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Preface

In the theory of ordinary differential equations we can find two fundamental
problems. The direct problem which consists in a broad sense in to find the solu-
tions of a given ordinary differential equation, and the inverse problem. An inverse
problem of ordinary differential equations is to find the more general differential
system satisfying a set of given properties. For instance what are the differential
systems in RY having a given set of invariant hypersurfaces, or of first integrals?

Probably the first inverse problem appeared in Celestial Mechanics, it was
stated and solved by Newton (1687) in Philosophie Naturalis Principia Mathe-
matica, and it concerns with the determination of the potential field of force that
ensures the planetary motion in accordance to the observed properties, namely
the Kepler’s laws.

The first statement of the inverse problem as the problem of finding the
more general differential system of first order satisfying a set of given properties
was stated by Erugin [21] and developed in [23, 33, 50].

The aim of the present thesis is to state and study the following three inverse
problem.

(I) The inverse approach to the center-focus problem for planar differential sys-
tems.

Let .
d
dx
be the real planar analytic or polynomial vector field associated to the real
planar differential system

X=P

+Q%, (1)

&= P("""v .U)| Y= Q(ﬂ}, y)" (2)
where the dot denotes derivative with respect to an independent variable .

In what follows we assume that origin O := (0,0) is a singular point,
ie. P(0,0) = Q(0,0) = 0. The singular point O is a center if there exists
an open neighborhood U of O where all the orbits contained in U \ {O} are
periodic.
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The study of the centers of analytical or polynomial differential systems
(2) has a long history. The first works are due to Poincaré [47] and Dulac
[19] . Later on were developed by Bendixson [8], Frommer [22], Liapunov [30]
and many others.

In the present thesis we shall study the differential system of the form
t=—-y+X, y=x+Y, (3)

where X = X(z,y) and Y = Y(z,y) are real analytic or polynomials func-
tions in an open neighborhood of O whose Taylor expansions at O do not
contain constant and linear terms.

System (3) always has a center or a focus at the origin.

One of the classical problems in the qualitative theory of the differential
system (3) is to characterize the local phase portrait in a sufficiently small
neighborhood near the origin i.e. distinguishing between a center or focus.
This problem is called the center-focus problem .

In the study of the center-focus problem the following theorems play a
very important role (see for instance [30, 47, 44])

Theorem 1. For the analytic differential system (3) there exists a formal

power series H = Z Hy = 1( +yH)+ Z H,(x,y), where H; = Hj(x,y)

n=2 n=3

dH o
is a homogenous polynomial of degree j such that o Z 't;gk(srz + yz);‘.
i=
where vy, are the Poincaré-Liapunov constants.

Assume that the formal power series H converges. If the constants v; =
1 =)
0 for j € N then there exists a local first integral H := 3 (2% +1?) +z Hj. and

consequently the origin is a center. If there exists a first non—zero Liapunov
constant vgy, then the origin is a stable focus if v9, < 0 and unstable if
o > 0. If g, =0for k=1,...,n—1 and vs, # 0 then the system (3) has
a focus of order n at the origin.

We recall the following definition. Let U be an open and dense set in
R?. We say that a non-constant C" with r > 1 function F: U — R is a first
integral of the analytic or polynomial vector field X' on U, 1f F(x(t),y(t)) is
constant for all values of ¢ for which the solution (z(t),y(t)) of A:' is defined
on U. Clearly F'is a first integral of X on U if and only if XF =0onU.

Poincaré and Liapunov proved the next two results, see for instance
[47, 30, 26, 44].
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Theorem 2. A planar polynomial differential system

g=-y+) Xizy), s=z+) Yizy), (4)
j=2 =2
of degree m has a center at the origin if and only if it has a first integral of
the form
_x (o) = La? 4 o2 =
H—;Hj(a.y)— 5@ +y)+; Hj(z.y). (5)

where X;, Y; and Hj are homogenous polynomials of degree j.

Theorem 3. An analytic planar differential system

o0 o0
a':=—y+ZXj(:E,y)a ?ZI‘FZY,E(“"?J)'- (6)
i=2 J=2

has a center at the origin if and only if it has a first integral of the form (5).

From Theorems 1. 2 and 3 it is clear that an analytic or polynomial
differential system (3) has a center at the origin if and only if the Poincaré-
Liapunov constants v, = 0 for & > 1 (Poincaré’s criterion). Moreover, the
vk's are polynomials over @@ in the coefficients of the polynomial differential
system. A necessary and sufficient condition to have a center is then the
annihilation of all these constants. In view of the Hilbert’s basis theorem
this occurs if and only if for a finite number of k, k < j and j sufficiently
large, v = 0. Unfortunately, trying to solve the center problem computing
the Poincaré-Liapunov constants is in general not possible due to the huge
computations.

Although we have an algorithm for computing the Poincaré-Liapunov
constants for linear type center, we have no algorithm to determine how
many of them need to be zero to imply that all of them are zero for cubic
or higher degree polynomial differential systems. Bautin [6] showed in 1939
that for a quadratic polynomial differential system, to annihilate all v;’s it
suffices to have v, = 0 for i = 1, 2, 3. So the problem of the center is solved for
quadratic systems. This problem was solved for the cubic differential systems
with homogenous nonlinearities (see for instance [43, 51, 52]).

The analytic function (5) is called the Poincaré-Liapunov local first
integral.

Theorem 2 is due to Poincaré, and Theorem 3 is due to Liapunov.

Now we shall introduce another criterion for solving the center problem
due to Reeb.
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We will need the following definitions.

A function V' = V(z,y) is an inverse integrating factor of system (2) in
an open subset U C R? if V € CY(U),V # 0 in U and

av av aP  0Q
P%”‘é&"’(é@"*%)

In short notation this equation can be rewritten as follows

/% Q
Vv V SOV v

We note that {V = 0} is formed by orbits of system (2). The function
1/V defines an integrating factor in U\{V = 0} of system (2) which allows
to compute a first integral for (2) in U\{V = 0}.

If exists an integrating factor then differential system (2) is topological
equivalent, to the Hamiltonian vector fields, i.e.

Yy 0Hd 0HO

Vo aydxr Oxdy

Hence we get that
0OH  Q OH P

ox V. oy VvV’

thus the function H can be computed as follows (see for instance [29])

IACILEING

The following theorem holds (see for instance [49])

Theorem 4. [Reeb ’s criterion] (see for instance [49]). The analytic differ-
ential system (6) has a center at the origin if and only if there is a local
nonzero analytic inverse integrating factor of the form V. =1+ h.o.t. in a
neighborhood of the origin.

dy.

I=Ig

An analytic inverse integrating factor having the Taylor expansion at
the origin V' =1+ h.o.t. is called a Reeb inverse integrating factor.

Hence we get that to show that a singular point is a center for system (3)
we have two basic mechanisms: we either apply Poincaré-Liapunov Theorem
and we show that we have a local analytic first integral, or we apply the Reeb
inverse integrating factor.
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We observe that the difficulties of computations of the inverse integrat-
ing factor or Poincaré-Liapunov first integral for a given differential system
are comparable to solving the system itself.

From this point of view it is interesting to state the problem about the
determination of the structure of a differential system (3) knowing that it
has a given first integral or an integral factor.The first chapter of my thesis
is dedicated to the study these inverse problems.

(IT) Weak centers.

The second chapter of the thesis is dedicated to the determination of
differential equations (3) under the condition that they have a Poincaré-

1 .
Liapunov first integral of the form H = 5(3:2 +?) (1 + h.ot.).

We find a new class of centers which we call weak centers. We say that
a center at the origin of an analytic differential system is a weak center if
in a neighborhood of the origin it has an analytic first integral of the form

1 o0
Hi= 5(;{:2 +1?) |1 +ZT-f , where T; is a homogenous polynomial of
=1

degree j.

We have characterized the expression of an analytic or polynomial differ-
ential system having a weak center at the origin. We prove that the following
statements are equivalent.

(a) If an analytic (or polynomial) differential systems has a weak center at
the origin then it can be written as

& =—-y(l+A)+ 20, y=a(l+A)+yQ, (7)
(see Theorem 9).

(b) Let 2 =1iz+ R(z,2) be the system (4) in complex coordinates z = z+iy
and 7 = x —4y. Then if this system has a weak center at the origin then
R(z,%Z) = 2®(z, z) (see Proposition 30). This is a very simple criterium
to determine the non existence of a weak center.

(¢) If an analytic (or polynomial) differential system (3.30) (or (6)) has a
weak center, then the first integral (5) satisfies that its homogenous
polynomial H; for j = 3,...,k < o0 is H; = HY, 5, for j =
3,...,k < o0, where T; is a homogenous polynomial of degree i.

Moreover we prove that the uniform isochronous centers and the isochronous
holomorphic centers are weak centers.

It is well known the following result (see for instance [T ).
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Let X be an analytic vector field associated to differential system (3).
Then & has either a focus or a center at the origin, and under a formal
change of coordinates the differential system associated to A" can be written
into the Kirchhoff normal form

= —y(1+ So(a? +y?)) + xS; (2 + y?).

g= x(1+S(2* +y%) +ySi(z* +y?),
where S; = S;(2? + y?) for j = 1,2 are formal series in the variable 2% + y?
. Clearly these differential equations are particular case of (7).

We have extended the weak conditions of a center given by Alwash and
Lloyd in [3] for linear centers with homogenous polynomial nonlinearities
(see Proposition 24), to a general analytic or polynomial differential system
sce Theorem 12. Furthermore the centers satisfying the generalized weak
conditions of a center, introduced in Theorem 12, are weak centers.
Construction of the generalized 3-dimensional Lotka-Volterra systems having
a Darboux invariant. Final Evolutions

The Lotka-Volterra systems in R? are the differential systems (see for
instance [25])

.:f')j =1I; (t‘fj + a;ry ot bjﬂ!:g -+ Cj.'l.';_;) 5 for Ji = ].2,3. (8)
The state space of this system is the set

R} = {(z1,22,23) € R3:2;>0, for j=1,2, 3.}.

Models of Lotka-Volterra systems in R? occur frequently in the physical
and engineering sciences, as well in the biological. Differential system (8) was
introduced independently by Lotka-Volterra in 1920s to model the interaction
among the species (see [39, 54, 25])

The applications of Lotka-Volterra model in the population biology is
well-known. For example for two dimensional Lotka-Volterra model we have
the predator-prey model and for the three dimensional Lotka-Volterra model
we have the symmetric and non-symmetric May-Leonard model (sce for in-
stance [13, 25, 32]) describing the competitions between three species.

Recently it has become important the generalization of 3-dimensional
Lotka-Volterra systems of the form

&= xlap+ a1 + a2y + azz) = Xy,
y= y(bo+ b1z + boy + b3z) = Xo,
3= co+c1T+ oy + caz + cam? + cszy + ez + cry? + cgyz + co2?

= Xw}.

o

(9)
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In particular to study the resistant viral and bacterial strains, and the treat-
ment on their proliferation (see for instance [9]). One framework for studying
such systems is the multistrain model study by Castillo-Chavez and Feng
[10]. The model, which is an approximation of the full system discussed in
[10] was proposed in [53]. The model has only a single susceptible compart-
ment and two infectious compartments corresponding to the two infectious
agents. The model equations are

&= z(~b—m+vy+piz),
y= y(=bi—y—ve+pby)
i= z(=by — Bz — fay) + b + Nz + Y2y.

The state space of this system is the set
R? = {(z,y,z) €R®*: and 2>0,y>0 z2>0}.

In [32] the authors characterized all the final evolution of this model under
generic assumptions.

The main objective of this section is to study the global dynamics of
the generalized Lotka -Volterra model (9) with the Darboux invariant I =
(z+y+z—1)e" (see definition below) defined in the positive quadrant of
RS

M={z>0, y>0, VzecR}. (10)

We observe that this differential system does not correspond in general to a
biological model, in view of (10), as the z variable can have in this case a
negative value for the population.

The dynamics of the obtained differential equations on the invariant
plane Il : x +y + z = 1 is described by the two dimensional Lotka Volterra
system. Dynamics of the obtained differential system at infinity produces a
cubic planar Kolmogorov system. To solve the center focus problem for this
system we apply the results given in the solution of the problem I and II. We
characterize all the final evolutions of this model.

0.1 Statement of the main results

0.1.1 Main results for the inverse center problem

One of the main objectives of the present thesis is to analyze the center

problem from the inverse point of view. We state and solve the following two
inverse problems of analytic and polynomial vector fields.
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Problem 5. Inverse Poincaré-Liapunov’s Problem Determine the analytic (poly-
nomial) planar differential systems (3), or the associated vector fields

d

3]
A= _ l(Xja‘l‘}}ja_y). for k< oo, (11)

k
j:

where X; = Xj(x,y), Y; = Yj(xz,y) for j > 2 are homogenous polynomials of
degree j for which the given function (5) is a local analytic first integral.

Problem 6. Inverse Reeb Problem Determine the analytic (polynomial) planar
vector fields (11) for which the

where V; = Vj(x,y) for j > 2 are homogenous polynomials of degree j, is a Reeb
inverse integrating factor, i.e.

X(:f:)?)_: +X(y)g_z =¥ (3X(ﬂ?) + 3&’(3;)) -

dx dy (12)

The solutions of the problems 5 and 6 for analytic and polynomial vector
fields are given in the following theorems.
We will denote by {f, g} the Poisson bracket, i.e.

.. Df 6y 0fbg
{f,9}:= Ox dy Oy oz’

Theorem 7. Consider the analytic vector field X associated to the differential sys-
tem (6) Then this vector field has a Poincaré-Liapunov local first integral if and
only if it has a Reeb inverse integrating factor. Moreover,

(i) the analytic differential system (6) for which H = (x* + 4*)/2 + h.o.t. is a
local first integral can be written as

= =] oo
e=|1+> g | {Ha},  g=(1+) g |{Hy} (13
i=1 j=1
where g = gj(x,y) is an arbitrary homogenous polynomial of degree j which
oo

we choose in such a way that the series Z g; converge in the neighborhood
j=1
of the origin.
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o0
(it) The differential system (4) for which V =1+ Z V; is a Reeb integrating
j=1
factor can be written as

= 1+iv;— {F,z}, = 1+ivj {F,y},

=1 j=1

where F = if‘_} and Fy = (2 + y?)/2, F; = Fj(z,y) for j > 2 is an
arbitrgcm; h.oriazo_;;enous polynomial of degree j which we choose in such a way
that ZF ; converges, i.e. I is an arbitrary Poincaré-Liapunov local first
integ;:f

Theorem 8. Consider the polynomial vector field X associated to the differential
system (4). Then this polynomial vector field has a Poincaré-Liapunov local first
integral if and only if it has a Reeb inverse integrating factor. Moreover, the dif-
ferential system associated to the vector field X for which H = (2*+y*)/2+ h.o.t.
is a local first integral can be written as

o0
g= (1+) g | {Ha}

i=1

= {Hm+1~i‘} + (1 +g1){Hm~37} o PR o (1 +a+... +91:1.—I){H2ex}-

g= (1+> g | {H.y}

i=1

= {Hnt1. 9+ (L+ g){Hm.y}+ ...+ 1+ g1 +... + gm-1){H2. y}-
(14)
oo
where g; are homogenous polynomial of degree j for j = 1 such that Zgj- is an
=1
analytic function in the neighborhood of the origin and the function

1

o - o0 k-1 o
U=11+ Zgj =1- Z (5"&‘- = Z gnG&—ﬂ- m+l) =1~ Z Gk m+1s
j=1 k=1 k=1

n=1
satisfies the following conditions

{Hps1, P} +{Hp, (1 4+g1)0}+ ...+ {Hz, 1+ g1+ ... + gm—-1)V} = 0. (15)
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The first integral H becomes

i . 00
H= 5(372 =+ :":"Z) + ZHJ =nHpny1 +72Hp, + ...+ T Ha, (16)
i=2
with
00
G

Te=1—5) —I° (17)

P m+14+j

Jor s =2,...,m are an analytic function in the neighborhood of the origin, where

k-1

Gij = Gktm+1—j — Zgn(}k_" pfor k=21, §=2,...,m+1 (18)
j=1

Theorem 7 and 8 are proved in section 1.3.

0.1.2 Main results for the inverse weak center problem

Differential system (3) has a weak center at the origin if it has a local analytic

1 o0
first integral of the form H = 5{3:2 +y%) |1+ Z YTi(z,y) | = Hy®(x,y), where
i=1
T; is a homogenous polynomial of degree j.

One of the important characterization of the weak center consists in that the
equation (3) can be written as

i=—y(1+A) + 20Q, g=x(1+A)+yQ, (19)

where A = A(x,y) and Q = Q(z, y) are convenient analytic (polynomial) functions.
These differential systems are called A—Q differential systems. This results is given
in the following theorem.

Theorem 9. A center at the origin of an analytic differential system (6) is a weak
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center at the origin if and only if this system can be written as

0 4 .

. j+1 3

r= -y ]+E (JTTJ [+%Q1T_§ .g+...+§g_.,- 2Ty +g; ])
Jj=2

o0
+% Z ({T‘.‘;_l,H‘z} -E—gl{T_:,:_g._ HQ} 4+...4+ gj_z{Tl, Hg})
Jj=2

= —y(1 + A) + 29, (20)

o~ (J+1 j 3
j= 1+Z(TTj—l+§91Tj—2+...+§gj—2Tl+gj—l)

=2

+‘g‘ ({Tj—I:HEE}"l‘.Ul{Tj—E:HQ} +...+gj-2{T1, Hz})

j=2
=a(l+A) +y9Q,
where Ty =1, go = 1, g; and Y; are homogenous polynomials of degree j for
o0
j = 1 has the first integral H = Hy | 1 + Z T; | . Moreover assuming that

j=2

I+ 1 i 3
'?TTJ'—l + f}lngj—z +...+ Egj—QTI +gj-1 =0,

{Yj—1, Ha} + g1{Yj_2, Ha} + ...+ gj2{T1, Ha} = 0,

(21)
for j = m + 1, we obtain necessary and sufficient conditions under which the
polynomial differential system (20) of degree m and has the first integral

H= H?(l +1“1T1 + ... +“m—l,rm—l)1 (22)

where (15 = pj(x,y) is a convenient analytic function in the neighborhood of the
origin for j=1,...,m— 1.

Corollary 10. Define
kg

—Tja+snTje+...+ 9211 +gj—1, for j>1,

Ajmr =55 2 2

a homogenous polynomial of degree j — 1, then differential system (20) and condi-
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tions (21) can be rewritten as follows
&= —y(l+ ZI\ )+ TZ e ({Hj:gl} +...+{Hs, g2} + {H2,9j-1 — Aj1})
= P,
g= z(l+ ZA ) +yZ T ((Hjug1} + ..+ {Hs, gj-2} + {Ha, 9j-1 — Aj})
= Q.
and
(G+VHj +jg1Hj+ ... +39j—2H3 +2g;1H2 = 0,

{Hj,g1} + ...+ {H3,gj-2} + {H>2,9j-1} =

Jor j > m respectively. Moreover the following relation holds

|
e

OP 8Q Z({ g1} + ...+ {Hs, gj2} +{H2,g;-1}).

A center O of bystem (2) is a uniform isochronous center if the equality
zy) — yi = k(z? + y?) holds for a nonzero constant &; or equivalently in polar
coordinates (r,d) such that x = rcos@, y = rsinf, we have that § = k.

Corollary 11. An analytic differential system (19) has a uniform isochronous cen-
ter at the origin if and only if

. w
= -y+m2m({Hj'9‘1}+...+{H2,g[.;_1}):«-y-—:.r:Q.

Z ({HJ a}+. +{Hz.gj—1}) =z + yQ,

and
0= (j+1)Hj1+jg1H;+...+3gj—2H3 +2g;_1Ha, for j2=2.

Moreover a polynomial differential system of degree m (19) has a uniform isochronous
center at the origin if and only if (23) holds and

{Hjsgn}+... +{Hs,9j—2} +{H2,9j1} =0, for j>m+1

The inverse approach to study the uniform isochronous center was given in
[38].
The proofs of Theorem 9 and Corollaries 10 and 11 are given in section 2.1
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Theorem 12. [Generalized weak condition of a center of an analytic (polynomial)
differential systems] We consider an analytic (polynomial) differential system (6).
Then the origin is a weak center if there exists p € R\{0} such that the following
relations hold

X oY
@2+ | —+=— )= pEX+yY),
dr Oy
, (24)
.2 o
g oz ay x=cost, y=sin {4l — ]
where p € R\{0}. Moreover this differential system can be written as
. 1/ 07 aT T

y= z (1 +q(Ha)+(1-1/0)T + % (.b?}—: F y%)) 2 g{T,Hg},
with A = 2/p, and T = Y(x,y) and q = q(H2) are convenient analytic functions.
If differential system (25) is a polynomial differential sg,aif;(i?':a c;{ degree m, i.c.
T =Y(x,y) is a polynomial of degree m — 1 and q(Ha)) = ! Z)/ a_,-Hg_l. here
[(m—1)/2] is the integer part of (m—1)/2, c; is a constant fo'rjj:]I. oy [(m=1)/2]

A—1
such that 1 4+ ay + TT[U, 0) # 0, then the system (25) is quasi Darbouz-
integrable with the first integral F' which is given in what follows

[m/2]
(i) IfA#1 and ] (n=1/) #0, then
n=2
H,
F — . 26
14+ o asHs “erE(m_llm_l A (A-1) (26)
Ttiopte-ipt ot m-nE -1

The algebraic curves Ho = 0 and

Lt ooHy am HY™=1/2-1 "
—1A " 21" T [m=DR = 1A

g="T+

are invariant curve with cofactors {g, Ha} and (1—1/X){g, H2}, respectively.
(ii) If A\ =1 and 1 + ay # 0, then

P Hg(.’_ (T+L\'2H‘2+03H§/2+”-+Q'|nHét"‘—l].l'r:?]—1;([(?‘?1—1)/2]—1))/(1—‘-(\1). (27)

The algebraic curves Hy = 0 is invariant with cofactor {Hy, T}.
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[(m—1)/2]
(iii) If 1/[m/2)<A=1/k<1 and | a) H (n—Fk) | #0, then
n=2n#k
Hy
P= . (28)
Lig lmonr2 t/(k=1)
T+t Y ST el og Hy
=2,k

The algebraic curve Hy = 0 and the non-polynomial curve

14 [(m—1)/2]
fsT o e &1 + Y kHJ '+ apHENog Hy = 0,
i=2, _HU»

are invariant curves with cofactors {Y, Hy} and (1—k){Y, Hy}, respectively.
We observe that l)in'%0 ” flz,y)=0.

(,y
[(m—1)/2]
(i) If 1/[(m—1)/2]<A=1/k<1, a; =0 and H (n—k)#0, then
n=2.n#k
n
F= 2 T (29)
P [(m—1)/2] "
T+ “+ Y ——H!
1-k J__Z.j?“_}—k
The algebraic curves Ho = 0 and
[(m—1)/2] -
i _.’ -1
g 1 k i- 0
J=2, j#k

are invariant algebraic curves with cofactors {g, Ha} and (1 — k){g. Ha} re-
spectively.

The given first integrals has the following Taylor extension at the origin F =
Hs(1+ h.o.t.). Consequently the origin is a weak center. In an analogous way we
can study the analytic case.

Theorem 12 is proved in section 2.2.
For the A — Q differential systems we get the following conjectures.

Conjecture 13. The polynomial differential system of degree m

= —y(l+p(az—ary))+ z(a1z + azy + QUn-1), (30)
y= a(1+p(az—ay)) +ylariz +ay + Qn-1),
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where (pu+m —2)(al +a3) # 0, and Q1 = Qp_1(x,y) is a homogenous poly-
nomial of degree m — 1, has a weak center at the origin if and only if system
(30) after a linear change of variables (z,y) — (X,Y) is invariant under the
transformations (X,Y,t) — (—X,Y, —1).

Theorem 14. Conjecture 13 holds for m = 2,3,4, 5, 6.
The only difficulty for proving Conjectures 13 for the A—£2 systems of degree
m with m > 6 is the huge number of computations for obtaining the conditions

that characterize the centers.
The proofs of Theorem 14 is given in subsection 2.4.3.

Conjecture 15. The polynomial differential system of degree m

m—1
&= —y(l+plazz —ar1y)) + z(a1z + agy + Z Qj(z,y)),
= (31)
y= x(l+ plasx — a1y)) + ylarz + asy + Z Q(x,y)),
J:=2

m—2
under the assumptions (p + (m — 2))(a} +a3) # 0 and Z ; # 0, where
j=2
Q; = Qj(x,y) is a homogenous polynomial of degree j for j =2,...,m —1, has a
weak center at the origin if and only if system (31) after a linear change of variables
(z,y) — (X,Y) is invariant under the transformations (X,Y,t) — (=X, Y, —t).
Moreover differential system (31) in the variables X,Y becomes

X= -Y{14+upY)+X20(X2Y)=-Y(1+pnY)+ X{H,, ®},
Y= X(1+pY)+XYO(X2Y)=X(1+pY)+Y{H,, &},

where ©(X2,Y) is a polynomial of degree m — 2, and ® is a polynomial of degree
m — 1 such that {Hs, ®} = XO(X2Y).

Theorem 16. Conjecture 15 holds for m = 2,3 and for m = 4 with p = 0.

The proof of Theorem 16 for p = 0 and m = 2 goes back to Loud [40]. The
proof of Theorem 16 for p = 0 and m = 3 was done by Collins [15]. Finally the
proof of Theorem 16 for pp = 0 and m = 4 goes back to [2, 1, 11]. But in the proof
of this last result there is some mistakes. The phase portraits of these systems are
classified in [4, 27, 28]. The proof that these centers are weak centers has been
done in Theorem 9.

The proof of Theorem 16 is given in section 2.6.
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0.1.3 Main results on the generalized 3-dimensional Lotka-Volterra
systems having a Darboux invarian

The main result in the study of the differential systems

t= zla—b—cx—(d+e)y— fz)=Plz,y,2),

= yla—g+de—hy—iz) = Q(x,y,2), (32)
= z{fex+iy+a)talce+ey+b)+ylhy+g) —a= R(x,y,z2)

w.

is given in the following theorem.

Theorem 17. The generalized Lotka-Volterra differential systems (32) has 7920
different phase portraits.

We have also solved the center-focus problem for the two dimensional Lotka-
Volterra systems (see Proposition 66) and for the two dimensional cubic Kol-
mogorov systems (see Proposition 68).

Theorem 17 is proved in subsection 3.6.3.

We note that the results of the first two chapters have been published in the
papers [36. 35, 37].



Chapter 1

An inverse approach to the
center problem

1.1 Introduction

From the inverse Problems 5 and 6 it follows that, either given an analytic
function H of the form (5) we shall determine the analytic functions X and ¥ in

(3) in such a way that the function H is a first integral of the differential system
o0

(3), or given an analytic function 1 + Z V; in a neighborhood of the origin we
i=1

shall determine the analytic functions X and Y in (3) in such a way that the

analytic differential system (3) has the function V' as a Reeb integrating factor.

The solutions of the given inverse problem for analytic case is given in The-
orem 7 and for the polynomial case is given in Theorem 8.

The inverse Poincaré-Liapunov’s problem (see Problem 5) and inverse Reeb
problem (see Problem 6) for the analytic (k = oo) and polynomial (k < o0)
planar vector fields has been solved in the Theorems 7 and 8 which provides the
expressions of the analytic differential systems (6) in function of its first integral
(5) or in function of its Reeb inverse integrating factor.

The solution of the problems 5 and 6 provide the expression for the analytic
or polynomial functions X and Y, i.e. we determine all the homogeneous parts of
X and Y which are given by

Xi= {Hja}+alljz}+... +gj-1{Haz},
Y= {Hjuy}+a{Hjy} +...+gj1{Ha y}, for j=2,

where {f, g} := 9f9g 9199 is the Poisson bracket of the functions f and g, and

1.1)

gi = gi(x,y) is an arbitrary homogenous polynomial of degree i. For the Inverse
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Poincaré-Liapunov’s Problem the polynomials g; are arbitrary functions such that

1+ Z g; converges in the neighborhood of the origin, and for the Inverse Reeb
i=1
Problem we obtain

Xj: {F:-j+1,:r}+1f1{Fj,:l:}+”,+1G'._1{F2..f£},
Yi= {Fjny}+Vi{F,u} +... + Vi {F,u} for j =2,

where the homogeneous polynomial F; of degree i > 2 is arbitrary, Fo = (2% +

(=]
y*)/2, and 1 + Z F; converges in the neighborhood of the origin.
i=1
From the solutions of the inverse problem 5 and 6 we obtain the next results.

Corollary 18. An analytic differential system (6) has a center at the origin if
and only if either it has a first integral H of the form (5), or it has an inverse
Reeb integrating factor V.. Moreover differential system (6) can be written as & =
V{H,z}, y=V{Hy}.

From (1.1) we obtain the solutions of the Problem 5 and 6 for polynomial
differential system of degree m.

Corollary 19. A polynomial differential system (4) has a center at the origin if and
only if it has an analytic first integral H given in (5). Moreover this differential
system (6) can be written as

T = {H—,,,+]_,.’I,‘} + (]- -+ gl){Hnum} T (]- +QI o T gnz—l){H‘Zez}-
9= {Hptr.9}+ A+ g){Hn.y}+...+ 1+ 0 +...+ gm-1){Hz2,y},

and its first integral can be written H = 11 Hyo1 + 7o Hp + ... + T Ha, where g
is a convenient polynomial of degree j for j = 1,..., m—1 and 7; = 75(z,y) for

j=1,....m+1 are convenient analytic functions in a neighborhood of the origin.

We observe that the inverse Problem 5 was solve for polynomial vector fields
with homogenous nonlinearities in [34].

1.2 Preliminary concepts and results

In the proofs of the results that we provide in this section it plays an impor-
tant role the following results.

2w
Proposition 20. The next relation holds / {H,, ¥},

r=cos L, y=sin

(At =0 for ar-
0
bitrary C* function ¥ = ¥ (x,y) defined in the interval [0, 27].
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Proof. Indeed, if we change x = cost, y = sint then it is easy to show that

o o d¥(cest, sint)
Hy, W} _ —int = T — Y= =
{ - H::L’?—COS fy=sint i d Yy y dz x=cos t, y=sint dt
o . t=2nw
Hence, {H2: W}, —cost, y=sine @ = ¥(cost,sint)[,—," = 0. O
g ;

The following result is due to Liapunov (see Theorem 1, page 276 of [30]).
Theorem 21. If all the rools Ay, ..., A, of the equation

P11 — A b2 cen Pn1
P2 P—A ... Pp2

Pin P2n evr Pan— A
are such that the relation X = mq A\ +. .. +mu A\, is not vanishing for an arbitrary
non-negative integers my, ..., my linked by the expression m = my+...+m, # 0.
Then for an arbitrary given homogenous polynomial U = U(zy,...,x,) of degree

m there exists a unique homogenous polynomial V- = V(xy,...,2,) of degree m
which is a solution of the equation

n
av
Z {pleI +... +pjn;1'n) -_— = Ur.
7 c%J
=1

In particular, for n = 2 the partial differential equation

oV AV

€T ay — ya—x = {IIQ,V} = U._. (12)

has a unique solution V' if and only if
Amy 4 Aemg = i(my —ma) # 0 with m =my +ma # 0.

As a simple consequence of Theorem 21 we have the next result.

Corollary 22, Let U = U(x,y) be a homogenous polynomial of degree m. The linear
partial differential equation (1.2) has a unique homogenous polynomial solution V'
of degree m if m is odd; and if V' is a homogenous polynomial solution when m
is even then any other homogenous polynomial solution is of the form V + c(x? +
y?)™? with ¢ € R. Moreover, for m even these solutions exist if and only if

27
Uz, y)| dt = 0.

x=cost,y=sint
JO

In what follows some examples of planar vector fields having a center are
studied.
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1.2.1 Hamiltonian system

When system (3) is Hamiltonian, i.e. there exists a function F = F(x,y)
such that

OF (x,y)

F(z,y)
dy '

a
—y+X(x,y) =— , z+Y(z,y) = e

1
Hence F = 5(:};2 +4%) 4+ h.o.t. is a first integral.

1.2.2 Reversible system

Besides Hamiltonian systems there is another class of systems (3) for which
the origin is a center, namely the reversible systems satisfying the following defi-
nition.

We say that system (3) is reversible with respect to the straight line | through
the origin if it is invariant with respect to reversion about [ and a reversion of time
t (see for instance [16]).

The following criterion goes back to Poincaré see for instance [48], p.122.

Theorem 23. The origin of system (3) is a center if the system is reversible.

In particular this theorem is applied for the case when (3) is invariant under
the transformations (z,y,t) — (—a,y, —t) or (z,y.t) — (x, —y, —1).

1.2.3 Weak condition for a center

The weak condition for a center was due to Alwash and Lloyd [3, 34].

Proposition 24. The origin is a center of a polynomial differentiocl system of the
Jorm
t=—y+Xn, Uv=2+4+Yn (1.3)

where X,,, and Yy, are homogenous polynomial of degree m, if there exvists p € R

such that ox aY.
4‘2 .2 m e
@) (G 5

and either m = 2k is even; or m = 2k — 1 is odd and p = 2k; or m = 2k — 1 is

odd, p= 2k and
27 . :
C)Xf” a-})-’”.e
L ( dx + 6—?]) |¢'-‘=C°“,y=sinr_dt = 0.

