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“No estudio por saber más, sino para ignorar menos.”

Sor Juana Inés de la Cruz



Abstract

Society is aware that the ecological predation of the planet is due to human activity.

Therefore, it is necessary to carry out actions to help reverse this damage. Additionally,

the trend of population growth in big cities and the uncontrolled volume of traffic cause

serious problems such as traffic delays, traffic jams, increased CO2 emissions, and traffic

accidents. In this sense, so-called smart cities are motivated to create a greener and

safer environment where both efficient mobility and public services seek to mitigate those

problems. These initiatives are supported by smart technologies such as the Internet

of things (IoT) and information and communication technologies (ICT) that provide

the basis for creating and implementing many interesting smart city projects. In this

context, modern vehicles today are equipped with a variety of sensors that enable them

to detect and share information. This detected information can not only be useful for

other vehicles, but also to collect relevant data related to traffic management such as

traffic congestion, energy use, and so on. This data can help to generate smart mobility

solutions and help to improve city services. In this context, vehicular ad hoc networks

(VANETs) enable communication between vehicles (V2I) and also between vehicles and

the city’s fixed infrastructure (V2I). Additionally, VANET routing protocols can help to

minimize the use of fixed infrastructure as they employ multi-hop V2V communication

to reach the road side units (RSUs) of the city.

In this research framework, this thesis aims to contribute to the design of VANET routing

protocols for urban environments. In the first part of the thesis, we have started our

research work analyzing some important aspects of the hop-by-hop forwarding routing

based on the evaluation of node metrics. We have analyzed different weighting strategies

to compute a multimetric score used to arrange the candidate nodes (neighbouring nodes

of the node currently holding the packet) to be chosen as the next node to forward the

packet. As a result, we have proposed a weighted power mean function (W-PMF) to

improve the selection of the best forwarding node. In this proposal, we have shown that

the best way to combine several metrics is by implementing the geometric mean function.

Additionally, we have improved the selection of forwarding nodes by accurately estimating

their current position at the moment of forwarding messages, instead of using the position

information received in the last beacon.

Nowadays, many applications and services are based on big data because valuable infor-

mation can be extracted when the data is properly processed. Under this premise, it has

been considered relevant to collect historical data about vehicular network conditions and
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related them to the related performance of the VANET. The collected data provides us

useful information to design new routing strategies based on predictions. With this goal

in mind, we have evaluated different routing metrics (distance to destination, vehicles’

density, available bandwidth) that describe the network conditions when the vehicle cur-

rently holding a packet needs to choose the best next hop to forward the packet towards a

specific destination, following a hop-by-hop scheme. A large number of simulations under

different representative scenarios have been conducted to collect the values of the routing

metrics and the related binary output value (successfully delivered or not at destination).

Then, we have carried out an offline dataset analysis where a statistical model for each

metric has been obtained. This statistical model has been used to design a new forward-

ing algorithm for VANETs. With this algorithm, we have proposed a probability-based

multimetric routing protocol (ProMRP), which selects the candidate nodes based on the

highest probability to deliver the packet at destination. Also, an accurate estimation of

the node’s position has been included to obtain an enhanced version called EProMRP.

The last contribution is focused on the application of machine learning techniques to en-

hance routing decisions. To this end, a new dataset has been collected from five routing

metrics (distance to destination, trajectory, vehicles’ density, available bandwidth and

MAC losses). The collected dataset has been used to generate two different machine

learning models: (i) a decision tree with a maximum tree depth of 20, and (ii) an arti-

ficial neural network with a dimension 1/3/1 (one input layer, 3 hidden layers and one

output layer). Our proposals are called (i) multimetric predictive ML-based routing pro-

tocol (MPML), and (ii) multimetric predictive ANN-based routing protocol (MPANN),

respectively. The goal is to generate machine learning-based forwarding models with

the highest prediction accuracy. They have been assessed with both machine learning

performance metrics and realistic VANET simulations. Different VANET scenarios with

different network sizes and city maps, different orographies and road layouts, different ve-

hicles’ densities, have been considered to evaluate each proposal. We have also evaluated

the level of flexibility of our proposals to adapt to other city scenarios, different from the

city map used to train the model. For this purpose, MPANN (which has shown to be

the best proposal) has been tested on two urban areas of different cities with different

characteristics. With this latter evaluation, we have been able to assess the ability of our

machine learning-based forwarding model to adapt to new network conditions.



Resumen

La Sociedad es consciente de que la depredación ecológica del planeta se debe a la ac-

tividad humana. Por lo tanto, es necesario llevar a cabo acciones para ayudar a revertir

este daño. Sumado a esto, la tendencia de crecimiento de la población en las grandes

ciudades y el volumen incontrolado de tráfico causan serios problemas, como demoras

en el tráfico, atascos, aumento de las emisiones de CO2 y accidentes de tráfico. En este

sentido, las denominadas ciudades inteligentes están motivadas para crear un entorno

más verde y seguro donde tanto la movilidad eficiente como los servicios públicos buscan

mitigar esos problemas. Estas iniciativas están respaldadas por tecnoloǵıas inteligentes

como la Internet de las cosas (IoT) y las tecnoloǵıas de la información y las comunica-

ciones (TIC) que proporcionan la base para crear e implementar numerosos interesantes

proyectos para ciudades inteligentes. En este contexto, los modernos veh́ıculos de hoy en

d́ıa están equipados con una variedad de sensores que les permiten detectar y compar-

tir información. Esta información detectada no solo puede ser útil para otros veh́ıculos,

sino también para recopilar datos relevantes relacionados con la gestión del tráfico, como

nivel de congestión de tráfico, uso de enerǵıa, etc. para generar soluciones de movilidad

inteligente y contribuir en mejorar los servicios de la ciudad. En este contexto, las redes

de veh́ıculos ad hoc (VANET) permiten la comunicación entre veh́ıculos (V2I) y también

entre veh́ıculos y la infraestructura fija de la ciudad (V2I). Además, los protocolos de

encaminamiento VANET minimizan el uso de infraestructura fija, ya que emplean co-

municaciones V2V de múltiples saltos para llegar a las unidades de infraestructura de

comunicaciones de la ciudad.

En este marco de investigación, esta tesis tiene como objetivo contribuir al diseño de

protocolos de encaminamiento de redes vehiculares ad hoc (VANET) en entornos ur-

banos. Para este propósito, hemos iniciado nuestro trabajo de investigación analizando

algunos aspectos importantes del encaminamiento salto-a-salto basado en la evaluación

de métricas de encaminamiento de los nodos. Hemos analizado diferentes estrategias de

ponderación de las métricas para calcular un valor multimétrica con el que ordenar los

nodos candidatos (nodos vecinos del nodo que actualmente tiene el paquete) a ser elegi-

dos como siguiente nodo encaminador del paquete hacia su destino. Como resultado,

hemos propuesto una función de potencia con media ponderada (W-PMF) para mejo-

rar la selección del mejor nodo de encaminamiento. En esta propuesta, demostramos

que la mejor manera de combinar varias métricas es implementando la función de media
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geométrica. Adicionalmente, hemos mejorado la selección de nodos encaminadores esti-

mando su posición en el momento de reenv́ıo de paquetes con mayor precisión, en vez de

utilizar la posición recibida en el último mensaje beacon.

Actualmente, diversas aplicaciones y servicios se basan en grandes volúmenes de datos (big

data) de la que se puede extraer información valiosa cuando se procesan adecuadamente

los datos. Bajo esta premisa, se ha considerado relevante recopilar datos históricos sobre

las condiciones de la red vehicular y relacionarlos con las prestaciones correspondientes de

la VANET. Los datos recopilados nos proporcionan información útil para diseñar nuevas

estrategias de encaminamiento basadas en predicciones. Con este objetivo en mente,

hemos evaluado diversas métricas de encaminamiento (distancia al destino, densidad de

veh́ıculos, ancho de banda disponible) que describen las condiciones de la red cuando

el veh́ıculo que actualmente tiene el paquete necesita elegir el mejor siguiente nodo para

encaminar el paquete hacia su destino, siguiendo un esquema salto-a-salto. Se ha realizado

una gran cantidad de simulaciones bajo diferentes escenarios representativos para crear

un conjunto de datos a partir de los valores de las métricas de encaminamiento y del valor

binario del resultado (entrega con éxito o no en destino) asociado. Luego, hemos llevado

a cabo un análisis del conjunto de datos generado y se obtuvo un modelo estad́ıstico para

cada métrica. Este modelo estad́ıstico se ha utilizado para diseñar un nuevo algoritmo

de encaminamiento de paquetes en VANETs. Con dicho algoritmo, hemos propuesto

un protocolo de encaminamiento multimétrico basado en probabilidades (ProMRP), que

selecciona los nodos candidatos en función de la mayor probabilidad que asegure la entrega

del paquete en su destino. Además, se ha incluido una estimación precisa de la posición del

nodo para aśı obtener una versión mejorada de nuestro protocolo denominada EProMRP.

La última contribución se centra en la aplicación de técnicas de aprendizaje automático

(machine learning) para mejorar las decisiones de encaminamiento. Con este fin, se ha

recopilado un nuevo conjunto de datos de cinco métricas (distancia al destino, trayectoria,

densidad de veh́ıculos, ancho de banda disponible y pérdidas a nivel MAC). El conjunto

de datos recopilado se ha utilizado para generar dos modelos diferentes de aprendizaje

automático: (i) un árbol de decisión con una profundidad máxima del árbol igual a 20, y

(ii) una red neuronal artificial de dimensión 1/3/1 (una capa de entrada, 3 capas ocultas y

una capa de salida). Nuestras propuestas se denominan (i) protocolo de encaminamiento

multimétrico predictivo basado en machine learning (MPML), y (ii) protocolo de encam-

inamiento predictivo multimétrico basado en red neuronal artificial (MPANN), respec-

tivamente. El objetivo es generar modelos de aprendizaje automático con la predicción

exacta más alta. Las propuestas han sido evaluadas mediante métricas de rendimiento



de aprendizaje automático y mediante simulaciones VANET realistas. Se han consid-

erado diferentes escenarios VANET con diferentes tamaños de red, mapas de ciudades

con diferente orograf́ıa y disposición de las calles, diversas densidades de veh́ıculos, para

evaluar cada propuesta. También hemos evaluado el nivel de flexibilidad de nuestra prop-

uesta para adaptarse a otros escenarios de ciudades distintas al mapa urbano utilizado

para entrenar los modelos. Para este propósito, MPANN (que ha mostrado ser la mejor

propuesta) ha sido probado en dos áreas urbanas de distintas ciudades con caracteŕısticas

diferentes. Con esta última evaluación, hemos podido medir la capacidad de nuestro

modelo para adaptarse a nuevas condiciones de red.



Resum

La Societat és conscient que la predació ecològica del planeta es deu a l’activitat humana.

Per tant, cal dur a terme accions per ajudar a revertir aquest dany. A això s’hi afegeix

la tendència del creixement de la població a les grans ciutats i el volum de trànsit de-

scontrolat que causen greus problemes, com retards deguts al tràfic, embussos, augment

de les emissions de CO2 i accidents de tràfic. En aquest sentit, les denominades ciu-

tats intel-ligents estan motivades a crear un entorn més ecològic i més segur on tant la

mobilitat eficient com els serveis públics pretenen mitigar aquests problemes. Aquestes

iniciatives compten amb el suport de tecnologies intel·ligents com la Internet de les coses

(IoT) i les tecnologies de la informació i les comunicacions (TIC) que proporcionen les

bases per crear i implementar nombrosos projectes interessants de ciutat intel·ligent. En

aquest context, els moderns vehicles actuals disposen d’una varietat de sensors que per-

meten detectar i compartir informació. Aquesta informació detectada no només pot ser

útil per a altres vehicles, sinó també per recopilar dades rellevants relacionades amb la

gestió del tràfic, com ara el nivell de congestió del tràfic, l’ús d’energia, etc. per a generar

solucions de mobilitat intel·ligent i millorar els serveis de la ciutat. En aquest context,

les xarxes de vehicles ad hoc (VANET) permeten la comunicació entre vehicles (V2I)

i també entre vehicles i la infraestructura fixa de la ciutat (V2I). A més, els protocols

d’encaminament VANET minimitzen l’ús d’infraestructura fixa ja que utilitzen comuni-

cacions V2V multi-salt per arribar a les unitats d’infraestructura de comunicacions de la

ciutat.

En aquest marc de recerca, aquesta tesi vol contribuir al disseny de protocols d’encaminament

de xarxa ad-hoc (VANET) en entorns urbans. Amb aquesta finalitat, hem iniciat el nos-

tre treball de recerca analitzant alguns aspectes importants de l’encaminament salt-a-salt

basat en l’avaluació de les mètriques dels nodes. Hem analitzat diferents estratègies de

ponderació de les mètriques per a calcular un valor multimètrica segons el qual ordenar

els nodes candidats (nodes vëıns del node que actualment té el paquet) a ser triats com a

següent node encaminador del paquet cap al seu dest́ı. Com a resultat, hem proposat una

funció de potència mitjana ponderada (W-PMF) per millorar la selecció del millor node

d’encaminament. En aquesta proposta, vam demostrar que la millor manera de combinar

diverses mètriques és mitjançant la implementació de la funció de mitja geomètrica. Adi-

cionalment, hem millorat la selecció de l’estratègia de selecció de nodes de reenviament

estimant la seva posició en el moment de reenviar el paquet, enlloc d’utilitzar la posició

rebuda en el darrer missatge beacon.
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Actualment, diverses aplicacions i serveis es basen en grans volumens de dades (big data,

de la qual es pot extraure valuosa informació quan es processen les dades adequada-

ment. Sota aquesta premissa, és rellevant recollir dades històriques sobre les condicions

de la xarxa vehicular i relacionar-les amb les prestacions corresponents de la VANET.

Les dades recopilades ens proporcionen informació útil per a dissenyar noves estratègies

basades en prediccions. Amb aquest objectiu en ment, hem avaluat diverses mètriques

d’encaminament (distància al dest́ı, densitat de vehicles, ample de banda disponible) que

descriuen les condicions de la xarxa quan el vehicle que actualment té el paquet neces-

sita triar el millor següent node per a encaminar el paquet cap al seu dest́ı, seguint un

esquema salt-a-salt. S’han realitzat un gran nombre de simulacions sota diferents esce-

naris representatius per a crear un conjunt de dades a partir dels valors de les mètriques

d’encaminament i del valor binari del resultat (entrega del paquet al dest́ı amb èxit o

no) associat. Després, hem fet un anàlisi del conjunt de dades fenerat i es va obtenir un

model estad́ıstic per a cada mètrica. Aquest model estad́ıstic s’ha utilitzat per a dissenyar

un nou algorisme d’encaminament de paquets a VANETs. Amb aquest algorisme, hem

proposat un protocol d’encaminament multimètrica basat en probabilitats (ProMRP),

que selecciona els nodes candidats en funció de la seva major probabilitat que asseguri el

lliurament del paquet al seu dest́ı. A més, s’ha inclós una estimació precisa de la posició

del node per obtenir una versió millorada del nostre protocol anomenada EProMRP.

La darrera contribució es centra en l’aplicació de tècniques d’aprenentatge automàtic

(machine learning) per a millorrar les decisions d’encaminament. Per a això, s’ha recopilat

un nou conjunt de dades a partir de cinc mètriques (distància al dest́ı, trajectòria, densitat

de vehicles, ample de banda disponible i pèrdues a nivell MAC). El conjunt de dades

recollit s’ha utilitzat per generar dos models diferents d’aprenentatge automàtic: (i) un

arbre de decisió amb una profunditat màxima de l’arbre igual a 20, i (ii) una xarxa

neuronal artificial amb una dimensió 1/3/1 (una capa d’entrada, 3 capes ocultes i una capa

de sortida). Les nostres propostes s’anomenen (i) protocol d’encaminament multimètrica

predictiu basat en machine learning (MPML), i (ii) protocol d’encaminament predictiu

multimètics basat en xarxes neuronals artificials (MPANN), respectivament. L’objectiu

és generar models d’aprenentatge automàtic amb la predicció exacta més elevada. Les

propostes s’han avaluat mitjançant mètriques de rendiment d’aprenentatge automàtic i

mitjançant simulacions VANET realistes. S’han considerat diferents escenaris VANET

amb diferents mides de xarxa, mapes de ciutats amb orografia i disposició dels carrers

diferent, diverses densitats de vehicles, per avaluar cada proposta. També hem avaluat

el nivell de flexibilitat de la nostra proposta per a adaptar-se a altres escenaris de ciutats

diferents del mapa urbà utilitzat per a entrenar els models. Per a aquest propòsit, MPANN



(que ha mostrat ser la millor proposta) s’ha provat en dos àrees urbanes de ciutats

diferents. Amb aquesta darrera avaluació, hem pogut mesurar la capacitat del nostre

model d’adaptar-se a noves condicions de xarxa.
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Chapter 1

Introduction

This chapter is devoted to present a brief introduction to this Ph.D. thesis, and it also
points out the main goals of our research work. Besides, the chapter presents an overview
of the contents covered throughout this dissertation.

1.1 Overview of the thesis. Motivation

Traffic and congestion caused by vehicles affect all urban centers, and their impact on
city life will continue to increase up as cities grow. In effect, the United Nations (UN)
estimates that more than 60% of the world population will live in cities by 2050 [10]. It
means that a large portion of these cities might probably increase the use of particular
vehicles, making traffic management a really complex task. Traffic congestion reduces
the efficiency of transport infrastructure and increases travel time, fuel consumption, and
environmental pollution. Therefore, there is a great need for effective traffic management
and congestion solutions, not only to make mobility more efficient but also to reduce
collateral damages such as pollution and health problems.

In this sense, mobility is a primary concern for cities striving to become smarter and
more sustainable. Smart cities are assumed to collect big data from different computer
devices and the Internet of things (IoT), to improve city services. In recent years, the
implementation of technologies to make smart mobility have shown that they can help
to reduce the cost of traffic and congestion in the environment, and moreover improve
health and quality of life of citizens [11].

Combining collected traffic data from diverse physical hardware (e.g., sensors, antennas,
small board computers) with prediction mechanisms help the intelligent transportation
system (ITS) to improve traffic management and to minimize the environmental impact.
Those mechanisms increase the benefits of transportation for all kinds of users, especially
in urban areas. In fact, vehicular ad-hoc networks (VANETs) support ITS to improve
drivers’ safety and traffic efficiency on the road by exchanging traffic-related information
between vehicles and also between vehicles and infrastructure [12, 13]. Consequently,

1
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routing protocols designed for VANETs should be flexible and able to adapt to the in-
herent dynamic network characteristics of this kind of networks.

In the last years, there is an interesting trend so that applications of many services are
supported by information provided by large amount data. The applications of smart city
data are still emerging. The amount of progress made so far and the potential for the
future is immensely hopeful [14]. We believe that it is possible to take advantage of data
analysis and apply the knowledge to improve the design of VANET routing protocols.

Considering the previous generic goals, the context of his thesis aims to contribute to
the design of VANET routing protocols to enable smart mechanisms to report
traffic-related messages in urban environments.

1.2 Objectives of the thesis

The main objective of this thesis is to contribute and find solutions to some open problems
present in vehicular ad-hoc networks (VANETs) under urban environments. A vehicular
multi-hop communication requires simple and efficient forwarding mechanisms that can
work with limited and local topology information. Besides, it has to adapt rapidly to the
fast changes in the network. With this in mind, we aim to design a routing protocol
able to adapt to the dynamic network conditions, making decisions based on
prior knowledge of possible input events by detecting the current state of the
network. In this way, the forwarding of information is more efficient. To achieve this
main objective, we have organized our tasks in three parts:

(i). We have studied and analyzed different ways of averaging a set of parameters
(routing metrics) used in multi-hop forwarding algorithms. We have tested
systematically the average power-mean function in the combination of metrics used
in a previous proposal of VANET routing protocols named multimedia multimetric
map-aware routing protocol (3MRP) [4] [15], which was previously developed by
the directors of this thesis. Additionally, we have improved the estimation of the
current distance of the forwarding candidate nodes to destination, based on the
information received from the last beacon message, i.e. (x, y) and (vx, vy), for each
neighbouring node. This more accurate position at the forwarding moment will
outperform the adaptation of the routing protocols under fast changes of network
topology.

(ii). Then, we have focused our research on the design of a probabilistic distribution
model able to estimate the probability of packet successfully delivered at
destination, which will be used to improve the forwarding routing deci-
sions. For this purpose, we have done an offline data-analysis to build an accurate
probabilistic model for each one of the considered routing metrics.

(iii). Finally, we have tackled the key issue of flexible adaptation to enhance rout-
ing protocols for VANETs. We have designed three machine learning (ML)
based forwarding algorithms that work using prior knowledge of possible
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events. For this purpose, we have built a representative dataset with the designed
features gathered from many vehicular simulations. Hence, the supervised learn-
ing models designed have been trained and tested. Each trained model has been
validated with performance evaluation metrics. An exhaustive performance using
simulations shows the benefits of our proposals.

1.3 Summary of contributions

The main contributions of this thesis are described below:

• We have improved the way to combine several routing metrics used to
calculate a multimetric score. This multimetric score is used to arrange the
candidate nodes (i.e., those neighbours of the node currently holding the packet)
to forward a packet. We have used the multimedia multimetric map-aware routing
protocol (3MRP) [4] [15] previously developed by the directors of this thesis, as the
starting point over which we have tested our proposals. Our goal was to improve
the 3MRP’s performance in urban environments. Firstly, a better way of combining
routing metrics is proposed, suitable when routing forwarding decisions are based
on averaging some node’s metrics. With this strategy, we will see that the routing
protocol can more efficiently evaluate the candidate nodes and choose the next hop
forwarding node.

• In most geographic routing protocols for VANETs, the information of the position
network nodes is updated at each reception of the signaling hello messages, also
known as beacons. This information is used to select the route (in a hop-by-hop
fashion) through which the message is forwarded. We have developed a mechanism
to accurately estimate the position of candidate nodes in the moment
of sending a packet. With this mechanism, the forwarding node can accurately
estimate the current positions of its neighboring nodes to make the best routing
decision in that moment.

• We have developed a probabilistic distribution model used to take for-
warding decisions that guarantee the packet delivery at destination with
higher probability, specially designed for urban environments. This probabilistic
mechanism is based on the modeling of the probability density functions of three
routing metrics. Such modeling was done based on a previous off-line analysis of a
significant number of representative simulations performed in urban scenarios. Be-
sides, by including an accurate estimation of the nodes’ positions in the proposed
mechanism, the forwarding routing decision is adapted to the current network con-
ditions.

• Finally, we have proposed a multimetric routing protocol based on machine
learning (ML) predictions. The designed routing mechanism includes a set
of phases: (i) building a dataset composed by collected traffic values, (ii) data
prepossessing, (iii) training the ML model, and (iv) validation of the trained model.
The proposed mechanism makes predictions based on five different routing metrics
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(distance to destination, trajectory, vehicles’ density, available bandwidth and MAC
losses) that describe the current conditions of the VANET nodes. Therefore, the
node currently holding the packet can predict which of its neighboring nodes can
successfully deliver the packet at destination with higher probability. This way, the
node can make the best forwarding decision. An important point to highlight is the
benefit obtained by using artificial neural networks in the design of our ML-based
forwarding algorithm. The improvement in the efficiency of the selection of the
forwarding nodes hop-by-hop is notable, especially in critical network conditions
when the vehicles’ density is very low or very high.

1.4 Outline of this thesis

This thesis is organized in eighth chapters. In this section, we briefly present the contents
of each one of the chapters.

Chapter 2 describes some important aspects of vehicular network implementa-
tions in urban environments. We highlight the main features and technologies used
in VANETs and some of their applications. Besides, we describe the simulator tools
and metrics used to carry out the performance evaluation of our proposals.

The most representative geographic routing protocols for VANETs are described
in Chapter 3. We have started our research work from the analysis of the multimedia
multimetric map-aware routing protocol (3MRP) [4], previously designed by the
directors of this thesis [15]. We have used 3MRP as a basis over which we have developed
our contributions.

Chapter 4 proposes two contributions to enhance the forwarding decision algorithm in-
cluded 3MRP [4] protocol. On the one hand, we have found which is the best strategy
to combine different routing metrics to compute a multimetric score used
to arrange the neighbouring nodes (i.e., vehicles within the transmission range of
the vehicle currently holding the packet) that are candidates to be the next forwarding
node. We have improved the selection of the best neighbouring vehicle to be the next-
hop to forward the packet towards its destination. Also, we have proposed an accurate
estimation of the node positions at the current moment to forward a message.

Chapter 5 presents a new multimetric routing protocol for VANETs based on the
analysis, for each candidate node, of the probability of packet-delivery success
at destination. The goal is to select the best next-hop candidate within transmission
range. We have explained the methodology used to model the probability of each routing
metric based on a collected dataset. The proposal has been evaluated and compared with
other protocols through network simulations. To this end, different vehicles’ densities
have been considered, from sparse to congested VANETs. This way, our data set is as
generic as possible, including data from diverse network configurations.

Chapter 6 provides an overview of basic machine learning knowledge, focusing on
the classification of classical learning and on the learning phases that a machine learning
model follows. Specifically, this chapter is focused on decision tree and artificial neural
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network models. Besides, the most relevant performance metrics used to evaluate ML
models are presented.

In Chapter 7, a new routing protocol based on machine learning model pre-
dictions is proposed. We have used five routing metrics (distance to destination,
trajectory, vehicles’ density, available bandwidth and MAC losses) as the inputs to build
a dataset, whereas the output is the binary certification of successfully arrival or not of
the packet at destination. For this purpose, we have applied the learning process phases
described in chapter 6 over these collected data. As a result, we have generated three
different machine learning forwarding algorithms. Their performance has been evaluated
through machine learning evaluation metrics. Also, they have been implemented over the
3MRP routing protocol and have been evaluated through extensive network simulations.

Finally, conclusions, publications generated from this thesis, and some future work guide-
lines are pointed out in Chapter 8.



Chapter 2

Vehicular networks in urban
scenarios

In this chapter we describe the most important aspects that matter to the design of
routing protocols for vehicular networks in urban scenarios. We highlight the main goals
and applications intended for VANETs. Also, we describe the most important features
and the technologies used in VANETs. Then, we follow with the description of the
simulators that we have used in this thesis work to carry out the performance evaluation
of our proposals.

2.1 Introduction

Vehicular ad hoc networks (VANETs) are nowadays a well-known type of telecommunica-
tions networks where nodes are vehicles. VANETs are considered as a promising ad hoc
technology for real-life applications that combine both intelligent transport systems (ITS)
and smart cities [12], specifically in urban scenarios. The main motivation of VANETs
is to provide safety and security for citizens by sharing information about events such
as accidents or traffic state. In the last decade, many research works with proposals to
improve the VANET operation have been published. So we can state that today VANETs
are considered a sufficiently mature technology [16]. In a VANET, vehicles are equipped
with a set of wireless sensors and on-board units (OBUs) to allow wireless communications
between vehicles and their neighbouring nodes [17]. These inter-vehicle communications
are also known as vehicle-to-vehicle (V2V) communications. Besides, vehicles can com-
municate to other networks deployed in the city trough vehicle-to-infrastructure (V2I)
communications. Vehicles can operate as packet senders, receivers as well as routers to
forward messages to other vehicles or to road side units (RSUs). Vehicles can directly
send packets to other nodes within their wireless transmission range; otherwise, they need
relaying nodes to forward packets following a multi-hop path.

Recently, a global term called vehicle-to-anything (V2X) communications has been intro-
duced by the third generation partnership project (3GPP) group [18]. V2X communica-
tions allow vehicles to interchange information with different elements of the intelligent

6
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transportation system (ITS), such as other vehicles, pedestrians, Internet gateways, and
other transport infrastructures.

Figure 2.1: Typical VANET urban scenario.

In this dissertation we are interested to contribute in the design of vehicular communi-
cations in urban scenarios like the one depicted in Fig. 2.1. For this reason, the main
contributions are based on real maps from European cities.

2.1.1 Mean features of vehicular networks

Vehicular ad hoc networks is a well-known type of mobile ad hoc network (MANET) where
nodes are vehicles. Vehicles include several sensor devices and on-board units (OBUs)
that allow them to communicate. In addition, there are other network components such
as road side units (RSUs) spread along roads and city streets (see Fig. 2.1). VANETs
can be characterized by these inherent features:

• Dynamic topology. Speed and direction of the vehicles might change frequently,
which produce a very dynamic network topology.

• Unstable connectivity. This is a consequence of the frequent changes on the network
topology. Connectivity between vehicles might change very quickly since vehicles
can change their relative speed or change their route. it is more likely to happen in
urban scenarios.

• Mobility patterns. Generally, vehicles follow patterns which describe their move-
ments along the roads and streets. Besides, they respect traffic signals (traffics
lights, speed limits, street direction, etc) that condition their behavior on the net-
work.



Chapter 2. Vehicular networks in urban scenarios 8

• Communication architecture. The communication between the different VANET
nodes can be classified according to the type of network devices involved and their
scope.

– Vehicle-to-vehicle (V2V). Communication to exchange data between vehicles
and assist drivers about the own vehicle system.

– Vehicle-to-infrastructure (V2I) Communication between vehicles and roadside
fixed infrastructure.

2.1.2 Technologies employed in vehicular networks

Vehicular ad hoc networks can use any wireless networking technologies, which are based
on the dedicated short-range communications (DSRC) global standard. Also, long-term
evolution (LTE) [19] cellular technologies can be used for VANETs, given vehicles can
communicate directly among them and also to the infrastructure. In the following we
briefly describe the main aspects of the standards and technologies used in VANETs.

IEEE 802.11p standard for vehicular ad hoc networks (VANETs)

IEEE 802.11p is the amendment to the IEEE 802.11 standard that aims to provide wireless
access in vehicular environments (WAVE) as vehicular communication system, see Fig.
2.2. It defines enhancements to the basis IEEE 802.11 required to support intelligent
transportation systems (ITS) applications. The standard details how to perform the data
exchange between high-speed vehicles and between vehicles and roadside units (RSU) as
the infrastructure.

This kind of ad hoc communication does not require any infrastructure to operate and
nodes themselves manage the network communications in a distributed fashion. The
IEEE 802.11p standard describes the requirements to support ITS applications. More
specifically, the WAVE protocol stack focuses on the MAC and network layers described
in the set IEEE P1609.x standard suite [20].

To promote communications in vehicular networks, a dedicated spectrum band of 5.9
GHz (5.85–5.925 GHz) was allocated to these technologies. A bandwidth of 50MHz was
assigned in Europe to handle vehicular communications, while in America a bandwidth
of 75 MHz was reserved. To manage this reserved spectrum range, it is divided into small
10MHz channels, one dedicated central control channel (CCH) reserved for the system
and the rest are devoted to service channels (SCHs) to non-safety applications.



Chapter 2. Vehicular networks in urban scenarios 9

Se
cu
ri
ty

M
an
ag
em

en
t

UDP/TCP/Other

IPv6

WSMP

LLC

WAVE	MAC
(Including	channel coordination)

PHY

Data	Management Data	Plane

1609.4

802.11

1609.3

1609.2 1609.6

1609.11

Higher	layers	standards

Figure 2.2: WAVE protocol stack.

5.86

CH 172 CH 174 CH 176 CH 178 CH 180 CH 182 CH 184

5.87 5.88 5.89 5.90 5.91 5.92 f(GHz)

USA

5.86 5.87 5.88 5.89 5.90 5.91 5.92 f(GHz)

EUROPE

ITS-G5B ITS-G5B

SCH 4 SCH 3 SCH 1 SCH 2 CCH 

Reserved Control channel Service channel Future use 

Figure 2.3: Spectrum allocation to vehicular communications in both operational
regions: USA and Europe. (image adapted from [1]).

As a result, there are 7 different channels for IEEE WAVE operation and 5 for the case
of the European standard ETSI ITS-G5. In Europe, 30 MHz (3 channels) are reserved
for road safety in the ITS-G5A band, and 20 MHz are assigned for general purpose ITS
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services in the ITS-G5B band [1]. There are supported two operation modes, V2V and
V2I.

The DSRC/C-ITS standard uses the orthogonal frequency division multiplexing (OFDM)
scheme at the PHY layer. In order to reduce the 20 MHz channel spacing to 10MHz
and adapt to the inter-carrier interference due to the high speed of the vehicles, the
OFDM scheme operates with half clock. At the MAC layer, ITS-C5 employs enhanced
distributed channel access (EDCA) with CSMA/CA and access categories for data traffic
prioritization (see Fig. 2.3) [21].

Cellular vehicle-to-everything (C-V2X)

C-V2X is an alternative to IEEE 802.11p that also provides device-to-device (D2D) com-
munication within legacy cellular-based LTE radio access networks. The 3GPP group
published the term ”cellular V2X” (C-V2X) based on LTE technology, specifying the re-
quirements to make possible V2V communication. Basically, the enhancements are made
in the LTE-broadcast and LTE-Direct operation modes. LTE-broadcast will facilitate V2I
and V2N communications using the cellular infrastructure. The main benefits of enabling
this kind of communications makes it possible a wide range of applications. Specially,
C-V2X is able to increase the coverage area to a few miles to report warning messages.
LTE-Direct enables V2V connectivity at distances up to hundreds of meters at very low
latency (1 millisecond) with respect to IEEE 802.11p V2V communication [22].

• Main novelties included in C-V2X technology to enhance V2V communications:

– A new D2D interface (PC5, or side link at the physical layer) was introduced
and it has been enhanced for vehicular use cases, specifically addressing high
speeds (up to 250Kph) and high densities.

– Demodulation reference signal (DMRS) symbols have been added in V2V sub-
frame to handle the high Doppler effect associated with relative speeds of up
to 500kph and at high frequency. It allows a better tracking of the channel at
high speed.

– There are two high level deployment configurations, aiming to accomplish the
V2V delay requirements. Configuration 1: scheduling and interference man-
agement of V2V traffic is supported based on distributed algorithms (Mode
4) implemented between the vehicles. Configuration 2: scheduling and inter-
ference management of V2V traffic is assisted by the LTE base station, or
eNodeB (eNB) (Mode 3) via control signaling over an specific Uu interface
(See Fig. 2.4).
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2.2 Applications and services for vehicular networks

In this section the main VANET applications will be briefly described and summarized:
(i) safety applications, (ii) traffic management applications and (iii) comfort driving and
infotainment applications.

2.2.1 Safety applications

Avoiding risks of accidents is the main motivation to develop VANETs. In this sense,
safety applications seek to avoid accidents to have safer driving by distributing informa-
tion to drivers about hazards and obstacles. Sometimes, accidents cannot be avoided, but
their impact can be minimized with on-time information. Basically, the idea is to warn
other drivers around the road situation with emergency messages sent through wireless
communication. This way, drivers can faster react and take proper maneuvers.

Safety applications require to manage information collected from sensor devices or from
the interchanged messages between vehicles. Some examples of safety applications are:

- Cooperative and intersection collision warning: The goal is to warn drivers of a
possible collision with the vehicle ahead of them, due to a sudden decrease in speed
due to a stop, collision, or a sharp curve in the road.

- Emergency vehicle warning: In case there is an emergency vehicle, like a police car
or an ambulance, the goal is to temporarily reserve a line for them on the road.
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This is a kind of cooperative V2V communications and also V2I communications
where RSUs cooperate to spread the warning messages.

- Line change warning. The goal is to warn the driver when a lane change occurs in
their blind spot area. This kind of alert reduces the chance of accident in line-change
scenarios.

Safety application are strictly delay sensitive. Thus, a fraction of time is very important
in decision making. Therefore, warning messages are charged into the MAC layer to be
delivered with minimum delay [23].

2.2.2 Traffic management applications

This kind of VANET applications focus on optimizing flows of vehicles in order to re-
duce trip times and to avoid traffic jam situations. The scope of traffic management
applications is not only to optimize routes, but also to reduce gas emissions and fuel
consumption. [24]. Most of the traffic management applications use the roadside infras-
tructure in order to collect and disseminate information. Examples of such infrastructure
are intelligent traffic lights and automatic toll payment, among other many applications:

- Intelligent traffic lights. They can be adjusted in response to the traffic conditions
at intersection and can even communicate the traffic state to neighbouring intersec-
tions. Neighbouring intersections can display this information on the e-sign boards
and adjust their traffic lights according to the traffic state. Also, emergency vehicles
could use a green-wave of traffic lights to drive quickly and safely at intersections.

- Automatic toll payment. Vehicles do not need to stop to pay toll fees as they com-
municate with the road infrastructure to be recognized and the fee is automatically
charged to their account.

Also, it would be possible that some road infrastructure could be free to use, while others
would need a user subscription [25]. This way, some roads in the cities could be allowed
only for non-pollutant vehicles.

2.2.3 Comfort driving and infotainment applications

In this type of application, vehicles get Internet connection to access networks or servers
where the information of interest is stored or to require a specific interest. Vehicles can
access Internet through road side units (RSUs) or through other infrastructure (e.g.,
access points). There are considered as non-safety applications. Examples are traffic
management and infotainment applications.

VANETs can be used for advertisements or announcements of location-based sales in-
formation. For example, gas stations can announce prices, or restaurants can highlight
different offers to attract drivers.
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Infotainment applications include sharing services among vehicles (V2V communication)
or Internet access through the infrastructure (V2I communication). Examples of such
services are sharing multimedia files and video-streaming [25].

2.3 VANET simulator platform used in this thesis

The simulation of VANETs is a useful tool to analyze and evaluate the design of proposals
to improve intelligent transport systems before implementation. The level of realism and
viability depends on the type of the realistic mobility models used and on the appropriate
metrics to evaluate the benefits of the proposals [26]. In this sense, one of the initial
objectives in this dissertation was to implement our proposals in realistic simulation
scenarios. Thus, we selected a special set of simulation tools able to work together to
attain a reliable analysis of the results. Each one of the tools that compose our simulation
framework is described below.

2.3.1 Vehicles in network simulation (Veins)

Vehicles in network simulator (Veins) [27] is an open source vehicular network simulator
framework used to simulate vehicular communications. This simulator includes a com-
prehensive suite of models, devices and protocol stack that allow researchers to carry out
realistic vehicular network simulations. In our simulation framework, Veins works to-
gether with the traffic road simulator SUMO and with the event-based network simulator
OMNeT++, described in the next sections.

2.3.2 OMNeT++ simulator

OMNeT++ [28] is an extensible, modular, component-based C++ simulation library
and framework, primarily for building network simulators. This simulator works under
an Eclipse-based IDE, a graphical runtime environment, and a host of other tools. It
has another extensions for real-time simulation, network emulation, database integration,
among other functions.

OMNeT++ has its own component architecture for models that communicate with mes-
sage interchange. Components (modules) are programmed in C++, then assembled into
larger components and models using a high-level language network description (NED).
The NED language is used to define the structure of the model (modules and their
interconnections), i.e., module declarations, compound module definitions and network
definitions. Basically, OMNeT++ includes these components:

• Simulation kernel library (C++)

• The NED topology description language
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• Simulation IDE based on the Eclipse platform simulation runtime GUI (Qtenv)

• Command-line interface for simulation execution (Cmdenv)

• Utilities (makefile creation tool, etc.)

• Documentation, sample simulations, etc.

OMNeT++ is an adaptable network simulator, it can run basically on all platforms
where a C++ compiler is available. Furthermore, it counts on a designer community
which constantly includes new capacities and components to simulate new technologies.
OMNeT++ was designed to be as much general as possible, being adaptable to different
systems. The OMNeT++ simulation kernel is standard C++, and it runs basically on
all platforms where a modern C++ compiler is available. The simulation IDE requires
Windows, Linux, or MacOS [29].

2.3.3 Simulation of Urban MObility (SUMO)

Simulation of urban mobility (SUMO) [9], is an open source software licensed under the
GNU/Linux general public license (version 2) and allows high performance simulations
of multi-modal traffic in city scale network. It is highly portable and offers a download
platform that is constantly updated by its community of designers. SUMO allows to
characterize how a given traffic of vehicles moves through a given road network. The
simulation allows to address a large set of traffic management topics: traffic lights evalu-
ation, route choice and re-routing, simulation vehicular communications, traffic forecast,
among others.

One interesting characteristic of SUMO is its traffic control interface (TraCI) tool. TraCI
allows users the interconnection of external control functions to SUMO (connection with
others tools). TraCI provides flexible open application programming interfaces (APIs) to
retrieve metrics (e.g., for combining them with network metrics into ITS-specific metrics)
and to control the SUMO parameters, from the mobility model, road network or to
manage traffic lights [30].

We use the SUMO simulator to generate urban scenarios from real maps and also to
generate random routes of different vehicles’ densities. These are the SUMO tools used
to carry out our simulations:

• NETCONVERT. Network importer and generator. This tool reads road networks
from different map formats and converts them into SUMO-format (network file).

• DUAROUTER. Computes fastest routes through the network, importing different
types of demand description.

• POLYCONVERT. Imports points of interest and polygons from different formats
and translates them into a description that may be visualized by the graphic user
interface (SUMO-GUI).
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2.3.4 OpenStreetMaps

Open Street Maps (OSM) [5] is a collaborative project to create free and editable maps.
The maps are created using geographic information captured with mobile GPS devices,
and diverse free sources. OSM is not only a set of free-ware maps. Actually, in OSM
the data generated by the project includes many realistic features of the environment:
road networks, streets, buildings, points of interest, etc. In addition to being free to
use, OSM data is accurate and updated, since all the information added to this plat-
form is continuously verified by the community of OSM collaborators. We use OSM
maps to generate and create realistic urban scenarios used in our simulation framework
OMNeT++/Veins/SUMO/OSM to assess the performance evaluation of our proposals.

2.4 Metrics used to carry out the performance eval-

uation of our proposals

We have performed extensive simulations with the aim of measuring the effectiveness of
each one of our contributions to enhance VANETs. The simulations were performed to
obtain results in terms of some quantitative metrics that are used to assess the perfor-
mance of our proposals of routing protocols for VANETs. In the following we describe
the main metrics that we have used to assess the benefits of our proposals.

2.4.1 Average packet losses

In wireless networks packet losses occur when one or more packets travelling across the
network fail to reach a destination. Packet losses can occur due to several factors, such as
radio interference, unstable channels, mobility of nodes or network congestion. In order
to know if the strategy to select the path hop-by-hop to each packet that is transmitted
in the network reach a destination, this value of losses is quantify in percentage. That
is, those losses are measured as a percentage of packets lost with respect to packets sent.
Average packet loss can be calculate:

Total number of packets sent− total number of packets received
total number of packets sent

(2.1)

2.4.2 Average end-to-end packet delay

Average end-to-end delay (in short EED) in a VANET can be described as the delay
experienced by the successfully delivered packets that reached their destination. EED is
a basic metric used to compare routing protocols. Since the delay primarily depends on
how optimal were the used paths, it can denote how efficient the routing algorithm is.
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Average EED =
1

N

N∑
i=1

(rx,i − tx,i) (2.2)

where N is the number of packets received successfully, rx,i is the time at which each
packet i is received and tx,i is the time at which the packet was sent.

2.4.3 Overhead

The overhead (in short OH) is another numeric metric normally used to evaluate the rout-
ing performance. By the measurement of the routing overhead it is possible to describe
the level of efficiency of a routing protocol. We measure the OH considering:

- Total number of bits transmitted to be able to deliver an amount of data bits. The
relation between both numbers gives us an idea of the bit efficiency of the routing
protocol and the network.

- To compute the control overhead, we include any bit transmitted that is not data
(at the network layer).

The overhead can be defined as the ratio between additional routing packets and received
packets at the intended destinations. It can be calculated as:

OH =
Total number of overhead messages (bytes)

Total transmitted packets (bytes)
(2.3)

2.4.4 Computational cost and simulation time t(n)

An algorithm may be considered good if it achieves the target objectives. However, it may
not be efficient in terms of the number of computational resources and computational time
that it requires to be executed. Therefore, the algorithm must accomplish its designed
objectives while keeping bounded the amount of resources consumed. The complexity of
an algorithm allows researchers to assess the trade-off between benefits of the proposal
and amount of resources needed to achieve that outcome.

The measurement of the computational cost is obtained calculating the amount of re-
sources that are needed by the algorithm in the worst-case. In other words, we assess the
highest amount of resources needed to run the algorithm. The complexity of an algorithm
can also be measured as a function of the time that the algorithm requires to obtain the
output for an input of a given size (n). This metric is known as computational cost of
an algorithm.

To assess the efficiency of an algorithm, we measure the time it takes for the algorithm to
execute the series of operations and statements when executing in the worst-case scenario.



Chapter 2. Vehicular networks in urban scenarios 17

That is, in the case when the size of the inputs is larger and therefore n increases. The
worst case in terms of computational cost will be determined by the dominant term, and
the coefficients are ignored. Let us see an example to clarify that definition. Suppose
again the previous example:

3n2 + 5n− 7 we can write→ t(n) = 3n · n+ 5 · n− 7→ t(n) = n · n (2.4)

The coefficient (3 in the example) that is applied to the most significant term in t(n)
is not considered to measure the cost. It does not affect how the worst-case time grows
with n (input size) but only the units in which we measure the worst-case time. Thus, in
this example t(n) grows like n · n as n increases. Therefore, the higher time spent by the
algorithm will be in the most significant term, in this case, it will be in the order of n2.

