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Abstract 
 
High-throughput Chromosome Conformation Capture (3C) 

experiments, provide detailed three-dimensional (3D) information 

about genome organization. Specially, Hi-C, a 3C derivative, has 

become the standard technique to investigate the 3D chromatin 

structure, and its functional implication into cell fate determination. 

However, the correct bioinformatic analysis and interpretation of this 

data is still an active field of development. 

In this thesis, we explore the ability of CTCF to form chromatin loops 

and their epigenetic signature, by developing Meta-Waffle, an artificial 

neural network to classify structural patterns without any prior 

information. This classification, was used to generate a convolutional 

neural network to de novo detect chromatin loops from Hi-C contact 

matrices, called LOOPbit. 

We also present CHESS, a bioinformatic tool for the comparison of 

chromatin contact maps and differential 3D feature extraction, such as 

Topologically Associating Domains, stripes or loops. 
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Resum 
 
L’avenç de mètodes experimentals basats en la captura de la 

conformació genòmica (3C), estant aportant informació valuosa sobre 

l’estructura tri-dimensional (3D) del genoma. En especial, Hi-C, un 

derivat del 3C, s’ha convertit en la tècnica estàndard per estudiar 

l’estructura 3D de la cromatina i la seva implicació funcional en la 

determinació de la identitat cel·lular. De fet, el anàlisi i la interpretació 

correcta d’aquesta informació és encara un camp de desenvolupament 

bioinformàtic actiu. 

En aquesta tesi, explorem la capacitat del CTCF de formar bucles de 

cromatina i la seva signatura epigenètica, desenvolupant Meta-Waffle, 

una xarxa neuronal artificial per la classificació de patrons estructurals 

sense informació prèvia. Aquesta classificació, permet la generació 

d’una xarxa neuronal convolutiva per la detecció de novo de bucles de 

cromatina en matrius de contacte Hi-C, anomenada LOOPbit. 

També presentem CHESS, una eina bioinformàtica per la comparació 

de mapes de contactes i l’extracció d’estructures diferencials, tals com 

dominis (anomenats TADs), ratlles o bucles. 
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Preface 
 
All living organisms are made of cells, the smallest unit of life. 

Interestingly, human cells contain a subcellular compartment of few 

micrometres in size, the nuclei. This compartment contains the genomic 

information, the DNA, which folding is not arbitrary. 

Microscopy and Chromosome Conformation Capture (3C) 

technologies, helped to unveil the complex hierarchical organization of 

chromatin. The chromatin fiber has to be sufficiently accessible for 

DNA-binding proteins, which will be crucial for cell maintenance and 

fate, such as transcription factors, polymerases and chromatin 

modifiers, but maximizing its compaction. Recent advances in 3C-based 

technologies allowed the inspection and acquisition of increasing 

evidences indicating how the genome architecture influence the 

regulation of gene transcription. The interplay of genome architecture 

and function is a paramount to understand multiple biological scenarios, 

such as cell identity, development and disease. 

This thesis consists of multiple chapters. First of all, in the Introduction 

I review each chromatin organization layer and its impact on the 

transcription regulation. Moreover, I provide information of the tools 

available to identify structural patterns, which can be key to regulate cell 

expression in different scenario. 

The results obtained in the two main publications of the candidate, are 

presented in the core chapters I and II. In chapter I, first I present Meta-

Waffle, an algorithm to deconvolve and classify the structural pattern 

of DNA-binding proteins, specifically CTCF, the master regulator of 

chromatin loops. Then, I present LOOPbit, a convolutional neural 

network, trained with CTCF loops, which is able to retrieve chromatin 
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loops probabilities genome-wide. In chapter II, I introduce CHESS, a 

new bioinformatics tool to systematically compare and identify 

differential structural features between contact matrices. 

Finally, the conclusions for both chapters are added to highlight the 

main contributions of this thesis. 
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Objectives 
 
The broad goal of this thesis was to provide an in-depth analysis of how 

mammalian genomes are organized in 3D. Specifically, we studied the 

role of the insulator protein CCCTC-Binding Factor (CTCF) in the 

formation of chromatin loops and its biological implications. To 

achieve this broad goal, were carried out two specific objectives: 

 

1. Specific Aim 1 includes three tasks: (1) to develop a 

computational tool for deconvoluting the mean interaction 

signal between pairs of CTCF in an unsupervised manner. (2) 

To obtain structural subpopulations and their epigenetic 

signature. And (3) to develop a chromatin loop detection 

method. 

 

2. Specific Aim 2 includes two tasks: (1) the design and 

development of an algorithm for the assessment of structural 

similarity between genomic regions. And (2) the identification 

and classification of the genome differential structures. 
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Introduction 
 

“Identity is not an object; it is a process with addresses for all the different 
directions and dimensions in which it moves, and so it cannot so easily be 

fixed with a single number.” 
 

Lynn Margulis, 1991 
 

The term cell (from Latin cella, meaning “small room”) was coined by 

Robert Hooke (1665), which has been described to be the smallest unit 

of life. In 1839, Theodor Schwann and Matthias Jakob Schleiden 

proposed the cell theory, which says that all living organisms are made 

of cells, whose size, number and type, will ultimately define the structure 

and functions of the organism. 

Currently, living organisms on Earth are classified in three large 

kingdoms: archaea, bacteria and eukaryotes. Bacteria and archaea are 

also called prokaryotes and are simpler, single-celled organisms. While 

eukaryotes cells contain compartments, called organelles surrounded by 

membranes, including the mitochondria, the chloroplasts, the smooth 

and rough endoplasmic reticula and the nucleus. Lynn Margulis 

proposed the endosymbiotic theory for the origin of eukaryotic cells 

(Sagan, 1967), however, it is still unclear and have been proposed more 

than 20 different versions (Martin, Garg, & Zimorski, 2015). This 

subcellular organization in eukaryotes gives the opportunity to separate 

metabolic processes, leaving the cell nucleus an unique structure. 
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The nucleus 
 

“If you know you are on the right track, if you have this inner knowledge, 
then nobody can turn you off... no matter what they say…” 

 
Barbara McClintock. 

 

The nucleus represents a milestone in evolution transition. It is enclosed 

by the nuclear envelope, which separates transcription from translation. 

This separation still needs the bidirectional trafficking allowed by the 

nuclear pore complex. The nuclear envelope is also essential for the 

anchoring of lamins for mechanical support and chromosomal 

positioning and segregation (Devos, Graf, & Field, 2014). Many nuclear 

functions such as these complex interactions governing chromosome 

positioning with respect to the nuclear envelope and their dynamics, are 

conserved across eukaryotes. 

The nucleus was the first organelle discovered by Antoine van 

Leeuwenhoek (1632-1723), who observed a lumen, the nucleus, in 

salmon red blood cells. The nucleus is the largest and most easily 

discernible organelle in eukaryotic cells. The nucleus is a fascinating 

structure to study, as it regulates in space and time, genomic and 

metabolic functions such as transcription and genome stability. 

 

The genetic material 
 
"The results suggest a helical structure (which must be very closely packed) 
containing 2, 3 or 4 co-axial nucleic acid chains per helical unit, and having 

the phosphate groups near the outside.” 
 

Rosalind Franklin, 1951. 

	



 3 

It was not until 1869 that Fiedrich Miescher identified what he called 

“nuclein” inside the nuclei of human white blood cells (Dahm, 2005). 

By the twentieth century, Miescher’s term fell into oblivion, and 

nowadays it is known as deoxyribonucleic acid or DNA. In 1909, 

Phoebus Levene discovered the deoxyribose (carbohydrate element of 

DNA) and in 1929 the ribose (carbohydrate element of ribonucleic acid 

or RNA). Moreover, in 1919, Levene proposed the polynucleotide 

model, which claims that nucleic acids were composed by a series of 

nucleotides, and each nucleotide was composed of just one of the four 

nitrogen-containing bases, a glucose molecule and a phosphate group 

(Levene, 1919). There are two main nitrogen-containing bases classes: 

purines (adenine (A) and guanine (G); with two fused rings each) and 

pyrimidines (cytosine (C), thymine (T) and uracil (U); each with a single 

ring). It is also known that RNA contains A, G, C and U, while DNA 

contains A, G, C, and T. In 1944, Erwin Chargaff studied the 

differences on DNA composition between species (Chargaff et al., 

1950) and proposed the “Chargaff’s rule”, which claims that the amount 

of A was similar to T and the amount of G was similar to C. He shared 

his studies with James Watson and Francis Crick, who were benefited 

by it and a DNA X-ray image generated by Rosalind Franklin (Franklin 

& Gosling, 1953), to claim that the DNA is based by two polynucleotide 

chains twisted around each other to form a double helix (Watson & 

Crick, 1953). 

 

The chromatin 
 

Each human diploid cell contains a 2 meters length of DNA fiber, 

which needs to be efficiently accessible to DNA-binding proteins 
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(DBPs) and at the same time strengthen and compact. This is possible 

thanks to the wrapping of DNA fiber around octamers of histone 

proteins. Together this structure, the nucleosome, is composed by two 

of each of the four histones (H2A, H2B, H3 and H4), discovered in 

1884 by Albrecht Kossel, with @ 147 bp of DNA wrapped around. In 

the 1970s was identified the histone H1 to be responsible to link 

adjacent nucleosomes (with 20-80 bp distance). Altogether, the 

nucleosomes and the linker DNA connecting them, adopt an open 

beads-on-a-string-like structure (Van Holde, 1989)(Figure 1). Each 

histone has highly disordered N-terminal and C-terminal tails that are 

susceptible to post-translational modifications (PTMs), which are 

relevant for the maintenance of the proper cell identity. PTMs are 

reversible and can regulate the binding of DBPs. There are described a 

large number of PTMs including methylation, acetylation or 

phosphorylation. The interaction between the DNA and the histone 

tails is proposed to drive the liquid-liquid phase separation, which is also 

facilitated by the linker histone H1 (Gibson et al., 2019). Using live-cell 

super-resolution imaging, it was observed that chromatin domains 

behave as “liquid drops”, suggesting that are phase-separated through 

self-assembly providing plasticity to the chromatin to conduct many 

functions such as DNA repair, gene expression and cell-cycle (Nozaki 

et al., 2017). The macromolecular complex composed by nucleosomes, 

linker DNA and other DBPs is called chromatin. Under physiological 

salt conditions this structure is condensed in vitro into a fiber of around 

30 nm of diameter, referred to as 30 nm chromatin fiber (Horowitz-

Scherer & Woodcock, 2006)(Figure 1). However, this structure is not 

still clear in vivo. The chromatin fiber can be highly packed in a more 

condensed structure, the chromosomes, which were observed in 1842 
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by Karl Wilhelm von Nägeli. It was not until 1902, thanks to the work 

of Walter Sutton and Theodor Boveri, when it was described the 

chromosome theory of inheritance, in which chromosomes are 

identified as the carriers of the genetic information. 

Considering all the mentioned discoveries, chromatin organization 

started to be considered of fundamental importance for basic biological 

processes, such as gene expression. In order to study chromatin 

structure is key to obtain the genomic sequence, being the first human 

genome sequence published twenty years ago (Venter et al., 2001). Its 

discovery contributed into the understanding of the human evolution, 

disease, and the interplay between environment and heredity. 

 
Figure 1. Illustration of the chromatin organization hierarchy in an 
interphase nucleus. First the double helix DNA is wrapped around the 
nucleosome, which is shown in detail in the dashed square. The histone tails 
can present PTMs, enabling chromatin plasticity. The nucleosomes and the 
linker DNA, form the “beads-on-a-string” like structure. This structure, can 
be packed to form the chromatin fiber. The chromatin will ultimately be 
packed conforming the chromosome. 
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Nuclear organization 
 

The biggest obstacle for women to remain our best in science, I think it is 
really the combination of career and science. You could say this is not unique 

to science except that science is really a time eater. 
 

Susan M. Gasser, 2013 
 

The spatial organization of the human genome in the nucleus is known 

to play a key role in transcriptional regulation. In order to shed light into 

the assessment of the three-dimensional (3D) architecture of the 

nucleus, various methods are used, i.e. microscopy and 3C-based 

technology. Thanks to them, currently it is known that the genome is 

organized in multiple layers, and each layer has its own regulatory 

system. Here are discussed the main features in each layer, from larger 

to finest structures. 

 

Chromosome territories 
~100 Mb 

 

In 1885 Carl Rabl suggested a territorial organization of chromosomes, 

but was in 1909, when Theodor Boveri introduced the term 

chromosome territories (CTs). He described the non-random 

distribution of chromosomes during interphase and the maintained 

structure in the daughter nuclei (Bovery, 1909). From 1970 to 1980 the 

scientific community believed that chromatin fibers were almost 

randomly intermingled, picturing the still today very spread image of the 

spaghetti dish. In 1988 it was possible to directly observe CTs in a 

microscope using chromosome painting (Lichter, Cremer, Borden, 

Manuelidis, & Ward, 1988). 



 7 

 
Figure 2. Schematic view of the chromatin organization inside the 
nucleus. In the left column are illustrated the different chromatin 
organization layers from chromosome territories to chromatin loops. In the 
right column a representation of Hi-C maps from GM12878 cells (S. S. Rao et 
al., 2014) at different genomic scales, reflecting the different layers of 
chromatin organization. First, in the illustration, chromosomes are 
represented by different colours, depicting the chromosome territories. This 
organization is also visible in the Hi-C map, showing higher interaction within 
chromosomes. Then, chromatin compartments are represented in the 
illustration using red for the A compartment, and blue for the B compartment, 
this organization is reflected in the Hi-C map by the checkboard pattern 
segmentation. At 40 kb – 1 Mb are represented the TAD structures, observed 
in the rotated Hi-C map as triangles, with high interaction frequencies. Finally, 
are illustrated chromatin loops, which are demarcated by CTCF and help to 
bring in close proximity genes and their regulatory units. This structure is 
found in the Hi-C map by a strong dark peak. 

Since then, the details about the organization of chromosomes have 

been emerging. It has been described that larger chromosomes, that 

contain higher number of heterochromatic regions, are more present 
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on the nuclear periphery. Whereas smaller chromosomes with higher 

euchromatic regions are localized at the centre of the nucleus (Tanabe 

et al., 2002). The boundaries between these CTs have also been precisely 

described using laser UV microbeam, with the discovery of 

“intermingling” or “kissing” between chromosomes (Cremer, Cremer, 

Baumann, et al., 1982). Later, fluorescence in situ hybridization (FISH) 

techniques indicated a probability of interchromosomal associations to 

occur (Bolzer et al., 2005). This event changed the way to understand 

how genes can be coregulated considering the third dimension. For 

example, the olfactory receptor genes, which are around 1,400 genes 

located across 18 different chromosomes, are gathered at the time of 

expression into the same interchromatin space, called “olfactosome” 

(Horta, Monahan, Bashkirova, & Lomvardas, 2019). 

 
 

Chromosome compartments  
~ 1 Mb 
 

It was not until the emergence of a new molecular technique, the high-

throughput conformation capture (Hi-C), to be able to discern finer 

structures inside CTs, which can be as large as several Mb (Lieberman-

Aiden et al., 2009). Two major chromatin compartments were 

elucidated: the A compartment containing more active and open 

chromatin, and the B compartment containing more inactive and closed 

chromatin. These two major compartments match with euchromatin 

and heterochromatin regarding compaction, replication timing, 

repetitive elements distribution, gene location and expression (Croft et 

al., 1999). This organization has been maintained in eukaryotes over 

more than 500 million years, with only few exemptions. Chromosome 
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compartments are cell-type specific, defining the identity of the cell. The 

3D organization of the genome is partly driven by the high affinity of 

active regions for other active regions, which can explain the infrequent 

euchromatin-heterochromatin interactions. Euchromatin regions are 

enriched in housekeeping genes, and replicate early in S-phase, while 

heterochromatin is gene-poor, with tissue-specific genes and with late 

S-phase replication. Moreover, euchromatin contains most of the short 

interspersed repetitive sequences (SINEs), whereas retrotransposon-

related long elements (LINEs) and long terminal repeats (LTRs) are 

located preferentially in heterochromatin. Mitosis disrupts this 

euchromatin-heterochromatin segregation, and then this separation is 

gradually restored in two phases during interphase. Which are the 

mechanisms that maintain this organization is not fully known. Various 

studies have proposed that sequences exhibit high affinity to each other, 

causing the separation of the two compartments. This can be caused by 

the attraction of homotypic chromatin marked by the same repetitive 

sequences and enforced by the binding of architectural and epigenetic 

factors (Gibcus & Dekker, 2013). Moreover, the level of segregation has 

been seen to correlate with the cell differentiation state. For instance, 

embryonic stem cells (ESCs) are devoid of compact heterochromatin 

domains, but possess hyperdynamic organization, are transcriptionally 

promiscuous and have an open chromatin configuration. This flexibility 

is thought to be required for the maintenance of the pluripotent state 

and for its progression. With cell differentiation there is a loss in 

potency and the genome is partitioned into larger euchromatin and 

heterochromatin domains with replication synchrony. For instance, in 

human ESCs around the 40 % of the genome switches towards B 

compartment during cell differentiation (Dixon et al., 2015). 
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Subdomains 
~ 50 kb 
 

The chromatin is organized in a subscale into multiple subdomains, 

which are important for the proper nuclear homeostasis. According to 

their nuclear localization, and their contact regions, it have been mainly 

described the topologically associating domains (TADs), the nucleolus 

associated domains (NAR) and the lamin associated domains (LADs). 

 

Topologically Associating Domains (TADs) 
 
Hi-C techniques revealed that within compartments, chromatin is 

organized in sub-domains called TADs. TADs are characterized to 

interact more within themselves, than between adjacent domains. TADs 

might serve as structural platforms for dynamic cis-interactions between 

regulatory elements. In fact, TADs have helped to improve our 

understanding of the relation between enhancers and their target genes. 

Nowadays, it has been observed that actively transcribed genes can 

form mini-domains that interact more frequently with other active 

genes. Then, clusters of active genes can form multi-gene domains, with 

all the belonging genes with a similar transcriptional activity. Within the 

TAD, chromatin presents a common epigenetic signature and 

replication timing. Moreover, TADs are highly conserved across cell 

types, substantiating their importance in cell homeostasis regulation 

(Dixon et al., 2012; Nora et al., 2012). The high conservation of TAD 

features in mammals (Dixon et al., 2012; Vietri Rudan et al., 2015), 

suggests that TADs might represent a basic and ancient structure of the 

chromatin organization in eukaryotes. The differential TAD sizes 
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between organisms can be explained by the relative sizes of active and 

inactive chromatin segments, for example, in Drosophila, TADs have a 

mean size of 60 kb, while in mammals it is around 800 kb (Dekker & 

Heard, 2015). As TADs can differ in size, chromatin features and 

formation mechanisms, they can be classified into different classes or 

subtypes, each with a specific structural and functional properties. It is 

relevant to notice that the identification of TADs is highly dependent 

on the experiment resolution and the software used to annotate them. 

Recently, high sequencing depths and resolution experiments have 

revealed a finer TAD patterning (Forcato et al., 2017; S. S. Rao et al., 

2014; Rowley et al., 2017; Zufferey, Tavernari, Oricchio, & Ciriello, 

2018). TADs are demarcated by boundaries, which are enriched in 

multiple genomic features, such as transcription start sites (TSS) and 

binding sites of CCCTC-binding factor (CTCF). Multiple studies 

showed the importance of TAD borders to regulate gene expression, 

for instance their deletion can lead to TAD-fusion events and gene 

deregulation (Nora et al., 2012). Another studies showed that the 

disruption or relocation of TAD borders, lead to ectopic contacts 

between cis-regulatory elements, and finally contributing to 

developmental disorders or cancer (Flavahan et al., 2016; Franke et al., 

2016; Hnisz et al., 2016; Kraft et al., 2019; Lupianez et al., 2015). Due 

to the hierarchical fashion of chromatin organization, the 

compartmentalization of the genome (see Chromosome compartments 

section) is responsible for both long-range (as for genomic 

compartments) and local domains (as for TADs). However, their 

regulatory cross-talk is not fully described. A study of CTCF in loop 

and TAD formation in mammals, showed that the loss of CTCF using 

an auxin-mediated system, was translated into a loss of TAD domains, 



 12 

while compartments were maintained (E. P. Nora et al., 2017). 

Furthermore, the transcriptional activity was slightly affected, 

suggesting TAD compartmentalization as a fundamental support for 

the regulation of transcription. In order to shed light into the interplay 

between transcription and TAD formation, it has been recently 

suggested that it can take place even after the inhibition of transcription 

in Drosophila embryos. However, it is not totally clear as under the 

triptolide treatment used, the RNA-Pol II (RNAPII) remains bound to 

promoter genes (Hug, Grimaldi, Kruse, & Vaquerizas, 2017). 

Nevertheless, differential gene expression in multiple cell types, can 

result in the formation of distinct compartmental domains. Supporting 

the idea that TADs, which are formed by compartments, may be 

different between cell types with different transcriptional patterns. The 

regulation of the chromatin organization by gene expression, can be 

explained in the organisms, like in Drosophila, in which CTCF is not 

found in TADs. However, as mentioned before, in mammals CTCF is 

an essential architectural protein, and super-resolution microscopy 

experiments suggested that CTCF together with cohesin are required to 

for TAD boundaries position rather than for TAD formation. FISH 

labelling, proved the presence of TAD-like structural units in single 

cells, in wild type and in cohesin-depleted conditions. While the position 

of the TAD boundaries in the wild-type lies more often at CTCF sites, 

it is random in cohesin-depleted samples (Bintu et al., 2018). Some 

studies showed that there is ~ 20 % of TAD boundaries independent 

of CTCF, suggesting their resilience after the loss of CTCF (E. P. Nora 

et al., 2017). These boundaries might be associated to transcription, as 

proposed before for Drosophila, (Bonev et al., 2017; Dixon et al., 2012) 

or can correspond to frontier between active and inactive chromatin 
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regions, such as A and B compartment types (S. S. Rao et al., 2014; 

Rowley et al., 2017). Nevertheless, recent studies showed using 

CRISPR-dCas9-mediated transcriptional activation its inability to create 

new TAD borders (Bonev et al., 2017). This result suggests that 

transcription is not sufficient to demarcate CTCF-independent TAD 

boundaries. TADs have been observed to appear gradually in early 

mouse embryogenesis, and they can still be observed after inhibiting 

transcription with α-amanitin. However, the inhibition of DNA-

replication with aphidicolin blocked the TAD establishment, indicating 

the potential of replication for the primary establishment of TADs (Du 

et al., 2017; Ke et al., 2017). Finally, it exists a correlation between the 

conserved TADs and the conservation of the CTCF binding sites and 

their motif orientation at their boundaries. Interestingly, it has been 

observed that changes within TADs are correlated with changes in the 

binding and orientation of CTCF. Thus, TADs are maintained as core 

structures during evolution, being each a platform imprinted with a 

specific functional regulatory scenario. Indeed genomic sequences at 

TAD boundaries are hotspots for genomic rearrangements as they 

appear to be locally open chromatin with higher frequency of double 

strand breaks (Guelen et al., 2008). 