In [18] the author proved that if g = 2m then system (1.3) has the rational
first integral

) = {QTXm + meL

3:2 + y2 -2 (gﬂfm - yX'm)
(:L-? + y'Z)m !
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1.2.4 Cauchy-Riemann condition for a center

Another particular case of differential systems with a center are the systems
satisfing the Cauchy—Riemann conditions (see for instance [16]).

Proposition 25. (Cuuchy-Riemann condition for a center) Let O be a center of (2).
Then O is isochronous center if P and Q) satisfy the Cauchy-Riemann equations

oP _ 0Q 9P 9Q

A center of system (3) for which (1.4) holds is called a holomorphic center,
which is also an isochronous center, see for more details [41] and [46]. We recall
that a center of system (3) located at the origin is an isochronous center if all the
periodic solutions in a neighborhood of the origin have the same period.

1.3 The Proofs of Theorem 7 and 8

Proof of Theorem 7. First we prove the “only if part”. Assume that the analytic

differential system (6) has a Poincaré-Liapunov local first integral. Then we shall
oo

see that it can be written as (13), where 1+ Z g is the Reeb inverse integrating
=1
factor.

Consider a general analytic vector field with a singular point at the origin.

= 7] = 7]
Then it can be written as X = Xz, —+ Yi(x,2 —, where X
; i(@,9) | 5 ; i@ | 3 )

and Yj for j = 0,1,... are homogenous polynomials of degree j. Since the analytic
first integral H (5) starts with Ho = (22 + y?)/2, without loss of generality this
implies that X;(xz,y) = —y and Yj (z,y) = x. Hence the following infinite number
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of equations must be satisfied

dH OH
0= —= (:c+—3

dt a;r +“‘)(_!}+X2+X3+‘)

H.
+@+%ﬁ+”)m+n+%+m)

= zXo+yYa+ {Hz,Hg}
O H. d H.

+ +axXs+yYs+ —JXQ + —SYEE + {H>, Hs}
dx dy

dH. 0 H. oH 9 H.
JXg-i— ’iY3+ 4X2+ 4Y2+{H2.H5}+‘”

+a Xy +yYs+

dz Ay ox dy
d Hs dH;_, o H, 9 Hy,
o, 6 Y, +—X,_ —Y,_ e+ ——X —Y H, H,
+a Xy, +yYn + 5z “n 1+ By T, iy O o 2+ i 2+ {Ha Hpp1}
Consequently
2 Xo +yYo + {Hs, Hy} = 0,
O Hy dHy
rX. Y- —Xo + —Y- Hy, Hyl = 0,
TX3 +Yrz+ G 2+ By >+ {H2, Ha} 3
{?H-; OH?, (?H4 0H4
X ing -~ X =Y. X Y. Hy, Hs} = 0,
TAq4+YYy+ yo 3+ By 3+ oz 2+ By 2+ {H2 }
dH. dH aH
war."'?j}/:l'l"'_str—I o R _"X‘Z']' nY’Z+{HZ-.Hn.+'J} = U\
or dx dy
aH’i 6Hn+l 8H‘n.+l
X Y, —X,+... X, Y5 Hs H, = 0,
TApt1 + YY1 + = + + P 9+ oy 2+ { 42} 0,

(1.5)
First, we introduce the notations

Xj(%) = {Hjp1, *} + g1 {Hj, *} + ...+ gj—1{H2, #},

where j > 2 and g; = g;(x,y) is a homogenous polynomial in the variables z and
y of degree j.
: ] d Hy
The first equation of (1.5) can be rewritten as follows x | Xo + B +
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d H. T .
i (Yg - —;) = (. Solving it with respect to X5 and Y3 we obtain

a
JH.
Xy= -5 —yg1 = {Hy,a} + g1 {Hz, 7} = %y(a),
0 H.
YZ = 0_323 +xg = {ﬁr;’ij} +91{H2=;U} o XQ(E})"

where g1 = g1(z,y) is an arbitrary homogenous polynomial of degree one. By
substituting these polynomials into the second equation of (1.5) we get

. aH,l 0H3 OH.i 3H3 _
-L(XML By + 0 3y )+?£(Y3 9z 9 5z )—{1-

By solving this equation with respect to X3 and Y3 we have

OH d H-
X3= ———t —g—> —ygo = {Hy,z} + g1 {Hs.x} + go{ Ha, 2} := X3(2),
Ay Ay
OH O H.
Y3 = 8—1,4 + .-fhw_3 +xgs = {Ha,y} + g1 {Hs.y} + g2{ Ha. y} = X3(y),

where g» = ga2(2,y) is an arbitrary homogenous polynomial of degree two. By
continuing this process we obtain Xy, Yy, ..., X, Y, ie.

X-n. — {Hu-l-l-_uI} + 0 {Hn._‘I} +..04+ gva—l{H‘.ZaI} = l’.Kn-(-r""'):

(1.6)
Y" = {H‘{H-ls y} +gl{Hn-, y} +...+ agn — ]-{H'Zs y} = fYn(y)-

where g, = gn(2,y) is an arbitrary homogenous polynomial of degree n. Hence,
oo

since Z_qj converges in a neighborhood of the origin, we get that

i=1
00
= —y+Xo+Xs+...+X+...=—y+X(@)=-y+ ) X)
j=2
oo
= [14) g | {H.2},
j=1
o0
= s+ +Ys+.. +Y+...=z+X@) =2+ ) X@)
j=2

= 1+z g; | {H,y}.

i=1
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Note that the function 1 + Z g; is an analytic integrating factor of the
i=1
differential system (13) i.e. it is a Reeb inverse integrating factor. Thus the “only
if part” is proved.
Now we prove the “if " part. We assume that system (4) has a Reeb inverse
integrating factor. From the equation (12), i.e.
avy  aVa JVs
b _E Tl P
oz dx ox
avy  oVy AV
v OV BV .
gy oy = Oy
X, 9T 09X, 9Yo 09Xz 0Y3
+ =+ e +=+...
dr Ay o Ay ox dy

(.X1+X2+X3+---)(

+(y1+y2+1f3+...)(

= (1+V1+V2+‘H)(

if follows that

00X, 0N
0= pr + oy '
()V1 aVi 00X,  0Y;
Ly dy XIW T Oz ¥ dy '
a Vs, dVa av; oVi _ 0X;  0Y; | X,  0Y,
Ylay +X13 +X23 +Yoay— a..":+6y —;—Vl(a:c-l-ay).,
(1:7)
From the first equation of (1.7) we get that X; = —da—i:z, Y= d—? where

Fy = Fy(z,y) is an arbitrary homogenous polynomial of degree 2. From the second
equation of (1.7) we obtain

0 (X2+VIDF2) E (Ya—via‘pﬁ):o.

oz d 81; oz
R 9 F 9 F ) F ) F.
= 2B xe Q2 243 &2
X2 = Ay L ay’ Yz Ox 1Ay Oz’

where F3 = F3(x,y) is an arbitrary homogenous polynomial of degree 3. From the
third equation of (1.7) we obtain

9 (X:;-i—‘qﬁ-f-‘/zapg)+£(Y3—V1%—ngpz)20,

o d Ay dy Ay dz
thus
 O0F, Iy s aFy ar; L0,
X3 = —3? -V —— ay - Vo — ay Y; = a +Vi—— o + V5 8.17
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where Fy = Fyz,y) is an arbitrary homogenous polynomial of degree 4. By con-
tinuing this process we get
0X; 0Y;
B Vi), Py, = -,
{F;;W}+...+{F, Vi) ()3:+6y

by considering that {Fj, V,,} = 6 (V B_F_‘) - ,2- (V 8—F—~) we deduce the re-

Oz foks Ay
lation
0 aF; 0Fy\ 0 o0F; 0F, .
X+ —2 Vi— X;-V—=—=L——...=Vj.,— ) =0.
81( sy Tt 3)+3y( e “aa;)
By using the notation X;(x) = {Fj.1, ¥} + Vi{F}, *} + ... 4+ V;_1{F>, %}, where

j=2,V; =Vj(z,y) and F = Fj(z,y) are homogenous polynomial in the variables
x and y of degree j,we get that
Xi(z) = {F,z} = X,
X(y) ={Fny}= Y.
Xo(z) = {F3,2} + Vi{Fe,2} = Xo,
X2(y ={F.y} +Vi{F2,y} = Yz, (18)

"‘E’m(m} = {Fn+1, %} + Vi{Fm, 2} + ... + Vi {Fosz} = X,
‘m(?}) = {Fm+1:y} + Vl{Emy} +.00+ V;n—l{FQay} = Ym,

fi,m.-{—k—l(:v) = {F'n‘-{—k-_ -'I:} + V"I {-Fm—l+k_- :B} R Vﬂ1+£:—2{F2:;B} = Xm.+k—lr

Xt k-1(Y) = {Fonsir ¥} + Vi{Fo—14k, ¥} + - oo+ Vingk—2{F2, 9} = Ym+k-11:g
where k£ > 1 and F}, = Fi.(z,y) is an arbltlarv homogenous polynomial of cle(gletz
j, for 7 > 3, such that the series F = ZF ;. converges at neighborhood of the
origin. By considering that we are inteli;iing in studying the linear type center
then X; = —y and X; = = then we have that F, = (2% + y°)/2. Therefore

F=(@®+y3)/24+ F+Fy+...,

is a Poincaré-Liapunov local first integral this prove the *if ™ part of the theorem.
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Moreover, by summing we get

i= —y+Y X;=> ({Fisnat+Vi{F,a}+...+ Vo {F,2})
j=2 j=2

= [1+) Vi | {Fa}
j=2

= z+) Y= ({Fis, v} +Vi{EF,u}+... + Vo { By}

j=2 =2

= 1+iVj {F.y},

§=2

Thus the proof of the theorem follows. O

Proof of Corollary 18. Follows trivially from the proof of Theorem 7 (see state-
ment (i) and (ii)). O

Remark 26. (i) From the “only if " part follows that the arbitrariness which we

determine the vector fields with the given Poincaré-Liapunov local first inte-
o0

gral is related with the Reeb’s inverse integrating factor V =1+ Zgj and
i=2

from the 7 if” part follows that the arbitrariness which we determine the vec-

tor fields with the given Reeb’s inverse integrating factor is related with the

Poincaré-Liapunov local first integral F = (z% +y?)/2+ Fs+ Fy +....

(ii) From the equation

1+) g | {Hy}=—-y+X, |1+ ) _g; | {Ha}=z+Y, (1.10)

j=2 j=2

where X = Xo+Xg+...andY =Yoo +Ys+ ..., X; and Y; are given
polynomial of degree j, for j > 2, we shall determine the function H.

By introducing the homogenous polynomial

k—1
Ti=gi  Te=gi— Y 9iTk-j Jor k21,

i=1

Zy=aY_ 1 —yX;_1, X =—y, Yi==x for j§=1.



1.3.

The Proofs of Theorem 7 and 8

11

After some computations we can prove that the following Taylor expansion

holds at the neighborhood of the origin

o0

1
——= =) Ty
1+ZQJ' i=1

=2
JOH OH

T,—‘I—y,—: 2H2+3H3++HH1;+.
oz Ay

Hence from (1.10) we get that

2Hs +3Hs+...+nH, +... = (zY —yX)

o0

1+ g;
=2

= [1-37 ) @i+Ya+ys+..) -y + Xo+ Xz +..))
i=1
oo
= 1-— Tl (Za+Za+...+Zn+...).
=1
Thus
n—1
Z-u - Z Zj.Tn—_,i
Z Ay — 25T, j=
Hy=22, Hy=222L gy =— 22
2 3 n
Consequently
n—1
H= = L m =% % _Z
D Hi=) - Yo —B)Y FEEBY
= n=2 n=2 n=3 n=4
[+ o] o0 T o0 T
T _l]' o Z n . T _
Zn QZH-‘FQ SZ?L+J
n=2 n=1 =
- S&-Yay
n=2 * n=2 E=1 kﬁ{ L
= Z_” T = Z‘:
ngz (ﬂ §A+'n) g il (??+1 R+’n+1)
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Thus we obtain the expression of H thoughtl the components of the given
analytic vector fields and the Reeb inverse integrating factor

n=1

In particular if the vector field X' is polynomial of degree m then (1.11) be-
comes

i 1 = T3,
H= 'Y;! - Xn. - : -
2_:(3' Y )(n+l Jrﬂk-!wi-':—{-lj

Clearly that in view of the inequality

oo

<%

+1 o

oo
Ti
we obtain that the function Y ————— is an anlytic function in the neighborhood
f ;; k+n+1 ytic 2

of the origin.

Proof of Theorem & Now we assume that the vector field X' is polynomial of de-
gree m. First we prove the "only if* part. From (1.6) it follows that if X,, = Y,, =0
for n > m, then

oo m
P= —y+ ) Xi@)=-y+) ()
Jj=2 Jj=2

= _y+{H7;;+1-$}+(1+91){Hm-_17}+...+(1+gl+ +gm l){ -L}

T

j= 'r-l-Zz’f J)—'E+Z&’(J

= z+ {Hm+l-.~y} + + gl){Hma ?l} +. ( -+ g1 + oot gm—l){H'Zey}'
(1.12)
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Clearly, if X,, =Y, =0 for n > m+ 1, then
Xm+1= {Hms2,2} + g1 {Hmt1,2} + ... + gm{Hz,z} =0,
Ymi1 = {Hm2,y} + g{Hm1,y} +... + gm{H2,y} =0,,
Xtz = {Hpis,xt+ g {Hpi2, 2} + .o+ g {H2, 2} =0,
Ytz = {Hnt3, ¥} + 01{Hny2,¥} + .- + g1 {Ha,y} = 0,,
Xm+s = {Hm+a, 2} + gi{Hpmy3, 2} + ... + gmy2{H2, 2} =0,
Ymts = {Hm+a, 4} + 91{Hm43, ¥} + ...+ gms2{H2,y} =0,

Xm.+k == {H'ifl+k+1$"r} + gl{H'm+k-. -'L'} o T g'm+k—l{H'Z$$} o] O!

Ym+k = {Hm+£'-+lsy} + gl{H'.-n+.‘c-. y} to.t gm+k——l{H2~ y} =0 for k = 4.

(1.13)

this infinity systems of first order partial differential equations can be rewritten
as follows

Xm.+1 = {H."-,_+2.,.T} + 91 {Hm.+1:$} +...+ Q’m{HZs-T} = U!
Ym+l = {Hm+2,3}} +91{Hm.+l-.y} +... +gm{H2‘y} = 0,,

Xm.+2 = {H.m+;;._.l'} 1= (92 == g%){Hm.-l-l\x} +oiint (gm.—i-l L= g'lgm.){H‘z‘-. I} — U-.
Yiio = {H'.-n+3e y} + (92 == 9?){Hm+1,y} L A, o (gm+l - glgvn){HQs y} =0,

Xm+s = {Hm+s,2} + (9§ — 29192 + 93){Hm+1,2} + ...
+(gm+2 + 19m — 929m — G1gm+1){Ha, 2} = 0,
Yirz = {Hmia,y} + (97 — 20102 + g3){Hm 1,9} + - ..
+(gm+2 + 939m — 929m — 919m+1){Ha,y} =0,

Xm,—H\' — {H'm+k+1$:r} + ka+1{Hm+1- :I.'} T+ooit GkQ{H'L I} = 0$
Ym+k = {Hm+k+lay} =+ G.k:m+l{Hm+lsy} +...+ GkQ{H2= y} =0, for

(1.14)
where
k-1
Gr; = —ZgﬂGk._nj + Gmtk+1—j for j=1,....m+1, kz=1 (1.15)
n=1

are homogenous polynomial of degree m + k + 1 — j. This system of partial differ-
ential equations of first order is compatible if and only if the following relations

hold
{Hpihsn} + {Hmak—1, 02} + oo+ {Hz, Gman—} =0, (1.16)

k> 4.
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for k& = 1, or equivalently

{HTH'.+11 Gk-m+l}+{Hm'.G.Frm}+'”+{H3-.Gk3}+{H2'Gk2}:0 for kZ L.
(1.17)
Hence, in view of Corollary 22 we get that (1.16) has solution if and only if

dt = 0.

r=cost, y=sint

27
/ ({an+k:gl} + {an,——k—ljg'z} e T {I{.'i-.! gn:,-{—k—'z})
0

or equivalently

dt = 0.

x=cost, y=sint

27
/ ({Hm+1: Gk m-i—l} s {Hﬂl! ka} Fasa {H31 GkS})
0

Clearly that these conditions always hold if m+k—1 is odd, and consequently
in this case there exist a unique homogenous polynomial of degree m +k —1 We
shall study partial differential equations (1.14) under the conditions (1.16).

For k=1 from (1.14) we get

6H1'n.+2 3H7H+1 OH:m aHZ

9r . N TR T T Iy L8
OHuis _ OHmyr  OHn OH; e
“—5§—“~ —Hh By — 92 Jy “---“Qmﬁre

where g, = gm(z,y) is unknown homogenous polynomial of degree m. From the
condition
a‘sz+2 _ 82Hm+2
ydxr — Jdxdy

we obtain that g,, must satisfy the following first order partial differential equa-
tions (see first equation of (1.16))

{Hm+l:5’]} + {Hrn-.gZ} FowdF {H2:g‘-'r?-} = 0.

Hence the two first partial differential system (1.14) are compatible, consequently
from (1.18) and using that H; are homogenous polynomials of degree j, for j =
m+2,...,2 we get that

1
Hpyo = _m ((m' + D Hmp1 +... 4+ 3gm1 Hz + 2gmH‘2)'

For k = 2 system (1.14) becomes

{Hm+Se :I,} = gl{Hm+2s -'1'} s gm{H&ﬂ’}’ =t gm+l{H2s 'T} =

(1.19)
{Hm+3: y} T 9 {Hﬂ7.+2.‘ y} Fasud gm{HS: .T}} 53 Im+1 {H21 y} = U?
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which in view of (1.18) system (1.19) can be written as
{Hpis, 2} + (93 — 92) {Hm41,2} + (9192 — 93) {Hm, 7}
+.o + (919m-1 — gm){H3z, 2} + (919m + gm+1) {H2,2} = 0,
{Hpmis, v} + (95 — 92) {Hmt1, 9} + (9192 — 93) {Hm y}
+.o +(919m—1 — gm){H3,y} + (919m + gm+1) {H2.y} = 0,

(1.20)

where g, 41 = gm41(x, y) it is an unknown homogenous polynomial of degree m+1
which must satisfy the first order partial differential equation

{(g% o .(}2) -.-Hnl+1} c 2 {(9192 = 93} 1 Hm}
+ .00+ {(glgm,—l o g'm):HS} + {(glgm - gm.+1) 3H2} =0.

Hence, in view of Proposition 22 we get that

2
/.;. ({(!}% —92) s Hms1} + {(9192 — 93) , Hm}

dt =0.

x=cost, y=sint

ik {(glgm—l. _g‘m)‘H3})

On the other hand, from (1.20) and in view of the fact that [; are homoge-

nous polynomial of degree j for j =m+3,...,2 we get that
1
Hm+3 = _m (('m' + 1) (9% = 92) H-m+1 —m (919‘2 =" 33) Hm

S 3(91!}1!1—1 == ym.)H:’r -2 {!}1{}"; = +yvu+1} H‘.’)
For k = 3 system (1.14) becomes

{Hmta, 7} + g1{Hmi3, 2} + ... + g {Ha, T} + g1 {H3, T} + gn2{H2, 2} = 0,
{Hm+a, 2} + g1 {Hm+3,y} + - - + gm{Ha, ¥} + gm+1{H3,y} + gnt2{H2,y} = 0,
which in view of (1.18) system (1.19) can be written as
{Hpia, 2} + (=93 + 29192 — 93) {Hms1, 2}
+ (—9%92 + 9391 + 93 — 94) {Huzk+e+ (gl!}m+1 — 93 gm-1 — 9m+2) {Hy,z} =0,
{Hpmia:y} + (=03 + 29192 — 93) {Hm+1,y}

+ (—gig2 + 9391 + 95 — 94) {Hm.y} + ... + (919m+1 — 939m-1 — gm+2) {H2,y} =0,
(1.21)

where g, 42 = gm+2(x,y) it is an unknown homogenous polynomial of degree
m + 2 which must satisfy the first order partial differential equation

0= {_g? + 29192 — g3, Hm+1}’ + {_911292 + 9301 + g‘% — G4, Hm}
Toaat {(92 il 9%)9m + N19m+1 — Gm+2s HQ}
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27
fl) ({(_03‘4‘29192 _93) ] Hm.—l—]}

dt =0.

r=cost, y=sint

R {((92 - gf)gm—l + g19m — gm+1) s H.j})

Under this condition system (1.21) is compatible. Hence by using the property
of homogenous polvnomial we get that

1 m )
Hpyppa = i Z(m +2 - 7)((95(92 — 91) + 919541 — 9j12) Hmi2—j-
j=1

By continuing this process we deduce that under the condition (1.16) or equiv-
alently (1.17) where ¢,,4+4—1 it is an unknown homogenous polynomial of degree
m+ k — 2 which we choose as a solution of the first order partial differential equa-
tion (1.16) or equivalently (1.17). Thus after some computations we can prove
that

m+1

> iGriH;
j=2

H 5 e ——
L m+k+1

for k = 5, where G ; is a convenient homogenous polynomial of degree m+k+1—j
given in formula (1.15). By inserting these polynomials in the expression for the
first integral H we finally obtain

o0 oo
H= Y Hj=Hy+Hs+...+ Hnp1+ ) H;

j=2 j=m+2

- H, 1—2§:G—j +ooot Hyps 1—(1rn+1)§:M
— m+1+7 = m-+1+47

= Tm--i—lHnl—f—} +Tm.Hm_ . +7'2H2-,

Now we prove that from the conditions (1.15) it follows (15) with 7, given in
the formula (17).
oo

Hence, if Z g; converges in a neighborhood of the origin. We will prove the
j=3
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following relationship

5o
ZGjm+l = 1-1¥,
i=1

oo

ZGjm = 1-(14+q)¥,
=1 (1.22)

o0
> Gia= 1-(l+g+g+...+gm1)¥,
i=1

We proved only the first relationship. The remaining relationship can be analo-
gously demonstrated

Indeed, from the relations

Gime1 = 81,
sz.+1 = g2— 91G1m+1‘

G3 m+l = G3— g?Gl m+1 glGI m-1s

k-1
Grm+1= Gk — z gn Gr-nny1 for k>4,

n=1

By summing we get that

ZG.ﬁ:m+] — ZS’J (1 — Zka+l) 3
k=1 i=1 k=1

thus

o0

N 29
ZGk'm+l = J—ZIX;'_ =1- lI’-:

k=1 1+ gj
=1
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By summing in (1.17) we get that

[]= {H'.rn—l-l-: I_Zka+l}+{Hm-. I_ZGk7r1}+---

j=3 j=3

+{H3, 1= Grs}+{Ha, 1= Y Gia} = {Hpns1, ¥}

i=3 =3
+{H’Hl! (]- + gl)lp} + e I {Hf.’s (l +gl + L gm—l)lI'}'

Hence in view of (1.22) we get (15). On the other hand from (17) it follows
that the function 7, for s = 2,..., m + 1 are analytic in the neighborhood of the

origin. Indeed, from the inequalities

hence

Therefore 7, is an analytic function in the neigborhood of the origin.
Thus we obtain that the polynomial differential system (1.12) of degree m

can be written as (14) where 1 + Z g; is the Reeb inverse integrating factor and
Jj=2

Ta, ..., Tm+1 are analytic funetions in the neighborhood of the origin. In short the

proof of the “only if part” and the statement (i) follows. This proves the “only if

part” of the theorem.

o0
Now we prove the ” if” part. We assume that V =1+ ZD} is the Reeb
=2
inverse integrating factor. From (1.8) and (1.9) it follows that If X; =Y; = 0 for
j = m+1, then

Xi = {Fppr.z}+V{Fe, a2} +...+ Vi {Fy,2} =0,

(1.23)
Yi= {Fer,y} +Vi{Fey} +... + Vi {Fo,y} =0,

for k = m+ 1.
System of partial differential equations of first order (1.23) is compatible if
and only if

{V],Fk}‘-l“{Vz,Fk_1}+...+{V;,1_1,F2}=U_. (]24)

where k& > m + 1. The proof of statement (ii) can be obtained analogously to the
proof of statement (i), if we take g; = Vj and H; 1 = Fyqy for j=1...., m.
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Finally we observe that from (16) it follows that
or
% = ¥ ({Hrn+]e$} + (1 +gl ){H-:mx} Tt (1 =+ 0 +... +gm—l){H‘2~3:}) 3
oF
7 = Y Huy} + A+ g){Hmyb 4o+ L+ g+ oo+ gmo1){Ha9))
2F 2 5
From the condition b = a—, we get the condition (15). In short the
dxdy dydx
theorem is proved. O
Proof of Corollary 19. 1t follows easily from the proof of Theorem 8. O

Remark 27. From the proof of Theorem 8 it follows that (15) is equivalent to the
infinite number of first order partial differential equations

{Hm+1; Gkm+1}+{Hm, Gkm}+. .. +{Hs, Gr3}+{Hz, Gra} =0  for k>1,

(1.25)
where Gy; are the homogenous polynomial (18), with unknowns the homogenous
polynomials g; of degree j > m. Hence by Proposition 20 we obtain the conditions

2
/U ((Husr: Grma} + (Hos G+ + {Ha Gual)| - ae=.
The first condition of (1.25) (for k = 1), by Corollary 22 guarantees the
existence of the solution g, of first equation of (1.25), the second condition (for
k = 2), again by Corollary 22, guarantees the existence of the solution g, of
the second equation of (1.25), and so on.
Conditions (1.25) and (27) are equivalent to the following relations .

{Hn+j+1. 91} + {Hm+jr 92} + - - - + {H3, gm+j—1} + {H2, gm+j} = 0,

2w
j ({Hﬂl'i‘_?"‘l!g]} + {Hﬂ1+j’ 92} +ot {HS‘ g??l"‘j_l})l;;;:u(m t,y=sin { dt == 05
0

for j = 0.

Remark 28. Theorem 8 can be applied to determine the Poincaré-Liapunov first
integral and Reeb inverse integrating factor for the case when the polynomial dif-
ferential system is given. Indeed, given a polynomial vector field X of degree m

with a linear type center at the origin of coordinates, using (14) we determine its
m

first integral H and its Reeb inverse integrating factor. Thus, if in (3) X = Z X;

i=2
m

and Y = ZYJ with X; and Y; homogenous polynomials of degree j, from (14)
j=2
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equating the terms of the same degree we get
{Hjr1,2} + gi{Hj,x} + ... + gj—1{H2, 2} = X
{Hj+1. 9} + o1 {Hj, 9} + ...+ gi1{Ha, 9} =Y,

forj=2,...,m. Then

0 Hy
udioi SRS, S .
By 2 — Yq
% = Y —uaq,
OHs _ _y _ OH3
By = §—"41 dy bg2,
O Hy _ J Hy
9 Y; — N5 — %92
('3H5_ X (')H4_ SH;;_T .
By = 14— N —By g2 —6y Ygs,
OH; v, JdH, J Hsy
B 4 913— = 9‘2? Lg3,
- . (1.26)
BH,,,_+1 R, = aHm i 813-3 - aH?
ay = T g1 83) fe Jm—-2 ay Im—1 8'!} 3
OHpmi1 v oM, d Hs 0 I
dg | cmT AT e T Ome2 dr Im—175-
OHmiksr _ _ OHmyr OH; 0 Hs
ay 1 By Im+k-2 ay Gm+k—1 0y 1
6Hm+k+l s aHnL-i-k o aHI _ OH‘Z
O 1 oy e T ma k-2 or Im+k—1 I

for k> 0. From the first two equation of (1.26) it follows that g, must satisfy the
first order partial differential equation

X dY:
32+ 2

5z T oy s

{H2,01} =
which in view of Corollary 22 has a unique solution. Substituting g, into the first
two equations of (1.26) and using the Euler’s Theorem for homogenous polynomial
we obtain

1
Hg = § (Ilfg - er_) e 2g1H2) . (128)
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We shall determine go as a solution of the first order partial differentiol
equation

00Xy 0Ys

{Hz.gg} = or + E - {HS\QL}s (]29)

where gy is a solution of (1.27). Then in view of Corollary 22 we get that under

the condition
 f0Xs 0OY;
fo ("5;4“—@—{5?3}91})

ga exists and has the form ga(x,y) = go(z,y) + cHy where ¢ is a constant. Hence
[from the third and fourth equation of (1.26) we get

dt =0, (1.30)

ax=cost, y=sint

1
Hy = 7 (2Y3 — yX; — 391 H; — 292 Ha) . (1.31)
We shall determine g3 as a solution of the first order partial differential equation
00Xy 0Y;
{Ha, g5} = = + 5 — {Ha, 01} — {H3, 92}, (1.32)

dx dy
where g1, g> and Hy, Hy are solutions of the previous differential equations. Then

in view of Corollary 22 we get that there exist an unique solution g3. Hence from
the fifth and sizth equation of (1.26) we get

1
Hy = 5 (2Yy —yXy —4g1 Hy — 3g2H3 — 2g3H>) .

By continuing this process we obtain that if g, —1 is a solution of the equation

8 X'Hl + a YH(
O dy

which exist if and only if

27 axm ay‘nl
fO ( dr ik é}y _{Hm.fgl}-..—{nggm_g})

where the homogenous g,,_o. ..., are solutions of the previous first order dif-
Sferentia system, then the homogenous polynomial of degree m +1 ean be calculaled
as follows

{H21gnr_—l} = - {Hmagl}"' - {H3|gm—2}! (133)

dt =0, (1.34)

x=cost, y=sint

1
Hm.-l—l — _m . 1 (-’I:Y;n = me. — 'n’lngm. T 297!1—1H2) (]35)
Finally under the conditions
{H2, gm+k-1} = —{Hm+k,91} — {Hmtk-1,92} ... — {H3, gm4r-2},
27
0= / (_ {Hm—l-k-sg].} - {Hm.—i-k—l-.gﬂ}--- - {H31g'm+k—2})
0

(1.36)

x=cost, y=sint

dt,



22 Chapter 1. An inverse approach to the center problem

we get that

1
Hyp i1 = ( = (m+k)g1 Hint

T m+k+1 (1.37)
—(?’?1 + k— l)gi?Hm.-i-k—l TR zgm-l-k—lH‘Z)

for k > 0. Thus we get the expression of H and of the integrating factor 1 +Zg_,-.

j=1
Example 29. In this example by applying Theorem 8 we prove that the class of
Kolmogorov cubic differential system

= —y+lo(x®—y?) + oy +lzo(2® — zy?) + o2y = P (1.38)
y= x+s0(z? —y?) + snzy + laxy® + lao(2®y — y°) = Q, |

which appear in the last chapter in the study the generalized Lotha-Volterra sys-
tems, satisfies the necessary conditions of the center. Indeed, from the formula
(14) this differential system can be written as

= {Hgx}+ (1 +g){Hsz}+(1+g+g){Ha}=P,
g= {Hyy}+(1+a){Hsy}+ 1+ g +g){H,y} =Q,

where Hy = 1/2(2? + y?), H; and g; are convenient polynomials of degree j. We
integrated this partial differential systems of first order respect to the unknown
polynomials Hy, Hs, g2, and g

{Hy,a} + (1 + g1){Hs, 2} + (1 + g1 + g2){Ha, z}
= -y+ Ezu(Ig — 92) + lixy + l3o(2® — 1’312) +lnz’y = P,

(Ea g} + (L 90){ o) + (14 g1 + 02){F, ) ael
= x+ 820(x? —y?) + snzy + laxy® + lao(z?y — ) = Q
Clearly that (1.39) is equivalent to the systems
{Hs, 2} + g1 {Ha, 2} = log(x? — %) + Iy := Xo
{H3,y} + g1 {Ha,y} = s20(2® — ¥°) + snzy :==Ya.
{Hy,a} + g1{Hs, 2} + go{Ho, 2} = l30(2® — a®) + l12%y := X3, (1.40)
{Hy,y} + 91{H3,y} + g2{Ha,y} = Ilzaxy® + lao(2®y — 3%) := Ya.
From the first two equations we obtain that
8;; = —gqy —loo(z? — y?) — lnzy,
oH, (1.41)

P —q17 + s90(2? — y?) + 5112y
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82H B, . 62H3
dxdy  Oyox
nomial g1 of degree one must be a solution of the following partial differential
equation of first order

From the compatibility condition we get that the homogenous poly-

{H2, g1} = (2l20 + s11)x + (ln1 — 2s20)y,
which in view of Corollary 12 has a unique solution
g1 = (2820 — ln1)x + (s11 + 2l20)y-
Inserting g1 into (1.41) we get after the integration that
Hj = };(511 - 520)3’3 - %(12(1 & 311)9’3 - 520372?;‘ - 82{:935’2-
Inserting g1 and Hy into the two last equations of system (1.40) and by solving

respect to the partial derivative of unknown homogenous polynomial Hy of degree
Jour we get that

dH, JdH4
By = g X3,
y 4 (1.42)
e 57 swrw
or n A ga: 3
PH,  0°H,

From the compatibility condition we deduce that the unknown

drdy — Oyox
homogenous polynomial g2 of degree two must be a solution of the following partial
differential equation of first order

0X, 0%,

{Hz, 92} = {H3, g1} + 5~ + % (1.43)

Again from Corollary 12 has a solution of the form g, + cHy if and only if

o 2w ¢
0Xs 0Ys
.'Vl o .[[] {Hs’gl}l-""=“"5f«y=5il|tdt+./'J (E EE a_y)

dt =0,

r=cost y=sini

By considering that

/ 2 (5)( 3 0Ys )
i + PEET

27
=i (4(1s0(2® — y?) + dlgsxy) |
27

dit

x=cost, y=sint

dt =0,

r=cost, y=sint

{H3’ G }lﬂ::cos t,y=sint dt = 0.
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we get that the condition Vi = 0 holds and consequently equation (1.43) has the
Jollowing solution
g2 = (sus20 — suln — hiulao — 4ha2)zy + (Linlao + 4530 — 2520l + 213 — 121)2?
+(2511l20 + 2539 — s20l11 + 4loo + l21)y? — 4a(a? + 3?),

where o is an arbitrary constant. Inserting g into (1.42) after the integration we
get that

1
H4 = ﬂf(.’]’?r‘} —+ ?}2)2 -4 xi_l (zgl - 21%0 - '!20""11 -+ ."%1 - !.]_1820 - 2.‘:‘%(]) .’1'34

1
T3 (s11 + loos11 — 203 — 283 + L1520 — l21) y*

+ (259020 — l11l2o + l12) 3y + (511820 + 2820120 + l12) TY?,

where o is an arbitrary constant. Hence system (1.38)satisfies the necessary con-
ditions of existence of the centers. In the third chapter we prove that the system
has a center at the origin.