Sometimes it is important to know how long does an algorithm takes to be executed by
a computer. This information can be relevant to relate the time needed to execute an
algorithm (e.g., included in the routing protocol) with the total simulation time. One way
is to test the set of algorithm steps using a specific computer and measure the time spent.
That is, we measure the time spent to carry out the operations in the algorithm for the
specific CPU and available hardware (computer and compiler being used). An example
of the cost in time for an CPU to execute the example of equation (2.4) is presented in
Table 2.1, where a computer with an processor Intel Core i7 base clock frequency of 2.9
GHz was used.

n = 10 n = 100000 n = 1000000000
tic;← input tic;← input tic;← input

i = 3 · n2 + 5 · n− 7; i = 3 · n2 + 5 · n− 7; i = 3 · n2 + 5 · n− 7;
t = toc;← output t = toc;← output t = toc;← output

t(n) = 10.000182 seconds t(n) = 0.000185 seconds t(n) = 0.000241 seconds

Table 2.1: An example of computational cost t(n) when n increases. A computer
with an CPU of 2.9 GHz Intel Core i7 was used.

In this last section, we have seen a way traditionally used to analyze the efficiency of the
algorithms: the computational cost and simulation time t(n). There are other methods
for the analysis of algorithms that emerge from the field of computer science and an
extensive available theory that deals with the subject.

It is important to measure this kind of metrics to evaluate the trade-off between the
benefits (e.g., reducing losses and delay) of novel proposals and the cost incurred in
terms of (i) overhead, (ii) computational cost and (iii) simulation time.
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2.5 Conclusions

In this chapter we have presented the main characteristics of VANETs, emphasizing on
the technologies used and the main applications. Without a doubt, vehicular networks are
a key in the development of intelligent transport systems. Many applications are focused
on safe driving, which are based in V2V and V2X communications. Besides, VANETs
have the potential to drastically improve the driver’s quality of life.

VANETs must cope with the inherent features of urban environment, where nodes might
find infrastructure obstacles such as traffic lights, buildings or road junctions, which
decrease the channel quality and worsen connectivity. All these characteristics cause
dynamic changes in the network topology. Thus, the design of proper routing protocols
for VANETs becomes a challenging goal. Routing on VANETs has to deal with mobility
and scalability issues, while also a satisfactory network performance should be provided.

Each new design needs to be previously evaluated based on its performance and efficiency,
considering metrics such as average packet losses, average packet delay, overhead, among
others. Also, to asses the trade-off of the benefits to the costs, we need to compute also
the overhead, the computational cost and the simulation time of our proposals.

To carry out the performance evaluation of our proposals, the use of simulation tools
that are capable of simulating vehicle network simulators are used. For that, in this
thesis a set of simulators were selected according to their capacity to generate vehicular
behaviour (veins), vehicular traffic routes into real urban maps (SUMO) and to manage
the simulation events and collect the results (OMNeT++) [28]. Besides, we also use real
maps taken from OpenStreetMaps (OSM) [5].

In the next chapter, we present the main routing protocols designed for VANETs, de-
scribing their main contribution to forward messages in vehicular environments. Also,
some of the features of these protocols are the starting point on which we base our novel
contributions.



Chapter 3

Overview of routing protocols for
VANETs

This chapter discusses a brief overview of the most representative geographic routing
protocols for VANETs in the literature.

3.1 Introduction

The transmission of information through VANETs is a difficult task due to the inherent
characteristics of this type of wireless networks. VANET nodes (i.e., vehicles) move at
high speeds, which varies the network topology rapidly and, therefore, produces very dy-
namic link connectivity. Consequently, routing protocols designed for VANETs should be
flexible and able to adapt to the dynamic network characteristic. In addition, they must
fulfil the services’ requirements. Specifically, safety applications are highly demanding
and they require low packet delays and low packet losses.

During the last decade many works have been published about the design of routing
protocols which try to cope with the VANET issues. These works show that the rout-
ing protocols that are more appropriate for vehicular networks are those which consider
the node’s position to take forwarding decisions [16]. These kind of routing protocols
are known as position-based or geographic [31]. In the next section, some of the most
representative proposals are briefly explained.

3.2 Geographic routing protocols for VANETs

In geographic routing protocols for VANETs, communication and message dissemination
is made by nodes themselves using position information of neighbouring nodes. Vehicles
are assumed to know their geographical position and the positions of their neighbours.
Geographic routing protocols do not need to establish nor maintain any end-to-end route
from source to destination, which is suitable to the dynamic environment of VANETs.

19
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3.2.1 Greedy perimeter stateless routing (GPSR)

One of the first geographical routing protocols adapted for VANETs, and probably the
most used to compare with, is the greedy perimeter stateless routing (GPSR) [3] protocol.
This protocol deploys the shortest distance to destination as the only metric considered
to forward packets. In GPSR the position of a packet’s destination and the positions of
the candidate next hops are enough to take forwarding decisions, without any other topo-
logical information. The GPSR algorithm consists in two methods to forward messages:
a) greedy forwarding as the first operation mode; and b) perimeter greedy forwarding
mode used when greedy forwarding can not be used.

Figure 3.1: Greedy forwarding exam-
ple, where y is x ’s closest neighbour to-

wards D. Image from [3].

x

D

Figure 3.2: Perimeter forwarding ex-
ample, where x is the node from which
the packet is forwarded towards D ac-
cording to perimeter mode. Image

from [3].

• Greedy forwarding
Each node periodically transmits beacons to the broadcast MAC address appending
its own identifier and position. In this way, nodes will know the positions of their
neighbours, i.e., nodes within their transmission range. The local optimal choice for
the next hop is the neighbour geographically closest to the packet’s destination. This
forwarding algorithm is recursively repeated until the packet reaches its destination
(see Fig 3.1).

• Perimeter forwarding
The perimeter forwarding mode is activated when the greedy forwarding fails. In
some cases there are sparse topologies in which the only route to destination requires
a packet to move temporarily farther in geometric distance from destination. As
a solution, the source node implements a hand-rule method to select the next-hop
forwarding node, surrounding the empty area between source and destination nodes.
In this way, it is more possible that the packet can reach the final destination (see
Fig 3.2).
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However, GPSR has some inconveniences: The best next forwarding node is the nearest
node to the destination, but sometimes this neighbour node maybe into the edge of the
communication range. Thus, due to the high speed of the VANET nodes, the position
of the selected node may change before it received the packet. Also, large delays might
happen due to the perimeter forwarding mode, making this protocol not suitable for
urban scenarios where a lot of disruptions usually take place.

3.2.1.1 Improvements of GPSR

Some works were developed during the last decade with the aim to improve GPSR.
Here we include some examples of proposals that improve the GPSR operation modes,
specially to avoid the problematic perimeter mode. Specifically, new proposals consider
more metrics to select the next-hop forwarding node.

• Improvement GPSR (I-GPSR). To improve the GPSR issues, [32] includes four
metrics to select the next forwarding node in its neighbourhood: (i) distance to
destination, (ii) vehicle’s speed, (iii) vehicle’s density and (iv) moving direction.
I-GPSR gives more priority to those nodes with higher speeds and moving direction
towards destination.

• Probabilistic GPSR (P-GPSR). In [33] P-GPSR propose a method to select relaying
vehicles using additional information shared by the nodes in their hello messages. It
calculates and weights three metrics to take the forwarding decision: (i) link quality
estimation, (ii) probabilistic reception of the packet and (iii) moving direction.

• Greedy simplified perimeter routing with moving vector (GSPR-MV). Under greedy
forwarding operation, nodes consider the neighbouring nodes’ speeds and movement
directions with respect to the source node. Every time that a node receives a
beacon from a node within transmission range, it calculates the speed and movement
direction of that neighbor node. The neighbor node with the less value of distance
to destination and less angle in the horizontal direction with respect to destination,
will be selected as next forwarding node. Under perimeter forwarding operation,
to try to avoid redundant paths, nodes save a few status information (e.g., the
identification of the last hop for that packet) to help to detect whether the packet
has already been forwarded by the node before [34].

• Maxduration-minangle GPSR (MM-GPSR). This protocol aims to improve the two
GPSR operation modes. Regarding greedy forwarding mode, they keep the same
logic (select the neighbour with the shortest distance towards destination) and ad-
ditionally they consider two new parameters: (i) communication area with respect
to a source-to-destination area, named allowed communication area (Q), and (ii)
the estimation time that a node will be in a specific communication area, named
accumulative duration time (T). In this way, the best forwarding node will be the
candidate with the highest T value and the Q area with the lowest angle value.
That is, the selected node will be the one that remains longer in that area Q and is
also more aligned in the direction to destination. Regarding perimeter forwarding
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mode, they define a parameter θ to classify neighbours. The sender node in turn
calculates and compares the angles of those neighbours that are closer (than the
current sender node itself) to destination. After that, the node selects the neigh-
bour with the lowest angle θ as the next-hop forwarding node, which is the closest
node to destination [35].

3.2.2 Multimedia multi-metric map-aware routing protocol (3MRP)

Multimedia multi-metric map-aware routing protocol (3MRP) [4] is a geographic rout-
ing protocol that uses a multi-metric score scheme to choose the best forwarding node,
instead of using only the distance to destination like GPSR [3]. 3MRP works with local
information that vehicles share with each other trough a beaconing process. In this way,
forwarding decisions are taken hop-by-hop according with the current network conditions.
Furthermore, this is a map-aware protocol since it includes the REVSim [36] tool used
by vehicles to avoid sending packets to vehicles behind obstacles like buildings. This way
the current forwarding node is building aware and it is able to discard those nodes behind
vehicles to be selected as next forwarding nodes. In addition, 3MRP is able to forward
small video warning messages in a multimedia format.

3MRP uses periodical interchange of hello messages (once per second) to get information
from each neighbouring node. Each node shares its own hello messages with the other
nodes into its transmission range. Afterwards, nodes include some new parameters in
new fields of the beacon messages. Those additional fields are: node’s speed, x and y
axis values of the node’s position, medium access control (MAC) layer losses in the link
with that candidate node and nodes’ density.

Using that data gathered from beacons interchanged with the neighbouring nodes, 3MRP
computes five metrics in its forwarding node selection algorithm, which are depicted in
the next section. In this way, when a node receives a hello message, it calculates not
only the neighbour node’s distance to destination, but also the other metrics in the list
above. This multi-metric forwarding scheme allows 3MRP to take an optimal forwarding
decision. Fundamentally, 3MRP considers the neighbour with the highest multi-metric
score as the best next forwarding node.

3.2.2.1 Routing metrics used in 3MRP

The core of the 3MRP routing protocol is the design of five metrics:

• Distance from that candidate node to destination

• Trajectory of that candidate node

• Available bandwidth in the link with that candidate node

• Nodes’ density of that candidate node
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• MAC layer losses in the link with that candidate node

(i) The basic distance metric refers to the distance from each next forwarding candidate
node to destination (Euclidean distance), where lower distances are preferred.

(ii) The trajectory is defined as the prediction of the future node’s position, whose
calculation allows the source node to know if the candidate node will be closer or going
away from destination. For this case, nodes that move towards destination are preferable.

(iii) The available bandwidth considers the idle time of the wireless link formed be-
tween emitter and receiver, that is to say, between the current node holding the packet
and each candidate next-hop node. The candidate node with more available bandwidth
is better scored in that metric value. To compute the available bandwidth we have used
the proposal presented in [37], as is explained in [4].

(iv) Vehicles’ density is the number of nodes registered in the neighbour’s list, so that
nodes with a higher nodes’ density value are better rated.

(v) MAC layer losses are computed locally at the node itself, and it is used as a
kind of local feedback. A node with lower losses rate in the MAC layer, means that it is
a better candidate to forward the message, so it will be better scored in that metric.

In accordance with the ad hoc principle of using only local information (i.e., infrastruc-
tureless operation), each sender node will compute a multi-metric score for each one of
its neighbours. The node currently holding the packet will select the candidate with the
highest multi-metric score as the next forwarding node to which the packet will be sent.

3.2.2.2 Forwarding decision in 3MRP

3MRP employs hop-by-hop forwarding decisions to forward packets towards their desti-
nation. As mentioned before, each sender node chooses from its list of neighbours the
best forwarding node to send a packet. The neighbours that are not in line-of-sight with
the sender node will be discarded from the list of neighbours using our REVsim [36] tool.
This tool is used to detect presence of obstacles in the scenario by checking if two nodes
in the same transmission range cannot establish communication due to an obstacle. Af-
terwards, each sender node computes a total multi-metric qualification assigned to each
neighbour to determine the best next forwarding node.

Additionally, weights are assigned to each one of the five metrics to calculate our multi-
metric score ūNgh for each neighbour Ngh. For that, we have designed a dynamic self-
configured weights (DSW) algorithm to update the weights dynamically throughout time,
so that in case certain metric ui,Ngh is more overriding in the decision process its weight
wi increases.
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ūNgh =
5∑
i=1

ui,Ngh · wi (3.1)

Finally, and by using Eq. (3.1), each sender node can compute a normalized multi-metric
score for each candidate in its list of neighbours. The neighbour with the highest multi-
metric value will be selected as the best forwarding node. In the next subsection, a brief
summary of DSW can be found.

3.2.2.3 Dynamic self-configured weights (DSW) algorithm to update a multi-
metric score

In this section we briefly summarize the DSW algorithm presented in [4]. Basically,
DSW is used to compute multi-metric values using current network conditions, to score
candidate forwarding nodes. With DSW, the current node holding a packet (the current
sender node) dynamically updates a multi-metric score for each neighbour node, i.e. for
each candidate node to forward the packet. The multi-metric score is updated depending
on a set of current network metrics for that node. This way, the current sender node
can take the best forwarding decision in that moment. When a sender node needs to
forward a packet, it computes the multi-metric score value for all nodes included in its
list of neighbours, using Eq. (3.1), where the weights w1, w2, ..., w5 will be dynamically
computed based on the DSW [4] algorithm to highlight the most decisive metrics. By
doing this, the current sender node under analysis (Nan) will better select the best next
forwarding node among the candidate nodes in its neighbours’ list. Multi-metric scores
for the five metrics mentioned in Section 3.2.2.1 will be assessed for each neighbour Ngh
found in the neighbours’ list: (i) Distance to destination udst,Ngh, (ii) trajectory utrj,Ngh,
(iii) nodes’ density udns,Ngh, (iv) bandwidth uabe,Ngh, and (v) MAC losses ulos,Ngh. More
details about the equations of each one of the above mentioned metrics can be found
in [4].

Let us Rm be the differential value for each mth metric (1 ≤ m ≤ 5)) during the interval

defined by the moments t1 and t2, being t2 > t1. The values Rm define a vector ~R
expressed as follows:

~R =



R1 =
[u1(t2)− AV1(t2)]− [u1(t1)− AV1(t1)]

2

R2 =
[u2(t2)− AV2(t2)]− [u2(t1)− AV2(t1)]

2
...

Rm =
[um(t2)− AVm(t2)]− [um(t1)− AVm(t1)]

2
...

R5 =
[u5(t2)− AV5(t2)]− [u5(t1)− AV5(t1)]

2

(3.2)
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where um(t1), um(t2), AVm(t1) and AVm(t2) take values in the range [0, 1] for m ∈ [1, 5].
Let us um(t1) and um(t2) be the current scores of each metric m in the moments t1 and
t2, respectively. Let us AVm(t1) and AVm(t2) be the average score values of each metric
m computed for all the neighbours of the current forwarding node. A negative value of
Rm means that metric m is getting worst in the period [t1, t2]. In that case, Rm would
be set to zero meaning the worst metric value. This way, Rm is defined in the range [0,
1].

Next, vector ~R is normalized by dividing each component Rm by the maximum value
Rx found in vector ~R , where x ∈ [1,m]. The normalized vector is named ~S and its
components Sm take values in the range 0 ≤ Sm ≤ 1:

~S =



S1 =
R1

Rx
...

Sx =
Rx

Rx

= 1

...

S5 =
R5

Rx

(3.3)

Now vector ~S is normalized so that the sum of weights of all the metrics is equal to one.
To do that, a variable ξ have been defined:

ξ =
1∑5
i=1 Si

(3.4)

Finally, the normalized vector of weights W is:

~W =



W1 = S1 · ξ
...

Wx = Sx · ξ = ξ
...

W5 = S5 · ξ

(3.5)

To sum up, Eq. (3.5) will be used to compute the dynamic weights (W1, W2, W3, W4,
W5) instead of using equal weights (w1, w2, w3, w4, w5) with wi = 1/5, 1 ≤ i ≤ 5. Notice
that in the rare case that all the metrics for a specific node were getting worst, Wm = 0
for 0 ≤ m ≤ 1, meaning that no preferences are given to any metric. In that case, all
weights would be set to the equal weight condition, i.e. wi = 1/5, 1 ≤ i ≤ 5.
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3.2.2.4 Some simulation results for 3MRP+DSW

Simulation results are presented to test DSW algorithm operation together with the
3MRP routing protocol. The performance evaluation is done in terms of average percent-
age of packet losses and average end-to-end packet delay. Two version of multi-metric
routing protocol 3MRP were tested: (i) a first version (named 3MRP) uses equal weights
to compute the multi-score value, and (ii) a second one (named 3MRP+DSW) using
the dynamic self-configured weights scheme described in the previous section. Besides,
3MRP is compared with the basic GPSR [3] an with another routing protocol that im-
proves GPSR named VIRTUS [38]. Recall that GPSR was described in section 3.2.1.
VIRTUS is a routing protocol for VANETs also specially designed to transmit video
streaming, as 3MRP. It uses distance to destination and nodes’ density as metrics to take
forwarding decisions. It also considers a time window to take forwarding decisions to
forward packets.

The tests were implemented in an urban scenario from a Barcelona city area (1700 m x 580
m) with the presence of buildings. Two vehicles’ densities are considered, 50vehicles/km2

(sparse urban scenario) and 100vehicles/km2 (dense urban scenario). The average ve-
hicles’ speed is 20 km/h, whereas their maximum speed is 50 km/h. Then, one fixed
destination, an access point (AP), through which vehicles connect to the communica-
tion network to report traffic information, specifically a video-reporting message about a
traffic accident.

Figure 3.3: Average percentage of packet losses. (taken from ([4]).

Fig. 3.3 shows the average percentage of packet losses of 3MRP considering equals (3MRP)
and dynamic (3MRP-DSW) weights. We can notice that a notable reduction of losses
are achieved considering all five metrics and the scheme with self-configured weights
(3MRP+DSW). The reason is that with 3MRP+DSW (blue columns in Fig. 3.3) a bet-
ter forwarding decision can be made compared to 3MRP (orange columns) with fixed
weights to derive the multi-metric score. Also, we can notice that both 3MRP approaches
outperform VIRTUS and GPSR.
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Figure 3.4: Average end-to-end packet delay (taken from ([4]).

Fig. 3.4 shows the average end-to-end packet delay. 3MRP represents a slight increment
with respect to GPSR. This is more notable in sparse density of nodes. As previously
described, GPSR takes forwarding decision based only on shortest distance to destination,
it obtains the lowest packet delay in both scenarios. This is because with GPSR, a lower
number of packets arrived at destination and much of the lost packets traveled through
a considerable number of hops before being dropped. Nevertheless, 3MRP+DSW is able
to reduce the packet losses with a lower increment in delay than 3MRP.

The notable improvement of 3MRP+DSW resides in the selection of the next forwarding
node, which is done being aware of the special characteristics for VANETs (dynamic
nodes’ topology). 3MRP+DSW uses a dynamic weights scheme to derive the multi-metric
scores for each candidate to be the next forwarding node. This scheme classifies nodes
in a better way, giving each metric its importance depending on the current environment
conditions.

3.3 Conclusions

In this chapter the main geographic routing protocols for VANETs have been reviewed
and briefly summarized. As it has been pointed out, on of the first geographic routing
protocols designed for VANETs was GPSR [3], which considers the minimum distance to
destination as the metric to chose forwarding nodes to send information in a hop-by-hop
bases. GPSR presents low average packets delays, but it is not efficient under the presence
of obstacles when it activates the perimeter forwarding mode. Of course, some interesting
improvements to the GPSR were published in the literature. They mainly focus on solving
the failures of the two modes of the GPSR operation (greedy and perimeter forwarding)
achieving improvements in terms of packet losses.

In this sense, 3RMP [4] argues that in the routing forwarding decision for VANETs more
metrics should be considered, so that the routing protocol can adapt to the inherently
dynamic VANET behaviour. 3MRP+DSW proposes five metrics (distance to destination,
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trajectory, vehicles’ density, available bandwidth and MAC losses) and a dynamic metric
weighs scheme to classify candidate nodes. Therefore, each current sending node can
classify its neighbours according to a multi-metric score and select the best candidate node
in that moment to forward the current message to destination. 3MRP+DSW enhances
GPSR with a significantly lower percentage of average packet losses.

In addition, the 3MRP+DSW routing protocol uses dynamic weights to compute a multi-
metric score for each metric. Thus, it can be more adaptable to the inherent dynamic
VANET characteristics. For this reason, we decided to use 3MRP+DSW as the basis to
develop our proposals, which are presented in the next chapters.



Chapter 4

Contributions to improve 3MRP

4.1 Results of this chapter

The results from the proposals presented in this chapter have been published in:

• Ahmad Mohamad Mezher, Leticia Lemus Cárdenas, Julián Cárdenas-Barrera,
Eduardo Castillo Guerra, Julian Meng, Mónica Aguilar Igartua, ”Improved Selec-
tion of the Best Forwarding Candidate in 3MRP for VANETs”, IEEE Symposium on
Computers and Communications (ISCC 2019), Barcelona, Spain. pp.1-6 2019. [39].

• Leticia Lemus Cárdenas, Ahmad Mohamad Mezher, Nely Patricia López Márquez,
Pablo Barbecho Bautista, Julian Cárdenas-Barrera, Mónica Aguilar Igartua, ”3MRP+:
An improved multi-metric geographical routing protocol for VANETs”, 15th ACM
PE-WASUN, Montreal, Canada.pp. 33–39, 2018. [40].

4.2 Introduction

In recent years, serious efforts from car manufactures, governments, as well as the research
community, are being made with a clear objective of creating a standardized platform
for vehicular communications. The special requirements and unique characteristics of
VANETs (e.g., special mobility patterns, short life links, rapid topology changes) pose
challenges for the research community. The goal is to have efficient routing protocols
specially designed for VANETs.

Routing protocols implemented for VANETs can be classified in two categories: (i)
topology-based routing and (ii) geographic-based routing. (i) Topology-based routing
protocols establish and maintain end-to-end routes, which does not seem suitable be-
cause of frequent link failures caused by vehicle’s mobility that makes it difficult generate
reliable and stable routes. (ii) Geographic-based, also called position-based, routing pro-
tocols have shown a better performance in VANETs than topology-based, since they take

29



Chapter 4. Contributions to 3MRP 30

hop-by-hop forwarding decisions [31]. Thus, geographic-based protocols are better able
to adapt to frequent topology changes. One of the first proposed geographic routing
protocols was greedy perimeter stateless routing (GPSR) [3], a position-based protocol
that considers the distance to destination as the single metric to take forwarding de-
cisions [16]. In section 3.2.1 we summarized the GPSR operation. Other approaches
that improve GPSR have been developed in the last years, as it was commented in sec-
tion 3.2.1.1. In next section we highlight those approaches more related to ours that also
use a multi-metric scheme.

As we pointed out in section 4.2, in this thesis we have contributed in the improvement
of VANETs by means of the design of routing protocols specially designed for urban sce-
narios. The network topology is inherently dynamic in VANETs due to the high mobility
of nodes. For this reason, it is necessary to design proper algorithms to assist routing
protocols to forward packets following a hop-by-hop scheme from source to destination.
We focus our work on urban scenarios (see Fig. 4.1) where the presence of buildings make
communications more challenging. Also, our approaches consider multiple metrics to take
the best forwarding decisions in the current moment.

Figure 4.1: Vehicular ad hoc network scheme in a urban scenario.

In this chapter, a methodology to select the best next forwarding node is proposed and
analyzed. An extensive analysis is made to determine the best way to combine the
different metrics designed in 3MRP by using the unweighted power mean function
(see section 4.4). 3MRP considers several quality of service (QoS) metrics to select the
best next forwarding vehicle for each packet in each hop towards its destination. These
metrics are properly weighted to obtain a multi-metric score (computed arithmetically
in [4]) for each vehicle in the transmission range so that the current forwarding node can
take the best next hop forwarding decision.
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In the same sense, in the second part of this chapter, our approach accurately esti-
mates the current position of the vehicles’ neighbours in the moment of send-
ing a packet (see section 4.5). Nodes periodically interchange hello messages, which
contain several metrics about each sender node, e.g. its location, trajectory, percentage
of packet losses. Those metrics will be used by the routing algorithm to take packet
forwarding decisions. So far, the forwarding algorithm uses the sender node’s location
taken from the last hello message received from that sender node. Conversely, a better
estimation of the current position of the nodes will be computed taking into account the
speed projection on the x -axis and the y-axis, named vx and vy, respectively. By default,
the forwarding algorithm uses the nodes’ distance (to destination) of a node received in
the last beacon received from that node. Nonetheless, we claim that this distance can
be quite obsolete in the moment of using it to take the current forwarding decision. Our
approach updates the position of the node by accurately estimating its current position
using the speed of the node. The reduction of error between the last received position
of a node and its estimated current position depends on the speed of the aforementioned
node. As the vehicle’s speed increases, the new estimation of the current neighbours’ po-
sitions will be much accurate than simply using the location received in the last beacon.
Obviously, for static nodes there will be no differences between the conventional method
and our method to asses the current nodes’ distances.

The rest of the chapter is organized as follows. First, a list of related works is depicted
in section 4.3 as a summary of the state of the art. Then, our first contribution of
this chapter is presented in section 4.4, starting by the weighted power mean function
description in section 4.4.2 and the simulation results in section 4.4.3. In the second
contribution, an introduction of the proposed improved multi-metric routing protocol
is presented in section 4.5, as well the motivation in section 4.5.1 and the analytically
description of the estimation current node’s position strategy in section 4.5.2. Then,
simulation results and discussion are shown in subsection 4.5.3. Finally, conclusions are
pointed out in section 4.6.

4.3 Related works

Position-based routing in VANETs refers to the process of selecting the best vehicle or
vehicles in the neighbouring of the current forwarding node. This process is repeated
in a hop-by-hop scheme till the packet reaches the intended destination. Most of the
first routing protocols in the literature selected the best candidate node just using the
distance to destination, thus following the shortest path. In the last years, alternative
routing protocols that use several metrics to take better forwarding decisions have been
published [41].

In a VANET, when a source node needs to send a packet to a destination (vehicle or
RSU), it reviews its neighbours’ table to select a forwarding node among the candidates.
This is where the specific forwarding algorithm plays its node selection. The performance
of the routing protocol depends on a good choice of the forwarding vehicle.
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There are some proposals of routing protocols that use several metrics to select the best
forwarding node, which improve the vanilla GPSR. One of them is EDAGF [42], in
which each node maintains two tables, one for the neighbours’ nodes and another for the
RSUs. Both routing tables are organized and updated via beacon messages. First, the
node checks its neighbours’ table to see if the destination is there; if not it calculates
position and distances to RSUs and neighbours to find a candidate (RSU or node) near
to destination. It means that, when destination is registered in the neighbours’ table the
message is forwarded. However, we claim that the real destination position in the present
could be different from the one updated in the last beacon received, because the position
information in the table corresponds to a moment in the past.

M-GEDIR [43] selects next hop vehicles from dynamic forwarding regions and considers
several parameters of the urban environment, including: (i) received signal strength, (ii)
future position of vehicles, (iii) critical area of vehicles at the border of the transmission
range, (iv) node’s speed, (v) distance to destination and (vi) moving direction. All these
metrics are calculated using information carried in the last beacon received.

Authors in [44] propose a real time forwarding method (R-FM) to decrease the beacon
frequency and thus reduce the overhead in the network. It considers several metrics to
select the optimal next node among the neighbouring nodes: (i) distance to destination,
(ii) moving direction and (iii) link quality. However, the calculation of metrics is made
considering also information from the past. If the nodes’ speed is high, the current node’s
position could have notably changed since the last update. Then, errors about the nodes’
real positions would be noticeable at the moment when a packet is required to be sent.

In [45], authors estimate the future position of the neighbours’ nodes to describe their
trajectory. Based on this information the forwarding decision is taken. In [4], one of the
metrics used to choose the best forwarding node is the nodes’ trajectory metric as well.
However, for the distance metric they have also used the nodes’ positions reported in
their last beacon messages instead of the current position of the nodes.

In section 3.2.1.1 we also pointed out other representative approaches that improve the
basic GPSR. However, all the routing protocols commented in this section include infor-
mation about the nodes’ positions which is only updated when a new beacon message
is received. Conversely, it would be much accurate to use an estimation of the current
position of each candidate node to take the forwarding decision. We tackle this goal in
section 4.5.2.

Next, we highlight some representative works regarding the way in which the several
considered metrics are averaged to obtain the multi-metric score for each neighbouring
node. That multi-metric score is used to select the best next-hop vehicle to forward a
packet towards its destination.

In [43] and in [44], authors implement just the addition of the weighted metrics. In [46],
an AHP-based multi-metric geographical routing protocol (AMGRP) has been proposed.
In AMGRP, authors employ an analytical hierarchical process mechanism to combine
multiple decision criteria into a single weighing function. AMGRP considers several
metrics: (i) mobility metric, (2) link lifetime, (3) nodes’ density and (iv) node’s status.
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Finally, [4] uses an arithmetic global score function that combines five weighted metrics
to compute the multi-metric score used to select the best next forwarding node. The
considered metrics are: (i) available bandwidth on the link formed between the current
sending node and each neighbour, (ii) nodes’ density, (iii) node’s trajectory, (iv) distance
to destination and (v) percentage of MAC losses. Also, the same logic way is follow, its
select the best forwarding node from the neighbours tables that are updated every time
that a beacon is received.

In our proposal 3MRP+ [40] of a multi-metric routing protocol for VANETs, we estimate
the current position of the neighbouring nodes in the moment of sending a packet. Thanks
to that, we have achieved a better selection of the best next forwarding node since the
estimated positions of the nodes are very close to their real positions. We have analysed
results of extensive simulations, which show that the geometric mean attains the lowest
average percentage of packet losses.

4.4 Improved selection of the best forwarding candi-

date in 3MRP for VANETs

The results of this section have been published in [39]. In this section, a strategy to
improve the selection of the best forwarding candidate included in 3MRP [4] is presented.
We will analyse different functions to combine three network metrics (bandwidth, dis-
tance to destination and nodes’ density) to attain a multi-metric score for each candidate
forwarding node in the neighbourhood of the current node holding the packet. In this
context, nodes select the next forwarding node following different weighting schemes, so
that we analyse which is the best way to weight the several considered metrics.

The multi-metric score is computed based on the weighted power mean function (W-
PMF) [47]. The W-PMF or weighted generalized mean is just a way of expressing most
of the common means (like the arithmetic mean) in one formula, see Eq. (4.1).

4.4.1 Motivation to analyse the W-PMF in our routing protocol

As we pointed out in section 4.1, in this thesis we have contributed in the improvement
of VANETs by means of the proposal of routing protocols specially designed for urban
scenarios. In the literature, e.g. [4, 48], different metrics have been proposed and included
in a routing protocol for VANETs seeking to improve performance in terms of average
percentage of packet losses and average end-to-end delay. Nevertheless, all of these works
have used the classical arithmetic form to combine these metrics (see Eq. (3.1)) to
classify and choose the best next forwarding node from a list of neighbours of the current
packet-holding vehicle. Here, we have tested different ways to combine metrics using the
W-PMF [47] in combination with the DSW algorithm using different values of p for the
power mean function (see Eq. (4.1)). That is, for each p value we have applied the DSW
algorithm [4] to obtain the corresponding weights for each one of the metrics. Let us see
the detailed explanations in the following sections.
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4.4.2 Weighted power mean function (W-PMF) to combine sev-
eral metrics in routing protocols for VANETs

If p is a non-zero real number, and x1,...,xn are positive real numbers, we can define the
weighted power mean for a sequence of positive weights with sum

∑
wi = 1, as:

Ap(x1, ..., xn) =

(
n∑
i=1

wi · xpi

)1/p

(4.1)

Recall that the equally weighted mean is obtained when setting all wi = 1/n. For the
W-PMF, we can identify some special cases for different p values:

• The minimum value (A−∞) .

• The harmonic mean (A−1).

• The geometric mean (Ap→0).

• The quadratic mean (A2).

• The cubic mean (A3).

• The maximum value (A+∞).

Let R represent the set of real numbers, and let O denote an interval in R. Then,
Ap(x1, ..., xn) is a power mean function of n variables defined on O, with the following
properties expressed for a general M function.

Property 1

M is a bounded function as follows:

min{x1, ..., xn} 6M(x1, ..., xn) 6 max{x1, ..., xn} (4.2)

wheremin{x1, ..., xn} andmax{x1, ..., xn} are equivalent toA−∞{x1, ..., xn} and toA+∞{x1, ..., xn},
respectively, for all xj in O.

Property 2

The second property of M is that Ap(a, ..., a) = a for all a in O.

Property 3

The third property deals with inequalities that relate the harmonic mean (A−1), the
geometric mean (Ap→0) and the arithmetic mean (A+1), as follows:
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A−1(x1, ..., xn) 6 Ap→0(x1, ..., xn) 6 A+1(x1, ..., xn) (4.3)

To illustrate the importance of determining which form of combining the considered
metrics can lead to a better performance in VANETs, we show a numerical example in
Fig. 4.2. Here we can see a source node S that needs to send packets to an access point
(AP ). We can see that source S has four candidates nodes (C1, C2, C3, and C4) within
its transmission range. One of them will be selected to forward the packet following a
hop-by-hop mode towards its destination.

S

𝐂𝐂𝟏𝟏

𝐂𝐂𝟒𝟒

𝐂𝐂𝟐𝟐

𝐂𝐂𝟑𝟑

AP

Figure 4.2: An example of a source node S that needs to send a packet to an access
point (AP ). S has four candidates nodes (C1, C2, C3, and C4) within its transmission

range.

For the sake of simplicity, in this numerical example we use just three network metrics:
(i) available bandwidth (BW), (ii) distance to destination (Dis2Des), and (iii) nodes’
density. Each candidate node computes its metrics and normalizes them with Eq. (3.3).
Results are shown in Table 4.1. Table 4.1 shows the multi-metric score using the power
mean function for different values of p. We can deduce from Table 4.1 that depending
on the p value, a source node would choose a different next forwarding node to send the
packet. The best next forwarding node is the neighbour with the highest multi-metric
value, highlighted in blue in Table 4.1. For instance, if we used the arithmetic mean
Ap=1, the source node S would choose node C1; however, by using the geometric mean
Ap→0 or the harmonic mean Ap=−1, the source node S would choose node C3 as the next
forwarding node. If we used the quadratic mean Ap=2 or the cubic mean Ap=3, the source
node S would choose node C1. Also, using the maximum Ap→+∞ option, candidate node
C2 would be chosen. Finally, using the minimum Ap→−∞ option, candidate node C4

would be selected. We assume in this numerical example that we have equal weights of
1/3 each.

In the next section, simulation results using the W-PMF algorithm included in the 3MRP
routing protocol to average several metrics to take forwarding decisions, are shown.
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Table 4.1: Numerical example. Metrics’ values for four candidate nodes (C1, C2, C3

and C4) and their corresponding multi-metric score values.

Metric C1 C2 C3 C4

BW 0.9 0.9 0.7 0.55
Dis2Des 0.2 0.5 0.7 0.55
Density 0.9 0.4 0.5 0.55

Multi-metric score C1 C2 C3 C4

Arithmetic mean Ap=1 0.66 0.6 0.63 0.55
Geometric mean Ap→0 0.54 0.56 0.62 0.55
Harmonic mean Ap=−1 0.41 0.53 0.61 0.55
Quadratic mean Ap=2 0.74 0.63 0.64 0.55
Cubic mean Ap=3 0.78 0.67 0.64 0.55
Maximum Ap→+∞ 0.9 0.9 0.7 0.55
Minimum Ap→−∞ 0.2 0.4 0.5 0.55

4.4.3 Simulation results and discussion. W-PMF analysis

Simulation results are presented in this section. As stated earlier, all the analyses real-
ized in this dissertation are focused on urban environments. Accordingly, the scenario
description and main configured settings are described in section 4.4.3.1. After that, in
section 4.4.3.2 the results of the simulations are presented in two figures that show the
percentage of packet losses and the end-to-end average packet delay.

4.4.3.1 Simulation scenario to analyse the W-PMF

To evaluate the performance of VANETs for different p values (see Eq. (4.1)), we have
used the Vehicles in Network Simulator (VEINS) [27] over the multilayer open source OM-
NET++ simulator [49]. The routes of the vehicles are generated through the Simulation
of Urban Mobility (SUMO) [9] using real maps downloaded from OpenStreetMaps [5]. In
this case, the zone of Berlin city shown in Fig. 4.7 is the simulation map.

The simulation settings of the scenario are shown in Table 4.2. All the figures show
confidence intervals (CI) of 95% obtained from five simulations per point, each simulation
with an independent mobility scenario and seed.
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Table 4.2: Simulation settings of the VANET scenario

Map zone Berlin city

Area (2.5 × 2.5) km2

Density of vehicles 100 vehicles/km2

Number of nodes 625 vehicles

Transmission range 340 m

Average vehicle rate 20 km/h

Mobility generator SUMO 25.0 [9]

MAC specification IEEE 802.11p

Nominal bandwidth 6 Mbps

Source bit rate CBR (10 packets/s)

Beacon interval 1 s

Simulation time 100 s

Routing protocol 3MRP [4]

The performance of the routing protocol 3MRP for different typical values of p is analyzed.
The simulation area is 6.25 km2. The network vehicles are randomly positioned and the
density of vehicles is 100 vehicles/km2. The average speed of the vehicles is 20 km/h while
the maximum speed is 50 km/h. Recall that the multi-metric score used in the forwarding
scheme of the 3MRP uses the dynamic weights algorithm (DSW), see section 3.2.2.3. We
assume that a vehicle that acts as a source node transmits a warning text message (e.g.,
to report a traffic accident) periodically to a fixed destination located at a roadside unit
(RSU).

4.4.3.2 Simulation results

In the following we will present the results of our performance evaluation and we will
discuss the results. We show the average percentage of packet losses (see Fig. 4.3) as
well as the average end-to-end packet delay (see Fig. 4.4), for different values of p in the
weighted power mean function (see Eq. 4.1).

The average percentage of packet losses for different values of p in the weighted power
mean function, is depicted in Fig. 4.3. We observe that the lowest average percentage of
packet losses equals 28.5% when p tends to zero, which is the case of the geometric mean.
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Figure 4.3: Average percentage of packet losses with 3MRP for different p values in
the weighted power mean function used to weight the metrics.

The worst two results of packet losses is obtained when p tends to ±∞. The reason is
the following. In the first case when p tends to +∞, we choose only the highest score
value of the five metrics, which is equivalent to take into account only one metric (i.e.,
the one which has the highest score value). In the second case when p tends to −∞, we
choose only the lowest score value of the five metrics, which means that again we are also
taking into consideration only one metric, but in this case, the one which has the lowest
score value, which should provide even worst results than the one obtained when p tends
to +∞, a fact that is shown in Fig. 4.3. Recall that the higher the score of a node, the
better the node is considered to be selected as the next forwarding node.

Figure 4.4: Average end-to-end packet delay with 3MRP for different p values in the
weighted power mean function used to weight the metrics.

Fig. 4.4 shows the average end-to-end packet delay for different p values, specifically the
special cases of the W-PMF. Recall that the delay is calculated using only those packets
that successfully arrived at destination. We can notice that there is not a significant
difference between the results obtained for the different p values, since the minimum delay
is 1.7 ms when p = 1 (arithmetic mean) and the maximum is 4.6 ms when p → −∞
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(minimum metric), which is an acceptable range of values for the average end-to-end
packet delay in most of the VANET applications. Thus, by seeing Fig. 4.3 and Fig. 4.4,
we can deduce that for p → 0 (geometric mean), we obtain the best performance in
terms of packet losses and average end-to-end packet delay compared to the other tested
p values.

4.5 An improved multi-metric geographical routing

protocol for VANETs (3MRP+)

The results of this section have been published in [40]. In this chapter, we propose
and analyze a method to select the best forwarding node by accurately estimating the
current position of the vehicles’ neighbours in the moment of sending a packet. Nodes
periodically interchange beacons (hello messages) which contain several metrics about
that sender node, e.g. location, trajectory, packet losses. Those metrics will be used
by the routing algorithm to take packet forwarding decisions. So far, the forwarding
algorithm uses the sender node’s location received in the last hello message received from
that sender node. Conversely a better estimation of the current position of the nodes
will be computed taking into account the speed projection on the x -axis and the y-axis,
named vx and vy, respectively. By default, a forwarding algorithm would use the distance
received in the last beacon from a node, although we claim that this distance can be quite
obsolete in the moment of using it to take the current forwarding decision for a packet.
Our approach updates the position of the node by estimating its current position using
the speed of the node. The error reduction between the last received position of a node
and its estimated current position depends on the speed of the aforementioned node. As
the speed of the vehicle increases, the new estimation of the current neighbours’ positions
will be much more accurate than simply using the location received in the last beacon.
Obviously, for static nodes, there will be no difference between the conventional method
and our method.

4.5.1 Motivation to develop our 3MRP+ routing protocol

In a position-based routing protocol, after retrieving the location identification of the
packet’s destination, the source node searches a next forwarding node. That next-hop
node should fulfil some requirements established by the routing metrics considered in
the forwarding algorithm, such as shortest path to destination, a minimum density of
neighbours, a minimum available bandwidth, moving trajectory towards destination or
future position be closer to destination, among other metrics.

In the literature there are several proposals of VANET routing protocols with respect
to the implementation of diverse methods and strategies [4] [44] [50] that have shown
a good performance. The beaconing period is an important factor that affects the per-
formance of the routing protocol in terms of overhead. Another determinant aspect, is
the moment when the next forwarding node is selected. Most of the proposals use the
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information exchanged by the nodes through the beaconing process, allowing the algo-
rithm to calculate or estimate the positions of the neighbouring nodes, the bandwidth
link, the time duration link, the speed node, the moving direction and future position,
among other metrics. These combined metrics will be used by the routing protocol to
make a good node selection to forward packets.

It is important to highlight that in most of the existent routing protocols, the information
used to take the packet forwarding decision corresponds to a time in the past. That
information usually corresponds to the last hello message received from each neighbouring
node. In the next section, we present our proposal to accurately estimate the current
node’s position to be used in the packet forwarding moment.

4.5.2 Accurate estimation of the current node’s position

In this section, our methodology to estimate the current node’s position is presented.
We aim to improve the performance of 3MRP [4] by correcting the positions of the
neighbouring nodes’ of the current packet-holding node. Consequently, this node will be
able to take an optimal selection of the next forwarding node. So far, the neighbours’
positions were taken from their last hello messages received by the current forwarding
node. Instead of using the distance reported in the last beacon message, we will estimate
the current position to be used in the moment when a packet needs to be forwarded.
In that moment, a next hop node must be selected and it is important to use realistic
updated distances of the neighbouring nodes. We call our new approach as 3MRP+ [40].
Simulation results show the benefits of our proposal 3MRP+, since better forwarding
candidates are selected.

For a fair comparison with 3MRP, in this section we use in our proposal 3MRP+ an
arithmetic weighting function to compute the multi-metric score, since 3MRP uses an
arithmetic weighting function.

Let us consider the moment ts = t1 + ∆t (see Fig. 4.5) when a source node S needs to
send a message, where t1 is the moment when the last beacon was received, ts is the
current sending moment and ∆t is the incurred time between both moments. The S
node will search the packet’s destination in its neighbours’ list. If the destination is not
in the neighbourhood, S looks for a proper neighbouring node to forward the message.
Considering a beacon period Tb = t2 − t1 (set to 1 second in our simulations), we have
that ∆t fulfils 0 ≤ ∆t ≤ Tb, as it is shown in Fig. 4.5.

The position information of each candidate node is taken from the last beacon received
from that node at moment t1. That position will not be updated until the reception
of the next beacon at time t2. Hence, the current node S holding the packet uses the
previous known position information of each candidate node in time t1 to select the next
forwarding node to which it will send the packet at moment ts = t1 + ∆t. Nevertheless,
we claim that it is possible to accurately estimate the current position of candidate nodes
at ts. This way, the forwarding algorithm will be able to select a better candidate node
for that packet in that moment.
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Figure 4.5: Time line representation of the beacon interval (t2 − t1) and a sending
message event at moment ts = t1 + ∆t.

