrease of evidence was corrected
in the rest of the segments and as a consequence the stimuli were anticorrelated. In
experiment 1 trials with 1,2 or 3 seconds duration were presented in blocks of 60 trials
whereas in experiment 4, the trial duration was 5 seconds. We computed the PK using the
usual procedure but first we subtract the brightness of the two disks and their means to have

a 1-dimensional stimuli with zero mean. Namely
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S'(0 = Sp(© = Sy (O ~ (W~ 1)), (52)
where Si(f) is the brightness of the Left disk during the i-th stimuli and p£ is the mean of the

generative gaussian distribution for the Left i-th stimuli. We computed the confidence interval

using bootstrap with 1000 repetitions.

To compute the PK of the DWM we simulated Eq 2 with the exact same stimuli presented to
the subjects. We modeled it by updating '(t) from Eq. 3 with the difference in brightness at
each time between the Right and Left disk:

H(t) = Sg(®) = S1.(0) (53)
Note that in this framework the stimulus fluctuations were set to zero og =0 because oy
was captured inside pi(t). The DWM parameters (¢, =—1.6,¢, = 4,0, = 0.3 and t© = 200 ms)

were tuned to qualitatively explain the change from primacy to recency with the stimulus

duration.

Network of integrate-and-fire neurons

We consider a network of recurrently coupled integrate-and-fire neurons, similar to
Roxin&Ledberg 2008. The network consists of two populations of excitatory neurons (A and
B), both of which are coupled to a population of inhibitory interneurons. We will study the
case in which the system is near a steady bifurcation to a winner-take-all state. It is in the
vicinity of the bifurcation that the dynamics can be captured in a one-dimensional amplitude
equation which describes the slow evolution along the critical manifold (see chapter blabla of
this thesis and Roxin&Ledberg 2008). The evolution equations for the neuronal membrane

potentials are

v,

Tme=a =~ (VA,i - El) Flai T Lari taeni ! 91 s
v,

Tme=a = (VB,i - El) lpgi " Ipri T gewi’ 91

av,,
Tmi—a =~ (Vl,i - El) o~ g e 7 91

where the synaptic inputs of the form I, indicate interactions from neurons in population Y
to neurons in population X, while external synaptic inputs are given by I,,,.. The synaptic

inputs are sums over all postsynaptic potentials (PSPs), modeled as exponential functions
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with a delay (note that this different from (Roxin and Ledberg 2008) which used Dirac-delta

functions with a delay) The synaptic inputs take the form
_ XY
IXY,i = ZJU gij .
J

The dynamics of excitatory and inhibitory synapses are described by

XY
T 9 __ xv
se dr gij )
XY
Y xy
si dt gU .

After each presynaptic spike at time tlgy, the corresponding dynamic variable is

incremented by one at %, + 8y » thatis after a delay &y ; .

External synapses have instantaneous dynamics
IXext,i = Z JZ'Xt % 6(t - tl)((ext,j )’
J

i.e. a presynaptic action potential from neuron j of the external population at timet’)‘(exu.
results in an instantaneous jump of the external synaptic input variable. A spike is emitted
whenever the voltage of a cell from an excitatory (inhibitory) population crosses a value ©,
after which it is reset to a reset potential V. .

We consider the case of sparse connectivity for which, on average, each neuron from
population X receives a total of C,, synapses from population Y. The pairwise probability of
connection is thus €y, = C4y/Ny , Wwhere N, =N, =N, and N, are the number of neurons
in the respective populations. For nonzero synapses we choose Ji*=Ji%=1J,,
Jit=1=r,and 55 =05 =1,

The stimulus input is modeled similar to Wimmer et al 2015, but with the exact same
stimulus input to each neuron in the two excitatory populations A and B (rather than with a

common and private contribution as in Wimmer et al 2015). The stimulus input to two

excitatory populations A and B is given by

Toim(©) = Io(1 + p) + 05, 22(0)

12,0 = Io(1 = p) + 04, 2B (D),

where the first term describes the average stimulus input and the second term the temporal

modulations of the stimulus with standard deviation o Finally, zA(t) und zB(t) are

stim *
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independent  realizations of an  Ornstein-Uhlenbeck  process, defined by

Tyim% ==z + \/Ztmmz(t) , Where §(t) is Gaussian white noise (mean 0, variance dt).

stim dt

Table 1: Simulation parameters for the spiking neural network model.

Populations
Ng 1000 Size of excitatory populations A and B
N, 500 Size of inhibitory population

Recurrent connectivity

Jee 0.16 mV Weight of excitatory to excitatory connection

Jie 0.08 mVv Weight of excitatory to inhibitory connection

J o -4 mV Weight of inhibitory to excitatory connection

Cee 100 Average number of synapses for excitatory to excitatory
populations

C. 50 Average number of synapses for excitatory to inhibitory
populations

C,; 50 Average number of synapses for inhibitory to excitatory
populations

Neuron model

Tme 20 ms Membrane time constant of excitatory neurons
T i 10 ms Membrane time constant of inhibitory neurons
Jre 12.5nS Leak conductance of excitatory neurons

95 25nS Leak conductance of inhibitory neurons

E, -70 mV Resting potential

® -50 mV Spiking threshold

E, -60 mV Reset potential

Synapse model

Tse 12.5 ms Time constant of excitatory synapses

T, 1ms Time constant of inhibitory synapses

S
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8e 5ms synaptic delays for excitatory synapses (uniform distribution
with mean 5 ms)

5. 1ms synaptic delays for excitatory synapses (uniform distribution
with mean 1 ms)

External Poisson inputs

J ot 0.2 mv Weight of external inputs

Ve ext 5000 Hz Firing rate of external Poisson inputs to excitatory neurons

Veext 9000 Hz Firing rate of external Poisson inputs to inhibitory neurons

Stimulus inputs

I, 25 pA Mean input for zero-coherence stimulus

1l 0.03 Additional input for non-zero coherence stimulus

o varied Amplitude of temporal modulations of the stimulus

Ogim 0.25pA-o S. d. of temporal modulations of the stimulus

Teim 20 ms Correlation time of Ornstein-Uhlenbeck process
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3. The double well model in tasks involving

working memory and decision making

Summary

Many studies have addressed the question whether the brain can make optimal decisions. In
principle, if the stimulus duration is controlled by the subject, the optimal strategy is to
maximize the reward rate by trading accuracy for speed. In fixed duration tasks, the optimal
strategy is simply to linearly sum all the stimulus evidence. Defining the optimal strategy,
however, depends on the constraints of the system. But little is known about the biological
constraints under which brain circuits operate. Here, we study this problem by considering a
couple of fundamental constraints derived from general arguments about neural physiology.
First we assume that the range for accumulating evidence in a neural circuit is bounded
because of the limits in the physiological range of neural firing rates. In that case, the double
well model became optimal because the categorization introduced by the winner-take-all
dynamics compensates the loss of accumulated evidence caused by the integration with
reflecting bounds. The double well model is also suitable to store a decision during a period
without stimulus. Actually, in tasks where the stimulus is interrupted by a temporal gap during
which the accumulated evidence must be maintained by the circuit, the optimal strategy is to
strengthen the winner-take-all dynamics. We furthermore show that, for such a task
combining evidence integration and working memory, the double well model can actually fit
data from an already published psychophysical experiment. Strikingly, in this task, the
accuracy does not decrease with the length of the temporal delay which suggests that
information about the first part of the stimulus is categorical stored. Overall, these results
complement the analysis shown in the previous chapter by explaining how neural circuits

could be implementing the integration.
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Results

Impact of the winner take all dynamics in the accumulation of evidence

In the previous chapter we have shown that the Double Well Model (DWM) has different
integration regimes and how the performance depends on these regimes. Here, we show
that the DWM can be computationally advantageous over other models when basic
biophysical constraints are considered. In principle, optimal performance in a categorization
tasks with ambiguous fluctuating stimuli would be achieved by linearly summing each
sample of evidence without leak nor absorbing bounds, that is by a temporally uniform
integration of all the evidence. The dynamics of the DWM, in contrast, introduce transient
integration (i.e. primacy or recency effects) which can a priori decreased performance
because some parts of the stimulus stream are barely weighted into the final choice. A
perfect integrator however is not the optimal model when one imposes reflecting bounds in
the integration (Zhang and Bogacz 2010). This is a plausible constraint given that, among
other factors, individual neurons show spiking refractoriness, an effect that limits the range of
output firing rate. To compare the categorization accuracy across models respecting
bounded integration, we used the DWM with different barrier heights (c,) (figure 14a). When
the barrier height was set to zero, the model was equivalent to a perfect integrator with
reflecting bounds: increasing the magnitude of stimulus fluctuations, increased the
probability to hit the bounds during stimulus integration, causing that some stimulus evidence
was lost (figure 6a, bottom traces). Specifically, as early evidence made the system
approach the bound, the integration of further evidence was biased towards reverting the
impact of the early evidence, because any confirmatory evidence would be essentially lost
by trying to push the system against the bound. As a consequence, the larger stimulus
fluctuations, the smaller was the categorization accuracy ( figure 8f). In these circumstances
in which the combination of bounded integration and large stimulus fluctuations caused
recency, introducing a barrier compensated the bias introduced by the bounds and increased
the accuracy (figure 14a). The categorization improvement occurred because, once the
system approached the side bounds, the central barrier introduced a confirmation bias that
compensated the reverting bias caused by the bounds. The optimal barrier height was
achieved when these two effects balanced in the flexible categorization regime
(primacy-recency index = 0), and correspondingly it increased with stimulus fluctuations

(figure 14a). Thus, when the biophysical constraints of integration bounds were introduced, a
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Figure 14 | Effect of the barrier height in the categorization accuracy of the DWM and the
impact of temporal integration gaps .

