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Abstract 

 

 

 

Cognitive processing requires to flexibly combine information from 
functionally specialized neural processes that are widely distributed 
throughout the brain. Neuroimaging studies have consistently 
reported that functional network configurations are governed by two 
fundamental principles of brain organization: functional segregation 
and integration. Yet, the mechanisms underlying the dynamic 
network reorganization are not well understood. In this work, we 
present evidence for two mechanisms through which the dynamic 
system-level integration is modulated. On the one hand, the large-
scale brain organization is mediated by transient changes in phase-
synchronization, facilitating global information flow between distant 
cortical areas as proposed by the "Communication Through 
Coherence" (CTC) theory. And in the other, it is mediated by the 
ascending neuromodulatory system. Neuromodulators constrain 
local processes by selectively changing the balance of the excitation 
and inhibition of individual brain regions. 
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Resumen 

 

 

 

El procesamiento cognitivo requiere combinar de manera flexible la 
información de procesos neuronales funcionalmente especializados 
que están ampliamente distribuidos por todo el cerebro. Los estudios 
de neuroimagen han informado consistentemente que las 
configuraciones de red funcional se rigen por dos principios 
fundamentales de la organización del cerebro: segregación funcional 
e integración. Sin embargo, los mecanismos subyacentes a la 
reorganización dinámica de la red aún no son bien comprendidos. En 
este trabajo, presentamos evidencia en soporte de dos mecanismos a 
través de los cuales se modula la integración dinámica a nivel de 
sistema. Por un lado, la organización del cerebro a gran escala está 
mediada por cambios transitorios en la sincronización de fases, lo que 
facilita el flujo de información global entre áreas corticales distantes 
como lo propone la teoría de "comunicación a través de la 
coherencia" (CTC). Y por otro, está mediada por el sistema 
neuromodulador ascendente. Los neuromoduladores restringen los 
procesos locales al cambiar selectivamente el equilibrio de la 
excitación e inhibición de las regiones cerebrales individuales. 

 

  



 

 
12 

 



 

 
13 

Preface 

 

 

“If the brain were simple enough for us to understand it, we would be too 
simple to understand it”.  

—Emerson M. Pugh (1938)  

 

 

 

Understanding how the human mind emerges from the functional 
organization of the brain remains one of the greatest intellectual 
challenges of our times. The brain is arguably the most complex 
system in the universe. It contains around 100 billion neurons—more 
than the number of stars in the Milky Way—which are connected by 
~100 trillion synapses anatomically organized over multiple scales. 
Despite having a fixed anatomy characterized by its connectome1, the 

 

 

 

 

1 The complete map of the neural connections within a brain. 



 

 
14 

brain network structure has the ability to dynamically and adaptively 
reconfigure giving rise to complex cognition and a wide range of 
behavior. Over the last decades, the dynamical system approach to 
the brain has become a crucial tool for explaining how cognition 
emerges from the intricate interaction between multiple structural 
and functional levels. Dynamical systems exhibit emergent behavior 
in that their collective behavior has novel properties that differ 
quantitatively and qualitatively from their simplest components and, 
therefore, represent more than the sum of their parts at all possible 
levels. In virtue of understanding cognitive processes as an emergent 
property of neurons and their connections, this thesis brings new 
insights into the brain’s underlying organizational principles and 
mechanisms governing the interaction of cortical regions.  

This dissertation comprises five chapters: In Chapter 1, we will 
introduce the two principles governing brain function, namely 
integration and segregation, in support of the view of brain function 
as a global rather than a local phenomenon. We will provide insights 
into phase synchronization as a mechanism responsible for large-
scale integration, and we will further review current research 
regarding the influence of the neuromodulatory system on the 
functional level. Additionally, we will argue in favor of whole-brain 
computational modeling as a remarkable tool for mechanistically 
explaining the properties of brain structure and neuronal dynamics 
observed from neuroimaging data. In Chapters 2 and 3, we will show 
new insights into the neural activity patterns and functional network 
architecture associated with cognitive processing. In Chapter 4, we 
will introduce a whole-brain model of the dynamic brain activity 
under the effects of LSD—which integrates a receptor map of 
serotonin distribution—as a new approach to understand 
experimental manipulations of the neuromodulatory system. Finally, 
in Chapter 5, we will present a general overview of the main results, 
recognize some limitations of the studies, and address future 
perspectives. 
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CHAPTER 1 

 

 

Introduction 

 

 “The essence of knowledge is, having it, to apply it” 

—Confucius (551–478 BC) 

 

 

 

For more than a century, there was a tendency to attribute cognitive 
functions to the remote operations of individual brain areas. 
However, the weight of evidence shifted in favor of the view that 
cognition emerges from the dynamic interaction of broadly 
distributed brain regions operating collectively on large-scale 
networks (Mountcastle, 1978; Mesulam, 1990; Bressler, 1995; 
McIntosh, 2000; Sporns et al., 2004). The historical roots of this view 
can be traced to the pioneering work done by Carl Wernicke in the 
19th century. Wernicke first observed specific behavioral impairment 
following focal brain lesions and realized that the attribution of a 
brain function to a cortical area was related to its anatomical 
connectivity with distant brain regions (Wernicke, 1874).  
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As a result of the shift to this new paradigm, neuroscience has 
increasingly adopted tools and concepts from network science (i.e., 
graph theory, dynamical systems) to characterize the operation of sets 
of brain regions (Fox et al., 2005; Power et al., 2011). Essentially, all 
network models represent the brain as a set of nodes, which 
correspond to the brain areas, with edges or links representing the 
pairwise connectivity between nodes. Of particular challenge, is the 
fact that the brain is spatially organized in a multiscale level, meaning 
that networks can be validly defined at the microscale level of 
neurons and synapses, the mesoscale level of neuronal populations 
and axons, and the macroscale level of brain regions and neuronal 
fibers (see Figure 1.1). Within the context of this work, in the 
following, we will focus on networks at the macroscopic scale. 

Large-scale brain networks can be defined based on their structural 
topology or functional dynamics. On the one hand, the structural 
connectivity (SC) refers to the white matter fiber tracts physically 
connecting different brain regions, the description of which has been 
coined as the human connectome (Sporns, Tononi and Kötter, 2005; 
Hagmann, 2005). In human neuroimaging studies, SC is commonly 
measured using diffusion-weighted imaging (DWI) methods, such as 
diffusion tensor imaging (DTI) and diffusion spectrum imaging 
(DSI). On the other hand, the functional connectivity (FC) indicates 
that a set of brain regions are functionally related to one another. 
Operationally, the FC is defined as the temporal pattern of statistical 
dependence among neuronal time series from different voxels or 
brain areas, determined by Pearson correlations, phase 
synchronization, covariance, mutual information or, causality 
measures (Friston, 1994; Stephan and Friston, 2009). In most current 
applications, brain activity is measured on several timescales and 
with varying degrees of spatial precision, using methods such as 
electroencephalography (EEG), magnetoencephalography (MEG), 
functional magnetic resonance imaging (fMRI) and positron 
emission tomography (PET). The whole set of functional connections 



 

 
27 

between all pairs of brain regions describes the functional brain 
network. It is reasonable to assume that if two separate brain regions 
show correlated activity, they are involved in the same functional 
processing and, therefore, integrate information. For this reason, 
analyzing the topological organization of the functional brain 
networks yields crucial insights into global brain function. 

 

 

Figure 1.1 Schematic representation of the organization of the structural levels 
of the central nervous system (CNS). 

The hierarchical structural organization of the CNS varies over many orders of 
magnitude, from molecular dimensions measured in angstroms to fiber tracts that 
span centimeters. In the context of this work, we focus on the levels of maps and 
systems. Illustration reproduced from (Petersen and Sporns, 2015). 
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Importantly, considerable efforts have been set to determine the 
complex synergy between the resulting (relatively stable) structural 
and (highly dynamic) functional networks (Bullmore and Sporns, 
2009; Honey et al., 2009). In this regard, Hae-Jeong Park and Karl 
Friston (Park and Friston, 2013) wrote that,  

 

“The human brain presents a puzzling and challenging 
paradox: Despite a fixed anatomy, characterized by its 
connectivity, its functional repertoire is vast, enabling 
action, perception, and cognition […] The resolution of this 
paradox may reside in the brain’s network architecture, 
which organizes local interactions to cope with diverse 
environmental demands—ensuring adaptability, robustness, 
resilience to damage, efficient message passing, and diverse 
functionality from a fixed structure”. 

 

The divergence between structure and function allows non-
overlapping functional network configurations that are governed by 
two fundamental principles of brain organization: functional 
segregation and integration (Tononi, Sporns and Edelman, 1994; 
Fox and Friston, 2012; Bullmore and Sporns, 2009; Deco et al., 
2015). The segregation principle refers to the functional processes 
that engage localized and specialized brain regions. By contrast, the 
integration principle highlights the relevance of the interactions 
among distributed brain regions in the emergence of brain function.  

Natural questions then arise about, how cognitive processing 
modulates the level of integration and segregation of information in 
human brain networks? How networks dynamically reorganize to 
allow broad communication between many different brain regions in 
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order to integrate information? And, what are the underlying 
dynamics and possible mechanisms facilitating this information 
routing? The research work presented in this thesis will address these 
issues using novel methods combined with human iEEG, EEG, 
fMRI, and behavioral data, together with computational whole-brain 
modeling. 

The upcoming sections provide a brief overview of four key concepts 
in the context of this work: 1) the segregation and integration 
principles, 2) insights into phase synchronization as a possible 
mechanism for integration, 3) the neuromodulatory influence on 
integration and 4) the potential of computational whole-brain 
modeling to provide possible mechanistic explanations on the 
modulation of whole-brain dynamics. 

 

Integration and Segregation in the Brain 

 

Complex cognition and adaptive behavior require combining 
incoming environmental information with internal representations 
from past experiences. How does the brain flexibly orchestrate 
information from functionally specialized neural processes that are 
widely distributed throughout the brain? The general hypothesis is 
that the two fundamental principles of large-scale brain organization, 
namely, integration and segregation, compensates for the distributed 
nature of its anatomical and functional organization (Dehaene, 
Kerszberg and Changeux, 1998; Bressler and Kelso, 2001; Deco et 
al., 2015; Cohen and D’Esposito, 2016).  

The balance between integration and segregation in the brain is 
crucial for cognitive function. Recent modeling work has 
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demonstrated that the trade-off between functional specialization and 
global communication is manifested through transient changes in 
correlated patterns of neural activity that are constrained by the 
almost invariant structural connectome (Deco, Jirsa and McIntosh, 
2013; Honey et al., 2007). This balance represents the interplay 
between the microscale dynamics that govern local neuronal activity, 
and the macroscale dynamics describing the interaction among 
distant neuronal populations (Varela et al., 2001; Bressler and 
Tognoli, 2006). Segregation refers to the process in which densely 
connected network communities are arranged within modules, with 
statistical dependence of neural signals among them, and statistical 
independence across them (Tononi, Sporns and Edelman, 1994; 
Sporns 2013). Conversely, by quantifying the connectivity level 
across the brain, the functional integration denotes the ability of the 
network to integrate distributed and functionally specialized 
submodules in order to facilitate global communication (Figure 1.2). 
Importantly, these principles are complementary: a global increase in 
integration will lead to a decrease in segregation.  

Intrinsic and task-evoked interactions between different brain areas 
are crucial to understanding brain integration (Friston, 2011; Cole et 
al., 2014; Deco and Kringelbach, 2017). Existing research has proven 
that individual cognitive tasks drive specific transient reconfiguration 
of the brain network structure (Mennes et al., 2013; Davison et al., 
2015; Cole et al., 2013) while preserving a nearly stable functional 
topology reminiscent of the resting state configuration (Power et al., 
2011; Cole et al., 2014; Krienen, Yeo and Buckner, 2014). In fact, 
the functional network architecture during rest accounts for nearly 
80% of the variance in task-evoked network configurations (Cole et 
al., 2014; Krienen, Yeo and Buckner, 2014).  
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Figure 1.2 Integration and Segregation measures. 

A) The direct functional connectivity (FC) between each pair of cortical regions 
are represented in the connection strength matrix. The binarized FC matrix is 
obtained after thresholding, and the size of the largest connected component 
extracted as a measure of integration. B) Nodes are arranged into mesoscopic 
networks that form communities. Functional segregation indicates dense 
connection within communities, with sparse connections across communities, 
whereas functional integration indicates strong connections across community 
boundaries. Figure adapted from (Sporns, 2013; Lord et al., 2017). 

 

Previous research has shown that the configuration of the brain 
network structure during task performance exhibits higher integrated 
states facilitating global information flow as compared to the resting-
state networks (Shine et al., 2016; Kitzbichler et al., 2011; Di et al., 
2013; Cohen and D’Esposito, 2016). For instance, higher integrated 
states have been associated with a more accurate behavioral 
performance on a range of cognitive tasks (Kitzbichler et al., 2011; 
Shine et al., 2016; Ekman et al., 2012; Liang et al., 2015). Moreover, 
the extent of integration has been shown to fluctuate over time both 
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during single scanning neuroimaging sessions (Shine et al., 2016; 
Hutchison et al., 2013; Chang and Glover, 2010) and during the 
course of weeks and months (Shine, Koyejo, and Poldrack, 2016). 

Beyond the mere increase in the strength of pairwise functional 
connections, the resulting integrated states of the network topology 
provide the substrate for the “global workspace” essential to 
cognition as postulated by the global workspace theory (Baars, 2002; 
2005; Dehaene and Changeux, 2011). This theory suggests that after 
local operations within modules, the information processed is 
integrated within a global workspace and broadcasted to different 
areas. The observed changes in network topology are also congruent 
with the idea that the brain network organization is the result of an 
economic trade-off between the wiring cost of the network and the 
topological efficiency (Bullmore and Sporns, 2012). The main idea 
is that, since long-range connections are more costly to the system, 
the brain under resting-state operates in an energy-saving mode 
characterized by higher modularity, greater clustering, and a small 
proportion of long-range connections. Whereas, according to task 
demands, the brain exhibits a rapid network reconfiguration in which 
long-range connections are recruited to allow global information 
transmission. 

Despite substantial evidence in support of the fact that cognitive 
processing relies on the flexible integration of information widely 
distributed across specialized regions of the brain, the mechanisms 
responsible for the coordination are still poorly understood. In the 
following sections, we will introduce two primary candidates 
underlying these interactions: large-scale phase synchronization and 
modulation from the neuromodulatory system. 
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Phase Synchronization as a Mechanism for Large-Scale 
Integration in the Brain 

 

Synchronization is a fundamental phenomenon revealing the 
appearance of positive temporal correlations between the phases and 
frequencies of two, or more, neural populations. This notion is 
broadly used in experimental cognitive studies and computational 
models investigating coordinated oscillatory behavior.  

Based on the idea that “what fires together, wires together” (Hebb, 
1949; Shatz, 1992, p. 64), it is assumed that distant task-related brain 
regions will become co-activated in response to task demands. 
Among several mechanisms describing the reciprocal interaction 
between brain regions, measures of phase synchronization such as 
phase coherence and phase-locking values, are one of the most 
studied within the context of neurophysiology (Lachaux et al., 1999; 
Mormann et al., 2000; Fell and Axmacher, 2011).  

The relevance of phase synchronization for sensory-cognitive 
processes has become increasingly evident (Buzsaki and Draguhn, 
2004; Buzsáki, 2009). Large-scale neural synchronization in 
different frequencies establishes transient associations between 
anatomically distributed brain areas and appears to be responsible for 
information exchange across them. The main idea behind this 
phenomenon is that oscillatory neuronal activity reflects rhythmic 
fluctuations in membrane potential, which are associated with 
changes in neuronal excitability (Buzsaki and Draguhn, 2004; 
Lakatos et al., 2005; Fries, Nikolic and Singer, 2007). Consequently, 
these fluctuations may gate neural responses to incoming sensory 
information, producing peaks and troughs that correspond to optimal 
and suboptimal windows for communication. As we will see in the 
next section, the binding mechanism through phase synchronization 
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has been generalized to the communication through coherence theory 
(Varela et al., 2001; Deco and Kringelbach, 2016).  

 

The Communication Through Coherence Theory 

Oscillations at different frequency bands are commonly observed in 
neurons in the cortex, subcortex, and cerebellum (Buzsaki and 
Draguhn, 2004). It is widely accepted that they contribute to the 
processing of information in neural circuits by communicating 
distant neuronal populations, but how do they communicate? 

In general terms, the “Communication Through Coherence” (CTC) 
theory states that the synchronization between different neuronal 
populations modulates the flexible communication between them, 
meaning that communication is mechanistically implemented by a 
pattern of coherence (Fries, 2005; 2015). Indeed, two populations of 
neurons may communicate most effectively when they are in phase, 
i.e., when their excitability level is coordinated in time (see Figure 
1.3). The CTC theory suggests that effective connections in a 
network can be shaped through phase relations, more specifically 
through beta (13–30 Hz) and gamma band (30–100 Hz) 
synchronization, as reported experimentally (Fries, 2005; 2009; 
2015). Thus, oscillations are proposed to dynamically shape the 
computational role of different neuronal groups linked through static 
structural connectivity.  

Several empirical studies support task-induced changes in 
synchronization at the level of individual regions during selective 
attention (Womelsdorf et al., 2006), working memory (Howard et al., 
2003), and motor control (Ball et al., 2008). Moreover, such task-
induced changes in synchronization have been observed between 
distant cortical regions during working memory (Jones and Wilson, 
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2005; Sauseng et al., 2004), long-term memory encoding (Fell et al., 
2001; Axmacher et al., 2008; Fell et al., 2008), visual attention 
(Gregoriou et al., 2009), motor control (MacKay, 1997) and 
sensorimotor integration (Roelfsema et al., 1997). 

 

 

Figure 1.3 The Influence of Brain Oscillations and Synchronization in Neural 
Communication 

A, B and C represent three synchronized neuronal populations. The black line 
represents the sinusoidal local field potential, and the red lines at the peak 
correspond to spikes. A and B are phase-aligned, meaning that their windows for 
input and output exchange invariantly occur at the same time, therefore, they can 
interact more efficiently. Conversely, B and C present a phase-lag, thus action 
potentials will arrive at a non-optimal phase likely restricting communication 
between them. Figure adapted from Fries, 2005; Deco and Kringelbach, 2016. 

 

Importantly, to study the way in which the flexible effective 
connectivity repertoire of patterns is implemented within fixed 
whole-brain anatomical structural connectivity, Deco and 
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Kringelbach (Deco and Kringelbach, 2016) extended the CTC 
hypothesis to the whole-brain level and linked it to the concept of 
metastability. They proposed that the dynamics at the macroscale 
level of slow oscillations are shaped by the underlying microscopic 
CTC-mediated interactions and that the way to implement it is by 
maximizing the metastability, an essential sign of a healthy brain. As 
metastability, they refer to the variability of the phase configurations 
as a function of time, in other words, how the phase-based 
synchronization between the different brain regions fluctuates over 
time.  

In chapter 2 we will exploit the high spatiotemporal resolution of 
intracranial EEG to further explore how cognitive processing 
modulates global functional measurements, i.e., the level of 
integration and segregation of information in the human brain 
networks during task performance, and how these modulations are 
related to the CTC theory.  

 

The Relevance of Theta Phase for Memory Processes 

As outlined in the previous section, the phase of brain oscillations is 
associated with the exact timing of neural activity. In particular, the 
phase determines the degree of excitability of the neurons and 
influences the timing of action potentials. For this reason, the 
oscillatory phase and phase synchronization have been primarily 
studied in the context of information transfer for several cognitive 
processes, including memory operations.  

Considerably progress in elucidating how memory is accomplished 
has been made analyzing the role of phase synchronization-based 
mechanisms. Extensive research supports that memory-related 
oscillations are likely confined to theta (4–8 Hz) and alpha (8–13 Hz) 
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and that higher frequencies are only relevant when coupled to lower 
frequencies or in the context of a specific role for a high precision 
timing of neural events (like long-term potentiation or long-term 
depression) (Klimesch et al., 2008; Fell and Axmacher, 2011).  

Enhanced spectral coherence and long-range phase synchronization 
in the theta range between prefrontal and posterior regions have been 
associated with the successful episodic encoding of visually 
presented stimuli (Weiss and Rappelsberger, 2000; Summerfield and 
Mangels, 2005; Sato and Yamaguchi, 2007). In fact, it has been 
observed that the strength of the synchronization increases as a 
function of task demands (Fell et al., 2003; Sauseng et al., 2007; 
Mizuhara and Yamaguchi, 2007). A plausible interpretation of these 
results is that phase synchronization might represent the link between 
prefrontal executive control areas exerting top-down influence over 
material-specific posterior regions. Based on iEEG recordings, other 
evidence highlights the role of phase synchronization in 
communicating medial temporal structures, particularly the 
hippocampus and rhinal cortex, for memory formation. Greater phase 
synchronization between those sites was observed for subsequently 
remembered stimuli, compared to forgotten ones (Fell et al., 2001; 
Fell et al., 2008).  

The studies mentioned above have focused their analysis in the 
encoding period, i.e., the time-window just after the stimulus is 
presented. Alternatively, other studies have considered that 
oscillatory activity even before the stimulus is presented might also 
play a role in determining whether or not a stimulus will be later 
remembered (Park and Rugg, 2010; Haque et al., 2015; Otten et al., 
2006; Otten, Quayle and Puvaneswaran, 2010; Guderian et al., 2009; 
Addante, de Chastelaine and Rugg, 2015). 

In addition, the phase of ongoing low-frequency oscillations appears 
to reset at the moment of the presentation of behaviorally relevant 
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stimuli (Rizzuto et al., 2003; Haque et al., 2015). This shift in the 
dynamics of prestimulus ongoing oscillations might play a 
fundamental role in the synchronization of neuronal populations and 
the coordination of information transfer necessary for efficient 
encoding. In fact, some studies show that phase synchronization is 
more precise during encoding of information that is later remembered 
compared to later forgotten, most likely acting as the “gluing 
mechanism” for binding human memories (Buzsaki and Draguhn, 
2004; Backus et al., 2016; Hanslmayr, Staresina and Bowman, 2016; 
Clouter, Shapiro and Hanslmayr, 2017; for review see Fell and 
Axmacher, 2011). 

Despite our understanding that phase synchronization underlying 
memory processes has a binding role for communication and 
coordination of local processes and inter-region interaction, there 
remain many unresolved issues concerning the role of the prestimulus 
phase for memory formation. In the hope of progressing on these 
issues, Chapter 3 will explore whether ongoing fluctuations in 
prestimulus neural activity have an impact on memory formation. To 
do so, we will use a paired-associates memory task in two 
experiments performed by healthy participants. 

 

º º º 

 

Taken together, the evidence presented in this section highlights the 
relevance of long-range neural synchrony during the emergence of 
cognitive processes and shows that, beyond a simple 
epiphenomenon, it is causally related to human behavior. In view of 
this, phase synchronization appears as a key mechanism for global 
neuronal communication and large-scale integration within 
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frequency-specific, cortical networks. However, the neurobiological 
mechanisms responsible for the dynamic system-level integration are 
not restricted only to the synchronization between brain areas, the 
modulation of the global neuronal gain—mediated by the ascending 
neuromodulatory system—also plays a major role. The following 
section will briefly expand on some theoretical foundations and 
experimental findings that illustrate the influence that 
neuromodulators exert on shaping global brain dynamics. 

 

Neuromodulatory Influences on Integration and 
Segregation in the Brain 

 

It is widely accepted that the powerful ability of the brain to adapt its 
behavior flexibly is largely due to the ascending neuromodulatory 
systems. Neuromodulators constrain local processes by selectively 
changing the balance of the excitation and inhibition of individual 
brain regions—i.e., the neural gain—and, therefore, adjust inter-
regional interactions (Cohen, Braver and Brown, 2002; Aston-Jones 
and Cohen, 2005; Shine et al., 2018). Extensive literature supports 
the fact that neuromodulatory systems have a strong influence on 
cognitive processing (Puig et al., 2015; Thiele and Bellgrove, 2018; 
Naish et al., 2018; Robbins and Arnsten, 2009; Moran et al., 2013); 
hence, there has been a growing interest in the link between 
neuromodulators and the emerging network topology at the system-
level. For instance, recent computational work has demonstrated that 
neuromodulatory systems adjust the balance of integration and 
segregation within the whole-brain network by mediating 
communication between brain regions (Shine et al., 2018; Poldrack 
and Yarkoni, 2016). In particular, the results showed that selective 
increases in the neural gain of different brain regions transitioned the 



 

 
40 

network to higher integrated states, exhibiting a more complex 
organization and greater variability in the topological structure over 
time. Notably, the concentration of neurotransmitter receptors is 
quite heterogeneous throughout the cerebral cortex, which, in 
addition to reflecting the modular and hierarchical organization of the 
cortex, constitutes a significant source of variability and allows the 
transition between different brain states (Eickhoff et al., 2007; Pillai 
and Jirsa, 2017).  

Selective pharmacological activation of specific neurotransmitter 
receptors has shed light upon the role of neuromodulatory systems in 
shaping global network dynamics. Psychedelic drugs such as lysergic 
acid diethylamide (LSD) and psilocybin, provide the opportunity to 
do so, offering a unique experimental framework for relating 
neuropharmacology to changes in global connectivity due to their 
profound effects in perception, thinking, and consciousness. First 
synthesized in 1938 by Albert Hofmann, LSD is a serotonin (5-HT) 
and dopamine (D1 and D2) receptor agonist with psychoactive 
properties. Some of the effects users experience include ego-
dissolution, changes to the quality and attribution of thoughts, visual 
and sensory misperceptions, and increased awareness of repressed 
memories (Rucker, Iliff, and Nutt, 2018). Psilocybin is a natural 
psychedelic prodrug compound obtained from certain species of 
mushrooms—commonly known as "magic mushrooms"—which 
presumably has subjective effects very similar to those of LSD 
(Hollister and Hartman, 1962; Hollister and Sjoberg, 1964). It is also 
a serotonin receptor (5-HT) agonist with a particular affinity to the 5-
HT2A, but unlike LSD, it is selective, i.e., it does not have action at 
the D1–D2 dopamine receptors.  