 

Lamina-Associated Domains (LADs) 
 
The nuclear lamina is a meshwork of intermediate filament proteins 

called lamins, which is subjacent to the internal side of the nuclear 

membrane. These lamina consist of lamins A and C (also referred as 

lamins A/C or lamin A; both splice variants of the LMNA gene) and 

lamins B1 and B2 (products of LMNB1 and LMNB2 genes) (de Leeuw, 
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Gruenbaum, & Medalia, 2018). Specifically, Lamin B-receptor (LBR) 

and Lamin A/C have been described as major LAD tethers (Solovei et 

al., 2013). LADs are enriched in LINEs, and in heterochromatin 

compartment and have a size between 100 kb and 10 Mb (Guelen et al., 

2008). Various DNA motifs and proteins have been described to play a 

role driving LADs to the nuclear periphery. The use of the DNA 

adenine methyltransferase identification (DamID) method (van 

Steensel & Henikoff, 2000) was key to infer the LAD composition and 

function, disentangling the basic principles of genome organization. 

Lamin B1 is observed at the nuclear periphery, while lamin A is also 

present in the nuclear interior (Kind et al., 2013; E. Lund et al., 2013). 

While peripheral LADs are gene-poor, transcriptionally silent and 

heterochromatic, intranuclear LADs tend to be more gene-rich, 

transcriptionally active and euchromatic (Gesson et al., 2016; E. G. 

Lund, Duband-Goulet, Oldenburg, Buendia, & Collas, 2015). This 

spatial distribution of lamin A, may explain its impact on the radial 

positioning of chromatin and its dynamics (Solovei et al., 2013; Vivante, 

Brozgol, Bronshtein, Levi, & Garini, 2019). However, it is relevant to 

know that lamin A is not sufficient to anchor heterochromatin into the 

nuclear periphery, suggesting the need of lamin-associated protein 

complexes containing integral proteins of the inner nuclear membrane 

(Buchwalter, Kaneshiro, & Hetzer, 2019). Lamin B1, despite its 

exclusively peripheric location, also seems to be associated to a relatively 

complex regulation mechanism as it can be found in euchromatin, 

presenting a dynamic role in the execution of the Epithelial-

Mesenchymal Transition (EMT) transcriptional program (Pascual-

Reguant et al., 2018)(see Annex). Recent experiments using FISH have 

shown a radial repositioning of TADs dependent on the presence of 
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lamin B1 LADs (Forsberg, Brunet, Ali, & Collas, 2019). The interplay 

between TADs and LADs to orchestrate spatial genome topology has 

been studied in a differentiation system showing its fundamental role to 

shape the 4-dimensional genome during differentiation (Paulsen et al., 

2019). 

 

Nucleolus-Associated Domains (NADs) 
 
The largest substructure in the nucleus is the nucleolus, which is the 

responsible of the ribosome biogenesis. This process is initiated by the 

transcription of ribosomal RNA (rRNA) genes, the basic component of 

the nucleolus. The ribosome biogenesis is vital for the assembly of the 

ribosome to regulate the translational state of the cell. The chromatin 

regions in contact with the nucleolus are referred as NADs. These 

subdomains were firstly observed through a very specific sonication of 

the nuclei that allowed to obtain unbroken nucleoli (Sullivan et al., 

2001). Some years later, NADs were mapped in HeLa, IMR90 and 

HT1080 human cell lines (Nemeth et al., 2010; van Koningsbruggen et 

al., 2010). NADs are composed by regions with low gene density and 

transcriptional levels and enriched in repressive histone modifications 

(H3K27me3, H3K9me3 and H4K20me3). Microscopy studies 

identified centromeric and pericentromeric satellite repetitive regions 

and subtelomeric regions as NADs. Moreover, NADs have been 

observed to cover around 40 % of the genome, and revealed a 

considerable overlap with LADs (van Koningsbruggen et al., 2010). 
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Figure 3. Subdomains organization. a, Illustration of a cell nuclei with the 
three subdomains explained in the Subdomains section. The transcription 
factory is highlighted in a grey circle next to the TAD represented as a blue 
rectangle, helping to gather regulatory units highlighted in coloured boxes, to 
enhance gene expression. LADs are represented as black rectangles, being in 
contact with the lamina. Polycomb group proteins are highlighted with a grey 
circle, being relevant to regulate cell identity. Finally, NADs are represented 
using green rectangles, being in contact with the nucleolus. b, 3D STORM 
images of 41 consecutive 30 kb chromatin segments from a 1.2 Mb of IMR90 
chromosome 21 (Adapted from (Bintu et al., 2018)). c, Immunostaining in 
HeLA and IMR90 cells of α-centromere, α-H3K27me3 and α-active Pol II 
signals shown in green, nucleolar staining in red, and DAPI stain in blue 
(Adapted from (Nemeth et al., 2010)). d, Confocal immunofluorescence 
microscopic images of wild-type and knock-out mouse dermal fibroblast 
double-stained for LAP2α and lamins. The unstained nuclei are highlighted 
using a white dashed line (Adapted from: (Gesson et al., 2016)). 

The unveiling of the role of the nucleolus in genome architecture has 

been impeded by its membrane-less substructure, which makes difficult 

the precise mapping of the chromatin domains that are contacting it. 
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This factor limits the application of the DamID technology as done for 

the genome-wide mapping of the LADs. However, it has been 

hypothesized that alterations at rRNA repeats would alter the nucleolus 

in its structure and protein composition, promoting the required 

concentration of rRNA regulatory factors to establish repressive states 

(Bersaglieri & Santoro, 2019). Finally, both NADs and LADs are 

suggested to represent the hub for organizing the inactive or 

heterochromatin genome regions. 

 

DNA-looping 
~ 10 – 100 kb 

 

Genetic studies have demonstrated that translocations or deletions can 

affect the correct transcription regulation of genes located at distal 

regions (tens to hundreds of kilobases). It indicates the ability of 

regulatory elements to exert their function over large genomic distances. 

Enhancers have been described as key gene-regulatory elements that 

can control gene expression in a cell-specific and spatiotemporal 

manner through long-range chromosomal interactions. In mammal 

genomes, such as mouse and human, hundreds of thousands of putative 

enhancers have been mapped. The elucidation of enhancer-promoter 

pairs solely based on the linear distance leads to high number of false 

positive assignments. Thanks to major technological advances that 

allowed the genome-wide mapping of enhancer-promoter contacts at 

high resolution, elucidated the principles of enhancer function and 

enhancer-promoter communication. These type of events are known as 

DNA-looping or loops, which permit the regulation of genes by distant 

regulatory elements. 
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Loop extrusion model 
 
Over the years the study of how genes can be regulated from distant 

elements has been of high interest, being the “loop model” the more 

prevalent (Ptashne, 1986). As mentioned in previous sections (see 

Topologically Associating Domains), CTCF has been observed to play 

a major role in chromatin organization. CTCF was first described as a 

repressor of the C-MYC oncogene in chicken, mouse and human 

(Filippova et al., 1996). Classically, CTCF has been observed as an 

insulator, blocking the communication between gene promoters and 

distal enhancers. The first study proving this CTCF capacity was in 

transgenic assays in the chicken b-globin locus, where the enhancer and 

the reporter gene are separated by 1.2 kb DNA segment. This study 

revealed that the insulator ability of CTCF was dependent on its relative 

position, as was only observed when placed between the enhancer and 

the promoter (Bell & Felsenfeld, 1999). CTCF is a zinc-finger protein 

highly conserved across bilaterians and absent in yeast, derived 

nematodes as Caenorhabditis elegans, fungi and plants (Heger, Marin, 

Bartkuhn, Schierenberg, & Wiehe, 2012). The central region of CTCF 

consists of 11 zinc fingers, with around 20 bp well-conserved and non-

palindromic as a core region, also referred as M1 motif (Schmidt et al., 

2012)(Figure 4). What makes CTCF binding motif unique, in 

comparison to the majority of the known transcription factors (TFs), is 

that it is long and information-enriched, meaning that it can possess 

pleiotropic functions by diverse combination of its 11 zinc fingers 

(Nakahashi et al., 2013). Moreover, in mammals have been described 

shorter motifs of around 10 bp, up- and downstream to M1, which can 

help to stabilize or destabilize the CTCF binding, respectively. Despite 
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some CTCF sites lack any sequence motif, they present a markedly 

lower affinity than those with the core motif (Nakahashi et al., 

2013)(Figure 4). 

 
Figure 4. Illustration of CTCF regulation. CTCF is depicted in a reverse 
orientation to reflect its binding. CTCF can be regulated by diverse post-
translation modifications (PTMs), such as SUMOylation, phosphorylation (by 
casein kinase 2) or Poly(ADP-ribos)ylation by PARP1. While the C-terminal 
of CTCF can interact with the cohesin subunit, Rad21, the N-terminal 
interacts with the cohesin subunit, Smc1. CTCF can regulate its binding to 
chromatin by the central 11 zinc finger domains. The core motif (M1) consists 
of the 4 central zinc fingers; whereas the up and downstream motifs can 
stabilize or destabilize its binding, respectively. The methylation of two 
cytosines located in the core motif, depicted with yellow asterisks, can impede 
the CTCF binding. 

The binding of CTCF into chromatin correlates to gene density, 

especially in intergenic regions, gene bodies and near TSSs (Holwerda 

& de Laat, 2013). Moreover, its binding capacity can be regulated at 

multiple levels. First, the methylation of cytosines in the M1 motif will 

impair the CTCF binding (Wang et al., 2012). Second, the binding has 
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been observed normally to happen in nucleosome-free regions (Fu, 

Sinha, Peterson, & Weng, 2008). Finally, PTMs in the CTCF protein 

such as SUMOylation, poly(ADP-ribosyl)ation and phosphorylation by 

casein-kinase 2 (CK2), can interfere CTCF function without affecting 

its chromatin binding (El-Kady & Klenova, 2005; Kitchen & 

Schoenherr, 2010; Pavlaki et al., 2018)(Figure 4). 

Mammalian genomes contain around 50,000 CTCF binding sites, with 

around 10-20 % located at TAD boundaries and 60-70 % in intra-

domain regions (Cuddapah et al., 2009; S. S. Rao et al., 2014; Tang et 

al., 2015). CTCF has been described to be an architectural protein, as 

well as, cohesin and Mediator, all three are involved in chromatin-

looping (Parelho et al., 2008; Rubio et al., 2008), but are not fully 

required for the maintenance of TADs. Cohesin is a highly conserved 

protein complex assembled in a ring-like structure by two proteins from 

the “Structural Maintenance of Chromosomes” family, Smc1 and Smc3, 

and a kleisin family subunit, Rad21. The cohesin complex is mainly 

known to be responsible for tethering sister chromatids during mitosis 

by encircling the DNA fiber. However, cohesin has been found in non-

dividing cells, and mutations on its subunits can lead to developmental 

impairments in humans, suggesting its role in gene regulation (Brooker 

& Berkowitz, 2014). In vertebrates, it was observed that around 50 to 

80 % of CTCF sites were co-occupied by cohesin, which can interact 

directly with the C-terminal of CTCF through the Rad21 subunit (Xiao, 

Wallace, & Felsenfeld, 2011)( Figure 4). While cohesin is not needed for 

the binding and positioning of CTCF, CTCF is necessary for the 

positioning of cohesin. As expected and according to all these 

observations, CTCF and cohesin have been found to participate in the 

chromatin loop formation, having a direct effect on gene activation. 
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Recent studies have showed how the CTCF N-terminus interacts with 

Smc1 subunits of human cohesin, probing that this interaction is 

required for the positioning of cohesin in CTCF-anchored loops (Li et 

al., 2020)(Figure 4). Nevertheless, CTCF is able to form loops via 

homodimerization, or by interacting with other proteins: such as, 

nucleophosmin (NPM) (Yusufzai, Tagami, Nakatani, & Felsenfeld, 

2004), thyroid hormone receptor (TR) (Lutz et al., 2003), 

chromodomain helicase 8 (CHD8) (Ishihara, Oshimura, & Nakao, 

2006) and transcription factor Yin Yang 1 (YY1)(C. Guo et al., 2011). 

Despite all the possible interactors of CTCF, none has been observed 

to co-localize genome-wide as extensively as with cohesin. This suggests 

that CTCF might have different interactors depending on the epigenetic 

scenario, participating in a wide range of protein complex modulations 

to adapt its function to specific loci in a given conditions. For example, 

various loops can appear during differentiation, without changes in 

CTCF binding, which have been observed to be enriched in other TFs 

binding motifs (Bonev et al., 2017; Phanstiel et al., 2017). 

Hi-C experiments showed that CTCF chromatin loops occur 

preferentially between motifs in convergent orientation (S. S. Rao et al., 

2014). This orientation preference was tested by CRISPR-mediated 

inversions of different CTCF motifs, which disrupted the loops and 

created new enhancer-promoter interactions (Y. Guo et al., 2015). 

Moreover, it is possible to accurately predict the changes in CTCF loops 

after inversions or deletions of CTCF motifs (Sanborn et al., 2015). This 

preference on motifs orientation suggests that CTCF pairs are formed 

in a dimension-restricted space, via an extrusion process mediated by 

the cohesin complex (Fudenberg et al., 2016; Nichols & Corces, 2015; 

Sanborn et al., 2015). Loop formation can be explained by the loop 
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extrusion model, which suggests that SMC cohesin subunits 

progressively extrude chromatin until halted by convergent-oriented 

CTCFs (Fudenberg et al., 2016)(Figure 5a). The capacity of CTCF to 

stall the extrusion may be caused by its ability to induce chromatin 

conformational changes, such as nucleosome repositioning (Clarkson et 

al., 2019; Fu et al., 2008). Atomic force microscopy experiments showed 

that DNA wraps around bound CTCF, forming structures of around 

67-80 nm in diameter (Mawhinney et al., 2018), which are larger than 

proteins able to block cohesin sliding in vitro (Davidson et al., 2016; 

Stigler, Camdere, Koshland, & Greene, 2016)(Figure 5c).  

 
Figure 5. Loop extrusion illustration and supporting in vitro 
experiments. a, Schematic view of the loop extrusion model, from the 
loading of cohesin into chromatin until its release. Here we can observe CTCF 
pairs in a convergent oriented manner, as yellow arrows, which will halt the 
extrusion. Are also depicted Nipbl, the cohesin loader, and Wapl the release 
factor (Adapted from (Rowley & Corces, 2018)). b, Snapshots showing DNA 
loop extrusion by condensin on a SxO-stained double-tethered γ-DNA. The 
constant flow (white arrow) maintains the DNA in the imaging plane and 
extrudes the loop. The position of the loop base is pointed by a yellow arrow. 
At 40 s starts to appear a small loop that will grow over time until 80 s. The 
loop is disrupted after 600 s (Adapted from (Ganji et al., 2018)). c, Atomic 
force images of DNA in the presence of the 11 zinc fingers domains of CTCF. 
Green arrows indicate multiple DNA strands (Adapted from (Mawhinney et 
al., 2018)). 
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Several in vitro studies proved the diffusing capacity of cohesin along the 

DNA, until being blocked by CTCF (Davidson et al., 2016; Stigler et al., 

2016). Importantly, it has been observed the condensin mediating loop 

extrusion in vitro (Ganji et al., 2018; Terakawa et al., 2017)(Figure 5b). 

Interestingly, a single cohesin ring can capture two DNA fragments, but 

only if one is single stranded (Murayama, Samora, Kurokawa, Iwasaki, 

& Uhlmann, 2018), suggesting that a single ring is able to lead this 

process. Polymer physics simulations, ChIP-exo and ChIP-nexus 

experiments have shed light on understanding how the cohesin ring is 

randomly loaded into chromatin, until blocked by CTCF when reaching 

the 3’ end of the motif (i.e. within the loop) (Fudenberg et al., 2016; 

Nagy et al., 2016; Tang et al., 2015). Moreover, while cohesin depletion 

leads to CTCF loops loss (S. S. P. Rao et al., 2017; Schwarzer et al., 

2017; Wutz et al., 2017), the depletion of WAPL, a cohesin release 

factor, results in the formation of longer loops due to an extended 

period of cohesin bound into chromatin, and a decreased long-range 

interactions between compartmental domains (Gassler et al., 2017; 

Haarhuis et al., 2017)(Figure 6e). The deletion of Nipbl, the cohesin 

loader, and Rad21 subunit, did not affected the CTCF binding, but 

resulted in a general loss of CTCF loops and a stronger compartmental 

segregation (S. S. P. Rao et al., 2017; Schwarzer et al., 2017; Wutz et al., 

2017)(Figure 6c). Auxin-mediated degradation of Rad21 showed that 

6 h were enough to lose CTCF loops, suggesting the need of being 

constantly extruded by cohesin (Fudenberg et al., 2016). Then, after 

40 min of restoring cohesin, CTCF loops as large as 900 kb were 

established (S. S. P. Rao et al., 2017). For example, it has been proposed 

that cohesin can be relocated by transcription, directly pushed by 

RNAPII (Ocampo-Hafalla, Munoz, Samora, & Uhlmann, 2016) or 
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indirectly by chromatin supercoiling (Racko, Benedetti, Dorier, & 

Stasiak, 2018). 

 
Figure 6. Summary of chromatin organization effects by cohesin and 
CTCF mutants. Each row represents a condition, and each column represent 
the chromatin organization layer being analysed. a, In the first row the results 
from a wild-type mouse are shown. The compartmentalization is represented 
by saddle plots in which the average interaction frequencies between pairs of 
loci (100 kb bins) arranged by their compartment signal (eigenvector). The 
histograms on the axis show the distributions of eigenvector values. TADs are 
shown as an average Hi-C map of all the TADs called in the dataset. The loop 
information is shown as the average Hi-C map around 102 peaks (Adapted 
from (Schwarzer et al., 2017)). b, Results of degrading CTCF in mESCs. The 
compartments are not affected, as can be observed by the correlation between 
the mutant and the wild-type, of the first eigenvector values. However, TADs 
disappeared, as shown in a 6 Mb segment of Hi-C data at 20 kb resolution. 
Loops were also affected, visualized by aggregating the Hi-C signal from Smc1 
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Hi-ChIP loops separated by 280-380 kb (Adapted from (E. P. Nora et al., 
2017)). c, Results from a mouse mutant, with a deletion of Nipbl. Here the 
compartment information is retrieved like in the wild-type (panel a). Notice an 
enrichment of AA and a depletion of AB interactions. Can also be observed a 
TAD and loop lose (Adapted from (Schwarzer et al., 2017). d, Deletion of 
Rad21 results in mouse zygotes. The average loops, TADs and compartments 
are done by pooling together the maternal and paternal data. TADs and loops 
were entirely absent. However, the compartmentalization of active and 
inactive chromatin was increased (Adapted from (Gassler et al., 2017)). e, 
Study deleting WAPL in mouse zygotes. Here the same analysis as in Rad21 
knock-out is applied (panel d). This mutant showed stronger signal of TADs 
and loops, while the compartments became weaker (Adapted from (Gassler et 
al., 2017)). 

A study showed that transcription elongation resulted in a decrease in 

CTCF looping. Strikingly this decrease was weaker than upon ATP 

depletion, showing the emergence of hundreds of CTCF-independent 

loops (Vian et al., 2018). Moreover, loop extrusion via RNAPII fails to 

explain the formation of inactive domains and present a slower 

elongation rate compared to the estimated loop extrusion speed, ~ 9-

90 bps/s versus ~ 374-850 bp/s (Jonkers & Lis, 2015; S. S. P. Rao et 

al., 2017). However, it can suggest that RNAPII will interfere cohesin 

extrusion over transcriptionally active regions. Overall, the proposed 

models are supported by some evidence, nevertheless each presents its 

limitations, suggesting that a combination between some may underlie 

the extrusion process. 

Finally, CTCF can mediate cell-to-cell gene expression variability by 

regulating enhancer-promoter interactions (Ren et al., 2017). It has been 

shown that around the 41 % differential CTCF binding through 19 

human cell types is due to methylation, as disruption of CTCF binding 

is associated with increased methylation at promoter sites (Wang et al., 

2012). Genome-wide association studies (GWAS) have revealed various 
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mutations in CTCF binding sites, which can affect TAD organization 

or enhancer-promoter interactions, leading to an increased variability of 

gene expression (Hnisz et al., 2016; Katainen et al., 2015). Thus, CTCF 

can contribute to cellular heterogeneity in mammals by mediating 

transcriptional pausing (Paredes, Melgar, & Sethupathy, 2013) and 

alternative mRNA splicing (Shukla et al., 2011). In the future, single-cell 

Hi-C will shed light into the dynamics of chromatin looping, allowing 

the comparison between pre-established versus de novo loops, and how 

are the loops maintained in non-expressing cells. These data together 

with epi-transcriptomics, will be needed to provide more evidences of 

the contribution of CTCF to cellular heterogeneity and its relevance in 

diverse biological scenario. 

 

Chromatin loop detection methods 
 
“Impostor syndrome is the frequent feeling of not deserving one’s success, 
and of being of a failure despite a sustained record of achievements. Highly 

successful people often experience it throughout their careers, especially 
when they are members of a group that is underrepresented in their 

profession—such as female scientists or engineers”. 
 