For the sake of simplicity we will consider Euclidean distance, although other distances
(e.g. distance travelled over the roads) could also be used. It is well-known that in the
Euclidean space R2, the distance d between two points (x1, y1) and (x2, y2) is given by:

d =

(
2∑
i=1

|(xi − yi)|2
) 1

2

(4.4)

Let us give a simple numerical example to explain the proposed algorithm to estimate
the node’s position at moment ts, see Fig. 4.6. Suppose the sender node S is at position
(0, 0) and needs to send a packet at the moment ts = t1 + ∆t = t1 + 0.8s to an access
point A located at position (1000, 1000). Let us consider that node S has two candidate
nodes C1 and C2 in its neighbourhood to forward the packet. We assume that the two last
beacon messages from both candidate nodes C1 and C2 were received at S right before
moment t1 = 1s (not simultaneously so they do not collide). 3MRP [4] would compute
distances d(A−C1) and d(A−C2) between the access point A and the two candidates C1

and C2, respectively. To obtain those distances, we use equation (4.4) with the nodes’
last positions (x1, y1) and (x2, y2) reported in their beacon messages, as it is shown in
Table 4.3. Using equation (4.4) we obtain d(A−C2) = 692, 9646 and d(A−C1) = 707, 1068.
Since d(A−C2) < d(A−C1), 3MRP chooses C2 as the next forwarding node to send the packet
at moment ts = 1.8s (see Fig. 4.6 a).
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Table 4.3: Parameters of two candidate nodes reported in the last beacon messages.

Candidate node x(m) y(m) vx(m/s) vy(m/s)

C1 x1=500 y1=500 20 20

C2 x2=510 y2=510 2 20
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Figure 4.6: Selection of a candidate node according to (a) 3MRP or (b) 3MRP+.

However, if we take into account the (vx, vy) speed of each one of the candidates to
estimate their current positions at the moment when the packet is intended to be sent,
i.e. ts = 1.8s, we will be able to take a better forwarding decision. Distances d(A−C1)

and d(A−C2) will be thus computed using the estimated current positions of C1 and C2

instead of the reported ones via beacon messages (see Table 4.3), which are past positions
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not updated. Contrary to 3MRP [4], 3MRP+ [40] is able to update the nodes’ locations
at ts = 1.8s. Thus, 3MRP+ estimates the current positions for nodes C1 and C2 using
equation (4.5) and it detects that d(A−C1) < d(A−C2). Therefore, C1 would be selected by
3MRP+ as the best next forwarding node instead of C2, which would have been selected
by 3MRP.

To perform the 3MRP+ [40] operation, we need to add two more fields in the beacon
messages to allocate the previous node’s position (x1, y1) of the forwarding candidate (see
Table 2) which sends the beacon (see Fig. 4.6 b).

Table 4.4: Format of the new fields in the hello message.

vx vy x1 y1

For high mobility scenarios, an estimation on the current nodes’ position will improve the
performance of any routing protocol in which its decision to choose the best forwarding
node depends completely [3] or partially [51] on the distance to destination. When a
node needs to forward a packet, it must estimate the current position of the forwarding
candidates according to this equation:

(xest, yest)(∆t) = (vx, vy) ·∆t+ (x1, x2), 0 < ∆t < Tb (4.5)

where (xest, yest) corresponds to the estimation of the current position of a candidate node
used by the node currently holding the packet. The node’s speed is represented by (vx,
vy), and ∆t refers to the interval time elapsed since the moment when the last beacon
from that candidate node was received.

To select the next forwarding node for the packet, our algorithm arranges the neighbouring
vehicles of the current holding node in a list. This arrangement is done according to the
distances to destination of each candidate node. Those distances are computed with the
estimated current positions of each candidate node. After that, if the destination node
is not in the neighbouring list of the current holding node, the best candidate node (i.e.,
the closest node to destination) in the top list position is selected to forward the packet.

Algorithm 1 describes the sorting process of the neighbours list. First of all, a variable i is
initialized with value equal to one, and it will be incremented until it reaches a value equal
to the size of the neighbours list. Two pointers are pointing to the two first locations of
the neighbours list (lines 2 and 3). Then, for each list location the current node position is
calculated (line 6). After that, the distance to destination with its new updated position
is calculated. Then, that distance is compared to the other nodes’ distances in order to
arrange in the high list location the node with the smallest distance value (lines 7 to 12).
Once the list is arranged with the new estimated current positions of all neighbouring
nodes, the current sending node can find the best next forwarding node in the top of the
list.
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Algorithm 1: Calculation of the distance to destination of a candidate node using
its estimated position ∆t seconds after the last beacon message from that node was
received.
Requirement: Neighbours list, destination position and current time.
Require : i = 1, curr = head #initial position

1 while i <= #list of neighbours do
2 tmp = curr;
3 curr = curr → next;
4 read current;
5 if (curr! = NULL) then
6 ∆t = current simulation time - floor (current simulation time);
7 Calculate: curr(xest, yest); tmp(xest, yest);
8 Distance1 = curr(xest, yest) → Destination;
9 Distance2 = tmp(xest, yest) → Destination;

10 if (Distance1 < Distance2) then
11 head=tmp;
12 tmp=curr;
13 curr=head;

14 end

15 end
16 i++;

17 end

By doing that, we are able to estimate in a more accurate way the position of each
candidate node when a packet needs to be sent at a specific moment ts between the
arrival moments of two consecutive hello messages.

4.5.3 Simulation results and discussion. 3MRP vs. 3MRP+

In this section, we present simulation results and analysis of results of our proposal
3MRP+ [40]. To evaluate the performance of this proposal, we use the Vehicles in
Network Simulator (VEINS) [27] over the multilayer open source OMNeT++ simulator
[49], and the routes generator Simulation of Urban Mobility (SUMO) [52] with real
maps extracted from OpenStreetMaps [5]. We have developed the basic structure of our
routing tables based on the code [53]. The results obtained with the implementation of
our proposed algorithms are presented in the next sections.

4.5.3.1 Simulation scenario to analyse the performance of 3MRP vs. 3MRP+

The urban scenario used in the tests corresponds to an area of Berlin, taken from Open-
StreetMaps [5] (see Fig. 4.7). The size of the simulation area is 6.25 km2 using a vehicle
as source node that transmits a warning text message periodically to a fixed destination
located at a roadside unit (RSU). Both source and destination nodes are positioned 1000
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m from each other. The vehicles’ density is 100 vehicles/km2, which is considered a high-
density value. Vehicles are randomly positioned, with different average speeds (14, 25
and 33 m/s).

Figure 4.7: Map of a zone of Berlin, taken from OpenStreetMap [5], used in our tests.
A warning message is sent from a crashed vehicle to a road side unit (RSU) through a

VANET.

We have analyzed the performance of our new proposal 3MRP+ [40] and we have com-
pared it to 3MRP [4]. We have done five simulations for each average speed under dif-
ferent scenarios with independent seeds each. Table 4.5 summarizes the main simulation
parameters.

Table 4.5: Frequency of Special Characters

Map zone Berlin city

Area 2.5 x 2.5 km2

Density of vehicles 100 vehicles/km2

Number of nodes 625 vehicles

Transmission range 340 m

Mobility generator SUMO 21.0

MAC specification IEEE 802.11p

Nominal bandwidth 6 Mbps

Source bit rate CBR (10 pkts/s)

Beacon interval 1 s

Simulation time 100 s

Routing protocol 3MRP [4], 3MRP+ [40]

Average nodes’ speed 14, 25 and 33 m/s
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4.5.3.2 Simulation results

To carry out the performance evaluation, we have obtained the average percentage of
packet losses and the average end-to-end packet delay. Fig. 4.8 depicts the average per-
centage of packet losses in 3MRP [4] compared to 3MRP+ [40] that includes the estima-
tion of the current nodes’ positions. We can see that 3MRP+ shows a lower percentage of
average packet losses compared to 3MRP. 3MRP+ outperforms 3MRP in approximately
11%, 17% and 15% at 14, 25 and 33 m/s, respectively.

Figure 4.8: Average percentage of packet losses.

The reason is that as vehicles increase their speed, their positions also change rapidly.
Therefore, the position error made in the transmission moment ts by using the old node’s
position at t1 is notably higher at high speeds (see Fig. 4.5). We can see that our
new proposal 3MRP+ [40] improves efficiency since it decides the next forwarding node
with the current position at the ts moment when the current holding node forwards the
packet. Another interesting benefit of our approach is the trade-off between accuracy in
the node’s position and overhead. In 3MRP we could achieve a better node’s position
closer to the current one if we increased the beaconing frequency. This way, the beaconing
interval would decrease, and the difference between the real position and the reported
one in the last beacon message would decrease too (see Fig. 4.5). That is, with 3MRP,
the sender node could have a more accurate candidates’ positions within its transmission
range if beacons arrived at a higher frequency. However, there would be a too high cost of
overhead. Contrarily, if the beacon frequency decreased, the sender node would have less
accuracy regarding its candidates’ positions but at the same time with a lower overhead
incurred.

In 3MRP+ we solve this issue by accurately estimating the real neighbours’ positions
of a sender node at the precise moment ts of sending the packet without modifying the
usual beacon frequency. This solution has no increment in the overhead injected to the
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network. Let derr be the distance error position of a specific node during time interval
∆t between two consecutive beacons, also called hello messages (HM):

derr =
√

(xHM − xP ∆t)2 + (yHM − yP ∆t)2 (4.6)

where (xHM , yHM) refers to the node’s position according to its last hello message received;
(xP ∆t, yP ∆t) is the estimated current node’s position at ts (see Fig. 4.5). The distance
traveled by the node in ∆t seconds depends on the node’s speed v. In Table 4.6 we
illustrate how an increase or decrease in the beacon period (Tb) will affect both derr and
overhead.

Table 4.6: Effect of the beacon period over distance error (derr) and overhead

Beacon period derr overhead

Tb ↑ at v > 0 ↑ ↓

Tb ↓ at v > 0 ↓ ↑

Using 3MRP+, Tb remains equal, v > 0 ↓ =

From Table 4.6 we can see that normally when the beacon period increases (Tb ↑), the
overhead decreases (↓), although the distance error due to the vehicle’s mobility increases
(derr ↑). On the other hand, if the beacon time decreases (Tb ↓), as a consequence the
distance error for a moving node decreases (derr ↓); however, the overhead increases (↑).
Notice that in case that the speed of the node is equal to zero, derr = 0. By applying our
method, we are able to estimate with more exactitude the positions of the nodes without
modifying the beacon period. Thus, we achieve a lower (derr ↓) maintaining the same
overhead. In this way, we can select more accurately the best forwarding node to route a
packet.
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Figure 4.9: Average end-to-end packet delay.

Fig. 4.9 shows the average end-to-end packet delay. The delay is calculated based on
those packets that successfully arrived at destination. We can clearly see that there is no
differences between 3MRP [4] and 3MRP+ [40] regarding the average end-to-end delay
values. Nevertheless, 3MRP+ shows better performance in terms of average packet losses
(see Fig. 4.8). This is due to the accurate way of estimating the neighbour’s positions at
the exact moment of sending a packet avoiding to use the nodes’ positions reported in
the last hello messages received by the sender node. Overall, this first scenario explains
how 3MRP+ works, and illustrates its advantages in terms of average packet losses and
end to end delay. In the next subsection, the second scenario where different types of
metric combinations are applied is explained in detail.

4.6 Conclusions

The results obtained in this chapter are twofold:

• We have analysed the weighted power mean function to see which is the best way
to weight the several metrics considered to compute the multi-metric score for each
candidate node. See section 4.4. The results of this contribution have been pub-
lished in [40].

• We have developed a mechanism to correct the position of the candidate nodes in the
moment of sending a packet. The node holding the packet can accurately estimate
the current positions of its neighbouring nodes to take the best forwarding decision.
We call our proposal 3MRP+. See section 4.5. The results of this contribution have
been published in [39].

We have included these two contributions in the routing protocol 3MRP, previously de-
veloped by prof. Ahmad Mezher in his doctoral thesis [4].

The conclusions of each section are described below.



Chapter 4. Contributions to 3MRP 49

Improved selection of forwarding candidates
In section 4.4 we have described the importance of finding out the best way of
combining different metrics in routing protocols. We have studied and analyzed
different ways of weighting several metrics to obtain a multi-score value to score
candidate nodes. This way, the current packet-holding node will be able to improve
the selection of the best forwarding vehicle to be the next hop. Our analysis is done
over the 3MRP routing protocol [4], which uses three metrics (available bandwidth,
distance to destination and nodes’ density). The goal of our contribution is to
improve the performance of the routing protocol in terms of average percentage
of packet losses and average end-to-end packet delay. Results show that the best
way to combine those metrics is the geometric mean, with which the lowest average
percentage of packet losses is obtained while keeping low the delay.

Our proposal 3MRP+
In section 4.5, a novel routing protocol called 3MRP+ [40] has been presented.
3MRP+ includes a method with which a sender vehicle can more accurately estimate
the neighbour’s positions at the exact moment of sending a packet. The benefits of
our proposal are especially noticeable when the vehicles’ speed increase. The new
3MRP+ proposal outperforms a previous version named 3MRP [4] by improving
the number of packets received by the destination node, especially for high speed
nodes. In addition, according with the simulation results 3MRP+ almost maintains
same average end-to-end delay as 3MRP. The reason behind these good results is
due to the realistic estimation of neighbour’s nodes positions at the moment of
sending a packet. Recall that we do not alter the beacon frequency, which means
no extra overhead of messages injected to the VANET.



Chapter 5

Probability-based multi-metric
routing protocol (ProMRP) for
VANETs in urban scenarios

5.1 Results of this chapter

The results from the proposal presented in this chapter have been published in:

• Leticia Lemus Cárdenas, Ahmad Mohamad Mezher, Pablo Andrés Barbecho
Bautista, Mónica Aguilar Igartua, ”A Probability-Based Multi-metric Routing Pro-
tocol for Vehicular Ad Hoc Networks in Urban Scenarios”, IEEE ACCESS, ISSN:
2169-3536, Vol.7, Iss.1, pp.178020-178032, 2019. [54]

5.2 Introduction

Routing information in VANETs in urban scenarios is more complex than in other envi-
ronments, since it is necessary to consider multiple factors to evaluate candidate nodes
that could potentially participate in the hop-by-hop forwarding path to destination.
Therefore, it seems necessary to design routing protocols that are able to perform hop-
by-hop forwarding (i.e., able to take local forwarding decisions instead of establishing
end-to-end forwarding paths). Besides, routing protocols should take multi-metric de-
cisions (i.e., they consider several metrics to take forwarding decisions) and be able to
adapt to the inherent dynamic VANET conditions.

50
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Figure 5.1: Types of communications in VANETs in urban scenarios.

In this spirit, we focus our work on urban scenarios (see Fig. 5.1) where the presence of
buildings, intersections and traffic lights make communications over VANETs specially
challenging. We define our contribution in two parts:

1. Our forwarding algorithm includes four metrics, which are: (i) distance to destina-
tion, (ii) node’s position, (iii) available bandwidth and (iv) nodes’ density. Each
metric is modeled with a probability density function based on a large number of
representative simulations with a wide variety of configuration parameters. After
designing the probabilistic distribution for each metric, the node currently hold-
ing the packet can estimate the probability for each candidate node to successfully
forward the packet to its destination. Our novel proposal is named probabilistic
multi-metric routing protocol (ProMRP) [54].

2. Furthermore, we have improved ProMRP with an accurate node’s position estima-
tion at the specific moment of forwarding the packet. This way, distances from each
candidate node to destination, which are considered by the forwarding algorithm,
are estimated with the current accurate positions instead of with those positions
taken from the last beacon message received from each candidate node. We named
this new version as enhanced ProMRP (EProMRP) [54]. Our proposal performs
this mechanism at each forwarding node in a hop-by-hop scheme until the packet
reaches its destination.

The rest of this chapter is outlined as follows. Section 5.3 presents relevant related works.
Our proposal is explained in Section 5.4. Simulation results are analysed in Section ??.
Finally, Section 5.6 concludes this chapter and points out some future work.
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5.3 Related work

Recent works have proved that the most efficient routing protocols for VANETs are those
which consider several metrics to take forwarding decisions at intermediate nodes. Our
research interest falls within proposals that consider multiple routing metrics to evaluate
neighbour nodes to choose the best candidate node to forward a packet. Accordingly,
we highlight in this section some recent interesting proposals concerning (i) multi-metric
routing algorithms, (ii) probability-based estimation measures, and (iii) accurate estima-
tion of the current node’s position.

(i) Among the different proposals of multi-metric routing protocols available in the lit-
erature, we here highlight a few ones that are related to our approach. The main goal
of multi-metric routing protocols is to consider several metrics to score neighbour nodes.
Using that information, nodes decide which one is the best candidate to forward a packet
towards its destination, making the routing process more efficient. In that sense, Path
Aware GPSR (PA-GPSR) [55] considers the extension of its neighbour table (NT) with
two additional tables. These two tables are called deny table (DT), which records those
nodes that already forwarded the packet; and recent send table (RST), which records not
only those nodes that already forwarded the packet but also the mode used for it. Using
this extra information provided by the two NT extended tables, the routing protocol is
able to manage efficiently the packet forwarding, avoiding both inappropriate routes to
destination and packet loops.

The proposal called multi-metric geographic routing (M-GEDIR) [43] selects one of the
neighbours as the next forwarding node based on nodes’ positions, future positions, speed,
distance to destination, signal strength and moving direction. In [56], authors propose
a multi-metric routing protocol considering link lifetime, nodes’ density, nodes’ mobility
and nodes’ load (i.e., buffer queue length). They implement a hierarchical mechanism
to combine multiple decision criteria such as the relative importance that each metric
has with respect to the others. They use a weighted function to assign a weight to
each one of the metrics. Nodes are scored according to a weighted multimetric score.
Finally, the candidate node with the highest score is the most favorable to forward the
packet. Their results improve the basic distance-based GPSR in terms of delay and packet
delivery ratio. In [57] we can find another multi-metric proposal which considers a cluster-
based forwarding approach using three metrics: throughput, vehicle’s speed and available
bandwidth. Those metrics are used to decide which neighbour node is the best candidate
to forward each packet. On the other hand, the work [4] presents a proposal called
multimedia multi-metric map-aware routing protocol (3MRP), which is one of the latest
efficient proposals. This approach uses weighted metrics to select the next forwarding
node. The metrics considered to score each candidate node are: available bandwidth in
the link formed with each neighbour, nodes’ density, trajectory, distance to destination
and percentage of MAC packet losses.

(ii) Finally, we have identified three studies which show some relation to our probability-
based approach, but with essential differences. In [58] authors propose two probability-
based predictors to select the best forwarding node among the candidates in the list of
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neighbours. The first parameter refers to the probability that the signal to interference
plus noise ratio (SINR) in a receiver node is larger than the receiving threshold during
a period of time. The second parameter defines the probability of packet queue length
(PQL) to be smaller than a maximum allowed value after an interval of time. Also, they
propose a weighting function to calculate the utility value of each node. This utility
consists in using the SINR and PQL variances as weights, and then averaging the total
value for each node. Finally, the best candidate node is the one with the largest utility
value. The [59] proposal considers two types of probabilities: (a) The forwarding proba-
bility measures the probability to access the channel; and (b) the successful forwarding
probability, which refers to the probability that a node actually transmits. In the for-
warding probability, the source nodes assigns values to its neighbours nodes so that the
farthest node (from the source) has the highest forwarding probability. The probability
of successful forwarding is the probability of exactly one node (within the transmission
range of the source) transmitting at the beginning of an empty slot.

(iv) Taking the estimation of the node’s position into account, VANET routing protocols
can take more accurate forwarding decisions when they use metrics based on the node’s
position. For instance, in [60] authors estimate the future position of a node (after a time
interval t) using the current node’s location (x, y), the node’s velocity (vx, vy), and the
moving direction of the node θ. Every time a node receives a hello message, it calculates
the new position of its neighbouring nodes, keeping a list of those nodes that approximate
towards destination. In this way, they choose the next-hop forwarding node with the best
future position (the shortest distance towards destination). A similar proposal that uses
the same parameters to estimate the node’s position is explained in [61]. Also, instead of
arranging nodes based on their estimated future position, a weight is calculated for every
new node’s position. Such weight is based on the sum of three factors: P (relative distance
to destination), q1 and q2 (angles formed with each neighbour and with destination). In
the forwarding decision, the neighbour with the highest weight will be the next-hop node.
Authors in [62], propose an algorithm to estimate the vehicle’s movement in the near
future and then selects the best neighbour. First, each node calculates its velocity (V0)
and the heading direction using previous position (x0, y0) and current speed at initial
moment t0. After that, the future position of a node is estimated adding the product of
velocity and time interval ∆t (time between two hello messages) to the current position.
Unlike the two previous proposals, this future position is shared into the hello messages.
In this way, all network nodes receive and save in their corresponding list the future
position of all its neighbours. The next-hop forwarding node will be the one with the
shortest estimated distance to destination in the near future. In [63] a system model
to organise nodes in transmission zones (clusters) interconnected by headers nodes (HN)
is proposed. Authors compare the positions of each intermediate node Ni (Nix, Niy)
and destination node Nd (Ndx, Ndy), with their new positions Post(Ni) and Post(Nd)
after a time (t). With this strategy, they configure end paths from a source node (S)
to final destination node (D) through different zones and intermediate nodes. Again,
the parameters used to calculate the node’s position are: (x, y) coordinates, movement
direction (θ) and velocity (vx, vy) in a time interval (t). Network nodes share and update
this information via hello messages.

To summarize, in the literature there are several geographic routing protocols proposed
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for VANETs that consider several metrics to evaluate the best node to be selected as next-
hop forwarding node. Examples of those metrics are distance to destination, available
bandwidth, trajectory, vehicle’s speed and nodes’ density. Nonetheless, none of those
proposals evaluates the probability that candidate nodes successfully deliver packets at
destination as a function of the metrics’ values.

In this chapter, we propose a novel probabilistic routing protocol named probabilistic
multi-metric routing protocol (ProMRP) based on a probability-based forwarding algo-
rithm to choose the best next forwarding node among the neighbouring candidates of
the node currently carrying the packet. We focus our analysis on a realistic urban sce-
nario using real maps. To the best of our knowledge, there is no proposal yet about a
multi-metric routing protocol for VANETs that bases its forwarding decision on the suc-
cessful delivery probability of the packet at destination. Besides, our proposal includes
an estimation of future position of the nodes to further improve the forwarding decision.
Finally, we have compared our work with the well-known GPSR and also with one of
the most recent proposed routing protocol for VANETs named 3MRP [4]. In the next
subsections the probabilistic routing algorithm is described in detail, also the its results
and conclusions.

5.4 Design of our ProMRP proposal for VANETs

In this section we describe our proposal of a probabilistic forwarding routing algorithm for
VANETs. This algorithm evaluates all candidate nodes and chooses the best candidate
to forward the current packet. The selection is done based on the estimation of the
probability of successful packet delivery at destination.

5.4.1 Motivation

After analyzing several proposals described in section 5.3, we observed that most of those
that show a good performance in terms of packet losses and delay use several metrics to
select intermediate nodes to forward packets, instead of just using the basic metric of the
distance to destination. Certainly, it is crucial to consider several metrics in the packet
forwarding to be able to address properly the special characteristics of VANETs.

Nevertheless, as far as we know none of the proposals consider the probability of packet
successfully delivered as a metric in the forwarding algorithm. In this chapter we present
our design of a probabilistic multi-metric forwarding algorithm with which nodes use
several metrics to take forwarding decisions. This proposal outperforms other routing
protocols in terms of average percentage of packet losses and average end-to-end packet
delay. We have compared our proposals to the well-known GPSR [3] routing protocol as
a reference, and to a recent proposal called 3MRP [4].

We claim that the sequence of events that represent the packet receptions in a hop-by-hop
scheme in VANETs, can be represented as a probability distribution. This probability
distribution describes the path that each packet will follow from source to destination.
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This way, the best next forwarding node to forward a packet will be chosen hop-by-hop
towards destination. First, we have carried out an off-line analysis over a representative
data set taken from a large number of simulations under different representative scenarios.
Then, the probability distribution of packet successfully delivered is obtained. Afterwards,
we have implemented our probability-based routing proposal and, as section 5.5 depicts,
the performance evaluation shows good results that outperform other proposals described
in the literature [3] [4].

5.4.2 Modeling the probabilistic distribution of the considered
metrics

The strategy employed by our algorithm is based on the probability distribution of the
considered metrics. This requires a previous data organization and analysis to identify
the categorical variables; that is, which variables have an impact on the subject of study.

Our aim is to find out the probability that a candidate forwarding node has to successfully
deliver the current packet to its destination given some environmental parameters. The
parameters that we have considered are: (i) distance to destination (traditional metric
used to establish shorter forwarding paths); (ii) nodes’ density (used to assess the topo-
logical connectivity); (iii) available bandwidth (computed from the percentage of time
the channel is idle).

In order to provide a general description of our approach we will use an example, depicted
in Fig. 5.2. Let us consider an output variable named Y which can take two values (0, 1)
representing the occurrence of an event. In other words, the event is referred to whether
a node will successfully deliver a message or not. Also, let us consider an input variable
M with different environmental metric values that will have an influence in Y [64].
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Figure 5.2: Estimation of the probability to successfully deliver a packet at destination
given that the considered metric M equals mi.
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Fig. 5.2 shows a theoretical representation of an output sequence of random events
throughout time. Let us suppose that we have n values of a metric M (e.g., distance
to destination, available bandwidth, density of nodes) over time t. Then, we estimate the
probability P (Y = 1|M = mi) of a candidate node to successfully deliver the packet to
its destination (Y = 1) given a specific value mi of the considered metric M at a given
time tj, where 1 ≤ i ≤ n and 1 ≤ j ≤ t. Notice that it is quite hard that two or more
values for the same metric at different time slot match. For the sake of simplicity, we
divided the whole set of possible values for each specific metric into ranges in the form
of [0, εi], ]εi, 2εi] until ](li − 1) × εi, li × εi] where εi is previously defined and li is the
number of divisions employed between the minimum and the maximum value for each
metric which is equal to max(M)/εi. For instance, is the nominal bandwidth is 6Mbps,
this means that the possible values of bandwidth for any node will be between 0 and 6
Mbps. So, having ε = 0.2 means that the number of divisions will be 30 and the equal
ranges will be as follows: [0, 0.2], ]0.2, 0.4] until ]5.8, 6]. Let us suppose that within the
range [0, 0.2], our dataset has three values equal to 0.1 Mbps, 0.12 Mbps, 0.05 Mbps,
with corresponding output Y values equal to 0, 1, 0, respectively. Thus, we can conclude
that if we have any input value of bandwidth for a candidate node in the range of [0, 0.2],
the probability that this candidate node successfully delivers the packet to its destination
will be 1/3.

In Fig. 5.2, we can see that when the analyzed metric M takes the value m1 between
zero and ε = 0.2 two packets (out of five) where successfully delivered. Therefore, the
probability to successfully deliver a packet at destination given a specific value between
zero and 0.2 P (Y = 1|M = m1) = 2/5.

Three metrics have been taken into account to estimate (for each candidate forwarding
node) the probability of successfully deliver a packet at destination. The node with the
highest probability will be chosen as next forwarding node. This process is repeated
hop-by-hop till the packet reaches its destination. In this way, the selection of the succes-
sive forwarding nodes is made adapting to the current network conditions. In the next
subsection, the design of parameters and its implementation are explained in detail.

5.4.3 Design of parameters and implementation of ProMRP

To analyse the behavior of the different metrics considered in this chapter, a previous
offline study over a real data set was done. We carried out a large number of representative
simulations to prepare a consistent data set. The goal was to derive the probability
density function (PDF) for each one of these metrics: (i) distance to destination, (ii)
nodes’ density and (iii) available bandwidth. To obtain our data set, we have considered
an urban scenario where vehicles move with speeds in the range from 30 to 50 km/h. We
have also considered different vehicles’ densities and different types of streets.

Once the statistical model to represent each metric was obtained, we included those
models in the forwarding algorithm of our proposed routing protocol. This way, vehicles
can take their forwarding decisions according to estimations of the probability to deliver
the packet to destination. The modeling of the PDF for each metric is described below.
Notations are introduced in Table 5.1.
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Table 5.1: List of variables used in the system.

Parameter Definition
Ngh Neighbour node.
D Destination.
d(Ngh, D) Distance between a candidate Ngh

and D.
Pdst Probability of packet successfully

delivered at D for a given distance
d.

BWNgh
Available bandwidth BW in the link
formed with Ngh.

PBW Probability estimation of packet suc-
cessfully delivered at the next-hop
given BW .

NVNgh
Vehicles’ density of the candidate
Ngh.

Pdns Probability of packet successfully
delivered at D given NVNgh

.
PNgh

Score value of each candidate node
Ngh.

Tb Beacon period

Next, in the following sections we describe how each statistical model was obtained.

5.4.3.1 Exponential distribution to model the distance metric

The probability to successfully deliver a packet at destination for each possible next-hop
forwarding node have been analyzed. This probability is obtained as a function of the
distance from that node to destination. We claim that knowing in advance this probability
can help to take better forwarding decisions.

A data set for the probability (Y) of packet successfully delivered at destination for a
given distance (d(Ngh, D)) (d in short) from the candidate node to destination have been
obtained. This data set was generated from many simulations with different vehicles’
speeds (30, 60, 80 and 100 km/h) that cover the usual range of speeds we can find in
urban scenarios. To have a wide range of distances in our urban scenarios, we set either
highway-like roads, normal roads, and narrow streets.

We have organized the data set results in a graph, see Figure 5.3. In this figure, we
show the PDF of the success in the packet delivery at destination, as a function of the
distance between the candidate node and destination. The values taken from the data
set (red line) are organized from the minimum distance (between a candidate node and
destination) to the maximum one present in the data set. We can see that the PDF of
packet successfully delivered (red line) fits well with an exponential distribution function
expressed in Eq. (5.1) (see blue line). We have considered a sequence of random distances
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in the range from 200 to 850 meters, which are the minimum and maximum distance values
obtained in the simulations. Notice that the probability to deliver a packet at destination
tends to zero as the distance between a candidate node and destination grows.
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Figure 5.3: Probability density function (PDF) of the success in the packet delivery
at destination, as a function of the distance d(Ngh, D) between candidate node Ngh and
destination D (red values taken from the data set). It fits well with the PDF of an

exponential distribution (blue line).

P (Y = 1 | d) (Pdst in short) is the probability estimation of packet successfully delivered
at destination, for a distance d between candidate node Ngh and destination D. Let λ be
the parameter of the exponential distribution function.

P (Y = 1 | d) = λ · e−λ·
1
d , 0 ≤ d <∞ (5.1)

Using the fitdist function [65] of Matlab to adjust the values in our data set with Eq. (5.1),
we got that the exponential distribution parameter λ equals 1.39 · 10−3.
Once the neighbours’ distances to destination d are obtained, the probability of succeed
in the packet delivery at destination as a function of that distance d from each candidate
neighbour Ngh to destination D, is calculated using Eq. (5.1).

5.4.3.2 Gaussian distribution to model the nodes’ density metric

We generated another data set to analyse the effect of the neighbours’ density in the PDF
of the success in the packet delivery at destination. This data set was generated from a
large number of simulations with different nodes’ densities (50, 100, 150, 200, 250 and 300
vehicles/km2) in an urban scenario, which cover most of the vehicles’ densities in cities.
Following the same methodology as in the previous section, we represent the PDF of the
packet successfully delivered from the values taken from the data set, as a function of the
nodes’ density, see the red points in Fig. 5.4. We can see that those points adjust very
well with a normal distribution, see the blue line in Fig. 5.4.
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Accordingly, we obtained the parameters of a Gaussian curve N(µ, σ) = (175, 93) to fit
with the data set values. The Gaussian curve (blue line) and the data set simulation
values (red points), are shown in Fig. 5.4. Notice that the probability to deliver a packet
at destination grows with the vehicles’ density of the candidate nodes, since a higher
network connectivity is preferred to success in forwarding the packet towards destination.
This is true until a threshold (around 120 vehicles/km2 in Fig. 5.4) upon which the
number of collisions grows so much that hinders the forwarding of the packet.
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Figure 5.4: Probability density function (PDF) of the success in the packet delivery at
destination (red values, taken from the data set), as a function of the vehicles’ density
of the candidates to forward the packet. It suits very well with the PDF of a normal

distribution (blue line).

P (Y = 1 | NVNgh
) (Pdns in short) is the probability that the packet arrives at destination

by choosing a next-hop candidate Ngh given a vehicles’ density that equals NVNgh
.

P (Y = 1 | NVNgh
) =

1

σ ·
√

2π
· e−

(NVNgh
− µ)2

2 · σ2
(5.2)

0 ≤ NVNgh
<∞

Finally, the PDF of the packet successfully delivered at destination, as a function of the
vehicles’ density can be described using Eq. (5.2).

5.4.3.3 Multinomial logistic regression to model the available bandwidth
metric

In this section we assess the PDF of the success in the one-hop packet delivery at the
next-hop forwarding node, as a function of the available bandwidth in the link formed
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by the node currently carrying the packet and each neighbour node candidate to be
next forwarding node. Ad-hoc networks typically rely on hop-by-hop forwarding, where
nodes use only local information to take forwarding decisions until the message reaches
its destination. This strategy is simple and scalable. Besides, results are good enough
while keeping a good trade-off among quality, overhead and simplicity [66].

Let us consider all those available bandwidth (BW ) values that produce an output Y
= 1 (delivered) or 0 (not delivered), according to the general scheme shown in Fig. 5.2.
Results are represented in the red circles of Fig. 5.5. We can see that the results follow
a distribution that fits with a logistic regression (LR), which can be described using
Eq. (5.3). Once we observed this behavior, we applied a multinomial regression to find the
coefficient estimates βi. We found the categorical variable equal β0 = 0 and β1 = −8.6707.
Adapting the LR model, we obtain this equation:

P (Y = 1 | BWNgh
) =

1

1 + e−(β0+β1·BWNgh
)

(5.3)

0 ≤ BWNgh
<∞

P (Y = 1 | BWNgh
) (PBW in short) is the probability estimation of packet successfully

delivered at the next-hop node given an available bandwidth BW in the link formed with
neighbour node Ngh.

We plot the LR model and the data set results into the range of bandwidth values taken
from simulations (0 to 6 · 106 bits/sec). In Fig. 5.5 we observe that the values taken
from the data set simulation (red circles) fit well with the LR distribution model (blue
line). Notice that the probability to deliver a packet at the next hop remains null until a
threshold upon which the packet is successfully forwarded to the next hop.
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Figure 5.5: Probability density function (PDF) of the success in the packet delivery
at the next-hop node, as a function of the available bandwidth in the link between the
node currently carrying the packet and each candidate node to be next hop. Red circle
values obtained from the data set. Blue line values obtained from the multinomial

logistic regression (see Eq. (5.3)).

To estimate the available bandwidth in a link formed by two nodes, each node can measure
its percentage of idle time in that link by sensing the common wireless medium. Each
node includes this value in the next beacon message. We apply the available bandwidth
estimator (ABE) according to [67]. Each node can estimate the bandwidth in the link
formed with each one of its neighbours’ upon the reception of their beacon messages
(BMs). Finally, using Eq. (5.3) we can estimate the probability of packet delivery at the
next-hop node as a function of the available bandwidth in the link formed by the node
currently carrying the packet and each candidate node Ngh.

5.4.4 Probability-based forwarding decision

As we have said before, each statistical model obtained is used by the algorithm to take
forwarding decisions. This forwarding decision works as follows. Each vehicle currently
carrying a packet, will select a next-hop neighbour node to forward that packet towards
its destination. To do so, nodes will use the three probability values described in the
previous section.



Chapter 5. A probability-based multi-metric routing protocol for VANETs in urban
scenarios 62

AP

C1

S

Neighbors’ table

C2

C3

!"#$ =
1
3 ( ")*+,$ + "./,$ + ")0*,$

!"#1 =
1
3 ( ")*+,1 + "./,1 + ")0*,1

!"#2 =
1
3 ( ")*+,$ + "./,2 + ")0*,2

")*+,1 , "./,1
, ")0*,1

")*+,$ , "./,$ , ")0*,$

")*+,2 , "./,2
, ")0*,2

Figure 5.6: Updating the neighbours’ list for vehicle S. An access point (AP) is the
destination node of the packets.

Fig. 5.6 shows the three probability values (Pdst, Pdns, PBW ) calculated with Eqs. (5.1),
(5.2) and (5.3), respectively. Those values are computed at each neighbour Ngh within
the vehicle’s transmission range. In this example, the destination is an access point (AP)
used to communicate with the city’s infrastructure.

The probability-based forwarding decision is taken hop-by-hop based on the information
gathered in the neighbours’ table. Vehicles follow our routing algorithm to choose the
optimal next forwarding node. In the example depicted in Fig. 5.6, we can see a sender
node S that periodically receives beacon messages from its neighbours in transmission
range, (C1, C2 and C3). Node S updates the table with the information received from
its neighbour nodes. After that, the sender node evaluates those nodes and calculates
the probabilities of successfully deliver the packet at destination through each one of the
available candidates.

First, the node S currently carrying the packet (sender or intermediate forwarding node)
calculates the probability of success in the delivery of the packet at destination, by ap-
plying Eqs. (5.1) and (5.2); and the probability of success in the delivery of the packet
to the next-hop node using Eq. (5.3). Second, we apply an arithmetic mean on the three
probabilities obtained in the previous step as follows:

PNgh =
1

3
·

3∑
i=0

Pi =
1

3
· (Pdsti + PBWi

+ Pdnsi) (5.4)

Finally, the score value PNgh
for each candidate node Ngh is obtained using Eq. (5.4) and

the node with the highest score will be chosen to forward the packet.
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5.4.4.1 Updating the neighbours’ table

Each node updates its neighbours’ table every time a beacon message (BM) is received.
The sending period of BMs is set to be one second. The neighbours’ table is sorted
according to the probability score PNgh. To update the neighbours’ table, we follow the
process described in algorithm 2. Then, nodes are arranged according to the probability-
based score value described in algorithm 3.

Algorithm 2: Updating the neighbours’ table.

Require: A new beacon message received with parameters: ID of the Ngh, location
(x, y).

1 Start: i = 1
2 while i <= # list of neighbours do
3 review the neighbour Id;
4 if neighbour (ID) is in the neighbours’ list then
5 Update the information;
6 else
7 Add the neighbour in the neighbours’ list;
8 end
9 i++;

10 end

When a source node S needs to send a message to the AP (e.g., a warning message con-
cerning an accident), it will first check in its neighbours’ table if the destination node (i.e.,
the AP) was previously registered in the last beacon reception. If positive, the message
will be delivered to the neighbour node with that destination ID. Otherwise, the neigh-
bour node with the highest probability to success in the packet delivery at destination,
will be chosen to forward the packet. This process will be repeated hop-by-hop until the
packet reaches its destination.

5.4.5 Accurate estimation of the current nodes’ position

In this section we describe an improvement to accurately estimate the position of nodes
at the precise moment of sending a message in a VANET. Estimating the nodes’ position
is a strategy included in routing algorithms as a key parameter to improve the selection of
forwarding nodes, trying to deliver the packet to destination through the best forwarding
nodes. In that sense, we published a research work where related works were identified
and a comparison was made with some of them to see if our proposal to estimate the
current node’s position improves the performance of the routing protocols [40].

Routing protocols, such as the ones described in Section 5.3, use information exchanged
by nodes through the periodical beacon process. This information will be used to take
forwarding decisions. Specifically, nodes can calculate or estimate the positions of the
neighbouring nodes. Nevertheless, nodes only update their neighbours’ table upon the
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Algorithm 3: Sorting the neighbours’ list according to the probability-based score.

Require: A new beacon message received with these parameters: ID of the Ngh,
location (x, y), BWNgh and NVNgh

1 Start: i = 1 curr = head # initial position
2 while i <= # list of neighbours do
3 tmp = curr;
4 curr = curr → next;
5 read current;
6 if (curr! = NULL) then
7 Calculate: curr(Probabilitymetric); tmp(Probabilitymetric);
8 Score1 = mean (curr(Probability));
9 Score2 = mean (tmp(Probability));

10 if (Score1 > Score2) then
11 head=tmp;
12 tmp=curr;
13 curr=head;

14 end;

15 end;
16 i++;

17 end;

reception of a new beacon message (BM). This means that this information used to take
the forwarding decision to send the current packet corresponds to the moment when
the last beacon message was received, which might lead not to take the best forwarding
decision at that moment. This is the key point of our algorithms that makes it different
from other previous proposals. Notice that vehicles might have moved a considerable
distance since the moment they sent the last beacon till the current moment when they
need to send a packet. Besides, we attain better results at the cost of insignificant
computational cost.

Let us consider a moment t1 + ∆t when a source node S needs to send a message. Let
us assume that the last BM was received at moment t1. The S node will look for the
packet’s destination in its neighbours’ list. If the destination is not in the neighbourhood,
S looks for a proper neighbouring node to forward the message. Considering a beacon
period Tb = t2 − t1 (set to one second in our simulations), let ∆t be 0 ≤ ∆t ≤ Tb, as it
is shown in Fig. 5.7.
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Figure 5.7: Time line representation of the beacon interval Tb = (t2 − t1) and the
event of sending the message at moment ts = t1 + ∆t.

The information concerning the positions for each candidate node is taken from the last
beacon received from each candidate node at moment t1. This information will not be
updated until the reception of the next beacon message at time t2. Hence, the current
node uses the previous known position information of each candidate node at time t1 to
select the next forwarding node to which it will send the message at moment ts = t1 +∆t.
We claim that it is possible to accurately estimate the real position of the candidate
nodes at moment ts (current forwarding moment). The goal is to potentially select a
better candidate node. We have included this new feature in our proposal ProMRP,
resulting in a new improved version named enhanced ProMRP (EProMRP).

It is well-known that in the Euclidean space R2, the distance d between two points (x1, y1)
and (x2, y2) is given by:

d =

(
2∑
i=1

|(xi − yi)|2
) 1

2

(5.5)

Let us suppose a sender node S located at position (0, 0) needs to send a packet at mo-
ment ts = t1 + ∆t = t1 + 0.7s to an access point A located at position (1000, 1000),
see Fig. 5.8. Let us consider that S has two candidate nodes C1 and C2 to forward the
packet. Let us assume that the last beacon messages from both candidate nodes C1 and
C2 were received by S in a certain moment within the last beacon period at moment
t1 = 1s. Then, at moment t1 our proposal ProMRP would compute the probabilities
P(A−C1) and P(A−C2) for distance metric of successful delivery the packet at destination
using Eq. (5.1). In this equation, the distances between each candidate node and the
access point A are computed using the nodes’ positions (x1, y1) and (x2, y2) reported in
their last beacon messages, as shown in Table 5.2. In this example P(A−C2) > P(A−C1), so
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ProMRP chooses C2 as the next forwarding node to send the packet at moment ts = 1.7s
(see Fig. 5.8 (a)).

Table 5.2: Parameters of two candidate nodes reported in their last beacon messages.

Candidate node x (m) y(m) vx (m/s) vy (m/s)
C1 x1= 500 y1= 500 vx1= 20 vy1= 20
C2 x2= 510 y2= 510 vx2= 2 vy2= 20
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Figure 5.8: Selection of a candidate node according to (a) ProMRP or (b) EProMRP.

Nevertheless, if we take into account the vx and vy speeds of each one of the candidates
to more accurately estimate their current positions at the exact forwarding moment (ts =
1.7s) when the packet is intended to be sent, we would be able to take a better forwarding
decision. Probabilities P(A−C1) and P(A−C2) of packet successfully delivered at destination
as a function of the distances till destination, will be thus computed using Eq. (5.1) by
applying the estimated current positions of C1 and C2. Those current estimated positions
will be used instead of the last reported ones via beacon messages (see Table 5.2). Notice
that the reported positions could be far from the current estimated positions at the
sending moment t1+0.7s. Thus, the reported positions could lead to a wrong selection for
the best forwarding node. According to the example depicted in Fig. 5.8 (b), EProMRP
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would detect that at ts = 1.7s, P(A−C1) > P(A−C2). Therefore, C1 would be selected as
the best forwarding node instead of C2.

Notice that at time t1 + ∆t, Pdns and PBW remain with the same previous value for both
C1 and C2 candidates. Therefore, the only term that changes is the one based on the
distance (Pdst) by using the estimated current positions in Eq. (5.1). Hence, the final
probability score (PNgh

) in Eq. (5.4) will be different from the previous one obtained
using the last beacon received at t1.

The benefits of our EProMRP proposal have the cost of a slight additional overhead. To
perform the EProMRP operation, we need to add two additional fields (16 bytes each
field) in the beacon message to allocate the speed’s coordinates (vx, vy) of the forwarding
candidate (see Table 5.2), together with the node’s position (x1, x2) computed in the
last BM sent. Nonetheless, this additional overhead is small and it payoffs the outcome
shown since the source node S will be able to accurately estimate the current candidates’
positions in the forwarding decision moment, see Fig. 5.8 (b).