Chapter 2

Weak centers

2.0.1 Analytic and polynomial vector fields with local analytic first
integral of the form H = %(3:2 +4%) (1 + h.o.t.)

We say that a differential system (3) has a weak center at the origin if it has

oQ

a local analytic first integral of the form H = %(:I‘Q +v3) [ 1+ ZTJ-{:;U. y) | =
j=1

Ho®(x,y). where T is a convenient homogenous polynomial of degree j.

The aim of this section is to study the weak centers for analytic and polyno-
mial differential systems.

In the study of the weak centers plays a fundamental role the differential
systems (19). In the next proposition we prove that this system is equivalent to
differential system

Z=1z+ R(z,2), (2.1)

where R = R(z, Z) is an analytic (or polynomial) function at the origin, z = x+iy
and z =z — iy.

Proposition 30. Consider a differential system of the form (2.1). Then this system
can be rewritten as (19) if and only if R(z,Z) = 20(z, Z) where © is analytic (or
polynomial).

Proof. Assume that R(z,2) = 20(z, z). By considering that ©(z,2) = U(x,y) +
iV (z,y) then 20(z,2) = aU — yV +i(yU + V'), thus from (2.1) it follows that

g=—-y+aU—yV=—y(l+V)+zU, g=x+yU+zV =a(1+V)+yU,

hence by comparing with (19) we get that A = V' and Q = U. The reciprocity it
is easy to obtain. Indeed, system (19) can be written as 2 =iz + z(Q2 +iA). O
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Corollary 31. The center of polynomial differential system is o weak center if and
only if H;j = HyY;_5 forj=3,..., m + 1.

Proof. Follows trivially in view of formula (16). O

The singular point of system (3) located at the origin is an isochronous center
if all the periodic solutions in a neighborhood of it has the same period.

Corollary 32. The weak center of a polynomial differential system (19) is an
isochronous center if and only if

/h a0 —9 (2.2)
o 1+A(rcosf,rsing) - '

where (r,8) are the polar coordinates, and v satisfies that

o0
H(rcos@,rsind) =r%/2 | 1+ Z 1Y j(cos B, sin 0)

F=1
is a constant on any periodic solution surrounding the isochronous center.

A center O of system (2) is a wniform isochronous center if the equality
xy — yi = k(x? + y?) holds for a nonzero constant x; or equivalently in polar
coordinates (r, @) such that z = rcos@, y = rsinf, we have that 0 = x.

Theorem 9 has the following additional corollary.

Corollary 33. Assumne that the planar differential system (4) has a center at the
origin. Then this center is a holomorphic isochronous center if end only if sys-
tem (4) can be written as (19), i.e. is a weak center, with the function A and Q
IA a0 OA

=0 + = 0. Hence

satisfying the Cauchy—Riemann conditions — — — =0, —

dr  dy dy  Ox
Q4 i(1+A) = f(z) where z =z + iy, and f = f(z) is a holomorphic function on
C. Moreover, a polynomial differential system (19) with a holomorphic center at
the origin is Darboux integrable.

We observe that the Darboux integrability of polynomial differential system
with a holomorphic center at the origin is a well known result (see for instance
[45]).

Remark 34. From Corollaries 33 and 11 it follows that all the uniform isochronous
centers and all the holomorphic isochronous centers for polynomial differential
systems are always weak centers.

It is important to observe that there is not a relation between isochronous
centers and weak centers, i.e. there exist isochronous centers which are not weak
centers and weak centers which are not isochronous centers. Then for instance the
quadratic isochronous center
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is not a weak center because it has the first integral H = (9—24y+3222)?/(3—16y)
for more details see [11]. On the other hand the quadratic system

i=—-y—a’-3y* §=uzx+2my,

has a weak center at the origin because it has the first integral H = (14+2y)(224+y?)
but it is not isochronous see [11]. In fact in subsection 2.4.4 we provide all the
quadratic system with weak centers ( see [34]).

Now we introduce the following definitions and notations.
Let R[z,y] be the ring of all real polynomials in the variables 2 and y, and
let X be the polynomial vector field (2) of degree m. Let g = g(x,y) € Rlz, y]\R.
99 , 09
dx e dy
K = K(z,y) is a polynomial of degree at most m— 1, which is called the cofactor of
g = 0. A function g = g(z, y) satisfying that g = 0 is an invariant curve (i.e. formed
by orbits of the vector field X) is called partial integral. If g € R[z,y]\R then g
is called a polynomial partial integral or a Darboux polynomaial. If the polynomial
g is irreducible in R[z,y], then we say that the invariant algebraic curve g = 0 is
irreducible, and that its degree is the degree of the polynomial g. A first integral
F of the polynomial vector field (1) is called Darbouz if

F = tea/Meiigh(z,y).... g (z,y),

Then g = 0 is an invariant algebraic curve of X if X9 = P = Kg, where

where &, I, g1,..., g, are polynomials and Aq,..., A, are complex constants. For
more details on the so—called Darboux theory of integrability see for instance
Chapter 8 of [20].

We introduce the following definition. We say that a polynomial vector field X’
of degree m is quasi-Darboux integrable if there exist r polynomial partial integrals
g1, .., 9, and s non-polynomial C”, r > 0 in D C R? partial integrals fi,..., fe
satisfying

af;

Ay
where K = K;(x,y) is a convenient polynomials of degree m — 1, for j =1,...,s
such that the function

F = Mg (z,y). .. g2 (@) 7" (2,9) ... [ (2.y),

is a first integral, where k = k(x,y), h = h(z,y) are polynomials, and Ay,..., A,
K1,.... Kg, are complex constants. We observe that a generalization of the Darboux
theory was developed in the paper [24], which evidently contains the above defini-
tion with another name, but for our aim we shall use the name of quasi-Darboux
integrable.

We have the following conjecture.

5¥,
r‘f'(fj)=P9—JI::T +Q—- =K;fj

Conjecture 35. A polynomial differential system (19) having a weak center at the
origin is quasi-Darbouz integrable.
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This conjecture is supported by several facts which we give below.

Proposition 36. A polynomial differential system (19) with a weck center at the
origin is quasi-Darbouzr integrable in a neighborhood of the origin with the first
1 m-+1
integral H = 5(1‘2 +y3) [ 1+ Z Tilx,y)Yi(x,y) | == Haf(z,y), where Hy =0
i=1
is an invariant algebraic curve and f = 0 is an analytic (non polynemial) invariant
curve with cofactor 2Q and —2 respectively.

Proof. Since at the origin of system (19) there is a weak center, we have an analytic
first integral H = Hyf in a neighborhood of the origin. So clearly Hy = 0 and

dH.
f = 0 are invariant curves of system (19). It is easy to check that -2 = 2HS.

dt
From the first integral H = H, f we get that
dH, df df
—_— Hy— = 2H,Q) Hy— = 0.
@ Ty Wl i+ Hag
df . e
Thus i —20) f, and the proposition is proved. O
dt

2.0.2 Center problem for analytic or polynomial vector fields with
a generalized weak condition of a center
First we prove the following two propositions.
Proposition 37. Assume that a differential system (3) satisfies the relation

(-1 Az
@) (PN L O a4 01y V), @

with € R\{0}. Then the system can be written as in (19) with

o _2(8(-y+X) Odx+Y)
e =2 (g ),

and A = A(z,y) an arbitrary analytic function in a neighborhood of the origin.
Moreover system (3) has the inverse integrating factor (z* + y?)/2, and it can be
written as

¢=(2+y M Fe}  §=(EP+7) 2Ry, (24)

with

—Xdy + Ydx d(z? + y?)
= 3 o2 T 2 1 .2\n/2
v\ @2 ) 2(x? + y?)#

—Xdy+Ydx

2 2wz [ TS (2.5)
| g | i n#
= —Xdy + Ydz
. B e if u=
log \/x? +y +ij 2+ if p=2,
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Note that if in (2.3) we have that g = 0, then system (3) is a Hamiltonian

system.

Proposition 38. Consider the polynomial differential system (2) of degree m which
satisfy the relations

27
orP
/0 (f)a: + d_f) [x:cost,y:sintdt = 0. (26)
_ m+1 m—1
Then there exist polynomials H = Z H; and G = Z G of degree m + 1 and
j=3 j=1

m — 1 respectively such that system (2) can be written as

i={H,2}+(1+C){Ho2}, §={Hy}+(1+C){Hny}.  (27)

Note that we have extended the definition of “weak condition for a center”
given in subsection 2.3 for a quasi-homogenous polynomial differential system to a
general analytic differential system. Proposition 24 it has been generalized in the
Theorem 12 which is proved in section 2.2.

2.1 The Proofs of Theorem 9 and Corollaries 10, 11

Proof of Theorem 9. Necessity We suppose that system (3) has a weak center at
the origin . Consequently there exists an analytic local first integral H = Ho(1 +

oo
ZTj) := Hy®. Then from Theorem 7 it follows the necessary and sufficient
=1

conditions on the existence of a linear type center for an analytic differential
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system differential system. Thus (13) becomes

Il

V{H,z}=-V ('I)‘(I) + Hy— )

(3]

L+ 95 —y(1+ZTTj)+gZM{TJ-.Hz}
- o

+1 3
= (14‘2(}— i 1+;QITJ 2+. +§9j—2T1 +9j—1))

+g Z ({T;j—ls Hy} + gi{Tj—2, Ho} +... + Q:_:'—Z{TI,HQ})

Jj=2

oc T oo
= —y(1+)_ M)+ 'EZQJ-
=2 j=2

0% 90 10D
g= V{Hy}=V (¢¢+H2%):v' (‘“gd_*%E)*V%{‘I"
= (142 0] [z0+ 222 gz 201, 1o}
j=1 j=1 j=1

+1 3
= r(l-{-Z(j G- ]+£qlTj—2+---+59_3—‘2'1-1"'93'—1))

= b
4%2({1'; 1 Ho} + gi{Tjo, Ho} + .o 4 gj2{T1, Ha}

i=2

M |

= z(1+ i Ji

j=2

Hy}

(2.8)

Sufficiency Now we suppose that if the origin is center of (20) then we prove

that the origin is a weak center. Indeed. by considering that in this case

X= X1+Xo+X3+..+Xn+...=—y(l +A)+ 29

= —y—yh—yho—...—yA, — ...+ 2+ 2+ ... +20, +...

Y= Y14+Yo+Ys+...+ Y, +...=2(1+A)+y2

= r4+ach+xho+ ... A+ YU FyQ+ . Y+

X = _'.UAn—] + 201 Y, =2, +3}Q'n—1-. for n>1,
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where Ag = Qg = 1. Therefore &Y, —yX,, = 2H>A,,_1. Thus from (1.11) we obtain
that

H i(y X,) L iiﬂ-
= Lly — | n -
¥ n+1 k+n+1

n=1 k=1

o A 1 s T
= H. n—1 = A — H (. .
'L (n+1 ZHHH) 2 8(z.)

k=1

consequently H = Hy® is a first integral, therefore the origin is a weak center.

The second statement we prove as follows. Under the assumption

j=m+1
+2 i ({T'_I-H2} +91{T;-2 H2}+---+g'_2{T1.H2}) =0
2.]—"m.+1 ! J, ! .

o0 ; >
+1 3
E (j—z'T_j—l + %ngj_g"l'... + §gj_2T1 +gj_1)

Jj=m+1
y o0
+§ Z ({Tj—th} +gi{Tj—2, Ha} + ...+ gj—2{T1, H'z}) =
j=m+1

which is equivalent to the equations

4+ 1 j 3
JT _-j—l+%QlTj—2+---+§Qj—2T1+Q-j—l: 0

{T‘j_l,Hg} —I—gl{Tj_g.Hz} + ... +gj_2{T1,H2} = @

for j > m+1, from (2.8) we get the following polynomial differential equations of
degree m.
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LIS 3
1+Z Lt 01T1—2+---+§ﬂj—2'1’1+gj—1)
x m
+5 2 ({Tim1 Ha} + gu{Tjo0, Ha} + ... + gj-a{ Y1, Ha} ),
Jj=
- +1 3
(1-1—2 J g 1+;(}1T3 2wt f}J 2T1+g_,—|)
j=2
Q{Z({TJ  Ho}+ i {Tjo0, Ha} + ...+ g;-2{T1, Ho})

Here Y; is a convenient homogenous polynomial of degree j, such that Hy =
(2 +9y?)/2, Hjyo = HyYj, for j = 1...m+1 and g; is an arbitrary homogenous
polynomial of degree j satistying (15). Consequently in view of (16) we obtain the
local first integral (22). Thus the theorem is proved O

Proof of Corollary 10. From the relations H; = H>Y;_; and

+1 3 .
HQA_:;_I = }T §+1 + 291H e Egj_'zH;; +gj_1H2, for ] = ].._
it follows that
2 (J 3 2H,
Hepymo—| Lotk o vge bl dgyea ] %Ay .
J+1 j+1(291 5+ +29_72 3+ gi-1 2)+j+1 G

Inserting H, into the relations ®; = {Hj, Ho}+gi {H;, Ho}+. . .+g;—2{H3, Ha},
we obtain that

O = —.L{ngj»H2} +g1{H;, Ho} + ...

_ il(ml)qlw o} = o )+ n 0 1) )

B 1 991 ,  Ogi oH;  0H; oH; OH; g 5‘91
a j+1(( Or +?’r3y)(} dx (’)J) ( Oz +}6J)(y8;r f)y A )

1
= m(QHQ{H--,91}+---)=

d d B‘H OH
here we use the relations g, = ;% +y aij JH; = T = +y 31;1
Hence after some computations we get that
2H:
®; = —= ({Ajor, Ho} — ({Hj, 1} + {Hj—1.92} + ... + {H3.gj—2} + {Hz,9;-1})).

J+1
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Then the proof of the corollary follows easily. O
In order to illustrate Theorem 9 we study the following polynomial systems.

Example 39. The following cubic polynomial differential system has a center at
the origin (see [55])

: 1., 2 2 3 v’ . 2
T = —y+§(w ry —2y° —ay y‘)——y(1+y+7)+§(w—y—y ):
. 1 5 2 .3 y: oy 2
y= z+5@u-y*+ay’—y’) =a(l+y+5)+ 5@ -y-v7),

Consequently this system can be rewritten as (19) with the functions @ and A
1
determined as follows 1+ A = 5(1 +(y+1)%, Q =x—y—1y>. and hence the center

is a weak center.

Proof of Corollary 32. First we observe that differential equations (19) in polar
coordinates & = rcosf#, y = rsinf becomes

7 =1rQ(rcosf,rsinf), 6 =1+ A(rcosb,rsinf),

hence in view of that the center is weak center, then the polar coordinates must be
such that H(rcos#, rsinfl) = C' = constant. Hence we get that the weak center is
an isochronous center if and only if (2.2) holds, thus the corollary is proved. [

Proof of Corollary 11. It trivially follows from Corollary 10 assuming that A; =0
for j = 1,...,00. Hence, if we assume that {H;, g1} + ... + {H2,9;-1} = 0 for
j = m + 1 then we obtain the conditions under which the polynomial differential
system has a uniform isochronous center at the origin. Thus the proof of the

corollary follows. O

Proof of Corollary 33. From the Cauchy—Riemann conditions it is easy to obtain
condition

oA 00 0N 09 0@+ih)
dr oy dy Or 0z .

i.e. the functions A and €2 are harmonic functions. Moreover differential system
(19) in complex coordinates z = z + iy and Z = x — iy becomes

z=1iz+ 2®(z) = f(z),

which in view Proposition 30 can be written as (19), thus the holomorphic isochronous
center is a weak center.

We observe that the problem on the existence the first integral for the com-
plex differential system was study in particular in [45]. In [36] We have proven
that the first integral for holomorphic center can be written as Ha(1+ h.o.t.). O
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Proof of Proposition 37. From (2.3) it follows that z(—y+ X — AaQ) +y(ez+Y —

yQ) =0, where A =2/p and Q = H-y+X) + O+ Y}‘ Thus
dx dy

—y+X =-vy+al, z+Y =av+yQ,

where v = v(z,y) is an arbitrary function. Denoting » = 1 + A we get that
differential equations (3) coincide with (19). On the other hand in view of the
relations

-y + X) i a(z+y))_

JOHy oH, B
(Cu+ 02+ @+ X) 5 —/\HQQ—,\HQ( - 5

which is equivalent to

4, - X ’ r+Y
8 y+ y i, BEY N (2.9)
Oz (3:2 + y2)_u/'2 dy. (;122 + yZ);:/'Z
i.e. H2 is inverse integrating factor. Thus differential system (3) can be written as
(2.4) with F given by the formula (2.5). In short corollary is proved. O

Proof of Proposition 38. Suppose that P and @ can be written as in (2.7) where
H and G are polynomials, and we shall see that such polynomials exist when (2.6)
holds. Then

oH oH
— =—yG—-P, — =-zCG .
dy ¥ ox BG+ 6
2 7] 2 7]
Hence by considering that i—;; = % we get that
oG oG ar  aqQ
— —y— ={H3,G} = — + —.
T(’Jy Yoz G dx 2l dy
By considering that (2.6) holds, then in view of Corollary 22 we deduce that there
m~—1
exists a polynomial G = Z G such that
j=1
0G 9G opP;  0Q;
a—2L —y—1 ={H,;,G;} = 2L + L. 2.10
We can determine the function H as follows
- @ m—1 ¥ m—1
H:] (_IZGJ-+Q)¢T_/ WY G +P)| ay,
Lo j=1 Yo j=1

r=xg

where Gj = G(x,y) is the solution of equation (2.10). In short the proposition is
proved. O
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We observe that from (2.7) it follows that

~ orP 0
IUP""QQ:{H,Hz}._ (8_1‘4_%:{!{2.6}.

thus in view of Proposition 20 we obtain that

27
/ (IP{-'E,!}) + yQ(-L‘,y)) |.r-c<.ust.y—..-sinf.dt = Os

J0
27 . 4
oP  9Q
/ (%* 5—1,) —

We consider an analytic differential system (6) under the assumptions (24). The
previous result can be extended for the analytic vector field. Thus we have the
following proposition.

Proposition 40. Let (2) be an analytic differential system which satisfies the re-

2w -
JaP 0 z :
lation / ( + —Q) [x=cos t, y=sin 1dt = 0. Then there exist analytic functions
Jo

dx dy
= oo oo
H= Z Hj and G = ZGj such that
j=2 j=1
OH - OH .
b= P=—5 —yG={H.o}+G{Hyz}h, §=Q =5 +G = {H,y}+G{Hay}
Proof. It is analogous to the prool of Proposition 38. O

2.2 Proof of Theorem 12

Proof of Theorem 12. We shall study only the case when the differential system
is a polynomial differential systems of degree m.

It is possible to show that condition (2.3) is equivalent to (2.9). Hence from
the first of condition of (24) and in view of Proposition 37 we get that a polynomial
differential system (3) can be written as (2.4) with F' given in the formula (2.5).

On the other hand in view of Proposition 38 and the second of conditions
(24) we get that there exist polynomials H = H(z,y) and G = G(z,y) of degree
m + 1 and m — 1 respectively, such that the following relations hold

@ y+ X *{H,m}+G{Hz,a,}, 2.11)
y= x+Y ={Hy}+G{Hz,y},

Hence ?)—X + (?)—Y ={H,,G}, aX+yY = {H, H,}, consequently condition (2.3)
dr  dy

becomes 2H,{H,, G} = u{H, Hs}. Thus
AHo{H,,G} = {H, H} <= {H, H + \H,G} = 0,
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where A = 2/p. Therefore
H = —\H5G + M\p(Hy) := HyT (2.12)

here p(Hs) is a polynomial of degree [(m — 1)/2], where [(m — 1)/2] is the integer
part of m — 1)/2 such that

p(H3) = ay Hy+as Hi+. . .+a,,;H2[m_”m = Haq(Hs) and G=—-1/AT+q(H>).
Thus by putting (2.12) into differential system (2.11) we get

. oH AT
&= —y—a—y—yG——Hza—y—?j(l‘f'T"' G)

T

A-1

aT arT x
= —¥ (l +Q‘(H2) +(l - l/A)T-ﬁ- 1/2 (.’L‘m +U%)) + §{T, Hg},
, oH ., 9T
Y= a-+ﬂ+$6—Hg o

Y -1
= H, i +z(1+ ATT + +q(Hs))

ox
AT OTVY
T (1 +q(Ha) + (1 -1/ )Y +1/2 (J:E +y3y)) + 2{T.Hg}.

+z(1+ 7T+ G)

Consequently )
Hy = Hy{Y, H,},

T =- (1 - %T +q(Hg)) {1, Hy},
hence
dY  1-A 1+ q(Hs)
dHy AH, Hy
After the integration this first order linear ordinary differential equations we have
the following solution

T = Hy* (C—/il ;({(/ifz)ng),
2

where C' is an arbitrary constant. Consequently we have the following particular
cases.

[(m—1)/2]
(i) fA#1and J[ (n—1/A)#0, then
n=2
T= H:}/A—lc _1lta azHa ”-mHz[(m e

1-1/X 2=1/2 " " [m-02-1/3
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(ii) If A =1, then

[(m—1)/2]—1
= e ol - HE _omH"T T
T=C (1"’051)10?,’1{2 o Hy D) [(m~l)/2]~l'
[((m—1)/2]
(iii) f1<A=1/k<1/[(m-1)/2land ][] (n—k)#0, then
n=2,n#k
I4+a1 1 1 9 L
_ gk _ 1-k _ 2k _
T= -H( C+TtH - Sk
) Og4+2 ;20 (4579 [(m— 1]/2]—&)
—aylogHy —apy1Hy— ———H; —... — —F+———H. .
Qi 10g 13 — Qg1 L1 5 12 (m—1)/2—k 2
[(m—1)/2]
(iv) If 1/[(m—1)/2]<A=1/k<1, ap =0 and H (n — k) # 0, then
n=2n#k
[(m=1)/2]
- 14+ &7 ji—1
T=H'C- - gt
% 1—k Z j—k 2

i=2,j#k

Excluding the constant C' in the obtained solutions we deduce the first integrals
F given in formula (26), (27), (28), (29). O

o : < A-1
We observe that if in the equation (25) the relation 1+ a4 + TT(O, 0) =0,
holds then the origin is not linear type. Indeed, under this condition the given
equation becomes

m—1 J [(m—1)/2] .
i i—1 &
p= -y | Y (-UN+)T+ > aHPT |+ S{THa},
i=1 j=2
m—1 _} [(m—1)/2] y
§ i—1 [
y= =z Z((1-1//\)+§)TJ-+ Z a; Hi™! | + S{T, Ha}.
J=1 =2
m—1
where T = Z T;, and T; is a homogenous polynomial of degree j for j =
i=1
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2.3 A —Q differential system. Center problem part I

. The main objective In this section we study the center problem for A-02

systems of degree m
2= —y(l+bz+by)+ z(arx + asy + Lpm—1), (2.13)
?} — l"(]. +b1?"+52?)) +?j(al$+ﬂ-2.y+§1m—l): ‘

where ,,_1 = Q,,—1(z,y) is a homogenous polynomial of degree m — 1, a;, as
and by, bs are constants We also state some conjectures related with the existence
the center for (2.13).

We provide the following results.

Proposition 41. The polynomial differential system of degree m

= —y(l+(m—2)(a1y — azx)) + z(a1z + asy + L1 ), ( )
2.14
.7;" = I(l 'i'(m—Q)ﬂly”ﬂzi')) +y(a1$+aﬂy+9m—1)|

where Q1 = Q,—1(z,y) is a homegenous polynomial of degrez m — 1, has a
weak center at the origin if and only if

2
f Q1 (cost,sint)dt = 0. (2.15)
0
Moreover system (2.14) has the first integral

H
H= -

= Hy(1 + h.ot.),

] 2/(m—1)
(1 -+ = 1G(;L,y) +(m—1)I'(Hs) +‘1>(H2))

(2.16)
where G is a polynomial of degree m — 1 and such that {Hy, G} = —(m+1)(a1z+
asy+S,—1), I' =T'(Hs3) is a convenient polynomial on Hy and ®(Hs) is a conve-
nient polynomial if m is even and a convenient function if m is odd (see the proof
for the expressions of I' and ).

We observe that if we take a; = a2 = 0 in Proposition 41 we obtain following
corollary.

Corollary 42. The polynomial differential system of degree m
i=—-y+a,1 Jg=x+yQ,_1, (2.17)

has a weak uniform center at the origin if and only if (2.15) holds. Moreover system
(2.17) has the Poincaré-Liapunov first integral (2.16) where G is a homogenous
polynomial of degree m — 1 and such that {Hy,G} = Q.

Conti in [16] proved the first part of Corollary42, but the second part pro-
viding an explicit expression of the first integral of system (2.17) is new.
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Remark 43. The weak centers obtained in Proposition 41 and Corollary 42 in gen-
eral are not invariant with respect to the transformation (x,y,t) — (—z,y, —t).
Indeed the polynomial differential system of degree 2k given by formula (2.14) and
(2.17), when Qop_y is an arbitrary polynomial of degree 2k — 1, in general is not
reversible and has the weak center at the origin.

We recall that a polynomial differential system has a uniform center at the
origin if written in polar coordinates x = rcos@, y = rsinf we obtain that # is
constant.

2.4 The Proofs of Proposition 41, Corollary 42, Theo-
rems 14

2.4.1 Preliminary results

Below we need the following results.
Let

x = r1 X — KoY, y=ktaX + K1Y, (2.18)

be a non-degenerated linear transformation, i.e. k7 + k3 # 0. Then differential
system (19) becomes

X= -y (1 +A(X, Y)) + XQ(X.Y),
‘ ) ] (2.19)
V= X (1 + A(X, Y')) +YQ(X.Y),

where f\(X., Y) = A(k1 X — kaY, ko X + k1Y) and Q(X, Y) = Q(rk1 X — kY, ko X +
k1Y), Here we say that system (3) is reversible with respect to a straight line |
through the origin if it is invariant with respect to reversion about [ and a reversion
of time ¢ (see for instance [16]). In particular Poincaré’s Theorem is applied for
the case when (3) is invariant under the transformations (z,y,t) — (—z,y. —t),
or (z,y,t) — (z, —y, —t).

In the proof of the results which we give later on we need the Poincaré’s
Theorem (see Theorem 23).

Since a rotation with respect to the origin of coordinates is a particular
transformation of type (2.18), when a center of system (19) is invariant with
respect to a straight line it is not restrictive to assume that such straight line is
the x axis. So the center of system (19) will be invariant by the transformation
(z,y,t) — (—x,y,—t) or (z,y,t) — (x,—y,—t). We shall study only the first
case, i.e. we shall suppose that the A-Q) system is invariant with respect to the
transformation (z,y,t) — (—xz,y, —1).

The following proposition is easy to prove (see for instance [43]).
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Proposition 44. Differential system (2.19) is invariant under the transformation
(XY t) — (—X.Y, —t) if and only if it can be written as

X= -Y(1+61(X%Y))+X%0,(X2Y), i
V= X(1+46:1(X2Y))+XY0,(X2,Y), '

Remark 45. Using the notations of (2.19) and (2.20) after some computations we
can prove that the following relations

m—1 m—1

AX,Y)= =3, 3 dnXv"=6,(X%Y),
i=1 J=1 k+n=j
m—1 m—1

QX,Y) = Q=3 > wXrY"=X0,(X%Y),
j=1 i=1 k+n=j

hold if and only if
Agim1 5= 0 for 1=1,2,...,Imf2] and j=0,...,m—2I,
wy;= 0 for 1=0,2,...,[(m—-1)/2] and j=0,...,m—1-2l,
where [ | denotes the integer part function. Consequently, (m®/4] coefficients of A
must be zero, and [(m? + 2m — 3)/4] cocfficients of Q must be zero.

Corollary 46. Polynomial differential system (2.20) can be written as
X= -Y(1+6:(X2Y))+ X{H,, } = P(X,Y),

. (2.21)
Y= X(1+6:1(X%Y))+Y{H,, 8} =Q(X,Y),

where © = ®(z,y) is a polynomial of degree at most m — 1 such that {H,, ®} =
XO,(X2Y). In particular all uniform isochronous centers which after a linear
change of variables (z,y) — (X.,Y) are invariant under the iransformations
(X,Y.t) — (=X,Y.—t) can be written as

X=-Y+X{H;, ®}, Y=X+Y{H,, ®},

Proof. By considering that

27 2
XO2(X2Y)|, oot ymsint 4t = | ©2(1 —sin’¢,sint) costdt = 0.
0 E=Cost, y=smi 0
By Corollary 22 we get that there exists a polynomial ® such that XO,(X2,Y) =
{H;, ®}. Thus we have the formula (2.21). Since for uniform isochronous centers

©,(X2,Y) = 0, the corollary follows. O

Proposition 47. Any weak center invariant at the origin of system (2.21) satisfies
that the integral of the divergence on the unit circle is zero.
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Proof. The weak center of of system (2.21) satisfies

oP  0Q O{Hy, ®} . O{H,, ®}
a—X+— Q{Hg, (I’}-l-X DX +Y %

ay
= {H2,2¢J+Xd—® +Y6—¢ +91}-

+{H2,0,}

axX oYy
From Proposition 20 satisfy that

27 aP 8@

X=cost,Y=sint

2.4.2 Proofs of Proposition 41 and Corollary 42

Proof of Proposition 41. Sufficiency: If /2” Qn—1(cost,sint)dt = 0 then (2.6)
holds with ’

P:= —y(1+(m—2)(a1y — asz)) + z(a1z + asy + Qp—1),

Q= z(1+(m—2)(a1y — azx)) + y(a17 + agy + Y1),

because €2, is a homogenous polynomial of degree m — 1 and from the Euler
Theorem for homogenous polynomial we have

g—i + % =(m+1)(a1z+ asy + Lm-1).
Therefore i
“m P 0Q
— 4 = dt = 0.
/ (aa:+ay) = cost
y =sint

Then in view of Proposition 38 we get that there exist polynomials F' and G of
degree m + 1 and m — 1 respectively, such that system (2.14) can be written as

&= P={Fz}+(1+G){H,,z},
= Q={Fy}+(1+G){Hsy}.
After some computations we obtain
{F.Ha} = 2Ha(a1z + agy + Qp—1),
{G.Hy} = —(m+1)(a12 + azy + Qi—1)-

2H2 2H2
m+1 m+1

p(Hz) = bo+ biHa + . .. + by 1) HY™ /2

(2.22)

Therefore {F +

G, Hs} = 0. Consequently F' = —

G + p(Hs), where
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is an arbitrary polynomial of degree < 2[(rn + 1)/2], where [ ] denotes the inte-
ger part function. Inserting F' into the differential system (2.22) and after some
computations we get that

. 2H, " m-—1
i = P——m+1{G.:r}+(l+p(Hg)+m+lG){Hg.,:.u},
; 2H» m—1
= = — (34 1 '(H. G ) {H
g= Q m+1{ .y}+( 't 2)+m+1 ){ 2,9},

d,
where p'(Hz) = ﬁ In order to have that the linear terms of the previous system
2

be —y and x respectively, we need that b; = 0, because G(0,0) = 0. Therefore

= L 2H> ; . CER 2H,
Hy= zz+yy= e (@{G,z} + y{G,y}) = o 1{H2=G}!
. 0G ., 0G . P m—1 oG oG
G= %x‘ng—(1+p(Hz)+m+lG)(8${H23-T}+ ay{H2,y)
- m-—1 y
= L (1 + Gt (Hg)) .