(a) Categorization accuracy versus the barrier height for different levels of stimulus fluctuations (see
inset) obtained from numerical simulations of a model with integration bounds. The non-zero optimal
barrier height increases with the magnitude of stimulus fluctuations. For all the panels o; = 0.3 and
T =240 ms (b) Categorization accuracy when the stimulus is divided in two input short streams
(T =120 ms) separated by a temporal gap of duration D. Longer gaps shift the optimal barrier
towards higher values. Red line shows the case D = 0(same as in panel a) . Dashed black line shows
the accuracy with only one frame of evidence and random initial condition, extreme case for which the
information of the first pulse is completely lost. (¢) The probability to maintain the initial categorization
(stability) monotonically increases with the height of the barrier. (d) The optimal barrier coincides with
the Flexible categorization with a primacy-recency index close to zero. (e) The change from recency
to primacy is affected by the stimulus fluctuations and the length of the delay. To better show the
difference between the impact of the first and second pulse, we compute the primacy-recency index
as PRI =(a, - a,)/(a, +a;) where a; and a, are psychophysical kernel area in the first and second
pulse. (f) For non zero level of internal noise, the models without stable fixed points are unable to
maintain the initial categorization during the temporal integration gap.

DWM with a non-zero barrier height outperformed an equivalent model with no barrier.
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Impact of temporal gaps in models with winner take all dynamics

Introducing a barrier also had the consequence of making the system more fitted to maintain
information during delay periods without stimulus evidence. For instance, in some tasks the
decision evidence is presented in two or more stimuli that subjects must combine in order to
perform the task. In these circumstances, the evidence after the first pulse of stimulus
evidence needs to be maintained by the circuit in the absence of any external input (R.
Kiani, Churchland, and Shadlen 2013a) . This is simply because the attractors in the double
well model (DWM) are stable fixed points of the system that can support short-term memory
(Amit and Brunel 1997; Wang 2002)(Amit and Brunel 1997; Wang 2002). On the one hand,
the stability (i.e. the probability to remain in the same attractor during the temporal gap
between pulses) improve monotonically with the height of the barrier (figure 14c). On the
other hand, although stimuli without temporal gaps the optimal barrier height is not zero, the
accuracy is very poor for high barriers for which the integration process becomes extremely
primacy (figure 14a). The interaction of these two effects, namely the need for stability (high
barrier) and integration accuracy (small barrier), cause a shift of the optimal barrier height
towards higher barriers (figure 14b). However, for very long delays, it is not worth it to
maintain the categorization after the first pulse of evidence because this would require a
very high barrier which would produced a very poor initial categorization. Thus, for long
delays it is better to only use the second pulse after the temporal gap assuming that the
state of the system after the delay will be one or the other category with the same probability
because of the random transitions during the delay. This would be an extreme case in which,
because the barrier is small and the delay is long, the information about the first pulse is
completely erased. To illustrate this, we plot the accuracy as a function of the barrier height
for different delays (figure 14b) . We also compare these curves with the performance to a
stimulus of one single pulse with the initial condition being randomly distributed between the
two categories (dashed black line figure 14b). For short barriers, the information of the first
pulse is completely lost for all the delays and the accuracy curves collapse with the dashed
black. As we increase the barrier height, the system is able to maintain in memory the initial
categorization for longer delays (the system become more primacy, figure 14e ). When the
barrier height is high enough to guarantee the stability during the delay, the accuracy and the
primacy-recency index curves collapse with the no-delay curve ( red line figure 14b and e ).

Note that it is easier to maintain a decision during the delay than during the stimulus
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Figure 15 |Flexible categorization regime explains combination of two pulses of evidence.

a) Single trial traces for a double pulse trial of the DWM model. Using the fitted parameters with the
data from (R. Kiani, Churchland, and Shadlen 2013a; Tohidi-Moghaddam et al. 2019) . b) Probability
of correct for single (squares) and double (dots) pulse trials for the three possible first pulse
coherence (3.2% red, 6.4% green, 12.8 % blue) (dots). Solid lines show the accuracy of the fitted
DWM.c) Primacy-Recency Index as a function of the barrier height (¢,) The black circle mark the PRI
for the fitted parameters. The blue line is the PRI computed from the psychophysical data (grey area
95% confidence interval). Inset show that the accuracy is slightly better when the second pulse has
higher coherence (slightly Recency). d) For any barrier, there is a long enough delay for which the
accuracy decrease due to the transitions during the delay. For the fitted parameters, the accuracy is
independent of the delay (up to 1 s) even if we consider that the internal noise and stimulus
fluctuations have a similar magnitude o4/0; = 1.25 (methods). e€) For the DWM, the probability of right
only depends on the state of the system before the second pulse and the second pulse itself, but it is
independent of the first pulse mean evidence (i,). Inset shows the possible states before the second
pulse. f) For the perfect integrator, the decision variable before the second pulse is a parametric value
proportional to p, (see inset). Consequently, the decision depends on both pulses. For clarity
purposes, we only show correct categorization after the first pulse.

because the internal noise is the only source of noise during the delay (os = 0). For a zero
level of internal noise, any model would trivially maintain the decision. However, for

non-zero values of internal noise, the initial categorization degrades much quicker for models
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that assume perfect integration of the evidence, figure 14f . In total, the existence of
integration bounds in conjunction with the need to maintain the categorization during

stimulus gaps, favored the winner-take-all dynamics provided by the DWM.

Double well model combines stimulus evidence from two pulses

We have shown that the double well model (DWM) is able to combine information from two
pulses of evidence separated by a temporal gap. To test if in fact the DWM could explain
psychophysics data from a task in which subjects must combine information from two pulses
to make a decision, we used data from two experiments (Tohidi-Moghaddam et al. 2019; R.
Kiani, Churchland, and Shadlen 2013a) . In both experiments, the task design interleaved
trials with single pulses of random dot kinematograms with trials having two pulses
separated by a temporal delay. In the two pulses trials, subjects had to combine information
of both pulses in order to identify the average motion direction. Subjects were able to
combine the evidence from the two pulses without a dependence of the accuracy on the
delay between pulses (up to 1s). Moreover, they tend to slightly give more weight to the
second that the first pulse (Primacy-Recency Index=-0.22; methods). As we explained, the
DWM can naturally solve this task, with the first pulse of 120 ms the decision variable evolve
towards one of the attractors. During the delay the system maintains the initial categorization
because transitions are very unlikely (there are not stimulus fluctuations, o,=0). Finally, if
there is enough evidence during the second pulse, the initial categorization can be reversed
(figure 15a). To combine both pulses close to the flexible categorization regime, we
hypothesize that subjects can adapt the height of the barrier between the two attractors, with
common input to the two excitatory population (represented by the parameter, ¢, ; figure 15c).
We fitted the DWM (solid lines, figure 15b; methods) with the data extracted from
(Tohidi-Moghaddam et al. 2019; R. Kiani, Churchland, and Shadlen 2013a) (square and
circular dots (figure 15b). Because the accuracy do not decrease with the temporal gap, we
assumed there are no transitions between wells thus during the delay the ¢ = 0 (methods).
We found that the DWM was able to fit the data for one and two pulses trials indicating the
transitions between attractors as a possible explanation for the difference in accuracy

between trials with one and two pulses.
One of the intriguing results of (R. Kiani, Churchland, and Shadlen 2013a;

Tohidi-Moghaddam et al. 2019) is that the accuracy was independent of the delay between

pulses up to 1 second. To explain this behaviour the models that assume perfect integration
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of evidence must fix the internal noise to zero (figure 14f). In contrast, the DWM can
maintain the initial categorization even when the stimulus fluctuations and the internal noise
have similar magnitudes (figure 14d). However, the DWM also predicts that for long enough
delays the accuracy would eventually decrease (figure 14d) as suggested by data from a

similar experiment in which longer delays were explored (Melcher et al. 2004).