For high mobility scenarios, an estimation on the current position will improve the per-
formance of any routing protocol in which its decision to choose the best forwarding node
depends completely or partially on the distance to destination metric [3], [67]. When
node S needs to forward a packet, it must estimate the current position of the forwarding
candidate nodes according to the equations described below, expressed for candidate node
C1 in Fig. 5.8:

xest1(∆t) = x1 + vx1 ·∆t, 0 < ∆t < Tb (5.6)

yest1(∆t) = y1 + vy1 ·∆t, 0 < ∆t < Tb (5.7)

where (xest1 , yest1) is the estimation of the current position of candidate node C1 at the
sending moment used by the node currently carrying the packet (node S in Fig. 5.8). The
node’s speed is represented by (vx1 , vy1); ∆t refers to the interval time elapsed since the
last beacon from that candidate node was received; Tb is the beacon period.

To select the next forwarding node for a packet, our algorithm arranges the neighbouring
vehicles of the node currently carrying the packet in a list, according to the score value
PNgh

for each candidate node Ngh obtained with Eq. (5.4). In that equation, our proposal
EProMRP outperforms the computation of the term Pdst, i.e. the probability of successful
delivery at destination as a function of the distance, for each candidate node. Those
probabilities are computed with the estimated current positions of each candidate node.

The estimation of the node’s position will be activated at the moment when a node needs
to send or forward a warning message (see Algorithm 3). Each current distance position
of the neighbour list is estimated and added to the distance probability computation.
Now, the distance probability values of the nodes correspond to their updated positions.
Therefore, the probability score could be more precise.
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Figure 5.9: Flow chart that shows the node selection sequence at moment t1 + ∆t.

As it is shown in Fig. 5.9, every time a message is sent (or forwarded), the node’s position
estimation will be done in those nodes that hop-by-hop forward the packet through the
network until reaching destination. Thus, with EProMRP, all forwarding decisions are
taken with a more accurate estimation of current neighbours’ positions in the forwarding
decision moment (see Fig. 5.7). Next, ProMRP and EProMRP simulations results are
presented below.

5.5 Simulation results

In this section, we describe the simulation scenario to carry out the performance evalua-
tion of our proposal and to discuss the results. Table 5.3 describes the main simulation
settings of the urban scenario considered. All figures show confidence intervals (CI) of
95% obtained from five simulations per point, with each simulation having an independent
mobility scenario. Simulations were conducted over VEINS [68], an open source inter-
vehicular communication simulation framework, together with an event-based network
simulator (OMNeT++) [69] and a road traffic simulator (SUMO) [9]. We implemented
3MRP [4] and GPSR [3] routing protocols for VANETs in the VEINS framework, in or-
der to compare their performance with our proposals ProMRP and EProMRP. To carry
out the simulations in a realistic scenario, we used a real city area obtained from the
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Eixample/Gracia districts of Barcelona and we imported the real map from the Open-
StreetMap [5] platform.

Table 5.3: Simulation settings of the VANET scenario.

Map Zone Eixample/Gracia Distric of Barcelona

Area 2300 m x 2100 m

Density of vehicles 50 and 100 vehicles/km2

Transmission range 340 m

Mobility generator SUMO v.25 [70]

MAC specification IEEE 802.11p

Nominal bandwidth 6 Mbps

Source bit rate CBR (2 pkts/s)

Beacon interval 1 s

Simulation time 100 s

Routing protocols GPSR [3], 3MRP [4], ProMRP, EProMRP

Vehicles’ speed 20 km/h to 50 km/h

Metrics distance to destination, vehicles’ density

and bandwidth

Simulation tool VEINS [68] / OMNeT++ [69]

We analyzed the performance of our probability-based routing protocols compared to
3MRP and GPSR. The simulation area was 2300 × 2100 m. We have considered two
vehicles’ densities of 50 and 100 vehicles/km2 with vehicles randomly positioned in the
map. The vehicles’ speeds are between 20 km/h and 50 km/h. Vehicles send packets to a
fixed destination (an access point, AP), through which vehicles are able to report traffic
information. Messages are forwarded using vehicle-to-vehicle communications in a multi-
hop way until the message reaches the infrastructure (i.e., the AP). In our particular case
we consider a warning message alerting on the existence of a traffic accident. We assume
a crashed source vehicle (its sensors detected the accident) that sends a warning message
concerning the accident in the scenario (see Fig. 5.10).
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AP

Figure 5.10: Simulation scenario of Barcelona. It includes an access point (AP)
located in a principal avenue of the city, Av. Diagonal. Eixample/Gracia district map

of Barcelona imported from the OpenStreetMap [5]

5.5.1 Average packet losses

Fig. 5.11 shows the average packet losses for our proposals ProMRP and EProMRP
compared to GPSR and 3MRP, for different vehicles’ densities. When the vehicles’ density
is low, their distribution is sparse and finding next forwarding nodes is not an easy
task. For the higher considered vehicles’ density (100 vehicles/km2), the average packet
losses decreases, since network connectivity improves compared to the sparser case (50
vehicles/km2). This is true upon a maximum vehicles’ density above which collisions
increase overmuch and affect the packet transmission process. This threshold is around
120 vehicles/km2 as it was shown in Fig. 5.4. We can see that the worst performance
is shown by GPSR. Additionally, we can see that considering various metrics (3MRP,
ProMRP and EProMRP) packet losses decrease in a considerable way compared to GPSR.
Besides, by including our probabilistic distribution model for each considered metric in
order to score each candidate node using Eq. (5.4) and take the corresponding forwarding
decisions (ProMRP), losses decrease 50% with respect to 3MRP in the high density
scenario.

The reason is that ProMRP achieves a more accurate selection of the best next-hop nodes.
Consequently, the performance of ProMRP clearly outperforms 3MRP and GPSR in
terms of packet losses. Furthermore, our proposal EProMRP is able to accurately correct
the position of the candidate neighbours at the moment of sending the message. We can
clearly see in Fig. 5.11 the benefits of including the estimation of candidates’ positions
on the obtained results, specifically in terms of lower packet losses. This improvement is
important in those critical situations when the density of nodes is low.
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Figure 5.11: Average packet losses. Our proposals ProMRP and EProMRP clearly
improve GPSR and 3MRP.

5.5.2 Average end-to-end packet delay

Fig. 5.12 shows the average end-to-end packet delay for the evaluated routing protocols
(i.e., GPSR, 3MRP, ProMRP, and EProMRP) under both considered vehicles’ densities.
For a low density scenario, the node currently carrying the packet has a low number of
neighbour nodes so the routing paths are unstable and unreliable producing higher losses.
Nonetheless, considering more metrics than just the basic distance to destination (as the
basic GPSR) we are able to guarantee a higher percentage of messages reception as shown
in Fig. 5.11, while also keeping low the average end-to-end packet delay as Fig. 5.12 shows.
However, although our both proposals ProMRP and EProMRP get similar results with
respect to GPRS and 3MRP in terms of average packet delay, their percentage of packet
losses is notably lower.

Figure 5.12: Average end-to-end delay. Our proposals ProMRP and EProMRP show
similar delays than 3MRP.
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On the other hand, including in EProMRP the correction in the node’s position at the
moment of sending a packet, shows that the choice of forwarding nodes is more efficient,
specially in the high vehicles’ density case. The delay in the low vehicles’ density case
also keeps a similar average delay compared to ProMRP.

5.5.3 Overhead

Fig. 5.13 shows the overhead incurred by each one of the routing protocols analyzed in
this chapter. GPSR is the protocol with the lowest overhead (13%), although it produces
the highest percentage of packet losses (around 65%) and the highest average packet
delay (around 18 ms), according to figures 5.11 and 5.12, respectively. Both, 3MRP and
ProMRP increase the overhead to 17% since they use two additional fields (16 bytes each
field) in the hello messages to carry the three additional metric values (node’s position,
available bandwidth and nodes’ density) used in the forwarding algorithm together with
the distance to destination metric (already included in GPSR). Nevertheless, the benefits
in packet losses and packet delay are notable as figures 5.11 and 5.12 show. Our proposal
ProMRP shows packet losses around 15-25% and packet delays around 15-17 ms. Finally,
our proposal EProMRP achieves the best performance in terms of packet losses (around
15%) and packet delay (around 10-15 ms), with a slightly higher amount of overhead
around 21%.
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Figure 5.13: Routing protocol overhead of our proposals ProMRP and EProMRP
compared to 3MRP and GPSR.

5.5.4 Computational cost and simulation time

Fig. 5.14 depicts the computational cost incurred by our proposals ProMRP and EProMRP,
compared to GPSR and 3MRP. To compute the computational cost of each routing proto-
col, we made an analysis of the number of operations and time incurred by the forwarding
algorithms used by the four routing protocols. The procedure used to derive the com-
putational cost is detailed in Section 2.4.4. The computational cost of the forwarding
algorithms used in GPSR and 3MRP is under 0.01 milliseconds, as it is shown in the



Chapter 5. A probability-based multi-metric routing protocol for VANETs in urban
scenarios 73

zoom box of Fig. 5.14. Instead, our proposed routing protocols increase this computa-
tional cost in the ranges of 0.1 to 1 milliseconds, with a peak that reached 3 ms for a few
packets. The slightly higher delay is the cost of the additional operations included in the
forwarding algorithms. Nevertheless, that extra delay is still very low and it pays-off the
benefits of our proposed routing protocols ProMRP and EProMRP.

Co
m

pu
tat

io
na

l c
os

t. 
Ti

m
e s

pe
nt

 b
y t

he
 al

go
rit

hm
 (s
)

Packet number

Figure 5.14: Computational cost squence of the routing protocols: GPSR, 3MRP,
ProMRP and EProMRP.

5.6 Conclusions

In this chapter, we present a new routing protocol named probabilistic multi-metric rout-
ing protocol (ProMRP) for VANETs specially designed for urban scenarios. ProMRP
includes three metrics (vehicles’ density, distance to destination and available bandwidth)
to take forwarding decisions based on a probabilistic scheme.

The probabilistic models to evaluate the three metrics have been derived previously offline.
After that, our proposals use the obtained models to asses the three considered metrics in
order to arrange the candidate nodes in the neighbourhood of the node currently carrying
the packet. In this way, the protocol chooses as next forwarding node the best one that
ensures the delivery of the packet with the highest probability, while keeping low the
average packet delay. Besides, an algorithm to accurately estimate the current node
position in the forwarding moment was included in the version named EProMRP. This
new proposal further improves the performance in terms of lower losses, while keeping
similar average end-to-end packet delays.

The modeling of the probability density functions of the three considered metrics was done
based on a previous offline analysis from a significant number of representative simulations
in urban scenarios. Thus, we can conclude that our proposal takes better forwarding
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decisions that guarantee the packet delivery at destination with higher probability than
the other proposals evaluated.

Our algorithm could be adapted and implemented in any VANET routing protocol that
uses a multi-metric algorithm to select the best next-hop node to forward information.
Our EProMRP proposal not only corrects the node’s current position when sending the
packet, but it also takes the best forwarding decision to successfully guarantee the delivery
of the packet.

Overall, this solution has shown the benefits obtained when using the forwarding decision
based on a packet arrival success probability score. Furthermore, including an estimate
of the node’s current position increases routing efficiency in terms of packet loss with
minimal cost. In the next chapter some classic machine learning models and a basic
neural network are presented.



Chapter 6

Overview of the machine learning
models (ML) used in our research

Machine learning has attracted increasing interest from the research community in the last
decade until it becomes nowadays one of the hottest science topics in several fields.

Machine learning algorithms are able to extract relevant information hidden in big data that
capture the complex relationship exhibited by inputs and labels. Nowadays, the most active
topic of machine learning is deep learning. Recently, deep learning models have been used
in many domains such as load forecasting, computer vision, and speaker recognition, among
others. The exponential growth of data is helping deep learning techniques to provide higher
performance solutions compared to the most learning algorithms. Additionally, training deep
learning models on a huge amount of dataset could be extremely efficient by using available high-
performance computing devices such as GPU or CPU cluster. Moreover, deep learning allows
computational models to learn representations of data with multiple levels of abstraction. This
approach provides more relevant information that will improve decision making processes.

A thorough overview of machine learning algorithms is presented in this chapter. Traditional
machine learning algorithms (i.e., decision tree, etc.) as well as artificial neuronal networks
(i.e., Feedforward, CNN, etc.) are explained. Several performance metrics of machine learning
models are presented and extensively explained. Finally, conclusions of this chapter are drawn
at the end.

6.1 Introduction

Machine learning (ML) is a research field that deals with the theory, performance, and properties
of learning systems and algorithms. Concretely, it is a tool that builds a computational model
based on an observed past experience. In ML, the learning process corresponds to adjust values
for specific parameters in such a way that the model matches best with the data it has already
seen during the training stage.

The process of learning from data is called training process. Based on this training process,
a general model through a particular set of parameters becomes specialized to the particular
tasks that underlie the data. The excellent performance of ML algorithms depends on how much

75
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and how good the amount of data (dataset) is. Therefore, data collection is an essential step,
since representative datasets vary not only from one problem to another but also from one time
period to the next one. This data collection will depend on the type of problem to solve and it
can be achieved from various repositories or by using monitoring and measurement tools [71].

Before starting building a machine learning model, the data needs to be organized and struc-
tured. A simple example of an organized and structured diabetes dataset is shown in Figure 6.1).
The aforementioned dataset is composed of the measurements (samples or observations) for a
set of patients [72]. Each sample contains the features (attributes, measurements or dimensions)
and the labeled data (output). Features are the predictors used to train a ML model. For in-
stance, the patient measurements (columns 2-9) will be the inputs of the ML model (features),
and the remaining column will be the outcome (label data). The output represents if the patient
is diabetic (“1”) or not (“0”).

Pregnancies Glucose BloodPressure Skin Thickness Insulin BMI DiabetesPedigree
Function Age Outcome

0 6 148 72 35 0 33.6 0.627 50 1

1 1 85 66 29 0 26.6 0.351 31 0

2 8 183 64 0 0 23.3 0.672 32 1

3 1 89 66 23 94 2.1 0.167 21 0

4 0 137 40 35 168 43.1 2.288 33 1

Samples 
(observations)

Features, attributes, 
measurements or dimensions

Label data 
(target)

Figure 6.1: Example of an extraction of some features values of diabetes dataset.

The general process flow to build ML algorithms is shown in Figure 6.2. Each block of the
process will be extensively explained as follows:
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Labels

Raw Data

Training
Dataset

Test	Dataset

Learning	
Algorithm

Labels

New	Data

Labels

Preprocessing Learning Evaluation Prediction

Model	selection	
Cross-validation
Performance	metrics
Hyperparameter	
Optimization

Feature	extraction	and	scaling	
Feature	selection
Dimensionality	reduction
Sampling

Final	Model

Figure 6.2: Process flow to build machine learning systems [6]

.

Preprocessing :
Within data preprocessing, we are able to organize and transform data into a suitable
format used for machine learning purposes. To do so, values of the features should be
normalized between zero and one. In some cases, those selected features may be highly
correlated, and therefore, they could be redundant to a certain degree. To overcome
this issue, several techniques can be used such as principal component analysis (PCA),
factor analysis, and linear discriminant analysis (LDA), among others. Once one of these
techniques has been applied, learning algorithms can run much faster.

The dataset now is ready to be divided into training and testing subsets.

i Training set : The sample of data used to fit the model. It is used to train and fit
the configuration parameters of the machine learning model.

ii Data validation: The validation set is used to evaluate a given model, to fine-tune
the model hyperparameters (i.e., parameters whose values are set before the learning
process begins) of the ML model [8].

iii Testing set : The sample of data used to provide an unbiased evaluation of a final
model fit on the training dataset. It is used to evaluate the final model. A set of
unseen data used only to assess the performance of the model.

About the dataset splitting ratio among the three phases (see Fig. 6.3), it mainly depends
on two things: (i) the total number of samples in the dataset and (ii) on the model we
are training. Furthermore, models with very few hyperparameters will be easy to validate
and tune, so we can reduce the size of our validation set. For instance, in our decision tree
algorithms (see section 6.2.2 we have two hyperparameters: tree depth and tree breadth;
in our ANNs (see section 6.3 and chapter 7) we have two hyperparameters: number of
hidden layers and number of neurons. A typical splitting ratio of the dataset into the
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three subsets, to have an initial reference, is 60% for training, 20% for validation and 20%
for testing. Nonetheless, the ratio should be chosen after conducting several tests to see
which are the most suitable dataset splitting ratios, taking into account the size of the
dataset.

Figure 6.3: Dataset spliting ratio.

Learning :
In this phase, different models can be run and compared, and the selection of the best
model is based on the values of a set of well-known performance metrics (e.g., accuracy,
sensitivity, specificity), which are summarized in section 6.4. Commonly, accuracy is used
to have a first idea of the performance of an ML model. The accuracy is defined as
the proportion of correctly classified instances. Furthermore, different cross-validation
techniques can be used where the training dataset is further divided into training and
validation subsets to estimate the generalization performance of the model. Generaliza-
tion refers to the ability of the model to adequately adapt to new data never seen before,
obtained from the same distribution as that used to create the model. A popular cross-
validation technique is K-fold, where every sample or record is used both in training and
test sets, see Fig. 6.4 [7].

Figure 6.4: Example of an K-fold cross-validation method (with K = 5) to validate
ML models [7].

Evaluation:
This phase deals with the evaluation of the trained model on the testing dataset. Perfor-
mance metrics will determine whether the trained model is having a good performance
or not. Conventional metrics to asses the performance of an ML model are the accuracy
and confusion matrix, among others [71].
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Prediction:
The final stage of a machine learning model consists in using the model to predict the
output of a given problem.

In the next sections, many types of representative machine learning models will be described.

6.2 Machine learning models

This subsection will briefly summarize several machine learning concepts. More specifically, we
will classify ML algorithms and describe two classical learning classification schemes. Obviously,
there are many more ML models published in the literature. However, we just selected those
with which we have compared our novel methodology to take the forwarding decisions based on
ML models. For more details about ML models in general, several books [6, 73, 74] provide an
extensive description and detailed explanations.

6.2.1 Classification of machine learning algorithms

Learning process is commonly classified in three categories, see Fig. 6.5: (i) supervised, (ii)
unsupervised or (iii) reinforcement learning. This classification is based on how the data is used
to train the models, as it is explained below:

MACHINE 
LEARNING 

SUPERVISED UNSUPERVISED REINFORCEMENT

Task driven
(Regression/Classification)

Data driven
(Clustering)

Algorithm learns to react to 
an environment

++
+
+

+

++ +

+ +
+

+
Environment

Action

Agent

Reward
Observations

Figure 6.5: Examples of classical learning classification.

• Supervised learning: Supervised refers to a set of samples where the desire output
patterns (labels) are already known [75]. Examples of supervised algorithms are logistic
regression (LR), naive bayes, support vector machine (SVM), artificial neuronal networks
(ANN) and random forest (RF). Application areas of this type of learning are fraud
detection, e-mail spam detection, diagnostic and image classification.
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• Unsupervised learning: This type of learning does not require labels to the observa-
tions. This approach is most suited for clustering problems to group data that has not
been labelled, classified or categorized [71]. Application areas of this type of learning are
dimensionality reduction e.g. principal components analysis (PCA), anomaly detection,
big data visualization to make it easy to show and analyse large amounts of data.

• Reinforcement learning: It enables learning from the feedback received through in-
teractions with the external environment. Here, an agent would learn in an interactive
environment by trial and error using feedback from its own actions and experiences. The
goal is to find a suitable action that will maximize the total cumulative reward of the
agent [71, 76]. Examples of this kind of learning are Markov decisions process and Q
learning. Application areas include gaming, financial sector, and robot navigation, among
others.

6.2.2 Decision tree algorithms

Decision trees (DTs) are a type of supervised classification approach. It is a simple represen-
tation to classify inputs, where data is continuously split according to a certain parameter. Its
name is given because its structure remembers the shape of a tree. A decision tree is a flowchart-
like tree structure composed by: (i) internal nodes representing features (or attributes), (ii)
branches representing decision rules, and (iii) leaves representing the outcome.

DTs are made up of a root and nodes, branches (edges), and leaves. Nodes represent circles
and the branches segments that connect nodes. Decision trees start from the root node, and
moves downwards through branches. The node where the chain ends is named as leaf node.
Two or more edges can be extended from each internal node. Root and internal nodes hold a
test over a given dataset attribute, and the edges correspond to possible outcomes of the test
(i.e., the pre-classified data described in Fig. 6.1). The division into classes is decided upon the
features that best divides the data. The data items are split according to the values of these
features. This process is applied to each split subset of the data items recursively. The process
terminates when all the data items in the current subset belong to the same class [77, 78].

DTs have two configuration parameters that determine the dimension of the tree, see Fig 6.6:

• Tree depth: The average number of layers (levels) from the root node to the terminal
nodes (leaves). We refer to the average depth of the tree.

• Tree breadth: The average number of internal nodes at each level of the tree. We refer to
the average breadth of the tree.

Tree depth and tree breadth concepts are indicators of the tree’s complexity. That is, the higher
their values are, the more complex the corresponding decision tree is [77].
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Root

Internal 
node

Internal 
node

Leaf 
node

Leaf 
node

Leaf 
node

Leaf 
node

Internal 
node

Leaf
node

Depth 0

Depth 1

Depth 2

Depth 3

Figure 6.6: General structure of a decision tree.

Generally, a decision tree works according to the next sequence of steps [79]:

i. Selection of the best attribute (i.e., the best internal node in the tree) using attribute
selection measures (ASM) to split the dataset records. The best attribute will be the one
whose knowledge contributes with more information from the classification point of view.

ii. Take a decision of the best attribute according to the previous step, and split the dataset
into smaller subsets.

iii. Build the tree by repeating this process recursively for each child (internal node) until
one of these conditions match:

- All the tuples belong to the same attribute value.

- There are no more remaining attributes.

The tree shape is build following some split methodology. There are different methods
to split decision trees giving a dataset. The most commonly used are: (i) Information
Gain, (ii) Gain ratio and (iii) Gini Index [80]. In our research work we have used the Gini
index, since it showed a better performance in our tests compared to the other two split
methods.

(i). Information Gain: The information gain is used to determine which characteristic
or attribute (input) of a data set provides the maximum information about a class
(output). Its objective is to reduce the level of entropy (degree of uncertainty,
impurity, or disorder) from the root node to the leaves nodes.
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(ii). Gain ratio: It is a modification of the information gain that reduces its bias. It
takes a number and size of branches into account when choosing an attribute. It
corrects information gain by taking the intrinsic information of a split into account.

(iii). Gini index: It is a method that measures the frequency with which a randomly
chosen item would be incorrectly identified. This means that an attribute with a
lower Gini index should be preferred. The Gini index degree varies between 0 and
1. A value 0 denotes that all the elements belong to a certain class. Alternatively,
if there is only one class a Gini index = 1 denotes that the elements are randomly
distributed in several classes. Thus, in the building of the decision tree, it is preferred
to choose the attribute or characteristic with the lowest Gini index as the root node.

Advantages and disadvantages of decision trees can be summarized as follows:

• Advantages: Decision trees are easy to understand and to see how they work. Their
tree structure permits to handle both numerical and categorized information. Besides,
they are easy to validate with usual performance metrics. Decision trees perform well
with reasonable computing power resources, and they work very well with a large set of
data.

• Disadvantages: A decision tree may create an overlay complex model, which depends
on the dataset selected in the training phase. Sometimes the resulting model can not be
easy to write (if it is too large) [81].

6.2.3 Bagged decision tree algorithms

Bootstrap aggregated (also called bagged) trees are a type of ensembled algorithms that can be
applied when a basic decision tree model does not perform well. Sometimes, individual decision
trees do not work well for two main reasons:

• On the one hand, they may have a high bias (under-fitting) that makes the model too
simple to adequately capture the underlying structure of the data.

• On the other hand, the model may present too much variance (overfitting) because it has
more parameters than can be justified by the data [8].

Bagged decision trees combine the results of several decision trees, which reduces variance and
helps to avoid overfitting. Bagging can be applied to tree-based algorithms to enhance the
accuracy of the predictions. Basically, the bagging method combines the predictions of several
basic learners (small trees) to create a more accurate output. When using bootstrapping with the
training dataset, N bootstrap samples are generated (1,2,...N), as it is shown in Fig. 6.7. Each
new bootstrap sample will act as another independent dataset drawn for a true distribution. For
each bootstrap sample, a classifier bi(x) is trained. Finally, a combined classifier will average
the outputs from all these individual classifiers, and therefore, an ensambled model is obtained
with less variance than its individual components.

b(x) =
1

N
·
N∑
i=1

bi(x) (6.1)
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By averaging weak learners’ outputs, the expected outcome is not changed but its variance is
reduced. Bagging can be used for classification and regression problems, and it is more effective
with small datasets [82]

• Bagging regression: The final prediction is the average of the predictions of the models
that are built over each bootstrap sample.

• Bagging classification: Voting is used to make final predictions. That is, the class
output by each model (weak-learners or classifier) can be seen as a vote and the class that
receives the majority of the votes is returned by the ensembled model.

Training	
data

Bootstrap	
sample	0

Bootstrap	
sample	1

Bootstrap	
sample	N

…

Learning	
algorithm	0

Learning	
algorithm	1

Learning	
algorithm	N

…
Classifier	0

Classifier	1

Classifier	N

…

0

1

N

Combined	
classifier	
(ensemble	
model)

Prediction

…

Kind	of	average	of	
weak	learners

Figure 6.7: A diagram of the bootstrap aggregation flow.

In bagging methods, the combination of weak learners in the right way can create more accurate
and/or robust models. It is important to highlight the fact that several instances of the same
base model are trained in parallel on different bootstrap samples, and they are independent of
each other. Then, they are aggregated in some kind of “averaging” process. This averaging
operation is done over the (independent and identically distributed -i.i.d.-) fitted models. These
bagging methods allows us to obtain an ensambled model with lower variance than its com-
ponents. For this reason, base models with low bias but high variance are well adapted with
bagging techniques. Advantages and disadvantages of bagged decision trees can be summarized
as follows:

• Advantages: Bagging and ensemble algorithms in general can improve the accuracy of
unstable models and decrease the degree of over-fitting.

• Disadvantages: Although bagging helps to reduce the variance, it is ineffective in reduc-
ing model bias. This method represents a more complex procedure to get a prediction.

In the next section, a more complex method to enhance the performance of ML models is
described. They are known as artificial neural networks or deep learning.
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6.3 Artificial neural networks

Artificial neural networks (ANNs) are today one of the hottest topics of artificial intelligence
and machine learning. ANNs are computational models based on the structure of the brain,
whose most significant property is their ability to learn from data. ANNs are a set of algorithms
that emulate the basic function of the human neuronal system aiming to recognize patterns.
These patterns are numerical, contained in vectors, and they represent real-world data such as
images, sound, text and so on.

ANNs can be arranged as sequences of layers. Layers are composed of individual neurons,
considered as the basic element in ANNs, similarly as the brain cells. The most widely used
neuron model is the perceptron. A perceptron performs basic mathematical operations (see
Fig. 6.8). Besides, perceptrons can be combined to form a multi-layer network, where nodes are
neurons and the edges are connections between neurons.

In the following subsections, we present the ANN structure used in this thesis work. We would
like to highlight that in our research work we have used ML techniques to design enhanced
forwarding algorithms to be used in our proposals of routing networks in VANETs under urban
scenarios. Therefore, we have not deepened in the mathematical knowledge of ML algorithms,
but in understanding ML algorithms to attain the required knowledge of these algorithms to
build our ML-based models. We have used specialized bibliography to study ML and specifically
ANN [74, 83].

6.3.1 General configuration parameters of ANN

As stated previously, the analogy of ANNs to neurons comes from replicating its operation as a
mathematical function that maps a given input to the desired output. This structure is known
as perceptron (see Fig. 6.8). The concept of perceptron was introduced by Frank Rosenblatt in
1957. A perceptron is a simple mathematical function that takes a set of inputs (xi), performs
a mathematical operation (activation function) to combine the input from the data with a set
of weights wi, and outputs the result of that operation in y.

y =

N∑
i=1

(xi · wi) (6.2)
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Figure 6.8: An example of perceptron with N = 5 inputs xi and one output y.

Multiple perceptrons can be combined to form a layered architecture, usually named multi-
layer perceptron (MLP). An MLP or neural network consists of this set of components, as it is
represented in Fig. 6.10:

- An input layer, x. This layer accepts input features and provides information from the
outside world to the network. It includes the numerical values that represent the input
data.

- An arbitrary number of hidden layers. Nodes of this layer are not exposed to the outer
world, they are the part of the abstraction provided by the ANN. These layers perform
computation on the features entered through the input layer and transfer the result to
the output layer.

- An output layer, y. This layer gives the information learned by the network to the outer
world.

- A vector of real-valued weights wi. They represent the strength of the outputs and the
connectivity between nodes

- A bias b, which is a real number that adjusts the boundary from origin without any
dependence on the input value.

- An activation function σ for each hidden layer. There are many types of activation
function. All of them have to satisfy the requirement to be non-linear. See Fig. 6.9 and
Table 6.1



Chapter 6. Overview of the machine learning models (ML) used in our research 86

Figure 6.9: Examples of activation functions used in neuronal networks.

Input	layer
Hidden	layer

Output	
layer

Hidden	layer

Figure 6.10: Example of a fully connected neural network with three layers: one input
layer, several hidden layers and one output layer.

Basically, a hidden layer in an ANN is a layer in between input and output layers, where artificial
neurons take in a set of weighted inputs and produce an output through an activation function.
From figure 6.10 we can see that nodes in the hidden layer are fully connected to the input
layer, and the output layer is fully connected to the hidden layers.

6.3.1.1 Activation functions

Activation functions are mathematical equations that determine the output in a neural network.
These functions take an input value, transform the input value, and pass the transformed value
to the next layer or to the final output layer to make a prediction. In Table 6.1 we present the
most common activation function used in ANNs.
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It is important to mention that the hidden units of the neural network need activation functions
to introduce non-linearity into the networks. Non-linearity makes multi-layer networks effective.
In the simplest case, each neuron performs the same mathematical operations using the same
activation function. Alternatively, in more complex neural networks the activation functions
used are different in the hidden layers than in the output layers [8, 91]. In our ANN model
we have used two activation functions: (i) a sigmoid function in the output layer, and (ii) a
simple ReLu function in the hidden layers. Both are well-known and commonly used activation
functions that have shown to perform well [90]. In our experiments, they showed a good trade-
off between simplicity and good results. In next chapter 7 we will present detailed explanations
of our ML-based models to design forwarding algorithms used in our routing protocols for
VANETs.

6.3.1.2 Neural network architectures

The architecture of an ANN refers to the way that individual artificial neurons are intercon-
nected. It also can be named as topology or graph of the ANN. This interconnection can be
done in several ways, resulting in numerous topologies. There is a general classification of
ANNs according to the network architecture, in two categories: (i) feed forward topology and
(ii) recurrent topology [85]. A brief explanation of these two classes is presented in the following.

(i). Feed-forward neural network (FNN): This is a graph where the information flows from
input to output in only one direction. There are no limitations on the number of layers,
activation functions used in each artificial neuron, or the number of connections between
them. Therefore, they can be either fully-connected or semi-connected. Common exam-
ples are the Perceptron and the MLP. They are used in computer vision, facial recognition
and medical diagnosis, among other applications [8, 85].

(ii). Recurrent neural network (RNN): This is a semi-cycle graph where some of the infor-
mation flows not only in one direction from input to output, but also in the opposite
direction. Information is transmitted both forward and backward. It uses its internal
memory to process any sequence of inputs. They can be full-recurrent or semi-recurrent.
RNN are used to recognize the sequential characteristics of a data and to use the pattern
to predict the next potential scenario [85, 92].
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(b)	Recurrent	neural	network(a)	Forward	neural	network

Hidden layer
Hidden layer

Figure 6.11: Two basic artificial neural network architectures.

Furthermore, from those first two main classes, other types of architectures emerged.

• Deep feed forward (DFF) neural networks: They are also known as long short term
memory-(LSTM) network. It is an improvement of RNN which extends their memory. It
is configured into blocks of ”long short term memory” that are capable of remembering
values for any length of time [92].

• Convolutional neural networks (CNN): This type of network is similar to FNN where neu-
rons have learn-able weights and biases. It contains hidden layers that include multiple
convolutional layers, pooling layers, fully connected layers, and normalization layers. This
kind of networks are useful in computer vision applications that involve image classifica-
tion and object recognition [93].

• Radial basis function (RBF) neural networks: They are a kind of network that considers
the distance of a point with respect to the center. They are used in power restoration
systems [93].

• Modular neural networks: A modular neural network has a number of different networks
that function independently and perform sub-tasks. They are used in target recogni-
tion [92].

• Self organized maps: They are designed to self-organize similar data which have not yet
been classified. They use unsupervised learning in the training phase to produce a low-
dimensional (typically two-dimensional) discretized representation of the input space of
the training samples, called a map. This way, they make a dimension reduction. [92, 94].

Next, the main performance metrics used to evaluate the different machine learning models,
including decision trees and neural networks, are presented.
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6.4 Performance metrics to evaluate ML algorithms

As previously described in section 6.1, an ML algorithm must be evaluated and compared with
other models to assess if it is useful for our implementation. It will basically depend on the trade-
off between benefits and complexity. Different performance metrics are used to evaluate ML
algorithms, commonly used with supervised learning algorithms. They are listed and explained
below.

• Confusion matrix
It is used to evaluate classification problems, where the output can be two or more classes.
It is usually structured as a square matrix that consists of columns and rows that list the
number of instances as ”actual class” vs. ”predicted class” ratios, see Fig. 6.12.

Predicted 
class

(TP)
True 

positive   

(FN)
False 

negative

(FP)
False 

positive

(TN)
True 

negative

Actual 
class

P N

P

N

1 0

10

Figure 6.12: A confusion matrix example.

Let us define the terms associated with a general confusion matrix. For instance, consider-
ing the example of the diabetes dataset described in Fig. 6.1, the output value corresponds
to 1 if the person has the disease and 0 if not.

– True positive (TP): It represents the cases when the sample output is 1 (true) and
it is predicted as also 1 (true). For instance, a patient that has diabetes, and the
model classifies his/her case as diabetes.

– True negative (TN): The cases when the actual class of the data point was 0 (false)
and the predicted is also 0 (false). For instance, a patient that does not have the
disease and the model classifies the case as not having the disease.
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– False positive (FP): Cases when the actual class of the data was 0 (false) and the pre-
dicted value is 1 (true). It means the model has predicted incorrectly. For instance, a
patient that does not have diabetes and the model classifies his/her case as diabetes.

– False negative (FN): Cases when the actual class on the data point was 1 (true)
and the predicted value is 0 (false). The model predicts incorrectly with a ”false”.
For instance, a person having diabetes and the model classifying his/her case as
no-diabetes.

In this sense, depending on the problem to solve, the goal should be to minimize either
FP or FN values. The confusion matrix is not used as a performance measure as such,
but most of the performance metrics used in ML are based on its values:

• Accuracy. This metric tells us if a model has been trained correctly or not. Also, we
can have an idea on how the model will perform in general. However, it works well only if
there are equal number of samples belonging to each class. Accuracy may not be a good
measure if the dataset is not balanced (i.e., both negative and positive classes have quite
different number of data samples). This performance metric is calculated as the sum of
correct predictions divided by the total number of predictions. This metric varies in the
interval [0, 1]. In the example of the diabetes dataset described in Fig. 6.1, this metric
answers the question ”How many patients did we correctly label out of all the patients?”

ACC =
TP + TN

FP + FN + TP + TN
(6.3)

• Error (ERR). This metric calculates the sum of all false predictions divided by the
total predictions. This metric varies in the interval [0, 1]. In the example of the diabetes
dataset described in Fig. 6.1, this metric answers the question ”How many patients did
we wrongly label out of all the patients?”

ERR =
FP + FN

FP + FN + TP + TN
(6.4)

• True positive rate (Sensitivity or Recall). This metric is useful for those cases when
the cost of false negatives is high. This metric corresponds to the portion of positive data
that are correctly considered as positive, with respect to all positive data [8]. This metric
varies in the interval [0, 1]. In the example of the diabetes dataset described in Fig. 6.1,
this metric answers the question ”Of all the people who are diabetic, how many of those
we correctly predict?”

Sensitivity =
TP

FN + TP
(6.5)

• False positive rate (Specificity). This metric corresponds to the proportion of actual
negatives which got predicted as negative, with respect to all negative data. This metric
varies in the interval [0, 1]. In the example of the diabetes dataset described in Fig. 6.1,
this metric answers the question ”Of all the people who are healthy, how many of those
did we correctly predict?”

Specificity =
TN

FP + TN
(6.6)

• Receiver operator characteristic (ROC). A common way to measure the perfor-
mance of a classifier is to use ROC curves. ROC is a probability curve used to select



Chapter 6. Overview of the machine learning models (ML) used in our research 94

classification models based on the performance of the Sensitivity with respect to the
Specificity, see Fig 6.13. The diagonal of ROC graphs means that classification models
under this diagonal line are considered as worse as random guessing. The area under the
ROC curve (AUC) is also a representative performance value. AUC represents degree
or measure of separability. It tells how much the model is able to distinguish between
classes. AUC takes values between 1 (perfect test) and 0.5 (useless test).The higher the
AUC, the better the model is at predicting 0s as 0s, and 1s as 1s.

False positive rate (Specificity)

Tr
ue

 p
os

iti
ve

 ra
te

 (S
en
sit
iv
ity

)

Receiver operator characteristic (ROC)

Figure 6.13: An example of an ROC curve [8]

.

The ROC curve shows the trade-off between sensitivity (or TPR) and specificity (1 –
FPR). Classifiers that give curves closer to the top-left corner indicate a better perfor-
mance. As reference, a random classifier would give points lying along the diagonal (FPR
= TPR). Therefore, the closer the curve comes to the 45-degree diagonal of the ROC
curve, the less accurate the test. On the contrary, a perfect classifier would fall into the
top-left corner of the graph with a true positive rate of 1 and a false positive rate of 0.

However, the ROC curve does not measure well for imbalanced data. Notice that a dataset
is imbalanced if at least one of the classes constitutes only a very small minority. The
reason is that since ROC plots TPR vs. FPR and TPR only depends on positives, ROC
curves do not measure the effects of negatives. [8].

• Precision. This metric helps to assess the performance of ML algorithms in cases when
the cost of false positives is high (i.e., a false alarm in the detection of any disease). It
corresponds to the number of correct positive results divided by the number of positive
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results predicted by the classifier. This metric varies in the interval [0, 1]. In the example
of the diabetes dataset described in Fig. 6.1, this metric answers the question ”How many
of those who we labeled as diabetic are actually diabetic?”

Precision =
TP

TP + FP
(6.7)

• F1-score. It is the harmonic mean between precision and recall metrics. This metric
balances the use of precision and recall to provide a more realistic measure of a test’s
performance. F1-score becomes 1 only when precision and recall are both 1, so it is a
more precise measure than accuracy. The harmonic mean since penalizes the extreme
values [8]. This metric varies in the interval [0, 1].

F1− score = (
Recall−1 + Precision−1

2
)−1 = 2 · Precision ·Recall

Precision+Recall
(6.8)

• Mean absolute error (MAE). This metric measures the average magnitude of the
errors in a set of predictions, without considering their direction. It is the average over
the test sample of the absolute differences between prediction (ŷ) and actual observation
(y), where all individual differences have equal weight. It is always non-negative, and
values closer to zero are better [95]:

MAE =
1

n
·
n∑
i=1

|yi − ŷi| (6.9)

• Mean squared error (MSE). The MSE of an estimator measures the average of the
squares of the errors, i.e., the average squared difference between the predicted value (ŷ)
and the actual value (y). It is always non-negative, and values closer to zero are better [8].

MSE =
1

n
·
n∑
i=1

(yi − ŷi)2 (6.10)

• Median absolute error (MedAE). The loss is calculated by taking the median of all
absolute differences between the true value (y) and the predicted value (ŷ). It is always
non-negative, and values closer to zero are better [95]:

MedAE(y, ŷ) = median(|y1 − ŷ1| , ..., |yn − ŷn|) (6.11)

• Mean absolute percentage error (MAPE). This metric measures the size of the
error in percentage terms. It is always non-negative, and values closer to zero are better
[96]:

MAPE = 100 · 1

n
·
n∑
i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣ (6.12)

There are several metrics that can evaluate the performance of a model. Sometimes, the accuracy
(measure of all the correctly identified cases) is sufficient. It is most used when all the classes
are equally important (with a similar number of instances). Accuracy alone is not a useful
measure whenever there is class imbalance. In such cases precision, recall, F1-score, area under
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ROC curves can be useful. All of the above performance metrics described are commonly used
to measure the performance of prediction models.

6.5 Conclusions

In this chapter, we have presented an overview of machine learning (ML) and artificial neural
networks (ANNs). Both ML and ANNs are a subset of artificial intelligence (AI), the main
difference is that ANNs are commonly applied to large datasets, and their architecture is more
complex. We have provided a general description, taking into account the classical classification
of the learning models and their more relevant algorithms.

Generally speaking, the learning process can be done in different ways such as task-driven, data-
driven, or learns to react to an environment. In the first part of the chapter, we have described
the main characteristics of two basic machine learning models that learn in a supervised way: (i)
decision and (ii) bagged trees. However, to design more efficient algorithms with higher accuracy
predictions, an advanced form of machine learning is needed, referred to as deep learning or (iii)
artificial neural networks. In the second part of the chapter, deep learning, which is based on a
layered system, is covered. An artificial neural network is a connection of several neurons that
compute the information. These neurons capture the statistical structure and therefore they
can create a joint probability distribution over the input variables. The main ANN components
and the general configuration parameters were described.

This introductory chapter about ML generally addresses the theory on which our research work
included in the next chapter is based. Note that, we are focused on methods and models that
permit to predict a specific result based on the previous information learned (experiences on the
past). In our context, it is to predict the best candidate node to forward data to destination.
In the next chapter, our case study is presented. Also, we introduce our proposals of ML-based
routing protocols for VANETs in urban scenarios.



Chapter 7

Multimetric predictive routing
protocols for VANETs in urban
scenarios

In this chapter, we present our ML-based proposals to improve a multimetric routing algorithm
for VANETs in urban scenarios. We have collected data and created a dataset to train our
machine learning models aiming to predict the VANET behavior from the point of view of
packet delivery probability. An appropriate validation phase is used to evaluate the performance
of our ML models. Afterwards, we use the designed ML-based forwarding model to predict in
a VANET urban scenario which is the best candidate node to forward a packet towards its
destination.

7.1 Results of this chapter

A manuscript with the results of the proposal presented in this chapter is in preparation. The
possible title of the manuscript as well as the names of the authors are as follows:

• Leticia Lemus Cárdenas, Ahmad Mohamad Mezher, Pablo Barbecho Bautista, Juan
Pablo Astudillo León, and Mónica Aguilar Igartua, ”Multimetric predictive routing pro-
tocols for VANETs in urban scenarios”, In preparation.

7.2 Introduction

Intelligent transport systems (ITS) have several components whose goal is to improve operation
and road safety in urban and rural transport. Nowadays, a lot of information is collected by
computational devices (e.g., sensors, cameras) available almost everywhere. This large amount
of properly managed collected data along with machine learning techniques, can be used to
develop useful tools to improve the aforementioned ITS. As observed in the previous chapter,
machine learning is the application of artificial intelligence which allows computers to predict

97
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outcomes and behaviors automatically without the intervention of human beings. One of the
main pillars of ML techniques is the ability to manipulate a large amount of data.

The scope of ML is very extensive due to the fact that the computational hardware capacity
has increased considerably in the last years. Today, many ML-based applications offer a large
amount of services, such as financial advice, marketing, sales, health-care, image recognition,
social media, and so on. In the field of ITS, ML benefits focus on issues such as transport
network, traffic flows, traffic signals, public transportation, driving styles, electric cars, car
sharing, among others [97].

In this thesis work, we considered interesting to adopt machine learning models to improve
routing in VANETs. The objective is to enhance the selection process of the next-hop candidate
node to forward a packet to destination. Also, it represents an efficient way to make forwarding
decisions on nodes based on predictions according to an ML algorithm.

Specifically, our contributions in this chapter are the following:

• We have created datasets based on the collection of different traffic metrics from VANET
simulations in urban scenarios. The five collected metrics values are:

– Available bandwidth

– Distance to destination

– Nodes’ density

– MAC layer losses

– Nodes’ trajectory

Notice that those metrics are gathered by nodes themselves from their neighbourhood
(i.e., in the region within their transmission range). Then, nodes periodically interchange
those values in beacon messages with their neighbours. This way, nodes have a local
knowledge of the VANET, which fulfils the decentralized operation required in VANETs.

• We have trained different machine learning models to assist our forwarding algorithms
aiming to get the best accuracy related to an expected outcome. Specifically, we train
our models so that the packet delivery probability is the maximum.