Consequently we have the following linear ordinary differential of first order

dG  (m-1)G _ (m+1)(1+p'(Hz))
dH, 2H, 2H, :

Thus after the integration we have the existence of a first integral H given by

H = Hy

= 2/(m—1)
(1 + - 7G@ ) + (m = I(Ha) + [(m + 1)/21<I>(Hz))

= Ho(1+O(x,y)), (2.23)
2.23

hence the origin is a weak center, where

2bs 3b3

: ([(m +1)/2] = bimt1)/2]-1 pr((m+1)/2]-2

I'(H,) = H. HZ+... H ;
) = st e e i e E

and
b[(7n+l}/2] [(m+1)/2]—-1 . .
if m is even,
(i) = { [(m1+)/2] - (m+1)/272

b[(m+1),Jz]Hé'/n_”/2 log H, if m is odd.

We observe that if m is odd then this first integral (2.23) is non analytic at
the origin.
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Necessity: Now we suppose that the origin of system (2.14) is a center and we
must prove that (2.15) holds. Indeed. if the origin is a center then from Theorem
8 it follows that differential system (2.14) can be written as (see (14)), where the
homogenous polynomials Hy and ¢ for & = 2,..., m+land !l =1,...,m—1
satisfy

{Hov1i o} +o1{Huss} oo Fgm—i{Ha 2y = Xo= 215
{Hnt+1,y} + 91{Hm, ¥} - - - + gm-1{H2,9y} = Yin = yQn—1,
{Hpm, 2} + g1{Hm-1,} ... + gm-2{Hz,a} = 0,
{Hm,y} + gi{Hm-1,9} ... + gm—2{H2,y} = 0,

{Hs.x} + g1 {Ha, o} + go{H3, 2} + g3{Ha2, 2} = 0,
{Hs,y} + g1{Ha,y} + g2{H3,y} + g3{Ha2,y} = 0,
{Hy, v} + g1 {H3,x} + go{Ha,z} = 0,
{Ha,y} + g1 {Hs,y} + g2{H2,y} = 0,

{Hs,x} + g1 {Hz, 2} = Xo

= —y(m —2)(a1y — azz) + z(a1x + asy),
{H-Suy}‘f_g[{Hz.y} = YZ

= z(m—2)(ary — az) + y(o1z + azy).
(2.24)
From the last two equations we obtain (see (1.27) and (1.28))

g1 = (m+1)(a1y —asz), Hz= Hag,.

_m+1

After from the third and fourth equations starting from the end of system (2.24)
we have (see (1.29) and (1.31))
1 2 H? 2 "
5 = —— Hy, Hy=——— - 2c 1)Hs) .
g2 pogry lgl + cHy 4 T +1) (891 c(m+1) 2)

Later from the fifth and sixth equations starting from the end of system (2.24) we
get

2(m+3) 5 (m—1)c

= Hs,
2 3(m + 1)291 Wbl
i g1Hs o 3cHy
Hs = T5(m + 1)2 ((QSm + 54)g; 3 (m+1)2m+3) |,

where ¢ is an arbitrary constant. Continuing with these computations we can
deduce that

Hy, = Ha (Pi—2(91) + Po-a(91)H2 + Pi—6(91)H3 + ... + fi—2(91, Ha),)
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where
aHi. ifk—2=2j
i ,H = 21 N 1
fi-aler, Ho) { Pi(g)H], ifk—2=2j+1
where Pi.(g1) is a polynomial of degree k for k=1,....m+1.

X

. . . . - m

Inserting the previous expressions into the homogenous polynomial +
(=) - a

T

dy

and by considering that

{p(g1)H2, q(g1)H2} {H2, ¥(g1)H2Ha},

OxQp 1 ame -1 119 S 001
= I 2 l‘ni —1 = 2 1 S‘l-m —Ty
5 + By T Y By +2Qm—1 = (m+1) 1:

+

where W(g,) is a convenient function on g;. we get
{Hma gl} + {Hm.—l-.gZ} S {H2~.G'm—1} = ('m- + l)szm—l-

After some computations it follows that
{Hnu 91} + {Hm.—ls_qﬁ} B {H‘Zs g?n—l} = {_HQ, (I)(glu-H‘.E)} = (m T I)Q'm—l

which we obtain from the compatibility conditions of the first two equations of

27

(2.24). Consequently in view of Proposition 20 we get that Q—1(cost,sint)dt =
0
0. In short the proposition is proved. O

Proof of Corollary 42. It follows trivially from Proposition 41 under the conditions
) = das = 0. O

Remark 48. Polynomial differential system (2.14) under the condition (2.15) can
be written as

= —y(l+ (m-—2)(a1y— axz)) + z(a1x + a2y + Lm—1)
= —y(1+ (m —2)(ar1y — azz)) + z{H>, T},

y= x(14 (m—2)ary — azz)) + ylarx + asy + Q1)
= z(1+(m - 2)(a1y — azz)) + y{Hs, ¥},

where {Hy, ¥} = a1z + asy + Q1.

2.4.3 Proofs of Theorem 14

The proof of Theorem 14 follows from the next propositions.



2.4. The Proofs of Proposition 41, Corollary 42, Theorems 14 45

Proposition 49. A gquadratic polynomial differential system

&= —y(l+mz+noy) + z(arx + asy),
_ : ki ) (2.25)
y= z(l+nmz+ny) + ylarz + azy),
has a weak center at the origin if and only if
ai1ny + asng = 0. (226)

Moreover the quadratic differential system (2.25) satisfying condition (2.26), after
a linear change of variables (x.y) — (X.Y) it is invariant under the transfor-
mations (X,Y,t) — (=X,Y, —1).

Proof. Sufficiency:. We suppose that (2.26) holds and we shall show that then the
origin of system (2.25) is a center. Indeed doing the change of variables given in
(2.18) with &% + K3 # 0 to system (2.25) we obtain the differential system

X = —Y(l + (k1ny + k2no) X + (K1n2 — K‘.z'ﬂ,l)Y)
+X((.‘¢,1a1 + kpa2) X + (k1a2 — Rgal)Y)._
Y = X(l + (k1ny + Kono) X + (King — K,z?!-l)Y)
+Y((h‘.1a1 + koas) X + (K1as — Hgal)Y).
This system can be written as (2.20) if and only if
Koy — K1as = 0, K1my + Kans = 0. (2.27)

Clearly system (2.27) has a nonzero solution x; and k2 if and only if a;n; +
asnz = 0. Under condition (2.27) the quadratic system is

X = —Y(l + (Kino — Rgnl)}/) + (K101 + Koaz) X2,
Y = X(l + (king — Hgnl)Y) + (Kk1ay + Koag) XY.

This system is invariant under the transformation (X,Y,t) — (—X,Y, —1), so in
view of Theorem 23 the origin is a center, which in view of Theorem 9 is a weak
center.

Necessity: We now suppose that system (2.25) has a center at the origin.
From Theorem 8 we get that quadratic differential system (2.25) can be written
as

&= {Hsa}+(1+g){H z}
—y(1+ niz + noy) + z(a1z + agy) := —y + X,
{Hs,y} + (1 + g1){Ha,y}

(1 + nyz + noy) + ylarz + asy) ==z + Ys.

[
Il
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Thus
{Hs,z} +g1{H2,2} = —y(niz + nay) + z(a1z + agy) := Xo,
{Hs,y} +g1{H2,y} = z(mz +ngy) + yla1x + agy) == Ya.

By determining the homogenous polynomial g; as the unique solution of the equa-
tion (see (1.27))

X aY:
{Ha, 91} = 8.1:2 + ?f = (n2 + 3a1)z + (3az — n1)y,
we get that
g1 = (ny — 3az)x + (n2 + 3a1)y. (2.28)

In view of homogeneity of Hy and Hjz we obtain that (see (1.28))
1
Hs = 3 (xYo — yXo — 291 Ho) = 2Hs(asx: — ayy).

On the other hand from conditions (1.26) since X3 = Y3 = 0 we get that

81‘1!2;__‘r 6H3_I{ (")H4__ OH;,,_I
—6y =—81 —8y Y9z, i " 0 o g2

We shall determine g as a solution of the first order partial differential equation
(sce (1.29))
{H2,92} + {H3, 91} = 0,
where ¢y is given in (2.28). Then in view of Corollary 22 with V = g and U =
2m

—{Hs3,g:}, we get that if/ {HS’gl}l:n=cosl‘.,y=sint dt = 4w(ayn, + asng) = 0,

0
then g, exists and has the form gs(z,y) = g2(x,y) + cHs where ¢ is a constant.
Thus we prove the necessity of the condition (2.26). In short the proposition is
proved. O

Proposition 50. A cubic polynomial differential system

= —y(1+ plar —ar1y))
+2(a1z + a2y + azz? + agy? + aszy), (@55)
= a(l+ plazz —ary))
+y(a1x + agy + aga”® + agy® + aszy),
has a weak center at the origin if and only if
az +aq =0, ajazas + (a2 — a)ay = 0, (2.30)

Moreover system (2.29) under condition (2.30) and (u + 1)(a? + a3) # 0, after a

linear change of variables (x,y) — (X,Y') is invariant under the transformations
(X, Y, t) — (—X,Y,-1).



2.4. The Proofs of Proposition 41, Corollary 42, Theorems 14 47

We observe that Proposition 50 when p = 0 provides Theorem 2.2 of the
Collins [15].

Proof. Sufficiency: First of all we observe that cubic differential system (2.29)
under the change of variables (2.18) becomes

X = —Y(] +|LL(K1L52 —-‘{-zui)X —}.&(ﬁ?gaz—!—ﬁ[al)}/)

X . 7
o ((K.z + K,Z) ((mal + RQGQ)X + (h‘,1ﬂ.2 = -‘\",2&1)Y)
(kF +m3)2 \T0 T2
+(k?a3 + k3as + K1K205) X2
+(k3a3 + k2aq — K1Kk2a5)Y2 + (k2 — k3)as + 2k1k2(ag — a3))XY),

Y = X(l + plrray — Koa2) X — p(k1a2 — Koay )Y)

+ﬁ ((”% + £3) ((r1a1 + K2a2) X + (K1az — k2a1)Y)

+(Kk%az + K3a4 + K1K2a5) X >

+(k3a3 + Kfag — K1kaas)Y? + (K] — k3)as + 2k 1K2(ag — a3))XY)._
(2.31)

is invariant under the transformation (X,Y,t) — (=X, Y, —t) if and only if using
Proposition 49 we have

Kol — Ki1as = 0,
Kiaz + Kk3as + Kikoas = 0, (2.32)
+K.§a;; - .‘c%a4 — k1kaas = (.

From these conditions it follows that #; and k2 such that x% + x2 # 0 if and only
if
ke —asky =0 and a3z +ay =0, kikaas + (k2 — k?)ag = 0.

We suppose that (2.30) holds and show that then the origin of system (2.29) is
a center. Clearly if a? + a3 # 0, then after the change ¢ = a; X — axY, y =
as X +a, Y, we get that system (2.31) coincide with system (2.20) when &, = a; and
K2 = ag, and consequently (2.32) becomes (2.30). Since system (2.31) is invariant
under the change (X,Y,t) — (=X, Y, —t) i.e. is reversible by Poincaré Theorem
its origin is a center, and by Theorem 9 it is a weak center. Thus the sufficiency
of proposition is proved.

Necessity We suppose that the origin of (2.29) is a center. We must show
that (2.30) holds. Indeed from Theorem 8 it follows that differential system (2.29)
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can be written as
{Hy, 2} + (1 4+ g1){Hs, z} + (1 + g1 + g2){H2, 2}
—y(1 + plagz — a1y)) + x(arx + azy + azx® + asy® + aszy),

{Ha, y} + (L+g1){H3,y} + (1 + g1 + g2){ Ha, y}
= (1 + plasz — a1y)) + y(arx + azy + azx® + aqy® + asxy).

Consequently taking the homogenous parts of these two previous equalities we
obtain

COH,  OH;  0H,
ay Moy "oy

= z(aga® + ay® + asay) := 28 = X3,

Il

{Hy, 2} + g1 {H3, 2} + g2{ Ha, x}

OH4 JdHy d Hq
Hy. Hs, Hs. =
{Hy, y} + 1 {H3,y} + g2{H>.y} 5% T TRy
= y(azz? + asy® + aszy) == Yo = Y,
) _ 9Hy;  OH,
{Hs,x} + g1{Ha. 2} = —W—Q oy
= —pylasz — a1y) + z(a12 + azy),
OH; OHy
H‘ H- . -— e m——
{Hs,y} + 01 {H>.y} 5

= pz(ax —ary) + y(mz + azy).
(2.33)
From the last two equations we have that (see (1.27) and (1.28)))
91 = (p—3)azz —ayy), and Hs=2(ayx —ayy)Hy := T Hs.

Inserting ¢, and H; into the two first equations ané] takin§ into account the Euler
3 0Y.
Theorem for homogenous polynomials we get that —C,? + (_0'—; = 4(), consequently
L .
(see (1.29) and (1.30))
{Hz, g2} +{H3, 1} — 402 =0,

and this equation has solution if and only if (see Corollary 22)

2w
[[I ({H3?91} _('1QQ)|x=v::ost.g,|l=sini!a't =az+a4 =0,

Hence the first two equations of system (2.33) have a solution if and only if az+ay =
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0. The solutions of (2.33) are
Hy = (ng — 3a2p — ¢)a? + (4aragpu + 4ag — 12a1az)ya
+(6a? + (2a} + a3)p + 3a3 — 2aza5 — c)yz) Hy/2 := Yy H,,
g2 = 12 4 (—6ayas + 2a1p — day)yx
+((a3 — af) (e — 3) + 2a5 + o)y,
where ¢ is an arbitrary constant. By inserting aj + a4 = 0 into (2.29) we get

= —y(1— plary — agx)) + x(ar1z + asy — aga? + agy® + asry),
) ) (2.34)
g= x(1— plaex —a1y)) + ylarx + azy — aqgx® + aqy® + asay),

By calculating g3 as the unique polynomial homogenous of degree four solution
of the equation {Hy, g1} + {H3, 92} + {H2,93} = 0, (see (1.32)) and determining
H; from (1.32) with X; =Y, =0 we get H; = —4g1H,/5 — 3g2H3/5 — 293 H3 /5.
From equation

{Hs, g1} + {Ha. 92} + {H3. 93} + {H2,04} =0,

(see (1.34) with m =5 ), and in view of Proposition 20 we get that this equation
has a solution for the homogenous polynomial g4 if and only if

27
0= / ({Hs, 91} + {Ha, 92} + {H3, 93})|o—cos t, y=sin ¢
0

= 3m(u+1)*(as(a3 — af) + araza5) = 0.

Thus a4(a3 — a?) + ajazas = 0.
The case when = —1 = — (m — 2)|,,,_ has been studied in Proposition 41.
If a; = as = 0 then system (2.34) becomes

i= —y+a(-az’® +ay’ +aszy) = —y + a2y,
= z+y(—asz®+ agy® + aszy) = v+ Yy,
which is a polynomial differential system with homogenous nonlinearities. Conse-
quently we have that
2 2x
A 71— ty=sint B = j['} (—a.4;i';2 +agy® + aszy) |_x=c0&t!y=5imdt =0.

Hence and in view of Corollary 42 we obtain that the origin is a weak center. In
short the proposition is proved. O
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Proposition 51. A guartic polynomial differential system

&= —y(l+ plazz — ary))
+a(ayx + agy + agx® + a7y + agx’y + agzy?), (50
y= a(1+ p(azz — ary))
+y(arz + azy + agz® + azy® + asa®y + aoay?).
where (j1+ 2)(a? + a3 # 0, has a weak center at the origin if and only if
(i) ajas # 0 and
1 3 2 3_,2 .
ag + 523 (a7(a} — 3a3a1) + ag(a3 — afas)) = (,
. (2.36)
as + =—5— (a7(3a} — 3a,a3) + ag(a3 — 3alaz)) = 0.
2&201

(i) az = ag = 0 when az = 0 and ay # 0,
(#it) ag = ag = 0 when a; =0 and az # 0.

Moreover the system (2.35) under the conditions (i) , (ii) and after a linear change

of variables (x,y) — (X,Y) it is invariant under the transformations (X,Y.t) —
(—X, Y, —t), and in the case (iii) it is invariant under the transformations (X, Y, t) —
(X-. _'Y! _t)'.!

Proof. Sufficiency: Doing the change of variables (2.18) system (2.35) can be writ-
ten as differential system (2.19) with m = 4 and

=
I

plazky — a1ko) X — p(arky + agkz)Y,

e
II

(m?aﬁ + k3ay + agkiks + agmlh‘.g) X3 4 (—aﬁﬁg + ark} + Ky ko (Koag — .‘;10,9)) Y3
+ (Br1kz2(Koar — k1ag) + as(k} — 261K3) + ag(2K1K3 — K3)) Y X2
+ (3-%'1 ko(Kia7 + K1ag) + Gs(-‘ig 5 QN%WE) + 39(_25153 + ”?)) Y2X
+(ark1 + ask2) X + (azk1 — a1k2)Y
which is invariant under the transformation (X,Y.#) — (=X, Y., —t) if and only
if
koay — K1az = 0,
—agks + arki + Kika(kaas — K1ag) = 0,
3k1ko(koar — K1ae) + as (k] — 261K3) + ao(2k183 — K3) = 0.

Hence if



2.4. The Proofs of Proposition 41, Corollary 42, Theorems 14 51

(i) k1k2 # 0 then

Koa1 — K1a = 0,
1 ]
%+ 55 (a7(r? — 3K3K1) + ag(k3 — K3K2)) = 0,
2
1 : 2 ; :
ag + —— (a7(3x% — 3k1K3) + ag (k3 — 3k3k2)) = 0—
2K5HK

(ii) k2 =0 ay # 0 then as = ar = ag = 0.
(iii) k1 =0 a2 #0, then a; = ag = ag = 0.

We suppose that statement (i), (ii) or (iii) hold and we will show that then the
origin is a center of system (2.35). Indeed, if aja; # 0, then after the change
T = a X — aay, y = asX + a1Y, we get that system (2.35) coincide with
system (2.20) for m = 4 and with &1 = a; and k2 = a2 and consequently by
considering that this system is invariant under the change (X,Y.t) — (=X.Y, —t)
or (X,Y,t) — (X,-Y, —t), i.c. it is reversible. Hence in view Theorem 23 the
origin is a center.

If ay = a7 = ag = 0 and a; # 0, then differential equations (2.35) become

b= —y(l-payy))+2*(a + aga® + agy?),
g= (1 —pary)) + yx(ar + age® + +agy?).

This system is invariant under the change (z,y,t) — (—z,y,—t), i.e. it is re-
versible. Hence in view Theorem 23 the origin is a center.

If ay = ag = ag = 0 and as # 0, then differential system (2.35) becomes

= _?,"(1 + pasc)) + _’,]’Jy(a_g + G.7y2 + (13.’1.‘2),
g= a(1+ pazr)) +y*(az + ary® + asz?).

this system is invariant under the change (2, y,t) — (x, —y, —f) i.e. it is reversible.
Hence in view Theorem 23 the origin is a center.

Thus in view of the Poincaré Theorem (see Theorem 23) we get that in cases
(i), (ii) and (iii) the origin is a center. Furthermore by Theorem 9 this center is a
weak center.

Necessity: We prove the necessity of the statement (a). We suppose that the
origin is a weak center. Indeed, from Theorem 8 it follows that differential system
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(2.35) can be written as
{Hs, a} + (1 + g1 ){Hy, o} + (1 + g1 + g2){H3, 2} + (1 + g1 + g2 + g3){ H2, }
= —y(1+ plazx — a1y)) + 2(a1z + azy + aez® + ary® + asz’y + agzy?)
= —y+ Xo+ Xy,
{Hs, y} + 1+~ g){Ha,y} + (1 + g1 +92){Hs, 9} + (1 + g1 + g2 + g3){Ha, v},
= (1 + plazz — a1y)) + y(arz + asy + asz® + ary® + asz®y + agry?)

= z4+Y2+ Y,
(2.37)
In view of Corollary 22 and assisted by an algebraic computer system we can
obtain the solutions of (2.37), i.e. the homogenous polynomials Hj. H3, g1, g3 of
degree odd are unique and the homogenous polynomials Hj, g, of degree even are
obtained modulo an arbitrary polynomial of the form e(z? + 32)* where k = 1,2.
Indeed taking the homogenous part of these equations we obtain

{Hs.a} + gi{Ha, 2} = —y(plaez — ary)) + z(a1z + azy),
{Hs,y} + gu{Ho,y} = a(p(azz — ary)) + y(arz + aszy).
The solutions of these equations are
g1 = (1 — 3)(azx — ary), Hj3 = 2Hs(azz — a1y).
{Hy,x} + g1 {H3,x} + go{ Ha,z} = 0,
{Hy, z} + g1 {H3, 2z} + g2{Hz,2} = 0,

the compatibility condition of these two last equations becomes of {Hs, g1} +
{H3, 92} = 0, and since {H3, g1} = araz(2? — y?) + (a3 — a?)xy. By considering
that
m
{Hs. 91} ,—cost.y=sint = 0, we get that the compatibility conditions

0

{Haz, g2} + {Hs, 91} = 0 has solutions. Therefore after some computations we get
that go = (3 — p)(aex — a1y)? + caHa, where ¢3 is a constant. Then from system
(2.69) we obtain the solution

H. :
Hy= 72((;:. - 3) ((af — a3)(a® — y?) + darazay) + c1H3,

where ¢; is a constant. Inserting these previous solutions g,, Hs, g» and H, into
the partial differential equations

{Hs, 2} + g1 {Ha, 2} + g2 {H3, 2} + g3{Ha, 2}
1’(%373 + ary® + aga?y + agzy?) = Q3 1= Xy,
{Hs, y} + g1{Ha,y} + g2{H3,y} + g3{ H2,y}
y(az® + azy® + asga®y + agay®) = yQ3 := Y,
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we get that these differential equations have a unique solution. Indeed, in this case
(1.32) becomes

{H4191}+ {H3:92}+{H2793} = 593: (2‘38)

X, aY,

90Xy 04

dx Ay

mogenous polynomial of degree 3. Consequently there exist a unique solution

because = 5{13, here we have taking into account that €3 is a ho-
g5 = (ai(a3 + 2a3/3)p® — a1(10a3/3 + 4a3) i + a1 (4af + 3a3) + 5(as + 2a6)/3) y°
(—az(a? + 2a3/3)u* + a2(10a3/3 + 4a3)p — (3a3 + 4a3)az — 5/3(as + 2a7)) 23
+ (a"fluz —2(2a3 + a3)agp + 3a1(ai + 2a3) + Tag) 22y
+ (—adp® + 2(2a3 + a?)asp — 3as(a? + 2a3) — Haz) xy?
+e(1 — p)(ay + azy) Ha
of (2.38) and substituting gz into (2.70) we get
Hs = —2/3Hy((—a3p® + az(2a3 — 3a?)pu + 3az(3a? + a3) — as — 2az7) 2°
— (aip® + a1(2a3 — 3a3)p + 3a,(3a3 + a) + ag + 2a6) y*
(3ara3p® + 3ay(af — 4a3)p + 9ay (a3 — a}) + 3ag) ya?
— (3aza}p® + 3az(a? — 4a3)p + 9az(a3 — a3) — 3az) y?a

where c¢ is a constant.
On the other hand from (27) for m =4 and j = 0 we get that

/ ({Hs, 91} + {Hu, 92} + {Hs, 51l cost.ymeint &t
1]

Bl — 3)
B 3

(2.39)
(a1(3a~r + ag) — az(3ag + ag)) = 0.

Hence we get that

(i) If ayaz # 0 then by introducing the notations

Ao = ag+ (az(a} — 3a3ay) + ag(a3 — ajaz)),

3
2a;

1 . , ;
Ag = fg -+ m (0.7 (3{‘1’.‘{1 — 3(!,[(1.%) + fl.g(ﬂ.g — 3(1{(1’,2)) \
2]

we get that (2.39) becomes

3m(p—3)

3 (3(12/\2 - ﬂ.l)\3) = 0.
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(ii) If @y = 0 and as # 0 then 3a7 + ag = 0.
(iii) If as =0 and a; # 0 then 3ag + a9 = 0.

Again from (1.33) with m = 5 we have the differential equation

{Hs, g1} + {Ha, g2} + {H3. g3} + {H2,94} =0,

From this equation we get the homogenous polynomial of degree four g4 which in
view of Corollary 22 can be obtained with an arbitrary term of the form e(z%+y?%)?,
i.e. g4 is equal to

1
((~9atas + 11(3ar + as)af — a3(3(11ar + as) + 54(az + as)a3 )" + 184 (
2

(a* — a3)(3axp® + 6ap?®) + a3 — azae)p — (18(3ar + ag)aj — 36azaag + ag)a?

+(3a2az((a? — 3a)p® + 2(a? — a?)p? + a3(27a3 + 15a7 + 5as — 9alay)

—2as(arag + Yazar)p + 5das(azar — arag) — a2(3(1lar + 0:8,)):1:21,-'2

2 ? : F
+(§a2af(,u —2)u2 + (a—?}l(?a7 + 10ag) + gagag — 2aa? ) — 12a.1a-;)$y3

2 3 2 70’,7 4(18 3 azflg
+(§*3201(,U =2 + (a5 + 57— 263) + 5 )u

—12a,a7 — 4aas + 4a.2ag) 23y + e(2® + *)?,

if as # 0. In analogous form we can obtain the expression of g4 when a; # 0. Now
we determine the homogenous polynomial Hg from (1.37) with m =4 and k =1
we obtain

5 4 3 2
Hyg=—=g s — —golly— —galy — 2o, Hy.
G 691 692 4 693 3 69-1 2

Since the integral of the homogenous polynomial of degree 5

2T
j ({Ifﬁ‘ gl} + {IIEH 92} + {}I‘]!‘ 93} + {IIg g4})lz=cost,y=5inf.dt = {]’
0

then we obtain that there is a unique solution for the homogenous polynomial g5
of degree 5 of the equation

{Hg, g1} + {Hs, go} + {Hy, g3} + {H3, g4} + {H2,95} = 0.

see (1.36) with m =4 and k = 2.
Calculating the homogenous polynomial H; of degree 7 from (1.37) with
m=4 and k = 2 we get
2

6 5 4 3
Hy =——qg1Hg — —goHs — —g3Hy — —gquH3 — —g5Ho,
7,Sh 6 792 793 4 ?9.1 3 7!} 2
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and inserting these polynomials into the integrand of the following homogenous
polynomial of degree 6 we have

2
/ ({Hr, 91} + {Ho, 92} + {H, 95} + {Ha, 9} + {Hs, 951)lccont.ycsine dt = I(a1, az, 1)
0
(2.40)

where [ is such that

(iii) if @3 = 0 and as # 0 then

_mai(p—3)

I(ay.0,p) = 3

(2814 + 12300 + 1776)az + 7(5p + 12)(p + 2)ag) = 0.

(ii) if az = 0 and a; # 0 then

5m a(u — 3)

I0,as,p1) = (21(5;:: +12) (e + 2)ae + (490> + 21 — 432)ag) = 0,

189
(i) If ayas # 0 then
(a1, 0z, 18) = % ( (215 + 12) (1 + 2)(3a2 + 5a2)) s + a1 ((105(;% +427a3) 2

+(426a2 + 2306a2) 4 + 504a? + 338-1.9,3),\3) =i,

By solving equations (2.39) and (2.40) and by considering that the three cases can
be represented as a linear system A& = 0, where &€ = (ag,a9)” in the case (iii),
& = (ar,ag)” in the case (ii) and & = (A2, A3)T in the case (i). By considering that
the determinant of the matrix A is |A| = (p — 3)(u + 2)(21p? + 128y + 212). Then
under the condition (g2 — 3)(p+2) # 0 we obtain the necessity of statement (a) of
Proposition 51.

Now we study the case when ;= 3. After some computations we get that

27
f ({H5! ql} + {H‘if gZ} *F {Ei: g:i})|:1r=(:(}st.y=:-tin 1 dt
Jo

1!'
= — ;ﬂ- (a1(3ar + as) — az(3ag + ag)) = 0.

First we shall study the case when a; = 0, and as # 0. From (2.39) we get that
3ag + ag = 0. From (2.40) we obtain that the integral is identically zero because
ft =3 . On the other hand from the relation

/[]2“ ({ng 91} +{Hs, g2} + {H7, g5} + {Hg, 91} + {H5, g5}

+{Hy, g6} + {H3, g7} +)

dt = I(Gl,ﬂ.g) = 0,

xr=cost,y=sint
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where [ is a convenient function in a; and as. If (iii) a1 = 0 and ag # 0 then
1(0,a2) = (105a3a7 — 105a3as — 864a3c)as + (995a3a7 + 285a3as — 288a3c)ag = 0.

By considering that ag = —3ag we obtain that (3ar+ag)ag = 0. Thus if 3az+ag # 0
then p — 3 = a; = ag = ag = 0. We observe that if a; = 0 then Ay = a¢ and
A3 = ag. In analogous form we can study the case when as = 0 and a; # 0.

If 3a7 + ag = 3as + ag = 0 then we obtain differential system

i= —y(l4 placr — a1y) + = (m1x + asy + agz(2? — 3y*) + ary(y? — 32?)),

= a(1+ plasz — ary) +y (a1z + asy + agz(z? — 3y?) + ary(y® — 32%)),
From (2.36) we have that this system has a weak center at the origin if and only
if

az(3a? — a3)ag + a;(a? — 3a3)ay = 0.

Hence if a; = 0 then ag = ag = 0, and if as = 0 then a7 = ag = 0. In short we prove
that the origin is a weak center of (2.35) in the case when p = 3. Thus we obtain
the necessity of the condition in statement (a). The necessity and sufficiency of
statement (c), i.e. when p + 2 = 0 follows from Proposition 41. Finally we study
the necessity and sufficiency of statement (b). Thus when a; = as = 0 we obtain
that differential system (2.35) becomes

&= —y+x(asxd + ary® + agzy + agry?) == —y + 203,
7= a+ylagz® + ary® + agry + agry®) = x + yQs,

which is a polynomial differential system of degree four with homogenous nonlin-
27

earities. Consequently Qs dt = 0, then in view of Corollary 42

x=cos t,y=sint
we get that the origin isna weak center. In short the proposition is proved. O
Proposition 52. A polynomial differential system of degree five
= —y(1+ plazr —ay))
+z(a1z + asy + apxr? + a2y + a2y + ayzxy® + any?), —
j= 21+ p(aw — ary)) e
+y(arx + agy + +a0z* + a2y + a1220%y? + ar3zy® + anyt),

has a weak center at the origin if and only if

(a)
ay2 + 3(ap +a14) = 0,
2alaia; — (arf + 7(a3al — a%a%) ag — (a?ag —4a3a3 + alag) a;p = 0,
2afa3ayy — (af — 4aia3 + a3) ayp — (alaz — aya3)ay; = 0.
(2.42)

Moreover
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(i) If a1 = 0 and as # 0 then a1a = a1p = ayq = 0.
(i) If as = 0 and a; # 0 then a12 = ajp = ayq = 0.

(#ii) If ayas # 0 then by introducing the notations

1 .
_ 6 2.4 _ 4.9 6 5 3.3 5
M= ai3-— W((m + 7(afa3 — aja3 — a$) a1p — (afaz — 4aja3 + a1al) a“).
103
_ 4 9.2 | 4 3 3
Ao = ayy — PP ( (al —4datas + az) ayp — (ajaz — alaz)a“),
102

we get that A\ = Ay = 0.
(b) ay = a; =0, and a1z + 3(a1p + arq) = 0.
(¢) p+3=0.

Moreover system (2.41) under the conditions (2.42) and (p + 3)(a} + a3) # 0
and after a linear change of variables (x,y) — (X,Y) it is invariant under the
transformations (X,Y,t) — (= X,Y, —t), or (X,Y,t) — (X, Y. —1).

Proof. Sufficiency: First we write system (2.41) after the linear change (2.18).
Later we observe that the polynomial differential system obtained is invariant
under the transformation (X,Y,t) — (=X, Y, —t) if and only if

Kis — Ko =

2k3k%a1 + (k] — 6k3K7 + 3K3)a10 + (3K3K2 — K3k )an =

2r3k3a13 — (K§ — TriRS + TR3K3 — K§)aro — (KK — 4K3KT + K1kd)an =

o o o9

2.‘\3%&%&14 - (-“a,‘} = ’1.&%.“6% + i‘i‘é)alo + (N;Kg - .'fff.'cg)a“ =
From the last three conditions it follows that a2 + 3(ao + a14) = 0.

We suppose that (2.42) holds and then the origin is a center of system (2.41),
and by Theorem 9 is a weak center. We suppose that a? + a2 # 0. Then after the
change ¥ = a1 X — a2Y, y = as X + a1y, we get that system (2.41) coincides
with system (2.20) with £1 = a1 and k2 = ag, and consequently system (2.41) is
invariant under the change (X, Y.t) — (=X.Y, —t). Thus in view of the Poincaré
Theorem we get that the origin is a center. Again by Theorem 9 this center is weak.

