

Biomarcadors i resistència a la quimioteràpia en càncer de pròstata

Oscar Reig Torras

Aquesta tesi doctoral està subjecta a la llicència <u>Reconeixement- NoComercial –</u> <u>SenseObraDerivada 4.0. Espanya de Creative Commons.</u>

Esta tesis doctoral está sujeta a la licencia <u>*Reconocimiento - NoComercial – SinObraDerivada*</u> <u>4.0. España de Creative Commons.</u>

This doctoral thesis is licensed under the <u>Creative Commons Attribution-NonCommercial-NoDerivs 4.0. Spain License.</u>

Biomarcadors i resistència a la quimioteràpia en càncer de pròstata

Tesi presentada per

Oscar Reig Torras

Per optar al grau de Doctor en Medicina per la Universitat de Barcelona

Directora: Dra. Begoña Mellado González

UNIVERSITAT DE BARCELONA

Programa de Doctorat de Medicina i Recerca Translacional Facultat de Medicina i Ciències de la Salut Universitat de Barcelona Barcelona 2019

Als meus pares Al meu germà A la Sílvia A les nostres petites

Agraïments

A la Dra. Mellado que m´ha permès aprendre i treballar al seu costat durant aquests anys.

Al Dr. Prat i a la resta de membres del servei d'Oncologia Mèdica que han sigut uns grans mestres.

A la Dra. Marín amb la que vaig compartir un any intens al laboratori (has comprat els *primers*, ja?). Molta sort en la teva aventura australiana!

A l'Ivan i a la Lydia amb els que he aprés, crescut i treballat.

Als companys d'Urologia, Oncologia Radioteràpica, Radiologia, Medicina Nuclear i Anatomia Patològica amb els que compartim el dia a dia dels nostres pacients.

Òscar

ABREVIATURES I ANGLICISMES

ACTH Corticotropina (de l'anglès Adenocorticotropic Hormone)

AR Receptor d'andrògens (de l'anglès Androgen Receptor)

ARE Elements de resposta a andrògens (de l'anglès Androgen Response Elements)

CP Càncer de pròstata

CPRC Càncer de pròstata resistent a la castració

CSC Cèl·lula mare del càncer (de l'anglès *Cancer Stem-like Cells*)

CTCs Cèl·lules tumorals circulants

DBD Domini d'unió al DNA (de l'anglès *DNA-Binding Domain*)

DNA Àcid desoxiribonucleic (de l'anglès *Deoxyribonucleic Acid*)

ECOG PS Escala del rendiment del Grup Cooperatiu d'Oncologia del Est(de l'anglès *Eastern Cooperative Oncology Group Performance Status*)

EMT Transició epiteli-mesènquima (de l'anglès *Epithelial-Mesenchymal Transition*)

FACS Separador cel·lular activat per fluorescència (de l'anglès *Fluorescence-Activated Cell Sorter*)

GGO Gammagrafia òssia

qRT-PCR Reacció en cadena quantitativa a temps real de la polimerasa (de l'anglès *quantitative Reverse Transcription Polymerase Chain Reaction*)

LBD Domini d'unió al lligand (de l'anglès Ligand-Binding Domain)

LH Hormona luteïnitzant

LHRH o GnRH Hormona alliberadora de gonadotropines (de l'anglès *Luteinizing Hormone-Releasing Hormone* o *Gonadotropin-Releasing Hormone*)

MDSCs Cèl·lules supressores derivades de mieloides (de l'anglès *Myeloid-Derived Suppressor Cells*)

NK Cèl·lules assassines naturals (de l'anglès Natural Killer cells)

NLS Senyal de localització nuclear (de l'anglès Nuclear Localization Signal)

NTD Domini N-terminal

PBMCs Cèl·lules mononuclears de sang perifèrica (de l'anglès *Peripheral Blood Mononuclear Cells*)

PSA Antigen prostàtic específic (de l'anglès *Prostate-Specific Antigen*)

RECIST Criteris d'avaluació de la resposta en tumors sòlids (de l'anglès *Response Evaluation Criteria in Solid Tumors*)

RMN Ressonància magnètica nuclear

RNA Àcid ribonucleic (de l'anglès Ribonucleic Acid)

Splicing Empalmament

TAC Tomografia axial computeritzada

TNM Tumor, ganglis i metàstasis (de l'anglès *Tumor, Node and Metastasis*)

Tregs Limfòcits T reguladors

ÍNDEX

ÍNDEX	5
INTRODUCCIÓ	9
1. Generalitats del càncer de pròstata (CP)	11
1.1. Epidemiologia	11
1.2. Etiologia	12
1.3. Clínica	13
1.4. Diagnòstic i estadiatge	14
2. Bases biològiques del tractament farmacològic	19
2.1. Receptor d'andrògens (AR) i supressió androgènica	19
2.2. Mecanismes d'acció dels antiandrògens	23
2.3. Mecanismes biològics del desenvolupament de la resistència a la castració	24
2.4. Mecanismes d'acció dels taxans: docetaxel i cabazitaxel	25
2.5. Mecanismes d'acció d'altres fàrmacs	28
3. Tractament del CP	29
3.1. Malaltia localitzada i quimioteràpia neoadjuvant	29
3.2. Principis del tractament de la malaltia disseminada	35
3.2.1. Tractament de la malaltia metastàsica i hormono-sensible	36
3.2.2. Quimioteràpia en el CPRC i metastàtic	37
3.2.3. Altres tractaments farmacològics en el CPRC i metastàsic	43
4. Resistència al docetaxel en CP i biomarcadors	46
4.1. Transició epiteli-mesènquima (EMT)	46
4.2. Inflamació i citocines	51
4.3. Alteració de la dinàmica dels microtúbuls	56
4.3.1. Alteració de la tubilina	56
4.3.2. Kinesines	56
4.3.3. TMPRSS2-ERG	57

4.4. Altres mecanismes de resistència	62
4.4.1. Fenotip de resistència a múltiples fàrmacs	62
4.4.2. Variants de <i>splicing</i> del AR	63
4.4.3. Factors de creixement i vies de senyalització intracel·lulars	64
4.4.4. Autofàgia	65
5. Biòpsia líquida en CP	67
5.1. Cèl·lules tumorals circulants (CTCs)	67
5.2. Altres tipus de biòpsia líquida en CP	69
HIPÒTESIS I OBJECTIUS	71
MÈTODE I RESULTATS	75
1. Epithelial-to-Mesenchymal Transition Mediates Docetaxel Resistance and High Risk of Relapse in Prostate Cancer	79
2. Molecular profiling of peripheral blood is associated with circulating tumor cells content and poor survival in metastatic castration-resistant prostate cancer	99
3. TMPRSS2-ERG in Blood and Docetaxel Resistance in Metastatic Castration-resistant Prostate Cancer	117
DISCUSSIÓ	125
CONCLUSIONS	141
ANNEX	145
Material suplementari del primer treball	147
Material suplementari del segon treball	155
Material suplementari del tercer treball	191
BIBLIOGRAFIA	215

INTRODUCCIÓ

1. Generalitats del càncer de pròstata (CP)

1.1. Epidemiologia

A nivell mundial, s'estima que en l'any 2018 es van diagnosticar 1.3 milions de nous casos de CP i aquest ocasionarà 359.000 morts. El CP és el segon tumor més freqüentment diagnosticat en els homes i el quart si considerem conjuntament els dos sexes. En determinades regions com el continent americà, gran part d'Europa occidental, Oceania, l'Àfrica subsahariana¹ i en el nostre entorn^{2,3} és el càncer més freqüent.

En les últimes dècades s'ha reportat un increment del 40% en la seva incidència, passant de 1 milió de casos nous l'any 2006 a 1.4 milions l'any 2016, degut en part a un envelliment de la població⁴ però també a l'ús del PSA com a eina de cribratge⁵. S'estima que en els propers anys la seva incidència a Catalunya continuï augmentant².

Respecte a la mortalitat, el CP és la cinquena causa de mort per càncer en els homes i la vuitena en ambdós sexes¹. Globalment, la supervivència als 5 anys és superior al 70% i, específicament, a nivell d'Espanya és superior al 90%. En les últimes dècades, la supervivència als 5 anys ha augmentat més del 10% en el nostre entorn⁶.

D'acord amb la base de dades del *Surveillance, Epidemiology, and End Results* (SEER)⁷, al voltant del 5% dels càncers de pròstata es diagnostiquen en forma de malaltia disseminada, i gairebé el 90% amb malaltia localitzada o amb disseminació regional, aquest últim representa menys del 15% dels casos. Cal destacar que en la última dècada, la incidència de malaltia metastàtica de debut s'ha incrementat fins un 72%, especialment en els homes d'entre 55 a 69 anys en els que s'ha incrementat fins a un 92%⁸. A més a més, fins un 30% dels tumors diagnosticats de forma localitzada, en funció del grup pronòstic, acabaran desenvolupant malaltia metastàsica⁹.

En diferents assajos clínics s'ha corroborat com diversos fàrmacs tenen un impacte en la supervivència global d'aquests pacients. Aquests resultats s'han traslladat a l'àmbit assistencial. En estudis de base poblacional els pacients diagnosticats més recentment i, per tant, amb accés a aquests fàrmacs tenen una millor supervivència global¹⁰. Tot i aquesta milloria en les xifres, la malaltia, un cop disseminada a distància, no sol ser curable i el pronòstic sol ser pobre, amb una mitjana de supervivència de 42 mesos en els estudis més recents¹¹.

1.2. Etiologia

S'han trobat múltiples factors associats amb el risc de desenvolupar CP. Aquests es poden classificar com a factors genètics o hereditaris i factors exògens o ambientals.

En el primer grup hi trobem la historia familiar de CP. Per exemple, un germà diagnosticat de CP abans dels 65 anys incrementa el risc de desenvolupar un CP en 10 punts percentuals i, el pare i dos germans afectes l'incrementa fins a 40 punts percentuals¹².

La raça també és un factor de risc, sent més freqüent en homes afro-americans que en homes de raça hispànica o blanca¹³. A més a més, en els primers la malaltia es diagnostica en edats més joves¹⁴, sol estar més avançada en el moment del diagnòstic i té un curs més agressiu^{15,16}.

A nivell genètic, s'han realitzat estudis a nivell poblacional per identificar variants de DNA germinal associades amb el desenvolupament de CP. En total s'han identificat més de 100 *loci* diferents que explicarien el 33% del risc familiar de desenvolupar la malaltia¹⁷. També s'ha trobat que fins el 12% dels pacients amb CP metastàtic tenen mutacions en la línia germinal dels gens reparadors del DNA, principalment a *BRCA2*, *ATM*, *CHEK2* o *BRCA1*, entre d'altres¹⁸. Cal destacar que estan en curs estudis clínics per establir el valor d'aquestes alteracions genètiques en el cribratge del CP¹⁹.

Pel que fa als factors exògens, s'han identificat diversos factors associats amb el risc de desenvolupar aquesta malaltia i d'altres que tenen un efecte protector²⁰.

Sovint hi ha resultats contradictoris entre estudis o els resultats no han estat validats, com per exemple en l'ús de la metformina i un menor risc de desenvolupar CP²⁰.

Entre els factors que incrementen el risc s'inclou l'obesitat, la hipertensió arterial, l'increment del perímetre abdominal, l'alopècia, la infecció per *N. gonorrhoeae*, el tabaquisme, l'exposició ocupacional al cadmi o els torns de treball nocturns²⁰.

D'altre banda, l'exposició a radiacions ultraviolades, la circumcisió i/o una elevada freqüència d'ejaculacions s'han descrit com a factors protectors per al seu desenvolupament²⁰.

Quant als factors dietètics, tant l'elevada ingesta d'alcohol com l'abstinència s'han associat amb un major risc de CP. El mateix s'ha descrit respecte els nivells de vitamina D, tant nivells baixos com alts s'han associat amb risc de desenvolupar CP. La ingesta de productes làctics o de fregits també s'hi ha associat. En canvi, els fitoestrogens s'han associat amb un menor risc de patir aquesta malaltia²⁰.

1.3. Clínica

La gran majoria dels casos de CP es diagnostiquen com a malaltia localitzada i solen ser asimptomàtics. En alguns casos la malaltia pot donar símptomes locals com poden ser simptomatologia del tracte urinari inferior (p.ex.: disúria, nictúria, urgència miccional, augment de la freqüència urinària, etc.), hematúria o hematospèrmia.

D'altra banda, en malalts que debuten amb malaltia disseminada, la clínica pot ser deguda tant per la malaltia a distància com pel tumor primari. En aquests casos els pacients podrien patir, per exemple, dolor ossi o simptomatologia més general com pèrdua de pes, astènia, anorèxia o símptomes en relació a insuficiència renal (p.ex.: oligoanuria, anorèxia, nàusees o vòmits, etc.).

1.4. Diagnòstic i estadiatge

El procés diagnòstic s'iniciarà amb la realització d'un tacte rectal i la determinació del PSA en sèrum. Mitjançant el tacte rectal podrem detectar nòduls, induracions o asimetries en la pròstata que ens suggeriran un CP. Però no sempre serà així ja que fins el 35% dels càncers de pròstata no es detectaran en el tacte rectal, ja sigui per ser tumors de mida petita o per estar localitzats en àrees de la pròstata que no són accessibles a través del tacte rectal.

L'antigen prostàtic específic o PSA és una glicoproteïna codificada pel gen *KLK3* (kallikrein-3). Aquesta proteïna és específica de la glàndula prostàtica, però no del CP ja que es poden trobar nivells elevats en sang degut a patologies benignes de la pròstata (p.ex.: hiperplàsia benigna de pròstata o prostatitis) o després de la seva manipulació o d'una biòpsia d'aquesta. El PSA és una serina proteasa que es segregada en el líquid prostàtic i té com a funció fisiològica la liqüefacció del sèrum, facilitar la motilitat dels espermatozoides i dissoldre el moc cervical²¹.

La detecció del PSA en sèrum i la seva relació amb el CP va suposar una revolució en el maneig del CP^{22,23}. Actualment s'utilitza en el cribratge del CP, el diagnòstic i estadiatge, pel seguiment de la malaltia després d'un tractament local i també per la monitorització de la malaltia en situació avançada^{24,25}. Pel que fa al diagnòstic, s'ha vist que la seva determinació en sèrum és un millor predictor de càncer que el tacte rectal o la ecografia transrectal²⁶. D'altre banda, no existeix un llindar definit de PSA per diagnosticar un CP sinó que s'ha d'analitzar com una variable continua. Per tant, uns nivells elevats de PSA indicaran una major probabilitat de CP però aquest no es pot descartar davant d'uns nivells baixos de PSA²⁷.

El diagnòstic definitiu l'obtindrem després de la confirmació anatomopatològica de càncer en una biòpsia. Estarà indicada la realització d'una biòpsia prostàtica en funció de la sospita clínica de CP tenint en compte els nivells de PSA, el tacte rectal o les proves d'imatge, però també d'acord amb altres característiques del pacient com és l'edat o les comorbiditats associades²⁸. Actualment, el procediment estàndard consisteix en realitzar les biòpsies prostàtiques guiades

per ecografia transrectal²⁴ però ja existeixen resultats d'assajos clínics en els que la realització d'una ressonància magnètica nuclear (RMN) prèvia a la biòpsia, per a guiar-la, millora la detecció del CP clínicament significatiu²⁹. Les biòpsies sistemàtiques guiades per ecografia transrectal s'han de realitzar des de l'àpex a la base de cada lòbul prostàtic i, en funció del volum de la pròstata, s'ha d'obtenir com a mínim vuit biòpsies²⁴. Si hi ha àrees sospitoses en el tacte rectal o en la mateixa ecografia transrectal també s'han d'obtenir biòpsies d'aquestes àrees²⁴. En el cas de que la biòpsia inicial sigui negativa per a malignitat i la sospita clínica de CP sigui elevada està indicada la realització d'una RMN de pròstata i la realització tant de biòpsies sistemàtiques com de la zona sospitosa en la RMN²⁴.

En més del 95% dels casos el diagnòstic anatomopatològic serà d'adenocarcinoma de pròstata però podem trobar altres tipus de tumors com carcinomes urotelials que envaeixen per contigüitat la pròstata, sarcomes, altres tumors que hagin metastatitzat a la pròstata, etc. Fins i tot l'anatomia patològica podria reflectir la presència de component neuroendocrí de forma focal en el si d'un adenocarcinoma de pròstata o pur³⁰.

En l'informe anatomopatològic s'ha de reportar si hi ha evidència de neoplàsia i el tipus, el patró combinat de Gleason i l'agrupat, la localització d'acord amb l'origen dels cilindres de les biòpsies, el percentatge de teixit afectat per la neoplàsia, la presència de teixit adipós extraprostàtic i la seva afectació. També s'han de reportar altres característiques com la infiltració perineural, la invasió linfovascular o la presència de variants histològiques²⁴.

Respecte el grau histològic del CP, aquest es basa en les característiques morfològiques de les cèl·lules canceroses descrites per Gleason i col·l³¹. Segons el grau, els tumors es classificaran del 1 al 5, sent els 1 els càncers de pròstata més diferenciats i el 5 els més indiferenciats. El grau de Gleason es correlaciona amb el comportament clínic de la malaltia, sent els tumors amb un valor més alt els que presenten un major risc de recaiguda i mortalitat³¹. El patró combinat de Gleason es basa en classificar les dues àrees més prevalents i sumar el valor numèric d'aquestes per donar a lloc a un valor que anirà de 2 a 10. Recentment,

la *International Society of Urological Pathology* (ISUP) ha establert una nova classificació que agrupa el Gleason en 5 categories i permet una millor estratificació dels pacients (Taula 1)^{32,33}.

ISUP 2014	Patró combinat de Gleason	Patró de Gleason primari i secundari
1	≤ 6	≤ 3 + ≤ 3
2	7	3 + 4
3	7	4 + 3
4	8	4 + 4 3 + 5 5 + 3
5	9 - 10	4 + 5 5 + 4 5 + 5

Taula 1. Patró combinat de Gleason i classificació ISUP del CP^{31–33}.

L'estadiatge (Taula 2 i 3) es basarà en la interpretació del tacte rectal, els nivells de PSA i també pot ser necessari la realització de proves d'imatge com una RMN de pròstata, una gammagrafia òssia (GGO) o una tomografia axial computeritzada (TAC). La indicació de realitzar aquestes proves d'imatge es basarà en el risc de desenvolupar metàstasis segons la classificació pronòstica de la malaltia localitzada (Taula 4). Es recomana realitzar un TAC abdominopèlvic i una GGO en càncers de pròstata d'alt risc o intermedi, en aquest últim cas si hi ha un patró de Gleason predominant de 4²⁴.

L'última versió de la classificació TNM de la *UICC International Union Against Cancer*, en la que s'avalua el tumor primari, la afectació dels ganglis limfàtics regionals i la presència de metàstasis a distància es mostra en la Taula 2 i en la Taula 3 es mostra l'estadiatge corresponent³⁴.

	Taula 2.	Classificació	TNM	del	CP ³⁴ .
--	----------	---------------	-----	-----	---------------------------

	T – Tumor primari [#]
Tx	El tumor primari no pot ser avaluat
Т0	No evidència de tumor primari
T1	Tumor clínicament inaparent i no palpable
T1a	El tumor es diagnosticat com una troballa incidental i correspon a un 5% o menys del teixit ressecat
T1t	El tumor es diagnosticat com una troballa incidental i correspon a més del 5% del teixit ressecat
T1c	El tumor s'identifica en una biòpsia (p.ex.: realitzada per un PSA elevat)
T2	Tumor palpable i confinat a la pròstata
T2a	El tumor afecta una meitat d'un lòbul o menys
T2t	El tumor afecta més d'una meitat d'un lòbul però no els dos lòbuls
T2d	El tumor afecta ambdós lòbuls
Т3	Extensió del tumor a través de la càpsula prostàtica
T3a	Extensió extracapsular unilateral o bilateral incloent afectació del coll vesical
T3t	Invasió de les vesícules seminals
T4	Tumor fixa o que envaeix les estructures properes excepte les vesícules seminals (esfínter extern, recte, múscul elevador del anus i/o paret pelviana)
	N – Ganglis limfàtics regionals ^{\$}
Nx	Els ganglis limfàtics regionals no es poden avaluar
N0	No evidència de metàstasis en els ganglis limfàtics regionals
N1	Metàstasis en els ganglis limfàtics regionals
	M - Metàstasis a distància ^{&}
M0	No evidència de metàstasis a distància
M1	Metàstasis a distància
M1	En ganglis limfàtics no regionals
M1	Metàstasis òssies
M1	Altres localitzacions de metàstasis a distància

[#]La invasió del àpex prostàtic o de la càpsula prostàtica, però no més enllà, es classifica com a T2. ^{\$}Les metàstasis en ganglis limfàtics inferiors a 0.2cm es poden designar con pNmi, de micrometàstasis. Es consideren ganglis limfàtics regionals els ganglis situats per sota de la bifurcació de les arteries ilíaques comuns. [&]Quan hi ha més d'una localització de metàstasis a distància s'utilitzarà la de localització més avançada per a la classificació.

Taula J. LStaulatue del Cr	Taula	3.	Estadiatoe	del	CP ³⁴
----------------------------	-------	----	------------	-----	-------------------------

	Т	Ν	Μ
Estadi I	T1 – T2a	N0	MO
Estadi II	T2b – T2c	N0	MO
Estadi III	T3-T4	N0	MO
	Qualsevol T	N1	MO
Estadity	Qualsevol T	Qualsevol N	M1

La classificació patològica (pTNM) es basarà en la mateixa classificació del TNM però tenint en compte l'avaluació en la peça quirúrgica. En aquesta classificació no existirà la categoria T1 ni tampoc els subgrups de la T2³⁴.

En el cas de tumors localitzats s'han desenvolupat diverses classificacions per tal d'establir el risc de recaiguda o progressió de la malaltia^{35–37}. Una de les més utilitzades és la D'Amico³⁵ que estratifica els pacients en tres grups de risc en funció dels nivells de PSA, del Gleason de la biòpsia diagnòstica i del estadiatge clínic del tumor primari (Taula 4). Els pacients classificats com a baix risc tenen un risc de recaiguda per PSA als 5 anys inferior al 25%, mentre que en els d'alt risc aquest és superior al 50%³⁵. En base a aquesta classificació es pot seleccionar l'estratègia terapèutica potencialment més adient.

	Baix risc	Risc intermedi	Alt risc
PSA (ng/mL)	≤ 10	10 - 20	> 20
Gleason	≤ 6	7	≥ 8
Estadiatge T clínic	T1c – T2a	T2b	T2c

D'altra banda, els pacients amb tumors cT3 o T4, o amb ganglis positius (N1) es consideraran localment avançats independentment dels valors de PSA o del Gleason.

2. Bases biològiques del tractament farmacològic

2.1. Receptor d'andrògens (AR) i supressió androgènica

En els anys 40, Huggins i Hodges van descobrir que els pacients afectes d'un CP metastàsic presentaven milloria clínica (reducció del dolor, milloria de l'anèmia, increment de pes, etc.) i una reducció dels nivells de fosfatasa àcida prostàtica després de sotmetre'ls a una orquiectomia o d'administra'ls-hi estrògens. Finalment, van arribar a la conclusió que els andrògens tenen influencia en l'evolució del CP^{38,39}.

Gracies a aquestes troballes la castració ha estat la principal teràpia per a la malaltia avançada. La castració es basa en reduir els nivells de testosterona a partir de l'extirpació quirúrgica dels testicles, l'orquiectomia, o mitjançant fàrmacs. En absència de testosterona el AR no s'activarà i això ajudarà a controla inicialment la malaltia^{38,39}.

El AR és un element fonamental del CP. Aquest és un factor de transcripció nuclear depenent del lligand i pertany a la superfamília de receptors d'hormones esteroïdals. El gen del AR es troba en el locus q11-12 del cromosoma X i està format per 8 exons que codifiquen una proteïna de 110kDA de pes molecular i 919 aminoàcids^{40–42}. La proteïna té 4 dominis, l'aminoterminal (NTD), el domini de unió al lligand (LBD), el domini d'unió al DNA (DBD) i una regió frontissa (*Hinge*). Aquesta última està situada entre el DBD i el LBD i dóna certa flexibilitat a la proteïna (Fig. 1)^{43,44}.

Figura 1. El locus del gen del AR i l'estructura de la proteïna. Modificat de Dai C et al⁴⁵.

En condicions fisiològiques, els dos agonistes principals del AR són la testosterona i la dihidrotestosterona. Quan el AR no es troba unit al lligand, aquest es localitza en el citoplasma cel·lular unit al citoesquelet i associat a diverses proteïnes (p.ex.: HSP-90, HSP-70 o HSP-56) que impedeixen la seva degradació⁴⁶ (Fig. 2). La unió del lligand amb la regió LBD del AR provoca la seva dissociació de les altres proteïnes i indueix un canvi conformacional que facilita la seva translocació al nucli i alhora exposa la regió *Activation Function* 2 (AF-2). Aquesta regió facilita la interacció proteïna-proteïna entre els dominis carboxi-terminal i amino-terminal que és necessària per a la homodimerització del AR. Però també té altres funcions com l'estabilització del lligand en la butxaca d'unió d'aquest, facilita l'activitat del propi receptor i participa en el reclutament de cofactors que modulen la activitat del receptor^{47–50}.

En el procés de translocació al nucli participa una seqüència anomenada NLS situada en la regió frontissa del AR. Aquesta interacciona amb el citoesquelet per dirigir el transport del AR cap al nucli i la seva translocació a través de les proteïnes importin- α^{51-54} .

Figura 2. La via d'activació del AR a través del lligands agonistes i alguns dels seus coreguladors. Extret de Dai C i col·l⁴⁵.

Un cop al interior del nucli, el AR s'homodimeritza i reconeix seqüencies específiques de DNA anomenades elements de resposta a andrògens (ARE). Aquests estan situats en la regió promotora i potenciadora dels gens regulats per aquest factor de transcripció⁵⁵. Un cop s'ha produït aquesta unió, es poden unir co-reguladors, altres factors de transcripció i la RNA polimerasa formant el complex transcripcional i iniciant-se així el procés de transcripció dels gens regulats per aquest per aquest receptor (Fig. 2)⁵⁶.

S'han descrit diferents alteracions gèniques que modifiquen el comportament del AR. D'una banda s'han trobat mutacions activadores d'aquest receptor. Aquestes s'han descrit principalment en el domini LBD però també en el NTD. Aquestes mutacions són infreqüents en els tumors primaris però en la malaltia resistent a la castració i, especialment, després del tractament amb inhibidors del AR la seva freqüència augmenta fins al 40%^{57,58}. Aquestes mutacions poden facilitar que el receptor s'activi per altres andrògens més dèbils o per altres hormones esteroïdals (p.ex.: dihidroepiandorstendiona, progesterona, estrògens, etc) i, fins i tot poden canviar el comportament del receptor davant de la unió d'antagonistes (p.ex.: bicalutamida, enzalutamida, etc) i fer que aquests tinguin una acció agonista⁵⁹.

D'altra banda, també s'han identificat variants del AR generades per mecanismes de *splicing* alternatiu. Aquestes variants es caracteritzen per pèrdua del domini LBD i addicionalment poden tenir una pèrdua de la regió frontissa. Diverses d'aquestes variants estan constitutivament activades (p.ex.: ARv7o ARv567) i d'altres en funció del context cel·lular (p.ex.: ARv1 o ARv9)^{60,61}. La presència d'aquestes variants s'associa amb el desenvolupament de la resistència a la castració⁵⁹.

Cal conèixer la via de biosíntesis dels andrògens ja que determinats fàrmacs intervindran en aquesta impedint la producció d'andrògens. El substrat inicial de les hormones esteroïdals és el colesterol. Aquest, a través de múltiples reaccions enzimàtiques, acabarà convertint-se en testosterona (Fig. 3). Els dos principals teixits que participen en la biosíntesis dels andrògens són les glàndules suprarenals i els testicles, tot i que el propi tumor també en pot sintetitzar⁴⁵.

Figura 3. La via biosintètica dels andrògens. DHEA, dehidroepiandrosterona; AD, androstenediona; T, testosterona; DHT, dihidrotestosterona. Extret de Dai C i col·l⁴⁵.

La testosterona es secretada al sèrum i es pot unir tant a la globulina d'unió d'hormones sexuals com a l'albúmina, però únicament la forma lliure de la testosterona podrà difondre cap als teixits i exercir la seva funció. Concretament, en les cèl·lules de la pròstata, la testosterona pot actuar directament o convertirse de forma irreversible a dihidrotestosterona per l'enzim 5α -reductasa. La dihidrotestosterona és el principal androgen que es troba en el nucli de les cèl·lules de la pròstata. Aquest té la mateixa afinitat que la testosterona per AR però s'hi uneix de forma més estable i té més potència que la testosterona per a estimular els gens diana del AR⁴⁵.

La biosíntesis d'andrògens està íntimament regulada per l'eix hipotalàmichipofisiari-gonadal. L'hipotàlem segrega l'hormona alliberadora de gonadotropines (LHRH, també coneguda com GnRH) en forma de polsos. Aquesta actua a nivell de la adenohipòfisis estimulant la secreció de la hormona luteïnitzant (LH) que alhora estimularà els testicles per a que produeixin la

testosterona. Aquesta actua a nivell del hipotàlem i de la hipòfisis regulant negativament la seva pròpia producció⁴⁵.

D'altra banda, l'estimulació continuada amb LHRH provoca una dessensibilització de la hipòfisis i una supressió dels nivells de testosterona, arribant aquests a nivells de castració. Tot i que inicialment aquest tractament pot produir un increment en els nivells de testosterona de forma transitòria. Aquesta és la base biològica del tractament del CP amb supressió androgènica⁴⁵.

2.2. Mecanismes d'acció dels antiandrògens

Els antiandrògens no esteroïdals (p.ex.: bicalutamida, flutamida o nilutamida) actuen unint-se al domini d'unió del lligand del AR i bloqueja la seva activació a través d'una inhibició competitiva. Com a conseqüència hi ha una desregulació del eix hipotalàmic-hipofisiari-gonadal que ocasiona un increment en els nivells de LH i de testosterona. Aquesta última s'acabarà metabolitzant cap a estrògens. Això succeeix quan s'administra l'antiandrògen en monoteràpia però es pot evitar quan s'administra combinat amb anàlegs de la LHRH^{62,63}.

L'enzalutamida és un antiandrògen de segona generació que no només té més afinitat que la bicalutamida pel AR, sinó que també inhibeix la translocació del receptor al nucli i interfereix entre la unió d'aquest amb el DNA⁶⁴. La apalutamida és estructuralment similar a la enzalutamida i té el mateix mecanisme d'acció que aquesta però ha demostrat una major activitat en models animals⁶⁵. La darolutamida és un nou fàrmac antiandrògen que comparteix el mecanisme d'acció de l'enzalutamida però manté la seva eficàcia quan el AR ha patit alguna de les mutacions més freqüents com la F877L, W742L o T877A. A més a més, la seva penetració a través de la barrera hemato-encefàlica es reduïda, motiu pel qual la toxicitat neurològica és menor⁶⁶.

Finalment, l'abiraterona no és estrictament un fàrmac antiandrògen sinó que actua inhibint la síntesis d'aquests a través de la inhibició del complex enzimàtic CYP17A1 que participa en diferents reaccions enzimàtiques de la biosíntesis d'andrògens (Fig. 3). D'aquesta manera es redueixen els nivells de testosterona

ja que actua a nivell dels testicles, de les glàndules suprarenals i també actua inhibint la síntesis d'andrògens de les pròpies cèl·lules tumorals⁶⁷. Cal destacar que un metabòlit de l'abiraterona, el D4A, sí que inhibeix directament el AR i ho fa de forma comparable a l'enzalutamida⁶⁸.

2.3. Mecanismes biològics del desenvolupament de la resistència a la castració

Tot i la resposta inicial a la teràpia de supressió androgènica, la malaltia acabarà progressant i es farà resistent a la castració, anomenant-se en aquesta fase càncer de pròstata resistent a la castració (CPRC). S'han descrit diferents mecanismes moleculars implicats en aquest procés. Alguns d'ells depenen del AR i del seu lligand, i d'altres són independents d'aquests.

En el primer grup de mecanismes moleculars podem trobar un increment dels enzims implicats en la biosíntesis dels andrògens així com un descens dels enzims implicats en la seva metabolització, de tal manera que el rendiment net és un increment dels andrògens intratumorals^{69,70}. També s'ha descrit com el AR quan es troba sobreexpressat es pot activar amb nivells baixos d'andrògens i fins en el 30% d'aquests casos s'ha trobat una amplificació del seu gen⁷¹. Més recentment s'ha descrit com diferents *enhancers* gènics del AR es troben amplificats en la malaltia resistent a la castració i indueixen la seva sobreexpressió^{72–75}.

Les alteracions gèniques del AR abans esmentades com les mutacions i les variants de *splicing* també esta implicades en aquest procés^{57,58,60,61}. A més a més, s'han descrit més de 170 coreguladors del AR que poden modular la seva especificitat pel lligand però també permetre l'activació del receptor amb nivells baixos d'andrògens⁷⁶.

D'altra banda s'han descrit múltiples vies de senyalització molecular que poden promoure l'activació del AR (p.ex.: IL6, AKT o Her2) o d'altres que actuaran de forma independent d'aquest promovent també la resistència a la castració (p.ex.: IL6, Wnt, pèrdua de TP53, de PTEN o de Rb)^{77,78}.

2.4. Mecanismes d'acció dels taxans: docetaxel i cabazitaxel

Els taxans, docetaxel i cabazitaxel, són els únics agents quimioteràpics que han demostrat una milloria en la supervivència global dels pacients afectes de CPRC^{79–81}. Aquests fàrmacs actuen principalment sobre els microtúbuls.

Els microtúbuls són uns constituents essencials del citoesquelet de les cèl·lules eucariotes. El seu comportament dinàmic, polimeritzant-se i despolimeritzant-se, és la base de molts processos biològics com la motilitat cel·lular, el transport citoplasmàtic o la divisió cel·lular. Els microtúbuls es polimeritzen pel seu extrem positiu, que és on s'exposen les subunitats de β tubulina, i s'hi uneixen els heterodimers de tubulina, constituïts per α i β tubulin, mentre que l'extrem negatiu exposa al medi subunitats de α tubulina (Fig. 4). El creixement o escurçament dels microtúbuls es dóna principalment per l'extrem positiu. Tant les unitat de α com les de β tubulina s'uneixen a GTP i, mentre es mantinguin així el microtúbul creixerà progressivament. Però si hi ha una major hidròlisis de GTP a GDP, que només es pot donar en la β tubulina, que incorporació de heterodímers s'acabarà produint un balanç negatiu de GTP en l'extrem positiu i això resultarà de la despolimerització del microtúbul (Fig. 4)⁸².

Figura 4. Els microtúbuls i la seva inestabilitat dinàmica (Extret de Cirillo L i col·182).

Els taxans tenen una elevada afinitat per la β tubulina quan està polimeritzada constituint els microtúbuls. La unió dels taxans als microtúbuls estabilitza els mateixos evitant així la seva despolimerització i ocasionant, finalment, una aturada del cicle cel·lular en la transició de metafase a anafase que conduirà a l'apoptosis cel·lular (Fig. 5)^{83,84}.

Normal tubulin formation

S'han descrit altres possibles mecanismes d'acció dels taxans per a exercir el seu efecte antineoplàsic^{84,85}. D'una banda, s'ha descrit com els taxans poden impedir la translocació al nucli del AR. El AR, a través del domini N-terminal, s'uneix a la proteïna dineïna que alhora s'uneix al extrem negatiu dels microtúbuls i participa en el transport des de el citoplasma cap al nucli cel·lular de la càrrega, incloent el propi AR⁸⁶. Els taxans, al estabilitzar els microtúbuls,

inhibeixen aquest tràfic evitant així l'arribada del AR al nucli i que aquest pugui exercir la seva funció^{86–88}.

D'altra banda, els taxans inhibeixen directament l'activitat transcripcional del AR. L'activitat del AR està modulada per diferents co-reguladors i d'entre ells destaca la superfamília de factors de transcripció *Forkhead box* (Fox). FOXA1 hiperactiva el AR mentre que FOXO1 l'inhibeix. Els taxans indueixen l'acumulació de FOXO1 en el nucli i per tant disminueixen l'expressió dels gens diana del AR (p.ex.: *KLK3*, *TMPRSS2*, etc)^{89,90}.

Figura 6. Mecanismes d'acció dels taxans (Extret de Mellado B i col.⁸⁵).

El cabazitaxel també és un taxà que en estudis preclínics ha demostrat eficàcia en models cel·lulars amb resistència adquirida a docetaxel i en els que el docetaxel no és efectiu (Fig. 6)^{91,92}.

Aquesta major eficàcia de cabazitaxel s'explica per diferents motius. D'entrada, aquest fàrmac és un substrat dèbil de la bomba d'aflux ABCB1 i pot arribar a saturar aquest transportador. Per tant, s'afavoreix l'acumulació del fàrmac a l'interior de la cèl·lula i el seu efecte citotòxic⁹³. A mes a més, també s'ha descrit com el cabazitaxel suprimeix de forma més potent la inestabilitat dinàmica dels microtúbuls que el docetaxel⁹⁴ i les vies moleculars sobre les que actua també són diferents⁹⁵. En estudis *in vitro* hi ha discrepàncies sobre l'existència de resistències creuades entre abiraterona i enzalutamida, i els taxans^{96,97}. Mentre que en models animals, sí que s'ha trobat resistència creuada entre enzalutamida i docetaxel, però no amb cabazitaxel⁹⁸. Per tant, això també pot explicar la major eficàcia d'aquest fàrmac.

2.5. Mecanisme d'acció d'altres fàrmacs

A més a més de la supressió androgènica, els nous antiandrògens i de la quimioteràpia basada en taxans, en el CP s'ha demostrat com altres fàrmacs tenen un impacte en la supervivència global dels pacients.

El radium-223 és un isòtop radioactiu del radi que emet partícules alfa. El radi actua com un anàleg del calci i es retingut per l'os, formant complexes amb la hidroxiapatita, i concentrant-se en llocs de mineralització activa, com les metàstasis òssies, per l'elevada activitat dels osteoblasts. En el procés de desintegració del radium-223 aquest emet partícules alfa. Aquestes provoquen un trencament no reparable de la doble cadena de DNA i, per tant, ocasionen la mort de les cèl·lules tumorals. Degut a la baixa penetrància d'aquestes partícules, menys de 100 micrometres, la dosis absorbida per la medul·la òssia és molt menor i per tant la toxicitat hematològica també és molt baixa⁹⁹.

Un altre tractament pel CPRC és Sipuleucel-T. Aquesta és una vacuna autòloga generada a partir de les cèl·lules presentadores d'antigen del propi pacient, extretes a través d'una leucoafèresi, que s'incuben amb una proteïna de fusió constituïda pel factor estimulant de colònies granulocítiques-macrofàgiques i la fosfatasa àcida prostàtica. La infusió d'aquesta vacuna provoca una activació del linfòcits T CD4⁺ i CD8⁺ del propi pacient contra la fosfatasa àcida prostàtica i aquests, en últim lloc, són els que desenvolupen la resposta antitumoral^{100,101}.

3. Tractament del CP

El tractament del CP es basa en tres pilars fonamentals, la cirurgia, la radioteràpia i el tractament farmacològic. En funció de l'estadiatge, de l'expectativa de vida del pacient i de les preferències d'aquest es podrà aplicar una o diferents d'aquestes modalitats de tractament. Altres variants de tractament com la braquiterapia o la crioteràpia, o altres estratègies, com la vigilància activa, també es poden plantejar en determinades situacions.

3.1. Malaltia localitzada i quimioteràpia neoadjuvant

El CP localitzat té dues opcions principals de tractament actiu, la cirurgia i la radioteràpia¹⁰². La selecció de la teràpia més adequada per a cada pacient es farà en base al estadiatge clínic de la malaltia, els factors pronòstic (com els nivells de PSA o el patró de Gleason), l'expectativa de vida dels pacients (índex de comorbiditats de Charlson) i també tenint en compte les preferències del pacient. En l'assaig clínic ProtecT es van comparar aquestes dues estratègies de tractament i no es van trobar diferencies a nivell de mortalitat, mortalitat específica per càncer i desenvolupament de metàstasis; però sí en quant a efectes adversos¹⁰³. Els pacients tractats amb radioteràpia tenien millor continència i funció sexual però més nictúria i alteracions intestinals que els tractats quirúrgicament¹⁰⁴. D'altra banda, l'evolució de la tècnica quirúrgica i dels mètodes de radioteràpia fa que la freqüència de complicacions i esdeveniments adversos sigui menor¹⁰².

Un possible algoritme de tractament, en base a la classificació D'Amico³⁵ seria el següent. En pacients de baix risc i intermedi amb expectativa de vida superior als 10 anys es pot oferir la prostatectomia radical com tractament d'elecció. La radioteràpia també està indicada en aquesta mateixa situació. Mentre que en tumors d'alt risc el tractament recomanat seria la radioteràpia, encara que en pacients amb expectativa de vida llarga, la prostatectomia radical també es podria plantejar dins d'un tractament multimodal²⁴.

Es considera que globalment entre el 25 i el 50% dels pacients tractats localment patiran una recaiguda bioquímica de la malaltia. Hi ha diferents eines i
nomogrames clínics que ens permeten predir el risc de recaiguda¹⁰⁵, com per exemple el CAPRA que classifica els pacients tenint en compte l'edat, els nivells de PSA, el Gleason, la T del estadiatge i el nombre de biòpsies positives. En funció del grup de risc la incidència de recaigudes pot ser superior al 75%³⁶.

El tractament neoadjuvant és aquell que s'aplica abans del tractament local, en aquest cas la cirurgia o la radioteràpia. Els objectius d'aquest tractament són disminuir el volum tumoral per facilitar l'aplicació del tractament local i també el tractament de la malaltia micrometastàsica, amb l'objectiu final de reduir el risc de recaiguda i incrementar les possibilitats de curació de la malaltia localitzada. A nivell farmacològic pot incloure tant la supressió androgènica com la quimioteràpia, la combinació d'ambdós o altres tipus de fàrmacs^{106,107}.

Respecte al tractament neoadjuvant amb supressió androgènica, existeixen múltiples assajos clínics que han avaluat aquest tractament abans de la radioteràpia i de la cirurgia. Dos assajos clínics, TROG 9601¹⁰⁸ i RTOG 8610¹⁰⁹, han demostrat com la supressió androgènica combinada amb radioteràpia incrementa la supervivència lliure de metàstasis així com la supervivència global dels pacients. En aquest s'inclouen diferents règims de supressió androgènica, tant anàlegs de LHRH en monoteràpia com bloqueig androgènic complet, i una durada diferent del tractament de supressió androgènica, de 3, 4 o 6 mesos. En els dos assajos s'inclou no només el tractament neoadjuvant sinó també la concomitància durant la radioteràpia^{108,109}. En dos assajos més es va ampliar el tractament de supressió androgènica incloent també adjuvancia. En aquests també es va demostrar un benefici a nivell de supervivència lliure de malaltia i de supervivència global en les branques que inclouen la supressió androgènica^{110,111}. En base a aquests resultats les guies clíniques recomanen el tractament combinat de supressió androgènica i radioteràpia en CP localitzat de risc intermig o alt²⁴.

El tractament neoadjuvant amb supressió androgènica abans de la prostatectomia radical també s'ha explorat en diferents assajos clínics¹¹². En base als resultats d'un meta-anàlisi en el que s'inclouen tots aquests assajos es pot concloure que el tractament neoadjuvant redueix l'afectació de marges en la

peça quirúrgica i s'associa amb una millor supervivència lliure de progressió bioquímica, però això no es tradueix en una millora de la supervivència lliure de malaltia o de la supervivència global¹¹². D'acord amb aquests resultats no s'aconsella el tractament neoadjuvant abans de la cirurgia²⁴.

D'altra banda, el tractament amb quimioteràpia neoadjuvant basada en docetaxel també s'ha provat abans de la cirurgia. Hi ha múltiples assajos clínics d'una única branca de tractament que inclouen quimioteràpia basada en docetaxel en monoteràpia o combinada amb supressió androgènica (Taula 5)^{113–124}. Aquest últims són els únics que han demostrat l'existència de respostes completes patològiques.

			Taxa de respostes
Referencia i mida mostral	Estadiatge	Tractament neoadjuvant	patològiques
			completes (%)
Dreicer ¹¹³ (n= 29)	T2b-T3	Docetaxel	0
Febbo ¹¹⁴ (n= 19)	Т3	Docetaxel	0
Friedman ¹¹⁷ (n= 15)	T2c-T4	Docetaxel i capecitabina	0
Garzotto ¹¹⁸ (n= 57)	T2c-T3a	Docetaxel i mitoxantrona	0
Hussain ¹¹⁹ (n= 21)	Т2b-Т3	Docetaxel i estramustina	0
Prayer-Galetti ¹²⁰ (n= 22)	≥T3, GS ≥8 o PSA ≥ 15	Docetaxel, estramustina i triptorelina	5
Chi ¹²¹ (n= 72)	≥T3, GS ≥8 o PSA ≥ 20	Docetaxel, buserelina i flutamida o bicalutamida	ę
Sella ¹²² (n= 22)	≥T2c, GS ≥8 o PSA ≥ 20	Docetaxel, goserelina i flutamida	0
Mellado ¹²³ (n= 57)	≥T3, GS ≥4+3 o PSA ≥ 20	Docetaxel, goserelina i flutamida	9
Womble ¹²⁴ (n= 22)	≥T3, GS ≥4+3 o PSA ≥ 20	Docetaxel i ketoconazol	0
Narita ¹¹⁵ (n= 18)	≥T3, GS ≥9 o PSA ≥ 15	Docetaxel, estramustina, leuprolide i bicalutamida	11
Thalgott ¹¹⁶ (n= 30)	Risc de recaiguda bioquímica ≥ 40% (Nomograma de Kattan)	Docetaxel, buserelina i bicalutamida	0

Taula 5. Assajos clínics de quimioteràpia neoadjuvant en CP.

Cal destacar l'estudi de Mellado i col., ja que part de les mostres dels pacients inclosos en aquest assaig clínic s'han utilitzat en un dels treballs que formen part d'aquesta tesis. En aquest assaig clínic fase II es van incloure un total de 57 pacients afectes de d'adenocarcinoma de pròstata d'alt risc definit com cT3, o cT1c - T2 amb un PSA > 20ng/mL i/o Gleason \ge 8, o Gleason 7 amb un patró predominant de 4 (4+3). Els pacients van ser tractats amb docetaxel 36mg/m² (dies 1, 8 i 15 cada 28 dies, i per 3 cicles) conjuntament amb bloqueig androgènic complet amb flutamida (250mg/8h durant 12 setmanes) i goserelina (10.8mg subcutània una dosis única el dia 15). La prostatectomia radical es va planificar entre les 2 a 4 setmanes de la finalització de la neoadjuvancia. Les característiques basals del pacients inclosos en aquest assaig clínic es resumeixen en la taula 6.

Taula 6. Característiques basals dels pacients inclosos en l'assaig clínic	2
de Mellado i col·l ¹²³ .	

Variables	Mitjana o Freqüència (%)
Edat (anys)	68.3 (rang, 49 – 75)
ECOG	
0	51 (80%)
1	5 (8.4%)
Desconegut	1 (0.6%)
Estadiatge Clínic	
T1	11 (19%)
T2	30 (53%)
Т3	16 (28%)
Gleason	
≤ 6	3 (5%)
7	28 (48%)
8	15 (27%)
9	11 (20%)
PSA (ng/mL)	
> 20	15 (26%)
< 20	42 (74%)
Mitjana de PSA (ng/mL)	9.7 (rang, 0.6 – 90.8)
Número de factors de risc	
1	33 (58%)
2	21 (36%)
3	3 (5%)

Dels 57 pacients inclosos en l'estudi, 51 (89.9%) van completar el tractament neoadjuvant i es van sotmetre a la prostatectomia radical. 5 pacients no van completar el tractament per toxicitat i un, després de finalitzar la neoadjuvancia, va refusar la cirurgia¹²³.

L'objectiu principal del estudi va ser determinar la taxa de respostes patològiques completes amb el tractament neoadjuvant. En tres (5.9%) pacients es va assolir una resposta patològica completa i tres (5.9%) pacients més tenien només malaltia mínima residual en la peça quirúrgica. Els pacients restants presentaven persistència de malaltia (88.2%)¹²³.

Fins a la actualitat només disposem d'un assaig clínic fase III que avalua l'administració de docetaxel en el context neoadjuvant, el GETUG 12¹²⁵. En aquest assaig es van incloure pacients afectes de CP localitzat amb, com a mínim, un factor d'alt risc (estadiatge cT3-T4, Gleason \geq 8, PSA \geq 20ng/mL o adenopaties positives confirmades per patologia). Es van aleatoritzar un total de 413 pacients a rebre 4 cicles de docetaxel 70mg/m² més estramustina 10mg/Kg al dia (dies 1 a 5) cada 3 setmanes conjuntament amb supressió androgènica o únicament aguesta última. El tractament local es planificava als 3 mesos de la aleatorització i es podia escollir entre radioteràpia o prostatectomia, encara que en més del 87% dels casos es va optar per la radioteràpia. L'objectiu primari del estudi era demostrar un benefici en supervivència lliure de recaiguda i aquest es va assolir, demostrant-se un increment en la supervivència lliure de recaiguda als 8 anys del 50 al 62%. Cal destacar però que les dades de supervivència lliure de metàstasis o de supervivència global encara no són prou madures i no es veuen diferències significatives en aquests objectius secundaris entre les dues branques de tractament.

Un altre assaig clínic fase III (NCT00430183) està avaluant el docetaxel en aquesta mateixa situació però encara no es disposa dels resultats.

Finalment, en aquest context de neoadjuvancia també s'han provat altres fàrmacs (p.ex.: bevacizumab, gefitinib o imatinib) o immunoteràpies (p.ex.:

GVAX), tant en monoteràpia com combinades amb docetaxel, sense evidenciarse respostes patològiques completes¹⁰⁷.

En base a les dades actuals, les guies clíniques només recomanen el tractament neoadjuvant amb supressió androgènica abans de fer el tractament del primari amb radioteràpia. Així, no està indicada la neoadjuvancia abans de la prostatectomia radical ni la utilització de quimioteràpia en aquesta situació clínica²⁴.

3.2. Principis del tractament de la malaltia disseminada

Tot i que una gran part dels càncers de pròstata tractats localment es curen, aquests poden recaure o diagnosticar-se directament en forma de malaltia metastàsica. En aquesta situació la malaltia es considera incurable i la supervivència als 5 anys es inferior al 30%¹²⁶.

Figura 7. Model del CP proposat pel Prostate Cancer Working Group 3¹²⁷ i les diferents opcions de tractament disponibles. Modificar de Teo M. i col·l¹²⁸.

Podem distingir dues fases de la malaltia disseminada. La primera que s'anomena hormona-sensible o sensible a la castració, i la segona anomenada resistent a la castració (Fig. 7). En aquesta segona, la malaltia ja ha estat tractada mitjançant la supressió androgènica i tot i així ha acabat progressant a través de l'adquisició del diferents mecanismes moleculars de resistència que hem esmentat anteriorment¹²⁹.

3.2.1. Tractament de la malaltia metastàsica i hormono-sensible

El tractament fonamental de la malaltia hormono-sensible és la supressió androgènica. Aquesta es pot aconseguir a través de l'administració d'agonistes de la LHRH (p.ex.: leuprorelina o goserelina), antagonistes del mateix receptor (p.ex.: degarelix) i també a través de mètodes quirúrgics, la orquiectomia bilateral. En més del 80% dels casos la supressió androgènica aconsegueix una resposta objectiva del tumor, una reducció dels nivells de PSA, una millora de la simptomatologia i, finalment, una major supervivència dels pacients¹³⁰.

La supressió androgènica s'ha associat amb el desenvolupament del síndrome metabòlic així com amb la pèrdua de la massa òssia o un major risc de complicacions cardiovasculars, entre d'altres efectes secundaris¹³¹. Per aquest motiu s'han explorat altres estratègies d'administrar els fàrmacs, com la intermitència, per així reduir les complicacions a llarg termini de la supressió androgènica. A més a més, s'ha descrit com en estudis preclínics aquesta estratègia podria demorar el desenvolupament de la resistència a la castració¹³². Però en un meta-anàlisis no s'han trobat diferencies pel que fa a eficàcia entre la supressió androgènica intermitent i la continuada, i les diferencies a nivell de qualitat de vida són mínimes¹³³. Per tant, aquesta estratègia podria ser una alternativa en determinats grups de pacients²⁵.

En els últims anys s'ha demostrat com l'adició de docetaxel^{134–136} o abiraterona^{137,138} a la supressió androgènica en la malaltia hormono-sensible millora de forma notable la supervivència dels pacients.

Tot i la supressió androgènica, el CP acabarà progressant i fent-se resistent a la castració. Aquest el definim com aquell CP que presenta progressió de la

malaltia, ja sigui per PSA o radiològica (per aparició de noves metàstasis o per increment de les ja conegudes) tot i presentar nivells de castració de testosterona (testosterona sèrica ≤ 50ng/dL). La progressió per PSA la definim com tres augments consecutius del PSA, separats com a mínim d'una setmana i que resultin en 2 elevacions del 25% sobre el nadir de PSA i un increment absolut de PSA > 2ng/mL sobre el nadir^{127,139}. Podem distingir dues possibles situacions, el CPRC no metastàsic i el metastàsic, sent aquest últim l'entitat més freqüent.

El CPRC i no metastàsic és aquell CP que recau després d'un tractament local en forma d'elevació de PSA, sense identificar malaltia metastàsica en les proves d'imatge convencionals (gammagrafia òssia i TAC), i que ha progressat al tractament de supressió androgènica. El tractament d'aquesta situació té per objectiu retardar l'aparició de metàstasis i les seves conseqüències. Clàssicament s'han utilitzat els antiandrògens de primera generació (p.ex.: bicalutamida o flutamida), així com els estrògens o el ketoconazol però sense existir una evidència clara del seu impacte en la supervivència¹⁴⁰. Recentment s'ha publicat com tres fàrmacs, enzalutamida, apalutamida i darolutamida, demoren l'aparició de metàstasis en aquesta situació clínica i poden tenir un impacte en la supervivència global^{141–143}.

En el CPRC i metastàtic la selecció del tractament més adequat la farem tenint en compte els resultats de la literatura (criteris d'inclusió i exclusió dels assajos clínics, dades d'eficàcia i toxicitat, etc.) però també tenint en compte altres factors propis del pacient com el patró de disseminació del CP (visceral, exclusivament ossi, etc.), la simptomatologia que ocasioni aquest, l'estat general del pacient i altres comorbiditats que pugui tenir el pacient. A més a més, s'han de tenir en compte els tractaments previs que hagi rebut el pacient ja que podrien induir resistència o una menor eficàcia de futurs tractaments¹³⁹.

3.2.2. Quimioteràpia en el CPRC i metastàsic

El docetaxel va ser el primer tractament que va demostrar una millora en la supervivència global dels pacients afectes de CPRC en base als resultats de dos assajos clínics fase III⁷⁹⁸⁰. En aquests dos assajos el tractament del braç control

va ser la mitoxantrona, un antibiòtic antitumoral, que havia demostrat prèviament una milloria en el control del dolor i certes respostes per PSA respecte prednisona i hidrocortisona, però sense tenir un impacta en la supervivència global^{144,145}.

Tannock i col. van conduir un assaig clínic fase III en el que es van incloure més de 1000 pacients afectes de CPRC, en aquell moment definit com a hormonorefractari. L'objectiu primari d'aquest assaig va ser demostrar un benefici en supervivència global del docetaxel, administrat en dos esquemes diferents (75mg/m² cada 21 dies i 30mg/m² setmanal) respecte mitoxantrona 12mg/m². En aquest estudi tant l'objectiu primari com els secundaris van ser positius per al docetaxel, amb un increment en la mitjana de supervivència global de 2.4 mesos per al règim trisetmanal de docetaxel (Taula 7)⁷⁹. Posteriorment, aquests resultats s'han corroborat en una publicació ulterior amb un major seguiment, demostrant-se un benefici en supervivència global únicament en els pacients que van rebre l'esquema trisetmanal de docetaxel¹⁴⁶.

Paral·lelament, Petrylak i col. van realitzar un altre assaig clínic en el que es va comparar la combinació de docetaxel ($60mg/m^2$ cada 21 dies, escalant-se a 70mg/m² si no hi havia toxicitat grau 3 o 4 durant el primer cicle) i estramustina (280mg cada 8h del durant 5 dies) amb mitoxantrona ($12mg/m^2$) i prednisona (5mg cada 12h diaris). La estramustina és una combinació de estradiol amb mostassa nitrogenada. En estudis *in vitro*¹⁴⁷ i en un assaig clínic fase I/II¹⁴⁸ la combinació de docetaxel i estramustina va demostrar ser sinèrgica, motiu pel que es va utilitzar en aquest assaig clínic. L'objectiu primari d'aquest estudi fou demostrar un benefici en la supervivència global i aquest es va assolir, obtenint-se un increment de gairebé 2 mesos en la mitjana de supervivència global. Els objectius secundaris d'eficàcia també van ser positius per al docetaxel (Taula 7)⁸⁰.

Aquest increment en la supervivència global és a expenses d'un increment en els efectes adversos del tractament (Taula 7). Els pacients que van rebre docetaxel amb prednisona van tenir una major freqüència de neutropènia encara que la incidència de neutropènia febril va ser molt baixa (Taula 7)⁷⁹. D'altre

banda, els pacients tractats amb la combinació de docetaxel i estramustina van patir una major incidència de neutropènia febril, efectes adversos cardiovasculars, nàusees i vòmits, entre d'altres (Taula 7)⁸⁰.

En base a aquests resultats^{79,80}, es va establir el docetaxel com a tractament de primera línia en el CPRC i metastàtic⁸³.