Over the last two decades, the interest in psychedelic drug research 
has significantly increased due to its promising therapeutic effect in 
neuropsychiatric disorders. Positive preliminary evidence on the 
safety, tolerability, and efficacy of psilocybin for medical use has 
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been found for obsessive-compulsive disorder (Moreno et al., 2006), 
alcohol and tobacco addictions (Bogenschutz et al., 2015; Johnson et 
al., 2014) and for major depression disorder (Carhart-Harris et al., 
2016b; Carhart-Harris et al., 2018a), and of psilocybin and LSD for 
end-of-life psychological distress (Gasser et al., 2014; Griffiths et al., 
2016; Grob et al., 2011; Ross et al., 2016).  

The effects of LSD on the human brain at a resting state have now 
been revealed using modern neuroimaging techniques. Studies using 
this approach have shown decreases in connectivity between the 
brain regions composing the default mode network (DMN)—a 
collection of regions exhibiting correlated activations, especially 
during rest—allowing an increase in the connectivity between brain 
networks that are highly segregated (Carhart-Harris et al., 2016c; 
Müller et al., 2018). Notably, LSD enhances global and between-
module integration while decreasing the integrity of individual 
modules, relative to placebo, particularly in frontal, parietal, and 
temporal regions (see Figure 1.4; Tagliazucchi et al., 2016), and in 
the thalamus and basal ganglia (Müller et al., 2017; Preller et al., 
2018). Related findings on the effects of psilocybin reported 
increases in between-network resting-state functional connectivity 
under psilocybin (Roseman et al., 2014), implying that networks 
become less differentiated from each other in the psychedelic state. 
Moreover, the exploration of the brain’s repertoire of functional 
networks states has been found to be characterized by an increase in 
the metastability (Lord et al., 2019).  

The above results provide strong evidence for the impact of the 
neuromodulatory system in shaping global network dynamics and 
can be interpreted in terms of a global rearrangement of the balance 
between integration and segregation, offering valuable insights into 
how they can be used for therapeutic means. However, the 
mechanisms underlying these experimentally observed phenomena 
remain obscure. Building on these ideas, in chapter 4, we will use a 
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computational whole-brain model integrating multimodal 
neuroimaging data to explore mechanistic explanations for the effects 
of pharmacologic manipulations. For this purpose, in the following 
section, we will introduce the potential of computational whole-brain 
modeling. 

 

 

Figure 1.4 LSD Increases Global Integration 

A) LSD selectively increases global functional connectivity as seen in the 
comparison of average functional connectivity dynamics (FCD) under placebo and 
LSD conditions, B) Decreases in brain modularity under LSD reveal a reduction 
in the separation of intrinsic brain networks, C) Brain regions showing increased 
participation coefficient in LSD versus placebo. The participation coefficient of 
each node was computed measuring how much each node communicates across 
modules, compared to how much they communicate within module, D) Changes in 
the level of integration between coupled regions by means of the rich-club 
coefficient Φ(k) are higher for the placebo condition, meaning that LSD decreases 
the level of communication between the brain’s dominant hub regions. Figure 
adapted from Tagliazucchi et al., 2016. 
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The Advantage of Whole-Brain Computational Models 

 

During the last decades, advances in neuroimaging techniques and 
data analysis methods have led to an excellent description of global 
brain dynamics and functional networks. However, empirical data 
solely only covers descriptive aspects of these phenomena while 
missing possible mechanistic explanations. Whole-brain 
computational modeling has significantly contributed to bridging this 
gap since it can be used to explore the intricate link between structure 
and function by considering the dynamics of interacting cortical 
regions (Deco and Corbetta, 2011; Nakagawa et al., 2013; Ponce-
Alvarez et al., 2015; Honey et al., 2009).  

An appropriate mathematical model allows a systematic parameter 
variation hardly feasible in experiments and data analysis and helps 
to formulate predictions and hypotheses that can serve as a basis for 
further experimental investigation. The large number of variables 
affecting the brain structure and function makes it nearly impossible 
for them to be considered in a single model. Therefore, whole-brain 
dynamical models go beyond the level of individual synapses and 
neurons and consider the mesoscopic behavior of neuronal 
populations instead (for a review see Deco et al., 2008). 

Several models of different complexity have been suggested to 
simulate the activity of a neuronal population including detailed 
spiking neuron models (Deco and Jirsa, 2012), phase oscillators 
(Cabral et al., 2011; Ponce-Alvarez et al., 2015), limit-cycle 
oscillators (Deco et al., 2017a; Bettinardi et al., 2017), neural mass 
or mean-field models (Deco et al., 2014b), and others (Deco et al., 
2008; Sanz-Leon et al., 2015; Haimovici et al., 2013; Marinazzo et 
al., 2014). These models reproduce the ongoing activity of large 
populations of neurons based on the assumption that their collective 
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macroscopic behavior is only weakly dependent on the behavior of 
individual neurons (Breakspear and Jirsa, 2007). This premise has 
taken its lead from statistical physics, which has shown that 
macroscopic physical systems obey laws independently of their 
micro- or mesoscopic constituents (Haken, 1975). 

Modeling of resting-state dynamics represents the brain as a densely 
connected network of nodes, where each node denotes a brain region 
based on a neuroimaging parcellation template2. The inter-node 
connections are derived from empirical data, typically diffusion 
magnetic resonance (dMRI) and tractography techniques. According 
to the chosen model, the local dynamics of each node are 
mathematically described by a set of differential equations that can 
be constrained by known neurophysiology (Deco, Jirsa and 
McIntosh, 2011). The model constraints and couples the local 
dynamics between regions according to the empirical structural 
properties. Expressly, it assumes that the density of the white matter 
fibers connecting two brain areas corresponds to the strength of the 
reciprocal synaptic projections between those areas. 

The model parameters can be systematically varied to find the 
optimum at which the simulated global network dynamics closely 
replicates the ones observed with current neuroimaging techniques 

 

 

 

 

2 A brain parcellation defines distinct partitions of the brain on the basis of specific 
anatomical or functional features, ranging from local properties of brain tissue to 
long-range connectivity patterns (for a review see Eickhoff, Yeo and Genon, 2018). 
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including fMRI (Ghosh et al., 2008; Honey et al., 2009; Deco et al., 
2009; Cabral et al., 2011; Deco and Jirsa, 2012), MEG (Cabral et al., 
2014b; Nakagawa et al., 2013), and EEG (Hindriks, van Putten and 
Deco, 2014). The optimal working point of the model is found for 
spatiotemporal patterns characterized by measures such as FC (Deco 
et al., 2013; 2014) and FCD (Hansen et al., 2015; Glomb et al., 2017).  

Of particular interest, in the context of this work, is the dynamic 
mean-field (DMF) model, which has been successfully used to 
investigate how the physiological state of cortical circuits shapes FC 
(Deco et al., 2013; 2014). Interestingly, the maximum similarity 
between the model and the empirical data is mostly achieved when 
the model is close to the bifurcation (Deco et al., 2017b). This 
suggests that the resting brain operates at a critical point at which a 
sudden quantitative change of its dynamics, results in a transition 
between states (Deco, Jirsa and McIntosh, 2013; Golos, Jirsa and 
Daucé, 2015; Cocchi et al., 2017). In the following, we will review 
the mean-field model and describe how to transform a simulated 
neural activity into a hemodynamic signal that captures the changes 
in mean the firing rate (Brunel and Wang, 2003). 

 

Whole-Brain Dynamic Mean-Field Model 

The DMF model proposed by Deco et al. (Deco et al., 2014) 
approximates the average ensemble behavior of interconnected 
excitatory and inhibitory spiking neurons to a reduced set of 
dynamical equations describing the activity of coupled excitatory (E) 
and inhibitory (I) pools of neurons. Under resting-state conditions, 
each single brain node emulates spontaneous neuronal noise, i.e., 
reproducing the typical asynchronous low firing rate spontaneous 
activity observed empirically (around 3 Hz for the pyramidal neurons 
and 9 Hz for inhibitory neurons). We implement this neuronal noise 
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by a modified DMF model based on the original reduction of Wong 
and Wang (Wong and Wang, 2006). In this DMF reduction, the 
excitatory synaptic currents, 𝐼("), are mediated by NMDA receptors, 
and the inhibitory currents, 𝐼($), are mediated by GABAA receptors. 
Within each brain area n, the E and I neuronal pools are reciprocally 
connected, whereas inter-area coupling between two areas n and p 
occurs only at the E-to-E level and is scaled by the structural 
connectivity 𝐶%&.  

More specifically, the DMF model at the whole-brain level is 
expressed by the following system of coupled differential equations:  
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Here, for each excitatory (E) or inhibitory (I) pool of neurons in each 
brain area n, 𝐼%

(",$) (in nA) represents the total input current, 𝑟%
(",$) (in 

Hz) denotes the firing rate, and 𝑆3
(",$) denotes the synaptic gating 

variable. The neuronal response functions, 𝐻(",$), convert the total 
input currents received by the E and I pools into firing rates, 𝑟3

(",$), 
following the input-output function of Abbott and Chance (Abbott 
and Chance, 2005), where 𝑔" = 310	𝑛𝐶45 and 𝑔$ = 615	𝑛𝐶45 are 
gain factors determining the slope of H, 𝐼-./

(") = 0.403	𝑛𝐴, and 𝐼-./
($) =

0.288	𝑛𝐴 are the threshold currents above which the firing rates 
increase linearly with the input currents, and 𝑑" = 0.16 and 𝑑$ =
0.087 are constants determining the shape of the curvature of H 
around 𝐼-./. The synaptic gating variable of excitatory pools, 𝑆3

("), is 
controlled by NMDA receptors with a decay time constant 𝑡)*+, =
0.1s and 𝑔 = 0.641, whereas the average synaptic gating in 
inhibitory pools depends on GABA receptors with 𝑡0,1, = 0.01s. 
The overall effective external input is 𝐼6 = 0.382	𝑛𝐴 with 𝑊" = 1 
and 𝑊$ = 0.7. Furthermore, 𝑤( = 1.4 is the weight of recurrent 
excitation, and 𝐽)*+, = 0.15	𝑛𝐴 weighs all excitatory synaptic 
couplings. In Equations 5 and 6 𝑦% is uncorrelated standard Gaussian 
noise with an amplitude of 𝑠 = 0.01	𝑛𝐴. All parameters were set as 
in Wong and Wang (Wong and Wang, 2006). The parameters of the 
DMF model were defined in Wong and Wang (Wong and Wang, 
2006) to emulate resting-state conditions, such that each isolated 
node displays the typical noisy spontaneous activity with low firing 
rate M𝑟(")~3𝐻𝑧P observed in electrophysiology experiments (Burns 
and Webb, 1976; Koch and Fuster, 1989; Softky and Koch, 1993; 
Shadlen and Newsome, 1998). Moreover, following Deco et al. 
(Deco et al., 2014), the inhibition weight, 𝑗%, was adjusted for each 
node n such that the firing rate of the excitatory pools 𝑟%

(") remains 
clamped at 3Hz even when receiving excitatory input from connected 
areas. This regulation is known as Feedback Inhibition Control (FIC), 
and the algorithm to achieve it is described in Deco et al. (Deco et al., 
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2014). It has been demonstrated that the FIC leads to a better 
prediction of the resting-state FC and to a more realistic evoked 
activity (Deco et al., 2014).  

Following the parcellation applied to the structural and functional 
MRI data, we considered N = 90 brain areas in our whole-brain 
network model. Each area n receives excitatory input from all 
structurally connected areas p into its excitatory pool, weighted by 
the connectivity matrix, 𝐶%&, obtained from dMRI. Furthermore, all 
inter-area E-to-E connections are equally scaled by a global coupling 
factor G. This global scaling factor is the only control parameter that 
is adjusted to move the system to its optimal working point, where 
the simulated activity maximally fits the empirical resting-state 
activity of participants under placebo conditions.  

 

Transforming Neuronal Activity into BOLD-fMRI Signal 

Hemodynamic models estimate blood oxygen level-dependent 
signals from simulated neural activity, enabling a more direct 
comparison with fMRI measures (Razi et al., 2017).  

The Balloon–Windkessel model (Friston, Harrison and Penny, 2003; 
Stephan et al., 2007) describes the coupling of perfusion to the BOLD 
signal, with a dynamical model of the transduction of neural activity 
into perfusion changes. The model assumes that the BOLD signal is 
a static nonlinear function of the normalized total deoxyhemoglobin 
voxel content, normalized venous volume, resting net oxygen 
extraction fraction by the capillary bed, and resting blood volume 
fraction. The BOLD-signal estimation for each brain area is 
computed by the level of neuronal activity summed over all neurons 
in both populations (excitatory and inhibitory populations) in that 
particular area. In all our simulations shown here, this level of 
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neuronal activity is given by the rate of spiking activity in windows 
of 1 ms. In brief, for the i-th region, neuronal activity 𝑧3 causes an 
increase in a vasodilatory signal 𝑠3 that is subject to autoregulatory 
feedback. Inflow 𝑓3 responds in proportion to this signal with 
concomitant changes in blood volume 𝑣3 and deoxyhemoglobin 
content 𝑞3. The equations relating these biophysical variables are: 

 

𝑑𝑠%
𝑑𝑡 = 0.5𝑟%

(") + 3 − 𝑘𝑠% − 𝛾(𝑓% − 1)																									(7) 

𝑑𝑓%
𝑑𝑡 = 𝑠%																																																		(8) 

𝜏
𝑑𝑣%
𝑑𝑡 = 𝑓% − 𝑣%7

!" 																																												(9) 

𝜏
𝑑𝑞%
𝑑𝑡 =

𝑓%(1 − 𝑝)8#
!"

𝑝 − 𝑞%𝑣%7
!"/𝑣%

																																			(10) 

 

where p is the resting oxygen extraction fraction, t is a time constant, 
and a represents the resistance of the veins. Finally, the BOLD signal 
in each area n, 𝐵%, is a static nonlinear function of volume, 𝑣%, and 
deoxyhemoglobin content, 𝑞%, that comprises a volume-weighted 
sum of extra- and intravascular signals:  

 

𝐵% = 𝑉6[𝑘5(1 − 𝑞%) + 𝑘9(1 − 	𝑞%/𝑣%) + 𝑘:(1 − 𝑣%)]									(11) 
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All biophysical parameters were taken from Stephan et al. (Stephan 
et al., 2007). To concentrate on the frequency range where resting-
state activity appears the most functionally relevant, both empirical 
and simulated BOLD signals were band-pass filtered between 0.1 and 
0.01 Hz (Biswal et al., 1995; Glerean et al., 2012; Buckner et al., 
2009; Achard et al., 2006).  

 

º º º 

 

To summarize, we have introduced the two fundamental principles 
of functional brain organization, namely, integration and segregation, 
and examined their implications for cognitive processing. In addition, 
we have discussed two possible mechanisms through which the 
dynamic system-level integration may be modulated. Finally, we 
have reviewed the potential value of computational whole-brain 
modeling—a unique framework—for providing insights into the 
mechanisms underlying the intricate functional architecture of 
human brain networks. In the following chapters, we will elaborate 
carefully on these topics aiming to marshal evidence and arguments 
that elucidate the mechanisms driving large-scale integration for 
cognitive processing. 
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CHAPTER 2 
 

 

The Dynamics of Human Cognition 
Characterized by Integration and 

Segregation Measures 

 

“The scientist is not a person who gives the right answers; is the one who asks 
the right questions” 

Claude Lévi-Strauss (1908–2009) 

 

 

Cognitive processing requires the ability to flexibly integrate and 
process information across large brain networks. How do brain 
networks dynamically reorganize to allow broad communication 
between many different brain regions in order to integrate 
information? In this chapter, we explore how cognitive processing 
modulates the level of integration and segregation of information in 
human brain networks (Deco et al., 2015), and how this is related to 
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CTC theory3. To do so, we recorded iEEG data from 12 patients with 
epilepsy using intracranial EEG while performing three different 
cognitive tasks. We show that the functional connectivity between 
different brain areas changes to facilitate communication across 
them. At the topological level, the facilitation is characterized by 
significant increases in integration and decreases in segregation 
during cognitive processing, especially in the gamma band (50–90 
Hz). In addition, task execution drives an increase in the level of 
global synchronization and functional connectivity in the same 
frequency band. More importantly, functional connectivity 
modulations are not caused by changes in the level of the underlying 
oscillations. Instead, these modulations are caused by a 
rearrangement of the mutual synchronization between the different 
nodes as proposed by the “Communication Through Coherence” 
Theory. 

  

 

 

 

 

 

 

3 The results presented in this chapter are published in: Cruzat, J., Deco, G., Tauste-
Campo, A., Principe, A., Costa, A., Kringelbach, M. L., & Rocamora, R. (2018). 
The dynamics of human cognition: Increasing global integration coupled with 
decreasing segregation found using iEEG. NeuroImage, 172, 492-505. 
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Human Cognitive Processing at the Whole-Brain Level 

 

Intracranial electroencephalography (iEEG) recordings from the 
human brain provide a unique opportunity to study cognitive 
functions measuring neural activity at the mesoscopic level. Beyond 
the high temporal resolution intrinsic to iEEG measurements, this 
technique also allows higher levels of spatial resolution and enhanced 
signal-to-noise ratio (Engel et al. 2005; Lachaux et al. 2003). These 
advantages have led scientists to use the technique (Lachaux et al. 
2012) to study several cognitive processes such as attention (Müsch 
et al., 2014), visual perception (Bertrand et al., 2014; Ossandón et al., 
2012), language (Chan et al., 2011; Hamamé, Alario, Llorens, 
Liégeois-Chauvel, & Trébuchon-Da Fonseca, 2014; Sahin, Pinker, 
Cash, Schomer, & Halgren, 2009), memory (Greenberg, Burke, 
Haque, Kahana, & Zaghloul, 2015; Haque et al., 2015; Kucewicz et 
al., 2014), decision making (Perez et al., 2015), emotion (Murray et 
al. 2014; Boucher et al. 2015) and consciousness (Gaillard et al., 
2009). Most of this research has attempted to assign functions to 
specific local brain areas by correlating task-performance with 
measurements of neural activity (but see also 
recent coherence network studies: Kingyon et al. 2015; Zheng et al. 
2017; Mercier et al. 2015). Furthermore, most studies using iEEG 
have focused mainly on single-electrodes analysis, using 
predominantly event-related potentials (Lachaux et al. 2012)  or 
spectral analysis (Kahana, 2006). Here, we take a different 
perspective. Instead of focusing on single electrodes, we assess 
changes in functional connectivity analyzing all the implanted 
electrodes. 

In contrast to the regional view of brain function, growing evidence 
reveals that human cognition relies on the flexible integration of 
information widely distributed across different brain regions 
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(Bressler and Menon 2010; Deco et al. 2015; Fallani et al. 2008; 
Kitzbichler et al. 2011; Palva et al. 2010; Valencia et al. 2008; Bassett 
et al. 2011; Chai et al. 2016; Ekman et al. 2012; Kinnison et al. 2012; 
Wang et al. 2016). In these studies, cognitive processing increases 
the global integration of information across neural networks, while at 
the same time leads to a decrease in their modularity (Kitzbichler et 
al. 2011; Ekman et al. 2012; Kinnison et al. 2012; Bola and Sabel 
2015; Vatansever et al. 2015; Godwin et at. 2015; Liang et al. 2015). 
Although some iEEG studies have observed increased 
synchronization by task demands (Axmacher et al., 2008; Becher et 
al., 2015; Gaillard et al., 2009), no one has assessed integration and 
segregation dynamics. Furthermore, limited knowledge is available 
regarding the mechanisms that underlie changes in integration and 
segregation associated with cognitive processing. 

 

Experimental Setting and Participants 

 

We explored how cognitive processing modulates the level of 
integration and segregation of information in human brain networks 
(Deco et al., 2015), and how these modulations are related to the 
communication through coherence (CTC) theory. To do so, we 
recorded iEEG data from depth electrodes stereotactically implanted 
for presurgical diagnosis in 12 patients with epilepsy (PWE) 
performing three different cognitive tasks. The iEEG electrodes used 
a stereo-electroencephalography (SEEG) implantation methodology 
and covered broad brain regions, including cortical as well as 
subcortical regions. Hence, we were able to assess global changes in 
a broad brain network. Furthermore, we also assessed how 
integration and segregation relate to synchronization rather than to 
the level of oscillations (amplitude). Finally, is important to 
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emphasize that our claims about the modulation of the 
integration/segregation and the validity of CTC theory are global 
since they are independent of the location of the electrodes (i.e., node 
location, which was different for each patient) and type of cognitive 
processing (three different cognitive tasks were used). 

The Clinical Research Ethical Committee of the Municipal Institute 
of Health Care (CEIC-IMAS) approved this study. Following the 
Declaration of Helsinki, patients were informed about the procedure 
and they gave their written consent before the experiment. 

Twelve subjects (N = 12) (3 women; all right-handed; mean age 
36.4 ± 10.1 years-old), evaluated for presurgical diagnosis in the 
Epilepsy Monitoring Unit of the Hospital del Mar (Barcelona, Spain), 
participated in the study. All patients were stereotactically implanted 
with depth electrodes for invasive presurgical diagnosis using a 
stereotactic ROSA robotic device (Medtech, France). The location of 
the electrodes was established only for clinical reasons using an 
SEEG approach. The implantation schemas were similar between all 
patients, given that they were all under investigation for temporal 
lobe epilepsy. The number of electrodes used varied among 8 to 16 
for a patient with 5–15 contacts each (diameter: 0.8 mm; contacts 
2 mm long, 1.5 mm apart) (DixiMédical, France). All patients 
underwent an extensive neuropsychological evaluation and had a 
normal or corrected-to-normal vision. They were within the normal 
range of education, having completed from primary to high academic 
level. Supplement Table S2.1 summarizes personal data, 
pathological information, and an overview of implanted electrodes 
for each patient. Since we aim to study the network dynamics 
supporting cognitive processes under normal circumstances, patients 
were assessed in the absence of pharmacological treatment. They 
were tested at least three days after the last administration of the drug. 
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Cognitive Tasks and Procedure 

 

Picture-naming Task 

Participants were asked to name aloud in Spanish, as fast and 
accurately as possible, 228 pictures presented in three different 
blocks. Pictures were black & white line drawings of familiar objects 
from a wide range of semantic categories selected from the Snodgrass 
and Vanderwart 1980 set. Each picture appeared once centrally and 
sequentially on the computer screen in a pseudo-random order for 
2000 ms, followed by a fixation cross for 1000 ms (see Figure 2.1). 

 

 

Figure 2.1 Paradigm, behavioral performance and implantation scheme 

A) Schematic example of the experimental paradigm of the picture-naming task. 
After an interval of 1000 ms for preparation, each target picture was presented and 
remained on the screen for 2000 ms. B) Picture naming accuracy for each patient. 
On average, patients achieved 83.2 ± 11.3% accuracy on test items (N = 228). C) 
Example of the intracerebral implantation scheme for iEEG recordings in patient 
E. Eleven electrodes were implanted in the left hemisphere. 

 

 

 



 

 
57 

Size-judgement Task 

Participants were instructed to indicate via button press if the 
presented Spanish word represented an object larger than a one-foot 
box in any dimension. Word stimuli were 68 items from two different 
categories: animals and human-made objects. Half of the words in 
each category represented objects larger than one foot. Words were 
auditorily presented through computer speakers. Each word was 
presented sequentially in a pseudo-random order followed by an 
inter-trial lapse of 3500 ms. 

 

Lexical-decision Task 

Participants were instructed to indicate whether the letter string 
presented in each trial written on a computer screen was a real word 
(e.g., run, table) or a pseudoword (e.g., lun, tible). We included four 
types of real words: motion verbs (e.g., run), static verbs (e.g., think), 
concrete nouns (e.g., table), and abstract nouns (e.g., theory). The 
task included a total of 150 trials. Each word was presented once 
centrally and sequentially on the computer screen in a pseudo-
random order for 2000 ms followed by a fixation cross for 1000 ms. 

 

The three tasks had different stimulus presentation modality. This 
allowed us to assess neural activity elicited when retrieving 
conceptual knowledge from a lexical form, from an object depicting 
a concept and from a written lexical form. 

The stimuli were presented using the software Sketchbook 
Processing 2.2.1 (Programming Software, 2001 
https://processing.org/) on a laptop computer at an approximate size 
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of 5 degrees of visual angle. For the picture-naming task, the 
experimenter transcribed the responses and provided an accuracy 
score. For the size-judgement and lexical-decision task, responses 
were collected through keyboard input and response times recorded 
and timed in milliseconds. An electronic processor, “Arduino, UNO” 
was used to connect and synchronize both hardware; the XLTEK 
system with the computer (MacBook Pro). The application interfaced 
with an Arduino board that, in turn, was connected to the 
EEG amplifier, and at each trial, a signal was sent through the 
Arduino to the EEG. 