We observe that under the assumptions of statement (iii) differential system
(2.41) becomes

i = y(14+p agz)+ay(as+anz®+azry®),  § = x(1+pax)+y?(as+an 2®+arzzy?).

This system is invariant under the transformation (z,y,t) — (z,—y, —t). Under
hypothesis of statement (ii) differential system (2.41) becomes

i = —y(l—pay)+e’(@+ana®ytasy’),  §=z(l-pary)+ye(a+rana®y+asy®).
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This system is invariant under the transformation (x,y,t) — (—z,y, —t). Under
the assumptions of statement (i) the conditions A\ = Ay = 0 follows immediately.

Necessity Now we suppose that the origin is a center of (2.41) and we prove
that (2.42) holds. Indeed, from Theorem 8 it follows that differential system (2.41)
can be written as

{Ho, o} + (1 + 1) {H5, 2} + (1 + g1 + g2){Ha, v} + (1 + g1 + g2 + 93){ H3, 2}
+(1+ g1 + g2+ g3 + ga){ Ha, 2}
= —y(1+ plazz — a1y)) + z(ar12 + azy + aro2* + a2y + a122%y* + arzey® + aray?).
{He, y} + (1 + @) {Hs,y} + (1 + 91 + g2){Has y} + (1 + 91 + g2 + g3){H3, y}
+(1+ 91+ g2+ g3 + ga){ Ha, y}
= 2(1+ plasz — ary)) + ylarx + asy + +aor? + anay + appa?y? + apzay® + angy?),
which is equivalent to
{Hs,z} + gi{Ha,2} = —yplaez — ary) + 2(arz + azy),
{H3,y} + g1{H2,y} = —ypu(aer — a1y) +ylarz + azy).

These equations have the unigue solutions g; and Hj. Inserting these homogenous
polynomials into the equations

{Hy,x} + g1 {H3, 2} + g2{H2, 2} = 0,
{Ha,y} + g1 {Hs, y} + g2{H2,y} = 0,

2)k with ¢k a constant

we get H, and go with arbitrary terms of the form ¢y (2% +y
for k =1,2. Inserting g1, Hs, g2 and H, into the equations

{Hs,z} + g1 {Hs, 2} + g2{Hs, 2} + g3{H3,2} = 0,
{Hs,y} + g1{Ha,y} + g2{H3,y} + gs{Ha,y} = 0,

we have a unique solutions gz and Hj. Inserting g; and H; o for j = 1,2,3 into
the equations

{He, 2} + g1{Hs,x} + go{Ha. x} + g3{Hz,x} + ga{H2, 2}
= a(apr? + a2’y + a1p2®y? + arzzy® + apgy?) = 20y,

{He, y} + 1{Hs,y} + go{ Ha, y} + g3{H3, y} + ga{ H2, y}
= ylawz* + anz®y + a120y® + arzay® + any?) = Yy,

we get that this partial differential system has solution if and only if and only if
a12 + 3(a1g + a14) = 0. Indeed from the computability condition

{Hs, g1} + {Ha, g2} + {H3.93} + {H2,94} = 6.
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we obtain that if

27
/ ({HSs gl} + {H*i'gz} + {H3= 93} = 694)|x=c05!,y:sintdt
Jo
=ai2 + 3((1-19 + 014) = 0.
Then there exist solutions g4 and Hg which we obtain with arbitrary terms of the
form dk(ﬂ;‘z + ;1}2)’“ with dj. a constant for £ =1, 2.
Inserting the homogenous polynomials g; and H; s of degree j and j + 2
respectively, for 7 =1,2,3.4 into (1.36) for m =5 and k = 2 we get
27
/ ({H’?e a1 } =+ {Hﬁ‘! Q'Z} + {H-")'.\ g-'i} + {H4e 94} + {H3!g5})[m=cusf‘y=5hl t dt
0
= Il(a.l,ag) = 0.
where Iy (aq,ay) is such that
Ii(a1,0) = 2maf (u+3)(+2)(ar0 —a1a) =0,
Li(0,a2) = 2mwa3 (u+3)(u+2) (a0 — a1a) =0,
Ii(a1,02)| 40,20 = 27 (0 +3)(n+2) ((af — a3)A1 + arazh2) = 0.

and
27
/ ({HE}, o1} + {Hs, g2} + {Hz, g3} + {Hs, g1} + {Hs, 95}
1]
+{H4=§s}+{H3.97})| o zdt:h(al,ag)zo‘
r=cos l,y=sin

where = I3(a;, az) is a constant such that

4
I5(a1,0)|4,02a, = —% (212042 + 71612 + 52024 + 7857) ay4 = 0,
4
1(0, )| = —Z22 (212043 + 71612 + 52024 + 7857) agq = 0 =0,

aro=ay4 364
IQ(G‘I’G"ZanuﬁEO = A +red =0.

where vy and v» are convenient constants such that the system
2 (p+ 3) (1 + 2) (0 — a3)A1 + araz)s) := g1 A1 + 0202 =0, YA + 12X =0,

is such that A = ayvn — g1 = (p + 3)(p + 2)p(p, a1, a2) with p(p,a1,a2) a

convenient polynomial of degree 3 in the variable y and p(0., a,,az2) # 0.
Consequently if p is such that A # 0 we obtain that Ay = Ay = 0 The

case when (p¢ + 2)p(p, a1, a2) = 0 could be studied in a similar way to the proof
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of Proposition 51. The proof of statement (¢), i.e. when p = —3 is studied in
Proposition 41. Now we prove statement (b). Thus a1 = a5 = 0 and the differential
system (2.41) under the condition a2 + 3(a10 + a14) = 0 becomes

b= —y+z(aoz’ + anz®y — 3(ar0 + a14)2%y? + arzry® + anay?),
=z +y(az! + anazy — 3(awo + a1a)2®y? + a1zzy® + anay®)
Hence we get that 0y = ajox? + a112%y — 3(a10 + a14)2°y? + arzzy® + angy* and
2T
satisfies the condition Q4| —cos t.y=sint At = 0, because a2 + 3(aio + a1a) =

0
0. Then in view of Corollary 42 we get that the origin is a weak center. Thus
the necessity of the statement (b) is proved, and consequently the proposition is
proved. O

Proposition 53. The polynomial differential system of degree siz

&= —y(l+ plazz — ary))
+a(arx + aay + a152° + aey® + arrzty + asr®y? + apx?y? + agpxy?),
= z(1+ plar —ary))

+y (17 + agy + a152° + a16y° + arrzty + a1s2’y® + aroz?y® + agozy?)
(2.43)

has a weak center at the origin if and only if
(a) the following conditions hold:

8atalas + (2a7a3 — 4aial + 2a1a8) a9 — (3a] — 15a}a3 + 25aa} — 5a,a$) ars
+ (ad + 11ata3 — 9aja3 — 3afas) azp = 0,

8atajarr — (15a] — 55a}a’ + 45aial — 5a1a$)ais — (10ajal — 12ata) + 2a1a8)ary
—(—15a8as + 35ata3 — 13aa3 + af)azy = 0,

, - . . . . =
2a3a3ars — (5a3 — 10a3a3 + 5a1ad)are — (4ala3 — 2a1ad)ar9 — (6atai — Satas — a3)agy = 0.
Moreover
(i) if a1 = 0 and az # 0 then a5 = a7 = 0,

(ii) if aa =0 and a; # 0 then aig = ays =0,
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(iti) if ayas # 0 then

’\1 = 3
8ajas
+ (af + 11aja3 — 9aia} — 3afaz) 320) =0,
1 & ; : ; .
da= a7 — W((lfm{ — 55ata3 + 45aias — 5a1a$)ars + (10aia3 — 12ada3 + 2a1a8)arg
10a
+(—15a8as + 35a}a3 — 13a2a3 + a;)am) =0,
1 5
Az = ais+ Y ( — (5a3 — IOQ?aE + 5&1&3)&16
ﬂ.](l.2
_(4‘3?“% = 261&%}019 = (6‘1%“% — bajay — ag)ﬂzu) = 0.
(2.44)
(b) a) =ag = 0.
(¢) p+4=0.

Moreover, assume that (u+4)(a3+a3) # 0 then system (2.43) under the conditions
(i), (ii),(iii) and after a linear change of variables (x,y) — (X,Y) it is invariant
under the transformations (X,Y,t) — (—X.Y,—t), or (X.Y 1) — (X, =Y, —1).

Proof. Sufficiency: First we observe that the polynomial differential system (2.43)
under the conditions (i) becomes

&= —y(l - pasx)+zy(as + aey® + ar7z* + aroz?y?),
y= (1 — paxz) + y*(az + aey* + a1z + aroa?y?),

which is invariant under the transformation (x,y,t) — (z, —y, —t), and the poly-
nomial differential system (2.43) under the conditions (ii) becomes

i= —y(l+pay) + 2*(a1z + aps2* + a182?y® + azoy?),
g= z(1+pay)+zy(az + asz® + a1s2®y® + azoy?),

which is invariant under the transformation (z,y,t) — (—a,y, —t)
Under the linear change of variables (2.18) the differential system (2.43) is
invariant under the transformation (X,Y,t) — (=X,Y, —¢) if and only if

(2;{?&% — 4k3K3 + 25153) g — (35'{ — 15%k1 k2 + 25k3K3 — 5,{1,{2) 16
+ (K3 + 11k1K3 — 9kIk] — 3kSK2) ago + 8kIKk3a15 =0,

(157 — 55k3k32 + 45k3k3 — 5Kk145)a16 + (10k3K2 — 126353 + 2K1K8)arg
+(—15aas + 35aia3 — 13aa3 + al)asg — 8ajada;r = 0,

2rTk3a1s — (5k5 — 1067 K3 + br1KS)ase

—(4k3K2 — 2k153)a19 — (6K253 — Brirg — K3)ag = 0.

1 ;
a5+ 755 ( (2a%a3 — 4a3al + 2a1ag) ajg — (3&{ — 15a3a3 + 25a3al — 5(1.1(13) aig
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We shall study only the case (iii), i.e. when ajas # 0. We suppose that (2.44)
holds and show that then the origin is a center of system (2.43). For the case when
a?+a3 # 0, after the change x = a; X —a2Y,  y = axX +a 1Y, we get that this
system coincides with system (2.21) and with x; = a; and ky = as. Consequently
system (2.21) is invariant under the change (X,Y,t) — (=X,Y,—t). Thus in
view of the Poincaré Theorem we get that the origin is a center, and by Theorem
9 this center is a weak center.

Necessity, Now we suppose that the origin is a center of (2.43) and we shall
prove that (2.44) holds. Indeed, from Theorem 8 it follows that differential system
(2.43) can be written as

{H7, 2} + (1 + g1){He.x} + (1 + g1 + g2){Hs. 2} + (1 + g1 + g2 + 93){Ha. 2}
+(1+ g1+ 92+ 93 +94){Hs,x} + (1491 + g2 + 93 + g4 + g5){Ha, 2}

= —y(1+ plagr —ary)) + (al;‘c + agy + a152° + a1y’ + arzzty + arsady?
+agr?y® + agga:y”‘),

{H7, y} + (L +gi){He,y} + (1 + 91 + g2){Hs, y} + (1 + g1 + g2 + 93) {Ha, y}
+(1+91+ g2+ g3 +g4){Hs,y} + (L + g1 + g2 + g3 + 94 + g:){ H2, y}

= 2(1+ plasz — ary)) + y(al:n + asy + a152° + a6y’ + arrxty + agzdy?

+agz?y® + 3-2037?1‘4)-

This partial differential system has solution for arbitrary a,, as, a5, a6, a17, a1s, a9, agp-.
After some computations we get that

2m
/ ({H7191}+{H6192}+{H5$ 93}+{H4.g4}+ {H3-. 95}) [ . tdt
2 L=C0S L, Yy=s1n
= —7m(p+4) (a1 Aa(ar, az) — Sas A (ar. a2) — azAs(ar, az)))
= I/I'f.l}"l + V}ZAQ + I/l:;A:; . U,
(2.45)

where Aj = Aj(a1, a2, p) for j = 1,2, 3 are constant defined in (2.44). By continuing
the integration of (see equation (1.36) with m = 6 and k = 3) we get that

/0 W ({H9| 91} +{Hs,g92} + {Hr7, g3} + {He, 94} + {H5, g5} + {H1, 96}

+ {Hs, 97})‘ dt == va1 A1 + vaaAs + va3A3 = 0,
r=cost, y=sin £

(2.46)



2.4. The Proofs of Proposition 41, Corollary 42, Theorems 14 63

where
2 _
Voy 1= 65;12; ((—1062a'~1’ — 558a3) 1% + (—8961a2 — 7501a3) 412
+1344c — 846002 — 8796a§),
5 ; ‘
vop 1= — % ((zumag — 354a2)® + (1389742 — 2987a2) 2
+(448¢ — 430842 — 2820a2) + (16677a2 — 83367a3 — 1344c),
. oap 2 2y .3 2 2y 2
Vag i= eors (4014&1 — 2250a3)p” + (27933a7 — 19799a3) 1

+(—11556a2 — T764a3 + 1344c) + 9988943 — 155763a2 — 4032c),

where ¢ is an arbitrary constant. Again from equation (1.36) with m = 6 and
k=15 we get

27
/ ({Hn, a1} + {Ho, 92} + {Ho, g3} + {Hs. g1} + {H7, g5} + {He. 96}

4]
dt := v31 A1 + va2As + 333 =0,

r=cost, y=sint
(2.47)
where v3; for j = 1,2, 3, are convenient constants. From (2.45), (2.46) and (2.47)
we obtain the linear system with respect to A1, Ao, Az : AN =0, where A = A(p)
is the coefficient matrix with determinant |A| equal to

+{Hs, g7} + {Ha, gs }{ H3, 99})

Yin iz Mg (a2, 13 4 :
Py By ey | = —% (12276;1."’ + 145467p4 + 50247143
V31 V32 Va3

+480577p2 — 37759950 — 2701980) (84613 + 61494 — 5761 — 34299) # 0.

Consequently if |A] # 0 then the unique solution of these linear system is the
trivial solution Ay = Ay = Az = 0. The case when |A| = 0 could be studied in
a similar way of Proposition 51. Thus the necessity of statement (a) is proved.
To prove statement (c), i.e. when g = —4 we apply Proposition 41. Finally we
prove statement (b), i.e when a; = as; = 0. Under these conditions system (2.43)
becomes

= —y+z(ase® + arey® + arrrty + a1s2%y? + a192%y® + agerly?) == —y + 2905,
y= x+y(as2® + a1ey® + arrz'y + a1s2®y® + arz?y® + azox'yt := z + yQs,
(2.48)

which is a polynomial differential system of degree six with homogenous nonlin-

27
earities. Since / Q5] ,—costy=sint @ = 0, in view of Proposition 42 we obtain
A 2
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that the origin is a weak center of (2.48). Thus the necessity of the proposition is
proved and consequently the proposition is proved. O

2.4.4 Classification of quadratic and cubic planar differential sys-
tem with a weak center

For nondegenerate quadratic center (see for instance [6]) and cubic center
(see for instance [43, 52]) the center problem has been solved in terms of algebraic
equalities satisfied by the coefficients.

Proposition 54. For the quadratic polynomial differential system

&= —y— Az + (2h2 + As5)zy + A2,

2.49
= x+ Agmz -+ (21\3 + /\-.1)117:9’ = A2y21 ( )

or equivalently
&= {Hy+ Hs,z} + g1 {Ha,z}, 9= {H2+ H3,y}+ g1{H2,y},
with g ,
Hs = 2(A2+Xs) a® + Agaty — g(Aat Ao)y® — Aoay?,
g1 = My — A5z
the origin is a center if and only if one of the following four conditions holds
(1) A=A =
(ii)) A2=XA;= 0,
(iti) Az —As= 0,
(IU) )\5 = U A4 + 5()\J b A(i) = 0, )\:gAs — 2)\% e A% = 0

|
L

Theorem 55. A quadratic polynomial differential system (2.49) has a weak center
at the origin if and only if a linear change of coordinates z.y and a scaling of time
t it can be written as one of the following systems

= —y(143Xy) — A3z?,
_ v i) =2 (2.51)
y= x(14+3A3y) — Aszy;
= —y({1—-A —Age,
y (( 6Y) — A3 (2:62)
y= x((1-Aey) — Aszy;
= —y(1+ dex — Agy) — x(A2x + Agy),
Y ( 2 6Y) — o(A2 6Y) (2.53)

y= z(1+4Xr—Asy) — y(A2z + Aey);
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§= —4f— /\3.’1‘,'2._
(2.54)
y= x— A3zy;
= —y(l—Asy)— 2Ny,
(1= Asy) — 2X¢ (255)

g= x(1-Xey) —2Xey>.
Proof. Indeed, differential system (2.49) can be rewritten as (19) if and only if
A+ A +323=0, As + 44Xy = 0. (2.56)
Consequently system (2.49) becomes
= —y(1+ Aoz — Agy) — z(Asz + Aay),
= a(l+ dex — Agy) — y(Asz + A2y),

In view of (2.50) and taking into account the condition (2.56) we get Ay =

A2 = A; = 0 and A\g = —3A3, then we obtain the differential system (2.51);
As = A2 = 0, and Ay + Ag +3A3 = 0, then we obtain the differential system (2.52);
A3 = Ag, Az = —4Ag, and Ay = —4\3, then we obtain the differential system

(2.53); As = A2 = 0, Ay +5(A3—Ag) = 0 and Ag(A3—2Ag) = 0, then we have either
As = A =X =0, A+ D5A3 =0,0r As = A2 = 0,23 = 2)g and Ay + HAg = 0.
Therefore we get the differential system (2.54) or (2.55). In short, the theorem is
proved. O

Remark 56. In the paper [12] the classification of isochronous quadratic centers
is given. From this classification there are only two isochronous centers which are
weak centers, which we obtain from the equation (2.52) for A3 = A\¢ = —1, and
A3 = —1, Ag = 0. These systems are

T=—-y+ 2% — y"z, ¥y =x+4+2zy,
and
i=-y+2°, y=z+zy,
respectively.
Proposition 57. For the cubic polynomial differential system
= —y+ A3+ Ba?y + Cxy® + Dy?,
y= a+ Ka®+ La’y+ May® + Ny?,

the origin is a center if and only if one of the following sets of conditions hold
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() SBA+L+C+3N=
(BA+L)(B+D+K+M)—2(A—N)(B+M)=
2(A+ N) (BA+L)?> - (B+ M)?)
+(BA+L)B+M)YB+K—-D—-M)= 0

(1) 3A+L+C+3N= 0

2A+C—-L—-2N = 0,
0

0

0

=8

(2.58)

B+3D-3K—M =
B+5D+5K + M =
(A+3N)(3A+ N) — 16DK =

Theorem 58. A cubic polynomial differential system (2.57) has a weak center at
the origin if and only if after a linear change of coordinates x,y and a scaling of
time t it can be written as one of the following systems If N # 0,

K-B LB+LK
5= _y(1+1{x2+(N+L)xy+( et )2)

2 2N
+z (N(y* — 2) + (K + B)ay),

K-B LB+LK S
¥ = :;-:(1+K:.':2+(N+L);r:y+ ( ! ; - = 2—; \)yg)
+y (N(y? — 2®) + (K + B)zy) ;
if N =0, then we have either the system
= -y (1 + K22 — Dy?) + (K + B)z?y,
g= a(1+Ka? - Dy?) + (K + B)ay?; i
or the system , ,
i= —y(1+ Lay— Ba® — Dy?), i3

y= z(1+ Lay— Ba? — Dy?).
Proof. Indeed, differential system (2.57) can be rewritten as (19) if and only if
L+C=A+N, M+D=B+K. (2.62)
Consequently (2.57) becomes

i= —y(1+(N-Clzy+ Kz*—Dy?)+z((L—N+C)a*+ (B+ K)zy + Ny?),
= z(1+(N-Czy+ Ka®>—Dy?)+y((L—N+C)a%+ (B+ K)zy+ Ny?),
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By solving (2.62) together with (2.58) (i) we deduce that this system have no
solution. Thus center of cubic system (2.57) under the conditions (2.58) (i) is not
a weak center.

By solving (2.62) together with (2.58) (ii) we deduce that this system have
three solution.

(i) N#0then A+ N=0and L+ C =0, 2ND = N(B - K)+ L(B+ K).
This solution provides the differential system (2.59).
If N = 0 then there exist two solutions.

(ii) If N = 0then A = 0 and L = 0. This solution provides the differential system
(2.60).

e (iii)] If N = 0 then A = 0 and K + B = 0. This soluticn provides the
differential system (2.61).

Thus the centers of cubic systems (2.57) under the conditions (2.58) (ii)
generate three weak centers.

In short, the theorem is proved. O

Remark 59. In the paper [12] the classification of the all isochronous cubic center
is given. From this classification there are only two isochronous center which are
weak center, which we obtain from (2.59) for N = -1, B = K =0, and N =
—L =-1, K =B =0, These cubic systems are

&= —y+a—3zy? = —y(1 +2zy) + z(z? — y?),
y= x+32% —y> =z(1+ 22y) + y(2® — y?),

and ) )
= —-y+a®—zy®=—y+z(z?—y?),

= z4+az+2iy—y =r+ya®—y?),

respectively.

2.5 A—Q differential system. Center problem part I1

In this section by developing the results given in the previous section we
study the Conjecture 15.

2.6 Proof of Theorem 16

The proof of Theorem 16 for m = 2 and m = 3 follows from the proof of
Theorem T of [35] .
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Proposition 60. The fourth polynomial differential system
&= ~y+x(a1$+a2y+agr2+a4y2
+aszy + apa® + ary® + asx?y + ag:ryg) =P,
9= x+y(a;x+a2y+a3x2+a4y2

+aszy + agz® + ary® + asz?y + &91‘3}2) =G

Weak centers

(2.63)

where a3 + a3 + ai + a2 + a2 # 0 has a weak center at the origin if and only
if after a linear change of variables (x,y) — (X,Y) it is invariant under the
transformations (X,Y,t) — (= X,Y, —t) or (X,Y,t) — (X, =Y, —t). Moreover,

(i) if a3 + a3 # 0, then system (2.63) has a weak center at the origin if and only

if
ag +ag =0, asayas + (a3 —at)ag = 0,
atay — alasag + ayalas — adag = 0,
3aya3ar — 3alazag + (a3 — 2a1a3)as + (2a}ag — ad)ag = 0.
Consequently
(a) .
a3 —a
ag +ag =0, as + Mu“ = 0,
apas
1
ag + °a3 (a7(a} — 3a3a1) + ag(a3 — afaz)) = 0,
2
ag + s—5— (a7(3a} — 3a1a3) + ag(a3 — 3ajaz)) = 0.
2&2(1]

when ajas # 0,
(b) as = a3z = ay = a7 = ag = 0, when a; # 0,

(c) ay = a3z = ay = ag = ag = 0, when as # 0.

(2.64)

(ii) If ey = as = 0 and asas # 0 then system (2.63) has a weak center at the

origin if and only if
az +ay =
Aas + (1= A)ay =
Nar — Nag + Nag — ag =

3\%az 4+ 3hag + (A* —2A%) as + (2A% — 1)) ag =

c o o e



2.6. Proof of Theorem 16 69

as + v/4aj + a?
204
linear change of variables (x,y) — (X,Y) it is invariant under the trans-

formations (X, Y. t) — (—=X,Y, —1).

where A = . Moreover the weak center in this case after a

(i) if a1 = as = a3 = ay = a5 = 0, then the origin is a weak center.

Proof. Sufficiency: First of all we observe that the polynomial differential system
(2.63) after the linear change of variables (2.18) would be invariant under the
transformation (X,Y,t) — (=X, Y, —#) if and only if

Kol — Ko =

Kias + K3a4 + K1kaas

Rjay — Pi'.%.“{-g(lg + K1 K-%(,Ig - n'.ga..;; =

0
0

K3as + Kiay — K1keas = 0, (2.65)
0

3K1K3a7 — 3K2Koas + (k§ — 2k1K3)as + (262k2 — K1 K3)ag = 0

We suppose that (2.65) holds, and consequently the origin of the new system is a
center. When ar‘l’ —f—a% # 0, after the change © = a1 X —asY, y=aX+a1Y, we
get that the system has the form of system (2.20) with m = 4, here k1 = a; and
k2 = ap and consequently this system is invariant under the change (X.Y,t) —
(—X,Y, —t) i.e. it is reversible. Thus in view of the Poincaré Theorem we get that
the origin is a center. Hence system (2.63) under conditions (2.64) has a weak
center at the origin. Thus the sufficiency under assumption (i) is proved.

When k152 # 0 then by solving (2.65) with respect to x; and ko, and if we
denote by k1 = a1 and k2 = a2 we obtain (2.36). For the case when sz = 0 and
k1 # 0, then from (2.65) it follows that

Go=az3=a4=ay=ag=0. (2.66)
If (2.66) holds then system (2.63) becomes
& =-y+2? (al + asy + agz® + agyz),
v =z+ -ya:(al + asy + agx? + agyz),

which is invariant under the change (z,v.t) — (—x,y.—t). If Ky, =0 and ko # 0
then from (2.65) it follows that

] = a3 = a4 = ag = g = 0. (267)

If (2.67) holds then (2.63) becomes
T =-y+zy (ag +asz + azy® + (18.'1.'2),

g =x+y? ((12 +asz + a7y® + (13.1[-'2),
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which is invariant under the change (z,y,t) — (x, —y, —t).
When a; = a» = 0 and a4as # 0. then by taking

A 1
Ky =cosf:i= ——— and kg =sindi= ——
1+ A2 L+ A2

where A is a solution of the equation \? — EA — 1 = 0. After the rotation z =
a4
cosf@ X —sinfY, y=sinf X + cosfY, then in view of (2.65) we get that (2.63)

becomes

A 1+ A2 V1422
A 1 2 - Bae 2 PP :
v= x+1 X xy (—2&4Y+ (09 —3Aar) | Nz —A"ay MGTX?) .
2) V14 A2 V14 A2

Thus this system is invariant under the change (X,Y,t) — (= X,Y, —{), i.e. it is
reversible. thus in view of the Poincaré Theorem we get that the origin is a center.
Therefore the sufficiency is proved and (ii) holds.

If ay = as = a3 = a4 = a5 = 0, then system (2.63) becomes

Q.
Il

-y -+ (a.ﬁ:r3 + agry® + ary® + a.gsczy) = —y + afls,

T+ y(a(;:r3 + agry® + azy® + (13.1'2_?,-') = x + Y3,

@,
Il

27
By considering that / Q3(cost,sin t)dt = 0, then in view of Corollary 4 of [35]
we get that the {)rigifl is a weak center which in general is not reversible. Thus the
sufficiency of the proposition follows.

Necessity in case (i) We shall study only the case (a). The case (b) and (c)
can be studied in analogous form. Therefore we assume that a;as # 0. Now we
suppose that the origin is a center of (2.63) and we prove that (2.36) holds. Indeed,
from Theorem 8 it follows that differential system (2.63) can be written as

P= {Hs,a}+ (0 +g){Hy, 2} + (1 +g1 +g){Hs,a} + (1 + g1 + g2 + g3){ H2, x}
= —y+zx (ala: + asy + agy?® + azx® + aszy + agz? + a7y’ + agaxty + agrr.yz),
Q= {Hs,y}+Q+g){Hsy}+ 1+ g1+ g2){Hs y} + (1 + g1+ g2 + g3){Ha, 9},

= T+ y(al:r —agy + a,1y2 + azx? + asry + agx> + t;wy3 o+ agzgy + ag:cyg)
(2.68)
In view of Corollary 22 and assisted by an algebraic computer we can obtain the
solutions of (2.68), i.e. the homogenous polynomials Hg, Hg. g1, g3 of degree odd
are unique and the homogenous polynomials Hy, g» of degree even are obtained



2.6. Proof of Theorem 16 1

modulo an arbitrary polynomial of the form e(z? + yQ)k where k = 1,2. Indeed
taking the homogenous part of these equations of degree two we obtain

{Hs.z} + g1 {H2, 2} = z(a1x + azy),
{H3,y} + g1 {H2.y} = ylarz + azy).
The solutions of these equations are
g1 = 3(ary — az1), Hj = 2Hs(ase — aqy).
The homogenous part of (2.68) of degree 3 is
{Hy,z} + g {Hs, 2} + g2{Ho, 2} = (asy?® + azz® + asy) = 2Qy, (2.69)
{Hi,y} + 91 {H3,y} + g2{H2,y} = y(aay® + a32” + asay) = ya.

The compatibility condition of these two last equations becomes of {Hz, g1} +
{Hy, g2} = 495, and by considering that {Hz, g1} = {Hz, —3(asx — a;y)?} since

{Ha, g2 — 3(asz — a1y)*} = 4.

Hence, in view of proposition 20 we get that

27

Qs (cost, sin t)dt = 2m(az + aq) = 0.
0

So a3 + a4 = 0. Therefore go = 3(asx — a1y)* — ayzy — 2a52* + ¢y Ha, where c;
is a constant. Then from system (2.69) by considering that H, is a homogenous
polynomial of degree four we obtain the solution

1
Hy = —3{39133+292H2)+C|H§
= Hs (3 ((a.% —a?)a? — a1a2:t:y) + azz? + 2aqrcy) +ec HE

Inserting these previous solutions g1, Hs., g» and H, into the partial differential
equations

{Hs, x} + g1 {Ha, 2} + g2{Hs, 2} + g3{ Ha, z}

z(agz® + azy® + agx?y + aoxy?) = 283 := X4,

{Hs, y} + g1 {Ha,y} + 92{H3,y} + ga{ H2, y}

Y(aa® + azy® + agx?y + agry?) = Y3 := Y4,

(2.70)

we get that these differential equations have a unique solution. Indeed, in this case
the compatibility condition is

{Hs, g1} + {Hs, 92} + {H2,93} = 503, (2.71)
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dX. ay.
because 8—131 e _df = 583, and €3 is a homogenous polynomial of degree 3.
Consequently there exists a unique solution g3 of (2.71) such that
5 10 5 g
)

) 11
g3 := [ —6aza? — ad + —azas — —aja4 — —ar — —a
g3 ( 207 2 3 205 314 3 7 33

+((2&:‘% —aya3)p® + (8a3 — 2a,a3 — 2a1a5 — asay — daycy)p
+Ba? + 30,;&% — 2aqas + 9asaq + Hag — 4alcl):r.2y

+( — fI-sz'-“;‘ﬁ-Z + (a1aq + 4azcy + ayay)p — Qa.ga.f +4dejaz —Yayay — 5n.7)rry2

0. 1 7
(%a‘f,uz = 5(220'13 — 5ayas — Hasay — 4ajc)u

+%(21aﬁf + 5a1a5 + Sazay + Sag + 10ag — 12a1c1))y3,
Thus the homogenous polynomial Hs can be compute as follows
H; = —% (4g91Hy + 392 H;3 + 295 Ha)
using (2.70).
Hence partial differential system (2.70) has a solution if and only if az + a4 =

0. On the other hand from (1.25) for m = 4 and assuming that a,as # 0 and
denoting by

| AP (af — a3)a
: 5 PR
1 ; .
A2 = ag— 23 (az(a? — 3a3ay) + ag(ad — a}as)),
2
1 , p 2 ’
Ag = ag— 32 (az7(3a} — 3a,1a3) + ag(a3 — 3afas)) .

From Remak 34 with m = 4 we get that

27
I = fﬂ ({Hs, g1} + {Ha, g2} + {H3, 93})|1—cos t.y—sin¢ 9t
= 3/27 (2a1a2X1 + 2a2M2 — 2a;A3) = 0.
Under this condition the first differential equation of (1.25) with m = 4 becomes
{Hs, o1} + {Ha, g2} + {Hs, g3} + {H2,94} = 0.
It has a solution g4 which in view of Corollary 22 can be obtained as follows

g1 = Gy(z,y) + 8c12(2a4y + 2a5x)Hay + 4::2H22,
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where Gy = G4(x,y) is a convenient homogenous polynomial of degree four, s is a
constant. Using formula (1.35) with k = 1 X5 = Y5 = 0 we obtain the homogenous
polynomial Hg as follows

.