Taula 7. Assajos clínics fa	ase III de quimioteràpia	a en CPRC.		
Assaig clínic (NCT) / Nombre	Tractament (n)	Objectiu Primari	Objectius secundaris	Toxicitats rellevants
de pacients inclosos i			(braç experimental vs. control)	
principals criteris d'inclusió				
TAX 327 ^{79,146} / 1006	Docetaxel (D75) 75mg/m ²	Mediana de supervivència global:	Resposta per PSA (reducció ≥ 50%) (D75 vs. D30 vs.	Events adversos seriosos
 CP hormono-refractari metastàtic. 	cada 3 setmanes ^{\$} (n=335).	18.9 mesos.	M): 45 vs. 48 vs. 32%; p < 0.001	(D75 vs. D30 vs. M): 26 vs. 29
 No tractament citotòxic previ, 		HR 0.76 (IC 95%, 0.62 – 0.94), p	Taxa de respostes objectives: 12 vs. 8 vs. 7%; p = 0.11	vs. 20%.
excepte estramustina, ni		(Log-rank) < 0.009.	(D75 vs. M) i 0.59 (D30 vs. M).	Morts relacionades amb el
radioisòtops.	Docetaxel (D30) 30mg/m ²	Mediana de supervivència global:	Resposta del dolor: 35 vs. 31 vs. 22%; p = 0.01 (D75 vs.	tractament: 0.3 vs. 0.3 vs. 1%.
 No neuropatia perifèrica 	setmanal ^{\$} (n=334).	17.4 mesos.	M) i p = 0.08 (D30 vs. M).	Neutropènia 32 vs. 2 vs. 22%.
simptomàtica (grau ≤ 2).		HR 0.91 (IC 95%, 0.75 – 1.11), p		Neuropatia sensorial: 30 vs.
 Karnofsky performance-status 		(Log-rank) = 0.36.		24 vs. 7%.
score ≥ 60%.	Mitoxantrona (M) 12mg/m ²	Mediana de supervivència global:		Edemes perifèrics: 19 vs. 12
	cada 3 setmanes ^{\$} (n=337).	16.5 mesos.		vs. 1%.
SWOG 99-16 ⁸⁰ / 770	Docetaxel [¢] 60mg/m² cada 3	Mediana de supervivència global:	Resposta per PSA (reducció ≥ 50%) (D vs. M): 50 vs.	Neutropènia febril: 5 vs. 2%.
 Adenocarcinoma de pròstata 	setmanes més estramustina	17.5 mesos.	27%; p < 0.001.	Events cardiovasculars: 15 vs.
metastàtic en progressió a teràpia	280mg cada 8h dies 1 al 5	HR 0.80 (IC 95%, 0.67 – 0.97), p	Taxa de respostes objectives: 17 vs. 11%; $p = 0.30$.	7%.
de supressió androgènica.	cada 3 setmanes (n=338).	(Log-rank) < 0.001.	Supervivència lliure de progressió: 6.3 vs. 3.2 mesos; p	Nauseas i vòmits: 20 vs. 5%.
 Permès el tractament sistèmic 			(log-rank) < 0.001.	Alteracions neurològiques 7
previ excepte estramustina,	Mitoxantrona [¢] 12mg/m ² cada	Mediana de supervivència global:		vs. 2%.
taxans, antraciclines o	3 setmanes ^{\$} (n=336).	15.6 mesos.		Morts relacionades amb el
mitoxantrona.				tractament: 8 vs. 4 pacients.
ECOG PS 0-2 (3 en cas que fos				
secundari a dolor ossi).				
Esquema bisetmanal de docetaxel	Docetaxel (D50) 50mg/m ²	Mediana de temps a la fallida del	Resposta per PSA (reducció ≥ 50%) (D50 vs. D75): 49	Neutropènia: 36 vs. 53%.
(NCT00255606) ¹⁴⁹ / 361	cada 2 setmanes ^{\$} (n=170).	tractament: 5.6 mesos.	vs. 42%; p = 0.486.	Neutropènia febril: 4 vs. 14%.
 Adenocarcinoma de pròstata 		HR 1.3 (IC 95%, 1.1 – 1.6), p =	Taxa de respostes objectives: 23 vs. 22%; $p = 0.952$.	
metastàtic en progressió a teràpia		0.014.	Supervivència global: 19.5 vs. 17 mesos; p (log-rank) =	
de supressió androgènica.	Docetaxel (D75) 75mg/m ²	Mediana de temps a la fallida del	0.021.	
No tractament quimioteràpic previ	cada 3 setmanes ^{\$} (n=176).	tractament: 4.9 mesos.		
(excepte estramustina)				
• ECOG PS 0-2				

TROPIC (NCT00417079) ^{81,150} / 755	Cabazitaxel 25mg/m ² cada 3	Mediana de supervivència global	Resposta per PSA (reducció ≥ 50%): 39.3 vs. 27.8%; p =	Neutropènia 82% i 8% de
CPRC metastàtic.	setmanes ^{\$} (n=378)	15.1 mesos.	0.0002.	neutropènia febril.
Progressió durant o després de		HR 0.70 (IC 95%, 0.59 – 0.83), p	Taxa de respostes objectives mesurades per RECIST:	Leucopènia 68%.
rebre docetaxel.		(Log-rank) < 0.0001	14.4 vs. 4.4%; p = 0.0005	Anèmia 11%
• ECOG PS 0-2.			Supervivència lliure de progressió*: 2.8 vs. 1.4 mesos;	Diarrea 6%
			HR 0.74 (IC 95%, 0.64 – 0.86) p < 0.0001.	Astènia 5%
	Mitoxantrona 12mg/m ² cada	Mediana de supervivència global	Mitjana de temps a la progressió per PSA (increment del	
	3 setmanes ^{\$} (n=377)	12.7 mesos.	≥ 25%): 6.4 vs. 3.1 mesos; HR 0.75 (IC 95%, 0.63 –	
			0.90; p = 0.001.	
			Mitjana de temps a la progressió radiològica: 8.8 vs. 5.4	
			mesos; HR 0.61 (IC 95%, 0.49 – 0.76); p < 0.0001.	
PROSELICA (NCT01308580) ¹⁵¹ /	Cabazitaxel 20mg/m ² cada 3	Mediana de supervivència global	Resposta per PSA (reducció ≥ 50%): 29.5 vs. 42.9%; p <	Neutropènia 41.8 vs. 73.3%.
1200	setmanes ^{\$} (n=598)	13.4 mesos.	0.001.	Leucopènia 28.9 vs. 59.5%.
CPRC metastàtic.		HR 1.024 (IC 98.9%, límit superior	Taxa de respostes objectives mesurades per RECIST:	Anèmia 9.9 vs. 13.7%
Progressió durant o després de		1.184)	18.5 vs. 23.4%; p = 0.1924	Diarrea 1.4 vs. 4%
rebre docetaxel.			Supervivència lliure de progressió*: 2.9 vs. 3.5 mesos;	Astènia 2.6 vs. 3.7%
• ECOG PS 0-2.			HR 1.099 (IC 95%, 0.974 – 1.240).	
			Mitjana de temps a la progressió per PSA (increment del	
	Cabazitaxel 25mg/m ² cada 3	Mediana de supervivència global	≥ 25%): 5.7 vs. 6.8 mesos; HR 1.195 (IC 95%, 1.025 –	
	setmanes ^{\$} (n=602)	14.5 mesos.	1.393).	
			Mitjana de temps a la progressió radiològica: 9.0 vs. 9.3	
			mesos; HR 1.096 (IC 95%, 0.902 – 1.331).	
FIRSTANA (NCT01308567) ¹⁵² /	Cabazitaxel (C20) 20mg/m ²	Mediana de supervivència global	Resposta per PSA (reducció ≥ 50%): 60.7 vs. 68.7 vs.	C20 vs. C25 vs. D75
1168	cada 3 setmanes ^{\$} (n=389)	24.5 mesos.	68.4%; p > 0.05.	
CPRC metastàtic.		HR [#] 1.01 (IC 95%, 0.85 – 1.20), p	Taxa de respostes objectives mesurades per RECIST:	Qualsevol efecte advers grau
No tractament quimioteràpic previ.		(Log-rank) = 0.997	32.4 vs. 41.6 vs. 30.9%; p = 0.037 (C25 vs. D75)	≥ 3: 41.2 vs. 60.1 vs. 46%.
• ECOG PS 0-2.	Cabazitaxel (C25) 25mg/m ²	Mediana de supervivència global	Supervivència lliure de progressió* (C20 vs. C25 vs.	Neutropènia: 37.8 vs. 70.6 vs.
	cada 3 setmanes ^{\$} (n=388)	25.2 mesos.	D75): 4.4 vs. 5.1 vs. 5.3 mesos.	78.9%.
		HR [#] 0.97 (IC 95%, 0.82 – 1.16), p	Mitjana de temps a la progressió per PSA (increment del	Anèmia 6.5 vs. 8.7 vs. 5.5%
		(Log-rank) = 0.757	≥ 25%): 8.2 vs. 9.2 vs. 8.3 mesos; p > 0.05.	Diarrea 3.5 vs. 5.6 vs. 2.3%
	Docetaxel (D75) 75mg/m ²	Mediana de supervivència global	Mitjana de temps a la progressió radiològica: 13.4 vs.	Astènia 1.6 vs. 3.1 vs. 2.3%
	cada 3 setmanes ^{\$} (n=391)	24.3 mesos.	13.1 vs. 12.1 mesos; p > 0.05	

La primera progressió que succeeixi tenint en compte progressió per PSA, radiològica, del dolor o mort. ^{\$}Combinat amb 10mg de prednisona oral cada dia. # Respecte la branca de docetaxel. [¢]Si no s'objectivaven efectes adversos grau 3 o 4 en el primer cicle les dosis de docetaxel i mitoxantrona es podien augmentar a 70mg/m² i 14mg/m² respectivament. Per tal de millorar la tolerància i la seguretat del tractament amb docetaxel s'han estudiat règims d'administració alternatius. En l'assaig TAX 327, la pauta setmanal de docetaxel no va demostrar un increment en la supervivència global respecte mitoxantrona⁷⁹. També s'ha estudiat un esquema bisetmanal d'administració de docetaxel (50mg/m²). Aquest permet mantenir l'eficàcia del docetaxel respecte el temps al fracàs del tractament i té un millor perfil de seguretat¹⁴⁹. Aquest pauta pot ser una alternativa de tractament en pacients fràgils en els que es vulgui reduir el risc d'efectes adversos però sense comprometre la eficàcia del tractament¹⁵³.

Posteriorment, s'han estudiat combinacions de docetaxel amb altres fàrmacs com bifosfonats¹⁵⁴, antiangiogenics (p.ex.: bevacizumab o aflibercept o lenalidomida)^{155–157}, calcitriol¹⁵⁸, inhibidors de tirosina quinasa¹⁵⁹, oligonucleòtids antisentit¹⁶⁰ o antagonistes del receptor de l'endotelina^{161,162}. Totes elles s'han desestimat per absència de benefici en supervivència global o toxicitat inacceptable.

Un altre tractament quimioteràpic eficaç en el CPRC i metastàsic és el cabazitaxel. Aquest és un taxà semisintètic que ha demostrat activitat en línies cel·lulars resistents a docetaxel⁹². En l'assaig fase III anomenat TROPIC es va comparar aquest fàrmac, a la dosis de 25mg/m², amb mitoxantrona 12mg/m², ambdós combinats amb prednisona 10mg al dia, en pacients afectes de CPRC i que havien progressat com a mínim a un tractament previ amb docetaxel. L'objectiu primari, que era demostrar una millora en la supervivència global, va ser positiu amb una reducció del risc relatiu de mort del 30%, i gran part dels objectius secundaris també afavorien al cabazitaxel (Taula 7)⁸¹. Dades actualitzades d'aquest assaig clínic confirmen el benefici en supervivència

Per contra, els pacients tractats amb cabazitaxel van tenir més toxicitat hematològica, especialment neutropènia grau 3 o superior (82% vs. 58%) (Taula 7)⁸¹. En un anàlisis post-hoc d'aquest assaig clínic s'ha vist com els pacients que desenvolupen neutropènia grau 3 o superior tenen una millor supervivència global (16.3 vs. 14 mesos), supervivència lliure de progressió (5.3 vs. 2.6 mesos)

i taxa de respostes per PSA (49.8 vs. 24.4%). A més a més, l'ús de factors estimuladors de colònies granulocítiques no té un impacte negatiu en aquests resultats¹⁶³.

Per l'elevada incidència de toxicitat hematològica s'han estudiat règims alternatius de cabazitaxel. En l'estudi PROSELICA s'ha comparat la dosis de 20mg/m² amb la de 25mg/m² de cabazitaxel cada 3 setmanes i s'ha trobat com la dosis de 20mg/m² no és inferior a la de 25mg/m² respecte la supervivència global i té menys incidència d'efectes adversos. Però els altres objectius secundaris d'eficàcia afavoreixen les dosis més altes de cabazitaxel (Taula 7)¹⁵¹. En altres estudis fase II s'han avaluat règims setmanals¹⁶⁴ o bisetmanals¹⁶⁵ considerant els autors que tenen eficàcies similars al règim estàndard però amb un millor perfil de seguretat.

Degut a l'eficàcia de cabazitaxel, aquest també s'ha comparat directament amb docetaxel en pacients afectes de CPRC que no havien rebut quimioteràpia prèviament. Es van comparar dues dosis diferents de cabazitaxel (20mg/m² i 25mg/m²) amb docetaxel 75mg/m² cada 3 setmanes. Tots aquests esquemes es van acompanyar de 10mg de prednisona al dia. Aquest assaig clínic no va assolir l'objectiu primari que era demostrar un benefici en la supervivència global encara que alguns dels objectius secundaris, com la taxa de respostes, sí que van ser millor amb cabazitaxel (Taula 7)¹⁵².

Per tant, en base a aquests resultats el tractament quimioteràpic de primera línia continua sent el docetaxel, tot i que els resultats d'un assaig clínic recent fase II suggereixen que els pacients que no responen per PSA als 4 cicles de tractament amb docetaxel es podrien beneficiar de rebre precoçment cabazitaxel¹⁶⁶.

3.2.3. Altres tractaments farmacològics en el CPRC i metastàsic

A més a més de la quimioteràpia, s'han desenvolupat fàrmacs amb diferents mecanismes d'acció que han demostrat utilitat en el maneig del CPRC¹²⁸. L'abiraterona és un inhibidor selectiu del enzim CYP17. Aquest fàrmac combinat amb prednisona, per així evitar un increment secundari de la ACTH i per tant un excés de mineralcorticoides, ha demostrat ser eficaç tant en pacients que han

rebut prèviament docetaxel com en els que no l'han rebut. En l'assaig clínic COU-AA-301 es van incloure més de 1000 pacients tractats prèviament amb docetaxel. En aquest estudi es va demostrar un benefici en la supervivència global, amb un increment en la seva mitjana de 11.2 a 15.8 mesos, i en tots els altres objectius secundaris^{167,168}. En l'assaig clínic COU-AA-302 s'ha avaluat aquest fàrmac en pacients asimptomàtics o mínimament simptomàtics que no han estat tractats prèviament amb quimioteràpia. En aquesta situació també s'ha demostrat un benefici en la supervivència global i en la supervivència lliure de progressió radiològica, així com en la resta d'objectius secundaris^{167,169}.

La enzalutamida també s'ha provat en aquests dues situacions clíniques. En l'estudi AFFIRM es van incloure 1199 pacients que havien rebut prèviament docetaxel i es va demostrar com la enzalutamida prolongava la supervivència global en gairebé 5 mesos. Aquest benefici també es va constatar en tots els objectius secundaris d'eficàcia del estudi¹⁷⁰. L'estudi PREVAIL va ser dissenyat per a demostrar un benefici en la supervivència global i la supervivència lliure de progressió radiològica en pacients que no havien rebut prèviament docetaxel. Aquest estudi també va ser positiu tant pels objectius primaris com pels secundaris¹⁷¹.

El radium-223 és el primer radioisòtop que ha tingut un impacte positiu en la supervivència global. En l'assaig ALSYMPCA es van incloure tant pacients tractats amb docetaxel com pacients que no eren candidats a quimioteràpia i es va objectivar un increment en la supervivència global de més de 3 mesos. Així com una demora en l'aparició d'esdeveniments relacionats amb l'esquelet i un benefici en la resta d'objectius secundaris¹⁷².

Recentment s'han publicat els resultats del assaig clínic ERA 223 que avaluava la combinació de radium-223 i abiraterona. Aquest estudi pretenia demostrar un retràs en l'aparició del primer esdeveniment ossi però es va aturar prematurament donat que la incidència de fractures era major en els pacients tractats amb la combinació. Per tant, la combinació d'aquests dos fàrmacs està desaconsellada¹⁷³.

Un altre tractament que ha demostrat un increment en la supervivència global però que no està disponible en el nostre entorn és el Sipuleucel-T. En aquest assaig es van incloure pacients asimptomàtics o mínimament simptomàtics i es va evidenciar un increment de 4.2 mesos en la mitjana de supervivència global¹⁷⁴.

Més recentment s'ha vist com altres tractaments podrien ser útils en pacients que tinguin determinades alteracions moleculars. Per exemple, en pacients amb alteracions en gens de la reparació dels danys en el DNA poden ser efectius els inhibidors de la poli(ADP-ribosa) polimerasa¹⁷⁵. D'altra banda, la immunoteràpia amb inhibidors de CTLA4^{176,177} o PD1/PDL1¹⁷⁸ en monoteràpia no ha demostrat un clar benefici en la població general de CPRC però sí que podria ser útil en pacients amb pèrdua de *CDK12*¹⁷⁹ o inestabilitat de microsatelits^{180,181}. Tots aquests nous tractaments i diferents combinacions d'ells estan sent testats i encara no es disposen de dades concloents derivades d'assajos clínics fase III.

4. Resistència al docetaxel en CP i biomarcadors

Tal i com s'ha descrit anteriorment, el docetaxel té efecte citotòxic però aquest es pot aconseguir a través de diferents mecanismes d'acció. Aquesta diversitat en els mecanismes d'acció d'aquest fàrmac ha dificultat, en part, l'estudi dels mecanismes de resistència i el desenvolupament de biomarcadors robustos i d'utilitat en la pràctica clínica diària.

S'han descrit múltiples mecanismes de resistència al docetaxel¹⁸². Aquests els podríem classificar en relacionats amb el fenomen de transició epitelimesènquima (EMT), citocines proinflamatories, alteració de la dinàmica dels microtúbuls o altres mecanismes de resistència com l'expulsió del fàrmac de la cèl·lula, autofàgia, etc.

4.1. Transició epiteli-mesènquima (EMT)

El fenomen d'EMT és un procés fisiològic que participa en el desenvolupament o la curació de ferides però també està implicat en processos patològics com la fibrosis dels teixits o el càncer¹⁸³.

Aquest procés consisteix en una reprogramació cel·lular reversible i transitòria que fa que les cèl·lules epitelials perdin les seves característiques epitelials (p.ex. polaritat apical-basal, unions intercel·lulars, marcadors epitelials com CDH1 o EPCAM, etc.) i n'adquireixin de mesenquimals (p.ex.: polaritat anteroposterior, motilitat i capacitat d'invasió, expressió de marcadors mesenquimals com n-cadherina, vimentina, etc.) podent arribar a un fenotip completament mesenquimal o, a formes parcials o intermèdies d'aquest. D'altra banda, aquestes últimes poden patir el procés invers retornant a un fenotip epitelial a través de la transició mesènquima-epitelial (Fig. 8)^{183,184}.

Figura 8. Canvis morfològics i moleculars associats al fenomen d'EMT. Modificat de Shibue T. i col.¹⁸⁵.

En general, s'han descrit múltiples vies de senyalització que poden induir aquest procés (p.ex.: TGF β , WNT, NOTCH, etc.), així com la implicació de diferents factors de transcripció (p.ex.: ZEB1/2, SNAI1/2 o TWIST1/2) (Fig. 9). En el càncer, aquestes vies de senyalització es poden activar, a través de la secreció de citocines i factors de creixement, pels diferents tipus cel·lulars que constitueixen el microambient tumoral (p.ex.: fibroblasts associats al càncer, limfòcits T, macròfags o cèl·lules mieloides supressores)¹⁸³.

Diferents treballs han demostrat també com hi ha una íntima relació entre l'activació del procés d'EMT i l'adquisició d'un fenotip i comportament de *cancer stem cells* (CSC). Les mateixes vies de senyalització que poden induir el primer procés faciliten l'adquisició d'aquest fenotip *stem* i indueixen els canvis corresponents com són l'expressió de determinats marcadors de membrana (sobreexpressió de CD44 i infraexpressió de CD24), major capacitat tumorogènica i quimioresistència¹⁸⁵.

Figura 9. Vies moleculars implicades en l'activació del fenomen d'EMT. Modificat de Dongre A. i col.¹⁸³.

En els tumors primaris, l'activació d'aquest programa i la conseqüent adquisició del fenotip mesenquimal, ja sigui complet o parcial, permet que les cèl·lules tumorals envaeixin l'estroma i puguin arribar a la circulació sistèmica. Després de la seva extravasació i a través del procés invers poden adquirir un altre cop un fenotip més epitelial i implantar-se en teixits a distància formant les metàstasis (Fig. 10)¹⁸⁵.

Figura 10. El fenomen d'EMT durant la progressió del càncer. Modificat de Shibue T. i col.¹⁸⁵.

A més a més, sembla que aquest procés, a través de l'activació de diferents mecanismes (p.ex.: inhibició de la senyalització proapoptòtica, bombes d'eflux, etc) està implicat en la resistència a les teràpies farmacològiques, incloent els agents citotòxics (p.ex.: cisplatí o doxorrubicina), els agents anti-diana (p.ex.: inhibidors de EGFR o PI3K) o la immunoterapia (p.ex.: anticossos contra CTLA4)¹⁸⁵.

En el CP, el grau de Gleason es pot interpretar com l'evidència del fenomen d'EMT a nivell morfològic. A mesura que el grau de Gleason augmenta, es va perdent l'arquitectura epitelial de les glàndules i la polaritat apical-basal, i es comença a observar un patró d'invasió del estroma proper^{31,186}. A nivell molecular, sembla clar que al voltant del 18-50% de les peces de prostatectomia expressen CDH1 i que la seva pèrdua s'associa amb un Gleason més elevat, major expressió de N-cadherina, i pitjor pronòstic. Però l'expressió de CDH1 en metàstasis no és consistent, ja que s'ha descrit tant infraexpressada com expressada a nivells normals. Una possible explicació d'aquestes troballes és la reversió de la EMT un cop establertes les cèl·lules cancerígenes en el teixit distant^{186,187}.

L'estudi del fenomen d'EMT en mostres d'arxiu té certes limitacions que dificulten la confirmació de la seva presència i establir realment quina és la seva rellevància clínica. Primer de tot, no hi ha un marcador específic i característic de la EMT com tampoc una definició exacte d'aquest procés. D'altre banda, hi ha dificultats en la interpretació dels estudis d'immunohistoquímica per diferents motius com són la heterogeneïtat de la malaltia, la presència de tumors multifocals i la tinció del component estromal pels anticossos utilitzats. Per últim, una altre limitació és l'absència d'estudis longitudinals on s'avaluï l'aparició d'aquest procés al llarg del temps¹⁸⁶.

Addicionalment, sembla que en el CP el AR també esta implicat en la EMT però existeixen dades contradictòries. Per una part, alguns estudis exposen que els andrògens tenen la capacitat d'inhibir l'expressió de CDH1 i potenciar l'expressió de marcadors mesenquimals¹⁸⁸ a través de l'activació de Snail¹⁸⁹. D'altre banda,

en altres estudis s'assenyala que tant la supressió androgènica com una reducció en els nivells del AR indueixen aquest procés^{190–193}.

Tal i com s'ha esmentat anteriorment, el fenotip mesenguimal induït pel fenomen d'EMT esta implicat en la resistència al tractament sistèmic¹⁸⁵. En el CP aquest fenomen també esta implicat en la resistència al docetaxel. El procés d'EMT esta íntimament regulat per múltiples factors, entre ells microRNAs (p.ex.: miR-143, miR-145, miR-29b, miR-34b, etc)¹⁹⁴. Alguns d'aquests, com miR-200b, miR-200c o miR-205, s'han relacionat amb la resistència al docetaxel^{195,196}. En estudis in vitro s'ha vist que el tractament amb docetaxel indueix el fenotip EMT a través de la infraexpressió de miR-200c i miR-205, i la consegüent sobreexpressió dels factors de transcripció ZEB1 i ZEB2 que es troben regulats per aquests microRNAs. A més a més, la transfecció d'aguests microRNAs genera la infraexpressió d'aquests factors de transcripció i la sobreexpressió de del marcador epitelial CDH1. Confirmant-se així la reversió del procés d'EMT i l'adquisició d' un fenotip epitelial novament¹⁹⁵. Altres grups han confirmat aquestes troballes i també impliquen aquests microRNAs en la regulació de l'expressió d'EPCAM¹⁹⁷. S'han descrit resultats similars respecte el miR-200b¹⁹⁶. La sobreexpressió d'aquest microRNA provoca la infraexpressió de BMI-1 i com a consegüència la recuperació del fenotip epitelial. A més a més també incrementa la sensibilitat de les cèl·lules de CP al docetaxel, pel que és un possible diana terapèutica¹⁹⁶.

També s'ha descrit que la inhibició d'*EPCAM* indueix la sobreexpressió d'altres marcadors epitelials, com *CDH1*, i la infraexpressió de marcadors mesenquimal, com *VIM*, conjuntament amb la inactivació de la via de PI3K/AKT/mTOR. Alhora, la inhibició d'EPCAM també incrementa la quimiosensibilitat i la radiosensibilitat. Per tant, *EPCAM* no és simplement un marcador epitelial sinó que regula el procés d'EMT i s'ha descrit com a marcador de CSC en diferents tumors¹⁹⁸.

Altres molècules, com *MIC-1* o les variants de *splicing* de *OPN*, també s'han relacionat amb el fenomen d'EMT i la resistència al docetaxel^{199,200} El tractament de cèl·lules de CP amb la citocina *MIC-1* indueix un fenotip mesenquimal així com major capacitat d'invasió i resistència al docetaxel, mentre que la inhibició

d'aquesta citocina té l'efecte contrari. En aquest treball els autors identifiquen una població de cèl·lules amb característiques de CSC que s'indueix amb el tractament amb docetaxel però que és sensible a aquest un cop s'inhibeix l'expressió de *MIC-1*¹⁹⁹. D'altre banda, les variants de *splicing* de *OPN*, *OPNb* i *OPNc*, es troben sobreexpressades en les cèl·lules PC-3 tractades amb docetaxel i aquestes cèl·lules tenen un fenotip mesenquimal²⁰⁰.

4.2. Inflamació i citocines

Es ben conegut que tots els tumors estan infiltrats per cèl·lules del sistema immunològic innat i del adaptatiu. Inicialment aquest fet es va considerar una resposta antitumoral per a eradicar el càncer però en les últimes dues dècades s'ha descobert que, en part, la infiltració immunològica promou la tumorogènesis i la progressió de la malaltia²⁰¹. Això ho aconsegueix aportant tot un conjunt de biomolècules, com són factors de creixement, factors proangiogènics o altres molècules, que facilitaran els processos d'angiogènesis, invasió i metàstasis, i també induiran el fenomen d'EMT. La importància de la inflamació ha fet que es consideri una de les característiques fonamentals del càncer.^{201,202}.

Hi ha múltiples factors que contribueixen a la inflamació en la glàndula prostàtica, des de factors dietètics, infeccions, hormonals o el reflux urinari, entre d'altres²⁰³. I fins i tot en el 80% de les mostres de pròstata d'individus sans amb un elevat risc de desenvolupar CP s'ha trobat algun grau d'inflamació²⁰⁴. Aquest fet constata la importància que també té la inflamació en aquesta patologia.

En el CP s'ha associat la inflamació amb el desenvolupament de la malaltia i la seva progressió^{203,205}. Principalment, la inflamació en el CP és crònica i està constituïda per limfòcits i macròfags, mentre que la infiltració per cèl·lules plasmàtiques i eosinòfils és menys freqüent. De forma menys freqüent també es pot trobar inflamació aguda constituïda per neutròfils²⁰³. Aquestes cèl·lules immunològiques però també altres cèl·lules del microambient tumoral i les pròpies cèl·lules tumorals segregaran diferents citocines proinflamatòries, quimiocines i metaloproteinasas de la matriu que acabaran afavorint el creixement de les cèl·lules tumorals, la invasió, l'angiogènesis i la infiltració

immunològica amb el fi de facilitat el desenvolupament i la progressió del tumor^{205,206}.

Els limfòcits, juntament amb els macròfags, són els principals tipus cel·lulars que infiltren els tumors²⁰³. La infiltració per limfòcits T CD4+ s'ha associat amb una pitjor supervivència en pacients afectes de CP²⁰⁷. Els limfòcits T reguladors (Tregs) participen en la homeòstasis immunològica suprimint l'activitat dels limfòcits T i, per tant, poden facilitar la proliferació tumoral²⁰⁸. En tumors primaris de CP s'ha trobat infiltració per aquest tipus de limfòcits²⁰⁹ i sembla que estan implicats en la progressió de la malaltia²¹⁰. Els limfòcits B que infiltren el tumor també s'han associat a la progressió tumoral del CP²¹¹. Aquest limfòcits a través de la producció d'una citocina anomenada limfotoxina promou la proliferació i la supervivència del CP i afavoreix el desenvolupament de la resistència a la castració²¹².

Tal com s'ha esmentat anteriorment els macròfags són un dels tipus cel·lulars que es troben infiltrants els tumors. Podem distingir dos fenotips de macròfags, els M1 i els M2. Els primers tenen activitat microbicida i antitumoral, mentre que els segons participen en processos de remodelació tissular, tolerància immunològica però també en la progressió tumoral. En CP la infiltració per macròfags s'ha associat a un pitjor pronòstic i en tumors amb un estadiatge més elevat o un Gleason més alt s'ha descrit una major infiltració per macròfags $M2^{213}$. Els macròfags M1 segreguen diferents citocines (p.ex.: IL1 β , IL6 o IL12) i quimiocines (p.ex.: TNF α) que participen en la iniciació tumoral. Però després de l'exposició dels macròfags a diferents citocines i quimiocines (p.ex.: IL4, CSF1, GM-CSF o TGF β) segregades per les cèl·lules canceroses aquests es polaritzen a un fenotip M2 i indueixen la immunosupressió del microambient tumoral a través de la secreció de IL4, IL10 o TGF β , entre d'altres molècules.

Diferents quimiocines com CXCL1, CXCL2, CXCL5, CXCL6 o IL8, segregades per les cèl·lules tumorals atreuen els neutròfils cap al microambient tumoral²¹⁴. En aquest tipus cel·lular també s'han descrit dos fenotips, N1 i N2, sent els segons els que tenen activitat protumoral. La polarització dels neutròfils cap a aquest fenotip s'aconsegueix principalment per l'acció de G-CSF i IL6²¹⁵.

Existeixen poques dades sobre el paper protumoral dels neutròfils en CP però se sap que una elevada ràtio neutròfils-limfòcits en sang perifèrica s'associa a un Gleason elevat i és un factor de mal pronòstic. En pacients afectes de CPRC i tractats amb docetaxel i abiraterona aquesta ratio també és un factor de mal pronòstic²¹⁴.

Les cèl·lules supressores derivades de mieloides (MDSCs) inhibeixen la resposta dels limfòcits T a través de la via ARG1, iNOS i d'espècies reactives del oxigen, i estimulen els limfòcits T reguladors, que tenen funció immunosupressora, a través de IL10 i TGFβ. La secreció de CXCL5 per les cèl·lules tumorals atrau aquestes cèl·lules²¹⁴. En models animals de CP s'ha trobat que aquestes cèl·lules, a través de la secreció de IL23, activen la via del AR i indueixen la resistència a la castració²¹⁶. En pacients afectes de CP s'ha trobat que els nivells elevats de MDSCs en sang s'associen a una pitjor supervivència global²¹⁷. Aquestes cèl·lules s'acumulen en la sang a mesura que la malaltia progressa i inhibeixen la proliferació i activitat els limfòcits T CD8+²¹⁸.

Altres tipus cel·lulars del sistema immunològic innat com els mastòcits o les cèl·lules *Natural Killer* (NK) també participen en el desenvolupament tumoral. Els primers són necessaris en fases inicials del desenvolupament tumoral degut a la secreció de MMP9 que facilitarà els processos d'invasió i angiogènesis, i sembla que aquest tipus cel·lular evita la diferenciació neuroendocrina del tumor²¹⁹. En canvi, les cèl·lules NK tenen principalment activitat citotòxica però també regulen la funció d'altres cèl·lules immunològiques a través de la secreció de citocines o quimiocines, o per una interacció directa amb elles. Sembla que tant la infiltració inicial per cèl·lules NK com pels mastòcits provoca la disrupció de la capsula tumoral, i la proliferació i invasió de les CSC²²⁰.

Tal com hem vist, els tumors estan infiltrats per cèl·lules immunològiques i hi ha una intensa comunicació entre totes les cèl·lules que composen el tumor a través de la secreció de citocines i la presència dels corresponents receptors en els diferents tipus cel·lulars. Dins de la família de les citocines trobem les quimiocines que es caracteritzen per induir quimiotaxis en les cèl·lules que tenen

els corresponents receptors però també tenien altres funcions com estimular la proliferació, supervivència i regular l'angiogènesi^{208,221}.

Diverses citocines s'han relacionat amb el CP entre les que destaca la IL6^{203,206,222}. La unió de IL6 amb el seu receptor provocarà l'activació de les vies de senyalització JAK/STAT, MAPK/ERK i PI3K. IL6 acabarà induint la transcripció de diversos factors de creixements i citocines (p.ex.: HIF1α, MMP2, MMP9, BCL-X,BCL-2 o VEGFA)²²². En diferents estudis s'ha trobat que IL6 es segregada tant per les cèl·lules del CP^{223,224} com per les del estroma^{225,226}. Aquesta interleuquina també indueix el fenomen d'EMT²²⁷ i promou el desenvolupament de metàstasis òssies per una acció directa sobre les cèl·lules del CP però també sobre el microambient tumoral²²². En pacients afectes de CP metastàsic s'han trobat nivells més elevats de IL6 en sèrum respecte controls sans o pacients amb malaltia localitzada²²⁸, i en CPRC uns nivells més elevats s'associen a una pitjor supervivència global²²⁹.

IL8 també s'ha associat amb el CP i en concret està implicada en la progressió de la malaltia i incrementa el risc de desenvolupar metàstasis. IL8 pot estar segregada tant per les cèl·lules tumorals com per les immunològiques^{230,231} i estimula la secreció de metaloproteases (p.ex.: MMP2 i MMP9). Aquestes degraden components de la matriu extracel·lular i faciliten la extravasació i la invasió²³¹. IL8 té altres funcions entre les que destaquen la funció proangiogènica, l'atracció de neutròfils i MDSCs²³². En estudis clínics, IL8 s'associa a valors de Gleason més elevats i amb malaltia metastàsica²³³.

TGF β és una citocina que regula la supervivència i el creixement tant de cèl·lules normals com de tumorals però de diferent manera. Sobre les primeres exerceix un efecte inhibitori de la proliferació i sobre les segones l'estimula. Les cèl·lules epitelials prostàtiques poden secretar TGF β i aquesta pot activar la via de NF- κ B, estimulant així directament la supervivència de les cèl·lules tumorals²³⁴. S'han trobat uns nivells més elevats de TGF β en sèrum de pacients afectes de CP metastàsic^{234,235}. Altres citocines també s'han relacionat amb el CP. TNF α està implicada en la secreció de metaloproteases al medi extracel·lular i per tant facilita la progressió tumoral. IL17 estimula la secreció de TNF α i IL1 β pels macròfags però també té un efecte proangiogènic. IL1 s'ha descrit com a factor prometastàtic i també té efecte proangiogènic²⁰⁵.

Respecte a la resistència al docetaxel, s'ha descrit com línies cel·lulars resistents a aquest, a través de l'activació de NF-κB, secreten més quantitat de IL6 i la seva determinació en sèrum de pacients afectes de CPRC s'associa amb una menor resposta a docetaxel i pitjor supervivència global²³⁶. A més a més, els pacients amb nivells més alts en sèrum tenien una major activació de la via de NF-κB en el tumor²³⁷. La inhibició de la via de NF-κB redueix els nivells de IL6 i resensibilitza les cèl·lules a docetaxel^{236,238}. D'altre banda, la inhibició de IL6 disminueix els nivells de IGF-1R a través de la regulació de SOD2 i STAT3²³⁹. A més a més, el tractament amb IL6, però també amb IL3 i IL11, disminueix la sensibilitat al docetaxel en CP²⁴⁰.

En un altre treball, s'han estudiat les variacions en l'expressió de diferents citocines induïdes per docetaxel, i s'han identificat canvis en els nivells d'aquestes en funció de la línia cel·lular (sensible o resistent a docetaxel), de si es co-cultiva amb monòcits o del temps d'incubació amb docetaxel. A nivell clínic, es van identificar un conjunt de citocines en sèrum que es trobaven sobreexpressades en els pacients refractaris a docetaxel, entre les que s'inclou IL6 però també la IL4, IL12 o INF γ^{241} .

CCL2 també té un paper important en la resistència al docetaxel^{190,242}. Aquesta quimiocina participa en el reclutament dels macròfags però alhora s'ha associat amb la proliferació i la supervivència en el CP. En mostres de pacients s'ha trobat sobreexpressió de diferents quimiocines, entre elles CCL2 però també IL6. En línies cel·lulars, la sobreexpressió de CCL2 promou la proliferació cel·lular i la resistència al docetaxel mitjançada per l'activació de la via de ERK/MAP quinases i PI3K/AKT²⁴².

4.3. Alteració de la dinàmica dels microtúbuls

4.3.1. Alteració de la tubulina

S'ha descrit com l'alteració en l'expressió dels isotips de β -tubulina i especialment una elevada expressió del isotip β III de la tubulina s'associa amb resistència a paclitaxel en models *in vitro*^{243,244}.

En mostres de pacients tractats amb docetaxel s'associa l'expressió d'aquest isotip amb una pitjor supervivència global, i en tumors localitzats, l'expressió de β III-tubulina, s'associa amb una malaltia més agressiva i major risc de recaiguda²⁴⁵. A més a més, també s'ha trobat una major expressió de β III-tubulina en la progressió a la resistència a la castració²⁴⁶. En models *in vitro* el silenciament de β III-tubulina mitjançant siRNA reverteix la resistència al docetaxel²⁴⁵. La sobreexpressió de β III-tubulina també s'ha associat amb la resistència al cabazitaxel²⁴⁷.

Es creu que el motiu pel que la sobreexpressió de β III-tubulina genera resistència a taxans és que els microtúbuls constituïts per aquests són menys estables i, per tant, la dinàmica dels microtúbuls és aberrant^{244,248}.

D'altra banda, s'ha descrit com la presència de mutacions a α -tubulina i β tubulina estan associades amb el desenvolupament de resistència al docetaxel^{244,249,250}.

4.3.2. Kinesines

Les kinesines són proteïnes motores que es mouen al llarg dels microtúbuls gràcies a la hidròlisis d'ATP i estan involucrades en el transport intracel·lular i la mitosis, entre d'altres processos^{251,252}.

En diferents bases de dades genòmiques s'ha trobat com la *mitotic centromerassociated kinesin (MCAK)* es troba sobreexpresada en CPRC respecte al hormonosensible, i també en mostres de pacients resistents a docetaxel²⁵³. D'altra banda, la inhibició d'aquesta proteïna atura el creixement en línies

cel·lulars, suggerint que és una potencial diana terapèutica²⁵³. Addicionalment, en altres models cel·lulars, s'ha descrit com aquesta mateixa proteïna està implicada en la resistència a paclitaxel^{254,255}.

La sobreexpressió d'altres membres d'aquesta família, com la *kinesin family membre C1 (KIFC1)*, també s'ha associat amb un pitjor pronòstic en pacients que han rebut docetaxel per malaltia resistent a la castració i la seva inhibició, en models cel·lulars, augmenta la sensibilitat a aquest fàrmac²⁵⁶.

Malgrat aquests resultats, s'han trobat dades contradictòries respecte altres proteïnes d'aquesta mateixa família. Per exemple, la inhibició de la kinesina *Xenopus kinesin-like protein 2 (TPX2)* no sensibilitza les cèl·lules a docetaxel²⁵⁷. Per contra, l'expressió nuclear de la kinesina EG5 s'associa a una major resposta a docetaxel²⁵⁸.

4.3.3. TMPRSS2-ERG

TMPRSS2-ERG és un gen de fusió específic del CP constituït per *ERG* i *TMPRSS2*²⁵⁹. *ERG* és un factor de transcripció que pertany a la família *E26 transformation-specific* (*ETS*) i en condicions normals participa en el desenvolupament embrionari, la proliferació, l'angiogènesis o la inflamació, entre d'altres funcions²⁶⁰. D'altre banda, *TMPRSS2* pertany a la família de serina proteases i codifica per a una proteïna de membrana cel·lular que regula les interaccions tant intercel·lulars com amb la matriu cel·lular. Alhora, aquest gen es troba sota la direcció d'un promotor que es regulat per andrògens i, per tant, aquests promouen la seva expressió de forma constitutiva²⁶¹.

TMPRSS2 i *ERG* es troben situats en la banda q22 del cromosoma 21 i separats per unes 3Mb²⁶¹. Tot i estar separats, els andrògens i el AR afavoreixen l'apropament intracromosòmic d'aquests dos gens i un agent genotòxic pot provocar el trencament de la cadena de DNA desencadenant així la formació d'aquest gen de fusió^{262–264}. BDR4, proteïna que pertany a la família BET, participa en la reparació del trencament de doble cadena del DNA i en la formació d'aquesta alteració molecular mitjançant la via de reparació no homòloga del

DNA²⁶⁵. A més a més, la hiperglucèmia pot promoure el desenvolupament d'aquest gen de fusió a través de la proteïna IGFBP-2²⁶⁶.

Cal destacar que hi ha dos mecanismes de formació d'aquesta fusió. El Edel que consisteix en una deleció de la regió que separa els dos gens i com a conseqüència trobarem infraexpressió dels gens situats en aquesta regió (p.ex.: *ETS2*, *HMGN1*). L'altre mecanisme s'anomena Esplit i consisteix en la inserció d'aquesta regió de 3Mb en un altre cromosoma, en aquest cas no hi haurà infraexpressió dels gens continguts en aquesta regió. Una variant de la primera és la 2+ Edel en que es detecten 2 o més copies de 3'-ERG en absència de la regió 5'^{267–269}.

S'han descrit més de 20 tipus de fusions diferents entre *TMPRSS2* i *ERG* en funció dels exons implicats en la fusió de cada gen (Fig. 11). La més freqüent és la constituïda per l'exó 1 de *TMPRSS2* amb l'exó 4 de *ERG*. Aquesta codifica una proteïna de ERG truncada per l'extrem amino-terminal^{270,271}. A més a més, s'han descrit, encara que de forma molt menys freqüent, altres gens de fusió constituïts en l'extrem 5' per altres gens de la família ETS (p.ex.: *ETV1, ETV4, ETV5* o *ELK4*) o per altres gens en l'extrem 3' (p.ex.: SLC45A3 o C15orf21). Aquest últim serà el que dictarà si el gen situat en l'extrem 5' estarà regulat per andrògens, com en el cas de *TMPRSS2*, o per contra no hi haurà regulació per andrògens (p.ex.: *HNRNPA2B1*) o, fins i tot, aquesta serà negativa provocant la repressió de *ERG* (p.ex.: *C15orf21*)^{268,272}. D'altra banda, en absència d'activitat del AR *TMPRSS2-ERG* es pot regular per altres mecanismes o fins i tot pel receptor d'estrògens²⁷³ o pel propi *ERG*²⁷⁴.

Figura 11. Diverses formes del gen de fusió *TMPRSS2-ERG*, incloent-se la forma III que és la més freqüent, modificat de Wang i col.²⁷⁰.

L'aparició d'aquesta fusió és un fet prematur en la patogènesis del CP, ja que s'ha trobat en la neoplàsia intraepitelial prostàtica d'alt grau (HGPIN), però no és suficient per al desenvolupament d'un carcinoma. En cèl·lules epitelials prostàtiques transfectades amb *TMPRSS2-ERG* sí que s'ha vist una modificació en el seu programa transcripcional, afavorint l'expressió de gens relacionats amb la invasió, però no s'ha trobat un increment en la proliferació cel·lular²⁷⁵. Per tant, es requereixen altres alteracions moleculars, a més a més d'aquest gen de fusió, per al desenvolupament del càncer. Recentment, s'ha descrit com la pèrdua de *FOXO1* juntament amb la sobreexpressió d'*ERG* indueixen la tumorogenesis i la invasió cel·lular²⁷⁶.

En diferents cohorts de pacients, tant en malaltia localitzada com avançada, al voltant del 50% dels tumors presenten aquest gen de fusió^{272,277,278}. La prevalença dels gens de fusió constituïts per *TMPRSS2* i per altres membres de la família ETS diferents de ERG oscil·la entre el 2 i el 25%, en funció de la sèrie de pacients²⁷².

En diferents estudis preclínics s'ha trobat com *TMPRSS2-ERG* indueix un fenotip agressiu en el CP²⁶⁰. A través de l'activació de les vies de *TGF* β i de *WNT*, *TMPRSS2-ERG* indueix el fenomen d'EMT^{279–281}. A més a més, ERG també s'uneix de forma directa al promotor de *ZEB1* i de forma indirecta influeix sobre l'expressió *ZEB2* promovent també aquest fenomen²⁸². Les vies de *NOTCH* i *EZH2* també s'activen per *TMPRSS2-ERG*, promovent la proliferació i la invasió de les cèl·lules de CP^{260,283}. D'altre banda, les diferents isoformes de *TMPRRS2-ERG* poden activar de diferent manera NF- κ B i això podria explicar les diferències biològiques entres les diferents isoformes del gen de fusió²⁸⁴. A més a més, la proteïna ERG codificada pel gen de fusió s'uneix al propi locus de *ERG* natiu provocant la sobreexpressió d'aquesta²⁷⁴.

A nivell clínic existeixen dades contradictòries respecte el paper pronòstic que té aquest gen de fusió. Hi ha estudis que l'associen amb una malaltia més agressiva (p.ex.: major estadiatge i nivells de PSA), amb un major risc de recurrència i pitjor supervivència global. Però en altres estudis s'ha associat amb un grau de Gleason més baix i una major supervivència global, o no s'ha trobat relació amb aquests paràmetres²⁷².

Tal com s'ha mencionat anteriorment, el gen *TMPRSS2-ERG*, en la majoria dels casos, es troba regulat pels andrògens. Per aquest motiu s'ha postulat com un possible biomarcador predictiu de resposta a la supressió androgènica. En un primer treball es va trobar com la presència d'aquest gen no prediu la resposta a la supressió androgènica en una cohort de 80 pacients afectes de CP hormono-sensible amb extensió ganglionar²⁸⁵. En un altre treball que es va determinar la presència de *TMPRSS2-ERG* per FISH tampoc es va trobar cap correlació amb la suprevivència lliure de progressió al tractament de supressió androgènic²⁸⁶.

Aquesta alteració genètica també s'ha estudiat en relació al benefici dels nous inhibidors del AR. En un primer estudi, en el que es van incloure 89 pacients afectes de CPRC tractats amb abiraterona, es va trobar que els pacients positius per aquest gen de fusió responien més al tractament que els negatius²⁸⁷. Danila D. i col. van estudiar la presència d'aquest gen, mitjançant qRT-PCR, en mostres de cèl·lules tumorals circulants (CTCs) de 41 pacients i no van trobar una relació

amb la resposta a abiraterona²⁸⁸. Finalment, també s'ha estudiat aquest gen en un subgrup de pacients (32%) inclosos en l'estudi COU-AA-302²⁸⁹. En aquest treball es van estudiar els diferents tipus de fusió d'ERG, mitjançant FISH, en mostres de teixit i es va veure com els que tenen un tipus 2+Edel es beneficiaven més de l'abiraterona (rPFS 22 vs. 5.4 mesos) que els que tenien altres tipus de fusions, com Edel o Esplit, o els que no en tenien.

També s'ha estudiat com influeix la presència d'aquest gen de fusió en relació a la sensibilitat a la quimioteràpia. En els estudis inicials es va veure com l'expressió estable de les formes III i VI de *TMPRSS2-ERG* en les línies cel·lulars PC-3 incrementava la sensibilitat a paclitaxel però, en la línia cel·lular DU-145 només la transfecció de la forma III sensibilitzava a aquest fàrmac²⁹⁰.

Més recentment, Galletti i col. han publicat que la sobreexpressió d'*ERG*, tant *in vitro* (DU-145 i VCaP) com *in vivo*, s'associa amb una menor sensibilitat als taxans. Mecanísticament, es descriu com ERG interacciona amb els dímers de tubulina i impedeix la polimerització dels microtúbuls, per tant dificultant l'acció tant de docetaxel com de cabazitaxel (Fig. 12). Aquests resultats preclínics els confirmen en una petita cohort de 34 pacients afectes de CPRC tractats amb docetaxel²⁹¹.

Figura 12. Mecanisme d'acció proposat per a explicar la resistència als taxans mitjançada per ERG en CP; extret de Galletti i col.²⁹¹.

D'altre banda, també s'ha utilitzat la detecció de *TMPRSS2-ERG* en la fracció de cèl·lules mononuclears de la sang perifèrica (PBMCs) com a marcador dinàmic de resposta al tractament sistèmic. En un treball es va veure que, en el 86% dels casos, el tractament amb docetaxel provocava una reducció en els nivells de detecció d'aquest gen en sang, així com dels nivells de *KLK3* i de *PCA3*²⁹².

Donada l'elevada freqüència de les alteracions d'*ERG* en CP i la seva rellevància en la patogènesis d'aquesta malaltia, s'estan de desenvolupant a nivell preclínic inhibidors específics d'aquest gen^{293,294}.

4.4. Altres mecanismes de resistència

4.4.1. Fenotip de resistència a múltiples fàrmacs

Un dels mecanismes clàssics de resistència a fàrmacs és la sobreexpressió de gens de resistència a múltiples fàrmacs (*MDR* o *ATP-binding cassette* [*ABC*] *transporter genes*). Aquests codifiquen proteïnes de membrana que actuen com a transportadors expulsant el fàrmac i, per tant, disminuint la seva concentració al interior de les cèl·lules tumorals²⁹⁵.

En el CP s'ha trobat sobreexpressió de diferents d'aquests gens, entre ells de *ABCB1* [*MDR1*]^{296–298}. S'ha descrit que la sobreexpressió d'aquest gen en CP genera resistència al docetaxel²⁹⁹ com així també la de *ABCB5*³⁰⁰ o *ABCC4*³⁰¹. Cal destacar que algunes variants al·lèliques del gen *ABCB1* s'associen a un pitjor pronòstic i major toxicitat neurològica i hematològica al docetaxel³⁰².

En base a aquests resultats, s'han estudiat els nivells de ABCB1 en exosomes i s'ha trobat que els pacients resistents al docetaxel tenien uns nivells més elevats respecte els pacients que no havien rebut el tractament³⁰³. En un altre estudi es van identificar tant ABCB1 com ABCB4 [MDR-3] sobreexpressats en exosomes de línies cel·lulars resistents a docetaxel i es van validar aquestes troballes en mostres d'exosomes de pacients³⁰⁴.

D'altre banda, la resistència al cabazitaxel no està mitjançada per *ABCC4* ja que la seva sobreexpressió no influeix en l'activitat del fàrmac³⁰¹. *ABCB1* sí que

influeix en la resistència a cabazitaxel encara que de forma menys important que per docetaxel^{247,303}. En part, es deu a una afinitat menor de ABCB1 pel cabazitaxel que pel docetaxel⁹³. Tot i això, s'ha vist que en línies cel·lulars resistents al docetaxel es genera resistència creuada a cabazitaxel a través de la sobreexpressió de *ABCB1*³⁰⁵.

4.4.2. Variants de splicing del AR

En el CP s'han descrit diverses variants de *splicing* del AR (AR-Vs) que estan implicades en el desenvolupament, la progressió metastàtica del CP i en la resistència a la castració. Aquestes són isoformes truncades del AR que no disposen del domini d'unió del lligand i, per tant, estan constitutivament activades³⁰⁶. En estudis preclínics s'ha vist que la ARv567 i la ARv7 s'associen de forma diferent amb els microtúbuls. La primera s'uneix als microtúbuls a través del domini frontissa mentre que la segona, que no disposa d'aquest domini, no s'hi uneix. D'acord amb aquests resultats, les línies cel·lulars que expressen ARv567 són sensibles a docetaxel, mentre que les que expressen ARv7 són resistents⁵⁴. En un altre treball aquests resultats no es van poder reproduir³⁰⁷.

Aquests resultats no s'han pogut reproduir a nivell clínic. Antonarakis i col. han analitzat la presència de la ARv7 en mostres de CTCs de pacients tractats amb taxans, tant docetaxel com cabazitaxel, i no han trobat cap correlació entre la presència d'aquesta variant i la resistència al tractament³⁰⁸. En la mateixa línia, Onstenk i col. ho han estudiat en una cohort de pacients tractats amb cabazitaxel i els resultats han sigut similars³⁰⁹. En un altre treball s'ha estudiat la presència proteica de ARv7, també en CTCs, i no s'ha trobat cap relació amb la resposta als taxans, però si que s'ha associat amb una pitjor supervivència global³¹⁰. A més a més, els mateixos autors han descrit que la presència de la ARv7 a nivell nuclear, que és on actua, tampoc s'associa amb la resistència als taxans i, en canvi, sí que s'associa amb la resistència a enzalutamida i abiraterona³¹¹. D'altre banda, en un estudi en que s'analitzen mostres seqüencials de sang també s'ha vist que els taxans, però no els nous antiandrògens, poden negativitzar l'expressió de la ARv7 en les CTCs³¹². Per tant, a nivell clínic no sembla que la ARv7 estigui relacionada amb la resistència al tractament amb taxans.

4.4.3. Factors de creixement i vies de senyalització intracel·lulars

GATA2 és un factor de transcripció que regula el desenvolupament i la diferenciació en organismes eucariotes. En el CP aquest factor de transcripció és pioner^{*} i necessari per a que el AR es pugui unir als amplificadors de diferents gens (p.ex.: *PSA*, *TMPRSS2*, etc)³¹³ i alhora participar en el manteniment de la senyalització a través de la via del AR en la malaltia resistent a castració³¹⁴. En línies cel·lulars resistents a docetaxel i en mostres de pacients que han rebut quimioteràpia, aquest factor de transcripció s'ha trobat sobreexpressat. A més a més, en estudis amb línies cel·lulars i amb xenografts s'ha descrit com la inhibició de *GATA2* restaura la sensibilitat als taxans. La resistència als taxans sembla que està mitjançada per IGF-2, que es regulat per GATA2, i aquest activa una xarxa de quinases entre les que destaquen AKT, JNK o ERK1/2, que conferiran la agressivitat i la resistència a la quimioteràpia³¹⁵.

Més recentment, s'ha descrit que diferents nucleoporines, entre les que destaca *POM121*, es troben sobreexpresades en el CP avançat respecte els tumors primaris. Aquestes proteïnes formen els complexes dels porus nuclears que regulen el transport entre el citoplasma i el nucli, així com la transcripció i la integritat del genoma. POM121 facilita la importació al nucli de diferents factors de transcripció, entre els que destaca AR, MYC o GATA2, i s'associa amb la resistència al docetaxel en línies cel·lulars i xenografts³¹⁶.

Les vies de Notch i Hedgehog també estan implicades en la resistència al docetaxel en CP^{315,317}. En estudis *in vitro* i en models *in vivo* s'ha identificat una subpoblació cel·lular que presenta pèrdua de marcadors de diferenciació epitelial (*CK18* i *CK19*), antígens específics de pròstata (PSMA i PSA) i molècules presentadores d'antigens (HLAI) però té un increment en l'expressió de diferents elements de les vies de senyalització de Notch (*NOTCH2*) i Hedgehog (*HES1*). Aquesta subpoblació cel·lular està involucrada en la resistència a la quimioteràpia però també té una elevada capacitat d'iniciar tumors. En mostres de pacients, tant de tumor primari com metastàtic, s'ha trobat aquesta

^{*} Un factor de transcripció pioner és un factor de transcripció que té la capacitat d'unir-se a la cromatina condensada i facilita el reclutament d'altres factors de transcripció.

subpoblació de cèl·lules HLAI⁻/CK⁻ i s'ha associat a un pitjor pronòstic. La inhibició de les vies de Notch i Hedgehog en aquestes cèl·lules reverteix la resistència al docetaxel i, per tant, és una estratègia terapèutica prometedora³¹⁷. A més a més, s'ha descobert que hi ha una relació entre la via de Notch i GATA2, sent NOTCH2 un regulador de l'expressió de GATA2 a través de l'activació de AKT³¹⁵.

La via de PI3K/AKT/mTOR també és rellevant en el CP. Entre el 30 i el 50% dels tumors tenen sobreexpressió de components d'aquesta via que condueixen a una senyalització aberrant³¹⁸. Aquesta via s'ha associat amb resistència a la quimioteràpia i a la radioteràpia¹⁹⁸.

En el CP és freqüent la pèrdua de funció de PTEN, que actua regulant negativament aquesta via, i condueix a l'activació constitutiva de AKT i mTOR³¹⁸. En mostres de pacients tractats amb docetaxel neoadjuvant es va trobar que la pèrdua de PTEN s'associava a una pitjor supervivència lliure de progressió³¹⁹.

La inhibició de mTOR mitjançant everolimus sensibilitzava les cèl·lules a docetaxel mentre que el tractament sol amb everolimus no aconseguia una mortalitat significativa³²⁰. Resultats similars es van observar amb un inhibidor dual de PI3K i mTOR³²¹.

4.4.4. Autofàgia

L'autofàgia és un procés catabòlic essencial i altament conservat evolutivament que permet mantenir la homeòstasi cel·lular a través de la generació de vesícules de doble membrana, els autofogosomes. Aquests segresten components intracel·lulars, com el citoplasma o els orgànuls, tant aquells que estiguin deteriorats com els que siguin aberrants, com així les toxines intracel·lulars. Aquestes vesícules són alliberades dins del lisosoma per a la seva descomposició i el reciclatge de les macromolècules resultants. Aquests procés està implicat en processos normals com el desenvolupament i el creixement cel·lular però també s'ha relacionat amb la resistència al tractament sistèmic³²². Els estudis inicials van aportar dades contradictòries sobre si els taxans podien induir o inhibir l'autofagia³²². Posteriorment, s'ha establert que l'efecte dels
taxans sobre l'autofàgia depèn del context (p.ex.: durada del tractament, hipòxia, etc)³²³.

En el model cel·lular hormonosensible LNCaP s'ha vist com el tractament amb bicalutamida indueix autofàgia i disminueix l'eficàcia del docetaxel, però quan s'inhibeix farmacològicament l'autofàgia es potencia l'acció del docetaxel³²⁴. En models resistents a castració, com les línies cel·lulars PC-3 i DU-145, la inhibició de l'autofàgia també incrementa l'acció del docetaxel³²⁵. Aquesta inhibició es pot aconseguir a través de la actuació sobre diferents molècules com mTOR³²⁵, STAT3³²⁶, LKB1/AMPK³²⁷ o TNFAIP8³²⁸ entre d'altres.

Addicionalment, l'autofàgia també s'ha relacionat amb la resistència a la supressió androgènica, a la radioteràpia i amb el desenvolupament de la resistència a la castració³²².

D'acord amb lo anteriorment exposat, hi ha múltiples mecanismes de resistència al docetaxel i sovint aquests es troben íntimament interrelacionats. A més a més, en alguns estudis hi ha una gran discordança entre les dades preclíniques i els resultats clínics, basant-se aquests últims, normalment, en cohorts de pacients retrospectives i amb un número limitat de pacients. Aquests factors han dificultat immensament el desenvolupament de biomarcadors i teràpies personalitzades en el CP.

5. Biòpsia líquida en CP

És àmpliament conegut que el CP és heterogeni ja que en un mateix pacient les diferents lesions metastàsiques i el tumor primari poden tenir alteracions genètiques i un comportament biològic diferent³²⁹. A mes a més, al llarg del temps i sota la pressió del tractament sistèmic la malaltia pot evolucionar de manera diferent³³⁰. Per tant, la biologia d'una única lesió cancerosa biopsiada pot no traduir correctament la biologia de la malaltia en el moment de requerir un tractament sistèmic³²⁹.

La biòpsia líquida és una eina que ens permetria superar les limitacions anteriorment esmentades. Aquesta tècnica consisteix en l'anàlisi de qualsevol material biològic (p.ex.: DNA, RNA, proteïnes, cèl·lules) en els fluids corporals, ja sigui en la sang però també en orina, líquid pleural o, fins i tot en líquid cefaloraquidi³³¹. A més a més, en el CP, pel propi patró de disseminació de la malaltia a nivell ossi i pel baix rendiment de les biòpsies òssies, encara resulta una tècnica més interessant d'aplicar³³².

5.1. Cèl·lules tumorals circulants (CTCs)

Les CTCs es desprenen del tumor primari o de les metàstasis i poden entrar al torrent circulatori, arribant a altres òrgans o localitzacions i implantar-se allà, donant lloc a noves lesions metastàsiques. Per tant, la detecció i caracterització molecular de les CTCs serà un subrogat de la biologia del tumor primari i de les metàstasis³³³.

El procés de colonització metastàsica és complex (Fig. 13). Aquest s'inicia amb la invasió i migració local de les cèl·lules tumorals fins que troben un vas sanguini i s'introdueixen en la circulació. En aquesta, les cèl·lules tumorals poden circular aïllades o formant grups de cèl·lules tumorals revestides per plaquetes. Un cop arriben les CTCs als capil·lars dels òrgans diana aquestes es poden extravasar i arribar al parènquima del òrgan. En aquest s'iniciarà la etapa final del procés colonització que podrà culminar amb la formació de metàstasis clínicament significatives o amb l'eliminació d'aquestes pel sistema immunològica del hoste.

67

Cal destacar que aquest és un procés altament ineficient i només una minoria de les CTCs acabarà generant metàstasis³³⁴.

Figura 13. Etapes de la colonització metastàsica. Extret de Massagué i col·l³³⁴.

En la última dècada, s'han desenvolupat múltiples tecnologies per a detectar i capturar les CTCs. Aquestes es poden basar en diferents propietats biofísiques de les cèl·lules (p.ex.: mida, deformabilitat, etc.) però també en mètodes de immunoafinitat³³⁵. Aquests últims utilitzen anticossos contra molècules expressades en la membrana cel·lular de les cèl·lules (p.ex.: EPCAM) i són els que han demostrat una major utilitat clínica³³⁶.

En el CP s'ha aplicat el mètode CellSearch[®] que es basa en la detecció de la molècula de membrana EPCAM. En diferents cohorts de pacients, afectes de diferents tipus de tumors, s'ha establert que els pacients amb \geq 5 CTCs per 7.5mL de sang tenen un pitjor pronòstic, mentre que el pronòstic dels que en tenen \leq 4 és millor³³⁷. A més a més, el recompte de CTCs considerat com una variable continua manté el seu poder pronòstic³³⁸. El canvi en el recompte d'aquestes cèl·lules al llarg del tractament també té implicació pronòstica, sent els pacients

que tenen un increment en el seu nombre els que tenen una pitjor supervivència³³⁸.

També s'ha vist com el canvi en el número de CTCs durant el tractament és més informatiu que la reducció en un 50% del PSA, i permet predir millor la supervivència^{339,340}. Aquests resultats han permès que el recompte de CTCs s'incorporés com a objectiu secundari en nombrosos assajos clínics fase II i III³³⁶. En tots ells, tot i els diferents tractaments utilitzats en els respectius assajos clínics, els pacients amb \geq 5 CTCs tenien una supervivència de 10.5 a 14 mesos mentre que els que en tenien \leq 4 la supervivència era de 21.7 a 27.2 mesos³³⁶. En diferents assajos clínics també s'ha establert que el recompte de CTCs a les 13 setmanes de tractament i la seva negativització són un bon subrogat de la supervivència global³⁴¹.

Aquesta tecnologia no només permet el recompte de les CTCs, sinó que també permet el seu aïllament, i així poder-les utilitzar per a realitzar estudis biològics. Els estudis moleculars realitzats en les CTCs es correlacionen amb les troballes en biòpsies de tumor, com a mínim pel que fa a l'amplificació del AR³⁴². En les CTCs s'ha estudiat el AR i les seves variants de splicing, tant a nivell de mRNA com a nivell proteic, i en aquest últim cas també la seva localització intracel·lular. La detecció d'aquests biomarcadors s'ha intentat correlacionar amb la resposta i/o resistència a diferents teràpies, com als taxans i als nous antiandrògens³³⁶.