 

iEEG Data Acquisition and Pre-processing 

 

Neurophysiological responses were registered by the iEEG system 
from deep multichannel electrodes (DIXI Microtechniques, 
Besançon, France). On average, each patient had 13 ± 2 electrodes 
implanted (range 8–16) with a total of 120±13 recording contacts 
(range 85–127). The data were acquired continuously by the 
Neuroworks XLTEK system (version 6.3.0, build 636) at 32 kHz 
with a headbox of 128 channels recorded at a sampling frequency of 
500 Hz. For our analysis, we considered all channels placed in both 
cortex and subcortical structures. Channels placed in white matter or 
misplaced were disregarded. A bipolar montage was constituted 
offline to increase spatial resolution by removing any confounds from 
the common reference signal (Lachaux et al. 2003; Jerbi et al. 2009). 
Bipolar signals were derived by differentiating neighboring electrode 
pairs of recorded and not rejected consecutive channels within the 
same electrode array (Lachaux et al. 2012; Boucher et al. 2015; 
Gaillard et al. 2009; Burke et al. 2013). The continuous iEEG data 
was first high-pass filtered at 1 Hz and low-pass filtered at 150 Hz. 
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To remove common line contamination, an extra notch filter was 
applied at 50 and 100 Hz. In order to have specific spectral 
information, we analyzed the spatio-temporal correlations of the 
Band Limited Power (BLP) at a given carrier frequency. This is a 
standard approach introduced in the context of MEG analysis 
(Brookes et al. 2011a). For that, at a given carrier frequency 
f;<==>?= (we consider here 𝑓@A//3B/ = 1 − 130	𝐻𝑧 in steps of 4 Hz) we 
band-pass filtered the signal within the narrow band [𝑓@A//3B/ 	– 2, 
𝑓@A//3B/ + 2 Hz] (we used the second-order Butterworth filter) and 
computed the corresponding envelope using the Hilbert transform 
(Brookes et al. 2011b; Cabral et al. 2014b). The Hilbert transform 
yields the associated analytical signals. The analytic signal represents 
a narrowband signal, 𝑠(𝑡), in the time domain as a rotating vector 
with an instantaneous phase, 𝑠(𝑡), and an instantaneous amplitude, 
𝐴(𝑡), i.e., 𝑠(𝑡) = 𝐴(𝑡)𝑐𝑜𝑠(𝜑(𝑡)). The phase and the amplitude (the 
envelope of that carrier frequency) are given by the argument and the 
module, respectively, of the complex signal 𝑧(𝑡), given by 𝑧(𝑡) =
𝑠(𝑡) + 𝑖. 𝐻[𝑠(𝑡)], where i is the imaginary unit, and 𝐻[𝑠(𝑡)] is the 
Hilbert transform of 𝑠(𝑡). We further consider only the slow 
components of the envelope 	A(t) by filtering the amplitudes again 
below 12 Hz (Nir et al., 2008). Finally, the slow component of the 
envelope of each brain node—which corresponds to each bipolar 
channel—at a given carrier frequency was used to calculate the 
envelope FC (see subsection below). 

To test another possible definition of integration, we also used the 
monopolar montage. Spatial resolution was increased by removing 
any confounds from the common reference signal for each time point. 
In this case, brain nodes correspond to each single monopolar 
channel. The full analysis pipeline is detailed in Figure 2.2. 
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Measures to Characterize Whole-brain Connectivity 

 

Envelope Functional Connectivity (FC) 

For the three tasks, all trials were considered. The data was 
segmented into two windows around stimulus presentation: the first 
one spanning from −500 ms to 0 from the stimulus presentation (pre-
stimulus window), and the second one from 0 to 500 ms from 
stimulus onset (post-stimulus windows). We defined an Envelope FC 
matrix of the continuous bipolar iEEG data for pre- and post-stimulus 
windows as a matrix of Pearson's correlations of the corresponding 
amplitude envelopes, i.e., the slow components of the BLP of iEEG 
signals at a given carrier frequency between two brain areas over the 
whole-time window for a given window (pre- and post-stimulus). 
Thus, the mean FC is specific for each narrow-band frequency 
window. 

 

Phase-lock Matrix 

For each time point, we calculated the phase lock matrix describing 
the global state of synchronization across all network nodes using the 
bipolar montage. The elements of the phase-lock matrix are given by: 

 

𝑃3C(𝑡) = 𝑒–:|F$(-)–F$(-)| 
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where 𝜑3(𝑡) is the extracted phase of node i at time t (at a given 
carrier frequency using the Hilbert transform as specified above). We 
used the phase-lock matrix at a specific single time point to calculate 
the integration, as specified below. 

 

Integration 

We used the measure of integration introduced by Deco et al. 
2015 defined at the network level to characterize the level of the 
broadness of communication between regions across the whole brain. 
After filtering the data, we calculated the envelope FC for both the 
pre- and post-stimulus windows. Then, we define integration as the 
size of the largest connected component in the FC matrix. That is the 
number of nodes of the largest connected graph in the binarized FC 
matrix obtained after thresholding it. More specifically, for a given 
absolute threshold 𝜃 between 0 and 1 (scanning the whole range), the 
FC (using the criteria e𝐹𝐶3Ce < 𝜃, i. e a value of 0 and 1 otherwise) is 
binarized and the largest subcomponent (see definition below) 
extracted as a measure of integration. To get a measure that is 
independent of the threshold, this curve is integrated in the range of 
thresholds between 0 and 1. The integration measure is then 
normalized by the maximal number of connected brain areas (i.e., all 
N areas) for each integration step and by the number of integration 
steps such that the maximal integration is normalized to 1. Note, that 
the concept of integration is designed to account for the broadness of 
communication across the brain, and thus require considering 
positive and negative correlations as potentially establishing a 
communication link. Therefore, we took the absolute values of the 
FC correlations. In other words, we quantified the broadness of 
communication (measured by means of correlation) regardless of 
whether the correlation values were negative or positive. 
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In graph-theoretical terms, subcomponents are extracted from the 
undirected graph defined by the binarized matrix (which itself is 
considered as an adjacency matrix). More precisely, a subcomponent 
is a subgraph in which paths connect any two vertices to each other, 
and which connects to no additional vertices in the super-graph (Deco 
et al., 2015). A vertex u is said to be connected to a vertex v in a 
graph G if there is a path in G from u to v. The concepts of subgraph 
and super-graph are defined as follows: Let H be a graph with vertex 
set V(H) and edge set E(H) and similarly let G be a graph with vertex 
set V(G) and edge set E(G). Then, we say that H is a subgraph 
of G if V(H) ⊆ V(G) and E(H) ⊆ E(G). In such a case, we also say 
that G is a super-graph of H. 

 

Segregation 

Complementary to the integration, we used the modularity (Rubinov 
& Sporns, 2011) as a measure of segregation. Following Rubinov and 
Sporns 2011, modularity is defined as a measure of the goodness with 
which a network is optimally partitioned into functional subgroups, 
i.e., a complete subdivision of the network into non-overlapping 
modules, and supported by densely connected network communities. 
We consider the modularity of our envelope FC matrix. This matrix 
contains positive and negative weights, namely the corresponding 
correlation between two nodes. The modularity measure we used is 
given by, 

 

𝑄0G, =
1

𝑣( + 𝑣4* jM𝑤3C(– 𝑒3C(P– M𝑤3C4– 𝑒3C4Pk𝛿*$*%3C
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Where the total weight, 𝑉± = ∑ 𝑊3C
±

3C  is the sum of all positive or 
negative connection weights (counted twice for each connection), 
being 𝑤3C( ∈ [0,1] the weighted connection between nodes i and j. The 

chance-expected within-module connection 𝑒3C
± =

I$
±I%

±

J±
, where the 

strength of node i, 𝑠3
± = ∑ 𝑊3C

±
C  is the sum of positive or negative 

connection weights of i. The delta 𝛿*$*% = 1 when i and j are in the 
same module and δMiMj = 0 otherwise (Newman, 2006). This 
definition is a generalization of the standard measure of modularity 
for matrices with nonnegative weights, which is given by the average 
difference between present within-module connection weights 
𝑊3C

( and chance-expected within-module connection weights 𝑒3C( . As 
mentioned above, we consider both positively and negatively 
weighted connections (envelope FC matrix). The positively weighted 
connections represent correlated activation patterns and hence 
reinforce the placement of positively connected pairs of nodes in the 
same module. The negatively weighted connections represent 
anticorrelated activation patterns and reinforce the placement of 
negatively connected pairs of nodes in distinct modules (for a 
complete description, see Sporns 2010). 

 

Synchronization 

We measure the global mean level of synchronization as the mean 
value of the Kuramoto order parameter across time. The Kuramoto 
order parameter is defined by the following equation: 

 

𝑅(𝑡) =
e∑ 𝑒(3F'(-))%

KL5 e
𝑛  
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where 𝜑K(𝑡) is the instantaneous phase of each narrowband signal at 
node k at a given carrier frequency by using the Hilbert derived 
phases of the slow component of the Band Limited Power (BLP) 
signals. The Kuramoto order parameter measures the global level of 
synchronization of the n oscillating signals. Under complete 
independence, the n phases are uniformly distributed and thus R is 
nearly zero, whereas for R=1, all phases are equal (full 
synchronization). 

 

Statistical Analysis  

 

Permutation Tests 

To examine the reliability of the post-stimulus window modulation, 
frequency-dependent statistical significance was assessed using a 
non-parametric test with 1000 random permutations. The statistic test 
was chosen to be the median across the differences between post and 
pre-stimulus measures. Following Winkler et al. 2014, we simulated 
the null hypothesis of no stimulus modulation at any post-stimulus 
windows by randomly permuting pre- and post-stimulus samples at 
each paired trial (group exchangeability hypothesis) and computing 
the test statistic. These surrogate values formed a reference 
distribution, against which we compared the original statistic value. 
The proportion of permutations in which surrogate values matched or 
exceeded the original statistic value determined the test p-value (P) 
to be compared with the significance level. We obtained a p-value for 
each frequency band and applied multiple comparisons corrections 
with the False Discovery Rate (FDR) level of 0.05 using the 
Benjamini-Hochberg method. 
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Cognitive Processing Characterized by the Integration and 
Segregation Measures 

 

We investigate how cognitive processing modulates the level of 
integration and segregation in human brain networks and how these 
modulations are related to the CTC theory. To do so, we exploited 
the high spatiotemporal resolution of intracranial 
electroencephalography (iEEG); a technique usually employed in 
pharmacologically resistant patients with epilepsy who require brain 
mapping before surgery (Lachaux et al. 2012; Sperling 1997; Serletis 
et al. 2014). We recorded iEEG data in twelve patients while they 
were naming pictures in their native language (Spanish) (Figure 
2.1A). Naming accuracy was high (83.2 ± 11.3%) with an averaged 
response time of 1350 ± 306 ms (Figure 2.1B). The task was used to 
drive the modulation of the underlying brain networks related to the 
integration of task-related information. For the large majority of 
people, language processing is supported by a widespread large-scale 
network distributed across frontal, temporal, parietal and occipital 
lobes in the dominant hemisphere (Chai et al., 2016; Ferstl, 
Neumann, Bogler, & Von Cramon, 2008; Price, 2000). Channels 
were placed in all lobes in both hemispheres, being most of them in 
the left frontal, temporal and parietal lobes (see an example 
of implantation scheme in (Figure 2.1C). All channel recordings 
from grey matter and subcortical structures were considered for the 
analysis. 

After data pre-processing, we analyzed the Band Limited Power 
(BLP) at a given carrier frequency (𝑓@A//3B/) in order to have specific 
spectral information. We band-pass filtered the iEEG signals within 
the narrow band [𝑓@A//3B/– 2, 𝑓@A//3B/ + 2 Hz] and considered a range 
of 𝑓@A//3B/ starting from 1 to 130 Hz in steps of 4 Hz. We chose a 
bandwidth of 4 Hz because it provides a good trade-off between 
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phase estimation accuracy and number of testable comparisons. In 
order to compute the envelope functional connectivity (FC), we 
further computed the Hilbert transform (Figure 2.2). 

 

 

Figure 2.2 Data processing flow chart 

iEEG data is recorded from 85 up to 127 unipolar channels on each patient. The 
bipolar montage is constituted offline by subtracting the neural activity recorded 
by neighboring contacts within the same electrode array. The data is first band-
pass filtered at 1–150 Hz, and further band-pass filtered into narrow frequency 
bands [𝒇𝒄𝒂𝒓𝒓𝒊𝒆𝒓–𝟐, 𝒇𝒄𝒂𝒓𝒓𝒊𝒆𝒓 + 𝟐 Hz] (we consider here carrier frequencies 
𝒇𝒄𝒂𝒓𝒓𝒊𝒆𝒓 = 1–130 Hz in steps of 4 Hz). By the Hilbert transform the corresponding 
amplitude envelopes are computed to further compute the envelope FC matrix. The 
continuous data is segmented into windows of −500 to 0 ms (pre-stimulus window) 
and 0–500 ms (post-stimulus window), around stimulus presentation. In order to 
characterize the organization of the network under both windows, we used the 
integration and segregation measures of global brain function. 
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To study functional network topology changes during task execution, 
we contrasted differences in brain activity in two time-windows: 
500 ms before the stimulus was presented: “pre-stimulus window”, 
and 500 ms immediately after the stimulus was presented: “post-
stimulus window” As speech production is associated with large 
motor activity, thus with a significant increase of integration, we 
focused our analysis in a time window far from the beginning of the 
motoric activity (response times were around 1350 ms, and we 
recorded the first 500 ms). In order to characterize the organization 
of the network in both windows, we used the integration and 
segregation measures of global brain function describing the level of 
communication across the different nodes of the brain network. We 
tested the statistical significance of the network measure differences 
between pre-stimulus and post-stimulus using a non-parametric 
method (Winkler et al., 2014). Specifically, we characterized the null 
hypothesis using constrained permutations that preserved the trial 
grouping of the data at both time windows. 

To illustrate the results, we first focus on the ones corresponding to a 
single patient (Figure 2.3). The post-stimulus window as compared 
to the pre-stimulus one led to an increase in neural integration and to 
a decrease in neural segregation (Figure 2.3A-B). For both indexes, 
the largest modulation appeared particularly in the gamma band, 
around 50–90 Hz (p < 0.05, N = 1000). Note that the concepts of 
integration and segregation are measures that, by definition, are 
calculated independently from each other but, at the same time, are 
highly correlated; when one increases, the other consistently 
decreases. Thus, these results show that cognitive processing leads to 
an increase in neural integration and a decrease in neural segregation. 
We further analyze the correlates of these modulations associated 
with the cognitive task. First, these modulations are not related to 
changes in oscillations' envelope amplitudes at any frequency (Figure 
2.3C). This is so both when looking at the mean amplitude of all 
electrodes and when evaluating the mean amplitude of each bipolar 
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channel separately at 60 Hz (which corresponds to the maximal 
modulation of the integration measure) (Figure 2.3F). Hence, 
changes in integration and segregation cannot be accounted by 
changes in oscillations’ envelope amplitudes. 

 

 

Figure 2.3 Results analysis patient K for the picture-naming task 

Panel A shows a significant increase in the integration during cognitive processing. The 
greatest effect is observed in the gamma range (50–90 Hz). The red line corresponds to pre-
stimulus window, the blue line corresponds to post-stimulus window, the shaded error 
regions reflect the standard deviation across trials and green dots indicate a statistical 
significance of p < 0.05 (N = 1000). Complementary to the integration, panel B shows a 
decrease of the modularity in the same frequency range. Panel C shows that there are no 
iEEG oscillations amplitude changes in any frequency induced by the stimulus (both curves 
are strongly overlapped). This result indicates that the increase of integration and decrease 
of modularity could not be explained by changes in the oscillations amplitude. Panel D 
shows an increase of mean synchronization over a broad range of frequencies that is more 
conspicuous in the gamma band range (50–90 Hz) for the post-stimulus window. Panel E 
shows that the functional connectivity behaves coherently with the other results, as it 
increases as a function of the stimulus presentation particularly in the gamma range. Panel 
F plots the amplitude of the oscillation’s envelope at 60 Hz for each bipolar channel and 
pre- and post-stimulus window. There are no noticeable modulations across single bipolar 
channels between pre- and post-stimulus window. Note that the sharp peaks at 50 and 
100 Hz are due to the power-line noise created by the electrical power. 
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Second, the modulation of integration and segregation associated 
with the cognitive task was related to an increase in the global 
synchronization of cortical activity (measured using the Kuramoto 
Order Parameter). This increase was present over a broad range of 
frequencies, being the largest at the gamma range (50–90 Hz) (Figure 
2.3D).  

Third, we assess whether integration and segregation were related to 
differences in Functional Connectivity between channels. This 
connectivity was calculated by considering the instant amplitude 
envelopes of all frequencies. Indeed, the Envelopes’ Functional 
Connectivity is enhanced during task performance, in particular in 
the gamma range (50–90 Hz) (Figure 2.3E).  

When comparing two different time windows in which no task was 
performed, no changes in integration and segregation were 
found. Figure 2.4A–B shows the lack of integration and segregation 
modulation when we contrasted the pre-stimulus windows of half the 
trials against the other half (same windowing as before, i.e., 500 ms 
before stimulus presentation). This result suggests that changes in 
these two measures are related to cognitive processing. 

Altogether, these observations reveal that changes in integration and 
segregation (and their relationship) are likely related to a global 
increase in the connectivity, especially in the gamma band. 
Furthermore, changes in oscillations’ envelope amplitudes cannot 
explain these phenomena. This pattern is consistent with the notion 
that communication between different brain networks is 
accomplished by means of the level of synchronization as posited by 
the Communication Through Coherence Theory (CTC) (Fries, 2005, 
2015). 
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Figure 2.4 Inter pre-stimulus presentation window comparison for the picture-
naming task 

Panel A shows the result of the measure of Integration, and panel B shows the 
result of the measure of Segregation, when contrasting half of pre-stimulus trials 
against the other half. There is no modulation of any of the two measures before 
stimulus presentation. The red line corresponds to 50% of pre-stimulus windows; 
blue line corresponds to the other 50% of pre-stimulus window. The shaded error 
regions reflect the standard deviation across trials. Green dots indicate a statistical 
significance of P < 0.05 (N = 1000). 

 

When looking at all patients, and despite the heterogeneity of the 
recording sites, the same pattern of modulation is observed for each 
individual as can be appreciated in Figure 2.5 and Figure 2.6, (Figure 
2.7 shows the group average data for both measures). Interestingly, 
in most of the patients, there is a consistent decrease in the 
segregation in the gamma band but with a slight increase in the 
segregation in the sub-gamma regime. This is not observed for the 
integration measure. Furthermore, differences in oscillations’ 
envelope amplitude at 60 Hz for each bipolar channel do not differ 
between pre- and post-stimulus windows (Figure 2.8). 
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Figure 2.5 Integration measure results for each patient 

Panels show the results for every single patient for the picture-naming task. As can 
be seen, despite the heterogeneity of the recording sites, all patients show a 
significant increase of the integration related to cognitive processing. For all 
patients, the greatest effect was found in the gamma range. The red line 
corresponds to pre-stimulus window, blue line corresponds to task condition, the 
shaded error regions reflect the standard deviation across trials and green dots 
indicates a statistical significance of p < 0.05 (N = 1000). 
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Figure 2.6 Segregation measure results for each patient 

The panels show the results of segregation (measured by the modularity) during 
pre- and post-stimulus window for the picture-naming task. For all patients, there 
is a significant decrease of the segregation during cognitive processing and the 
greatest effect can be seen in the gamma range (50–90 Hz). The red line 
corresponds to pre-stimulus window, blue line corresponds to post-stimulus 
window, the shaded error regions reflect the standard deviation across trials and 
green dots indicates a statistical significance of p < 0.05 (N = 1000). 

 

 

Figure 2.7 Group Analysis 

Panel A shows a significant increase in integration during cognitive processing for 
almost all frequencies, but with the greatest effect in the gamma range (60–100 Hz) 
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as seen on each single subject. Complementary to the integration, panel B shows a 
decrease of the modularity which is more prominent in the high gamma range. The 
red line corresponds to pre-stimulus window, the blue line corresponds to post-
stimulus window, the shaded error regions reflect the standard deviation across 
trials and green dots indicates a statistical significance of p < 0.05 (N = 1000). 

 

 

Figure 2.8 Envelopes' Amplitude at 60 Hz across electrodes for each patient 

The panels show the results of the mean amplitude and std at 60 Hz for each bipolar 
channel and both pre- and post-stimulus window for the picture-naming task. For 
all patients, there is no noticeable modulation across single bipolar channels 
between pre- and post-stimulus windows. The red line corresponds to pre-stimulus 
window and the blue line corresponds to post-stimulus window. The shaded error 
regions reflect the standard deviation across trials. Note the strong overlap of both 
lines. Green dots indicate a statistical significance of p < 0.05 (N = 1000). 

 

Importantly, the integration and segregation modulations calculated 
at 60 Hz were highly correlated (Figure 2.9). Conversely, the network 
measures were independent of patient's performance (correlation 
coefficient of 0.0242, N = 12 patients). 
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Figure 2.9 Correlation between Integration and Segregation 

The figure shows the coefficient of determination between the integration and 
segregation measures across patients (N = 12) at 60 Hz. The R2 represents the 
proportion of variance explained by a linear model. Note that both measures are 
highly correlated. 

 

The main results were robust since they were also observed in the 
other two tasks: a lexical decision task and a size judgement task (see 
Materials and Methods). Accuracy in both tasks was high 
(81.8 ± 5.1% and 88.7 ± 8.3% respectively) and response times for 
the lexical decision task was 1481 ± 398 ms and for the size 
judgement task 1008 ± 287 ms. A significant increase in the 
integration in the post-stimulus window was observed in the two 
tasks, as shown for one patient (see Figure 2.10). Furthermore, the 
most significant modulation appears in the gamma band (around 50–
90 Hz) for both measures, and no changes in the oscillation's 
envelope mean amplitude was observed. 
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Figure 2.10 Results analysis patient K for the Lexical Decision and Size-
Judgement Task 

Panels A and D shows a significant increase in the integration in the post-stimulus 
window (red line) compared to the post-stimulus window (blue line). The greatest 
effect is observed in the gamma range (50–90 Hz). The shaded error regions reflect 
the standard deviation across trials. Green dots indicate a statistical significance 
of p < 0.05 (N = 1000). Complementary to the integration measure, panels B and 
E shows a decrease of Segregation in the same frequency range. Panels C and F 
shows that there are no oscillations' envelope amplitude changes in any frequency 
induced by the stimulus (both curves are strongly overlapped). Note that the 
modulatory effect is almost the same for both tasks. 

 

The global nature of the integration is demonstrated by analyzing 
different subnetworks independently. In two patients, we use the 
precise anatomical location of each electrode channel and perform 
the integration analysis restricted to three specific subnetworks, 
namely the frontal, temporal, and parietal. As shown in Figure 2.11, 
even though the greatest modulations were found in both right and 
left temporal lobes, the parietal and frontal subnetworks were also 
modulated due to cognitive processing. This suggests that the 
broadcasting of communication across the brain has a global nature. 
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Figure 2.11 Results of the analysis of sub-networks within frontal, temporal and 
parietal lobes for the picture-naming task 

The upper panels show a significant increase of the integration in the post-stimulus 
window (red line) compared to the post-stimulus window (blue line) in the left 
Temporal (A) and left Parietal (B) lobes for patient K. The greatest effect is 
observed in the gamma range (50–90 Hz). The shaded error regions reflect the 
standard deviation across trials. Green dots indicate a statistical significance of 
p < 0.05 (N = 1000). Panels (C) and (D) shows the results of the right temporal 
and Frontal lobes respectively, for patient L. The modulatory effect is seen in the 
whole range of frequencies. 

 

Regarding technical issues, it is essential to note that the results are 
independent of whether we used a bipolar or monopolar montage. We 
compared the new integration/segregation measurements with the 
more classical approach considering the pairwise changes in the FC 
between the post- and pre-stimulus windows (see Figure 2.12 for a 
single patient). The results are consistent with the previous analysis 
and confirm the robustness of the findings. Figure 2.12 C and D 
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shows the FC matrices calculated at 60 Hz for the pre-stimulus 
window and post-stimulus window, respectively. The difference 
between both matrices demonstrate the distributed character of the 
modulation across many different nodes (Figure 2.12E). 
Furthermore, this result supports the notion that the cognitive-driven 
global changes in integration and segregation are indeed not 
associated with any particular anatomical position inside the 
networks considered. Supplement Figure S2.1 shows the results for 
all patients. 

 

 

Figure 2.12 Results analysis using the FC matrix based on the monopolar 
montage for Patient A 

Panels A and B show the integration and segregation modulation during pre- and 
post-stimulus presentation, respectively, for the picture-naming task. The red line 
corresponds to pre-stimulus window, blue line corresponds to post-stimulus 
window. The shaded error regions reflect the standard deviation across trials and 
green dots indicate a statistical significance of p < 0.05 (N = 1000). Panels C and 
D shows the FC matrices computed for 60 Hz for the pre- and post-stimulus 
windows respectively. Panel E shows the difference between pre- and post-stimulus 
windows. The differences between both matrices (C and D, expressed on E), 
evidence the distributed character of the modulation across many different nodes. 
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Interestingly, the integration measure we use differs and 
complements the more classical measure of pairwise Functional 
Connectivity. As shown in Figure 2.13, there is no correlation 
between the integration measure and the mean changes in the FC 
between the post- and pre-stimulus windows for different frequencies 
in the gamma range. 

 

 

Figure 2.13 Correlation between Integration and Functional Connectivity 

The figure shows the coefficient of determination between the integration and the 
mean variance of the functional connectivity calculated at 20, 40, 60 and 80 Hz 
across the studied patients (N = 12) based on the monopolar montage. The 
R2 represents the proportion of variance explained by a linear model. In all cases 
there is no correlation between both measures. 
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Finally, we found that the modulation of integration is not solely 
driven by the stimulus's presentation, but it is persistently increasing 
after its onset. For this purpose, we extended the analysis of the 
integration measure by using the phase-lock matrix; a more explicit 
measure of communication according to CTC theory). The phase-
lock matrix characterizes the global state of mutual synchronization 
between all pairs of network nodes at each single time point. Thus, 
with this matrix, we are able to study the temporal evolution (in 
milliseconds) of the integration across time (see Figure 2.14). This 
result was found in all three tasks. 