Maria Klawe, 2014 

 

The advent of genome-wide chromatin architecture (mainly thanks to 

Hi-C) has made necessary the development of loop detection methods. 

During the last two decades, a lot effort has been put to develop a loop 

detection software. There is a plethora of different software (Table 1). 

Among these, a selection has been benchmarked in detail in (Forcato et 

al., 2017). Here there is a brief description of their methodology: 



 27 

1. Hi-C Computational Unbiased Peak Search (HiCCUPS) (Durand et 

al., 2016; S. S. Rao et al., 2014) 

HiCCUPS is implemented as a part of Juicer suite of tools for the 

analysis and visualization of Hi-C experiments. This software by default 

needs as input the normalized contact matrix with Knight-Ruiz matrix 

balancing (Knight & Ruiz, 2013). Its algorithm looks for clusters of 

contact matrix entries in which the contact frequency is enriched 

compared to the local background. It scans each pixel and compares its 

number of contacts with four neighbouring areas, giving the possibility 

to cluster the significant peaks. It is implemented using GPUs, as it has 

to analyse trillions of pixels in kilobase-resolution experiments. It is 

programmed in JAVA language. 

 

2. Fit-Hi-C (Ay, Bailey, & Noble, 2014) and Fit-Hi-C 2 (Kaul, 

Bhattacharyya, & Ay, 2020) 

This software is designed to identify mid-range intra-chromosomal 

contacts, and inter-chromosomal with the new version. The algorithm 

relies in a model with two splines. The first spline models the observed 

counts according to the genomic distance between all the possible pairs. 

The second spline is used to fit to calculate a refined null model. The 

biases are computed using the Iterative Correction and Eigenvector 

decomposition normalization (ICE) (Imakaev et al., 2012) and are 

incorporated in the expected contact probability. Using a binomial 

distribution are calculated the p-values and corrected for multiple 

testing. Fit-Hi-C is programmed in Python language. 
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3. GOTHiC (Mifsud et al., 2017) 

This software takes as input the aligned reads, it pairs them, and assigns 

the pairs to enzyme-specific restriction fragments and finally discards 

the ones separated by less than 10 kb. To normalize the counts it applies 

a similar Vanilla Coverage (Lieberman-Aiden et al., 2009), a binomial 

test to capture the significant interactions and a Benjamini-Hochberg 

multiple testing correction (Benjamini & Hochberg, 1995). The output 

contains both cis and trans interactions with the log2 of observed over 

expected counts, p-value, false discovery rate (FDR) and the number of 

read pairs that support the interaction. GOTHiC is programmed in R.  

 

4. HOMER (Heinz et al., 2010) 

HOMER is a command-line based software. As input it takes the 

aligned reads, which are paired and filtered. In order to identify the 

significant interaction bins, HOMER generates a background model 

that normalizes the genomic interactions for linear distance and 

coverage at a specific bin size. This model permits to estimate the 

expected read count and to apply a binomial test to get the significant 

cis and trans interactions. Finally, HOMER outputs a p-value, the FDR, 

the number of read pairs supporting the interaction, and the interaction 

distance. HOMER is programmed in Perl and R languages. 

 

5. High-throughput Identification Pipeline for Promoter Interacting Enhancer 

elements (HIPPIE) (Hwang et al., 2015) 

HIPPIE identifies the significant interactions at a restriction fragment-

level. To be run it requires a computing cluster with Open Grid 

Scheduler or other Sun Grid Engine (SGE) compatible with job 

schedulers. HIPPIE consists in five steps: mapping, quality control, Hi-
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C interactions identification, enhancer-target gene interactions and its 

prediction analysis. It classifies the read pairs as specific or non-specific 

if the sum of the distance of the reads from the closest restriction 

enzyme site is smaller or bigger than a given size selection parameter 

(Yaffe & Tanay, 2011). The biases are computed as in (Jin et al., 2013) 

which estimates the expected random contact frequencies considering 

mappability, GC content, fragment length and fragment distance (for 

intra-chromosomal read pairs). The significant interactions are 

identified by fitting a negative binomial distribution. HIPPIE retrieves 

the cis and trans restriction fragment-based interactions with the 

associated p-value. The software is programmed in Python, Perl and R 

languages. 

 

6. DiffHiC (Lun & Smyth, 2015) 

DiffHiC is intended to identify significant differential interactions 

between Hi-C experiments. However, it contains a method to call the 

interactions on individual samples based on the signal enrichment over 

a local background. The software consists on read mapping, filtering 

and genome partitioning to obtain the counts between the genomic bin 

pairs. It applies a “local enrichment” algorithm to identify the bin pairs 

with more reads than their neighbours. It computes the log2 fold change 

between the number of read pairs of the target-bin and the neighbour 

region with greatest abundance. DiffHiC does not applies statistical test, 

meaning that there is no significance value associated to the interaction. 

It is programmed in R and Python languages. 
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Table 1. Other available software for the identification of significant 
chromatin interactions. For each software the input file, and the used 
algorithm, are specified. All the software of the table run statistical test to 
retrieve the significant chromatin interactions. Bayesian Additive Regression 
Trees (BART); Hidden Markov random field model (HMRF); Non-central 
hypergeometric (NCHG). 

 
 
 
 
 

Software Input data Algorithm 

HMRFBayesHiC 
(Xu, Zhang, Jin, et al., 2016) 

O/E Hi-C matrices HMRF model 

FastHiC 
(Xu, Zhang, Wu, Li, & Hu, 

2016) 

O/E Hi-C matrices HMRF based on simulated field 
approximation 

Binless 
(Spill, Castillo, Vidal, & 

Marti-Renom, 2019) 

Hi-C mapped reads 
(TSV) 

Negative binomial likelihood 

r3C-seq 
(Thongjuea, Stadhouders, 

Grosveld, Soler, & Lenhard, 

2013) 

3C mapped reads 
(BAM) 

Background scaling method (Z-
scores) 

ChiaSig 
(Paulsen, Rodland, Holden, 

Holden, & Hovig, 2014) 

ChIA-PET 
interaction file 

(BEDPE) 

NCHG distribution 

CHiCAGO 
(Cairns et al., 2016) 

Capture Hi-C data 
mapped reads 

(BAM) 

Convolution background model 

Mustache 
(Ardakany, Gezer, Lonardi, 

& Ay, 2020) 

Raw contact map 
(TSV) 

2D Gaussian 
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Technology to assess nuclear organization 
 

“Although we don't know what is outside our universe, astronomers still 
wonder. Several pictures of what there might be have been dreamed up. An 
interesting one, called multiverse, has lots of universes. Picture it as a foam 
of bubbles. Our universe would be one bubble, and we'd be surrounded by 

lots of other bubbles.” 
 

Jocelyn Bell, 2013 
 
Understanding the three-dimensional spatial genome organization is 

paramount to fully characterize its function. Therefore, it is 

fundamental to use and develop microscopy technologies, both 

conventional and super-resolution, as well as chromosome 

conformation capture (3C) techniques. Each of these two types of 

technologies allow a given resolution and the inspection of specific 

chromatin topology levels (François Le Dily, Serra, & Marti-Renom, 

2017). 

 

Microscopy 
 
As mentioned in the “Nuclear organization” section, many of the basic 

principles of genome architecture were discovered by microscopy 

techniques. For instance light and electron microscopy proved the 

existence of nuclear bodies such as the nucleolus, nuclear speckles, Cajal 

bodies and polycomb bodies (Denker & de Laat, 2016). Using this 

technology was possible to observe the nuclear localization of active 

euchromatin, which is less densely stained than heterochromatin (Heitz, 

1928). Moreover, it has been shown that CTs occupy a specific position 

with a slight intermingling (Cremer, Cremer, Schneider, et al., 1982). It 

was also observed that some genes occupy specific nuclear positions 
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according to their transcriptional status (Brown et al., 1997). Thanks to 

recent advances in super-resolution microscopy techniques, it is now 

possible to visualize from whole chromosomes to few kilobases 

interactions among nearby cis-regulatory elements. Thanks to advances 

in robotics and microfluidics, as well as accelerated super-resolution, it 

is also possible to inspect thousands to hundreds of thousands of 

individual cells, thereby increasing robustly the statistical power of 

imaging. The breakthrough of the Oligopaints technology has 

transformed the sequence-specific imaging of genome organization. 

Stochastic optical reconstruction microscopy (STORM) technology, 

captured images of active, inactive and Polycomb-repressed (PC-

repressed) epigenetic states in Drosophila. This study revealed that each 

state obeys a different power-law scaling of domain size as function of 

length. Meaning that these three states have different packaging density, 

levels of self-interaction and levels of interaction between them. For 

instance, in Drosophila and mouse, PC domains are compacted globular 

structures, contrasting with active state structures, which are more 

extended. Due to the epigenetic role of PC in maintaining 

transcriptionally silent throughout cell divisions, it has been 

hypothesized that its characteristic densely packed structure and high 

degree of spatial exclusion of neighbouring active domains, contributes 

to this ability (Boettiger et al., 2016; Kundu et al., 2018). Recently, the 

optical reconstruction of chromatin architecture (ORCA) method was 

able to visualize very small TADs (< 20 kb) in several cells. This method 

allowed to study a strong cell-type specific physical partition of the 

posterior Hox complex in Drosophila, in which two transcriptionally 

active genes are separated. Surprisingly, the boundary of these two 

genes did not corresponded to a divergent epigenetic state, as both Ubx 
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and abd-A gene regions were in an active epigenetic state, and a deletion 

of ~ 4 kb between these two domains disrupted their correct expression 

(Mateo et al., 2019)(Figure 7). 

 
Figure 7. Deletion of TAD borders leading to TAD fusion and enhancer 
crosstalk. a, Contact frequency computed from ORCA for A2-A4 in wild-
type (WT) and Fub mutants, with a deletion of a TAD boundary (mark with 
red dotted lines), at 10 kb resolution. Dashed grey lines mark the TADs. Below 
are marked the bithorax-complex (BX-C) genes, and the ChIP-seq of CTCF 
and Rad21 from WT embryos. b, ORCA snapshots from one experiment of 
a 700 kb domain containing the BX-C genes. Barcode position is marked by 
colour. The dashed line in the zoom-in images, indicate the 3D separation of 
up and downstream regions of the Fub locus. c, Comparison of the expression 
of two genes: abd-A and Ubx in WT and Fub mutant embryos in individual 
regions (Adapted from (Mateo et al., 2019)). 
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This proved that the epigenetic state is not the unique mechanism 

determining the chromatin organization, and showed the contribution 

of the boundary elements in vivo. Since the discovery of TADs thanks 

to 3C-based methods, which are mainly population-based run in 

millions of cells, their existence in single-cells has been very 

controversial. Microscopy techniques, showed that while CTs 

correspond to a physical structure, TADs only exist as statistical features 

in population of cells. However, only around 100 cells are needed to 

provide a proper delineation of TADs, sub-TADs and loops. The 

globular structures or TAD-like features are present in single cells, and 

persist even in the absence of cohesin, whereas TADs in identical 

compartment types (sharing an epigenetic state) disappear (Gassler et 

al., 2017; Haarhuis et al., 2017; S. S. P. Rao et al., 2017). Microscopy 

methods explained the emerging of this pattern as an uniform statistical 

position of the boundaries instead of biased to CTCF binding sites 

(Bintu et al., 2018)(Figure 8). This new data has promoted multiple 

models to explain the competing mechanistic of chromatin folding 

(Barbieri et al., 2012; Brackley et al., 2018; Fudenberg et al., 2016; 

Giorgetti et al., 2014; Jost, Carrivain, Cavalli, & Vaillant, 2014; Sanborn 

et al., 2015). 

Finally, recent advances in live imaging techniques validated the 

dynamic and transient nature of chromatin interactions (Bintu et al., 

2018; Finn et al., 2019; Mateo et al., 2019). It allowed to study the 

transcriptional dynamics, memory, and gene co-regulation (Alexander, 

Guan, Huang, Lomvardas, & Weiner, 2018; Chen et al., 2018; Ferraro 

et al., 2016). For the future, it will be highly important to combine the 

flexibility and ease use of microscopy methods, to enhance the 
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resolution, image DNA and protein at the same time, and increase its 

throughput and robustness. 

 
Figure 8. Visualization of TAD-like globular domains in single cells. a, 
Matrices from the spatial-overlap from a 1.2 Mb region (chr21: 28-29.2 Mb) 
from two individual IMR90 cells. The colour barcode below the contact matrix 
indicate the five sub-TADs identified at population level. b, Images from 
multiplexed 3D STORM corresponding to the two cells shown before. Per 
cell are shown two images, in each highlighting two sub-TADs and with a 
specific rotation to ease their visualization (Adapted from (Bintu et al., 2018)). 

Chromosome conformation capture technology 
 
In the last decade, the development of 3C-based technology and thereby 

their modelling and analysis, has revolutionized the understanding of 

3D chromatin architecture. First, 3C techniques were applied to yeast 

chromosomes (Dekker, Rippe, Dekker, & Kleckner, 2002), then, as 

a

b
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explained before, to observe the long distance chromatin loops between 

enhancer and the target genes in the b-globin locus (Tolhuis, Palstra, 

Splinter, Grosveld, & de Laat, 2002). 

Technology Type of 

approach 

Advantage Limitation 

3C  
(Dekker et al., 2002) 

One-to-one Cheap and simple Amplification 

efficiency 

4C  
(Simonis et al., 2006) 

One-to-all No need a priori 

knowledge 

Amplification 

efficiency 

5C  
(Dostie et al., 2006) 

Many-to-many Unbiased readout 

and great coverage 

Need a priori 

knowledge 

ChIA-PET 
(Fullwood et al., 

2009) 

Many-to-many Enrichment in rare 

interactions 

Difficult 

quantification 

Capture-C 
(Hughes et al., 2014) 

Many-to-all Detection of SNPs Sequence enrichment 

efficiency 

Micro-C 
(T. H. Hsieh et al., 

2015) 

All-to-all High resolution Increase noise in long 

distance 

HiChIP 
(Mumbach et al., 

2016) 

Many-to-all Low input 

requirement 

RE site proximity / 

Antibody efficiency 

Table 2. Existing 3C-derived methods. In the table are listed the main 
advantages and drawbacks of the most used technologies, as well as the 
information retrieved. 

Finally, this technique was adapted to its high-throughput variants 

(Table 2). All these techniques are based on formaldehyde crosslinking 

of chromatin, which allows the capture of a snapshot of the interactions 

among any pair of genomic loci in the three-dimensional nuclear space. 

Then chromatin is fragmented by digestion, and re-ligated in order to 

convert the interacting loci into unique DNA ligation products to be 
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finally detected by different methods. Originally, PCR with locus-

specific primers was used to detect ligation products one at a time. The 

development of deep-sequencing techniques allowed the high-

throughput detection of ligation products and permitted the 

interrogation of the chromatin architecture genome-wide, the most 

popular implementation of this method is called Hi-C (Lieberman-

Aiden et al., 2009). 

 

High-throughput conformation capture (Hi-C) 
 
This technique allows the interrogation of all loci at once. The 

experiment requires around 5 million of cells as an input material in 

order to have enough library complexity for sequencing. Although this 

limitation has been addressed in recent versions of the Hi-C protocol, 

it is still normally conducted on a population of cells and the resulting 

3D genome organization represents the ensemble of single cells of the 

population. The development of the Hi-C assay represents a 

breakthrough in the understanding of genome organization as it is 

unbiased and unsupervised. As in the others 3C-based methods, the 

chromatin is crosslinked with formaldehyde and digested by a 

restriction enzyme (RE), which leaves a 5’ overhang to be filled by free 

nucleotides some of which biotinylated. Then the repaired blunt ends 

are ligated and the DNA is sheared and purified using a biotin pull-

down with streptadivin beads. The final product of the experiment 

before sequencing is a library of ligation junctions that will be sequenced 

using a paired-end approach. On the bioinformatics side, both reads will 

be mapped to a reference genome, obtaining the cis and trans contacts 

(respectively intra- and inter-chromosomal contacts) to generate the 

contact matrices. It has to be considered that the resolution of the 
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experiment is highly dependent on the RE sites frequency. One solution 

to increase x-fold the resolution is to sequence x2 more pairs, keeping in 

mind that the resolution could never go deeper that the RE fragment 

sizes. The first version of Hi-C corroborated the existence of the A and 

B chromatin compartments. Since the first Hi-C assay it has been 

exponentially improved retrieving kilobase contact matrices allowing 

the detection of sub-compartmentalization of the chromatin (Imakaev 

et al., 2012; S. S. Rao et al., 2014). The bioinformatics analysis of Hi-C 

experiments consists mainly on 5 steps: 

I. Hi-C quality check and mapping to a reference genome. 

II. Read filtering: removal of PCR artifacts as well as products from 

non-standard ligation. Only the valid pairs will be kept. 

III. Building of contact matrices: the genome is chunked into non-

overlapping bins of fixed size. 

IV. Bin filtering: removal of matrix columns with low counts. If the 

observed number of reads in a bin is much lower than average, 

it is expected that they belong only from mapping artifacts. 

V. Matrix normalization: remove the inherent biases of the 

experiment. There are two types of normalization approaches: 

explicit methods, that suppose that all the biases are known, like 

GC content, mappability or number of RE sites per bin; such as 

OneD normalization (Vidal et al., 2018). And implicit or 

balancing methods, which assume an equal experimental 

visibility of each bin, including ICE (Imakaev et al., 2012), 

square root vanilla coverage, vanilla coverage normalization (S. 

S. Rao et al., 2014) and Knight-Ruiz Matrix Balancing 

(KR)(Knight & Ruiz, 2013). 
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However, Hi-C protocols presented caveats, including an 

overrepresentation of inter-chromosomal contacts (~ 60 %) due to 

random ligations between unrelated DNA fragments (i.e., uncross-

linked). This high percentage will not affect the intra-chromosomal 

contacts measured from short and medium-range distance (< 2 Mb), 

but the long-distance (> 10 Mb) between and within chromosomes. 

The inter-chromosomal contacts were reduced to < 20 % by placing 

the ligation in situ inside the nuclei instead of in solution (Nagano et al., 

2015). Another critical step and potential source of biases is the use of 

formaldehyde to fix DNA fragments. Formaldehyde links proteins or 

protein and DNA, however the fixation could differ depending on the 

proteins and potentially chromatin state, being a drawback to capture 

protein-mediated loops. Moreover, highly dynamics and fluctuating 

interactions might not be captured as formaldehyde takes at least 5 

seconds to crosslink. Another important issue is to consider the 

meaning of the retrieved quantitative contact by 3C experiments, as 

these methods assess the ligation frequencies between cross-linked and 

fragmented DNA segments. For a DNA segments to participate in the 

3C contact profiles it needs to i) be cross-linkable, ii) have DNA ends 

available to ligate, and iii) in the cross-linked DNA-protein aggregates 

compete with other fragments to ligate. These three requisites depends 

on size, chromatin composition, duration and strictness of fixation 

(Dekker, 2006). The ligation efficiency can work as a proxy for contact 

frequencies, which must be validated by microscopy or genetics (i.e., 

DNA deletions). 

Despite its limitations, Hi-C is the chosen method to obtain the 

genome’s interactome. During the past 10 years, in the majority of the 

labs the Hi-C technology became ordinary, thus there are Hi-C contact 
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maps available for the most used cell types from human and mouse, 

human tissues and organoids. The 3D genome organization together 

with epigenomics and transcriptomics data would help to interpret the 

cell homeostasis and the genetic variations associated to disease. All the 

recent advances in single-cell Hi-C, will help to reveal the heterogeneity 

of specific chromatin contacts within cell populations and cell-to-cell 

during multiple biological processes (i.e., development). 

 

Function-Structure dogma 
 
“I don’t want to say epigenetics isn’t exciting … [but] there’s a gap between 

the fact and the fantasy. Now the facts are having to catch up.” 
 

Edith Heard, 2013 
 

The relationship between structure and function is a paramount in 

structural biology. First, was reported that changes in structure were 

directly related to sequence modifications in proteins (Chothia & Lesk, 

1986). In the case of 3D genome organization, as described in previous 

sections (see Nuclear Organization), TADs may represent regulatory 

domains due to their high conservation in mammals and the co-

regulation of their contained genes (Dixon et al., 2015; F. Le Dily et al., 

2014). Moreover, the functional relevance of TADs has been validated 

by studies in diseases caused by structural variations (SVs), which the 

disruption of TADs caused congenital limb malformations, gene 

misexpression and cancer (Dixon et al., 2018; Franke et al., 2016; 

Lupianez et al., 2015; Spielmann, Lupianez, & Mundlos, 2018). 

However, neither CTCF nor cohesin depletion resulted in large 

repercussions on gene expression (Elphege P Nora et al., 2017; S. S. P. 

Rao et al., 2017; Wutz et al., 2017). These studies challenge the crucial 
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implication of 3D genome organization for gene regulation, suggesting 

a more complex and multi-layer effect of chromatin architecture on 

gene regulation. Moreover, high resolution experiments showed that 

not all the regions of the genome follow the same rules. For example, 

gene dense regions do not present a canonical 3D structure, as they can 

form multiple smaller interacting domains, suggesting an alternative 

regulation as large TADs and loops. Recently, thanks to higher 

resolution and more detailed analysis, 3D architectural stripes have been 

described, which are asymmetrical patterns of contacts that can span 

several 100 kb and are reflecting an unidirectional loop extrusion 

process. Architectural stripes are associated with strong and active 

enhancers, which are scanning the genome for a target gene, in close 

proximity to a CTCF boundary, defined as stripe anchor. (Barrington et 

al., 2019; Kraft et al., 2019; Vian et al., 2018). Similarly, the development 

of the micro-C method, which provides 3D chromatin structure at 

nucleosomal resolution, it revealed the existence of micro-TADs, with 

a median size from 5.4 to 40 kb, which are reflecting individual 

transcriptional units (T. S. Hsieh et al., 2020). It makes essential to 

understand the relationship between 3D chromatin structure and gene 

regulation to decipher the possible regulatory scenarios. 