5.2. Altres tipus de biòpsia líquida en CP

Una de les principals limitacions, en funció de la tecnologia utilitzada, en la detecció i aïllament de les CTCs és que les cèl·lules que estiguin patint un procés d'EMT poden perdre els marcadors epitelials, entre ells EPCAM, i no detectar-se com a cèl·lula tumoral circulant^{183,184}. Per aquest motiu els estudis en sang total o en la capa de PBMCs poden aportar més informació, tot i la contaminació inherent per cèl·lules hematològiques.

En sang total de pacients afectes de CPRC s'han desenvolupat diferents signatures gèniques pronòstiques que permeten estratificar els pacients en grups amb diferents supervivència^{343,344}. També s'ha estudiat l'expressió de ARv7 per

69

a predir la resistència als nous antiandrògens tot i que s'han obtingut resultats discordants^{345,346}.

Al realitzar un gradient de sang total amb el reactiu Ficoll, les CTCs es situen en la capa de PBMCs i aïllant aquesta capa s'obté una mostra més enriquida en CTCs respecte a la sang total. Aquesta estratègia s'ha utilitzat en altres tipus de tumors per a estudiar les CTCs³⁴⁷. En el CP també s'ha utilitzat el RNA provinent d'aquesta capa per a desenvolupar signatures pronòstiques^{348,349}.

Un altre dels camps que està en desenvolupament és l'estudi d'alteracions genètiques en el DNA lliure circulant³⁵⁰. Aquest es pot aïllar a partir del plasma o sèrum de mostres de sang. En el CP s'han estudiat diferents alteracions gèniques en DNA lliure circulant, com per exemple mutacions o amplificacions del AR, i s'han correlacionat amb la resposta als tractaments³⁵⁰.

En conclusió, la biòpsia líquida pot permetre, d'una manera poc invasiva, millorar el diagnòstic i establir el perfil molecular del CP, obviant la heterogeneïtat intrapacient. Aquest tipus de mostra també pot ser útil per a realitzar un seguiment *in vivo* dels canvis moleculars que pateix el tumor al llarg del temps i detectar de forma precoç l'aparició de mecanismes de resistència al tractament³³¹.

HIPÒTESIS I Objectius

Les hipòtesis plantejades són que el procés d'EMT està implicat en la resistència al docetaxel en models *in vitro* de CP, així com en pacients afectes de CP localitzat d'alt risc i s'associa a un major risc de recaiguda de la malaltia. D'altra banda, l'estudi de l'expressió gènica en sang perifèrica en pacients afectes de CPRC i metastàtic permet detectar alteracions associades al càncer sense necessitar una biòpsia de teixit tumoral i, en aquestes mostres, és possible identificar un perfil transcripcional associat a una evolució agressiva del càncer. Finalment, la detecció de l'alteració gènica *TMPRSS2-ERG* en sang perifèrica i/o en teixit prediu la resistència als taxans en pacients afectes de CPRC metastàtic.

Basant-nos en aquestes hipòtesis ens plantegem els següents objectius:

Objectiu general:

Estudiar els mecanismes de resistència al docetaxel en el CP i desenvolupar biomarcadors pronòstics i predictius de resistència.

Objectius específics:

- Analitzar un conjunt de gens relacionats amb la resistència al docetaxel en mostres de pacients afectes de CP localitzat d'alt risc inclosos en un assaig clínic de quimioteràpia i hormonoteràpia neoadjuvant i compararho amb mostres de pacients tractats amb cirurgia únicament.
- 2. Estudiar el paper del procés d'EMT i la seva relació amb la resistència al docetaxel en models *in vitro* de CPRC.
- Analitzar el perfil transcripcional en les PBMCs de pacients afectes de CPRC metastatic, i correlacionar-ho amb el recompte de CTCs i amb dades *in silico* de l'expressió gènica en tumors.
- 4. Desenvolupar una signatura pronòstica a partir de l'expressió gènica de la capa de PBMCs.

- Determinar la presència de *TMPRSS2-ERG* en mostres de sang perifèrica de controls sans i de pacients afectes de CPRC metastàtic, i en aquests últims correlacionar-ho amb la seva detecció en teixit tumoral.
- Analitzar el valor pronòstic i predictiu de resistència al tractament de la detecció de *TMPRSS2-ERG* en sang perifèrica de pacients afectes de CPRC metastàtic tractats amb docetaxel i/o amb cabazitaxel.
- Explorar el valor pronòstic i predictiu de resistència al docetaxel de la detecció de *TMPRSS2-ERG* en el teixit tumoral de pacients afectes de CPRC metastàtic.

MÈTODE I Resultats

En aquest apartat es descriuen els mètodes i resultats del projecte de tesis mitjançant la inclusió dels següents articles publicats:

- Epithelial-to-Mesenchymal Transition Mediates Docetaxel Resistance and High Risk of Relapse in Prostate Cancer.
 Marín-Aguilera M, Codony-Servat J, Reig Ò, Lozano JJ, Fernández PL, Pereira MV, Jiménez N, Donovan M, Puig P, Mengual L, Bermudo R, Font A, Gallardo E, Ribal MJ, Alcaraz A, Gascón P, Mellado B. Molecular Cancer Therapeutics 2014; 13(5): 1270–84.
 Factor d'impacte: 5,579
- 2. Molecular profiling of peripheral blood is associated with circulating tumor cells content and poor survival in metastatic castration-resistant prostate cancer.

Marín-Aguilera M, Reig Ò, Lozano JJ, Jiménez N, García-Recio S, Erill N, Gaba L, Tagliapietra A, Ortega V, Carrera G, Colomer A, Gascón P, Mellado B.

Oncotarget 2015; 6(12): 10604-16. Factor d'impacte: 5,008

 TMPRSS2-ERG in Blood and Docetaxel Resistance in Metastatic Castrationresistant Prostate Cancer.
Reig Ò, Marín-Aguilera M, Carrera G, Jiménez N, Paré L, García-Recio S, Gaba L, Pereira MV, Fernández P, Prat A, Mellado B.
European Urology 2016;70(5): 709-13. Factor d'impacte: 14,976

Primer Treball

Epithelial-to-Mesenchymal Transition Mediates Docetaxel Resistance and High Risk of Relapse in Prostate Cancer

El CP és el càncer més freqüent i el segon amb més mortalitat en els homes. En el CPRC metastàticel tractament quimioteràpic de primera línia és el docetaxel. Tot i que s'han trobat diferents mecanismes de resistència a aquest fàrmac (p.ex. expressió de isoformes de β -tubulina, activació de bombes d'expulsió de fàrmacs, pèrdua de *PTEN* o activació de diferents vies de senyalització com PI3K/AKT, MTOR, NF- κ B entre d'altres) actualment no es disposa de biomarcadors per a predir quins pacients es podrien beneficiar més d'aquest tractament.

En aquest treball s'ha estudiat l'expressió d'un conjunt de gens relacionats amb la resistència al docetaxel seleccionats a partir dels resultats d'un treball previ³⁵¹. En aquest treball previ es van utilitzar línies de CPRC, DU-145 i PC-3, i es va generar resistència al docetaxel mitjançant un tractament amb dosis creixents del fàrmac. En aquestes línies cel·lulars es va realitzar un estudi de tot el transcriptoma mitjançant microarrays de cDNA trobant-se més de 243 gens comuns entre els dos models cel·lulars implicats en la resistència al docetaxel.

Una selecció d'aquest conjunt de gens s'ha estudiat, en el present treball, en mostres de prostatectomia radical de pacients afectes de CP localitzat d'alt risc tant tractats amb supressió androgènica i docetaxel de forma neoadjuvant en el context d' un assaig clínic¹²³ com en pacients tractats únicament de forma quirúrgica. Posteriorment s'ha realitzat una validació per immunohistoquímica en aquestes mateixes mostres i estudis funcionals en línies cel·lulars de CP resistents a docetaxel.

79

Aquesta aproximació es basa en que el tumor residual després d'administrar un tractament sistèmic probablement estarà enriquit en cèl·lules tumorals resistents al tractament i el seu estudi, a nivell molecular, pot proporcionar informació rellevant sobre els mecanismes de resistència al tractament sistèmic.

Pacients i Mètode:

S'han analitzat les mostres de prostatectomia radical d'un total de 28 pacients afectes de CP localitzat d'alt risc tractats en un assaig clínic fase II de supressió androgènica i docetaxel neoadjuvant seguit de prostatectomia radical¹²³. Dels 57 pacients tractats en aquest assaig clínic, 29 no es van poder incloure en l'estudi molecular per diversos motius però principalment perquè no van consentir a realitzar l'estudi molecular. D'altre banda, com a grup control, es van incloure les mostres de prostatectomia radical de 36 pacients afectes de CP localitzat d'alt risc tractats de forma assistencial.

En aquestes mostres s'ha estudiat l'expressió d'un total de 93 gens potencialment implicats en la resistència al docetaxel seleccionats a partir d'un treball previ del grup³⁵¹. S'ha realitzat un anàlisis d'expressió diferencial entre els pacients que havien rebut tractament sistèmic previ i els controls. També s'ha correlacionat l'expressió d'aquests gens amb la supervivència lliure de progressió en un anàlisi univariat i multivariat, incloent en aquest últim les variables clíniques pronòstiques. A més a més, s'ha estudiat l'expressió d'una selecció de proteïnes per immunohistoquímica (VIM, RELA i AR) i per immunofluorescencia (CD44 i ZEB1).

També s'han estudiat diversos gens relacionats amb el procés d'EMT i amb propietats CSC en línies cel·lulars de CP resistents a docetaxel (DU-145R i PC-3R) i en les seves parentals sensibles (DU-145 i PC-3). Per a revertir el fenotip EMT i la resistència al docetaxel s'ha inhibit l'expressió de *ZEB1* mitjançant siRNA.

Resultats:

En aquest treball s'han inclòs un total de 64 pacients afectes CP localitzat d'alt risc 28 d'aquests tractats de forma neoadjuvant amb docetaxel i supressió androgènica i posteriorment amb prostatectomia radical, així com 36 pacients tractats només amb prostatectomia radical. Cal destacar que els pacients que van rebre tractament neoadjuvant tenien tendència a tenir un estadi clínic més avançat, una puntuació de Gleason en la biòpsia diagnòstica i uns nivells de PSA més alts. Aquest subgrup de pacients també van tenir una major incidència de recaigudes bioquímiques i clíniques, i aquestes van ser més precoces.

En l'estudi d'expressió diferencial entre les mostres de tumors tractats amb supressió androgènica i docetaxel previ a la cirurgia respecte als no tractats farmacològicament s'han identificat un total de 63 gens diferencialment expressats, incloent la sobreexpressió de gens de la via de NF- κ B (*NF-\kappaB1, REL* i *RELA*), AR i gens implicats en el procés d'EMT (*ZEB1, VIM, CDH2* i *TGFBR3*), i la infraexpressió de gens reguladors del fenotip EMT (*ST14*) o CSC (*ESRP1*), molècules d'adhesió (*EPCAM*) o el gen supressor de metàstasis (*NDRG1*). En l'anàlisi de supervivència s'ha trobat associació de diversos d'aquests gens amb la supervivència lliure de recaiguda bioquímica i/o radiològica (p.ex.: *AR, TGFBR3, ZEB1* o *VIM*), i alguns d'ells mantenien el valor pronòstic en l'anàlisi multivariat (p.ex.: *CLDN11, CDH1* o *CD24*).

També s'ha estudiat l'expressió de diferents proteïnes per immunohistoquímica i s'ha identificat com els tumors tractats tenien una elevada expressió de RELA i de AR a nivell citoplasmàtic, mentre que no s'han trobat diferències en la seva expressió nuclear ni en l'expressió de VIM. A més a més, una elevada expressió citoplasmàtica de AR i nuclear de RELA s'ha associat amb una pitjor supervivència lliure de recaiguda radiològica.

A més a més s'han realitzat estudis funcionals en línies cel·lulars de CP parentals i en les corresponents resistents a docetaxel. En els models resistents, tant a nivell proteic com de mRNA, s'ha observat la pèrdua de marcadors epitelials (CDH1) i un guany en marcadors mesenquimals (VIM i ZEB1) i CSC (CD44). En aquest mateix model s'ha trobat una població de cèl·lules que coexpressaven CD44 i ZEB1. Aquesta mateixa població s'ha trobat en els models parentals però amb una freqüència molt menor. Del model parental PC-3 s'ha aïllat una clona cèl·lules CD44⁺, mitjançant FACS, i s'ha confirmat que té una elevada expressió de VIM i ZEB1 i infraexpressió de CDH1, i també una major resistència al docetaxel respecte les línies parentals.

En experiments dosis – resposta s'ha vist com l'exposició a dosis creixents de docetaxel, depenent del model cel·lular utilitzat, provocà una sobreexpressió de *VIM*, *ZEB1*, *SNAL1*, *TWIST1* i *CD44*. Pel que fa *CDH1*, no s'han trobat diferències en la seva expressió independentment de les dosis del fàrmac utilitzades i del model cel·lular. D'altra banda l'expressió de *CD24* va resultar inconsistent donat que en funció del model utilitzat aquesta augmentava o reduïa.

Posteriorment, s'ha inhibit l'expressió de ZEB1 mitjançant siRNA. Al inhibir aquest gen s'ha observat com les cèl·lules tornaven a expressar marcadors epitelials (*CDH1*) i infraexpressaven els mesenquimals (*CD44*). Aquests canvis foren més pronunciats en les línies cel·lulars resistents a docetaxel que en les parentals. Al revertir el procés d'EMT, mitjançant la inhibició de *ZEB1*, les línies cel·lulars han presentat una major sensibilitat a docetaxel i més apoptosis respecte les no inhibides.

Finalment, s'ha analitzat l'expressió de ZEB1 i CD44 per immunofluorescència en les mostres dels pacients. En tots els casos s'ha trobat expressió de CD44 mentre que l'expressió de ZEB1 només s'ha trobat en el 46.7% i 31.8% dels controls i dels pacients tractats, respectivament. En 3 (13.6%) pacients dels que van rebre tractament neoadjuvant s'ha trobat coexpressió d'ambdues proteïnes, mentre que això no s'ha evidenciat en cap dels controls. La coexpressió de ZEB1 i CD44 s'ha associat amb una major agressivitat de la malaltia encara que en l'anàlisi de supervivència les diferencies no van ser estadísticament significatives.

Epithelial-to-Mesenchymal Transition Mediates Docetaxel Resistance and High Risk of Relapse in Prostate Cancer

Mercedes Marín-Aguilera¹, Jordi Codony-Servat¹, Òscar Reig¹, Juan José Lozano², Pedro Luis Fernández^{3,5}, María Verónica Pereira¹, Natalia Jiménez¹, Michael Donovan⁶, Pere Puig⁶, Lourdes Mengual⁴, Raquel Bermudo^{3,7}, Albert Font⁸, Enrique Gallardo⁹, María José Ribal⁴, Antonio Alcaraz^{3,4}, Pere Gascón^{1,3}, and Begoña Mellado^{1,3}

Abstract

Molecular characterization of radical prostatectomy specimens after systemic therapy may identify a gene expression profile for resistance to therapy. This study assessed tumor cells from patients with prostate cancer participating in a phase II neoadjuvant docetaxel and androgen deprivation trial to identify mediators of resistance. Transcriptional level of 93 genes from a docetaxel-resistant prostate cancer cell lines microarray study was analyzed by TaqMan low-density arrays in tumors from patients with high-risk localized prostate cancer (36 surgically treated, 28 with neoadjuvant docetaxel + androgen deprivation). Gene expression was compared between groups and correlated with clinical outcome. VIM, AR and RELA were validated by immunohistochemistry. CD44 and ZEB1 expression was tested by immunofluorescence in cells and tumor samples. Parental and docetaxel-resistant castration-resistant prostate cancer cell lines were tested for epithelial-to-mesenchymal transition (EMT) markers before and after docetaxel exposure. Reversion of EMT phenotype was investigated as a docetaxel resistance reversion strategy. Expression of 63 (67.7%) genes differed between groups (P < 0.05), including genes related to androgen receptor, NF- κ B transcription factor, and EMT. Increased expression of EMT markers correlated with radiologic relapse. Docetaxel-resistant cells had increased EMT and stem-like cell markers expression. ZEB1 siRNA transfection reverted docetaxel resistance and reduced CD44 expression in DU-145R and PC-3R. Before docetaxel exposure, a selected CD44⁺ subpopulation of PC-3 cells exhibited EMT phenotype and intrinsic docetaxel resistance; ZEB1/CD44⁺ subpopulations were found in tumor cell lines and primary tumors; this correlated with aggressive clinical behavior. This study identifies genes potentially related to chemotherapy resistance and supports evidence of the EMT role in docetaxel resistance and adverse clinical behavior in early prostate cancer. Mol Cancer Ther; 13(5); 1270-84. ©2014 AACR.

Introduction

Prostate cancer is the most common malignancy in the Western world and the second most common cause of

Authors' Affiliations: ¹Laboratory of Translational Oncology and Medical Oncology Department; ²Bioinformatics Platform Department, Centro de Investigación Biomédica en Red – Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic; ³Institut d'Investigacions Biomèdiques August Pii Sunyer (IDIBAPS); ⁴Laboratory and Department of Urology, Hospital Clínic, Barcelona; ⁵Department of Pathology, Hospital Clínic, Universitat de Barce-Iona; ⁶Althia; ⁷Tumor Bank, Hospital Clínic–IDIBAPS Biobank, Barcelona; ⁸Medical Oncology Department, Hospital Germans Trias i Pujol, Catalan Institute of Oncology, Badalona; and ⁹Medical Oncology Department, Hospital Pital Parc Tauli, Sabadell, Spain

Note: Supplementary data for this article are available at Molecular Cancer Therapeutics Online (http://mct.aacrjournals.org/).

M. Marín-Aguilera and J. Codony-Servat contributed equally to this work.

Corresponding Author: Begoña Mellado, Medical Oncology Department, Hospital Clínic de Barcelona, Villarroel 170, Barcelona, 08036, Spain. Phone: 34-93-227-5400, ext. 2262; Fax: 34-93-454-6520; E-mail: bmellado@clinic.ub.es

doi: 10.1158/1535-7163.MCT-13-0775

©2014 American Association for Cancer Research.

cancer-related mortality in men (1). Although most patients with metastatic prostate cancer respond to androgen deprivation therapy, virtually all of them eventually develop castration-resistant prostate cancer (CRPC). In 2004, the combination of docetaxel and prednisone was established as the new standard of care for patients with CRPC (2). More recently, two hormonal agents, abiraterone and enzalutamide, and a new taxane, cabazitaxel, have been approved for the treatment of CRPC (3–5). However, current therapies are not curative and research is needed to identify predictors of benefit and mechanisms of resistance for each agent.

To date, several factors have been associated with docetaxel resistance, including expression of isoforms of β -tubulin (6), activation of drug efflux pumps (7), *PTEN* loss (8), and expression and/or activation of survival factors (i.e., PI3K/AKT1 and MTOR; refs. 9, 10). Previous work by our group and others correlated the activation of NF- κ B/interleukin (IL)-6 pathways with docetaxel resistance in CRPC models and in patients (11–13). Other studies support a role of JUN/AP-1, SNAI1, and

NOTCH2/Hedgehog signaling pathways in the development of resistance to docetaxel or paclitaxel (14, 15). Moreover, it has been shown that the inhibition of androgen receptor (AR) nuclear translocation and AR activity may be an important mechanism of taxane action in prostate cancer (9).

In previous work, we identified 243 genes with differential expression in CRPC docetaxel-sensitive versus docetaxel-resistant cell lines (16). In the present study, 73 genes from that study together with 20 genes from the literature were tested in tumor specimens of patients with high-risk localized prostate cancer included in a clinical trial of neoadjuvant hormone chemotherapy (17), and compared with nontreated specimens with similar clinical characteristics. This approach was based on the notion that residual tumor cells in prostatectomy specimens after neoadjuvant systemic therapy are likely enriched for resistant tumor cells and their molecular characterization may provide important information on mechanisms of resistance (18). Our key findings were then tested in two models of docetaxel-resistant prostate cancer cell lines.

Patients and Methods

Patients and samples

The study included 28 patients with high-risk localized prostate cancer from a previously published, multicenter, phase II trial of neoadjuvant docetaxel plus androgen deprivation followed by radical prostatectomy (17) and 36 control patients with high-risk prostate cancer treated with radical prostatectomy without neoadjuvant treatment. Of the 57 participants in the clinical trial (17), 29 were not included in this study: 23 patients did not consent to participation in the molecular substudy and insufficient material for molecular analysis was available for 6 patients, 3 of whom had a pathologic complete response (pCR) and 3 had microscopic residual tumor (near pCR) in the prostate specimen.

Inclusion criteria were histologically confirmed adenocarcinoma of the prostate with any of the following three risk criteria: (i) clinical stage T3; (ii) clinical stage T1c or T2 with serum prostate-specific antigen (PSA) >20 ng/mL and/or Gleason score sum of 8, 9, or 10; or (iii) a Gleason sum of 7 with a predominant form of 4 (i.e., Gleason score 4 + 3). Clinical characteristics are shown in Table 1.

Treatment consisted of three cycles every 28 days of docetaxel $36 \text{ mg}/\text{m}^2$ on days 1, 8, and 15 concomitant with complete androgen blockade, followed by radical prostatectomy. Patients were followed from the time of study inclusion until death or last visit. Median follow-up time was 82 months (range, 10–135). PSA relapse was defined as two consecutive values of 0.2 ng/mL or greater (19). Radiologic progression was defined as the progression in soft tissue lesions measured by computed tomography or MRI, or by progression to bone (20).

The study was approved by the Institutional Ethics Committee of each participating hospital and written informed consent was obtained from all participants. Formalin-fixed paraffin-embedded (FFPE) specimens were collected after radical prostatectomy. A representative tumor area was selected for each block and, according to its size, between 2 and 12 sections were cut, 10-µmthick, and used for RNA isolation. Hematoxylin and eosin (H&E)–stained sections from tumors and adjacent tissues were prepared to confirm the histologic diagnosis.

RNA extraction

Total RNA was isolated from tumor specimens using the RecoverAll Total Nucleic Acid Isolation Kit (Life Technologies) according to the manufacturer's protocol. Total RNA was quantified with a spectrophotometer (NanoDrop Technologies).

Gene selection

In total, 93 target genes that could potentially be related to docetaxel resistance and two endogenous control genes (*ACTB* and *GUSB*) were selected for further analysis in tumors. A set of 73 target genes was selected for their relative expression in docetaxel-resistant cells (DU-145R and PC-3R) versus parental cells (DU-145 and PC-3; ref. 16) using DAVID (21) and Ingenuity Pathway Analysis software (http://www.ingenuity.com). Twenty genes highlighted in the literature as potential targets of docetaxel resistance were also selected.

Reverse transcription and preamplification

A High-Capacity cDNA Reverse Transcription Kit (Life Technologies) was used to reverse transcribe 1 μ g of total RNA in a 50 μ L reaction volume. cDNA preamplification was performed by multiplex PCR with the 93 selected genes (Supplementary Table S1) and the stem-like cell markers *CD24* and *CD44*, following the manufacturer's instructions for the TaqMan PreAmp Master Mix Kit (Life Technologies), except that final volume of the reaction was 25 μ L.

Gene expression analysis in FFPE samples

Preamplified cDNA was used for gene expression analysis using 384-Well Microfluidic Cards (Life Technologies). Preamplified samples were diluted 1:20 in TE 1X buffer before use. Each card was configured into four identical 96-gene sets (95 selected genes plus an endogenous control gene, *RNA18S*, by default). The reaction was carried out following the manufacturer's instructions on an ABI 7900HT instrument (Life Technologies). Array cards were analyzed with RQ Manager Software for manual data analysis.

Gene expression of *CD24* and *CD44* markers was studied by amplifying with TaqMan Gene Expression Master Mix in a StepOnePlus Real-Time PCR system (Life Technologies), according to the manufacturer's recommendations.

Relative gene expression values were calculated on the basis of the quantification cycle values obtained with SDS 2.4 software (Life Technologies). Expression values were relative to the *GUSB* endogenous gene. Samples from

	All	Neoadjuvant treatment	Control
Total number	64	28	36
Median age, y	64 (range, 46–74)	64 (range, 48–70)	64.5 (range, 46–74)
Clinical Stage			
T1	19 (29.7%)	4 (14.3%)	15 (41.7%)
T2	33 (51.6%)	14 (50%)	18 (50%)
Т3	12 (18.8%)	10 (35.7%)	3 (8.3%)
Pathologic stage			
то	1 (1.6%)	1 (3.6%)	0
T1	1 (1.6%)	1 (3.6%)	0
T2	26 (40.6%)	13 (46.4%)	13 (36.1%)
ТЗ	36 (56.3%)	13 (46.4%)	23 (63.9%)
Gleason score (biopsy)			
<6	10 (15.6%)	2 (7.1%)	8 (22,2%)
$\frac{1}{7}(3+4)$	22 (34.4%)	7 (25%)	15 (41.7%)
7(4+3)	16 (25%)	8 (28.6%)	8 (22.2%)
$7 (N/A^{a})$	_	_	1 (2.8%)
8	11 (17.2%)	8 (28.6%)	3 (8.3%)
9	4 (6.3%)	3 (10.7%)	1 (2.8%)
Gleason score (prostatectomy)			()
N/A ^b	18 (28.3%)	18 (64.3%)	0
<6	7 (15.2%)	7 (25%)	0
7(3+4)	13 (20.3%)	1 (3.6%)	12 (33.3%)
7(4+3)	17 (26.6%)	_	17 (47.2%)
8	2 (4.3%)	0	2 (5.6%)
9	7 (15.2%)	2 (7.1%)	5 (13.9%)
Median PSA (ng/mL)	8.7 (range, 2.01–41)	12.2 (range, 4.7–41)	8.2 (range, 2.01–19.2
PSA (ng/mL)	0.1. (.a	·=== (012 (.0.1.90, 2101 101
<20	56 (87.5)	20 (71.4%)	36 (100%)
>20	8 (12.5%)	8 (28.6%)	0 (0%)
Postoperative radiotherapy		- ()	
No	35 (58.3%)	13 (54,2%)	22 (61.1%)
Yes	24 (40%)	10 (41.7%)	14 (38.9%)
N/A ^a	1 (1.7%)	1 (4.2%)	0 (0%)
Biochemical relapse		(,.)	
No	30 (46,9%)	11 (39.3%)	19 (52.8%)
Yes	34 (53.1%)	17 (60.7%)	17 (47.2%)
Median biochemical relapse-free survival (mo)	31.7 (range, 4–81)	29.3 (range, 4–59)	34.1 (range, 8–81)
Clinical relapse			(
No	58 (90.6%)	22 (78.6%)	36 (100%)
Yes	6 (9.4%)	6 (21 4%)	0 (0%)
Median clinical relapse-free survival (mo)	51 2 (range 31-84)	51 2 (range 31-84)	_
Follow-up (mo)	82 (range, 10-135)	91 (range 81_96)	69 (range 10-135)

^aMissing information.

^bIn some cases Gleason score could not be assessed because of tissue changes related to neoadjuvant treatment.

patients who did not receive neoadjuvant treatment were used for calibration.

Cell culture conditions

The CRPC cell lines DU-145 and PC-3 were purchased from the American Type Culture Collection in October 2009. The docetaxel-resistant cell lines DU-145R and

PC-3R were developed and maintained as previously described (12). No further authentication of the cell lines was done by the authors.

Cell proliferation assays

Cell viability in response to docetaxel was assessed by an MTT assay with the CellTiter 96 Aqueous Proliferation Assay Kit (Promega) and by the trypan blue exclusion method using a Neubauer hemocytometer chamber.

Western blot analysis

Whole-cell extracts were prepared and Western blot analysis performed as described previously (22). Antibodies used were anti-PARP. Antibody was purchased from Roche (ref. 11835238001); β -catenin (6B3; CTNNB1) antibody (ref. 9582), CD44 (156-3C11) Mouse mAb (monoclonal antibody; ref. 3570), E-cadherin (CDH1) antibody (ref. 4065), Snail (C15D3) Rabbit mAb (ref. 3879), TCF8/ZEB1 (D80D3) Rabbit mAb (ref. 3396), and Vimentin (R28; VIM) antibody (ref. 3932) were purchased from Cell Signaling Technology. Monoclonal anti– α -tubulin clone B-5-1-2 (ref. T5168) was purchased from Sigma-Aldrich.

Real-time qRT-PCR in cell lines

Total RNA was isolated from cell lines using the RNeasy Micro Kit (Qiagen), and quantified with a spectrophotometer (Nanodrop Technologies). cDNA was generated from 1 μ g of total RNA using the High Capacity cDNA Archive Kit (Life Technologies), following the manufacturer's instructions. Real-time quantitative reverse transcription PCR (qRT-PCR) was carried out in a StepOnePlus Real-Time PCR system (Life Technologies) according to the manufacturer's recommendations. Data were acquired using SDS Software 1.4. Amplification reactions were performed in duplicate. Expression values were relative to the *ACTB* endogenous gene. Target genes were amplified using commercial primers and probes (Life Technologies; Supplementary Table S1).

Immunohistochemistry

Tissue sections were deparaffinized in xylene and rehydrated in graded alcohols. For AR and VIM staining, the sections were placed in a 97°C solution of 0.01 mol/L EDTA (pH 9.0) for antigen retrieval. Primary mouse mononuclear antibody for AR (DAKO; Agilent Technologies) was applied for 20 minutes at room temperature at dilution 1:150. FLEX Monoclonal Mouse anti-VIM, Clon V9 (DAKO) was used for VIM staining. Detection was accomplished with the DAKO Envision System followed by diaminobenzidine enhancement. For RELA, the sections were placed in a 97°C solution of 0.01 mol/L sodium citrate (pH 6.0) for antigen retrieval. Then, samples were incubated with a rabbit polyclonal antibody (Santa Cruz Biotechnology, Inc.) at dilution 1:400. Detection was performed with Bond Polymer Refine Detection (DAKO; Agilent Technologies) for the automated Bond system.

AR and RELA were evaluated throughout the semiquantitative method histologic score (H-score), which measures both the intensity and proportion of staining. The H-score for each sample was calculated by multiplying the percentage of stained tumor cells by the intensity (0, nonstained; 1, weak; 2, moderate; 3, strong). VIM was evaluated in the same way but scoring the percentage of staining on a scale of 0 to 4 (0, 0; 1, <1%; 2, 1%–9%; 3, 10%– 50%; 4, >50%). Nuclear and cytoplasmatic stains were scored separately for AR and RELA proteins. The assessment of all samples was done by a senior pathologist (P.L. Fernández) who was blinded to all clinical information.

Immunofluorescence staining in cell lines and tumor samples

Cell pellets were collected in a 1% agarose solution, fixed in 4% PBS-buffered formaldehyde, and then FFPE. Sections of 5 μ m were analyzed with a multiplex immunofluorescent assay. They were stained with H&E for histopathologic assessment and stained using immunofluorescence with Alexa fluorochrome–labeled antibodies. Briefly, both control and resistant prostate cancer cell lines were evaluated with a series of simplex and duplex immunofluorescence assays to quantify the level of selected antibody–antigen complexes from specific regions of interest (ROI).

The FFPE prostate tissue sections also were assessed by immunofluorescence using a single multiplex assay with two differentially labeled antibodies (ZEB1 and CD44). For all specimens the H&E images were used to guide and register immunofluorescence image capture with a maximum of four ROIs per cell pellet and six per tissue section. Alexa fluorochrome dyes were Vimentin (ref. MO725; Dako), CD44 (ref. 156-3C11; Cell Signaling Technology), ZEB1 (ref. sc-25388; Santa Cruz Biotechnology). The ROIs were acquired from the cells and tumor tissue sections, blinded to outcome, with a CRI Nuance imaging system, and then analyzed with fluorescent image analysis software to derive quantitative features from cellular/tissue compartments. Quantitative assessment was performed using a pixel-area function, normalized to the ROI under investigation.

siRNA transfection

Dharmacon SMART pool control and ZEB1 siRNA were used with lipofectamine according to the manufacturer's protocol (Thermo Scientific) to inhibit ZEB1 in DU-145/R cells. Commercial Silencer Select siRNA of ZEB1 (s229971; Life Technologies) was transfected to PC-3/R cell lines. Cells were incubated with the siRNA complex for 24 hours, treated with docetaxel, then harvested to study protein expression changes of ZEB1 and CDH1 by Western blot analysis. Apoptosis was studied at 24 and 48 hours by PARP analysis (Western blot analysis), and cell viability was measured by MTT at 72 hours as described before.

Fluorescence-activated cell sorting

For flow cytometry, cells were dissociated with Accutase (Invitrogen) and washed twice in a serum-free medium. Cells were stained live in the staining solution containing bovine serum albumin and fluorescein isothiocyanate-conjugated monoclonal anti-CD44 (15 min at 4°C). A minimum of 500,000 viable cells per sample were analyzed on a cytometer. For fluorescence-activated cell sorting (FACS), $2 \text{ to } 5 \times 10^7$ cells were similarly stained for CD44 and used to sort out CD44⁺ and CD44⁻ cells. For the positive

	Ċ		Multivariate ^a	0000	C		Multivariate ^a	0000	Ċ		Multivariate ^a
Differentially even								della		LIQUESSION	
	υ σοοσα η Λ 1Ω	LOF O			0 16			NEKR1	1 76	PDEC	
	+ + + + +				01.0				0		
VERFINES	4.43	I		CUHZ	C4.7	I		AH	1./3	LT-D	
CST6	4.19	I		LTB	2.40	I		PTPRM	1.71	I	
CLDN11	3.69	rPFS, bPFS	3.056	TIMP2	2.38	rPFS		REL	1.68	bPFS	
			(1.169–7.988) rPFS								
GPR87	3.65	bPFS		ID2	2.38	I		KLF9	1.50	rPFS	
AREG	3.42	I		EFEMP1	2.35	rPFS		BRCA1	1.47	I	
SCD5	3.32	rPFS		FRMD3	2.32	I		SMAD4	1.36	bPFS	0.163
	0										(0.058-0.457)
I MEM45A	3.30	NHES		HIRAT	2.31			FRIND4A	1.5.1	I	
MAP7D3	3.23	I		LAMC2	2.22	bPFS	0.131	GSP12	1.29	I	
	00 C	S L L L		01010	7 F C	יסבט אסבט	(0.027–0.634) 2 666	EN1			
	04.0	2				0,0	(1.088–5.999)		04	I	
							rPFS				
BCL2A1	3.09	I		ZEB1	2.16	rPFS		GOSR2	1.16	I	
PLSCR4	3.01	rPFS		IF116	2.15	I		NDRG1	-1.27	I	
SCARA3	3.01	Ι		EGFR	2.11	Ι		BTBD11	-1.41	bPFS	0.321
											(0.143-0.720)
ITGB2	2.92	I		SAMD9	2.09	Ι		CCNB1	-1.41	I	
SAMD12	2.80	rPFS, bPFS		FBN1	2.03	I		ESRP1	-1.46	Ι	
S100A4	2.80	rPFS		FAS	1.91	Ι		FBP1	-1.53	Ι	
G0S2	2.79	Ι		TACSTD2	1.83	I		EPCAM	-1.73	Ι	
SLCO4A1	2.75	rPFS		RELA	1.81	rPFS		AIM1	-1.98	I	
SNAI1	2.71	Ι		TXNIP	1.77	rPFS		FLJ27352	-2.09	rPFS, bPFS	0.257
											(0.113–0.584) rPFS
971	2.64	rPFS	0.112	KLHL24	1.77	rPFS		ST14	-2.19	rPFS)
			(0.015–0.856) rPFS								
LOC401093	2.49	I		EML1	1.76	rPFS		C1orf116	-6.08	rPFS	

Table 2. ∿	Aultivariat	e analysis of g	ene expressior	ר and patient	outcol	mes (Cont'd)					
Gene	S	Progression	Multivariate ^a HR (95% CI)	Gene	5 5	Progression	Multivariate ^a HR (95% CI)	Gene	FC	Progression	Multivariate ^a HR (95% CI)
Nondifferenti CBLB	ally express ns	sed genes bPFS	0.315	CSCR7	SL	bPFS	0.241	RAB40B	su	bPFS	0.314
CCPG1	ns	bPFS	(0.143–0.695) 0.263	EPS8L1	SU	bPFS	(0.077–0.755)	SCEL	ns	rPFS	(0.134–0.739)
CDH1	SU	bPFS	(0.118–0.585) 0.446	IGF1R	SU	bPFS		SERPINA1	SU	rPFS	0.032
CDK19	SU	rPFS	(0.217–0.917)	LOC401093	SU	rPFS		TP53INPL	SU	rPFS	(0.002-0.632)
CLDN7	SU	rPFS	0.054 (0.004–0.699)	MALAT1	SU	rPFS, bPFS	0.361 (0.141–0.921)				
							rPFS				
NOTE: False Abbreviation: ^a Significant (discovery r s: bPFS, bic Cox regress	ate for differentiall ochemical progress ion analysis; HR (9	y expressed genes sion-free survival; 1 35% confidence int	s was <0.074 in FC, fold change; terval, Cl); <i>P</i> < 0.	all cases rPFS, ri 05.	adiologic progres	sion-free survival.				

population, only the top 10% mostly brightly stained cells were selected. The CD44⁺ cells selected were cultured as an individual clone in 96-well plates and expanded.

Statistical analysis

TaqMan low-density arrays (TLDA) gene expression data were evaluated by the Wilcoxon rank-sum test and receiver operating characteristic (ROC) analysis. Time to PSA progression and radiologic progression were calculated from the time of prostate cancer diagnosis until PSA or radiologic progression, respectively. The log-rank test was used in univariate survival analyses. Multivariate analysis of gene expression was evaluated by Cox proportional hazards regression, including stage, Gleason, PSA, and neoadjuvant treatment as clinical covariates; backward stepwise likelihood was used for selection. Real-time qRT-PCR experimental data were expressed as mean \pm SEM and were analyzed by the Student *t* test. All the statistical tests were conducted at the two-sided 0.05 level of significance.

Results

Differential gene expression between treated and nontreated tumors

Among the 93 genes analyzed (Supplementary Table S1), we observed differential expression (P < 0.05) in 63 (67.7%) genes (Table 2); 53 genes were overexpressed and 10 underexpressed in tumor specimens from patients treated with neoadjuvant docetaxel plus androgen deprivation. Genes of the NF- κ B pathway (such as *NFKB1, REL,* and *RELA*), AR, and epithelial-to-mesenchymal transition (EMT)–related genes (such as *ZEB1, VIM, CDH2,* and *TGFBR3*) were overexpressed in treated tumors. Among the downregulated genes in treated tumors, were the metastasis-suppressor gene *NDRG1* (23) and the adhesion molecule *EPCAM,* a regulator of the alternative splicing of *CD44* (*ESRP1;* ref. 24) and *ST14* (a negative regulator of the EMT mediator *ZEB1;* Table 2; Fig. 1A; ref. 25).

Gene expression and clinical outcome

We tested the possible prognostic impact of the 93 genes studied by TLDAs (Supplementary Table S1). Individually, the expression of several genes was related to time-to-PSA and/or clinical relapse (Table 2). Time to radiologic progression and PSA progression curves are shown in Fig. 1B and C and Supplementary Figs. S1 and S2. Of note, the overexpression of *AR*, and the EMT-related genes *TGFBR3*, *ZEB1*, and *VIM* was correlated with a shorter time of radiologic progression (Fig. 1B).

We then performed a multivariate analysis, including the genes with individual prognostic value, clinical prognostic factors (PSA, Gleason, and clinical stage), and neoadjuvant treatment. Results are shown in Table 2A and B. In the multivariate analysis, the reduced expression of *CLDN7* was an adverse-independent prognostic factor for clinical relapse. Loss of *CLDN7* has been correlated with adverse prognostic variables in prostate cancer and

with EMT (26). Of note, the low expression of *CDH1* was an independent prognostic factor for time to PSA relapse.

We also analyzed the prognostic impact of the stem-like cell markers *CD24* and *CD44*, which were underexpressed and overexpressed, respectively, in treated tumors (FC CD24: 0.59, P = 0.07; FC CD44: 1.63, P < 0.000; Supplementary Table S1 and Supplementary Figs. S1 and S2). Of note, low expression of CD24 was correlated with shorter time of biochemical progression (Fig. 1C).

Immunohistochemistry in treated versus nontreated tumors

We explored the expression of VIM and both cytoplasmatic and nuclear RELA and AR in tumor samples from neoadjuvant-treated and -nontreated patients. Staining of cytoplasmatic RELA was significatively higher in the treated versus nontreated patients [immunohistochemistry (IHC) score 181.9 vs. 148.3, respectively; Fig. 1D and F]. Moreover, nuclear RELA was significantly related to worse clinical relapse (Fig. 1E). Vimentin expression was nonsignificantly higher in treated tumors (IHC score 2 vs. 1, respectively; Fig. 1D). No differences were found in the expression of nuclear AR; however, cytoplasmatic AR expression was significantly higher in the treated tumors (IHC score 102.5 vs. 14.5) and correlated with radiologic progression survival (Fig. 1D–F).

Docetaxel-resistant prostate cancer cells express EMT and stem-like cell markers

On the basis of the results described above, we studied the link between EMT and docetaxel resistance in four prostate cancer cell lines models (parental DU-145 and PC-3R cells, and their docetaxel-resistant partners DU-145R and PC-3R, respectively). As shown in Fig. 2A and B, the docetaxel-resistant cells phenotype was consistent with EMT, i.e., decreased expression of epithelial markers (CDH1 and CTNNB1) and increased expression of mesenchymal markers (VIM and ZEB1) at the protein level. Consistent results were found at mRNA level, except for CTNNB1 (data not shown).

Recent studies have shown that cells with EMT phenotype share characteristics of stem-like cancer cells (14, 27). For that reason, we tested the expression of stem-like cell markers and showed that docetaxel-resistant cells, both DU-145R and PC-3R, exhibit transcriptional features of cancer-stem cells, such as increased expression of *CD44* and the loss of *CD24* (Fig. 2C). Moreover, in cell lines, we detected by immunofluorescence analysis a subset of cells coexpressing *CD44* and ZEB1. Scattered cells with these features were detectable in the parental cell lines; however, this population was highly enriched in the resistant cells (Fig. 2D). By FACS, we then isolated from the parental PC-3 cells a subpopulation of cells with high expression of CD44. We selected a derived CD44⁺/PC-3 clone that showed an increased expression of *VIM* and *ZEB1* and decreased *CDH1* expression (Fig. 2E). This clone from the parental cells was significantly more resistant to docetaxel than the parental cell line, PC-3 (Fig. 2F).

Dose–response experiments in both parental and resistant cells showed that docetaxel exposure significantly increased the expression of *VIM* in PC-3 and PC-3R cells, of *ZEB1* in PC-3 cells, and of *SNAI1* in DU-145, PC-3 and PC-3R cells. *TWIST1* expression increased in all cell lines after docetaxel treatment. In contrast, no significant differences were observed in the expression of *SNAI2* and *CDH1* with docetaxel exposure (Fig. 3A). About stem-like cell markers, inconsistent results were obtained for *CD24* expression after docetaxel exposure because CD24 expression increased in PC-3 cells but decrease in DU-145 cells. In contrast, CD44 significantly increased in PC-3 cells with docetaxel treatment (Fig. 3B).

EMT mediates docetaxel resistance in prostate cancer cells

To test whether inhibition of EMT could revert docetaxel resistance, we downmodulated the expression of ZEB1, a key inducer of EMT. siRNA ZEB1 transfected DU-145R and PC-3R cells had an increased expression of CDH1 (Fig. 4A) and decreased CD44 (Fig. 4B), confirming the link between EMT and stem-like cell phenotype. Moreover, siRNA ZEB1 transfected cells showed significantly increased sensitivity to docetaxel compared with control cells (P < 0.05; Fig. 4B and C). The magnitude of the reversion of chemoresistance was more pronounced in DU-145R and PC-3R cells than in the parental cells. Docetaxel-induced apoptosis was more pronounced in the ZEB1–siRNA transfected cells (Fig. 4B).

ZEB1/CD44 expression in tumor samples

On the basis of preclinical findings, we decided to investigate whether CD44⁺/ZEB1⁺ cells were present in primary prostate cancer specimens. Twenty-two FFPE tumors from patients with high-risk prostate cancer

Figure 1. The gene expression profile and related outcome of patients treated with neoadjuvancy versus nontreated patients. A, heatmap of differentially expressed genes in tumor samples from neoadjuvant-treated patients, compared with those without treatment (P < 0.05). Rows, genes; columns, samples. Red pixels, upregulated genes; green pixels, downregulated genes. B, radiologic progression-free survival analysis of patients according to gene expression of *AR* and the EMT-related markers *TGFBR3*, *ZEB1*, and *VIM*. High and low expression was established according to receiver operating characteristic (ROC) curve analysis. The log-rank test was used to assess the statistical difference between the two groups (P < 0.05). C, Kaplan–Meier curve representing biochemical progression-free survival analysis of patients according to gene expression was established according to ROC curve analysis. The log-rank test was used to assess the statistical difference between the two groups (P < 0.05). D, IHC of VIM and nuclear and cytoplasmatic RELA and AR. Box plot, IHC scores for each protein. *, P < 0.05. E, Kaplan–Meier graphs representing radiologic progression-free survival analysis of patients according to cytoplasmatic AR and RELA nuclear staining by IHC. The log-rank test was used to assess the statistical difference between the two groups (P < 0.05). E, Kaplan–Meier graphs representing radiologic progression-free survival analysis of patients according to cytoplasmatic AR and RELA nuclear staining by IHC. The log-rank test was used to assess the statistical difference between the two groups (P < 0.05). F, images show representative immunohistochemical staining for nuclear RELA and cytoplasmatic AR protein in prostate cancer tumors. Magnifications illustrate high and low staining of cells.

Figure 2. EMT and stem cell markers in parental and docetaxelresistant cell lines. A. Western blot analysis in DU-145, DU-145R, PC-3, and PC-3R cell lines of epithelial markers (CDH1 and CTNNB1) and mesenchymal markers (VIM and ZEB1). Tubulin was used as a load control. B, gene expression of EMT markers by qRT-PCR in DU-145, DU-145R, PC-3, and PC-3R cell lines. Data shown are the mean + SEM of cell lines from triplicate experiments (*, P < 0.05; **, P<0.001). C, gene expression of stem cell markers by qRT-PCR in DU-145, DU-145R, PC-3, and PC-3R cell lines. Data, mean \pm SEM of cell lines from triplicate experiments (**, P < 0.001). D, confocal immunofluorescence of CD44 (red) and ZEB1 (green) in DU-145, DU-145R, PC-3, and PC-3R lines, Colocalization of ZEB1 and CD44 results are in yellow. Nuclei are stained with 4',6diamidino-2-phenylindole (blue). E, Western blot analysis in parental PC-3 and a subpopulation of parental PC-3 cells (clone) sorted by CD44 marker. Tubulin was used as a load control. F, viability assay of PC-3 and PC-3 clone under docetaxel treatment performed by the Tripan blue method (*, P < 0.05).

treated with docetaxel and androgen suppression and 15 control patients with sufficient remaining material were available for immunofluorescence studies. All samples were positive for CD44 staining but only 7 of 15 controls (46.7%) and 7 of 22 treated patients (31.8%) had a ZEB1 signal. Overall, there were no differences between the control and treated groups in the expression of ZEB1 (0.0059 vs. 0.013 mean intensity, respectively) or CD44 (1.27 vs. 1.01 mean intensity, respectively). Tumor cells that coexpressed ZEB1 and CD44⁺ were observed in 3 (13.6%) of the 22 patients in the neoadjuvant group. However, none of the control patients presented with coexpression of both markers (Fig. 4D). Notably, ZEB1/CD44 coexpression was associated with aggressive clinical behavior: At the time of outcome analysis, all patients

had relapsed, 2 had developed liver metastasis, and 1 had died due to disease progression (Fig. 4E).

Discussion

In this study, we confirm that some of the molecular alterations associated with docetaxel resistance in a previously described *in vitro* model of CRPC cell lines are present in residual cells of prostatectomy specimens treated with neoadjuvant docetaxel plus androgen deprivation. Our findings may be especially relevant in clinical practice because most patients receive androgen deprivation prior and concomitantly to the administration of docetaxel. The observed deregulated pathways may translate common mechanisms of resistance to both therapies.

Figure 3. Effect of docetaxel exposure on EMT and stem-like gene expression markers in prostate cancer cell lines. A, EMT markers gene expression in a docetaxel dose–response manner. B, stem-like cell markers gene expression in a docetaxel dose–response manner. Geometrical symbols represent significant differences in the corresponding cell line; data from DU-145 0 nmol/L were considered the reference for all the other measures (i.e., fold change, 1).

Different neoadjuvant studies have been designed to identify pathways involved in resistance to androgen deprivation or chemotherapy in prostate cancer. In one study of neoadjuvant androgen deprivation, the authors observed that many androgen-responsive genes, including AR and PSA, were not suppressed; this suggests that suboptimal suppression of tumoral androgen activity may lead to adaptive cellular changes to allow prostate cancer cells survival in a low-androgen environment (28). Another group analyzed prostate tumors removed by radical prostatectomy after 3 months of androgen deprivation. Gene expression analysis revealed that PSA and other androgen-responsive genes were overexpressed in tumors from patients who relapsed (29). Our data are in concordance with these reports. We observed that the expression of AR and several AR-regulated genes (i.e., ZEB1, IL6, TGFBR3, KLF9) increased in treated tumors, even though serum PSA levels decreased under therapy in most cases, as we previously reported (17). Moreover, high levels of AR correlated with high risk of clinical relapse. These data suggest that persistence of AR signaling may be related to treatment resistance and/or to eventual disease progression.

We observed no differences in AR nuclear staining between treated and nontreated samples. However, cytoplasmatic expression was significantly higher in residual tumor cells after androgen deprivation and docetaxel exposure. Prior reports have shown that taxanes inhibit AR nuclear translocation and that patients treated with taxanes may have lower nuclear expression than treatment-naïve patients (30). This was not observed in our study, likely because our patients were treated with combined therapy. Prior studies have shown that androgen deprivation increased full-length AR protein levels in CRPC cells, but decreased its nuclear localization (31).

Other studies have used a similar approach in patients treated with neoadjuvant chemotherapy alone (32, 33). One group performed microarray analysis of tumor specimens from 31 patients treated with docetaxel plus mitoxantrone (33). The comparison of pre- and posttreatment samples showed increased expression of cytokines regulated by the NF-κB pathway. These data are in concordance with our

results showing an increased expression in treated tumors of NF- κ B subunits and NF- κ B–regulated cytokines, such as IL-6, adding support to a body of evidence on the involvement of this pathway in resistance to chemotherapy in prostate cancer (11). On the other hand, NF- κ B activation may induce EMT in prostate cancer (34). Although our study did not investigate the potential causal relationship between NF- κ B activation and EMT, this last phenomenon was found to be highly relevant in resistance to therapy. Moreover, increased nuclear NF- κ B (RELA staining) correlated with a shorter time to clinical relapse, confirming the prognostic value of this pathway activation in prostate cancer (22).

In the present study, we analyze the transcriptional profile of residual tumor cells after combined neoadjuvant androgen deprivation and docetaxel treatment. Because macrodissected tumor tissues were used for gene expression studies, our results may translate expression patterns from both tumor and surrounding nontumor cells. However, a prior study using the macrodissection strategy reported only minor interference of nontumor cells with the overall gene expression profile (35). Moreover, we considered stroma and benign cells contamination to be homogeneous in both the treated and nontreated patient groups. Among the 93 genes analyzed, we observed differential expression between treated and nontreated tumors in 63 (67.7%) genes. Of note, the over expression of the EMT genes correlated with a shorter time to clinical relapse.

In the EMT process, cells lose epithelial characteristics and gain mesenchymal properties to increase motility and invasion, allowing tumor cells to acquire the capacity to infiltrate surrounding tissues and to metastasize in distant sites. EMT is typically characterized by the loss of epithelial (i.e., CDH1) and the gain of mesenchymal (i.e., VIM, CDH2) markers expression (36). Several reports suggest that AR activation, as well as androgen deprivation therapy, may induce changes characteristic of EMT that may be involved in prostate cancer progression (37-39). The expression of the transcription factor ZEB1 may be induced by dihydrotestosterone and is mediated by two androgen-response elements (40). Recently, Sun and colleagues showed that androgen deprivation causes EMT in animal models and in tumor samples of patients treated with hormone therapy (41). Moreover, the presence of AR-truncated isoforms, which are increased in the castration-resistant progression, regulate the expression of EMT (42).

On the other hand, there are molecular similarities between cancer stem-like cells and EMT phenotypic cells.

Moreover, cells with an EMT phenotype induced by different factors are rich sources for stem-like cancer cells (14, 27). We observed in the DU-145 in vitro model that docetaxel-resistant cells expressed high levels of the stem cell marker CD44 and decreased levels of CD24. Moreover, docetaxel treatment increased CD44 expression in tumor cells. Likewise, RT-PCR results in tumor samples showed an increased expression of CD44 and a decreased expression of CD24 in tumors treated with neoadjuvant androgen deprivation plus docetaxel. Our results are in accordance with those of Puhr and colleagues, who detected an increased CD24^{low}-CD44^{high} cell population in docetaxel-resistant prostate cancer models (43). Similarly, Li and colleagues detected CD24 $^{\rm low}\text{-}\text{CD44}^{\rm high}$ breast cancer cells that were resistant to neoadjuvant chemotherapy (44). In a preclinical study, CD44 and CD147 enhanced metastatic capacity and chemoresistance of prostate cancer cells, potentially mediated by activation of the phosphoinositide 3-kinase and mitogen-activated protein kinase pathways (45).

In the present work, we identified a population of prostate cancer cells exhibiting an EMT phenotype that are primarily resistant to docetaxel. The presence of an intrinsic resistant cell population was supported by the isolation of docetaxel-resistant clonal cells in the parental cell line PC-3, before docetaxel exposure, with a high expression of CD44 and EMT markers and the loss of *CDH1*. ZEB1⁺/CD44⁺ cells were identified at a very low frequency in the two parental cell lines, DU-145 and PC3, before docetaxel exposure but their frequency massively increased in docetaxel-resistant cells. Similarly, a small percentage of $ZEB1^+/CD44^+$ cells were also observed in primary high-risk localized prostate cancer tumors. ZEB1⁺/CD44⁺ cells were present only in tumors that had previously received neoadjuvant androgen deprivation plus docetaxel (13.6%). Both in vitro and tumor sample findings support the presence of primary resistant cells harboring EMT/stem cell-like characteristics and suggest that the exposure to docetaxel may eliminate sensitive cells resulting, however, in the selective out-growth of this resistant cell population.

In our model, docetaxel also induced EMT changes in the parental and resistant cell lines. On the basis of our findings, both mechanisms, the existence of a primary resistant cell with an EMT phenotype and the induction of EMT changes induced by docetaxel, are possible. In recent work on docetaxel-resistant PC-3– and DU-145–derived cell lines, the authors reported that docetaxel-resistant cells underwent an EMT transition associated with a reduction of microRNA (miR)-200c and miR-205, which

Figure 4. Inhibition of ZEB1 in parental and docetaxel-resistant cell lines. ZEB1–CD44 staining in prostate tumor specimens. A, Western blot analysis of CDH1 and ZEB1 in the four cell lines (DU-145, DU-145R, PC-3, and PC-3R) when ZEB1 was inhibited by siRNA. B, Western blot analysis of CD44 and PARP in the four cell lines (DU-145, DU-145R, PC-3, and PC-3R) transfected cells) treated with docetaxel; the band of CD44 in PC-3 and PC-3R corresponds to the variant CD44v6. C, MTT of ZEB1–siRNA transfected cells. Data, mean \pm SEM of triplicate experiments. *, *P* < 0.05. D, CD44 and ZEB1 immunofluorescence image of a prostate tumor biopsy from a patient treated with neoadjuvant docetaxel and androgen deprivation. E, Kaplan–Meier according to immunofluorescence intensities of CD44–ZEB1 colocalization and clinical/biochemical relapse of patients treated with neoadjuvant docetaxel and controls without neoadjuvant treatment. C, nontrasnfected cells; Lipo, control lipofectamine; si, siRNA–ZEB1.

regulate the epithelial phenotype. Their study also showed reduced *CDH1* expression in tumors after neoad-juvant chemotherapy (43). Another study showed that paclitaxel DU-145–resistant cells have greater *ZEB1*, *VIM*, and *SNAI1* expression (46).

We tested whether EMT played a causal role in docetaxel chemoresistance by interfering with the expression of the transcription factor ZEB1, a key mediator of EMT, in prostate cancer cell lines. We observed that ZEB1 genetic downmodulation restored CDH1 but suppressed CD44 expression, which was consistent with a reversion of EMT and stem-like cell features. We also observed that ZEB1 inhibition caused prostate cancer cell mortality independently of docetaxel. This effect was previously described and is consistent with the known role of ZEB1 in cell proliferation related, which is related to the expression of cell cycle inhibitory cyclin-dependent kinase inhibitors (47). Furthermore, ZEB1 inhibition restored sensitivity to docetaxel, supporting a mechanistic role of EMT and stem-like cell phenotype in resistance to therapy. In a previous study of an adenocarcinoma lung cancer model, inhibition of ZEB1 significantly enhanced the chemosensitivity of docetaxel-resistant cells in vitro, and in vivo the ectopic expression of ZEB1 increased chemoresistance (48).

Several reports have provided evidence that EMT is critical for invasion and migration and is involved in tumor recurrence, which is believed to be tightly linked to cancer stem cells. CD44 and VIM expression in primary tumors has been correlated with adverse prognosis (34, 49). Notably, the few patients in our series with ZEB1⁺/CD44⁺ tumor cells in primary tumors showed extremely aggressive clinical behavior.

In summary, we observed a differential expression of NF- κ B, AR, EMT, and stem-like cell markers between treated and nontreated tumors. Moreover, they were related to a higher risk of PSA and/or clinical relapse. Because the neoadjuvant population may be of higher risk than the surgical patients, we cannot exclude the possibility that the expression of these markers is more related to the characteristics of the disease than to the therapy. However, none of the clinical factors (PSA, Gleason, clinical stage, or the presence of prior neoadjuvant therapy) correlated with clinical outcome in the univariate or multivariate analysis in our series.

Overall, our findings support a role of EMT in resistance to prostate cancer therapy and progression. Our clinical

References

- Siegel R, Naishadham D, Jemal A. Cancer statistics for Hispanics/ Latinos, 2012. CA Cancer J Clin 2012;62:283–98.
- Tannock IF, de WR, Berry WR, Horti J, Pluzanska A, Chi KN, et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 2004;351:1502–12.
- Ryan CJ, Smith MR, de Bono JS, Molina A, Logothetis CJ, de SP, et al. Abiraterone in metastatic prostate cancer without previous chemotherapy. N Engl J Med 2013;368:138–48.

data were generated in the neoadjuvant setting and cannot be extrapolated to patients with CRPC. However, both *in vitro* and clinical results support the investigation of the role of EMT in resistance to chemotherapy in CRPC. Moreover, novel strategies to revert or prevent EMT are warranted to improve the outcome of CRPC or to increase the probabilities of cure for patients with high-risk prostate cancer.

Disclosure of Potential Conflicts of Interest

M. Donovan is a consultant/advisory board member for Althia. No potential conflicts of interest were disclosed by the other authors.

Authors' Contributions

Conception and design: M. Marín-Aguilera, J. Codony-Servat, L. Mengual, B. Mellado

Development of methodology: M. Marín-Aguilera, J. Codony-Servat, N. Jiménez, P. Puig, L. Mengual, M.J. Ribal, B. Mellado

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): M. Marín-Aguilera, J. Codony-Servat, P.L. Fernández, N. Jiménez, M. Donovan, R. Bermudo, A. Font, E. Gallardo, M.J. Ribal, B. Mellado

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): M. Marín-Aguilera, J. Codony-Servat, Ò. Reig, J.J. Lozano, P.L. Fernández, N. Jiménez, M. Donovan, L. Mengual, A. Font, P. Gascón, B. Mellado

Writing, review, and/or revision of the manuscript: M. Marín-Aguilera, J. Codony-Servat, Ò. Reig, P.L. Fernández, M. Donovan, A. Font, E. Galardo, P. Gascón, B. Mellado

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): M. Marín-Aguilera, J. Codony-Servat, M.V. Pereira, N. Jiménez, L. Mengual

Study supervision: M. Marín-Aguilera, J. Codony-Servat, M. Donovan, A. Alcaraz, B. Mellado

Acknowledgments

The authors thank Instituto de Salud Carlos III and Cellex Foundation for funding the project. The authors also would like to thank Mónica Marín and Laura Gelabert for their excellent technical assistance and Elaine Lilly, for review of the English text.

Grant Support

This work was supported by Cellex Foundation, by the Instituto de Salud Carlos III—Subdirección General de Evaluación y Fomento de la Investigación (grants number PI07/0388 and PI12/01226; to B. Mellado), and by the Ministerio de Economía y competitividad (grant number SAF2012-40017-C02-02; to P.L. Fernández). This study was also cofinanced by Fondo Europeo de Desarrollo Regional. Unión Europea. Una manera de *hacer Europa*. M. Marín-Aguilera received a grant from Cellex Foundation. This work was developed at the Centro Esther Koplowitz, Barcelona, Spain.