 

 

Figure 2.14 Time evolution of the Integration measure for Patient K during the 
picture-naming task 

The figure shows the integration measure calculated for the phase-lock matrix for 
every single time point for the whole period of time at 80 Hz. As seen, there is a 
monotonic increasing behavior of the integration starting after the stimulus onset. 
The shaded error regions reflect the standard deviation across trials. 
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Discussion 

 

As a complex system, the human brain is organized into large-scale 
networks. In order to support cognitive functions, these networks 
need to flexibly adjust their functional connectivity to integrate 
relevant information towards a goal-directed behavior (Bola & Sabel, 
2015; Bressler & Menon, 2010; Deco et al., 2015). Traditionally, 
graph and theoretical information approaches have helped to 
characterize the global network connectivity in terms 
of segregation and integration (Deco et al., 2015; Fox & Friston, 
2012; Sporns, 2013; Tononi et al., 1994). Segregation refers to the 
relative statistical independence of subsets of neurons or brain 
regions to compute information (Sporns, 2013; Tononi et al., 1994), 
while integration is a complementary concept quantifying the 
connectivity level across the whole-brain (Deco et al., 2015; Sporns, 
2013). In particular, we used a measure of integration associated with 
the broadness of communication quantified by the length of the 
largest connected component of the functional connectivity across 
the whole brain (Deco et al., 2015), while for segregation we used the 
concept of modularity (Rubinov & Sporns, 2011). 

We used intracranial EEG (iEEG) to record neural activity from 12 
patients with epilepsy while they were performing three different 
cognitive tasks. We focus on how cognition 
modulates global functional network measurements, namely 
integration and segregation. We found a significant increase in 
integration and a decrease in segregation during cognitive processing, 
especially in the gamma band (50–90 Hz). This was so for all patients 
and all tasks. Furthermore, these modulations were not associated 
with changes in the underlying level of oscillations. We also found a 
significantly higher level of synchronization and functional 
connectivity during task processing, again, particularly in the gamma 
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band. This set of results suggest that changes in the broadness of 
communication across the entire extended network associated with 
cognitive processing could be due to a rearrangement of 
the coherence level between the nodes. This interpretation fits the 
predictions of the CTC theory extended to the whole-brain level 
(Deco & Kringelbach, 2016; Fries, 2005, 2015). 

Our results extend the CTC hypothesis to the 
mesoscopic/macroscopic level by analyzing the phases and 
correlations of the envelopes of the Band Limited Power, as proposed 
by Deco and Kringelbach, 2016. This is important since the CTC 
hypothesis posits that information is transmitted by synchronizing 
distinct neuronal populations, mainly in the gamma and beta-band 
(30–90 Hz) (Deco & Kringelbach, 2016). Note that the original CTC 
theory is based on a phase synchronization mechanism defined at the 
neuronal level. 

Our findings are in line with previous neuroimaging studies showing 
increases in the integration across brain networks (Kinnison et al., 
2012; Kitzbichler et al., 2011; Liang et al., 2015). There is also 
substantial agreement with studies using FC measurements that have 
revealed that local computations are likely to be highly segregated in 
spatially distributed network communities with clustered 
connectivity (Bassett et al., 2011; Bola & Sabel, 2015; Ekman et al., 
2012; Power et al., 2011; Wang et al., 2016). Nevertheless, it is 
important to note that our methodological approach is different from 
the classic FC approach and adds some critical information. In our 
results, the fact that integration and FC measures of band-limited 
power were not correlated suggests that the FC per se is not giving 
explicit information about how much the network is clustered. 
Indeed, one can have higher correlations but a lot of functional 
segregated clusters, which in our measure is associated with low 
integration. 
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When analyzing the performance, we did not find correlations 
between it and the modulation of the integration and segregation. 
Although we cannot presently elucidate the dynamical properties that 
lead to better performance, the present findings suggest that the 
behavioral errors in our experiment are not captured in the time 
window we were looking at or were not due to a failure at the global 
level of communication, but probably caused by failures at the local 
level of specific processing. 

Interestingly, despite the global shift towards segregation in the 
gamma band during the task, we observed a slight increase in 
segregation in the sub-gamma band. The decrease of the segregation 
in the gamma regime is expected and consistent with the increase of 
integration in the same regime, which is putatively linked to 
increased stimuli/cognitive processing (Fries, 2015). Along the same 
lines, the increase of segregation in the sub-gamma bands could 
perhaps be associated with disengagement of large slow resting 
networks. Future research is needed to understand this difference in 
sub-gamma bands. 

It is important to remark that our results support the global nature of 
the functional large-scale network reorganization during cognitive 
processing. We demonstrate here that the pattern observed, that is an 
increase of the integration and a decrease of the segregation, appears 
in all patients irrespective of the heterogeneity of the implantation 
scheme. Moreover, this pattern is consistent when using a monopolar 
or bipolar montage. Further strengthening the results, we analyzed 
three different cognitive tasks, and we show that the main modulatory 
effect on the integration and segregation, and the validity of the CTC 
theory is independent of the particular cognitive processing. Thus, 
because of our global perspective, unlike many previous studies, we 
did not investigate the role of single channels in the different 
cognitive processes. Nevertheless, we are convinced that localizing 
these electrodes in the human brain could lead to the discovery of 
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interesting differences at the local spatial level and that this could be 
a very interesting goal for future investigations. 

Our methodology and results open new avenues for further 
investigations. First, we need to understand how integration and 
segregation measures are modulated by task performance and/or task 
difficulty. Second, it is important to determine which specific brain 
areas, or local networks, show the highest degree of task-driven 
effective connectivity and therefore are mostly involved in 
information processing. Thus, future studies could greatly benefit 
from diffusion tensor imaging in two ways: to visualize and describe 
the precise connectivity between the electrodes in the brain, as well 
as the basis of whole-brain models considering the connectivity and 
continuity of neural pathways in the patients. 

Finally, we are aware of the potential methodological limitations of 
the iEEG technique with patients with epilepsy. First, these patients 
as compared to healthy controls, not only have epileptogenic neural 
activity but may also have differences in the structural connectivity. 
Second, the lack of whole-brain coverage difficult to draw claims 
about the global network connectivity, given that restricted spatial 
coverage is simultaneously sampled. Still, and despite that the 
cognitive-driven changes observed on integration and segregation 
come from a reduced set of brain regions, we hypothesize that the 
effect is global across the whole brain. Thus, we predict that those 
changes should be consistently observed in fMRI and/or EEG/MEG 
experiments. 
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Conclusions 

 

In this chapter, we demonstrate that cognitive processing is 
associated with a global increase of integration and decrease in 
segregation, especially in the gamma band (50–90 Hz). These 
modulations probably reflect changes in how information is 
broadcasted in the brain. Going beyond our current knowledge on 
integration and segregation (for a review, see Sporns and Betzel, 
2016), we also show that such modulations were associated with a 
rearrangement of the band-limited functional connectivity between 
the different nodes and not with changes in the level of the underlying 
oscillations. This whole set of results is consistent with the 
“Communication Through Coherence” Theory.  

  



 

 
85 

CHAPTER 3 

 

 

The Phase of Theta Oscillations Modulates 
Successful Memory Formation at 

Encoding 

 

“Science may set limits to knowledge, but should not set limits to imagination” 

—Bertrand Russell (1872—1970) 

 

 

Several studies have shown that attention and perception can depend 
upon the phase of ongoing neural oscillations at stimulus onset. Here, 
we extended this idea to the memory domain. We tested the 
hypothesis that ongoing fluctuations in neural activity have an impact 
on memory encoding using a pair-associate task to gauge episodic 
memory performance. In a first experiment, we capitalized on the 
principle of phase reset to test if subsequent memory performance 
fluctuates rhythmically, time-locked to a reset cue. We found 
indication that behavioral performance was periodically and 
selectively modulated at theta frequency (~4 Hz). In a second 
experiment, we focused on prestimulus ongoing activity using scalp 
EEG recorded while participants performed the pair-associate task. 
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We analyzed subsequent memory performance as a function of peri-
stimulus theta and alpha activity around the presentation of the to-be-
remembered item. We found that post-stimulus theta-power increases 
in left frontal scalp predicted subsequent memory performance. 
When narrowing down the analysis of prestimulus activity to the 
scalp location and frequency of this post-stimulus power effect, we 
found a correlation between the prestimulus theta phase and 
subsequent memory. Altogether, the results suggest that the 
prestimulus theta activity at encoding has an impact on later memory 
performance. 

 

The Role of Theta Oscillations in Memory Processes 

 

In our daily life we are bombarded with myriad stimuli and events. 
Some of them are later remembered, whereas others are just 
forgotten. Although several processes influence our ability to 
remember, it is generally agreed that in all cases later recognition 
strongly relies on successful memory formation (Brassen et al., 2006; 
Wimber, Heinze and Richardson-Klavehn, 2010; Jutras, Fries and 
Buffalo, 2009). The subsequent memory paradigm has proven a 
successful procedure to study the neural underpinnings of memory 
formation in various types of memory systems (Paller, Kutas and 
Mayes, 1987; Hanslmayr and Staudigl, 2014; for review see Paller 
and Wagner, 2002). This paradigm usually compares neural activity 
following the onset of stimuli as a function of whether they are later 
remembered or not. Differences, known as subsequent memory 
effects (SMEs), can help identify memory processes involved at 
encoding that facilitate later recall. Studies employing this approach 
have revealed that the brain activity during encoding is relevant for 
whether the stimulus will be subsequently remembered (Brewer et 
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al., 1998; Wagner et al., 1998; Fernández et al., 1999; Kirchhoff et 
al., 2000; Strange et al., 2002; Sederberg et al., 2003; for review see 
Paller and Wagner, 2002; Kim, 2011). Many of these studies support 
the notion that oscillations in neural activity at the moment of 
encoding, just after the stimulus is presented, are associated with 
effectiveness in later recall (for review see Klimesch, 1999; 
Hanslmayr and Staudigl, 2014). In particular, evidence for the role of 
neural oscillations in episodic memory formation comes from 
EEG/MEG studies—using the SME approach—which show that 
increases in theta (4—8 Hz) and gamma (>30 Hz) power, and 
decreases in alpha (8—13 Hz) and beta (13—30 Hz) oscillatory 
power, are associated with more effective recall (Backus et al., 2016; 
Lega, Jacobs and Kahana, 2012; Sederberg et al., 2003; Staudigl and 
Hanslmayr, 2013). However, while the association between 
oscillatory power and memory formation in humans has been 
investigated in numerous experiments, only a handful of studies have 
explored the potential role of the oscillatory phase. These studies 
provide evidence for a role of phase synchronization among different 
sensory cortices in the theta frequency during memory formation 
(Backus et al., 2016; Clouter, Shapiro and Hanslmayr, 2017). 

The studies mentioned above have considered oscillatory activity 
after the stimulus to be encoded (evoked or induced). In addition, the 
previous results suggest that fluctuations in neural activity even 
before stimulus presentation for encoding might also play a role in 
determining whether or not a stimulus will be later remembered (Park 
and Rugg, 2010; Haque et al., 2015; Otten et al., 2006; Otten et al., 
2010; Guderian et al., 2009; Fell et al. 2011; Rutishauser et al., 2010; 
Addante et al., 2015). Notably, the phase of the ongoing low-
frequency oscillations appears to reset at the moment of the 
presentation of behaviorally relevant stimuli (Rizzuto et al., 2003; 
Haque et al., 2015). This shift in the dynamics of prestimulus ongoing 
oscillations might play a fundamental role in the synchronization of 
neuronal populations and the coordination of information transfer 
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necessary for efficient encoding. In fact, some studies show that 
phase synchronization is more precise during encoding of 
information that is later remembered compared to later forgotten, 
most likely acting as the “gluing mechanism” for binding human 
memories (Buzsaki and Draguhn, 2004; Backus et al., 2016; 
Hanslmayr, Staresina and Bowman, 2016; Clouter, Shapiro and 
Hanslmayr, 2017; for review see Fell and Axmacher, 2011). 
Altogether, these findings suggest that memory formation not only 
depends on stimulus-driven processes but also on endogenous brain 
states at the time of stimulus presentation. Here, we set out to address 
this question: does the phase of prestimulus ongoing oscillations have 
an impact on memory formation? 

A similar question has been addressed by previous research in the 
domain of perception and attention in humans. In particular, some 
studies have related stimulus detection with the phase of the ongoing 
oscillations at stimulus onset. These studies have revealed cyclic 
alternations in behavioral performance mainly in the theta and alpha 
bands (~4–8 and 8–12 Hz, respectively) (Busch, Dubois and 
VanRullen, 2009; de Graaf et al., 2013; Klimesch, Sauseng and 
Hanslmayr, 2007; Mathewson et al., 2009; Palva and Palva, 2007; 
VanRullen, 2016; but see also Ruzzoli et al., 2019 for conflicting 
evidence). The main idea behind this phenomenon is that oscillatory 
neuronal activity reflects rhythmic fluctuations in the neuron’s 
membrane potential, which are associated with changes in neuronal 
excitability (Buzsaki and Draguhn, 2004; Lakatos et al., 2005; Fries 
et al., 2007). These fluctuations can be reflected in the EEG signal 
when large neuronal populations are synchronized. In the case of 
perception, low-frequency oscillations may gate neural responses to 
incoming sensory information, producing peaks and troughs that 
correspond to favorable and unfavorable states for sensory 
processing. We hypothesize that if the phase of slow ongoing 
oscillations can modulate perceptual processing, then the phase of 
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prestimulus fluctuations may also modulate encoding efficiency and 
hence, the success in later memory performance.  

We tested this hypothesis using a paired-associates memory task in 
two experiments performed by separate groups of healthy 
participants. Participants were instructed to memorize a short 
sequence of image pairs and then asked whether newly presented pair 
probes had been previously presented associated or not.  

In the first experiment, we used the logic of phase reset (Rizzuto et 
al., 2003) on behavioral performance. We tested if subsequent 
performance fluctuates rhythmically time-locked to a cue (phase-
reset signal) presented before the to-be-remembered pairs of pictures. 
According to our hypotheses, we focused the analysis on low 
frequencies, ranging from 2 to 20 Hz. In the second experiment, we 
tested the role of ongoing low-frequency neural oscillations—before 
the presentation of the picture pairs—in subsequent recognition 
performance using EEG. Specifically, we focused on the phase and 
amplitude of alpha and theta oscillations. To do so, we examined 
prestimulus changes in the EEG as participants performed the task 
adapted from Experiment 1 but capitalizing on spontaneous neural 
oscillations instead of phase reset. The hypotheses and analysis 
pipeline of Experiment 2 were pre-registered based on the results of 
Experiment 1 (see below; pre-registration available at 
https://osf.io/4f5qc/). The pre-registered pipeline did not yield 
significant results; therefore, we further explored the data following 
a data-driven approach. 
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Experiment 1 

 

Ethics Statement and Participants  

The Clinical Research Ethical Committee of the Municipal Institute 
of Health Care (CIEC-IMAS) Barcelona, Spain, approved the study. 
Following the Declaration of Helsinki, all subjects gave written 
consent before their participation. 

Data from 30 healthy subjects (21 females, mean age 23.2 ± 4.5 years, 
5 left-handed) were used in the behavioral study. Data from 8 
additional subjects were excluded based on the predefined inclusion 
criteria (demographic characteristics of each subject are detailed in 
supplement Table S3.1). The inclusion criteria were set up to ensure 
both, a sufficient number of trials in each response category 
(hit/miss), and that participants responded above chance level (for 
more details about inclusion criteria see Experimental Design and 
Procedure). Participants were compensated with 10€/hour.  

 

Experimental Design and Procedure  

Participants performed a visual paired-associates memory task 
(Figure 3.1A) adapted from Haque and colleagues (Haque et al., 
2015). In our version of the paradigm, participants were asked to 
memorize pairs of pictures instead of pairs of words. Participants sat 
~60 cm away from a 21-inch CRT computer monitor (60 Hz refresh 
rate). Stimulus presentation was controlled using Matlab (Version 
R2016a, The MathWorks, Inc., MA, USA) and the Psychophysics 
Toolbox (Brainard, 1997; Kleiner et al., 2007). 
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Figure 3.1 Experimental Design 

A) Experiment 1. Participants performed a visual pair-associates memory task. 
During the encoding block, participants were asked to learn five unrelated image 
pairs presented side-by-side on placeholders for 500 ms. A cue—composed by a 
central fixation cross and placeholders—flashed once synchronously together with 
a sound-beep before each image pair presentation. Critically, the time-lag between 
the cue and the image pair to be encoded (the cue-to-target interval) was varied 
randomly between 0 and 1000 ms. Each encoding block was followed by a four-
trials recognition block where participants judged whether a given image pair had 
been presented together in the previous encoding block. Each participant provided 
a total of 1.408 responses. B) Experiment 2. The experimental design was identical 
to Experiment 1 with the following exceptions:  During the encoding block, image 
pairs were sequentially presented at a variable stimulus-onset asynchrony (SOA), 
with a jitter according to an exponential distribution (mean 1s) to compensate for 
hazard rate and prevent temporal expectation. Each image pair was followed by a 
blank inter stimulus interval (ISI) of 800 ms. Each participant performed half of 
the task, thus providing a total of 704 responses. 
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Due to the large number of trials, the experiment was completed over 
two sessions on different days within the same week (on average, 
three days apart). In total, it consisted of 352 runs, each composed of 
an encoding block of five pairs followed by a recognition block with 
four memory probes. Each participant provided a total of 1.408 
(352x4) responses throughout the experiment.  

During the encoding blocks, five image pairs in placeholders were 
presented in sequence with a central fixation cross in between them 
(placeholders and fixation were present throughout the block). Before 
each image pair, an audio-visual reset cue was presented. The reset 
cue consisted of a flash of fixation and placeholders synchronized 
with a sound and was intended to modulate cortical excitability by 
phase resetting the ongoing oscillatory activity (Lakatos et al., 2009; 
Fiebelkorn et al., 2011; Daitch et al., 2013). Critically, the interval 
between the reset cue and each target image pair to be encoded (cue-
to-target interval) varied between 0 and 1000 ms in steps of 16.7 ms 
(62 unique times). Then, each image pair appeared for 500 ms, 
followed by 1500 ms interval that led to the next reset cue. We 
adopted this strategy to appreciate potential oscillations in behavior 
without using EEG to measure ongoing brain signal fluctuations. 
Since, based on the hypothesis, we focus on fluctuations >2 Hz, our 
window of interest was 0 to 500 ms. Hence, the probability of 
occurrence of targets within the 0-500 ms interval was doubled 
compared to longer time intervals (500 to 1000 ms). Long-time 
intervals were only included to make the stimulus onset less 
predictable within the times of interest, but they were not used for the 
analysis. We expected the audio-visual cue to reset the phase of the 
ongoing oscillations, so then behavioral performance at the 
recognition blocks should present an oscillatory pattern time-locked 
to the cue presentation.  

Each encoding block was followed by a recognition block that 
consisted of a sequence of four test image pairs. On each test pair, 
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participants had to judge whether the two images had been presented 
together (paired) in the preceding encoding block. The test pairs 
always contained items that had previously appeared in the encoding 
block (whether paired or not), so that the task could not be solved by 
just recognizing the appearance of new items. Each image pair was 
preceded by a prompt—a row of question marks—that appeared on 
the screen for 500 ms followed by a blank interval of 1000 ms. The 
image pair, placeholders, and fixation cross remained on the screen 
until the response (yes/no) was collected through the keyboard. To 
minimize the number of false alarms, participants were encouraged 
to respond yes only when they were confident about their response 
and to say no if doubting. Image pairs in the recognition block could 
be a match (if they had appeared together in the encoding block) or a 
mismatch (if they appeared in different pairs during encoding). 
Matched pairs were slightly more likely (60% on average), compared 
to mismatch pairs, to ensure enough useful trials for analysis. Each 
recognition block could have a different number of yes/no correct 
responses to prevent guessing by response history. After every 10 
runs (encoding plus recognition blocks), participants took a break and 
were updated on their overall performance to control for false alarms 
and keep them engaged in the task.  

Prior to analysis, we established a set of individual inclusion criteria 
regarding performance: (1) false alarm rate below 15%, (2) hit rate 
above 35% to ensure that with the maximum false alarms rate 
accepted the participants responded above chance level, and (3) hit 
rate below 80% to avoid ceiling effects. These criteria were defined 
to ensure enough number of trials in each response category (hit, 
miss), allowing the possibility to capture fluctuations in behavior—
in the case they existed.  
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Stimuli 

The pictures used in the pairs were images of familiar objects in a 
usual perspective, from a wide range of semantic categories selected 
from two databases: The Bank of Standardized Stimuli (BOSS) 
(Brodeur et al., 2010; Brodeur et al., 2014) and the set of 2400 Unique 
Objects used in Brady et al. (Brady et al., 2008). Stimulus 
characteristics are described in detail in previous studies (Brodeur et 
al., 2010; Brodeur, Guerard and Bouras, 2014; Brady et al., 2008). 
The two sessions of the experiment used different image sets. Within 
a pair, images belonged to different semantic categories. Living 
objects were not mixed with non-living objects either on the same 
trial or block (80% of the pairs corresponded to non-living objects). 
All images were converted to black and white to avoid memory 
facilitation based on color associations (Lewis et al., 2013). Image 
size was subtending a square of approximately 5 degrees of visual 
angle. The auditory stimulus used as resetting signal was a beep 
sound (4000 Hz, ~60 dB, 66 ms) presented through headphones. 

 

Behavioral Analyses 

The goal in this experiment was to address if behavioral performance 
at recognition fluctuated rhythmically as a function of the reset cue 
(cue-to-target interval) at encoding. We followed the analytical 
method described in Fiebelkorn (Fiebelkorn et al., 2013) to extract 
rhythmic variations of behavioral performance. For each participant, 
we only used responses to match trials to obtain hit and miss rates. 
To get a temporally smoothed series relating memory behavior to 
encoding time, we first calculated the hit rate in a sliding 50 ms 
window (16.7 ms steps) for the whole window of interest (from 0 to 
500 ms), and we averaged time-dependent hit rate across participants. 
Then, we used a Fast Fourier Transform (FFT) to extract the spectral 



 

 
95 

pattern of the detrended behavioral time series and focused our 
analyses in the 2—20 Hz frequency range. The minimum and 
maximum frequencies of interest were determined by the window of 
interest (500 ms) and the width of the sliding window used to 
calculate time resolved hit rate (50 ms). We sought for oscillatory 
patterns above and beyond chance within this spectral window based 
on the theoretical of low frequencies. 

To examine the reliability of the results, we assessed statistical 
significance using a non-parametric procedure with 10.000 randomly 
generated surrogates. For each participant, we permuted hit rates 
across the cue-to-target interval windows, averaged across 
participants, and extracted the surrogate power spectrum. The p-
value corresponds to the proportion of permutations in which the 
surrogate value matched or exceeded the empirical value. We 
obtained the p-values for each frequency (9 frequencies) and then 
applied multiple comparisons correction with False Discovery Rate 
(FDR) using the Benjamini-Hochberg procedure (Benjamini and 
Hochberg, 1995) with an alpha level of 0.05. 

 

Behavioral Performance Modulation by the Phase at 
which the Stimulus Arrive 

 

We expected the time-resolved recognition performance to show a 
periodic component indicative of fluctuations time-locked to the cue 
at the encoding. Overall, participants performed above chance level 
with a mean hit rate of 62.97±10.74%, and a false alarm rate of 
6.09±3.82% (individual hit and miss rates plus demographic data are 
detailed in the supplement Table S3.1). In line with the question of 
this first experiment, behavioral performance at recognition 
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fluctuated as a function of cue-to-target interval (Figure 3.2A). We 
used a FFT on the behavioral time series and found that memory 
performance was periodically and selectively modulated with a peak 
frequency of ~4 Hz (Figure 3.2B). Although this result was 
statistically significant (p<0.0398), it did not survive correction for 
multiple comparisons across all frequencies included in the test (2-
20 Hz).  

 

 

Figure 3.2 Behavioral Performance Modulation 

A) Behavioral Performance. Mean hit rate and standard deviation across 
participants as a function of time (N=30). B) Power Spectrum. Amplitude 
measurement obtained using the FFT for the mean hit rate. As can be seen (blue 
line), there is a peak around ~4 Hz (theta band). 

 

Because of the large spectral window analyzed (and the ensuing 
strong correction for multiple comparisons), our data provide only 
weak support for the hypothesis of a rhythmic modulation of 
behavioral performance at theta after phase resetting by the 
prestimulus cue. This putative modulation, if only tentatively, 
suggests that the phase in the theta band at which the stimulus arrives 
has an impact on later successful recognition. Despite the relatively 
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large spectral window analyzed and the unknown statistical power of 
the effect, we considered this result potentially indicative of the 
possible relevant frequency, and hence useful to narrow down on a 
more specific spectral window of interest for an EEG study, 
presented in Experiment 2. 