The major difference between the DWM and the canonical models that assume perfect
integration is that after the first pulse the state of the DWM is categorical, either left or right
whereas the state of the canonical models is a parametric value proportional to the first pulse
coherence. For the single pulse trials, it seems reasonable that the state of the system is the
same for all the right and left choices independently of the first pulse coherence because a
decision needs to be made. However, for the two-pulse trials the DWM is unable to hold in
working memory a parametric value of the first pulse coherence. Consequently, the decision
depends only on the state of the network just before the second pulse and the second pulse
itself but it is independent of the first pulse coherence . In contrast, the state of the canonical
models just before the second pulse is a degraded (due to the internal noise during the
delay) parametric value that depends on the first pulse coherence. Thus the final decision is
also influenced by the first pulse coherence (figure 15 e,f). This experimental prediction

illustrates the consequences of a model with categorical choices.

Alternative model with urgency and undecided state

We also try to use the model in the full model with a multistable region and a winner-take-all
region. In the multistable region there are three stable states representing the left and the
right decision and an undecided state. If the decision variable end in the undecided the
decision is taken randomly. As we explained in the introduction, the system can move from
the multistable region to the winner-take-all region with the parameter c, Additionally,
because the trials had different durations ( one pulse vs two pulses + delay), we introduce a
mechanism that mimics an urgency signal and that change the value of c,. Finally, the
potential is:

o Xt | ceX®

XZ
(P:_”X_SZ(;)_+T+6 (54)

When ¢, <0 (with ¢, <0 and ¢4 > 0 ) the system is in the region where the undecided state
is stable and when c, >0 the undecided become unstable. Because c, can change during
the trial, the unstable state can appear or disappear. We fit the model using the method

described in the method section of chapter 3. With this method, we compute the time
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Figure 16 | Alternative model with urgency signal and undecided state.

a) Probability of correct for single (squares) and double (dots) pulse trials without delay for the three
possible first pulse coherence (3.2% red, 6.4% green, 12.8 % blue) (dots). Solid lines show the
accuracy of the model with urgency signal and undecided state. b) Same as a witht trials with a
temporal gap of 120 ms. ¢) During the first pulse and the delay there are three stable states (left,
undecided and right) whereas during the second pulse, there are only two stable states (left and right)
d) Temporal evolution of the decision variable probability density function for a trial with 3.2%
coherence in both pulses of evidence. During the delay, there are three possible stable states: left,
right and undecided.

evolution of the decision variable probability distribution function. There are two main
advantages, we do not need to assume that the time spent in the unstable region is small
compared to the pulse duration and we can easily introduce the undecided state (if the
particle finishes in the undecided state the decision is taken randomly). In order to introduce
more constraints to the model, we also model the dynamics during the temporal gap.
Because the accuracy do not change with the delay, we can not fit two separate source of

noise (internal and stimulus fluctuations) and we impose that during the delay the noise is
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reduced by a factor of V2 which implies that og = 0, (methods).

The parameters that maximize the likelihood of the model yield to a potential with undecided
state during the first pulse and the delay but without undecided state during the second pulse
(figure 16c). In this case, the temporal change of ¢, mimics an urgency signal. In most of the
trials there are two pulses, thus after the first one there is no rush to make a choice and it is
possible to remain in the undecided state when there is not enough evidence to commit to a
choice. During the delay the three states remain stable and the information of the first pulse
is not lost. Finally, during the second pulse when a decision must be taken the undecided
state disappears and the particle evolves towards one of the wells (figure 16d). Note that as
expected the accuracy for the trials with and without delay is very similar (figure 16a and b).
This model can also fit the psychophysics data and under the assumption that stimulus
fluctuation and the internal noise are equally strong (o5 = o;) it is more likely than the double

well model (AAIC = 22.4, see methods).
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Discussion

The optimal way to solve a two alternative forced choice task with fixed duration is by linearly
summing each sample of evidence. Under certain assumptions this can change, for example
assuming that there is a cost associated with accumulating evidence, the optimal strategy is
to perfectly accumulate evidence with collapsing absorbing bounds (Drugowitsch et al.
2012). The Bayesian approach to solve this task is equivalent to the optimal strategy but if
we considered that the mean signal is unknown to the subjects the Bayesian strategy will
lead to an overweighting of the early information (Deneve 2012). In this chapter we have
studied the optimal strategy under neurobiological constraints. The common belief is that the
decision variable is encoded in the firing rate of neurons in cortical regions (Roozbeh Kiani,
Hanks, and Shadlen 2008; Britten et al. 1992; Roitman and Shadlen 2002) but neurons have
spiking refractory periods which could limit the range of their firing rates. In a model with
perfect integration of evidence this would be equivalent to impose reflecting boundaries. In
(Zhang and Bogacz 2010), the authors show that a winner-take-all mechanism (c, > 0)
improves the accuracy when reflecting boundaries are imposed. They also show that the
optimal value of this barrier increases with the stimulus duration. In the neurobiological
models with winner take all dynamics the reflecting barriers appear naturally from the neuron
properties and the network structure. We also found that there is an optimal barrier different

from zero which increases with the stimulus fluctuations.

By introducing a barrier we created two stable states that can also be used to maintain
information in the absence of stimulus. Thus the models with winner-take-all dynamics are
also suitable to perform tasks that combine perceptual decision making with working memory
(Wang 2002; Murray, Jaramillo, and Wang 2017). In (R. Kiani, Churchland, and Shadlen
2013a), the authors designed a task involving perceptual decision making and working
memory to test the attractor network model presented in the seminal paper (Wang 2002). In
this paper, the author presented a network of leaky-integrate and fire neurons with a
subcritical bifurcation, the network had two stable states, one for each possible choice and
an extra undecided state which became unstable during the stimulus presentation. This
network was designed to allow almost perfect integration of evidence over hundreds of
milliseconds and to be robust to fluctuations (Wimmer et al. 2015; Wang 2002).
Consequently the transitions between states were unlikely. In this primacy regime, if the
stimulus is short enough the evidence would be integrated almost perfectly. Then if we

divided the stimulus in two pulses separated by a temporal gap, the accuracy would
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decrease because during the temporal gap the network would continue evolving towards one
of the decision states or will return to the undecided. In the first case, the accuracy would
decrease because the second pulse would not be integrated and in the second case, the
information about the first pulse would be completely erased by the network dynamics. In
(R. Kiani, Churchland, and Shadlen 2013a), the authors found that contrary to the attractor
network model prediction, the accuracy was independent of the delay. However, they also
noted that in the regime where the network “jumps” from the initial state to one of the
decisions states based on momentary evidence, the accuracy would not depend on the
delay because the network would evolve much faster to the stable points. But they discard
this model because it would lose information. We have shown that although the network can
“jump” this does not mean that is losing information because the asymmetry between
correcting and error transitions allow the network to combine evidence from the two pulses.
The parameter regime described in (Wang 2002) was chosen to explain data from
psychophysics experiments with long stimulus duration (around 2 s). Our hypothesis is that
subjects can adapt the dynamics of the network to the stimulus properties. For example, with
short stimuli (120 ms) like the one used in (R. Kiani, Churchland, and Shadlen 2013a), the
urgency to choose between one of the two alternatives could produce that the effective
dynamics of the network is faster than when longer stimuli are used. This can be simply
achieved by an untuned input to the decision circuit. One possibility to test this prediction

would be to train the subjects with long stimuli and introduce catch trials with short stimuli.

It has been shown that when the tasks requires storing a parametric value in working
memory, this value undergoes diffusion over time (Funahashi, Bruce, and Goldman-Rakic
1989; Wimmer et al. 2014). This diffusion has been understood as a signature of line
attractors (models that assume perfect integration of evidence). However, in (R. Kiani,
Churchland, and Shadlen 2013a) the accuracy of the subjects does not decrease with the
temporal gap (at least up to 1s) suggesting that in this task the subjects might be storing a
categorical value of the first pulse (either left, right or undecided) instead of a parametric
value proportional to the coherence (Fleming, Maloney, and Daw 2013). The double well
model naturally implements this categorical categorization of the stimuli. It could also be the
case that a line attractor could somehow reduce the internal noise to zero. This scenario
seems unlikely because the internal noise is key to explaining the diffusion of parametric
values during working memory tasks and it would produce a consistency of 100% when the

consistency in random dot tasks is much lower (Ratcliff, Voskuilen, and McKoon 2018) .
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One possible experiment to test if the information of the first pulse is categorical or a
parametric value could be to read out the decision variable before the second pulse from
simultaneously recorded neurons (Roozbeh Kiani et al. 2014). By splitting the trials in left or
right initial categorization, the accuracy should be independent of the first frame (figure 15 e
and f). It could be the case that the categorization is categorical but with three stable states
(left, undecided and right, figure 16). Figure 16 Similarly to the DWM, this model could also
be tested by splitting the trials in left, right or undecided using the read out of the decision
variable (Roozbeh Kiani et al. 2014) or by undecided and decided using the pupil size as a
proxy for uncertainty (Kawaguchi et al. 2018; Urai, Braun, and Donner 2017) . Then the trials
that end up in the undecided state after the first pulse should only be influenced by the

second one.

We found that under the assumption that o; = o5, the model with an undecided state and
urgency signal is more likely than the standard double well model. However, in order to
better compare both alternative, we should design an experiment where the two sources of
noise were distinguishable. For example we could use a stimulus that change by frames of
100 ms (Bronfman, Brezis, and Usher 2016) to include the stimulus fluctuations in a potential

that changes in every frame according to the stimulus (see, methods chapter 4).