⁴ The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked *advertisement* in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received September 16, 2013; revised February 13, 2014; accepted March 7, 2014; published OnlineFirst March 21, 2014.

- Scher HI, Fizazi K, Saad F, Taplin ME, Sternberg CN, Miller K, et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med 2012;367:1187–97.
- de Bono JS, Oudard S, Ozguroglu M, Hansen S, Machiels JP, Kocak I, et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet 2010;376: 1147–54.

- Ploussard G, Terry S, Maille P, Allory Y, Sirab N, Kheuang L, et al. Class III beta-tubulin expression predicts prostate tumor aggressiveness and patient response to docetaxel-based chemotherapy. Cancer Res 2010;70:9253–64.
- Fojo T, Menefee M. Mechanisms of multidrug resistance: the potential role of microtubule-stabilizing agents. Ann Oncol 2007;18 Suppl 5: v3–v8.
- Antonarakis ES, Keizman D, Zhang Z, Gurel B, Lotan TL, Hicks JL, et al. An immunohistochemical signature comprising PTEN, MYC, and Ki67 predicts progression in prostate cancer patients receiving adjuvant docetaxel after prostatectomy. Cancer 2012;118:6063–71.
- Darshan MS, Loftus MS, Thadani-Mulero M, Levy BP, Escuin D, Zhou XK, et al. Taxane-induced blockade to nuclear accumulation of the androgen receptor predicts clinical responses in metastatic prostate cancer. Cancer Res 2011;71:6019–29.
- 10. Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell 2007;12:9–22.
- Domingo-Domenech J, Oliva C, Rovira A, Codony-Servat J, Bosch M, Filella X, et al. Interleukin 6, a nuclear factor-kappaB target, predicts resistance to docetaxel in hormone-independent prostate cancer and nuclear factor-kappaB inhibition by PS-1145 enhances docetaxel antitumor activity. Clin Cancer Res 2006;12:5578–86.
- Codony-Servat J, Marin-Aguilera M, Visa L, Garcia-Albeniz X, Pineda E, Fernandez PL, et al. Nuclear factor-kappa B and interleukin-6 related docetaxel resistance in castration-resistant prostate cancer. Prostate 2013;73:512–21.
- Shen MM, bate-Shen C. Molecular genetics of prostate cancer: new prospects for old challenges. Genes Dev 2010;24:1967–2000.
- 14. Kurrey NK, Jalgaonkar SP, Joglekar AV, Ghanate AD, Chaskar PD, Doiphode RY, et al. Snail and slug mediate radioresistance and chemoresistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells. Stem Cells 2009;27:2059–68.
- Domingo-Domenech J, Vidal SJ, Rodriguez-Bravo V, Castillo-Martin M, Quinn SA, Rodriguez-Barrueco R, et al. Suppression of acquired docetaxel resistance in prostate cancer through depletion of notchand hedgehog-dependent tumor-initiating cells. Cancer Cell 2012; 22:373–88.
- Marin-Aguilera M, Codony-Servat J, Kalko SG, Fernandez PL, Bermudo R, Buxo E, et al. Identification of docetaxel resistance genes in castration-resistant prostate cancer. Mol Cancer Ther 2012;11: 329–39.
- Mellado B, Font A, Alcaraz A, Aparicio LA, Veiga FJ, Areal J, et al. Phase II trial of short-term neoadjuvant docetaxel and complete androgen blockade in high-risk prostate cancer. Br J Cancer 2009;101:1248–52.
- Seruga B, Ocana A, Tannock IF. Drug resistance in metastatic castration-resistant prostate cancer. Nat Rev Clin Oncol 2011;8:12–23.
- Boccon-Gibod L, Djavan WB, Hammerer P, Hoeltl W, Kattan MW, Prayer-Galetti T, et al. Management of prostate-specific antigen relapse in prostate cancer: a European Consensus. Int J Clin Pract 2004;58:382–90.
- 20. Scher HI, Halabi S, Tannock I, Morris M, Sternberg CN, Carducci MA, et al. Design and end points of clinical trials for patients with progressive prostate cancer and castrate levels of testosterone: recommendations of the Prostate Cancer Clinical Trials Working Group. J Clin Oncol 2008;26:1148–59.
- Huang dW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009;4:44–57.
- Domingo-Domenech J, Mellado B, Ferrer B, Truan D, Codony-Servat J, Sauleda S, et al. Activation of nuclear factor-kappaB in human prostate carcinogenesis and association to biochemical relapse. Br J Cancer 2005;93:1285–94.
- 23. Sun J, Zhang D, Bae DH, Sahni S, Jansson P, Zheng Y, et al. Metastasis suppressor, NDRG1, mediates its activity through signaling pathways and molecular motors. Carcinogenesis 2013;34:1943–54.
- 24. Yae T, Tsuchihashi K, Ishimoto T, Motohara T, Yoshikawa M, Yoshida GJ, et al. Alternative splicing of CD44 mRNA by ESRP1 enhances lung colonization of metastatic cancer cell. Nat Commun 2012;3:883.

- Gemmill RM, Roche J, Potiron VA, Nasarre P, Mitas M, Coldren CD, et al. ZEB1-responsive genes in non-small cell lung cancer. Cancer Lett 2011;300:66–78.
- 26. Sheehan GM, Kallakury BV, Sheehan CE, Fisher HA, Kaufman RP Jr, Ross JS. Loss of claudins-1 and -7 and expression of claudins-3 and -4 correlate with prognostic variables in prostatic adenocarcinomas. Hum Pathol 2007;38:564–9.
- Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell 2008;133:704–15.
- 28. Mostaghel EA, Page ST, Lin DW, Fazli L, Coleman IM, True LD, et al. Intraprostatic androgens and androgen-regulated gene expression persist after testosterone suppression: therapeutic implications for castration-resistant prostate cancer. Cancer Res 2007;67:5033–41.
- 29. Ryan CJ, Smith A, Lal P, Satagopan J, Reuter V, Scardino P, et al. Persistent prostate-specific antigen expression after neoadjuvant androgen depletion: an early predictor of relapse or incomplete androgen suppression. Urology 2006;68:834–9.
- Zhu ML, Horbinski CM, Garzotto M, Qian DZ, Beer TM, Kyprianou N. Tubulin-targeting chemotherapy impairs androgen receptor activity in prostate cancer. Cancer Res 2010;70:7992–8002.
- Gowda PS, Deng JD, Mishra S, Bandyopadhyay A, Liang S, Lin S, et al. Inhibition of hedgehog and androgen receptor signaling pathways produced synergistic suppression of castration-resistant prostate cancer progression. Mol Cancer Res 2013;11:1448–61.
- **32.** Febbo PG, Richie JP, George DJ, Loda M, Manola J, Shankar S, et al. Neoadjuvant docetaxel before radical prostatectomy in patients with high-risk localized prostate cancer. Clin Cancer Res 2005;11:5233–40.
- 33. Huang CY, Beer TM, Higano CS, True LD, Vessella R, Lange PH, et al. Molecular alterations in prostate carcinomas that associate with *in vivo* exposure to chemotherapy: identification of a cytoprotective mechanism involving growth differentiation factor 15. Clin Cancer Res 2007;13:5825–33.
- 34. Zhang Q, Helfand BT, Jang TL, Zhu LJ, Chen L, Yang XJ, et al. Nuclear factor-kappaB-mediated transforming growth factor-beta-induced expression of vimentin is an independent predictor of biochemical recurrence after radical prostatectomy. Clin Cancer Res 2009;15: 3557–67.
- 35. de Bruin EC, van de PS, Lips EH, van ER, van der Zee MM, Lombaerts M, et al. Macrodissection versus microdissection of rectal carcinoma: minor influence of stroma cells to tumor cell gene expression profiles. BMC Genomics 2005;6:142.
- Nauseef JT, Henry MD. Epithelial-to-mesenchymal transition in prostate cancer: paradigm or puzzle? Nat Rev Urol 2011;8:428–39.
- Jennbacken K, Tesan T, Wang W, Gustavsson H, Damber JE, Welen K. N-cadherin increases after androgen deprivation and is associated with metastasis in prostate cancer. Endocr Relat Cancer 2010;17: 469–79.
- Zhu ML, Kyprianou N. Role of androgens and the androgen receptor in epithelial–mesenchymal transition and invasion of prostate cancer cells. FASEB J 2010;24:769–77.
- Matuszak EA, Kyprianou N. Androgen regulation of epithelial-mesenchymal transition in prostate tumorigenesis. Expert Rev Endocrinol Metab 2011;6:469–82.
- Anose BM, Sanders MM. Androgen receptor regulates transcription of the ZEB1 transcription factor. Int J Endocrinol 2011;2011:903918.
- Sun Y, Wang BE, Leong KG, Yue P, Li L, Jhunjhunwala S, et al. Androgen deprivation causes epithelial-mesenchymal transition in the prostate: implications for androgen-deprivation therapy. Cancer Res 2012;72:527–36.
- 42. Cottard F, Asmane I, Erdmann E, Bergerat JP, Kurtz JE, Ceraline J. Constitutively active androgen receptor variants upregulate expression of mesenchymal markers in prostate cancer cells. PLoS ONE 2013;8:e63466.
- 43. Puhr M, Hoefer J, Schafer G, Erb HH, Oh SJ, Klocker H, et al. Epithelialto-mesenchymal transition leads to docetaxel resistance in prostate cancer and is mediated by reduced expression of miR-200c and miR-205. Am J Pathol 2012;181:2188–201.

www.aacrjournals.org

- 44. Li M, Knight DA, Smyth MJ, Stewart TJ. Sensitivity of a novel model of mammary cancer stem cell-like cells to TNF-related death pathways. Cancer Immunol Immunother 2012;61:1255–68.
- 45. Hao J, Madigan MC, Khatri A, Power CA, Hung TT, Beretov J, et al. *In vitro* and *in vivo* prostate cancer metastasis and chemoresistance can be modulated by expression of either CD44 or CD147. PLoS ONE 2012;7:e40716.
- 46. Kim JJ, Yin B, Christudass CS, Terada N, Rajagopalan K, Fabry B, et al. Acquisition of paclitaxel resistance is associated with a more aggressive and invasive phenotype in prostate cancer. J Cell Biochem 2013; 114:1286–93.
- 47. Liu Y, Sanchez-Tillo E, Lu X, Huang L, Clem B, Telang S, et al. The ZEB1 transcription factor acts in a negative feedback loop with miR200 downstream of Ras and Rb1 to regulate Bmi1 expression. J Biol Chem 2014;289:4116–25.
- Ren J, Chen Y, Song H, Chen L, Wang R. Inhibition of ZEB1 reverses EMT and chemoresistance in docetaxel-resistant human lung adenocarcinoma cell line. J Cell Biochem 2013;114:1395–403.
- 49. Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B, Tang S, et al. Highly purified CD44⁺ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 2006;25:1696–708.

Segon Treball

Molecular profiling of peripheral blood is associated with circulating tumor cells content and poor survival in metastatic castration-resistant prostate cancer

En la progressió del càncer s'alliberen cèl·lules tumorals al torrent circulatori, les CTCs. Aquestes poden arribar a territoris anatòmics distants, niar i proliferar generant les metàstasis. S'han utilitzat diferents sistemes per aïllar aquestes cèl·lules basant-se en característiques físiques, com la mida o la forma, o en característiques biològiques, com l'expressió de determinats marcadors en la membrana³⁵².

En CP, i en altres tumors, el número de CTCs detectades mitjançant el sistema CellSearch, basat en anticossos contra el marcador epitelial EPCAM, s'associa a un pitjor pronòstic^{339,353}. A més a més, un descens d'aquestes durant el tractament s'associa amb una millor supervivència³⁴⁰.

L'ús d'anticossos contra marcadors epitelials per aïllar les CTCs té la limitació de que no es poden aïllar les cèl·lules tumorals que hagin perdut aquests marcadors, per exemple a través del procés d'EMT, o altres cèl·lules, com poden ser les hematopoètiques, que poden tenir un paper important en la progressió tumoral³⁵⁴.

Una altra estratègia emprada és l'estudi de la capa de PBMCs, on es troben les CTCs envoltades de cèl·lules de la línia blanca, principalment limfòcits i monòcits. Per tant, aquesta tècnica permet estudiar de forma indirecta les CTCs aïllades en aquesta capa.

L'objectiu d'aquest treball és descriure un perfil transcripcional en la capa de PBMCs associat amb el recompte de CTCs en pacients afectes de CPRC metastàtic, i identificar i validar una signatura gènica en PBMCs associada amb la supervivència global d'aquests pacients.

Pacients i Mètode:

En aquest treball es van incloure de forma prospectiva pacients afectes de CPRC metastàtic en el moment de la progressió o abans d'iniciar un tractament oncològic. La supervivència global que es va definir com el temps des de la data de l'extracció de la sang per a l'estudi de les CTCs fins la data de la mort o l'última visita.

En una primera fase del treball es va obtenir en paral·lel un mostra de sang perifèrica per al comptatge de CTCs mitjançant el mètode CellSearch i una altra mostra per aïllar les PBMCs. Aquesta última mostra es va processar mitjançant el mètode de Ficoll i es va extreure el RNA per a realitzar estudis d'expressió gènica. Posteriorment, en una segona fase es va obtenir únicament la mostra per a l'aïllament de PBMCs. En tots els casos els primers 5mL de sang es van descartar per evitar la contaminació per cèl·lules epitelials cutànies pel propi procediment de venopunció.

El RNA extret de les mostres de PBMCs dels pacients inclosos en la primera fase es va utilitzar per analitzar l'expressió gènica de tot el transcriptoma mitjançant el chip Human Gene 1.1 ST array (Affymetrix). Es va realitzar un anàlisis d'expressió diferencial entre els pacients amb menys de 5 CTCs i els pacients amb 5 o més CTCs. També es van correlacionar les dades d'expressió gènica amb la supervivència global. Es van seleccionar els 10 gens més diferencialment expressats i els associats amb la supervivència global per a validar-los per qRT-PCR en les mostres de pacients inclosos en la primera fase i en la cohort completa de pacients.

Resultats:

En aquest estudi es van incloure un total de 74 pacients de forma prospectiva però 4 d'ells es van excloure de l'anàlisi per diferents motius (un no complia els

criteris d'inclusió i tres no complien els criteris de qualitat de la mostra). En 43 pacients es va realitzar el recompte de CTCs i l'estudi de tot el transcriptoma, i en 27 pacients addicionals es va realitzar només la validació de l'expressió gènica per qRT-PCR.

En 23 pacients (53.4%) es van trobar menys de 5 CTCs i en 20 pacients (46.5%) en tenien 5 o més CTCs, amb una mitjana de 1 i 126 CTCs, respectivament. En aquesta cohort de pacients es va confirmar que el número de CTCs (< 5 vs. \geq 5 CTCs) estava associat amb una pitjor supervivència global (HR 5.5, 95% CI 2 – 15.3; p<0.001) i amb una elevada precisió per a predir la supervivència global (AUC =0.790).

En l'anàlisi no supervisat es va veure com els perfils d'expressió s'agrupaven en funció del número de CTCs, \geq o < de 5, i també es va trobar una correlació positiva entre les dades d'expressió i el recompte de CTCs (r=0.67, p<0.001).

En l'anàlisi d'expressió diferencial segons el punt de tall de 5 CTCs es van trobar 282 gens expressats diferencialment. El 60% dels gens sobreexpressats en les mostres amb ≥5 CTCs s'havien descrit prèviament com a relacionats amb el CP.

A més a més, es van trobar un total de 1788 gens associats amb la supervivència global, dels quals 840 es van associar amb un mal pronòstic i 948 amb pronòstic bo. Aquest gens estaven implicats en diferents processos cel·lulars (p.ex.: metabolisme, apoptosis, reparació i dany al DNA, etc). D'aquests gens, 100 es van trobar alhora expressats diferencialment en funció del nombre de CTCs, 78 associats amb un pitjor pronòstic i 22 amb un bon pronòstic.

D'entre els gens diferencialment expressats i els associats a supervivència global es van seleccionar 10 gens per a validar per qRT-PCR. Set d'aquest gens es van correlacionar amb una pitjor supervivència global tant en els pacients inclosos en la primera fase del estudi com en la cohort global de 70 pacients. En base a aquestes dades, es va identificar que l'expressió conjunta de *SELENBP1* i *MMP9* era la millor signatura per a predir la supervivència global en els dos grups de pacients (AUC=0.79 i AUC=0.77). Al afegir el recompte de CTCs a l'anterior
model el poder de predicció millorava (AUC=0.87) respecte qualsevol dels dos models per separat, els dos gens o únicament el recompte de CTCs. En l'anàlisi multivariat tant l'expressió d'aquest dos gens com el recompte de CTCs van esdevenir factors pronòstics independents. www.impactjournals.com/oncotarget/

Molecular profiling of peripheral blood is associated with circulating tumor cells content and poor survival in metastatic castration-resistant prostate cancer

Mercedes Marín-Aguilera¹, Òscar Reig^{1,2}, Juan José Lozano³, Natalia Jiménez¹, Susana García-Recio^{1,4}, Nadina Erill⁵, Lydia Gaba², Andrea Tagliapietra², Vanesa Ortega², Gemma Carrera⁶, Anna Colomer⁵, Pedro Gascón⁴ and Begoña Mellado^{1,2}

¹ Translational Genomics Group and Targeted Therapeutics in Solid Tumors Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain

² Medical Oncology Department, Hospital Clínic, Barcelona, Spain

³ Bioinformatics Platform Department, Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Barcelona, Spain

⁴ Laboratory of Translational Oncology, Fundació Clínic per a la Recerca Biomèdica, Barcelona, Spain

⁵ Althia, Barcelona, Spain

⁶ Medical Oncology Department, Hospital Plató, Barcelona, Spain

Correspondence to: Begoña Mellado, email: bmellado@clinic.ub.es

Keywords: circulating tumor cells, peripheral blood, microarrays, cell search system

Received: January 22, 2015 Accepted: February 14, 2015 Published: March 12, 2015

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ABSTRACT

The enumeration of circulating tumor cells (CTCs) in peripheral blood correlates with clinical outcome in castration-resistant prostate cancer (CRPC). We analyzed the molecular profiling of peripheral blood from 43 metastatic CRPC patients with known CTC content in order to identify genes that may be related to prostate cancer progression. Global gene expression analysis identified the differential expression of 282 genes between samples with \geq 5 CTCs vs <5 CTCs, 58.6% of which were previously described as over-expressed in prostate cancer (18.9% in primary tumors and 56.1% in metastasis). Those genes were involved in survival functions such as metabolism, signal transduction, gene expression, cell growth, death, and movement. The expression of selected genes was evaluated by guantitative RT-PCR. This analysis revealed a two-gene model (SELENBP1 and MMP9) with a high significant prognostic ability (HR 6; 95% CI 2.61 - 13.79; P<0.0001). The combination of the two-gene signature plus the CTCs count showed a higher prognostic ability than CTCs enumeration or gene expression alone (P < 0.05). This study shows a gene expression profile in PBMNC associated with CTCs count and clinical outcome in metastatic CRPC, describing genes and pathways potentially associated with CRPC progression.

INTRODUCTION

Prostate cancer (PC) is the second leading cause of death from cancer in men [1]. During the progression of the disease, subgroups of cancer cells reach the circulation and are able to proliferate in distant tissues [2].

Interest has been growing in recent years about circulating tumor cells (CTCs) as leaders in the metastatic process. Because of its great accessibility, the expression

profile of peripheral blood is of interest for determining molecular alterations that may justify a more aggressive clinical behavior in patients with higher CTCs count. Studies mostly have focused on the capability of CTCs as biomarkers but also their potential utility in diagnosis, prognosis, and as a marker of treatment effectiveness [3]. These studies are supported by technologies that allow the reproducible detection and quantification of CTCs. These cells can be separated from other hematopoietic cells by physical characteristics such as size and shape, or by biological characteristics such as expression of epithelial or cancer-specific markers. The CellSearch System (Veridex, LLC) is the most widely used CTC-isolation technology in clinical testing. This semi-automated method received U.S. Food and Drug Administration approval for the enumeration of CTCs in whole blood [4, 5]. In castration-resistant PC (CRPC), the quantification of CTCs by CellSearch system has been proved to be clinically relevant. Studies have used this technology to define groups with unfavorable and favorable prognosis among patients with metastatic prostate cancer [6] and for molecular studies of CTCs [6-10]. Furthermore, the decline in the number of CTCs under treatment is a stronger prognostic factor for post-treatment survival than a 50% decline in prostate-specific antigen (PSA) [11]. However, the detection of CTCs by the expression of epithelial specific markers, may have as a consequence that CTCs with different molecular characteristics cannot be detected.

In addition to CTCs, non-tumoral epithelial and circulating hematopoietic cells may also be involved in tumor progression [12]. Indeed, two recently published studies described transcriptional profiles in peripheral blood associated with prognosis in patients with CRPC [13, 14].

The detection of tumor or epithelial markers by reverse-transcriptase polymerase chain reaction (RT-PCR) in the mononuclear cell fraction of peripheral blood (PBMNC) have been widely use as a strategy to detect CTCs in patients with cancer [15]. In the present work we describe a transcriptional profile associated with CTCs count in the PBMNC of patients with metastatic CRPC and molecular pathways that may be associated with CRPC progression. Notably, most of the detected genes in patients with \geq 5 CTCs were previously described as over expressed in PC, and specifically 56.1% were overexpressed in PC metastasis. RT-PCR expression of two genes, *SELENBP1* and *MMP9*, together with the CTC count showed a significant prognostic ability in CRPC patients. Overall, our findings support that expression studies in PBMNC in metastatic CRPC patients may translate the biology of the CTCs and may be used to identify patients with a more aggressive clinical behavior.

RESULTS

Patients and CTCs count

Seventy-four patients were included in the study. Four of them were excluded from the analysis: one patient that did not accomplish the inclusion criteria and three samples that failed the quality control were discarded for being analyzed. The clinical characteristics of the 70 final patients are shown in Table 1. Patients were prospectively followed from the time of inclusion in the study.

PBMNC from 43 patients were tested for CTC count and microarrays analysis. All the 70 samples were studied by qRT-PCR. Clinical characteristics between patients with \geq 5 CTCs and <5CTCs were well balanced (Table 1).

The median number of CTCs per patient sample was 59 (range 1-899). Specifically, 23 patients (53.4%)

Figure 1: Survival analysis according to CTC count. A) Kaplan-Meier curves that estimate the probabilities of overall survival (OS) of CRPC patients with <5 and ≥5 CTCs. The log-rank test was used to assess the statistical difference between the two groups (P<0.001); B) Receiver operating characteristic (ROC) curve for prediction accuracy of ≥5 CTCs content in OS of CRPC.

Patients' characteristics						
CTC ¹ load	<5 CTCs	<5 CTCs ≥5 CTCs		Total		
Number of patients	23	20	27	70		
Age (years)						
Median (range)	72 (40.1-78.3)	73.5 (49-83)	67.5 (51-79.8)	66.5 (40.1-83.1)		
Gleason N (%)						
≤ 7	9 (39.1)	7 (35)	13 (48.3)	29 (41.5)		
8-10	12 (52.2)	10 (50)	12 (44.4)	34 (48.6)		
Unknown	2 (9)	3 (15)	2 (7.4)	7 (10)		
PSA ² (ng/mL)						
Median (range)	24.3 (1.3-1,375)	40.4 (1.8-1,002)	47.5 (1.8-445.6)	57.9 (1.3-1,375)		
$AP^{3}(U/L)$						
Median (range)	180.5 (71-679)	401 (121-5797)	265 (91-1143)	253 (71-5797)		
LDH ⁴ (U/L)						
Median (range)	408 (253-628)	588 (336-1569)	351 (232-604)	408 (232-1569)		
Hemoglobin (g/dL)						
Median (range)	127 (86-153)	112.5 (74-144)	129 (96-156)	127 (74-156)		
Previous chemotherapy (%)						
Yes	9 (39.1)	7 (35)	6 (22.2)	22 (31.4)		
No	14 (60.9)	13 (65)	21 (77.8)	48 (68.6)		
Metastasis						
Bone	18 (46.1)	20 (64.5)	22 (51.2)	60 (53.1)		
Visceral	5 (12.8)	1 (3.2)	7 (16.3)	13 (11.5)		
Lymph nodes	15 (38.5)	10 (32.3)	12 (27.9)	37 (32.7)		
Local relapse	1 (2.6)	0	2 (4.7)	3 (2.7)		
CTC number (%)						
0-2	20 (46.5)	-	-	-		
3-4	3 (6.9)	-	-	-		
5-20	-	6 (13.9)	-	-		
21-50	-	9 (20.9)	-	-		
>51	-	5 (11.6)	-	-		
Follow-up (months)						
Median (range)	12 (1.9-36.8)	12.23 (1.2-35.3)	12 (3.3-26.2)	12 (1.2-36.8)		
Number of events ⁵ (%)	14 (60.9)	18 (90)	4 (14.8)	36 (51.4)		

 Table 1: Clinical characteristics of patients and CTC count; ¹CTCs: circulating tumor cells; ²PSA: prostatic specific antigen; ³AP: Alkaline phosphatase; ⁴LDH: Lactate dehydrogenase; ⁵"events" refer to number of deaths.

presented <5 CTCs (average 1 cell) and 20 patients (46.5%) had \geq 5 CTCs (average 126 cells). During a median follow-up period of 12 months, 32 of the 43 patients (74.4%) died. Univariate Cox proportional hazards regression analysis assessed the number of CTCs as a risk factor for overall survival (OS). Patients with <5 CTCs had longer survival relative to patients with \geq 5 CTCs by log-rank analysis (Cox HR 5.5; 95%CI, 2-15.3; log-rank P<0.001) (Fig. 1A). The predictive accuracy of the number of CTCs (\geq 5 CTCs *vs* <5 CTCs) for OS was

assessed by the ROC curve (area under curve=0.790) (Fig. 1B).

Gene expression profiling in peripheral blood mononuclear cells is associated with CTC count

Hierarchical clustering and principal component analysis algorithms were used to examine the sample groupings in the expression data. Expression profiles

Over-expressed in metastasis vs primary tumor		Over-expressed in primary tumor vs normal prostate tissue	Over-expressed in metastasis vs normal prostate t		rmal prostate tissue	
Gene symbol		Gene symbol	Gene symbol			
ABCA13*	HBD	SIGLEC14	AGAP1	ABCA13*	ESCO2	OLR1
ABCC13	HEPACAM2	SLC22A16	ANKRD18A	ABCC13	FAM151B	OR2W3
AFF2	HIST1H1B	SLC25A39	BUB1B	AGAP1	FAM20A	OR6N1
AHSP	HIST1H3B	SLC26A8	C15orf42	AHSP	FAR2	OSBP2
ALAS2	HIST1H3G	SLC4A1	C17orf66	ALAS2	FCAR	PADI4
ANK1	HLX	SLC6A8	CASC5	ANK1	FCRL6	PGLYRP1
ANLN	HMBS	SOX6	CCDC125	ANLN	FOLR3	PHOSPHO1
ASPM	IFIT1B	SPTA1	CCNB2	ARG1	FOXM1	PLK1
AZU1	INHBA	SPTB	CCNE2	ASPM	GLRX5	PPEF1
BCL2L15	KEL	SYTL2	CCRN4L	AZU1	GNLY	PRC1
BMX	KIAA0101	TCL1A	CD24	BCL2L15	GPR160	PRR13
BPI	KIF11	TCN1	CEACAM3	BMX	GPR84	PRTN3
BUB1	KIF14	TNFAIP6	CENPF	BPI	GPR97	PTGDR
BUB1B	KIF15	TOP2A	CHI3L1	BUB1	GYPA	PTH2R
C15orf42	KIF20A	TPX2	CHIT1	BUB1B	GZMH	PVALB
C17orf66	KIF23	TRBV28	CKAP2L	C15orf42	HBD	RAPIGAP
C19orf59	KLRD1	TYMS	CLEC5A	C15orf54	HBM	RETN
C19orf77	LOC285696	UHRF1	CRISP2	C17orf66	HEPACAM2	RHAG
CAMK2N1	LRRC4	YOD1	CRISP3*	C19orf59	HIST1H1B	RRM2
CAMP	LRRN1	ZNF788	DLGAP5	C19orf77	HIST1H3B	RUNDC3A
CASC5	MGAM		ERG*	CAI	HIST1H3G	S100P
CCNA2	MKI67		FAM151B	CAMP	HLA-DRB5	SERPINB10
CCNB2	MLNR		FOXM1	CASC5	HLX	SERPINB2
CCNE2	MMP8*		FZD5	CCNA2	HMBS	SIGLEC14
CD160	MMP9*		GCA	CCNB2	HP*	SIGLEC5
CDK1	MPO		GPR160	CCNE2	HPR*	SLC22A16
CEACAM3	MS4A3		GPR84	CCRN4L	HTRA3	SLC25A39
CEACAM4	MYL4		GZMH	CD160	IFIT1B	SLC26A8
CEACAM8	MYO6		HIST1H3B	CD3G	INHBA	SLC27A2
CENPF	NLRC4		HP*	CDK1	KEL	SLC28A3
CIT	NUSAP1		HPR*	CEACAM3	KIAA0101	SLC4A1
CKAP2L	OR2W3		ICA1	CEACAM4	KIF11	SLC6A8
CRISP2	OR6N1		KIF11	CEACAM8	KIF14	SLC6A9
CTSG	OSBP2		KIF20A	CENPF	KIF15	SOX6
CYP4F3	PADI4		MBOAT2	CHI3L1	KIF20A	SPTA1
DEFA4	PGLYRP1		MKI67	CHIT1	KIF23	SPTB
DHRS9	PHOSPHO1		MMP9*	CIT	LIN7A	SUCNR1
DLGAP5	PIWIL4		MYB	CKAP2L	LOC100289137	SYTL2
DTL	PLK1		МҮОб	CLEC5A	LRRC4	TCL1A
E2F2	PPEF1		NUSAP1	CRISP2	LRRN1	TCN1
E2F8	PRC1		OLR1	CRISP3*	MBOAT2	TNFAIP6
ECRP	PRTN3		PPEF1	CTSG	MGAM	TNFRSF10C
EPB42	PTCH1		PRC1	CYP4F3	MKI67	TOP2A
ESCO2	PTGDR		PRR13	DEFA4	MLNR	TPX2
FAM151B	PVALB		PTH2R	DHRS9	MMP8*	TRBV28
FAR2	RETN		RAPIGAP	DLGAP5	MMP9*	TRIM58
FCAR	RHAG		RRM2	DTL	MPO	TYMS
FOXM1	RNASE2		SIGLEC14	E2F2	MS4A3	UHRF1
GNLY	RRM2		SIGLEC5	E2F8	MYL4	VSTM1
GPR84	RUNDC3A		SLC27A2	ECRP	МҮОб	YOD1
GPR97	SAMD3		SLC28A3	ELANE	NCALD	ZNF788
GYPA	SERPINB10		TOP2A	EPB42	NLRC4	
GZMH	SERPINB2		TPX2	ERG*	NUSAP1	

Table 2: Genes differentially expressed between ≥5 CTCs and <5 CTCs and also between primary tumor/metastasis and normal prostate tissue according to previous data in the literature [16];*qRT-PCR validated genes.

grouped samples in \geq 5 CTCs and <5 CTCs (Fig. 2A). We found good correlation in the comparison of microarrays results and CTC count (r=0.67, P<0.001, Fig. 2B).

Microarrays analysis revealed 282 differentially expressed genes (fold change [FC] > |1.5|) between samples with ≥ 5 CTCs vs <5 CTCs. Most of these genes were involved in cellular metabolism, gene expression regulation, and cell morphogenesis, signaling and transport, and were significantly up-regulated in samples with ≥ 5 CTCs. Genes down-regulated in this group of

samples were mostly involved in signal transduction and metabolic process (Supplementary Table S1). The 50 most differentially expressed genes between both groups (FDR<0.001) are showed at Figure 3. Among the overexpressed genes in samples with \geq 5CTCs, 58.6% have previously described as been over-expressed in prostate cancer, specifically 18.9% in primary tumor and 56.1% in metastasis in comparison with normal prostate tissue [16]. The complete list of these genes is shown in Table 2. Reactome pathways analysis revealed significantly

Principal Component 1

Figure 2: Correlation between gene expression data in PBMNC and CTC count. A) Unsupervised clustering grouping patients according to gene expression data; B) Principal component analysis. The Y-axis represents the log2 of the CTC number plus one, and the X-axis is PC1 (Spearman correlation P<0.001).

Genes involved	N genes at pathway	REACT_ID	Name of the event
RFC2, HSPA2, HIST2H2AA4	103	REACT_22172	Chromosome Maintenance
CYP24A1, PTGIS, MGST2	138	REACT_13433	Biological oxidations
CYP24A1, PTGIS	49	REACT_13567	Cytochrome P450 - arranged by substrate type
HIST2H2AA4	56	REACT_7970	Telomere Maintenance
HSPA2, RFC2, HIST2H2AA4	57	REACT_75792	Meiotic Synapsis

Table 3: Reactome pathways analysis showing significantly deregulated pathways between samples with ≥5 CTCs vs <5 CTCs (P<0.05).

deregulated pathways between samples with \geq or <5 CTCs (P<0.05) (Table 3).

Gene expression profiling in peripheral blood mononuclear cells is associated with overall survival

Differential expression analysis revealed a large set of genes (False Discovery Rate (FDR)<5; signal expression median >7) that were significantly up- (840 genes) and downregulated (948 genes) and significantly correlated with lower survival. The most frequent biological functions in which overexpressed genes were involved were cell movement, transport, metabolism and signaling. Pathways analysis revealed a set of up-(162) and downregulated (239) pathways related to OS (Supplementary Table S2). The identified pathways can be grouped into a limited number of categories: metabolism, apoptosis, DNA damage and repair, protein degradation, immune system, signal transduction, cell transport, cell growth, gene expression, protein organization and homeostasis. Among those associated with lower survival, 100 genes were also deregulated in samples with \geq 5 CTCs (78 overexpressed and 22 downexpressed) (Supplementary Table S3).

Expression data from selected genes were validated by qRT-PCR

To determine the robustness of cDNA microarrays, we performed qRT-PCR of a selected group of ten genes among the top 40 more differentially expressed between samples with \geq 5 and <5 CTCs count and/or related to lower OS. These genes were *HP*, *CRISP3*, *MMP9*, *ABCA13*, *MMP8*, *OLFM4*, *SELENBP1*, *CEACAM1*, *HPR* and *ERG*. Differential gene expression determined by microarrays was confirmed in all genes except for *HP* (90%).

A two-gene signature predicts overall survival in metastatic CRPC

QRT-PCR data from the 9 out of 10 technically top differentially expressed validated genes was used to test, individually and combined, selected genes as predictors of OS. This initial analysis revealed that the expression of *CRISP3*, *MMP9*, *ABCA13*, *MMP8*, *OLFM4*, *SELENBP1* and *CEACAM1* significantly correlated with lower OS (P<0.05) (Table 4A). These significant genes were tested in a set of PBMNC RNA samples from additional 27 patients. A global OS analysis was performed in the whole series (N=70) confirming the predictive value of these genes in the univariate analysis (Table 4B).

The combination of *SELENBP1* and *MMP9* gene expression data was the best gene signature to indicate poorer prognosis, since elevated expression of both markers significantly correlated with a lower OS (Fig. 4). The predictive accuracy of the two-gene signature for OS was assessed by the ROC curve (AUC: 0.79) (Fig. 5). Taking into account the whole series of patients (N=70), the predictive accuracy of the two-gene expression model was similar than in the subset of 43 initial patients (AUC: 0.77; data not shown).

Cox regression models of *SELENBP1* and *MMP9* gene expression, and of the dicotomic CTCs count (\geq 5 and <5-CTCs) were compared and not statistically significant differences were found between both models (P=0.47). A combined model including both two-gene expression and CTCs count resulted to be a better predictive model for OS (AUC: 0.87) than individually by ROC analysis (Fig. 5). Statistically significant differences between the combined model and the individual parameters were found (*MMP9+SELENBP1* vs *MMP9+SELENBP1+*CTCs count P<0.05; CTCs count vs *MMP9+SELENBP1+*CTCs count P<0.05).

In a multivariable Cox model adjusted for the expression of the two-gene signature (*MMP9+SELENBP1*), CTCs count and clinical characteristics of high risk progression (PSA, alkaline phosphatase, lactate dehydrogenase, hemoglobin levels

Figure 3: Heatmap representing expression profile of the 50 most differentially expressed genes in samples from castration-resistant prostate cancer patients with \geq 5 CTCs compared to those with <5 CTCs (FDR<0.001). Rows represent genes and columns represent hybridized samples. Red pixels: upregulated genes; Green pixels: downregulated genes. The intensity of each color denotes the standardized ratio between each value and the average expression of each gene across all samples.

Α	OS-initial series (I	N:43)		
	Hazard ratio (95% CI)	P-value	Odds ratio (95% CI)	P-value
ABCA13	1.40 (1.15 - 1.70) 0.000673		1.60 (1.16 - 2.20)	0.004
CEACAM	1.47 (1.18 - 1.82) 0.000556		1.73 (1.18 - 2.53)	0.005
CRISP3	1.40 (1.16 - 1.68) 0.000339		1.53 (1.15 - 2.03)	0.003
MMP8	1.44 (1.19 - 1.74) 0.000187		1.60 (1.18 - 2.17)	0.002
MMP9	1.38 (1.15 - 1.65)	0.000593	1.52 (1.15 - 2.00)	0.003
OLFM4	1.46 (1.20 - 1.78)	0.000167	1.64 (1.18 - 2.28)	0.004
SELENBP1	1.21 (1.06 - 1.39)	0.00501	1.44 (1.09 - 1.90)	0.009
В	OS-g	global series (N:7	0)	
В	OS-g Hazard ratio (95% CI)	global series (N:7 P-value	0) Odds ratio (95% CI)	P-value
B ABCA13	OS-g Hazard ratio (95% CI) 1.23 (1.08 - 1.41)	global series (N:7 P-value 0.00224	0) Odds ratio (95% CI) 1.40 (1.13 - 1.81)	P-value 0.00399
B ABCA13 CEACAM	OS-g Hazard ratio (95% CI) 1.23 (1.08 - 1.41) 1.26 (1.09 - 1.47)	P-value 0.00224 0.00232	0) Odds ratio (95% CI) 1.40 (1.13 - 1.81) 1.49 (1.17 - 1.98)	P-value 0.00399 0.0027
B ABCA13 CEACAM CRISP3	OS-g Hazard ratio (95% CI) 1.23 (1.08 - 1.41) 1.26 (1.09 - 1.47) 1.18 (1.04 - 1.33)	slobal series (N:7 P-value 0.00224 0.00232 0.00771	0) Odds ratio (95% CI) 1.40 (1.13 - 1.81) 1.49 (1.17 - 1.98) 1.29 (1.07 - 1.61)	P-value 0.00399 0.0027 0.0138
B ABCA13 CEACAM CRISP3 MMP8	OS-g Hazard ratio (95% CI) 1.23 (1.08 - 1.41) 1.26 (1.09 - 1.47) 1.18 (1.04 - 1.33) 1.22 (1.09 - 1.37)	P-value 0.00224 0.00232 0.00771 0.000655	0) Odds ratio (95% CI) 1.40 (1.13 - 1.81) 1.49 (1.17 - 1.98) 1.29 (1.07 - 1.61) 1.41 (1.16 - 1.77)	P-value 0.00399 0.0027 0.0138 0.00152
B ABCA13 CEACAM CRISP3 MMP8 MMP9	OS-g Hazard ratio (95% CI) 1.23 (1.08 - 1.41) 1.26 (1.09 - 1.47) 1.18 (1.04 - 1.33) 1.22 (1.09 - 1.37) 1.34 (1.15 - 1.57)	P-value 0.00224 0.00232 0.00771 0.000655 0.000151	0) Odds ratio (95% CI) 1.40 (1.13 - 1.81) 1.49 (1.17 - 1.98) 1.29 (1.07 - 1.61) 1.41 (1.16 - 1.77) 1.47 (1.19 - 1.86)	P-value 0.00399 0.0027 0.0138 0.00152 0.000644
B ABCA13 CEACAM CRISP3 MMP8 MMP9 OLFM4	OS-g Hazard ratio (95% CI) 1.23 (1.08 - 1.41) 1.26 (1.09 - 1.47) 1.18 (1.04 - 1.33) 1.22 (1.09 - 1.37) 1.34 (1.15 - 1.57) 1.26 (1.10 - 1.44)	P-value 0.00224 0.00232 0.00771 0.000655 0.000151 0.00102	0) Odds ratio (95% CI) 1.40 (1.13 - 1.81) 1.49 (1.17 - 1.98) 1.29 (1.07 - 1.61) 1.41 (1.16 - 1.77) 1.47 (1.19 - 1.86) 1.38 (1.13 - 1.73)	P-value 0.00399 0.0027 0.0138 0.00152 0.000644 0.00278

Table 4: Univariate analysis of RT-PCR validated genes for predicting OS in: A) the cohort of patients with known CTCs count (N:43); B) the whole series of patients (N:70).

Figure 4: Survival analysis according to *SELENBP1* **and** *MMP9* **expression.** A) Kaplan-Meier curves in patients with known CTCs count (N=43); B) Kaplan-Meier curves in the whole series of patients (N=70).

Patients with CTC count (N				
	HR	95% CI		P-value
MMP9 - SELENBP1	14.53	1.91	110.75	0.0098
Number of CTC (\geq or < 5)	6.95	1.76	27.34	0.0056
PSA	0.99	0.99	1	0.7737
FA	1	1	1	0.02
LDH	0.99	0.99	1	0.3725
Hb	0.97	0.94	1	0.1001
Visceral metastases	2.89	0.45	18.63	0.2638
All patients (N=70)				
	HR	95% CI		P-value
MMP9 - SELENBP1	3.42	1.11	10.52	0.0321
PSA	1	0.99	1	0.6633
FA	0.99	0.99	1	0.237
LDH	1	0.99	1	0.2737
Hb	0.96	0.93	0.99	0.0146
Visceral metastases	1.08	0.34	3.47	0.8901

Table 5: Multivariable Cox models adjusted for CTCs (circulating tumor cells), *SELENBP1+MMP9* expression, PSA (prostatic specific antigen), AP (Alkaline phosphatase), LDH (Lactate dehydrogenase) and presence of visceral metastases.

at time of the sample extraction), the expression of the two-gene signature remained independently predictive of shorter OS (HR 14.53; 95% CI, 1.91 - 110.8; P<0.01); the CTCs count was also predictive of shorter OS (HR 6.94; 95% CI, 1.76 - 27.34; P<0.01). In the global series CTCs count was not included in the multivariate model, because

of the lack of data in 27 samples, and the two-gene signature remained independently predictive of shorter OS (HR 3.42; 95% CI, 1.11 - 10.52; P<0.05) (Table 5).

1-Specificity

Figure 5: Receiver operating characteristic (ROC) curves illustrating CTCs count and two-gene signature (*MMP9+SELENBP1*) alone and combined for the prediction of OS.

DISCUSSION

The CTCs are a fundamental prerequisite to the spread of solid cancers, however, the metastatic process appears to be inefficient since only a subpopulation of CTCs has the potential to initiate clonal metastatic lesions, which leads ultimately to the death of patients [17]. The study of the biological characteristics of cells responsible for tumor aggression is one of the challenges for CTC research.

The current study identified genes and molecular pathways that represent biological differences between groups of metastatic CRPC patients with different CTC load and prognosis by using comprehensive gene expression analysis of blood samples. We observed differential expression of 282 genes between samples with ≥ 5 CTCs and ≤ 5 CTCs (FC > |1.5|). It is important to point out that most of the differential expressed genes had been previously described as associated with PC [16], supporting that molecular alterations present in tumors may be also detected in peripheral blood. Those genes were involved in survival functions such as metabolism, signal transduction, gene expression, and cell growth, death, and movement. Specifically, among the pathways deregulated we found chromosome and telomere maintenance, which is a hallmark of cancer cells compared to normal cells. Also it is of note the involvement of biological oxidation which constitutes the basis for obtaining energy during tumor growth and metastasis process [18]. The deregulation of these pathways is consistent with a previously reported gene expression meta-analysis that identified biological pathways involved in metastasis of breast cancer [19].

We also describe genes and pathways related to lower OS, which are involved in cell survival functions such as metabolism, signal transduction, transport, and movement, providing biological information that may be relevant in the understanding of the process on CRPC progression. Thus, in the RT-PCR validation study we identified seven differentially expressed genes that correlated with lower OS: CRISP3, MMP9, ABCA13, MMP8, OLFM4, SELENBP1 and CEACAM1. Of note, high levels of CRISP3 expression have been previously found in CRPC and metastases [20]. Moreover, metallopeptidases are known, not only to contribute to cancer progression and invasion, but also to signaling pathways that control cell growth, inflammation, or angiogenesis [21]. Specifically, MMP9 is a known ERG target [22], which is one of the genes significantly upregulated in samples with ≥ 5 CTCs. Further, ABCA13 gene belongs to the ATP-binding cassette (ABC) family of transmembrane transporters and has been observed to be significantly deregulated in the castration-resistant human cell lines DU-145 that are resistant to docetaxel [23]. OLFM4 promotes S phase transition in cancer cells as well as being associated with cell adhesion and metastasis

[24]. *SELENBP1* gene is expressed in LNCaP cells and is reversibly downregulated by androgen. However, it is not expressed by either of two androgen-insensitive human lines, PC-3 and DU-145 [25]. The exact function of *SELENBP1* remains unknown. Finally, *CEACAM1* epithelial marker has been related with increased vascularization of prostate cancer [26].

The validation of this seven-gene model in a wider cohort demonstrated the strong prognostic significance of the combination of *SELENBP1* and *MMP9* gene expression. Although the described gene signature did not increase the prognostic significance of CTCs enumeration alone, it adds prognostic ability when it was used in combination with CTCs count. Interestingly, *MMP9* and *SELENBP1* were also upregulated in PBMCs from the short-term survivors patients included in a microarrays study from Komatsu et al. [27]. Authors suggested the relevance of the immune system in CTCs load and, consequently, in clinical and biological behavior of prostate cancer.

Two studies described whole-blood RNA transcriptbased prognostic models in metastatic CRPC. Ross et al. described a six-gene signature (consisting of ABL2, SEMA4D, ITGAL, and C1QA, TIMP1, CDKN1A) that separated patients with CRPC into two risk groups: a lowrisk group with a not reached median survival (more than 34.9 months) and a high-risk group with a median survival of 7.8 months (P<0.0001), that was validated in an independent series of 140 patients. The authors concluded that the six-gene model suggests a possible deregulation of the immune system, a finding that warrants further study [13]. On the other hand, Olmos et al. identified a nine-gene signature associated with worse OS. Expression profiles were analyzed with Bayesian latent process decomposition (LPD) and patients were stratified into distinct prognostic groups, with different survival: the LPD1, with a median OS of 9.2 months vs 21.6 months in the non-LPD1 [7.5-35.6]; P=0.001).

In conclusion, we describe a transcriptional profile in PBMNC associated with CTCs count that shows deregulated pathways that may contribute to PC progression. The knowledge of the molecular alterations associated with CTC load in peripheral blood has revealed genes, which are likely to be responsible for tumor aggressiveness and are potential targets for the development of future treatments.

METHODS

Patients and samples

Inclusion criteria was histologically or citologically documented prostate cancer diagnosis, stage IV, that where considered to be in a CRPC status defined as the Prostate Cancer Clinical Trials Working Group (PCWG2) criteria [28]. Patients were included at the time of progression or before starting a new antitumor therapy. Disease progression was defined as rising levels of PSA or radiographic criteria, following the PCWG2 criteria [28].

The study was designed as a prospective study. Patients were prospectively followed from the time of study inclusion until death or last visit. OS was determined from the date of CTC determination to the date of death or last follow-up visit. The institutional committee on human experimentation approved this study and written informed consent was obtained from all patients.

The design of this study comprised a first stage, were an initial cohort of patients were tested for CTCs count and microarrays analysis, and a second stage, were a selected set of genes were validated by RT-qPCR in the same cohort plus in a new series of patients. Gene expression data were correlated with clinical outcome.

CTCs enumeration

CTCs were counted and isolated as described previously [6, 29]. Briefly, 7.5 mL of peripheral blood was collected in CellSave Preservative Tubes (Veridex, LLC) following manufacturer's instructions. The first 5 mL of blood were discarded to avoid epithelial contamination by the skin during venipuncture. Samples were kept at room temperature for up to 96 hours until processing. CTCs were enriched by immunomagnetic isolation based on the expression of epithelial cellular adhesion molecules (EpCAM) using the CellSearhc Circulating Tumor Cell Kit with an automated cell processor (CellTracks Analyzer II; Veridex, LLC). The ferromagnetic reagent was conjugated with a phycoerythrin fluorochrome. Labeled cells were resuspended in a CellTracks Magnetic cartouche and analyzed by a semi-automated fluorescence cell reader (CellTracks Analyzer II; Veridex, LLC). CD45 was used to determine potential contamination of blood cells with leucocytes. The CTCs were identified by their DAPI (nuclear) and EpCAM expression in the absence of CD45-staining.

Total RNA extraction

Five mL of peripheral blood samples were collected into Monovette EDTA–containing Vacutainers (Sarstedt). Blood specimens were layered onto 4 mL of Ficoll-Paque (GE Healthcare Life Sciences). Mononuclear cells were isolated and total RNA was extracted using Trizol Reagent (Invitrogen Life Technologies) according to manufacturer's instructions. RNA was quantified by ND-1000 Spectrophotometer (Nanodrop Technologies).

cDNA Microarray

For microarrays hybridization, RNAs were purified using the RNeasy Micro kit (Qiagen), and quality were measured by Bioanalyzer technology. cDNA was generated from 300 ng of total RNA using the Ambion WT Expression Kit (Applied Biosystems) and according to manufacturer's instructions.

Fragmented, labeled and amplified cDNA was hybridized to the Human Gene 1.1 ST Array (Affymetrix), which represents approximately 33,000 probe sets. Wash, rinse and scanning of the arrays was performed according to manufacturer's instructions. Quality of the microarray was assessed by dChip [30] and Expression Console (Affymetrix) softwares.

Raw expression data from microarrays were normalized using the robust multiarray algorithm [31] with a custom probe set definition that mapped probes to Entrez Gene IDs (HuGene11stv1_Hs_ENTREZG) [32]. To identify differentially expressed genes between the different microarray study groups we employed Significant Analysis of Microarray [33]. One thousand permutations of the data were used to estimate the False Discovery Rate (FDR) and to select differentially expressed genes.

The CEL files and RMA values were deposited on Gene Expression Omnibus (GSE66532).

qRT-PCR

One μ g of total RNA was reverse transcribed using the High Capacity cDNA Archive Kit (Life Technologies) following manufacturer's instructions. A real-time quantitative reverse transcription PCR (qRT-PCR) was performed in a StepOnePlus Real-Time PCR system (Life Technologies) according to the manufacturer's recommendations. Data was acquired using SDS Software 1.4. Amplification reactions were performed by duplicate. Expression values were based on the quantification cycle (Cq) from target genes relative to the Cq of *ACTB* endogenous gene. Relative expression with respect to each reference group studied was reported as LogRatio. Commercial codes for primers and probes were used to amplify target genes (Life Technologies).

Differential gene expression analysis and validation

The number of CTCs was correlated with transcriptomic profile of genes with a median log2 intensity of 6 (9509 genes, 48.5% of total genes). Patients were clustered using spearman correlation and complete distance method. Principal Component Analysis (PCA) was used to test variability of gene expression according to CTC number. Pathways analysis was performed using

Reactome, an open source, peer-reviewed database of human pathways and processes [34].

Ten among the forty most differentially expressed genes between the <5 and \geq 5 CTCs groups were selected for further validation in PBMNC samples from the same patients studied by microarrays. Among them, those who significantly predict OS were analyzed in a new series of samples, using qRT-PCR.

Statistical analysis methods

Continuous CTC counts data were converted to a binary classification (\geq 5 CTCs vs <5 CTCs). Kaplan-Meier survival curves were generated and evaluated by log-rank test. For multivariate logistic regression, the Akaike information criterion (AIC)-based backward selection was used to drop insignificant terms [35].

The CTC count data were further analyzed with a receiver operating characteristic (ROC) curve to estimate a cut-off value that maximized sensitivity and specificity. The relation between gene expression and clinical outcome was analyzed with Cox proportional hazard model. The stepwise Cox regression model for multivariate analysis was used to evaluate such association. P-value ≤0.05 was considered. The best combination of two genes was selected. The resulting two-gene model was tested on the initial set of 43 patients (training set) and with additional 27 patients. This analysis was done on a masked basis. Individual model risk scores were computed for each individual patient according to the prespecified coefficients established in the training set for the two-gene model. We developed a cutpoint value (Youden Index derived from Risk scores and status) in the training set that was applied to split the samples into two groups according to prognostic risk. Kaplan-Meier survival curves were generated for the two groups on the basis of the prespecified cutpoint. We use the dichotomous variable representing the two risk groups being used as a single covariate.

All computations were performed using R statistical software [36].

ACKNOWLEDGMENTS

The authors would like to thank Teresa Vilella, Raquel Longarón and nurses from Inter Unit department for their kind organization of samples collection. We also thank all patients that accepted to be involved in the study. We thank Elaine Lilly, Ph.D., for correction of the English text. This work was supported by grants from Instituto de Salud Carlos III - Subdirección General de Evaluación y Fomento de la Investigación (PI07/0388, PI12/01226 and RD07/0020/2014) and Cellex Foundation. This work was developed at the Centro Esther Koplowitz, Barcelona, Spain.

REFERENCES

- Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015; 136: E359-E386.
- Pantel K, Cote RJ, Fodstad O. Detection and clinical importance of micrometastatic disease. J Natl Cancer Inst. 1999; 91: 1113-1124.
- Danila DC, Pantel K, Fleisher M, Scher HI. Circulating tumors cells as biomarkers: progress toward biomarker qualification. Cancer J. 2011; 17: 438-450.
- Miller MC, Doyle GV, Terstappen LW. Significance of Circulating Tumor Cells Detected by the CellSearch System in Patients with Metastatic Breast Colorectal and Prostate Cancer. J Oncol. 2010; 2010: 617421.
- Riethdorf S, Fritsche H, Muller V, Rau T, Schindlbeck C, Rack B et al. Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the CellSearch system. Clin Cancer Res. 2007; 13: 920-928.
- de Bono JS, Scher HI, Montgomery RB, Parker C, Miller MC, Tissing H et al. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin Cancer Res. 2008; 14: 6302-6309.
- Stott SL, Lee RJ, Nagrath S, Yu M, Miyamoto DT, Ulkus L et al. Isolation and characterization of circulating tumor cells from patients with localized and metastatic prostate cancer. Sci Transl Med. 2010; 2: 25ra23.
- Attard G, Swennenhuis JF, Olmos D, Reid AH, Vickers E, A'Hern R et al. Characterization of ERG, AR and PTEN gene status in circulating tumor cells from patients with castration-resistant prostate cancer. Cancer Res. 2009; 69: 2912-2918.
- 9. Shaffer DR, Leversha MA, Danila DC, Lin O, Gonzalez-Espinoza R, Gu B et al. Circulating tumor cell analysis in patients with progressive castration-resistant prostate cancer. Clin Cancer Res. 2007; 13: 2023-2029.
- Leversha MA, Han J, Asgari Z, Danila DC, Lin O, Gonzalez-Espinoza R et al. Fluorescence in situ hybridization analysis of circulating tumor cells in metastatic prostate cancer. Clin Cancer Res. 2009; 15: 2091-2097.
- Scher HI, Jia X, de Bono JS, Fleisher M, Pienta KJ, Raghavan D et al. Circulating tumour cells as prognostic markers in progressive, castration-resistant prostate cancer: a reanalysis of IMMC38 trial data. Lancet Oncol. 2009; 10: 233-239.
- 12. Gupta GP, Massague J. Cancer metastasis: building a framework. Cell. 2006; 127: 679-695.
- Ross RW, Galsky MD, Scher HI, Magidson J, Wassmann K, Lee GS et al. A whole-blood RNA transcript-based prognostic model in men with castration-resistant prostate cancer: a prospective study. Lancet Oncol. 2012; 13: 1105-

1113.

- Olmos D, Brewer D, Clark J, Danila DC, Parker C, Attard G et al. Prognostic value of blood mRNA expression signatures in castration-resistant prostate cancer: a prospective, two-stage study. Lancet Oncol. 2012; 13: 1114-1124.
- Mellado B, Del C, V, Colomer D, Gutierrez L, Castel T, Quinto L et al. Tyrosinase mRNA in blood of patients with melanoma treated with adjuvant interferon. J Clin Oncol. 2002; 20: 4032-4039.
- Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010; 18: 11-22.
- Fidler IJ. The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat Rev Cancer. 2003; 3: 453-458.
- Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011; 11: 85-95.
- 19. Thomassen M, Tan Q, Kruse TA. Gene expression metaanalysis identifies metastatic pathways and transcription factors in breast cancer. BMC Cancer. 2008; 8: 394.
- Dahlman A, Edsjo A, Hallden C, Persson JL, Fine SW, Lilja H et al. Effect of androgen deprivation therapy on the expression of prostate cancer biomarkers MSMB and MSMB-binding protein CRISP3. Prostate Cancer Prostatic Dis. 2010; 13: 369-375.
- 21. Rucci N, Sanita P, Angelucci A. Roles of metalloproteases in metastatic niche. Curr Mol Med. 2011; 11: 609-622.
- 22. Tomlins SA, Laxman B, Varambally S, Cao X, Yu J, Helgeson BE et al. Role of the TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia. 2008; 10: 177-188.
- 23. Marin-Aguilera M, Codony-Servat J, Kalko SG, Fernandez PL, Bermudo R, Buxo E et al. Identification of docetaxel resistance genes in castration-resistant prostate cancer. Mol Cancer Ther. 2012; 11: 329-339.
- 24. Yu L, Wang L, Chen S. Olfactomedin 4, a novel marker for the differentiation and progression of gastrointestinal cancers. Neoplasma. 2011; 58: 9-13.
- Yang M, Sytkowski AJ. Differential expression and androgen regulation of the human selenium-binding protein gene hSP56 in prostate cancer cells. Cancer Res. 1998; 58: 3150-3153.
- Tilki D, Irmak S, Oliveira-Ferrer L, Hauschild J, Miethe K, Atakaya H et al. CEA-related cell adhesion molecule-1 is involved in angiogenic switch in prostate cancer. Oncogene. 2006; 25: 4965-4974.
- 27. Komatsu N, Matsueda S, Tashiro K, Ioji T, Shichijo S, Noguchi M et al. Gene expression profiles in peripheral blood as a biomarker in cancer patients receiving peptide vaccination. Cancer. 2012; 118: 3208-3221.
- 28. Scher HI, Halabi S, Tannock I, Morris M, Sternberg CN, Carducci MA et al. Design and end points of clinical trials for patients with progressive prostate cancer and castrate levels of testosterone: recommendations of the Prostate

Cancer Clinical Trials Working Group. J Clin Oncol. 2008; 26: 1148-1159.

- Allard WJ, Matera J, Miller MC, Repollet M, Connelly MC, Rao C et al. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res. 2004; 10: 6897-6904.
- 30. Department of **Biostatistics** and Computational Biology.Dana-Farber Cancer Institute and Harvard School of Public Health 2012. Ref Type: Electronic Citation
- 31. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP. Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 2003; 31: e15.
- 32. Dai M, Wang P, Boyd AD, Kostov G, Athey B, Jones EG et al. Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res. 2005; 33: e175.
- Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A. 2001; 98: 5116-5121.
- Matthews L, Gopinath G, Gillespie M, Caudy M, Croft D, de BB et al. Reactome knowledgebase of human biological pathways and processes. Nucleic Acids Res. 2009; 37: D619-D622.
- Venables WN, Ripley BD. Modern applied statistics with S, 4th ed. New York: 2002.
- R Development Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing, 2011.

Tercer Treball

TMPRSS2-ERG in Blood and Docetaxel Resistance in Metastatic Castration-resistant Prostate Cancer

Els taxans, docetaxel i cabazitaxel, són el tractament quimioteràpic que han demostrat una major eficàcia en el CP. Però degut a que no hi ha biomarcadors per a predir l'eficàcia d'aquests fàrmacs, un percentatge important de pacients acaben rebent aquests tractaments sense obtenir-ne un benefici clínicament rellevant.

El gen de fusió *TMPRSS2-ERG* és específic del CP i acaba produint la sobreexpressió d'una forma truncada d'ERG, que segons dades preclíniques, s'uneix als dímers de tubulina i impedeix la interacció entre els taxans i la tubulina, i per tant l'acció d'aquests tipus de fàrmacs. A més a més, la presència d'aquest gen de fusió s'ha associat amb el procés d'EMT. Aquest fenomen també esta implicat en la resistència als taxans en CP.

L'objectiu d'aquest treball és estudiar la presència del gen *TMPRSS2-ERG* en mostres de sang de pacients afectes de CPRC tractats amb taxans i correlacionar-ho amb l'eficàcia del tractament.