5 4 3 2
Hg = —Enga . 69254 - 69:3H3 - 6-9'4H2'

By considering that the integral of the homogenous polynomial of degree 5

2
/ ({Ho, 91} + {Hs, g2} + {Ha, g5} + {Hs, 041 lcontysms d = 0,
0

then we obtain that there is a unique solution for the homogenous polynomial g5
of degree 5 of the equation

{He, 1} + {Hs, 92} + {Hy4, g3} + {H3, g4} + {H2.95} = 0,

which cOmes from the first equation of (27) with m =4 and j = 1.
Using formula (1.35) with & = 2 Xg = Y5 = 0 we obtain the homogenous
polynomial H; as follows

6 b} 4 3 2
H:; = _?ngﬁ - ?Qsz - ?9354 - ?QdH:a - §9‘5Hz

and inserting it into the next integral of the homogenous polynomials of degree 6
we get that

I := /:ﬁ ({H7, g1} + {Hs, g2} + {Ha. g3} + {Hz, 94})|s—cost y=sint 4
= 7 (radiA2 + g + vsda + g A3) .
where
2(4[&;&2)3 + 16a1a3 + 2a3as + (5ara3 — a?)ar + (afay — ag)ag)
V= - Py ;
Vo= —day, vs— —24a} — 88aya3 — 8a3a, =Bl 8ad)

ay

By solving Iy = 0 and I = 0 and assuming that a, (4&% + A1) + 2apayq # 0. we get
that
ar A (—4aya3 — 2alay + (af — 5ayad)ar + (a3 — alaz)ag)

Ay = ,
4 2a3(ay(4a3 + \y) + 2aza4)

A (—4aya3 + 2a1a3 M — 23a4 + (3a? — 15a1a3)ar + (3a3 — 3ataz)ag)
2a3(a)(4a3 + A1) + 2a2a4) '

Az =

(2.72)



74 Chapter 2. Weak centers

By continuing this process we get that the following relations must hold

2
I3 := f ({Hg. g1}+ {Hg, gz}-l—{HT-. 93} + "-+{H3'- -';"TI’]’)]::.-=coe;t.g,r:.a:intdt
0
= p(A1, A2, A3) =0,

where p is a convenient polynomial of degree five in the variables ;. As, A3. Insert-
ing into I3 the values of A; and A3 from (2.72) we get that the following relations
must hold

pP= P(/\l.-/\2-. /\3)| =M (e-i/\‘{ + 53/\? + 82/\;‘; +e1A + E,’(]) =0,

where
eq = 6550majai,
es = 41280 adate; + Y.
ea = (998407 ada’in) 2 +rl, (2.73)

er = (10asa,(79872a}a3 + 3993a3adas)) & + iV,

eo= w(20a1as + 10ay) (79872a3a] + 39936a3abas) 3 +r\”,
where *) is a convenient polynomial of degree j in the variable ¢y for k = 0,1, 2, 3..
Now we show that the polynomial p has only one real root. Indeed from the results
given in [42] we get that a quartic polynomial with real coefficients e,z* + ezz® +
eox? + e1x + eg with eq # 0 has four complex roots if

Dg = 38% == 862&4 S 0,

Dy = 256e3ed — 2Tedel — 192e3e;e3es — 2Teded — Gesedepe + e3eel

—desede? + 18eseier ey + 144eseseiel — 80esedepeser + 18eqeqeies
—4edepel — dejed + 16eqedeq — 128eeZel + 144e2esepe? > 0.
After some computations we can prove that for the e;’s given in (2.73) for j =
0,1,2,3,4 we get that

Dy = ( - 119500800172(1?0.3)6% +¢2,
Dy = (35842867256894500493028960000007°a3' a3 (24102 + a)* ) + ¢,

where q(-k)is a convenient polynomial of degree j in the variable ¢, for k = 2,4.
Taking the arbitrary constant ¢; big enough and such that a,a2(2a1a2 +a4)c; > 0
we obtain that the polynomial p has the unique real root A; = 0, and consequently

Az = A3 =0.
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Finally we study the case when 2aqas + a4. By repeating the process of the
previous case we finally obtain that from the equations I; = 0 for j = 1,2,3 we
get that

Ja
da= 2o,
1

0= Xy (174a3)\s + a2(87af — 29a3)ay + a2(261a3 — 87a3)az
+a3a1(605a5 — 995a7) + T04aia3ey) .

By choosing the arbitrary constant properly, we can obtain that the unique solu-
tion of I; =0 for j=1,2,3 is Ay = Ay = A3 = 0. Thus the origin is a weak center
in this particular case. Thus the necessity of the proposition is proved.

We observe that Proposition 60 provides the necessary and sufficient condi-
tions for the existence of quartic uniform isochronous centers. We observe that
this problem was study in [11, 2, 1], but in these papers there are some mistakes.
For more details see the appendix.

Proposition 60 can be generalized as follows and the proof is similar

Proposition 61. The fourth polynomial differential system

= —y(l+ plasr —a1y)) + =z (al,’c + azz? + asy + aqy?

+asry + agz® + ary® + agxy + ﬂgf!lg)
(2.74)
y= x(l+ plasr —a1y)) + y(ﬂ.l:r + asy + azz? + asy?

+asey + agr® + ary’® + agx’y + as-'ryQ),

where (1 +m — 2)(a? + a3) + a3 + a + a2 # 0 has a weak center at the origin
if and only if after a linear change of variables (x,y) — (X,Y) it is invariant
under the transformations (X,Y,t) — (=X.,Y, 1) or (X,Y,t) — (X, Y, —¢).
Moreover,

(i) if a3+ a3 # 0, then system (2.74) has a weak center at the origin if and only
if

az +ag =0, asaias + (a3 —a?)ag = 0
a%aq - a%a.ga-g + ay ﬂ.%(l,g = agaﬁ = 0,
3aiaday — 3atazag + (af — 2a1a3)as + (2afas — a3)ag = 0

Consequently
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(a)
2 __ a2
as +ay =0, a.5+Ma4: 0,
apao
1
ag + —= (ﬂy(&? - 30%&1) + ﬂ.g(a% - ﬂ‘.%ag)) = U._.

2:13
s + ﬁ (ar(3a} — 3aia3) + ag(a3 — 3alaz)) = 0.
when ayas # 0,
(b) az = az = ay = ay = ag = 0, when a; # 0,
(c) ay = a3z = ay = ag = ag = 0, when as # 0.
(ii) If ey = as = 0 and ayas # 0 then system (2.74) has a weak center at the
origin if and only if
az + a4 =
Aas + (1 —A)ay =
Aar — )\2(19 + Aag —ag =

3X%a7 + 3hag + (A3 — 2/\2) ag + (2/\2 —1))ag =

a5 + \/4a3 + a?
2(.}:,1

linear change of variables (z,y) — (X.,Y) it is invariant under the trans-
formations (X,Y.t) — (=X,Y, —1).

e Ll

where A = . Moreover the weak center in this case after a

(#ii) if ay = ay = a3 = aq = a5 = 0, then the origin is a weak center.
(iv) p+ 2 =a3 = a4 = a; =0, then the origin is a weak center.

Remark 62. A weak center in general is not invariant with respect to a straight
line. Indeed, the cubic A8 system with a weak center at the origin [55]

. ‘I'2 T

&= —y(1+y+%)+§(¢-—y—y2)=
, y* Y 2
y= z|l+y+3 | +5@-y-y9),

is not invariant with respect to the straight line.
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2.7 Appendix

The classification of the isochronous centers of Proposition 60 for system
(2.63) has been previously studied in the papers [11] and [1]. But in both papers
there are some mistakes.

More precisely, in [11] they write system (2.63) in in polar coordinates as
follows

= Pa(p)r® + P3(p)r® + Pap)r?, ¢ =1, (2.75)

where
Py(¢) = Rycosp+rising,
Pi(¢) = Racos2p + rasin2p,
Py(¢) = Rjzcos3p + rysindy + [y cos g + rysin g

We note that in [11] there forgot to write the term r; sin . The relations between
the parameters of (2.63) and the parameters of system (2.75) are

Ri= a1, ri=a2 Ry=(ag—a4)/2, ro=as/2,
Ro= (a3 +a4)/2, Rs=(as—ay)/4, r3=(as—ar)/4,
Ryi= (3ae+ag)/4, ri=(3ar+asg)/4.

In [1] they write system (2.63) in complex notation as follows
= w‘.z+z(Az+Az+Bz"‘+2(b; +:’;3)z:?+l§'z"2+023+D225+D522+C‘E3), (2.76)

being z = x+iy, z = x—iy. A = (a1 —iaz)/2, B = (by+bs—ibs) /4, C = (d1—id>)/8
and D = (d3 — id4)/8 where ay,as,by,bo, b3, dy,ds,ds, dy are real constants. The
relations between the parameters of system (2.63) and the parameters of system
(2.76) are

ay = ap, az =idaa,
5(by +b3)/2, ag=3(b1+b3)/2, as= b,
ag = (d;j +d1)/-1, a7=(d4—d2)/-’1, ag=(d4 +3d2)/4? ag=(d3—3d1)/d.

as

The following sets of conditions are equivalent
e 1y =ry=Ry=Ry=0and r3 # 0 for system (2.75),
® ay =by + b3 =dsz =ds =0 and by # 0 for system (2.76),

® a; = 3ar + ag = 3ap + ag = az + aq = 0 and as # 0 for system (2.63).

In [11] and [1] they claim that system (2.63) under the previous conditions
has a center, but this is uncorrect because such a system has a week focus due
to the fact their Liapunov constants are not all zero. Thus its first non-zero Lia-
punov constant is ma?az/2. For more details on Liapunov constants see for instance
chapter 5 of [20].
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Chapter 3

Final evolutions of the

generalized 3-dimensional
Lotka-Volterra

3.1 Introduction
The Lotka-Volterra systems in R? are the differential systems of the form
i; =z (dj + ajwy + bjas +cjws), for j=1,2,3 (3.1)

(see for instance [25])

The state space is the set
Ri = {(:1:1.;1'.2...1:;-;) eR®: r; =20, for j=1,2, 3.} :

Models of Lotka-Volterra systems in R? oceur frequently in the physical and
engineering sciences, as well as in biology. Differential systems (3.1) were intro-
duced independently by Lotka and Volterra in 1920s to model the interaction
among the species (see [39, 54, 25])

The applications of the Lotka-Volterra models in the population biology is
well-known. For example for the two dimensional Lotka-Volterra model we have
the predator-prey model and for the three dimensional Lotka-Volterra model we
have the symmetric and non-symmetric May-Leonard models (see for instance
[13, 25, 31]) describing the competitions between three species.

Recently it has become important the generalization of the 3-dimensional
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Lotka-Volterra systems of differential systems of the form
&= x(ag+ayx+ agy +asz) = X,
y= ylbo+brx+ bay + bsz) = Xo,

t= co+c1x+ oy + c3z + e 4 csxy + cz + cry? + cgyz + c92? = X
(3.2)
In particular to study the resistant viral and bacterial strains, and the treatment on
their proliferation (see for instance [9]. One framework for studying such systems
is the multistrain model study by Castillo-Chavez and Feng [10]. The model, which
is an approximation of the full system discussed in [10] was proposed in [53]. The
model has only a single susceptible compartment and two infectious compartments
corresponding to the two infectious agents. The model equations are

= z(=bi—m+vy+piz),
g= y(=b—y—vr+pay), (3.3)
2= z(=bi — Bz — Boy) + b1 + M1 + 722
The state space is the set
R} ={(z,,2) €R*:2>0 and y>0,z2>0}.

In [32] the authors characterized all the final evolution of this model under generic
assumptions.

The main objective of this section is to study the global dynamics of the
generalized Lotka -Volterra model (3.2) with a Darboux invariant I = (z +y +
z —1)e® (see definition below) defined in the positive quadrant of R? defined by

M={z>0, y>0, VzeR}. (3.4)

We observe that this differential system does not correspond in general to a bio-
logical model, in view of (3.4), become z variable can take in this case negative
values.

3.2 Basic definition and preliminary results

In this section we give some preliminary results and definitions necessary in
our study of the system (9).

We say that the function I = I(x,y, z,t) is an invariant of the differential sys-
tem & = P(x,y.z), y = Q(z,y,2), 2 = R(z,y, z), if it is constant on the solutions
of this system, i.e.

Paf oI ar or

dx

We say that the invariant [ is a Darboux invariant if I(z,y, z.t) = I(z,y, z)e
where a is a non-zero real constant.
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Proposition 63. The most general differential systems (3.2) having a Darboux in-
variant of the form I = (z +y+ z — 1)e™ " are the differential systems

&= a(ag+ a1z + asy + azz) = X7,
y= ylbo+ bz + boy + bzz) = X,

(3.5)
2= co+c1z+ ey +c3z+ (-..1;r2 + ey + cgrz + (ry'gz + cgyz + (f922
5.

Proof. Indeed, a three dimensional generalized Lotka-Volterra system (3.5) has
the Darboux invariant I = (z 4+ y + z — 1)e~?" if and only if

ol oI ar oI
X Xs :
3 T Xegy t + = =0,

X5y 0 T ot

or equivalently e~ (X; + Xo + X3 + a(z + y + z — 1)) = 0. Hence we get
alz+y+z—1)+z(ag + a1 + asy + azz) + y(bo + bix + boy + b3z)
+ep + 1 + 2y +c3z + 643,'2 + csxy + cgxz + (.'73',‘2 + cgyz + 6922 =1

Thus the coefficients a;, b; for j =1,2.3 and ¢, for k =0,1,...,9 are such that

co=—-¢3= a, =0, bpt+teat+a=0, bz+cs=0,
ba+er= 0, ag+er+a=0, az+cs=0,
as+b+es= 0. ar+ecg=0, b +er=0,
and taking into account the previous conditions we obtain the systems (3.5) of the

statement of the proposition. In short the proposition is proved. O

Corollary 64. The differential system (32) contain as a particular case the differ-
ential systems (3.3).

Proof. Indeed, takinge=e=h =0, a=—by, d=—v, f= -1, i =, b=

T, g = 7Y2,. we get that (32) becomes (). O
Let R[z,y, z] be the ring of all real polynomials in the variables x, y and =z
and let 3 5
X=P—
9z " Q TR P

be a polynomial vector field in R? of degree m. Let g = g(x,y,2) € Rz, y, z]. Then
g =0 is an invariant algebraic surface of X' if

39

Xg —P—+Q az

=Ky
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where K = K(x,y,z) is a polynomial of degree at most m — 1, which is called
the cofactor of g. A polynomial g = g(z,y, z) satisfying that g = 0 is an invariant
algebraic surface (i.e. formed by orbits of the vector field X) and g is called a
polynomial partial integral or a Darbouxr polynomial.

It is easy to prove that for the differential system (32) the following relation

holds ;
é(z+y+z—1)=a(.’c+y+z—1)-

Hence we have that the plane @ + y + z — 1 = 0 is an invariant plane II of (32)
with cofactor K = a.

Let U be an open subset of R?. We say that a non-locally constant function
H:U — R is a first integral of the differential system

i“l = Xl ($1|I2)1 I‘-.'l‘-:2 = X2('Tl'.3:2)? (36)
if H = H(x(t),22(t)) is constant for all values of ¢ for which the solution

(x1(t),x2(t)) is defined and contained in U. Clearly a C' function H is a first
integral of system (3.6) if and only if
: OH OH
H=_—X+—X>=0 inU.
Oy dxa
‘We say that the first integral H is the Poincaré—Liapunov first integral if the
development in the neighborhood of the equilibrium point translated to the origin
of coordinates is of the form

1
H = 5[:52 +4%) + h.o.t..

3.2.1 o— and w-limits of the differential system (32)

In this subsection we prove the strong dependence on the parameter a of the
behavior of trajectories of differential system (32).

First we give the following definitions.

In this subsection we study the influence of the parameter a on the trajecto-
ries of differential system (32).

We recall the following definitions. Given a differential system a point p
in its domain of definition. We say the point ¢ belongs to the the w-limit of p
(respectively a—limit of p) if there is a sequence {t,} with t,, — 0o (respectively
t, —+ —o0) such that ,lilflm ®,(t,) = q (respectively : l_131_10€ ¢, (t,) = q), where

¢, (1) is the solution of the system such that ®,(0) = p.

Proposition 65. Let [ = (z+y+ 2z — 1)e™% be a Darbouz invariant of differential
system (32) and let ¢p(t) = (z(t),y(t).2(t)) be a solution of (32) non contained
in the invariant plane x +y+ 2.1 =0.
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(a) Ifa < 0, then every w— limit is on the closure of the invariant plane r+y+z =
1 and every a— limit is at the infinity.

(b) If a > 0, then every a— limit is on the invariant plane © + y+ z = 1 inside
the Poincaré ball, and every w- limit is at the infinity.

Proof. Statement (a) follows from the relation
t]im (z(t) +y(t) + 2(t) — 1) e~ = C = const # 0.
—o0
In a similar way follows statement (b). O
By solving the equations

zla—b—ecx—(d+e)y— fz)= 0,
yla—g+dr—hy—iz)= 0,
Z(fr+iy+a)t+ax(fcc+ey+b)+ylhy+g)—a= 0,

we obtain the finite equilibrium points of the system (32). They are

P = (0,0,1), Pg_(o,—“_g—“.1+““g_%),

i—h i—h
h- (-2 o202 Ao (R-2a- 020,
where
L= (f-e-d)la-—g—i)—(a—b-f)(i-h),
L= (—c+f)la—g—1i)—(a—b— f)d+i),
Ii= (—c+ f)(~h+i)—(f —e—d)(d+1).

Note that the four finite equilibria points are in the invariant plane z+y+z—1=0:
We do the change

a = —c+f, az = [ —e—d, az=a—b— f,
b= daE Beed—h, Be=6—g—i,

(3.7)
In these notations the parameters I, I, I3, [4 and the equilibrium points become

Iy = asbs — azbs, I, = a1b3 — azb, I3 = ayby — asby, (3.8)
and

P].: (0'0-1)‘ }52: 0,_%,1_'_{}_5 H
ba b

~ ag ag ~ I, I I, — I
Py = ——014+—=), P=|—=,—-—=.1- "
A ( ay’ +a1) ¥ (f:; I I3 ) :
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respectively.

Now we determine the local phase portraits of system (32) around these
equilibrium points.

As we observe that all these points are on the invariant plane z +y + 2z = 1.

The points P;. and P, are also in the the plane & = 0, and the points f’l and Py
are also in the plane y = 0.

System (32) restricted to the invariant plane y = 0 becomes

= zla—b—(a—b—a3z—a))z—(a—b—a3z)z) =P,

zZ{la=b—az)r+a)+z((a—b—az—a))zr+b) —a=Q.

z

Clearly the equilibrium points on the plane y = 0 are P, = (0,1) and P, =
(—as/ay, (as + ay)/a;). The eigenvalues at Py are as and a.

To study differential system at the point P we do the translation x = X —
az/ar, z = Z + 1+ az/a;. Thus we get the system

(a—=b—flla—b—as—a) (a-b-f)la-b-as3),

X = X
a ay
+(a3—a+b)XZ+ (b—a+az+a))X?,
B (a+az)a; — (a—b— (Lg)agx M ara+ (b+az — a_)ﬂ,gz

a1 ay
+la—b—a3—a1)X?>+(a—b—a3)XZ.

The eigenvalues at P; are —a3 and a.
System (32) restricted to the invariant plane x = 0 is

= y(—('i - bg}'y — iz +i+bg).
z(iy+a)+y((i —b2)y—i+a—b3)—a.

z

Clearly the equilibrium points on the plane 2z = 0 are P, = (0,1) and Py =
(—53/52, (b3 + 6‘2)/1{)2)‘

The eigenvalues at P are by and a.

The eigenvalues at P are —b3 and a.

Now we analyze the point P; which is in the intersection of the plane = +y+
z = 1 and the set M.

Denoting by M the matrix of the linear part at Py, after some computations
we get

det (M — ) Iay — Izby Ilfg)

I3 At I3

= (a=A=2)-2).

(a=N(2+

Hence the eigenvalues of the matrix of the linear part at Py, are a, A{;” and /\g‘}.
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We observe that the matrix of the linear part of all deduced differential
systems have a as eigenvalue.

From the previous computations we get that the eigenvalue a of the point
P; corresponds to the z—axis direction. The eigenvalues az and by correspond,
respectively, to the eigenvectors following the direction of the intersection of the
invariant planes = 0 and y = 0 with the plane 24+y+2z—1 = 0. Hence, the points
P, and Ps, which are adjacent to P, along these directions, have the eigenvalues
—ag and —bg, and the eigenvalue a on a direction not contained on the plane
x+1y+ 2z = 1. For the point P; we show in section 6 that ] and A} are eigenvalues
of the eigenvector which are on the invariant plane x + y + z = 1, so consequently
a is the eigenvalue of an eigenvector which is not on this plane. From Proposition
65 we have that the trajectories of the generalized Lotka—Volterra system (32) go
from the infinity to the closure of the invariant plane z +y+ 2z = 1 in the Poincaré
ball if if @ < 0, and from invariant plane and from the the closure of the invariant
plane x + y + z = 1 in the Poincaré ball to the infinity if a > 0.

From these results it follows that to study the global dynamics of system
(32)it is sufficient to study the dynamics on the invariant planes @ =0 and y = 0
and z 4+ y+ z — 1 =0 of system (32) and at the infinity.

To study the behavior of the differential system (32) at infinity of the invari-
ant plane we need the Poincaré compactification in R2. To study the behavior of
system (32) at infinity we need the Poincaré compactification in R*. The aim of
the two next subsection is to give the Poincaré compactification in R? and R? (see
chapter 5 of [20])

3.2.2 The Poincaré compactification in R?.

d d ; :
Let & = Pr’)_:r e Q(')_?,: be a planar quadratic vector field associated to the

polynomial differential s_\_rsil;em

& = P(z,y), y=Q(z,y).

The Poincaré compactified vector field p(AX’") of A is an analytic vector field defined
on the sphere §? as follows (see for instance [20]).

Let S? = {y = (y1,¥2,y3} € R3: y? + y3 + y2 = 1} and T,,S? be the tangent
plane to S2 at the point y. The plane of definition of X' is identified with the
plane T'(U.U_I)S? and let f: T(.;..n.l)Sz — 82 be the central projection, i.e. a point
pE T{U_UII)SZ is mapped by the central projection into the two points which are in
the intersection of the straight line thought p and the origin of coordinates with
the sphere S? . Using the map f we get two copies of X on §? one in the northern
hemisphere and the other in the southern one. Let X’ be the vector field D(f)o X
on §*\ S'. Here S' = {y € §? : y3 = 0} is the equator of §? and corresponds to
the infinity of the plane of definition of &

The vector field p(X') a called the Poincaré compactification of X, is the
unique analytic extension of y2&” to S§2. On each hemisphere of §2 \ S! there is
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a copy of X. The dynamic of p(X) near §' provides the dynamics of X' near the
infinity. The infinity S! is invariant by the Poincaré compactification p(X). The
projection (y1.y2,y3) — (y1,y2) of the closed northern hemisphere on y3 = 0 is
the Poincaré disc.

In order to have the expression of p(X’) on S? we take six local charts (U;, F})

and (V;, Fj) where

U-,-={y€82:y;,- =0}, Vo= {yESQ:y_._;{O},
and the diffeomorphisms Fj : U; — R? and G; : V; — R? for j = 1,2, 3 are the
inverses of the central projections from the tangent planes at the points

(1,0,0) (-1,0,0), (0,1,0), (0,—1,0), (0,0,1) and (0,0,—1),

respectively. If we denote the points of U; and V; by 2 = (u,v) then their coor-
dinates have different meaning depending on the local chart that we are working.
Therefore, after easy computations the differential systems associated to the vector

field p(X) are

; 1 u 1 i 1 u
2 1w, lu lu ;
v (Q(v.v) up(*u"u)’ EP(U,U)) in Uy,
o B Myt 3l 1) i B
v (P(g, 1,) uQ(U, v], ’L-Q(tI \ v)) in Us.

For the V;’s local chart the expressions are the same as the ones of V;’s changed
of sign.

The equilibrium points of p(X’) which are in S! are called infinite equilibrium
points of p(X) or of X.

3.2.3 The Poincaré compactification in R?
In R? we consider a quadratic polynomial differential system
=P, §y=P% :i=P3

or equivalently its associated polynomial vector field X = (P!, P?, P3).
Let

§* ={y= (1,2, 55.04) € R* : ||y|| = 1}
be the unit sphere in R, and S, = {y €SPy > U} and §_ = {y €Sty < D}
be the northern and southern hemispheres, respectively. The tangent space to S?
at the point y is denoted by TyS®. Then, the tangent hyperplane T(l,__|-,_|;,_|)83 =
(21,2, 23,1) € RY: (21,29, 3) € R? is identified with R*. We consider the central
projections
f+ 3 ]RS = T(070,011)83 — S+ and f_ T Rg = T([]__[}__Q‘I}SS —F S_, defined by

1 1

fy= —E(Ileiﬁzawssl)f f-= E(ﬂ?l‘xzaﬂfasl)
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3
14 Z .z,_f Through these central projections, R? can be identified
j=1
with the northern and the southern hemispheres, respectively. The equator of §?
is §2 = y € 8% : y4 = 0. Clearly, S? can be identified with the infinity of R*. The
maps fy and f_ define two copies of X', one Df, o X in the northern hemisphere
and the other Df_ o X in the southern one. Denote by X the vector field on
§%\ §% = §, US_. which restricted to S; coincides with Df, o X and restricted
to S_ coincides with Df_ o X. In what follows we shall work with the orthogonal
projection of the closed northern hemisphere to y4 = 0. Note that this projection
is a closed ball B of radius one, whose interior is diffeomorphic to R* and whose
boundary §? corresponds to the infinity of R?. We shall extend analytically the
polynomial vector field X to the boundary, in such a way that the flow on the
boundary is invariant. This new vector field on B will be called the Poincaré
compactification of X', and B will be called the Poincaré ball. Poincaré introduced
this compactification for polynomial vector fields in R?, and its extension to R™
can be found in [14].

where Az =

The expression for X(y) on S; US, is

L—yi =y —nys p

5 —ny2 1—9y3 —yous 2
B(y) = P
) = s —1ys —Yoys 11— 3 p3

—Ys  —Y2Ys  —Y3la

where P™ = P™(y1/ya. Y2/, y3/ya). Written in this way X (y) is a vector field in
R* tangent to the sphere S3.

Now we can extend analytically the vector field X(y) to the whole sphere
$* by p(X)(y) = y§ ' X(y); this extended vector field p(X) is called the Poincaré
compactification of X.

As §? is a differentiable manifold, to compute the expression for p(X’) we can
consider the eight local charts (U;, F;), (Vi, G;) where U; = {y € §* : y; > 0}, and
Vi={ye§®:y; <0} fori=1,23,4; the diffeomorphisms F; : U; — R? and
G; : Vi — R3 for i = 1,2,3,4, are the inverses of the central projections from
the origin to the tangent planes at the points (£1,0,0.0), (0,+£1,0,0), (0,0,%£1,0)
and (0,0,0,=£1), respectively. We now do the computations on U

Suppose that the origin (0,0, 0, 0), the point (y1, y2. y3.y4) € S* and the point
(1,21, 29, 23) in the tangent plane to S? at (1,0,0,0) are collinear, then we have

l_a_=_2

vioY2 Yz Yd

Y2 Y3 v

, =, ) = (21.22.23), defines the coordinates on
i o

and consequently F(y) = (
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IJI.AS 1
2 = 5 P
i 1
s
DF(y) = -= 0 — 0 ,

1(y) y2 i
Y4
S ¢ (R
yi Y1

zq yN—1
and yi ! = ( Ad**) . the analytical field p(A’) becomes

T
%3
A zn—l

(—21P' + P?,—2P' + P3,—zP'),
where P! = P((1/z3,21/23,22/23)). In a similar way we can deduce the expres-
sions of p(X) in Us and Us . These are

n
23
A z‘n.—-l

where P! = P¥(zy/23,1/23,20/23) in Uy, and

(—Z1P2 +Pl.—22P2 +P2,—23P2)

n
Far (F4 P + Pl 0P+ P~ PY)

where P' = P¥(21/z3,22/23,1/23) in Us.

The expression for p(X) in Uy is z:’;"'l(Pl, Ps., P3) where the component P; =
Pi(zy, 22, 23). The expression for p(X) in the local chart V; is the same as in U;
multiplied by (—1)"~1. When we shall work with the expression of the compactified
vector field p(X) in the local charts we shall omit the factor 1/(A z)"~!. We can
do that through a rescaling of the time. We remark that all the points on the

sphere at infinity in the coordinates of any local chart have z3 = (.

3.3 Singular points of the system and their local be-
haviour

3.3.1 Singular points on the invariant planes

Since the plane & + y + z — 1 = 0 is invariant for system (32) we shall study
the dynamics of this system on this plane.

Clearly on the plane we have that z = 1 — 2 — y. Inserting into (32) we get
the following two dimensional Lotka-Volterra system

g= zla-b-f+(f-c)z+(f—e—dy),

(3.9)
y= yla—g—i+(d+i)a+(i—h)y).
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We do the change (3.7). Under these changes system (3.9) becomes the two-
dimensional Lotka- Volterra system

&= z(az+ a1+ agy) := P,

. (3.10)

y= ylbs +biz+byy) :=Q,

We remark that these new parameters are independent because the matrix

00 -1 0 0 1 0 0 0
00 0 0-1 -1 1 0 0 0
|l -1 0 0 0 -1 0 0 0
T 710 0 o0 1 0 0 1 0 0
0 0 0 0 0 0 1 -1 0
1 0 0 0 8§ B -1 g I

has rank 6 The equilibrium points of this system are

- - b
Pi= (0,0, B=(0-p)

2
b= (-2 By =L T2
-P:']_ ( (11!0)’ Pli_(IJ I3 )

To study the phase portrait of system (3.10) we do the Poincaré compactification
as explained in subsection 3.2.2. Hence we obtain that system (3.10) in the local
chart U; becomes

= u(by —ay+ (bs — az)v + (ba — az)u),

; (3.11)
o= —v(a; + asu+ azv),
and in the chart Us can be written as
= wu(ag —ba+ (a1 — b)u+ (az — bz)v),
(3.12)
b= —v(bs+ byv+bsv).
We are interested in studying the infinite singular points of system (3.11) with

v = 0 and the origin of the system (3.12) if it is a singular point. The chart U,
I

has two singular points the origin denoted by P; and Py = (—T{,{]) if Iy # 0,
5

and the origin P; of the chart Us, where

Iy =a; — by, Is = az — bs.

3.3.2 Singular points at the infinity

To study the dynamic at the infinity of the region M we need to do the three
dimensional- Poincaré compactification described in subsection 3.2.3.
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The differential system (32) on the chart Us is obtained doing the change

and denoting by
E(u,v,w) = —cu? — ho? + aw? — buw — evu — gow,
we obtain the particular Kolmogorov systems

@= w?(-uR|.+ P|)

w(f(u,v,w) — (c+ flu— (d+e+i)v—bw— f),
o= w? (v Rl +Ql,)

v(&(u,v,w) + (d— flu— (h+i)v — gw — 1),
—w3 R|,

= w((u,v,w)— fu—iv—aw),

Il

(3.13)

w

where the quadratic polynomials P, Q and R are given in (32), after the change
(1.3).

After the change (3.7) and by considering that f = a — b — a3 we get that
(3.13) becomes

= u(f(u,v,w)+ (a; —2f)u+ (az —i — flv+ (—a+ a3+ flw — f),
b= v(€(u,v,w)+ (by —i— flu+ (by — 2)v + (—a + i + b3)w — 1),

= w(f(u,v,w)— fu—iv—aw),
] (3.14)
where &(u, v, w) is

(a1 — F)u* +(ag+by —i— flHuw+(az —a+ flwu+ (b — i)v* + (i — a+ bz )vw + aw®.

The invariant plane x + y + z — 1 = 0 in the chart Uz becomes u+v —w+1 = 0.
The infinite singular points of (3.14) are

- I5 -1 B B
i _(14—15’174—15'0)’ P; = (-1,0,0), P3=(0,0,0),
PQ :(U,?,O); P‘lO:(TgO,U),

' | (3.15)

P :( iag — ba f
! (iay — by f) — (iag — bof) — I3’

— !:l'l] _bif ,0)

(iay — b1 f) — (iag — baf) — I3
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We observe that the points Ps, P and P; are the same points that in the
previous section. We want to study the differential equation (3.14) in the plane
w = 0, at infinity i.e. we study the planar Kolmogorov differential system

= uMu,v)+ (a1 —2f)u+ (a2 —i— flv—f) =X,

o= v(Mu,v)+ (b — i — fu+ (b — 20)v — i) = Xa, (3:18)

where A(u,v) = (a1 — fHu® + (ag + by —i — fHuv + (b — i)v?,
Its singular points are the projections on the plane w = 0 of the points in
(3.15) at infinity.

I -1 _
P5 _(0~_1)~ Pﬁ_(f.*],_I‘S,LI_I,'}), PT_( lsOJs

P =(0,0), P9=(0=1)= PloZ(i,0)=
h ¢

P, = ( iaz — by f B ia; — by f )
B = \lar—bif)—liaa—baf) — T’ (861 —01f) — (laz—baf)— 05 )

3.3.3 The local dynamic at the singular points.

To study the local dynamic at a singular point of a two-dimensional Lotka-
Volterra system we need the determinant A and the trace o of the matrix of the
linear part of the system at this point. They can be expressed in terms of the
eigenvectors (vaps) of those matrixes: if A\j,A2 are the vaps of the matrix we have
A = A1z and o = Ay + A2. We denote by A; the determinant and by o; the trace
of the corresponding system’s linear part matrix at the point P; for j =1....,11.

For system (3.10) and for the points Py, P», P3 and Py, after some computa-
tions we obtain:

Ay = aszbs. o1 = as + b,
bsly 1
K, = B S
2 b o2 e
Ay = _‘1312! 03:_0-3"‘[_21
@) ay
Ka = —I1, R aydy —baly
1= L g==—a—

where I, Is and I3 are the parameters introduced in the formula (3.8). Analo-
gously for system (3.11) and for the points Ps, P and Pr we get:
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and for the system (3.11) and for the point P> we get:
A7 = —I5bs, o7 = I5 — bs.