In (R. Kiani, Churchland, and Shadlen 2013a; Tohidi-Moghaddam et al. 2019) subjects tend
to slightly overweight the second pulse, as we explained the DWM and the drift diffusion
model with reflecting boundaries are compatible with a slightly recency psychophysical
kernel. Another alternative suggested by (Tohidi-Moghaddam et al. 2019) is a drift diffusion
model with absorbing boundaries where the sensitivity of the second pulse is larger.
However, it remains unclear why the subjects do not use their maximum sensitivity during

the whole trial.

In summary, we have found that winner-take-all models with attractor dynamics can be
optimal under certain biological constraints and are suitable to solve tasks involving
perceptual decision making and working memory. We have shown that during the temporal
gap, the information about the first pulse could be stored in stable fixed points rather than in
a line attractor and we finally propose an experiment to distinguish between these two

alternatives.
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Methods

Double well model fitting

In figure 15 we use data from two equal experiments (Kiani et al 2013 and
Tohidi-Moghaddam 2018), we extract the accuracy of the subjects directly from the paper
figures (with GraphClick, a software to extract data from graphs ) and the number of trials
from the methods of the papers. In these experiments, the human subjects had to
discriminate between left and right motion direction of a random dots stimulus, the
experimenters interleaved trials with one and two pulses of 120 ms. For single pulse trials
the possible coherences levels were 0%, 3.2%, 6.4%, 12.8%, 25.6% and 51.2%. For double
pulse trials, the pulses were separated by a delay of 0,120,360 or 1080 ms and the
coherences were randomly chosen from 3.2%, 6.4% and 12.8% (nine different coherence
sequences). In both papers they reported that the accuracy of the subjects in double pulses
trials was independent of the delay. Thus we assume that the internal noise was too small to
drive transitions during the delay and we pull the data across delays to compute the
accuracy for each coherence sequence. We fit the model by maximizing the log-likelihood

(Nelder-Mead algorithm):

Ni
LL = ZNC,iP ci™t NE,i(]- - PC,i) (55)

Where N, and N, are the number of correct and error trials for each coherence
sequence i whereas P ; is the accuracy for sequence i.

For single pulse trials, we computed P ; as
1 1
Pci=Pco Pcc(1=Pcy )P (56)
Where P, Pcc,and P, were computed using equations 22, 25 and 26 whereas the

super index indicates the pulse number. Note that we are assuming that the time spent for
the particle in the unstable state is short compared with the pulse duration. In this model, the

particle starts in the correct well with probability P ., . Similarly for double pulse trials:

2 _pl p2 1 2
PC,i_PC Pcc(l_Pc )PC,E (57)

In order to avoid that the model was degenerated, we fixed one of the parameters, in this

case we fixed c, = 1. Then the potential and the diffusion equation can be written as
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0(X) = kpX - Le,x* + 1x* (58)

T = - R0l (59)
Where k is a linear scaling of the coherence to X units. We found that the parameters that
maximize equation 55 and their 95% confidence interval were k= 0.012+0.0011,
c,=141+£0.1, 6 =0.52+£0.05 and 1 =3.3+0.5.
To compute the confidence intervals we assume that the likelihood function around the best-
fit parameters is a multi-dimensional Gaussian. Then the confidence intervals are two times
the diagonal of the inverse of the Hessian matrix (MacKay and Mac 2003; Brunton,
Botvinick, and Brody 2013) . The Hessian matrix is the matrix of second derivative and we

compute it numerically using the finite difference method.

Limitations of the double well model fitting

The fitting procedure described above has two important assumptions: 1) The wells are
deep compared with the noise. The computation of the probability of a correct choice is
based on the transition rates between wells which are only true when the noise is small
compared with the barrier height (Kramers 1940). 2) The trial starts in the correct well with

probability P .,.We assume that the time spent in the unstable state is small compared with

the trial duration.

The first assumption becomes important when the stimulus evidence is strong and the
barrier of the incorrect well is small or even disappears. In that case, there is a divergence
between the theory and the simulations. In the limit when the incorrect fixed point disappears
because the evidence is too strong, we impose that the probability to make a transition to the

correct well is 1 (figure S2 a).

The second assumption is not that problematic because the time spent in the unstable state
is normally short. However, in the parameter regime where the unstable fixed point (X = 0)
becomes almost flat, the particle can take some time to reach one of the wells. One possible
extension of this model could be to compute the mean passage time to the well (t) and then

subtract this time from the stimulus duration T'=T —t.

To ensure that these assumptions are not affecting the fitting with maximum likelihood, we

compared the probability of right of the simulations and the theory for a set of stimuli. We
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found that for the data set in figure 15 the assumptions were correct (figure S2b). However,
when we tried to fit the data from (Bronfman, Brezis, and Usher 2016), that was not the case
(figure S2b). Thus the theory based on the transition rates between wells it is only correct for

a reduced region of the parameter space.

Alternative model and comparison with the double well

We fit a model with three stable states and urgency signal (figure 16) and the standard

double well model (figure S3) using the method described in chapter 4. The model with

urgency signal and undecided state has a set of 7 parameters 0, = {Cé,cé,cg, 0,C4 C K} . We

introduce the urgency signal by allowing the parameter c, to change during the 3 phases of
the trial: during the first pulse (c}), the delay (c3) and the second pulse (c3). In the network
version of the model, this would correspond to move the system between the multistable
region (c, <0) and the winner-take-all region(c, > 0) with an external untuned input. We
also fit the double well model with 4 parameters 6,, = {c,, 0, ¢,,cq, k} . Because the internal
noise does not have any impact during the delay and it is indistinguishable of the stimulus
fluctuations during the first and second pulses, we can not dissociate the internal noise (o;)
and the stimulus fluctuations (o). Because we want to study models that are stable during
the delay, we impose that o2 = al? + oi and we only fit . To speed up the process, we set
the temporal gap between the two pulses to 120 ms for all the trials with temporal gap. We
compared the likelihood of the models using the Akaike information criterion (AIK).
AIC; =2m - 2log(ll) (60)

Where m is the number of parameters, Il is the likelihood of the models and the AIC; is the
akaike number for each model. We found that AAIC = AIC , - AIC, = 22.4 indicating that
the double well model have essentially no support compared to the model with urgency and

undecided state (Burnham and Anderson 2004).
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4. Modifying the magnitude of stimulus
fluctuations to identify different neural

mechanisms

Summary

Here we tested in a psychophysical experiment two of the key signatures of attractor
dynamics explained in the first chapter: the non-monotonic relation of the accuracy with the
stimulus fluctuations and the change from primacy to recency psychophysical kernels as the
stimulus fluctuations are increased. For this purpose, we used a new stimulus where the
mean and the standard deviation were completely independent. Specifically, we used the
single dot task where subjects had to discriminate if the mean position of a sequence of ten
dots fell in the right or the left side of the screen. The x-coordinates of the dots were drawn
from a Gaussian distribution with mean | and standard deviation 5. We fixed i for each
subject while we varied o4 in a trial by trial basis. We did not find evidence for a
non-monotonic relation between the accuracy and the stimulus fluctuations nor a change
from primacy to recency in the psychophysical kernels. We found a large variability across
subjects in the psychophysical measurements such as psychophysical kernels or bias. None
of the simple models explained in this thesis is able to explain the idiosyncratic
psychophysical results. To further analyze them, we are developing a model-based analysis.
This approach allows us to add new mechanisms to the one-dimensional model with
attractor dynamics and test whether they are important to explain the data or not. Preliminary
results show that at least for a fraction of subjects, a model with attractor dynamics can fit
the psychophysical kernels and the biases for different stimulus fluctuations. In sum, we did
not find the qualitatively behaviour of the attractor model described in chapter 1 in our data
set. This does not mean that the attractor dynamics is not important to explain the data,
other mechanisms could be masking the qualitatively signatures of attractor dynamics or we
did not test the predictions for the correct stimulus parameters. Actually, quantitatively
model-based analysis suggests that attractor dynamics mechanisms, among others, are

important to explain the behavioural results.
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Results

The “ single dot” task

In the dot task, the stimulus consists of a sequence of ten white dots presented in frames of
200ms. While the y coordinate is constant in the middle point between the center and the
bottom of the screen, the x coordinate is drawn from a Gaussian distribution with mean [ or
—§ and standard deviation o (figure 17). During the trial, the subjects have to maintain
fixation on a black dot presented at the center of the screen. After the stimulus, they have to
report if the mean position x of the dots falls to the right or to the left region of the black dot.
While Y is fixed for each subject, 65 changes in a trial by trial basis and it can take on six
different values. The smallest G, is exactly zero and the other five are logarithmically
spaced between 0.02 and 1 degrees of visual angle. In this task, the standard deviation and
the mean of the stimulus can be modified independently. Actually, we fixed the sample
mean and the standard deviation of each stimulus to the mean ( or — ) and the standard
deviation (o) of the generative distribution (see methods). Theoretical simulations of the
double well model show that in this case the bump in accuracy is higher (figure S4).
However, by fixing the mean and the standard deviation of each individual stimulus, we
effectively introduce correlations in the stimulus. These correlations cause  the

psychophysical kernel to be significantly below chance (see methods).