• Then, the designed ML-based forwarding algorithm with the highest accuracy will be
implemented in our routing protocol. Afterwards, their prediction power will be evaluated
in a VANET scenario where new data will be used to carry out a performance evaluation
of our proposals. Thereby, three different models were selected in the test validation: (i)
decision tree, (ii) bagged decision tree, and (iii) multi-layer artificial neural network. (i)
Decision trees are suitable for modeling our forwarding decision problem as they are based
on successive binary classifications that can be easily adapted to model our problem. Also,
they are simple to model, provide a simple visual representation of the data. Furthermore,
they are easy to be programmed for computer systems with IF/THEN/ELSE statements
and are fast to be executed. (ii) Bagged decision trees are also suitable to model our
problem at the cost of a higher computation complexity. Their structure and operation
is similar to decision trees. They improve the predictive capability of a single decision
tree since they depend on many decision trees instead of depending on a single decision
tree, Finally, (iii) ANNs are more complex prediction models build from an assembly of
nodes that look somewhat like the human brain. They have shown to perform better than
decision trees in our case.
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• Finally, we include a performance evaluation to assess the benefits and costs of our
proposals. The proposed ML-based forwarding algorithms do not incur any additional
overhead. We use just the same metrics gathered by the multimetric routing protocol
by means of periodic beacon interchange. Consequently, our algorithm generates the
same overhead as the basic multimetric routing protocol used to compare with. Results
obtained with our novel ML-based routing protocols are better by far compared to our
previous multimedia multi-metric map-aware routing protocol (3MRP) [4]. The benefits
are better in terms of packet losses at the cost of a slightly higher end-to-end packet delay
due to the calculation performed by the ML algorithm.

7.2.1 Motivation

The main motivation that led us to design the proposals presented in this chapter was to study a
new way to take forward decisions in VANET nodes. Our contribution in this matter lies in the
adaptation of the ML models designed taking advantage of the specific VANET characteristics.

To attain our goal, we have designed and tested different ML models aiming at improving the
network performance in terms of average packet losses and average end-to-end packet delay. We
focus our research work in urban scenarios where vehicles forward warning/reporting messages
to an RSU following hop-by-hop V2V and V2I communications.

To the best of our knowledge, there is no equivalent work in the literature on ML-based routing
protocols for vehicular networks. That is, no work has yet been published on improving multi-
metric routing protocols for VANETs where forwarding decisions are based on prediction using
machine learning methods.

7.2.2 Related works

In this section, we present the state of the art on machine learning solutions proposed for
VANETs to improve specific aspect. The wide search for related proposals has been focused
on looking for works that fulfill two requirements: (i) works that implement multimetric strate-
gies to select a next-hop node to forward information, and (ii) proposals whose strategies are
supported with ML model. However, the result of our search was not successful.

It seems clear from our search that the topic in vehicular networks most likely to benefit from
ML-based proposals is autonomous vehicles (AVs). Certainly, there are many recent proposals
of ML models to assist driving in AVs. For instance, we highlight [98] that proposes a traffic
control system based on random-forest (RF) predictions to determine AVs’ routes to reduce
congestion rates. Their proposal is able to reduce the burden on the human experts who
monitor and control AVs. In [99], the authors design and analyze deep learning architectures
based on convolutional neural networks (CNN) to enhance semantic image segmentation, which
is used in autonomous vehicles for self-driving. They propose fully convolutional neural (FCN)
models which are trained to obtain the maximum accuracy and lowest training time, keeping
precise their FCN model to segment objects.

Authors in [100] propose a ML model to predict vehicles’ mobility. More concretely, they propose
a centralized routing scheme with mobility predictions in VANETs assisted by a software-defined
network (SDN) controller using artificial neuronal networks techniques. The idea is to use the
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SDN controller to estimate and predict the vehicles’ arrival rate measured at road side units
(RSU) or at base stations (BS). Their proposal shows benefits in terms of successful transmission
probability and average packet delay in both V2V and V2I communications.

Another example is presented in [101], where the authors propose data delivery virtualization
using reinforcement learning (RL). They evaluate each one of the one-hop link status considering
the vehicles’ speed, vehicles’ density in the same direction, and average channel condition. Those
metrics are used to select cluster head (CH) nodes that will act as sender nodes. Then, they
design a game-theoretical multi-hop routing protocol that includes their RL model.

Authors in [102] present a proposal on link prediction by implementing supervised machine
learning techniques. A support vector regression is implemented to predict the vehicles’ trajec-
tory considering four mobility cases of the vehicle’s speeds: (i) high and constant speed, (ii) turn
case speed, (ii) parking or intersection speed, and (ii) when the vehicle starts to move. Their
proposal predicts link failures using machine learning and the vehicles’ trajectory knowledge.

In [103] we can see a proposal named reliable self-adaptive routing algorithm (RSAR) to design
a Q-learning based routing protocol. The basic idea is to use Q-learning algorithm to assess the
path from each source’s neighbor to destination using continuous interaction with the external
environment. With their Q-learning based algorithm they register a table with scores (Q) of
the node’s neighbors, computed from measures of link-availability, link life-time, and distance
to destination. Then, the neighbor with the highest Q-value is selected to forward the packet
towards destination. Similarly, we find another proposal presented in [104] where the authors
introduce a novel routing protocol for urban VANETs called RSU-assisted Q-learning-based
Traffic-Aware Routing (QTAR). QTAR learns the road segment traffic information based on the
Q-learning algorithm. In QTAR, a routing path consists of multiple dynamically selected high
reliability connection road segments that enable packets to reach their destination effectively.
Simulation results show higher average packet delivery ratios and lower average end-to-end
delays with respect to other traffic-aware routing proposals.

The previous proposals attack several forms to enhance vehicular communications. Some of
them require extra infrastructure or additional signaling overhead to assist the monitoring or to
transmit messages. We pose that a vehicle could take a smarter decision to forward a packet if
it knew in advance the probability to successfully delivery the packet regarding each candidate
node to be chosen as the next forwarding hop. In the next sections, we describe our proposal
to choose the best forwarding node in VANETs based on an ML-based prediction algorithm.

7.3 Dataset collected from multimetric measures in

vehicular urban scenarios

In any ML-based project, the first step prior to develop any model is to collect data and organize
it according to the ML model requirements. Furthermore, building a tagged dataset is not easy
in practice, as it strongly depends on the type of data to be observed. Most of the available
datasets regarding vehicular networks are those related to mobility patterns. Unfortunately,
there are not available datasets that deal with data packet flows in VANETs. In consequence,
it was firstly necessary to gather V2V and V2I information from a realistic urban scenario
using our OMNeT++/Veins/SUMO/OSM simulator. Specifically, our goal was to obtain the
probability of successful packet delivery under specific characteristics of the environment.
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To achieve our goal, we have used the same scenario previously presented in Section 5.5 to carry
out a large set of VANET simulations over an area of Barcelona city map (see Fig. 7.1). From
each simulation we have collected the values of five metrics, which are detailed in sec 3.2.2.1.
The general objective is that VANET nodes can take the best forwarding decision taking those
five metrics into account in the routing protocol. The five metrics considered are:

• Available bandwidth. Estimated in the link formed by the node currently holding the
packet and each candidate node in the neighbourhood to be the next forwarding hop.

• Vehicle’s density. It is the number of neighbours within the transmission range.

• Distance to destination. Euclidean distance computed from each neighbour to the
packet’s destination.

• Vehicle’s trajectory. It informs about the moving direction and speed towards destina-
tion, computed for each candidate node in the neighbourhood to be the next forwarding
hop.

• Average MAC losses. Percentage of packet losses computed in the MAC layer.

Figure 7.1: Urban area in Barcelona city. Map extracted with SUMO [9]. Simulation
area of 2300m x 2100m.

To collect these metrics from VANET nodes, we rely on periodic exchange of beacon messages
between neighbour nodes. In the considered scenario, reporting messages (e.g., regarding traffic
statistics or a traffic accident) are forwarded hop-by-hop from a source vehicle to a destination
(RSU) (see Fig. 5.10). To build a representative dataset, it is necessary to get a wide range of
results (i.e., the probability of packet successfully delivered) for all possible values in the five
considered metrics (see the list above). This way, we relate output values (probability of packet
successfully delivered) for each vector of input values (five considered metrics). Therefore, we
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have considered different possible configuration settings in our VANET scenarios. Among these
configuration features we highlight the vehicles’ density ranging from low to high values (20 to
300 vehicles/Km2), the average vehicles’ speed in urban roads (20 to 100 km/h) and different
positions of the source nodes in the map area. This way, we will have a complete representative
dataset that covers the maximum number of possible values in the five considered metrics
(distance to destination, trajectory, vehicles’ density, available bandwidth and MAC losses).
Recall that those five metrics are the inputs of our ML-based predictive algorithms to assist
routing protocols in VANETs (see Fig. 7.2).

The data collection process requires the following steps:

• Extract the values of the metrics in one hop. Obtain the corresponding output value, i.e.
the percentage of packets delivered for that configuration.

• The dataset can be organized in five columns with the values for the five metrics (x1, ...x5)
as inputs, and another column with the output values Y (0, 1),

• Our dataset consists of 6000 records, where each column corresponds to an output value
(Y ). This output value means whether the message was received (1) or not (0) at desti-
nation.

• Once we have enough information in our dataset, the machine learning models can be
trained and tested. The criteria used to determine whether enough data has been collected
or not, is basically the values of accuracy (training and testing) obtained by the ML-
based forwarding-decision models. We have created a large number of scenarios with
different configuration settings to fully cover the range of values for each routing metric
(i.e., distance to destination, trajectory, vehicles’ density, available bandwidth and MAC
losses). These values will be the inputs of the ML models, while the output will be the
prediction of the packet successfully delivered or not at destination.

We have collected normalized values for each metric. This is necessary so that the algorithms
can operate with them under the same range of values each, so that algorithms can mix them,
compare them, and use them in operations. The resulting dataset has the format shown in
Figure. 7.2).
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Figure 7.2: Appearance of our dataset. Features and labels for the training and
testing phases in our ML models.

Note that our target problem is clearly a binary classification problem because the expected
outcome has two possible values (0 and 1). Therefore, decision tree and bagged tree models



Chapter 7. Multimetric ML-based routing protocol for VANETs in urban scenarios 103

are suitable options to tackle our goal. ANN also will be used to model our ML-based forward-
ing algorithms, since they can handle binary data even better than decision trees. Of course,
the best fitted model will be the one that most accurately fits our data. Then, the next step
is to train classification algorithms and evaluate them through the typical machine learning
performance metrics summarized in chapter 6. Finally, those algorithms are implemented in
our proposal of VANET routing protocol and evaluated with our simulation framework OM-
NeT++/Veins/SUMO/OSM.

Table 7.1: Main characteristics and total time spent to build our dataset, including
data collection time and human processing time.

Main features of the dataset
collection process

Description

- Data size 713.2 KB

- Number of records 6000 (see Fig. 7.2)

- City map Representative area of Barcelona
city (see Fig. 7.1)

Processor Intel R© i7

Base clock frequency 3.4 GHz x 4

- Hardware (personal computer) RAM 32 GiB

OS type 64 bits

- Total running time in the simu-
lation process

3672 hours

- Human processing time Around 850 hours in total, during 7
months

To visualize the cost in time and human effort that has been required to generate the dataset,
Tab. 7.1 presents a summary with the most important characteristics that describe the process
of collecting the dataset to build our dataset. In the next sections, the training, validation
testing and implementation phases of our ML-based forwarding algorithms are presented.

7.4 Design of ML prediction models to enhance VANET

routing protocols: Decision trees and ANN algo-

rithms

Nowadays, researchers have access to large amounts of data that can be used to design useful
services and applications to be reverted to the users who generated that data. Big data is a
combination of diverse kind of data collected by organizations that can be mined for informa-
tion and used in machine learning projects, predictive modeling and other advanced analytics
applications [105]. Besides, current available computation power makes it possible to perform
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a large amount of tests and experiments to come up with efficient machine learning and neural
network models in a short time. In this section, we will describe the process for training the
three learning models (i.e., decision tree, bagged tree and artificial neural network) that we
have chosen in this thesis to design our ML-based algorithms to enhance multimetric routing
protocols for VANETs. We have performed different training runs over different models in order
to choose the best classifier for our dataset. Our dataset has been collected from a large amount
of representative simulations for VANETs in realistic urban scenarios. The best classifiers have
been chosen in terms of accuracy, prediction power, ease implementation and complexity. Our
goal is twofold:

• On the one hand, our objective is to find a ML-based forwarding-decision models that
learns and predicts better using our dataset, see section 7.3. To attain this objective we
have used Matlab [106], since this framework already has a full library with ML algorithms
and it is easy to use. We have used Matlab to design our ML-based algorithms, to test
them and validate them.

• On the other hand, we need a ML-based forwarding-decision models that can enhance
multimetric routing decisions in urban VANETs. Once we have done the design and anal-
ysis of our algorithms, we have implemented them in our OMNeT++/Veins/SUMO/OSM
simulator to asses a performance evaluation of our proposals in realistic urban scenarios.

7.4.1 Prediction model based on decision tree

Decision trees are prediction algorithms that are suitable to solve classification problems. As
previously described in Sec. 6.2.2, decision trees have different parameters that can be adjusted
and, depending on how they are configured, can lead to different performances. Among them,
the dimension or depth of the tree is one of the most important configuration parameters. It
should be noted that the higher the tree depth, the better the prediction power. However,
this implies a significant increase in the number of if − then − else operations. Consequently,
depending on the selected number of operations, the structure of the tree becomes more or less
complicated to be implemented in a simulator. In our design we have analysed the trade-off
between accuracy and complexity of the tree, so that we obtain the minimum dimension in the
ML models than satisfies a given accuracy and ROC curve.

We have used the MATLAB [106] classifier learners set to fulfil the preprocessing and learning
phases. Besides, we have done the validation of the dataset. To this end, we have imple-
mented the cross-validation method to avoid overfitting. Cross-validation is a well-known
technique that protects against overfitting by partitioning the dataset into folds and estimating
the accuracy of each fold, see Fig. 6.4. This strategy is highly recommended before training
any ML-based model, see sec. 6.1. After that, we have selected and trained the learning algo-
rithms to obtain the final models. Finally, we have chosen the best ML models with the highest
accuracy value.

Figures 7.3 and 7.4 show the ROC curves of the two trained decision tree classifier models. As
we explained in section 6.4, a perfect classifier would fall into the top-left corner of the graph
with a true positive rate of 1 and a false positive rate of 0. Contrarily, the closer the ROC curve
is to the 45-degree diagonal, the less accurate the test will be. Besides, the closer to 1 is the
area under the curve (AUC), the better is the classifier.
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Several decision tree models have been tested varying their configuration parameters. We show
in figures 7.3 and 7.4 two representative cases for different values of the tree depth. According
to the the ROC curve and the AUC value, it can be seen that the bagged decision tree with a
tree depth of 20 performs better than the simple decision tree with a tree depth of 6. Anyway,
both classifiers show a high percentage of accurate predictions.
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Figure 7.3: ROC of our decision tree
model with tree depth = 6.
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Figure 7.4: ROC of our bagged deci-
sion tree model with tree depth = 20.

To analyse if our model presents overfitting, we have obtained the accuracy curve of our decision
tree models trained and tested with our dataset, see Fig. 7.2. For instance, in Fig. 7.5 we show
the accuracy curve of our bagged decision tree, as a function of the tree depth, which varies from
1 to 50. In general, a lower tree depth will make the model faster but not as accurate, whereas
a higher tree depth increases accuracy but risks overfitting and may be slow. In the figure we
can see that the accuracy gets the maximum value from 20 and over. Furthermore, we can see
in Fig. 7.5 that the model is clearly overfitted. Note that if a model shows high precision during
the training phase but does not show similar precision during the testing phase, this indicates
overfitting. The overfitting problem occurs if during the training phase, the model learns the
complexity of the training data in such detail that it creates a complex function that can almost
map all input data to output data correctly, with very little error. In the case of overfitting,
the model shows high precision during the training phase but falls with low precision with the
test or data not seen.
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Figure 7.5: Accuracy curve for our bagged decision tree, as a function of the tree
depth. Notice the overfitting.
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We have selected two ML-based algorithms to model our framework: (i) a simple decision tree
with a tree depth of 6 (which we name as ML6), and (ii) a more complex bagged tree with
a tree depth of 20 (which we name as ML20). According to Fig. 7.5 we have chosen a tree
depth of 20 for the bagged tree, since from that value above the maximum accuracy is already
achieved in the training phase. We have used them to assist our multimetric routing protocol
for VANETs in urban scenarios. Recall that our goal is that the node currently holding the
packet can efficiently choose the better next hop to forward the packet to destination. That
best next hop will be the neighbour which provides the higher chance to successfully deliver the
packet at destination, according to our ML-based prediction model.

Table 7.2 presents the accuracy results of the training and learning phases corresponding to our
two ML-based algorithms. In this table, the characteristics of the configuration used to train
the ML algorithms are described.

Table 7.2: Training parameters and characteristics of the decision tree models used.

Training phase characteristics ML decision tree algorithm

- Data size: 6000 samples - Model 1: Simple decision tree, tree
depth= 6 (ML6)

- Predictors (5): available bandwidth, dis-
tance to destination, nodes’ density, MAC
layer losses, nodes’ trajectory.

- Split criterion: Gini’s diversity index
(see sec. 6.2.2)

- Accuracy: 76.2%

- Response classes (2): packet delivered or
not = [1, 0]

- Validation: 20-fold cross-validation (see
Fig. 6.4)

- Model 2: Bagged decision tree, tree
depth = 20 (ML20)

- Ensemble method: Bagged tree

- Accuracy: 89%

As a starting point, we have studied and tested classical ML-based prediction models, such
as decision trees. The best ML algorithm that we have found for our dataset (see sec. 7.3)
is a bagged decision tree of tree depth = 20. However, this algorithm shows overfitting (see
Fig. 7.5) and its accuracy can still be improved (see table 7.2). Therefore, the next step will
be to find a model that learns better than these two previous classifiers (see Appendix A.1).
We have investigated and designed a more complex and power kind of learning algorithms:
artificial neural networks (ANN). In Appendix A we show the three ML-based models (decision
tree, bagged decision tree and ANN) designed and the correspondent Phyton code that we have
generated.

In the next subsection, our neural network design is explained. To do so, we have used the same
training dataset (see sec. 7.3) than with our ML-based algorithms.
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7.4.2 Prediction model based on a multi-layer feed-forward neu-
ral network

ML defines a set of algorithms that parse data and learn from the dataset to build a model with
which later be able to predict results. ANN is a subset of machine learning algorithms classified
as deep learning models, which are designed to analyze data with the logic structure like how
we humans would draw conclusions.

Artificial neural network techniques belong to the set of supervised learning algorithms and
are implemented to solve, among others, classification problems. In this sense, we have used
our collected dataset to generate and obtain an artificial neural network model. The neural
network model was selected based on the highest accuracy value obtained for the training and
testing dataset. Next, we have followed the steps of an MLP construction, which was previously
summarized in section 6.3.1.

7.4.2.1 ANN architecture design

The model selected corresponds to a feed-forward neural network type with uncycle nodes and
hidden layers that are fully connected, see section 6.3.1.2 for more details. In this way, each
neuron receives input from all neurons from the previous layer. As mentioned before, an ANN
is composed of different layers, and how they are configured is related to the features and labels
of the training dataset. First, the set of features (xi) are our independent variables that form
the first layer (input layer). Second, the output dependent variable (Y ) corresponds to the
output layer. Finally, the hidden layers are not related to the features and labels of the training
dataset. Therefore, the values of the hyperparameters (i.e., number of hidden layers and number
of neurons) will be adjusted. The goal here is to tune those parameters to achieve a high metric
value, e.g. the accuracy. We have tested several neural network configurations before obtaining
the final design of our ANN model.

On the other hand, the activation and error function must also be selected. As previously shown
in Table 6.1, there are different activation functions. Nonlinear functions are commonly used
and widely applied, such as Sigmoid [84] and ReLU [87] functions. In particular, ReLUs are
simpler and faster to process. Note that, in a neural network the hidden layers may require
a high number of neurons, where each one must execute an activation function. Therefore, a
faster activation function is convenient in the neurons that compose the input and hidden layers.
In our ANN we have chosen the ReLU activation function in the hidden layers, whereas the
Sigmoid is selected as the activation function for the output layer.

The learning process of the ANN designed is described in the following:

• Back propagation. It corresponds to random output prediction, comparing those pre-
dictions with the true output. Thus, weights and bias are updated until the predicted
output comes closer to the true output. This updating process is executed based on the
calculation of error or cost function. For our case, we have used the mean square er-
ror (MSE), see eq. (6.10) [8]. This error function finds the difference between the true
value and the propagated values. The objective then is to minimize the MSE. Hence,
the smaller the cost, the more accurate the predictions are. Besides, the neural network
loss is minimized. That is, every time the error is calculated, it is required that weight
values in the intermediate layers be recalculated, as many times as necessary until the
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error cost be the minimum, tending to zero if possible. To do so, it is necessary to use
an adjusting function to update those weights values of the intermediate layers. We have
included in the learning process the Adam optimizer to update network weights iterative
based in training data. The Adam optimizer [107] is an adaptive learning rate optimiza-
tion algorithm that was designed specifically to train deep neural networks. Those values
are updated at each epoch of the training stage. This algorithm is commonly used for
its fast efficiency in deep learning compared to the classical stochastic gradient descent
algorithms [108].

• Hyperparameter selection. As already mentioned, our neural network topology is
based on feed-forwarding learning, where the layers are fully-connected. Remember that
we have defined in advance the characteristics of the input and output layers. These
layers are based on the features and classes of the collected dataset, see sections 6.3.1.2
and 7.3. Besides, two important parameters that define the network dimension still have
to be configured: (i) the number of hidden neurons and (ii) the number of hidden layers.
We have performed different ANN configurations varying the number of hidden neurons
and layers to find the best set of values in terms of validation metrics and complexity.
In this sense, the validation accuracy and validation loss metrics were calculated for each
configuration of number of hidden neurons and layers.

We have computed the validation metrics of the combination of (1, 2, 3, 5, 10) hidden layers
with (5, 10, 32, 64, 128, 256) neurons at each hidden layer. Fig. 7.6 shows the accuracy of the
three best results with the correspondent hyperparameter configurations. As it can be seen, the
three hyperparameter combinations show similar values of accuracy. However, the most simple
model (3 hidden layers, 128 neurons per hidden layer) has the highest accuracy. Note that a
more simple neural model means a lower computational cost in terms of number of operations
and activation functions in each layer. Therefore, we have selected the configuration model with
a number of hidden layers set to 3 with 128 neurons at each hidden layer.
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Figure 7.6: Accuracy obtained in our ANN model for different hyperparameter con-
figurations: number of hidden layers and number of neurons.

7.4.2.2 Training network

The training process in a neural network is the same as for any machine learning algorithm.
That is, we have to provide a set of features (inputs) and one or more labeled classes (outputs).
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In our context, we will use our organized dataset previously used for the decision trees (see
Fig. 7.2). However, an important point to take into account is how long (number of epochs) it
is necessary to train the ANN. The goal is to train the network long enough to be able to learn
the mapping from inputs to outputs but at the same time we should avoid having overfitting of
training data. Nevertheless, overfitting can occur when the model fits the data in the training
set well while incurring a major generalization error in the testing phase, see Fig. 7.5. Therefore,
it is important to detect at what point in the training the model falls into overfitting.

A good practice is to validate the error calculation during the training process by using some
validation technique. To avoid overfitting, we have used the early-stopping validation tech-
nique [109, 110]. The goal is to detect when overfitting starts during supervised training of
a neural network; training is then stopped before convergence to avoid the overfitting (early
stopping). Usually, the original training dataset is divided into a new training dataset and a
validation set. Also, the number of training cycles (epoch) that the model will repeat through
all training samples, must be set-up.

Fig. 7.7 shows the evolution of the loss function (MSE) throughout the epochs. Here we can
see the training loss (blue line) and the validation loss (orange line) around each training cycle
(epoch). In training, the value of the error may decrease as the number of repetitions increases
(see blue line). However, its real performance to unseen data (see orange line) may no longer
change. As it can be seen, the validation loss converges after 200 epochs. It indicates that the
model can no longer accurately predict beyond that number of repetitions. Therefore, we are
overfitting the model for epoch>200.
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Figure 7.7: An example of overfitting detection during the training phase.

By using the early-stop technique, the training will stop when the validation loss does not
decrease anymore. Besides, the more epochs are run, the more the model will improve. With
both the validation set and the number of epochs, the early stopping technique will avoid
overfitting the model. Thereby, we obtain a sufficient number of epochs that our model needs
to reach the maximum possible level of convergence. The building, training, and validation of our
ANN model have been implemented using the Keras [111] tool. With this tool, we have obtained
the final neural network model, ready to be implemented in our OMNeT++/Veins/SUMO/OSM
network simulator.
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The configuration parameters used in the training phase are described in Table. 7.3. In this
table we can see that we have used a dataset split ratio of 80% for training, 10% for validation
and 10% for testing. See section 6.1 for further information.

Table 7.3: Set of configurations parameters for the neural network training.

Parameter Value

Model architecture Neural network type Feedforward

Layer type Dense

Input and intermediate acti-
vation function

ReLU

Output activation function Sigmoid

Number of neurons 128

No. of input layers 1

No. of hidden layers 3

No. of output layers 1

Learning process Loss function Mean square error (MSE)
Eq. 6.10

Optimizer Adaptive moment estima-
tion (Adam) [108]

Evaluation metric Accuracy

Training model Training split 80% of the dataset

Validation split 10% of the dataset

Testing split 10% of the dataset

Number of epochs 200

Validation method Early stopping

7.4.2.3 Validation network

To validate the final design of our ANN model, we have obtained the ROC curve and the area
under the ROC curve (AUC), shown in Fig. 7.8. As it was explained in section 6.4, the AUC is a
parameter that tells how much the model is able to distinguish between classes, i.e. two classes
in our case (“1” means packet successfully delivered and ”0” means not). The AUC evaluates
the goodness of a test. It takes values between 0.5 (useless test) and 1 (perfect test). Thereby,
the test with the largest area under the curve is preferable. In our case, the AUC has a value
of 0.887, which means that there is an 88’7% probability that the diagnostic made to predict a
true positive value is more correct than that of a randomly chosen false positive. Note that, the
ROC represented in Fig. 7.8 corresponds to the ANN configuration that obtained the highest
accuracy value in the training phase, see section 7.4.2.1.
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Figure 7.8: ROC curve and area under the ROC curve (AUC) of our ANN model
once trained.

Finally, we have obtained our ANN model in relation to our collected dataset. The ANN has
1 input layer, 3 hidden layers, 1 output layer (i.e., ANN with 1/3/1). and 128 neurons at each
hidden layer. Fig. 7.9 shows the scheme of the final model architecture that we ave designed
following all the previous steps. Recall that our ML-based forwarding-decision models is going
to be used to assist the node in the vehicular network currently holding the packet to take
the better forwarding decision. That is, which is the best next hop to forward the packet and
successfully delivered at destination.
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In Fig. 7.9 we show the scheme of our ANN model designed to assist routing protocols in
VANETs. Our proposal will help the current node (i.e., a vehicle) holding the packet to take
the best forwarding decision so that it chooses the neighbour that gives the highest chance to
successfully deliver the packet to destination. In that figure, we can see the following informa-
tion:

• S: The output of our ANN. We have 2 classes: “1” means packet successfully delivered
at destination and “0” means it is not.

• i: It represents the input number, 1 ≤ i ≤ 5. In our case we have five features: distance
to destination, trajectory, vehicles’ density, available bandwidth and MAC losses.

• j: It represents the neuron number, 1 ≤ j ≤ 128.

• k: It represents the layer number, 1 ≤ k ≤ 5 (1 input layer, 3 hidden layers and 1 output
layer).

• xi: They represent the inputs to the first layer (input layer): available bandwidth, distance
to destination, nodes’ density, MAC layer losses and nodes’ trajectory.

• w(k)
i,j : Weights used in the ANN model. They represent the connections between layers

and show the strength of a particular node. w
(k)
i,j is the weight correspondent to input i,

neuron j, layer k.

•
5∑
i=1

xi · w(1)
i,j = Z

(1)
j , 1 ≤ j ≤ 128: It is the sum of weighted inputs at the input layer.

•
128∑
m=1

a(k−1)
m · w(k)

m,j = Z
(k)
j , 1 ≤ j ≤ 128, 2 ≤ k ≤ 4: It is the sum of weighted inputs at the

hidden layers.

• g(zki ) = a
(k)
j : They represent the activation functions at the hidden layers. We have used

the ReLu function, see section 6.3.1.

• φ(

128∑
j=1

a
(4)
j · w

(5)
j ), 1 ≤ j ≤ 128, 1 ≤ k ≤ 4: It represents the activation function at the

output layer. We have used the Sigmoid function, see section 6.3.1.

So far we have finished with the design of our ANN model. The next step is to include our ANN
model in the routing protocol to assist vehicles to take the best forwarding decision.

7.5 Scenario description for performance evaluation

We have configured the simulation scenario in our OMNeT++/Veins/SUMO/OSM simulation
platform, to carry out a performance evaluation of the proposals presented in this chapter. We
assume that network nodes in VANETs know their position and have road map information.
We also assume that nodes periodically interchange geographic coordinates, nodes’ density, and
speed with each neighbour node within their transmission range, using hello messages sent
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once per second. When a node receives a hello message, it updates its neighbours’ table. The
node calculates and normalizes a set of five metric values regarding each neighbour: available
bandwidth, distance to destination, nodes’ density, MAC layer losses and nodes’ trajectory.

The node currently holding the packet computes the five metrics for each neighbour. Afterwards,
the node uses our tree ML-based algorithms to predict the output (i.e., the packet will be
delivered or not at destination) for each neighbor. With this information, the node will arrange
its neighbours’ list and will take the best forwarding decision, as we will explain in this section.
The three ML-based forwarding-decision models are: (i) decision trees (ML6), (ii) bagged
decision tree (ML20), and (iii) artificial neural network. Once we have implemented the
three ML-based forwarding-decision models in the routing protocol, we have evaluated them
in two simulation tests. All the city maps have been generated from the OpenStreetMaps
(OSM) [5].

Test 1. The first test corresponds to the performance evaluation of the designed ML-based forwarding-
decision models in the same scenario from which the dataset was collected (see Fig. 7.1).

a. An urban area of Barcelona city. It is the scenario used to generate the dataset
(see Fig. 7.1), but with a relatively usual oreography for a urban scenario, i.e. it has
wide, narrow, regular and irregular streets. Simulation area is of 2300× 2100 m.

Test 2. The second test corresponds to evaluating how meaningful is the dataset. For this purpose,
we will use the ML-based forwarding-decision model with which the routing protocol
offered the best results. We are interested in knowing how generalized our dataset is,
thus, we need to test the correct prediction capacity of our model in new scenarios. In
other words, we will evaluate how flexible is our best ML-based forwarding-decision model
and assess if it is able to perform well in other scenarios. For that, we have configured
two new city maps in our simulation framework:

a. An urban area of Berlin city. It is similar in size as the scenario used to generate
the dataset (see Fig. 7.1), but with a more complex oreography of the scenario
(see Fig. 7.10). Simulation area is of 2500× 2500 m.

b. An urban area of Rome city. The area is larger compared to the Barcelona scenario,
with a very complex oreography of the scenario, with a lot of irregular streets (see
Fig. 7.11). Simulation area is of 3500× 2400 m.
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Figure 7.10: Urban area of Berlin city. Map extracted with SUMO [9]. Simulation
area is of 2500× 2500 m.

Figure 7.11: Urban area of Rome city. Map extracted with SUMO [9]. Simulation
area is of 3500× 2400 m.

To carry out all the simulation tests, we have configured the simulation parameters with the
values presented in Table 7.4. On the other hand, Table 7.5 summarizes the main features
of the three city maps (i.e., Barcelona, Berlin and Rome) and the different routing protocols
that we have used in each simulation phase: multimetric predictive ML-based routing protocols
(MPML), and multimetric predictive ANN-based routing protocol (MPANN).
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Table 7.4: Simulation parameters used to evaluate the performance of the ML-based
forwarding-decision models.

Parameters Values description

Vehicles’ density 50, 100 150 and 200 vehicles/km2

Data transmission rate 6 Mbps

Bandwidth 10 Mbps

Message size Beacon: 155 Bytes, Emergency: 259 Bytes

Source type Constant bit rate (CBR)

MAC standard IEEE 802.11p

Simulation time 100 s

Runs (95% confidence intervals) 5 repetitions per point

Simulation tools OMNeT++ [28]/Veins [68]/Sumo [70]/OSM [5]

Table 7.5: Simulation scenarios and VANET routing protocols used in each perfor-
mance evaluation.

Simulation scenarios Description

Phase 1:

Simulation urban area and map dimension Gracia district of Barcelona city,
2300 m x 2100 m

Routing protocols 3MRP [4], MPML (see section 7.6.1),
MPANN (see section 7.6.2)

Phase 2:

Simulation urban area and map dimension (i) Berlin city area (2500 m x 2500 m)
(ii) Rome city area (3500 m/ x 2400 m)

Routing protocols 3MRP [4] and MPANN (see sec-
tion 7.6.2)

7.6 ML-based proposals to improve forwarding deci-

sions in VANET routing protocols

In this section, we present simulation results of our proposals of routing protocols that in-
clude our ML-based forwarding models. In the urban scenarios implemented in the OM-
NeT++/Veins/SUMO/OSM framework, we consider four vehicle densities (50, 100, 150, and
200 vehicles/km2). We have implemented our proposals of ML-based forwarding models: (i)
decision tree (ML6), (ii) bagged tree (ML20) and (iii) artificial neural network (ANN). These
forwarding algorithms have been included in our VANET routing protocols so that nodes can
take the best forwarding decision based on their predictions.

We have applied our three proposals of ML-based forwarding algorithms, over a previous pro-
posal named multi-metric map-aware routing protocol (3MRP) developed by the directors of
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this thesis [4] [15]. All the figures with simulation results present 95% confidence interval (CI)
obtained from 5 repetitions per point,

• Firstly, we have implemented the decision tree (ML6) and the bagged decision tree (ML20)
models in 3MRP to see which one will perform better. As we will see in section 7.6.1,
the bagged decision tree outperforms the decision tree when they are included in 3MRP
to assist the forwarding algorithm. This way, we have called our proposal ”bagged de-
cision tree + 3MRP” as multimetric predictive ML-based routing protocol (MPML), see
section 7.6.1.

• Secondly, we have applied our ANN-based forwarding algorithm in 3MRP. As a result, we
have obtained our proposal named multimetric predictive ANN-based (MPANN) routing
protocol, see section 7.6.2. Results show that MPANN outperforms both 3MRP and
MPML.

• Finally, MPANN and 3MRP are compared under two other different city maps, see sec-
tion 7.7.2.

The performance evaluation of the routing protocols for VANETs is done in terms of average
packet losses and average end-to-end packet delay. Besides, we have also computed the compu-
tational cost of the different proposed forwarding algorithms. With all these measures, we will
be able to analyze the results and see the balance between benefits and costs in the performance
of our proposed routing protocols especially designed for VANETs.

7.6.1 Multimetric predictive ML-based (MPML) routing pro-
tocol

We have implemented our decision tree algorithms, previously presented in section 7.4.1, over
our previous proposal of routing protocol for VANETs named 3MRP [4]. The objective is to
propose a new prediction forwarding algorithm to select the best candidate node to forward the
packet in the next hop. Besides, different proposals will be evaluated aiming to select the best
option.

We have set a realistic VANET scenario to carry out the performance evaluation. In the first
experiments, we have tested both the simple decision tree model (ML6) and the bagged decision
tree model (ML20) running over the 3MRP [4] routing protocol to select the best next-hop node
to forward messages. However, as we will see in the simulation results, we found out that none
of the two models offered better results than 3MRP [4] in terms of packet losses. We realized
that the reason was that many candidate nodes in the neighborhood were equally scored by
the algorithm, so there was a draw among several candidates. To break the tie, we included an
additional rule to select the most suitable next hop forwarding node. The process is described
as follows.

• It is well known that any ML model learns from a specific dataset made up of different
features and classes. In our context, features represent the five metrics (i.e., available
bandwidth, distance to destination, nodes’ density, MAC layer losses and nodes’ trajec-
tory), whereas classes represent two values (“1” means packet successfully delivered and
”0” means it is not).
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• We have evaluated the importance of each metric as an additional parameter to take the
forwarding decision.

• We claim that knowing the importance of each metric in the dataset can help us to solve
the issue described above. That is, the additional rule that we have applied in case of
draw among several neighbours is to choose the one that shows the highest significant
metric.

Fig. 7.12 shows the importance of each metric in the dataset. That is, we have assessed the
influence of each metric on the results to see which one is the most decisive. To do so, we
have used the L1 regularization method. Regularization is a set of techniques that can
prevent overfitting in ML algorithms and thus improve the accuracy of the model when facing
completely new data from the problem domain. The L1 regularization method (also known as
Lasso regression) weights the vector values of a dataset to bring the features without useful
information to 0, remaining just those more important metrics. In this way, the incidence
distribution of each one of the features is reflected showing a sorted hierarchical importance [112].

According to the results shown in Fig. 7.12, we decided to include the two most decisive metrics
(i.e., vehicles’ density and trajectory) to assist the ML-based forwarding algorithms to break
the tie in case of draw when the node currently holding the packet has to take the forwarding
decision. This mechanism is activated only when two or more nodes have the same output
value in the evaluation of the decision tree model. In the next subsection, simulation results are
presented and analysed.
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Figure 7.12: Evaluation of the importance of each feature (routing metric) in the
forwarding decision: available bandwidth, distance to destination, nodes’ density, MAC

layer losses and nodes’ trajectory.

7.6.1.1 Simulation results. MPML routing protocol.

We have evaluated several versions of our 3MRP [4] [15] routing protocol for VANETs. Each
version has incorporated one of our trained ML-based forwarding models with its corresponding
configuration. The ML-based forwarding models that we have tried in this performance evalua-
tion are the ones that showed the best performance, see section 7.4. These are the configuration
that we have tested:
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• First, we have tested an improved 3MRP by incorporating our basic ML-based forwarding
models:

(i) 3MRP+ML6: 3MRP routing protocol including the ML-based forwarding algorithm
ML6, i.e. decision tree with tree depth=6.

(ii) 3MRP+ML20: 3MRP routing protocol including the ML-based forwarding algo-
rithm ML20, i.e. bagged decision tree with tree depth=20.

• Then, we have evaluated both ML-based forwarding models taking also into account the
two most important metrics (vehicles’ density and trajectory) to break the tie for equal
prediction values of neighbours. This process has been explained at the beginning of this
section 7.6.1.

• Therefore, we have these additional combinations:

(iii) 3MRP+ML6 + Dns: 3MRP routing protocol including the decision tree with tree
depth=6 and vehicles’ density as tie-breaker metric (ML6 +Dns).

(iv) 3MRP+ML20 + Dns: 3MRP routing protocol including the bagged decision tree
with tree depth=20 and vehicles’ density as tie-breaker metric (ML20 +Dns).

(v) 3MRP+ML6 + Tjr: 3MRP routing protocol including the decision tree with tree
depth=6 and trajectory as tie-breaker metric (ML6 + Tjr).

(vi) 3MRP+ML20 + Tjr: 3MRP routing protocol including the bagged decision tree
with tree depth=20 and trajectory as tie-breaker metric (ML20 + Tjr).

• The best configuration of all those ML-based forwarding models operating over our 3MRP
routing protocol, will be selected as our proposal named multimetric predictive ma-
chine learning-based (MPML) routing protocol.

Figs. 7.13 and 7.14 show the obtained results in terms of average packet losses, for the different
ML-based forwarding algorithms working over the 3MRP routing protocol. We have carried out
simulations varying the vehicles’ density, ranging from a sparse network (50 vehicles/km2) to
a congested network (200 vehicles/km2). We can see that results for the bagged decision tree
with tree depth=20 (ML20) and its two variations (always below 40%) are better than those
for the decision tree with tree depth=6 (ML6) and variations (below 60%). This is true except
for a very high vehicles’ density (200 vehicles/km2), although this density is too high and it is
unlikely to happen in urban VANETs. As an alternative, an intermediate solution would be to
implement a more complex hybrid mechanism able to switch between 3MRP +ML20 +Dns in
normal conditions and 3MRP +ML6 + Tjr under very high vehicles’ density situation (e.g., a
traffic jam). However, in next section we will see that ANN notably improves both ML6 and
ML20 even including the variations with the tie-breaker metrics.

In addition, we can see in general that after including a tie-breaker metric in the forwarding
decisions, a slight improvement has been obtained. The improvement is more noticeable for the
bagged decision tree with tree depth = 20. However, in some cases, results are variable and
inconsistent. Note that simple decision trees can easily be unstable because small variations in
the input data might result in a completely different tree. Conversely, bagged decision trees are
able to mitigate this effect. Certainly, we can notice more stable results for 3MRP using ML20

and using ML20 with its two tie-breaker metric variations, see Fig. 7.14.
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Figure 7.13: Average packet losses obtained with 3MRP [4] including the decision tree
classifier with tree depth = 6 levels (ML6). ML6 + Tjr and ML6 +Dns are variations
that include a tie-breaker routing metric (trajectory and vehicles’ density, respectively)

to break possible ties in the neighbours’ score. (5 rep./point, 95% CI).
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Figure 7.14: Average packet losses obtained with 3MRP including the bagged decision
tree classifier with tree depth = 20 levels (ML20). ML20 + Tjr and ML20 + Dns are
variations that include a tie-breaker routing metric (trajectory and vehicles’ density,
respectively) to break possible ties in the neighbours’ score. (5 rep./point, 95% CI).

Figs. 7.15 and 7.16 show the average end-to-end packet delay. We can appreciate that in both
cases considering the trajectory metric together with the ML-based forwarding algorithm helps
to decrease the delay. Certainly, the trajectory prioritizes those vehicles moving faster towards
destination, so consequently the delay will decrease.

Overall, these simulation results show that the best ML-based forwarding algorithm to as-
sist our previous 3MRP [4] multimetric routing protocol is obtained when 3MRP includes the
ML20 +Tjr ML-based forwarding algorithm, i.e. the bagged decision tree with tree depth = 20
together with the trajectory as tie-breaker metric. We have called our approach as multimet-
ric predictive machine learning-based (MPML) routing protocol. Anyway, we can see
in Fig. 7.14 that 3MRP +ML20 + Tjr offers packet losses that still are too high, around 40%
and even higher up to 85% for very congested VANETs. Therefore, we need to find a better
prediction model to enhance the 3MRP performance in VANETs. In next section, we present
our approach of a multimetric routing protocol for VANETs that includes our proposal of an
ANN-based forwarding model.
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Notice that in this section we are evaluating our ML-based proposals decision tree and bagged
decision tree, as well as their variations including one tie-breaker metric (trajectory or vehicles’
density). This way, we will see which is the optimal combination that is going to be named as
MPML. In section 7.7 we will carry out a complete performance evaluation of MPML compared
to our proposal MPANN (see next section), and also GPSR and 3MRP as references.

Figure 7.15: End-to-end average packet delay of 3MRP using our decision tree clas-
sifier with maximum depth equal to 6 levels. (5 rep./point, 95% CI).

Figure 7.16: End-to-end average packet delay of 3MRP using our decision tree clas-
sifier with maximum depth equal to 20 levels. (5 rep./point, 95% CI).

7.6.2 Multimetric predictive ANN-based (MPANN) routing pro-
tocol

In this section we present simulation results of our proposal named multimetric predictive
artificial neural network-based (MPANN) routing protocol. MPANN includes our ANN-
based forwarding model, described in section 7.4.2, in our previous 3MRP [4] routing protocol
to significantly enhance its performance.

MPANN has been trained with the parameters described in Table. 7.3. Similarly to our previous
proposal (MPML), MPANN has been evaluated using the area of Barcelona represented in
Fig. 7.1. In the following subsections, MPANN will be evaluated in terms of average percentage
of packet losses and average end-to-end packet delay.
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7.6.2.1 Simulation results. MPANN routing protocol

Fig. 7.17 shows the average percentage of packet losses for each vehicles’ density for our MPANN
routing protocol, compared to our proposal MPML presented in the previous section. As it can
be seen, especially for very high (200 vehicles/km2) and very low (50 vehicles/km2)) vehicles’
densities, the average packet losses are lower by far than those obtained with our MPML pro-
posal. Specifically, for MPANN, losses are below 23% for very sparse (50 vehicles/km2) and very
congested (200 vehicles/km2) vehicles’ densities. In particular, MPANN notably outperforms
MPML when the vehicles’ density is 200 vehicles/km2. For vehicles’ densities is medium-high
(100 to 150 vehicles/km2), packet losses for MPANN are approximately 16% lower than for
MPML. Note that for 100 to 150 vehicles/km2 there is a good vehicles’ density that improves
network connectivity with a low chance of collisions, which favours communications.

Notice that in this section we are evaluating our new proposal MPANN compared to the best
ML-based proposal using decision tree that we presented in the previous section, i.e. MPML.
In section 7.7 we will carry out a complete performance evaluation of MPML compared to our
proposal MPANN (see next section), and also GPSR and 3MRP as references.
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Figure 7.17: Average percentage of packet losses for MPANN and MPML routing
protocols under different vehicles’ densities. (5 rep./point, 95% CI).