 

Experiment 2  

 

The aim in Experiment 2 was to investigate the role of ongoing low-
frequency oscillations—before the to-be-encoded stimulus 
presentation—in subsequent recognition performance using EEG. 
Several neuroimaging studies have shown that frontotemporal 
regions are actively engaged during episodic encoding (Wagner, 
1999; Kirchhoff et al., 2000; Hanslmayr et al., 2011; Park and Rugg, 
2011; Griffiths et al., 2016). However, the results show contradictory 
evidence for theta frequency fluctuations of the local field potential: 
some provide evidence in favor of encoding-related increases 
(Herweg et al., 2016; Addante et al., 2011; Summerfield and 
Mangels, 2005; Osipova et al., 2006; Hanslmayr et al., 2011), other 
results report decreases (Fellner et al., 2016; 2019; Michelmann, 
Bowman and Hanslmayr, 2018). A well-accepted interpretation of 
these activations is that they reflect hippocampal theta, induced in 
cortical areas via hippocampal-cortical feedback connections (for a 
review see Herweg, Solomon and Kahana, 2020). Moreover, 
episodic-encoding is also associated with decreases in the alpha band 
in occipitoparietal regions (Klimesch and Doppelmayr, 1996; 
Klimesch et al., 1997; 2000), likely contributing to the encoding of 
visuospatial stimulus attributes and signaling directed attention 
(Klimesch, 1999; Klimesch et al., 2000). On these grounds, we 
focused our analysis on the phase and amplitude of the theta and 
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alpha oscillations in broad frontotemporal and occipitoparietal 
regions, respectively.  

We hypothesized that the phase of the ongoing oscillations at which 
the to-be-encoded stimulus arrives modulates subsequent visual 
memory performance. If so, we expected to find fluctuations in 
behavioral performance as a function of the phase angle of the 
ongoing brain oscillation. The hypotheses and the initial analysis 
pipeline of this experiment were preregistered (https://osf.io/4f5qc/). 
In the results section below we indicate which part of the analyses 
belong to the pre-registered pipeline, and which ones are exploratory. 

 

Participants and Ethics Statement 

As in experiment 1, the local ethics committee approved the study, 
and all participants gave written consent before their participation. 

Data from 30 subjects (15 females, mean age 22.9 ± 2.9 years, 5 left-
handed) were used in the EEG study. Data from six additional 
subjects were excluded: 2 did not meet the behavioral inclusion 
criteria specified above, and 5 because of artifact contamination of 
the EEG (demographic characteristics of each subject are detailed in 
supplement Table S3.2). Participants were compensated with 
10€/hour. 

 

Experimental Design and Procedure 

The experimental design and procedure were identical to Experiment 
1 with the following three exceptions: First and foremost, since 
ongoing oscillations were registered directly with EEG, we did not 
use a reset cue. During the encoding blocks, image pairs were 



 

 
99 

sequentially presented at a variable inter-stimulus interval (ISI), 
without a prestimulus cue. Indeed, we expected the image pair 
presentation to work as a reset cue and link the phase of the ongoing 
oscillation at the image pair onset with subsequent behavioral 
recognition. The second difference was that the ISI was composed of 
a fixed 500 ms period plus a jitter according to an exponential 
distribution—with mean 1000 ms—to further increase temporal 
uncertainty (Figure 3.1B). And third, participants performed only one 
experimental session containing a total of 704 responses. The 
reduction in observations was justified by the advantage of measuring 
multiple frequency bands within one trial through EEG, and by the 
possibility to narrow down on the frequency band of interest for the 
analysis according to the result in Experiment 1 and hypothesis. 

 

Stimuli 

The stimuli were identical to the ones used in the first session of 
Experiment 1, namely, images taken from the Bank of Standardized 
Stimuli (BOSS) (Brodeur et al., 2010; Brodeur et al., 2014). All the 
stimuli were processed as described for Experiment 1 

 

EEG Recording and Data Analyses 

 

Electrical brain signals were recorded using an EEG system with 60 
active electrodes (actiCAP, Brain Products GmbH) located according 
to the standard international 10–10 system and sampled at a rate of 
500 Hz. Two electrodes placed at the right and left mastoids served 
for offline re-reference. An electrode placed at the tip of the nose 
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served for online reference, and the ground electrode was placed at 
AFz. Electrooculogram (EOG) was monitored on the horizontal and 
vertical directions to control for blinks and eye movements.  

All data and statistical analyses were performed using custom code 
in Matlab (Version R2016b, The MathWorks, Inc., MA, USA), and 
the FieldTrip toolbox (Oostenveld et al., 2011). Raw EEG data were 
re-referenced to averaged mastoids, and a notch-filter at 50 Hz was 
applied to remove line contamination. To extract specific spectral 
information, we bandpass filtered the EEG data in two preselected 
frequency bands: theta (4–7 Hz) and alpha (8–14 Hz), using a second-
order zero-phase Butterworth filter. The filtered data were then 
segmented from –500 ms to 100 ms with respect to the onset of each 
pair in the encoding blocks. Malfunctioning electrodes were 
removed, and their data were estimated based on neighboring 
electrodes using spline interpolation. Trials contaminated by blinks, 
muscle movements, or brief amplifier saturation were discarded from 
further analyses by visual inspection. As in Experiment 1, we were 
interested in the encoding phase of trials labeled as hit or miss 
according to participant´s response in the subsequent recognition 
block. Thus, only matching trials could be used for the analysis. To 
ensure a reliable estimation of oscillatory patterns, for a given 
participant, if the number of artifact-free trials in the less populated 
condition (hit or miss) was below 80, the entire participant’s dataset 
was excluded. 

Since we were interested in phase-dependent memory effects, our 
hypothesis capitalized on the endogenous oscillations in the EEG 
before the onset of image pairs at the encoding blocks. We compared 
the spectral power and the instantaneous EEG phases between hits 
and misses. Based on the results of Experiment 1 and previous 
literature (Addante et al., 2011; Sederberg et al., 2003; Nenert et al., 
2012; Jensen et al., 2002; Schack et al., 2002; Summerfield and 
Mangels, 2005), we set the spectral-spatial regions of interest 
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(ssROIs). The frequencies and regions of interest were theta (4–7 Hz) 
for frontotemporal electrodes, and alpha (8–14 Hz) for 
occipitoparietal electrodes (see details in Figure 3.3). Data at 
electrodes belonging to the ssROIs at the specific frequency of 
interest were averaged at the individual participant level and then 
averaged over participants.  

The Hilbert transform was used on the narrow-band filtered data to 
obtain, for each frequency 𝑓 at time 𝑡, the associated complex 
analytical signal 𝑠(𝑡), defined by an instantaneous phase 𝜑(𝑡), and 
an instantaneous amplitude 𝐴(𝑡), i.e., 𝑠(𝑡) = 𝐴(𝑡)cosM𝜑(𝑡)P. We 
then calculated the intertrial coherence (ITC) separately for hits and 
misses for the time interval -500 to 100 ms relative to the image-pairs 
onset. The ITC is a direct measure of frequency-specific 
synchronization (Lachaux et al., 1999), and is given by, 

 

𝐼𝑇𝐶(-,8) =
1
𝑛*𝑒3(FK(.,0)9M)

K

%L5

 

 

Under complete independence across trials between EEG data and 
the time-locking events, ITC is nearly 0, representing absence of 
synchronization; whereas for ITC equals 1, all phases are 
concentrated, representing full synchronization. 
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Figure 3.3 Map of scalp EEG electrode locations and their corresponding 
regions of interest (ROIs) 

Electrodes were divided into 2 ROIs: frontotemporal—outlined in blue, and 
occipitoparietal—outlined in red. 

 

Phase Opposition Analyses 

To determine subsequent memory effects as a function of the phase 
at stimulus onset, we decided to evaluate phase differences between 
hits and misses using the Phase Opposition Sum (VanRullen, 2016), 
see pre-registration (https://osf.io/4f5qc/). The POS measurement 
estimates the correlation between an oscillation phase at a particular 
frequency, and an observed behavior. It is computed as the sum of 
the ITC calculated separately for two or more conditions according 
to the observed behavior. Moreover, it assumes that the phase in the 
prestimulus period is distributed randomly (i.e., follows a uniform 
distribution) across trials and, consequently, if the EEG phase at one 
point in time and frequency influences subsequent memory 
recognition, we expect a phase concentration opposition between hits 
and misses. Analytically, the POS measure is given by: 
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𝑃𝑂𝑆 = 𝐼𝑇𝐶.3-I +	𝐼𝑇𝐶N3IIBI −	2𝐼𝑇𝐶AOO 

 

Where we computed the ITC individually for hits and misses on 250 
random picked trials to equate the number of trials per condition. We 
averaged the POS values across electrodes within each region of 
interest (ROI). The POS is bounded between -1 and 1. If the phase is 
related to the trial outcome, then the POS is positive (ITC of each 
trial group should exceed the overall ITC). To test for significance, 
we used the Monte Carlo test procedure (500 surrogates mixing hits 
and misses and 10,000 randomly picked group average pseudo-POS 
distributions for each participant). Following VanRullen (VanRullen, 
2016), we equated the number of trials with the minimum trials 
accepted that ensured a statistical power above 0.8. To do so, we 
decreased the number of trials until the POS calculation reached the 
statistical power boundary. We used pseudo-POS distributions as the 
null distribution to be statistically compared the calculated POS. As 
a significant phase opposition should lead to large positive POS, then 
the p-value corresponds to the proportion of group average pseudo-
POS larger than the actual POS. p-values were further corrected for 
multiple comparisons using the False Discovery Rate (FDR) method 
(p<0.05). 

Similar to the POS method, the Pairwise Phase Consistency (PPC) 
metric (Vinck, van Wingerden, Womelsdorf, Fries, & Pennartz, 
2010) quantifies the consistency of phase differences in a particular 
frequency band but with a bias-free sample estimator that for controls 
the imbalance in the number of trials between conditions  by looking 
at pairs of observations instead of all observations together. The PPC 
is calculated as follows: 
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𝑃𝑃𝐶(𝑓) = 	
2

𝑁(𝑁 − 1)	* * cos	(𝜃C(𝑓) −	𝜙K(𝑓))
)

KLC(5

)45

CL5

 

 

Where N denotes the total number of trials. PPC is a normalized 
measure, bounded between -1—indicating perfect phase opposition, 
and 1—indicating full phase consistency or perfect synchronization. 
In the case of phase consistency, phases point into the same direction 
thus, angular distances between trials are small (i.e. phase differences 
close to 0, hence cosine values close to 1, resulting in a large PPC 
value). Conversely, in case of lack of phase consistency, phases point 
into random directions resulting in a distribution of angular distances 
between 0 and 360° (i.e. cosine values between –1 and 1, and a small 
PPC value). Last, and relevant for our study, in case of perfect 
opposition, phases distances point to 180°, hence cosine values close 
to -1, resulting in a large negative PPC value. 

 

The Influence of the Phase of Ongoing EEG Activity at 
Encoding on Subsequent Memory Performance 

 

Participants performed the task with an overall hit rate of 64.15 ± 
6.89% and a false alarm rate of 7.46 ± 3.52% (see individual results 
in supplement Table S2.1). The focus of this experiment was to 
address whether the phase of the ongoing EEG activity before the 
associate-pair onset at encoding (-500 to 0 ms time-window) could 
predict subsequent memory performance. To answer this question, 
according to the pre-registered analysis pipeline, we used the POS 
analysis (VanRullen, 2016) described above, on the preselected 
frequencies and regions of interest. As expected, we observed that 
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prestimulus phases were randomly distributed when collapsing hits 
and misses in the prestimulus time-window. However, the POS 
results showed no significant phase opposition in either Theta or 
Alpha frequency bands in either ROI. In principle, this result would 
mean that the phase of ongoing oscillations within the specified 
frequency ranges and ROIs was not predictive of subsequent memory 
performance (or that if present, the effect was undetectable with the 
present statistical power). However, before committing to this 
conclusion, we explored the data further to rule out potential 
alternative explanations for the null result from the preregistered 
analysis. The results of the exploratory analyses are reported below. 

 

Reality Checks and Alternative Phase-Opposition 
Analysis 

 

First, we questioned whether the Phase Opposition Sum (POS) index 
used in the main analyses was reliable. The POS analysis has a 
positive bias (inherited from the ITC used in the calculation) that 
correlates with the total number of trials and with the relative number 
of trials per condition (VanRullen, 2016; Moratti et al., 2007; Vinck 
et al., 2010). It has been shown that the statistical power of POS and 
other phase opposition measures decreases as the imbalance in trials 
between conditions increases (VanRullen, 2016). Our EEG 
experiment had two sources of imbalance in the number of trials for 
the hit vs. miss comparison: (1) because conditions were determined 
as a function of performance, we could not anticipate exactly how 
many trials per condition there would be, and (2) due to the unequal 
artifact rejection. For this reason, in the analyses above we equated 
the number of trials in each condition by random picking from the 
more populated condition the same number of trials as in the less 
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populated condition. In order to evaluate the stability of the POS 
estimated by this procedure, we calculated the empirical POS and 
generated null POS measures for one electrode and time point in the 
theta frequency band, for different numbers of random samples (from 
25 to 1.000 samples). We observed that even when using 1.000 
random samples per participant, the p-values obtained were not 
stable: at the maximum number of iterations, the p-values varied in 
the interval 0.06 to 0.12 (supplement Figure S3.1). This result casts 
doubts on the stability of the POS measure used and hence, on the 
null result observed. 

Second, as a consequence of the above, we decided to ascertain 
whether phase effects could be found in our data when using an 
alternative, more robust measure. We assessed the impact of the 
phase of ongoing EEG at encoding onset on subsequent performance 
using the Pairwise Phase Consistency (PPC) (Vinck et al., 2010) 
method. Similar to the POS, the PPC metric quantifies the 
consistency of phase differences in a particular frequency band but 
with a bias-free sample estimator that controls for the imbalance in 
the number of trials between conditions by pairing observations. Like 
the POS, we did not observe any significant phase opposition in any 
frequency or region of interest when comparing the PPC between hit 
and miss trials. 

Third, we investigated whether our data could replicate previous 
results showing that differences in oscillatory amplitude in the time 
window around stimulus onset are predictive of subsequent memory 
performance (Strunk and Duarte, 2019). In order to obtain time-
resolved data, oscillatory amplitude values were computed using the 
Hilbert transform (as specified in the methods section) on a trial by 
trial basis for theta and alpha frequencies. Power was averaged across 
electrodes within each ROI. The difference between conditions in the 
period –500 to 100 ms relative to stimulus onset, was estimated as 
follows (power expressed in dB): 
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𝑃𝑜𝑤𝑒𝑟@'%-/AI- =	10	𝑙𝑜𝑔56 9
𝑃𝑜𝑤𝑒𝑟.3-I
𝑃𝑜𝑤𝑒𝑟N3IIBI

; 

 

We assessed the significance of the power contrast between hits and 
misses within ROIs using a two-tail t-test corrected for multiple 
comparisons using the FDR method (p<0.05). In the alpha band, no 
significant differences in power between hits and misses were found 
(t-test, p<0.05, FDR corrected). However, we found a significantly 
higher theta power for later remembered stimuli compared to latter 
forgotten in the peri-stimulus time-window -500 to +100 ms (t-test, 
p<0.05, FDR corrected) (see Figure 3.4).  

This subsequent memory effect (SME), even if including a brief 
prestimulus period, is most likely fully explained by evoked activity, 
given the temporal smoothing involved in the analysis used. SME in 
theta evoked activity is well in line with previous findings showing 
that increases in theta oscillatory power during the encoding period 
predict subsequent recall (Guderian et al., 2009; Sederberg et al., 
2003; Osipova et al., 2006; White et al., 2013; Long et al., 2014; 
Solomon et al., 2019).  
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Figure 3.4 Theta power contrast between hits and misses 

Theta power contrast between hits and misses (thick blue line). The Shaded grey 
area shows the period of significant differences (p<0.05) after FDR correction. 
The shaded blue area represents the standard error of the mean (SEM), and the 
green line shows stimulus onset. 

 

Post-hoc Analyses with Fine-tuned Frequency and Region of 
Interest 

Based on prior evidence for SMEs in evoked theta power (Backus et 
al., 2016; Lega, Jacobs and Kahana, 2012; Sederberg et al., 2003; 
Staudigl and Hanslmayr, 2013), and on our significant theta power 
contrast for hits vs. misses, we decided to adopt a data-driven 
approach to further seek for pre-stimulus phase effects using fine-
tuned parameters. Theta power modulations following stimulus 
presentation and its functional impact to subsequent memory 
performance is an established evidence. Several studies support 
increases in theta amplitude during the encoding period (Osipova et 
al., 2006; Sederberg et al., 2003; White et al., 2013; Clouter, Shapiro, 
and Hanslmayr, 2017; Khader et al., 2010; Guderian et al., 2009; 
Long, Burke, and Kahana, 2014; Lega, Jacobs, and Kahana, 2012), 
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while others have found the effect in an opposite direction  (Long, 
Burke, and Kahana, 2014; Lega, Jacobs, and Kahana, 2012; 
Greenberg et al., 2015; Sederberg et al., 2006). The difference in the 
directionality of the theta effect could respond to two different 
mechanisms supporting memory encoding arising from cortical and 
subcortical processes. In a new analysis we used the frequency and 
scalp region based on the theta power SME effect found above 
around stimulus presentation (-500 to +100ms), to fine-tune 
parameter selection for prestimulus phase effects on subsequent 
memory. This approach is justified given that the a priori ROIs were 
very broad and probably suboptimal. Moreover, we also know that 
the individual theta frequency covaries with the individual alpha 
frequency (Doppelmayr et al., 1998; Klimesch and Doppelmayr, 
1996), and both shows large inter-individual differences (Haegens et 
al., 2014; Klimesch, 1999). Below, we describe the fine-tuning of the 
frequency of interest and scalp location adopting a data-driven 
approach. Later, we report the results of the ensuing pre-stimulus 
phase SME. 

 

Adjustment of Frequency at the Individual Level 

To select the individual frequency of interest (IFOI) we calculated 
the scalp average power spectrum during the encoding period (0 to 
1000 ms from stimulus presentation) using a Fourier Transform (FT) 
(padded to 12 s to increase frequency resolution, 4 slepian tapers) in 
the range from 1 to 30 Hz. Then, we calculated the power spectrum 
for hits, misses, and for the collapsed distribution (all trials). For each 
participant, we used the collapsed distribution to obtain a peak in the 
theta frequency (4–5 Hz), namely, the IFOI. To illustrate the results, 
Figure 3.5 shows the scalp average power spectrum during the 
encoding interval for a representative participant.  
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Figure 3.5 Individual Frequency of Interest (IFOI) 

Individual frequency of interest (IFOI) for one representative participant. The 
figure represents the scalp average power spectrum during the encoding interval 
for the collapsed distribution of hits and misses (black), as well as separately for 
hits (blue) and misses (red). 

 

Adjustment of the ROI 

We band-passed the signal around the individual frequency of each 
participant in the narrow band IFOI ± 2 Hz using a second-order 
Butterworth filter, and computed the corresponding power spectrum 
using the Hilbert Transform. Then, the power contrast for hit vs. miss 
trials was obtained for each participant, electrode, and latency (0 to 
500 ms in steps of 2 ms). As shown in Figure 3.6, across subjects, we 
identified a positive time-frequency cluster (p-value<0.0002) that 
initiated in the left frontal area—shortly after stimulus presentation—
and extended towards central and posterior regions. Consequently, 
the new ROI was defined as the set of electrodes in the left frontal 
area which first displayed a significant power effect in the post-
stimulus period (0-50 ms) and remained significant for most of the 
time within the window of analysis (0-500 ms): F3, F5, F7, FT7 and 
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FC5. Significance in power across conditions was obtained by means 
of a t-test (right-tailed) and corrected for multiple comparisons using 
a cluster approach (10.000 randomizations).  

 

 

Figure 3.6 Adjusting the ROI based on the IFOI 

Snapshots of the positive cluster for theta power contrast between hit and miss 
trials, using the individual frequency of interest (IFOI). Black stars indicate 
electrodes with significant activity at displayed time points. Red circle indicates 
the new ROI that was defined as the set of electrodes in the left frontal area which 
first displayed a significant power effect in the post-stimulus period. 
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Fine-tuned Analysis of Prestimulus Phase SMEs 

We ran the Pairwise Phase Consistency (PPC) analysis in the 
prestimulus time-window for hits vs. misses with the new IFOI and 
ROI estimated as described above. For each participant, phases were 
extracted from the IFOI-filtered signal using the Hilbert Transform 
in the time-window immediately before stimulus onset (-500 to 0 
ms), and the PPC was computed for each time point of the window. 
Statistical significance for PPC values below the null hypothesis was 
assessed by means of the Montecarlo randomization with 
distributions of 1,000 null PPC for each participant and 100,000 null 
means.  

For multiple comparison correction, we used the Guthrie and 
Buchwald method (Guthrie and Buchwald, 1991) (1–dimensional 
clustering). Given our sample size (N=30), the alpha level (p=0.05), 
the estimated autocorrelation of the time series (0.997) and the length 
of the time series (251 points), any cluster of adjacent significant time 
points above (at least) 26 samples could be considered significant. 
Figure 3.7 shows the time resolved PPC values within the window of 
interest, in which two significant windows were observed between -
500 to -442 ms, and -134 to -82 ms. This effect suggests phase-
opposition effects in the left frontal cluster before and during 
stimulus presentation for hits (later remembered items) compared to 
misses (later forgotten). 
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Figure 3.7: PPC Time Evolution 

Average and standard error of the mean PPC time evolution. Shaded areas 
correspond to PPC significantly smaller than the null distribution after multiple 
comparison correction (Buchwald and Guthrie). 

 

Analyses of Serial Position Effects 

In lists of unrelated items (no association between adjacent items), 
serial position usually plays a crucial role in memory performance 
(Deese and Kaufman, 1957; Murdock Jr, 1962). Early items in a list 
have a memory advantage—the primacy effect—due to less 
competition from other items; items in the last positions also receive 
an advantage—the recency effect—because they may still be 
available in short-term memory during the memory test (for a review 
see Hurlstone et al., 2014). Middle items are normally the least 
remembered ones. The primacy effect in episodic memory has been 
correlated with increases in gamma power in posterior regions, 
whereas widespread low-frequency (4–14 Hz) power decreases 
predicted successful memory formation for later serial position items 
(Sederberg et al. 2006). Building on these ideas, we addressed the 
possible effects of serial position in our data. In our study, the 
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performance showed the expected U-shaped curve when plotted as a 
function of the item position. The effect of serial position effect on 
memory performance was significant as evidenced by a repeated-
measures ANOVA: F(4,145)=4.97, p=0.0009. Pairwise t-test 
confirmed that the first item in the list (encoding position 1) was 
better remembered than all middle ones (1 vs. 2, t(29)=2.53, p=0.008; 
1 vs. 3, t(29)=6.57, p<0.0001; and, 1 vs. 4 t(29)=7.07, p<0.0001). The 
last item in the list was significantly better remembered than the 4th 
item (the least recognized one, t(29)=2.79, p=0.0045) (supplement 
Figure S3.2). Hence, our recognition data seems to follow a U-shape.  

We then turned to explore the prestimulus phase effects on the EEG, 
restricted to the middle items on the lists. The hypothesis behind this 
analysis is that any effect of prestimulus ongoing activity might be 
stronger for more difficult-to-remember items in the list, i.e., middle 
position items. In addition, high recognition rates tend to reduce the 
variability that is desirable for phase opposition analyses. Therefore, 
to address our hypothesis, we performed a new analysis using phase 
consistency (PPC) only on the data from the middle position items in 
the encoding block (positions 2, 3 & 4). In this analysis, we observed 
a cluster of significant negative PPC values in the time window from 
–500 to –412 ms before stimulus presentation, consistent with (and 
slightly larger than) the significant window reported above with the 
whole dataset (e.g., without controlling for serial position effects). 
The present result suggests a difference in phase concentration 
between hits and miss were not related to factors as the primacy or 
recency effect (supplement Figure S3.3). 
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Discussion 

 

Several studies have demonstrated a link between the phase of 
ongoing neural oscillations and behavioral outcomes, especially in 
perception and attention tasks (Busch, Dubois and VanRullen, 2009; 
Mathewson et al., 2009; VanRullen et al., 2011). The interpretation 
of these results capitalizes on the idea that these oscillations reflect 
fluctuations in neural excitability and the coordinated action of neural 
populations across different brain regions. Here, we applied the same 
logic to investigate whether the phase of ongoing activity at stimulus 
onset has an impact on later memory performance. The question is 
whether fluctuations in pre-stimulus brain states, as reflected by 
oscillatory dynamics, will have an impact on memory formation and 
consequently, on subsequent recognition of the stimulus.  

In the first experiment, we collected behavioral data from 30 healthy 
participants performing a visual paired-associates episodic memory 
task. Before each to-be-remembered image pair, an audio-visual reset 
cue was presented to induce modulation in cortical excitability by 
phase resetting the ongoing oscillatory activity (Lakatos et al., 2009; 
Fiebelkorn et al., 2011; Daitch et al., 2013). We measured later 
memory recognition performance as a function of the time-lag 
between the audio-visual reset cue and the presentation of the image 
pair to be encoded (randomly varied within an interval between 0 and 
1000 ms, in steps of 16 ms). The data showed that subsequent 
memory performance for the associated pairs fluctuated periodically 
at ~4 Hz as a function of the time lag from the audio-visual reset cue 
to encoding. Although the effect did not survive multiple 
comparisons correction for the number of frequencies included in the 
analysis, it suggests that theta-band oscillatory activity pre-stimulus 
may modulate the encoding. Consistent with previous findings, this 
periodic fluctuation could be attributed to a phase resetting of the 
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ongoing oscillatory signal in the theta band that would be 
functionally relevant for encoding (Rizzuto et al., 2003; Fiebelkorn 
et al., 2011; Daitch et al., 2013; Fiebelkorn et al., 2018). However, 
the behavioral data in this experiment does not provide a direct 
measure of the phase of ongoing oscillatory activity; therefore, we 
could only assume the phase resetting as the most likely explanation 
of the possible modulation. Because of this, and the lack of 
significance after correcting for multiple comparisons, we consider 
that any interpretation derived from this result must be cautious.  