Pacients i Mètode:

Mitjançant qRT-PCR s'ha estudiat l'expressió gènica de la variant III de *TMPRSS2-ERG* en mostres de RNA provinents de la fracció de PBMCs. S'han inclòs tant pacients afectes de CPRC tractats amb taxans com controls sans i s'han categoritzar els pacients com positius si el cicle de quantificació de *TMPRSS2-ERG* i del control endogen eren menors a 35 i per duplicat. En cas contrari, al detectar-se únicament l'expressió del gen endogen s'han considerat negatius per *TMPRSS2-ERG*. També s'han analitzat altres gens (*AR*,

C1ORF116 i *KLK3*) relacionats amb el CP com a marcadors indirectes de la presència de CTCs. En 33 casos s'ha realitzat el mateix anàlisi però en mostres de RNA provinents de teixit tumoral.

Resultats:

En cap de les 24 mostres provinents de voluntaris sans s'ha detectat la presència de *TMPRSS2-ERG*. Només en les mostres de pacients afectes de CPRC amb més de 5 CTCs, provinents d'un estudi previ³⁵⁵, s'ha detectat aquest gen de fusió (7 de 22 pacients). D'altra banda, els nivells de *KLK3*, com a marcador indirecte de la presència de CTCs, han estat superiors en les mostres *TMPRSS2-ERG* positives respecte a les negatives. El gen de fusió tampoc s'ha detectat en mostres *KLK3* negatives.

En la cohort de pacients tractats amb docetaxel, en el 16% dels casos s'ha detectat la presència de *TMPRSS2-ERG* i aquests pacients han presentat una menor taxa de respostes per PSA (12.5% vs. 68.3%, p=0.005) i una menor reducció en els nivells de PSA (-11.6% vs. -60.2%, p=0.002). A més a més, la presència d'aquest gen s'ha correlacionat amb una pitjor supervivència lliure de progressió bioquímica (3.12 vs. 7.47 mesos, p<0.001), clínica/radiològica (3.08 vs. 8.23 mesos, p<0.001) i global (11.2 vs. 26.9 mesos, p=0.003). En l'anàlisi multivariat, *TMPRSS2-ERG* ha esdevingut un factor pronòstic independent, tant per a la supervivència lliure de progressió bioquímica (confirmant-se aquest resultats mitjançant una validació interna segons el mètode de Brier.

D'altra banda, s'ha analitzat si la detecció de *KLK3*, com a marcador indirecta de CTCs, podia influir en l'evolució dels pacients. Classificant els pacients en funció de la presència dels dos gens, *TMPRSS2-ERG* i *KLK3*, s'ha vist que els pacients positius per ambdós gens presentaven una menor resposta al tractament i pitjor supervivència, mentre que no s'han trobat diferencies en funció de *KLK3* entre els pacients *TMPRSS2-ERG* negatius.

En aquest treball també s'han analitzat 22 pacients tractats amb cabazitaxel. La taxa de detecció de *TMPRSS2-ERG* ha estat superior en aquests pacients respecte els pacients tractats amb docetaxel (22.7% vs. 16%). No s'han trobat diferencies en la taxa de respostes però els pacients positius van presentar una pitjor supervivència lliure de progressió bioquímica i una tendència a una pitjor supervivència lliure de progressió clínica/radiològica i global.

A més a més, s'ha analitzat de forma seqüencial la presència del gen *TMPRSS2*-*ERG* en 68 mostres de sang provinents de 27 pacients. Es va veure com en un 41% dels casos que tenien una determinació basal negativa s'acabava positivitzant en el moment de la progressió de la malaltia, suggerint una possible selecció clonal de cèl·lules tumorals *TMPRSS2-ERG* positives i/o un increment en el nombre de CTCs.

La detecció de *TMPRSS2-ERG* en teixit ha estat del 48.5%, i la concordança entre la detecció en mostres de sang i teixit ha estat del 69.7%. El valor predictiu de resposta a docetaxel de *TMPRSS2-ERG* analitzat en mostres de teixit ha estat similar al de la sang pel que fa a la supervivència lliure de progressió bioquímica però no així per la supervivència lliure de progressió clínica/radiològica o la taxa de respostes.

EUROPEAN UROLOGY 70 (2016) 709-713

available at www.sciencedirect.com journal homepage: www.europeanurology.com

Brief Correspondence

TMPRSS2-ERG in Blood and Docetaxel Resistance in Metastatic Castration-resistant Prostate Cancer

Òscar Reig^{a,b,†}, Mercedes Marín-Aguilera^{a,c,†}, Gemma Carrera^d, Natalia Jiménez^{a,c}, Laia Paré^{a,c}, Susana García-Recio^{a,c}, Lydia Gaba^b, Maria Verónica Pereira^b, Pedro Fernández^{e,f}, Aleix Prat^{a,b,f}, Begoña Mellado^{a,b,*}

^a Translational Genomics and Targeted Therapeutics in Solid Tumours Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; ^b Medical Oncology Department, Hospital Clínic, Barcelona, Spain; ^c Fundació Clínic per a la Recerca Biomèdica, Barcelona, Spain; ^d Medical Oncology Department, Hospital Plató, Barcelona, Spain; ^e Department of Pathology, Hospital Clínic, Barcelona, Spain; ^f University of Barcelona, Barcelona, Spain

Article info

Article history: Accepted February 11, 2016

Associate Editor: James Catto

Keywords: Biomarker Docetaxel Prostate cancer Resistance TMPRSS2-ERG

Abstract

TMPRSS2-ERG rearrangement is a genetic alteration exclusive to prostate cancer, associated with taxane resistance in preclinical models. Its detection in blood samples of metastatic resistant prostate cancer (mCRPC) patients may indicate the presence of circulating tumour cells with this genetic alteration and may predict taxane resistance. To test this hypothesis, we evaluated TMPRSS2-ERG expression using quantitative reverse transcription polymerase chain reaction in peripheral blood mononuclear cells and tumour tissue from mCPRC patients treated with taxanes. We examined peripheral blood mononuclear cells from 24 healthy controls, 50 patients treated with docetaxel, and 22 with cabazitaxel. TMPRSS2-ERG was detected in 0%, 16%, and 22.7% of them, respectively. In docetaxel-treated patients TMPRSS2-ERG detection correlated with lower prostatic-specific antigen (PSA) response rate (12.5% vs 68.3%, p = 0.005), PSAprogression-free survival (PFS; 3.1 mo vs 7.5 mo, p < 0.001), clinical/radiological-PFS (3.1 mo vs 8.2 mo, p < 0.001), and it was independently associated with PSA-PFS (hazard ratio 3.7; p = 0.009) and clinical/radiological-PFS (hazard ratio 6.3; p < 0.001). Moreover, TMPRSS2-ERG also predicted low PSA-PFS to cabazitaxel. At progression, a switch from negative to positive TMPRSS2-ERG was observed in 41% of patients with undetected TMPRSS2-ERG at the baseline sample. Tissue TMPRSS2-ERG expression correlated with lower PSA-PFS (p = 0.02) to docetaxel. Our findings support the potential role of TMPRSS2-ERG detection as a biomarker to tailor treatment strategies. Patient summary: Taxanes are the most active chemotherapy agents in metastatic

resistant prostate cancer. However, not all patients respond to this therapy. In the present study we show that the detection of *TMPRSS2-ERG* in blood from metastatic resistant prostate cancer patients predicts resistance to docetaxel and it may be useful to select treatment and to avoid possible toxicities in refractory patients.

© 2016 European Association of Urology. Published by Elsevier B.V. All rights reserved.

[†] These authors contributed equally to this work.

* Corresponding author. Medical Oncology Department, Hospital Clínic of Barcelona, Villarroel 170, Barcelona 08036, Spain. Tel. +34 93 227 54 00; Fax: +34 93 454 65 20. E-mail address: bmellado@clinic.ub.es (B. Mellado).

http://dx.doi.org/10.1016/j.eururo.2016.02.034 0302-2838/© 2016 European Association of Urology. Published by Elsevier B.V. All rights reserved.

Recent advances have seen the introduction of new agents for metastatic castration resistant prostate cancer (mCRPC). Whilst taxanes are the most active chemotherapeutic agents in mCRPC [1,2], cabazitaxel is approved for docetaxel-resistant tumours [3]. As there are no clinical biomarkers to predict taxane response, many nonresponding patients receive these treatments without benefit. We investigated whether the presence of the TMPRSS2-ERG fusion could be used to guide taxane use. This gene fusion appears specific to prostate cancer and leads to a high expression of a truncated functional ERG protein [4], which may alter taxane response. Galletti et al [5] demonstrated that ERG binds to soluble tubulin and decreases the taxane-tubulin interaction, leading to impaired taxane sensitivity. Furthermore, TMPRSS2-ERG induces epithelial-to-mesenchymal transition, which is also associated with taxane resistance in CRPC [6].

To test our hypothesis, we collected peripheral blood from 50 men receiving docetaxel, 22 receiving cabazitaxel (Supplementary Table 1 and 2), and 24 healthy volunteers included as negative controls. Healthy volunteers were nononcologic patients admitted for different surgical treatments. This cohort is part of a larger prospective collection (Supplementary Fig. 1). Sequential blood samples were available from 27 (36.5%; interval from initial sample collection 11.6 mo \pm 8.4 mo) and matching prostate cancer formalin-fixed paraffin-embedded tissue from 33 (44.6%) patients (Supplementary Fig. 1). We studied the peripheral blood mononuclear cells (PBMC) fraction from the blood, as circulating tumour cells (CTCs) may miss epithelial markers used for its isolation due to an epithelial-to-mesenchymal transition phenomenon [7]. We measured TMPRSS2-ERG mRNA expression by quantitative reverse-transcription polymerase chain reaction in each sample using Taqman assay technology. Specifically, commercial primers for TMPRSS2-ERG detected the most commonly reported fusion transcript TMPRSS2 exon 1 fused to ERG exon 4. Patients were categorized as TMPRSS2-ERG positive when both TMPRSS2-ERG and housekeeping genes were detectable (quantification cycle < 35) in duplicate samples. They were considered TMPRSS2-ERG negative when housekeeping genes but not *TMPRSS2-ERG* were detectable (quantification cycle > 35 or undetermined). Additionally, the expression of prostate specific genes (AR, C10RF116, and KLK3) was analyzed in PBMC as indirect markers of CTCs. Full study methods are described in the Supplementary material. The hospital's Institutional Ethics Committee approved the study (approval number: 2012_7532). All participants provided written informed consent.

No *TMPRSS2-ERG* was detected in the 24 healthy volunteers. To confirm the prostatic origin of *TMPRSS2-ERG* detection in PBMCs we tested 45 mCRPC patients with known CTC count from a previous study [8]. *TMPRSS2-ERG* was only detected in patients with \geq 5 CTCs (seven of 22; 32%; *p* = 0.004). Moreover, in the present study, we found higher *KLK3* levels in *TMPRSS2-ERG*-positive samples than in negative ones. No *TMPRSS2-ERG* was detected in *KLK3* negative samples (Supplementary Fig. 2). Our results support the prostate cancer specificity of *TMPRSS2-ERG*

and enable its detection over a background of native mRNA from other mononuclear cells apart from CTCs.

Among 50 docetaxel-treated patients, eight (16%) were TMPRSS2-ERG-positive and 42 negative. TMPRSS2-ERGpositive patients had a lower prostatic-specific antigen (PSA) response rate than negative (12.5% vs 68.3%, p = 0.005,respectively) and a lower PSA reduction (Fig. 1A and 1B). TMPRSS2-ERG significantly correlated with lower PSAprogression free survival (PFS), clinical/radiological (C/R)-PFS, and overall survival (Fig. 1C-E). Moreover, TMPRSS2-ERG was independently associated with PSA-PFS (hazard ratio 3.7; 95% confidence interval 1.4-10; *p* = 0.01) and C/R-PFS (hazard ratio 6.3; 95% confidence interval 2.3-17.3; p < 0.001; Supplementary Table 3). We observed that TMPRSS2-ERG-positive patients had more adverse prognostic factors compared with TMPRSS2-ERG-negative (Supplementary Table 1). However, only TMPRSS2-ERG was an independent prognostic factor for PSA-PFS and C/R-PFS in the multivariate analysis. An internal validation using 100 bootstrap samples and a Brier score was performed, obtaining 0.1476 and 0.1572 scores for PSA-PFS and C/R-PFS, respectively. This result supports a good accuracy of the model as a predictor of docetaxel outcome. A larger multicentre independent prospective validation study is ongoing.

We also analyzed if the detection of *KLK3*, as an indirect marker of CTCs, may affect clinical outcome. *TMPRSS2-ERG*-negative/*KLK3*-positive and *TMPRSS2-ERG*-negative/*KLK3*-negative patients had a better PSA response, PSA-PFS, and C/R-PFS than *TMPRSS2-ERG*-positive/*KLK3*-positive patients (Supplementary Fig. 3; Supplementary Table 4).

Among the 22 cabazitaxel-treated patients, five (22.7%) were *TMPRSS2-ERG*-positive. No differences in PSA response rate or best PSA response according to *TMPRSS2-ERG* detection were observed. However, *TMPRSS2-ERG*-positive patients had poorer PSA-PFS and a trend to a poorer C/R-PFS and overall survival compared with negative patients (Fig. 2A–C; Supplementary Fig. 4A and 4B). A larger number of patients are required to define the association between *TMPRSS2-ERG* and cabazitaxel resistance.

Sixty-eight sequential PBMC samples were collected from 27 (36.5%) of 74 patients that underwent systemic treatment, 19 (63.3%) of them with docetaxel therapy. Interestingly, seven (41.2%) of 17 negative baseline samples switched to a positive expression at disease progression (Fig. 2D). This may suggest a possible clonal selection of refractory *TMPRSS2-ERG*-positive tumour cells and/or an increase of *TMPRSS2-ERG*-positive CTC amount.

TMPRSS2-ERG expression in tumour tissue was detected in 16 (48.5%) of the 33 patients with available tumour tissue samples, a percentage similar to previously described in the literature [5]. Among the 33 patients where both tumour tissue and PBMC samples were available, we analysed the concordance in *TMPRSS2-ERG* expression between samples types. We considered concordant results when at least one positive PBMC and a positive tumour tissue samples were observed (n = 6), or when both were negative (n = 17). These were observed in 23 (69.7%) out of 33 patients. In 10 patients (30.3%) with positive *TMPRSS2-ERG* tumours,

Fig. 1 – Docetaxel outcome according to *TMPRSS2-ERG* status in peripheral blood mononuclear cells samples. (A) Waterfall plot representing individual prostate-specific antigen (PSA) response. Red line shows a ≥50% reduction in PSA level from baseline, indicating a PSA response (Fisher's exact test). (B) Boxplot representing percentage of change in best PSA response (Wilcoxon rank sum test). (C) Kaplan-Meier curves for PSA progression-free survival (PSA-PFS); median PSA-PFS was 3.12 mo (95% confidence interval [CI], 2.07 to not reached) in *TMPRSS2-ERG* positive patients and 7.47 mo (95% CI, 5.83–8.27) in *TMPRSS2-ERG* negative patients. (D) Kaplan-Meier curves for clinical/radiologic PFS (C/R-PFS); median C/R-PFS was 3.08 mo (95% CI, 2.57–4.17) in *TMPRSS2-ERG* positive patients and 8.23 mo (95% CI, 7.1–10.03) in *TMPRSS2-ERG* negative patients. (E) Kaplan-Meier curves for overall survival; median overall survival was 11.2 mo (95% CI, 4.67 to not reached) in *TMPRSS2-ERG* positive patients. HR = hazard ratio.

PBMCs were negative. No positive PBMCs were observed among patients with negative tumours (Fig. 2D). The lack of detection of *TMPRSS2-ERG* in PBMC from patients with *TMPRSS2-ERG* positive tumours could be explained by the limitations of quantitative reverse-transcription polymerase chain reaction sensitivity, the absence of CTCs, and/or tumour heterogeneity. Indeed, the presence of *TMPRSS2-ERG* rearrangement may be heterogeneous within the same primary tumour, although its expression is consistent within the different metastatic sites from the same patient [9]. Among 25 docetaxel-treated patients with available tissue samples, 14 (56%) were *TMPRSS2-ERG*-positive, finding that is correlated with a shorter PSA-PFS but no statistical differences were found in PSA response rate or C/R-PFS (Fig. 2E–G). If the clinical utility of *TMPRSS2-ERG* detection in blood or CTCs as a biomarker of taxane resistance is superior to its determination in primary tumours has to be determined.

In conclusion, the present study suggests that the detection of TMPRSS2-ERG mRNA in blood may be a

Fig. 2 – Cabazitaxel and docetaxel outcome according to *TMPRSS2-ERG* status in peripheral blood mononuclear cells (PBMCs) samples and tissue. (A) Waterfall plot representing individual prostate-specific antigen (PSA) response of cabazitaxel-treated patients according to *TMPRSS2-ERG* status; red line shows \geq 50% reduction in PSA level from baseline, indicating a PSA response. (B) Kaplan-Meier curves for PSA-progression-free survival (PSA-PFS) in cabazitaxel-treated patients; median PSA-PFS was 2.3 mo (95% confidence interval [CI], 1.6 to not reached) in *TMPRSS2-ERG*-positive patients and 4.8 mo (95% CI, 3.5–6.3) in *TMPRSS2-ERG*-negative patients. (C) Kaplan-Meier curves for clinical/radiologic-PFS in cabazitaxel-treated patients; median clinical/radiologic-PFS was 4.1 mo (95% CI, 2.1 to not reached) in *TMPRSS2-ERG*-positive patients and 5.9 mo (95% CI, 3.8–8.1) in *TMPRSS2-ERG*-negative patients. (D) *TMPRSS2-ERG* expression in tissue and sequential PBMC samples. Concordance between *TMPRSS2-ERG* expression in formalin-fixed paraffin-embedded (FFPE) samples and PBMC baseline sample (S-0) is shown on the left and right panel. Right panel includes sequential PBMC samples (S-1, S-2, and S-3). Docetaxel-treated patients are represented with a blue box. (E) Waterfall plot representing individual PSA response according to *TMPRSS2-ERG* expression on tissue. (F) Kaplan-Meier plot representing PSA-PFS in docetaxel-treated patients according to *TMPRSS2-ERG*-negative patients. (G) Kaplan-Meier plot representing PSA-PFS in docetaxel-treated patients according to *TMPRSS2-ERG*-negative patients. (G) Kaplan-Meier plot representing C/R-PFS in docetaxel-treated patients according to *TMPRSS2-ERG*-negative patients. (G) Kaplan-Meier plot representing C/R-PFS in docetaxel-treated patients according to *TMPRSS2-ERG*-negative patients. (G) Kaplan-Meier plot representing C/R-PFS in docetaxel-treated patients according to *TMPRSS2-ERG*-negative patients. (G) Kaplan-Meier plot representing C/R-PFS in docetaxel-t

^a Samples collected on castration resistance status.

potential biomarker of docetaxel resistance in mCRPC patients. The specificity of this biomarker in prostate cancer and the noninvasive sample collection would facilitate its clinical application.

Author contributions: Begoña Mellado had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design: Reig, Marín-Aguilera, Mellado.

Acquisition of data: Reig, Marín-Aguilera, Carrera, Jiménez, García-Recio, Gaba, Pereira, Fernández.

Analysis and interpretation of data: Reig, Marín-Aguilera, Paré, Mellado. Drafting of the manuscript: Reig, Marín-Aguilera, Mellado. Critical revision of the manuscript for important intellectual content: Reig, Marín-Aguilera, Prat, Mellado.

Statistical analysis: Reig, Paré, Marín-Aguilera. Obtaining funding: Mellado. Administrative, technical, or material support: None. Supervision: Mellado. Other: None.

Financial disclosures: Begoña Mellado certifies that all conflicts of interest, including specific financial interests and relationships and affiliations relevant to the subject matter or materials discussed in the manuscript (eg, employment/affiliation, grants or funding, consultancies, honoraria, stock ownership or options, expert testimony, royalties, or patents filed, received, or pending), are the following: None.

Funding/Support and role of the sponsor: This work was supported by grants from Instituto de Salud Carlos III-Subdirección General de Evaluación y Fomento de la Investigación (PI07/0388, PI12/01226, RD07/0020/2014), Ministerio de Economía y Competitividad (SAF2012-40017-C02-02), and Cellex Foundation. Reig is a recipient of an award from Hospital Clínic de Barcelona (Premi Fi de Residència Emili Letang).

Acknowledgments: We thank Teresa Vilella and the nurses from the Inther-Unit department for kindly organising the sample collection, as well as all patients and healthy controls who participated in the study. We thank Lourdes Mengual and Mercedes Ingelmo from the Laboratory of Urology at Hospital Clínic of Barcelona for kindly providing some of the blood samples from the healthy controls used in this study. We also thank Elaine Lilly, Ph.D, for review of the English text. We are indebted to the Biobank core facility of the IDIBAPS for technical help. This study was developed at the Centro Esther Koplowitz, Barcelona, Spain.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j. eururo.2016.02.034.

References

 Tannock IF, de WR, Berry WR, et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 2004;351:1502–12.

- [2] Petrylak DP, Tangen CM, Hussain MH, et al. Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med 2004;351:1513–20.
- [3] de Bono JS, Oudard S, Ozguroglu M, et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet 2010;376:1147–54.
- [4] Tomlins SA, Rhodes DR, Perner S, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 2005; 310:644–8.
- [5] Galletti G, Matov A, Beltran H, et al. ERG induces taxane resistance in castration-resistant prostate cancer. Nat Commun 2014;5: 5548.
- [6] Marin-Aguilera M, Codony-Servat J, Reig O, et al. Epithelial-tomesenchymal transition mediates docetaxel resistance and high risk of relapse in prostate cancer. Mol Cancer Ther 2014;13:1270–84.
- [7] Gorges TM, Tinhofer I, Drosch M, et al. Circulating tumour cells escape from EpCAM-based detection due to epithelial-to-mesenchymal transition. BMC Cancer 2012;12:178.
- [8] Marin-Aguilera M, Reig O, Lozano JJ, et al. Molecular profiling of peripheral blood is associated with circulating tumour cells content and poor survival in metastatic castration-resistant prostate cancer. Oncotarget 2015;6:10601–16.
- [9] Barry M, Perner S, Demichelis F, Rubin MA. TMPRSS2-ERG fusion heterogeneity in multifocal prostate cancer: clinical and biologic implications. Urology 2007;70:630–3.

www.esou17.org

ESOU17

14th Meeting of the EAU Section of Oncological Urology

20-22 January 2017, Barcelona, Spain

EAU Events are accredited by the EBU in compliance with the UEMS/EACCME regulations

European Association of Urology

DISCUSSIÓ

S'estima que al 2018 es van diagnosticar més de 1.3 milions de casos nous de CP i aquest provocarà la mort de més de 300.000 homes a nivell mundial¹.

Tot i que en la malaltia localitzada les dades de curació són altes, en malaltia localment avançada i, especialment en malaltia metastàtica, aquestes empitjoren de forma important, sent les curacions anecdòtiques en aquesta última. Per tant, cal seguir treballant per tal de millorar el pronòstic d'aquests pacients.

D'altre banda, moltes vegades la malaltia reapareix després d'un interval llarg de temps respecte el diagnòstic i tractament de la malaltia localitzada. Per aquest motiu, la biologia del tumor primari no té per què ser la mateixa que en la malaltia metastàtica. També cal destacar que el patró de disseminació d'aquesta malaltia, sent principalment a nivell ossi, dificulta encara més l'obtenció de teixit tumoral que pugui ser útil per a l'estudi de la biologia de la malaltia en fases més avançades d'aquesta. Tots aquests factors, entre d'altres, han impedit l'avanç en el desenvolupament de biomarcadors i nous tractaments per a la malaltia avançada.

Per tal de superar aquestes limitacions hem optat per aplicar diferents metodologies. Per una banda, hem estudiat els mecanismes de resistència a la quimioteràpia, docetaxel, i la supressió androgènica en CP localitzat d'alt risc tractat de forma neoadjuvant amb aquests fàrmacs i els resultats s'han validat en línies cel·lulars de CPRC (Treball 1). D'altra banda, hem estudiat de forma indirecta les CTCs de pacients afectes de CPRC mitjançant l'estudi de la capa de PBMCs. L'estudi d'expressió gènica en les PBMCs ens ha permès desenvolupar un model per a predir la supervivència global d'aquests pacients (Treball 2) i establir *TMPRSS2-ERG* com a biomarcador en aquestes mostres per a predir la resistència al docetaxel (Treball 3).

En el primer treball s'ha utilitzat el tumor residual d'espècimens de prostatectomia radical tractats de forma neoadjuvant amb supressió androgènica i docetaxel per a estudiar els mecanismes implicats en la resistència a aquests

fàrmacs. Cal destacar que, per la pròpia natura d'aquest treball, els mecanismes aquí descrits poden ser comuns en la resistència a ambdós tractaments.

Aquesta estratègia, l'estudi de la peça quirúrgica després d'administrar-se un tractament sistèmic neoadjuvant, ha estat àmpliament emprada per a estudiar els mecanismes de resistència a fàrmacs en patologies en les que el tractament neoadjuvant ha demostrat eficàcia i s'utilitza en la pràctica clínica habitual com en el càncer de mama³⁵⁶.

En el CP, diferents grups han utilitzat aquesta metodologia, tant per a estudiar la resistència a la supressió androgènica com al docetaxel, però sempre en el context d'assajos clínics ja que en aquesta patologia aquest no és un tractament estàndard²⁴.

Per un banda, s'ha vist com el tractament amb supressió androgènica neoadjuvant, tot i reduir en més del 75% els nivells d'androgen en teixit, no redueix l'expressió de diferents gens de resposta a andrògens, com el *AR* i PSA de forma significativa³⁵⁷. Això s'ha vist de forma independent de la durada del tractament de supressió androgènica neoadjuvant³⁵⁷. Aquesta supressió subòptima pot produir canvis adaptatius permetent la supervivència de les cèl·lules de CP en un ambient pobre en andrògens³⁵⁷.

Ryan CJ i col. van estudiar la peça de prostatectomia en una cohort de 21 pacients després de tres mesos de supressió androgènica neoadjuvant i en 23 pacients tractats només de forma quirúrgica com a controls. Es va comparar l'expressió gènica dels pacients que havien recaigut amb la dels que estaven lliures de malaltia. En els tumor dels pacients que havien recaigut, tot i rebre tractament neoadjuvant els nivells d'expressió de gens regulats per andrògens com *KLK3*, *FOLH1* o *PAP*, entre d'altres, eren superiors respecte als pacients lliures de recaiguda. Per immunohistoquímica, aquests mateixos pacients presentaven nivells més alts de PSA respecte els pacients tractats però sense recaiguda i alhora similars als pacients control³⁵⁸.

En altres treballs també s'ha trobat una major sobreexpressió de *AR* en pacients tractats amb supressió androgènica abans de la cirurgia respecte pacients no tractats, i s'han confirmat aquestes dades en experiments *in vitro* amb les línies cel·lulars sensibles a andrògens LNCaP³⁵⁹.

Els nostres resultats concorden amb aquests treballs ja que hem trobat sobreexpressió de *AR* i de gens regulats per ell mateix, com *ZEB1*, *IL6*, *TGFBR3* o *KLF9*, en els tumors dels pacients tractats, tot i que hi hagi resposta per PSA en sèrum. A més a més, uns nivells més elevats de AR tant a nivell de mRNA com a nivell de proteïna, en aquest últim cas en la seva localització citoplasmàtica, s'associen a un major risc de recaiguda en la nostra cohort de pacients. Aquestes dades ens permeten concloure que una senyalització persistent a través de la via del AR pot associar-se amb la resistència al tractament i un major risc de recaiguda de la malaltia.

Un altre mecanisme cel·lular induït per la supressió androgènica és la senescència cel·lular^{360,361}. Aquest és un procés irreversible en el que les cèl·lules perden la seva capacitat de replicació com a resposta a diferents tipus de noxes (p.ex.: escurçament dels telòmers, estrès ambiental o induïda per oncogens)³⁶². La senescència s'ha descrit com un mecanisme protector contra el càncer en etapes precoces però també pot promoure el seu desenvolupament a través de la secreció de proteïnes com citocines proinflamatories o factors de creixement que actuaran de forma paracrina en les cèl·lules tumorals properes afavorint la progressió tumoral³⁶³. En models in vitro de CP s'ha descrit com la supressió androgènica pot afavorir el desenvolupament de senescència en les cèl·lules tumorals mitjançant la infraexpressió de Skp2 i, alhora, aquestes cèl·lules senescents segreguen factors que promouen la progressió tumoral³⁶⁰. En mostres de pacients tractats amb supressió androgènica neoadjuvant s'ha descrit un increment de cèl·lules tumorals senescents, mitjançant l'estudi de GLB1, especialment en tumors amb un Gleason intermig (6 i 7) i després d'un tractament neoadjuvant prolongat³⁶¹.

En altres treballs s'ha intentat una supressió més potent de la via del AR mitjançant el tractament combinat de supressió androgènica amb inhibidors de

5-alfa-reductasa (dutasterida), CYP11A1/CYP17A1 (ketoconazol) i antagonistes de AR (bicalutamida)³⁶⁴ o amb agents hormonals de nova generació com l'abiraterona³⁶⁵. Mostaghel i col. van trobar que els pacients que rebien tractament neoadjuvant combinat, tot i presentar una major reducció en els nivells d'andrògens tumorals, mantenien l'activació del AR de forma similar al braç control de supressió androgènica³⁶⁴. S'han obtingut resultats similars en un estudi de neoadjuvancia amb abiraterona³⁶⁵. En els pacients tractats amb abiraterona, s'ha vist que tot i trobar-se una reducció significativa dels nivells d'andrògens tumorals, els nivells de AR nuclear eren elevats, traduint per tant una persistència en l'activació de la via de senyalització del AR. A més a més, sembla que el tractament neoadjuvant amb abiraterona pot reduir l'expressió de PD-L1 i la infiltració per limfòcits CD8+³⁶⁶.

A diferencia del descrit anteriorment, no hem trobat canvis en l'expressió nuclear del AR entre els pacients tractats i els controls, però sí en els seus nivells citoplasmàtics sent més alts en els pacients tractats. Aquesta discordança respecte a la literatura pot ser deguda al fet que els nostres pacients no han rebut supressió androgènica en monoterapia sinó que s'ha combinat amb docetaxel. S'ha descrit com els taxans inhibeixen la translocació al nucli del AR i, per tant, els seus nivells en aquesta localització podrien ser menors⁸⁸. En un altre treball, s'ha trobat que sota supressió androgènica hi ha un increment en els nivells de AR però principalment en la seva localització citoplasmàtica respecte els controls³⁶⁷.

D'altra banda, les variants d'*splicing* del AR no es veuen afectades per aquesta inhibició de la translocació nuclear pels taxans, pel que poden mantenir actiu el programa transcripcional del AR tot i la inhibició del AR *full-length*³⁶⁸. Aquest fet pot explicar les dades *in vitro* de resistència creuada entre taxans i agents hormonals de nova generació⁹⁶, i les diferencies d'eficàcia a nivell clínic dels nous agents hormonals, enzalutamida i abiraterona, en pacients que no han rebut quimioteràpia prèviament^{171,369} i després de la seva administració^{168,170}.

Altres grups han realitzat estudis similars però únicament amb tractament neoadjuvant de quimioteràpia i sense supressió androgènica^{114,370}. En un d'ells

s'ha descrit que els tumors dels pacients tractats presenten un sobreexpressió de gens que codifiquen proteïnes que metabolitzen els andrògens (p.ex.: *CYP11B1* o *HSD11B2*) i, per contra, els que participen en la seva biosíntesis es troben infraexpressats (p.ex.: *HSD11B1* o *CYP11B2*)¹¹⁴. Això suggereix que una de les respostes del tumor al docetaxel és reduir la biodisponibilitat dels andrògens¹¹⁴.

Un altre grup ha estudiat els canvis en el tumor abans i després de rebre tractament neoadjuvant amb docetaxel i mitoxantrona. En aquest treball es va trobar una sobreexpressió de citocines regulades per la via de NF- κ B en les mostres post-tractament³⁷⁰. Aquestes dades concorden amb treballs previs del grup en els que es va trobar un increment en l'expressió de NF- κ B i de IL6, citocina regulada per aquesta via, associant-se aquests amb la resistència a la quimioteràpia en CP²³⁶.

D'altra banda, la via de NF- κ B també indueix el procés d'EMT en CP³⁷¹. El procés d'EMT s'ha relacionat amb la resistència als tractaments¹⁸⁵ i en CP l'expressió nuclear de NF- κ B es correlaciona amb un temps més curt a la recaiguda després del tractament quirúrgic³⁷², confirmant-se el valor pronòstic d'aquesta via en el CP.

Beltran H. i col.³⁷³ han estudiat la peça de prostatectomia d'un subgrup de pacients (52 de 788) inclosos en un assaig clínic de docetaxel i supressió androgènica neoadjuvant en CP localitzat d'alt risc³⁷⁴. En aquest treball s'ha descrit com el tractament neoadjuvant combinat pot donar lloc a la sobreexpressió de gens relacionats amb EMT (p.ex.: *ZEB2, SNAI1, TGFB2, CDH2* i *VIM*), la via NF-κB (p.ej.: *IL6*), la sobreexpressió del *AR, ARv7* i de gens reprimits per ell (p.ej.: *MET*; *CD200, MAPRE2*); i també la infraexpressió de gens induïts pel AR (p.ej.: *KLK3*). Per tant, aquestes dades concorden i confirmen les nostres troballes.

En l'anàlisi d'expressió diferencial hem trobat que un 67.7% dels gens es trobaven diferencialment expressats entre els pacients tractats i els controls. A

més a més, la sobreexpressió de gens relacionats amb el procés d'EMT s'associava amb un temps a la recaiguda més curt.

El procés d'EMT és un procés fisiològic que es dona durant el desenvolupament i l'hemostàsia, per exemple en la reparació de ferides, però també es dóna en condicions patològiques, especialment en càncer i fibrosis^{185,186}. L'activació d'aquest programa indueix múltiples canvis en les cèl·lules incloent la reorganització del citoesquelet, canvis en la seva morfologia, la dissolució de les unions intercel·lulars, la pèrdua de la polaritat apical-basal i el guany de polaritat frontal-posterior, i facilita la motilitat i la degradació de la matriu extracel·lular, afavorint finalment el procés d'invasió¹⁸⁵. Aquest programa acaba modificant l'expressió d'uns 250 gens³⁷⁵, entre ells indueix la pèrdua de marcadors epitelials (p.ex.: CDH1) i el guany dels mesenquimals (p.ex.: VIM i CDH2)¹⁸⁶.

Tant l'activació del AR¹⁸⁹ com la supressió androgènica^{376,377} poden induir el procés d'EMT i la progressió del CP. A més a més, l'expressió de *ZEB1*, gen implicat en EMT, és induïda per la dihidrotestosterona i mitjançada per dos elements de resposta a andrògens³⁷⁸. Addicionalment, s'ha vist que les variants de splicing del AR, que es troben constitutivament activades, també regulen el procés d'EMT³⁷⁹ a través de la interacció directa amb el intró 1 de CDH2³⁸⁰ i induint la producció de TGF β ³⁸¹. Aquestes també indueixen l'expressió de gens CSC³⁸². Mecanísticament, s'ha vist com la inhibició del domini N-terminal del AR, que és el que interacciona amb la tubulina, reverteix el procés d'EMT i incrementa la resposta al docetaxel en estudis *in vitro*³⁸³. Aquests resultats no s'han vist reflectits a nivell clínic, ja que la determinació de la ARv7 en CTCs no s'ha associat amb la resistència primària als taxans³⁰⁸ però sí amb els inhibidors del AR³⁸⁴.

D'altre banda s'han descrit semblances moleculars entre les CSC i les cèl·lules que pateixen un fenomen d' EMT, i també que la inducció del fenotip EMT afavoreix l'expressió de marcadors de *stem cell*^{385,386}. En el nostre model de línies cel·lulars resistents a docetaxel hem trobat una elevada expressió del marcador *stem cell* CD44 i infraexpressió de CD24, i que l'exposició continuada a docetaxel en dosis creixents indueix l'expressió del primer. Addicionalment, en

les mostres de pacients tractats amb neoadjuvancia també veiem aquest mateix patró. Els nostres resultats són congruents amb els d'altres grups que han descrit una població CD24^{low}–CD44^{high} en models cel·lulars resistents a docetaxel tant de CP¹⁹⁵ com de càncer de mama³⁸⁷. En estudis preclínics, s'ha vist com CD44 i CD147, a través de les vies de PI3K/AKT i MAPK, incrementen el potencial metastàsic i atorguen resistència a la quimioteràpia en CP³⁸⁸.

En les nostres línies cel·lulars de CP s'ha identificat una subpoblació de cèl·lules, ZEB1⁺/CD44⁺, que tenen un fenotip EMT i que són intrínsecament resistents a docetaxel. Aquestes cèl·lules s'han identificat amb molt baixa freqüència en les línies cel·lulars parentals i després de l'exposició a docetaxel la seva freqüència augmenta de forma important. D'altre banda, un 13.6% de les mostres de pacients que havien rebut tractament neoadjuvant presentaven co-localització d'ambdós marcadors, ZEB1⁺/CD44⁺, però aquests no es va detectar en cap dels controls. Totes aquestes troballes recolzen l'existència d'una població de cèl·lules amb característiques EMT/*stem cell-like* que són intrínsecament resistents al tractament. El tractament amb docetaxel pot produir una selecció clonal, eliminant la població de cèl·lules sensible al fàrmac i permetent el creixement de les resistents.

En el nostre model, el docetaxel indueix un fenotip d'EMT, tant en les línies cel·lulars parentals com en les resistents. Per tant, tant l'existència de cèl·lules amb un fenotip EMT, que presenten resistència intrínseca al tractament, com la inducció d'aquest fenotip pel docetaxel són possibles mecanismes de resistència al fàrmac. En un altre treball¹⁹⁵ s'ha descrit com els microRNAs miR-200c i miR-205, que regulen el fenotip epitelial, es troben infraexpresats en les línies cel·lulars PC-3 i DU-145 resistents a docetaxel. En aquest mateix treball s'ha descrit com hi ha una reducció en l'expressió de *CDH1* en els tumors que han rebut un tractament neoadjuvant previ respecte els no tractats. En un altre treball s'ha vist com les línies cel·lulars DU-145 resistents a paclitaxel presenten una major expressió de *ZEB1*, *VIM* i *SNAI1*³⁸⁹.

Degut a l'existència d'aquestes dades que recolzen al procés d'EMT com a causal de la resistència al docetaxel, es va optar per interferir en l'expressió del

factor de transcripció *ZEB1*, que és un dels principals mediadors d'EMT. La inhibició de *ZEB1* mitjançant la transfecció d'un siRNA restaura l'expressió de *CDH1* i suprimeix *CD44*, això és consistent amb una reversió del procés d'EMT i de les característiques CSC. D'altra banda, la inhibició de *ZEB1* indueix mortalitat en les línies cel·lulars independentment del tractament amb docetaxel. Aquest fet ja s'ha descrit anteriorment³⁹⁰ i és consistent amb el paper que té *ZEB1* en la proliferació cel·lular, degut a que indueix l'expressió de inhibidors del cicle cel·lular. A més a més, la inhibició de *ZEB1* restaura la sensibilitat a docetaxel, recolzant el paper d'EMT i el fenotip CSC en la resistència al tractament. En altres models de càncer, concretament en càncer de pulmó, la inhibició de *ZEB1* incrementa la sensibilitat a la quimioteràpia *in vitro* i la seva sobreexpressió, *in vivo*, afavoreix la resistència a la quimioterapia³⁹¹.

Diversos treballs recolzen el procés d'EMT com un element fonamental en la invasió i migració tumoral així com també en la recurrència tumoral, que sembla que està associada amb les CSC. Se sap que l'expressió de *CD44* i *VIM* en els tumors primaris és un factor pronòstic advers^{371,392}. En el nostre treball, els pocs pacients que co-expressaven ZEB1⁺/CD44⁺ en els tumors primaris han tingut una evolució clínica molt desfavorable.

En resum, en el primer treball s'ha descrit un patró d'expressió diferencial de diferents marcadors relacionats amb NF-kB, AR, EMT i CSC entre els tumors dels pacients tractats amb neoadjuvancia i els no tractats. I molts d'aquests gens s'han relacionat amb un major risc de recaiguda clínica i/o bioquímica. Degut a que la població tractada amb quimioteràpia neoadjuvant té unes característiques clíniques desfavorables respecte la població quirúrgica, no podem excloure que la expressió diferencial d'aquest gens sigui degut a les característiques de la pròpia malaltia i no pel tractament neoadjuvant administrat. No obstant, cap de les variables clíniques (PSA, Gleason, estadi clínic o tractament neoadjuvant previ) s'ha correlacionat amb l'evolució dels pacients en l'anàlisi univariat o en el multivariat.

En general, els nostres resultats recolzen el paper del procés d'EMT en la resistència al tractament i en la progressió del CP. Aquests resultats s'han derivat

del estudi d'una cohort de pacients amb malaltia localitzada i que ha rebut tractament neoadjuvant i, per tant, no es poden extrapolar a malalts amb CPRC. Malgrat això, tant les dades clíniques com les derivades dels models *in vitro* resistents a la castració recolzen la relació entre EMT i la resistència a la quimioteràpia en el CP. Tant evitar aquest procés com revertir-lo mitjançant estratègies innovadores pot permetre millorar els resultats dels pacients amb CPRC o les opcions de curació en pacients amb malaltia localitzada d'alt risc.

La presència de CTCs és un requisit fonamental per a la disseminació dels tumors sòlids. Tot i això, el desenvolupament de metàstasis sembla un procés ineficient degut a que només una subpoblació de CTCs té el potencial suficient per a iniciar el procés de metastatització, que conduirà a la mort del pacient³⁹³.

En el present treball, mitjançant l'anàlisi de l'expressió gènica en mostres de sang, s'ha identificat un conjunt de gens i de vies moleculars diferencialment expressades entre pacients amb diferent càrrega de CTCs, i amb valor pronòstic. En total s'han identificat 282 gens expressats diferencialment entre mostres amb ≥ 5 CTCs i < 5 CTCs. Cal destacar que la majoria d'aquest gens s'han descrit com associats al CP³⁹⁴, recolzant així que les alteracions presents en els tumors també es poden detectar en sang. Aquests gens estan involucrats en diferents funcions implicades en el metabolisme, la transducció de senyals, l'expressió gènica, el creixement cel·lular, la mort cel·lular i la motilitat. Una de les vies especialment alterades està relacionada amb el manteniment dels telòmers i els cromosomes, el qual ja és conegut com un dels processos distintius del càncer^{201,202}. Una altre d'aquetes vies alterades és l'oxidació biològica, que es suposa una de les fonts d'energia per al creixement tumoral i el desenvolupament de metàstasis³⁹⁵. Les alteracions en aquestes vies són consistents amb les trobades en altres models tumorals, com per exemple en càncer de mama³⁹⁶.

A més a més de descriure gens relacionats amb el número de CTCs, hem descrit els gens i les vies moleculars associades amb un pitjor pronòstic en aquesta població de pacients. Les principals vies estan relacionades amb el metabolisme cel·lular, la transducció de senyals, el transport i la motilitat cel·lular. El coneixement d'aquesta informació biològica pot ser rellevant per a entendre

també la progressió del CPRC. Set gens (*CRISP3*, *MMP9*, *ABCA13*, *MMP8*, *OLFM4*, *SELENBP1* i *CEACAM1*) es van validar per qRT-PCR i es van associar a una pitjor supervivència global.

CRISP3 es troba sobreexpressat en el CP respecte el teixit prostàtic benigne³⁹⁷. A més a més, s'han trobat nivells elevats d'aquest gen tant en metàstasis de CP com en CPRC i, s'ha vist com un tractament curt amb supressió androgènica no altera la seva expressió³⁹⁸. Aquest gen també s'ha descrit com a factor de risc per a la recaiguda bioquímica després de la prostatectomia radical^{399–402}. *CRISP3* es troba sobreexpressat en el subgrup de càncers de pròstata que tenen la fusió *TMPRSS2-ERG*⁴⁰³, i especialment en els que alhora tenen delecció de *PTEN*^{400,401}. A nivell funcional s'ha descrit com CRISP3 interacciona directament amb ERG⁴⁰³, i està implicat en la invasió cel·lular⁴⁰⁴.

A la literatura s'ha descrit com les metalopeptidades no només estan involucrades en la progressió i la invasió del càncer, sinó també influeixen en el creixement tumoral, la inflamació i l'angiogènesis⁴⁰⁵. *MMP9* es una diana de *ERG*²⁷⁵. Aquest regula la seva expressió de forma directa, però no s'ha trobat una relació amb la migració i la invasió tumoral^{406,407}. Altres estudis presenten dades contradictòries respecte el seu paper en la invasió tumoral^{408,409}. Kato i col. han descrit com *ETS1* regula a *MMP9* i alhora estan implicats en la resistència a paclitaxel en el model cel·lular PC-3⁴⁰⁸. Addicionalment, *MMP9* està implicat en la promoció de l'angiogenesis^{410,411}. D'altre banda, es disposen de poques dades sobre el paper de *MMP8* en CP però sembla que, en part, regula l'extravasació de cèl·lules tumorals al torrent sanguini a través de la seva interacció amb β1 integrines⁴¹².

Un altre dels gens associats a una pitjor supervivència és *ABCA13*, aquest pertany a la família de transportadors transmembrana ATP-*binding cassette* (ABC) i s'ha trobat diferencialment expressat en el model cel·lular DU-145 resistent a docetaxel³⁵¹.

S'ha descrit també que la *OLFM4* promou la transició a la fase S en les cèl·lules tumorals, i s'ha associat amb l'adhesió cel·lular i el procés metastàtic⁴¹³.

En les línies cel·lulars hormonosensibles LNCaP s'ha descrit l'expressió de *SELENBP1* però no en les hormonoresistents, PC-3 i DU-145⁴¹⁴. En les primeres, s'ha trobat com els androgen inhibeixen l'expressió d'aquest gen⁴¹⁴. En estudis de CP localitzat s'ha vist que determinats polimorfismes d'aquest gen s'associen a una malaltia més agressiva⁴¹⁵ i que uns nivells d'expressió més baixos s'associen amb un major risc de recaiguda⁴¹⁶. Tot i que la seva funció no és del tot coneguda, sembla que actuaria en part regulant negativament HIF-1 α a nivell post-transcripcional⁴¹⁷.

Finalment, *CEACAM1* és un marcador epitelial que regula negativament la vascularització en el CP⁴¹⁸ i la seva pèrdua s'associa a tumors amb un major grau histològic i més proliferació⁴¹⁹.

La validació de la signatura formada per *SELENBP1* i *MMP9* en una cohort més gran de pacients, juntament amb altres variables pronòstiques clíniques, demostrà la robustesa pronòstica d'aquest model. Tot i que aquesta signatura per si sola no millora el poder pronòstic del recompte de CTCs, si que afegeix habilitat pronòstica quan s'analitzen conjuntament amb el recompte de CTCs. En un altre estudi també s'han identificat aquests dos gens en les PBMCs de pacients amb CPRC i també es van associar a una pitjor supervivència³⁴⁸, recolzant així les nostres troballes.

En altres estudis també s'han descrit signatures pronòstiques derivades de RNA de sang total^{343,344}. En l'estudi de Ross i col.³⁴⁴ es va descriure una signatura de sis gens (*ABL2*, *SEMA4D*, *ITGAL*, *C1QA*, *TIMP1* i *CDKN1A*) que permetia estratificar els pacients en dos grups amb diferents mitjanes de supervivència (\geq 34.9 vs. 7.8 mesos, p<0.0001). Aquests resultats es van validar en una cohort independent de pacients. En un altre estudi³⁴³ es va derivar una signatura que també va permetre distingir dos grups de pacients amb diferent supervivència (21.6 vs. 9.2 mesos, p=0.001).

En conclusió, en el segon treball s'ha descrit un perfil transcripcional en PBMCs associat amb el recompte de CTCs i s'ha derivat una signatura amb valor pronòstic. Aquest perfil transcripcional està constituït per gens que s'han trobat
desregulats en CP, que contribueixen a la progressió del càncer, que poden estar relacionats amb l'agressivitat de la malaltia i són potencials dianes terapèutiques.

TMPRSS2-ERG és un gen de fusió específic del CP i indueix una elevada expressió d'una forma truncada però funcional d'ERG²⁶¹. En models animals s'ha descrit com ERG s'uneix als dímers de tubulina i impedeix la interacció entre els taxans i aquests, de tal forma que es redueix la sensibilitat a aquests fàrmacs²⁹¹. A més a més, també s'ha descrit com aquest gen de fusió indueix el fenomen d'EMT a través de la unió directa amb el promotor de *ZEB1* i indirectament a través de *ZEB2*²⁸² que, com hem vist prèviament, també s'associa amb la resistència als taxans³⁵¹. Per altre banda, *TMPRSS2-ERG* s'uneix al promotor d'*ERG* induint la seva pròpia expressió²⁷⁴. Per consegüent, tant la forma truncada de ERG com la forma *wild-type* poden disminuir l'eficàcia dels taxans i aquest gen de fusió és un potencial biomarcador de resistència a aquests fàrmacs en CP.

En aquest treball s'ha estudiat el valor predictiu de resposta a docetaxel del gen de fusió *TMPRSS2-ERG* en la sang de pacients afectes de CPRC metastàtic. En els pacients *TMPRSS2-ERG* positius es va observar una menor reducció de la xifra de PSA i una menor taxa de respostes al tractament, respecte els negatius. A més a més, els pacients positius van tenir una pitjor supervivència lliure de progressió per PSA i clínic/radiològica. En una petita cohort de 22 pacients tractats amb cabazitaxel es van trobar resultats similars.

Cal destacar que els pacients positius tenien més factors de mal pronòstic, com un major nombre de metàstasis òssies, uns nivells més elevats de fosfatasa alcalina, lactat deshidrogenasa i una concentració d'hemoglobina més baixa. Aquests, entre d'altres, són factors ben coneguts de mal pronòstic⁴²⁰ però no són predictors de resposta a la quimioteràpia. En els nostres pacients, cap d'aquests factors es va associar amb la supervivència lliure de progressió en l'anàlisi multivariat, mentre que *TMPRSS2-ERG* sí que va esdevenir un factor pronòstic independent. Com hem vist prèviament, en la capa de PBMCs es poden detectar gens corresponent al tumor³⁵⁵. En el present treball només es va detectar el gen de fusió en mostres provinents de pacients que tenien \geq 5 CTCs (32%), mentre que no es va detectar en mostres de pacients amb < 5 CTCs o en controls sans. A més a més, es va trobar una elevada concordança entre la detecció en sang d'aquest gen i en el tumor primari, sent tots els pacients positius en sang també positius en el tumor primari.

Tot i que s'ha descrit que en un mateix tumor primari poden haver-hi focus positius i negatius per *TMPRSS2-ERG*, un cop la malaltia s'ha disseminat hi ha consistència en l'expressió de *TMPRSS2-ERG* entre les diferents metàstasis degut a l'expansió clonal de les cèl·lules tumorals⁴²¹. En el nostre treball, no s'ha detectat el gen de fusió en mostres de sang provinents de 10 pacients (30.3%) positius en el tumor primari. Això es pot explicar per la heterogeneïtat tumoral però també per la sensibilitat de la tècnica per a detectar aquest gen en mostres de sang que contenen < 5 CTCs o en pacients amb baix volum de malaltia.

En 27 pacients es disposava de mostres de sang seqüencials i només es va observar positivització del gen de fusió després de la progressió als taxans. La selecció clonal de les cèl·lules tumorals *TMPRSS2-ERG* positives amb el tractament quimioteràpic podria explicar aquesta troballa.

En un altre treball, s'ha analitzat per immunohistoquímica l'expressió d'ERG en una cohort de 70 pacients afectes de CPRC tractats amb docetaxel. S'ha trobat que la detecció d'aquest s'associa amb una taxa de respostes per PSA més baixa, una pitjor supervivència lliure de progressió per PSA, radiològica i supervivència global⁴²². Aquest treball recolza el nostre i el paper que té *TMPRSS2-ERG* i ERG per a predir la resistència al docetaxel en CPRC.

D'altre banda, *TMPRSS2-ERG* també està relacionat amb la senyalització per andrògens²⁶¹, pel que s'ha postulat com a potencial biomarcador de resposta a la hormonoteràpia. En un estudi amb pacients afectes de CP hormona-sensible i tractats amb teràpia endocrina no es van trobar diferencies respecte l'eficàcia del tractament entre els pacients positius i negatius²⁸⁵. Possiblement, degut a la

regulació per andrògens de *TMPRSS2-ERG*, el paper que té aquest gen com a potencial biomarcador predictiu de resposta a docetaxel en la malaltia hormono-sensible és menor.

En la malaltia resistent a la castració, s'han trobat resultats discordants respecte la presència d'alteracions en ERG i l'eficàcia de abiraterona^{287,288}. Això pot ser degut a les diferents poblacions analitzades en aquests estudis, les tècniques utilitzades per a detectar el gen de fusió o el tipus de mostra analitzada.

En conclusió, en el tercer treball s'ha demostrat com la presència de *TMPRSS2*-*ERG* prediu resistència al docetaxel en CPRC. Aquest resultats poden ajudar a identificar de forma precoç els pacients que no respondran a docetaxel, evitar l'ús d'un fàrmac ineficaç i potencialment tòxic, i proposar altres opcions de tractaments innovadores^{293,294}. L'especificitat d'aquest biomarcador i la facilitat per a obtenir una mostra de sang poden facilitar la seva implantació a la pràctica clínica.

CONCLUSIONS

- Els pacients afectes de CP d'alt risc tractats de forma neoadjuvant amb supressió androgènica i docetaxel, respecte els que no han rebut tractament sistèmic previ, presenten sobreexpressió de gens implicats en la via NF-κB, AR, EMT i CSC.
- A nivell proteic, els tumors tractats presenten uns nivells més alts de RELA i AR, aquest últim a nivell citoplasmàtic, i s'associen a una pitjor supervivència lliure de recaiguda radiològica.
- L'expressió de diferents gens en la peça de prostatectomia radical s'associen amb la supervivència lliure de recaiguda bioquímica i/o radiològica.
- 4. Els models cel·lulars resistents al docetaxel adquireixen marcadors mesenquimals i CSC, i perden els epitelials.
- 5. La inhibició de *ZEB1* en els models cel·lulars restaura el fenotip epitelial i la sensibilitat al docetaxel.
- Tant en els models cel·lulars com en les mostres de pacients existeix una població de cèl·lules tumorals ZEB1⁺/CD44⁺ intrínsecament resistent a docetaxel.
- El perfil transcripcional en les PBMC de pacients amb CPRC s'associa amb el recompte de CTCs i és un biomarcador subrogat de la biologia del tumor.
- Un model constituït per l'expressió de SELENBP1 i MMP9 en PBMCs permet predir la supervivència global de pacients afectes de CPRC metastàtic.
- El gen de fusió *TMPRSS2-ERG* es detecta de forma específica en les PBMCS de pacients afectes de CPRC i té una elevada correlació amb la seva detecció en el tumor primari.

- 10.La detecció de *TMPRSS2-ERG* en PBMCs s'associa amb una supervivència lliure de progressió per PSA, clínica/radiològica i supervivència global més curta, i una menor taxa de respostes al docetaxel.
- 11.La presència de *TMPRSS2-ERG* en PBMCs permet predir una pitjor supervivència lliure de progressió per PSA a cabazitaxel i una tendència a pitjor supervivència lliure de progressió clínica/radiològica o global.
- 12. Respecte la detecció de *TMPRSS2-ERG* en teixit s'ha associat amb una supervivència lliure de progressió per PSA més curta.

Material suplementari del primer treball

Epithelial-to-Mesenchymal Transition Mediates Docetaxel Resistance and High Risk of Relapse in Prostate Cancer

Supplementary table 1: Genes expression values by qRT-PCR in treated patients vs non-treated patients; TLDA: TaqMan Low Density Arrays; FDR: False Discovery Rate.

Gene Symbol	Commertial code	Fold Change	P value	FDR
Genes included in TLDAs		I		I
ABCB1	Hs01067802_m1	2.4572	0.0000	0.0000
ABHD3	Hs01128757_m1	1.0725	0.4293	0.3358
АСТВ	Hs99999903_m1	1.4211	0.4271	0.9821
AIM1	Hs00413464_m1	-1.9834	0.0007	0.0029
AR	Hs00907244_m1	1.7273	0.0000	0.0001
AREG	Hs00950669_m1	3.4248	0.0017	0.0008
BCL2A1	Hs00187845_m1	3.0876	0.0000	0.0000
BRCA1	Hs00173237_m1	1.4671	0.0099	0.0178
BTBD11	Hs00537023_m1	-1.4123	0.0308	0.0732
C1orf116	Hs00225127_m1	-6.0839	0.0000	0.0000
CALM1	Hs00237233_m1	1.0461	0.6553	0.6337
CBLB	Hs00909784_m1	1.2915	0.4865	0.4846
CCNB1	Hs00259126_m1	-1.4172	0.0266	0.0598
CCPG1	Hs00393719_m1	1.0278	0.6282	0.6682
CDH1	Hs01023895_m1	-1.2535	0.0731	0.0953
CDH2	Hs00169953_m1	2.4546	0.0221	0.0393
CDK19	Hs00292369_m1	1.4748	0.0421	0.0884
CITED2	Hs00366696_m1	-1.2075	1.0000	0.7948
CLDN11	Hs00194440_m1	3.6935	0.0000	0.0000
CLDN7	Hs00600772_m1	-1.3041	0.0801	0.2668
CST6	Hs00154599_m1	4.1872	0.0019	0.0153
CXCL6	Hs00237017_m1	1.6935	0.0826	0.2396
CXCR7	Hs00604567_m1	1.7273	0.1113	0.1394
EFEMP1	Hs00244575_m1	2.3514	0.0000	0.0000
EGFR	Hs01076092_m1	2.1104	0.0000	0.0000
EML1	Hs00270014_m1	1.7617	0.0000	0.0000
EPCAM	Hs00901885_m1	-1.7315	0.0012	0.0021
EPS8L1	Hs00214645_m1	-1.0815	0.2986	0.3024
ERBB2	Hs00170433_m1	-1.0864	0.5028	0.4863
ESRP1	Hs00214472_m1	-1.4555	0.0008	0.0010
FAS	Hs00907759_m1	1.9066	0.0001	0.0004
FBN1	Hs00171191_m1	2.0314	0.0000	0.0000
FBP1	Hs00983323_m1	-1.5263	0.0044	0.0224
FLJ27352	Hs00419506_m1	-2.0900	0.0000	0.0029
FN1	Hs01549976_m1	1.2029	0.0169	0.0231
FRMD3	Hs00604157_m1	2.3214	0.0000	0.0000
FRMD4A	Hs00216036_m1	1.3077	0.0088	0.0178
G052	Hs00274783_s1	2.7856	0.0000	0.0000
GALNT3	Hs01016512_m1	-1.0108	0.9398	0.6582
GJB2	Hs00955889_m1	-1.4211	0.8854	0.9990

GOSR2	Hs03004084_m1	1.1639	0.0511	0.0250
GPR87	Hs00225057_m1	3.6528	0.0012	0.0134
GSPT2	Hs00250696_s1	1.2897	0.0183	0.0178
GUSB	Hs99999908_m1	-	-	-
HTRA1	Hs01016151_m1	2.3142	0.0000	0.0000
ID2	Hs00747379_m1	2.3751	0.0000	0.0000
IFI16	Hs00986755_m1	2.1473	0.0000	0.0000
IGF1R	Hs99999020_m1	1.1173	0.7365	0.6885
IL6	Hs00174131_m1	2.6363	0.0092	0.0134
IL8	Hs00174103_m1	1.7065	0.3319	0.3208
ITGB2	Hs00164957_m1	2.9191	0.0000	0.0000
JPH1	Hs00375313_m1	1.1712	0.9398	0.6337
KLF9	Hs00230918_m1	1.5037	0.0003	0.0002
KLHL24	Hs00214210_m1	1.7648	0.0000	0.0000
LAMC2	Hs00194345_m1	2.2168	0.0003	0.0013
LOC401093	Hs00416357_m1	2.4897	0.0000	0.0000
LTB	Hs00242739_m1	2.3966	0.0000	0.0001
MALAT1	Hs00273907_s1	1.3315	0.2844	0.3465
MAP7D3	Hs00226257_m1	3.2299	0.0000	0.0000
MPZL2	Hs00170684_m1	1.2561	0.1202	0.1475
NDRG1	Hs00608387_m1	-1.2658	0.0119	0.0456
NEAT1	Hs01008264_s1	1.2108	0.1210	0.1339
NFKB1	Hs00765730_m1	1.7581	0.0000	0.0000
PC	Hs00559398_m1	1.1979	0.6752	0.5906
PLSCR4	Hs00924823_m1	3.0095	0.0000	0.0000
PPARA	Hs00947539_m1	1.1208	0.6233	0.6337
PPP2R2C	Hs00382256_m1	2.1705	0.0625	0.1166
PTPRM	Hs00267809_m1	1.7136	0.0002	0.0002
RAB40B	Hs00606459_m1	-1.0378	0.9398	0.9533
RBM47	Hs00219308_m1	-1.0755	0.4073	0.4526
REL	Hs00231279_m1	1.6830	0.0103	0.0067
RELA	Hs00153294_m1	1.8106	0.0000	0.0000
RNA18S1	Hs99999901_s1	-	-	-
S100A4	Hs00243202_m1	2.7992	0.0000	0.0000
SAMD12	Hs01377106_m1	2.8011	0.0000	0.0000
SAMD9	Hs00415836_m1	2.0936	0.0002	0.0422
SCARA3	Hs00939871_m1	3.0084	0.0001	0.0004
SCD5	Hs00227692_m1	3.3196	0.0000	0.0000
SCEL	Hs01557103_m1	2.1833	0.1236	0.1652
SERPINA1	Hs01097800_m1	-1.0196	0.5755	0.5657
SERPINB5	Hs00985283_m1	4.4306	0.0001	0.0003
SLC1A3	Hs00188193_m1	2.1705	0.0000	0.0000
SLCO4A1	Hs00249583_m1	2.7482	0.0001	0.0002
SMAD4	Hs00693394_m1	1.3590	0.0021	0.0052
SNAI1	Hs00195591_m1	2.7141	0.0000	0.0000

ST14	Hs01058386_m1	-2.1848	0.0000	0.0000		
TACSTD2	Hs00242741_s1	1.8251	0.0002	0.0003		
TGFBR3	Hs01114253_m1	4.4769	0.0000	0.0000		
TIMP2	Hs01091319_m1	2.3842	0.0000	0.0000		
TMEM45A	Hs01046616_m1	3.3001	0.0000	0.0000		
TMEM45B	Hs00431155_m1	1.9588	0.0620	0.1080		
TP53INP1	Hs01003820_m1	1.0385	0.9180	0.8220		
TWIST1	Hs01675818_s1	1.2457	0.2388	0.3358		
TXNIP	Hs00197750_m1	1.7728	0.0030	0.0111		
VIM	Hs00185584_m1	3.2288	0.0000	0.0000		
ZEB1	Hs01566407_m1	2.1555	0.0000	0.0000		
Genes not included in TLI	Genes not included in TLDAs					
CTNNB1	Hs00170025_m1	-	-	-		
CD24	Hs02379687_s1	0.5905	0.076	-		
CD44	Hs01075861_m1	1.6321	0.000	-		
SNAI2	Hs00161904_m1	-	-	-		

Supplementary figure 1: Biochemical-relapse analysis according gene expression levels of differentially expressed markers between treated and non-treated patients

Supplementary figure 2 (part A): Radiological-progression analysis according gene expression levels of differentially expressed markers between treated and non-treated patients

Supplementary figure 2 (part B): Radiological-progression analysis according gene expression levels of differentially expressed markers between treated and non-treated patients

Material suplementari del segon treball

Molecular profiling of peripheral blood is associated with circulating tumor cells content and poor survival in metastatic castration-resistant prostate cancer

Molecular profiling of peripheral blood is associated with circulating tumor cells content and poor survival in metastatic castration-resistant prostate cancer

Supplementary Material

Supplementary Table S1: Genes differentially expressed between ≥5 CTCs and <5 CTCs and their corresponding Fold change; FC: Fold change; FDR: False discovery rate.