Fig. 7.18 shows the average end-to-end packet delay for MPANN vs. MPML under different
vehicles’ densities. Note that for a very sparse density of vehicles there is a low connectivity
between network nodes, which increases packet delivery delay at destination. Additionally, in
case of a very high vehicles’ density, the network is more congested, which also increases packet
delivery delay at destination. The average end-to-end packet delay for MPANN ranges from
35ms to 42ms, whereas it ranges from 28ms to 82ms for MPML. Besides, a lower delay is
obtained with medium-to-high densities (100 to 150 vehicles/km2). In those cases, the network
is not congested and has a suitable number of neighbours to forward messages, and the average
end-to-end packet delay is low (under 20 milliseconds).
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Figure 7.18: Average end-to-end packet delay for MPANN and MPML routing pro-
tocols under different vehicles’ densities. (5 rep./point, 95% CI).

To sum up, we can see that our ANN-based forwarding algorithm performs significantly better
than ML-based forwarding models using decision trees. Results show that our MPANN pro-
posal is able to adapt better than MPML to the inherent VANET conditions, predicting more
efficiently with unseen data. In the next subsections, a further comparison with four routing
protocols for VANETs is done: our two ML-based forwarding algorithms MPML and MPANN,
compared to the well-known GPSR and also to 3MRP (from which our proposals are developed)
as a reference.

7.7 Performance evaluation of MPANN and MPML

under different urban scenarios

In this subsection, we will carry out a performance evaluation of proposals under different
VANET scenarios, which were described in section 7.5. The performance evaluation of each
routing protocol is evaluated in terms of average percentage of packet losses and average end-
to-end packet delay. We have also measured the run-time to perform the simulations, the
computational cost (in terms of time), and the overhead. In this way, we will be able to analyze
the pros and cons of our proposals, weighing the benefits and costs incurred.

We have organized our simulations in two groups:

Test 1. First, we will compare our proposals MPANN and MPML with GPSR [3] as a reference
and to our former proposal 3MRP [4]. We will use the same urban scenario depicted
in Fig. 7.1 as it was the scenario employed to generate the dataset used to train our
ML-based forwarding models. Additionally, we have included the well-known GPSR [3],
and the 3MRP [4] routing protocols in the evaluation, and they are compared with our
ML-based routing protocols MPML and MPANN.

Test 2. Second, we will evaluate and compare our best proposal of ML-based routing protocol
(MPANN) in other VANET scenarios different than the scenario used to train the designed
ML-based forwarding models. In this way, we can see how adaptable our approach is to
new scenarios with unseen data. In this evaluation we will only include the ML-based
forwarding model that showed the best performance in the previous Test 1. To this end,
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we have considered two new scenarios with different characteristics to carry out this new
performance evaluation:

– Berlin. Area similar to the Barcelona city map used in Test 1, but with a more
complex oreography. Details were given in section 7.5. The Berlin city scenario is
shown in Fig. 7.1.

– Rome. Area much more complex than the Barcelona map. Details were given in
section 7.5. The Rome city scenario is shown in Fig. 7.11.

7.7.1 Test 1: Analysis comparison of our proposals of VANET
routing protocols in the Barcelona scenario

This set of simulations were carried in the same simulation scenario used to collect the data and
create the dataset with which we trained the ML-based models, see Fig. 7.1. Of course, we have
used different simulation seed so the simulations are different, although the simulation settings
(map, area, street layout...) are the same.

We show results for four vehicles’ densities, ranging from very sparse VANETs (50 vehicles/km2)
where it is hard to find vehicles around and connectivity is low, to very congested VANETs (200
vehicles/km2) where the chance of packet collision is high. In this way, we model various VANET
scenarios, including low traffic intervals during the night or the weekend, normal traffic flows
during weekdays or even congested situations during traffic jams.

7.7.1.1 Evaluation of the average percentage of packet losses and the average
end-to-end packet delay

Fig. 7.19 shows the average percentage of packet losses for the four routing protocols for VANETs
analyzed: GPSR [3], 3MRP [4], MPML (sec. 7.6.1) and MPANN (sec. 7.6.2). We can see that
GPSR, which uses only distance to destination as routing metric, in general offers the highest
packet losses between 62% to 80%. We can see that 3MRP [4] shows better results than both
the reference GPSR and our proposal MPML in terms of packet losses. With MPANN losses
are below 25% in all vehicles’ densities, whereas MPML shows losses below 40% except for 200
vehicles/km2 with losses reaching 80%.

Obviously, our proposal MPML is not able to outperform our former multimetric proposal
3MRP specially for a very high vehicles’ density (200 vehicles/km2). This might happen in ML-
based models that use decision trees, whose hyperparameters (i.e., tree depth and tree breadth)
have to be chosen and whose dataset should be as much representative and large as possible.
Configuration and learning phases are very sensitive to ensure a good accuracy in the correct
prediction of the output during the performance evaluation phase.

Fortunately, our ANN-based proposal MPANN is able to outperform 3MRP in all vehicles’
densities. This fact saved us of having to do many more simulations to substantially enlarge the
dataset. Note that to obtain our dataset (which has 6000 registers) we have dedicated about
840 hours of human work and about 3600 hours of simulation, see table 7.1. In Fig. 7.19 we can
see that for MPANN, where the forwarding decisions are based on deep learning, a significant
improvement is obtained for all vehicles’ densities. With our MPANN routing protocol, the
average packet losses are less than 21% for all densities.
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Figure 7.19: Average percentage of packet losses for different vehicles’ densities. (5
rep./point, 95% CI).
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Figure 7.20: Average end-to-end packet delay for different vehicles’ densities.

Fig. 7.20 shows the average end-to-end packet delay for the same four routing protocols, and
for diverse vehicles’ densities. We can see that the highest delays correspond to our routing
protocols, i.e. MPML and MPANN. The reason is that since MPANN is able to lose less packets
than 3MRP, many of those packets followed longer paths and got to destination, consequently
increasing the average end-to-end packet delay. Notice that the ML-based predictive models
included in MPML and MPANN do not consume any significant amount of time, as it is shown
in section 7.7.1.3.

The increment on delay in MPANN is very small (maximum 40 ms) compared to 3MRP. Nev-
ertheless, this increase pays-off given the reduction in packet losses especially for MPANN. To
further assess the pros and cons of our proposals, we show in the next subsections the evaluation
of the four routing protocols in terms of running time and computational cost.

7.7.1.2 Evaluation of the simulation running time

The running time represents the time that each routing algorithms needs to complete a running
simulation for a specific configuration of the simulation settings, i.e. time to obtain a point
in each figure. OMNeT++ [28] is an event-based network simulator, and the time spent for
each simulation depends on the number of participating nodes. For each node that forwards
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the message, a set of operations must be executed. The running time increases as the number
of nodes increases. Also, the running time increases as the network area increases since longer
forwarding paths are potentially needed to reach destination (number of hops potentially would
increase).

Fig. 7.21 shows the running time taken for each routing protocol to perform 100 simulation
seconds, i.e. simulation time to obtain a single point in the figures of the performance evaluation.
For this experiment, we have considered an intermediate vehicular density of 100 vehicle/km2.
Simulations were carried out in a server with the features presented in Table 7.6. In that figure
we show the average of 10 simulations including CI of 95%.

Figure 7.21: Run-time consumed in a 100 sec-simulation in OM-
NeT++/Veins/SUMO/OSM. Vehicles’ density = 100 vehicles/km2, 95% CI.

Table 7.6: Hardware features of the server used to run simulations to obtain Fig. 7.21.

Server Ubuntu 16.4 LTS

RAM 251.4 GiB

Processor Intel R© Xeon(R) Gold 6138

Base clock frequency 2.00 GHz × 47

OS type 64 bits

Fig. 7.21 shows that GPSR [3] experimented the highest running time, about 12 hours per
point on average. This protocol selects the forwarding nodes based on the distance metric, and
when it switches to the perimeter routing mode, the delay can increase. With this perimeter
mode, long routes to the destination node (RSU) can be taken; even in the worst case, routing
loops may appear. Therefore, there are more events to be processed, which means a higher
running time. On the other hand, 3MRP [4] requires less running time than GPSR. Although
3MRP performs more operations since it handles five routing metrics (distance to destination,
trajectory, vehicles’ density, available bandwidth and MAC losses), the message forwarding is
more efficient. That is, 3MRP selects better forwarding nodes at every hop towards destination,
resulting in lower hop-count will and fewer nodes have to process messages.

Notice that in Fig. 7.21 we have included the running time spent by the 3MRP routing protocol
using our ML20 ML-based forwarding algorithm (3MRP+ML20 column). That is, we were
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interested in assessing the effect of including the trajectory as tie-breaker metric in the ML20

algorithm. We can see that 3MRP+ML20 took almost 9 hours to finish the simulation whereas
MPML (i.e., 3MRP+ML20 + Tjr) took 12 hours. This 3-hours extra running time is the price
to pay with MPML, which is able to decrease packet losses to 21% (see Fig. 7.19) while keeping
low packet delays below 40 ms. (see Fig. 7.20). In the same figures we can see that 3MRP [4]
offers packet losses below 30% and packet delays below 20 ms. That increase in delay comes
from including the trajectory as tie-breaker metric, which needs additional comparisons with
every neighbour. Anyway, the additional simulation time needed by MPML over 3MRP only
affects the researcher that evaluates the different proposals. What really matters is the increase
in computational cost that implementing our proposals would cause in real nodes. Given the
impossibility to use real smart vehicles in our experiments, in next section we present the
computational cost in terms of time required by our proposals. As we will see, this computational
time is really insignificant.

Also notice that 3MRP+ML20 shows less running time (almost 9 hours) compared to 3MRP
(almost 11 hours). Although the ML predictor also considers the same metrics than 3MRP for
route calculation, this computation is only based on a set of comparisons (if-then-else) that do
not demand significant extra computational time. Instead, 3MRP computes a multimetric score
for each candidate node using weights over the five corresponding metrics. That computation is
done for every node that has to forward a packet. The computation of the weighted multimetric
score used by 3MRP takes longer than the if-then-else comparisons used by ML20.

Finally, we can see that MPML (12 hours) took 1 hour more than 3MRP (11 hours) and MPANN
(11h:30m) took 30 min more than 3MRP. The extra delay incurred by MPML is due to the
ML-based forwarding algorithm (the time needed by the set of if-then-else comparisons) and
the extra arrangement of candidate nodes according to the tie-breaker metric of trajectory. The
extra delay incurred by MPANN is due to the ANN-based forwarding algorithm and the extra
arrangement of candidate nodes according to the tie-breaker metric of trajectory.

Nonetheless, this running time is just a researcher work time needed to assess the performance
of any new proposal. Once the performance evaluation has been analysed, what really matters
is the computational time needed by the nodes (vehicles) to run our routing protocols. This
measure is also important to be taken into account in the trade-off between pros and cons
of our proposals. As we will see in the next two sections, the computational cost incurred
by our proposals MPML and MPANN is below 0.2 msec, which is irrelevant considering the
improvements obtained in terms of percentage of packet losses and packet delay.

7.7.1.3 Computational cost, in terms of computational time

In this subsection, we have calculated the computational cost in terms of time of our ML-
based forwarding algorithms, i.e. ML6, ML20 and ANN. This metric is frequently used to
measure the efficiency and viability of a designed algorithm. To calculate the computational
cost we have analyzed the time incurred by each one of the forwarding algorithms used in the
routing protocols. We have made two experiments to obtain the computational time of our
proposals using Matlab: (i) A first experiment varying the vehicles’ density, and (ii) a second
experiment for a variable vehicles’ density throughout time. For these two experiments, we used
the hardware described in Table 7.7, see subsection 2.4.4. In both experiments, we generate a
traffic of 2 packets/sec. In this way, we are able to replicate in Matlab an equivalent sequence
of packets transmitted that we nodes would process in our OMNeT++/Veins/SUMO/OSM
simulation framework.
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Table 7.7: Hardware specifications of the personal computer used to obtain the com-
putational cost in terms of time.

Computer macOS Sierra Version 10.12.6
Processor Intel i7
Base clock frequency 2.9 GHz
Memory 8 GB 1600 MHz

(i). First experiment. In Matlab, we have generated random values (in the range [0, 1]) for
each normalized routing metric (i.e., distance to destination, trajectory, vehicles’ density,
available bandwidth and MAC losses). Vehicles have a transmission range of 340 meters.
We have considered four different values of the vehicles’ density: 50, 100, 150, and 200
vehicles/km2. We have used those values in Matlab to replicate an equivalent process of
evaluating each neighboring node when sending a packet that we would process in our
OMNeT++/Veins/SUMO/OSM simulation framework.

Fig. 7.22 shows the computational cost (in terms of time) of the evaluated ML-based
forwarding algorithms designed for VANETs. ANN is the ML-based forwarding algorithm
with the highest computational cost. ANN shows an increment of 0.02 msec in most of
the cases with respect to ML20 and ML6. However, these values represent insignificant
time ranges, compared to the end-to-end average packet delays shown by ANN in the
range 20-40 milliseconds, as it is depicted in Fig. 7.20. As it can be seen in Fig. 7.22, the
maximum value (time demanded by the CPU) is 0’028 msec. obtained when the vehicles’
density is the maximum considered (200 vehicles/km2), and thus the number of operations
is maximum too. In contrast, for the other two ML-based forwarding algorithms the
computational cost in average is in the range of 0.002 msec. The delay increment is due
to the cost of the additional operations included in the forwarding algorithms, especially
in ANN.

(ii). Second experiment. In this Matlab test, we have set the number of neighbours per
vehicle to be a random value in the range [1, 50]. This range of number of vehicles in
OMNeT++/Veins/SUMO/OSM would correspond with a vehicles’ density defined in the
range [2’75, 138] vehicles/km2 for a transmission range of 340m. In Fig. 7.23 we can see
that ANN produces a computational time of 25 µsec., whereas with ML6 and ML20 it is
around 1µsec. Even ANN gives 25 more times computational time than the others, this
value still is very small compared to the packet flow rate, so packets can be processed
quickly without any problem.
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Figure 7.22: Computational cost (in time) of our ML-based forwarding algorithms
measured in Matlab, for four vehicles’ densities.

Figure 7.23: Computational cost (in time) of our ML-based forwarding algorithms
measured in Matlab, for each incoming packet measured in a general node.

In summary, using Matlab we will emulate the same sequence of operations done over each
packet and for each neighbour as we would have had in the simulation framework. Then, in
Matlab it is easy to calculate the computational time dedicated per packet by the different ML-
based forwarding algorithms. Then, we can calculate the total computational time necessary to
process all the packets sent in a 100-sec simulation.

We have obtained the time spent by each ML-based forwarding algorithm (see Figs. 7.22 and
7.23). This way, we can assess the trade-off between benefits (shown in section 7.7.1.1) and costs
in terms of computational time. Effectively, the computational time needed is very low and it
rewards the benefits of MPANN in terms of average percentage of packet losses (see Fig. 7.19)
and average end-to-end packet delay (see Fig. 7.20).
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7.7.1.4 Overhead
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Figure 7.24: Overhead incurred by each ML-based routing protocol (3MRP+ML20,
MPML and MPANN) compared to GPSR [3] and 3MRP [4].

Fig. 7.24 shows the overhead incurred by each one of the routing protocols analyzed in this
performance evaluation. Although GPSR [3] has the lowest overhead (14%), it produces the
highest percentage of packet losses and highest average packet delay, see Fig. 7.19 and Fig. 7.20,
respectively. On the other hand, the other routing protocols (3MRP, 3MRP+ML20, MPML
and MPANN) increase the overhead to 22% (i.e., a relative 57% higher amount). The reason is
that those four routing protocols use additional fields (whose size is from 2 to 8 bytes) in the
hello messages to calculate the routing metrics. That is, our proposals MPML and MPANN
use the same additional fields included in our former protocol 3MRP [4], so there was no need
to increase the overhead. Those fields are updated by each node at the moment of sending
the current hello message. Those additional fields correspond to record the (vx, vy) velocity
coordinates of the node, a field for the MAC loss layer value, and a field for the nodes’ density
value. The explanation about the routing metrics (distance to destination, trajectory, vehicles’
density, available bandwidth and MAC losses) calculation were given in section 3.2.2.1.

These routing metrics, together with the distance to destination (included by default in GPSR [3])
are used by the forwarding algorithm to take the forwarding decision and choose the next node
to forward the packet. Besides, the ML-based routing protocols (MPML and MPANN) do not
produce any additional overload compared to 3MRP, since they use the same beacons structure
already established in 3MRP [4]. Although our prediction models include a small extra cost in
terms of packet delay (delay in MPANN is maximum 20 msec. higher than in 3MRP, accord-
ing to Fig. 7.20), the benefits obtained in terms of packet losses for MPANN are significantly
notable, as it is shown in Fig. 7.19. This improvement is achieved in MPANN without having
introduced any additional overhead with respect to 3MRP (see Fig. 7.24).

7.7.2 Test 2: Performance evaluation of the proposed MPANN
routing protocol in other city maps

In this second test, we have considered two different VANET scenarios where we have evaluated
our proposal MPANN (see section 7.6.2) and our previous proposal 3MRP [4] routing protocols.
These scenarios are different from the Barcelona city (Figs. 7.1), the scenario used to gather
data and create our dataset. In this last phase of our performance evaluation we want to assess
the flexibility of our proposals over other city maps. We have evaluated the performance of
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those routing protocols in an area of Berlin (Figs. 7.10 (similar in size and more complex in
street layout) and in an area of 7.11) (larger in size and much more complex in street layout).

Our goal is to validate if the prediction model of our ML-based forwarding algorithms can
classify correctly data in different city maps (different from the map from which we took the
data to train train the models). Besides, we have compared only protocol MPANN with the
multimetric 3MRP [4] because the neural network model performs better than the decision
trees, as we have already shown in the previous sections of this chapter.

Fig. 7.25 shows the average percentage of packet losses for both MPANN and 3MRP [4] routing
protocols, for the three different city maps, and for four vehicles’ densities. As it can be seen,
our MPANN routing protocol performs better in the three urban scenarios, even in the more
complex city map of Rome. Notice that for both routing protocols, the highest percentage of
packet losses corresponds to the Rome scenario, since the area of Rome is more complex with
narrow and one-way streets. The percentage of packet losses with MPANN is around 55% for a
sparse vehicles’ density and it improves for the 150 vehicles/km2 density to around 30%, since
the network connectivity improves. Overall, we see that MPANN outperforms 3MRP in around
5-20%.

On the other hand, MPANN over the Berlin map predicts more accurately than 3MRP, for the
four vehicles’ densities. MPANN achieves an average packet losses from 8% for 100 vehicles/km2

to a maximum of 18% for 200 vehicles/km2.
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Figure 7.25: Average packet losses for MPANN vs. 3MRP [4] in the 3 city maps
considered. (5 rep./point, 95% CI).

Fig. 7.26 shows the average end-to-end packet delay for both MPANN and 3MRP [4] routing
protocols, for the three city maps and for the different vehicle densities. On the one hand,
for the same map used to create the dataset (Barcelona city area), delays with MPANN are
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higher than with 3MRP [4], in around 18 to 40 milliseconds. However, MPANN offers a lower
percentage of packet losses than 3MRP in around 5-20%, see Fig. 7.25.

In the Berlin city area, which has a similar street layout as Barcelona city area, MPANN shows a
similar average end-to-end packet delay for the four vehicles’ densities, around 10 msec. 3MRP
offers more variable delays, from 10 msec. for 100 and 200 vehicles/km2 to 50 msec. for 150
vehicles/km2. In the Rome scenario, MPANN shows average packet delays under 20 msec. for
the four densities, whereas 3MRP offers a maximum delay around 60 msec for 200 vehicles/km2.

Overall, we can conclude that our ANN-based proposal of a routing protocol for VANETs called
MPANN, shows a good adaptation to the similar Berlin scenario. However, a low prediction
power is presented in the Rome scenario. The reason is that the model does not have enough
experience with a urban configuration so complex as the one of the Rome city. Although the
model can face new scenarios, its prediction power fails when the city layout differs a lot from
the city map used to create the dataset.

To tackle this issue we should include a larger amount of registers in our dataset, taken from
diverse cities with different street layouts, and then train the ANN-based model again. This is
one of the goals pointed out in the future work that will follow the research work of this thesis.
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Figure 7.26: Average end-to-end packet delay for MPANN vs. 3MRP [4] in the 3 city
maps considered. (5 rep./point, 95% CI).

7.8 Conclusions

In this chapter we have presented two novel ML-based multimetric routing protocols for VANETs
that are based on machine learning decision trees and on artificial neural networks: (i) Multi-
metric predictive ML-based (MPML) routing protocol (see section 7.6.1) and (ii) multimetric
predictive artificial neural network-based (MPANN) routing protocol (see section 7.6.2).
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For this purpose, we have created a dataset from a high number of simulations regarding an
urban scenario of a representative area of Barcelona city. In our simulations we have used a
wide range of vehicles’ densities, to gather data under sparse VANETs (50 vehicles/km2) as
well as under more dense scenarios (200 vehicles/km2). Our dataset has a size of 6000 registers
correspondent to the five routing metrics (distance to destination, trajectory, vehicles’ density,
available bandwidth and MAC losses) computed from the data interchanged between nodes
through periodic hello messages.

The dataset collected has been used to train the different learning algorithms that we have
designed and evaluated. Besides, the different prediction models have been validated using
traditional machine learning performance metrics (accuracy, ROC, AUC) and we have chosen
those that showed a better performance, see section 7.4.

We have designed three learning models: (i) one simple decision tree with 6 levels of depth
(ML6), (ii) bagged decision tree with 20 levels of depth (ML20), and (iii) a feed-forward artifi-
cial neural network (ANN-based forwarding model). Those ML-based forwarding models have
been implemented in our previous routing protocols 3MRP over our simulation platform OM-
NeT++/Veins/SUMO/OSM as the routing protocol. The design of our ML-based forwarding
algorithms has been presented in section 7.4.

To evaluate our proposals we have organized a performance evaluation using two tests (see
section 7.7). On the one hand, we have used the same city map with which the dataset was
created, i.e. a 2300m x 2100m area of Barcelona. Results of this Test 1 are shown in section 7.7.1.
On the other hand, we have performed a second Test 2 using two different city maps: a similar
area of Berlin and a larger and more complex area of Rome. Our goal was to measure the level
of flexibility and adaptation attained by our designed ML-based forwarding models MPML and
MPANN. For the experiments, we have configured four different vehicles’ densities. We have
compared our MPML and MPANN learning models with GPSR [3] as a well-known reference
and with our previous proposal of multimetric routing protocol name 3MRP [4] protocols. We
have carried out a performance evaluation whose results have been discussed in section 7.7.2.

In our performance evaluation of the diverse configurations of the ML-based forwarding algo-
rithms (see Fig. 7.13 and Fig. 7.14), the decision tree configuration with a maximum tree depth
of 20 (3MRP+ML20) shown better results than the option with a simple decision tree with tree
depth=6 (3MRP+ML6). One could think that the deeper the tree, the higher the prediction
accuracy. Nevertheless, this increase could lead to overfitting issues, which happens when the
model shows high precision during the training phase but falls with low precision with the test
or data not seen, see Fig. 7.5. For this reason we set a maximum tree depth = 20 to avoid that
issue.

On the other hand, we have evaluated the importance of each routing metric (i.e., available band-
width, distance to destination, nodes’ density, MAC layer losses and nodes’ trajectory) in the
training dataset. The feature importance has been computed with the well-known L1 regulariza-
tion technique [112]. From this analysis, the density and trajectory shown to be the most impor-
tant and decisive metrics. Including the trajectory as tiebreaker metric (3MRP+ML20+Tjr),
improvements in results have been obtained either for low and medium-high densities. We have
selected that configuration (3MRP+ML20+Tjr) as our ML-based routing protocol named mul-
timetric predictive machine learning (MPML). The performance evaluation and results have
been discussed in section 7.6.1.1. Besides, MPML demands just a slightly higher runtime and
computational cost compared to the basic 3MRP (see Figs. 7.21 and 7.22).
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Additionally, in section 7.7.2 we have evaluated our best proposal (MPANN) in three different
scenarios, and we have compared its performance to 3MRP [4] as a reference. The MPANN
routing protocol includes our proposal of ANN-based forwarding algorithm. (i) In a first test
we have done a simulation analysis with the same city map of Barcelona that we used to collect
the data to create the dataset used to train the ML-based forwarding algorithms. In this case,
the MPANN predicts the next-hop node more accurately than 3MRP, which leads to fewer
packet losses about 21% with respect to 3MRP (see Fig. 7.19), but with a slight increment in
delay about 40 milliseconds higher than with 3MRP (see Fig. 7.20). (ii) In a second test, we
have evaluated the capacity of the MPANN prediction algorithm under two different city maps.
That is, we have tested the prediction algorithm in new city environments. For that, we have
used two additional city maps: an area of Berlin similar to the Barcelona map although with
a little more complex streets layout, and a larger and much more complex area of Rome. In
particular, the MPANN algorithm performs better than 3MRP in all vehicles’ densities in the
Berlin map achieving packet losses lower than 20% for a crowed traffic density, and lower than
8% in a sparse traffic density (see Fig. 7.25), which are good results for VANETs scenarios.
In the much more complex city map of Rome, the algorithm had more difficulties to predict
accurately, achieving losses in the range of 35% to 55%. However, it still performed better than
3MRP in all cases. The performance evaluation and results have been discussed in section 7.7.

We have also evaluated the performance of our proposals in terms of (i) simulation run-time,
(ii) computational cost (in terms of time) and (iii) overhead:

(i). In Fig. 7.21 we see that the run-time of MPANN, MPML and 3MRP are around 11h
30min, 12h and 11h, respectively.

(ii). ANN shows an increment around 0.02 msec in the computational time with respect to
ML20 and ML6, see Fig. 7.22. However, these values are very small compared to the
end-to-end average packet delays shown by ANN in the range 20-40 ms, see Fig. 7.20.

(iii). Our proposals MPML and MPANN do not add any extra overhead compared to 3MRP,
since both routing protocols require the same header fields of the beacon messages as
3MRP [4] to carry the five routing metrics (distance to destination, trajectory, vehicles’
density, available bandwidth and MAC losses). The performance evaluation and results
have been discussed in section 7.7.

Finally, we can conclude that our designed MPANN routing protocol adapts very well in sce-
narios with similar streets layout as the Barcelona scenario. Note that the data was collected
using an area of Barcelona city to create the dataset used to train the ML-based forwarding
models. We selected a general and representative area of Barcelona that includes wide and
narrow streets as well as an avenue. However, we also conclude that it would be still advisable
to learn more with new data taken from other different scenarios to further generalize it. This
way, we would obtain a model able to adapt to most of the kind of city environments and street
layouts. As it is pointed out in the next chapter, as future work we will extend our dataset
with new values from new scenarios using heterogeneous city maps with very different street
layouts and orography. Nevertheless, it would just be necessary to conduct a large amount of
new simulations and process the data properly to include more registers in the dataset. Next,
we just would follow the same procedure explained in section 7.4.2 to train and validate our
improved version of the ANN-based forwarding algorithm. Finally, a performance evaluation
would show the outcome with respect the current version of our ANN-based multimetric routing
protocol over different kinds of cities.
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Table 7.8 concludes this chapter with the main features of our two proposals MPML and MPANN
machine learning-based routing proposals for VANETs, presented in sections 7.6.1 and 7.6.2,
respectively. Benefits and costs of implementing both ML-based routing protocols are presented.
On the one hand, the ML-based decision tree models ML6 and ML20, are simple and require
a low computational cost. They showed good results with the machine learning performance
metrics, but they were not so good in our network simulations. Results improved once we
included the trajectory (most decisive metric) as tiebreaker metric in the forwarding decisions.
On the other hand, the ANN-based forwarding model has a more complex architecture and
demands a higher computational cost. Nevertheless, it achieves a very good performance for
both machine learning performance metrics and network simulations. Besides, it has been able
to adapt pretty well in different network scenarios of different city maps.
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Table 7.8: Summary of the comparison between our two proposals MPML and
MPANN machine learning-based routing proposals for VANETs.

Proposal Features Benefits Cost and issues

MPML
(Multi-
metric
predictive
machine
learning)

- Routing mech-
anism based on
decision tree (DT)
rules.
- Goal: predict
which is the
best forwarding
node among the
candidate nodes
(neighbouring ve-
hicles of the node
currently holding
the packet) for each
packet towards its
destination.
- It includes a
tie-breaker metric
to improve the
forwarding decision
among nodes.

- DTs are simple to under-
stand and to interpret, and
they can easily be visualised
(see Appendix A.2).
- The cost of using the tree
(i.e., predicting data) takes
less run-time simulation.
MPML is built up with a
set if-else-then comparisons,
which do not require a signif-
icant load on the CPU (see
Fig. 7.21).
- High prediction power
was obtained with machine
learning performance met-
rics, (i.e., accuracy and ROC
curve) (see sec. 7.4.1)
- No additional control traffic
overhead is needed by the
routing mechanism (see
section 7.7.1.4).

- The network performance
does not reflect good re-
sults when it was evaluated
through network simulations
(see sec. 7.6.1.1).
- The most important metric
(according to a L1 regulariza-
tion analysis) was included to
improve the forwarding deci-
sions.(see Fig. 7.12). There-
fore, a tie-breaker metric was
included in the forwarding
routing decisions, which no-
tably improved the perfor-
mance (see. sec. 7.6.1).

MPANN
(Multi-
metric
predictive
artificial
neural
network)

- Routing mecha-
nism based on deep
learning methods.
- Goal: predict
which is the
best forwarding
node among the
candidate nodes
(neighbouring ve-
hicles of the node
currently holding
the packet) for each
packet towards its
destination.

- The network performance
reflects good results for both
validation with machine
learning performance metrics
(see sec. 7.4.2.3) and network
simulations (see section 7.7).
- The network performance
shows good results to new
unseen data from different
city maps (see Fig. 7.25).
- Additional overhead control
traffic is not added to the
routing mechanism, it uses
the the same hello message
structure as in 3MRP (see
section 7.7.1.4).

- ANNs are more complex to
model, and several training
runs were performed to ob-
tain the final model (see sec-
tion. 7.4.2.1).
- The cost of using ANN
(i.e., predicting data) takes
more running simulation time
(see Fig. 7.21). MPANN has
a complex architecture, and
it is composed of different
layers, and each layer con-
tains a set of neurons (see
Fig. 7.9). Also, the com-
putational cost is related to
the number of neighbouring
nodes that each forwarding
vehicle needs to evaluate (see
Fig. 7.22). Thus, this time
cost increases slightly with
high vehicle densities.



Chapter 8

Conclusions and future work

8.1 Conclusions

The main objective of this thesis was devoted to making contributions to design routing protocols
for vehicular ad hoc networks (VANETs) in urban environments. The general scenarios that
we have considered to carry out all the performance evaluations of our proposals are urban
environments with realistic traffic patterns and real maps. In these urban scenarios, VANET
routing protocols are responsible for forwarding the information generated by vehicles to the
city monitoring center through multi-hop vehicle communications.

We started our research work by analyzing some important aspects of the forwarding routing
mechanisms based on the nodes’ evaluation using a multimetric score. To enhance the nodes’
classification to be chosen as next forwarding node, we have made some adaptation to the
prediction of the current nodes’ positions, improving routing protocol’s effectiveness in terms of
lower packet losses. The corresponding results have been presented in chapter 4.

One of our main contributions to VANET geographic routing protocols is the modeling of
metrics. Using the probabilistic distribution of the considered metrics, we have designed a
probabilistic-based multi-metric routing protocol for VANETs to optimize the process of se-
lecting candidate nodes to forward information. Using our proposal we have obtained good
performance in terms of lower packet losses also a lower end-to-end packet delay, according to
the results presented in chapter 5.

Besides, we have also developed machine learning models to improve our multi-metric routing
protocols for VANETs. For this purpose, we have collected a dataset with traffic metrics values
by performing an extensive simulation campaign process.

Then, we have generated prediction models based on machine learning and deep learning algo-
rithms to be applied in the forwarding decision process of the VANET routing protocols. Results
show notably improvements in the network performance in terms of lower average packet losses
and computational cost, as chapter 7 shows.

Below, we list the main contributions made in the research work during the development of this
thesis:

137
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• Firstly, we studied the state of the art regarding geographical routing protocols in VANETs.
These kind of routing protocols have shown to be suitable for VANETs since they take
forwarding decision following a hop-by-hop scheme. Also, these protocols can adapt more
easily to dynamic topologies and cope with the potentially low link lifetimes inherent
in VANETs. To this end, they use local information and low signaling overhead. We
took the proposal named multimedia multimetric map-aware routing protocol (3MRP)
[4], previously developed by the tutors of this thesis [15], as a starting point to develop
or proposals. In this sense, we have proposed two contributions to improve 3MRP. (i)
On the one hand, a weighted power mean function (W-PMF) to improve the selection
of the best forwarding candidate which was presented in [39]. (ii) On the other hand,
an improvement to the 3MRP multimetric protocol (3MRP+) for VANETs which was
proposed in [40]:

(i) Weighted power mean function (W-PMF). Different weighting strategies for
the 3MRP metrics were analyzed. We have obtained a multi-metric score value to
arrange the candidate nodes. Our analysis has shown that the best way to combine
the diverse metrics we have considered, is to use the geometric mean function. With
this strategy, we have obtained the lowest average packet losses by maintaining a
low delay. We have presented analysis and results in chapter 4.

(ii) Improved multimedia multimetric map-aware routing protocol (3MRP+).
This proposal selects more accurately the forwarding nodes, estimating the current
position at the moment of forwarding the message. Therefore, our proposal is better
adapted to network conditions, especially when the speed of the nodes increases. As
a result, the percentage of packets successfully delivered at destination from nodes
with high speed, increases. Furthermore, we have not generated an overload, since
we have no modified the frequency of the beacons nor introduced new fields in the
beacon header. We have presented analysis and results in chapter 4.

• Secondly, we have studied the most important approaches that include strategies to for-
ward packets following a hop-by-hop scheme. Most of the current proposals of VANET
outing protocols are based on a hop-by-hop forwarding operation, since it has shown to be
a suitable strategy for VANETs. Those strategies usually evaluate one or several routing
metrics to take the forwarding decision, i.e. to choose the next hop (among the vehicles
in the neighbourhood of the node currently holding the packet) to forward the packet. In
this sense, we claim that the packet receptions according to a hop-by-hop scheme repre-
sent a sequence of events, i.e., the event of successfully deliver or not a packet to the next
forwarding node. Those events can be modeled with a probability distribution, like the
one that we have presented in chapter .

To attain our goal, we have performed a large number of simulations under different
representative scenarios to collect a new dataset to develop our model. With this col-
lected information, we have modeled a probability distribution to successfully deliver the
packet based on three metrics: (i) available bandwidth, (ii) vehicles’ density, and (iii)
distance to destination. Thus, by the offline dataset analysis, a statistical model for each
metric was obtained. Then, we used the metrics models to design a new forwarding al-
gorithm included in our proposal named probability-based multi-metric routing protocol
(ProMRP), presented in chapter 5. ProMRP selects as the next forwarding node the
best neighbour that ensures the delivery of the packet with the highest probability, while
keeping low the average packet delay. Further, we have also included an accurate estima-
tion of the current position of the nodes, obtaining an improved version of the protocol
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called enhanced ProMRP (EProMRP). This new version improves the network perfor-
mance showing lower losses and similar average end-to-end packet delays. Moreover, our
algorithm could be adapted and implemented in any VANET routing protocol that uses
a multi-metric algorithm to select the best next-hop node to forward information.

• In the last part of this Ph.D. dissertation, we have studied and analyzed how to design a
novel forwarding decision scheme in VANETs based on learning models. This way, we use
prior knowledge of VANET performance to dynamically adapt the routing operation. As
starting point, a new dataset of collected results was obtained to assess the probability of
successful packet delivery focusing on five metrics: (i) available bandwidth, (ii) vehicles’
density, (iii) distance to destination, (iv) nodes’ trajectory, and (v) packet losses in the
MAC layer. We have used the dataset to obtain three machine-learning based models
that work with high precision. Then, we have included them to two novel learning-based
routing protocols: (i) a multimetric predictive ML-based routing protocol (MPML), and
(ii) a multimetric predictive ANN-based routing protocol (MPANN). Both proposals have
been resented in chapter 7.

Different VANET scenarios with different network sizes and different city maps have been
considered to evaluate each proposal. Besides, the learning-based routing algorithms
have been evaluated in two different scenario conditions. On the one hand, the network
performance of each model has been evaluated in the same data collection scenario. On
the other hand, the learning model that obtained the best performance has been evaluated
in the second testing phase, considering a scenario with different city maps. The objective
here is to measure the ability of our model to adapt to new network conditions.e have
presented our contributions about machine-learning based multimetric routing protocols
for VANETs in urban scenarios:

(i) We have developed two prediction models based on decision trees that have been
presented in chapter 7. We named the models as ML6 and ML20, with a dimension
or tree depth of 6 and 20, respectively. The higher the decision tree depth, the
better the prediction power, but at the cost of a higher computation complexity.
After doing several tests, we got an optimal depth of 20 above which the accuracy
converged, showing a good trade-off between complexity and good results in terms
of fewer losses.

(ii) Furthermore, we have also analysed the influence of each metric to break the tie
(in the output to score the neighbour nodes candidates to be chosen as the next
forwarding hop) in case of draw in the decision of both algorithms ML6 and ML20.
This way, we have seen that the use of the trajectory metric to break the tie can
further improve the decision forwarding in the routing protocol. Numerical results
in chapter 7 have shown that this scheme performs better, specially under high
vehicles’ densities.

Our proposal MPML routing protocol, which includes the proposed ML based pre-
diction model using the trajectory as the tie-break metric, has shown the lowest
percentage of packet losses (around 25%) for all vehicles’ densities. However, the
end-to-end average packet delay shows a slightly increase in the delay. The rea-
son is that the percentage of packet losses was higher for the other ML algorithms
considered, thus a lower amount of packets arrived to destination. Those packets
usually traveled lower distances so their packet delay is lower. Anyway, our proposal
MPANN based on an artificial neural network has shown even a better performance.

(iii) After an extensive performance evaluation using a representative Barcelona city map,
we have concluded that our best proposal is the one based on neuronal networks,
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named multimetric predictive artificial neural network-based (MPANN) routing pro-
tocol. Moreover, we have also conducted another set of simulations to evaluate the
performance of MPANN in other city maps: (i) A similar area in Berlin city and
(ii) a more complex and bigger area (narrow and wide streets) in Rome city. We
have also shown the outcome of MPANN in those scenarios compared to 3MRP as
a reference, since this multimetric routing protocol was the starting point of our
proposals. MPANN performs better than 3MRP in terms of average percentage of
packet losses and average end-to-end packet delay.

∗ In the Berlin city map (area with a semi-Manhattan road structure) our pro-
posal MPANN shows a 2-35% improvement in the percentage of packet losses
and a 2-40% improvement in average end-to-end delay, compared to 3MRP.

∗ In a more complex area of Rome city, MPANN shows a 10-35% improvement
in the percentage of packet losses and up to 50% improvement in average end-
to-end delay, compared to 3MRP.

(iv) Finally, we have also evaluated other evaluation metrics to assess the trade-off be-
tween benefits and cost for of each proposal of VANET routing protocol. We have
computed (a) the computational cost and (b) the incurred overhead.

– The neural network prediction algorithm presents the highest computational cost.
Certainly, the number of operations done in the algorithms of the learning models
consume quite CPU time. The number of operations grows with the number of
nodes involved in the forwarding decision, so the computational cost increases with
the vehicles’ density. Anyway, computational cost varies in a range of microseconds
with the ordinary computer we used, which is not a significant delay.

– Finally, in regard to the overhead cost, it is not increased in any of the ML algo-
rithms proposed with respect to the reference 3MRP. The reason is that our routing
algorithms based on ML prediction use the same information as the multimetric
routing protocol 3MRP, being not necessary to add any other new field in the bea-
con headers.

In general, we think that our contributions presented during this research work may have an
impact on the vehicular networks area and may help the work of future researchers. Some of the
results obtained have been reviewed by experts in the area and have been published in articles of
international prestige (see next section). On the other hand, the improvements achieved when
applying prediction models for multi-hop routing of information in vehicular networks, reflect
the efficiency of its propagation more adapted to the inherent conditions of the environment.
In addition to this, having implemented decision mechanisms based on machine learning and
deep learning models, we have taken vehicular routing under a smarter approach supported
by big data. In summary, including ML-based models in the communication mechanisms be-
tween vehicles, at the end favors improving mobility in cities, thus reducing pollution levels and
improving citizens’ quality of life.

8.2 List of publications generated during this thesis

In this section we list the publications result of the research done during the thesis. Most of the
contents of this dissertation have been published in the following journals and conferences:
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• Leticia Lemus Cárdenas, Ahmad Mohamad Mezher, Pablo Andrés Barbecho Bautista,
Mónica Aguilar Igartua, ”A Probability-Based Multimetric Routing Protocol for Vehic-
ular Ad Hoc Networks in Urban Scenarios”, IEEE ACCESS, ISSN: 2169-3536, Vol.7,
Iss.1, pp.178020-178032, 2019. IF(2018): 4.098; JCR: Q1 (Telecommunications
category) DOI: 10.1109/ACCESS.2019.2958743. [54]

• Pablo Barbecho Bautista, Leticia Lemus Cárdenas, Luis Urquiza Aguiar, Mónica
Aguilar Igartua, ”A Traffic-Aware Electric Vehicle Charging Management System for
Smart Cities”, Elsevier Vehicular Communications, ISSN: 2214-2096, Vol. 20, 2019. IF(2018):
3.530; JCR: Q2 (Telecommunications category) DOI: 10.1016/j.vehcom.2019.100188.
[113]

• Leticia Lemus Cárdenas, Ahmad Mohamad Mezher, Pablo Barbecho Bautista, Mónica
Aguilar Igartua, ”Multimetric predictive routing protocols for VANETs in urban scenar-
ios”, In preparation.

Conferences

• Ahmad Mohamad Mezher, Leticia Lemus Cárdenas, Julián Cárdenas-Barrera, Ed-
uardo Castillo Guerra, Julian Meng, Mónica Aguilar Igartua, ”Improved Selection of the
Best Forwarding Candidate in 3MRP for VANETs”, IEEE Symposium on Computers
and Communications (ISCC 2019), DOI: 10.1109/ISCC47284.2019.8969580, Barcelona,
Spain. pp.1-6 2019. [39].

• Leticia Lemus Cárdenas, Ahmad Mohamad Mezher, Nely Patricia López Márquez,
Pablo Barbecho Bautista, Julian Cárdenas-Barrera, Mónica Aguilar Igartua, ”3MRP+:
An improved multimetric geographical routing protocol for VANETs”, 15th ACM PE-
WASUN, DOI: 10.1145/3243046.3243056, Montreal, Canada.pp. 33–39, 2018. [40].

• Cristhian Iza Paredes, José Antonio Uribe Ramı́rez, Nely P. López Márquez, Leticia
Lemus Cárdenas, Ahmad M. Mezher, Mónica Aguilar Igartua, ”Multimedia commu-
nications in vehicular ad hoc networks for several applications in the smart cities”, XIII
Jornadas de Ingenieŕıa Telemática (JITEL 2017),DOI: 10.4995/JITEL2017.2017.6584, Va-
lencia, Spain. pp.212–215, 2017. [114]

8.3 Future work

During the development of this Ph.D. thesis, several issues have arisen which we think de-
serve further research in the future. Some potential research directions and improvements are
summarized below:

• Design of a dynamic beacon frequency based on some representative network parameters.
In an urban environment, vehicles can move through a wide range of kind of roads, e.g.
narrow streets or main avenues in the city. Such conditions may not require the same
frequency to report hello messages, which could lead to a more efficient use of the network
resources. Thus, it could be interesting to have a smart mechanism to make the beacon
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frequency vary dynamically according to the current network conditions. Our contribution
to this goal would be to use our machine-learning models to apply derived knowledge to
assess optimal beacon frequency values.

• Design of a new multimetric scoring model to arrange neighbouring nodes. This model
will be derived from the analysis of the correlation between the several metrics and the
results on the probability to successfully delivering packets to destination.

• Train and obtain an ML model from the collected data set considering which are the most
decisive metrics according to generalization method analysis. With those results, we will
design a novel efficient algorithm for VANETs.

• Obtain a global dataset that gathers results of all representative possible scenarios. Our
goal is to generalize as much as possible the collected data set to generate a new deep
learning-based prediction model. To accomplish our goal, we will need to do these tasks:

– Classify the different and most common types of cities in the world, regarding size,
vehicles’ densities, shape of roads and streets and other city infrastructure.

– For each type of city, we will generate a representative map. Then, we will adapt
them to be compatible with the simulator.

– Generate a large amount of simulations to collect new values to feed our dataset.

– Train machine learning models to generate a new prediction algorithm to be used
in our machine-learning routing protocols for VANETs.

– Finally, evaluate the new routing ML algorithms under different VANET scenarios,
and report the evaluation results.

• To facilitate the above process, we plan to generate a useful tool available to researchers
who have to face the same type of tasks. This tool will automate in a user friendly
framework each of the tasks using scripts, methods and mechanisms that we have used
through the research work of this thesis.