Finally, for system (3.16) and for the points Ps, P, Pz, Ps, Py, Pig and Py, we
obtain

- - - I5I4173 - I.;ﬂ.z - I5b1
Ay = Lo, os=a1+1, Ag== T = L) 0 = 711 =t
Ay = —Isbs, o7 =b02—1I5,A8 = fi, os=—f—1,

o (ﬂ.gf — bgf)bgf. o {12’.; - bgf e bg'.;
Bo= “G-mpE ¥ P i
Ao = —(a1i = b flar f - ayi—arf—bhf

! (f—a)* f—a '
Ay = ((Is + b2) Iy — Isay )(—ils + ba(f —i))(fIs — a1 (f — 1))
(f=Is = b)) + (=i +a1)]5 — (ay — ba)(f —7))?
—Iyba f + Isayi

a1 =

(f=Is = ba) s + (=i + a1)Is — (ay — ba)(f — i)’

respectively. We observe that points the Py, Ps, Ps. Ps. Fg, P, Ps, and Py are
on the boundary of the region M, so they can only be saddles or nodes, and their
local dynamics are completely determined by the corresponding A; and ;.

The study of the phase portrait of a differential system in the neighborhood
of the equilibrium points Py and Py is more complicated, because they can be
saddles, nodes, focuss or centers. Thus it is necessary additionally to compute the
quantities o7 —4A, and of; —4A;,. But the main problem is to determine if these
points are centers or focuss. Thus we need to solve the center—focus problem. This
problem is solved in the following section.

3.4 Center-Focus problem for the points P, and Pi;.

3.4.1 Center-Focus problem for the point P,

First we shall study the behavior of the differential system in the neighbor-
hood of the equilibrium point P;. Thus we do the translation

ashy — a: ab1 — aqb:
P X 203 adbz., yzY—}-a'il "-11.5‘
a1be — asby a1by — ashy
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Hence differential system (3.10) becomes

b ay (azbs — azbs) (azbz — G:sbz)azy + a1 X? 4 apY X,
ai1bs — ashy ayby — ashy (3 17)
v — (a3by — aibsz)by x (azby — fhb:s)bzy + 01V X + b2,

a1by — aszb arbz —azby
The matrix of the linear part is

(azb:; - ﬂ:;bz)ﬂl (ﬂzbs - ﬂ-:ibz)%
(I-1b2 = &',23)1 G-]bg == agbl

(asby —aibs)by  (azby — a1bs)bs
{I-lbg s (I.zbl a-lbz = agbl

Using the previous notations we get
L

ah — bolz Ay =det A= 222

o4 = traceA =
4 Ts Ty

To determine the nature of P; we additionally need to compute the quantity (see
for instance [6, 20])

_ (a1 ]y — azlz)? — 4L oI5

oF — 40, 7
3

Consequently if o4 # 0 then Py is a saddle if Ay < 0, a node if Ay > 0 and
o} —4A; > 0, and if Ay > 0 and 07 — 4A4 < 0 then P is a focus.

The main problem in studying the phase portrait of differential equations
(3.10) in the neighborhood of Py is the case when o4 = 0. This problem is solved
in the following proposition.

Proposition 66. [Solution of the center-focus problem for two dimensional Lotka-
Volterra systems] Quadratic differential system (3.10) has a cenier at the point

Py, = (:;‘, —-;t—z) , where I, I and I3 are the parameters given in (3.8), if and
3 3
only if
&1[1 — bgfg III2
1= ——= =0, Ayl, _o=— — 0.
oy} 13 4!0-_]_0 IS piso =

Moreover differential system (3.10) under the assumption:

(a) ba(ay — by) # 0 has the Poincaré—Liapunov first integral

Hy = gb2(hr=a0)ya1(@2=b2) (by (ay — by)y + (arby — byag)w + bs(az — bz)()"'*’”?‘"
3.18)
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if and only if

- o albg(ag b bg)
g4=_10 ~=—Fog= bg(ﬂ,l*bl) s

g =G-1b3(ag _ b2) >0 Glbg(a]b? = 0',2!‘)1) < 0.
? bg(ﬂ.l = bl)

Ayl

(b) ba(ay — by) =0 has the Poincaré-Liapunov first integral

()

H2 — ',E—b;,ya;je—.‘n:r-l'a;;b"
if and only if
bQZCLI:O:?*J:i:{], A4|b2=01:0>0<:>agb3<0,

(ii)
H; = :L"I"*’y_"'?.f:il%:i
if and only if

by
a1 —b=b3=0=>04=0, Aylg, —p=py=0 > 0 <= P— > 0.

Proof. The center problem for quadratic systems can be solved using the following
result due to Bautin (see [5]): The quadratic polynomial differential system

U= -V- kaU? + (2r2 + K5)UV + KkeV?2,

. _ (3.19)
V= U+ (263 +r£)UV + k2(U%2 - V?)

has a center at the origin if and only if on of the following four conditions holds
(i) ka =kr5 =0,
(i) Ko = K5 =0,
(i) K3 — ke =0,
(i) ks =0, kg + 5(k3 — Kg) = 0, Kgke — 263 — k3 = 0.

Now we solve the center problem for the planar Lotka-Volterra systems ap-
plying Bautin’s result.

Assuming that ba(a; — b)) # 0 then by solving the equation o4 = 0 with
respect to az then we obtain

- bzay(az — by)
7 Tylar —br) (3.20)
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Inserting ag into (3.17) we get the differential system with with coefficient matrix
A= A|(3-20) of the linear part given by

b3a1 agbg
i al — bl a —b
A= &1b1b3 Il‘):jt‘lll

Cbhy(a —b1)  a - by
On the other hand solving the equation (we suppose that Ayls,—o = ¢* > 0)

ay(aybs — ashy)b3

det A=A ey =— =(2
€ 4; 4=0 b2(a1 _b])g C
with respect (for example) by we get
b= az0b1b3 =C (3.21)
2T e —b)2+adt3 T '

Now we insert (3.21) into the matrix A we obtain
baay as — bs
2 A = ay —b a; — b
B=4l,c=| _abi(¢a1—6)2+a3d)  bsas
0253(&1 - bl) ar — b

where agbs(a; — by) # 0. Clearly trace(B) = 0 and det(B) = ¢ > 0. Conse-
quently its eigenvalues are A; = i|¢| and Ay = —il(].

Hence in view of (3.20) and (3.21) we have that quadratic differential system
(3.17) becomes

baay g — by

X = X 4 V4.
ay — bl ay — b]
(3.22)
}:, _ _ﬂ.lbl (42(0.1 o b] }2 + ﬂ.%b%) _ b;;al Yy 4§
azbs(ar —by) ar—b o

After the linear change
X = bzasU, Y= C(bl - ﬂl)V — a1b3U,

where the matrix

_ b;;ﬂ.g U
5= ( —a1bs  ((by —a1) )
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is non-degenerated i.e. det S = bgba(by — a1) # 0, we get that differential system
(3.22) becomes
[')F = —C-V + (bl = al)agUIﬂ
bag(C*(af — b7) + ajb3)(ar — by)
C%(ay — b1)? + a2b3
Carbybs(ay — by)
¢%(a1 — b1)? + aib3

uv

V= (U (3.23)

(U? - V2).

By compare with (3.19) and we obtain that

k3 = kg =0,
2k + K5 = (b — ay)as,
bzaz(C*(af — b3) + afb3) (a1 — by)
¢%(ar — b1)? + a3d3 ‘
Carbibz(ay — by)
¢%(ay — b1)? + a3bd’

2K3 + Ka

Ko =

Consequently, in view of Bautin’s result we get that the origin is a center of (3.23)
under the condition bsbs(ay — by) # 0.
Now we study the case when babs(a; — by) = 0.

(i) First we study the subcase bz = 0 and ba(ay —by) # 0. From o4 = 0 it follows
that az = 0. Hence the points Py = P; = P» = P, = (0,0), Thus Py is on the
boundary and consequently can not be a center in this case.

(ii) If babs # 0 and ay — by = 0 then the traceA|, _, = —bs. So we assume that

bs = 0. On the other hand under these conditions differential system (3.10)
becomes

& = x(ag + mz + asy), ¥ =ylarz + bay). (3.24)

The equilibrium points of (3.24) are P, = P> = (0,0), P3 = (—6—3, D) and
a

(Igbg asg
P, = -
! ((02 —b2)ay’ az —bs

; a
in the the first quadrant then -2 > 0and
(5] g — bg

) . If we consider the case when the point Pj is

< 0. Hence in view of

by
as — bs

relations Al, _, , _o=a3 < 0, we get that Pj is a saddle.

a
Now we study the case when — i 0, i.e. the point Pj is out of the first
a

b2
o — bg

quadrant, then Pj is on the first quadrant if > 0 and consequently
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b
Aly by bs=0 = aiizb > 0. We prove that in this case the point Py is a
as —
center. Indeed after the translation
agb a
r=X+—2— y=Y - —2—,
({12 - bg)(}!.]_ g — bz

we obtain that system (3.24) becomes

%= azby X+ agboas Y +a2X? + 0y XY,
as — by g (ag = bg)
5 (3.25)
P= 50y O yLRKt4aXY,
as — bg aa — bg

Taking by = a2¢?/(a3 + ¢*) we get that the matrix of the linear part has
trace zero and determinant equal to (2. Differential system (3.25) becomes

) 2
¥= & X+ ¢ Y + a1 X2 + ax XY,
e (3.26)
. 242 2 ’
yo @+, Gy 0 vy
azag as a3 + a2+
After the linear transformation
as¢? asa3¢ U
X=— : Y =—,
bay (a3 + ¢?) bay (a3 + ¢?) b
we obtain that differential system (3.26) becomes
: asazdg
e wilfeanaadla
e a)
azas( lasa; \8.27)
U= (v 298 (y2_poyy e gy
VvV e

Hence in view of Bautin’s result with k3 = kg = 0 we obtain that the
origin is a center of (3.27).

bsa

When by = 0 we get that t1‘a.ceA|b2=D — —%. Hence a1b; = 0. If by = 0
a
then Py = ([} ——) belong to the boundary and consequently it is not a
s

center. If a; = 0 then det A|b2=a‘ —g = —bzaz. If by = a; = 0. Hence if
—azbs < 0 then P, is a saddle. We shall study the case when —asb; > 0.
Thus differential system (3.10) under the conditions by = a; = 0 becomes

i = z(ag + azy), ¥ =y(bs + byx). (3.28)
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We have the equilibrium points Py = (0,0), Py = Pr and P; = P5, but the

points P and P; go to the infinity and Py = (—2—3, - E) belong to the first
1 az
b
quadrant if b_q < 0 and % < 0, consequently by considering that asbs < 0
1 2
we obtain that point P; = (b;/a2,0) is out of the first quadrant because
bl /G.Q <0
b
After the translation x = —b—S + X and y = —? + Y system (3.28)
1 2
becomes
: . by by
X = —azrY + 1 XY, Y = —=Y 4 ax XY, r=—. (3.29)
r as

By considering that —asbs > 0 then after the linear transformation

—ag U T
—Vs Y= =3 t= T —
b r v—azbs

we obtain that differential system (3.29) is transformed to the system

2
vv, v =-U+"uv.
(L2|ﬂ.3l

X =

2
a
U=V+—"2
by |as|
Hence from Bautin’s result we get that the origin of the previous system is
a center.

O

Proof of Proposition 66 applying Poincaré’s result. Another method to solve the
center problem is the Poincaré’s result (see for instance [47, 34, 36]): A planar
polynomial differential system

m m
g=-y+> Xjy), y=z+)» Yj(zy), (3.30)
j=2 j=2
of degree m has a center at the origin if and only if it has a first integral of the
form
2 2
H=)" Hjzy)= (@ +y%) + > Hj(z.y),
§=2 =3
where X;, Y; and H; are homogenous polynomials of degree j.
Now we prove the proposition using the Poincaré’s result.
First we apply the following result (see [20]) : Suppose that a polynomial
vector field X' defined in R? admits M invariant algebraic surfaces g; = 0 with

cofactor K; for j =1,..., M, i.c. the following equations hold
dg; g
X, = X =2 o ox “ R
9 1 91 + Ao ay 3894
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for j =1,..., M If there exist p; € R not all zero such that
M
> uiK; +divd =0, (3.31)
i=1
then the function "
IT1gs1" (3.32)
j=1

is an integrating factor.

By considering that a two- dimensional Lotka-Volterra system has two in-
variant straight lines 2 = 0 and y = 0 then it has an integrating factor .J = xf*1y#2
if and only if

p1ag + pobs + ag +bs + (pray + paby + 2ay +by)z + (p1as + pabs + 2bs + as)y = 0,

consequently
piay + poby +2a; + 0 = 0,

jiyas + pabs + 2by + a2 = 0, (3.33)
jray + paby +az + by = 0.
Thus this system has a solution if and only if the matrix

aq bl —20.1 — bl
M= as bg —ag — 2b2
s b3 —az — 53

is such that rangM < 3. Consequently
det M = ((Elf)g — a2b1 )0'4 = ay (agbg =, a;;bg) s bg ((L] b3 - (L3b1) = 0, (334)
Hence, if ai1by — asby # 0 and (3.34) holds, then from (3.33) we obtain that

ba(by —ay)
45} bg — (Lzbl A

ai(as — by)

1 =—1+4 s
# albg —&2[)1

Ha = -1+
Clearly if a;bs —asby = 0 then the point Py goes at infinity. Thus we shall suppose
that always a1by — asby # 0.

Hence the integrating factor becomes

_qypbebi—ay) 4, eylag—bz)
J=zx I aihy—agh, y 1+ ba —aghy . (535)

Consequently we have the existence the Integrating factor .J. thus it follows
that there exists a first integral H; such that (see [25])
OH, OH,

E = —Jz(az + a1z + azy), e Jy(bg + brz + bay).
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After the integration we get the Darboux first integral (3.18).
From this first integral we get that the system (3.10) has the additional
straight line

g3 = ba(as — ba)y + (a1by — biaz)x + by(az — b)) = O,

with cofactor ayx + bay.
After some computations and in view of (3.20) we get that H has the follow-
ba abs

i si he point P; = P, syiatea—ty) = ) =
ing Taylor expansion at the point P, 4|“3= Loateate) (a1 5 Ilay— bl))
Hy = —L (a1b1m2 + 2a1 by + (I-gbgyg) + h.o.t. =< p, QpT > +h.o.t..
ba(ay — by)
where p = (2, y) and
b](llbg albg
Q- ba(ay — by) a; — b
alb;; 53(1,2
@) — b| a; — b]

By considering that H, is a Poincaré-Liapunov first integral if and only if

ay(ayby — ashy)b3
det 2= A aybylan—ba) = — - :
¢ 4"“‘: il bo(ay — by)? 0

then we obtain the proof of the proposition under the condition bs(a; — by) # 0.
From this result we see the advantage of the Poincaré’s result over the
Bautin’s result. The Poincaré’s result solves the center problem and additionally
gives a information on the existent of the additional straight line a3 bz + asboy +
azbz = 0.
Now we study the case when ba(a; — by) = 0.

(i) If b = 0 from o4 = ajasbs = 0 we get that if b = b3 = 0 the point

a
Pyl T —i) belong to the boundary, consequently it is not a
—bg= =

center

If by = a; = 0, then by considering that in this case A = Bl gag™=
—ashs, then if —ashs < 0 the system has at point Py == P4[u|__b2;0 a
saddle. We study the case when —a2bs > 0. Differential system (3.10) under
the conditions bs = a; = 0 becomes (3.28). This differential system has
the Integrating factor J = 1/zy which is obtained from (3.35) under the
conditions a; = be = 0. Consequently the Darboux first integral is Ho =
|| =3 |y| ™2 e~P1=+a2Y  wwhich has the following Taylor expansion at the point

= b3 as
Bi=(-2, -2
* ( by ﬂz)

b? a3
L2 —23;2) + h.o.t. =< p, T > +h.oit,

Hy = Hy(Py) (b3 i
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This integral is a Poincaré- Liapunov first integral if and only if det Q =
bia?
142

a3 b."i

> 0. Consequently the point Py is a center if —agbs > 0.

(ii) If a3 — by = 0 then we had proved above that if o4|s, =5, = b3 = 0, then
the point Py = Py, —p, py—o 18 a saddle if —az/a; > 0. Now we study the
subcase when —az/a; < 0. Then we have that the Integrating factor becomes
J = (|z|y?)~!. After some computations we can prove that the first integral is

Hj3 which in the neighborhood of the point Py = ( ( a:if;:) ,— s bg) ;
az —U2)a;  az —

has the following Taylor expansion

Hy = .=<p,Qp" > +h.ot.,

2
az — baa az — b
where det Q) = (( 2 022) 1) 2!; =5 Consequently Hj is a Poincaré-

: : . .. 2 — by
Liapunov first integral if and only if &

2

> 0.

Thus the proposition is proved. O

3.4.2 The center—focus problem for the point P

. In this subsection we shall study the behavior of differential system (3.16)
in the neighborhood of the equilibrium point

_ ( bzf — '-"-az ?'.(11 - bl_,r )
U7 Naw(by —0) + 01(f — a2) +dag — baf ’ ai(bz — i) + by (f — ag) +iaz — bof )

Proposition 67. Differential system (3.16) after the translation

by f — iaz
= X ;
Y +a1(b2—i)*f*b](f"az)‘i"&'ﬂ'-z"bzf'
b Y iay — by f

N ay(by — i) + b1 (f — az) +iag — ba f’
can be written as follows
X = aoX +aoY +anX?+an XY + apY? + azo X?®
a2 X2Y +a12XY? = P,
Y = bioX + b1 + boo X2+ b1n XY + boa Y2 + by X2Y
+b12XY? + b3 Y3 = P,

(3.36)
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where a;; and by are the following constants

ayp = —(azi —baf) ((Lfbg — aji — ayashy + arby f + aybyi — arbof + ay fi — ayi?
+agbif — BRf — bif? + bufi).

apn = —(azi — baf) ((Llagbz — ayaszi — arbo f + arbai + ay fi — ayi® — a3by
+2a2b1 f — bibaf — bif? +bifi)),

o= —(ari—0bif) (alazi — aybiby — arbaf + arbei + ash? — 2asbyi
—aafi + azi? + bibaf + baf? — by fz)

b= lad=Bih) (a,bg — aybai — a3i — asbibs + asbyi + asbaf
+agbyi+ ax fi — azi® — b3 f — by f* + bzf’-’:)-

ayn  ap

bio  bor
(bof —iasz)(iay — by f)(azby — a1by)
((Ll(bg —'.‘E)-Fb](f—(l,z) ~+ iag —bgf):',‘
ayba(i + f) —dajaz — fbibe
(&-1(b2 — .’,) + b](f -— (Lg) + iay — b;gf

Proof. It is easy to obtain after some computations. O

The matriz of the linear part M = ( ) is such that

det M := Ay ==

traceM = o) =

Clearly if 0'?1 —4A1; > 0 and Ay > 0, then the singular point Py; is a node,
if 02, —4A;; < 0 and Ay; > 0 then the singular point Py is a focus. We shall
study the case when o7 = 0 and Ay; > 0, i.e. we shall study the center-focus
problem for the equation (3.36) (see for instance [5, 36] )

Proposition 68. [Solution of the center-focus problem for a class the Kolmogorov
differential system]

The cubic Kolmogorov differential system (3.16) has a center at the equilib-
rium point

P ( baf —ias _ ia; — b f )
U7 N (b —9) + 01 (f — ag) +iaz — baf ' (ia1 — b f) — (iag — bof) — I

if and only if

& e iﬂ,l(bg —-ﬂ.g} ‘—fbg(b]_ ‘—0.1) 25
U laalbe — ) +b0u(f —a2) +iaz — baf
(bof —ias)(iay — by f)(azby — aibs)

(a1(by — 1) + by (f — a2) +iag — bz f)?

(3.37)
> 0.

a1=0
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Moreover differential system (3.16) under the assumption

(a) ai(bs — az) # 0 has the Poincaré-Liapunov first integral

H = ubQ(bl—ﬂl)T;“l(bl—b2)(1 +u+ .v)(ﬂl—bl)(ﬂ2—b2)

(ba(ay + i — by) — azi)u + (ba(ay + 7 — ba) — a2i)v + i(as — by))*?2 22"
(3.38)
if and only if

on=0 < i= M
ai(bz — az)

3.39
A11|I._fh'2(bl _ Gl) >0 <= bgal(albg - a-)_bl) < 0. ( )

" ai(by — az)

(b) ay(az — by) =0 has the Poincaré-Liapunov first integral

(i)

I —i
(ag+by Juta v u
H = irage > ) 3.4
€ (1+u+1,‘) (1+u+'u 340)

4

if and only if

bo=a;,=0= 0y, =0, A11|52:m:0>0¢:>i'f>0,
(i)
: i by : —ay
H =" s 2 (3.41)
l+u+wv l1+u+v

if and only if
by—as = f =0= 011 =0, A11|b3—n2zf=0 >0 al(al—bl) > 0.

Proof. By considering that two- dimensional Kolmogorov differential system (3.16)
has three invariant straight lines with cofactors K for j = 1,2, 3 namely

g1= u Ky = Mu,v)+ (a1 —2f)u+ (a2 —i— flv— f,
go= v Ko=Au,v)+ (b —i— flu+ (ba — 2i)v — 1,
u+v+1 K3 = Mu,v) — fu—iv,

g3

then this system has a integrating factor (see (3.32)) J = uftv#2(1 + u + v)#s if
and only if (see formula (3.31))

Ky + e Ko + ps K3 + divX = 0,
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where X' = (X1, X2) is the vector field associated to system (3.16). Under the
change pt; = —1 + v, for j = 1,2,3, and after some computations we can prove
that this equation is equivalent to the linear system with respect to v, v and 14

1 1 1 —4 12 0
(11—2f b1—f—?‘. —_f —(2a1—5f+b1 —?:) Vo . 0
as— f—i by — 2i —i  —(as — f—5i+2bsy) V3 a 0
—f —1 0 f+i 1 0

This lineal system has a unique solution if and only o1; = 0. Under this condition
we get that
_ ba(—b1 + a1) _

, o =—1
4105 —tiahi . M2 +

- by — —b
(a2 — ba)ay PP (br — a1)(az 2)_

n=-1 ;
e ﬁlbg - {I.-Zbl : (leg = {I.le

Thus the integrating factor is given by formula (3.45).
First we prove statement (a). Using the previous integrating factor under the
condition a;(—bs + a2) # 0, we deduce that vector field

=2 (o bt =En ),
"._al(—‘bz + as)

has the Darboux first integral (3.38). Now we prove that H is a Poincaré-Liapunov
first integral. We denote by €2 the matrix

O?H  9*H
Q- Judu  Oudv
&?H  9*H
dudv  Ovdv

The Darboux first integral (3.38) has the following Taylor expansion in the neigh-
borhood of the point Py H =< p,Qp" > +h.o.t., where p = (u,v). After some
computations we have that

f252(11(£1152 - (1251} = 2|
P (ay(ag — b2) + f(b2 — a1))?

Thus the Darboux first integral is a Poincaré-Liapunov first integral if and only
if Aql,_ LY > (0, this inequality holds if and only if baa;(a1bs — asby) < 0.

det } = — Jz| A1, (ag-bvag >0,
P11 Y= al(—bataz)

T aj(—hgtaqg
Thus in view of the Poincaré result system (3.16) has a center at the the point

Py, under the condition (3.39).
Now we prove statement (b). First we study case (i). Under the condition
a; = by = 0 differential system (3.16) becomes

= u(—fu®+(azg+b —i— fluv—iv?+ (b —i— flu— 2iv —1i),

3.42
b= v(—fu+(az+by —i— fluv—iv? + (by —i— fu—2iv—1). (3.42)
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From (3.24) with a1 = by = 0 we get that the integrating factor (3.24) in this case
1

luv|(1 +u+v)?

system (3.42) is integrable. After some computations we obtain the Darboux first

integral (3.40). This function has the following Taylor expansion in the neighbor-

hood of the point Pi1fy,_, o H =< p, Qp" > +h.o.t., where

becomes J = J |al=b2=0 = Consequently we get that differential

2
o f (braz — lag — baf

detQ =i = .
! ( a3bli

Thus the Darboux first integral is a Poincaré-Liapunov first integral if and only if

if > 0 and consequently system (3.42) has a center at the point Pj,| e =%

Finally we study case (ii) i.e., when as — by = f = 0. Differential system
(3.16) under this condition becomes

= u(ayu?+ (by + by — i)uv + (by — i)v* + ayu + (by — i)v),

b= v(ayu®+ (by + by — i)uv + (by — i) + (by — i)u + (by — 2i)v — i) .
(3.43)
From (3.24) with a2 — bs = f = 0 we get that the integrating factor is J =
Iag—tp=y=0 = m Consequently we get that differential system
(3.43) is integrable. After some computations we get that the first integral of (3.43)
is (3.41). This function has the following Taylor expansion in the neighborhood of
the point p11|n_2_,u=f=u., H =< p,Qp" > +h.o.t., where

det Q = A%ay(a) — b),

where A is a convenient non-zero constant. Thus the Darboux first integral is a
Poincaré-Liapunov first integral if and only if ay(a; — by) > 0, and consequently
system (3.42) has a center at the point Pyyl,, ;. _ =0 - In short the proposition is
proved. O

3.4.3 Non-existence of limit cycles for the differential systems (3.10)
and (3.16)

Differential systems (3.10) and (3.16) have not limit cycles as follows from
the next result.

Corollary 69. (i) Two dimensional Lotka-Volterra vector field X = (P, Q) asso-
ciated to system (3.10) has the Dulac function

_qybalby—ey) 4, ag(ap—ba)
J==x 1+albg—agbl Yy 1+x:1b2—r12b1 s

such that
div(JX) = 04.J, (3.44)
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Consequently differential system (3.10) has not periodic solution if o4 # 0.
Moreover if o4 = 0 then J is the integrating factor.

(i) Kolmogorov vector field X = (X1, X2) associaled to system (3.16) has the

Dulac function
ba(—by + ay) (ag — ba)a, (b1 —a;)(az — ba)
—1- ~1 —Eg ;
J': uw (L]bg —agb] v a|b2 "-(lgb] (1+U‘,+U) a]bg —G-gb|
(3.45)
such that
div(JX) = —(1 +u+v)oJ, (3.46)

Consequently differential system (3.16) have not periodic solution if o011 # 0.
Moreover if 11 = 0 then J is the integrating factor.

Proof. To prove this corollary we apply the Bendixon-Dulac result (see for instance
[6, 20]): Let & be the vector field jssociated to the differential system

i=X(y) 9=Y(uy) (3.47)

If there exists a C! function J(z,3) (called the Dulac function) such that the
expression div(JX') has the same sign except possibly in a set of measure 0 in a
simply connected region U of the plane, then the system (3.47) has no periodic
solutions lying entirely within the region U.

Using this result and in view of (3.44) we get that equation (3.10) has no
periodic solutions if oy # 0. On the other hand from (3.46) we obtain that dif-
ferential (3.16) has no periodic solutions if ¢1; # 0. The case when o4 = 0 and
11 = 0 was studied in the previous subsections. O

We recall that statement (i) of Corollary 69 was already proved by Bautin,
see [17].
3.4.4 Study of a particular case of system (13)

In this section we study a particular case of system (5).

(i) System (32) can be interpreted as perturbation of the completely integrable
three dimensional Lotka -Volterra system

&= w(-dy—fz),
y= yldz—iz), (3.48)
(fx +iy).

Z

Il

We can show that system (3.48) has two independent first integrals

Hi=z+y+z  Hy=lal'ly|~f|2|
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To study this differential system we determine z as follows z = k — 2 — y,
where Hy = k. Then

= z(-dy- f(k—z-1y)),
= yldo—i(k—o—y)).
Equilibrium points of (3.49) are M, = (0,0), My = (0, k), M3 = (k,0), My =
ik fr

(_! ——) , where p=d — f+i.
pweoop

(3.49)

By introducing the notations
a1:f, a = f—d, a3=—f|'i._ bh=i+d, by=1i, by=—ik,
we obtain that (3.49) becomes

b: .
=z ({L;)—; + a1+ 02?)‘) . Y =ylbs + (a1 + by — az)x + bay).
2

Clearly that the phase portraits of (3.49) can obtain from the phase

< sz b
portraits of (3.10) under the conditions az = s and [, = I5.

ba
Now we shall study the following system
z(a—ax—(a+b+c)y— (a+d+e)z),
7 yle+br—cy—(c+d+ f)z), (3.50)
i= z(d+ex+ fy—dz),

which is the most general three dimensional Lotka-Volterra system having
the invariant plane x + y + z — 1 = 0. The cofactor of this invariant plane is
—(ax + ey + dz). We study differential system (3.50) on the mvariant plane.
After the change 2 = 1 — x — y we get the two dimensional Lotka -Volterra
system

i= wz(d+e—(e+dx+((b+c—d—e)y),

g= y(-d=f+@+ctd+flz+(d+ fly). @20
By comparing with differential system (3.10) we get that
a3= d+e, ax=b+c—d—e a3 =—e—d,
b3= —d—f, bi=btct+d+f, br=d+ [
Consequently system (3.51) becomes
&= x(—a3+ azx — azy), (3.52)

y= y(=by+ (a1 —az + ba)x + bay)
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hence the following relations hold
bo+b3=0, ay+a3=0, b =bs+a, —as. (3.53)

The equilibrium points are P, = (0,0), P> = (1,0), P3;=(0,1)and Py =

b
2 , — 24 . The phase portraits of (3.52) can be obtained from
as + b s + b

phase portraits of system (3.10) under the condition Iy = I5 . The point Py
. . b + ; + a:

is a saddle if Ay = M < 0, or a center if Ay = M 200,

as + bg a2 =+ bz

because in view of the conditions (3.53) always a4 = 0.

(iii) As we observe in the introduction differential system (32) is a generalization
of system (), this differential system on the invariant plane z+y+2z—1=10

becomes _
1= z(bi—m—-b-PFiz+(v— 5By,

V2= y(Ba—b—r2—(v+B2)a—Bay).
This differential system was study in [32] and has the Darboux invariant.
After the change
Nn+b= —az+pi. B =—a1, fo=—by, v=—ay +az, v- P =ay,
Yot+b= Ba—bs, v+ P2 =—b1, B2 = b,

and by considering that v 4+ 32 = —by = a1 — a2 + bs, i.e. by = a; — as + bs, then
the differential system can be written as

= x(az+ arx +asy),

y= v (b3 + (a1 —az + bz)-’l-' + bay).

Clearly this differential equation can be obtained from (3.10) with b = ay—as+bs,
with is the same [y = I5.

3.5 Differential systems (3.36) having a center
For the planar polynomial differential system & = P(x,y) and § = Q(x,y)
we have that the equilibrium point My = (g, yo) is a center of this system if and

only it admits a Poincaré-Liapunov first integral H which has the following Taylor
expansion at the neighborhood of My

H(z,y) = an12? + 2a122y + a29y”® + hot. :=< p,Qp’ > +h.ot.,

where p = (z,y) and Q is a matrix such that detQ = ajjaz2 — a?, > 0. Clearly
that in his case the given differential system after the translation z = X + x,
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y =Y + yo and under a convenient linear change can be written this system in
the form (3.30).

In this section we shall study the polynomial differential system (3.36) having
a center. We prove that polynomial differential system (3.36) with a center can be
represented in the form (3.30) for a convenient polynomial of degree three X and
Y. In this section we determine this representation under the conditions (3.37).

Proposition 70. Polynomial differential system (3.36) under a conditions (3.37)
can be written as

U= -V +lnU?-V?)+1,UV +URy(U,V) =P,

; (3.54)
V= U +82(](U2 -4 V2) +sn UV + VRQ(U V) = Q,

where Ro(U, V) = lsg(U? — V2) + 15,UV, 509, 811 and liy, lsg, 21 are convenient
rational functions on the parameters a,,asz,ba, f. We do not give these expressions
because they are very long.

a?b3 +¢?2

Proof. We prove this proposition only for the case when By choosing b; = o
10202

where ¢ is a non-zero parameter, we obtain that
2
x S
Al 2242 = ( ! ) =0, azba # 0.

=" ai(az — bz) — (a1 — ba) f

Introducing the notations X; = Pj|Il a3 16‘2 i= L2 by) we obtain that differ-
ajagby * aj(ag—ba
ential system (3.36) becomes
X=X, Y = X, (3.55)
with the matrix of the linear part

= _( Mu My
M = JHII|.'J _qffp.g_kz i fbalag=by) = ( ﬂ.;rlz ﬂ;rg-z )

1= atazbs '~ aj(az—ba)

where
Ji|*ﬁlrn = % (bzﬂ%(bz - 02)2(32 - f)(ﬂl - f) + f‘;z(ihﬂ-'z - bz(ﬂ-l - f})) 3

M3 = % (b3a3(ar — f)*(2a2 — ba) + (azai(az — f)* + fs?) ,

ﬂ:le = % (bﬁm - f)Q((al (ag — f))z + Gz) I (110-2§2(flt(a2 — 2by) + szf)) .