The accuracy of subjects does not show a systematic hon-monotonic relation

with the strength of stimulus fluctuations

We used the dot task to test the non-monotonic relation of the accuracy with the stimulus
fluctuations (figure 8). We found that the accuracy of the subjects does not show a
systematic bump in accuracy (figure 18). In general, the accuracy of the subjects was
constant for weak stimulus fluctuations but it decayed when the stimulus fluctuations become
stronger. This result is inconsistent with a perfect integration of evidence without bounds

because it
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Increasing magnitude of stimulus fluctuations

F

Figure 17 | Cartoon of the dot task with different magnitudes of stimulus fluctuations

The dot task consists of a sequence of ten white dots where the positions of the x-coordinate is drawn
from a Gaussian distribution with mean p and standard deviation o5 . The mean remains constant for
each subject whereas the standard deviations change in a trial by trial basis with six possible values.
The shaded colors show the extent of the possible x-coordinates values as the standard deviation
increases. The y-coordinate remains constant during the trial.

predicts that the accuracy does not change with the stimulus fluctuations (o) when the
mean of each stimulus is fixed to the mean of the generative distribution. The effect of the
stimulus fluctuations on the accuracy could be explained by a flat potential for small decision
variables with a mechanism to commit for a decision such as absorbing bounds or attractors.
Thus the results are compatible with the drift diffusion model with absorbing bounds or with

an attractor model close to the bifurcation.

Idiosyncratic behaviour in the dot tasks

We found that different subjects have completely different psychophysical results in at least
three different measures, the psychophysical kernels, the spatial kernels and the bias. In this
section, we explain why this heterogeneity of results across subjects can not be explained by

the simple models we described in the first chapter.

As expected, the psychophysical kernels with weak stimulus fluctuations have a small impact
on the choice. Because of this reason, we do not have enough data to assess the shape of
the psychophysical kernels for small stimulus fluctuations (figure S5). For strong stimulus
fluctuations, we found idiosyncratic psychophysical kernels, namely the subjects can exhibit
primacy, recency or non-monotonic psychophysical kernels (figure 19). The heterogeneity of

psychophysical kernels can not be explained by any of the canonical models. As we have
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Figure 18 | Accuracy as a function of the stimulus fluctuations

Although some subjects have different modulation of the accuracy with the stimulus fluctuations, in
general the accuracy is constant for weak stimulus fluctuations and it decays when the fluctuations
are stronger

shown in figure 7, the double well model has different regimes of integration that could
explain the heterogeneity of the psychophysical kernels. However, it also predicts a change
from primacy to recency psychophysical kernels with the stimulus fluctuations (figure 7), but

we did not find evidence for such a modulation (figure 20).

To further characterize the impact of frames with different stimulus strength on the choice,
we compute the spatial kernel (figure 21): first we discretize the stimulus space in N, . =11

bins. Then we transform each stimulus to a N, . dimensional vector where each component

bins

n; is the number of frames in each bin i. To compute the impact of the frames in each bin,

1

we fit a logistic regression model where the regressors are the n; :
P Ny
log () = S win, (61)
i=1

Where P, is the probability of a right choice and w; is the impact (weight) associated to the
stimulus strength in bin i. As expected, the frames with stronger evidence (e.g. large

distance to the center of the screen) have a higher impact on the choice. The subjects show
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Figure 19 | Idiosyncratic psychophysical kernel for strong stimulus fluctuations

The subjects show primacy, recency and non-monotonic psychophysical kernels for strong stimulus
fluctuations. The error bars correspond to the standard errors (bootstrap, N = 500). The grey regions
show two standard deviations of the distribution of psychophysical kernels computed by shuffling the
decisions. Psychophysical kernels can be significantly below chance because of the correlation that
we introduce in the stimulus (methods).
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Figure 20 | Idiosyncratic primacy-recency index.

We do not find evidence for a systematic change from primacy to recency psychophysical kernels.
Error bars correspond to standard errors (N =500). The grey regions are two standard deviations of
the distribution of primacy-recency index computed by shuffling the decisions. Only outside this region
the primacy-recency is significantly different from the null hypothesis of flat psychophysical kernel
(methods).
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Figure 21 | Spatial kernels

The spatial kernel is the less idiosyncratic psychophysical measurement. All the subjects, show a
monotonic increase of the weight with the physical stimulus. For a fraction of the subject this weight
saturates for strong physical stimulus values.

a linear relation between the physical evidence and the impact on the choice for weak
physical evidence. For frames with strong evidence, the impact on choice plateaus only for
some subjects. This transformation removes the temporal structure of the stimulus and
allows us to investigate the impact of each stimulus strength on the decision. Note that this
analysis can not distinguish between sensory mechanisms and decision related
mechanisms. In all perceptual decision tasks, the subjects need to perform two computations
in each frame. First, they need to transform the physical stimulus into evidence to
discriminate between the two possible choices. Then they need to update the decision
variable with the evidence of that frame. The spatial kernel is not the transformation of the
physical stimulus into evidence. It also reflects any decision-related mechanism that could
have an impact on how the decision variable is updated. For instance, in the double well
model the maximum impact of a frame is to produce a change of mind. There is a critical
value of the stimulus strength for which the incorrect well disappears and the decision
variable evolves towards the correct well. Above this critical value, the impact of the stimulus
saturates. Thus, the spatial kernel is informative of how the subjects weight the stimulus as a
function of the stimulus strength but it is not directly the transformation of the physical

stimulus into evidence.
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Figure 22 | The stimulus fluctuations idiosyncratically modulate the bias
The modulation of the bias with the stimulus fluctuations is idiosyncratic. We compute the bias as the

ratio between the number of right choices and the number of right stimuli in each condition. Values
larger than 1 indicate a right choice bias. Error bars correspond to the standard error.

Finally, the bias of the subjects is also idiosyncratically modulated by the stimulus
fluctuations. Some subjects show strong bias for weak stimulus fluctuations and almost no
bias for strong stimulus fluctuations. Other subjects show the opposite modulation. We even
found biases in opposite directions for weak and strong stimulus fluctuations (figure 22). This
suggests that different bias mechanisms could be affecting the choices. For instance, in a
double well model a bias in the initial decision variable can have a critical impact on the
choice in the primacy regime where the transitions are not activated but in the recency
regime where transitions are likely, it does not have any impact. In contrast, a bias generated

by an extra input to one of the population produces a bias in all the regimes.

The behavioural results in the dot task are idiosyncratic, the subjects show different
psychophysical and spatial kernels and biases. None of the simple models described in this
thesis can explain this variety of behavioural results. For instance, the double well model can
explain the strong non-monotonic relation with the stimulus fluctuations of subject 1. The
underlying mechanism that produces this effect in the double well model is the asymmetric
transitions between correcting and error transitions (figure 8). In that case, the
psychophysical kernel of subject 1 should be recency however, it is completely primacy. The

drift diffusion model with absorbing bounds can not explain neither the non-monotonic
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psychophysical kernels (subjects 14, 15, 17 and 19) nor the recency psychophysical kernels
(subjects 4 and 9). To further characterize the idiosyncratic psychophysical results, we are
developing a model based analysis to find the necessary mechanisms to explain the

behaviour of each individual subject.

Testing the model based analysis with synthetic data

In order to test the potential of the fitting algorithm, we use different synthetic data sets to
test if the model can distinguish between mechanisms such as variability at the initial
condition or an urgency signal. The advantage of using synthetic data sets is that we know
the ground truth of the models that generated the data. The procedure is the following: first
we create a data set with a new mechanism. We call the model with the parameters that we
used to generate the data the original model. Then, we use this data to fit the parameters of
the same original model. We call this model the original fitted model. Note that if the fitting
algorithm works properly, the parameters of the fitted original model should be the same as
the parameters that we use to create the data (original model). Finally we use the same data
to fit the standard double well model. To compare the fitted models, we use the Akaike
information criterion (methods). Additionally we create a test data set and we compare the
probability of right of each trial from the original model with the original fitted model and the

fitted double well model.