Probe ID	Gene symbol	Gene name	FC	FDR (%)
3240_at	HP	haptoglobin	4.093	0.3916
1116_at	CHI3L1	chitinase 3-like 1 (cartilage glycoprotein- 39)	3.580	0.3916
4973_at	OLR1	oxidized low density lipoprotein (lectin-like) receptor 1	3.482	0.3916
10321_at	CRISP3	cysteine-rich secretory protein 3	3.418	1.0624
4318_at	MMP9	matrix metallopeptidase 9 (gelatinase B, 92kDa gelatinase, 92kDa type IV collagenase)	3.288	0.7929
6521_at	SLC4A1	solute carrier family 4, anion exchanger, member 1 (erythrocyte membrane protein	3.283	2.5934
57126_at	CD177	CD177 molecule	3.271	0.6156
2993_at	GYPA	glycophorin A (MNS blood group)	3.243	2.5934
2994_at	GYPB	glycophorin B (MNS blood group)	3.192	2.3410
154664_at	ABCA13	ATP-binding cassette, sub-family A (ABC1), member 13	3.124	1.0624
383_at	ARG1	arginase, liver	3.116	1.0624
51327_at	AHSP	alpha hemoglobin stabilizing protein	3.110	2.5934
820_at	CAMP	cathelicidin antimicrobial peptide	3.090	0.3916
439996_at	IFIT1L	interferon-induced protein with tetratricopeptide repeats 1-like	3.066	2.3410
4317_at	MMP8	matrix metallopeptidase 8 (neutrophil collagenase)	3.007	1.7031
6590_at	SLPI	secretory leukocyte peptidase inhibitor	2.917	0.6156
4051_at	CYP4F3	cytochrome P450, family 4, subfamily F, polypeptide 3	2.890	0.6156
10562_at	OLFM4	olfactomedin 4	2.852	2.2070

750 1	014		0.040	4 4050
759_at	CA1	carbonic anhydrase I	2.843	4.4952
1118_at	CHIT1	chitinase 1 (chitotriosidase)	2.839	1.0142
212_at	ALAS2	aminolevulinate, delta-, synthase 2	2.836	4.0068
306_at	ANXA3	annexin A3	2.818	1.0624
8991_at	SELENBP1	selenium binding protein 1	2.807	2.5934
4057_at	LTF	lactotransferrin	2.782	1.9145
6947_at	TCN1	transcobalamin I (vitamin B12 binding protein, R binder family)	2.761	1.1053
5273_at	SERPINB10	serpin peptidase inhibitor, clade B (ovalbumin), member 10	2.732	0.6156
5004_at	ORM1	orosomucoid 1	2.716	0.7929
634_at	CEACAM1	carcinoembryonic antigen-related cell adhesion molecule 1 (biliary glycoprotein)	2.694	1.0142
2038_at	EPB42	erythrocyte membrane protein band 4.2	2.645	2.5934
7111_at	TMOD1	tropomodulin 1	2.620	1.1053
57633_at	LRRN1	leucine rich repeat neuronal 1	2.576	0.3916
1991_at	ELANE	elastase, neutrophil expressed	2.545	1.1053
8993_at	PGLYRP1	peptidoglycan recognition protein 1	2.511	1.1053
1088_at	CEACAM8	carcinoembryonic antigen-related cell adhesion molecule 8	2.506	2.3410
3250_at	HPR	haptoglobin-related protein	2.501	0.3916
2078_at	ERG	v-ets erythroblastosis virus E26 oncogene homolog (avian)	2.493	0.3916
671_at	BPI	bactericidal/permeability-increasing protein	2.449	1.7031
222487_at	GPR97	G protein-coupled receptor 97	2.437	0.3916
1511_at	CTSG	cathepsin G	2.437	1.9145
4680_at	CEACAM6	carcinoembryonic antigen-related cell adhesion molecule 6 (non-specific cross	2.396	2.5934
81442_at	OR6N2	olfactory receptor, family 6, subfamily N, member 2	2.391	0.3916
3624_at	INHBA	inhibin, beta A	2.374	0.3916

5657 at	PRTN3	proteinase 3	2 372	0.6156
566 at	AZU1	azurocidin 1	2.371	1.5110
_ 100133941_at	CD24	CD24 molecule	2.361	1.0142
1669_at	DEFA4	defensin, alpha 4, corticostatin	2.330	4.0068
4353_at	MPO	myeloperoxidase	2.319	1.9145
653198_at	NA	NA	2.317	0.3916
6286_at	S100P	S100 calcium binding protein P	2.299	1.0624
3680_at	ITGA9	integrin, alpha 9	2.298	0.3916
3934_at	LCN2	lipocalin 2	2.282	1.0142
3045_at	HBD	hemoglobin, delta	2.271	2.3410
3042_at	НВМ	hemoglobin, mu	2.257	4.0068
8972_at	MGAM	maltase-glucoamylase (alpha-glucosidase)	2.238	1.1053
391114_at	OR6K3	olfactory receptor, family 6, subfamily K, member 3	2.227	0.3916
5909_at	RAP1GAP	RAP1 GTPase activating protein	2.199	5.4721
56729_at	RETN	resistin	2.171	0.3916
128372_at	OR6N1	olfactory receptor, family 6, subfamily N, member 1	2.165	0.3916
6037_at	RNASE3	ribonuclease, RNase A family, 3 (eosinophil cationic protein)	2.155	1.5110
116369_at	SLC26A8	solute carrier family 26, member 8	2.123	0.3916
932_at	MS4A3	membrane-spanning 4-domains, subfamily A, member 3 (hematopoietic cell-specific)	2.119	1.7031
284422_at	C19orf77	chromosome 19 open reading frame 77	2.119	1.0142
26499_at	PLEK2	pleckstrin 2	2.118	1.5110
2334_at	AFF2	AF4/FMR2 family, member 2	2.113	0.6156
148534_at	TMEM56	transmembrane protein 56	2.106	1.7031
10900_at	RUNDC3A	RUN domain containing 3A	2.095	3.3639

23601_at	CLEC5A	C-type lectin domain family 5, member A	2.090	0.6156
7180_at	CRISP2	cysteine-rich secretory protein 2	2.068	0.3916
2235_at	FECH	ferrochelatase (protoporphyria)	2.051	2.9821
64078_at	SLC28A3	solute carrier family 28 (sodium-coupled nucleoside transporter), member 3	2.050	0.3916
162466_at	PHOSPHO1	phosphatase, orphan 1	2.050	6.4318
4070_at	TACSTD2	tumor-associated calcium signal transducer 2	2.043	1.0624
8218_at	CLTCL1	clathrin, heavy chain-like 1	2.028	0.3916
7298_at	TYMS	thymidylate synthetase	2.026	0.3916
11001_at	SLC27A2	solute carrier family 27 (fatty acid transporter), member 2	2.003	0.3916
54443_at	ANLN	anillin, actin binding protein	2.001	0.6156
118932_at	ANKRD22	ankyrin repeat domain 22	1.998	1.7031
253012_at	HEPACAM2	HEPACAM family member 2	1.997	8.3194
1602_at	DACH1	dachshund homolog 1 (Drosophila)	1.997	0.3916
51312_at	SLC25A37	solute carrier family 25, member 37	1.994	1.5110
4288_at	MKI67	antigen identified by monoclonal antibody Ki-67	1.971	0.6156
688_at	KLF5	Kruppel-like factor 5 (intestinal)	1.971	0.3916
660_at	BMX	BMX non-receptor tyrosine kinase	1.965	1.0142
643332_at	LOC643332	similar to Nonsecretory ribonuclease precursor (Ribonuclease US) (Eosinophil- derived neurotoxin) (RNase Upl-2) (Ribonuclease 2) (RNase 2)	1.955	0.3916
10112_at	KIF20A	kinesin family member 20A	1.937	0.3916
9914_at	ATP2C2	ATPase, Ca++ transporting, type 2C, member 2	1.936	0.3916
23762_at	OSBP2	oxysterol binding protein 2	1.934	3.3639
6708_at	SPTA1	spectrin, alpha, erythrocytic 1 (elliptocytosis 2)	1.931	2.5934
25853_at	DCAF12	DDB1 and CUL4 associated factor 12	1.930	1.5110

5/682 at	MANSC1	MANSC domain containing 1	1 010	1 7031
54002_at	MANGOT	MANSE domain containing 1	1.919	1.7031
8987 at	STBD1	starch binding domain 1	1.914	0.3916
_		-		
6005_at	RHAG	Rh-associated glycoprotein	1.910	3.4989
0505 (0/ 00/ 0		4 007	0.0004
6535_at	SLC6A8	solute carrier family 6 (neurotransmitter transporter, creatine), member 8	1.907	2.9821
7153 at	TOP2A	topoisomerase (DNA) II alpha 170kDa	1.906	0.3916
		······································		
23569_at	PADI4	peptidyl arginine deiminase, type IV	1.900	0.6156
55553_at	SOX6	SRY (sex determining region Y)-box 6	1.898	4.9964
51629 at	SI C25A39	solute carrier family 25, member 39	1 898	2 5934
01020_00	02020,100		1.000	2.0001
440603_at	BCL2L15	BCL2-like 15	1.897	0.3916
6518_at	SLC2A5	solute carrier family 2 (facilitated	1.895	0.6156
7357 ot	UGCG		1 800	0 2016
7557_at	0000	glucosyltransferase	1.030	0.5910
253650_at	ANKRD18A	ankyrin repeat domain 18A	1.889	0.6156
9768_at	KIAA0101	KIAA0101	1.877	0.3916
84418 at	C5orf32	chromosome 5 open reading frame 32	1 876	0 3016
04410_at	000/132	chromosome o open reading name oz	1.070	0.5510
2335_at	FN1	fibronectin 1	1.851	2.9821
6319_at	SCD	stearoyl-CoA desaturase (delta-9-	1.846	0.3916
55127 ot	FIGN	fidactin	1 940	2 2070
55157_at	TIGN	ndgeun	1.040	2.2070
85413_at	SLC22A16	solute carrier family 22 (organic	1.840	0.3916
_		cation/carnitine transporter), member 16		
53831_at	GPR84	G protein-coupled receptor 84	1.840	0.7929
660 ot	PDCM	2.2 hipphoonhoolycorate mutace	1 0 2 2	4 4050
669_at	BPGM	2,3-bisphosphogrycerate mutase	1.832	4.4952
5475 at	PPEF1	protein phosphatase, EF-hand calcium	1.807	0.3916
		binding domain 1		-
22974_at	TPX2	TPX2, microtubule-associated, homolog	1.805	0.6156
		(Xenopus laevis)	4.001	4 000 1
115330_at	GPR146	G protein-coupled receptor 146	1.801	4.9964
79895 at	ATP8B4	ATPase, class I, type 8B, member 4	1,794	0.3916
<u>.</u>				0.0010

7130 at	TNFAIP6	tumor necrosis factor, alpha-induced	1 794	2 5934
1100_41		protein 6	1.754	2.0004
200132_at	TCTEX1D1	Tctex1 domain containing 1	1.793	1.7031
286_at	ANK1	ankyrin 1, erythrocytic	1.792	4.9964
4635 at	MYL4	mvosin, light chain 4. alkali: atrial.	1.788	6.4318
		embryonic		
3145_at	HMBS	hydroxymethylbilane synthase	1.784	1.7031
7102 at		totrooponin 7	4 770	6 0774
7102_at	ISPANI		1.772	0.9774
29128_at	UHRF1	ubiquitin-like with PHD and ring finger	1.771	0.3916
		domains 1		
1870_at	E2F2	E2F transcription factor 2	1.756	2.2070
701 at	BUB1B	budding uninhibited by benzimidazoles 1	1.749	0.3916
		homolog beta (yeast)		
6036_at	RNASE2	ribonuclease, RNase A family, 2 (liver,	1.745	0.3916
2962 of		eosinophil-derived neurotoxin)	1 720	1 1052
2002_al	MENK	mounnieceptor	1.739	1.1055
8358_at	HIST1H3B	histone cluster 1, H3b	1.734	1.0142
6536_at	SLC6A9	solute carrier family 6 (neurotransmitter transporter alycine) member 9	1.733	4.0068
8825 at	LIN7A	lin-7 homolog A (C. elegans)	1.733	0.3916
2200_at	FBN1	fibrillin 1	1.729	0.3916
04021 ot		HtrA soring pontidage 2	1 720	0 2016
94031_at	IIINAS	HIA serile pepildase 3	1.729	0.3910
3554_at	IL1R1	interleukin 1 receptor, type I	1.728	0.3916
6241_at	RRM2	ribonucleotide reductase M2	1.727	1.0624
5872 at	RAB13	RAB13. member RAS oncogene family	1.726	0.3916
		.,		
7052_at	TGM2	transglutaminase 2 (C polypeptide,	1.724	4.4952
		glutamyltransferase)		
11240_at	PADI2	peptidyl arginine deiminase, type II	1.718	0.7929
6622 at	SNCA	synuclein alpha (non $\Delta 4$ component of	1 718	2 5034
0022_ai	0.107	amyloid precursor)	1.710	2.0004
143689_at	PIWIL4	piwi-like 4 (Drosophila)	1.713	0.3916
0447	D0 0000		4 740	0.0040
8447_at	DUC2B	double C2-like domains, beta	1.713	0.3916

9787_at	DLGAP5	discs, large (Drosophila) homolog- associated protein 5	1.712	0.3916
645_at	BLVRB	biliverdin reductase B (flavin reductase (NADPH))	1.707	1.0142
1063_at	CENPF	centromere protein F, 350/400ka (mitosin)	1.700	0.3916
51514_at	DTL	denticleless homolog (Drosophila)	1.699	1.1053
202243_at	CCDC125	coiled-coil domain containing 125	1.697	0.7929
29899_at	GPSM2	G-protein signaling modulator 2 (AGS3- like, C. elegans)	1.697	0.3916
983_at	CDK1	cyclin-dependent kinase 1	1.695	0.3916
129642_at	MBOAT2	membrane bound O-acyltransferase domain containing 2	1.695	1.0624
2996_at	GYPE	glycophorin E (MNS blood group)	1.692	4.9964
58528_at	RRAGD	Ras-related GTP binding D	1.691	0.3916
3832_at	KIF11	kinesin family member 11	1.690	0.7929
55711_at	FAR2	fatty acyl CoA reductase 2	1.689	0.6156
1084_at	CEACAM3	carcinoembryonic antigen-related cell adhesion molecule 3	1.688	1.0624
84078_at	KBTBD7	kelch repeat and BTB (POZ) domain containing 7	1.687	0.6156
56992_at	KIF15	kinesin family member 15	1.686	0.3916
4602_at	MYB	v-myb myeloblastosis viral oncogene homolog (avian)	1.680	1.0624
8778_at	SIGLEC5	sialic acid binding Ig-like lectin 5	1.677	0.6156
259266_at	ASPM	asp (abnormal spindle) homolog, microcephaly associated (Drosophila)	1.675	0.6156
5746_at	PTH2R	parathyroid hormone 2 receptor	1.675	0.3916
2305_at	FOXM1	forkhead box M1	1.675	0.3916
1193_at	CLIC2	chloride intracellular channel 2	1.668	4.0068
54855_at	FAM46C	family with sequence similarity 46, member C	1.667	6.4318
343171_at	OR2W3	olfactory receptor, family 2, subfamily W, member 3	1.662	9.0379
4784_at	NFIX	nuclear factor I/X (CCAAT-binding transcription factor)	1.660	1.0624

28//15 at	VSTM1	V-set and transmembrane domain	1 658	2 0821
2044 15_al	VSTIMT	containing 1	1.000	2.9021
90381_at	C15orf42	chromosome 15 open reading frame 42	1.655	0.3916
5055_at	SERPINB2	serpin peptidase inhibitor, clade B (ovalbumin), member 2	1.654	0.3916
692087_at	SNORD49B	small nucleolar RNA, C/D box 49B	1.654	4.0068
5337_at	PLD1	phospholipase D1, phosphatidylcholine- specific	1.653	0.3916
58484_at	NLRC4	NLR family, CARD domain containing 4	1.653	0.7929
890_at	CCNA2	cyclin A2	1.652	0.6156
79733_at	E2F8	E2F transcription factor 8	1.648	0.3916
54458_at	PRR13	proline rich 13	1.646	0.3916
3792_at	KEL	Kell blood group, metallo-endopeptidase	1.645	9.0379
199675_at	C19orf59	chromosome 19 open reading frame 59	1.639	0.3916
55859_at	BEX1	brain expressed, X-linked 1	1.638	1.0624
5347_at	PLK1	polo-like kinase 1 (Drosophila)	1.631	0.7929
51203_at	NUSAP1	nucleolar and spindle associated protein 1	1.626	0.6156
26577_at	PCOLCE2	procollagen C-endopeptidase enhancer 2	1.626	0.7929
3009_at	HIST1H1B	histone cluster 1, H1b	1.619	0.7929
8395_at	PIP5K1B	phosphatidylinositol-4-phosphate 5-kinase, type I, beta	1.617	1.0624
6710_at	SPTB	spectrin, beta, erythrocytic	1.617	7.6147
51218_at	GLRX5	glutaredoxin 5	1.616	2.9821
9928_at	KIF14	kinesin family member 14	1.613	0.3916
3382_at	ICA1	islet cell autoantigen 1, 69kDa	1.610	0.3916
55432_at	YOD1	YOD1 OTU deubiquinating enzyme 1 homolog (S. cerevisiae)	1.610	2.5934
57556_at	SEMA6A	sema domain, transmembrane domain (TM), and cytoplasmic domain,	1.609	0.6156
26996_at	GPR160	(semaphorin) 6A G protein-coupled receptor 160	1.609	1.0624

05004	004		1 000	0.0010
25801_at	GCA	grancalcin, EF-hand calcium binding protein	1.603	0.3916
54757_at	FAM20A	family with sequence similarity 20, member A	1.603	9.9658
116159_at	CYYR1	cysteine/tyrosine-rich 1	1.601	1.0624
272_at	AMPD3	adenosine monophosphate deaminase 3	1.596	0.3916
100289137_at	LOC100289137	similar to hCG2010820	1.592	3.3639
64101_at	LRRC4	leucine rich repeat containing 4	1.583	1.5110
8355_at	HIST1H3G	histone cluster 1, H3g	1.579	1.9145
2204_at	FCAR	Fc fragment of IgA, receptor for	1.579	0.7929
116151_at	C20orf108	chromosome 20 open reading frame 108	1.577	4.4952
11113_at	CIT	citron (rho-interacting, serine/threonine kinase 21)	1.571	0.7929
1089_at	CEACAM4	carcinoembryonic antigen-related cell adhesion molecule 4	1.570	1.0142
25893_at	TRIM58	tripartite motif-containing 58	1.570	4.4952
3772_at	KCNJ15	potassium inwardly-rectifying channel, subfamily J, member 15	1.563	5.4721
150468_at	CKAP2L	cytoskeleton associated protein 2-like	1.562	1.0624
9493_at	KIF23	kinesin family member 23	1.561	0.3916
51734_at	SEPX1	selenoprotein X, 1	1.561	0.3916
10158_at	PDZK1IP1	PDZK1 interacting protein 1	1.558	3.4989
2352_at	FOLR3	folate receptor 3 (gamma)	1.555	9.0379
2995_at	GYPC	glycophorin C (Gerbich blood group)	1.553	4.4952
9134_at	CCNE2	cyclin E2	1.551	1.0624
100049587_at	SIGLEC14	sialic acid binding Ig-like lectin 14	1.551	1.1053
199221_at	DZIP1L	DAZ interacting protein 1-like	1.550	0.3916
7855_at	FZD5	frizzled homolog 5 (Drosophila)	1.549	0.3916
253827_at	MSRB3	methionine sulfoxide reductase B3	1.546	1.1053

9133_at	CCNB2	cyclin B2	1.544	0.3916
9055_at	PRC1	protein regulator of cytokinesis 1	1.543	1.0142
2934_at	GSN	gelsolin (amyloidosis, Finnish type)	1.540	0.3916
150000_at	ABCC13	ATP-binding cassette, sub-family C (CFTR/MRP), member 13	1.539	4.9964
6196_at	RPS6KA2	ribosomal protein S6 kinase, 90kDa, polypeptide 2	1.539	0.3916
221184_at	CPNE2	copine II	1.538	0.3916
167555_at	FAM151B	family with sequence similarity 151, member B	1.538	0.3916
6035_at	RNASE1	ribonuclease, RNase A family, 1 (pancreatic)	1.534	1.9145
338811_at	FAM19A2	family with sequence similarity 19 (chemokine (C-C motif)-like), member A2	1.533	1.1053
285696_at	LOC285696	hypothetical LOC285696	1.531	0.3916
25819_at	CCRN4L	CCR4 carbon catabolite repression 4-like (S. cerevisiae)	1.530	1.0624
388507_at	ZNF788	zinc finger family member 788	1.528	0.7929
10272_at	FSTL3	follistatin-like 3 (secreted glycoprotein)	1.527	0.3916
8613_at	PPAP2B	phosphatidic acid phosphatase type 2B	1.527	0.3916
56670_at	SUCNR1	succinate receptor 1	1.525	2.5934
157570_at	ESCO2	establishment of cohesion 1 homolog 2 (S. cerevisiae)	1.524	1.1053
140803_at	TRPM6	transient receptor potential cation channel, subfamily M, member 6	1.523	1.9145
699_at	BUB1	budding uninhibited by benzimidazoles 1 homolog (yeast)	1.522	1.1053
85462_at	FHDC1	FH2 domain containing 1	1.522	8.3194
9086_at	EIF1AY	eukaryotic translation initiation factor 1A, Y-linked	1.519	4.9964
3142_at	HLX	H2.0-like homeobox	1.519	0.3916
57082_at	CASC5	cancer susceptibility candidate 5	1.519	0.3916
2766_at	GMPR	guanosine monophosphate reductase	1.518	7.6147
598_at	BCL2L1	BCL2-like 1	1.518	5.4721

22824 at	HSPA4L	heat shock 70kDa protein 4-like	1.515	1.7031
—		•		
966_at	CD59	CD59 molecule, complement regulatory protein	1.513	1.0624
8794_at	TNFRSF10C	tumor necrosis factor receptor superfamily, member 10c, decoy without an intracellular	1.511	4.4952
3084_at	NRG1	neuregulin 1	1.509	6.4318
2039_at	EPB49	erythrocyte membrane protein band 4.9 (dematin)	1.508	9.9658
1647_at	GADD45A	growth arrest and DNA-damage-inducible, alpha	1.508	0.3916
84628_at	NTNG2	netrin G2	1.504	1.9145
1053_at	CEBPE	CCAAT/enhancer binding protein (C/EBP), epsilon	1.502	0.7929
10170_at	DHRS9	dehydrogenase/reductase (SDR family) member 9	1.501	1.7031
81563_at	C1orf21	chromosome 1 open reading frame 21	-1.501	2.9821
3820_at	KLRB1	killer cell lectin-like receptor subfamily B, member 1	-1.501	3.4989
10578_at	GNLY	granulysin	-1.502	4.4952
259292_at	TAS2R46	taste receptor, type 2, member 46	-1.502	2.9821
917_at	CD3G	CD3g molecule, gamma (CD3-TCR complex)	-1.504	2.9821
5243_at	ABCB1	ATP-binding cassette, sub-family B (MDR/TAP), member 1	-1.507	2.5934
9832_at	JAKMIP2	janus kinase and microtubule interacting protein 2	-1.509	2.9821
256957_at	C17orf66	chromosome 17 open reading frame 66	-1.510	2.9821
83988_at	NCALD	neurocalcin delta	-1.510	2.9821
81794_at	ADAMTS10	ADAM metallopeptidase with thrombospondin type 1 motif, 10	-1.520	2.5934
54843_at	SYTL2	synaptotagmin-like 2	-1.520	4.0068
83888_at	FGFBP2	fibroblast growth factor binding protein 2	-1.521	3.4989
116987_at	AGAP1	ArfGAP with GTPase domain, ankyrin repeat and PH domain 1	-1.528	2.9821
59352_at	LGR6	leucine-rich repeat-containing G protein- coupled receptor 6	-1.531	2.9821
4646_at	MYO6	myosin VI	-1.534	2.9821

_

3127_at	HLA-DRB5	major histocompatibility complex, class II, DR beta 5	-1.540	3.4989
8115_at	TCL1A	T-cell leukemia/lymphoma 1A	-1.542	8.3194
22914_at	KLRK1	killer cell lectin-like receptor subfamily K, member 1	-1.544	2.5934
5727_at	PTCH1	patched homolog 1 (Drosophila)	-1.554	2.5934
5729_at	PTGDR	prostaglandin D2 receptor (DP)	-1.557	3.4989
4603_at	MYBL1	v-myb myeloblastosis viral oncogene homolog (avian)-like 1	-1.561	2.9821
343413_at	FCRL6	Fc receptor-like 6	-1.567	3.3639
154075_at	SAMD3	sterile alpha motif domain containing 3	-1.576	2.9821
55450_at	CAMK2N1	calcium/calmodulin-dependent protein kinase II inhibitor 1	-1.577	2.5934
59084_at	ENPP5	ectonucleotide pyrophosphatase/phosphodiesterase 5	-1.582	2.9821
3824_at	KLRD1	killer cell lectin-like receptor subfamily D, member 1	-1.593	2.5934
401124_at	DTHD1	death domain containing 1	-1.594	4.9964
2999_at	GZMH	granzyme H (cathepsin G-like 2, protein h- CCPX)	-1.602	3.3639
9289_at	GPR56	G protein-coupled receptor 56	-1.605	2.9821
9254_at	CACNA2D2	calcium channel, voltage-dependent, alpha 2/delta subunit 2	-1.612	3.3639
7049_at	TGFBR3	transforming growth factor, beta receptor III	-1.618	2.9821
8302_at	KLRC4	killer cell lectin-like receptor subfamily C, member 4	-1.628	2.9821
22807_at	IKZF2	IKAROS family zinc finger 2 (Helios)	-1.672	2.5934
51348_at	KLRF1	killer cell lectin-like receptor subfamily F, member 1	-1.674	2.5934
3823_at	KLRC3	killer cell lectin-like receptor subfamily C, member 3	-1.688	2.9821
5816_at	PVALB	parvalbumin	-1.725	5.4721
11126_at	CD160	CD160 molecule	-1.813	2.5934
400360_at	C15orf54	chromosome 15 open reading frame 54	-1.871	2.9821
28559_at	TRBV28	T cell receptor beta variable 28	-2.021	3.3639

3123_at	HLA-DRB1	major histocompatibility complex, class II,	-2.205	3.3639
		DR beta 1		

P-value	N genes involved	N genes at nathway	REACT_ID	Name of the event
		patriway	UP-REGU	ILATED
			Metabo	blism
0.015392694	19	200	REACT_13	Metabolism of amino acids and derivatives
6.30E-005	18	116	REACT_474	Metabolism of carbohydrates
0.000284586	13	77	REACT_1698	Metabolism of nucleotides
7.37E-006	11	40	REACT_1046	Pyruvate metabolism and Citric Acid (TCA) cycle
0.000353746	10	50	REACT_13565	Regulation of ornithine decarboxylase (ODC)
0.001542951	9	50	REACT_1221	CDK-mediated phosphorylation and removal of Cdc6
0.003932045	9	57	REACT_723	Glucose metabolism
0.000302809	6	18	REACT_21330	Synthesis and interconversion of nucleotide di- and triphosphates
0.000422025	6	19	REACT_1785	Citric acid cycle (TCA cycle)
0.007633839	6	32	REACT_522	Purine metabolism
0.000693541	5	14	REACT_1008	Glycogen breakdown (glycogenolysis)
0.002467109	5	18	REACT_2071	Pyruvate metabolism
0.007701138	5	23	REACT_2002	Endosome acidification
0.007701138	5	23	REACT_25268	Acidification of Tf:TfR1 containing endosome
0.000292334	4	7	REACT_1859	Pentose phosphate pathway (hexose monophosphate shunt)
0.00055902	4	8	REACT_1736	Glycogen synthesis
0.006118549	4	14	REACT_9431	Metabolism of porphyrins
0.022740197	4	20	REACT_16957	Peroxisomal lipid metabolism
0.000662594	3	4	REACT_1827	alpha-D-Glucose + ATP => alpha-D-glucose 6-phosphate + ADP

Supplementary Table S2: Up- and downregulated pathways associated with low overall survival, sorted by number of genes involved.

0.000662594	3	4	REACT_1407	Plasmalogen biosynthesis
0.011277931	3	9	REACT_9465	Heme biosynthesis
0.015454102	3	10	REACT_2086	Purine catabolism
0.015454102	3	10	REACT_22099	Phosphorylation of L1 by ERK
0.026077985	3	12	REACT_1923	Purine salvage
0.047672127	3	15	REACT_6759	Formation of ATP by chemiosmotic coupling
0.047672127	3	15	REACT_190	ATP is synthesized from ADP and Pi by ATPase
0.047672127	3	15	REACT_1985	Enzyme-bound ATP is released
0.047672127	3	15	REACT_991	ADP and Pi bind to ATPase
0.003113249	2	2	REACT_2164	alpha-D-Glucose 6-phosphate <=> D-Glucose 1- phosphate
0.003113249	2	2	REACT_605	D-Glucose 1-phosphate <=> alpha-D-Glucose 6- phosphate
0.003113249	2	2	REACT_939	Insulin effects increased synthesis of Xylulose-5- Phosphate
0.003113249	2	2	REACT_9463	Succinyl CoA and glycine condense to form 5- aminolevulinate (ALA)
0.008994111	2	3	REACT_1865	alpha-ketoadipate + CoASH + NAD+ => glutaryl-CoA + CO2 + NADH + H+
0.008994111	2	3	REACT_66	alpha-ketoglutarate + CoASH + NAD+ => succinyl-CoA + CO2 + NADH + H+
0.008994111	2	3	REACT_375	NDP + reduced glutaredoxin => dNDP + oxidized glutaredoxin + H2O
0.008994111	2	3	REACT_2182	NDP + reduced thioredoxin => dNDP + oxidized thioredoxin + H2O
0.008994111	2	3	REACT_642	NDP + reduced thioredoxin => dNDP + oxidized thioredoxin + H2O
0.017325627	2	4	REACT_1053	8 UDP-glucose + ((1,4)-alpha-D-glucosyl)4 glycogenin => 8 UDP + ((1,4)-alpha-D-glucosyl)8 glycogenin [GYS D
0.017325627	2	4	REACT_1169	form] 8 UDP-glucose + ((1,4)-alpha-D-glucosyl}4 glycogenin => 8 UDP + ((1,4)-alpha-D-glucosyl)8 glycogenin [GYS I
0.017325627	2	4	REACT_16882	form] Basigin binds MCT1, MCT3 and MCT4
0.017325627	2	4	REACT_14855	lactate + H+ [extracellular] <=> lactate + H+ [cytosol]
0.017325627	2	4	REACT_14839	lactate + H+ [cytosol] <=> lactate + H+ [extracellular]

0.027817417	2	5	REACT_983	pyruvate + CoASH + NAD+ => acetylCoA + CO2 + NADH + H+
0.027817417	2	5	REACT_1623	glycogen phosphorylase (PYGL) dimer b + 2 ATP => glycogen phosphorylase (PYGL) dimer a + 2 ADP
0.027817417	2	5	REACT_13578	Antizyme inhibitor binds to OAZ and stablizes ODC complex
			Apopt	osis
0.001471786	17	137	REACT_578	Apoptosis
0.00443228	9	58	REACT_13648	Regulation of Apoptosis
0.007839346	3	8	REACT_1213	Apoptosis induced DNA fragmentation
			DNA dama	ae/renair
0.002053978	9	52	REACT_2160	p53-Independent DNA Damage Response
0.002053978	9	52	REACT_1208	p53-Independent G1/S DNA damage checkpoint
0.003064646	9	55	REACT_1625	p53-Dependent G1 DNA Damage Response
0.003064646	9	55	REACT_85	p53-Dependent G1/S DNA damage checkpoint
0.00443228	9	58	REACT_2254	G1/S DNA Damage Checkpoints
0.007839346	3	8	REACT_13462	Activation of DNA fragmentation factor
0.047672127	3	15	REACT_378	Repair synthesis of patch ~27-30 bases long by DNA polymerase
0.047672127	3	15	REACT_1993	Repair synthesis for gap-filling by DNA polymerase in TC-NER
			Protein de	gradation
0.002435364	11	74	REACT_9453	Vif-mediated degradation of APOBEC3G
0.002435364	11	74	REACT_9466	Proteosome-mediated degradation of APOBEC3G
0.001581725	10	60	REACT_6715	Degradation of multiubiquitinated Cdh1
0.001581725	10	60	REACT_6785	Autodegradation of Cdh1 by Cdh1:APC/C
0.002608064	10	64	REACT_6871	APC/C:Cdc20 mediated degradation of Securin
0.002608064	10	64	REACT_6777	Degradation of multiubiquitinated Securin
0.002608064	10	64	REACT_9035	APC/C:Cdh1-mediated degradation of Skp2

0.0036828	10	67	REACT_6850	Cdc20:Phospho-APC/C mediated degradation of Cyclin A
0.0036828	10	67	REACT_6937	Degradation multiubiquitinated Cyclin A
0.004110225	10	68	REACT_6826	Degradation of multiubiquitinated cell cycle proteins
0.004575942	10	69	REACT_6761	APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted proteins in late mitosis/early G1
0.004575942	10	69	REACT_6781	APC/C:Cdc20 mediated degradation of mitotic proteins
0.005082255	10	70	REACT_6954	Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic proteins
0.011867326	10	79	REACT_6828	APC/C-mediated degradation of cell cycle proteins
0.001139438	9	48	REACT_13491	26S proteosome degrades ODC holoenzyme complex
0.001139438	9	48	REACT_75871	Proteasomal cleavage of substrate
0.001328894	9	49	REACT_1471	Ubiquitinated geminin is degraded by the proteasome
0.001328894	9	49	REACT_480	Ubiquitinated Orc1 is degraded by the proteasome
0.001328894	9	49	REACT_1210	Ubiquitinated Cdc6 is degraded by the proteasome
0.001328894	9	49	REACT_873	Proteolytic degradation of ubiquitinated-Cdc25A
0.001328894	9	49	REACT_2142	Proteasome mediated degradation of Cyclin D1
0.001328894	9	49	REACT_13413	Proteasome mediated degradation of PAK-2p34
0.001328894	9	49	REACT_13464	Regulation of activated PAK-2p34 by proteasome mediated degradation
0.001328894	9	49	REACT_13505	Proteasome mediated degradation of PAK-2p34
0.001328894	9	49	REACT_20637	Proteasome mediated degradation of COP1
0.001542951	9	50	REACT_4	Ubiquitin-dependent degradation of Cyclin D1
0.001542951	9	50	REACT_938	Ubiquitin-dependent degradation of Cyclin D
0.00178386	9	51	REACT_20549	Autodegradation of the E3 ubiquitin ligase COP1
0.002053978	9	52	REACT_1614	Ubiquitin Mediated Degradation of Phosphorylated Cdc25A
0.002053978	9	52	REACT_9034	Degradation of ubiquitinated p27/p21 by the 26S proteasome

0.002053978	9	52	REACT_9003	SCF(Skp2)-mediated degradation of p27/p21
0.002355762	9	53	REACT_75842	Antigen processing: Ubiquitination & Proteasome degradation
0.002691768	9	54	REACT_6821	SCF-beta-TrCP mediated degradation of Emi1
0.002691768	9	54	REACT_6878	SCF-mediated degradation of Emi1
0.003477132	9	56	REACT_11063	Degradation of beta-catenin by the destruction complex
0.003477132	9	56	REACT_10017	Degradation of ubiquitinated -beta catenin by the proteasome
0.024742631	9	76	REACT_9031	Vpu mediated degradation of CD4
0.024742631	9	76	REACT_9018	Degradation of ubiquitinated CD4
0.015454102	3	10	REACT_25315	Ubiquitination of AUF1 (hnRNP D0)
			Signal tran	sduction
0.048274995	18	212	REACT_11061	Signalling by NGF
0.047835111	12	126	REACT_12056	NGF signalling via TRKA from the plasma membrane
0.003477132	9	56	REACT_11045	Signaling by Wnt
0.034044476	6	44	REACT_75913	Nucleotide-binding domain, leucine rich repeat containing receptor (NLR) signaling pathways
0.015395034	5	27	REACT_12484	EGFR downregulation
0.026889844	4	21	REACT_21399	activated TAK1 mediates p38 MAPK activation
0.003044842	3	6	REACT_21395	activated human MKK3/MKK6 phosphorylates p38 MAPK complexed with MAPKAPK2 or MAPKAPK3
0.020385123	3	11	REACT_12435	Retrograde neurotrophin signalling
0.032530817	3	13	REACT_12065	p38MAPK events
0.047672127	3	15	REACT_22240	Phosphorylation of L1 by p90rsk
0.017325627	2	4	REACT_12032	MAP kinase activates MAPKAPK2, MAPKAPK3 and MSK1
0.017325627	2	4	REACT_21375	Active p38 MAPK phosphorylates MAPKAPK2 or 3
0.017325627	2	4	REACT_21358	Nuclear export of human p38 MAPK mediated by its substrate MAPKAPK2 or 3

Cell Transport
0.000681435	13	84	REACT_11123	Membrane Trafficking
0.001985072	13	94	REACT_6305	Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat production by
0.009107485	10	76	REACT_22393	Respiratory electron transport
0.000100291	8	28	REACT_27258	Endosomal Sorting Complex Required For Transport (ESCRT)
0.000532609	7	27	REACT_25283	Transferrin endocytosis and recycling
0.003819463	7	37	REACT_25060	Iron uptake and transport
0.000993223	5	15	REACT_27290	MVB Vesicle Formation
0.001379383	5	16	REACT_27184	ESCRT Disassembly
0.011097932	5	25	REACT_1109	Insulin receptor recycling
0.019006494	4	19	REACT_12495	Assembly in clathrin-coated vesicles (CCVs)
0.007839346	3	8	REACT_22118	L1 binds to AP-2 Clathrin complex
0.011277931	3	9	REACT_12559	Formation of clathrin-coated vesicle
0.011277931	3	9	REACT_22103	Transport of L1 into endosomes
0.011277931	3	9	REACT_22359	Formation of clathrin coated vesicle
0.015454102	3	10	REACT_12397	Endocytosis (internalization) of clathrin-coated vesicle
0.020385123	3	11	REACT_12385	Axonal transport of NGF:Trk complexes
0.020385123	3	11	REACT_22136	Transport of L1 from C-domain to P-domain
			Cell ar	owth
0.00063613	14	94	REACT_2014	Synthesis of DNA
0.001923966	14	105	REACT_899	S Phase
0.003469373	13	100	REACT_1783	G1/S Transition
0.007275887	13	109	REACT_21267	Mitotic G1-G1/S phases
0.011273817	13	115	REACT_1538	Cell Cycle Checkpoints

0.001290635	12	79	REACT_1725	M/G1 Transition
0.001290635	12	79	REACT_734	DNA Replication Pre-Initiation
0.000712619	11	64	REACT_2243	Assembly of the pre-replicative complex
0.001203735	11	68	REACT_1156	Orc1 removal from chromatin
0.001203735	11	68	REACT_2148	Switching of origins to a post-replicative state
0.001538063	11	70	REACT_207	Removal of licensing factors from origins
0.001538063	11	70	REACT_829	Regulation of DNA replication
0.008306703	10	75	REACT_6837	Regulation of APC/C activators between G1/S and early anaphase
0.011867326	10	79	REACT_21279	Regulation of mitotic cell cycle
0.00443228	9	58	REACT_1949	CDT1 association with the CDC6:ORC:origin complex
0.004980802	9	59	REACT_9029	Cyclin A:Cdk2-associated events at S phase entry
0.006234874	9	61	REACT_1574	Cyclin E associated events during G1/S transition
0.034499345	5	33	REACT_7970	Telomere Maintenance
0.003113249	2	2	REACT_936	Formation of Elongin BC complex
0.040203704	2	6	REACT_1303	Mcm4,6,7 trimer forms and associates with the replication fork
0.040203704	2	6	REACT_6922	MCM2-7 mediated fork unwinding
			Proteins or	ranization
0.000857077	13	86	REACT_24994	Regulation of mRNA Stability by Proteins that Bind AU- rich Elements
0.000151167	11	54	REACT_25325	Destabilization of mRNA by AUF1 (hnRNP D0)
0.002053978	9	52	REACT_309	Stabilization of p53
0.00303599	8	45	REACT_25343	Destruction of AUF1 and mRNA
0.017909354	5	28	REACT_75925	Amyloids
0.004568547	4	13	REACT_27319	Cargo Sequestration

0.000172819	3	3	REACT_12073	Heterdimerization of CEACAMs
0.020385123	3	11	REACT_22298	Reinsertion of L1 into the plasma membrane
0.032530817	3	13	REACT_27272	Cargo Recognition And Sorting
0.008994111	2	3	REACT_51	Formation of elongin complex
0.008994111	2	3	REACT_24015	Recruitment of PYK2 to pSIRP alpha
0.008994111	2	3	REACT_21266	Surface deployment of platelet dense granule membrane components
0.027817417	2	5	REACT_75858	Serum amyloid P binds DNA and chromatin
0.040203704	2	6	REACT_25267	Association of AUF1 with Translation and Heat Shock Proteins
			Inflam	ation
0.003197496	5	19	REACT_75900	Inflammasomes
0.032530817	3	13	REACT_75808	The NLRP3 inflammasome
			DOWN-REC	GULATED
			Metabo	olism
0.01065623	14	134	REACT_15550	Insulin Synthesis and Processing
0.005841435	14	125	REACT_11051	Rho GTPase cycle
0.004950053	13	110	REACT_2085	GTP hydrolysis and joining of the 60S ribosomal subunit
0.00229006	12	89	REACT_1654	GTP Hydrolysis by eRF3 bound to the eRF1:mRNA:polypeptide:80S Ribosome complex
0.002076775	12	88	REACT_3	eIF5B:GTP is hydrolyzed and released
0.002076775	12	88	REACT_552	Hydrolysis of eEF1A:GTP
0.002076775	12	88	REACT_13617	MAFA-, NKX2-2-, PAX6-, and PDX1-dependent synthesis of insulin precursor protein
0.00667226	7	43	REACT_15426	PLC beta mediated events
0.021759309	6	42	REACT_12640	Inactivation of Lck by Csk
0.017379403	6	40	REACT_12467	Activation of Lck
0.045583362	4	26	REACT_9000	Calmodulin induced events

0.045583362	4	26	REACT_9053	CaM pathway
0.040180791	4	25	REACT_24941	Circadian Clock
0.030532081	4	23	REACT_18274	Regulation of Insulin Secretion by Glucagon-like Peptide-
0.030532081	4	23	REACT_24023	Regulation of Water Balance by Renal Aquaporins
0.049064325	3	16	REACT_18342	Nucleotide-like (purinergic) receptors
0.025036396	2	5	REACT_16916	PLC-gamma hydrolyses PIP2
0.015561521	2	4	REACT_23956	PMCA extrusion of Ca2+
0.015561521	2	4	REACT_75931	Trimming of N-ter extended precursor fragments by cytosolic aminopeptidases
			Apopt	tosis
0.012304399	5	27	REACT_964	Intrinsic Pathway for Apoptosis
0.015561521	2	4	REACT_12563	Interaction and oligomerization of MALT1 to Bcl10
0.015561521	2	4	REACT_13427	NRAGE activates JNK
0.008061587	2	3	REACT_75844	Bcl-2 and Bcl-XL bind NLRP1
			Immune	system
0.015561521	2	4	REACT_6786	Ubiquitin-dependent degradation controls basal levels of R-SMAD
0.000186556	60	729	REACT_6900	Immune System
3.23E-005	44	450	REACT_75774	Adaptive Immunity Signaling
0.02307924	22	266	REACT_11152	Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell
0.004224502	13	108	REACT_13698	Regulation of beta-cell development
0.025267619	12	121	REACT_6167	Influenza Infection
0.018738514	12	116	REACT_6145	Influenza Life Cycle
0.014500061	12	112	REACT_6152	Influenza Viral RNA Transcription and Replication
0.008885861	12	105	REACT_9491	Viral mRNA Translation
0.008247427	12	104	REACT_9514	Viral Protein Synthesis

0.002076775	12	88	REACT_9524	Synthesis of PB1-F2
0.000624275	12	77	REACT_19344	Costimulation by the CD28 family
0.020191091	8	65	REACT_6835	The role of Nef in HIV-1 replication and disease pathogenesis
0.011636903	8	59	REACT_11080	TCR complex interacts with peptide antigen-presenting MHC Class I
0.005093469	7	41	REACT_12596	Translocation of ZAP-70 to Immunological synapse
0.00037935	7	27	REACT_19183	CD28 co-stimulation
0.042758584	6	49	REACT_23853	Interactions of the immunoglobulin superfamily (IgSF) member proteins
0.017561519	3	11	REACT_19238	CD28 dependent Vav1 pathway
0.002593132	3	6	REACT_27145	Interleukin-2: IL2 receptor alpha:beta binds IL2 receptor gamma subunit
0.025036396	2	5	REACT_11121	C3d-complexed antigen binds to complement receptor
0.015561521	2	4	REACT_11119	NKG2A-CD94 heterdimer interacts with HLA-E
0.015561521	2	4	REACT_14847	Receptors CCR3, 4 and 5 bind CCL5 ligand
0.015561521	2	4	REACT_27278	Interleukin-2 receptor alpha:IL2 binds Interleukin-2 receptor beta
0.008061587	2	3	REACT_11106	MHC Class I interacts with CD160
0.008061587	2	3	REACT_11140	KIR2DL1 interacting with HLA-C group 2 (Cw3)
0.008061587	2	3	REACT_11124	KIR3DL2 interacting with HLA-A3
0.002784626	2	2	REACT_19295	SEMA4D interacts with CD45
			Signal tran	sduction
0.001650096	22	212	REACT_11061	Signalling by NGF
1.22E-006	17	84	REACT_12526	TCR signaling
0.005841435	14	125	REACT_11044	Signaling by Rho GTPases
0.015027192	13	126	REACT_12056	NGF signalling via TRKA from the plasma membrane
0.004950053	13	110	REACT_75891	Phosphorylated UPF1 Recruits SMG5, SMG7, SMG6, and PP2A

0.003030769	13	104	REACT_75910	SMG1 Phosphorylates UPF1 (Enhanced by Exon Junction Complex)
0.002780132	13	103	REACT_15421	Cleavage of the Signal Peptide of Preproinsulin
0.000975634	13	92	REACT_12051	Cell surface interactions at the vascular wall
0.005134165	12	98	REACT_15358	Interaction between SRP and SRP Receptor
0.004336652	12	96	REACT_15319	Signal Recognition (Preproinsulin)
0.004336652	12	96	REACT_20565	Signal Recognition (Preprolactin)
0.000759184	11	68	REACT_12555	Downstream TCR signaling
7.65E-005	11	53	REACT_12623	Generation of second messenger molecules
1.86E-005	11	46	REACT_12498	Phosphorylation of PLC-gamma1
0.039060641	9	87	REACT_13776	p75 NTR receptor-mediated signalling
0.00433298	9	61	REACT_18407	G alpha (12/13) signalling events
0.003867925	9	60	REACT_15295	Opioid Signalling
0.000389117	9	44	REACT_12615	Phosphorylation of SLP-76
0.018523772	8	64	REACT_13720	Cell death signalling via NRAGE, NRIF and NADE
0.010525854	8	58	REACT_10098	GEFs activate Rho GTPase:GDP
0.002850499	8	47	REACT_13638	NRAGE signals death through JNK
0.001345375	8	42	REACT_12421	Phosphorylation of TBSMs in LAT
0.009685997	7	46	REACT_23837	Interleukin-3, 5 and GM-CSF signaling
0.007585877	7	44	REACT_15526	G-protein mediated events
0.00667226	7	43	REACT_12582	Phosphorylation of CD3 and TCR zeta chains
0.005843087	7	42	REACT_19216	GEFs activate RhoA,B,C
0.005093469	7	41	REACT_12538	Phosphorylation of ZAP-70 by Lck
0.005093469	7	41	REACT_12394	Activation of ZAP-70

0.005093469	7	41	REACT_12446	Dephosphorylation of Lck-pY505 by CD45
0.001672101	7	34	REACT_12079	PLC-gamma1 signalling
0.03262897	6	46	REACT_19146	Dephosphorylation of CD3-zeta by PD-1 bound phosphatases
0.03262897	6	46	REACT_19324	PD-1 signaling
0.026830065	6	44	REACT_75913	Nucleotide-binding domain, leucine rich repeat containing receptor (NLR) signaling pathways
0.017379403	6	40	REACT_12633	Phosphorylation of ITAM motifs in CD3 complexes
0.017379403	6	40	REACT_13694	p75NTR indirectly activates RAC and Cdc42 via a guanyl-nucleotide exchange factor
0.001556972	6	25	REACT_2202	Effects of PIP2 hydrolysis
0.000155659	6	17	REACT_19358	CD28 dependent PI3K/Akt signaling
0.043360304	5	37	REACT_20563	Activation of NMDA receptor upon glutamate binding and postsynaptic events
0.039123685	5	36	REACT_17025	Down-stream signal transduction
0.027980085	5	33	REACT_1665	Glucagon signaling in metabolic regulation
0.027980085	5	33	REACT_20593	Post NMDA receptor activation events
0.030532081	4	23	REACT_12034	Signaling by BMP
0.030532081	4	23	REACT_23832	Nephrin interactions
0.030532081	4	23	REACT_24024	Gab2 binds the p85 subunit of Class 1A PI3 kinases
0.006557378	4	15	REACT_6844	Signaling by TGF beta
0.000778848	4	9	REACT_19212	PI3K binds CD28
0.000778848	4	9	REACT_19274	CD28 bound PI3K phosphorylates PIP2 to PIP3
0.000105283	4	6	REACT_19159	Gads binds CD28
0.049064325	3	16	REACT_15530	PKA activation
0.041437086	3	15	REACT_19333	G alpha (z) signalling events
0.034461145	3	14	REACT_697	Activation of BH3-only proteins

0.034461145	3	14	REACT_22351	DCC mediated attractive signaling
0.022516538	3	12	REACT_12519	PECAM1 interactions
0.022516538	3	12	REACT_18289	P2Y receptors
0.013283338	3	10	REACT_12013	I-Smad binds to type I receptor, preventing Smad1/5/8 from being activated
0.006707393	3	8	REACT_19264	Phosphorylation of CD28
0.006707393	3	8	REACT_19243	Activation of Rac1 by pVav1
0.006707393	3	8	REACT_19286	Activation of Cdc42 by pVav1
0.006707393	3	8	REACT_25061	Binding of CRY:PER Heterodimer to the BMAL1:CLOCK/NPAS2 Heterodimer
0.006707393	3	8	REACT_27154	Recruited STAT5 is phosphorylated
0.006707393	3	8	REACT_27183	Phosphorylation of IL2RB Y338, Y392 or Y510 enables STAT recruitment
0.006707393	3	8	REACT_27314	Phosphorylated STAT5 is released
0.004361389	3	7	REACT_19316	Activation of Vav1
0.004361389	3	7	REACT_27317	Phosphorylation of IL2RB Y338 enables SHC recruitment
0.004361389	3	7	REACT_27150	SHC1 bound to IL2 receptor is phosphorylated
0.004361389	3	7	REACT_27233	SYK is a substrate for JAK1
0.004361389	3	7	REACT_27313	Syk binds IL2RB
0.002593132	3	6	REACT_19254	Grb2 binds CD28
0.002593132	3	6	REACT_27274	Within the IL-2R complex JAK3 phosphorylates JAK1
0.002593132	3	6	REACT_27196	JAK1 phosphorylates Y338, Y392 and Y510 of IL2RB
0.049016684	2	7	REACT_637	G12/13 activation by PAR
0.049016684	2	7	REACT_23839	Thrombin-activated PAR binds G-protein G12/13
0.049016684	2	7	REACT_23796	Dissociation of the PAR:G12/13 complex
0.036258028	2	6	REACT_6744	Phospho-R-SMAD dissociates from the receptor complex

0.036258028	2	6	REACT_6879	Activated type I receptor phosphorylates R-SMAD directly
0.036258028	2	6	REACT_12070	Type II receptor phosphorylates type I receptor
0.036258028	2	6	REACT_12011	BMP2 binds to the receptor complex
0.036258028	2	6	REACT_12408	Phoshorylation of PECAM-1 by Fyn or Lyn or c-Src
0.036258028	2	6	REACT_16997	Nck binds to the active PDGF receptor
0.036258028	2	6	REACT_20653	ADP signalling through P2Y purinoceptor 12
0.036258028	2	6	REACT_20523	Activated P2Y purinoceptor 12 binds G-protein Gi
0.036258028	2	6	REACT_20507	Gi activation by P2Y purinoceptor 12
0.036258028	2	6	REACT_23820	Nephrin mediated activation of N-WASP
0.025036396	2	5	REACT_16998	PLC-gamma binds to the active receptor
0.025036396	2	5	REACT_12561	PI3K phosphorylates PIP2 to PIP3
0.025036396	2	5	REACT_23958	Activation of beta-arrestin-1-bound Src kinase
0.025036396	2	5	REACT_23900	Activated Src activates ERK
0.025036396	2	5	REACT_23781	Beta-arrestin-1 acts as scaffold for a PAR1 signalling complex
0.025036396	2	5	REACT_18416	S1P-binding receptors bind S1P
0.015561521	2	4	REACT_6887	SKI complexes with the SMAD complex, suppressing TGF-beta signaling
0.015561521	2	4	REACT_23917	Activation of Protein Kinase C novel isoforms
0.008061587	2	3	REACT_1144	Binding of IP3 to IP3 receptor
0.008061587	2	3	REACT_12074	Release of calcium from intracellular stores by IP3 receptor activation
0.008061587	2	3	REACT_12573	Phosphorylation of CARMA1
0.008061587	2	3	REACT_18395	Opening of ER calcium channels by activated PKA
0.008061587	2	3	REACT_18335	Phosphorylation of FANCI by ATM/ATR
0.008061587	2	3	REACT_18293	Phosphorylation of FANCD2 by ATR/ATM

0.008061587	2	3	REACT_25029	Phosphorylation and Nuclear Translocation of the BMAL1:CLOCK/NPAS2 Heterodimer
0.008061587	2	3	REACT_23803	Syk/Lck phosphorylate LAT
0.008061587	2	3	REACT_22135	Inactive G alpha (z) reassociates with G beta:gamma
0.002784626	2	2	REACT_23835	Activated PAR1 binds Beta-arrestin-1
0.002784626	2	2	REACT_27175	IL2RB associates with JAK1
0.008061587	2	3	REACT_12008	IP3 binds to the IP3 receptor, opening the endoplasmic reticulum Ca2+ channel
			Gene Exp	ression
0.043587007	30	413	REACT_71	Gene Expression
0.035911088	20	247	REACT_21257	Metabolism of RNA
0.01276809	20	222	REACT_20605	Metabolism of mRNA
0.005438258	14	124	REACT_1014	Translation
0.003201673	14	117	REACT_2159	Eukaryotic Translation Initiation
0.003201673	14	117	REACT_2099	Cap-dependent Translation Initiation
0.004950053	13	110	REACT_75886	Nonsense-Mediated Decay
0.004950053	13	110	REACT_75822	Nonsense Mediated Decay Enhanced by the Exon Junction Complex
0.004575691	13	109	REACT_79	L13a-mediated translational silencing of Ceruloplasmin expression
0.004575691	13	109	REACT_1762	3' -UTR-mediated translational regulation
0.003895432	13	107	REACT_75787	SMG6 Cleaves mRNA with Premature Termination Codon
0.003030769	13	104	REACT_75753	UPF1 Binds an mRNP with a Termination Codon Preceding an Exon Junction Complex
0.001940961	13	99	REACT_13819	Regulation of gene expression in beta cells
0.005134165	12	98	REACT_1797	Formation of a pool of free 40S subunits
0.003329699	12	93	REACT_75917	Formation of UPF1:eRF3 Complex on mRNA with a Premature Termination Codon and No Exon Junction
0.003329699	12	93	REACT_75768	Complex Nonsense Mediated Decay Independent of the Exon Junction Complex

0.003039637	12	92	REACT_1477	Eukaryotic Translation Elongation
0.00229006	12	89	REACT_1986	Eukaryotic Translation Termination
0.00229006	12	89	REACT_389	Polypeptide release from the eRF3- GDP:eRF1:mRNA:80S Ribosome complex
0.00229006	12	89	REACT_227	GTP bound eRF3:eRF1 complex binds the peptidyl tRNA:mRNA:80S Ribosome complex
0.00229006	12	89	REACT_1404	Peptide chain elongation
0.00229006	12	89	REACT_1937	Translocation of ribosome by 3 bases in the 3' direction
0.002076775	12	88	REACT_198	The 60S subunit joins the translation initiation complex
0.002076775	12	88	REACT_2075	Aminoacyl-tRNA binds to the ribosome at the A-site
0.001880047	12	87	REACT_928	Release of 40S and 60S subunits from the 80S ribosome
0.001880047	12	87	REACT_1227	Peptide transfer from P-site tRNA to the A-site tRNA
0.018513126	7	52	REACT_940	Dissociation of L13a from the 60s ribosomal subunit
0.03262897	6	46	REACT_20639	Deadenylation-dependent mRNA decay
0.004980284	5	22	REACT_20514	Deadenylation of mRNA
0.035164041	4	24	REACT_1309	RNA Polymerase I Transcription
0.026282007	4	22	REACT_1974	RNA Polymerase I Promoter Clearance
0.022408966	4	21	REACT_953	RNA Polymerase I Transcription Initiation
0.022408966	4	21	REACT_1074	RNA Polymerase I Transcription Termination
0.022408966	4	21	REACT_513	Dissociation of PTRF:Polymerase I/Nascent Pre rRNA Complex:TTF-I:Sal Box
0.022408966	4	21	REACT_211	PTRF Binds the Polymerase I Transcription Complex/Nascent Pre rRNA Complex paused at the
0.018906088	4	20	REACT_139	TTF-I:Sal Box Recruitment of Active RNA Polymerase I to SL1:phos.UBF-1:rDNA Promoter
0.018906088	4	20	REACT_373	Loss of Rrn3 from RNA Polymerase I promoter escape complex
0.018906088	4	20	REACT_1913	RNA Polymerase I Promoter Escape
0.018906088	4	20	REACT_2228	Polymerase I Transcription Complex/Nascent Pre rRNA Complex pauses at the TTF-I:Sal Box

0.01576443	4	19	REACT_2204	RNA Polymerase I Chain Elongation
0.01576443	4	19	REACT_872	Elongation of pre-rRNA transcript
0.01576443	4	19	REACT_20651	Deadenylation of mRNA by the CCR4-NOT Complex
0.049016684	2	7	REACT_1173	Binding of Rrn3 to RNA Polymerase I
0.036258028	2	6	REACT_1773	Assembly of RNA Polymerase I Holoenzyme (human)
			Protoins or	nanization
0.004224502	13	108	REACT_15520	Translocation of Preproinsulin to Endoplasmic Reticulum
0.005093469	7	41	REACT_12566	Change of PKC theta conformation
0.005093469	7	41	REACT_12642	Recruitment of ZAP-70 to phosphorylated ITAMs
0.022516538	3	12	REACT_22398	Recruitment of ABLIM to the plasma membrane
0.004361389	3	7	REACT_19244	Translocation of Vav1 to CD28
0.001349207	3	5	REACT_25234	Stabilization of Unphosphorylated BMAL1:CLOCK/NPAS2 Heterodimer by CRY Proteins
0.000561654	3	4	REACT_12506	Recruitment of PLC-gamma1 to SLP-76
0.000561654	3	4	REACT_12604	Recruitment of ITK to SLP-76
0.000561654	3	4	REACT_12525	Disassociation of PLC-gamma1 from SLP-76
0.049016684	2	7	REACT_549	Activation of BAD and translocation to mitochondria
0.049016684	2	7	REACT_1532	cAMP induces dissociation of inactive PKA tetramers
0.036258028	2	6	REACT_6923	An anchoring protein, SARA, recruits R-SMAD
0.036258028	2	6	REACT_11173	ICAMs 1-4 bind to Integrin LFA-1
0.036258028	2	6	REACT_20630	Dissociation of the P2Y purinoceptor 12:Gi complex
0.036258028	2	6	REACT_22150	Liganded Gz-activating GPCRs bind inactive heterotrimeric G-protein Gz
0.036258028	2	6	REACT_22380	Liganded Gz-activating GPCR acts as a GEF for Gz
0.036258028	2	6	REACT_22170	The Ligand:GPCR:Gz complex dissociates

0.025036396	2	5	REACT_12486	Recruitment of PI3K to plasmamembrane
0.025036396	2	5	REACT_12448	Translocation of TRAF6 to CBM complex
0.025036396	2	5	REACT_12009	Formation of a heteromeric BMP receptor complex
0.025036396	2	5	REACT_23852	Nephrin binds NCK
0.015561521	2	4	REACT_701	Activation, myristolyation of BID and translocation to mitochondria
0.008061587	2	3	REACT_11161	VCAM-1interacts with VLA-4
0.008061587	2	3	REACT_11199	MADCAM interacts with Integrin alpha4beta7
0.008061587	2	3	REACT_12489	Recruitment of SLP-76 to Gads
0.008061587	2	3	REACT_12040	VLA-4 binds JAM-B
0.008061587	2	3	REACT_13818	Interaction of integrin alpha4beta1 with Fibronectin
0.008061587	2	3	REACT_13516	Interaction of integrin alpha4beta1 with Thrombospondin-
0.008061587	2	3	REACT_13810	Interaction of integrin alpha4beta1 with Osteopontin
0.008061587	2	3	REACT_25402	Formation of BMAL1:CLOCK/NPAS2 Heterodimer
0.002784626	2	2	REACT_12398	Recruitment of PLC-gamma1 to LAT
0.002784626	2	2	REACT_12570	Recruitment of Gads to LAT
0.002784626	2	2	REACT_12618	Disassociation of PLC-gamma1 from LAT
			Inflam	ation
0.01576443	4	19	REACT_75900	Inflammasomes
0.008061587	2	3	REACT_75927	The NLRP1 inflammasome
			Hemos	otasis
0.000777173	38	426	REACT_604	Hemostasis
0.002969268	23	236	REACT_20	Formation of Platelet plug
0.002360124	22	218	REACT_798	Platelet Activation
0.020191091	8	65	REACT_622	Platelet activation triggers

0.010525854	8	58	REACT_23876	Platelet homeostasis
0.01576443	4	19	REACT_23905	Platelet calcium homeostasis
0.008061587	2	3	REACT_945	Transport of Ca++ from platelet dense tubular system to cytoplasm

Supplementary Table S3: Overexpressed common elements between samples with ≥5 CTCs and samples from patients with shortest survival.