In a second experiment, we used EEG to investigate more directly 
the role of ongoing low-frequency brain oscillations prior to the to-
be-encoded stimulus. Specifically, we focused on the phase and 
amplitude of frontotemporal theta and occipitoparietal alpha 
oscillations as a function of trial to trial successful or unsuccessful 
recognition. The results indicated that theta-phase differences 
between hits and misses in the prestimulus time-window predicted 
subsequent memory performance. Note that we pre-registered an 
analysis pipeline focusing on the phase of frontotemporal theta and 
occipitoparietal alpha that returned null results. After ascertaining 
that the ROI and the phase opposition sum method were probably 
sub-optimal, we ran a post-hoc phase analysis based on PPC. This 
phase analysis was guided by a more precise estimation of the ROI 
and the individual frequency parameters estimated from the theta 
power effects post-stimulus (i.e., increment after successfully 
remembered items). Following this data-driven approach, we 
observed significant prestimulus phase subsequent memory effects in 
a cluster of left frontal electrodes, suggesting a relationship between 
the phase of ongoing theta oscillations before stimulus onset, and 
later memory performance.  

The significant pre-stimulus phase effects were based on a data-
driven analysis based on parameters estimated from a replication of 
a well-known SME in theta power. Indeed, when looking at power 
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effects, we observed a significant theta increase in the peri-stimulus 
period with similar topographic distribution as in previous studies 
(Osipova et al., 2006; White et al., 2013; Long et al., 2014; Khader 
et al., 2010; Guderian et al., 2009; Klimesch and Doppelmayr, 1996). 
In particular—for each participant—the theta power effect appeared 
frontally after stimulus presentation and spread toward centro-
posterior areas at increasing latencies. We may argue that the effects 
of phase and power are analytically independent since they were 
found at different times with respect to the stimulus onset. Increases 
in theta power appeared around (e.g., immediately before and during) 
stimulus presentation, while phase effects in the theta band predictive 
of later recognition were observed long before the stimulus, in the –
500 to –442 ms, (as well as –134 to 82 ms) time window with respect 
to stimulus onset.   

Most of the studies looking at prestimulus oscillatory effects in 
subsequent memory performance have used a prestimulus orientation 
cue signaling the appearance of the to-be-encoded stimulus (Haque 
et al., 2015; Guderian et al., 2009; Otten et al., 2010). Thus, the 
increases in memory performance are mainly attributed to active 
anticipatory states. A substantial difference, at least with our second 
experiment, is that we focused on prestimulus ongoing oscillations; 
therefore, we did not use a prestimulus informative cue. In the first 
experiment, one could argue that the cue was not particularly time-
informative (especially within the time window of relevance, 0-500 
ms after the cue), although this could be more controversial. 
According to prior literature, in the absence of anticipatory states, i.e., 
under ongoing theta fluctuations, evidence from animal studies has 
shown an enhancement in the learning rate when the stimulus is 
presented during a specific hippocampal theta phase (Seager et al., 
2002). The relevance of theta phase to the encoding of new 
information has been well-established through studies in vitro and in 
rodents and further implemented in leading theoretical models of 
memory (Huerta and Lisman, 1995; Hyman et al., 2003; Hasselmo, 
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Bodelón and Wyble, 2002; Hasselmo, 2005). Hippocampal theta is 
thought to be induced in cortical areas via hippocampal-cortical 
feedback connections, gating synaptic plasticity. In turn, the 
induction of long-term potentiation (LTP) is dependent on the phase 
of theta rhythm; whereas LTP preferentially occurs on the positive 
phase of the theta cycle, long-term depression occurs at opposing 
phases (Pavlides et al., 1988; Fell and Axmacher, 2011). 

Another possible interpretation for the role of the pre-stimulus phase 
in the modulation of later recognition success is that it may reflect 
attentional mechanisms. Indeed, attention orientation is known to 
impact memory encoding (Chun and Turk-Browne, 2007). The idea 
is that the recruitment of frontal regions promotes encoding processes 
by top-down modulation of posterior occipitoparietal regions. In 
particular, frontal regions may contribute by selecting goal-relevant 
information and binding pieces of information (Gazzaley and Nobre, 
2012; Blumenfeld and Ranganath, 2007). Thus, the fluctuations that 
have been observed may reflect cyclic changes in preparation for 
optimal stimulus processing (Sekuler and Kahana, 2007; Gazzaley 
and Nobre, 2012). In this line, Busch and colleagues (Busch and 
VanRullen, 2010) showed that detection performance was improved 
by attention and fluctuated over time, along with the phase of 
spontaneous theta oscillations, before stimulus onset. However, the 
evidence against attentional mechanisms arises from studies 
suggesting that prestimulus attentional effects are correlated with 
decreases in occipitoparietal alpha (Thut et al., 2006; O’Connell et 
al., 2009; Mazaheri et al., 2009). In our study, we did not find 
significant prestimulus differences in alpha power, and our 
experimental design does not allow us to disentangle the effects of 
the induced anticipatory states from the impact of attentional 
processes.  

Recognition and free recall are two memory processes whose 
performance could differ on storage, recovery operations, or some 
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combination of both (Atkinson and Shiffrin, 1968; Kahana, 2012). 
Using intracranial EEG, Merkow et al. (2014) showed that selective 
hippocampal prestimulus theta activity was associated with better 
subsequent recognition, but not with subsequent recall. Their results 
suggest that hippocampal prestimulus theta power increases 
preferentially promote the encoding of item information rather than 
the associative information of the item with the self-generated cues 
necessary for retrieval. Even though our findings revealed a theta 
effect in frontal regions, they are consistent with the idea that 
prestimulus theta oscillations underlie mnemonic processes that 
favor later recognition. Based on their findings,  we speculate that our 
results may not generalize to other memory paradigms, such as the 
free or cued recall; however, future work should be done to test this 
hypothesis. 

One limitation of the present study is that the initial selection of the 
regions of interest was possibly not optimal. We divided the whole 
electrode set into two large clusters (anterior and posterior) that were 
too broad. We are aware that besides characterizing the functional 
significance of the observed effects in phase and amplitude, it is 
relevant to identify the brain areas that play a role in the observed 
effects. Although this is challenging to do with EEG, through 
additional analyses, we redefined the ROI as the set of electrodes 
displaying post-stimulus increases in theta power (putatively) after 
stimulus onset in our data, which replicate a relatively well-known 
pattern  (Osipova et al., 2006; Sederberg et al., 2003; White et al., 
2013; Clouter, Shapiro and Hanslmayr, 2017; Khader et al., 2010; 
Guderian et al., 2009). 

Consistent with VanRullen, 2016, we verified that the phase 
opposition measure (POS) is particularly sensitive to the relative 
number of trials in each group. In our study, the proportion of correct 
trials was high (well above chance level), leading to an imbalance of 
trials in the miss and hit categories. By using simulations, we 
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observed that even with 1000 random samples per participant, the p-
values obtained were not stable. Conversely, the pairwise phase 
consistency (PPC) (Vinck et al., 2010) appeared to be a better method 
to estimate EEG phase-related correlations in behavior when the 
experimental design comprises non-equiprobable outcomes. 

 

Conclusions 

 

In summary, the principal finding to emerge from this study is that 
the spatiotemporal pattern preceding the stimulus onset can predict 
behavioral performance in a memory task. This provides further 
evidence that the state of neural activity preceding stimulus 
presentation has an impact on the subsequent processing, extending 
prior results in perceptual and attentional tasks. In the particular case 
of the memory task used here, the relevant spatiotemporal pattern is 
characterized by theta-band fluctuations and phase differences 
between hits and misses reflected in the left frontal scalp. These novel 
insights highlight the role of theta phase in cortical oscillations at 
encoding and support episodic memory models linking behavioral 
data to phasic properties of theta rhythm (Hasselmo, Bodelón and 
Wyble, 2002; Hasselmo, 2005). 
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CHAPTER 4 

 

 

Whole-brain Multimodal Neuroimaging 
Model Integrating Neurotransmitter Data 

 

“The most beautiful thing we can experience is the mysterious. It is the source of 
all true art and science” 

—Albert Einstein (1879–1955) 

 

 

 

Understanding the underlying mechanisms of the human brain in 
health and disease requires models with necessary and sufficient 
details to explain how function emerges from the underlying anatomy 
and is shaped by neuromodulation. In this chapter, we provide such 
a detailed causal explanation using a whole-brain model integrating 
multimodal imaging in healthy human participants undergoing 
manipulation of the serotonin system. Specifically, we present a 
model that combines anatomical data from diffusion magnetic 
resonance imaging (dMRI) and functional magnetic resonance 
imaging (fMRI) with neurotransmitter data obtained with positron 
emission tomography (PET) of the detailed serotonin 2A receptor (5-
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HT2AR) density map4. The model allowed us to fit the resting state 
(with and without concurrent music listening) and mechanistically 
explain the functional effects of 5-HT2AR stimulation with lysergic 
acid diethylamide (LSD) on healthy participants. The whole-brain 
model used a dynamical mean-field quantitative description of 
populations of excitatory and inhibitory neurons as well as the 
associated synaptic dynamics, where the neuronal gain function of 
the model is modulated by the 5-HT2AR density. The model 
identified the causative mechanisms for the non-linear interactions 
between the neuronal and neurotransmitter system, which are 
uniquely linked to (1) the underlying anatomical connectivity, (2) the 
modulation by the specific brain-wide distribution of 
neurotransmitter receptor density, and (3) the non-linear interactions 
between the two. Taking neuromodulatory activity into account when 
modeling global brain dynamics will lead to novel insights into 
human brain function in health and disease and opens exciting 
possibilities for drug discovery and design in neuropsychiatric 
disorders. 

 

 

 

 

 

4 The results presented in this chapter are published in: Deco, G., Cruzat, J., Cabral, 
J., Knudsen, G. M., Carhart-Harris, R. L., Whybrow, P. C., Logothetis, N.K. & 
Kringelbach, M. L. (2018). Whole-brain multimodal neuroimaging model using 
serotonin receptor maps explains non-linear functional effects of LSD. Current 
Biology, 28(19), 3065-3074. 
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A mechanistic explanation of neuromodulatory effects 

 

Human brain activity results from the self-organization of large 
neural networks, emerging from complex recursive non-linear 
interactions between interconnected neural populations (Breakspear, 
2017; Deco et al., 2009; 2015). Understanding brain function and 
dysfunction clearly requires measurements of such activity in various 
spatiotemporal scales, some of which may be done by combining 
neurophysiological and neuroimaging methods, including electrical 
measurements, fMRI, dMRI (diffusion MRI), and PET (positron 
emission tomography) (Deco and Kringelbach, 2014; Cabral et al., 
2017). Moreover, modeling of such large-scale brain dynamics is 
absolutely essential for gaining insights into the generative 
mechanisms of ongoing neuronal dynamics (Honey et al., 2007; 
Ghosh et al., 2008).  

Not surprisingly, following the development and optimization of 
various methodologies over the last 2 decades, significant progress 
has been made in measuring the spontaneous spatiotemporal 
unfolding of brain activity, revealing a repertoire of what is currently 
called resting-state networks (Biswal et al., 1995; Raichle et al., 
2001). In parallel, the spatial patterns of correlated activity in such 
networks have been increasingly studied with a variety of 
computational methods, including whole-brain models relying on the 
mean activity and variance of excitatory and inhibitory neuronal 
populations (Breakspear, 2017; Deco et al., 2015; Honey et al., 2007; 
Deco et al., 2017a; Cabral et al., 2014a; Ghosh et al., 2008; 
Kringelbach et al., 2015).  

However, the explanatory and potentially predictive power of 
neuronal population models, such as those of neural mass and mean-
field, strongly depend on the integration of information that may 
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selectively and differentially affect the activity of populations at 
different spatial scales (Cabral et al., 2017). More specifically, 
whole-brain models commonly rely on structural and functional 
connectivity of a number of anatomically defined brain regions, the 
activity of each of which is described by the estimated mean activity 
of local neuronal populations. Yet, it is now well established that such 
activity is strongly modulated by the synergistic interactions of the 
diffuse ascending systems, spreading in a global or local fashion by 
so-called neuromodulators, including acetylcholine, various 
monoamines, and tryptamines (Bargmann, 2012; Smythies, 2005; 
Marder, 2012). The effects of these neuromodulators go well beyond 
the activity profiles of typical excitation-inhibition microcircuits and 
could only be computationally assessed by having detailed maps of 
regional density of their receptors.  

To address this important problem, we combine standard anatomical 
and functional maps of the human brain with a detailed map of 5-
HT2A receptor (5-HT2AR) density of the neuromodulator serotonin, 
obtained from a new high-resolution human brain in vivo atlas 
(Beliveau et al., 2017), recently composed on the basis of images 
from 210 healthy individuals (see details of radiotracers in (Beliveau 
et al., 2017)). We added the receptor maps to the standard whole-
brain model by investigating how gain values can be adapted by the 
local regional values of the PET-based empirical values of 5-HT2AR 
density. To this end, we defined a global gain scaling parameter, 𝑆", 
which was added to the original fixed gain parameters (which were 
the same for all regions) and thus scaling the regional 5-HT2AR values 
influencing the recursive circuits of excitatory and inhibitory 
neurons. We first fitted the model to the placebo condition but not the 
LSD condition, i.e., assuming zero values of 𝑆" that correspond to 
the original gain values. The main question then becomes whether 
any 𝑆" values would fit the LSD condition (using the sensitivity of 
the functional connectivity dynamics) while still using the original 
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whole-brain placebo model but now including the new element of 
receptor binding through the global gain scaling parameter, which 
modulates each region with the different empirical measures of 5-
HT2AR binding. If this were found to be true, neurotransmitter 
modulation of whole-brain activity dynamics would be—for the first 
time—quantitatively ascribed to one type of receptor binding (here 
5-HT2A) that would be modulating brain-wide neural responses.  

 

Experimental Data and Subjects Details 

 

In the following, for each of the three empirical data set, we provide 
the participants details and the methods for obtaining 1) structural 
connectivity: probabilistic tractography derived from the dMRI, 2) 
functional connectivity: functional dynamics estimated from the 
fMRI in the placebo and LSD condition, and 3) neurotransmitter 
density: estimation of the density of the 5HT-2A receptors that has 
been obtained using PET.  

 

Anatomical Connectivity Dataset (dMRI) 

We used diffusion MRI (dMRI) data collected in 16 healthy right-
handed participants at Aarhus University, Denmark (5 women, mean 
age: 24.8 ± 2.5). The study was approved by the internal research 
board at CFIN, Aarhus University, Denmark. Ethics approval was 
granted by the Research Ethics Committee of the Central Denmark 
Region (De Videnskabsetiske Komitéer for Region Midtjylland). 
Written informed consent was obtained from all participants prior to 
participation.  
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The imaging data were recorded in a single session on a 3 T Siemens 
Skyra scanner at CFIN, Aarhus University, Denmark. The following 
parameters were used for the structural MRI T1 scan: voxel size of 1 
mm3; reconstructed matrix size 256 3 256; echo time (TE) of 3.8 ms 
and repetition time (TR) of 2300 ms. dMRI data were collected using 
TR = 9000 ms, TE = 84 ms, flip angle = 90º, reconstructed matrix 
size of 106 3 106, voxel size of 1.98 3 1.98 mm with slice thickness 
of 2 mm and a bandwidth of 1745 Hz/Px. Furthermore, the data were 
recorded with 62 optimal nonlinear diffusion gradient directions at b 
= 1500 s/mm2. One non-diffusion weighted image (b = 0) per 10 
diffusion-weighted images was acquired, approximately. One of 
dMRI images was collected applying anterior to posterior phase 
encoding direction and the other acquired in the opposite direction. 

 

Functional Dataset (fMRI) 

All 15 participants (four women; mean age, 30.5 ± 8.0) were recruited 
via word of mouth and provided written informed consent to 
participate after study briefing and screening for physical and mental 
health. The study was approved by the National Research Ethics 
Service committee London-West London and was conducted in 
accordance with the revised declaration of Helsinki (2000), the 
International Committee on Harmonization of Good Clinical Practice 
guidelines, and National Health Service Research Governance 
Framework. Imperial College London sponsored the research, which 
was conducted under a Home Office license for research with 
schedule 1 drugs. The screening for physical health included 
electrocardiogram (ECG), routine blood tests, and urine test for 
recent drug use and pregnancy. A psychiatric interview was 
conducted, and participants provided full disclosure of their drug use 
history. Key exclusion criteria included: < 21 years of age, personal 
history of diagnosed psychiatric illness, immediate family history of 
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a psychotic disorder, an absence of previous experience with a classic 
psychedelic drug (e.g., LSD, mescaline, psilocybin/magic 
mushrooms or DMT/Ayahuasca), any psychedelic drug use within 6 
weeks of the first scanning day, pregnancy, problematic alcohol use 
(i.e., > 40 units consumed per week), or a medically significant 
condition rendering the volunteer unsuitable for the study.  

Screening took place at Imperial’s clinical research facility (ICRF) at 
the Hammersmith hospital campus. Participants who were found 
eligible for the study attended two study days that were separated by 
at least 14 days. On one day, the participants received placebo, and 
on the other day they received LSD. The order of the conditions was 
balanced across participants and participants were blind to this order, 
but the researchers were not.  

On scanning days, volunteers arrived at the study center at 8:00am. 
They were briefed in detail about the study day schedule, gave a urine 
test for recent drug use and pregnancy, and carried out a breathalyzer 
test for recent alcohol use. A cannula was inserted into a vein in the 
antecubital fossa by a medical doctor and secured. The participants 
were encouraged to close their eyes and relax in a reclined position 
when the drug was administered. All participants received 75 mg of 
LSD, administered intravenously via a 10ml solution infused over a 
two minutes’ period, followed by an infusion of saline. The 
administration was followed by an acclimatization period of 
approximately 60 min, in which (for at least some of the time) 
participants were encouraged to relax and lie with their eyes closed 
inside a mock MRI scanner. This functioned to psychologically 
prepare the participants for being in the subsequent (potentially 
anxiogenic) MRI scanning environment.  

Participants reported noticing subjective drug effects between 5 to 15 
min post-dosing, and these approached peak intensity between 60 to 
90 min post-dosing. The duration of a subsequent plateau of drug 
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effects varied among individuals but was generally maintained for 
approximately four hours post-dosing. MRI scanning started 
approximately 70 min post-dosing, and lasted for approximately 60 
min. This included a structural scan and BOLD fMRI. Once the 
subjective effects of LSD had sufficiently subsided, the study 
psychiatrist assessed the participant’s suitability for discharge.  

The BOLD scanning consisted of three eyes-closed resting state 
scans, each lasting seven minutes. After each seven-minute scan, 
VAS ratings were performed in the scanner via a response-box. The 
first and third scans were eyes-closed rest, but the second scan also 
incorporated listening to two excerpts of music from two songs by 
ambient artist Robert Rich (Kaelen et al., 2017). The stimuli were 
both 7.3 min long and were balanced in their acoustic properties, and 
rich in timbre, but not in rhythm. Pre-study assessments in a separate 
group confirmed balance for their emotional potency. In order to 
reduce interference of fMRI scanning noise with the music 
experience, volume-maximization and broadband compression was 
carried out using Ableton Live 9 software. Each participant listened 
to both stimuli, in a balanced order across conditions. Prior to each 
scan, participants were instructed via onscreen instructions to close 
their eyes and relax. Here we used the music + LSD condition since 
this has been demonstrated to yield a larger effect on brain activity 
(Carhart-Harris et al., 2016c) but we also found the effects for LSD 
without music. For more details about the functional data, the reader 
is invited to see Carhart-Harris et al., 2016c. 

Two BOLD-weighted fMRI data were acquired using a gradient echo 
planer imaging sequence, TR/TE = 2000/35 ms, field-of-view = 220 
mm, 64 x 64 acquisition matrix, parallel acceleration factor = 2, 90º 
flip angle. Thirty-five oblique axial slices were acquired in an 
interleaved fashion, each 3.4 mm thick with zero slice gap (3.4 mm 
isotropic voxels). The precise length of each of the two BOLD scans 
was 7:20 min.  
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Neurotransmitter Dataset (PET) 

The participants were healthy male and female controls from the 
Cimbi database (Knudsen et al., 2016); all data from this database are 
freely accessible. The data analysis was restricted to include 
individuals aged between 18 and 45 years. Participants were recruited 
by advertisement for different research protocols approved by the 
Ethics Committee of Copenhagen and Frederiksberg, Denmark. A 
total of 232 positron emission tomography (PET) scans and 
corresponding structural MRI scans were acquired for 210 individual 
participants; 189 participants had only one scan, 20 participants had 
two scans, and a single had three scans.  

PET data were acquired in list mode on a Siemens HRRT scanner 
operating in 3D acquisition mode with an approximate in-plane 
resolution of 2 mm (1.4 mm in the center of the field of view and 2.4 
mm in cortex (Olesen et al., 2009)). The PET scanning used the 
recently developed [11C] Cimbi-36 as a selective serotonin 2A (5-
HT2A) receptor agonist radioligand (Ettrup et al., 2014; 2016). The 
radioligands for the other serotonin receptors are described in the 
paper by Beliveau and colleagues (Beliveau et al., 2017). PET frames 
were reconstructed using a 3D–OSEM–PSF algorithm (Comtat et al., 
2008; Sureau et al., 2008). Scan time and frame length were designed 
according to the radiotracer characteristics. Dynamic PET frames 
were realigned using AIR 5.2.5 (Woods et al., 1992). T1- and T2-
weighted structural MRI were acquired on four different Siemens 
scanners with standard parameters. All structural MRIs (T1 and T2) 
were unwarped offline using FreeSurfer’s gradient-_nonlin_unwarp 
version 0.8 or online on the scanner (Jovicich et al., 2006). For further 
details on structural MRI acquisition parameters, see (Knudsen et al., 
2016).  

Further processing was performed with FreeSurfer 5.3 (Fischl, 2012) 
(http://surfer.nmr.mgh.harvard.edu) using a surface and a volume 
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stream. The individual cortical surfaces were reconstructed using the 
structural MRI corrected for gradient nonlinearities. The pial surfaces 
were further refined using T2-weighted structural images and 
corrected manually where necessary. PET–MR co-registration was 
estimated using boundary-based registration (Greve and Fischl, 
2009) between the time- weighted sum of the PET time–activity 
curves (TACs) and the structural MRI. Additionally, the 
transformation from individual MR space to normal MNI152 space 
was estimated with combined volume–surface (CVS) registration 
(Postelnicu et al., 2009).  

 

Quantification and Statistical Analysis 

 

First, we provide a general overview of the analysis pipeline used to 
integrate structural and functional connectivity (diffusion magnetic 
resonance imaging, dMRI, and functional magnetic resonance, 
fMRI) with neurotransmission (positron emission tomography, PET) 
in a model of the placebo and LSD response in healthy participants 
(see Figure 4.1).  

This overview is subsequently followed by the specific methods, 
namely:  

1. Structural connectivity: probabilistic tractography derived 
from the dMRI  

2. Functional connectivity: functional dynamics estimated from 
the fMRI in the placebo and LSD condition  

3. Parcellation: all structural, functional and neuromodulation 
data are integrated into the Automated Anatomical Labeling 
(AAL) parcellation. 



 

 
131 

4. Whole-brain computational model: a dynamic mean-field 
model was used to integrate the available data to fit the 
placebo condition.  

5. Neuromodulation in whole-brain model: integration of the 
neurotransmission data by changing the gain of neurons in the 
placebo-fitted whole-brain model in order to fit the LSD 
condition. 

 

Structural Connectivity 

Tractography 

For the present study, we used the structural connectivity between the 
90 AAL regions obtained in a previous study (Deco et al., 2017a) 
averaged across 16 healthy young adults (5 females, mean ± SD age: 
24.75 ± 2.54). The linear registration tool from the FSL toolbox 
(http://www.fmrib.ox.ac.uk/fsl, FMRIB, Oxford) (Jenkinson et al., 
2002) was used to co-register the EPI image to the T1-weighted 
structural image. The T1-weighted image was co-registered to the T1 
template of ICBM152 in MNI space (Collins et al., 1994). The 
resulting transformations were concatenated and inversed and further 
applied to warp the AAL template (Tzourio-Mazoyer et al., 2002) 
from MNI space to the EPI native space, where interpolation using 
nearest-neighbor method ensured that the discrete labeling values 
were preserved. Thus, the brain parcellations were conducted in each 
individual’s native space. We generated the structural connectivity 
(SC) maps for each participant using the dMRI data acquired. We 
processed the two datasets acquired (each with different phase 
encoding to optimize signal in difficult regions). The construction of 
these structural connectivity maps or structural brain networks 
consisted of a three-step process. First, the regions of the whole-brain 
network were defined using the AAL template as used in the 
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functional MRI data. Second, the connections between nodes in the 
whole-brain network (i.e., edges) were estimated using probabilistic 
tractography. Third, data was averaged across participants.  

We note that the recent results from Gordon and colleagues would 
seem to suggest that the AAL parcellation is less than optimal, in that 
the AAL was the least homogeneous parcellation scheme tested 
(Gordon et al., 2016). Nevertheless, it is not clear if the methodology 
used in that paper is particularly meaningful. Indeed, in the recent 
paper by Eickhoff and colleagues, they review the literature on the 
topographic organization of the brain and conclude that it is presently 
not clear what is the right spatial parcellation (Eickhoff et al., 2018). 
Both papers are mostly concerned with the spatial organization of the 
brain, while in this ms, we focus on the spatiotemporal global 
dynamics. For this goal, AAL would appear to be a good choice for 
the following reasons: 1) AAL yields excellent significant results in 
the whole-brain literature in general (Cabral et al., 2017; Cabral et 
al., 2014a; Deco et al., 2017b). 2) The relative low number of parcels 
in the AAL is highly suitable for our very extensive computational 
demands.  