 
Software for the identification of differential chromatin 
interactions 
 
Humans are allergic to change. They love to say, “We’ve always done it this 

way”. I try to fight that. That’s why I have a clock on my wall that runs 
counter-clockwise. 

 
Grace Murray Hopper, 1987 
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Nowadays there are a large number of 3C experiments coming from 

different cell types, tissues and/or conditions or diseases. This has made 

necessary the development of software tools to compare them to shed 

light on the biological implications of genome structural changes. 

The vast majority of available software to identify differential 

interactions are bin or pixel based, limiting the identification of 

chromatin loops (Table 2). Moreover, some of the tools presented in 

chromatin loop detection methods section present a version to assess 

differential interactions between experiments. Here are summarized the 

most used: 

 

1. HOMER (Heinz et al., 2010) 

First, HOMER identifies the interactions in the first experiment as 

described in the “Chromatin loop detection methods” section. Then, 

quantifies the number of reads per interaction in the second experiment. 

In order to retrieve significant interactions independent statistics are 

computed for the second experiment on its background model and 

compared to the first experiment. The output contains the Z-score, 

logP and number of reads supporting the interaction between the 

experiment and the background. 

 

2. DiffHiC (Lun & Smyth, 2015) 

As previously explained, the main purpose of DiffHiC is to capture the 

differential significant interactions between experiments. In this case 

applies a quasi-likelihood F-test (QLF-test) that yields a p-value per bin. 

It also corrects for multiple testing to control the FDR with the 

Benjamini-Hochberg method (Benjamini & Hochberg, 1995). These 

two values can be used to threshold the differential interactions. 
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Table 3. Comparison between features of some currently available 
software for differential chromatin contact data analysis. In this table are 
included the methods explained before as well as other available methods. All 
the software result in statistical information of the structural changes. * might 
be implemented in future versions. ** (Anders & Huber, 2010). Independent 
Hypothesis Weighting (IHW); locally weighted linear regression (loess); 
general linear model (GLM).  

 Datatype Normalization Algorithm 

HOMER Hi-C ✓ Background model 

DiffHiC Hi-C, Capture 
Hi-C* 

✓ QLF-test 

HiBrowse 
(Paulsen, Sandve, et al., 

2014) 

Hi-C, ChIA-
PET 

✓ Monte Carlo 

HiCdat 
(Schmid, Grob, & 

Grossniklaus, 2015) 

Hi-C, ChIP-
Seq, RNA-seq, 

BS-seq, 
genome 

annotation 

✓ Signed difference 
matrices 

FIND 
(Djekidel, Chen, & 

Zhang, 2018) 

Hi-C ✓ Spatial Poisson 

Selfish 
(Ardakany, Ay, & 

Lonardi, 2019) 

Hi-C  Self-similarity metric 

Chicdiff 
(Cairns, Ochard, 

Malysheva, & 
Spivakov, 2019) 

Promoter 
Capture Hi-C 

✓ IHW 

HiCcompare 
(Stansfield, Cresswell, 

Vladimirov, & 
Dozmorov, 2018) 

Hi-C ✓ Z-score from loess 

MultiHiCcompare 
(Stansfield, Cresswell, 
& Dozmorov, 2019) 

Hi-C ✓ GLM 

ACCOST 
(Cook, Hristov, Le 

Roch, Vert, & Noble, 
2020) 

Hi-C  Extended model 
used by DEseq** 
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Chapter I 
 
Identification of chromatin loops from Hi-C interaction matrices 

by CTCF-CTCF topology classification 
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ABSTRACT 
 
Genome-wide profiling of  long-range interactions has revealed that the 

CCCTC-Binding factor (CTCF) often anchors chromatin loops and is 

enriched at boundaries of  the so-called Topologically Associating 

Domains or TADs, which suggests that CTCF is essential in the 3D 

organization of  chromatin. However, the systematic topological 

classification of  pairwise CTCF-CTCF interactions has not been yet 

explored. 

Here, we developed a computational pipeline able to classify all CTCF-

CTCF pairs according to their chromatin interactions from Hi-C 

experiments. The interaction profiles of  all CTCF-CTCF pairs were 

further structurally clustered using Self-Organizing Feature Maps 

(SOFM) and their functionality characterized by their epigenetic states. 

The resulting cluster were then input to a convolutional neural network 

aiming at the de novo detecting chromatin loops from Hi-C interaction 

matrices. 

Our new method, called LOOPbit, is able to automatically detect higher 

number of  pairwise interactions with functional significance compared 

to other loop callers highlighting the link between chromatin structure 

and function. 
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INTRODUCTION 
 
The human genome consists of 2 meters of DNA and its folding in the 

cell nucleus is not random (Bonev and Cavalli, 2016). During the last 

decade, the three-dimensional (3D) organization of the genome have 

been associated to the regulation of multiple nuclear functions like 

DNA replication, repair, rearrangement and recombination, RNA 

processing, and transcription (Bonev and Cavalli, 2016; Dekker and 

Mirny, 2016; Sexton and Cavalli, 2015; Stadhouders et al., 2019). Indeed, 

the 3D genome is organized in a hierarchical fashion, with each layer 

regulating different functions. For instance, chromosomes are found in 

preferential areas of the nucleus, called chromosome territories (Cremer 

and Cremer, 2001). The molecular evidence of this observation was first 

brought by high-throughput Chromosome Conformation Capture (3C) 

experiments (Hi-C) (Lieberman-Aiden et al., 2009), which also revealed 

a multi-Megabase (Mb) scale structure, called chromatin compartments. 

In mammal genomes, there are mainly two compartments, A and B, 

which correlate with active, open and gene-rich and inactive, closed and 

gene-poor chromatin, respectively (Lieberman-Aiden et al., 2009). At a 

sub-Megabase level later 3C-based experiments unveiled that the 

genome can be further partitioned into self-interacting regions with 

sizes between 40 kb and 3 Mb, called Topologically Associating 

Domains (TADs) (Dixon et al., 2012; Nora et al., 2012). TADs 

modulate interactions between regulatory elements, such as promoters 

and enhancers, playing a role in transcriptional regulation. At their 

borders, TADs often harbor regions enriched in CCCTC-binding factor 

(CTCF) protein (Rao et al., 2014). CTCF is a transcription factor 

formed by 11 DNA-binding Zinc finger (ZF) that plays a major role in 
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genome architecture (Nichols and Corces, 2015). Its functionality is 

dependent on the location and the relative orientation of its binding 

sites. Interacting CTCF pairs tend to be organized in a convergent 

orientation, with the binding motifs facing each other (Rao et al., 2014). 

The distribution and organization of CTCF leading to TAD formation 

has been explained by the loop extrusion model that involves CTCF but 

also other protein complexes like cohesin (Fudenberg et al., 2016; 

Sanborn et al., 2015). Briefly, the cohesin complex, which forms a ring-

shaped structure upon loading onto chromatin, extrudes chromatin 

resulting in a growing loop of DNA. The extrusion is blocked when in 

both sides cohesin encounters two CTCF in a convergent orientation 

(Fudenberg et al., 2016; Sanborn et al., 2015). Various experiments have 

described the relevance of the binding motif orientation for loop 

formation by inverting or deleting CTCF binding sites using 

CRISPR/Cas9 experiments (Sanborn et al., 2015; Wutz et al., 2017). 

Moreover, a number of studies revealed the effect of CTCF depletion, 

resulting in a fainting of TADs and loop structures, while maintaining 

compartment organization. It suggests that CTCF and cohesin play a 

role in TAD and loop formation, but not necessarily in compartment 

maintenance (Guo et al., 2015; Hyle et al., 2019; Nora et al., 2017). 

Recently, several studies have applied Aggregate Peak Analysis (APA) 

(Rao et al., 2014), or pile-up methods (Lekschas et al., 2018) to analyze 

Hi-C datasets using the mean signal from selected regions of interest 

(Bonev et al., 2017; de Wit et al., 2013; McLaughlin et al., 2019; 

Pekowska et al., 2018; Ruiz et al., 2018; Schwarzer et al., 2017), such as 

CTCF loops. At the level of single chromatin loops, their biological 

relevance in gene regulation, has led to the development of several loop 

callers. However, most of the methods present low reproducibility 
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between biological replicates and a low correlation with different 

biological markers (Forcato et al., 2017). Here, we propose to use Self-

Organizing Feature Maps (SOFM) (Kohonen, 1987), an artificial neural 

network, to classify the signal from pairs of CTCF without any prior 

information about their topological organization. This approach allows 

us to obtain sub-populations of CTCF-CTCF interacting structures and 

to identify their epigenetic signature in an unsupervised manner. As a 

result, we next trained a convolutional neural network (CNN), and used 

the generated model in our tool, called LOOPbit, to identify chromatin 

loops in a robust, fast and genome-wide manner. 

 

RESULTS 
 
Classifying CTCF-CTCF interactions using Self-Organizing 

Feature Maps (SOFMs) and Uniform Manifold Approximation 

and Projection (UMAP). 

SOFMs are dependent on several parameters, such as the grid size 

(number of neurons or clusters), the learning radius, the step size, the 

standard deviation and the number of iterations or epochs (Kohonen, 

1987). To unveil the best combination of SOFM parameters in the 

context of CTCF-CTCF submatrices classification, we first extracted 

the Hi-C submatrices of all possible cis pairs of CTCF peaks linearly 

separated between 45 kb and 1.5 Mb in the genome (Fig. 1a). These 

submatrices, here referred to as "CTCF-CTCF submatrices", spanned 

over 45 kb (20 kb of each side of the 5 kb bin with a given CTCF peak). 

Next, all extracted CTCF submatrices were input to a SOFM that 

resulted in a total of 1,152 SOFMs each with different combinations of 
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parameters (Methods). To select the optimal set of parameters, we 

assessed three measures: (i) the percentage of classified submatrices 

where singletons (SOFM neurons with only one submatrix) were 

considered as non-classified; (ii) variability between neurons; and (iii) 

average compartment-type segregation across neurons. These three 

quality measures aimed at identifying the “best” classification that 

maximized the number of CTCF-CTCF submatrices classified, the 

separation between neurons (i.e., increased variability inter-neuron), and 

the homogenous genome compartment type within neurons. Of all 

varied parameters, the SOFM grid and the step sizes were the most 

sensitive to the final classification (Fig. 1b and Supplementary Fig. 1). 

The three measures mentioned above were optimal for grid size of 30, 

learning radius of 5, standard deviation of 0.5, step of 0.01 and, 30 

epochs. Such optimal SOFM map can be represented as a grid map 

where each cell (neuron) is composed by a set of similar CTCF-CTCF 

submatrices represented by its medoid submatrix (Fig. 1c). The SOFM 

map clearly reflects a variety of CTCF-CTCF submatrices from loop 

forming pairs (lower-left corner) to non-interacting pairs (upper-right 

corner). Next, the resulting 900 SOFM neurons were further classified 

into CTCF-CTCF clusters by computing the Euclidean distance 

between the medoid submatrices and projecting it into a two-

dimensional UMAP (McInnes, Healy, & Melville, 2018), a non-linear 

manifold dimension reduction followed by a density-based clustering 

algorithm (HDBSCAN) (Campello et al., 2013). The two-dimensional 

UMAP resulted in 10 clusters of unique CTCF-CTCF pairing patterns, 

from the most structured canonical cross pattern (CTCF-CTCF cluster 

1 including 11 SOFM neurons with a total of 2,685 CTCF-CTCF 

submatrices) to a completely flat pattern with no interaction (CTCF-
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CTCF cluster 10 with 7 SOFM neurons and 1,565 CTCF-CTCF 

submatrices) (Fig. 1d). Our results suggest that CTCF-CTCF pairs can 

adopt a variety of well-defined topological signatures observed in a Hi-

C matrix. Next, we set ourselves to functionally characterize each of the 

detected CTCF-CTCF clusters. 

 

Functional characterization of the CTCF-CTCF clusters. 

 As described before, segregation of A/B compartment types between 

neurons was used as a metric to select the optimal set of parameters for 

the SOFM classifier. However, such measure was agnostic to the 

medoid submatrix topology representing each neuron. Interestingly, 

clusters with clear loop topology (that is, CTCF-CTCF clusters 1 to 5) 

are enriched in A compartment at the anchor points of the loops. 

Conversely, clusters with non-interacting CTCF-CTCF (that is, clusters 

6 to 10) are enriched in B compartment (Fig. 2a). This separation 

between clusters 1 to 5 and 6 to 10 is also observed when revealing 

enrichments in CTCF pairs with different directionalitiesError! 

Bookmark not defined. (Rao et al., 2014), CTCF-CTCF clusters with 

clear interaction patterns are enriched in convergent-oriented CTCF-

CTCF (clusters 1 to 4, Fig. 2b), while non-interacting patterns are 

enriched in divergent-oriented CTCF-CTCF (clusters 7 to 10, Fig. 2c). 

Parallel-oriented CTCF-CTCF are enriched in mid-interacting signal 

clusters (clusters 5 and 6, Fig. 2d). CTCF-CTCF clusters with loop 

topology (that is, clusters 1 to 3) have a mean genomic distance between 

CTCF peaks of between ~634 kb and ~680 kb (Fig. 2e). CTCF-CTCF 

clusters 7 to 10, which correspond to enrichment of B compartment 

and divergent orientation, present shorter mean genomic distances 
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spanning from ~510 kb to ~629 kb (Fig. 2e). To assess whether 

chromatin state correlate with the CTCF-CTCF clusters, we next 

assessed the chromatin state enrichment in the anchors of CTCF sites 

for each cluster (Methods). Interestingly, pairs of CTCFs that form 

loop-like structures are enriched with enhancer-promoter interactions 

(with one anchor points labelled as “enhancer” chromatin state and the 

other as “promoter”, Methods) (Fig. 2f). Anchors falling in 

“heterochromatin” state have an almost opposite distribution among 

clusters. CTCF-CTCF clusters forming loops (clusters 1 to 5) are 

depleted of heterochromatin types while non-loop clusters (cluster 6 to 

9) are enriched in heterochromatic marks (Fig. 2g). Interestingly, 

CTCF-CTCF cluster number 10, which corresponds to the most B 

compartment cluster, has no heterochromatic anchors but is enriched 

in polycomb-promoter pairs (Fig. 2h). CTCF-CTCF pairs with 

polycomb in both anchors are enriched in mid-interacting clusters (that 

is, clusters 4 to 6) and depleted in non-interacting pairs (that is, clusters 

7 to 10) (Fig. 2i). Finally, enhancer-enhancer pairs, as expected, are 

more present in interacting clusters (clusters 1 to 4) and less abundant 

in non-interacting clusters (clusters 7 to 10) (Fig. 2j). Our analysis 

indicates the existence of clusters or types of CTCF-CTCF pairs that 

gradually expand from enhancer-promoter, convergent, mid-range 

interacting pairs in A compartment, to a polycomb-heterochromatin, 

divergent, short-range, non-interacting pairs in B compartment. Taken 

together, our results based solely in the interaction pattern of CTCF-

CTCF proteins reveal two major types of CTCF-CTCF pairing that can 

further characterize well defined functional states. 
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Loop calling using LOOPbit, a CNN trained with looping and 

non-looping CTCF-CTCF pairs. 

Next, we randomly subset a total of 6,000 CTCF-CTCF submatrices 

from clusters 1 to 5 as loop forming pairs and another 6,000 CTCF-

CTCF submatrices from clusters 7 to 10 as non-loop forming pairs. The 

two datasets, loop and non-loop, where next used to train a 

convolutional neural network (CNN), that we called LOOPbit, that 

aims at automatically assign a probability of a CTCF-CTCF pair forming 

a loop in the central bin of a 9x9 submatrix extracted from genome-

wide Hi-C experiments (Fig. 3a and Methods). LOOPbit, which was 

trained by a 20% leave-out of the used data, was then assess for accuracy 

and compared to other loop-calling methods using a recently published 

benchmark (Forcato et al., 2017). LOOPbit, similarly to other published 

methods including HICCUPS (Rao et al., 2014), GOTHiC (Mifsud et 

al., 2017), HOMER (Heinz et al., 2010), diffHiC (Lun and Smyth, 2015), 

HIPPIE (Hwang et al., 2015), and Fit-Hi-C (Ay et al., 2014), detects 

more interacting loops with an increase of the number of valid 

interactions in the Hi-C experiment (Fig. 3b), which indicates the 

dependency of such loop-detection methods on the depth of the Hi-C 

experiment. A solution to minimize this effect is to reduce data 

resolution (i.e., 5 kb to 40 kb) (Supplementary Fig. 2a). Loops detected 

by LOOPbit were of similar average size as of HICCUPS, diffHiC and 

HIPPIE (~200 kb) and larger than those by GOTHiC (~80 kb) and 

HOMER (~100 kb) but shorter than those by Fit-Hi-C (~10 Mb) (Fig. 

3c). This loop size measure is again dependent on the resolution of the 

data as loops called at 40 kb resolution increased to ~1 Mb of size for 

all methods (Supplementary Fig. 2b). Next, we assessed the ability of 

LOOPbit to reproduce loop detection by measuring the Jaccard Index 
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(JI) using replicates of previously published Hi-C experiments 

(Methods and Supplementary Table 2). Despite that LOOPbit yields 

continuous probability clouds instead of pinpointing single cells in the 

matrix, we used the exact same benchmark measures previously 

published (Forcato et al., 2017) to calculate JI between replicates (that 

is to consider two loops identical if both their anchoring bins are the 

same). With such benchmark, LOOPbit results are slightly more 

reproducible in average than compared to HOMER and Fit-Hi-C, 

similar to GOTHiC, diffHiC and HIPPIE and lower reproducibility 

than HICCUPS (Fig. 3d). Next, we compared the accuracy of the loop 

callers in terms of the biological relevance of the predicted loops. 

LOOPbit was able to detect higher percentage of enhancer-promoter 

loops than any other caller (Fig. 3e, top panel). Concomitantly, 

LOOPbit also detects less loops between heterochromatic anchors 

(Fig. 3e, middle panel) and has similar levels of non-expected loops 

(that is, between enhancer and heterochromatin, Fig. 3e, bottom 

panel). Interestingly, and likely particular to LOOPbit as it was trained 

using CTCF-CTCF selected loops, ~56% of all detected loops in the 

training had an annotated CTCF site in both anchor points (Methods). 

Altogether, our results indicate that LOOPbit has similar tolerance to 

sparse input Hi-C data as other loop callers, a characteristic related to 

the intrinsic difficulty of detecting loops (Forcato et al., 2017). 

Nonetheless, chromatin loops detected by LOOPbit show an 

enrichment in functional signatures when compared to the other 

methods. Therefore, we next focused on assessing LOOPbit 

applicability in a real case biological scenario. 
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Usability of LOOPbit to capture chromatin loops in a CTCF-

targeted degradation system. 

Next, we assessed whether LOOPbit was able to detect differential 

loops between three previously published Hi-C datasets where CTCF 

was targeted for degradation (Nora et al., 2017). The three datasets 

included non-treated cells, auxin treated cells with degraded CTCF, and 

auxin wash-off cells where CTCF recovered non-treated levels. These 

three experiments, which had around 450 million valid Hi-C pairs each, 

allowed to test whether LOOPbit was sensitive to the depletion of 

CTCF for detecting loops. First, we assessed the JI value between the 

three experiments (Fig. 4a). As expected, the JI between non-treated 

and wash-off experiments is higher (~0.1 JI and Fig. 4a). Importantly, 

LOOPbit results confirmed that the auxin-treated loops detected by 

LOOPbit were different than those for non-treated or wash-off replicas 

(0.0 JI and Fig. 4a). Next, we assessed whether the detected loops have 

enrichment of CTCF ChIP-Seq signal around the anchor points. 

Indeed, the majority of the loops detected by LOOPbit are enriched in 

CTCF at anchoring bins. This enrichment drops for the auxin-treated 

cells and is recovered for the wash-off cells (Fig. 4b). Then we 

identified that the distance between loop anchors in auxin-treated cells 

was significantly higher than in non-treated and wash-off datasets (Fig. 

4c). Finally, we show an example from the region chr3:47,600,000-

49,000,000 where LOOPbit detects two loops for non-treated and 

wash-off, that vanish for auxin-treated cells (Fig. 4d). In summary, 

LOOPbit detects chromatin loops from Hi-C interaction matrices that 

are enriched for functional interactions and, as expected, for those 

mediated by the CTCF transcription factor. 
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DISCUSSION AND CONCLUSION 
 
In this work we introduce the use of  the structure signal deconvolution 

in the context of  colocalizing DNA-binding proteins. This 

methodology aims at identifying clusters of  different structural 

patterns. Until now, most methods detecting structural patterns 

associated to DNA-binding proteins use aggregate peak analysis (APA) 

to show an average interaction pattern for different targets of  interest. 

Unfortunately, APA is blind to small subsets with specific interaction 

patterns, different from the average structure that could potentially be 

related to specific functions. 

Here, we deconvolved the genomic average CTCF-CTCF interaction 

pattern, and, based solely on structural features, we were able to classify 

each CTCF-CTCF interaction into distinct subpopulations within the 

range of  distances between CTCF pairs of  45 kb to 1.5 Mb. According 

to their structural patterns, ten CTCF clusters were obtained (Fig 1d). 