	Fynress	ion in >5	Overall	survival		Express	ion in >5	Overall	survival
	CTCs	vs <5	Overail	Sarvival		CTCs	vs <5	Overail	Survival
	CT	ĊS				CT	CS		
	FC	FDR	HR	FDR		FC	FDR	HR	FDR
ABCA13	3.12	1.06	1.64	0.000	HIST1H3B	1.73	1.01	3.50	0.000
AHSP	3.11	2.59	1.38	0.000	HLX	1.52	0.39	5.69	0.000
ALAS2	2.84	4.01	1.39	0.085	HP	4.09	0.39	1.68	0.000
AMPD3	1.60	0.39	5.58	0.000	LCN2	2.28	1.01	2.05	0.000
ANXA3	2.82	1.06	1.72	0.000	LIN7A	1.73	0.39	4.63	0.000
ATP8B4	1.79	0.39	3.96	0.000	LOC643332	1.96	0.39	3.39	0.000
BCL2L1	1.52	5.47	1.88	0.149	LTF	2.78	1.91	1.66	0.000
BLVRB	1.71	1.01	2.30	0.000	MBOAT2	1.69	1.06	2.95	0.000
BPGM	1.83	4.50	1.65	0.000	MGAM	2.24	1.11	1.80	0.000
BPI	2.45	1.70	1.82	0.000	MMP8	3.01	1.70	1.76	0.000
C19orf59	1.64	0.39	5.43	0.000	MMP9	3.29	0.79	1.59	0.000
C5orf32	1.88	0.39	3.42	0.000	MPO	2.32	1.91	1.91	0.000
CA1	2.84	4.50	1.41	0.149	MS4A3	2.12	1.70	2.08	0.000
CCDC125	1.70	0.79	3.04	0.000	NA	2.32	0.39	2.88	0.000
CD177	3.27	0.62	1.68	0.000	NLRC4	1.65	0.79	3.58	0.000
CD24	2.36	1.01	2.02	0.000	NTNG2	1.50	1.91	3.45	0.000
CEACAM1	2.69	1.01	1.80	0.000	OLFM4	2.85	2.21	1.69	0.000
CEACAM6	2.40	2.59	1.80	0.000	PADI2	1.72	0.79	3.79	0.000
CEACAM8	2.51	2.34	1.77	0.000	PADI4	1.90	0.62	2.94	0.000
CHI3L1	3.58	0.39	1.71	0.000	PGLYRP1	2.51	1.11	1.90	0.000
CPNE2	1.54	0.39	6.66	0.000	PLD1	1.65	0.39	7.57	0.000
CRISP3	3.42	1.06	1.59	0.000	PRTN3	2.37	0.62	2.04	0.000
CTSG	2.44	1.91	1.87	0.000	RNASE2	1.74	0.39	6.41	0.000
CYP4F3	2.89	0.62	1.70	0.000	RNASE3	2.16	1.51	2.10	0.000
DCAF12	1.93	1.51	1.77	0.000	RRAGD	1.69	0.39	5.33	0.000
DEFA4	2.33	4.01	1.83	0.000	S100P	2.30	1.06	2.06	0.000
EIF1AY	1.52	5.00	1.84	0.085	SELENBP1	2.81	2.59	1.40	0.000
ELANE	2.55	1.11	1.89	0.000	SEPX1	1.56	0.39	5.20	0.000
EPB49	1.51	9.97	1.74	0.542	SERPINB10	2.73	0.62	2.05	0.000
FAM151B	1.54	0.39	4.92	0.000	SIGLEC5	1.68	0.62	2.68	0.255
FAM46C	1.67	6.43	1.67	0.085	SLC25A37	1.99	1.51	1.76	0.000
FAR2	1.69	0.62	3.53	0.000	SLC25A39	1.90	2.59	1.69	0.000
FCAR	1.58	0.79	3.63	0.000	SLC4A1	3.28	2.59	1.36	0.000
GCA	1.60	0.39	5.76	0.000	SNCA	1.72	2.59	1.71	0.367
GMPR	1.52	7.61	1.74	1.544	TCN1	2.76	1.11	1.79	0.000
GSN	1.54	0.39	4.49	0.000	TRIM58	1.57	4.50	1.93	0.085
GYPC	1.55	4.50	1.94	0.000	UGCG	1.89	0.39	3.25	0.000
HBD	2.27	2.34	1.52	0.000	VSTM1	1.66	2.98	2.98	0.085
HIST1H1B	1.62	0.79	5.24	0.000	YOD1	1.61	2.59	1.98	0.000

Downexpressed common elements in samples with ≥5 CTCs and shortest survival

Expression in ≥5 Overall survival			Expression in ≥5 Overall surviv						
CTCs vs <5				CTCs vs <5					
CTCS				CT	CS				
	FC	FDR	HR	FDR		FC	FDR	HR	FDR
ADAMTS10	-1.52	2.59	0.23	0.542	KLRC3	-1.69	2.98	0.52	1.125

C1orf21	-1.50	2.98	0.33	0.255	KLRC4	-1.63	2.98	0.44	0.754
CD160	-1.81	2.59	0.40	0.367	KLRD1	-1.59	2.59	0.40	0.542
CD3G	-1.50	2.98	0.37	0.255	KLRF1	-1.67	2.59	0.38	0.367
FCRL6	-1.57	3.36	0.44	0.754	KLRK1	-1.54	2.59	0.25	0.149
FGFBP2	-1.52	3.50	0.50	1.544	MYBL1	-1.56	2.98	0.32	0.149
GNLY	-1.50	4.50	0.48	0.754	PTCH1	-1.55	2.59	0.36	0.754
GPR56	-1.60	2.98	0.47	0.367	PTGDR	-1.56	3.50	0.50	1.125
GZMH	-1.60	3.36	0.48	0.754	PVALB	-1.73	5.47	0.50	0.367
IKZF2	-1.67	2.59	0.23	0.097	SAMD3	-1.58	2.98	0.31	0.149
KLRB1	-1.50	3.50	0.27	0.097	TGFBR3	-1.62	2.98	0.39	0.255

Material suplementari del tercer treball

TMPRSS2-ERG in Blood and Docetaxel Resistance in Metastatic Castration-resistant Prostate Cancer

Methods

Patients

Men with metastatic castration-resistant prostate cancer (CRPC) candidates for systemic docetaxel or cabazitaxel therapy were eligible (23%). Patients were treated with docetaxel (75 mg/m² intravenous [iv] every 3 wk) or cabazitaxel (25 mg/m² iv every 3 wk or 10mg/m² iv weekly in eight [36.4%] trial participants [ClinicalTrials.gov, NCT01518283]). Peripheral blood mononuclear cells (PBMC) samples from 24 healthy volunteers (20 men, four women; mean age 45.2 yr [range, 23.8–72.4]) were collected.

Patients' follow-up and response evaluation

Prostate-specific antigen (PSA) levels were measured every 3–6 wk, and computed tomography and/or bone scan were performed every 2–4 mo or when clinically indicated. Primary endpoint was PSA response rate, defined as at least 50% decrease in PSA from baseline (maintained > 4 wk) at any time after treatment initiation. Secondary endpoints included best PSA response, PSA progression-free survival (PSA-PFS), clinical or radiologic PFS (C/R-PFS), and overall survival (OS). PSA-PFS, C/R-PFS, and OS were calculated from the date of treatment initiation to PSA progression, C/R progression, and death or last follow-up visit, respectively. Treatment response criteria and progressive disease definition followed Prostate Cancer Working Group 2 criteria [1]. Briefly, PSA progression was defined as at least 25% increase above the nadir and confirmed 3 wk later. Clinical progression was defined as appearance or worsening of cancer symptoms, or increased analgesia requirements.

Radiologic progression was defined as an occurrence of two or more new bone lesions on bone scanning or progression by Response Evaluation Criteria in Solid Tumours (v1.1) in computed tomography scanning [2]. Patients were prospectively followed from inclusion until death or last visit.

Blood sample collection, PBMC isolation, and RNA extraction

PBMC samples were collected before treatment initiation (baseline), at the time of progression, and/or before a subsequent therapy initiation. Baseline PBMC sample was mandatory to be included in the study. Peripheral blood samples (7.5 ml) were collected in Monovette ethylenediaminetetraacetic acid-containing Vacutainers (Sarstedt, Germany). The first 5 ml of blood was discarded to avoid epithelial contamination during venipuncture. Samples were kept at 4°C for up to 2 h until processing. Mononuclear cells were isolated from blood samples by Ficoll density-gradient centrifugation, and total RNA was extracted using Trizol Reagent (Life Technologies, Carlsbad, CA, USA) according to manufacturer instructions.

At the time of the present analysis, 36.5% of patients had at least one sequential PBMC sample available. Among the 31 patients without sequential PBMC samples, seven (22.6%) patients had not progressed and/or not started a subsequent therapy at the time of the analysis, seven (22.6%) patients experienced clinical deterioration, or 11 (35.5%) patients died and no sequential sample was taken. Six (19.4%) patients were withdrawn from the study for other reasons (eg, inclusion in clinical trials, referred to other institutions, etc).

Tumour sample processing

If available, formalin-fixed paraffin-embedded (FFPE) specimens were collected from our hospital's Tumour Biobank. Tissues came from primary tumours (diagnostic biopsy, radical prostatectomy, or transurethral resection) or metastasis. From FFPE samples, hematoxylin- and eosin-stained sections from tumours and adjacent tissues were prepared to confirm the histological diagnosis. A representative tumour area was selected and, depending on its size, at least two and up to 12 sections of 10-µm thickness were cut and used for RNA isolation. From FFPE samples, total RNA was isolated using the RecoverAll Total Nucleic Acid Isolation Kit (Life Technologies) according to manufacturer protocol. Tissue samples were available in 33 patients and in 25 (50%) patients treated with docetaxel. The main reasons for no availability were that the pathologist considered that there was a low amount of tumour cells and/or a low quality of tumour sample to perform molecular analysis (n = 16), and the tumour samples were not in the tumour bank (n = 7).

Gene expression analysis

RNA was quantified by ND-1000 Spectrophotometer (Nanodrop Technologies, Wilmington, DE, USA). Complementary DNA was synthesized from 500 ng of total RNA in a 50-µl reaction volume, using the High Capacity Complementary DNA Kit (Life Technologies). *TMPRSS2-ERG* and the housekeeping genes *GUSB* and *HPRT1* (for PBMC and prostate tissue, respectively) were preamplified for 14 cycles, following manufacturer instructions for the TaqMan PreAmp Master

Mix Kit (Life Technologies), except that the final volume of the reaction was reduced to 25 µl.

The TMPRSS2-ERG, prostate-specific expression of markers (AR. C100RF116, and KLK3) and housekeeping genes was evaluated by the quantitative reverse-transcription polymerase chain reaction method. We used commercial primers and probes (Life Technologies; commercial codes: Hs03063375 ft for TMPRSS2-ERG, Hs00907244 m1 for AR, Hs00225127 m1 for C10ORF116, Hs03063374 m1 for KLK3, Hs99999908 m1 for GUSB, and Hs01003267 m1 for HPRT1). Specifically, primers for TMPRSS2-ERG detected the most commonly reported fusion transcript TMPRSS2 exon 1 fused to ERG exon 4. We performed singleplex reactions in duplicate, using TagMan Fast Universal PCR Master Mix (Life Technologies), according to manufacturer recommendations, except that the final volume of the reaction was reduced to 10 µL. Amplification was performed for 40 cycles in a Step One Plus Real-Time Polymerase Chain Reaction system (Life Technologies). Data were acquired using SDS Software v1.4 and processed with Step One v2.2.2 and Expression Suite v1.0.3 software (Life Technologies). We used thresholds of 0.1 and 0.2 for TMPRSS2-ERG and the other genes fluorescent emissions, respectively, to record the quantification cycle. Patients were categorized as TMPRSS2-ERG positive when both TMPRSS2-ERG and housekeeping genes were detectable (quantification cycle [Cq] < 35) in duplicate samples. They were considered TMPRSS2-ERG negative when housekeeping genes but not TMPRSS2-ERG (Cq≥35 or undetermined) were detectable.

Statistical analysis

Fisher's exact test was used to compare proportions between groups, including PSA response rate between *TMPRSS2-ERG*-positive and *TMPRSS2-ERG*-negative patients. Wilcoxon-Mann-Whitney test was used to compare continuous variables between groups. PSA-PFS, C/R-PFS, OS were evaluated by Kaplan-Meier analysis using log-rank test. Univariate analysis of *TMPRSS2-ERG* status and other clinical variables was performed with Cox regression; p < 0.1 was required for inclusion in multivariate analysis. Bootstrap technique was used to internally validate the association between *TMPRSS2-ERG* and PSA-PFS or C/R-PFS. To assess the predictive performance of the model, the time-dependent Brier score was calculated. This score represents differences between the patient's disease status and the predicted value, and it ranges from 0 to 1, with 0 being a perfect forecast, while the worst score is 1. All tests were two-sided and p values < 0.05 were considered statistically significant. Statistical analysis was done with the R software package (v3.1.1) [24] and Brier score was calculated with ipred package.

References

- [1] Scher HI, Halabi S, Tannock I, et al. Design and end points of clinical trials for patients with progressive prostate cancer and castrate levels of testosterone: recommendations of the Prostate Cancer Clinical Trials Working Group. J Clin Oncol 2008;26:1148–59.
- [2] Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 2009;45:228– 47.

2. Figures

Supplementary Fig. 1 – Study diagram according to patient's treatment. (A) Diagram representing the number of patients and samples included in the study according the different systemic treatments. (B) Venn diagram representing set of patients across the three groups of systemic treatments.

CRPC = castration resistant prostate cancer; CTC = circulating tumour cells; FFPE = formalin-fixed paraffin-embedded; PBMC = peripheral blood mononuclear cells.

Supplementary Fig. 2 – Boxplots representing gene expression of prostate-specific genes (*AR*, *C100RF116*, and *KLK3*) according to *TMPRSS2-ERG* status. Differences in the expression between positive-and negative-*TMPRSS2-ERG* peripheral blood mononuclear cell samples were tested using a Wilcoxon Mann-Whitney test.

Cq = quantification cycle.

Supplementary Fig. 3 – Best prostate-specific antigen (PSA) response and survival analysis according to *TMPRSS2-ERG* and *KLK3* status in peripheral blood mononuclear cell samples. (A) Boxplot representing percentage of change in best PSA response according to *TMPRSS2-ERG* and *KLK3* status in docetaxel-treated patients (Wilcoxon rank sum test). (B) Kaplan-Meier curves for PSA progression-free survival (PSA-PFS); median PSA-PFS was 3.1 mo (95% confidence interval [CI], 2.07 to not

reached) in *TMPRSS2-ERG* positive patients, 7.2 mo (95% CI, 5.7–8.3) in *TMPRSS2-ERG* negative and *KLK3* positive patients, and 8.3 mo (95% CI, 4.8–13.2) in *TMPRSS2-ERG/KLK3* negative patients. (C) Kaplan-Meier curves for clinical/radiologic PFS; median clinical/radiologic-PFS was 3.1 mo (95% CI, 2.6–4.2) in *TMPRSS2-ERG* positive patients, 7.9 mo (95% CI, 6.4–10.7) in *TMPRSS2-ERG* negative and *KLK3* positive patients, and 9.4 mo (95% CI, 7.3–14.5) in *TMPRSS2-ERG/KLK3* negative patients.

Supplementary Fig. 4 – Cabazitaxel outcome according to *TMPRSS2-ERG* status in peripheral blood mononuclear cell samples. (A) Boxplot representing percentage of change in best prostate-specific antigen (PSA) response (Wilcoxon rank sum test). (B) Kaplan-Meier plot representing overall survival in *TMPRSS2-ERG* positive and negative patients; median overall survival was 13.4 mo (95% confidence interval [CI], 7.5 to not reached) in *TMPRSS2-ERG*-positive patients and 42.6 mo (95% CI, 25.1 to not reached) in *TMPRSS2-ERG*-negative patients.

HR = hazard ratio.

3. Tables

Supplementary Table 1 – Baseline characteristics of docetaxel-treated patients. The p value is based on Fisher's exact test and Wilcoxon Mann-Whitney test for categorical and continuous variables, respectively

		TMPRSS2-ERG	TMPRSS2-ERG	р
	All patients	negative	positive	value
No. of patients (%)	50	42 (84)	8 (16)	
Age (yr)				
Median (range)	71 (41–83)	70.1 (41–83)	73.3 (52–83)	0.35
Time since diagnosis (yr)				
Median (range)	5.3 (0.6–23.5)	5.1 (0.7–18.2)	6.2 (0.6–23.5)	0.86
Stage at diagnosis, <i>N</i> (%)				
н	11 (22)	11 (26.2)	0	0.15
ш	10 (20)	7 (16.7)	3 (37.5)	
IV	29 (58)	24 (57.1)	5 (62.5)	
Gleason sum at diagnosis, <i>N</i> (%)				
≤7	23 (46)	21 (50)	2 (25)	0.26
≥8	27 (54)	21 (50)	6 (75)	
Type of local treatment, <i>N</i> (%)				
Surgery	10 (20)	10 (23.8)	0	0.26
Radiation	14 (28)	12 (28.6)	2 (2)	

None	26 (52)	20 (47.6)	6 (75)	
No. of prior hormonal therapies				
Median (range)	2 (1–5)	2 (1–5)	1 (1–3)	0.40
Time on ADT (mo)				
Median (range)	31 (2.6–91.4)	31.6 (2.6–91.4)	16 (6.6–91)	0.18
No data	2	2		
Presence of bone metastases, N				
(%)				
Yes	42 (84)	35 (83.3)	7 (87.5)	1
No	8 (16)	7 (16.7)	1 (12.5)	
Number of bone metastases, N				
(%)				
≤5	37 (74)	30 (71.42)	1 (12.5)	0.003
≥6	13 (26)	12 (28.6)	7 (87.5)	
Presence of visceral metastases,				
N (%)				
Yes	14 (28)	11 (26.2)	3 (37.5)	0.67
No	36 (72)	31 (73.8)	5 (62.5)	
ECOG performance status, N (%)				
0	11 (22)	10 (23.8)	1 (12.5)	0.67
		· · · /		
1 or 2	39 (78)	32 (76.2)	7 (87.5)	
Baseline prostate-specific antigen				
(ng/mL=I)				

Median (range)	91.7 (2.4–1057)	82.7 (2.4–1057)	209.4 (72–955.1)	0.05
Baseline haemoglobin				
concentration (g/l)				
Median (range)	121 (81–151)	125 (82–151)	102.5 (81–136)	0.019
Baseline alkaline phosphatase				
(U/L=I)				
Median (range)	310 (63–4397)	260 (63–2503)	1048 (163–4397)	0.009
No data	1	1		
Baseline lactate dehydrogenase				
(U/L=I)				
Median (range)	441 (290–2954)	419 (290–1225)	574 (413–2954)	0 010
wouldn (range)	41 (200 2004)	410 (200 1220)	074 (410 2004)	0.010
No data	3	3		
Postchemotherapy use of				
cabazitaxel, N (%)				
Ver	16 (32)	14 (33 3)	2 (25)	0.71
165	10 (32)	14 (00.0)	2 (23)	0.71
No	34 (68)	28 (66.7)	6 (75)	
Use of abiraterone, N (%)				
	07 (70)			• • -
No	25 (50)	19 (45.2)	6 (75)	0.37
Pre-chemotherapy	1 (2)	1 (2.4)	0	
Postchemotherapy	24 (48)	22 (52.4)	2 (25)	
	()	(02.1)	- (20)	

ADT = androgen deprivation therapy; ECOG=Eastern Cooperative Oncology Group.

Supplementary Table 2 – Baseline characteristics of cabazitaxel-treated patients. The p value is based on Fisher's exact test and Wilcoxon Mann-Whitney test for categorical and continuous variables, respectively

		TMPRSS2-ERG	TMPRSS2-ERG	
	All patients	negative	positive	<i>p</i> value
No. of patients (%)	22	17 (77.3)	5 (22.7)	
Age (yr)				
Median (range)	66.7 (41–81)	66.2 (41–81)	69.2 (56.7–81)	0.88
Time since diagnosis (yr)				
Median (range)	5.8 (0.7–15.7)	5.8 (0.8–15.7)	4.8 (0.7–11.8)	0.76
Stage at diagnosis, <i>N</i> (%)				
11	6 (27.3)	6 (35.3)	0	0.25
ш	4 (18.2)	2 (11.8)	2 (40)	
IV	12 (54.5)	9 (52.9)	3 (60)	
Gleason sum at diagnosis, <i>N</i>				
(%)				
≤7	10 (45.5)	8 (47.1)	2 (40)	1
≥8	12 (54.5)	9 (52.9)	3 (60)	
Type of local treatment, <i>N</i> (%)				
Surgery	4 (18.2)	3 (17.6)	1 (20)	1
Radiation	9 (40.9)	7 (41.2)	2 (40)	
None	9 (40.9)	7 (41.2)	2 (40)	
No. of prior hormonal				

therapies				
Median (range)	2 (1–5)	2 (1–5)	1 (1–3)	0.80
Presence of bone				
metastases, N (%)				
Yes	20 (90.9)	16 (94.1)	4 (80)	0.41
No	2 (9.1)	1 (5.9)	1 (20)	
Number of bone metastases,				
N (%)				
≤ 5	8 (36.4)	7 (41.2)	1 (80)	0.61
≥ 6	14 (63.6)	10 (58.8)	4 (20)	
Presence of visceral				
metastases, N (%)				
Yes	4 (18.2)	4 (23.5)	0	0.54
No	18 (81.2)	13 (76.5)	5	
ECOG performance status				
score, N(%)				
0	2 (9.1)	2 (11.8)	0	1
1 or 2	20 (90.9)	15 (88.2)	5	
Baseline Prostate-specific				
antigen (ng/ml)				
Median (range)	110 (0.05–676.3)	141 (0.05–676.3)	107.7 (24.9–161.3)	0.49
Baseline haemoglobin				
concentration (g/l)				
Median (range)	12.7 (9.6–15.1)	12.4 (9.6–15.1)	13.2 (10.4–14.2)	0.81

Baseline alkaline				
phosphatase (U/I)				
Median (range)	272 (101–1735)	256 (101–1735)	314 (124–720)	1
Baseline lactate				
dehydrogenase (U/I)				
Median (range)	482 (256–2360)	479 (256–2360)	483 (388–668)	1

ECOG = Eastern Cooperative Oncology Group.

Supplementary Table 3 – Univariate and multivariate Cox model adjusted for clinically significant variables (p < 0.1) in univariate analysis

PSA-PFS	Univariate		Multivariate			
Variable	HR	95% CI	p value	HR	95% CI	<i>p</i> value
TMPRSS2-ERG	4.15	1.72–10.01	0.002	3.72	1.38–10.02	0.009
PSA (≥20 vs <20)	2.44	1.14–5.25	0.02	3.71	1.39–9.95	0.009
LDH (High vs normal)	2.09	1.11–3.94	0.02	0.83	0.39–1.77	0.62
AP (High vs normal)	1.75	0.93–3.30	0.08	1.75	0.86–3.55	0.12
C/R-PFS						
Variable	HR	95% CI	p value	HR	95% CI	<i>p</i> value
TMPRSS2-ERG	5.45	2.31–12.85	< 0.001	6.34	2.33–17.29	<0.001
PSA (≥20 vs <20)	2.55	1.12–5.82	0.03	1.99	0.71–5.56	0.19
Hb (Normal vs low)	2.52	1.37–4.65	0.003	1.56	0.76–3.17	0.22
LDH (High vs normal)	2.18	1.16–4.10	0.02	0.87	0.40–1.88	0.71
AP (High vs normal)	2.14	1.09–4.20	0.03	2.21	0.98–5.01	0.06
OS				-		
Variable	HR	95% CI	p value	HR	95% CI	<i>p</i> value
TMPRSS2-ERG	4.12	1.53–11.14	0.005	2.35	0.78–7.10	0.13
Visceral metastases (Yes vs no)	2.06	0.94–4.52	0.07	2.20	0.95–5.13	0.07

Hb (Normal vs low)	3.37	1.53–7.41	0.003	2.17	0.89–5.28	0.09
LDH (High vs normal)	4.54	1.93–10.69	<0.001	2.50	0.84–7.43	0.10
AP (High vs normal)	2.41	1.01–5.74	0.05	1.33	0.44-4.06	0.61

AP = alkaline phosphatase; CI = confidence interval; C/R =

clinical/radiologic; Hb = haemoglobin concentration; HR = hazard ratio; LDH = lactate dehydrogenase; OS = overall survival; PSA = prostate-specific antigen; PFS = progression-free survival.

Supplementary Table 4 – Prostate-specific antigen (PSA) response rate according to *TMPRSS2-ERG* and *KLK3* status on docetaxel-treated patients. The p value = 0.017 (Fisher's exact test)

	PSA response rate	95% CI (%)
TMPRRS2-ERG/KLK3 positive	12.5% (1 of 8 patients)	0.32-52.7
TMPRRS2-ERG negative and KLK3 positive	68.8% (22 of 32 patients)	49.9-83.8
TMPRRS2-ERG/KLK3 negative	66.6% (6 of 9 patients)	29.9–92.5

CI = confidence interval.

Supplementary Table 5 – Baseline characteristics of docetaxel-treated patients according to *TMPRSS2-ERG* expression in primary tumour. The *p* value is based on Fisher's exact test and Wilcoxon Mann-Whitney test for categorical and continuous variables, respectively

		TMPRSS2-ERG	TMPRSS2-ERG	
	All patients	negative	positive	<i>p</i> value
No. of patients (%)	25	11 (44)	14 (56)	
Age (yr)				
Median (range)	71.36 (57.1–79.3)	72 (57.1–79.3)	69.7 (59.5–74.6)	0.5208
Time since diagnosis (yr)				
Median (range)	5.5 (0.7–15.7)	5.9 (0.7–15.7)	5.0 (1-11.8)	0.8506

Gleason sum at diagnosis,				
≦/	6 (24)	1 (9.1)	5 (35.7)	0.3245
≥8	14 (56)	7 (63.6)	7 (50)	
No data	5 (20)	3 (27.3)	2 (14.3)	
Type of local treatment, <i>N</i> (%)				
Surgery	5 (20)	3 (27.3)	2 (14.3)	0.6332
Radiation	5 (20)	2 (18.2)	3 (21.4)	
None	10 (40)	3 (27.3)	7 (50)	
No data	5 (20)	3 (27.3)	2 (14.3)	
No. of prior hormonal therapies				
Median (range)	2 (1–5)	2 (1–2)	2 (1–5)	0.6209
Presence of bone metastases, <i>N</i> (%)				
Yes	17 (68)	6 (54.6)	11 (78.6)	0.5368
No	3 (12)	2 (18.2)	1 (7.1)	
No data	5 (20)	3 (27.3)	2 (14.3)	
Number of bone metastases, <i>N</i> (%)				
≤5	4 (16)	2 (18.2)	2 (14.3)	1
≥6	16 (64)	6 (54.5)	10 (71.4)	
No data	5 (20)	3 (27.3)	2 (14.3)	

Presence of visceral				
metastases, N (%)				
Yes	7 (28)	3 (27.3)	4 (28.6)	1
No	13 (52)	5 (45.5)	8 (57.1)	
No data	5 (20)	3 (27.3)	2 (14.3)	
ECOG performance status score, <i>N</i> (%)				
0	3 (12)	0	3 (21.4)	0.2631
1 or 2	16 (64)	7 (63.6)	9 (64.3)	
No data	6 (24)	4 (36.4)	2 (14.3)	
Baseline prostate-specific antigen (ng/ml)				
Median (range)	96.7 (0.05–1949)	106.3 (0.05–1949)	96 (2.4–445.6)	0.6867
Baseline haemoglobin concentration (g/l)				
Median (range)	119.5 (94–151)	122 (97–151)	117.6 (94–151)	0.6711
No data	5	3	2	
Baseline alkaline				
phosphatase (U/I)				
Median (range)	365.5 (63–4397)	249 (163–2503)	416.5 (63–4397)	0.3347
No data	5	3	2	
Baseline lactate				
aenyarogenase (U/I)				
Median (range)	467 (302–1225)	459.5 (302–1225)	467 (327–740)	0.5999
No data 6 3 3	No data 6 3 3			
---------------	---------------			
---------------	---------------			

ECOG = Eastern Cooperative Oncology Group.

Supplementary Figure 1

Supplementary Figure 2

Supplementary Figure 3

TMPRSS2-ERG and KLK3 status

Supplementary Figure 4

BIBLIOGRAFIA

- 1. Bray, F. *et al.* Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA. Cancer J. Clin.* **33**, 2597–2604 (2018).
- 2. Clèries, R. *et al.* Predicting the cancer burden in Catalonia between 2015 and 2025: the challenge of cancer management in the elderly. *Clin. Transl. Oncol.* **20**, 647–657 (2018).
- 3. Galceran, J. *et al.* Cancer incidence in Spain, 2015. *Clin. Transl. Oncol.* **19**, 799–825 (2017).
- 4. Fitzmaurice, C. *et al.* Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: A Systematic Analysis for the Global Burden of Disease Study Global Burden . *JAMA Oncol.* **3**, 524–548 (2017).
- 5. Arnold, M. *et al.* Recent trends in incidence of five common cancers in 26 European countries since 1988: Analysis of the European Cancer Observatory. *Eur. J. Cancer* **51**, 1164–1187 (2015).
- 6. Allemani, C. *et al.* Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. *Lancet* **391**, 1023–1075 (2018).
- National Cancer Institute. SEER*Explorer: An interactive website for SEER cancer statistics. Available at: https://seer.cancer.gov/explorer/index.html. (Accessed: 28th November 2018)
- 8. Weiner, A. B., Matulewicz, R. S., Eggener, S. E. & Schaeffer, E. M. Increasing incidence of metastatic prostate cancer in the United States (2004-2013). *Prostate Cancer Prostatic Dis.* **19**, 395–397 (2016).
- 9. Yossepowitch, O. *et al.* Secondary Therapy, Metastatic Progression, and Cancer-Specific Mortality in Men with Clinically High-Risk Prostate Cancer Treated with Radical Prostatectomy. *Eur. Urol.* **53**, 950–959 (2008).
- 10. Bandini, M. *et al.* Improved cancer-specific free survival and overall free survival in contemporary metastatic prostate cancer patients: a population-based study. *Int. Urol. Nephrol.* **50**, 71–78 (2018).
- James, N. D. *et al.* Survival with newly diagnosed metastatic prostate cancer in the docetaxel era: Data from 917 patients in the control arm of the STAMPEDE Trial (MRC PR08, CRUK/06/019). *Eur. Urol.* 67, 1028– 1038 (2015).
- Bratt, O., Drevin, L., Akre, O., Garmo, H. & Stattin, P. Family History and Probability of Prostate Cancer, Differentiated by Risk Category: A Nationwide Population-Based Study. *J. Natl. Cancer Inst.* **108**, djw110 (2016).
- Platz, E. A., Rimm, E. B., Willett, W. C., Kantoff, P. W. & Giovannucci, E. Racial variation in prostate cancer incidence and in hormonal system markers among male health professionals. *J. Natl. Cancer Inst.* 92, 2009– 17 (2000).

- 14. Parker, P. M. *et al.* Prostate cancer in men less than the age of 50: A comparison of race and outcomes. *Urology* **78**, 110–115 (2011).
- Rebbeck, T. R. *et al.* Global Patterns of Prostate Cancer Incidence, Aggressiveness, and Mortality in Men of African Descent. *Prostate Cancer* 2013, 1–12 (2013).
- 16. Tan, D. S. W., Mok, T. S. K. & Rebbeck, T. R. Cancer genomics: Diversity and disparity across ethnicity and geography. *J. Clin. Oncol.* **34**, 91–101 (2016).
- 17. Olama, A. A. Al *et al.* A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer. *Nat. Genet.* **46**, 1103–1109 (2014).
- 18. Pritchard, C. C. *et al.* Inherited DNA-Repair Gene Mutations in Men with Metastatic Prostate Cancer. *N. Engl. J. Med.* **375**, 443–453 (2016).
- 19. Bancroft, E. K. *et al.* Targeted prostate cancer screening in BRCA1 and BRCA2 mutation carriers: Results from the initial screening round of the IMPACT study. *Eur. Urol.* **66**, 489–499 (2014).
- 20. Mottet, N. *et al.* EAU ESTRO ESUR SIOG Guidelines on Prostate Cancer. (2018). Available at: http://uroweb.org/guideline/prostate-cancer/.
- 21. Pezaro, C., Woo, H. H. & Davis, I. D. Prostate cancer: Measuring PSA. *Intern. Med. J.* **44**, 433–440 (2014).
- Papsidero, L. D., Wang, M. C., Valenzuela, L. A., Murphy, G. P. & Chu, T. M. A Prostate Antigen in Sera of Prostatic Cancer Patients. *Cancer Res.* 40, 2428–2432 (1980).
- 23. Stamey, T. A. *et al.* Prostate-Specific Antigen as a Serum Marker for Adenocarcinoma of the Prostate. *N. Engl. J. Med.* **317**, 909–916 (1987).
- Mottet, N. *et al.* EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. *Eur. Urol.* 71, 618–629 (2017).
- 25. Cornford, P. *et al.* EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part II: Treatment of Relapsing, Metastatic, and Castration-Resistant Prostate Cancer. *Eur. Urol.* **71**, 630–642 (2017).
- Catalona, W. J. *et al.* Comparison of Digital Rectal Examination and Serum Prostate Specific Antigen in the Early Detection of Prostate Cancer: Results of a Multicenter Clinical Trial of 6,630 Men. *J. Urol.* **151**, 1283– 1290 (1994).
- 27. Thompson, I. M. *et al.* Prevalence of Prostate Cancer among Men with a Prostate-Specific Antigen Level ≤4.0 ng per Milliliter. *N. Engl. J. Med.* **350**, 2239–2246 (2004).
- 28. Roobol, M. J. *et al.* A Risk-Based Strategy Improves Prostate-Specific Antigen–Driven Detection of Prostate Cancer. *Eur. Urol.* **57**, 79–85 (2010).
- 29. Kasivisvanathan, V. *et al.* MRI-Targeted or Standard Biopsy for Prostate-Cancer Diagnosis. *N. Engl. J. Med.* **378**, 1767–1777 (2018).
- 30. Humphrey, P. A., Moch, H., Cubilla, A. L., Ulbright, T. M. & Reuter, V. E.

The 2016 WHO Classification of Tumours of the Urinary System and Male Genital Organs—Part B: Prostate and Bladder Tumours. *Eur. Urol.* **70**, 106–119 (2016).

- 31. Gleason, D. F. *et al.* Prediction of Prognosis for Prostatic Adenocarcinoma by Combined Histological Grading and Clinical Staging. *J. Urol.* **111**, 58–64 (1974).
- Epstein, J. I. *et al.* The 2014 international society of urological pathology (ISUP) consensus conference on gleason grading of prostatic carcinoma definition of grading patterns and proposal for a new grading system. *Am. J. Surg. Pathol.* **40**, 244–252 (2016).
- 33. Epstein, J. I. *et al.* A Contemporary Prostate Cancer Grading System: A Validated Alternative to the Gleason Score. *Eur. Urol.* **69**, 428–435 (2016).
- 34. Brierley, J., M, G. & C, W. *TNM classification of malignant tumors*. (John Wiley & Sons, 2017). doi:10.1016/0370-2693(92)91915-V
- D'Amico, A. V *et al.* Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer.1. Bittner N, Merrick GS, Wallner KE, et al. Whole-pelvis radiotherapy in combination with interst. *JAMA* 280, 969–74 (1998).
- 36. Cooperberg, M. R. *et al.* The University of California, San Francisco Cancer of the Prostate Risk Assessment score: A straightforward and reliable preoperative predictor of disease recurrence after radical prostatectomy. *J. Urol.* **173**, 1938–1942 (2005).
- 37. Stephenson, A. J. *et al.* Preoperative nomogram predicting the 10-year probability of prostate cancer recurrence after radical prostatectomy. *J. Natl. Cancer Inst.* **98**, 715–717 (2006).
- 38. Huggins, C. & Hodges, C. Studies on Prostatic Cancer I. The Effect of Castration, Of Estrogen and of Androgen Injection on Serum Phosphatases in Metastatic Carcinoma of the Prostate. *Cancer Res.* 293–297 (1941).
- 39. Huggins, C., Stevens, R. & Hodges, C. Studies on Prostatic Cancer II. The effects of castration on advanced carcinoa of the prostate gland. *Arch. Surg.* **43**, 209 (1941).
- 40. Chang, C., Kokontis, J. & Liao, S. Molecular cloning of human and rat complementary DNA encoding androgen receptors. *Science (80-.).* **240**, 324–326 (1988).
- Lubahn, D. B. *et al.* Sequence of the intron/exon junctions of the coding region of the human androgen receptor gene and identification of a point mutation in a family with complete androgen insensitivity [published erratum appears in Proc Natl Acad Sci U S A 1990 Jun;87(11):4. *Pnas* 86, 9534–9538 (1989).
- 42. Tilley, W. D., Marcelli, M., Wilson, J. D. & Mcphaul, M. J. Characterization and expression of a cDNA encoding the human androgen receptor (androgen action/dihydrotestosterone/male sexual differentiation). *Med. Sci.* **86**, 327–331 (1989).
- 43. Gelmann, E. P. Molecular biology of the androgen receptor. J. Clin. Oncol.

20, 3001–3015 (2002).

- 44. Claessens, F. *et al.* Diverse roles of androgen receptor (AR) domains in AR-mediated signaling. *Nucl. Recept. Signal.* **6**, nrs.06008 (2008).
- 45. Dai, C., Heemers, H. & Sharifi, N. Androgen Signaling in Prostate Cancer. *Cold Spring Harb. Perspect. Med.* **7**, a030452 (2017).
- Smith, D. F. & Toft, D. O. Minireview: The Intersection of Steroid Receptors with Molecular Chaperones: Observations and Questions. *Mol. Endocrinol.* 22, 2229–2240 (2008).
- 47. Doesburg, P. *et al.* Functional in vivo interaction between the aminoterminal, transactivation domain and the ligand binding domain of the androgen receptor. *Biochemistry* **36**, 1052–1064 (1997).
- Berrevoets, C. A., Doesburg, P., Steketee, K., Trapman, J. & Brinkmann, A. O. Functional Interactions of the AF-2 Activation Domain Core Region of the Human Androgen Receptor with the Amino-Terminal Domain and with the Transcriptional Coactivator TIF2 (Transcriptional Intermediary Factor 2). *Mol. Endocrinol.* **12**, 1172–1183 (1998).
- 49. Heery, D. M., Kalkhoven, E., Hoare, S. & Parker, M. G. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. *Nature* **387**, 733–736 (1997).
- 50. He, B., Minges, J. T., Lee, L. W. & Wilson, E. M. The FXXLF motif mediates androgen receptor-specific interactions with coregulators. *J. Biol. Chem.* **277**, 10226–10235 (2002).
- 51. Ozanne, D. M. *et al.* Translocation Is Facilitated by the Protein Filamin. *Mol. Endocrinol.* **14**, 1618–1626 (2000).
- 52. Kaku, N., Matsuda, K. I., Tsujimura, A. & Kawata, M. Characterization of nuclear import of the domain-specific androgen receptor in association with the importin α/β and ran-guanosine 5'-triphosphate systems. *Endocrinology* **149**, 3960–3969 (2008).
- 53. Ni, L. *et al.* Androgen Induces a Switch from Cytoplasmic Retention to Nuclear Import of the Androgen Receptor. *Mol. Cell. Biol.* **33**, 4766–4778 (2013).
- 54. Thadani-Mulero, M. *et al.* Androgen receptor splice variants determine taxane sensitivity in prostate cancer. *Cancer Res.* **74**, 2270–2282 (2014).
- 55. Claessens, F. *et al.* Selective DNA binding by the androgen receptor as a mechanism for hormone-specific gene regulation. *J. Steroid Biochem. Mol. Biol.* **76**, 23–30 (2001).
- 56. Heemers, H. V. & Tindall, D. J. Unraveling the Complexities of Androgen Receptor Signaling in Prostate Cancer Cells. *Cancer Cell* **15**, 245–247 (2009).
- 57. Korpal, M. *et al.* An F876l mutation in androgen receptor confers genetic and phenotypic resistance to MDV3100 (Enzalutamide). *Cancer Discov.* **3**, 1030–1043 (2013).
- 58. Egan, A. *et al.* Castration-resistant prostate cancer: Adaptive responses in the androgen axis. *Cancer Treat. Rev.* **40**, 426–433 (2014).

- 59. Jernberg, E., Bergh, A. & Wikström, P. Clinical relevance of androgen receptor alterations in prostate cancer. *Endocr. Connect.* **6**, R146–R161 (2017).
- 60. Guo, Z. & Qiu, Y. A new trick of an old molecule: Androgen receptor splice variants taking the stage?! *Int. J. Biol. Sci.* **7**, 815–822 (2011).
- 61. Hu, R. *et al.* Distinct transcriptional programs mediated by the liganddependent full-length androgen receptor and its splice variants in castration-resistant prostate cancer. *Cancer Res.* **72**, 3457–3462 (2012).
- 62. Polotti, C. F. *et al.* Androgen deprivation therapy for the treatment of prostate cancer: a focus on pharmacokinetics. *Expert Opin. Drug Metab. Toxicol.* **13**, 1265–1273 (2017).
- 63. Ricci, F., Buzzatti, G., Rubagotti, A. & Boccardo, F. Safety of antiandrogen therapy for treating prostate cancer. *Expert Opin. Drug Saf.* **13**, 1483–1499 (2014).
- 64. Bhattacharya, S., Hirmand, M., Phung, D. & van Os, S. Development of enzalutamide for metastatic castration-resistant prostate cancer. *Ann. N. Y. Acad. Sci.* **1358**, 13–27 (2015).
- 65. Dellis, A. E. & Papatsoris, A. G. Apalutamide: the established and emerging roles in the treatment of advanced prostate cancer. *Expert Opin. Investig. Drugs* **27**, 553–559 (2018).
- 66. Shore, N. D. Darolutamide (ODM-201) for the treatment of prostate cancer. *Expert Opin. Pharmacother.* **18**, 945–952 (2017).
- 67. Grist, E. & Attard, G. The development of abiraterone acetate for castration-resistant prostate cancer. *Urol. Oncol. Semin. Orig. Investig.* **33**, 289–294 (2015).
- 68. Li, Z. *et al.* Conversion of abiraterone to D4A drives anti-tumour activity in prostate cancer. *Nature* **523**, 347–351 (2015).
- 69. Mitsiades, N. *et al.* Distinct patterns of dysregulated expression of enzymes involved in androgen synthesis and metabolism in metastatic prostate cancer tumors. *Cancer Res.* **72**, 6142–6152 (2012).
- 70. Mitsiades, N. A road map to comprehensive androgen receptor axis targeting for castration-resistant prostate cancer. *Cancer Res.* **73**, 4599–4605 (2013).
- 71. Visakorpi, T. *et al.* In vivo amplification of the androgen receptor gene and progression of human prostate cancer. *Nat. Genet.* **9**, 401–6 (1995).
- 72. Cai, C. *et al.* Androgen Receptor Gene Expression in Prostate Cancer Is Directly Suppressed by the Androgen Receptor Through Recruitment of Lysine-Specific Demethylase 1. *Cancer Cell* **20**, 457–471 (2011).
- 73. Takeda, D. Y. *et al.* A Somatically Acquired Enhancer of the Androgen Receptor Is a Noncoding Driver in Advanced Prostate Cancer. *Cell* **174**, 422–432.e13 (2018).
- 74. Viswanathan, S. R. *et al.* Structural Alterations Driving Castration-Resistant Prostate Cancer Revealed by Linked-Read Genome Sequencing. *Cell* **174**, 433–447.e19 (2018).

- 75. Quigley, D. A. *et al.* Genomic Hallmarks and Structural Variation in Metastatic Prostate Cancer. *Cell* **174**, 758–769.e9 (2018).
- 76. Heemers, H. V. & Tindall, D. J. Androgen receptor (AR) coregulators: A diversity of functions converging on and regulating the AR transcriptional complex. *Endocr. Rev.* **28**, 778–808 (2007).
- 77. Silberstein, J. L., Taylor, M. N. & Antonarakis, E. S. Novel Insights into Molecular Indicators of Response and Resistance to Modern Androgen-Axis Therapies in Prostate Cancer. *Curr. Urol. Rep.* **17**, 1–10 (2016).
- 78. Ceder, Y. *et al.* The Molecular Evolution of Castration-resistant Prostate Cancer. *Eur. Urol. Focus* **2**, 506–513 (2016).
- 79. Tannock, I. F. *et al.* Docetaxel plus Prednisone or Mitoxantrone plus Prednisone for Advanced Prostate Cancer. *N. Engl. J. Med.* **351**, 1502–1512 (2004).
- 80. Petrylak, D. P. *et al.* Docetaxel and Estramustine Compared with Mitoxantrone and Prednisone for Advanced Refractory Prostate Cancer. *N. Engl. J. Med.* **351**, 1513–1520 (2004).
- 81. De Bono, J. S. *et al.* Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: A randomised open-label trial. *Lancet* **376**, 1147–1154 (2010).
- 82. Cirillo, L., Gotta, M. & Meraldi, P. in *Advances in Experimental Medicine* and *Biology* **1002**, 93–124 (2017).
- 83. Montero, A., Fossella, F., Hortobagyi, G. & Valero, V. Docetaxel for treatment of solid tumours: A systematic review of clinical data. *Lancet Oncol.* **6**, 229–239 (2005).
- 84. Fitzpatrick, J. M. & De Wit, R. Taxane mechanisms of action: Potential implications for treatment sequencing in metastatic castration-resistant prostate cancer. *Eur. Urol.* **65**, 1198–1204 (2014).
- Mellado, B., Jimenez, N., Marin-Aguilera, M. & Reig, O. Diving Into Cabazitaxel's Mode of Action: More Than a Taxane for the Treatment of Castration-Resistant Prostate Cancer Patients. *Clin. Genitourin. Cancer* 14, 265–270 (2016).
- 86. Darshan, M. S. *et al.* Taxane-induced blockade to nuclear accumulation of the androgen receptor predicts clinical responses in metastatic prostate cancer. *Cancer Res.* **71**, 6019–6029 (2011).
- 87. Thadani-Mulero, M., Nanus, D. M. & Giannakakou, P. Androgen receptor on the move: Boarding the microtubule expressway to the nucleus. *Cancer Res.* **72**, 4611–4615 (2012).
- 88. Zhu, M. L. *et al.* Tubulin-targeting chemotherapy impairs androgen receptor activity in prostate cancer. *Cancer Res.* **70**, 7992–8002 (2010).
- 89. Gan, L. *et al.* Inhibition of the androgen receptor as a novel mechanism of Taxol chemotherapy in prostate cancer. *Cancer Res.* **69**, 8386–8394 (2009).
- 90. Zhao, Y., Tindall, D. J. & Huang, H. Modulation of androgen receptor by FOXA1 and FOXO1 factors in prostate cancer. *Int. J. Biol. Sci.* **10**, 614–

619 (2014).

- 91. Vrignaud, P. *et al.* Preclinical profile of cabazitaxel. *Drug Des. Devel. Ther.* **8**, 1851 (2014).
- Vrignaud, P. *et al.* Preclinical antitumor activity of cabazitaxel, a semisynthetic taxane active in taxane-resistant tumors. *Clin. Cancer Res.* 19, 2973–2983 (2013).
- 93. Duran, G. E. *et al.* Cabazitaxel is more active than first-generation taxanes in ABCB1(+) cell lines due to its reduced affinity for P-glycoprotein. *Cancer Chemother. Pharmacol.* **81**, 1095–1103 (2018).
- Azarenko, O., Smiyun, G., Mah, J., Wilson, L. & Jordan, M. A. Antiproliferative Mechanism of Action of the Novel Taxane Cabazitaxel as Compared with the Parent Compound Docetaxel in MCF7 Breast Cancer Cells. *Mol. Cancer Ther.* **13**, 2092–2103 (2014).
- 95. De Leeuw, R. *et al.* Novel actions of next-generation taxanes benefit advanced stages of prostate cancer. *Clin. Cancer Res.* **21**, 795–807 (2015).
- Van Soest, R. J. *et al.* Cross-resistance between taxanes and new hormonal agents abiraterone and enzalutamide may affect drug sequence choices in metastatic castration-resistant prostate cancer. *Eur. J. Cancer* **49**, 3821–3830 (2013).
- 97. Al Nakouzi, N. *et al.* Cabazitaxel Remains Active in Patients Progressing after Docetaxel Followed by Novel Androgen Receptor Pathway Targeted Therapies. *Eur. Urol.* **68**, 228–235 (2015).
- Van Soest, R. J. *et al.* Targeting the androgen receptor confers in vivo cross-resistance between enzalutamide and docetaxel, but not cabazitaxel, in castration-resistant prostate cancer. *Eur. Urol.* 67, 981–985 (2015).
- 99. Deshayes, E. *et al.* Radium 223 dichloride for prostate cancer treatment. *Drug Des. Devel. Ther.* **11**, 2643–2651 (2017).
- 100. Maia, M. C. & Hansen, A. R. A comprehensive review of immunotherapies in prostate cancer. *Crit. Rev. Oncol. Hematol.* **113**, 292–303 (2017).
- 101. Drake, C. G. Prostate cancer as a model for tumour immunotherapy. *Nat. Rev. Immunol.* **10**, 580–593 (2010).
- 102. Litwin, M. S. & Tan, H. J. The diagnosis and treatment of prostate cancer: A review. *JAMA - J. Am. Med. Assoc.* **317**, 2532–2542 (2017).
- 103. Hamdy, F. C. *et al.* 10-Year Outcomes after Monitoring, Surgery, or Radiotherapy for Localized Prostate Cancer Supplementary Appendix. *N. Engl. J. Med.* **375**, 1415–1424 (2016).
- Donovan, J. L. *et al.* Patient-Reported Outcomes after Monitoring, Surgery, or Radiotherapy for Prostate Cancer. *N. Engl. J. Med.* **375**, 1425–1437 (2016).
- 105. Herlemann, A., Washington, S. L., Eapen, R. S. & Cooperberg, M. R. Whom to Treat. *Urol. Clin. North Am.* **44**, 547–555 (2017).

- 106. Pietzak, E. J. & Eastham, J. A. Neoadjuvant Treatment of High-Risk, Clinically Localized Prostate Cancer Prior to Radical Prostatectomy. *Curr. Urol. Rep.* **17**, 4–12 (2016).
- 107. Lou, D. Y. & Fong, L. Neoadjuvant therapy for localized prostate cancer: Examining mechanism of action and efficacy within the tumor. *Urol. Oncol. Semin. Orig. Investig.* **34**, 182–192 (2016).
- 108. Denham, J. W. *et al.* Short-term neoadjuvant androgen deprivation and radiotherapy for locally advanced prostate cancer: 10-year data from the TROG 96.01 randomised trial. *Lancet Oncol.* **12**, 451–459 (2011).
- 109. Roach, M. *et al.* Short-Term Neoadjuvant Androgen Deprivation Therapy and External-Beam Radiotherapy for Locally Advanced Prostate Cancer: Long-Term Results of RTOG 8610. *J. Clin. Oncol.* **26**, 585–591 (2008).
- 110. Lawton, C. A. F. *et al.* Duration of Androgen Deprivation in Locally Advanced Prostate Cancer: Long-Term Update of NRG Oncology RTOG 9202. *Int. J. Radiat. Oncol. Biol. Phys.* **98**, 296–303 (2017).
- 111. D'Amico, A. V. *et al.* 6-Month Androgen Suppression Plus Radiation Therapy vs Radiation Therapy Alone for Patients With Clinically Localized Prostate Cancer. *JAMA* **292**, 821 (2004).
- 112. Coles, B. *et al.* A systematic review and meta-analysis of randomised trials of neo-adjuvant hormone therapy for localised and locally advanced prostate carcinoma. *Cancer Treat. Rev.* **35**, 9–17 (2008).
- 113. Dreicer, R. *et al.* Phase II trial of neoadjuvant docetaxel before radical prostatectomy for locally advanced prostate cancer. *Urology* **63**, 1138–1142 (2004).
- Febbo, P. G. *et al.* Neoadjuvant Docetaxel before Radical Prostatectomy in Patients with High-Risk Localized Prostate Cancer. *Clin. Cancer Res.* 11, 5233–5240 (2005).
- 115. Narita, S. *et al.* Short-term clinicopathological outcome of neoadjuvant chemohormonal therapy comprising complete androgen blockade, followed by treatment with docetaxel and estramustine phosphate before radical prostatectomy in Japanese patients with high-risk localized p. *World J. Surg. Oncol.* **10**, 1 (2012).
- 116. Thalgott, M. *et al.* Long-term results of a phase II study with neoadjuvant docetaxel chemotherapy and complete androgen blockade in locally advanced and high-risk prostate cancer. *J. Hematol. Oncol.* **7**, 20 (2014).
- 117. Friedman, J. *et al.* Neoadjuvant Docetaxel and Capecitabine in Patients With High Risk Prostate Cancer. *J. Urol.* **179**, 911–916 (2008).
- 118. Garzotto, M. *et al.* Phase 1/2 study of preoperative docetaxel and mitoxantrone for high-risk prostate cancer. *Cancer* **116**, 1699–1708 (2010).
- 119. Hussain, M. *et al.* Neoadjuvant docetaxel and estramustine chemotherapy in high-risk/locallyadvanced prostate cancer. *Urology* **61**, 774–780 (2003).
- 120. Prayer-Galetti, T. *et al.* Long-term follow-up of a neoadjuvant chemohormonal taxane-based phase II trial before radical prostatectomy in patients with non-metastatic high-risk prostate cancer. *BJU Int.* **100**,

274-280 (2007).

- 121. Chi, K. N. *et al.* Multicenter Phase II Study of Combined Neoadjuvant Docetaxel and Hormone Therapy Before Radical Prostatectomy for Patients With High Risk Localized Prostate Cancer. *J. Urol.* **180**, 565–570 (2008).
- 122. Sella, A. *et al.* Neoadjuvant Chemohormonal Therapy in Poor-Prognosis Localized Prostate Cancer. *Urology* **71**, 323–327 (2008).
- Mellado, B. *et al.* Phase II trial of short-term neoadjuvant docetaxel and complete androgen blockade in high-risk prostate cancer. *Br. J. Cancer* **101**, 1248–1252 (2009).
- 124. Womble, P. R. *et al.* A Phase II Clinical Trial of Neoadjuvant Ketoconazole and Docetaxel Chemotherapy Before Radical Prostatectomy in High Risk Patients. *J. Urol.* **186**, 882–888 (2011).
- 125. Fizazi, K. et al. Androgen deprivation therapy plus docetaxel and estramustine versus androgen deprivation therapy alone for high-risk localised prostate cancer (GETUG 12): a phase 3 randomised controlled trial. *Lancet Oncol.* 16, 787–794 (2015).
- 126. Hahn, A. W., Higano, C. S., Taplin, M., Ryan, C. J. & Agarwal, N. Metastatic Castration-Sensitive Prostate Cancer: Optimizing Patient Selection and Treatment. Am. Soc. Clin. Oncol. Educ. B. 363–371 (2018). doi:10.1200/EDBK_200967
- 127. Scher, H. I. *et al.* Trial design and objectives for castration-resistant prostate cancer: Updated recommendations from the prostate cancer clinical trials working group 3. *J. Clin. Oncol.* **34**, 1402–1418 (2016).
- 128. Teo, M. Y., Rathkopf, D. E. & Kantoff, P. Treatment of Advanced Prostate Cancer. *Annu. Rev. Med.* **70**, 479–499 (2019).
- 129. Mollica, V. *et al.* Molecular Mechanisms Related to Hormone Inhibition Resistance in Prostate Cancer. *Cells* **8**, 43 (2019).
- 130. Harris, W. P., Mostaghel, E. A., Nelson, P. S. & Montgomery, B. Androgen deprivation therapy: Progress in understanding mechanisms of resistance and optimizing androgen depletion. *Nat. Clin. Pract. Urol.* **6**, 76–85 (2009).
- 131. Michaelson, M. D. *et al.* Management of Complications of Prostate Cancer Treatment. *CA. Cancer J. Clin.* **58**, 196–213 (2008).
- Bruchovsky, N. *et al.* Intermittent androgen suppression delays progression to androgen-independent regulation of prostate-specific antigen gene in the LNCaP prostate tumour model. *J. Steroid Biochem. Mol. Biol.* 58, 139– 146 (1996).
- 133. Bernier, L. *et al.* Intermittent vs Continuous Androgen Deprivation Therapy for Prostate Cancer. *JAMA Oncol.* **1**, 1261 (2015).
- 134. Gravis, G. *et al.* Androgen Deprivation Therapy (ADT) Plus Docetaxel Versus ADT Alone in Metastatic Non castrate Prostate Cancer: Impact of Metastatic Burden and Long-term Survival Analysis of the Randomized Phase 3 GETUG-AFU15 Trial. *Eur. Urol.* **70**, 256–262 (2016).
- 135. Sweeney, C. J. et al. Chemohormonal Therapy in Metastatic Hormone-

Sensitive Prostate Cancer. N. Engl. J. Med. 373, 737–746 (2015).