Appendix A

Machine learning (ML) and artificial
neural network (ANN) models
designed in this thesis

In this appendix, various code fragments are provided. In particular, we present the Python code
that we have used to generate the different machine learning models. The choice of Python as
a programming environment reflects how simple and understandable it is to generate a learning
model from scratch given a meaningful dataset.

A.1 ML-based forwarding model using decision tree

Figure A.1 shows the Python code used to generate the ML-based decision tree that we have
designed (see section 7.4.1). For this purpose, we have used the scikit-learn project [115], which
is a free software machine learning library for the Python programming language [116, 117]. As
it can be observed, the imported dataset does not receive special processing, since all features
and labels are already normalized (see Fig. 7.2). Therefore, we have only defined the columns of
the dataset, which correspond to the inputs, and the binary output. Besides, we have selected
the percentage of data that will be used for training and testing, respectively. Then, the gini
criterion has been used to build the decision tree in conjunction with 20-fold cross-validation
(see table 7.2). Finally, Figure A.2 shows the generated decision tree, while Figure A.3 shows
one of the branches of this tree.
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Figure A.1: Python code to generate our ML-based forwarding model using decision
tree (see section 7.4.1).
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Figure A.2: ML-based decision tree (see section 7.4.1).
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Figure A.3: Detail of our ML-based decision tree (see section 7.4.1).

A.2 ML-based forwarding model using bagged deci-

sion tree

On the other hand, Figure A.4 shows the ML-based bagged decision tree that we have designed
(see section 7.4.1). As it can be seen, a similar methodology is used to train this ensemble tree,
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the only difference is that we have to provide the characteristics for every single tree. In this
case, the bagged tree contain a combination of multiple single trees where each one will have a
tree depth of 20 levels. Figures A.5 and A.6 show, in a graphical way, the resulting ML-based
bagged decision tree.

Figure A.4: Python code to generate the ML-based forwarding model using bagged
decision tree (see section 7.4.1).
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samples = 26
value = [0, 26]

samples = 2
value = [2, 0]

samples = 1
value = [0, 1]

den <= 0.102
samples = 534

value = [255, 279]

mloss <= 0.971
samples = 311

value = [196, 115]

den <= 0.093
samples = 150
value = [90, 60]

traj <= 0.588
samples = 384

value = [165, 219]

traj <= 0.611
samples = 91

value = [44, 47]

bw <= 0.995
samples = 59

value = [46, 13]

dist <= 0.798
samples = 11
value = [10, 1]

traj <= 2.441
samples = 80

value = [34, 46]

samples = 6
value = [6, 0]

traj <= 0.599
samples = 5
value = [4, 1]

samples = 1
value = [0, 1]

samples = 4
value = [4, 0]

dist <= 0.477
samples = 76

value = [34, 42]

samples = 4
value = [0, 4]

dist <= 0.015
samples = 18
value = [4, 14]

dist <= 0.589
samples = 58

value = [30, 28]

samples = 2
value = [2, 0]

bw <= 0.998
samples = 16
value = [2, 14]

dist <= 0.085
samples = 15
value = [1, 14]

samples = 1
value = [1, 0]

dist <= 0.08
samples = 6
value = [1, 5]

samples = 9
value = [0, 9]

samples = 5
value = [0, 5]

samples = 1
value = [1, 0]

samples = 4
value = [4, 0]

bw <= 0.89
samples = 54

value = [26, 28]

traj <= 0.978
samples = 12
value = [9, 3]

bw <= 0.977
samples = 42

value = [17, 25]

samples = 1
value = [0, 1]

bw <= 0.85
samples = 11
value = [9, 2]

bw <= 0.837
samples = 6
value = [4, 2]

samples = 5
value = [5, 0]

bw <= 0.342
samples = 5
value = [4, 1]

samples = 1
value = [0, 1]

bw <= 0.018
samples = 2
value = [1, 1]

samples = 3
value = [3, 0]

samples = 1
value = [1, 0]

samples = 1
value = [0, 1]

bw <= 0.972
samples = 25
value = [6, 19]

bw <= 0.996
samples = 17
value = [11, 6]

bw <= 0.906
samples = 13
value = [5, 8]

mloss <= 0.5
samples = 12
value = [1, 11]

samples = 3
value = [0, 3]

den <= 0.083
samples = 10
value = [5, 5]

dist <= 0.798
samples = 4
value = [3, 1]

traj <= 1.606
samples = 6
value = [2, 4]

samples = 1
value = [0, 1]

samples = 3
value = [3, 0]

bw <= 0.956
samples = 5
value = [1, 4]

samples = 1
value = [1, 0]

bw <= 0.929
samples = 2
value = [1, 1]

samples = 3
value = [0, 3]

samples = 1
value = [0, 1]

samples = 1
value = [1, 0]

samples = 1
value = [1, 0]

samples = 11
value = [0, 11]

mloss <= 0.5
samples = 16
value = [11, 5]

samples = 1
value = [0, 1]

samples = 2
value = [2, 0]

bw <= 0.99
samples = 14
value = [9, 5]

samples = 2
value = [0, 2]

bw <= 0.994
samples = 12
value = [9, 3]

samples = 5
value = [5, 0]

den <= 0.083
samples = 7
value = [4, 3]

samples = 4
value = [2, 2]

samples = 3
value = [2, 1]

bw <= 0.139
samples = 56

value = [46, 10]

samples = 3
value = [0, 3]

dist <= 0.415
samples = 4
value = [1, 3]

traj <= 0.642
samples = 52
value = [45, 7]

samples = 3
value = [0, 3]

samples = 1
value = [1, 0]

samples = 11
value = [11, 0]

traj <= 0.757
samples = 41
value = [34, 7]

samples = 2
value = [0, 2]

bw <= 0.973
samples = 39
value = [34, 5]

bw <= 0.973
samples = 29
value = [27, 2]

bw <= 0.985
samples = 10
value = [7, 3]

bw <= 0.972
samples = 11
value = [9, 2]

samples = 18
value = [18, 0]

bw <= 0.962
samples = 10
value = [9, 1]

samples = 1
value = [0, 1]

samples = 6
value = [6, 0]

bw <= 0.967
samples = 4
value = [3, 1]

samples = 1
value = [0, 1]

samples = 3
value = [3, 0]

samples = 3
value = [0, 3]

samples = 7
value = [7, 0]

traj <= 0.571
samples = 73

value = [18, 55]

traj <= 0.601
samples = 311

value = [147, 164]

dist <= 0.592
samples = 48

value = [17, 31]

bw <= 0.377
samples = 25
value = [1, 24]

den <= 0.13
samples = 40

value = [11, 29]

dist <= 0.88
samples = 8
value = [6, 2]

traj <= 0.55
samples = 28

value = [11, 17]

samples = 12
value = [0, 12]

traj <= 0.547
samples = 24

value = [11, 13]

samples = 4
value = [0, 4]

dist <= 0.247
samples = 21
value = [8, 13]

samples = 3
value = [3, 0]

traj <= 0.475
samples = 11
value = [7, 4]

bw <= 0.064
samples = 10
value = [1, 9]

traj <= 0.433
samples = 7
value = [3, 4]

samples = 4
value = [4, 0]

samples = 2
value = [2, 0]

bw <= 0.377
samples = 5
value = [1, 4]

dist <= 0.193
samples = 2
value = [1, 1]

samples = 3
value = [0, 3]

samples = 1
value = [0, 1]

samples = 1
value = [1, 0]

bw <= 0.019
samples = 2
value = [1, 1]

samples = 8
value = [0, 8]

samples = 1
value = [0, 1]

samples = 1
value = [1, 0]

samples = 6
value = [6, 0]

samples = 2
value = [0, 2]

bw <= 0.332
samples = 10
value = [1, 9]

samples = 15
value = [0, 15]

samples = 9
value = [0, 9]

samples = 1
value = [1, 0]

bw <= 0.991
samples = 11
value = [10, 1]

mloss <= 0.954
samples = 300

value = [137, 163]

samples = 9
value = [9, 0]

bw <= 0.993
samples = 2
value = [1, 1]

samples = 1
value = [0, 1]

samples = 1
value = [1, 0]

mloss <= 0.025
samples = 65

value = [41, 24]

dist <= 0.736
samples = 235

value = [96, 139]

traj <= 0.842
samples = 50

value = [26, 24]

samples = 15
value = [15, 0]

bw <= 0.966
samples = 10
value = [1, 9]

bw <= 0.645
samples = 40

value = [25, 15]

samples = 1
value = [1, 0]

samples = 9
value = [0, 9]

dist <= 0.311
samples = 6
value = [1, 5]

dist <= 2.477
samples = 34

value = [24, 10]

samples = 1
value = [1, 0]

samples = 5
value = [0, 5]

bw <= 0.876
samples = 32
value = [24, 8]

samples = 2
value = [0, 2]

samples = 11
value = [11, 0]

den <= 0.14
samples = 21
value = [13, 8]

bw <= 0.882
samples = 13
value = [11, 2]

dist <= 0.727
samples = 8
value = [2, 6]

samples = 1
value = [0, 1]

dist <= 0.758
samples = 12
value = [11, 1]

samples = 11
value = [11, 0]

samples = 1
value = [0, 1]

samples = 4
value = [0, 4]

bw <= 0.953
samples = 4
value = [2, 2]

samples = 2
value = [2, 0]

samples = 2
value = [0, 2]

den <= 0.14
samples = 75

value = [42, 33]

bw <= 0.622
samples = 160

value = [54, 106]

dist <= 0.588
samples = 67

value = [42, 25]

samples = 8
value = [0, 8]

traj <= 0.696
samples = 59

value = [34, 25]

samples = 8
value = [8, 0]

traj <= 0.616
samples = 8
value = [1, 7]

bw <= 0.902
samples = 51

value = [33, 18]

samples = 1
value = [1, 0]

samples = 7
value = [0, 7]

bw <= 0.042
samples = 30
value = [26, 4]

dist <= 0.41
samples = 21
value = [7, 14]

bw <= 0.018
samples = 5
value = [2, 3]

den <= 0.13
samples = 25
value = [24, 1]

samples = 2
value = [2, 0]

samples = 3
value = [0, 3]

samples = 22
value = [22, 0]

bw <= 0.848
samples = 3
value = [2, 1]

samples = 1
value = [1, 0]

dist <= 0.441
samples = 2
value = [1, 1]

samples = 1
value = [0, 1]

samples = 1
value = [1, 0]

dist <= 0.346
samples = 11
value = [7, 4]

samples = 10
value = [0, 10]

samples = 4
value = [4, 0]

dist <= 0.374
samples = 7
value = [3, 4]

samples = 4
value = [0, 4]

samples = 3
value = [3, 0]

bw <= 0.018
samples = 11
value = [9, 2]

bw <= 0.879
samples = 149

value = [45, 104]

samples = 2
value = [0, 2]

samples = 9
value = [9, 0]

den <= 0.112
samples = 66

value = [10, 56]

bw <= 0.918
samples = 83

value = [35, 48]

dist <= 0.973
samples = 23
value = [8, 15]

den <= 0.13
samples = 43
value = [2, 41]

samples = 4
value = [0, 4]

bw <= 0.837
samples = 19
value = [8, 11]

samples = 3
value = [3, 0]

bw <= 0.843
samples = 16
value = [5, 11]

samples = 4
value = [0, 4]

bw <= 0.846
samples = 12
value = [5, 7]

bw <= 0.845
samples = 4
value = [3, 1]

bw <= 0.849
samples = 8
value = [2, 6]

bw <= 0.844
samples = 2
value = [1, 1]

samples = 2
value = [2, 0]

samples = 1
value = [1, 0]

samples = 1
value = [0, 1]

samples = 4
value = [0, 4]

bw <= 0.851
samples = 4
value = [2, 2]

samples = 1
value = [1, 0]

bw <= 0.857
samples = 3
value = [1, 2]

samples = 2
value = [0, 2]

samples = 1
value = [1, 0]

bw <= 0.872
samples = 39
value = [1, 38]

bw <= 0.854
samples = 4
value = [1, 3]

samples = 29
value = [0, 29]

bw <= 0.874
samples = 10
value = [1, 9]

samples = 1
value = [1, 0]

samples = 9
value = [0, 9]

samples = 3
value = [0, 3]

samples = 1
value = [1, 0]

dist <= 0.876
samples = 35

value = [22, 13]

bw <= 0.977
samples = 48

value = [13, 35]

samples = 3
value = [0, 3]

bw <= 0.897
samples = 32

value = [22, 10]

dist <= 0.966
samples = 12
value = [11, 1]

bw <= 0.904
samples = 20
value = [11, 9]

dist <= 0.923
samples = 2
value = [1, 1]

samples = 10
value = [10, 0]

samples = 1
value = [1, 0]

samples = 1
value = [0, 1]

den <= 0.116
samples = 8
value = [1, 7]

bw <= 0.916
samples = 12
value = [10, 2]

samples = 1
value = [1, 0]

samples = 7
value = [0, 7]

den <= 0.14
samples = 10
value = [9, 1]

bw <= 0.917
samples = 2
value = [1, 1]

samples = 8
value = [8, 0]

bw <= 0.904
samples = 2
value = [1, 1]

samples = 1
value = [1, 0]

samples = 1
value = [0, 1]

samples = 1
value = [0, 1]

samples = 1
value = [1, 0]

bw <= 0.974
samples = 39
value = [7, 32]

dist <= 0.941
samples = 9
value = [6, 3]

den <= 0.121
samples = 20
value = [7, 13]

samples = 19
value = [0, 19]

bw <= 0.92
samples = 13
value = [7, 6]

samples = 7
value = [0, 7]

samples = 2
value = [0, 2]

traj <= 0.842
samples = 11
value = [7, 4]

samples = 1
value = [0, 1]

bw <= 0.969
samples = 10
value = [7, 3]

samples = 3
value = [3, 0]

mloss <= 0.978
samples = 7
value = [4, 3]

samples = 5
value = [4, 1]

samples = 2
value = [0, 2]

samples = 3
value = [0, 3]

samples = 6
value = [6, 0]

mloss <= 0.154
samples = 58
value = [51, 7]

bw <= 0.958
samples = 253

value = [145, 108]

den <= 0.19
samples = 22
value = [15, 7]

samples = 36
value = [36, 0]

bw <= 0.991
samples = 13
value = [6, 7]

samples = 9
value = [9, 0]

traj <= 0.996
samples = 10
value = [6, 4]

samples = 3
value = [0, 3]

samples = 3
value = [3, 0]

bw <= 0.212
samples = 7
value = [3, 4]

samples = 2
value = [2, 0]

den <= 0.158
samples = 5
value = [1, 4]

samples = 1
value = [1, 0]

samples = 4
value = [0, 4]

bw <= 0.902
samples = 158

value = [104, 54]

traj <= 0.581
samples = 95

value = [41, 54]

dist <= 0.4
samples = 107
value = [55, 52]

den <= 0.176
samples = 51
value = [49, 2]

den <= 0.167
samples = 44

value = [12, 32]

traj <= 0.557
samples = 63

value = [43, 20]

bw <= 0.377
samples = 18
value = [11, 7]

bw <= 0.019
samples = 26
value = [1, 25]

samples = 3
value = [0, 3]

bw <= 0.6
samples = 15
value = [11, 4]

samples = 7
value = [7, 0]

dist <= 0.356
samples = 8
value = [4, 4]

bw <= 0.645
samples = 6
value = [4, 2]

samples = 2
value = [0, 2]

samples = 1
value = [0, 1]

den <= 0.158
samples = 5
value = [4, 1]

dist <= 0.189
samples = 2
value = [1, 1]

samples = 3
value = [3, 0]

samples = 1
value = [1, 0]

samples = 1
value = [0, 1]

bw <= 0.019
samples = 6
value = [1, 5]

samples = 20
value = [0, 20]

samples = 5
value = [0, 5]

samples = 1
value = [1, 0]

traj <= 0.537
samples = 18
value = [17, 1]

traj <= 0.574
samples = 45

value = [26, 19]

bw <= 0.109
samples = 5
value = [4, 1]

samples = 13
value = [13, 0]

dist <= 0.538
samples = 2
value = [1, 1]

samples = 3
value = [3, 0]

samples = 1
value = [1, 0]

samples = 1
value = [0, 1]

samples = 7
value = [0, 7]

bw <= 0.019
samples = 38

value = [26, 12]

dist <= 0.869
samples = 6
value = [1, 5]

den <= 0.19
samples = 32
value = [25, 7]

samples = 5
value = [0, 5]

samples = 1
value = [1, 0]

bw <= 0.856
samples = 23
value = [20, 3]

traj <= 0.803
samples = 9
value = [5, 4]

samples = 12
value = [12, 0]

mloss <= 0.987
samples = 11
value = [8, 3]

samples = 1
value = [0, 1]

dist <= 0.831
samples = 10
value = [8, 2]

samples = 1
value = [0, 1]

den <= 0.167
samples = 9
value = [8, 1]

samples = 8
value = [8, 0]

samples = 1
value = [0, 1]

samples = 4
value = [4, 0]

bw <= 0.1
samples = 5
value = [1, 4]

samples = 1
value = [1, 0]

samples = 4
value = [0, 4]

samples = 29
value = [29, 0]

bw <= 0.933
samples = 22
value = [20, 2]

bw <= 0.918
samples = 13
value = [11, 2]

samples = 9
value = [9, 0]

samples = 8
value = [8, 0]

bw <= 0.918
samples = 5
value = [3, 2]

samples = 1
value = [0, 1]

bw <= 0.93
samples = 4
value = [3, 1]

samples = 3
value = [3, 0]

samples = 1
value = [0, 1]

samples = 13
value = [13, 0]

bw <= 0.965
samples = 82

value = [28, 54]

samples = 11
value = [0, 11]

bw <= 0.985
samples = 71

value = [28, 43]

bw <= 0.972
samples = 17
value = [12, 5]

bw <= 0.991
samples = 54

value = [16, 38]

dist <= 0.494
samples = 6
value = [1, 5]

samples = 11
value = [11, 0]

samples = 1
value = [1, 0]

samples = 5
value = [0, 5]

samples = 10
value = [0, 10]

bw <= 0.991
samples = 44

value = [16, 28]

samples = 3
value = [3, 0]

dist <= 0.95
samples = 41

value = [13, 28]

dist <= 0.589
samples = 35

value = [13, 22]

samples = 6
value = [0, 6]

dist <= 0.559
samples = 30
value = [8, 22]

samples = 5
value = [5, 0]

traj <= 0.953
samples = 18
value = [7, 11]

mloss <= 0.986
samples = 12
value = [1, 11]

traj <= 0.6
samples = 14
value = [3, 11]

samples = 4
value = [4, 0]

dist <= 0.382
samples = 5
value = [3, 2]

samples = 9
value = [0, 9]

samples = 2
value = [2, 0]

traj <= 0.594
samples = 3
value = [1, 2]

samples = 2
value = [0, 2]

samples = 1
value = [1, 0]

den <= 0.185
samples = 4
value = [1, 3]

samples = 8
value = [0, 8]

samples = 1
value = [1, 0]

samples = 3
value = [0, 3]

mloss <= 0.984
samples = 849

value = [477, 372]

mloss <= 0.98
samples = 949

value = [228, 721]

mloss <= 0.254
samples = 158

value = [137, 21]

bw <= 0.912
samples = 691

value = [340, 351]

bw <= 0.064
samples = 15
value = [4, 11]

bw <= 0.375
samples = 143

value = [133, 10]

samples = 2
value = [2, 0]

den <= 0.212
samples = 13
value = [2, 11]

samples = 1
value = [1, 0]

den <= 0.256
samples = 12
value = [1, 11]

samples = 7
value = [0, 7]

den <= 0.277
samples = 5
value = [1, 4]

samples = 2
value = [1, 1]

samples = 3
value = [0, 3]

den <= 0.311
samples = 14
value = [8, 6]

mloss <= 0.903
samples = 129
value = [125, 4]

dist <= 0.066
samples = 9
value = [7, 2]

mloss <= 0.97
samples = 5
value = [1, 4]

samples = 2
value = [0, 2]

samples = 7
value = [7, 0]

samples = 4
value = [0, 4]

samples = 1
value = [1, 0]

mloss <= 0.858
samples = 53
value = [49, 4]

samples = 76
value = [76, 0]

bw <= 0.964
samples = 48
value = [47, 1]

dist <= 0.46
samples = 5
value = [2, 3]

samples = 46
value = [46, 0]

mloss <= 0.357
samples = 2
value = [1, 1]

samples = 1
value = [1, 0]

samples = 1
value = [0, 1]

samples = 2
value = [2, 0]

samples = 3
value = [0, 3]

bw <= 0.551
samples = 596

value = [266, 330]

traj <= 0.01
samples = 95

value = [74, 21]

mloss <= 0.992
samples = 356

value = [207, 149]

bw <= 0.607
samples = 240

value = [59, 181]

samples = 26
value = [0, 26]

dist <= 0.985
samples = 330

value = [207, 123]

traj <= 0.124
samples = 110
value = [54, 56]

bw <= 0.18
samples = 220

value = [153, 67]

samples = 12
value = [12, 0]

den <= 0.419
samples = 98

value = [42, 56]

bw <= 0.467
samples = 80

value = [27, 53]

traj <= 0.595
samples = 18
value = [15, 3]

den <= 0.269
samples = 76

value = [23, 53]

samples = 4
value = [4, 0]

traj <= 0.54
samples = 37

value = [16, 21]

bw <= 0.456
samples = 39
value = [7, 32]

samples = 6
value = [6, 0]

traj <= 0.563
samples = 31

value = [10, 21]

samples = 8
value = [0, 8]

traj <= 0.945
samples = 23

value = [10, 13]

dist <= 0.149
samples = 13
value = [9, 4]

dist <= 0.754
samples = 10
value = [1, 9]

samples = 7
value = [7, 0]

dist <= 0.538
samples = 6
value = [2, 4]

samples = 3
value = [0, 3]

bw <= 0.108
samples = 3
value = [2, 1]

samples = 2
value = [2, 0]

samples = 1
value = [0, 1]

samples = 8
value = [0, 8]

dist <= 0.817
samples = 2
value = [1, 1]

samples = 1
value = [1, 0]

samples = 1
value = [0, 1]

bw <= 0.375
samples = 38
value = [6, 32]

samples = 1
value = [1, 0]

bw <= 0.375
samples = 29
value = [6, 23]

samples = 9
value = [0, 9]

traj <= 0.139
samples = 27
value = [4, 23]

samples = 2
value = [2, 0]

dist <= 0.061
samples = 3
value = [2, 1]

den <= 0.38
samples = 24
value = [2, 22]

samples = 1
value = [0, 1]

samples = 2
value = [2, 0]

samples = 20
value = [0, 20]

den <= 0.411
samples = 4
value = [2, 2]

samples = 2
value = [2, 0]

samples = 2
value = [0, 2]

dist <= 0.12
samples = 4
value = [1, 3]

samples = 14
value = [14, 0]

samples = 1
value = [1, 0]

samples = 3
value = [0, 3]

bw <= 0.168
samples = 41

value = [19, 22]

bw <= 0.46
samples = 179

value = [134, 45]

bw <= 0.159
samples = 33

value = [19, 14]

samples = 8
value = [0, 8]

den <= 0.247
samples = 26

value = [12, 14]

samples = 7
value = [7, 0]

bw <= 0.019
samples = 7
value = [6, 1]

den <= 0.303
samples = 19
value = [6, 13]

samples = 3
value = [3, 0]

bw <= 0.059
samples = 4
value = [3, 1]

samples = 1
value = [0, 1]

samples = 3
value = [3, 0]

samples = 9
value = [0, 9]

bw <= 0.158
samples = 10
value = [6, 4]

den <= 0.315
samples = 8
value = [6, 2]

samples = 2
value = [0, 2]

samples = 2
value = [2, 0]

bw <= 0.156
samples = 6
value = [4, 2]

bw <= 0.103
samples = 4
value = [2, 2]

samples = 2
value = [2, 0]

samples = 1
value = [1, 0]

den <= 0.359
samples = 3
value = [1, 2]

samples = 1
value = [0, 1]

bw <= 0.155
samples = 2
value = [1, 1]

samples = 1
value = [1, 0]

samples = 1
value = [0, 1]

den <= 0.332
samples = 149

value = [118, 31]

bw <= 0.522
samples = 30

value = [16, 14]

bw <= 0.3
samples = 106
value = [79, 27]

den <= 0.388
samples = 43
value = [39, 4]

bw <= 0.28
samples = 39

value = [25, 14]

bw <= 0.375
samples = 67

value = [54, 13]

den <= 0.303
samples = 34
value = [25, 9]

samples = 5
value = [0, 5]

bw <= 0.267
samples = 24
value = [21, 3]

bw <= 0.197
samples = 10
value = [4, 6]

samples = 20
value = [20, 0]

den <= 0.256
samples = 4
value = [1, 3]

samples = 3
value = [0, 3]

samples = 1
value = [1, 0]

samples = 4
value = [0, 4]

bw <= 0.24
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value = [4, 2]

samples = 2
value = [2, 0]

bw <= 0.266
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value = [2, 2]

samples = 2
value = [0, 2]

samples = 2
value = [2, 0]

samples = 21
value = [21, 0]

bw <= 0.387
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value = [33, 13]

den <= 0.265
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value = [1, 6]

den <= 0.307
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value = [32, 7]

bw <= 0.375
samples = 2
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samples = 5
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samples = 1
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samples = 1
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bw <= 0.435
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value = [22, 7]
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value = [10, 0]

den <= 0.239
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value = [3, 4]

bw <= 0.445
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value = [19, 3]

samples = 3
value = [0, 3]

bw <= 0.417
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value = [3, 1]

bw <= 0.414
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value = [1, 1]

samples = 2
value = [2, 0]

samples = 1
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samples = 1
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samples = 13
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bw <= 0.446
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bw <= 0.449
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bw <= 0.448
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samples = 2
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samples = 1
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samples = 24
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bw <= 0.229
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value = [15, 4]

samples = 9
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bw <= 0.229
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value = [6, 4]

samples = 2
value = [0, 2]

bw <= 0.441
samples = 8
value = [6, 2]

samples = 4
value = [4, 0]

bw <= 0.441
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samples = 1
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den <= 0.418
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value = [2, 1]

samples = 1
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bw <= 0.441
samples = 2
value = [1, 1]

samples = 1
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samples = 1
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samples = 4
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value = [6, 0]

den <= 0.307
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samples = 27
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bw <= 0.732
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value = [4, 12]
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value = [0, 11]

bw <= 0.688
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bw <= 0.821
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value = [2, 10]
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bw <= 0.821
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value = [2, 5]
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samples = 3
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value = [7, 10]
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value = [7, 5]
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bw <= 0.769
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den <= 0.315
samples = 6
value = [1, 5]

samples = 2
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samples = 1
value = [1, 0]

samples = 5
value = [0, 5]

den <= 0.221
samples = 13
value = [6, 7]

den <= 0.372
samples = 32
value = [27, 5]

samples = 6
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samples = 7
value = [0, 7]

den <= 0.282
samples = 30
value = [27, 3]
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value = [0, 2]
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bw <= 0.796
samples = 22
value = [19, 3]

bw <= 0.796
samples = 19
value = [16, 3]

samples = 3
value = [3, 0]

bw <= 0.705
samples = 18
value = [16, 2]

samples = 1
value = [0, 1]

bw <= 0.702
samples = 11
value = [9, 2]

samples = 7
value = [7, 0]

bw <= 0.625
samples = 10
value = [9, 1]

samples = 1
value = [0, 1]

bw <= 0.624
samples = 3
value = [2, 1]

samples = 7
value = [7, 0]

samples = 2
value = [2, 0]

samples = 1
value = [0, 1]

bw <= 0.936
samples = 13
value = [3, 10]

dist <= 0.173
samples = 82

value = [71, 11]

samples = 2
value = [2, 0]

den <= 0.299
samples = 11
value = [1, 10]

samples = 8
value = [0, 8]

bw <= 0.939
samples = 3
value = [1, 2]

samples = 1
value = [0, 1]

den <= 0.307
samples = 2
value = [1, 1]

samples = 1
value = [1, 0]

samples = 1
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den <= 0.548
samples = 62
value = [59, 3]

bw <= 0.951
samples = 20
value = [12, 8]

samples = 51
value = [51, 0]

bw <= 0.935
samples = 11
value = [8, 3]

samples = 2
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samples = 9
value = [8, 1]

samples = 5
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bw <= 0.935
samples = 4
value = [3, 1]

samples = 1
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samples = 3
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bw <= 0.925
samples = 16
value = [12, 4]

samples = 4
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samples = 5
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den <= 0.212
samples = 11
value = [7, 4]

samples = 2
value = [0, 2]

den <= 0.527
samples = 9
value = [7, 2]

samples = 3
value = [3, 0]

bw <= 0.933
samples = 6
value = [4, 2]

samples = 1
value = [0, 1]

dist <= 0.241
samples = 5
value = [4, 1]

samples = 4
value = [4, 0]

samples = 1
value = [0, 1]

bw <= 0.991
samples = 94

value = [56, 38]

traj <= 0.164
samples = 855

value = [172, 683]

traj <= 0.811
samples = 57

value = [45, 12]

traj <= 0.686
samples = 37

value = [11, 26]

mloss <= 0.643
samples = 42

value = [30, 12]

samples = 15
value = [15, 0]

samples = 3
value = [0, 3]

den <= 0.38
samples = 39
value = [30, 9]

den <= 0.26
samples = 28
value = [24, 4]

dist <= 0.037
samples = 11
value = [6, 5]

den <= 0.23
samples = 7
value = [4, 3]

bw <= 0.984
samples = 21
value = [20, 1]

samples = 2
value = [2, 0]

bw <= 0.982
samples = 5
value = [2, 3]

samples = 1
value = [0, 1]

dist <= 0.077
samples = 4
value = [2, 2]

samples = 1
value = [1, 0]

bw <= 0.984
samples = 3
value = [1, 2]

samples = 1
value = [1, 0]

samples = 2
value = [0, 2]

bw <= 0.984
samples = 7
value = [6, 1]

samples = 14
value = [14, 0]

samples = 6
value = [6, 0]

samples = 1
value = [0, 1]

samples = 4
value = [4, 0]

bw <= 0.986
samples = 7
value = [2, 5]

bw <= 0.984
samples = 6
value = [1, 5]

samples = 1
value = [1, 0]

dist <= 0.095
samples = 2
value = [1, 1]

samples = 4
value = [0, 4]

samples = 1
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samples = 1
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dist <= 0.586
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value = [9, 7]

den <= 0.212
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value = [2, 19]
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samples = 4
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samples = 17
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bw <= 0.99
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dist <= 0.001
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value = [16, 7]
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traj <= 0.105
samples = 19
value = [12, 7]

traj <= 0.087
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value = [8, 7]
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traj <= 0.068
samples = 13
value = [8, 5]

samples = 2
value = [0, 2]

den <= 0.239
samples = 10
value = [5, 5]

samples = 3
value = [3, 0]

samples = 3
value = [0, 3]

traj <= 0.014
samples = 7
value = [5, 2]

samples = 1
value = [0, 1]

dist <= 0.091
samples = 6
value = [5, 1]

samples = 5
value = [5, 0]

samples = 1
value = [0, 1]

samples = 11
value = [0, 11]

traj <= 0.11
samples = 12
value = [8, 4]

traj <= 0.057
samples = 8
value = [4, 4]

samples = 4
value = [4, 0]

samples = 3
value = [3, 0]

dist <= 0.028
samples = 5
value = [1, 4]

samples = 1
value = [1, 0]

samples = 4
value = [0, 4]

samples = 56
value = [0, 56]

bw <= 0.98
samples = 747

value = [142, 605]

den <= 0.239
samples = 115
value = [6, 109]

den <= 0.52
samples = 632

value = [136, 496]

bw <= 0.972
samples = 9
value = [3, 6]

den <= 0.356
samples = 106
value = [3, 103]

samples = 6
value = [0, 6]

samples = 3
value = [3, 0]

bw <= 0.976
samples = 54
value = [3, 51]

samples = 52
value = [0, 52]

den <= 0.348
samples = 51
value = [1, 50]

mloss <= 0.992
samples = 3
value = [2, 1]

samples = 50
value = [0, 50]

samples = 1
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samples = 1
value = [0, 1]

samples = 2
value = [2, 0]

bw <= 0.987
samples = 601

value = [136, 465]

samples = 31
value = [0, 31]

den <= 0.307
samples = 181

value = [64, 117]

bw <= 0.994
samples = 420

value = [72, 348]

traj <= 0.553
samples = 37

value = [24, 13]

traj <= 0.607
samples = 144

value = [40, 104]

bw <= 0.984
samples = 16
value = [7, 9]

bw <= 0.986
samples = 21
value = [17, 4]

samples = 4
value = [0, 4]

dist <= 0.363
samples = 12
value = [7, 5]

dist <= 0.004
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value = [7, 2]

samples = 3
value = [0, 3]

samples = 1
value = [0, 1]

traj <= 0.221
samples = 8
value = [7, 1]

traj <= 0.198
samples = 2
value = [1, 1]

samples = 6
value = [6, 0]

samples = 1
value = [1, 0]

samples = 1
value = [0, 1]

den <= 0.273
samples = 16
value = [15, 1]

traj <= 0.606
samples = 5
value = [2, 3]

samples = 11
value = [11, 0]

bw <= 0.984
samples = 5
value = [4, 1]

samples = 3
value = [3, 0]

bw <= 0.984
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samples = 2
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samples = 3
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dist <= 0.194
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value = [0, 19]

traj <= 0.217
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traj <= 0.607
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value = [11, 1]

samples = 5
value = [5, 0]

den <= 0.506
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value = [24, 84]

dist <= 0.177
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value = [15, 76]

bw <= 0.986
samples = 17
value = [9, 8]

bw <= 0.984
samples = 77
value = [8, 69]

bw <= 0.986
samples = 14
value = [7, 7]

bw <= 0.983
samples = 6
value = [4, 2]

traj <= 0.243
samples = 71
value = [4, 67]

samples = 2
value = [0, 2]

samples = 4
value = [4, 0]

bw <= 0.984
samples = 68
value = [2, 66]

dist <= 0.034
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value = [2, 1]

bw <= 0.984
samples = 21
value = [2, 19]

samples = 47
value = [0, 47]

den <= 0.478
samples = 20
value = [1, 19]

samples = 1
value = [1, 0]

bw <= 0.984
samples = 8
value = [1, 7]
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value = [0, 1]
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den <= 0.449
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value = [2, 0]
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value = [0, 3]

samples = 1
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samples = 2
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samples = 5
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samples = 1
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samples = 10
value = [10, 0]

bw <= 0.985
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samples = 1
value = [0, 1]

samples = 1
value = [1, 0]

bw <= 0.993
samples = 401

value = [62, 339]

den <= 0.29
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value = [10, 9]

traj <= 0.411
samples = 369

value = [62, 307]

samples = 32
value = [0, 32]

traj <= 0.229
samples = 142

value = [13, 129]

traj <= 0.42
samples = 227

value = [49, 178]

traj <= 0.181
samples = 5
value = [4, 1]

dist <= 0.373
samples = 137
value = [9, 128]

samples = 1
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samples = 4
value = [4, 0]

bw <= 0.991
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value = [3, 111]

traj <= 0.382
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value = [6, 17]
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bw <= 0.991
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den <= 0.456
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traj <= 0.573
samples = 130
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den <= 0.239
samples = 89
value = [7, 82]

traj <= 0.568
samples = 120
value = [24, 96]

samples = 10
value = [10, 0]

traj <= 0.541
samples = 85

value = [24, 61]

samples = 35
value = [0, 35]

bw <= 0.989
samples = 72

value = [12, 60]

bw <= 0.988
samples = 13
value = [12, 1]

bw <= 0.988
samples = 40
value = [2, 38]

dist <= 0.042
samples = 32

value = [10, 22]

bw <= 0.988
samples = 17
value = [2, 15]

samples = 23
value = [0, 23]

traj <= 0.422
samples = 16
value = [1, 15]

samples = 1
value = [1, 0]

samples = 2
value = [1, 1]

samples = 14
value = [0, 14]

samples = 2
value = [2, 0]

den <= 0.247
samples = 30
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samples = 5
value = [0, 5]

dist <= 0.656
samples = 25
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samples = 23
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bw <= 0.988
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samples = 11
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value = [0, 1]

dist <= 0.649
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bw <= 0.992
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value = [2, 75]

mloss <= 0.99
samples = 5
value = [4, 1]

bw <= 0.987
samples = 7
value = [1, 6]
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bw <= 0.991
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bw <= 0.987
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value = [1, 0]

den <= 0.294
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samples = 1
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bw <= 0.995
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samples = 2
value = [0, 2]

Figure A.5: ML-based bagged decision tree (see section 7.4.1).
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value = [6, 0]

samples = 9
value = [7, 2]

samples = 53
value = [53, 0]

samples = 1
value = [0, 1]

traj <= 0.071
samples = 19
value = [9, 10]

samples = 9
value = [9, 0]

samples = 5
value = [0, 5]

mloss <= 0.5
samples = 14
value = [9, 5]

traj <= 0.366
samples = 8
value = [3, 5]

samples = 6
value = [6, 0]

samples = 5
value = [0, 5]

samples = 3
value = [3, 0]

traj <= 0.043
samples = 148
value = [141, 7]

bw <= 0.527
samples = 248

value = [174, 74]

samples = 98
value = [98, 0]

bw <= 0.551
samples = 50
value = [43, 7]

traj <= 0.262
samples = 24
value = [18, 6]

dist <= 0.111
samples = 26
value = [25, 1]

dist <= 0.221
samples = 18
value = [16, 2]

bw <= 0.196
samples = 6
value = [2, 4]

traj <= 0.043
samples = 17
value = [16, 1]

samples = 1
value = [0, 1]

dist <= 0.01
samples = 2
value = [1, 1]

samples = 15
value = [15, 0]

samples = 1
value = [1, 0]

samples = 1
value = [0, 1]

samples = 1
value = [1, 0]

den <= 0.176
samples = 5
value = [1, 4]

samples = 2
value = [0, 2]

traj <= 0.271
samples = 3
value = [1, 2]

samples = 2
value = [0, 2]

samples = 1
value = [1, 0]

samples = 21
value = [21, 0]

dist <= 0.112
samples = 5
value = [4, 1]

samples = 1
value = [0, 1]

samples = 4
value = [4, 0]

den <= 0.176
samples = 85

value = [74, 11]

bw <= 0.982
samples = 163

value = [100, 63]

traj <= 0.006
samples = 69
value = [64, 5]

bw <= 0.376
samples = 16
value = [10, 6]

samples = 17
value = [17, 0]

traj <= 0.019
samples = 52
value = [47, 5]

bw <= 0.15
samples = 8
value = [5, 3]

traj <= 0.363
samples = 44
value = [42, 2]

samples = 3
value = [3, 0]

bw <= 0.28
samples = 5
value = [2, 3]

samples = 2
value = [0, 2]

dist <= 0.081
samples = 3
value = [2, 1]

samples = 1
value = [0, 1]

samples = 2
value = [2, 0]

den <= 0.14
samples = 42
value = [41, 1]

den <= 0.158
samples = 2
value = [1, 1]

dist <= 0.018
samples = 9
value = [8, 1]

samples = 33
value = [33, 0]

bw <= 0.238
samples = 2
value = [1, 1]

samples = 7
value = [7, 0]

samples = 1
value = [1, 0]

samples = 1
value = [0, 1]

samples = 1
value = [0, 1]

samples = 1
value = [1, 0]

den <= 0.194
samples = 12
value = [6, 6]

samples = 4
value = [4, 0]

dist <= 0.085
samples = 9
value = [6, 3]

samples = 3
value = [0, 3]

samples = 4
value = [4, 0]

bw <= 0.372
samples = 5
value = [2, 3]

dist <= 0.197
samples = 3
value = [2, 1]

samples = 2
value = [0, 2]

samples = 2
value = [2, 0]

samples = 1
value = [0, 1]

dist <= -0.038
samples = 142
value = [80, 62]

traj <= 0.088
samples = 21
value = [20, 1]

samples = 5
value = [0, 5]

bw <= 0.727
samples = 137
value = [80, 57]

bw <= 0.637
samples = 60

value = [26, 34]

traj <= 0.04
samples = 77

value = [54, 23]

traj <= 0.057
samples = 36

value = [24, 12]

den <= 0.172
samples = 24
value = [2, 22]

traj <= 0.005
samples = 28

value = [16, 12]

samples = 8
value = [8, 0]

samples = 6
value = [6, 0]

dist <= 0.234
samples = 22

value = [10, 12]

den <= 0.167
samples = 18
value = [6, 12]

samples = 4
value = [4, 0]

bw <= 0.637
samples = 11
value = [1, 10]

dist <= 0.054
samples = 7
value = [5, 2]

samples = 10
value = [0, 10]

samples = 1
value = [1, 0]

dist <= 0.019
samples = 6
value = [5, 1]

samples = 1
value = [0, 1]

bw <= 0.631
samples = 3
value = [2, 1]

samples = 3
value = [3, 0]

samples = 2
value = [2, 0]

samples = 1
value = [0, 1]

samples = 21
value = [0, 21]

dist <= 0.217
samples = 3
value = [2, 1]

samples = 2
value = [2, 0]

samples = 1
value = [0, 1]

samples = 21
value = [21, 0]

dist <= 0.028
samples = 56

value = [33, 23]

dist <= 0.005
samples = 23
value = [18, 5]

bw <= 0.961
samples = 33

value = [15, 18]

den <= 0.149
samples = 6
value = [2, 4]

bw <= 0.982
samples = 17
value = [16, 1]

samples = 3
value = [0, 3]

dist <= 0.003
samples = 3
value = [2, 1]

samples = 2
value = [2, 0]

samples = 1
value = [0, 1]

samples = 16
value = [16, 0]

samples = 1
value = [0, 1]

traj <= 0.381
samples = 8
value = [6, 2]

bw <= 0.982
samples = 25
value = [9, 16]

samples = 5
value = [5, 0]

den <= 0.167
samples = 3
value = [1, 2]

samples = 2
value = [0, 2]

samples = 1
value = [1, 0]

dist <= 0.11
samples = 24
value = [8, 16]

samples = 1
value = [1, 0]

den <= 0.14
samples = 23
value = [7, 16]

samples = 1
value = [1, 0]

bw <= 0.979
samples = 5
value = [3, 2]

den <= 0.149
samples = 18
value = [4, 14]

samples = 3
value = [3, 0]

samples = 2
value = [0, 2]

samples = 5
value = [0, 5]

bw <= 0.968
samples = 13
value = [4, 9]

dist <= 0.05
samples = 5
value = [3, 2]

traj <= 0.234
samples = 8
value = [1, 7]

samples = 3
value = [3, 0]

samples = 2
value = [0, 2]

samples = 6
value = [0, 6]

bw <= 0.981
samples = 2
value = [1, 1]

samples = 1
value = [1, 0]

samples = 1
value = [0, 1]

bw <= 0.991
samples = 2
value = [1, 1]

samples = 19
value = [19, 0]

samples = 1
value = [0, 1]

samples = 1
value = [1, 0]

bw <= 0.975
samples = 267

value = [212, 55]

traj <= 0.424
samples = 874

value = [453, 421]

bw <= 0.973
samples = 95

value = [59, 36]

mloss <= 0.991
samples = 172

value = [153, 19]

den <= 0.035
samples = 69

value = [54, 15]

dist <= 0.81
samples = 26
value = [5, 21]

bw <= 0.949
samples = 8
value = [3, 5]

bw <= 0.028
samples = 61

value = [51, 10]

samples = 5
value = [0, 5]

samples = 3
value = [3, 0]

samples = 2
value = [0, 2]

den <= 0.054
samples = 59
value = [51, 8]

samples = 17
value = [17, 0]

den <= 0.064
samples = 42
value = [34, 8]

bw <= 0.539
samples = 13
value = [7, 6]

dist <= 0.955
samples = 29
value = [27, 2]

samples = 4
value = [4, 0]

mloss <= 0.459
samples = 9
value = [3, 6]

samples = 3
value = [0, 3]

mloss <= 0.987
samples = 6
value = [3, 3]

samples = 3
value = [3, 0]

samples = 3
value = [0, 3]

traj <= 0.868
samples = 6
value = [4, 2]

samples = 23
value = [23, 0]

samples = 4
value = [4, 0]

samples = 2
value = [0, 2]

samples = 4
value = [4, 0]

mloss <= 0.978
samples = 22
value = [1, 21]

samples = 1
value = [1, 0]

samples = 21
value = [0, 21]

samples = 58
value = [58, 0]

bw <= 0.977
samples = 114
value = [95, 19]

samples = 18
value = [18, 0]

bw <= 0.982
samples = 96

value = [77, 19]

samples = 7
value = [0, 7]

bw <= 0.994
samples = 89

value = [77, 12]

bw <= 0.994
samples = 75
value = [69, 6]

bw <= 0.995
samples = 14
value = [8, 6]

den <= 0.044
samples = 41
value = [40, 1]

bw <= 0.994
samples = 34
value = [29, 5]