Each CTCF-CTCF cluster has a specific pattern in terms of  genome 

compartment location and epigenetic state. The first observation is that 

the genomic distance between the CTCF pairs as well as their 

orientation are relevant features to classify CTCF-CTCF interactions 

between those that structurally form and do not form loops (Bonev and 

Cavalli, 2016; Rao et al., 2014). Also expected, but less evident is that 

loop forming clusters (that is, those from cluster 1 to cluster 5) are 

enriched in A compartment and drive principally enhancer-enhancer 

and enhancer-promoter interactions. Then CTCF-CTCF clusters with 

sparse or blur signal of  interaction are often appearing in 

heterochromatin and polycomb chromatin states spanning shorter 

genomic distance, which may indicate their participation in silent 
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chromatin (Ogiyama et al., 2018) or simply highlight the overlapping of  

the signal of  polycomb-polycomb driven interactions with CTCF-

CTCF driven interactions (Narendra et al., 2015; Van Bortle and Corces, 

2012). Interestingly, we could capture the polycomb interacting 

network, which has been observed to be essential for cell differentiation 

and identity. Thus, cluster number 10, which is mostly associated to 

compartment B, no loop structure, few interactions, divergent CTCF 

binding sites and short genomic distances between anchor points, 

contained a surprising enrichment of  promoter-polycomb states which 

could be explained by polycomb driving interactions here instead of  

CTCF. While clusters 4 to 6, presented a loop pattern and were mostly 

associated to A compartment, were enriched in polycomb at both loop 

anchors, suggesting the formation of  chromatin loops for a proper cell 

identity regulation. Together these findings define subcategories of  

CTCF-CTCF interactions within which few (CTCF clusters 1 to 5 

representing ~30% of  the CTCF-CTCF interactions studied) are 

consistent with the most accepted model of  CTCF loops bringing 

together promoters and enhancers to initiate transcription (Guo et al., 

2015). 

The deconvolution of  the average signal between CTCF-CTCF pairs 

allowed us thus to identify two major types of  interactions, one forming 

a canonical loop (clusters 1 to 5) and a second not forming the canonical 

loop (clusters 7 to 10). This allowed us to generate a bona fide set of  

CTCF-CTCF submatrices that generate loops versus those that do not. 

Next, we used those two sets to train a CNN to develop the loop-caller 

LOOPbit, which was technically and biologically tested against several 

previously benchmarked methods (Forcato et al., 2017). LOOPbit, 

which was applied to 33 Hi-C experiments at 5 kb resolution and 5 
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experiments at 40 kb resolution, resulted in a number and length of  

loops similar to all other benchmarked methods and suffered from the 

same limitations. Indeed, loop-callers cannot easily replicate findings 

when comparing replicates of  low sequencing depths or binned at very 

high resolutions. Fortunately, when high sequencing depth data is 

available, LOOPbit increases its reproducibility. 

Importantly, loops called by LOOPbit were found to be particularly 

relevant in terms of  biological function. We found a clear enrichment 

of  promoter-enhancer loops and depletion of  loops between anchor 

points in heterochromatin state (Guo et al., 2015; Rao et al., 2014). 

When compared to other callers, LOOPbit detected almost twice as 

many promoter-enhancer loops. This feature is likely to be a direct 

consequence of  the SOFM classification and its ability to capture the 

functional information embedded in CTCF-pairings structures. 

LOOPbit was also able to identify differentially called loops between 

experiments where the CTCF protein was degraded by auxin-induced 

degron system (Nora et al., 2017). Interestingly, loops detected by 

LOOPbit in auxin-treated samples were significantly enriched in long-

range distances, this is in agreement with the loss of  local organization 

of  TADs and the preserved regulation of  long-range enhancer-

promoter interactions by the remaining ~20% of  CTCF (Hyle et al., 

2019; Elphege P Nora et al., 2017; Splinter et al., 2006). 

In summary, we have shown that signal deconvolution is able to define 

sub-classes of  CTCF-driven chromatin loops with specific structural 

features, which allowed us to train with an increased specificity an 

Artificial Intelligence algorithm to finally call functionally relevant 

loops. Beyond the scope of  this study, our methodology opens the 
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possibility to train our CNN on loops driven by other DNA binding 

proteins. 

 

METHODS 
 

CTCF ChIP-Seq and Hi-C data. 

CTCF ChIP-Seq experiments of Human B-lymphocyte cell line 

(GM12878) were downloaded from the ENCODE database 

(https://www.encodeproject.org/; dataset ids: ENCSR000DRZ, 

ENCSR000AKB and ENCSR000DZN) (Davis et al., 2018). After 

processing the peaks following the ENCODE pipelines available at 

https://github.com/ENCODE-DCC, only common peaks from all 

three experiments were kept resulting in a total of 52,844 CTCF peaks. 
Next, the orientation of the CTCF binding motifs was assessed by 

means of the MEME and FIMO motif-based sequence analysis tools 

(Grant et al., 2011; Ma et al., 2014). Only peaks with a statistically 

significant CTCF motif were kept (p-value < 0.05), which resulted in a 

total of 41,816 ChIP-Seq+motif peaks. This filter discarded ~21% of the 

original detected CTCF ChIP-Seq peaks.  

In situ Hi-C datasets for GM12878 cell line (Rao et al., 2014) were 

downloaded from the GEO database (Supplementary Table 1) and its 

replicates merged and parsed using TADbit as previously described 

(Serra et al., 2017). Two resolution matrices (that is, at 100 kb and at 

5 kb) were obtained and normalized using OneD (Vidal et al., 2018) 

with default parameters. The 100 kb Hi-C matrices were next used to 

calculate chromosome compartmentalization (Imakaev et al., 2012; 

Lieberman-Aiden et al., 2009) using TADbit (Serra et al., 2017). The 



 62 

5 kb resolution matrices were further parsed to subtract 45 kb squared 

submatrices centered in each axis of the matrices to any two of the 

15,597 isolated CTCF ChIP-Seq+motif peaks (that is, ~38% of all 

selected peaks above). Isolated peaks were defined as those ChIP-

Seq+motif peaks with no other peak within a 45 kb window span from 

the center of the peak. This additional filter ensured that the observed 

signal in a Hi-C submatrix was due to a particular pair of CTCF-CTCF 

peak and not multiple pairs. Finally, we subtracted a total of 130,655 

submatrices between any pair of isolated CTCF-CTCF peaks spanning 

any distance between 45 kb and 1.5 Mb, which ensured to select most 

pairs within the size of a typical TAD in the human genome (~900 kb). 

 

Submatrix analysis, deconvolution, classification and clustering. 

All 130,655 submatrices between any pair of isolated CTCF-CTCF 

peaks were next analyzed with our Python based package called Meta-

Waffle and available in GitHub (https://github.com/3DGenomes/me

tawaffle). Meta-Waffle takes as input a list of coordinates pairs 

corresponding to the selected pairs of selected peaks. Meta-Waffle then 

will extract, analyze, deconvolve and classify the submatrices using a 

Self-Organizing Feature Map (SOFM) approach (Kohonen, 1987) 

available in http://neupy.com/pages/home.html. Briefly, Meta-Waffle 

first extracts the submatrices from an input Hi-C map, which in this 

application were 45 kb per 45 kb (9x9 bins) of size. Second, the 

submatrices values are next re-scaled between 0 and 1 using a sigmoid 

function. Third, the re-scaled submatrices are input to the SOFM based 

on a series of empirically optimized parameters including the SOFM 

grid size (i.e., 10x10, 20x20, 30x30, 40x40, 45x45, and 50x50), learning 
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radius (i.e., 1,2, and 5), standard deviation (i.e., 0.5, 0.1, and 0.01), steps 

(i.e., 1, 0.5, 0.1, and 0.01), and Epochs (i.e., 30, 90, 130, and 200). 

Combination of the tested parameters resulted in a total of 1,152 

generated SOFMs. Assessing which set of parameters results in the best 

sub-matrices classification is not trivial as there is no a “standard of 

gold” for classifying CTCF-CTCF Hi-C sub-matrices. Therefore, we 

devised three measures to be maximized by the selected SOFM optimal 

parameters. First, a percentage of classified sub-matrices, which allowed 

to select the optimal parameters that result in minimal singleton cells 

(that is, cells with only one sub-matrix) after the SOFM classification. 

Second the variability between neurons. And third, a compartment 

segregation score that maximizes the segregation of SOFM cells in the 

two main genome compartments. Using the mean compartment signal 

per SOFM cell, the segregation compartment score was calculated as 

the subtraction between A and B compartment frequencies in each 

SOFM map. The SOFM optimal parameters that maximized both of 

the devised scores were: Grid size: 30 x 30; Learning radius: 5; Standard 

deviation: 0.5; Step: 0.01; and Epochs: 30. Finally, the optimal SOFM 

cells were used to generate a hierarchical clustering by means of the 

Uniform Manifold Approximation and Projection (UMAP) (McInnes 

et al., 2018), which can be used as an effective pre-processing step to 

enhance the performance of density-based clustering. The UMAP was 

computed using a local neighboring size of 6 for the manifold 

approximation, an effective minimum distance between embedded 

points of 0.3 and 100 epochs to increase its accuracy. The final 10 

clusters of Hi-C CTCF-CTCF cells were obtained by using HDBSCAN 

(Campello and D.M.J., 2013) with default parameters, considering a 
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minimum clusters size of 6 and a minimum of 6 samples in a 

neighborhood for a point to be considered a core point. 

 

Chromatin states integration. 

The chromatin 15-state model for the GM12878 cell line was 

downloaded from the Roadmap Epigenomics Consortium (Roadmap 

Epigenomics et al., 2015). Following a similar previously published 

protocol (Forcato et al., 2017), all 15 states were merged into 4 major 

classes: promoter (Active TSS, Flanking Active TSS, Bivalent/poised 

TSS Flanking bivalent TSS), enhancer (Enhancers, Genic enhancers, 

Bivalent enhancers), repressed polycomb (Repressed Polycomb, Weak 

repressed Polycomb) and heterochromatin (Heterochromatin, 

Quiescent/Low). Next, the genome was segmented into 5 kb bins, and 

each bin was classified based on the overlap (> 50 bp) with any of the 

four major chromatin states. A bin could be assigned to one or more 

categories. Next, interactions between bins were classified as “Not 

expected” (interacting promoter/enhancer bin with heterochromatin 

bin), “Promoter-Enhancer” (interacting promoter bin with an enhancer 

bin), and “Heterochromatin - Heterochromatin”, (interacting heteroch

romatin bins). 

 

The LOOPbit CNN. 

LOOPbit is a trained Convolutional Neural Network (CNN) to predict 

the localization of loops from Hi-C interaction matrices. LOOPbit was 

trained using the TensorFlow platform (https://www.tensorflow.org/) 

using a common pattern: input matrix flattening - dense layer (ReLu) - 

dropout - dense layer (Softmax). As an input, the CNN takes tensors of 
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shape (9, 9) that will be flattened in the first layer. The dense layers were 

used to perform the classification of input Hi-C cells into two different 

classes: loop and no-loop. The dropout layer is needed to avoid 

overfitting of the model (Fig 3a). The LOOPbit CNN was trained by a 

20% leave-out of the data used as test and 80% of the data for training. 

The training dataset obtained by sub-sampling a total of 6,000 randomly 

selected CTCF-CTCF submatrices from the SOFM clusters with clear 

signal of looping (loops) and another 6,000 randomly selected CTCF-

CTCF submatrices from the  SOFM clusters with no signal of looping 

(no-loop) (Fig 3a). In particular, loop submatrices were extracted from 

clusters 1, 2, 3, 4 and 5, and no-loop submatrices from clusters 7, 8, 9 

and 10 (Fig 1d). The trained model used a 0.2 drop of the data and 

1,024 neurons resulting in a classification accuracy of 85.9% and 89.6% 

for the loop and no-loop class, respectively. As LOOPbit retrieves a 

loop probability per matrix cell, the chromatin loops are defined 

according to the probability values similarity within the neighbors in a 

delimited area, which was set to 3 bins for the benchmark and 5 bins 

for the CTCF depleted experiment. Thus, multiple neighboring matrix 

cells with high loop probability would be considered to be the same 

chromatin loop. 

 

LOOPbit benchmark. 

The trained model was then use to predict loop localization in a 

different Hi-C matrix with different goals: 

1. Large-scale benchmark for loop detection: To benchmark the accuracy 

of LOOPbit detecting loops from a Hi-C input matrix, we used 

38 previously published Hi-C datasets (Supplementary 
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Table 2). To avoid biases derived from the data processing 

pipelines, all 38 datasets were all processed using the same 

protocol as the training datasets from GM12878 cell line (see 

above). Then, the Hi-C experiments were analyzed with 

LOOPbit, scanning chromosome-wise using a windows of 9x9 

bins and a step of 1 bin, to predict loops at two different 

resolutions (5 kb and 40 kb). The predicted localization of loops 

was next assessed using several measures. First, a Jaccard Index 

(JI) was computed to assess reproducibility between replicates 

of the same experiment. Two predicted loops were considered 

to be identical when they shared exactly the same anchoring bins 

in both replicates. We also computed the reproducibility 

allowing the 70% of overlapping between the chromatin loops 

(Supplementary Fig. 3). Second, to characterize the possible 

biological relevance of the predictions, the enrichment of 

diverse chromatin marks at loop anchors was calculated. For the 

benchmarking, the 15-states chromatin models for GM12878, 

IMR90 and h1-ESC cell lines were downloaded from the 

Roadmap Epigenomics Consortium (Roadmap Epigenomics et 

al., 2015) and analyzed as described above. For the fly late 

embryos dataset, the 16-chromatin states model was download 

from modENCODE (Ho et al., 2014). As previously, the states 

were also merged into 4 major classes: promoter (Promoter), 

enhancer (Enhancer 1, Enhancer 2), repressed polycomb (PC 

repressed 1, PC repressed 2), and heterochromatin/Low 

(Heterochromatin1, Heterochromatin 2, Low signal 1, Low 

signal 2, Low signal 3). Similarly, the enrichment analysis of the 

chromatin states at the loop anchors was done described above. 
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Additionally, the assessment presence of CTCF sites and their 

orientation in the base of the predicted loops was performed 

only for cis interactions identified in the Hi-C maps at 5 kb 

resolution. Briefly, CTCF ChIP-seq experiments were 

downloaded (Supplementary Table 3) and peaks processed 

using HOMER motif analysis with default parameters. The cis 

interactions conserved in at least 2 replicates within each dataset 

(with exception of Jin H1-hESC with one replicate) were 

intersected with the list of motifs of the CTCF peaks. Then, an 

interaction was considered convergent if the interacting bin 

closer to the p-terminus of the chromosome contained one 

CTCF motif on the forward strand (+ orientation), and the 

interacting bin closer to the q-terminus of the chromosome 

contained one CTCF motif on the reverse strand (– orientation) 

(Forcato et al., 2017). 

2. Control of a CTCF depleted experiment. To assess whether LOOPbit 

still detects loops in a CTCF depleted cell, we downloaded the 

Hi-C and CTCF ChIP-Sequencing data from the GSE98671 

GEO entry (Nora et al., 2017). The dataset include three 

samples: (i) untreated cells, (ii) cells treated for 2 hours with a 

degron system targeting CTCF with about 20% remaining 

CTCF after treatment, and (iii) wash-off cells with recovered 

CTCF levels. The three biological replicates were merged and 

parsed as indicated above. As in the other benchmark, we assess 

the accuracy of LOOPbit detecting loops by means of the 

Jaccard Index between replicates as well as chromatin marks 

enrichment at loop anchors (see above). 
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CODE AVAILABILITY 

Meta-Waffle as well as LOOPbit are available on GitHub: 

(https://github.com/3DGenomes/metawaffle and https://github.co

m/3DGenomes/loopbit, respectively). 
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FIGURES 
 

 

Figure 1. General overview of signal structure deconvolution. a. 
Schematic workflow to obtain CTCF clusters. b. SOFM parameters selected 
based on the percentage of classified matrices and the compartment 
segregation value (see also Supplementary Fig. 1). c. SOFM map showcasing 
the medoid of each neuron for optimal SOFM with the highest compartment 
segregation as well as highest percentage of classified CTCF-CTCF 
submatrices. d. Low dimensional representation of the SOFM neurons using 
a UMAP algorithm followed by a clustering method using HBDSCAN. A total 
of 10 clusters were obtained. Each point corresponds to a neuron in the 
SOFM map in panel c. Clusters are represented by the medoid signal and the 
number of CTCF-CTCF submatrices per cluster. 
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Figure 2. Distribution of multiple genomic features throughout CTCF 
clusters. In the first row the representative medoid of each CTCF cluster is 
represented. Below the different genomic features per cluster. In the first row 
the compartment type distribution, then the binding CTCF motif orientation, 
the distance between the two CTCFs and finally the chromatin state 
enrichment of the CTCF pairs. The dashed gray lines mark the mean, whereas 
the standard deviation is marked with lighter grey. Statistical significance 
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against the mean is calculated using Wilcoxon test, p < 0.05 (*), p < 0.001 (**), 
p < 0.0001 (***). 
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Figure 3. LOOPbit technical and biological benchmarking. a. CNN 
workflow, model building with the multiple layers to transform the input data. 
Model compilation to assess the accuracy and optimization of the model. 
Finally, training of the model using the data coming from the CTCF-CTCF 
SOFM deconvolution. b. Representation of the number of reads after filters 
and the number of identified cis-interactions by LOOPbit in all experiments at 
a 5 kb resolution (n=32). c. Average distance between the identified loop-
anchors of all the Hi-C experiments at 5  kb resolution (n=32). d. Boxplot 
representing the Jaccard Index, in here the overlapping between exact loop-
anchors were considered to be the same loop between the same replicates 
(n=39). e. Proportion of the identified cis interactions based on the chromatin 
states at their anchoring points of the datasets at 5 kb resolution (n=32). 
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Figure 4. Applicability of LOOPbit to AID-CTCF dataset (E. P. Nora 
et al., 2017). a. Jaccard Index (JI) between the three samples. b. CTCF 
enrichment in the loop anchors in the untreated, CTCF-degraded and wash-
off datasets. c. Distance between loop-anchors in the three conditions. 
Statistical significance against the mean is calculated using Wilcoxon test, p < 
0.05 (*), p < 0.001 (**), p < 0.0001 (***). d. Example of an output of LOOPbit 
from a genomic region (chr3:47,600,000-49,000,000), showing half of the 
normalized Hi-C matrix, and half with the contact frequencies. The density of 
probabilities provided by LOOPbit define the position of the chromatin loops 
(white and grey lines). 
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SUPPLEMENTARY 
 

Supplementary Table 1. GM12878 Hi-C experiments used to deconvolve 
the CTCF-CTCF topology (Rao et al., 2014). 

 

  

ID Reestriction 

enzyme 

Filtered reads 

GSM1551552 MboI 361,207,349 

GSM1551553 MboI 136,507,541 

GSM1551554 MboI 255,191,180 

GSM1551555 MboI 129,354491 

GSM1551556 MboI 148,151,521 

GSM1551557 MboI 172,219,884 

GSM1551558 MboI 99,044,057 

GSM1551559 MboI 48,503,486 

GSM1551560 MboI 48,052,662 

GSM1551561 MboI 115,277,508 

GSM1551562 MboI 58,351,032 

GSM1551563 MboI 209,244,601 

GSM1551564 MboI 94,795,755 

GSM1551565 MboI 94,272,224 

GSM1551566 MboI 147,025,950 

GSM1551567 MboI 119,160,683 

GSM1551571 MboI 228,444,864 

GSM1551572 MboI 218,414,758 

GSM1551573 MboI 77,453,007 

GSM1551577 MboI 54,523,851 

GSM1551578 MboI 121,751,924 

GSM1551588 DpnII 58,470,721 

GSM1551589 DpnII 76,770,682 

GSM1551590 DpnII 61,529,714 

GSM1551591 DpnII 93,923,134 

GSM1551598 MboI 82,406,062 
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Dataset ID Reestriction 
enzyme 

Cell type Filtered reads Resolution 
(kb) 

JIN GSM1055805 HindIII H1-hESC 134,678,276 5 

JIN GSM1055800 HindIII IMR90 104,929,328 5 

JIN GSM1055801 HindIII IMR90 175,071,658 5 

JIN GSM1154021 HindIII IMR90 97,395,328 5 

JIN GSM1154022 HindIII IMR90 79,559,232 5 

JIN GSM1154023 HindIII IMR90 52,425,794 5 

JIN GSM1154024 HindIII IMR90 54,082,516 5 

RAO GSM1551552 MboI GM12878 361,207,349 5 

RAO GSM1551569 MboI GM12878 72,934,660 5 

RAO GSM1551570 MboI GM12878 77,651,974 5 

RAO GSM1551571 MboI GM12878 228,444,864 5 

RAO GSM1551572 MboI GM12878 218,414,758 5 

RAO GSM1551573 MboI GM12878 77,453,007 5 

RAO GSM1551574 MboI GM12878 81,318,602 5 

RAO GSM1551575 MboI GM12878 80,613,339 5 

RAO GSM1551576 MboI GM12878 80,438,152 5 

RAO GSM1551577 MboI GM12878 54,523,851 5 

RAO GSM1551578 MboI GM12878 121,751,924 5 

RAO GSM1551587 DpnII GM12878 63,854,975 5 

RAO GSM1551588 DpnII GM12878 58,470,721 5 

RAO GSM1551589 DpnII GM12878 76,770,682 5 

RAO GSM1551590 DpnII GM12878 61,529,714 5 

RAO GSM1551591 DpnII GM12878 93,923,134 5 

RAO GSM1551599 MboI IMR90 164,365,813 5 

RAO GSM1551600 MboI IMR90 181,640,359 5 

RAO GSM1551601 MboI IMR90 20,676,015 5 

RAO GSM1551602 MboI IMR90 90,970,187 5 

RAO GSM1551603 MboI IMR90 186,707,523 5 

RAO  GSM1551604 MboI IMR90 198,492,270 5 

RAO GSM1551605 MboI IMR90 216,948,852 5 

Dixon 2015 GSM1267196 HindIII H1-hESC 172,971,685 5 

Dixon 2015 GSM1267197 HindIII H1-hESC 103,476,074 5 

Sexton GSM849422 DpnII Fly embryo 31,357,023 40 

Dixon 2012 GSM862723 HindIII H1-hESC 21,292,727 40 

Dixon 2012 GSM892306 HindIII H1-hESC 134,678,276 40 

Dixon 2012 GSM862724 HindIII IMR90 102,906,483 40 

Dixon 2012 GSM892307 HindIII IMR90 104,974,904 40 
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Supplementary Table 2. Hi-C experiments used for LOOPbit 
benchmarking. All the experiments were preprocessed and filtered using 
TADbit (Serra et al., 2017) and OneD normalized (Vidal et al., 2018). 
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Supplementary Table 3. CTCF ChIP-seq experiments used in the analysis. 
 