First, we verified that we can recover the original parameters for the standard double well
model from equation 8 (figure 23). To test if the fitting procedure can distinguish between
models with different mechanisms we tested two examples mechanisms variability at the
initial condition and an urgency signal. For the variability at the initial condition (figure 24 a
and b), we created a data set where the initial decision variable was generated from a
Gaussian distribution with zero mean and o,, standard deviation. As expected, the fitted
model without variability at the initial condition can not fit a test data set. For the original
model, the fitting procedure is able to recover the parameters that we used to create the
data. For the urgency signal(figure 24 ¢ and d), we created a data set where the parameter

c, linearly increases with time

¢, (1) = ¢, (np(8) = 1) (62)

where c,,is a parameter and n, is the frame number. In the standard biophysical model for

decision making, this is simply an untuned ramp of input to the excitatory populations.
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Figure 23 | The fitting algorithm recovers the original parameters for the Double well model

a) The dash grey line is the potential that we used to generate the training data set N = 1000. The
solid black line is the potential with the fitted parameters. b) Probability of right for the original model
and the fitted original model. Each point is a trial of a test data set. Different colors are stimuli with
different magnitudes of stimulus fluctuations increasing from black to yellow
(05 =0.05,0.11,0.24,0.52 and 1.14) . The original model and the fitted model have the same probability

of right for a test data set.

Effectively the urgency signal moves the network towards stronger winner-take-all regions
(figure 3c) and the dynamics become more categorical. Again, the fitting procedure is able
to recover the parameters of the original model whereas the model without urgency signal
can not fit the test data set. Finally, we tested whether the fitting procedure can distinguish
between two different bias mechanisms. These two mechanisms are: 1) A bias in the initial
decision variable, the initial decision variable was generated from a Gaussian distribution
with mean b and standard deviation o, . In the network, this can be implemented with a
small input to one of the population before the stimulus onset. 2) An extra input to one of the
excitatory populations during the stimulus. In the potential, this affects the parameter p that
represents the difference between the inputs that each network is receiving (g = pg;, — Hp)-
Where g, is proportional to the strength of the stimulus and p, the bias parameter. This
time we created a synthetic data set with each of the mechanisms and we fitted both data
sets with both mechanisms. As expected, The fitting procedure can distinguish the
mechanism that we used to create the original data (figure 25) . In sum, the fitting procedure
is able to distinguish between different mechanisms that we could potentially test in our data

psychophysical data set.
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Figure 24 | The fitting algorithm is able to distinguish between different mechanisms.

Each point is a trial of a test data set. Different colors correspond to stimuli with different magnitudes
of stimulus fluctuations increasing from black to yellow (og=0.05,0.11,0.24,0.52 and 1.14). The
correlation of the probability of right for trials in a test data set between the fitted original model and
the original model is almost perfect. Thus the fitting algorithm recovers the original parameters with a
data set of N =1000trials. Blue lines indicate perfect correlation while the green line is a linear
regression fit. a) The standard double well model can not fit the data generated with an urgency
signal. The relative likelihood of the fitted model compared to the original fitted model is RL < 1076 b)
When we introduce the urgency we recover the original parameters. ¢ , d) Only the fitted original is
able to fit the test data set, RL < 10714,

Extended neurobiological model to explain idiosyncratic behaviour

As we explained, the idiosyncratic behaviour in the single dot task can not be explained by
any of the simple models that we described in this thesis. Thus a more general model to fit
the data is needed. Using synthetic data, we showed that a model based analysis can
identify the true underlying mechanisms. We aim to build a model as general as possible and

use a model-based analysis to identify the mechanisms that are important to explain the
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Figure 25 | The fitting algorithm is able to distinguish between different bias mechanisms.

a,b) Fitting of the data created with constant bias of the input N = 10000. The model can distinguish
the original mechanism. The relative likelihood of the fitted model compared to the original fitted model
is RL <1072 ¢,d) Same as in a and b but with a data set generated by a bias in the initial condition
with N =10000. RL < 1073°

data. In this section, we present the extended model that we are currently using to fit the

data. The results are still preliminary and this model can be further extended in the future.

The extended model has two modules, the first one is a nonlinear transformation of the
physical stimulus into evidence. We call this module the sensory module. The second one is
a diffusion process that accumulates the evidence, we call this module the decision module.
The focus of this thesis is the decision module and we know the relation of their mechanisms
with the biophysical models. However, the neural mechanisms underlying the transformation

of the physical stimulus into evidence are beyond the scope of this thesis.

The sensory module is a simple logistic function (figure 26 a):
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Figure 26 | Extended model with bias mechanisms.

a) Sensory module. The sensory module is a logistic function where we introduce different biases
mechanism. B, is a bias in the steepness of the curve, A, is a bias in the maximum value of the
curve and , shifts the curve (blue line). b) The decision module is a diffusion process of a particle in
the potential derived from the biophysical network. We add an urgency mechanism that for positive
values of c,, makes the dynamics more categorical during the trial. We also add a mechanism to

bias the initial condition of the decision variable (x;) .

() = A1 +exp(= pd(n) ™ (63)

Where A is the value at which the logistic function saturates, Bis the slope around zero
physical stimulus, d(n) is the physical distance from the center of the screen to the dot
position in frame n and p(n) is the evidence that we use in the decision module. In order to
model the idiosyncratic bias in the dot task, we include three bias mechanisms: 1) f,
represents a bias in the steepness of the logistic functions 2) A, is a bias in the saturation
value of the logistic function and 3) ,is a shift of the logistic function. With these biases

mechanisms the sensory module is

um) =(A-A,) A +exp(= (B~ Bp)dm) — )™t for d(n) < p, (64)
u(m = A1 +exp(= p(d(n) — pp)) for d(n) > u, (65)
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Note that the bias in the saturation values (A,) controls the sensory transformation only for
the strong physical evidence. The shift of the logistic function (u,) and the bias in the slope
(B,) control the transformation of the weak physical stimulus. In the parameter regime
where the logistic function becomes linear, p, and B, can also affect the strong physical

evidence.

The decision module (figure 26b) is the one dimensional version of the attractor model. It is a

diffusion process ( equation 2) of a particle in the following potential:
0X) = —p(X - %CZ(H)XZ + %C4X4 + éch6 (66)

where we add two new mechanisms: 1) An urgency signal can change the parameter c,,

c,(n) = ¢,y +c,,n, Where nis the frame number. 2) A bias mechanism in the initial decision

variable X(t = 0) = x, . In the biophysical models, this mechanism can be implemented by a
weak input to only one of the excitatory population. Note that a bias in the initial condition of
the decision variable only impacts the choice when the integration of the evidence is

primacy.

The bias mechanisms that we add to the sensory and the decision modules can impact the
decision in different phases of the stimulus and also for different magnitudes of the physical
stimulus. A combination of these mechanisms can produce a modulation of the bias with the
stimulus fluctuations. We also add an urgency signal that can shape the potential during the
trial, this makes the model more flexible to produces different types of psychophysical

kernels.

Preliminary results of the extended neurobiological model

As proof of concept, we fit the extended neurobiological model to 4 different subjects (1,9,11
and 14). We choose these subjects because they have different psychophysical kernels and
different modulation of the bias with the stimulus fluctuations. In general, we found that the
extended model is able to explain the psychophysical kernels, the spatial kernel, the
modulation of the bias with the stimulus fluctuations and the accuracy of the four subjects (

figure 28 to figure 31).
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Figure 27 | Parameters of the extended model fitted to four subjects
Fitted parameters for each subject. Error bars indicate the 95 % confidence interval. Black and grey
colors indicate significant and not significant parameters.

The subjects number 1 and 11 have primacy psychophysical kernel. This is captured by the

model with an initial barrier at the beginning of the trial (c,, > 0) (figure 27). Both of them
have negative c,, which indicates that the height of the barrier decreases linearly during the

trial but it does not disappear (see potentials shape in figure 28g and figure 30. This is the
opposite effect of an urgency signal. In contrast, the subject number 9 has a recency
psychophysical kernel. The fitted potential is almost flat at the beginning of the trial (c,, c,
and ¢y not significantly different from 0, figure 27) and it evolves towards a leaky potential
(¢, <0). Finally, subject number 14 has a non-monotonic psychophysical kernel which is
captured by a barrier at the beginning of the trial c,, >0 and a leaky potential at the end
¢,, < 0. The extend neurobiological model captures the shape of the psychophysical kernel

by modulating the parameter c,.