We used the FSL diffusion toolbox (Fdt) in FSL to carry out the 
various processing stages of the diffusion MRI data. We used the 
default parameters of this imaging pre-processing pipeline on all 
participants. Following this preprocessing, we estimated the local 
probability distribution of fiber direction at each voxel (Behrens et 
al., 2007). We used the probtrackx tool in Fdt to provide automatic 
estimation of crossing fibers within each voxel. This has been shown 
to significantly improve the tracking sensitivity of non-dominant 
fiber populations in the human brain (Behrens et al., 2007). The 
connectivity probability from a seed voxel i to another voxel j was 
defined by the proportion of fibers passing through voxel i that reach 
voxel j using a sampling of 5000 streamlines per voxel (Behrens et 
al., 2007). This was extended from the voxel level to the region level, 
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i.e., in an AAL parcel consisting of n voxels, 5000x n fibers were 
sampled. The connectivity probability 𝑃3C from region i to region j is 
calculated as the number of sampled fibers in region i that connect 
the two regions divided by 5000 x n, where n is the number of voxels 
in region i. We threshold the SC matrix at 0.1%, i.e., five streamlines.  

For each brain region, the connectivity probability to each of the 
other 89 regions within the AAL was calculated. Due to the 
dependence of tractography on the seeding location, the probability 
from i to j is not necessarily equivalent to that from j to i. However, 
these two probabilities are highly correlated across the brain for all 
participants (the least Pearson r = 0.70, p < 1050). As directionality of 
connections cannot be determined based on diffusion MRI, the 
unidirectional connectivity probability 𝑃3C 	between regions i and j 
was defined by averaging these two connectivity probabilities. This 
unidirectional connectivity was considered as a measure of the 
structural connectivity between the two areas, with 𝐶3C = 𝐶3C. We 
implemented the calculation of regional connectivity probability 
using in-house Perl scripts. For both phase encoding directions, 
90x90 symmetric weighted networks were constructed based on the 
AAL90 parcellation and normalized by the number of voxels in each 
AAL region; thus, representing the structural connectivity network 
organization of the brain.  

We applied the AAL90 template using the FLIRT tool from the FSL 
toolbox (http://www.fmrib.ox.ac.uk/fsl, FMRIB, Oxford) to co-
register the b0 image in diffusion MRI space to the T1-weighted 
structural image and then to the T1 template of ICBM152 in MNI 
space (Collins et al., 1994). The two transformation matrices from 
these co-registration steps were concatenated and inversed to 
subsequently be applied to warp the AAL templates (Tzourio-
Mazoyer et al., 2002) from MNI space to the diffusion MRI native 
space.  
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Functional Connectivity 

Preprocessing 

We first preprocessed the fMRI data using MELODIC 3.14 
(Beckmann and Smith, 2004), part of FSL (FMRIB’s Software 
Library, http://www.fmrib.ox.ac.uk/fsl) with standard parameters and 
not discarding any ICA components. Head motion during the 
experiments was corrected using the FSL tools mcflirt as part of the 
standard MELODIC pipeline and was within normal acceptable 
range for neuroimaging experiments. Specifically, the cloud plot in 
Figure S7 in the original LSD data paper (Carhart-Harris et al., 
2016c) shows that motion is similar in the placebo and LSD 
conditions in terms of its effects on biasing potential related motion 
artifacts. For each participant and for each brain state (i.e., placebo 
and LSD), we used FSL tools to extract and average the BOLD 
signals from all voxels within each ROI defined in the AAL atlas 
(considering only the 90 cortical and subcortical non-cerebellar brain 
regions) (Tzourio-Mazoyer et al., 2002). We computed both the static 
functional connectivity (FC) and the functional connectivity 
dynamics (FCD). In brief, the FCD is a matrix that expresses the 
spatiotemporal statistics of a snapshot of FC across different sliding 
windows. The matrix is thus not locked in time to a particular 
instance and the spatiotemporal evolution (between different 
sessions, subjects or simulations) is thus not aligned. As a 
consequence, comparing the differences between empirical and 
whole-brain model level of fitting, we need to compare the 
distributions of the elements of those matrices. For this the standard 
method is to use the Kolmogorov-Smirnov (KS) distance (see details 
in Deco et al., 2017b) where a smaller value means better fit. For the 
grand average FC, the standard approach is to use correlation 
between the FC matrices, because the matrices are aligned and what 
matters are the correlations between different pairs, i.e., a higher 
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correlation value would mean a better fit. More specifically, we 
computed FC and FCD in the following ways:  

1) Static Functional Connectivity  

The static FC is defined as the NxN matrix of BOLD signal 
correlations between brain areas computed over the whole recording 
time. The empirical and simulated FC matrices were compared by 
computing the Pearson correlation between their upper triangular 
elements (due to matrix symmetry). 

2) Functional Connectivity Dynamics  

To consider the temporal dynamics of resting-state FC, we computed 
the FC over a sliding window of 30 TR with increments of 2 TR, 
resulting in a time-evolving FC matrix (see Figure 4.2). 
Subsequently, we compute a time-versus-time matrix of Functional 
Connectivity Dynamics (FCD), where each entry, 𝐹𝐶𝐷(-2-3), 
corresponds to the correlation between the FC centered at times 𝑡Ptx 
and the FC centered at 𝑡Q. Typically, the FCD matrices computed in 
the resting-state reveal a characteristic checkered pattern indicative 
of spontaneous switching between different FC patterns. Importantly, 
the distribution of FCD values contains valuable information 
regarding the time-dependencies of resting-state activity and we use 
it to as way to characterize the dynamical properties of resting-state 
activity in the different conditions and simulations. To do so, we 
generate the distributions of the upper triangular elements of the FCD 
matrices over all participants in a given condition (LSD or placebo), 
as well as of the FCD matrices obtained from simulations. The 
different distributions are then compared using the Kolmogorov-
Smirnov (KS) distance, allowing for a meaningful evaluation of the 
model performance in predicting the changes observed in resting-
state FC in dynamical terms.  



 

 
136 

Parcellation  

Based on our previous whole-brain studies we used the AAL atlas 
but considering only the 90 cortical and subcortical non-cerebellar 
brain regions (Tzourio-Mazoyer et al., 2002). All structural, 
functional and neuromodulation data was integrated using this atlas. 
We used FSL tools on the freely available 5HT2A receptor density 
map in MNI space to extract the average receptor density for each 
individual AAL region.  

 

Implementation of the Serotonergic Modulation into a 
Whole-brain Dynamic Mean Field Model  

 

We used the dynamic whole-brain model, proposed by Deco et al., 
(2014), to simulate spontaneous mean-field activity. The simulated 
dynamics were then transformed into BOLD signal using the 
generalized Balloon–Windkessel model of Stephan et al., (2007). 
Both models were previously described in detail in the Introduction 
section. To obtain a quantitative measure of 5-HT2A receptor density 
in each AAL region n, d5HT2An, we used the high-resolution atlas of 
human brain serotonin system measured with PET by Beliveau et al., 
(2017). Density values were divided by the maximum, such that 
max(d5HT2A) = 1. We used d5HT2An to modulate the firing rates 
𝑟3
(",$) of the excitatory and inhibitory pools of each brain region, 

following a number of experimental studies in cats and rats showing 
that serotonin injection modulates the firing rate of neurons with 5-
HT receptors (Grasso et al., 2016; Licata et al., 1993; 1995; Licata et 
al., 1993; Chance et al., 2002). Moreover, while some neurons 
respond with an increased firing rate, others consistently decrease the 
firing rate after serotonin injection, indicating that 5-HT2A receptors 
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have both excitatory and inhibitory effects (Grasso et al., 2016; 
Licata et al., 1993). Precisely, we consider that d5HT2An modulates 
the gain of the neuronal response function 𝐻(") in each brain area 
according to the modified Equation 3 (see the Introduction section), 
using the standard computational definition of gain modulation given 
by Chance et al., (2002):  

 

𝑟%
(") =	𝐻(")3𝐼%

(")4 =
𝑔′𝑔"3𝐼%

(") − 𝐼-./
(")4

1 − 𝑒𝑥𝑝 9−𝑑"𝑔′𝑔"3𝐼%
(") − 𝐼-./

(")4;
	,									(12) 

𝑔R = 1 + 𝑠"𝑑5𝐻𝑇2𝐴%          (13) 

 

Here, the scaling factor 𝑠" is the only free parameter equally scaling 
in all brain areas the slope of H in the E pool according to the 
normalized density of serotonin receptors in each area, d5HT2An. To 
simulate the resting-state activity under placebo condition, we use 𝑠" 
= 0.  

 

Explaining the Influence of Neuromodulation 

 

The main aim is to provide a detailed mechanistic explanation of how 
neuromodulation is coupled with the neuronal system and serves to 
shape how function emerges from the underlying anatomy. Here, we 
describe the results of using a whole-brain model, integrating a 
whole-brain density map of the 5-HT2AR (Beliveau et al., 2017) with 
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traditional structural and functional connectivity representations 
obtained by means of dMRI and fMRI, respectively. The 
combination of the multimodal data in the whole-brain model is 
described in schematized form in Figure 4.1. Notably, the model only 
uses two parameters: a neuronal parameter scaling the global 
coupling of neuronal populations and a neuromodulator parameter 
scaling the effects of neurotransmitter on the neuronal gain function 
weighted by the empirical regional receptor density. For each of the 
multimodal neuroimaging modalities, we used the automated 
anatomical labeling (AAL) parcellation with 90 cortical and 
subcortical regions (Tzourio-Mazoyer et al., 2002), which has been 
extensively and successfully used over the last decade for resting-
state neuroimaging studies and whole-brain modeling.  

We investigated the influence of neuromodulation on the neuronal 
system using the well-known effects of LSD on the serotonin system 
by using data obtained in healthy participants receiving small doses 
of LSD or placebo, with or without music, which can acutely induce 
synesthesia, altered perceptions, bliss, depersonalization, and 
mystical experiences (Carhart-Harris et al., 2016c). Importantly, 
LSD with music has been found to enhance the emotional response 
and produced greater feelings of wonder and transcendence 
compared with listening to music after placebo (Kaelen et al., 2015). 
We therefore used the music conditions with placebo and LSD in 
order to increase the impact on the serotonin system (see Figure 4.1, 
and we also confirmed the results for the non-music condition in 
supplement Figure S4.1).  

Specifically, the model was first fitted to the placebo condition, and 
subsequently, the regional 5-HT2AR densities from the in vivo atlas 
were used to explain the functional resting-state activity in the LSD 
condition. The role of the empirical 5-HT2AR was ultimately assessed 
by comparing the LSD maps with neuromodulatory maps of 
randomly shuffled 5-HT2AR densities. As shown below, we found 
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that a robust explanation of global activity changes induced by the 
LSD administration is only possible when the neuromodulation 
profiles estimated by the density of the 5-HT2ARs from the in vivo 
serotonin atlas is taken into account.  

 

 

Figure 4.1 Overview of Integrating Multimodal Data Including 
Neuromodulation into a Whole-brain Neuronal Model 

We show the basic ingredients for the integration of multimodal neuroimaging data 
from structural (dMRI, top left), functional (fMRI, bottom left), and 
neurotransmission (PET, top right) using the same parcellation for each 
neuroimaging modality (bottom right) for generating a whole-brain computational 
model (middle). Each node of the model is using a realistic underlying biophysical 
neuronal model including AMPA, GABA, and NMDA synapses as well as 
neurotransmitter gain modulation (bottom row) of these.  
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Briefly summarizing the methods, the whole-brain model was 
composed of 90 anatomically delineated brain regions linked by the 
structural connectivity (SC) matrix of fiber densities obtained by 
tractography (Hagmann et al., 2008; Cabral et al., 2014a). The 
activity of each region was represented by a dynamic neuronal mean-
field model derived from the collective behavior of empirically 
validated integrate-and-fire (80% excitatory and 20% inhibitory) 
neurons (Deco et al., 2014; Brunel and Wang, 2001). The population 
responses for pools of excitatory neurons were given by independent 
sigmoid functions, regulated by a gain parameter 𝑠", common in all 
brain regions and initially set to zero (Deco et al., 2014). In the model, 
the inter-regional coupling (given by the SC) was scaled by a single 
global parameter, G, corresponding to the conductivity of each fiber 
(same for all fibers). Modulation of the brain’s dynamic working 
point, i.e., changes in the magnitude of coupling of the network (from 
weak to strong), could be implemented by changing the G parameter.  

Our optimization of the whole-brain model on the basis of the 
aforementioned diverse structural, functional, and regulatory data 
started with the fitting of the whole-brain mean-field model to the 
placebo condition, using the same fixed gain-value parameters for all 
regions and adapting only the G coupling parameter. This optimal 
global coupling parameter value was subsequently used for 
explaining the LSD condition by selectively changing the neuronal 
gain of each region according to the empirical measured 5-HT2AR 
density. To take into account the spatiotemporal fluctuations in 
functional brain dynamics over time, the model was fitted to the 
spatiotemporal dynamics of the data (i.e., to the functional 
connectivity dynamics [FCD]) (Hansen et al., 2015; Allen et al., 
2014; Deco and Kringelbach, 2016) rather than to the static grand-
average functional connectivity (Deco and Kringelbach, 2016) (see 
Figure 4.2, describing the process of estimating and fitting the FCD 
in the whole-brain model). As previously shown, the FCD is a 
powerful sensitive measure of the spatiotemporal changes in 
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functional connectivity, which maximally constrains the working 
space parameters of whole-brain models (Hansen et al., 2015; Deco 
et al., 2017b). For this reason, the sensitivity of the FCD offers an 
excellent metric for determining subtle differences.  

 

 

Figure 4.2 Overview of Process for Estimating and Fitting the FCD in the 
Whole-brain Model 

A) First, we extract the timeseries from the fMRI data from each brain region in 
the parcellation (shown here for a single participant). B) The average functional 
connectivity is computed over a sliding window of 30 repetition time (TR) with 
increments of 2 TR, resulting in time-evolving FC matrices. C) Subsequently, we 
compute a time-versus-time matrix of FCD, where each entry, 𝐹𝐶𝐷(4!4"), 
corresponds to the correlation between the FC centered at times 𝑡5 and the FC 
centered at 𝑡5. D) We generate the distributions of the upper triangular elements 
of the FCD matrices over all participants in a given condition (LSD or placebo) 
and here shows the histogram for the single participant. E) The distribution of FCD 
for the placebo condition is used to fit the whole-brain computational model, which 
is compared using the Kolmogorov-Smirnov distance, allowing for an effective 
evaluation of the model performance in explaining the changes observed in resting-
state FC in dynamical terms. 
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Importantly, the gain values were adapted by taking into account the 
local regional values of 5-HT2AR density. Specifically, we defined a 
global gain-scaling parameter, 𝑠", which was added to the original 
fixed gain parameters (same for all regions) and thus could serve for 
scaling of the regional 5-HT2A values, potentially signaling the 
influence of the receptors on the recursive circuits of excitatory and 
inhibitory neurons. Zero values of 𝑠" yield the original gain values, 
fitting the model to the placebo condition but not the LSD condition. 
An important subsequent question is whether any sE values would fit 
the LSD condition (using the sensitivity of the FCD measure) while 
still using the optimal coupling G parameter of the placebo condition. 
If this were true, LSD-induced whole-brain activity dynamics would 
be quantitatively ascribed to one type (i.e., 5-HT2A) of serotonergic 
modulation of brain-wide neural responses.  

 

Results of Fitting Whole-brain Neuromodulation Model to 
Empirical Data 

 

To find the causal mechanisms linking neuromodulation and 
neuronal activity, we first estimated the optimal coupling parameter 
G such that the whole-brain model (with original gain values, i.e., 𝑠" 
= 0 for all regions) optimally fits the placebo condition. Figure 4.3A 
shows the dependency for G of the fitting in terms of (1) the grand-
average static functional connectivity (FC) and (2) the FCD. For the 
FC fitting, higher values indicate a better fit since it reflects a simple 
correlation between model and empirical data. We include this 
measure as the grand-average FC spatial correlation has traditionally 
been used to constrain whole brain, yet it is not particularly sensitive 
to the spatiotemporal information (Hansen et al., 2015; Deco and 
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Kringelbach, 2016) and thus not relevant for constraining the model 
here. Instead, we show that a better measure for model fitting is the 
FCD, which take into account the spatiotemporal information and 
where lower values indicate a better fit of the Kolmogorov-Smirnov 
distance between the FCD of the model and empirical data. As is 
shown in Figure 4.3A and B, the results using this measure (level of 
fitting) are excellent. For the subsequent analyses, we use this 
placebo condition for which we selected the optimum point of G, 
when the model was fitted to the FCD (G = 2.1 at minimum of green 
line in Figure 4.3A).  

The neuromodulatory effects in the LSD condition were then 
modeled by estimating the neuronal gain function, namely by scaling 
the parameter 𝑠" and the corresponding regional empirical 5-HT2AR 
data. Figure 4.3B shows how this approach significantly changed the 
fit, revealing an optimal sS value of approximately 0.2. In contrast, 
trying to improve the fit with the placebo condition at the optimal 
coupling point G as a function of changing the PET-based excitatory 
gain modulation did not show any improvement. There was no 
optimal gain modulation. Instead the placebo fit to FCD (green line 
in Figure 4.3B) decreased monotonically, as can be seen by the green 
line in Figure 4.3B. The finding clearly demonstrates that the brain-
activity profiles, induced by the 5-HT2AR agonist LSD (as fitted to 
the FCD) depend on the precise 5-HT2AR density distribution map. 
While we show that this response is non- linear, this finding is 
consistent with the existing physiological literature revealing a main 
action of psychedelics such as LSD on the 5-HT2AR (Nichols, 2016).  
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Figure 4.3 Results of Whole-brain Model of Placebo and Explaining Effects of 
LSD with 5HT2A Modulation of Gain Function 

A) Whole brain fitting of the placebo condition shows the fit of grand average 
functional connectivity (FC, in red) and functional connectivity dynamics (FCD, in 
green) as a function of the global coupling parameter, G (with the error bars 
indicating the standard error across simulations). For the FC fit, higher values 
indicate a better fit since it reflects a simple correlation between the model and 
empirical data. However, for the FCD fit, lower values indicate a better fit since 
we use the Kolmogorov-Smirnov distance between the FCD of the model and 
empirical data (see Methods for full details). Similar to our previous published 
research, this shows that the FCD fitting is much more informative that the static 
grand-average FC, which is to be expected given that FCD provides the functional 
dynamics. The obtained optimum of G for fitting the model to the FCD (at minimum 
of green line, G = 2.1) is then used for the subsequent neuro- modulatory analyses. 
B) For the LSD condition, when using this optimal coupling point of the placebo 
condition and systematically scaling the excitatory gain function in each region 
with the empirical 5-HT2AR data, we find that there is an optimum at around 
(0.2,0.045) (minimum of blue line). In contrast, varying the scaling of the neuronal 
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gain for the placebo condition does not yield an optimum (see monotonically rising 
green line), and thus the fit is not improved by changing the scaling of the neuronal 
gain by 5-HT2AR density. This clearly demonstrates that the LSD brain activity is 
dependent on the precise 5-HT2A density distribution maps. C) Further, reshuffling 
the 5-HT2AR densities randomly across the regions at the optimum point in B), 
shown within orange box, makes the fit significantly worse (p < 0.0016). This again 
demonstrates that the precise distribution of 5-HT2A is very important for how LSD 
affects the brain state.  

 

Furthermore, to demonstrate that the LSD function is dependent on 
the precise distribution of the 5-HT2AR, at the optimal gain value 𝑠", 
we randomly shuffled the empirical 5-HT2AR densities; i.e., the 
original 90 values for the receptor maps were randomly re-assigned 
to different regions, and the model was run 200 times with each 
different randomly re-assigned receptor map. Figure 4.3C shows the 
results of randomly shuffling the empirical 5-HT2AR densities across 
the regions at the optimum point sS (obtained and shown in Figure 
4.3B). This randomly reshuffled manipulation yields a significantly 
worse fit compared to the actual empirical receptor densities (as 
shown by the Wilcoxon statistics in the boxplot).  

In order to further test the robustness of our whole-brain modeling 
approach, we used a number of different strategies to test the 
specificity of receptor-binding maps. In Figure 4.4 we show a boxplot 
of the results of using a uniform receptor-binding distribution (to the 
far right). This is significantly worse than all other receptor-binding 
distributions. We also show the results of using the other serotonin 
receptors, namely 5-HT1A, 5-HT1B, 5-HT4, and the serotonin 
transporter, 5-HTT. These maps all perform significantly worse than 
that for the 5-HT2AR, which confirms the main role this receptor plays 
in the effects of LSD (Nichols, 2016). It has been suggested that the 
5-HT1A receptor also contributes to the effects of LSD (Nichols, 
2016; Halberstadt, 2015), and indeed, this is confirmed by the 
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improved performance of the 5-HT1A receptor-binding map 
compared to the 5-HT1B, 5-HT4, and 5-HTT maps (Nichols, 2016). 

 

 

Figure 4.4 Results of the Whole-brain Model of Placebo and Explaining the 
Effects of LSD with other Serotonin Receptors 

A) To further test the robustness of our whole-brain modeling approach, we tested 
the specificity of other receptor-binding maps. Here, we show a boxplot of the 
results of the generalization capability of our model by training and testing the 5-
HT2AR maps on 50% subset of participants (columns 2 and 3). The results are 
remarkably similar to using the full set of participants, attesting to the robustness 
of our results. We also show the results of using other serotonin receptor-binding 
maps, namely 5-HT1A, 5-HT1B, 5-HT4, and 5-HTT (columns 4–7), which all perform 
significantly worse than 5-HT2A, confirming the main role this receptor to the 
effects of LSD (Nichols 2016). Interestingly, however, 5-HT1A receptor-binding 
map performs slightly better than the 5-HT1B, 5-HT4, and 5-HTT receptor maps, 
which confirms its role in LSD (Nichols 2016). In the last row, we show the results 
of using a uniform receptor-binding distribution (column 8), which is significantly 
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worse than all other receptor-binding distributions. B) Finally, the FCD 
histograms of LSD and placebo for both the empirical data and the optimized 
model clearly show the excellent fit. We also confirmed the results for the non-
music conditions, as shown in supplement Figure S4.1. 

 

We also wanted to test the generalization capability of our model by 
training and testing the 5-HT2AR maps on a random 50% subset of 
participants. While our sample was comparably small for a 
generalization study, we nevertheless were able to show that the 
training performance was very similar to the original results, while 
the testing performance was equally good (see  Figure 4.4).  

Further demonstrating the excellent fit, we plot the FCD histograms 
of LSD and placebo for both the empirical data and the optimized 
model in Figure 4.4B, where the histograms of the LSD and placebo 
conditions are different for both empirical and model. This suggests 
that the 5-HT2AR density is fundamental for describing the 
neuromodulatory effects of psychedelics.  

 

 

Discussion 

 

The findings presented here show for the first time the potential of 
whole-brain modeling to capture the modulation of brain-wide 
regional activities, typically induced by the ascending 
neuromodulatory systems that regulate the balance, excitability, and 
specificity of cortical microcircuits and subcortical neuronal 
assemblies. We built a novel whole-brain model integrating neuronal 
and neuromodulation multimodal data from dMRI and fMRI with 
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neurotransmitter data obtained with PET, revealing a detailed whole-
brain map of 5-HT2AR densities. This provided new causative 
insights into the non-linear interactions between anatomy, neuronal 
activity, and more importantly, specific neurotransmitter receptor 
density.  

Our framework enabled us to model the resting state (with and 
without music listening) and, more importantly, mechanistically 
explain the functional effects of 5-HT2AR stimulation with well-
known 5-HT2AR agonist compound LSD in healthy participants. We 
were able to do so by creating a whole-brain model using the 
underlying anatomical connectivity linking local nodes, which were 
modeled using a dynamical mean-field quantitative description of 
populations of excitatory and inhibitory neurons as well the 
associated synaptic dynamics, where the neuronal gain function of 
the model was modulated by the 5-HT2AR density. As such, we were 
able to model the non-linear interactions between the underlying 
anatomical connectivity and the modulation by the specific brain-
wide distribution of neurotransmitter receptor density.  

Importantly, the results were informed by the properties of the 
serotonin (5-hydroxytryptamine) system, which is a remarkable 
evolutionary conserved neuromodulator/neurotransmitter that not 
only regulates psychophysiological functions like sleep, food intake, 
body temperature, depression/anxiety, alcohol/drug-reinforcement, 
emotional behavior, environmental sensitivity, and adaptive 
responsivity but also modulates cognitive capacities such as learning 
and memory by interacting with other neuromodulatory and 
neurotransmitter systems (King et al., 2008; Štrac et al.,  2016; 
Atasoy et al., 2018; Carhart-Harris and Nutt, 2017). 5-HT is 
synthesized within the brainstem’s raphe nuclei (dorsal and median), 
which have distributed projections to subcortical, limbic, and 
neocortical regions (Azmitia and Gannon, 1986; Wilson and 
Molliver, 1991; Jacobs and Azmitia, 1992). On the basis of structural, 
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functional, and transductional features, 5-HT receptors have been 
grouped into seven receptor groups, including a total of 14 subtypes, 
and one transporter (5-HTT), which typically transfers a 
neuromodulator, e.g., serotonin, from the synaptic cleft to the 
presynaptic neuron (Serretti et al., 2006; Amara and Kuhar, 1993). 
The most abundant and extensively researched subtypes of serotonin 
receptors are the 5-HT1A and 5-HT2A receptors (Carhart-Harris and 
Nutt, 2017); the latter has been shown to mediate adaptive plasticity 
(i.e., behavioral capacity for change) that is critical for dealing with 
pathologies, such as stress, adversity, and depression (Carhart-Harris 
and Nutt, 2017). The hallucinogenic effects of psychedelics such as 
LSD are mediated through their stimulation of 5-HT2AR (Carhart-
Harris and Nutt, 2017; Preller et al., 2017) (but also to a lesser degree 
some of the other receptors), and this mode of action may explain the 
potentially beneficial effects on some of the aforementioned 
pathologies (Carhart-Harris et al., 2016a; Nichols, 2018).  