- 136. James, N. D. *et al.* Addition of docetaxel, zoledronic acid, or both to firstline long-term hormone therapy in prostate cancer (STAMPEDE): Survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. *Lancet* **387**, 1163–1177 (2016).
- 137. Fizazi, K. *et al.* Abiraterone plus Prednisone in Metastatic, Castration-Sensitive Prostate Cancer. *N. Engl. J. Med.* **377**, 352–360 (2017).
- 138. James, N. D. *et al.* Abiraterone for Prostate Cancer Not Previously Treated with Hormone Therapy. *N. Engl. J. Med.* **377**, 338–351 (2017).
- Climent, M. Á. *et al.* Updated recommendations from the Spanish Oncology Genitourinary Group for the treatment of patients with metastatic castration-resistant prostate cancer. *Crit. Rev. Oncol. Hematol.* **96**, 308– 318 (2014).
- 140. Esther, J., Maughan, B. L., Anderson, N., Agarwal, N. & Hahn, A. W. Management of Nonmetastatic Castration-Resistant Prostate Cancer: Recent Advances and Future Direction. *Curr. Treat. Options Oncol.* 20, 14 (2019).
- 141. Hussain, M. *et al.* Enzalutamide in Men with Nonmetastatic, Castration-Resistant Prostate Cancer. *N. Engl. J. Med.* **378**, 2465–2474 (2018).
- 142. Hadaschik, B. A. *et al.* Apalutamide Treatment and Metastasis-free Survival in Prostate Cancer. *N. Engl. J. Med.* **378**, 1408–1418 (2018).
- 143. Fizazi, K. *et al.* Darolutamide in Nonmetastatic, Castration-Resistant Prostate Cancer. *N. Engl. J. Med.* **380**, 1235–1246 (2019).
- 144. Tannock, I. F. *et al.* Chemotherapy with mitoxantrone plus prednisone or prednisone alone for symptomatic hormone-resistant prostate cancer: a Canadian randomized trial with palliative end points. *J. Clin. Oncol.* **14**, 1756–64 (1996).
- 145. Kantoff, P. W. *et al.* Hydrocortisone With or Without Mitoxantrone in Men With Hormone-Refractory Prostate Cancer: Results of the Cancer and Leukemia Group B 9182 Study. *J. Clin. Oncol.* **17**, 2506–2506 (1999).
- 146. Berthold, D. R. *et al.* Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer: Updated survival in the TAX 327 study. *J. Clin. Oncol.* **26**, 242–245 (2008).
- W, K., DR, B. & A, C. Unique synergism or antagonism of combinations of chemotherapeutic and hormonal agents in human prostate cancer cell lines. *Br J Urol* **79**, 196–202 (1997).
- 148. DP, P. *et al.* Phase I/II studies of docetaxel (Taxotere) combined with estramustine in men with hormone-refractory prostate cancer. *Semin Oncol* **26**, 28–33 (1999).
- 149. Kellokumpu-Lehtinen, P. L. *et al.* 2-weekly versus 3-weekly docetaxel to treat castration-resistant advanced prostate cancer: A randomised, Phase 3 trial. *Lancet Oncol.* **14**, 117–124 (2013).
- 150. Bahl, A. *et al.* Impact of cabazitaxel on 2-year survival and palliation of tumour-related pain in men with metastatic castration-resistant prostate

cancer treated in the TROPIC trial. Ann. Oncol. 24, 2402–2408 (2013).

- Eisenberger, M. *et al.* Phase III study comparing a reduced dose of cabazitaxel (20 mg/m2) and the currently approved dose (25 mg/m2) in postdocetaxel patients with metastatic castration-resistant prostate cancer - PROSELICA. *J. Clin. Oncol.* **35**, 3198–3206 (2017).
- 152. Oudard, S. *et al.* Cabazitaxel Versus Docetaxel As First-Line Therapy for Patients With Metastatic Castration-Resistant Prostate Cancer: A Randomized Phase III Trial—FIRSTANA. *J. Clin. Oncol.* **35**, 3189–3197 (2017).
- 153. Nanus, D. M. & Tagawa, S. T. 2-Weekly Versus 3-Weekly Docetaxel for Prostate Cancer. *Lancet Oncol.* **14**, 98–99 (2013).
- 154. Meulenbeld, H. J. *et al.* Randomised phase II/III study of docetaxel with or without risedronate in patients with metastatic Castration Resistant Prostate Cancer (CRPC), the Netherlands Prostate Study (NePro). *Eur. J. Cancer* 48, 2993–3000 (2012).
- 155. Tannock, I. F. *et al.* Aflibercept versus placebo in combination with docetaxel and prednisone for treatment of men with metastatic castration-resistant prostate cancer (VENICE): A phase 3, double-blind randomised trial. *Lancet Oncol.* **14**, 760–768 (2013).
- 156. Kelly, W. K. *et al.* Randomized, double-blind, placebo-controlled phase III trial comparing docetaxel and prednisone with or without bevacizumab in men with metastatic castration-resistant prostate cancer: CALGB 90401. *J. Clin. Oncol.* **30**, 1534–1540 (2012).
- 157. Petrylak, D. P. *et al.* Docetaxel and prednisone with or without lenalidomide in chemotherapy-naive patients with metastatic castration-resistant prostate cancer (MAINSAIL): A randomised, double-blind, placebocontrolled phase 3 trial. *Lancet Oncol.* **16**, 417–425 (2015).
- 158. Scher, H. I. *et al.* Randomized, open-label phase III trial of docetaxel plus high-dose calcitriol versus docetaxel plus prednisone for patients with castration-resistant prostate cancer. *J. Clin. Oncol.* **29**, 2191–2198 (2011).
- 159. Araujo, J. C. *et al.* Docetaxel and dasatinib or placebo in men with metastatic castration-resistant prostate cancer (READY): A randomised, double-blind phase 3 trial. *Lancet Oncol.* **14**, 1307–1316 (2013).
- Chi, K. N. *et al.* Custirsen in combination with docetaxel and prednisone for patients with metastatic castration-resistant prostate cancer (SYNERGY trial): a phase 3, multicentre, open-label, randomised trial. *Lancet Oncol.* **18**, 473–485 (2017).
- Fizazi, K. *et al.* Phase III, Randomized, Placebo-Controlled Study of Docetaxel in Combination With Zibotentan in Patients With Metastatic Castration-Resistant Prostate Cancer. *J. Clin. Oncol.* **31**, 1740–1747 (2013).
- 162. Quinn, D. I. *et al.* Docetaxel and atrasentan versus docetaxel and placebo for men with advanced castration-resistant prostate cancer (SWOG S0421): A randomised phase 3 trial. *Lancet Oncol.* **14**, 893–900 (2013).
- 163. Meisel, A. et al. Severe neutropenia during cabazitaxel treatment is

associated with survival benefit in men with metastatic castration-resistant prostate cancer (mCRPC): A post-hoc analysis of the TROPIC phase III trial. *Eur. J. Cancer* **56**, 93–100 (2016).

- Climent, M. Á. *et al.* Weekly cabazitaxel plus prednisone is effective and less toxic for 'unfit' metastatic castration-resistant prostate cancer: Phase II Spanish Oncology Genitourinary Group (SOGUG) trial. *Eur. J. Cancer* 87, 30–37 (2017).
- 165. Clément-Zhao, A. *et al.* Safety and efficacy of 2-weekly cabazitaxel in metastatic castration-resistant prostate cancer. *BJU Int.* **121**, 203–208 (2018).
- 166. Antonarakis, E. S. *et al.* Randomized , Noncomparative , Phase II Trial of Early Switch From Docetaxel to Cabazitaxel or Vice Versa , With Integrated Biomarker Analysis , in Men With Chemotherapy-Naïve , Metastatic , Castration-Resistant Prostate Cancer. *J. Clin. Oncol.* **35**, (2019).
- 167. Ryan, C. J. *et al.* Abiraterone acetate plus prednisone versus placebo plus prednisone in chemotherapy-naive men with metastatic castration-resistant prostate cancer (COU-AA-302): Final overall survival analysis of a randomised, double-blind, placebo-controlled phase 3 study. *Lancet Oncol.* **16**, 152–160 (2015).
- 168. de Bono, J. S. *et al.* Abiraterone and Increased Survival in Metastatic Prostate Cancer. *N. Engl. J. Med.* **364**, 1995–2005 (2011).
- 169. Ryan, C. J. *et al.* Abiraterone in Metastatic Prostate Cancer without Previous Chemotherapy. *N. Engl. J. Med.* **368**, 138–148 (2013).
- 170. Scher, H. I. *et al.* Increased Survival with Enzalutamide in Prostate Cancer after Chemotherapy. *N. Engl. J. Med.* **367**, 1187–1197 (2012).
- 171. Beer, T. M. *et al.* Enzalutamide in Metastatic Prostate Cancer before Chemotherapy. *N. Engl. J. Med.* **371**, 424–433 (2014).
- 172. Parker, C. *et al.* Alpha Emitter Radium-223 and Survival in Metastatic Prostate Cancer. *N. Engl. J. Med.* **369**, 213–223 (2013).
- 173. Smith, M. *et al.* Addition of radium-223 to abiraterone acetate and prednisone or prednisolone in patients with castration-resistant prostate cancer and bone metastases (ERA 223): a randomised, double-blind, placebo-controlled, phase 3 trial. *Lancet Oncol.* **2045**, 1–12 (2019).
- 174. Kantoff, P. W. *et al.* Sipuleucel-T Immunotherapy for Castration-Resistant Prostate Cancer. *N. Engl. J. Med.* **363**, 411–422 (2010).
- 175. Mateo, J. *et al.* DNA-Repair Defects and Olaparib in Metastatic Prostate Cancer. *N. Engl. J. Med.* **373**, 1697–1708 (2015).
- 176. Kwon, E. D. *et al.* Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. *Lancet Oncol.* **15**, 700–712 (2014).
- 177. Beer, T. M. *et al.* Randomized, double-blind, phase III trial of ipilimumab versus placebo in asymptomatic or minimally symptomatic patients with metastatic chemotherapy-naive castration-resistant prostate cancer. *J.*

Clin. Oncol. **35**, 40–47 (2017).

- 178. Hansen, A. R. *et al.* Pembrolizumab for advanced prostate adenocarcinoma: Findings of the KEYNOTE-028 study. *Ann. Oncol.* **29**, 1807–1813 (2018).
- 179. Wu, Y. M. *et al.* Inactivation of CDK12 Delineates a Distinct Immunogenic Class of Advanced Prostate Cancer. *Cell* **173**, 1770–1782.e14 (2018).
- 180. Luber, B. S. *et al.* Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. *Science (80-.).* **357,** 409–413 (2017).
- 181. Abida, W. *et al.* Analysis of the Prevalence of Microsatellite Instability in Prostate Cancer and Response to Immune Checkpoint Blockade. *JAMA Oncol.* **5**, 471 (2019).
- Galletti, G., Leach, B. I., Lam, L. & Tagawa, S. T. Mechanisms of resistance to systemic therapy in metastatic castration-resistant prostate cancer. *Cancer Treat. Rev.* 57, 16–27 (2017).
- 183. Dongre, A. & Weinberg, R. A. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. *Nat. Rev. Mol. Cell Biol.* **20**, (2018).
- 184. Lamouille, S., Xu, J. & Derynck, R. Molecular mechanisms of epithelialmesenchymal transition. *Nat. Rev. Mol. Cell Biol.* **15**, 178–196 (2014).
- 185. Shibue, T. & Weinberg, R. A. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. *Nat. Publ. Gr.* **14**, 611–629 (2017).
- 186. Nauseef, J. T. & Henry, M. D. Epithelial-to-mesenchymal transition in prostate cancer: paradigm or puzzle? *Nat. Publ. Gr.* **8**, 428–439 (2011).
- 187. Montanari, M. *et al.* Epithelial-mesenchymal transition in prostate cancer: an overview. *Oncotarget* **8**, 35376–35389 (2017).
- Nieto, M., Finn, S., Loda, M. & Hahn, W. C. Prostate cancer: Re-focusing on androgen receptor signaling. *Int. J. Biochem. Cell Biol.* **39**, 1562–1568 (2007).
- Zhu, M. & Kyprianou, N. Role of androgens and the androgen receptor in epithelial-mesenchymal transition and invasion of prostate cancer cells. *FASEB* 24, 769–777 (2010).
- Izumi, K. *et al.* Targeting the androgen receptor with siRNA promotes prostate cancer metastasis through enhanced macrophage recruitment via CCL2/CCR2-induced STAT3 activation. *EMBO Mol. Med.* 5, 1383–1401 (2013).
- 191. Best, C. J. M. *et al.* Molecular alterations in primary prostate cancer after androgen ablation therapy. *Clin. Cancer Res.* **11**, 6823–6834 (2005).
- 192. Sun, Y. *et al.* Androgen deprivation causes epithelial-mesenchymal transition in the prostate: Implications for androgen- deprivation therapy. *Cancer Res.* **72**, 527–536 (2012).
- 193. Byrne, N. M. et al. Androgen deprivation in LNCaP prostate tumour xenografts induces vascular changes and hypoxic stress, resulting in

promotion of epithelial-to-mesenchymal transition. *Br. J. Cancer* **114**, 659–668 (2016).

- 194. Li, F. & Mahato, R. I. MicroRNAs and drug resistance in prostate cancers. *Mol. Pharm.* **11**, 2539–2552 (2014).
- Puhr, M. *et al.* Epithelial-to-Mesenchymal Transition Leads to Docetaxel Resistance in Prostate Cancer and Is Mediated by Reduced Expression of miR-200c and miR-205. **181**, 2188–2201 (2012).
- 196. Yu, J. *et al.* miR-200b suppresses cell proliferation, migration and enhances chemosensitivity in prostate cancer by regulating Bmi-1. *Oncol. Rep.* **31**, 910–918 (2014).
- 197. Massoner, P. *et al.* EpCAM is overexpressed in local and metastatic prostate cancer, suppressed by chemotherapy and modulated by MET-associated miRNA-200c/205. *Br. J. Cancer* **111**, 955–964 (2014).
- 198. Ni, J. *et al.* Epithelial cell adhesion molecule (EpCAM) is associated with prostate cancer metastasis and chemo/radioresistance via the PI3K/Akt/mTOR signaling pathway. *Int. J. Biochem. Cell Biol.* **45**, 2736–2748 (2013).
- 199. Mimeault, M., Johansson, S. L. & Batra, S. K. Marked improvement of cytotoxic effects induced by docetaxel on highly metastatic and androgenindependent prostate cancer cells by downregulating macrophage inhibitory cytokine-1. *Br. J. Cancer* **108**, 1079–1091 (2013).
- Nakamura, K. D. M. *et al.* Osteopontin splice variants expression is involved on docetaxel resistance in PC3 prostate cancer cells. *Tumor Biol.* 37, 2655–2663 (2016).
- 201. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: The next generation. *Cell* **144**, 646–674 (2011).
- 202. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. *Cell* **100**, 57–70 (2000).
- 203. Sfanos, K. S. & de Marzo, A. M. Prostate cancer and inflammation: The evidence. *Histopathology* **60**, 199–215 (2012).
- 204. Nickel, J. C. *et al.* The Relationship between Prostate Inflammation and Lower Urinary Tract Symptoms: Examination of Baseline Data from the REDUCE Trial. *Eur. Urol.* **54**, 1379–1384 (2008).
- Haverkamp, J., Charbonneau, B. & Ratliff, T. L. Prostate inflammation and its potential impact on prostate cancer: A current review. *J. Cell. Biochem.* **103**, 1344–1353 (2008).
- 206. Vindrieux, D., Escobar, P. & Lazennec, G. Emerging roles of chemokines in prostate cancer. *Endocr. Relat. Cancer* **16**, 663–673 (2009).
- 207. McArdle, P. A. *et al.* The relationship between T-lymphocyte subset infiltration and survival in patients with prostate cancer. *Br. J. Cancer* **91**, 541–543 (2004).
- 208. Taverna, G. et al. Inflammation and prostate cancer: friends or foe? Inflamm. Res. 64, 275–286 (2015).

- 209. Miller, A. M. *et al.* CD4+CD25high T Cells Are Enriched in the Tumor and Peripheral Blood of Prostate Cancer Patients. *J. Immunol.* **177**, 7398–7405 (2014).
- 210. Sfanos, K. S. *et al.* Phenotypic analysis of prostate-infiltrating lymphocytes reveals T H17 and Treg skewing. *Clin. Cancer Res.* **14**, 3254–3261 (2008).
- 211. Flynn, N. J., Somasundaram, R., Arnold, K. M. & Sims-Mourtada, J. The Multifaceted Roles of B Cells in Solid Tumors: Emerging Treatment Opportunities. *Target. Oncol.* **12**, 139–152 (2017).
- 212. Ammirante, M., Luo, J. L., Grivennikov, S., Nedospasov, S. & Karin, M. Bcell-derived lymphotoxin promotes castration-resistant prostate cancer. *Nature* **464**, 302–305 (2010).
- 213. Lanciotti, M. *et al.* The Role of M1 and M2 Macrophages in Prostate Cancer in relation to Extracapsular Tumor Extension and Biochemical Recurrence after Radical Prostatectomy. *Biomed Res. Int.* **2014**, 1–6 (2014).
- 214. Blando, J., Saha, A., Kiguchi, K. & DiGiovanni, J. in *Obesity, Inflammation and Cancer* 235–256 (2013). doi:10.1007/978-1-4614-6819-6_10
- 215. Shaul, M. E. & Fridlender, Z. G. Cancer-related circulating and tumorassociated neutrophils – subtypes, sources and function. *FEBS J.* **285**, 4316–4342 (2018).
- 216. Calcinotto, A. *et al.* IL-23 secreted by myeloid cells drives castration-resistant prostate cancer. *Nature* **559**, 363–369 (2018).
- 217. Idorn, M., Køllgaard, T., Kongsted, P., Sengeløv, L. & thor Straten, P. Correlation between frequencies of blood monocytic myeloid-derived suppressor cells, regulatory T cells and negative prognostic markers in patients with castration-resistant metastatic prostate cancer. *Cancer Immunol. Immunother.* 63, 1177–1187 (2014).
- 218. Hossain, D. M. S. *et al.* TLR9-targeted STAT3 silencing abrogates immunosuppressive activity of myeloid-derived suppressor cells from prostate cancer patients. *Clin. Cancer Res.* **21**, 3771–3782 (2015).
- 219. Pittoni, P. & Colombo, M. P. The dark side of mast cell-targeted therapy in prostate cancer. *Cancer Res.* **72**, 831–835 (2012).
- 220. Yuan, H. *et al.* Destructive impact of t-lymphocytes, NK and mast cells on basal cell layers: Implications for tumor invasion. *BMC Cancer* **13**, 1–15 (2013).
- 221. Juan, M. & Colobran, R. in *eLS* 136–148 (John Wiley & Sons, Ltd, 2009). doi:10.1002/9780470015902.a0000933.pub2
- 222. Nguyen, D. P., Li, J. & Tewari, A. K. Inflammation and prostate cancer: The role of interleukin 6 (IL-6). *BJU Int.* **113**, 986–992 (2014).
- 223. Okamoto, M., Lee, C. & Oyasu, R. Interleukin-6 as a paracrine and autocrine growth factor in human prostatic carcinoma cells in vitro. *Cancer Res.* **57**, 141–146 (1997).
- 224. Chung, T. D. K., Yu, J. J., Spiotto, M. T., Bartkowski, M. & Simons, J. W. Characterization of the role of IL-6 in the progression of prostate cancer. *Prostate* **38**, 199–207 (1999).

- 225. Cardillo, M. R. & Ippoliti, F. IL-6, IL-10 and HSP-90 expression in tissue microarrays from human prostate cancer assessed by computer-assisted image analysis. *Anticancer Res.* **26**, 3409–3416 (2006).
- 226. Sivashanmugam, P., Tang, L. & Daaka, Y. Interleukin 6 mediates the lysophosphatidic acid-regulated cross-talk between stromal and epithelial prostate cancer cells. *J. Biol. Chem.* **279**, 21154–21159 (2004).
- 227. Rojas, A. *et al.* IL-6 promotes prostate tumorigenesis and progression through autocrine cross-activation of IGF-IR. *Oncogene* **30**, 2345–2355 (2011).
- 228. Shariat, S. F. *et al.* Plasma levels of interleukin-6 and its soluble receptor are associated with prostate cancer progression and metastasis. *Urology* **58**, 1008–1015 (2001).
- 229. George, D. J. *et al.* The Prognostic Significance of Plasma Interleukin-6 Levels in Patients with Metastatic Hormone-Refractory Prostate Cancer: Results from Cancer and Leukemia Group B 9480. *Clin. Cancer Res.* **11**, 1815–1820 (2005).
- 230. Ferrer, F. A. *et al.* Angiogenesis and prostate cancer: In vivo and in vitro expression of angiogenesis factors by prostate cancer cells. *Urology* **51**, 161–167 (1998).
- 231. Inoue, K. *et al.* Interleukin 8 expression regulates tumorigenicity and metastasis in human bladder cancer. *Cancer Res.* **60**, 2290–2299 (2000).
- 232. Alfaro, C. *et al.* Interleukin-8 in cancer pathogenesis, treatment and followup. *Cancer Treat. Rev.* **60**, 24–31 (2017).
- 233. Uehara, H. *et al.* Expression of interleukin-8 gene in radical prostatectomy specimens is associated with advanced pathologic stage. *Prostate* **64**, 40–49 (2005).
- 234. Lu, T. *et al.* Secreted transforming growth factor 2 activates NF- B, blocks apoptosis, and is essential for the survival of some tumor cells. *Proc. Natl. Acad. Sci.* **101**, 7112–7117 (2004).
- 235. Park, J. II *et al.* Transforming growth factor-β1 activates interleukin-6 expression in prostate cancer cells through the synergistic collaboration of the Smad2, p38-NF-κB, JNK, and Ras signaling pathways. *Oncogene* 22, 4314–4332 (2003).
- 236. Domingo-Domenech, J. *et al.* Interleukin 6, a nuclear factor-κB target, predicts resistance to docetaxel in hormone-independent prostate cancer and nuclear factor-κB inhibition by PS-1145 enhances docetaxel antitumor activity. *Clin. Cancer Res.* **12**, 5578–5586 (2006).
- 237. Codony-Servat, J. *et al.* Nuclear factor-kappa B and interleukin-6 related docetaxel resistance in castration-resistant prostate cancer. *Prostate* **73**, 512–521 (2013).
- 238. Sakai, I., Miyake, H., Terakawa, T. & Fujisawa, M. Inhibition of tumor growth and sensitization to chemotherapy by RNA interference targeting interleukin-6 in the androgen-independent human prostate cancer PC3 model. *Cancer Sci.* **102**, 769–775 (2011).

- 239. Zhang, D. *et al.* Regulation of SOD2 and β-arrestin1 by interleukin-6 contributes to the increase of IGF-1R expression in docetaxel resistant prostate cancer cells. *Eur. J. Cell Biol.* **93**, 289–298 (2014).
- 240. Yu, D.-D. *et al.* ILs-3, 6 and 11 increase, but ILs-10 and 24 decrease stemness of human prostate cancer cells <i>in vitro</i> *Oncotarget* **6**, (2015).
- 241. Mahon, K. L. *et al.* Cytokine profiling of docetaxel-resistant castrationresistant prostate cancer. *Br. J. Cancer* **112**, 1340–1348 (2015).
- 242. Qian, D. Z. *et al.* CCL2 is induced by chemotherapy and protects prostate cancer cells from docetaxel-induced cytotoxicity. *Prostate* **70**, 433–442 (2010).
- 243. Ranganathan, S., Benetatos, C. A., Colarusso, P. J., Dexter, D. W. & Hudes, G. R. Altered β-tubulin isotype expression in paclitaxel-resistant human prostate carcinoma cells. *Br. J. Cancer* **77**, 562–566 (1998).
- 244. Hari, M., Yang, H., Zeng, C., Canizales, M. & Cabral, F. Expression of class III B-tubulin reduces microtubule assembly and confers resistance to paclitaxel. *Cell Motil. Cytoskeleton* **56**, 45–56 (2003).
- 245. Ploussard, G. *et al.* Class III β-tubulin expression predicts prostate tumor aggressiveness and patient response to docetaxel-based chemotherapy. *Cancer Res.* **70**, 9253–9264 (2010).
- 246. Terry, S. *et al.* Increased expression of class III B-tubulin in castrationresistant human prostate cancer. *Br. J. Cancer* **101**, 951–956 (2009).
- 247. Duran, G. E. *et al.* Mechanisms of Resistance to Cabazitaxel. *Mol. Cancer Ther.* **14**, 193–201 (2015).
- 248. Derry, W. B., Wilson, L., Khan, I. A., Ludueña, R. F. & Jordan, M. A. Taxol differentially modulates the dynamics of microtubules assembled from unfractionated and purified β-tubulin isotypes. *Biochemistry* **36**, 3554–3562 (1997).
- 249. Martello, L. A. *et al.* Elevated levels of microtubule destabilizing factors in a Taxol-resistant/dependent A549 cell line with an alpha-tubulin mutation. *Cancer Res.* **63**, 1207–13 (2003).
- 250. Hara, T. *et al.* A mutation in beta-tubulin and a sustained dependence on androgen receptor signalling in a newly established docetaxel-resistant prostate cancer cell line. *Cell Biol. Int.* **34**, 177–84 (2010).
- 251. Vale, R. D. The molecular motor toolbox for intracellular transport. *Cell* **112**, 467–480 (2003).
- 252. Sweeney, H. L. & Holzbaur, E. L. F. in *Cell Biology* 623–638 (2017). doi:10.1016/B978-0-323-34126-4.00036-0
- 253. Sircar, K. *et al.* Mitosis phase enrichment with identification of mitotic centromere-associated kinesin as a therapeutic target in castration-resistant prostate cancer. *PLoS One* **7**, (2012).
- 254. Ganguly, A., Yang, H. & Cabral, F. Overexpression of Mitotic Centromere-Associated Kinesin Stimulates Microtubule Detachment and Confers Resistance to Paclitaxel. *Mol. Cancer Ther.* **10**, 929–937 (2011).

- 255. Tan, M. H. *et al.* Specific kinesin expression profiles associated with taxane resistance in basal-like breast cancer. *Breast Cancer Res. Treat.* **131**, 849–858 (2012).
- 256. Sekino, Y. *et al.* KIFC1 induces resistance to docetaxel and is associated with survival of patients with prostate cancer. *Urol. Oncol. Semin. Orig. Investig.* **35**, 31.e13-31.e20 (2017).
- 257. Zou, J. *et al.* Overexpression of TPX2 is associated with progression and prognosis of prostate cancer. *Oncol. Lett.* **16**, 2823–2832 (2018).
- 258. Wissing, M. D. *et al.* Nuclear Eg5 (kinesin spindle protein) expression predicts docetaxel response and prostate cancer aggressiveness. *Oncotarget* **5**, 7357–7367 (2014).
- 259. Gao, Q. *et al.* Driver Fusions and Their Implications in the Development and Treatment of Human Cancers. *Cell Rep.* **23**, 227–238.e3 (2018).
- 260. Adamo, P. & Ladomery, M. R. The oncogene ERG: A key factor in prostate cancer. *Oncogene* **35**, 403–414 (2016).
- 261. Tomlins, S. A. *et al.* Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. *Science* **310**, 644–8 (2005).
- 262. Mani, R. S. *et al.* Induced chromosomal proximity and gene fusions in prostate cancer. *Science (80-.).* **326,** 1230 (2009).
- 263. Lin, C. *et al.* Nuclear Receptor-Induced Chromosomal Proximity and DNA Breaks Underlie Specific Translocations in Cancer. *Cell* **139**, 1069–1083 (2009).
- 264. Mani, R. S. & Chinnaiyan, A. M. Triggers for genomic rearrangements: Insights into genomic, cellular and environmental influences. *Nat. Rev. Genet.* **11**, 819–829 (2010).
- 265. Li, X. *et al.* BRD4 Promotes DNA Repair and Mediates the Formation of TMPRSS2-ERG Gene Rearrangements in Prostate Cancer. *Cell Rep.* **22**, 796–808 (2018).
- 266. Holly, J. M. P., Broadhurst, J., Mansor, R., Bahl, A. & Perks, C. M. Hyperglycemia promotes TMPRSS2-ERG gene fusion in prostate cancer cells via upregulating insulin-like growth factor-binding protein-2. *Front. Endocrinol. (Lausanne).* 8, 1–11 (2017).
- 267. Attard, G. *et al.* Duplication of the fusion of TMPRSS2 to ERG sequences identifies fatal human prostate cancer. *Oncogene* **27**, 253–263 (2008).
- 268. Tomlins, S. A. *et al.* ETS Gene Fusions in Prostate Cancer: From Discovery to Daily Clinical Practice. *Eur. Urol.* **56**, 275–286 (2009).
- 269. Perner, S. *et al.* TMPRSS2:ERG fusion-associated deletions provide insight into the heterogeneity of prostate cancer. *Cancer Res.* **66**, 8337–8341 (2006).
- 270. Wang, J., Cai, Y., Ren, C. & Ittmann, M. Expression of variant TMPRSS2/ERG fusion messenger RNAs is associated with aggressive prostate cancer. *Cancer Res.* **66**, 8347–8351 (2006).
- 271. Wang, J. et al. Pleiotropic biological activities of alternatively spliced

TMPRSS2/ERG fusion gene transcripts. *Cancer Res.* **68**, 8516–8524 (2008).

- 272. Kumar-Sinha, C., Tomlins, S. A. & Chinnaiyan, A. M. Recurrent gene fusions in prostate cancer. *Nat. Rev. Cancer* **8**, 497–511 (2008).
- 273. Setlur, S. R. *et al.* Estrogen-dependent signaling in a molecularly distinct subclass of aggressive prostate cancer. *J. Natl. Cancer Inst.* **100**, 815–825 (2008).
- 274. Mani, R. S. *et al.* TMPRSS2-ERG-mediated feed-forward regulation of wildtype ERG in human prostate cancers. *Cancer Res.* **71**, 5387–5392 (2011).
- 275. Tomlins, S. A. *et al.* Role of the TMPRSS2-ERG Gene Fusion in Prostate Cancer. *Neoplasia* **10**, 177-IN9 (2008).
- 276. Yang, Y. *et al.* Loss of FOXO1 cooperates with TMPRSS2–ERG overexpression to promote prostate tumorigenesis and cell invasion. *Cancer Res.* **77**, 6524–6537 (2017).
- 277. Abeshouse, A. *et al.* The Molecular Taxonomy of Primary Prostate Cancer. *Cell* **163**, 1011–1025 (2015).
- 278. Robinson, D. *et al.* Integrative clinical genomics of advanced prostate cancer. *Cell* **161**, 1215–1228 (2015).
- 279. Gupta, S. *et al.* FZD4 as a mediator of ERG oncogene-induced WNT signaling and epithelial-to-mesenchymal transition in human prostate cancer cells. *Cancer Res.* **70**, 6735–6745 (2010).
- 280. Ratz, L. *et al. TMPRSS2:ERG* gene fusion variants induce TGF-β signaling and epithelial to mesenchymal transition in human prostate cancer cells. *Oncotarget* **8**, 25115–25130 (2017).
- 281. Wu, L. *et al.* ERG is a critical regulator of Wnt/LEF1 signaling in prostate cancer. *Cancer Res.* **73**, 6068–6079 (2013).
- 282. Leshem, O. *et al.* TMPRSS2/ERG promotes epithelial to mesenchymal transition through the ZEB1/ZEB2 axis in a prostate cancer model. *PLoS One* **6**, e21650 (2011).
- 283. Kron, K. J. *et al.* TMPRSS2-ERG fusion co-opts master transcription factors and activates NOTCH signaling in primary prostate cancer. *Nat. Genet.* **49**, 1336–1345 (2017).
- 284. Wang, J. *et al.* Activation of NF-κB by TMPRSS2/ERG fusion isoforms through toll-like receptor-4. *Cancer Res.* **71**, 1325–1333 (2011).
- Boormans, J. L. *et al.* Expression of the Androgen-Regulated Fusion Gene TMPRSS2-ERG Does Not Predict Response to Endocrine Treatment in Hormone-Naïve, Node-Positive Prostate Cancer. *Eur. Urol.* 57, 830–835 (2010).
- 286. Leinonen, K. A. *et al.* Association of SPINK1 expression and TMPRSS2:ERG fusion with prognosis in endocrine-treated prostate cancer. *Clin. Cancer Res.* **16**, 2845–2851 (2010).
- 287. Attard, G. *et al.* Characterization of ERG, AR and PTEN Gene Status in Circulating Tumor Cells from Patients with Castration-Resistant Prostate

Cancer. Cancer Res. 69, 2912–2918 (2009).

- 288. Danila, D. C. *et al.* TMPRSS2-ERG Status in Circulating Tumor Cells as a Predictive Biomarker of Sensitivity in Castration-Resistant Prostate Cancer Patients Treated With Abiraterone Acetate. *Eur. Urol.* **60**, 897–904 (2011).
- 289. Attard, G. *et al.* Improvements in radiographic progression-free survival stratified by ERG gene status in metastatic castration-resistant prostate cancer patients treated with abiraterone acetate. *Clin. Cancer Res.* **21**, 1621–1627 (2015).
- 290. Swanson, T. A. *et al.* TMPRSS2/ERG fusion gene expression alters chemo- and radio-responsiveness in cell culture models of androgen independent prostate cancer. *Prostate* **71**, 1548–1558 (2011).
- 291. Galletti, G. *et al.* ERG induces taxane resistance in castration-resistant prostate cancer. *Nat. Commun.* **5**, 5548 (2014).
- 292. Dijkstra, S. *et al.* KLK3, PCA3, and TMPRSS2-ERG expression in the peripheral blood mononuclear cell fraction from castration-resistant prostate cancer patients and response to docetaxel treatment. *Prostate* **74**, 1222–1230 (2014).
- 293. Mohamed, A. A. *et al.* Identification of a Small Molecule That Selectively Inhibits ERG-Positive Cancer Cell Growth. *Cancer Res.* **78**, 3659–3671 (2018).
- 294. Wang, X. *et al.* Development of Peptidomimetic Inhibitors of the ERG Gene Fusion Product in Prostate Cancer. *Cancer Cell* **31**, 844–847 (2017).
- 295. Joyce, H., McCann, A., Clynes, M. & Larkin, A. Influence of multidrug resistance and drug transport proteins on chemotherapy drug metabolism. *Expert Opin. Drug Metab. Toxicol.* **11**, 795–809 (2015).
- 296. Bhangal, G. *et al.* Expression of the multidrug resistance gene in human prostate cancer. *Urol. Oncol.* **5**, 118–121 (2000).
- 297. Kawai, K. *et al.* Demonstration of MDR1 P-glycoprotein isoform expression in benign and malignant human prostate cells by isoform-specific monoclonal antibodies. *Cancer Lett.* **150**, 147–153 (2000).
- Van Brussel, J. P., Van Steenbrugge, G. J., Romijn, J. C., Schröder, F. H. & Mickisch, G. H. J. Chemosensitivity of prostate cancer cell lines and expression of multidrug resistance-related proteins. *Eur. J. Cancer* 35, 664–671 (1999).
- 299. Zhu, Y. *et al.* Inhibition of ABCB1 Expression Overcomes Acquired Docetaxel Resistance in Prostate Cancer. *Mol. Cancer Ther.* **12**, 1829–1836 (2013).
- 300. Kawanobe, T. *et al.* Expression of human ABCB5 confers resistance to taxanes and anthracyclines. *Biochem. Biophys. Res. Commun.* **418**, 736–741 (2012).
- Oprea-Lager, D. E. *et al.* ABCC4 Decreases docetaxel and not cabazitaxel efficacy in prostate cancer cells in vitro. *Anticancer Res.* 33, 387–392 (2013).
- 302. Sissung, T. M. et al. ABCB1 genetic variation influences the toxicity and

clinical outcome of patients with androgen-independent prostate cancer treated with docetaxel. *Clin. Cancer Res.* **14**, 4543–4549 (2008).

- 303. Kato, T. *et al.* Serum exosomal P-glycoprotein is a potential marker to diagnose docetaxel resistance and select a taxoid for patients with prostate cancer. *Urol. Oncol. Semin. Orig. Investig.* **33**, 385.e15-385.e20 (2015).
- 304. Kharaziha, P. *et al.* Molecular profiling of prostate cancer derived exosomes may reveal a predictive signature for response to docetaxel. *Oncotarget* **6**, 21740–21754 (2015).
- Lombard, A. P. *et al.* ABCB1 Mediates Cabazitaxel–Docetaxel Cross-Resistance in Advanced Prostate Cancer. *Mol. Cancer Ther.* 16, 2257– 2266 (2017).
- 306. Paschalis, A. *et al.* Alternative splicing in prostate cancer. *Nat. Rev. Clin. Oncol.* **15**, 663–675 (2018).
- 307. Shan, X. *et al.* Replication study: androgen receptor splice variants determine taxane sensitivity in prostate cancer. *PeerJ* **6**, e4661 (2018).
- Antonarakis, E. S. *et al.* Androgen Receptor Splice Variant 7 and Efficacy of Taxane Chemotherapy in Patients With Metastatic Castration-Resistant Prostate Cancer. *JAMA Oncol.* 1, 582–591 (2015).
- Onstenk, W. *et al.* Efficacy of Cabazitaxel in Castration-resistant Prostate Cancer Is Independent of the Presence of AR-V7 in Circulating Tumor Cells. *Eur. Urol.* 68, 939–945 (2015).
- 310. Scher, H. I. *et al.* Association of AR-V7 on circulating tumor cells as a treatment-specific biomarker with outcomes and survival in castration-resistant prostate cancer. *JAMA Oncol.* **2**, 1441–1449 (2016).
- 311. Scher, H. I. *et al.* Nuclear-specific AR-V7 Protein Localization is Necessary to Guide Treatment Selection in Metastatic Castration-resistant Prostate Cancer. *Eur. Urol.* **71**, 874–882 (2017).
- 312. Nakazawa, M. *et al.* Serial blood-based analysis of AR-V7 in men with advanced prostate cancer. *Ann. Oncol.* **26**, 1859–1865 (2015).
- 313. Chen, Y. *et al.* ETS factors reprogram the androgen receptor cistrome and prime prostate tumorigenesis in response to PTEN loss. *Nat. Med.* **19**, 1023–1029 (2013).
- 314. Rodriguez-Bravo, V. *et al.* The role of GATA2 in lethal prostate cancer aggressiveness. *Nat. Rev. Urol.* **14**, 38–48 (2017).
- 315. Vidal, S. J. *et al.* A Targetable GATA2-IGF2 Axis Confers Aggressiveness in Lethal Prostate Cancer. *Cancer Cell* **27**, 223–239 (2015).
- Rodriguez-Bravo, V. *et al.* Nuclear Pores Promote Lethal Prostate Cancer by Increasing POM121-Driven E2F1, MYC, and AR Nuclear Import. *Cell* 174, 1200–1215.e20 (2018).
- 317. Domingo-Domenech, J. *et al.* Suppression of Acquired Docetaxel Resistance in Prostate Cancer through Depletion of Notch- and Hedgehog-Dependent Tumor-Initiating Cells. *Cancer Cell* **22**, 373–388 (2012).
- 318. Morgan, T. M., Koreckij, T. D. & Corey, E. Targeted Therapy for Advanced

Prostate Cancer: Inhibition of the PI3K / Akt / mTOR Pathway. 237–249 (2009).

- Antonarakis, E. S. *et al.* An immunohistochemical signature comprising PTEN, MYC, and Ki67 predicts progression in prostate cancer patients receiving adjuvant docetaxel after prostatectomy. *Cancer* **118**, 6063–6071 (2012).
- 320. Alshaker, H. *et al.* Everolimus (RAD001) sensitizes prostate cancer cells to docetaxel by down-regulation of HIF-1α and sphingosine kinase 1. *Oncotarget* 7, 80943–80956 (2016).
- 321. Yasumizu, Y. *et al.* Dual PI3K/mTOR inhibitor NVP-BEZ235 sensitizes docetaxel in castration resistant prostate cancer. *J. Urol.* **191**, 227–234 (2014).
- 322. Farrow, J. M., Yang, J. C. & Evans, C. P. Autophagy as a modulator and target in prostate cancer. *Nat. Rev. Urol.* **11**, 508–516 (2014).
- Notte, A., Ninane, N., Arnould, T. & Michiels, C. Hypoxia counteracts taxolinduced apoptosis in MDA-MB-231 breast cancer cells: Role of autophagy and JNK activation. *Cell Death Dis.* 4, e638-13 (2013).
- 324. Bennett, H. L. *et al.* Does androgen-ablation therapy (AAT) associated autophagy have a pro-survival effect in LNCaP human prostate cancer cells? *BJU Int.* **111**, 672–682 (2013).
- 325. Wang, Q., He, W. Y., Zeng, Y. Z., Hossain, A. & Gou, X. Inhibiting autophagy overcomes docetaxel resistance in castration-resistant prostate cancer cells. *Int. Urol. Nephrol.* **50**, 675–686 (2018).
- Hu, F. *et al.* Docetaxel-mediated autophagy promotes chemoresistance in castration-resistant prostate cancer cells by inhibiting STAT3. *Cancer Lett.* **416**, 24–30 (2018).
- 327. Zeng, J., Liu, W., Fan, Y. Z., He, D. L. & Li, L. PrLZ increases prostate cancer docetaxel resistance by inhibiting LKB1/AMPK-mediated autophagy. *Theranostics* **8**, 109–123 (2018).
- 328. Niture, S. *et al.* TNFAIP8 promotes prostate cancer cell survival by inducing autophagy. *Oncotarget* **9**, 26884–26899 (2018).
- 329. Morrison, G. J. & Goldkorn, A. Development and Application of Liquid Biopsies in Metastatic Prostate Cancer. *Curr. Oncol. Rep.* **20**, 7–9 (2018).
- 330. Beltran, H. *et al.* Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. *Nat. Med.* **22**, 298–305 (2016).
- 331. Corcoran, R. B. & Chabner, B. A. Application of Cell-free DNA Analysis to Cancer Treatment. *N. Engl. J. Med.* **379**, 1754–1765 (2018).
- 332. Sailer, V. *et al.* Bone biopsy protocol for advanced prostate cancer in the era of precision medicine. *Cancer* **124**, 1008–1015 (2018).
- 333. Pantel, K. & Speicher, M. R. The biology of circulating tumor cells. *Oncogene* **35**, 1216–1224 (2016).
- 334. Massagué, J. & Obenauf, A. C. Metastatic colonization by circulating tumour cells. *Nature* **529**, 298–306 (2016).

- 335. Ferreira, M. M., Ramani, V. C. & Jeffrey, S. S. Circulating tumor cell technologies. *Mol. Oncol.* **10**, 374–394 (2016).
- 336. Pantel, K., Hille, C. & Scher, H. I. Circulating Tumor Cells in Prostate Cancer: From Discovery to Clinical Utility. *Clin. Chem.* **65**, 87–99 (2019).
- 337. Danila, D. C., Fleisher, M. & Scher, H. I. Circulating tumor cells as biomarkers in prostate cancer. *Clin. Cancer Res.* **17**, 3903–3912 (2011).
- Danila, D. C. *et al.* Circulating Tumor Cell Number and Prognosis in Progressive Castration-Resistant Prostate Cancer. *Clin. Cancer Res.* 13, 7053–7058 (2007).
- 339. De Bono, J. S. *et al.* Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. *Clin. Cancer Res.* **14**, 6302–6309 (2008).
- 340. Scher, H. I. *et al.* Circulating tumour cells as prognostic markers in progressive, castration-resistant prostate cancer: a reanalysis of IMMC38 trial data. *Lancet Oncol.* **10**, 233–239 (2009).
- 341. Heller, G. *et al.* Circulating Tumor Cell Number as a Response Measure of Prolonged Survival for Metastatic Castration-Resistant Prostate Cancer: A Comparison With Prostate-Specific Antigen Across Five Randomized Phase III Clinical Trials. *J. Clin. Oncol.* **36**, 572–580 (2018).
- Podolak, J. *et al.* Androgen receptor amplification is concordant between circulating tumor cells and biopsies from men undergoing treatment for metastatic castration resistant prostate cancer. *Oncotarget* 8, 71447– 71455 (2017).
- 343. Olmos, D. *et al.* Prognostic value of blood mRNA expression signatures in castration-resistant prostate cancer: a prospective, two-stage study. *Lancet Oncol.* **13**, 1114–1124 (2012).
- 344. Ross, R. W. *et al.* A whole-blood RNA transcript-based prognostic model in men with castration-resistant prostate cancer: A prospective study. *Lancet Oncol.* **13**, 1105–1113 (2012).
- 345. Seitz, A. K. *et al.* AR-V7 in Peripheral Whole Blood of Patients with Castration-resistant Prostate Cancer: Association with Treatment-specific Outcome Under Abiraterone and Enzalutamide. *Eur. Urol.* **72**, 828–834 (2017).
- 346. To, S. Q. *et al.* Expression of Androgen Receptor Splice Variant 7 or 9 in Whole Blood Does Not Predict Response to Androgen-Axis–targeting Agents in Metastatic Castration-resistant Prostate Cancer. *Eur. Urol.* 73, 818–821 (2018).
- 347. Mellado, B. *et al.* Tyrosinase mRNA in Blood of Patients With Melanoma Treated With Adjuvant Interferon. *J. Clin. Oncol.* **20**, 4032–4039 (2002).
- 348. Komatsu, N. *et al.* Gene expression profiles in peripheral blood as a biomarker in cancer patients receiving peptide vaccination. *Cancer* **118**, 3208–3221 (2012).
- 349. Yang, B. *et al.* MicroRNA-21 in peripheral blood mononuclear cells as a novel biomarker in the diagnosis and prognosis of prostate cancer. *Cancer*

Biomarkers 17, 223–230 (2016).

- 350. Wu, A. & Attard, G. Plasma DNA analysis in prostate cancer: Opportunities for improving clinical management. *Clin. Chem.* **65**, 100–107 (2019).
- Marin-Aguilera, M. *et al.* Identification of Docetaxel Resistance Genes in Castration-Resistant Prostate Cancer. *Mol. Cancer Ther.* **11**, 329–339 (2012).
- 352. Danila, D. C., Pantel, K., Fleisher, M. & Scher, H. I. Circulating Tumors Cells as Biomarkers. *Cancer J.* **17**, 438–450 (2011).
- 353. Miller, M. C., Doyle, G. V. & Terstappen, L. W. M. M. Significance of Circulating Tumor Cells Detected by the CellSearch System in Patients with Metastatic Breast Colorectal and Prostate Cancer. J. Oncol. 2010, 1– 8 (2010).
- 354. Gupta, G. P. & Massagué, J. Cancer Metastasis: Building a Framework. *Cell* **127**, 679–695 (2006).
- 355. Marín-Aguilera, M. *et al.* Molecular profiling of peripheral blood is associated with circulating tumor cells content and poor survival in metastatic castration-resistant prostate cancer. *Oncotarget* **6**, (2015).
- 356. Ayala de la Peña, F. *et al.* SEOM clinical guidelines in early stage breast cancer (2018). *Clin. Transl. Oncol.* **21**, 18–30 (2019).
- 357. Mostaghel, E. A. *et al.* Intraprostatic androgens and androgen-regulated gene expression persist after testosterone suppression: Therapeutic implications for castration-resistant prostate cancer. *Cancer Res.* **67**, 5033–5041 (2007).
- 358. Ryan, C. J. *et al.* Persistent prostate-specific antigen expression after neoadjuvant androgen depletion: An early predictor of relapse or incomplete androgen suppression. *Urology* **68**, 834–839 (2006).
- 359. Volante, M. *et al.* Androgen deprivation modulates gene expression profile along prostate cancer progression. *Hum. Pathol.* **56**, 81–88 (2016).
- Pernicová, Z. *et al.* Androgen Depletion Induces Senescence in Prostate Cancer Cells through Down-regulation of Skp2. *Neoplasia* **13**, 526-IN13 (2011).
- Blute, M. L. *et al.* Persistence of senescent prostate cancer cells following prolonged neoadjuvant androgen deprivation therapy. *PLoS One* **12**, 1–11 (2017).
- 362. Muñoz-Espín, D. & Serrano, M. Cellular senescence: From physiology to pathology. *Nat. Rev. Mol. Cell Biol.* **15**, 482–496 (2014).
- Falandry, C., Bonnefoy, M., Freyer, G. & Gilson, E. Biology of cancer and aging: A complex association with cellular senescence. *J. Clin. Oncol.* 32, 2604–2610 (2014).
- 364. Mostaghel, E. A. *et al.* Targeted androgen pathway suppression in localized prostate cancer: A pilot study. *J. Clin. Oncol.* **32**, 229–237 (2014).
- 365. Taplin, M.-E. *et al.* Intense Androgen-Deprivation Therapy With Abiraterone Acetate Plus Leuprolide Acetate in Patients With Localized

High-Risk Prostate Cancer: Results of a Randomized Phase II Neoadjuvant Study. *J. Clin. Oncol.* **32**, 3705–3715 (2014).

- 366. Calagua, C. *et al.* Expression of PD-L1 in hormone-naïve and treated prostate cancer patients receiving neoadjuvant abiraterone acetate plus prednisone and leuprolide. *Clin. Cancer Res.* **23**, 6812–6822 (2017).
- Gowda, P. S. *et al.* Inhibition of Hedgehog and Androgen Receptor Signaling Pathways Produced Synergistic Suppression of Castration-Resistant Prostate Cancer Progression. *Mol. Cancer Res.* **11**, 1448–1461 (2013).
- 368. Zhang, G. *et al.* Androgen receptor splice variants circumvent AR blockade by microtubule-targeting agents. *Oncotarget* **6**, 23358–23371 (2015).
- 369. Ryan, C. J. *et al.* Abiraterone in Metastatic Prostate Cancer without Previous Chemotherapy. *N. Engl. J. Med.* **368**, 138–148 (2013).
- 370. Huang, C. Y. *et al.* Molecular alterations in prostate carcinomas that associate with in vivo exposure to chemotherapy: Identification of a cytoprotective mechanism involving growth differentiation factor 15. *Clin. Cancer Res.* **13**, 5825–5833 (2007).
- Zhang, Q. *et al.* Nuclear factor-KB-mediated transforming growth factor-Binduced expression of vimentin is an independent predictor of biochemical recurrence after radical prostatectomy. *Clin. Cancer Res.* **15**, 3557–3567 (2009).
- 372. Domingo-Domenech, J. *et al.* Activation of nuclear factor-κB in human prostate carcinogenesis and association to biochemical relapse. *Br. J. Cancer* **93**, 1285–1294 (2005).
- 373. Beltran, H. *et al.* Impact of therapy on genomics and transcriptomics in high-risk prostate cance treated with neoadjuvant docetaxel and androgen deprivation therapy. *Clin. Cancer Res.* **23**, 6802–6811 (2017).
- 374. Eastham, J. A., Kelly, W. K., Grossfeld, G. D. & Small, E. J. Cancer and Leukemia Group B (CALGB) 90203: a randomized phase 3 study of radical prostatectomy alone versus estramustine and docetaxel before radical prostatectomy for patients with high-risk localized disease. *Urology* 62, 55– 62 (2003).
- 375. Herschkowitz, J. I. *et al.* Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin- low and metaplastic breast cancer subtypes. **107**, (2010).
- Jennbacken, K. *et al.* N-cadherin increases after androgen deprivation and is associated with metastasis in prostate cancer. *Endocr. Relat. Cancer* 17, 469–479 (2010).
- 377. Sun, Y. *et al.* Androgen Deprivation Causes Epithelial-Mesenchymal Transition in the Prostate: Implications for Androgen-Deprivation Therapy. *Cancer Res.* **72**, 527–536 (2012).
- 378. Anose, B. M. & Sanders, M. M. Androgen Receptor Regulates Transcription of the ZEB1 Transcription Factor. *Int. J. Endocrinol.* **2011**, (2011).

- 379. Cottard, F. *et al.* Constitutively Active Androgen Receptor Variants Upregulate Expression of Mesenchymal Markers in Prostate Cancer Cells. *PLoS One* **8**, (2013).
- Cottard, F. *et al.* Dual effects of constitutively active androgen receptor and full-length androgen receptor for N-cadherin regulation in prostate cancer. *Oncotarget* 8, 72008–72020 (2017).
- Sun, F. *et al.* Androgen Receptor Splice Variant AR3 Promotes Prostate Cancer via Modulating Expression of Autocrine / Paracrine. 289, 1529– 1539 (2014).
- 382. Kong, D. *et al.* Androgen Receptor Splice Variants Contribute to Prostate Cancer Aggressiveness through Induction of EMT and Expression of Stem Cell Marker Genes. *Prostate* **75**, 161–174 (2015).
- Martin, S. K., Banuelos, C. A., Sadar, M. D. & Kyprianou, N. N-terminal targeting of androgen receptor variant enhances response of castration resistant prostate cancer to taxane chemotherapy. *Mol. Oncol.* 9, 628–639 (2015).
- 384. Antonarakis, E. S. *et al.* AR-V7 and Resistance to Enzalutamide and Abiraterone in Prostate Cancer. *N. Engl. J. Med.* **371**, 1028–1038 (2014).
- 385. Mani, S. A. *et al.* The Epithelial-Mesenchymal Transition Generates Cells with Properties of Stem Cells. *Cell* **133**, 704–715 (2008).
- 386. Kurrey, N., Jalgaonkar, S. & Joglekar, A. Snail and Slug Mediate Radioresistance and Chemoresistance by Antagonizing p53-Mediated Apoptosis and Acquiring a Stem-Like Phenotype in Ovarian Cancer Cells. *Stem Cells* 27, 2059–2068 (2009).
- 387. Li, M., Knight, D. A., Smyth, M. J. & Stewart, T. J. Sensitivity of a novel model of mammary cancer stem cell-like cells to TNF-related death pathways. *Cancer Immunol Immunother* **61**, 1255–1268 (2012).
- 388. Hao, J. *et al.* In Vitro and In Vivo Prostate Cancer Metastasis and Chemoresistance Can Be Modulated by Expression of either CD44 or CD147. *PLoS One* **7**, e40716 (2012).
- Kim, J. J. *et al.* Acquisition of paclitaxel resistance is associated with a more aggressive and invasive phenotype in prostate cancer. *J. Cell. Biochem.* **114**, 1286–1293 (2013).
- 390. Liu, Y. *et al.* The ZEB1 Transcription Factor Acts in a Negative Feedback Loop with miR200 Downstream of Ras and Rb1 to Regulate Bmi1 Expression. *J. Biol. Chem.* **289**, 4116–4125 (2014).
- 391. Ren, J., Chen, Y., Song, H., Chen, L. & Wang, R. Inhibition of ZEB1 reverses EMT and chemoresistance in docetaxel-resistant human lung adenocarcinoma cell line. *J. Cell. Biochem.* **114**, 1395–1403 (2013).
- 392. Patrawala, L. *et al.* Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. *Oncogene* **25**, 1696–1708 (2006).
- 393. Fidler, I. J. The pathogenesis of cancer metastasis: The 'seed and soil' hypothesis revisited. *Nat. Rev. Cancer* **3**, 453–458 (2003).

- 394. Taylor, B. S. *et al.* Integrative Genomic Profiling of Human Prostate Cancer. *Cancer Cell* **18**, 11–22 (2010).
- 395. Cairns, R. A., Harris, I. S. & Mak, T. W. Regulation of cancer cell metabolism. *Nat. Rev. Cancer* **11**, 85–95 (2011).
- Thomassen, M., Tan, Q. & Kruse, T. A. Gene expression meta-analysis identifies metastatic pathways and transcription factors in breast cancer. *BMC Cancer* 8, 1–12 (2008).
- 397. Bjartell, A. *et al.* Immunohistochemical detection of cysteine-rich secretory protein 3 in tissue and in serum from men with cancer or benign enlargement of the prostate gland. *Prostate* **66**, 591–603 (2006).
- 398. Dahlman, A. *et al.* Effect of androgen deprivation therapy on the expression of prostate cancer biomarkers MSMB and MSMB-binding protein CRISP3. *Prostate Cancer Prostatic Dis.* **13**, 369–375 (2010).
- 399. Bjartell, A. S. *et al.* Association of cysteine-rich secretory protein 3 and βmicroseminoprotein with outcome after radical prostatectomy. *Clin. Cancer Res.* 13, 4130–4138 (2007).
- 400. Grupp, K. *et al.* Cysteine-rich secretory protein 3 overexpression is linked to a subset of PTEN-deleted ERG fusion-positive prostate cancers with early biochemical recurrence. *Mod. Pathol.* **26**, 733–742 (2013).
- 401. Al Bashir, S. *et al.* Cysteine- Rich secretory protein 3 (CRISP3), ERG and PTEN define a molecular subtype of prostate cancer with implication to patients' prognosis. *J. Hematol. Oncol.* **7**, 1–11 (2014).
- 402. Noh, B. J., Sung, J. Y., Kim, Y. W., Chang, S. G. & Park, Y. K. Prognostic value of ERG, PTEN, CRISP3 and SPINK1 in predicting biochemical recurrence in prostate cancer. *Oncol. Lett.* **11**, 3621–3630 (2016).
- 403. Ribeiro, F. R. *et al.* Cysteine-Rich secretory protein-3 (CRISP3) is strongly Up-Regulated in prostate carcinomas with the TMPRSS2-ERG fusion gene. *PLoS One* **6**, (2011).
- 404. Pathak, B. R., Breed, A. A., Apte, S., Acharya, K. & Mahale, S. D. Cysteinerich secretory protein 3 plays a role in prostate cancer cell invasion and affects expression of PSA and ANXA1. *Mol. Cell. Biochem.* **411**, 11–21 (2016).
- 405. Rucci, N., Sanità, P. & Angelucci, A. Roles of metalloproteases in metastatic niche. *Curr. Mol. Med.* **11**, 609–622 (2011).
- 406. Tian, T. V. *et al.* Identification of novel TMPRSS2:ERG mechanisms in prostate cancer metastasis: Involvement of MMP9 and PLXNA2. *Oncogene* **33**, 2204–2214 (2014).
- 407. Liu, B., Gu, X., Huang, T., Luan, Y. & Ding, X. Identification of TMPRSS2-ERG mechanisms in prostate cancer invasiveness: Involvement of MMP-9 and plexin B1. *Oncol. Rep.* **37**, 201–208 (2017).
- 408. Kato, T. *et al.* Ets1 promotes chemoresistance and invasion of paclitaxelresistant, hormone-refractory pc3 prostate cancer cells by up-regulating mdr1 and mmp9 expression. *Biochem. Biophys. Res. Commun.* **417**, 966– 971 (2012).

- 409. Huang, H. *et al.* Matrine suppresses invasion of castration-resistant prostate cancer cells by downregulating MMP-2/9 via NF-κB signaling pathway. *Int. J. Oncol.* **50**, 640–648 (2017).
- 410. Dilly, A. K. *et al.* Platelet-type 12-lipoxygenase induces MMP9 expression and cellular invasion via activation of PI3K/Akt/NF-??B. *Int. J. Cancer* **133**, 1784–1791 (2013).
- Venkatesan, T. *et al.* MDM2 Overexpression Modulates the Angiogenesis-Related Gene Expression Profile of Prostate Cancer Cells. *Cells* 7, 1–15 (2018).
- 412. Pellinen, T. *et al.* A functional genetic screen reveals new regulators of 1integrin activity. *J. Cell Sci.* **125**, 649–661 (2012).
- 413. Yu, L., Wang, L. & Chen, S. Olfactomedin 4, a novel marker for the differentiation and progression of gastrointestinal cancers. *Neoplasma* **58**, 9–13 (2011).
- 414. Yang, M. & Sytkowski, A. J. Differential expression and androgen regulation of the human selenium-binding protein gene hSP56 in prostate cancer cells. *Cancer Res.* **58**, 3150–3 (1998).
- 415. Xie, W. *et al.* Association of genetic variations of selenoprotein genes, plasma selenium levels, and prostate cancer aggressiveness at diagnosis. *Prostate* **76**, 691–699 (2016).
- 416. Ansong, E. *et al.* Evidence that selenium binding protein 1 is a tumor suppressor in prostate cancer. *PLoS One* **10**, 1–15 (2015).
- 417. Jeong, J., Zhou, J., Gao, C., Feldman, L. & Sytkowski, A. J. Human selenium binding protein-1 (hSP56) is a negative regulator of HIF-1α and suppresses the malignant characteristics of prostate cancer cells. *BMB Rep.* **47**, 411–416 (2014).
- 418. Tilki, D. *et al.* CEA-related cell adhesion molecule-1 is involved in angiogenic switch in prostate cancer. *Oncogene* **25**, 4965–4974 (2006).
- 419. Busch, C., Hanssen, T. A., Wagener, C. & Öbrink, B. Down-regulation of CEACAM1 in human prostate cancer: Correlation with loss of cell polarity, increased proliferation rate, and Gleason grade 3 to 4 transition. *Hum. Pathol.* **33**, 290–298 (2002).
- 420. Halabi, S. *et al.* Updated Prognostic Model for Predicting Overall Survival in First-Line Chemotherapy for Patients With Metastatic Castration-Resistant Prostate Cancer. *J. Clin. Oncol.* **32**, 671–677 (2014).
- 421. Mehra, R. *et al.* Characterization of TMPRSS2-ETS Gene Aberrations in Androgen-Independent Metastatic Prostate Cancer. *Cancer Res.* **68**, 3584–3590 (2008).
- 422. Song, W. *et al.* Immunohistochemical staining of ERG and SOX9 as potential biomarkers of docetaxel response in patients with metastatic castration-resistant prostate cancer. *Oncotarget* **7**, 83735–83743 (2016).