bw <= 0.987
samples = 17
value = [16, 1]

samples = 24
value = [24, 0]

samples = 10
value = [10, 0]

bw <= 0.991
samples = 7
value = [6, 1]

samples = 3
value = [2, 1]

samples = 4
value = [4, 0]

samples = 2
value = [0, 2]

dist <= 0.993
samples = 32
value = [29, 3]

samples = 16
value = [16, 0]

bw <= 0.994
samples = 16
value = [13, 3]

samples = 4
value = [4, 0]

bw <= 0.994
samples = 12
value = [9, 3]

samples = 2
value = [0, 2]

bw <= 0.994
samples = 10
value = [9, 1]

samples = 5
value = [5, 0]

bw <= 0.994
samples = 5
value = [4, 1]

samples = 1
value = [0, 1]

samples = 4
value = [4, 0]

bw <= 0.995
samples = 7
value = [2, 5]

dist <= 0.346
samples = 7
value = [6, 1]

samples = 3
value = [2, 1]

samples = 4
value = [0, 4]

samples = 1
value = [0, 1]

samples = 6
value = [6, 0]

bw <= 0.377
samples = 29
value = [2, 27]

den <= 0.149
samples = 845

value = [451, 394]

dist <= 0.169
samples = 3
value = [2, 1]

samples = 26
value = [0, 26]

samples = 2
value = [2, 0]

samples = 1
value = [0, 1]

den <= 0.102
samples = 534

value = [255, 279]

mloss <= 0.971
samples = 311

value = [196, 115]

den <= 0.093
samples = 150
value = [90, 60]

traj <= 0.588
samples = 384

value = [165, 219]

traj <= 0.611
samples = 91

value = [44, 47]

bw <= 0.995
samples = 59

value = [46, 13]

dist <= 0.798
samples = 11
value = [10, 1]

traj <= 2.441
samples = 80

value = [34, 46]

samples = 6
value = [6, 0]

traj <= 0.599
samples = 5
value = [4, 1]

samples = 1
value = [0, 1]

samples = 4
value = [4, 0]

dist <= 0.477
samples = 76

value = [34, 42]

samples = 4
value = [0, 4]

dist <= 0.015
samples = 18
value = [4, 14]

dist <= 0.589
samples = 58

value = [30, 28]

samples = 2
value = [2, 0]

bw <= 0.998
samples = 16
value = [2, 14]

dist <= 0.085
samples = 15
value = [1, 14]

samples = 1
value = [1, 0]

dist <= 0.08
samples = 6
value = [1, 5]

samples = 9
value = [0, 9]

samples = 5
value = [0, 5]

samples = 1
value = [1, 0]

samples = 4
value = [4, 0]

bw <= 0.89
samples = 54

value = [26, 28]

traj <= 0.978
samples = 12
value = [9, 3]

bw <= 0.977
samples = 42

value = [17, 25]

samples = 1
value = [0, 1]

bw <= 0.85
samples = 11
value = [9, 2]

bw <= 0.837
samples = 6
value = [4, 2]

samples = 5
value = [5, 0]

bw <= 0.342
samples = 5
value = [4, 1]

samples = 1
value = [0, 1]

bw <= 0.018
samples = 2
value = [1, 1]

samples = 3
value = [3, 0]

samples = 1
value = [1, 0]

samples = 1
value = [0, 1]

bw <= 0.972
samples = 25
value = [6, 19]

bw <= 0.996
samples = 17
value = [11, 6]

bw <= 0.906
samples = 13
value = [5, 8]

mloss <= 0.5
samples = 12
value = [1, 11]

samples = 3
value = [0, 3]

den <= 0.083
samples = 10
value = [5, 5]

dist <= 0.798
samples = 4
value = [3, 1]

traj <= 1.606
samples = 6
value = [2, 4]

samples = 1
value = [0, 1]

samples = 3
value = [3, 0]

bw <= 0.956
samples = 5
value = [1, 4]

samples = 1
value = [1, 0]

bw <= 0.929
samples = 2
value = [1, 1]

samples = 3
value = [0, 3]

samples = 1
value = [0, 1]

samples = 1
value = [1, 0]

samples = 1
value = [1, 0]

samples = 11
value = [0, 11]

mloss <= 0.5
samples = 16
value = [11, 5]

samples = 1
value = [0, 1]

samples = 2
value = [2, 0]

bw <= 0.99
samples = 14
value = [9, 5]

samples = 2
value = [0, 2]

bw <= 0.994
samples = 12
value = [9, 3]

samples = 5
value = [5, 0]

den <= 0.083
samples = 7
value = [4, 3]

samples = 4
value = [2, 2]

samples = 3
value = [2, 1]

bw <= 0.139
samples = 56

value = [46, 10]

samples = 3
value = [0, 3]

dist <= 0.415
samples = 4
value = [1, 3]

traj <= 0.642
samples = 52
value = [45, 7]

samples = 3
value = [0, 3]

samples = 1
value = [1, 0]

samples = 11
value = [11, 0]

traj <= 0.757
samples = 41
value = [34, 7]

samples = 2
value = [0, 2]

bw <= 0.973
samples = 39
value = [34, 5]

bw <= 0.973
samples = 29
value = [27, 2]

bw <= 0.985
samples = 10
value = [7, 3]

bw <= 0.972
samples = 11
value = [9, 2]

samples = 18
value = [18, 0]

bw <= 0.962
samples = 10
value = [9, 1]

samples = 1
value = [0, 1]

samples = 6
value = [6, 0]

bw <= 0.967
samples = 4
value = [3, 1]

samples = 1
value = [0, 1]

samples = 3
value = [3, 0]

samples = 3
value = [0, 3]

samples = 7
value = [7, 0]

traj <= 0.571
samples = 73

value = [18, 55]

traj <= 0.601
samples = 311

value = [147, 164]

dist <= 0.592
samples = 48

value = [17, 31]

bw <= 0.377
samples = 25
value = [1, 24]

den <= 0.13
samples = 40

value = [11, 29]

dist <= 0.88
samples = 8
value = [6, 2]

traj <= 0.55
samples = 28

value = [11, 17]

samples = 12
value = [0, 12]

traj <= 0.547
samples = 24

value = [11, 13]

samples = 4
value = [0, 4]

dist <= 0.247
samples = 21
value = [8, 13]

samples = 3
value = [3, 0]

traj <= 0.475
samples = 11
value = [7, 4]

bw <= 0.064
samples = 10
value = [1, 9]

traj <= 0.433
samples = 7
value = [3, 4]

samples = 4
value = [4, 0]

samples = 2
value = [2, 0]

bw <= 0.377
samples = 5
value = [1, 4]

dist <= 0.193
samples = 2
value = [1, 1]

samples = 3
value = [0, 3]

samples = 1
value = [0, 1]

samples = 1
value = [1, 0]

bw <= 0.019
samples = 2
value = [1, 1]

samples = 8
value = [0, 8]

samples = 1
value = [0, 1]

samples = 1
value = [1, 0]

samples = 6
value = [6, 0]

samples = 2
value = [0, 2]

bw <= 0.332
samples = 10
value = [1, 9]

samples = 15
value = [0, 15]

samples = 9
value = [0, 9]

samples = 1
value = [1, 0]

bw <= 0.991
samples = 11
value = [10, 1]

mloss <= 0.954
samples = 300

value = [137, 163]

samples = 9
value = [9, 0]

bw <= 0.993
samples = 2
value = [1, 1]

samples = 1
value = [0, 1]

samples = 1
value = [1, 0]

mloss <= 0.025
samples = 65

value = [41, 24]

dist <= 0.736
samples = 235

value = [96, 139]

traj <= 0.842
samples = 50

value = [26, 24]

samples = 15
value = [15, 0]

bw <= 0.966
samples = 10
value = [1, 9]

bw <= 0.645
samples = 40

value = [25, 15]

samples = 1
value = [1, 0]

samples = 9
value = [0, 9]

dist <= 0.311
samples = 6
value = [1, 5]

dist <= 2.477
samples = 34

value = [24, 10]

samples = 1
value = [1, 0]

samples = 5
value = [0, 5]

bw <= 0.876
samples = 32
value = [24, 8]

samples = 2
value = [0, 2]

samples = 11
value = [11, 0]

den <= 0.14
samples = 21
value = [13, 8]

bw <= 0.882
samples = 13
value = [11, 2]

dist <= 0.727
samples = 8
value = [2, 6]

samples = 1
value = [0, 1]

dist <= 0.758
samples = 12
value = [11, 1]

samples = 11
value = [11, 0]

samples = 1
value = [0, 1]

samples = 4
value = [0, 4]

bw <= 0.953
samples = 4
value = [2, 2]

samples = 2
value = [2, 0]

samples = 2
value = [0, 2]

den <= 0.14
samples = 75

value = [42, 33]

bw <= 0.622
samples = 160

value = [54, 106]

dist <= 0.588
samples = 67

value = [42, 25]

samples = 8
value = [0, 8]

traj <= 0.696
samples = 59

value = [34, 25]

samples = 8
value = [8, 0]

traj <= 0.616
samples = 8
value = [1, 7]

bw <= 0.902
samples = 51

value = [33, 18]

samples = 1
value = [1, 0]

samples = 7
value = [0, 7]

bw <= 0.042
samples = 30
value = [26, 4]

dist <= 0.41
samples = 21
value = [7, 14]

bw <= 0.018
samples = 5
value = [2, 3]

den <= 0.13
samples = 25
value = [24, 1]

samples = 2
value = [2, 0]

samples = 3
value = [0, 3]

samples = 22
value = [22, 0]

bw <= 0.848
samples = 3
value = [2, 1]

samples = 1
value = [1, 0]

dist <= 0.441
samples = 2
value = [1, 1]

samples = 1
value = [0, 1]

samples = 1
value = [1, 0]

dist <= 0.346
samples = 11
value = [7, 4]

samples = 10
value = [0, 10]

samples = 4
value = [4, 0]

dist <= 0.374
samples = 7
value = [3, 4]

samples = 4
value = [0, 4]

samples = 3
value = [3, 0]

bw <= 0.018
samples = 11
value = [9, 2]

bw <= 0.879
samples = 149

value = [45, 104]

samples = 2
value = [0, 2]

samples = 9
value = [9, 0]

den <= 0.112
samples = 66

value = [10, 56]

bw <= 0.918
samples = 83

value = [35, 48]

dist <= 0.973
samples = 23
value = [8, 15]

den <= 0.13
samples = 43
value = [2, 41]

samples = 4
value = [0, 4]

bw <= 0.837
samples = 19
value = [8, 11]

samples = 3
value = [3, 0]

bw <= 0.843
samples = 16
value = [5, 11]

samples = 4
value = [0, 4]

bw <= 0.846
samples = 12
value = [5, 7]

bw <= 0.845
samples = 4
value = [3, 1]

bw <= 0.849
samples = 8
value = [2, 6]

bw <= 0.844
samples = 2
value = [1, 1]

samples = 2
value = [2, 0]

samples = 1
value = [1, 0]

samples = 1
value = [0, 1]

samples = 4
value = [0, 4]

bw <= 0.851
samples = 4
value = [2, 2]

samples = 1
value = [1, 0]

bw <= 0.857
samples = 3
value = [1, 2]

samples = 2
value = [0, 2]

samples = 1
value = [1, 0]

bw <= 0.872
samples = 39
value = [1, 38]

bw <= 0.854
samples = 4
value = [1, 3]

samples = 29
value = [0, 29]

bw <= 0.874
samples = 10
value = [1, 9]

samples = 1
value = [1, 0]

samples = 9
value = [0, 9]

samples = 3
value = [0, 3]

samples = 1
value = [1, 0]

dist <= 0.876
samples = 35

value = [22, 13]

bw <= 0.977
samples = 48

value = [13, 35]

samples = 3
value = [0, 3]

bw <= 0.897
samples = 32

value = [22, 10]

dist <= 0.966
samples = 12
value = [11, 1]

bw <= 0.904
samples = 20
value = [11, 9]

dist <= 0.923
samples = 2
value = [1, 1]

samples = 10
value = [10, 0]

samples = 1
value = [1, 0]

samples = 1
value = [0, 1]

den <= 0.116
samples = 8
value = [1, 7]

bw <= 0.916
samples = 12
value = [10, 2]

samples = 1
value = [1, 0]

samples = 7
value = [0, 7]

den <= 0.14
samples = 10
value = [9, 1]

bw <= 0.917
samples = 2
value = [1, 1]

samples = 8
value = [8, 0]

bw <= 0.904
samples = 2
value = [1, 1]

samples = 1
value = [1, 0]

samples = 1
value = [0, 1]

samples = 1
value = [0, 1]

samples = 1
value = [1, 0]

bw <= 0.974
samples = 39
value = [7, 32]

dist <= 0.941
samples = 9
value = [6, 3]

den <= 0.121
samples = 20
value = [7, 13]

samples = 19
value = [0, 19]

bw <= 0.92
samples = 13
value = [7, 6]

samples = 7
value = [0, 7]

samples = 2
value = [0, 2]

traj <= 0.842
samples = 11
value = [7, 4]

samples = 1
value = [0, 1]

bw <= 0.969
samples = 10
value = [7, 3]

samples = 3
value = [3, 0]

mloss <= 0.978
samples = 7
value = [4, 3]

samples = 5
value = [4, 1]

samples = 2
value = [0, 2]

samples = 3
value = [0, 3]

samples = 6
value = [6, 0]

mloss <= 0.154
samples = 58
value = [51, 7]

bw <= 0.958
samples = 253

value = [145, 108]

den <= 0.19
samples = 22
value = [15, 7]

samples = 36
value = [36, 0]

bw <= 0.991
samples = 13
value = [6, 7]

samples = 9
value = [9, 0]

traj <= 0.996
samples = 10
value = [6, 4]

samples = 3
value = [0, 3]

samples = 3
value = [3, 0]

bw <= 0.212
samples = 7
value = [3, 4]

samples = 2
value = [2, 0]

den <= 0.158
samples = 5
value = [1, 4]

samples = 1
value = [1, 0]

samples = 4
value = [0, 4]

bw <= 0.902
samples = 158

value = [104, 54]

traj <= 0.581
samples = 95

value = [41, 54]

dist <= 0.4
samples = 107
value = [55, 52]

den <= 0.176
samples = 51
value = [49, 2]

den <= 0.167
samples = 44

value = [12, 32]

traj <= 0.557
samples = 63

value = [43, 20]

bw <= 0.377
samples = 18
value = [11, 7]

bw <= 0.019
samples = 26
value = [1, 25]

samples = 3
value = [0, 3]

bw <= 0.6
samples = 15
value = [11, 4]

samples = 7
value = [7, 0]

dist <= 0.356
samples = 8
value = [4, 4]

bw <= 0.645
samples = 6
value = [4, 2]

samples = 2
value = [0, 2]

samples = 1
value = [0, 1]

den <= 0.158
samples = 5
value = [4, 1]

dist <= 0.189
samples = 2
value = [1, 1]

samples = 3
value = [3, 0]

samples = 1
value = [1, 0]

samples = 1
value = [0, 1]

bw <= 0.019
samples = 6
value = [1, 5]

samples = 20
value = [0, 20]

samples = 5
value = [0, 5]

samples = 1
value = [1, 0]

traj <= 0.537
samples = 18
value = [17, 1]

traj <= 0.574
samples = 45

value = [26, 19]

bw <= 0.109
samples = 5
value = [4, 1]

samples = 13
value = [13, 0]

dist <= 0.538
samples = 2
value = [1, 1]

samples = 3
value = [3, 0]

samples = 1
value = [1, 0]

samples = 1
value = [0, 1]

samples = 7
value = [0, 7]

bw <= 0.019
samples = 38

value = [26, 12]

dist <= 0.869
samples = 6
value = [1, 5]

den <= 0.19
samples = 32
value = [25, 7]

samples = 5
value = [0, 5]

samples = 1
value = [1, 0]

bw <= 0.856
samples = 23
value = [20, 3]

traj <= 0.803
samples = 9
value = [5, 4]

samples = 12
value = [12, 0]

mloss <= 0.987
samples = 11
value = [8, 3]

samples = 1
value = [0, 1]

dist <= 0.831
samples = 10
value = [8, 2]

samples = 1
value = [0, 1]

den <= 0.167
samples = 9
value = [8, 1]

samples = 8
value = [8, 0]

samples = 1
value = [0, 1]

samples = 4
value = [4, 0]

bw <= 0.1
samples = 5
value = [1, 4]

samples = 1
value = [1, 0]

samples = 4
value = [0, 4]

samples = 29
value = [29, 0]

bw <= 0.933
samples = 22
value = [20, 2]

bw <= 0.918
samples = 13
value = [11, 2]

samples = 9
value = [9, 0]

samples = 8
value = [8, 0]

bw <= 0.918
samples = 5
value = [3, 2]

samples = 1
value = [0, 1]

bw <= 0.93
samples = 4
value = [3, 1]

samples = 3
value = [3, 0]

samples = 1
value = [0, 1]

samples = 13
value = [13, 0]

bw <= 0.965
samples = 82

value = [28, 54]

samples = 11
value = [0, 11]

bw <= 0.985
samples = 71

value = [28, 43]

bw <= 0.972
samples = 17
value = [12, 5]

bw <= 0.991
samples = 54

value = [16, 38]

dist <= 0.494
samples = 6
value = [1, 5]

samples = 11
value = [11, 0]

samples = 1
value = [1, 0]

samples = 5
value = [0, 5]

samples = 10
value = [0, 10]

bw <= 0.991
samples = 44

value = [16, 28]

samples = 3
value = [3, 0]

dist <= 0.95
samples = 41

value = [13, 28]

dist <= 0.589
samples = 35

value = [13, 22]

samples = 6
value = [0, 6]

dist <= 0.559
samples = 30
value = [8, 22]

samples = 5
value = [5, 0]

traj <= 0.953
samples = 18
value = [7, 11]

mloss <= 0.986
samples = 12
value = [1, 11]

traj <= 0.6
samples = 14
value = [3, 11]

samples = 4
value = [4, 0]

dist <= 0.382
samples = 5
value = [3, 2]

samples = 9
value = [0, 9]

samples = 2
value = [2, 0]

traj <= 0.594
samples = 3
value = [1, 2]

samples = 2
value = [0, 2]

samples = 1
value = [1, 0]

den <= 0.185
samples = 4
value = [1, 3]

samples = 8
value = [0, 8]

samples = 1
value = [1, 0]

samples = 3
value = [0, 3]

mloss <= 0.984
samples = 849

value = [477, 372]

mloss <= 0.98
samples = 949

value = [228, 721]

mloss <= 0.254
samples = 158

value = [137, 21]

bw <= 0.912
samples = 691

value = [340, 351]

bw <= 0.064
samples = 15
value = [4, 11]

bw <= 0.375
samples = 143

value = [133, 10]

samples = 2
value = [2, 0]

den <= 0.212
samples = 13
value = [2, 11]

samples = 1
value = [1, 0]

den <= 0.256
samples = 12
value = [1, 11]

samples = 7
value = [0, 7]

den <= 0.277
samples = 5
value = [1, 4]

samples = 2
value = [1, 1]

samples = 3
value = [0, 3]

den <= 0.311
samples = 14
value = [8, 6]

mloss <= 0.903
samples = 129
value = [125, 4]

dist <= 0.066
samples = 9
value = [7, 2]

mloss <= 0.97
samples = 5
value = [1, 4]

samples = 2
value = [0, 2]

samples = 7
value = [7, 0]

samples = 4
value = [0, 4]

samples = 1
value = [1, 0]

mloss <= 0.858
samples = 53
value = [49, 4]

samples = 76
value = [76, 0]

bw <= 0.964
samples = 48
value = [47, 1]

dist <= 0.46
samples = 5
value = [2, 3]

samples = 46
value = [46, 0]

mloss <= 0.357
samples = 2
value = [1, 1]

samples = 1
value = [1, 0]

samples = 1
value = [0, 1]

samples = 2
value = [2, 0]

samples = 3
value = [0, 3]

bw <= 0.551
samples = 596

value = [266, 330]

traj <= 0.01
samples = 95

value = [74, 21]

mloss <= 0.992
samples = 356

value = [207, 149]

bw <= 0.607
samples = 240

value = [59, 181]

samples = 26
value = [0, 26]

dist <= 0.985
samples = 330

value = [207, 123]

traj <= 0.124
samples = 110
value = [54, 56]

bw <= 0.18
samples = 220

value = [153, 67]

samples = 12
value = [12, 0]

den <= 0.419
samples = 98

value = [42, 56]

bw <= 0.467
samples = 80

value = [27, 53]

traj <= 0.595
samples = 18
value = [15, 3]

den <= 0.269
samples = 76

value = [23, 53]

samples = 4
value = [4, 0]

traj <= 0.54
samples = 37

value = [16, 21]

bw <= 0.456
samples = 39
value = [7, 32]

samples = 6
value = [6, 0]

traj <= 0.563
samples = 31

value = [10, 21]

samples = 8
value = [0, 8]

traj <= 0.945
samples = 23

value = [10, 13]

dist <= 0.149
samples = 13
value = [9, 4]

dist <= 0.754
samples = 10
value = [1, 9]

samples = 7
value = [7, 0]

dist <= 0.538
samples = 6
value = [2, 4]

samples = 3
value = [0, 3]

bw <= 0.108
samples = 3
value = [2, 1]

samples = 2
value = [2, 0]

samples = 1
value = [0, 1]

samples = 8
value = [0, 8]

dist <= 0.817
samples = 2
value = [1, 1]

samples = 1
value = [1, 0]

samples = 1
value = [0, 1]

bw <= 0.375
samples = 38
value = [6, 32]

samples = 1
value = [1, 0]

bw <= 0.375
samples = 29
value = [6, 23]

samples = 9
value = [0, 9]

traj <= 0.139
samples = 27
value = [4, 23]

samples = 2
value = [2, 0]

dist <= 0.061
samples = 3
value = [2, 1]

den <= 0.38
samples = 24
value = [2, 22]

samples = 1
value = [0, 1]

samples = 2
value = [2, 0]

samples = 20
value = [0, 20]

den <= 0.411
samples = 4
value = [2, 2]

samples = 2
value = [2, 0]

samples = 2
value = [0, 2]

dist <= 0.12
samples = 4
value = [1, 3]

samples = 14
value = [14, 0]

samples = 1
value = [1, 0]

samples = 3
value = [0, 3]

bw <= 0.168
samples = 41

value = [19, 22]

bw <= 0.46
samples = 179

value = [134, 45]

bw <= 0.159
samples = 33

value = [19, 14]

samples = 8
value = [0, 8]

den <= 0.247
samples = 26

value = [12, 14]

samples = 7
value = [7, 0]

bw <= 0.019
samples = 7
value = [6, 1]

den <= 0.303
samples = 19
value = [6, 13]

samples = 3
value = [3, 0]

bw <= 0.059
samples = 4
value = [3, 1]

samples = 1
value = [0, 1]

samples = 3
value = [3, 0]

samples = 9
value = [0, 9]

bw <= 0.158
samples = 10
value = [6, 4]

den <= 0.315
samples = 8
value = [6, 2]

samples = 2
value = [0, 2]

samples = 2
value = [2, 0]

bw <= 0.156
samples = 6
value = [4, 2]

bw <= 0.103
samples = 4
value = [2, 2]

samples = 2
value = [2, 0]

samples = 1
value = [1, 0]

den <= 0.359
samples = 3
value = [1, 2]

samples = 1
value = [0, 1]

bw <= 0.155
samples = 2
value = [1, 1]

samples = 1
value = [1, 0]

samples = 1
value = [0, 1]

den <= 0.332
samples = 149

value = [118, 31]

bw <= 0.522
samples = 30

value = [16, 14]

bw <= 0.3
samples = 106
value = [79, 27]

den <= 0.388
samples = 43
value = [39, 4]

bw <= 0.28
samples = 39

value = [25, 14]

bw <= 0.375
samples = 67

value = [54, 13]

den <= 0.303
samples = 34
value = [25, 9]

samples = 5
value = [0, 5]

bw <= 0.267
samples = 24
value = [21, 3]

bw <= 0.197
samples = 10
value = [4, 6]

samples = 20
value = [20, 0]

den <= 0.256
samples = 4
value = [1, 3]

samples = 3
value = [0, 3]

samples = 1
value = [1, 0]

samples = 4
value = [0, 4]

bw <= 0.24
samples = 6
value = [4, 2]

samples = 2
value = [2, 0]

bw <= 0.266
samples = 4
value = [2, 2]

samples = 2
value = [0, 2]

samples = 2
value = [2, 0]

samples = 21
value = [21, 0]

bw <= 0.387
samples = 46

value = [33, 13]

den <= 0.265
samples = 7
value = [1, 6]

den <= 0.307
samples = 39
value = [32, 7]

bw <= 0.375
samples = 2
value = [1, 1]

samples = 5
value = [0, 5]

samples = 1
value = [0, 1]

samples = 1
value = [1, 0]

bw <= 0.435
samples = 29
value = [22, 7]

samples = 10
value = [10, 0]

den <= 0.239
samples = 7
value = [3, 4]

bw <= 0.445
samples = 22
value = [19, 3]

samples = 3
value = [0, 3]

bw <= 0.417
samples = 4
value = [3, 1]

bw <= 0.414
samples = 2
value = [1, 1]

samples = 2
value = [2, 0]

samples = 1
value = [1, 0]

samples = 1
value = [0, 1]

samples = 13
value = [13, 0]

bw <= 0.446
samples = 9
value = [6, 3]

samples = 2
value = [0, 2]

bw <= 0.449
samples = 7
value = [6, 1]

bw <= 0.448
samples = 3
value = [2, 1]

samples = 4
value = [4, 0]

samples = 2
value = [2, 0]

samples = 1
value = [0, 1]

samples = 24
value = [24, 0]

bw <= 0.229
samples = 19
value = [15, 4]

samples = 9
value = [9, 0]

bw <= 0.229
samples = 10
value = [6, 4]

samples = 2
value = [0, 2]

bw <= 0.441
samples = 8
value = [6, 2]

samples = 4
value = [4, 0]

bw <= 0.441
samples = 4
value = [2, 2]

samples = 1
value = [0, 1]

den <= 0.418
samples = 3
value = [2, 1]

samples = 1
value = [1, 0]

bw <= 0.441
samples = 2
value = [1, 1]

samples = 1
value = [0, 1]

samples = 1
value = [1, 0]

bw <= 0.465
samples = 10
value = [1, 9]

bw <= 0.528
samples = 20
value = [15, 5]

den <= 0.265
samples = 2
value = [1, 1]

samples = 8
value = [0, 8]

samples = 1
value = [1, 0]

samples = 1
value = [0, 1]

samples = 9
value = [9, 0]

den <= 0.265
samples = 11
value = [6, 5]

samples = 2
value = [2, 0]

den <= 0.403
samples = 9
value = [4, 5]

bw <= 0.53
samples = 5
value = [1, 4]

bw <= 0.528
samples = 4
value = [3, 1]

bw <= 0.53
samples = 2
value = [1, 1]

samples = 3
value = [0, 3]

samples = 1
value = [0, 1]

samples = 1
value = [1, 0]

samples = 1
value = [0, 1]

samples = 3
value = [3, 0]

samples = 58
value = [0, 58]

dist <= 0.937
samples = 182

value = [59, 123]

bw <= 0.639
samples = 137

value = [26, 111]

den <= 0.265
samples = 45

value = [33, 12]

den <= 0.265
samples = 9
value = [6, 3]

den <= 0.403
samples = 128

value = [20, 108]

samples = 3
value = [0, 3]

samples = 6
value = [6, 0]

den <= 0.307
samples = 107
value = [20, 87]

samples = 21
value = [0, 21]

traj <= 0.374
samples = 77
value = [9, 68]

dist <= 0.126
samples = 30

value = [11, 19]

den <= 0.234
samples = 10
value = [5, 5]

den <= 0.265
samples = 67
value = [4, 63]

traj <= 0.022
samples = 6
value = [5, 1]

samples = 4
value = [0, 4]

samples = 1
value = [0, 1]

samples = 5
value = [5, 0]

samples = 40
value = [0, 40]

den <= 0.282
samples = 27
value = [4, 23]

bw <= 0.732
samples = 16
value = [4, 12]

samples = 11
value = [0, 11]

bw <= 0.688
samples = 4
value = [2, 2]

bw <= 0.821
samples = 12
value = [2, 10]

samples = 2
value = [0, 2]

samples = 2
value = [2, 0]

samples = 5
value = [0, 5]

bw <= 0.821
samples = 7
value = [2, 5]

samples = 1
value = [1, 0]

dist <= 0.103
samples = 6
value = [1, 5]

samples = 3
value = [0, 3]

bw <= 0.909
samples = 3
value = [1, 2]

samples = 2
value = [0, 2]

samples = 1
value = [1, 0]

samples = 4
value = [4, 0]

traj <= 0.272
samples = 26
value = [7, 19]

samples = 9
value = [0, 9]

bw <= 0.822
samples = 17
value = [7, 10]

dist <= 0.267
samples = 12
value = [7, 5]

samples = 5
value = [0, 5]

samples = 4
value = [4, 0]

bw <= 0.769
samples = 8
value = [3, 5]

den <= 0.315
samples = 6
value = [1, 5]

samples = 2
value = [2, 0]

samples = 1
value = [1, 0]

samples = 5
value = [0, 5]

den <= 0.221
samples = 13
value = [6, 7]

den <= 0.372
samples = 32
value = [27, 5]

samples = 6
value = [6, 0]

samples = 7
value = [0, 7]

den <= 0.282
samples = 30
value = [27, 3]

samples = 2
value = [0, 2]

samples = 8
value = [8, 0]

bw <= 0.796
samples = 22
value = [19, 3]

bw <= 0.796
samples = 19
value = [16, 3]

samples = 3
value = [3, 0]

bw <= 0.705
samples = 18
value = [16, 2]

samples = 1
value = [0, 1]

bw <= 0.702
samples = 11
value = [9, 2]

samples = 7
value = [7, 0]

bw <= 0.625
samples = 10
value = [9, 1]

samples = 1
value = [0, 1]

bw <= 0.624
samples = 3
value = [2, 1]

samples = 7
value = [7, 0]

samples = 2
value = [2, 0]

samples = 1
value = [0, 1]

bw <= 0.936
samples = 13
value = [3, 10]

dist <= 0.173
samples = 82

value = [71, 11]

samples = 2
value = [2, 0]

den <= 0.299
samples = 11
value = [1, 10]

samples = 8
value = [0, 8]

bw <= 0.939
samples = 3
value = [1, 2]

samples = 1
value = [0, 1]

den <= 0.307
samples = 2
value = [1, 1]

samples = 1
value = [1, 0]

samples = 1
value = [0, 1]

den <= 0.548
samples = 62
value = [59, 3]

bw <= 0.951
samples = 20
value = [12, 8]

samples = 51
value = [51, 0]

bw <= 0.935
samples = 11
value = [8, 3]

samples = 2
value = [0, 2]

traj <= 0.23
samples = 9
value = [8, 1]

samples = 5
value = [5, 0]

bw <= 0.935
samples = 4
value = [3, 1]

samples = 1
value = [0, 1]

samples = 3
value = [3, 0]

bw <= 0.925
samples = 16
value = [12, 4]

samples = 4
value = [0, 4]

samples = 5
value = [5, 0]

den <= 0.212
samples = 11
value = [7, 4]

samples = 2
value = [0, 2]

den <= 0.527
samples = 9
value = [7, 2]

samples = 3
value = [3, 0]

bw <= 0.933
samples = 6
value = [4, 2]

samples = 1
value = [0, 1]

dist <= 0.241
samples = 5
value = [4, 1]

samples = 4
value = [4, 0]

samples = 1
value = [0, 1]

bw <= 0.991
samples = 94

value = [56, 38]

traj <= 0.164
samples = 855

value = [172, 683]

traj <= 0.811
samples = 57

value = [45, 12]

traj <= 0.686
samples = 37

value = [11, 26]

mloss <= 0.643
samples = 42

value = [30, 12]

samples = 15
value = [15, 0]

samples = 3
value = [0, 3]

den <= 0.38
samples = 39
value = [30, 9]

den <= 0.26
samples = 28
value = [24, 4]

dist <= 0.037
samples = 11
value = [6, 5]

den <= 0.23
samples = 7
value = [4, 3]

bw <= 0.984
samples = 21
value = [20, 1]

samples = 2
value = [2, 0]

bw <= 0.982
samples = 5
value = [2, 3]

samples = 1
value = [0, 1]

dist <= 0.077
samples = 4
value = [2, 2]

samples = 1
value = [1, 0]

bw <= 0.984
samples = 3
value = [1, 2]

samples = 1
value = [1, 0]

samples = 2
value = [0, 2]

bw <= 0.984
samples = 7
value = [6, 1]

samples = 14
value = [14, 0]

samples = 6
value = [6, 0]

samples = 1
value = [0, 1]

samples = 4
value = [4, 0]

bw <= 0.986
samples = 7
value = [2, 5]

bw <= 0.984
samples = 6
value = [1, 5]

samples = 1
value = [1, 0]

dist <= 0.095
samples = 2
value = [1, 1]

samples = 4
value = [0, 4]

samples = 1
value = [1, 0]

samples = 1
value = [0, 1]

dist <= 0.586
samples = 16
value = [9, 7]

den <= 0.212
samples = 21
value = [2, 19]

traj <= 0.603
samples = 5
value = [1, 4]

traj <= 0.578
samples = 11
value = [8, 3]

samples = 1
value = [1, 0]

samples = 4
value = [0, 4]

samples = 2
value = [0, 2]

bw <= 0.992
samples = 9
value = [8, 1]

bw <= 0.992
samples = 2
value = [1, 1]

samples = 7
value = [7, 0]

samples = 1
value = [1, 0]

samples = 1
value = [0, 1]

mloss <= 0.486
samples = 4
value = [2, 2]

samples = 17
value = [0, 17]

samples = 2
value = [2, 0]

samples = 2
value = [0, 2]

bw <= 0.99
samples = 52

value = [30, 22]

traj <= 0.175
samples = 803

value = [142, 661]

mloss <= 0.995
samples = 29
value = [22, 7]

bw <= 0.991
samples = 23
value = [8, 15]

samples = 6
value = [6, 0]

dist <= 0.001
samples = 23
value = [16, 7]

samples = 4
value = [4, 0]

traj <= 0.105
samples = 19
value = [12, 7]

traj <= 0.087
samples = 15
value = [8, 7]

samples = 4
value = [4, 0]

traj <= 0.068
samples = 13
value = [8, 5]

samples = 2
value = [0, 2]

den <= 0.239
samples = 10
value = [5, 5]

samples = 3
value = [3, 0]

samples = 3
value = [0, 3]

traj <= 0.014
samples = 7
value = [5, 2]

samples = 1
value = [0, 1]

dist <= 0.091
samples = 6
value = [5, 1]

samples = 5
value = [5, 0]

samples = 1
value = [0, 1]

samples = 11
value = [0, 11]

traj <= 0.11
samples = 12
value = [8, 4]

traj <= 0.057
samples = 8
value = [4, 4]

samples = 4
value = [4, 0]

samples = 3
value = [3, 0]

dist <= 0.028
samples = 5
value = [1, 4]

samples = 1
value = [1, 0]

samples = 4
value = [0, 4]

samples = 56
value = [0, 56]

bw <= 0.98
samples = 747

value = [142, 605]

den <= 0.239
samples = 115
value = [6, 109]

den <= 0.52
samples = 632

value = [136, 496]

bw <= 0.972
samples = 9
value = [3, 6]

den <= 0.356
samples = 106
value = [3, 103]

samples = 6
value = [0, 6]

samples = 3
value = [3, 0]

bw <= 0.976
samples = 54
value = [3, 51]

samples = 52
value = [0, 52]

den <= 0.348
samples = 51
value = [1, 50]

mloss <= 0.992
samples = 3
value = [2, 1]

samples = 50
value = [0, 50]

samples = 1
value = [1, 0]

samples = 1
value = [0, 1]

samples = 2
value = [2, 0]

bw <= 0.987
samples = 601

value = [136, 465]

samples = 31
value = [0, 31]

den <= 0.307
samples = 181

value = [64, 117]

bw <= 0.994
samples = 420

value = [72, 348]

traj <= 0.553
samples = 37

value = [24, 13]

traj <= 0.607
samples = 144

value = [40, 104]

bw <= 0.984
samples = 16
value = [7, 9]

bw <= 0.986
samples = 21
value = [17, 4]

samples = 4
value = [0, 4]

dist <= 0.363
samples = 12
value = [7, 5]

dist <= 0.004
samples = 9
value = [7, 2]

samples = 3
value = [0, 3]

samples = 1
value = [0, 1]

traj <= 0.221
samples = 8
value = [7, 1]

traj <= 0.198
samples = 2
value = [1, 1]

samples = 6
value = [6, 0]

samples = 1
value = [1, 0]

samples = 1
value = [0, 1]

den <= 0.273
samples = 16
value = [15, 1]

traj <= 0.606
samples = 5
value = [2, 3]

samples = 11
value = [11, 0]

bw <= 0.984
samples = 5
value = [4, 1]

samples = 3
value = [3, 0]

bw <= 0.984
samples = 2
value = [1, 1]

samples = 1
value = [0, 1]

samples = 1
value = [1, 0]

samples = 2
value = [2, 0]

samples = 3
value = [0, 3]

dist <= 0.194
samples = 125
value = [40, 85]

samples = 19
value = [0, 19]

traj <= 0.217
samples = 113
value = [29, 84]
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Figure A.6: Detail of our ML-based bagged decision tree (see section 7.4.1).

A.3 ANN-based forwarding model

Figure A.7 depicts the Python code used to generate the ANN-based forwarding model that
we have designed (see section 7.4.2). This code was generated using the keras tool [111]. The
procedure to import the dataset and its division into training and testing datasets is similar to
the previous ML mechanisms. However, its construction differs in some aspects because it has a
more complex architecture. First, the neural network architecture is built in terms of the number
of layers, number of neurons, and the interconnection between the different layers. Second, in
the learning process, a suitable optimization algorithm has to be selected in conjunction with
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the loss error function. Finally, in the training phase, we have selected the number of epochs,
and the validation-based early stop technique to avoid overfitting.

Figure A.7: Python code to generate the ANN-based forwarding model (see sec-
tion 7.4.2).



Appendix B

Guide with useful tips for future
Ph.D. candidates

In this appendix we present a collection of different tools that are typically used to carry out
experiments in the computer network research field. Also, we have included useful tips for
researchers to help their work and save a lot of time in their research work.

B.1 Tools and tips to automate processes in simula-

tion and data management tasks

There Ph.D. candidates of the SISCOM (Smart Services for Information Systems and Commu-
nication Networks)1 research group, that belong to the Department of Networking Engineering
at the Universitat Politècnica de Catalunya (UPC) in Barcelona, have worked in an article that
collects the most important aspects to begin with the simulation work about their research
work. Our goal is to write a guide document that collects useful tips to save time and effort of
future researchers. The resulting document is in preparation to be submitted in the following
article:

• Leticia Lemus Cárdenas, Pablo Barbecho, Juan Astudillo, ”Tools and tips to automate
processes in simulation and data management tasks,”, In preparation.

A preliminary draft version of our Guide with Tips for future Ph.D. candidates has been up-
loaded in [118]. In our guide we describe the main tools that we have used during our Ph.D.
Thesis: network simulators, programming languages, LaTeX editors, among others. In the
following subsection, the contents of this article are pointed out.

1https://siscom.upc.edu/en

148

https://siscom.upc.edu/en
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B.1.1 Contents

Network simulators are commonly used to test different experiments to evaluate the perfor-
mance of novel proposals developed by researchers. Simulation tools are widely used due to the
infeasibility of deploying physical testbeds when complex scenarios are difficult to be evaluated.
Besides, network simulators are also needed when researchers are proposing new techniques
that must be tested quickly during the design phase, or when they are in an early stage of
research. In our case, we have used two well-known network simulators widely used by the
research community: (i) OMNeT++/Veins/SUMO and (ii) ns-3 discrete-event network simula-
tor. In particular, we present a novel methodology to make efficient and faster simulations in
both network simulators.

On the other hand, among the different programming languages, Python is widely used in differ-
ent areas such as Web and Internet Development, scientific and numeric computing, education,
desktop GUIs, business, and so on. Nowadays, it is one of the most prominent candidates to
deploy different machine learning models. With this in mind, we present how to use Python to
generate and validate a machine learning model from scratch. Besides, we present the Matlab
toolbox for machine learning that is a good approach to start with in the machine learning
research field. Also, we present how to calculate the computational cost and overhead of the
most common algorithms. Finally, the most prevalent LaTex editors are presented.

The contents of the final version of the article will contain the following:

1. Introduction

2. Machine Learning. How to start with.

2.1 Machine learning with Matlab

2.1.1 Machine learning toolbox.

2.2 Machine learning with Python.

2.2.1 Building the machine learning models.

2.2.1.1 Create machine learning models with skikit-learn project.

2.2.1.2 Create deep learning learning model with keras.

2.2.2 Export the learning model to the network simulators.

3. Trade-off between benefits and costs to evaluate our proposals

3.1 Computational cost.

3.2 Overhead

4. Offline and online LaTeX editors

4.1 TeXstudio

4.1.1 Installation

4.2 Overleaf

5. How to make efficient and faster simulations

5.1 OMNeT++
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5.1.1 Prerequisite Packages.

5.1.2 SUMO

5.1.3 Simultaneous simulations.

5.2 ns-3

5.2.1 Prerequisite Packages.

5.2.2 Simultaneous simulations.
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[99] Çağrı Kaymak and Ayşegül Uçar. A Brief Survey and an Application of Semantic Image
Segmentation for Autonomous Driving, pages 161–200. Springer International Publishing,
Cham, 2019. ISBN 978-3-030-11479-4. doi: 10.1007/978-3-030-11479-4 9. URL https:

//doi.org/10.1007/978-3-030-11479-4_9.

[100] Y. Tang, N. Cheng, W. Wu, M. Wang, Y. Dai, and X. Shen. Delay-minimization rout-
ing for heterogeneous VANETs with machine learning based mobility prediction. IEEE
Transactions on Vehicular Technology, 68(4):3967–3979, April 2019. ISSN 0018-9545. doi:
10.1109/TVT.2019.2899627.

[101] C. Wu, T. Yoshinaga, Y. Ji, and Y. Zhang. Computational intelligence inspired data deliv-
ery for vehicle-to-roadside communications. IEEE Transactions on Vehicular Technology,
67(12):12038–12048, Dec 2018. ISSN 0018-9545. doi: 10.1109/TVT.2018.2871606.

[102] M. Laroui, A. Sellami, B. Nour, H. Moungla, H. Afifi, and S. B. Hacene. Driving path
stability in VANETs. In 2018 IEEE Global Communications Conference (GLOBECOM),
pages 1–6, Dec 2018. doi: 10.1109/GLOCOM.2018.8647450.

[103] Degan Zhang, Ting Zhang, and Xiaohuan Liu. Novel self-adaptive routing service algo-
rithm for application in VANET. Applied Intelligence, 49(5):1866–1879, 2019.

[104] J. Wu, M. Fang, H. Li, and X. Li. RSU-assisted traffic-aware routing based on reinforce-
ment learning for urban VANETs. IEEE Access, 8:5733–5748, 2020.

[105] D. E. O’Leary. Artificial intelligence and big data. IEEE Intelligent Systems, 28(2):96–99,
March 2013. ISSN 1941-1294. doi: 10.1109/MIS.2013.39.

[106] The MathWorks, Inc. MATLAB. ”https://es.mathworks.com/products/matlab.
html?s_tid=hp_ff_p_matlab”.

[107] Diederik P. Kingma and Jimmy Lei Ba. Adam. A method for stochastic optimization.
arXiv.org, December 2014. doi: arXiv:1412.6980.

[108] Sebastian Ruder. An overview of gradient descent optimization algorithms, 2016.

https://doi.org/10.1007/978-3-030-11479-4_9
https://doi.org/10.1007/978-3-030-11479-4_9
https://es.mathworks.com/products/matlab.html?s_tid=hp_ff_p_matlab
https://es.mathworks.com/products/matlab.html?s_tid=hp_ff_p_matlab


Bibliography 159

[109] Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto. On early stopping in gradient
descent learning. Constructive Approximation, 26(2):289–315, 2007.

[110] Garvesh Raskutti, Martin J Wainwright, and Bin Yu. Early stopping and non-parametric
regression: an optimal data-dependent stopping rule. The Journal of Machine Learning
Research, 15(1):335–366, 2014.

[111] François Chollet et al. Keras. https://github.com/fchollet/keras, 2015.

[112] Jacolien Lokhorst. The lasso and generalised linear models. 1999.

[113] Pablo Barbecho, Leticia Lemus, Luis Urquiza, and Mónica Aguilar Igartua. A
traffic-aware electric vehicle charging management system for smart cities. Vehicu-
lar Communication, 20:100188:1–100188:14, Dec 2019. doi: 10.1016/j.vehcom.2019.
100188. URL http://hdl.handle.net/2117/172770;https://www.sciencedirect.

com/science/article/abs/pii/S2214209619302359.
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