The extended neurobiological model has four different bias mechanisms. Combinations of
them can produce different modulation of the bias with the stimulus fluctuations. For
instance, the model fitted to the data from subject 1 has a right bias in the saturation value of
the sensory module (A, >0) , a right bias in the initial condition of the decision variable

(x, > 0) and a left bias introduced by a shift in sensory module (p, <0). The combination of
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Figure 28 | Subject 1. Comparison between psychophysical results and model fit.

a) From left to right, psychophysical kernels for increasing values of stimulus fluctuations. The black
solid lines with dots are the psychophysical kernels of the subject, black transparent areas are the
standard error of the psychophysical kernels computed for the extended fitted model using the same
stimuli. The grey areas areas are the 95% confidence interval i b) Accuracy as a function of the
stimulus fluctuations. The extended model can not explain the ¢) Accuracy for left (red) and right
(blue) trails. d) Modulation of the bias with the stimulus fluctuations e)Spatial kernels f) Sensory
module of subject, g) Shape of the potential for different evidence p =0,[0,,0.5] where p is the
evidence associated with the mean of the generative distribution.The colors indicate the strength of
the evidence from light to dark purple). Top and bottom panels show the potential for the first and last
frame of the trial respectively.

these biases produces a small left bias for weak stimulus fluctuations and a strong right bias
for strong stimulus fluctuations. Another interesting example is subject 11 that has no bias

for weak stimulus fluctuations, left bias for intermediate stimulus fluctuations and right bias
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Figure 29 | Subject 9. Comparison between psychophysical results and model fit.
Same as figure 28 for subject 9. a) The psychophysical kernels are recency produced by a leaky
potential (g) c,d) The left bias decreases with the stimulus fluctuations.

for strong stimulus fluctuations. In the model, this is captured by a left bias in the shift of the
sensory module p, <0, a right bias in the initial condition x, >0 and a right bias in the
steepness of the sensory module (,). For small stimulus fluctuations, the p, and the left
and right sources of biases compensate each other and there is no bias. For intermediate
stimulus fluctuations, the left bias in p, dominates over B, and x,. In contrast, for strong
stimulus fluctuations, the right sources of noise (B,and x,) dominate over p,. The

preliminary results of the model based analysis suggests that combinations of different
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sources of bias can explain non trivial modulations of the bias produced by the stimulus

fluctuations.
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Figure 30 | Subject 11. Comparison between psychophysical results and model fit.
Same as figure 28 for subject 11. a) The psychophysical kernels are primacy produced by a

double-well potential (g) c,d) The bias increases with the stimulus fluctuations.
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Figure 31 | Subject 14. Comparison between psychophysical results and model fit

Same as figure 28 for subject 14 a) The psychophysical kernels are non-monotonic produced by a
double well potential at the beginning of the trial and a leaky potential at the end (g) c,d) Left bias for
weak stimulus fluctuations and right bias for strong stimulus fluctuations.
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Discussion

The aim of the psychophysical experiment was to find the signatures of attractor dynamics
that we described in the first chapter. Specifically, we tested the non-monotonic relation
between the accuracy and the stimulus fluctuations and the change in the psychophysical
kernels from primacy to recency with the stimulus fluctuations. We find no evidence for a
non-monotonic relation between the accuracy and the stimulus fluctuations and no evidence
for a change from primacy to recency psychophysical kernel with the stimulus fluctuations.
Despite the fact that we find no qualitatively signatures of attractor dynamics, this does not
discard the attractor models. Other mechanisms that we did not consider when we made the
theoretical predictions could be masking these signature. For instance, we find that the bias
can play an important role to explain the behavioral results. Thus the qualitative analysis of
the psychophysical kernels and the accuracy with the stimulus fluctuations might be too
simple to test the existence of attractor mechanisms. In addition, we find idiosyncratic results
in different psychophysical measurements such as psychophysical kernels, spatial kernels,

and bias which discard the simple canonical models.

To further analyze the idiosyncratic psychophysical results in the single dot taks, we are
developing a model-based analysis. The advantage of this approach is that we can introduce
different mechanisms to the model and quantitatively test if they are important to explain the
data. By fitting the model to each subject, we can study the mechanisms that produce the
observed idiosyncratic behavior. To this day, we extended the one-dimensional version of the
attractor model with different bias mechanisms, a non-linear transformation of the physical
stimulus into evidence and an urgency signal. Preliminary results show that we can fit the
model to each subject and we can study which mechanisms are important to explain the
data. Although the model can already explain some characteristics of the behavior, the
model could be completed with other mechanisms. For instance we could add bias
mechanisms that depend on previous trials, e.g. a bias to repeat or alternate the previous
choice. Other examples could be a constant bias in the potential or an adaptation
mechanism that effectively decrease the steepness of the sensory transformation function
during the trial. In sum, the model-based analysis described in this chapter seems a powerful
tool to study the mechanisms underlying the decision process and the idiosyncratic
behavioral results. Preliminary results show that the attractor dynamics (c, > 0) is important

to explain the behaviour of at least in 3 out of 4 of the subjects that we fitted.
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This model-based analysis can be used not only to study variability across subjects but also
to variability across tasks. Many studies have reported different primacy, flat and recency
psychophysical kernels in different tasks, (R. Kiani, Churchland, and Shadlen 2013a;
Nienborg and Cumming 2009; Brunton, Botvinick, and Brody 2013; Wyart et al. 2012; Wyart,
Myers, and Summerfield 2015). With the model-based analysis, we could study if the
variability in the psychophysical kernels arises because of the transformation of the physical
stimulus into evidence is different across tasks or because the decision dynamics are

different.

To summarize, the idiosyncratic behaviour of the subjects has prompted us to use a more
sophisticated model-based analysis to investigate the mechanisms that explain the
idiosyncratic results. Preliminary results with a model-based analysis show evidence for: 1)
attractor dynamics in at least 3 of the subjects and 2) combination of different bias

mechanism to explain the modulation of the bias with the stimulus fluctuations.
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Methods

Psychophysical Experiment

Participants: Sixteen participants (9 female, 7 male) participated in the experiment. All had
normal or corrected to normal vision and no history or indications of psychological or
neurological disorders. The experiment was approved by the ethics committee of the
Hamburg Medical Association and conducted in accordance with the declaration of Helsinki.
Each participant completed one training session, three sessions in the psychophysics lab
and three recording sessions in the MEG. Sessions were spread out over several days and

were typically completed within 10 days.

Task and procedure: Each session consisted of 6 to 9 blocks of 100 trials, lasting
approximately 60 minutes. The first session was a training session used for exposing
participants to the task and completed QUEST staircase to determine their mean stimulus
evidence p (Watson and Pelli 1983). The stimulus consists of a sequence of ten white dots.
To avoid the appearance of motion between consecutive dots, each dot was presented in the
following sequence: 50 ms with contrast 75%, 50 ms with 100% contrast and 50 ms with
75% contrast. We add an extra 50 ms frame between dots. The total stimulus duration was
2s. Each trial started with a random delay between 0.5 and 1 s. During the stimulus
presentation we controlled fixation with an eye-tracker (Eyelink 1000). After the stimulus, the
subjects respond with the keyboard and received feedback for 200 ms. The subjects started

a new trial by pressing the spacebar.

Stimuli: The Stimuli were generated using Psychtoolbox 3 for Matlab. In the sessions
performed in the psychophysics lab, they were presented on a 782 VIEWPixx monitor with
1920x1080 at 60Hz. In the MEG sessions, they were back-projected on a transparent
screen using a Sanyo PCL-XP51 projector with the same resolution and frame rate. The
mean stimulus strength was fixed for each subject and we interleave trials with different
stimulus fluctuations & = [0, 0.02,0.05,0.14,0.37, 1] degrees of visual angle. For each stimulus
we fixed the sample mean and the sample standard deviation, First, we draw 10 random
variable from a Gaussian distribution with mean p and standard deviation o, x; ~ N(}t, 0g)

for i=1,2...,10. The final stimulus is
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si=H+)-<"—_; (67)

Ox
Where X is the sample mean of x; and oy is the standard deviation of x;. This introduces
correlations in each stimulus that can affect the psychophysical kernel. For instance, if we
consider a toy model that only takes into account the first frame to make the decision, then

the psychophysical kernel is significantly positive for the first frame and significantly negative

for the rest of the frames. This is because we impose that x

10
pos,1 = ("1 - 22 Xpos,i) )
i=

Primacy-recency index

In chapter 1, we compute the primacy-recency index in two steps. First, we normalize the
area of the psychophysical kernel. Second, we compute a weighted sum of the stimulus. In
the psychophysical data set, the area of the psychophysical kernel is very small for weak
stimulus fluctuations. This produces numerical problems when we try to normalize the area.
For the psychophysical data, we compute the primacy-recency index using only the second

step
PRI(n) = PK(n)w(n) (68)

with w(n) =1-2% where n is the frame number and T is the total number of frames,

T =10 in our experiment. This affects the interpretation of the results because a
primacy-recency index which is not significantly different from O can be produced for a flat
psychophysical kernel or for a psychophysical kernel that is not flat but with a very small

magnitude.

Model fitting to the psychophysical data

Maximum likelihood estimation: We fit the best potential for each subject by maximum
likelihood estimation. Given a set of stimuli s; for i =1...N and a set of subject’s decisions
d, for i=1..N where N is the number of stimuli of each subject. Assuming that the trials

are independent, the likelihood of the observed data given the model is

N
I=T1p(d]o,s,) (69)

i=0
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Because the logarithm is a monotonic function, the set of parameters that maximize the
likelihood, also maximize the function log(l). Thus to avoid numerical problems, we will use
N
log(l) = ¥ log (p(d;}6,S))) (70)
i=0

We also add a regularization parameter. The final function that we are going to maximize is
NP
f=log() A Y. 67 (71)
i=0

Where N, is the number of parameters, we used cross validation with the standard double
well model to choose the hyperparameter A =0.63. To maximize the log-likelihood, we
adapted the software from (Yartsev et al. 2018) where the authors used the L-BGFS
algorithm to minimize the negative log-likelihood. This algorithm requires the gradient of the
target function that was computed using automatic differentiation (Revels, Lubin, and

Papamarkou 2016).