  

Experiment Cell type Accession number 

CTCF ChIP-seq H1-hESC, GM12878 GSE29611 

CTCF ChIP-seq IMR90 GSE31477 

CTCF ChIP-seq Embryo 14-16hr Oregon-
R 

GSE47264 
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Supplementary Figure 1. SOFM parameters. SOFM parameters, grid size, 
step size, epoch and learning radius, based on the percentage of classified 
matrices and the compartment segregation value (see also Fig. 1), a, b, c and 
d, respectively. 
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Supplementary Figure 2. Results benchmark at 40 kb resolution. a. 
Number of reads after filters and the number of identified cis-interactions by 
LOOPbit in all experiments at a 40 kb resolution (n=5). b. Average distance 
between the identified loop-anchors of all the Hi-C experiments at 40 kb 
resolution (n=5). 
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Supplementary Figure 3. Jaccard Index allowing 70% of overlapping 
between chromatin loops. Boxplot representing the Jaccard Index, in here 
an overlap of 70% between chromatin loops were considered to be the same 
loop between the same replicates (n=39). 
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Chapter II 
 

Quantitative comparison and automatic feature extraction for 

chromatin contact data 

  

Galan S., Machnik N., Kruse K., Díaz N., Marti-Renom MA., 
Vaquerizas JM. 

Quantitative comparison and automatic feature extraction for 
chromatin contact data.  

Accepted in Nature Genetics, to be published. 
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Abstract 

Dynamic changes in the three-dimensional organisation of 

chromatin are associated with central biological processes such as 

transcription, replication, and development. The comprehensive 

identification and quantification of these changes is therefore 

fundamental to our understanding of evolutionary and regulatory 

mechanisms. Here, we present CHESS (Comparison of Hi-C 

Experiments using Structural Similarity), an algorithm for the 

comparison of chromatin contact maps and automatic differential 

feature extraction. We demonstrate the robustness of CHESS to 

experimental variability and showcase its biological applications on: i) 

inter-species comparisons of syntenic regions in human and mouse; ii) 

intra-species identification of conformational changes in Zelda depleted 

Drosophila embryos; iii) patient-specific aberrant chromatin 

conformation in a diffuse large B-cell lymphoma sample, and, iv) the 

systematic identification chromatin contact differences in high 

resolution Capture-C data. In summary, CHESS is a computationally 

efficient method for the comparison and classification of changes in 

chromatin contact data. 

 

Introduction 
 
Eukaryotic genomes follow similar global organisational principles: a 

multi-layer, hierarchical organisation into domains, with specific three-

dimensional (3D) interactions between individual genomic regions1. 

Local chromatin conformation, however, can be variable across 

species2–6, developmental stages7–9, cell types10,11, and can change 

dynamically with transcription12, during replication13, and cell division14, 
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among others. Mutations affecting nuclear architecture have been 

shown to cause misregulation of gene expression leading to 

developmental disorders and disease (reviewed in 15;16). It is therefore of 

paramount importance to elucidate the relationship between nuclear 

architecture, evolution, and fundamental biological processes. 

Existing approaches to discover changes in the 3D 

conformation of genomic regions have relied partially on visual 

identification of differences, such as a side-by-side evaluation of Hi-C 

matrices17,18 or fold-change maps19. While visual comparisons can 

highlight specific changes in Hi-C matrices, results are often difficult to 

quantify and, by nature, cannot be automated to compare large numbers 

of matrices. More quantitative approaches have been developed. One 

class of tools focuses on the assessment of the degree of similarity or 

reproducibility between full chromatin contact matrices / datasets and 

does not allow for the identification of regions with particularly strong 

similarities or differences20–24. Another focuses on the comparison of 

specific features, such as topologically associating domains (TADs)25,26, 

or loops10,27, which limits the discovery of differences to the specific 

feature analysed. A third class of tools aims to find single pairs of bins 

with significantly differential interactions28–32 without providing any 

information about the specific type of structural feature that changes. 

Until now, there is no method that allows a systematic comparison of 

the 3D conformation of genomic regions, that is at the same time 

quantitative, able to identify and classify a range of structural variations, 

and corresponds well to the visual perception of differences. 

Here, we describe CHESS, an algorithm to robustly identify and 

classify specific similarities or differences and features in chromatin 

contact data using a feature-free approach. CHESS applies the concept 
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of the structural similarity index widely used in image analysis33,34 to 

chromatin contact matrices, assigning a structural similarity score and 

an associated p-value to pairs of genomic regions. Next, CHESS uses 

image processing approaches to automatically extract three-dimensional 

chromatin conformation features, such as TADs, stripes or loops. We 

first demonstrate the robustness of CHESS scores by evaluating the 

method on artificially generated and real, Hi-C matrices of different 

sizes, sequencing depths, and varying levels of noise. We then highlight 

the utility of CHESS in different real-world applications: i) genome-

wide structural comparisons of syntenic regions between human and 

mouse; ii) the detection of conformational changes in Drosophila 

melanogaster upon knockdown of the transcription factor Zelda during 

early embryonic development; iii) the systematic detection of 3D 

chromatin conformation changes in B-cells of a diffuse large B-cell 

lymphoma (DLBCL) patient; and, iv) the automatic detection and 

classification of subtle changes in chromatin conformation from 

genome editing experiments. Overall, our results demonstrate that 

CHESS can be successfully applied to diverse chromatin contact 

datasets to quantitatively determine structural differences between 

them. 

 

Results 
 
Overview of the CHESS algorithm 

 
The main aim of CHESS is to assess the degree of similarity 

between any pair of normalised chromatin contact matrices, and 

thereby provide a measure that allows to identify particularly similar or 
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dissimilar matrices. To calculate the comparison, we use the structural 

similarity index (SSIM), a widely used metric for similarity of matrices. 

While it was initially developed for the evaluation of image quality33,34, it 

does not make any assumptions about its input data other than that it 

comes in the form of two matrices of same dimensionality, with 

numerical entries, irrespective of how the data in these matrices have 

been generated. Outside of the computer vision field, it is for example 

also used in transportation research to compare matrix representations 

of origin-destination graphs, which differ from chromatin contact 

graphs conceptually only in that they are directed graphs35–37, and as a 

similarity metric for acoustic pressure signals38–40. 

CHESS accepts as input any pair of normalised chromatin 

contact matrices41,42, such as those produced from Hi-C or tiled 

Capture-C experiments (Fig. 1a). Matrices can originate from different 

regions in the same genome, the same genomic region across two 

experimental conditions, developmental time points, or even regions 

from different species. To calculate the similarity between the two 

matrices, which we refer to as reference (𝑅) and query (𝑄), matrix 

entries (i.e., contact pairs or pixels in the maps) are first divided by the 

expected contact intensity at the respective distance. This 

transformation is necessary since Hi-C matrices display a 

characteristically high signal at the diagonal that corresponds to an 

increased contact probability of nearby regions in linear distance43. 

CHESS comparisons on matrices that are not corrected for this 

distance-dependency of contact probabilities are sensitive to varying 

experimental noise and relative region sizes (Supplementary Fig. 1) 

(Methods). Therefore, the distance-dependency is removed by dividing 

the observed contact values by the average contact value at the 
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respective genomic distance. CHESS then scales the matrices to equal 

size and calculates the SSIM between 𝑅 and 𝑄. The SSIM score consists 

of comparisons of the brightness, contrast and structure between two 

matrices. Brightness is calculated as the mean of the signal intensity. 

Contrast is calculated as the variance in signal. The structure term is 

calculated as the correlation between signal values of two matrices. 

Then, SSIM is defined as a weighted product of these three 

components, which are scaled such that SSIM ranges between −1 and 

1. A SSIM of 0 indicates no similarity, 1 reflects identity and −1 a 

perfect inverse relationship. Typically, SSIM is computed for many 

small windows within the 𝑅 and 𝑄 matrix comparison. The full SSIM 

score (in the following referred to as 𝑆) for the particular 𝑅 vs 𝑄 pair is 

then the average of all small comparisons. We performed an in-depth 

evaluation of the three components of SSIM (Supplementary Fig. 2) 

which showed that the main contributor to similarity when applied to 

Hi-C matrices is the product of contrast and structure terms. 

𝑆 can be used directly to quantify changes in the Hi-C matrix of 

the same region: identical matrices have a “baseline” score of 𝑆 = 1, 

and the lower the score the larger the change. This makes it easy to 

quantify how much the structure of any given region is changing, for 

example under different experimental conditions. However, when 

comparing different regions, a baseline is necessary to determine the 

statistical significance of 𝑆. It is therefore essential to put the obtained 

scores into the context of an appropriate background model. For 

example, a region 𝑅 containing just a single TAD might obtain a high 

score when compared to a particular query 𝑄, but might be equally 

similar to other regions in the genome. The score for the comparison 
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of 𝑅 vs 𝑄 should then be assigned a low significance. To compute a 

suitable background model, CHESS compares the reference matrix 𝑅 

to all other regions of the same size across the genome (referred to as 

𝑄)*  in Fig. 1b). The distribution of scores from the background model 

is then used to calculate a z-score, corresponding to a normalised effect 

size, and a p-value, denoting the frequency of scores equal to or higher 

than 𝑆 in the background model (Fig. 1c) (Methods). Therefore, CHESS 

enables a quantitative comparison and assessment of statistical 

significance of contact matrix similarities. 

 

Automatic feature selection and classification of structural 

changes 

 

In addition to the identification of changes in chromosome 

conformation data, a major analytical task consists in the recognition of 

changes in specific 3D chromatin organisation features, such as TADs, 

among others. To specifically determine which 3D genome features are 

gained or lost between a pair of samples, CHESS implements a simple 

and fast workflow of image filters that allow the automatic identification 

and classification of such features in these samples (Fig. 1d). In brief, 

first, a differential contact matrix is computed between all sets of 𝑅 vs 

𝑄 matrices identified by CHESS, and gained and lost contacts in each 

matrix are separated for further analysis. Then, the matrices are 

denoised, smoothed and binarised to apply a close morphology filter to 

extract the individual areas that change in each comparison. 

Subsequently, the 2D cross-correlation between all the extracted areas 

in a dataset are computed. Finally, K-means clustering is used to detect 
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the main structural features identified in these areas, such as TADs, 

loops, stripes and borders (Fig. 1d). Overall, this strategy allows us to 

automatically identify the precise 3D structural features, such as TADs, 

loops and stripes, which are present in a particular differential region 

between samples captured by CHESS. 

 

CHESS requires only low sequencing depth and tolerates a high 

level of noise 

 
To robustly estimate the performance of CHESS with regards 

to different experimental conditions (e.g., noise, sequencing depth) and 

matrix parameters (e.g., size, size difference), we generated a set of 

synthetic Hi-C data designed to reflect features commonly observed in 

real-world Hi-C matrices, including an exponential decay of contact 

frequency with genomic distance, TADs, and loops between genomic 

regions (Methods). Typical numbers of valid read pairs in current Hi-C 

studies range from 0.1 million per megabase (M/Mb)10,18 to 1 M/Mb12. 

To test the performance of CHESS on datasets with different 

sequencing depths, we generated synthetic matrices within a range of 

numbers of simulated read pairs. As an example of a deeply sequenced 

dataset, we generated matrices with an equivalent depth of 1.5 M/Mb, 

corresponding to ~4.5 billion mapped reads across the whole genome 

in a Hi-C experiment on human cells. Datasets at lower sequencing 

depths were then generated by downsampling the number of read pairs 

in the original matrix by randomly removing pairs of contacts 

(Supplementary Fig. 3) (Methods). This ensures that the overall 

structure of the dataset is maintained for the evaluation of sequencing 
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depth-related effects. In addition, experimental noise was also simulated 

in the synthetic datasets by removing a number of contacts and adding 

them at random locations (Supplementary Fig. 3). This allows us to 

model the effect of random ligations, a main contributor to noise in 

chromatin contact maps. 

To test the sensitivity of CHESS to noise and sequencing depth, 

we used the algorithm to compare an artificial matrix 𝑅 to a copy 𝑄 of 

itself, while adjusting the sequencing depth and adding noise to both of 

the matrices independently. As a background to calculate p-values and 

z-scores, similarity scores were additionally calculated in comparisons 

of 𝑅 to 1,000 randomly generated artificial matrices at the same 

sequencing depth and noise level (Fig. 2a). These simulations show that 

𝑄 is correctly assigned the best CHESS score for “deeply sequenced” 

matrices up to a noise level of 90 % (Fig. 2b). Beyond that, ranking 

quickly becomes random, which is reflected in a uniform distribution 

of p-values (Supplementary Fig. 4). For artificial matrices with less 

contacts, CHESS still tolerates noise levels of 60 - 80 %. 

Correspondingly, z-scores are consistently high for the same levels of 

noise depending on sequencing depth (Fig. 2c). Interestingly, z-scores 

do not peak at 0 % noise. This can be explained by the changing 

standard deviations of the background scores: with increasing noise, the 

similarity of random matrices increases, leading to progressively 

narrower distributions of CHESS scores. This leads to a slight increase 

in z-scores up until the point that CHESS is no longer able to identify 

𝑄 as the top-ranking hit in these comparisons (Supplementary Fig. 4). 

To verify these results in a real-world setting, we repeated the 

above analyses on a deeply sequenced mouse embryonic stem cell Hi-C 

dataset12. Interestingly, the results on real data indicate an even higher 
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robustness of CHESS to high noise and low sequencing depth when 

compared with the synthetic datasets; while high robustness requires 

sufficiently large region sizes (> 2.5 Mb, which is likely due to the 

increased amount of distinctive features in larger regions), CHESS 

tolerates sequencing depths as low as 0.06 M/Mb and 80 % noise 

(Supplementary Fig. 5), demonstrating the applicability of this approach 

in shallow-sequenced datasets. The increased robustness to noise is 

likely due to a stronger signal enrichment in structural features, 

compared to the artificial data, since structural features remain visible 

by eye even at 95 % noise (Supplementary Fig. 5). Overall these results 

demonstrate the ability of CHESS to reliably detect similarities between 

Hi-C matrices even at very low sequencing depths and with high 

amounts of noise. 

Then we tested the reproducibility of CHESS on real 

datasets12,44 by performing a parameter sweep analysis, testing the effect 

of different values for window span (250 kb - 3 Mb), step size (25 kb - 

1 Mb), resolution (10 kb and 25 kb) and sequencing depth (percentage 

of original reads: 20 - 80) (Supplementary Fig. 6). The Jaccard Index (JI) 

was used to assess the overlap between differential regions obtained by 

CHESS runs with combinations of the parameter values listed above. 

The results showed high JI across all tested ranges of parameters values 

(Supplementary Fig. 6). This analysis shows the high robustness of 

CHESS across different parameter values, in capturing structural 

changes between genomic regions. 

Finally, to benchmark CHESS, we compared it to three widely 

used differential interaction detection packages: HOMER32, diffHiC30 

and ACCOST31. All methods were run using default parameters on Hi-

C interaction matrices at 5 kb resolution for chromosome 19 from 
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mESC (mouse embryonic stem cells) and NPC (neural progenitor 

cells)12. Since a gold-standard for assessing accuracy of differential 

chromatin interactions does not exist, we performed the analysis by 

examining the degree of overlap in differential interacting regions 

identified by the three methods. Overall, we find a high level of overlap 

between the three methods (Supplementary Fig. 7). However, it is 

important to note that CHESS identifies entire regions with differences 

while diffHiC, HOMER and ACCOST identify specific pairs of bins 

with significant differences in contact counts. A small proportion of 

differences were reported only by HOMER, diffHiC and ACCOST. It 

is important to note that many of these differential interactions were 

filtered out by CHESS due to low signal to noise ratios.  

Together, these results demonstrate that CHESS is able to 

robustly identify changes in chromatin conformation features over a 

wide range of experimental conditions. 

 

CHESS similarity scores are consistent for matrices of different 

sizes 

An immediate advantage of the analytical strategy behind 

CHESS is that it allows the calculation of 𝑆 for matrices of different 

sizes. This is needed to measure, for example, the similarity between Hi-

C maps of different species, or for paralog-containing regions within 

the same genome. To do so, we implemented an upscaling 

transformation of the smaller of the two matrices (in case these are of 

different sizes) using nearest-neighbour interpolation (Methods). To 

test the performance of CHESS on matrices of different sizes, we 

calculated 𝑆 using an artificial matrix 𝑅 and a matrix 𝑄 that maintains 
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the relative positions, sizes and intensities of all features in 𝑅 (i.e., TADs 

and loops), but differs in size by a certain scaling factor (Fig. 2d, 

Supplementary Fig. 8, Methods). Randomly generated matrices of the 

same size as 𝑄 serve as background to calculate statistical significance. 

In a “deeply sequenced” Hi-C matrix of 1.5 M/Mb, divided into equally 

sized regions of at least 60 bins, CHESS consistently ranks 𝑄 as the 

matrix most similar to 𝑅 even if 𝑄 is less than half the size of 𝑅 (Fig. 

2e, f). Small matrices 𝑄 (smaller than 30 bins) do not rank higher than 

random matrices, since they do not provide enough space to fit the 

features (i.e., TADs and loops) of the reference matrix. A test with a 

simulated sequencing depth of 100 k/Mb and 25 % noise led to similar 

results, demonstrating that the method’s ability to detect similarities 

between matrices of different sizes is robust to experimental noise and 

different levels of sequencing depth (Supplementary Fig. 9). 

 

Comprehensive ranking of syntenic regions by structural 

similarity 

 
Having validated the ability of CHESS to reliably and robustly 

detect similarities and differences between synthetic and real Hi-C 

matrices, we next showcase its use in a real research scenario. Previous 

studies have examined the level of chromatin conformation similarity 

for regions of synteny (genomic blocks with high degrees of sequence 

conservation between species) finding a high degree of structural 

conservation between them2,10,18. These comparisons have mainly 

focused on visual examination of individual examples10,18, correlation 

analyses of specific 3D genome features, such as the binding of 
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architectural proteins2, measures of insulation45, or the contact strength 

correlation within syntenic regions2. However, a genome-wide 

quantification of the degree of similarity at the contact matrix level has 

not yet been performed. 

We used CHESS to determine the level of chromatin 

conformation conservation for 175 regions of synteny between human 

and mouse obtained from Synteny Portal46. To calculate statistical 

significance for the degree of conservation, we computed 𝑆 scores for 

100 random permutations of syntenic region pairs. Similarity scores for 

true syntenic region pairs were strongly and consistently higher than 

those of random pairs (Fig. 3a, 𝑝 < 0.01), permutation test). Therefore, 

in agreement with previous observations2,10,18, these results demonstrate 

genome-wide that overall, regions of synteny between human and 

mouse share a similar three-dimensional chromatin organisation. 

However, our results highlight that not all regions of synteny have the 

same degree of structural similarity (Fig. 3b), suggesting that the 

evolutionary constraints on three-dimensional chromatin structure are 

not uniform across the genome, resulting in some regions evolving at 

different rates than others. In summary, our results demonstrate that 

CHESS can be used to automatically quantify and rank 3D structural 

similarity genome-wide between species. 

 

Detection of structural variation upon genetic perturbation 

 

A common problem in comparative genomics is the detection 

of emerging changes in a system with different experimental conditions, 

including targeted introduction of disturbances into the system. When 
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applied to chromatin conformation, this approach has been 

fundamental to determine the contribution to 3D chromatin 

organisation of different factors, such as CTCF, cohesin or Wapl, 

among others47–52. However, these studies have mostly relied on the 

detection of visual differences between Hi-C maps or the comparison 

of measurements derived from these maps, such as the directionality or 

insulation indices. 

Using the insulation score19, a metric that is low at TAD borders 

and high within TADs, we have previously shown that depletion of the 

pioneer transcription factor Zelda during early embryonic development 

in Drosophila leads to a weakening of insulation at TAD boundaries in 

loci strongly bound by Zelda in wild type embryos9. Therefore, we 

sought to evaluate the sensitivity of CHESS in detecting these changes, 

as well as its ability to detect further modifications in chromatin 

conformation that would have escaped detection by a simple 

comparison of insulation scores. 

Running CHESS in a comparison between wild type nuclear 

cycle 14 and Zelda-depleted embryos resulted in the detection of 65 

regions in the genomes with changes in chromatin conformation. Out 

of the 62 differential boundaries identified before9, 29 were contained 

in regions marked as changing by CHESS. Visual inspection of the 

structural changes at the remaining 33 differential boundaries revealed 

that the differences in contact intensities were typically small and 

primarily caused by a decline in short distance contacts around the 

boundary (Supplementary Fig. 10). We reasoned that a smaller matrix 

size should increase the sensitivity of CHESS with regards to these types 

of changes, since they would correspond to a larger fraction of the input 

matrix pixels. Indeed, after reducing the size of the input matrices from 
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250 kb to 125 kb, we detected 51 out of 63 differential boundaries as 

changing, along with 163 additional regions. It is important to note that 

this approach is likely to miss changes occurring far away from the 

diagonal, such as differences in the contact probability decay, long-

range loops, or large TADs. Therefore, we conclude that, by altering the 

size of compared matrices, it is possible to fine-tune CHESS to the scale 

of changes it can detect.  

Visual examination of the regions captured in the first run, as 

well as of control regions, confirmed the detected differences. Notably, 

besides the already reported loss of insulation at a subset of Zelda-

bound TAD boundaries (Fig. 4a)9, the newly identified regions 

highlighted a range of structural changes, such as differing signal 

intensity away from the main diagonal of the Hi-C matrix, suggesting 

changing levels of chromatin compaction, and varying contact 

intensities inside TADs and at long distances (Fig. 4b-e). These results 

demonstrate that CHESS is able to systematically identify regions that 

undergo structural changes upon genetic perturbation, and that the 

identified differences cover a broad spectrum of structural features 

which correspond well to visual perception of differences. 