The present results extend the recent findings of Shine and colleagues 
(Shine et al., 2018) to the human whole-brain level and especially 
emphasize the role of PET-based binding receptors for global brain 
dynamics. Until now, it was generally believed that whole-brain 
dynamics are shaped mainly by the underlying anatomy and the local 
dynamics. But this is not enough to fully describe the dynamics, as 
shown by the elegant results of Shine and colleagues emphasizing the 
role of gain modulation. The present results supplement this work 
while emphasizing that the incorporation of neuromodulatory 
properties can significantly add to an account of global functional 
dynamics. Even more importantly, future research should seek to 
describe the full entanglement of the two very different neural and 
neurotransmitter dynamical systems with very different timescales.  

Here, neuromodulation was artificially induced by using a serotonin 
agonist, namely the psychedelic LSD. Yet, the method can be further 
optimized—potentially by including the receptor distribution of 
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additional neuromodulators—and used for discerning self-generated 
changes in brain states. Clearly, a new approach that can reliably 
describe the evolution of brain states would be of great value both for 
the diagnosis of diseases and drug optimization.  

Numerous investigations in human and animals using a great 
repertoire of non-invasive and invasive techniques has convincingly 
demonstrated that the functional whole-brain activity depends both 
on effective connectivity and so-called brain states, reflecting system 
properties such as anatomical organization, dynamic thalamocortical 
loops, and the function of ascending arousal systems. Evidently, such 
evolving activity patterns are affected by diseases and might be 
eventually used to predict approaching “criticalities”, as the latter 
transitions are often preceded by the robust gradual reorganization of 
complex systems in general (Atasoy et al., 2017).  

Further integration of information and modeling is undoubtedly 
important given the inadequacy of animal models and studies at the 
microscopic level to fully describe human neuropsychiatric 
disorders, which have contributed the paucity of effective clinical 
neuropharmacological interventions such as antidepressants having 
limited success compared to placebo (Kirsch et al., 2008; 
Fountoulakis and Möller, 2011), clearly indicating that new research 
strategies are needed (Holtzheimer and Mayberg, 2011; Kapur et al., 
2012). In fact, the development and discovery of new effective 
pharmacological treatments for neuropsychiatric disorders are 
making incremental progress only, and it has been argued that 
treatments available today are no more effective than those available 
over 50 years ago, despite intensive neurobiological investigation 
(Holtzheimer and Mayberg, 2011; Conn et al., 2008; Starcevic and 
Brakoulias, 2008).  

What is needed is a mechanistic understanding of the imbalances 
found in neuropsychiatric disorders, specifically at both local and 
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global whole-brain levels (Deco and Kringelbach, 2014). This could 
help open up rational ways for effective brain interventions to 
rebalance the brain networks and help the identification of 
biomarkers stratifying a broad illness phenotype into a finite number 
of treatment-relevant subgroups (Trusheim et al., 2007; Cuthbert and 
Insel, 2013; Stephan et al., 2016; 2016b).  

Neuropsychiatric disorders are bound together by changes on many 
networks of the brain and in particular in the reward network of the 
brain (Berridge and Kringelbach, 2015), with anhedonia, i.e., lack of 
pleasure, being the cardinal symptom (Thomsen et al., 2015). 
Systematic studies of changes in local and global neuromodulatory 
activity, development, optimization and classification of models, and 
observations of drug effects on them may greatly increase our 
understanding of pathological states and their potential treatment. 

Based on the current findings, we offer here an example of a pipeline 
(Figure 4.5) that could potentially be used to combine structural, 
functional, and neurotransmitter neuroimaging data for modeling a 
disease state (leftmost). Once the model is established, the regional 
drug-receptor modulation can be optimized by finding the optimal 
weighting of the receptor density such that the optimized model 
generates the functional dynamics of the healthy state. The current 
evidence suggests that it would be important to combine such direct 
brain manipulations with environmental manipulations, e.g., drug-
assisted psychotherapy, which could be a particularly fruitful 
approach (Carhart-Harris et al., 2018b).   
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Figure 4.5 Potential of Using Whole-brain Modeling for Optimal Drug 
Modulation Discovery.  

The principles of combining whole-brain computational modeling with 
neurotransmitter density maps to fit functional brain dynamics open up for novel 
rational drug discovery design. The figure provides a pipeline for how to combine 
structural, functional, and neurotransmitter neuroimaging data to model the 
disease state (leftmost). Once the model is established, the regional drug receptor 
modulation (RDRM) can be optimized by finding the optimal weighting of the 
receptor density such that the optimized model generates the functional dynamics 
of the healthy state.  
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Conclusions 

 

We have demonstrated how the anatomical brain-wide distribution of 
neuromodulatory activity can be integrated in a whole-brain 
computational model to provide new causative insights into the non-
linear interactions between anatomy, neuronal activity, and more 
importantly, specific neurotransmitter receptor density. These novel 
insights are only possible when using a whole-brain model given the 
fact that it is not possible to scramble the neurotransmitter receptor 
density in vivo. With time, this new approach could eventually lead 
to fundamental insights into human brain function in health and dis- 
ease and be used for drug discovery and design in neuropsychiatric 
disorders. 
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CHAPTER 5 

 

 

General Discussion 

 

“If the past is over, and the future has not yet come, all that exists is now; so how 
long does now last?” 

—St. Augustine (354—430 AD) 

 

 

 

The ultimate goal of Cognitive Computational Neuroscience is to 
explain the full biological mechanisms underlying human cognition 
and complex behavior. To achieve this goal, it is essential to 
understand the emerging phenomena computationally. Computation 
refers to the fundamental principles and methods, from physics to 
psychology, that are used in the brain to represent and process 
information. The research work presented in this dissertation—
although far from providing the principles that govern the link 
between brain activity and behavior—extends the state of scientific 
knowledge in that direction. We aimed to investigate crucial 
unsolved questions in neuroscience, namely, how does cognitive 
function emerge from large-scale brain networks? And, how 
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information is flexibly integrated and processed through large-scale 
brain networks? Valuable insights into how these might be solved are 
presented here.  

In the first chapter, we provided a brief overview of key concepts in 
the context of this work. First, we highlighted the two principles by 
which the brain is governed: segregation and integration. The former 
refers to the ability of single brain regions to perform specialized 
local computations. In contrast, the latter refers to the process by 
which the brain combines information widely distributed necessary 
to perform complex cognitive functions. Importantly, these 
principles do not contradict each other; both specialization and 
cooperation are necessary for brain function, cognition and behavior. 
Then, we review two mechanisms responsible for coordinating the 
interaction among regions of the brain that allows large-scale 
integration: phase-synchronization and the influence of the ascending 
neuromodulatory system. Phase-synchronization refers to the 
appearance of synchronization of oscillatory phases between 
different brain regions. It has long been recognized as a mechanism 
supporting communication, as proposed by the “Communication 
Through Coherence” (CTC) theory (Fries, 2005; 2015; Deco and 
Kringelbach, 2016). The ascending neuromodulatory system 
provides a strong influence in global network dynamics by 
selectively changing the balance of the excitation and inhibition of 
individual brain regions (Cohen, Braver and Brown, 2002; Aston-
Jones and Cohen, 2005; Shine et al., 2018). Finally, we addressed the 
advantages of using whole-brain computational models for 
elucidating the mechanisms underlying global dynamic changes. In 
this regard, we introduced the dynamic mean-field model which is a 
biophysically realistic model that simulates the spontaneous neural 
activity using the mean-field approximation of firing rates of an 
excitatory and inhibitory pool of neurons. 
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It is generally agreed that cognitive function emerges from the 
dynamics of extended cortical and subcortical networks, but how do 
brain networks dynamically reorganize to allow broad 
communication between many different brain regions in order to 
integrate information? In the second chapter, we explored how 
cognition modulates global functional network measurements. To do 
so, we used high-resolution direct neural recordings of 12 human 
patients with epilepsy while performing three cognitive tasks. We 
assessed how the functional connectivity between different brain 
areas changes to facilitate communication across them. At the 
topological level, this facilitation was characterized by measures of 
integration and segregation. Consistent across tasks and patients, we 
found a significant increase in integration and a decrease in 
segregation during cognitive processing, especially in the gamma 
band (50–90 Hz) (Cruzat et al., 2018). Importantly, these 
modulations were not associated with changes in the underlying level 
of oscillations (amplitude), but with increases in the level of 
synchronization and functional connectivity in the same frequency 
range as proposed by the “Communication Through Coherence” 
theory.  

The results further render a framework for investigating cognitive 
neuroscience in the context of dynamical systems, associating the 
course of cognition to the progressive reconfiguration of functional 
networks in the human brain. Besides, they spotlight the utility of 
intracranial EEG for large-scale approaches in identifying 
fundamental relations between local and global dynamics. 

Even low-level neurobiological mechanisms can have a striking 
impact on behavior. Several studies in perception and attention have 
shown cyclic alternations in behavioral performance mainly in the 
theta and alpha bands (4–8 and 8–12 Hz, respectively) (Busch, 
Dubois and VanRullen, 2009; Klimesch, Sauseng and Hanslmayr, 
2007; Mathewson et al., 2009; Palva and Palva, 2007; VanRullen, 
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2016; de Graaf et al., 2013). Extending on this idea, in the third 
chapter we tested the hypothesis that ongoing fluctuations in neural 
activity have an impact on memory encoding using a paired-
associates memory task in two experiments performed by healthy 
participants. In a first experiment, we used the logic of phase reset 
(Rizzuto et al., 2003) to test if subsequent memory performance 
fluctuates rhythmically time-locked to a resetting cue (phase-reset 
signal). We found that behavioral performance exhibited a periodic 
and selective modulation at theta frequency (~4 Hz). With this in 
mind, in a second experiment, we tested the role of ongoing low-
frequency neural oscillations before the presentation of the to-be-
encoded picture pairs in subsequent recognition performance using 
scalp EEG. We analyzed subsequent memory performance as a 
function of the phase and amplitude of alpha and theta oscillations. 
Consistent with previous literature, we found that post-stimulus theta 
power increases in the left frontal scalp predicted subsequent memory 
performance. When narrowing down the analysis of prestimulus 
activity to the scalp location and frequency of the post-stimulus 
power effect, we found a correlation between the prestimulus theta 
phase and subsequent memory. Altogether, the results suggest that 
the spatiotemporal pattern preceding the stimulus onset can predict 
behavioral performance in a memory task. In the particular case of 
the task used here, the relevant spatiotemporal pattern was 
characterized by theta-band fluctuations and phase differences 
between hits and misses reflected in the left frontal scalp. 

Finally, we moved forward the characterization of global dynamics 
to search for the impact of the neuromodulatory system in mediating 
the reconfiguration of brain networks. In the fourth chapter, we 
presented a novel whole-brain model that successfully addresses one 
of the major challenges in neuroscience, which is to explain the 
paradoxical flexibility of human brain function despite having a fixed 
anatomical connectome. The model allowed us to explore possible 
mechanisms explaining the global dynamic network changes 
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observed when stimulating the serotonin 2A receptors (5-HT2AR) 
with lysergic acid diethylamide (LSD) on healthy participants. The 
biophysical whole-brain multimodal neuroimaging model integrated 
anatomical data from dMRI and resting-state functional data from 
fMRI, with neurotransmitter data obtained with PET, revealing the 
detailed 5-HT2AR density map. The spontaneous activity of each 
brain region was modeled using a dynamical mean-field quantitative 
description of populations of excitatory and inhibitory neurons as 
well as the associated synaptic dynamics, where the 5-HT2AR density 
modulated the neuronal gain function of the model. The model 
successfully identified the causative mechanisms for the non-linear 
interactions between the neuronal and neurotransmitter systems, 
which were uniquely explained by the underlying anatomical 
connectivity, the specific brain-wide distribution of the 
neurotransmitter receptor density, and the non-linear interaction 
between the two. 

The model provides a novel computational drug-design framework 
that could have substantial implications in the study of 
neuropsychiatric disorders including, major depression, obsessive-
compulsive disorder, schizophrenia, and anxiety. In particular, this 
framework offers the unique opportunity to test biochemical system 
perturbations—by changing regional neurotransmitter values, or 
electrical perturbations—such as deep brain stimulation (DBS) or 
transcranial magnetic stimulation (TMS), that can help reconfigure 
the functional properties of brain networks in disease. Extending on 
these ideas, our drug-design framework could be further 
complemented with the innovative in silico perturbative approach 
recently developed by Deco and colleagues (Deco et al., 2019). For 
these purposes, it would be crucial to acquire multimodal 
neuroimaging data from the same group of subjects and even try the 
model at the single-subject level. Note that in our study the data was 
provided by different sources due to the lack of a complete 
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repository. Hopefully, this methodological weakness will likely be 
overcome in the future through improvements in data acquisition. 

Furthermore, it would be of great interest to test other types of 
neurotransmitters using the model. Dopamine (DA), for instance, is 
a major neurotransmitter involved in behavioral control, motivation 
and stimulus-reward learning process, and adjusts synaptic dynamics 
in multiple time scales through different pathways (Schultz, 1997; 
Asl, Vahabie and Valizadeh, 2019). Given its strong influence in 
nearly every aspect of cognition and behavior, impaired dopamine 
signals underlie the pathophysiology of cognitive and 
neuropsychiatric disorders such as Parkinson’s disease, drug 
addiction, schizophrenia, attention-deficit/hyperactivity disorder, 
and obsessive-compulsive disorder. Therefore, dopamine receptors 
are a primary target for many current treatment strategies. In some 
cases, 5-HT and DA interact interdependently to sustain the 
psychobiological regulation of cognitive function (Boureau and 
Dayan, 2011), making it difficult to understand how a breakdown in 
one system leads to a particular trait or disease5. In this notion, 
experimental evidence, as well as computational and theoretical 
models of neuromodulation, have identified a close association 
between 5-HT/DA imbalance and cytoarchitectonic changes 
underlying learning and memory impairment (González-Burgos and 
Feria-Velasco, 2008), schizophrenia (Remington, 2008), Parkinson’s 

 

 

 

 

5 For detailed reviews of 5-HT receptor distribution and functional interactions with 
the dopaminergic system see (Alex & Pehek, 2007; Barnes & Sharp, 1999).  
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disease (Balasubramani et al., 2015; Bédard et al., 2011), depression 
(Fibiger, 1995; Zangen et al., 2001; Landén and Thase, 2006) and 
anxiety (Krichmar, 2013). Although the 5-HT/DA interaction in the 
brain has been extensively investigated, almost all studies have 
focused on the microscale level, ignoring its impact on large-scale 
dynamics. Future research would greatly benefit from computational, 
theoretical, and disease models to understand dopaminergic and 
serotonergic interaction at the whole-brain level. For example, one 
could explore the effects of forcing direct inhibition of the 
dopaminergic system by the serotonergic system, while applying 
local manipulations that would be impossible to do in vivo in 
humans. 

Current methods for creating functional connectivity maps with 
fMRI are restricted in the temporal domain due to the sluggishness 
of the blood oxygen level-dependent signal (BOLD). This restriction, 
in turn, limits the ability to identify dynamic changes in the 
millisecond time scale, which is precisely the relevant timescale for 
understanding spatiotemporal dynamics throughout the whole brain. 
In fact, in recent work, we used independent measures of entropy and 
hierarchy to find the relevant timescale for obtaining the 
spatiotemporal structures underlying whole-brain dynamics to reflect 
the temporal evolution of spatial brain networks. We showed that 
both methods found a similar optimum at a timescale of around 200 
ms in resting state and in task data (Deco, Cruzat and Kringelbach, 
2019). Regarding neuromodulators’ action, it is known that they 
manipulate neural processing over a coarse timescale ranging from 
short-term adjustments in neurons and synapse function to persistent 
long-term regulation (Dayan, 2012; Brzosko, Mierau and Paulsen, 
2019). Therefore, it will be essential for future studies to consider the 
use of data acquired using a neuroimaging technique with the ability 
to identify dynamic changes of the entire brain on the millisecond 
time scale, such as EEG or MEG. 
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One of the main limitations of the model is that we have considered 
only one neuronal system influenced by static neurotransmitter 
concentrations modulating the neuronal gain while ignoring the 
dynamics of the neuromodulatory ascending system. To overcome 
this issue, we further improved the model by bi-directionally 
coupling the two dynamic systems. Specifically, we mutually 
coupled the whole-brain neuronal and neurotransmitter systems by 
including an explicit description of the neurotransmitter dynamical 
system and the mutual coupling with the neuronal system. This was 
done by modeling the dynamics of the neurotransmitter system 
through simulating the release-and-reuptake dynamics, where the 
density of the serotonin receptor of each brain area is measured with 
PET. The neurotransmitter dynamics are, in turn, coupled with the 
neuronal activity through the firing rate activity of the Raphe brain 
region, the source of the serotonin neurotransmitter. As proof of 
principle, we considered the effects of psilocybin on the serotonin 
system and therefore used the anatomical connectivity between the 
raphe nucleus and the rest of the brain. Overall, the results show that 
the interaction between these two dynamical systems is fundamental 
for explaining the empirical data (Figure 5. 1). In other words, the 
dynamic mutual interaction between neuronal and neuromodulator 
systems at the whole-brain level is crucial to fully explain the 
functional modulation of brain activity by psilocybin, a powerful 
psychedelic drug acting on the serotonin system. 
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Figure 5. 1 Optimal dynamical coupled neuronal-neurotransmission (CNN) 
whole-brain model is significantly better then alternative models 
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The results provide insights into the underlying dynamics of neuromodulation 
involved in psilocybin. They were obtained by comparing the Kullback-Leibler 
distance (KLD) for the PMS and the error life times between the empirical data 
and the whole-brain model undergoing various manipulations. A) In terms of 
dynamics, we first uncoupled the neuromodulators from the neuronal systems. For 
the optimal fit of the mutually coupled whole-brain model, we found a very 
significant difference between the optimal fit and the uncoupled system (i.e. without 
neuromodulation) (p<10-6). B) We then ran further simulations to investigate the 
role of specific parts of the dynamic coupling. We tested this by allowing the full 
mutually coupled whole-brain model to achieve a steady-state, upon which we kept 
just the average of the neurotransmitter variables while froze the feedback 
dynamics from neuromodulators to the neuronal system by removing the coupling 
through the raphe nucleus. We also found a significant difference when removing 
the feedback dynamics p<10-6). C) In further sets of experiments designed to 
investigate the importance of the receptor distribution, we changed the distribution 
of regional receptor densities by randomly shuffling the 5-HT2A. We found a 
significant difference between using the empirical 5-HT2A receptor densities across 
the regions at the optimal fit compared with randomly shuffling the receptor 
densities (p<10-4). This demonstrates the causal importance of the 5-HT2A receptor 
densities. 

 
 
 

Closing Remarks 

 
 
We have seen that our understanding of brain function not only 
depends on our knowledge of the different brain structures but mostly 
on their continuous interactions. Extending on the idea that cognition 
relies on the flexible integration of information widely distributed 
across many different brain regions, we showed that cognitive 
processing is associated with an increase in integration and a decrease 
in segregation, mainly in the gamma range (50–90 Hz) (Cruzat et al., 
2018). These modulations were also associated with an increase in 
the band-limited functional connectivity between the nodes and not 
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with changes in the level of the underlying oscillations. We placed 
particular emphasis on the fact that our results provide support for the 
communication through coherence theory at the whole-brain level. 
Furthermore, we argue that phase synchronization is one of the 
primary mechanisms supporting large-scale integration and that this 
particular feature also has implications at the behavioral level. We 
provided experimental evidence demonstrating that the 
spatiotemporal pattern preceding the stimulus onset could predict 
behavioral performance in a pair-associates memory task. In 
particular, the pattern was characterized by phase differences 
between hits and misses reflected in the left frontal scalp. Then, we 
turned to functional brain imaging studies with psychedelics to 
explore the influence of neuromodulators in reorganizing global 
network dynamics. Using a whole-brain multimodal neuroimaging 
model, we explained the functional effects of 5-HT2AR stimulation 
with LSD (Deco et al., 2018). We argued that the mechanisms for the 
non-linear interactions are intimately related to the specific brain-
wide distribution of the receptor density. Along these lines, it is 
worthwhile to stress that whole-brain models are essential to link the 
different levels of observation and that they have the potential to 
allow us to make more precise hypotheses regarding the mechanism 
of brain function in health, disease, between species and across the 
lifespan. 
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Appendix 
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Figure S2.1: Integration measure using the FC matrices based on the monopolar 
montage for each participant 
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The panels in the left column show the integration modulation during pre- and 
post-stimulus presentation, respectively, for the picture-naming task. The 
modulation is seen in the whole range of frequencies. Panels in the middle column 
show the modulation of the segregation (measured by the modularity) during pre- 
and post-stimulus presentation, respectively, for the same task. Even though the 
difference of both windows is significant, note that the modulation is much smaller 
than the obtained when using the bipolar montage. The red line corresponds to 
pre-stimulus window, blue line corresponds to post-stimulus window. The shaded 
error regions reflect the standard deviation across trials and green dots indicates 
a statistical significance of p<0.05 (N=1000). The panels in the right column show 
the difference between pre- and post-stimulus windows FC matrices, based on the 
monopolar montage and computed for 60 Hz. The panels evidence the distributed 
character of the modulation across many different nodes. 

 

 

Table S2.1: Demographic and clinical characteristics of each patient 
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Table S3.1: Demographic characteristics and performance for each participant 
in Experiment 1 

Excluded participants are marked in red. 
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Table S3.2: Demographic characteristics and performance for each participant 
in experiment 2 

Excluded participants are marked in red. 
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Figure S3.1: Assessing the stability of the POS measure 

Histograms of p-values obtained for POS analysis with different number of random 
pickings. Each histogram contains 100 values. 

 

 

Figure S3.2: Serial position effect 

Average hit rate for items as a function of their serial position in the list at 
encoding. 
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Figure S3.3: Average PPC time evolution for trials in middle encoding positions 

Trials in the encoding middle positions (2, 3 & 4). Shaded area corresponds to 
PPC significantly smaller than null distribution after multiple comparison 
correction (Buchwald and Guthrie). 

 

 

Figure S4.1: Results of whole-brain model of non-music LSD condition, related 
to Figure 4.1.  
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In order to confirm the results from the music LSD condition, we modelled the two 
non-music LSD conditions. (A) For the LSD conditions (no music pre and post), 
when using the optimal coupling point of the placebo condition and systematically 
scaling the excitatory gain function in each region with the empirical 5-HT2A 
receptor data, we find that there is an optimum at around (0.17,0.036) (minimum 
of blue line, pre music) and at around (0.18,0.041) (minimum of red line, post 
music). In contrast, varying the scaling of the neuronal gain for the placebo 
condition does not yield an optimum (see monotonically rising green line) and thus 
the fit is not improved by changing the scaling of the neuronal gain by 5-HT2A 
receptor density (with the error bars for three lines indicating the standard error 
across simulations). This clearly demonstrates that the LSD brain activity is 
dependent on the precise 5-HT2A density distribution maps irrespective of music-
listening. (B) Further, in the boxplot, we compare results of using the 5-HT2A 
receptor densities across the regions at the optimum points, which are both 
significantly different (p<6.80e-08) from a uniform receptor density receptor map. 
This clearly demonstrates that the precise distribution of 5-HT2A is very important 
for how LSD affects the brain state with or without music-listening.  
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List of abbreviations 

 

 

5-HT2A  5-hydroxytryptamine 

AAL  Automated Anatomical Labelling 

BLP  Bandpass Limited Power 

BOLD  Blood-Oxygen-Level Dependent 

CTC  Communication Through Coherence 

DMF  Dynamic Mean-Field 

DMN  Default-Mode Network 

dMRI  Diffusion Magnetic Resonance Imaging 

DTI  Diffusion Tensor Imaging 

EEG  Electroencephalography/ Electroencephalogram 

FC  Functional Connectivity 

FCD  Functional Connectivity Dynamics 

FDR  False Discovery Rate 

FIC  Feedback Inhibition Control 

fMRI  Functional Magnetic Resonance Imaging 

GABA  gamma-Aminobutyric Acid 

HCP  Human Connectome Project 

HMM  Hidden Markov Model 

ICA  Independent Component Analysis 

IIT  Integrated Information Theory 

iEEG  Intracranial Electroencephalography 
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KS  Kolmogorov-Smirnov 

LFP  Local Field Potential 

LSD  Lysergic acid diethylamide 

MEG  Magnetic Resonance Imaging 

MNI  Montreal Neurological Institute 

NMDA N-methyl-D-aspartate Acid 

PET  Positron emission tomography 

PhD  Doctor of Philosophy 

ROI  Region of Interest 

rsMRI  Resting State Magnetic Resonance Imaging 

RSN  Resting State Network 

SC  Structural Connectivity 

std  Standard Deviation 

TPM  Transition Probability Matrix 

TTC  Temporo-spatial Theory of Consciousness  
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