May = —£ (b2a3(bs — a2)*(az — f)(a1 — f) + f<?(araz — ba(ay — f))) = =My,

p=ajaz(az — by)(ai(az — ba) — (ay — ba) f)%
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Hence we get that

fs )2
ay(as —by) — (ay —b2)f )

trace M = 0.

det M = (

Now we determine the linear transformation
U 81 89 X = =
= — U =5X,
( Vv ) ( 83 84 Y %

such that SMS~! = E, where F = ( E _O’M ) . For simplicity we shall study

the case when p = 1.
After some computations we can show that one of these transformation is

S=( E 0 )wherc
S3 S4

S3 = %(b?_ ((a1 = b2)* +ai(az — b2)) f°
+ay(az — ba) (0152((’»2 —ba)(a2 + a1) + (b2 — a1)(a1 — Sbg)) I
a3(ag — by)? (bz(amm + 1)+ 2(be — ﬂ-l})f + (a1(az — 52})3)!
= (@02 + o) £

+2a1(by — az) (a1az(ag — by) + a1 — ba) f + ari(a3 + 1){az — 52)2)-.
2
0= aias(as — ba) (al(ﬂz —ba) — (a1 — bz)f) ,
ay(az — ba)
a] — bz + (I

Under the linear transformation
1 s
X =U, Y =—(V—s3U),
sS4

differential system (3.55) becomes (3.54).

The determination of the differential system (3.54) in the neighborhood of
the point Pi1f,,_, o under the condition if > 0, and Pi1y,_, _, under the
condition a,(a; — b;) < 0 can be obtained analogously to the case that we had
studied previously. The proof is obtained after some computations and in view of
Proposition 67. O
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3.6 Global phase portraits. Proof of Theorem 17

In this section we will describe all the possible phase portraits of systems
(3.10) whose singular points on the boundary of the region M are hyperbolic. We
recall that an equilibrium point P of a differential system is hyperbolic if the real
part of the eigenvalues of the linear part of the system at p are non-zero. As we
have seen in Proposition 4 to study the global phase portraits we need to study
the phase portraits on the invariant plane and on the infinity.

The A; and o; for j = 1,..,11 defined in subsection 3.3 can be expressed in
terms of the eigenvalues /\(1‘?),/\%J ) of the linear part matrix of the corresponding
two dimensional system at to the point P; . The eigenvalues of the linear part
matrix of system (3.10) at the points P; for j = 1,..,4 are

MY =as, AP =bs, AP = b,

Agz) = —ﬁ, Ag:j) = —as, /\gi) = é‘
2 ay
(4) I]IQ+\/4(—I|(L1+Igb2)f3+f%!§)
Al = 5
213
AW _ LI — \A(-Lai + Lb) L + I312)
5 = :

213

The eigenvalues of the linear part matrix of system (3.11) at the points P; and P

are
I3

I5
The eigenvalues of the linear part matrix of system (3.12) at the points P; are

AW =—al, MWe=-n, A¥=1, A=

M) =, M=p

The eigenvalues of the linear part matrix of system (3.16) at the points P; for
j=>5,...,11 are

(65)  _ (5) _ © _ _Is © _ _ _fals
AI =, f\g —Id? A1 - I4_15’ (\2 - ]_.1—.{5,

AV =py, M=-r, X=—5 AP=

; I
A(g) _ E /\gg) _ boi /\(l(]) _ _a_;f_, )\glﬂ) _ 110

1 o h ol _',T: 1 . 3
A\ Zon Vvoi —4Ay et e o Vot — 44y
1 2 ? 2 9 ?

where Ig = (I;g?: = b‘gf and Il{] = l’i’.]?: b bl f
As we have seen in (3.10) a1, az, as, by, bs and bs are independent parameters,
and as = I5+bs, by = ay — 1. so we can express all the eigenvalues of the points in
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the invariant plane in terms of the independent parameters Iy, I5, b, ay, az and bs.
Equivalently the eigenvalues of the infinite singularities can be expressed in terms
of the independent parameters Iy, I5, b2, a1, f and i. Taking all those parameters
and adding the parameter a as in Proposition 65 we have nine parameters that
are linearly independent. Then the matrix of those parameters expressed in the
original parameters a, b, c,d, e, f, g, h,i of system (32) is

(1 0O 0 0 0 0 0 0 0\
0 0 -1 0 0 1 0 0 0
1 -1 0 0 0O -1 0 0 0O
0o 0 0 0 0 0 0 -1 1
v=|l1 0 0 0 0 0 -1 0 -1
i 0 @ =t =4 T B A =i
0 0 -1 -1 0 1 0 0 -1
0O 0 0 0 0 1 0 0 0
\0o 0o 0 0 0 0 0 0 1

These nine parameters are independent because rank(V) =9.

This means that we can obtain the global phase portraits by studying the
phase portraits in the invariant plane and at the infinity using the Darboux in-
variant. In short for determining a global phase portraits it is sufficient to study
the phase portraits on the invariant plane at infinity, and since there two invariant
surface in a global phase portrait have in common the parameters I, I5, a; and
bo, these parameters must be same in order to study the global phase portrait.

We will do our study based on the sign and not in the numerical value of the
eigenvalues. For this we need to study the sign of all the parameters previously
mentioned in that section plus the auxiliary parameters [, Is, I3, Iy, [;0,¢,h, as
we will see below. In this case analogous to what we have just stated, the com-
patibility between the dynamics of the invariant plane and at infinity depend on
the parameters corresponding to the points Py, Ps and FPg, so it depends on the
parameters Iy, I5, a; and by if the point Py is out of the region M. and also on the
parameter [3 if the point Py is in the region. The signs of these parameters must
be the same for the invariant plane dynamics and for the infinity dynamics.

3.6.1 Phase portraits on the invariant plane

We will study all the possible phase portraits on the invariant plane based
on the compatibility between the local dynamics of the singular points. The local
dynamics of each point can be found studying the sign of the eigenvalues defined
in the previous section: if /\EJ} > 0 then along the direction of the corresponding
eigenvector the point has an unstable behavior, and if ,\Ej ) < 0 a stable one.

As we have just stated, the eigenvalues of the points in the invariant plane
can be expressed in terms of the independent parameters Iy, I5, bs, a1, a3 and bs.
But for studying the sign and not the values of the eigenvalues of the points P, Ps
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Figure 3.1: Singular points scheme

and Py we need to add three dependent parameters, I, I, and I3. As there are
dependencies between the local dynamics of the points, we will not study the point
Py .,because its eigenvalues signs are hard to obtain from the mentioned parameters,
and we will find its local dynamics by compatibility with the rest.

From the points P; for j = 1,..,7, only the points P;, P5 and P; are always
on the boundary of the region M. The pointsP,, P;, and Py can be in the region
VI or outside of it. We will divide our study taking into account the in to the cases
by number of points on the boundary of the region M.

Three points on the boundary of II N M

Clearly that the points P, Py and Pg are outside of the region M if az/a; >
0,b3/by > 0 and I;/Is > 0. In this case it is sufficient to study the compatibility
of the parameters Iy, I5, a1, as, bs, and by, thus we must distinguish the following
cases

JT4 > [}._ Jrr, >0, asz = 0.0.1 >0; b;; > 0, bg >0 (F?()gg)q

Iy >0,I5 > 0,a3 <0,a1 <0,b3 <0,bs <0 (Fig.3.3),
Iy >0,15>0,a3 >0,ap >0.b3 <0.by <0 (F£y34),
JT4 >0, )rs > 0, a3 < 0,a; < 0._. b;; >0, b;; >0 (F?(}SS)

The last case is the only one that has the point Py inside of the region M. In
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this case Ay > 0. This point is a center if o4 = 0, a stable focus if o4 < 0, and an
unstable focus if o4 > 0.

P7

Figure 3.2 Figure 3.3 Figure 3.4

1 3 PL PS5 F1 PS

Figure 3.5

Four points on on the boundary of IT N M

We consider first the case with P, P, Ps and P; on the boundary of the
region Ml and the points P; and Py outside of this region. It must be ag/a; <
0,b3/b2 > 0 and I/I5 > 0. In this case it suffices to study the compatibility of the
parameters I, 14, I5, a1, as, be, and by, thus we must consider the following cases:

I <0,1;>0.15 >0,a3 > 0,a1 > 0,b3 > 0,bs <0 (Fig.3.6),
I <0,1; <015 <0,a3 <0,a; <0,bg >0,by <0 (Fig.3.7),
L <0,1;>0,I5 >0,a3 <0,a; <0,bg >0,bs <0 (Fig.3.8),
I <0,1;, <0,I; <0,a3 > 0,a) >0,b3 > 0,bs <0 (Fig.3.9),
ILi >0,1;>0,I; > 0,a3 > 0,a; > 0,b3 > 0,bs <0 (Fig.3.10),
I >0,I; <0,I5 <0,a3 > 0,a; > 0,b3 > 0,by <0 (Fig.3.11),
L >0,1;>0.15 > 0,a3 < 0,a) <0,b3 >0,by <0 (Fig.3.12),
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The first and the last two cases have the point Pj inside of the region M. In
the first case Ay < 0, so Py is a saddle. In the last two cases o4 < 0 and Ay > 0,
so we have a stable node if 0'3 — 4A, > 0, and a stable focus if af —4A4 < 0.

Second we consider the case with Py, Py, P; and P; on the boundary of the
region M and the points P, and Py outside of the region. It must be az/a; >
0,b3/bs < 0 and I4/I5 > 0. In this case it suffices to study the compatibility of

the parameters I, Iy, I5,a,,

ag. ba, and bz, and we get the cases:

I, <0,1;>0.15 >0,a3 < 0,a; > 0,bs < 0,by <0 (Fig.3.13).
I, <0,1; <0.1; <0,a3 <0,a; >0,bs <0,by <0 (Fig.3.14),
Iy, <0,0;>0.I5 >0,a3 <0,a; >0,b3 >0,b, >0 (Fig.3.15),
Iy >0,1;>0.I5 > 0,a3 < 0,a) >0,b3 < 0,by <0 (Fig.3.16),
I, >0,I;<0,I5<0,a3 <0,a; >0,b3 <0,bs <0 (Fig.3.17),
I >0,1; >0,I; > 0,a3 < 0,a1 > 0,b3 > 0,bs > 0 (Fig.3.18),
I, >0,I, <0,I5 <0,a3 <0,a; >0,b3 >0,bs >0 (Fig.3.19),

The second, third and e fourth cases have the point P, inside of the region
VL. In the fourth case Ay < 0, consequently P, is a saddle. In the second and third
cases g4 > 0 and Ay > 0, so we have an unstable node if U:‘; —4A,4 > 0, and an
unstable focus if 03 —4A4 < 0.

Finally we consider the case with Py, Ps, P and P on the boundary of the
region M and the point P, and P to be outside of this region. thus az/a; >
0,b3/b2 > 0 and I4/I5 < 0. In this case is enough to study the compatibility of
the parameters I3, Iy, I5, a1, as, ba, and b3, and we obtain the cases:

13 < 0,1, <0,1;
Iy 20,005

>0,b3 >0,00 >0
>0,b3 >0,b0 >0
>0,b3 > 0,00 >0 FZQSQQ)

(Fig.3.20),
(
(
> 0,b3 < 0,by < 0 (Fig.3.23),
(
(
(

Fig.3.21),

>0,a3 > 0,a;
< 0,a3 > 0,a4
I;g > 0, L; >0, I5 < [], az > U,Q.]_

I >0,1;, <015 >0,a3 >0,a;

I3 <0,1,<0,I5>0,a3 >0,a; >0.b3 <0,by <0 th324)
Iy >0,1;>0,1; <0,a3 > 0,a; > 0,bs < 0,by <0 (Fig.3.25),
I3 <0,1;>0,I5 <0,a3 >0,a; >0,b3 <0,by <0 F?g32f))

The second, the fourth and the sixth cases have the point P; inside of the
region M. In the second case Ay < 0 so Py is a saddle. In the fourth case a4 < 0
and A; > 0 so we have a stable node if o-f — 4A,4 > 0 and a stable focus if
02 —4A4 < 0. In the sixth case o4 > 0 and A4 > 0, so we have an unstable node
if 07 —4A4 > 0, and an unstable focus if o5 —4A, < 0.
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Five points on on the boundary of IT N M

First we consider the case with Py, Py, P3, P; and P; on the boundary of the
region M and the point Fs outside of this region, i.e. az/a; < 0, b3/bs < 0 and
I;/I; > 0. In this case is enough to study the compatibility of the parameters
I, Is, Iy, I5. a;, az, ba, and by, thus we obtain:

L >0,1p>0,14>0,I5 >0,a3 >0,a1 <0,bg >0,bz <0 (Fig.3.27),
L <0,15>0,14>0,I5 >0,a3 >0,a; <0,b3 >0,bs <0 (Fig.3.28),
Li >0.1,<0,I;>0,15 >0.a3 >0,a1 <0,b3 > 0,02 <0 (Fig.3.29),
L >0,1b>0,1;<0,I; <0,a3 >0,a1 <0,b3 > 0,by <0 (Fig.3.30),
L <0, <0,I4>0,I; >0,a3 >0,a; <0,bg >0,bs <0 (Fig.3.31),
L <0,I,>0,1; <0,15 <0,a3 >0,a; <0,b3 >0,by <0 (Fig.3.32),
I >0,I<0,I4<0,I5 <0,a3 > 0,a; <0,bg > 0,by <0 (Fig.3.33),

I <0,I;<0,I;<0.I; <0.a3 >0,a; <0,b3 >0,bp <0 (Fig.3.34),
L <0.1,>0,14>0,15 >0.a3 >0,a; <0,b3 <0,by >0 (Fig.3.35),
I >0,I>0,14 <0,I5 <0,a3 >0,a; <0,b3 <0,bs >0 (Fig.3.36),
L <0,Ip>0,14 <0,I; <0,a3 >0,a1 <0,bg <0,bs >0 (Fig.3.37),
I >0,1,<0,I; <0,15 <0.a3 >0,a1 <0,b3 <0,bz >0 (Fig.3.38),
L <0,Ip<0,I4 <0,I5 <0,a3 > 0,a1 <0,bg <0,by >0 (Fig.3.39).

The second, third, sixth, seventh, eleventh and twelfth cases have the point
Py inside of the region M. In the second, sixth and eleventh cases Ay < 0, so Py
is a saddle. In the third and seventh cases o4 < 0 and Ay > 0, so we have a stable
node if 7 —4A, > 0, and a stable focus if o — 44, <0

. In the twelfth case we have Ay > 0. This point is a center if o4 = 0, a stable
focus if o4 < 0 and aﬁ — 4A, < 0, is a stable node if o4 < 0 and ﬂff —4A4 > 0,
is an unstable focus if oy > 0 and oF — 4A4 < 0, and an unstable node if o4 > 0
and o3 —4A, > 0.

Second we consider the case with Py, Ps, Ps, P; and P; on the boundary of the
region M and the point Pj outside of the region. It must be az/a; < 0,b3/bs > 0
and I /15 < 0. In this case it suffices to study the compatibility of the parameters
I, I3, 14, 15, ay, az. ba, and bz, and we have:
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L >0,13>0,14 >0,15 >0.a3 >0,a1 <0,b3 >0,bx <0 (Fig.3.40),
I, <0,13>0,14>0,15 >0,a3 >0,a; <0,bs >0,by <0 (Fig.3.41)
I >0,I3<0,I4>0,I5>0,a3 > 0,a; <0,b3 > 0,by <0 (Fig.3.42),
L >0,013>0,13 <0,I5 <0,a3 >0,a; <0,b3 > 0,by <0 (Fig.3.43),
L <013 <0,I4 >0,I; > 0,a3 > 0,a) <0,b3 >0,bs <0 (Fig.3.44),
I <0,13>0,14 <0,I; <0,a3 > 0,a; <0,b3 > 0,by <0 (Fig.3.45),
L >013<0,1; <0,[; <0,a3 >0,a; <0,b3 >0,by <0 (Fig.3.46),
L <0,13<0,I; <0,I; <0,a3 > 0,a1 <0,b3 >0,by <0 (Fig.3.47),
L <0.13>0,14>0,1Is >0,a3 > 0,a; <0,b3 <0,b >0 (Fig.3.48)
L >0,13>0,1; <0,I; <0,a3 >0,a1 <0,b3 <0,b2 >0 (Fig.3.49),
LI <0,I3>0,14<0,l5<0,a3 >0,a; <0,bg <0,bs >0 (Fig.3.50),
I >0,I3<0,1; <0,I5 <0,a3 >0,a, <0,bs <0,b; >0 (Fig.3.51),
L <0,13 <0,y <0,I; <0,a3 > 0,a1 <0,by <0,bs >0 (Fig.3.52).

The first and the last two cases have the point P; inside of the region M. In
the first case Ay < 0, so Py is a saddle. In the last two cases o4 < 0 and Ay > 0,
so we have a stable node if o — 4A; > 0, and a stable focus if o3 — 4A, < 0.

Finally we consider the case with Py, Ps, Ps, P and Pr on the boundary of
the region M and the point Py to be outside of the region, i.e. az/a; > 0, by/bs <0
and I /I5 < 0. In this case it suffices to study the compatibility of the parameters
I3, 14, I5, a1, a3, bo, and by, and we get:



3.6. Global phase portraits. Proof of Theorem 17 123

Figure 3.45 Figure 3.46 Figure 3.47



124 Chapter 3. Final evolutions of the generalized 3-dimensional Lotka-Volterra

3 3 " 5 P s

Figure 3.50 Figure 3.51 Figure 3.52

I >0,13>0,1; >0,I; > 0,a3 > 0,a) <0,b3 > 0,by <0 (Fig.3.53),
Fig.3.54),
Fig.3.55),
Ih >013>0,1;<0,I5 <0.a3 >0,a; <0,b3 >0,by Fig.3.56),

I <013>0,13>0,15>0.a3 >0,a; <0,b3 >0,b, <0 (
<0
<0 (
Iy <0,13<0,Iy>0,I5 > 0,a3 > 0,a1 <0,b3 >0,by <0 (Fig.3.57),
<0 (
<0 (
<0

I >013<0,1;>0,I; >0.a3 >0,a1 <0,b3 >0,b

L <0.13>01;<0,I; <0.a3 >0,a; <0,b3 >0,b Fig.3.58),
Fig.3.59),
I, <0,I3<0,I;<0,I5<0,a3 >0,a; <0,bs >0,by Fig.3.60),
I, <0,I3>0,1;>0,15>0,a3 >0,a; <0,by <0,b; >0 (Fig.3.61)
Iy >0,13>0,1;<0,I; <0,a3 >0,a) <0,b3 <0,by >0 (Fig.3.62),
Iy <0,13>0,I4 <0,I; <0,a3 > 0,a1 <0,bg <0,by >0 (Fig.3.63),
I >0,13<0,I4 <0,I5 <0,a3 > 0,a1 <0,bg <0,bz >0 (Fig.3.64),

I <0,13<0,1;<0,15 <0,a3 >0,a; <0,b3 <0,bs >0 (F?q365)

I, >0I;<0,1; <015 <0,a3 >0,a1 < 0,b3 - O,bz
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The second, fourth and sixth cases have the point Pj inside of the region M.
In the second case Ay < 0 so Py is a saddle. In the fourth case o4 < 0 and Ay > 0,
so we have a stable node if 7 — 4A, > 0, and a stable focus if o5 — 4A, < 0. In
the sixth case o4 > 0 and Ay > 0, so we have an unstable node if 0‘42 —4A4 > 0,
and an unstable focus if 07 — 4A4 < 0.

Six points on on the boundary of IT N M

We consider all the singular points of the system P;, j =1,...,7, are on the
boundary of the region M, i.e az/a; < 0,b3/bs < 0 and I4/I; < 0. In this case
we want to study the compatibility of all the parameters I, Is, I3, Iy, I5, ay, az, bs,
and bz, and we obtain

L>0 ,I3>0I3<0,1y>0,I5 <0,a3 >0,a; <0,b3 >0,by <0 (Fig.3.66),
L <0 ,I,>013<0,1y >0,I5 < 0,a3 >0,a1 <0,b3 >0,by <0 (Fig.3.67),
L>0 ,I3>0,13>0,1y<0,15 >0,a3 >0,a7 <0,b3 >0,b; <0 (Fig.3.68),
IL <0 I, <0,I3<0,1; >0,I5 <0,a3 > 0,0, <0,b3 >0,b; <0 (Fig.3.69),
L>0 L<0.I;<0,1; <0,15 >0,a3 >0,a; <0,b3 >0,by <0 (Fig.3.70),
L>0 ,Ib<0,I3>0,1; <0,I5 > 0,a3 > 0,a; <0,b3 >0,by <0 (Fig.3.71),
L <0 ,Ib<0,I3>0,14 <0,I5 >0,a3 > 0,a; <0,b3 > 0,02 <0 (Fig.3.72),
L>0 ,I;>0I3<0,14>0,I; <0,a3 >0,a1 <0,b3 <0,b2 >0 (Fig.3.73),
L <0 Ib>0,13>0,14 >0,I5 <0,a3 >0,a, <0,b3 <0,by >0 (Fig.3.74)
L <0 ,I,>0I3<0,14>0,Is <0,a3 > 0,a; <0,b3 <0,bs >0 (Fig.3.75),
L<0 ,I;>0,13>0,1; <0,I5 >0,a3 >0,a; <0,b3 <0,by >0 (Fig.3.76),
L <0 ,I;>0I3<0,14 <0,I; > 0,a3 > 0,a; <0,b3 <0,bs >0 (Fig.3.77),
L <0 ,I;<0,I3<0,I4 <0,I5 >0,a3 >0,a; <0,b3 <0,b2 >0 (Fig.3.78).
The second,sixth, tenth and the twelfth cases we have the point P, inside of
the region M. In the first, tenth and twelfth case Ay < 0 so Py is a saddle. In the

sixth case 04 < 0 and Ay > 0, so we have a stable node if 67 —4A; > 0, and a
stable focus if 07 — 444 < 0.

3.6.2 Phase portraits at infinity

The eigenvalues of the points at infinity can be expressed in terms of the
independent parameters Iy, I, bs, a1, f and i. But for considering the sign and
not the numerical values of the eigenvalues of the points Py, Pjg and P; we only
need to add five dependent parameters, Iy, I1g, ¢, h and I3. All the points P; for
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j = 5,...,11 with the exception of Fy and P; are always in the intersection of
the infinity with the region M. The points P; and P;; can be in this intersection
or outside of it. For the point Ps to be in the region, it must be I4I; < 0, so if
I3 > 0 then Fj is a saddle and if I3 < 0 it is a node, stable if I; > 0 and unstable
if Iy < 0. As there are dependencies between the local dynamics of the points,
we will not study the point Py, because its eigenvalues signs are hard to obtain
from the mentioned parameters, and will find its local dynamic by compatibility
with all the rest. Regarding the local dynamic of the point Py, we will study it by
considering the sign of the parameter /3 only in those cases when we have Ps and
Py both inside of the region M. In the case when only the point F; is inside the
region, its dynamic is completely determined by the compatibility with the rest of

the points.

We will study the different cases based on the signs of the eigenvalues of the
points Ps, P;, Ps, Py and Py expressed in the previously mentioned parameters
Ig, Ig, f.i,a1. 1y, ba, I5, e, h. . We will numerate the cases in the following form:
the case j corresponds to the system where
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Figure 3.76 Figure 3.77

Figure 3.78

()5, >0, (-1)&slne >0, (-1)5=1f>o0,
(-1 >0, (-1)Fe >0, (-1)PE1L >0,

D), >0, () >0, (-)PFle>0, (-1)"h>o0,
(3.56)
where j € N and [] is the integer part function.
‘We will apply the symmetries defined in section 6.1 in order to reduce the
number of compatible cases that we need study.
We define the two following equivalence relations between cases in order to
reduce the number of configuration.

Given a phase portrait if the points Py and Py are not under the invariant
plane then they can be in the northern or southern hemisphere, without modi-
fying the phase portrait. If we look at the coordinates of these points and their
eigenvalues we have

P = (0,;—:)). Py = (%f,ﬂ,))

0 Is (9 bai (10) ay f oy o
A =g M55 & Gc MU=
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respectively. So in order that the point Py change of hemisphere without changing
its local phase portrait , the parameter A must changes its sign by the opposite,
and in order that the point Py changes of hemisphere without changing its local
phase portrait the parameter ¢ has to change its sign by the opposite. We repeat
our study in cases. Then in the four first cases the class of equivalence of the case
j is defined as all the cases k such that [j/4]=[k/4] where [| is the integer part
function. We observe that if the case is compatible and the points Py and Py are
both over the invariant plane, we have four equivalent cases that are compatible.
If one of the points Py or Py is under the invariant plane, then we only have two
equivalent cases inside the class, the two corresponding to the other point being
in the north or south hemisphere, and they are both compatible.

All the compatible cases and they relationships are shown in the table of
Fig.79. Only the cases in the first column that have the same case in the column
P9,P10 Equivalence are drawn, the rest of the phase portrait can be obtained by
homotopy from these.

In the cases j = 2,9,34, 54,65, 73,93,105, 777,792, 797,833, 841, 861, 873 the
point Pyq is inside the region M and Py outside of it.

In the cases j = 54,065,73,105, 777,833,841 we have A;; < 0 and P is a
saddle.

In the cases j = 2,93,792 we have Ay > 0, 17 > 0 and Py is an unstable
focus if af; — 4A1; < 0 or unstable node if 0%, — 4Ay; > 0.

In the cases j = 861,873 we have Ay > 0,017 < 0 and Py is a a stable focus
if 03, — 4A;; < 0 or stable node if 0%, — 4A;; > 0.

In the cases j = 9,34,797 we have Ay; > 0. In this cases Py is a center if
o1 = 0, is an unstable focus if o1; > 0 and 07, — 4A;; < 0, an unstable node if
o1 > 0 and a% — 4Aq; > 0, a stable focus if o7 < 0 and 07121 —4A4; <0, and a
stable node if o1y < 0 and 0%, —4A;; > 0.

The cases j = 6,38,69, 77,89, 774, 781, 845, 849, 857, 889 have the points Py
and Py inside of the region M.

In the case j = 849 we have I3 < 0 and F; is a stable node and Py is a
saddle.

In the cases j = 6, 38,69, 77,774,781 if I3 < 0 then Py is an unstable node
and Py, is a saddle. If I3 > 0 then Fj is a saddle and Py, is an unstable focus if
0%, —4A;1; <0, or an unstable node if o, — 4A;; > 0.

In the case j = 89 if I3 < 0 then FP; is an unstable node and Py is a saddle.
If I3 > 0 then FPj is a saddle and P, is a stable focus if o?l —4A41 < 0, or stable
node if o3, — 4A;; > 0.

In the case j = 857,889 if I3 < 0 then Fj is a stable node and Py, is a saddle.
If I3 > 0 then P is a stable saddle and Py, is a stable focus if 07, — 4A;; <0, or
a stable node if 0%, — 4A;; > 0.



3.7. Examples of global phase portraits 131

In the cases j = 845 if I3 < 0 then Py is an unstable node and Pp; is a saddle.
If I3 > 0 then Pg is a saddle, and Py is a center if o117 = 0, if o171 < 0 it is a stable
focus if o3, —4A;; < 0, or a stable node if 07, —4A;; > 0, and if o1; > 0 it is an
unstable focus if 63, — 4A;; < 0, or an unstable node if o3, —4A,; > 0.

3.6.3 Proof of Theorem 17

Proof. The proof of Theorem 17 is obtained as a consequence of all the results
given in this section. Let’s consider the process of construction of the global phase
portraits deseribed in the beginning of this section: we have 486 possible cases at
the invariant plane and 154 cases at infinity. If we classify them by the sign of the
common parameters ay, Iy, b, I5, Is, we will obtain the number of cases in each
group with the same parameters signs (the first two columns of Fig.3.132), that can
be combined pair-wise to generate a global phase portrait. By multiplying them,
we have the number of compatible combinations in each group, and if we sum
them all we have the total number of compatible combinations of both surfaces,
which is 3244 cases.

We recall that the cases are classified by the singular points on the boundary
of the region M, some of the invariant plane and infinity cases should be accounted
more than one time, as we have a bifurcation of the point P; for the invariant plane
and P for the infinity. As we have seen, there are two types of bifurcation , node-
focus bifurcation, and stable focus/node-center-unstable focus/node bifurcation.
The first two are topologically equivalent, but for the second type some additional
cases have to be accounted.

For each invariant plane case with this triple bifurcation, the combination
with each simple infinity case gives three global cases, and as we have accounted
only one, we have two more to add to the global compute , giving a total of 316
cases to add. In the same way, for each combination with triple bifurcation case at
infinity we must add eight more cases, so we have to add 144 cases (see Fig.3.133)

For each triple bifurcation case at infinity, in combination with a simple phase
portrait at the invariant plane, we have two more cases to add. The cight more
cases to add for each triple bifurcation invariant plane case are the same that we
have in the previous paragraph. We have to add 256 more cases (see Fig.3.134).

Now that we have accounted all the bifurcations we have a total of 3960
cases.

In short, we have two options in cach case for the sign of the parameter a,
to be a < 0 or a > 0, so we have a total of 7920 possible global phase portraits.

O

3.7 Examples of global phase portraits

As we have seen in section 3.6, to construct a global phase portrait we must
take one case of the 154 cases at the infinity and one of the 486 cases at the
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Figure 3.131
Cases Number of infinity cases Number of invariant plane cases Number of global cases
| a1<0, 14<0, b2<0, I15<0, I3 - 27 8 216
a1<0, 14<0, b2<0, 15>0, 13<0 29 6 174
| a1<0, 4<0, b2<0, 1550, 13>0 15| 8 120
a1<0, 14<0, b2>0, 15<0), I3 - 27 9 243
a1<0, 14<0, b2>0, 1550, 13<0 22 7 154
a1<0, 14<0, b2>0, 1550, 13>0 17 6 102
| a1<0, 14>0, b2<0, 15<0, 13<0 3 4 12
a1<0, 14>0, b2<0, 15<0, 13>0 16 2 32
a1<0, 14>0, b2<0, 15>0, 13 - 27 8 216
| a1<0, 4>0, b2>0, I5<0, 13<0 17 7 119
|_a1<0, 14>0, b2>0, 15<0, 13>0 22 6 132
a1<0, 14>0, b2>0, 1550, 13 - 17 6 102
| a1>0, 14<0, b2<0, I5<0, I3 - 17 6 102
| a1>0, 4<0, b2<0, 1550, 13<0 22 6 132
| a1>0,14<0, b2<0, 1550, 1350 17 7l 119
a1>0, 14<0, b2>0, 15<0, 13 - 27 8 216
| a1>0, 14<0, b2>0, 1550, 13<0 16 2 32
| a1>0,14<0, b2>0, 15>0,13>0 3 4 12
a1>0, 14>0, b2<0, 15<0, 13<0 17 6 102
~ a1>0,14>0, b2<0, 15<0, 13>0 22 7 154
a1>0, 14>0, b2<0, 15>0, I3 - 27 9 243
| a1>0, 4>0, b2>0, 15<0, 13<0 15 8 120
~ a1>0,14>0, b2>0, 15<0, 13>0 29 6 174
a1>0, 14>0, b2>0, 1550, 13 - 27 8 216
486 154 3244

Figure 3.132
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Figure 3.133
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invariant plane, both having the same signs of the parameters ay, Iy, bo, I5. I3,
and then define the sign of the parameter a. We take the invariant plane case
I < 0,1y > 0,15 > 0,a3 > 0,a; > 0,b3 > 0,bs < 0,(Fig.3.6) and the infinity
case j=9 in which, applying (3.56), we have Iy > 0,119 > 0,f > 0,i < 0,a; <
0,14 > 0,by < 0,15 > 0,¢ > 0,h > 0. The infinity case has a stable focus/node-
center-unstable focus/node bifurcation, we will choose the I3 = 0 case (Fig.3.82
with a center). Both cases are shown together in Fig.3.134. We choose a > 0, so
all the trajectories not belonging to the infinity or the invariant plane go from the
invariant plane to the infinity.

Now we can construct the global phase portrait. We have three additional
invariant planes: the planes xz, yz, and the invariant plane v defined by the
points Py, Py, Pjg. We also have an invariant surface p that contains the points
Py, Ps, Pz, Ps_, Py and Pjg. This invariants and their phase portraits are shown in
Fig. 3.135.

The global phase portrait is shown in Fig. 3.136. The plane v splits the
region M in two sectors, cach of them with a different w-limit. The trajectories of
the upper pyramidal sector with vertices Py, Ps, Py and Py have a-limit P; and
spin around the trajectory connecting P; and P;; towards the infinity, having as a
w-limit the orbits around the center P;;. The lower sector has as w-limit P5 and is
splitted in two sub-sectors by the surface p. The trajectories of the sub-sector with
vertices Py, Py, Ps and Py have a-limit P; and the trajectories of the sub-sector
with vertices Ps, Ps, P- and Ps_ have a-limit Ps.

If we take Fig.3.39 and Fig.3.124, unstable focus subcase (Fig.3.136), and
a < 0 and we proceed as in the previous case. we have the global phase portrait
shown in Fig.3.138. In Fig.3.137 we have the rest of the invariant surfaces in
the following order: the planes xz, yz, and the invariant surface triangular sector
containing the points Ps, Py and Ps.
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Figure 3.138
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