 

CHESS identifies structural abnormalities in diffuse large B-cell 

lymphoma 

 
We next sought to determine whether CHESS is able to detect 

structural differences in clinically relevant samples. The characterisation 

of these differences is of prime importance since changes in the 3D 

structure of chromatin in mammals can have a strong impact on 

genomic regulation and thereby give rise to disease phenotypes53,54 and 
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the activation of oncogenes55,56. We reasoned that by comprehensively 

scanning a genome for structural abnormalities compared to a healthy 

control, CHESS can greatly aid our understanding of the relationship 

between nuclear architecture and disease. To test this, we performed a 

CHESS comparison using a recent Hi-C dataset from primary diffuse 

large B-cell lymphoma (DLBCL) and healthy B-cells44. Across the whole 

genome, CHESS identified 810 regions of 2 Mb size with prominent 

structural variations in DLBCL (Fig. 5a, b). After filtering these for 

regions with high experimental noise (Methods), we obtained a high-

confidence set of 112 regions exhibiting clear changes between healthy 

and diseased B-cells (Fig. 5c-e). One of the most striking examples 

displayed the emergence of well-defined TAD structures in a region that 

seemed devoid of structural features in healthy cells (Fig. 5e). Despite 

these differences, our analysis also revealed that the majority of 

structures remained unchanged (Fig. 5f). To gain further insight into the 

nature of the changes, we applied the feature extraction component of 

CHESS to the 112 selected regions. This resulted in the identification 

of 144 gained features (104 stripes and 40 TADs) and 53 lost loops in 

the DLBCL sample compared to the control (Fig. 5g). This illustrates 

the application of CHESS to examine disease-related processes by 

systematically identifying genomic regions and characterizing the 

specific features whose 3D structure differs between healthy and 

diseased cells. 

 

Identification and automatic classification of structural features 

in Capture-C data 
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Finally, we investigated whether CHESS is also applicable to 

additional types of chromatin conformation capture datasets, such as 

tiled Capture-C experiments57. To do so, we analysed previously 

published Capture-C experiments for CRISPR-Cas9 mediated genome 

edits of architectural features, such as deletion of CTCF binding sites, 

modifications of TAD boundaries, and a TAD inversion at the 

Sox9/Kcnj2 locus58. CHESS identified all previously described 3D 

rearrangements in the different mutants compared to wild-type mice 

(Fig. 6 and Supplementary Fig. 11). In addition, CHESS identified 

marked differences that had not been reported in the original study. 

For example, besides the previously reported TAD fusion 

resulting from the Sox9 regulatory domain inversion (InvC), CHESS 

captured the loss of chromatin loops between the two TADs (Fig. 6a). 

A similar inversion not including the TAD boundary (Inv-Intra) did not 

result in a TAD fusion. However, CHESS captured an increase in 

contact frequencies across the boundary in the form of a stripe (Fig. 

6b). Applying CHESS to all generated mutants systematically 

characterised the set of very subtle differences across these samples 

(Supplementary Fig. 11). This demonstrates that CHESS is able to 

automatically identify and classify chromatin contact differences. 

 

Discussion 

 
The increasing wealth of available Hi-C datasets calls for fast, 

quantitative algorithms that enable a systematic comparison of local 

chromatin structure. However, currently there are no algorithmic 

approaches for Hi-C data analysis that allow automated comparisons 

and classification of the identified 3D genome changes directly on the 
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matrix level. This results in a lack of identification and characterisation 

of a broad spectrum of differences in chromatin conformation maps 

that can be visually recognised, but that may be missed by more 

specialised approaches relying on pre-processed features. We have 

developed CHESS to fill this gap by providing automated, systematic 

Hi-C matrix comparisons, and feature classification that correspond 

well to the visual perception of structural differences (Fig. 1). A major 

feature of CHESS is that it is not limited to comparing regions within a 

single dataset, but comparisons can be made between samples, cell 

types, developmental stages, and even across different species, which 

makes it widely applicable. We demonstrate that CHESS is robust to 

experimental noise and usable on shallow sequenced datasets (Fig. 2). 

Furthermore, we show that CHESS can be used to perform cross 

species comparisons (Fig. 3) and that it is able to detect 3D genome 

changes in genomes of different sizes (Fig. 4-5). Finally, we demonstrate 

that CHESS can be used to analyse chromatin conformation capture 

datasets generated using different experimental approaches, such as 

Capture-C57 (Fig. 6). Therefore, we expect CHESS to be immediately 

applicable to other datasets, including tethered chromatin conformation 

capture (TCC)59, digestion-ligation-only Hi-C (DLO Hi-C)60, genome 

architecture mapping (GAM)61, and microscopy based methods, such 

as Hi-M62. 

An additional advantage of CHESS is the fast and highly 

efficient implementation of the structural similarity algorithm that has a 

very small memory footprint, as only the two matrices that are being 

compared need to be loaded. As a comparison, when scanning a whole 

chromosome for structural differences between conditions, CHESS 

achieves a 4-320 times speedup at 3 times lower memory consumption 
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compared to HOMER, diffHiC and ACCOST 30,32,31 (Supplementary 

Fig. 7). This makes the approach usable without requiring an advanced 

computational infrastructure. In addition, the nature of CHESS 

comparisons makes them trivially parallelizable, so that the algorithm 

can be efficiently sped up by dedicating more computational resources 

to it. This allows CHESS to make the myriad of comparisons necessary 

for more complex biological questions, including the background 

computation for comparing regions of different origin. 

Within this context, a promising outlook for CHESS 

applications is the de novo discovery of structurally similar regions 

between two genomes using an all-against-all comparison approach. 

These “structurally syntenic” region pairs could provide fundamental 

insights on the evolution of nuclear architecture and its 3D constraints, 

including the effects of processes affecting 3D chromatin organisation 

such as rearrangements or changes in the binding of architectural 

proteins. Despite the efficiency of CHESS, further work and heuristics 

would be necessary to make this computationally tractable. Highlighting 

the importance of considering the 3D genome in evolutionary analyses, 

we find different degrees of structural conservation across mammalian 

evolution (Fig. 4), suggesting different rates of evolutionary change in 

these regions. This demonstrates how CHESS can already facilitate the 

study of evolutionary genomics in the context of 3D structure. 

Similarly, the identification of structural variation and its 

association with abnormalities in three-dimensional genome 

organisation and gene expression misregulation is central to evaluate the 

contribution of chromatin organisation to disease-generating processes. 

As a proof of principle, here we demonstrate how CHESS can be used 

to detect a number of chromatin conformation alterations genome-wide 
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in B-cells from a DLBCL patient without the need of previous 

knowledge regarding the nature of the aberrations. Interestingly, our 

analysis identified regions in the genome gaining structural features, 

such as TADs and loops, despite the lack of protein coding genes in 

these regions. Instead, these regions frequently contained long non-

coding RNAs and pseudogenes. Future work integrating other patient-

matched genome-wide datasets, such as chromatin opening or RNA-

seq, will be necessary to determine the cause and consequence of these 

changes in relation to disease. 

Future improvements of CHESS might benefit from a further 

dissection of the structural similarity index, which may allow us to 

pinpoint the contributions of individual regions to overall matrix 

similarity. In general, structural similarity of images is an active field of 

research. Modifications improving the robustness of SSIM to small 

shifts in position 63 or its power to identify similar sub-images 64 are 

promising, but it remains to be determined which of the algorithms 

developed for assessing image similarity are compatible with the specific 

requirements of Hi-C matrix comparisons. 

In conclusion, CHESS is an algorithm to quantitatively assess and 

classify the structural similarity of two genomic regions from 

chromosome conformation capture data - without the need for feature 

selection prior to comparison. CHESS is highly tolerant of differences 

in chromatin conformation capture library size and the noise level of 

datasets. Its applications include the ranking of known region pairs by 

similarity, such as syntenic regions in different species, and the 

discovery of structural changes, such as chromatin conformational 

changes of the same genomic region in two different conditions. 

CHESS has great utility in the field of chromatin conformation and can 
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simplify the identification of disease-associated structural variation in 

clinical applications. 
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Figures 

 

Figure 1. CHESS overview and examples. a, CHESS workflow, showing 
the observed/expected transformation, size/orientation adjustments, and 
structural similarity score 𝑆 calculation on two example matrices 𝑅 and 𝑄. b, 
Example of a background model for z-score and p-value calculation. 
Specifically, similarity scores are calculated for each 𝑛	𝑥	𝑛 matrix 𝑄)* at every 
position 𝑖 along the diagonal of the whole chromosome matrix. c, Distribution 
of similarity scores for 𝑄)*  can be used to calculate p-values and z-scores for 
𝑆. d, Feature extraction workflow, showing the contact difference map 
between 𝑅 and 𝑄 matrices identified by CHESS, and the list of image filters 
applied. The specific differential gained and lost structures are highlighted in 
red and blue boxes, respectively. Finally, all the features are classified 
according to their structural pattern, such as TADs, loops and stripes. 
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Figure 2. CHESS evaluation on synthetic Hi-C matrices. a-c, Tests for 
the tolerance of CHESS to increasing levels of simulated experimental noise. 
a, Schematic representation of the tests for the sensitivity of CHESS to noise. 
b, CHESS p-values on synthetic matrices with increasing levels of noise. c, 
CHESS z-scores on synthetic matrices with increasing levels of noise. d-e, 
Tests for the performance of CHESS when comparing matrices of different 
sizes. d, Schematic representation of different scaling factors used to generate 
a query matrix 𝑄 from a reference 𝑅. e, Dependence of CHESS p-values on 
the scaling factor of synthetic matrices 𝑄 and 𝑅. f, Dependence of CHESS z-
scores on the scaling factor. b, c and e, f, Solid lines indicate the mean, shaded 
areas the standard deviation. Lowest possible p-value in all tests: 0.001.  
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Figure 3. Global comparison of syntenic region similarity between H. 
sapiens and M. musculus using CHESS. a, Distributions of CHESS z-
scores for 175 syntenic region pairs in H. sapiens and M. musculus (red) and 100 
random permutations of region pairs (grey). Permutation test p-value < 0.01, 
comparing the mean scores of randomly permuted pairs to the mean score of 
real syntenic regions. b, Examples of syntenic regions with increasing CHESS 
z-scores from left to right. 
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Figure 4. Identification of chromatin conformational changes in D. 
melanogaster embryos after Zelda (zld) knockdown. a, Zelda binding 
signal in wild type (wt) (top), insulation score difference between wt and zld 
knockdown (kd) (middle, smoothed), and difference between similarity scores 
calculated on wt to kd and wt to water injection control (ctrl) (bottom) for 
regions on a subset of chromosome 3L. Dotted blue lines indicate differential 
boundaries as identified by 9. b-e, Examples of regions with the strongest 
conformational changes between wt and kd, showing observed/expected 
(obs/exp) and normalised Hi-C matrices, and log2-fold-change matrices for 
wt/kd. White lines on the Hi-C plots correspond to regions of the genome 
masked from the analysis due to low mappability.  
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Figure 5. Identification of structural changes in a diffuse large B-cell 
lymphoma. a, b Similarity of Hi-C data generated from healthy B-cells 
(control) and a diffuse large B-cell lymphoma (patient), as assessed by CHESS 
for 2 Mb regions. Highly dissimilar regions (z-normalised similarity score <= 
-1.2) are coloured in red, where noisy regions (signal to noise ratio < 0.6) are 
in light red. c-f, Examples of regions with conformational changes (c-e) and 



 118 

conservation (f) between healthy and diseased B-cells, showing 
observed/expected (obs/exp) and normalised Hi-C matrices, and log2-fold-
change matrices for control/patient. g, Three examples of highly dissimilar 
regions identified by CHESS, with the gained and lost features highlighted in 
red and blue, respectively. The features are annotated according to their 
structural category. 
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Figure 6. Feature extraction from Capture-C data from Despang et al.58. 
Lost and gained structures in the mutant are highlighted in blue and red 
squares, respectively. Red hexagons demarcate the positions of the TAD 
boundaries. a, Feature extraction of the wt against the InvC mutant, which 
presents an inversion in the Sox9 sequence represented in a grey box. b, 
Feature extraction of the wt versus the Inv-intra mutant, which has the same 
sequence inverted, but now not including the border between the two TADs. 
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Supplementary Figures 

 

Supplementary Figure 1. Performance analysis of the CHESS 
algorithm. a, CHESS p-values in dependence of the relative noise level in 
synthetic matrices. Shown are the cases of equal amounts of noise in reference 
𝑅 and query 𝑄 (top) and different amounts of noise (bottom, noise only added 
to 𝑄). Each case is examined for normalised and observed/expected 
(obs/exp) matrices, and different window sizes in the SSIM algorithm. b, 
CHESS p-values in dependence of the size factor between 𝑅 and 𝑄 for 
normalised (left) and observed/expected (obs/exp) matrices (right). a, b, Solid 
lines indicate the mean, shaded areas the standard deviation.  
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Supplementary Figure 2. Technical details of the SSIM algorithm 
applied to Hi-C matrices. a, Schematic overview of the structural similarity 
algorithm (SSIM). SSIM scores are calculated on all submatrices of 𝑅 /	𝑄 at a 
given window size (WS). The final SSIM score is the mean of all SSIM 
submatrix scores. b, SSIM submatrix formula. Different components are 
coloured: illuminance (green), structure * contrast (red). x, y refer to 
submatrices (at the same positions) of the two full matrices for which the SSIM 
average is computed (see panel a). µ indicates the mean, σ the standard 
deviation, c1 and c2 are small constants that are introduced only for numerical 
reasons. c and d, SSIM comparisons of a matrix to itself (red dots) and 1,000 
random matrices of the same size (blue dots). c, SSIM component values in 
dependence of SSIM score for different SSIM window sizes. d, Scatterplots 
of ranked SSIM scores at window size 100 vs. ranked scores at smaller window 
sizes.  
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Supplementary Figure 3. Examples of synthetic matrices with varying 
levels of noise and simulated number of read pairs (depth). In all panels, 
depth was adjusted before adding noise. 
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Supplementary Figure 4. Additional analysis of the CHESS algorithm. 
a, Uniform distribution of p-values for comparisons of matrices with 100 % 
noise added. b, Distribution of structural similarity scores (ssim) for 
background and truth comparisons at 25 k/Mb and 1.5 M/Mb simulated 
sequencing depth. Above each: Fractional change (value at x % noise/value at 
0 % noise) of the standard deviation (std) of background scores and mean of 
truth scores. 
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Supplementary Figure 5. CHESS is robust to changes in noise due to 
random ligations and sequencing depth in real Hi-C data. a, Examples 
of matrices used in this analysis including a 5, 80 and 95 % of added noise 
(random ligations between pairs of loci). We tested to what extent CHESS is 
able to identify two matrices as being identical, after noise and sequencing 
depth were adjusted independently in them. Matrices are based on 
chromosome 19 data from Bonev et al. 201712. a, examples of the data with 
different amounts of noise. b, p-values and z-scores of CHESS runs with 
different window sizes, noise levels and simulated sequencing depths. Step size 
and matrix resolution were both 25 kb. Lines for 2 x 105 and 1 x 106 overlap 
for runs with window sizes > 1 Mb. c, As in panel a, but comparing CHESS 
runs with 2.5 Mb window size on matrices binned at 25 kb and 10 kb. b, and 
c, solid lines indicate the mean, shaded areas the standard deviation. 
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Supplementary Figure 6. Reproducibility of CHESS using different 
window (WS) and step sizes (SS), sequencing depths and resolutions. 
For this analysis were tested the WS (250 kb - 3 Mb), SS (25 kb - 1 Mb), 
sequencing depths (percentage of reads between 20 and 80) and resolutions 
(10 kb and 25 kb) (details in Methods). The first two boxplots with red dots 
represent the Jaccard indices (JI) between CHESS results in Bonev et al. 201712 
using different WS, SS and sequencing depths. The boxplots with blue dots 
correspond to the Díaz et al.44 dataset; in this case using different WS, SS, and 
then between different WS, SS and resolutions. mESC mouse embryonic stem 
cells, NPC neural progenitor cells. Boxplot elements: centre line: median, 
whiskers: 1.5x interquartile range, box limits: upper-lower quartile. 
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Supplementary Figure 7. CHESS benchmark against HOMER, diffHiC 
and ACCOST. a, Upset plot representing the intersection size between 
differential interactions of CHESS, HOMER, diffHiC and ACCOST. Below, 
an example is shown for each intersected group. b, Computational 
requirements of CHESS, HOMER, diffHiC and ACCOST. The first line plot 
shows the CPU usage, the second the memory consumption. The vertical 
dashed line represents the end of the run. 
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Supplementary Figure 8. Examples of synthetic matrices scaled to 
different sizes. Matrix bins were rounded up to the nearest integer after 
scaling. Only matrices with at least two bins were plotted. 
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Supplementary Figure 9. CHESS performance on differently sized 
simulated matrices with realistic noise and sequencing depth. Shown are 
CHESS p- and z-scores for comparisons of 𝑅 with a read depth of 100 read 
pairs / 100 bins and a resized copy 𝑄. Scaling factor is indicated on the 𝑋 axis. 
A noise level of 25 % was added to both matrices independently. Sequencing 
depth was adjusted to 100 k/Mb. Solid lines indicate the mean, shaded areas 
the standard deviation. Colours correspond to the different sizes of 𝑅. 
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Supplementary Figure 10. Examples of minor changes in boundary 
strength after zld knockdown in D. melanogaster. Hi-C matrices are 
shown for a water injected control, wild type (wt) cells and cells after zld 
knockdown (kd). Arrows indicate positions of differential boundaries between 
wt and kd as identified previously9. White lines correspond to regions of the 
genome masked from the analysis due to low mappability. 
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Supplementary Figure 11. Feature extraction from Capture-C data. 
Examples of differential feature extraction with CHESS between the wt and 
different mutants in the Despang et al.58 dataset. The lost and gained structures 
in the mutants are highlighted in blue and red squares, respectively. Below 
each comparison, the genomic annotation is represented, highlighting the 
modification of each mutant. The vertical lines define the CTCF binding 
motifs, dashed when deleted. Red hexagons demarcate TAD boundaries. 
Feature extraction between wt and a, ∆Bor, in which the border was deleted. 
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b, ∆BorC1, in which the border and the first CTCF binding motif were deleted. 
C, ∆BorC1-2, in which the border and the two first CTCF binding motifs were 
deleted. d, ∆BorC1-4, in which the border and four CTCF binding motifs were 
deleted. e, ∆CTCF,  in which the border and all the CTCF binding motifs were 
removed. f, Bor-KnockIn, in which the border was moved to a new location 
within the Sox9 locus. g, InvC∆Bor, in which the Sox9 sequence was inverted 
and the border was removed. 
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Supplementary Figure 12. Effects of downsampling and noise on decay 
of average contact frequency with genomic distance. a, after 
downsampling to lower sequencing depths, b, with increased percentage of 
random ligations (= noise). Decay functions were computed on data from 
Bonev et al. 201712, on chromosome 19.
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Supplementary Figure 13. Effect of downsampling on number of 
optimal clusters. The optimal number of clusters was computed after 
downsampling all extracted features from the Hi-C data generated from 
healthy B-cells (control) and a diffuse large B-cell lymphoma (patient. This 
process was repeated 1,000 times. The solid line indicates the mean, shaded 
area corresponds to the standard deviation. 
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Methods 

 
The CHESS pipeline 

 
The CHESS pipeline is illustrated in Fig. 1. CHESS takes two 

normalised, whole-genome Hi-C matrices as input. We recommend to 

use matrices 20	 × 20 bins in size with no more than 10 % of all bins 

unmappable (without signal). In a first step, these are transformed to 

observed/expected (obs/exp) matrices43 by dividing each matrix entry 

by the average of all entries at the same distance (see below). From 

those, the submatrices corresponding to the specified regions of interest 

are extracted, forming a comparison pair 𝑅 (reference) and 𝑄 (query). 

Subsequently, 𝑅 or 𝑄 are resized to the dimensions of the larger matrix 

using nearest neighbour interpolation (skimage.transform.resize in the 

scipy package65). If necessary, the matrices are rotated by 180 degrees 

(for example in case a syntenic region is annotated on the reverse 

strand). All bins marked as unmappable in either of the matrices are 

removed from both matrices. The resulting processed versions of 𝑅 and 

𝑄 are handed to the structural similarity function, yielding a raw 

similarity score. We use an implementation of the original structural 

similarity algorithm33,34 available for the Python programming language 

in the scikit-image module65. 

In some applications, 𝑅 may be compared to a pool of matrices 

𝑃 forming the background model. The process described above for the 

pair 𝑅,𝑄 is repeated for each pair 𝑅, 𝑄) ∈ 𝑃. We use the similarity 

scores 𝐵 obtained from these background comparisons to calculate a p-

value and a z-score for the raw score 𝑠 = 𝑠𝑠𝑖𝑚(𝑅, 𝑄): 
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𝑝 = |{?∈)	|	?	@A}|
|)|

, 

𝑧 =
𝑠 − 𝜇)
𝜎)

 

where 𝜇) denotes the mean, and 𝜎) the standard deviation of scores in 

𝐵. We used two kinds of background models for this manuscript. (1) all 

submatrices of 𝑄’s size located on the same chromosome as 𝑄 for the 

comparison of chromatin structures between syntenic regions, and (2) 

a pool of synthetic matrices built with the same parameters as 𝑄 but 

randomly generated features for the tests of CHESS on synthetic Hi-C 

data. CHESS p-values are not automatically corrected for multiple 

testing, as this is not necessary for all use cases. If CHESS is used to 

identify significantly similar or different regions across the genome with 

a fixed acceptance threshold, the CHESS p-values need to be corrected 

for multiple testing. 

Next, CHESS extracts individual features that are different between 

two genomic regions (Fig. 1d). First, gained and lost contacts in the 𝑅 

matrix are computed and separated as increased/decreased interactions 

with respect to 𝑄. Then, a set of image filters, with the parameters 

automatically adjusted according to the matrix size or user-defined, are 

applied to these two matrices that are from now on considered as 

images: 

1. Denoise the image using a bilateral filter66: this is an edge-

preserving filter that averages pixels based on their spatial 

closeness and their radiometric similarity, by default they are 

computed using a window size of 3. The Gaussian function of 

the Euclidean distance between two pixels and its standard 

deviation is used to obtain the spatial closeness. The Euclidean 
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distance between two colour values is used for the radiometric 

similarity, CHESS by default uses the mean value of the matrix. 