Probability of right for each trial: In order to compute the probability of Right and Left choice,
we need the distribution of the decision variable at the end of the trial p(X, T) where T is the
stimulus duration. Then the probability of right is simply the positive area of p(X,T). We
adapt the computation of the time evolution of p(X,t) from (Yartsev et al. 2018; Brunton,

Botvinick, and Brody 2013) to our model.
In each frame n the potential is
o(X) = p(n)X - %CZ(H)XZ + %C4X4 + écGX6 (72)

Where p is the evidence from the sensory module (equation 64 and 65 ) and

c,(n) = ¢, *+ ¢, - The dynamics of the decision variable (X) follows the diffusion equation
d
G = & T ok (73)

Note that we fixed the time scale t =1 because the model has a free parameter. In order to
compute the probability of right, we need the distribution of the decision variable at the end
of the trial p(X,T) where T is the stimulus duration. If we discretize the time, we can solve

equation 73 by the euler method

X(t+1) = X(0) - A+ VA& (74)
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Where &(t) are independent and identically distributed random variables from a Normal

distribution N(0,1). It is clear that the distribution of the decision variable at time X(t+1) is
_ _ do ~
MXJ+1)—N(XU) MALVAm}) (75)

From p(X,t+ 1) we see that the diffusion process obeys the Markov property: the distribution
of X(t+1) only depends on the previous position X(t). Now, we discretize the decision
variable space in 2N, bins of width AX. The bin centers are
v;=({—-Ny)AX fori=0,..,2N, and the bounds of  these bins are
o; = iAx — N, AX — AZK fori=0,..2N, +1 (figure 32b). The probability to make a transition

from bin i to bin j in one frame is simply the area of N(Vi - %;—At, \/Eo,.) inside bin j.

Similarly we can build a transition matrix F for all bins and compute the temporal evolution of

the decision variable as
p(v,t+1)=Fp(v,t) (76)

Where p(v;,t)is the probability of finding the decision variable in bin i at time t. For
illustration purposes, we show the temporal evolution of p(v,t) for a single trial of the double

well model (figure 32a)

Initial distribution and transition matrix: To compute the initial distribution and the transition
matrix we use a method that preserves the mean of the distribution when we discrete space
(Brunton, Botvinick, and Brody 2013). In the extended neurobiological model the initial
distribution is a delta function at x,. Imaging that x, falls in the bin i, one possibility is to
set p(v;,0) = 1. In this case the mean of the distribution of the decision variable is v, instead
of x,. A better approximation is to distribute the probability between the two closest bins to

Xy If v; <x, <v;; Where v,is the center of bin i then

Vi X,
p(v;,0) = L (77)
P(vi.y, 0) = 2% (78)

With this approach the mean of p(v,0) is exactly x,. We apply the same technique to

compute the transition matrix. The distribution of the decision variable at time t+ 1 given that
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Figure 32 | Temporal evolution of the decision variable distribution

a) Temporal evolution of the decision variable distribution for one trial of the double well model. The
model captures the transitions between states. Color lines are single trial simulations of the double
well model using the euler method (equation 11). b) Discretization of the space to compute the
temporal evolution of the decision variable distribution. v; are the center of the bounds and «; are the

bounds.

the decision variable was at v;intime tis p=N (vj — 2 At, VAo, ) . Now we use bins much

smaller than VAg; to discretize p, we define the center of these bins as s, . Finally we
distribute the probability of p(s,) between the two closest bin v, and v,,. Then the

elements F;; of the transition matrix are computed as the sum over all the bins p(s,) whose

positions fall between v, and v,,, weighted by the relative distance between v, and s,

_ V=S S=Vi_
Fu= ¥ pe)iiie 3 p(sila 79)
Vi<Sk<Vir Vi1 <SSk <V;

Model fitting to synthetic data

To fit the synthetic data, we used the same method as the psychophysical data but we used
a gradient free algorithm to find the best parameters (Nelder-mead). To speed up the
likelihood maximization, we fixed two of the parameters to the true value. Note that there is
only one free parameter in the model, T = 1. We fit the parameters 8 = [c,,c,,0,]. and we
fixed the transformation of stimulus into evidence and the time scale to 1.

To compare the likelihoods of the original fitted models and the fitted model in figure 24 and
figure 25, we compute the relative likelihood of the fitted model compared to the original

fitted model as
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RL = exp(- AAIC/2) (80)

Where AAIC is the difference between the AIC values of the original fitted model and the

fitted model. The AIC values are computed with equation 60.
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5. Conclusions

Chapter 2. Flexible categorization in perceptual decision making

1.

In the second chapter, we showed that the attractor model for perceptual decision
making has different integration regimes controlled by the transitions between
attractor states. These integration regimes are characterized by the shape of the
psychophysical kernel: primacy when the transitions are very unlikely, recency when
the transitions are very likely and non-monotonic in between these two extreme
regimes. We modified the probability of transitions with the stimulus parameters and
we made three experimentally testable predictions.

The attractor model predicts a change from primacy to recency psychophysical
kernel as we increase the magnitude of the stimulus fluctuations or the stimulus
duration.

The attractor model predicts an increase of accuracy for a range of stimulus
fluctuations. This is explained by an asymmetric transition rates between correcting
and error transitions.

A similar mechanism causes a non-monotonic change in the consistency with the
stimulus fluctuations.

We found evidence for a change from primacy to recency psychophysical kernels

with the stimulus duration in a psychophysical experiment.

Chapter 3. The double well model in tasks involving working memory and decision

making

1.

We found that under the biological constraint that the accumulated evidence towards
one of the choices is bounded, increasing the winner-take-all dynamics produces an
increase in the accuracy.

The double well model in a regime close to the flexible categorization is able to
combine information from two pulses of evidence separated by variable duration

temporal gap.
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3. The double well model and an alternative attractor model with an undecided state are
able to fit psychophysics data from an experiment where the stimulus was interrupted

by a variable delay.

Chapter 4. Modifying the magnitude of stimulus fluctuations to identify different
neural mechanisms
1. We found no evidence for the qualitative signatures of attractor dynamics described
in chapter 1.
2. Preliminary results with model-based analysis showed that an extended attractor
model is able to explain the richness behavior of the subjects.
3. Preliminary model-based analysis showed: 1) evidence for winner-take-all dynamics

at least in a fraction of subjects and 2) evidence for different bias mechanisms.
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Supplementary figures
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Figure S1 | Stochastic resonance cartoon

In classic stochastic resonance, the task is to follow the periodic signal that make the
potential antisymmetric. To follow the signal, the particle moving in this potential has to
escape from the well when it becomes a local minimum (sad face) and remain in the global
minimum. There is an optimal magnitude of noise that allows the particle to escape from the

local minimum but not from the global minimum. Figure from (Gammaitoni et al. 1998)
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Figure S2 | Double well model fitted to the data from (R. Kiani, Churchland, and
Shadlen 2013a; Tohidi-Moghaddam et al. 2019)

a) Probability of correct for single (squares) and double (dots) pulse trials without delay for
the three possible first pulse coherence (3.2% red, 6.4% green, 12.8 % blue) (dots). Solid
lines show the accuracy of the fitted double well model. b) Same as a with trials with a delay
of 120 ms. ¢) Double well potential with the fitted parameters d) Temporal evolution of the
decision variable probability density function for a trial with 3.2% coherence in both pulses of

evidence.
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Figure S3 | Limitations of fitting the double well model using the transitions between
wells.

a) Probability of right when the trial started on the right well as a function of the stimulus
strength. The black dots are simulations and the grey line is computed with the transitions
rates (equation 25). For very strong stimulus, the theory fails because the barrier become
very small. For a critical value of the stimulus strength, the right well disappears and the
theory predictions a deterministic transition to the left well. b) Probability of right for a set of
100 stimuli, computed with the transitions rates theory (equation 27) and simulations using
the parameters that best describe the data set from (R. Kiani, Churchland, and Shadlen
2013a; Tohidi-Moghaddam et al. 2019). The theory based on the transitions rates capture
the dynamics of the model (r2 = 0.99. ¢) Same as in b but using the parameters that best
describe the data from (Bronfman, Brezis, and Usher 2016). For these parameters, the

dynamics of the model is not well captured by the theory r2 = 0.57.
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Figure S4 | Non-monotonic relation between accuracy and stimulus fluctuations with
and without correlations in the stimulus.

When we introduce correlations in the stimulus such as the sample mean and the sample
standard deviation are fixed to the mean and the standard deviation of the generative
function, the bump in accuracy is higher. In green with stimulus correlations and in black

without stimulus correlations.
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Figure S5 | Weak stimulus fluctuations have a small impact on the choice.

The weak stimulus fluctuations have a very small impact on the choice and we do not have
enough trials to properly compute the psychophysical kernels. Error bars are computed with
bootstrap (N =500). The grey region show two standard deviations of the distribution of
psychophysical kernels computed by shuffling the decisions. Only outside this region the

psychophysical kernel is significant.
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