It has to be noted that higher values of spatial closeness and 

radiometric similarity will average the bins with larger 

differences. 

2. Smooth the image using a median filter: this scans the image 

using a square shaped array with an area computed 

automatically depending on the picture size. This array scans the 

image using a windows size, and computes the median of the 

pixels, smoothing the signal. Higher values will smooth larger 

structures, while smaller values will consider more subtle 

signals. 

3. Image binarization using Otsu’s method67: it returns a threshold 

value that separates the pixels in two classes. This algorithm 

searches for the threshold that minimises the intra-class 

variance. This threshold by default is calculated using whole 

matrix values to be more refined. 

4. Morphological closing of the image: this filter is used to remove 

small dark spots and connect small bright cracks. This helps to 

remove the remaining noise and to enclose the individual 

structures. By default CHESS uses a square of 8 bins, higher 

values will enclose larger structures while lower will consider 

smaller or more punctuated signals. 

With the four filters, CHESS extracts individual structures, which 

can be used to get the main structural clusters according to their 

pattern of interactions. First, the 2D-cross correlation between all 

the individual features is computed. Finally, the K-means clustering 

algorithm is applied to obtain the main structural clusters. The 
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optimal number of clusters is computed according to the Elbow 

method by fitting the model within a range of 1 to 15 clusters, which 

may vary depending on the number of identified differential 

features. The robustness of the clustering was assessed by 

downsampling the identified structural features from the Hi-C data 

generated from healthy B-cells (control) and a diffuse large B-cell 

lymphoma (patient) and computing the optimal number of clusters. 

This process was repeated 1,000 times. The clustering step proved 

to be highly robust to data sparsity (Supplementary Fig. 13). 

 

Calculation of observed/expected matrices 

 

We calculated the observe /expected form 𝑀GHA/J?K of a 

balanced matrix 𝑀 by first computing the expected matrix 𝑀J?K by 

determining the average value of each diagonal in 𝑀: 

𝑀J?K
*,L =

∑ NOPQ,Q
RSO
QTU

VWX
  with 𝐷 = 𝑖 − 𝑗, 𝑖 ≥ 𝑗 

As 𝑀 is symmetric around 𝑀*\L , we computed this only for 𝑖 ≥ 𝑗 and 

then set 𝑀J?K
*,L = 𝑀J?K

L,* . 

We then calculated 𝑀GHA/J?K: 

𝑀GHA/J?K
*,L =

N],^

N_`a],^
. 

As for the matrix balancing, the observed/expected calculation 

was performed on a per-chromosome basis for real Hi-C data. 

 

Generation of synthetic Hi-C matrices 
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To generate a synthetic matrix, we performed the following 

steps: first, we produced an empty matrix 𝑀 of dimensions 𝑛b. We then 

filled 𝑀 with simulated pairs of reads, modelling the power-law decay 

of signal away from the main diagonal43,68 by: 

𝑥* = (10Wc +
1 − 10Wc

1000 𝑖)We.fg, 𝑖 = 0,1. . . , 𝑛 

where 𝑥* denotes the read counts at the 𝑖th diagonal, counted as moving 

away from the main diagonal at 𝑖 = 0. At this point, the number of 

reads is uniform in each diagonal and the mean number of reads per bin 

is inversely proportional to the matrix size. We then added structural 

features resembling TADs and loops to 𝑀. 

First, three layers of TADs were added. TAD size was randomly 

determined by drawing a size 𝑠 from a truncated normal distribution, 

while TAD intensity was modelled by adding a constant read count to 

a square of area 𝑠b. For each consecutive layer the TAD size decreased 

while the TAD intensity increased (Supplementary Table 1). To start 

with, we placed a first TAD at a randomly chosen position on the main 

diagonal at least 0.1𝑛 away from each end of the diagonal. We then 

filled the main diagonal to both sides of this initial TAD with adjacent 

TADs. In cases where a space smaller than the lower bound of the 

truncated normal occurred at the ends of a diagonal, we covered it by 

adding a small TAD that can be thought of as being part of a bigger 

TAD reaching into the field of view from an adjacent genomic region. 

In the second and third round, smaller TADs were placed inside the 

TADs generated in the previous round. 

Second, corner loops were added to TADs with a chance of 

1/3. Loops were modelled as squares with an additional, randomly 

selected intensity of either 90 %, 140 % or 220 % of the intensity and 
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side lengths of either 5 %, 7 %, or 10 % of the side length of the 

corresponding TAD. 

 

Simulation of different sequencing depths and experimental 

noise 

 
Hi-C matrix quality and resolution are primarily affected by two 

properties: (1) random ligations, which are distinct from proximity 

ligations; and (2) sequencing depth. These properties have distinct 

effects: random ligations are an indicator of poor library quality and 

introduces “noise” into the Hi-C matrix, while sequencing depth 

determines the achievable matrix resolution. However, they are not 

entirely independent. Increased sequencing depth can mitigate the 

effects of random ligations by enriching contacts in regions with “true” 

proximity signal. 

In all our tests of CHESS, lower sequencing depths were 

simulated by subsampling, i.e. the random removal of “ligation 

fragment” pairs in a high-resolution matrix. Random ligations, on the 

other hand, were simulated by the random replacement of pairs in a 

matrix. In particular, to model different sequencing depths, we lowered 

the density of read pairs in 𝑀 by removing random read pairs until we 

reached the desired number of read pairs 𝑑. Subsequently, we simulated 

an experimental noise level 𝜀 by reassigning 𝑟 = 𝜀 × 𝑑 read pairs to 

randomly selected pairs of loci.  

As stated above, our noise models random ligations in the Hi-

C experiment that can occur after the genomic material has been 

digested. These random ligations are intramolecular ligations (not 

within a crosslinked pair). The probability of a random ligation of two 
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fragments is therefore not related to the linear genomic distance 

between them. In consequence, the distance decay graph is expected to 

approach a flat line as the fraction of random ligations in the Hi-C 

library increases. Our noise procedure moves a fraction of the reads in 

each bin to randomly chosen bins, where each bin in the map has the 

same chance of receiving a read. This procedure results in the expected 

behaviour of the distance decay graph, as shown in Supplementary Fig. 

12. 

The downsampling procedure on the other hand removes 

randomly chosen reads, without adding them anywhere. As the fraction 

of reads removed is on average the same at all genomic distances, the 

distance decay graph does not change significantly due to sampling. 

Slight deviations occur only close to the maximum distance, where the 

numbers of reads and bins are small enough to allow for random 

fluctuations of the mean after sampling. We show the largely unchanged 

distance decay in Supplementary Fig. 12. 

We simulated the size difference of regions with similar 

structural features by first generating a reference matrix of a certain size 

𝑛k and saving the relative positions and intensities of structural features 

in it. We then generated query matrices of smaller sizes 𝑛l and placed 

the structural features at the same relative positions (rounded to the 

next full bin) with the same intensities. To ensure equal sequencing 

depth relative to the matrix size between the scaled matrices, we 

subsequently adjusted the depth of the scaled matrices to a scaled depth 

𝑑l in relation to the depth of the reference matrix 𝑑k: 

𝑑l = 𝑑k
mn
mo

. 
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The structural similarity algorithm in chromatin contact map 

comparisons 

 
The SSIM score for whole matrices is calculated from the average of 

multiple “sub-scores” obtained on smaller subsets of a matrix, the size of 

which can be controlled with a dedicated window size parameter 

(Supplementary Fig. 2). Each sub-score consists of three components: 

corrections for illuminance (differences in brightness), corrections for 

contrast, and the correlation coefficient between the two matrices 

(Supplementary Fig. 2)33,34. 

We quantified the contribution of each component to the final score 

in comparisons of a random synthetic Hi-C reference matrix to an identical 

copy of itself and to a pool of 1,000 randomly generated matrices of the same 

size. We assessed the dependence of the final score on each component using 

multiple window sizes (Supplementary Fig. 2). For sufficiently large window 

sizes, SSIM sub-scores are perfectly reflected by the combination of the 

contrast and correlation components. Only for very small window sizes does 

the illuminance play a minor role. While different window sizes affect the 

scores and relative rank of random matrices (Supplementary Fig. 2), the 

comparison of the reference matrix to its identical copy yields a perfect score 

in all comparisons, independently of the window size. 

 

Tests on synthetic Hi-C matrices 

 
We tested CHESS on synthetic matrices in two main test scenarios: 

noise/sequencing depth tests and size/size difference tests. The test setup was 

similar in both scenarios. For each test run, we first defined the test conditions 

by setting the following parameters: the size of reference matrices, query 

matrices, the reference noise level, query noise level and the sequencing depth 

(always the same for reference and query), the type of the input matrices 
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(normalised or observed/expected), and the window size parameter of the 

structural similarity function. Using these parameters, we then generated a 

reference set of 100 synthetic Hi-C matrices. Corresponding to these 

references we then produced 100 query matrices, differing in a certain 

parameter (noise level or size) by a certain factor, but with the same structural 

features in the same positions (see ‘Generation of synthetic Hi-C matrices’). 

We then generated a decoy pool of 1,000 synthetic matrices with all parameters 

equal to the query matrices, but with randomly generated features. Each 

reference matrix was compared to its corresponding query using the structural 

similarity algorithm with the specified parameters, and also to each matrix in 

the decoy pool, which we used as a simulation of the genomic background. 

The p and z-scores were then calculated as described in ‘The CHESS 

pipeline’. The best possible p-value in this test (𝑝 ≤ q
qeee

) was achieved 

when the comparison score of 𝑅 vs 𝑄 was greater than all scores from 

comparisons to the 1,000 random matrices. 

 

Processing of Hi-C matrices 

 
We obtained Hi-C sequencing reads for human IMR9010, mouse 

CH12.LX10 (GSE63525), mouse ESC and NPC12, and fly embryos at 

nuclear cycle 14, in wild-type (wt), Zelda knockdown cells (zld kd) and 

injected water control (wc)9: ArrayExpress: E-MTAB-4918), as well as 

B-cell and diffuse large B-cell lymphoma44.The B-cell and DLBCL data 

was processed as described previously 44. Fly data was processed as 

described in previously9. 

All human and the and CH12.LX mouse paired-end FASTQ 

files were mapped independently to the reference genome (hg19 and 

mm10, respectively) in an iterative fashion using Bowtie 2.2.4 with the 
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“--very-sensitive” preset. Briefly, unmapped reads were truncated by 15 

bp and realigned iteratively, until a valid alignment could be found or 

the truncated read was shorter than 25 bp. Only uniquely mapping reads 

with a mapping quality (MAPQ) >= 30 were retained for downstream 

analysis. mESC and NPC FASTQ files were mapped using BWA mem 

version 0.7.17-r1188 in a non-iterative fashion with default parameters. 

Restriction fragments were computationally predicted using the 

Biopython69 “Restriction” module. Reads are assigned to fragments, 

and fragments pairs are formed according to read pairs. Pairs are then 

filtered for self-ligated fragments, PCR duplicates (both read pairs 

mapping within 1 bp of each other), read pairs mapping further that 5 

kb from the nearest restriction sites, and ligation products indicating 

uninformative ligation products70. The Hi-C matrix is built by binning 

each genome at a given resolution of 10 kb and 25 kb and counting valid 

fragment pairs falling into each respective pair of bins. Finally, bins that 

have less than 25 % (human) or 10 % (mouse) of the median number 

of fragments per bin are masked, and the matrix is normalised using KR 

matrix balancing42 on each chromosome independently. 

 

Tests on real Hi-C matrices 

 
The robustness of CHESS was also tested using real Hi-C data 

from 12 and from 44 experiments. We show the results in the 

Supplementary Fig 5. and Supplementary Fig. 6. 

Firstly, the data from Bonev et al. 201712, binned at 25 kb, was 

used to repeat the analysis performed on synthetic matrices (see ‘Tests 

on synthetic Hi-C matrices’). First, different levels of noise (5 %, 20 %, 

35 %, 50 %, 65 %, 80 %, 95 %) were added to the raw Hi-C matrix of 
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chromosome 19. This was done twice independently to obtain versions 

𝐴 and 𝐵 of the matrix, in order to model matrices coming from 

independent experiments. Each of these was then downsampled (to 1 

%, 5 %, 50 %, 95 % of the original number of reads), corrected and 

transformed to observed/expected values. For each combination noise 

and sampling depth, CHESS was run in default mode (using 

comparisons to the rest of the chromosome as background model) to 

compare the same regions in the 𝐴 and 𝐵 matrices. These region pairs 

were obtained from a sliding window of sizes 1 Mb, 2.5 Mb, 5 Mb, 7.5 

Mb and 10 Mb, with a step size of 25 kb. The resulting mean p-values 

and z-scores, as well as their variances were plotted as shown in 

Supplementary Fig. 5. The best possible p-value, or perfect 

performance, was achieved when no other region got an equal or higher 

similarity score than the region with identical positions in 𝐴 and 𝐵. We 

found the dependence on window size to be the main parameter 

governing the robustness of CHESS; smaller bin size, i.e. higher 

resolution of the maps, did not qualitatively change the results 

(Supplementary Fig. 5). 

Secondly, Hi-C data from mouse embryonic stem cells (mESC) 

and neural progenitor cells (NPC) at a resolution of 25 kb from the 

same dataset12 was used for the reproducibility analysis of CHESS. 

CHESS was run using different combinations of window span (250 kb, 

500 kb, 1 Mb, 2 Mb and 3 Mb) and step sizes (25 kb, 250 kb, 500 kb 

and 1 Mb). The Jaccard Index (JI) was calculated to obtain the overlap 

between the identified genomic regions. To check the reproducibility of 

CHESS using different sequencing depths (percentage of reads: 80, 60, 

40 and 20), we applied CHESS using 25 kb resolution, 3 Mb windows 

span and 500 kb step size. The data from Díaz et al.44, was used to check 
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how consistent was CHESS when using different values of windows 

span (250 kb, 500 kb, 1 Mb, 2 Mb and 3 Mb), step sizes (25 kb, 250 kb, 

500 kb and 1 Mb) and resolutions (25 kb and 10 kb). One point in the 

plot (Supplementary Fig. 6) corresponds to the Jaccard Index computed 

for a pair of CHESS runs with different combinations of parameter 

values. All possible pairs were compared.  

 

Benchmark analysis 

 
Hi-C interaction matrices at 5 kb resolution for the 

chromosome 19 from mESC and NPC from Bonev et al. 201712 were 

scanned for differences using different tools. HOMER32, diffHiC30 and 

ACCOST31 were run using default parameters. CHESS was run using a 

windows span of 1 Mb and a step size of 500 kb. All tools were run 

using a single CPU computational machine of the following 

characteristics: Intel Xeon W @ 3GHZ with 128 Gb of RAM. 

In particular, CHESS was run using a windows span of 1 Mb 

and a step size of 500 kb. CHESS ran ~7 times faster than HOMER, 

~15 times faster than diffHiC and ~320 times faster than ACCOST and 

had a ~4 times lower peak memory consumption than the two other 

tools (Supplementary Fig. 7). 

To assess the similarities and differences between the three 

methods, we selected for each method, all bins that were involved in a 

significant difference between mESC and NPC contact maps. Then, the 

selected bins were intersected to identify those bins common to the 

three methods, any common bin by at least two of the three methods 

and, finally, any bin identified only by one of the methods 

(Supplementary Fig. 7). CHESS and HOMER identified about 9,000 
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bins with differential interactions between mESC and NPC while 

diffHiC identified about 4,000 and ACCOST about 6,000. Of the total 

identified differences, ~12 % were identified by CHESS, HOMER, 

diffHiC and ACCOST. About 50 % of differences were identified by 

CHESS and HOMER alone. 

 

Comparison of syntenic regions between H. sapiens and M. 
musculus 

 
We retrieved the annotations for syntenic blocks between hg19 

(selected as reference) and mm10 with a resolution of 300 kb using 

SynBuilder46. We used CHESS to compare syntenic region pairs in Hi-

C matrices at 25 kb resolution for the human fibroblasts and the mouse 

lymphoblasts. As control, we also did comparisons between region pairs 

with shuffled syntenic region IDs. This was repeated 100 times. To 

reduce the runtime of our method, we used a randomly chosen subset 

of 175 syntenic regions. For the same reason, we restricted the 

background calculation to the query chromosome the syntenic region 

was located on. 

 

Detecting structural changes between wild type and zld 

knockdown in Drosophila melanogaster 

 
We obtained the locations of differential boundaries in 

Drosophila melanogaster and Hi-C data at 5 kb resolution for the wild type 

(wt), zld knockdown (kd) and water control (wc) for nuclear cycle 14 

from Hug et al.9. From these Hi-C data we computed insulation scores 

as described in the same publication. We smoothed the resulting index 
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track with a Savitzky-Golay (implemented in Scipy71) filter (window = 

29, polyorder = 2, derivative = 0). We obtained data for Zld binding 

ChIP-seq experiments from Blythe et al.72. 

We partitioned the D. melanogaster genome into 250 kb / 125 kb 

regions with a step size of 50 kb / 25 kb. We ran CHESS on the 

observed/expected transformed Hi-C matrices corresponding to these 

regions, always comparing a region in wt to the same region in wc and 

kd. Inside the same windows we summed the 𝑙𝑜𝑔qe(𝑞 − 𝑣𝑎𝑙𝑢𝑒𝑠) for all 

Zld-peaks with a 𝑙𝑜𝑔qe(𝑞 − 𝑣𝑎𝑙𝑢𝑒) > 10 to generate the Zld binding 

tracks. 

Using the CHESS comparisons between wt–wc and wt–kd, we 

defined regions with structural changes as regions located at local 

minima of the track with values smaller or equal to −0.1. 

Differential boundaries were defined as boundaries present in 

wt c14 cells (calls available at https://github.com/vaquerizaslab/Hug-

et-al-Cell-2017-Supp-Site) at which the difference in the log2(insulation 

index) between the wt c14 and the zld knockdown was greater or equal 

to 0.3. 

We defined differential boundaries that were closer than 125 kb 

/ 62.5 kb to the centre of a structurally changing region as captured by 

CHESS. 

 

Detecting structural changes between healthy B-cells and a 

diffuse large B-cell lymphoma 

 
We obtained Hi-C data from Díaz et al.44, and processed it as 

described in the original publication. We partitioned the human hg19 

genome into 2 Mb regions with a step size of 500 kb. We used CHESS 
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to compare the corresponding regions in the observed/expected 

transformed Hi-C data from the healthy B-cells (control) and a diffuse 

large B-cell lymphoma (patient). To distinguish between actual 

structural differences and such attributable to noise we calculated a 

signal to noise ratio 𝑟 for the differential signal of each matrix pair: 

𝑟 = }~
��~

,𝑀 = 𝑀�Gm�kG� − 𝑀K��*Jm� . 

This was done for a sliding window of 7 × 7 pixels on the 

matrix. The total signal to noise ratio was taken as the mean of all 

windows. Regions with a z-normalised similarity score ≤ −1.2 and a 

signal to noise ratio 𝑟 ≥ 0.6 were labelled and accepted as changing. 

 

Feature extraction from Capture-C data 

 
CHESS feature extraction was applied to Capture-C 

experiments from Despang et al.58 (GSE125294). Interaction matrices 

normalised by the Knight-Ruiz (KR) balancing method were 

downloaded. All the mutants were compared to the wild type. All the 

differential features were extracted and clustered according to their 

interaction pattern (see ‘The CHESS pipeline’). Three structural clusters 

were obtained: TAD, loop and stripe. Some examples are shown in Fig. 

6 and Supplementary Fig.11. 

 

Availability of data and materials 

 
The CHESS source code, as well as code for generating 

synthetic Hi-C matrices and running tests on them is available on 

GitHub: (https://github.com/vaquerizaslab/CHESS). This includes 
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tools for the generation of synthetic Hi-C matrices as outlined in this 

paper. 

CHESS was implemented in Python 3.6.1. 

Internally CHESS uses the following packages: FAN-C73, Cython74, 

SciPy71, Scikit-image65, NumPy75,76, Pandas77, Pathos78, Pybedtools79, 

Kneed80, intervaltree (https://github.com/chaimleib/intervaltree) and 

tqdm (https://github.com/tqdm/tqdm). 
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Supplementary Tables 
 

  

Supplementary Table 1. Parameters of truncated normal distributions of TAD 
sizes used for the generation of random features in synthetic Hi-C matrices. 
Mean, standard deviation (𝜇, 𝝈), upper and lower bounds indicate number of 
pixels, intensity is in number of pairs. 

round 𝜇 𝜎 upper 

bound 

lower 

bound 

intensity 

1 150 100 300 100 75 

2 20 15 50 10 100 

3 10 5 20 5 150 
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Discussion 
 

Identification of chromatin loops from Hi-C interaction 
matrices by CTCF-CTCF topology classification 
 

During the last years an outstanding number of  studies proved the high 

relevance of  the 3D organization of  chromatin and its tight relationship 

with functional and regulatory processes. Specifically, chromatin loops 

are able to bring close into space regulatory units, forming transcription 

factories or hubs. The vast majority of  these loops are flanked by two 

CTCFs in a convergent oriented manner. However, not all the 

chromatin loops present a canonical CTCF binding and the same 

functional signature. What is more, not all convergent CTCFs are 

observed to form chromatin loops and same-oriented CTCFs can also 

be part of  3D structural rearrangements. Until now, the studies to unveil 

the role of  features, which may play a role in chromatin organization, 

have been based on their average interaction frequency. The main 

limitation of  pilling up pairs of  genomic coordinates, is the possibility 

to lose small clusters with a similar, and non-average, structure and 

function. 

In Chapter I, we present an algorithm to deconvolve the structural 

signal of  Hi-C experiments in the context of  colocalizing DNA-binding 

proteins, called Meta-Waffle. Specifically, we deconvolved the genomic 

average CTCF-CTCF interaction pattern within 45 kb and 1.5 Mb, due 

to its relevant role in formation and maintenance of  chromatin loops. 

A total of  10 CTCFs subpopulations were identified after applying 

Meta-Waffle and clustering. Thanks to this classification, we were able to 

check the distribution of  various features, such as binding motif  
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orientation, compartment type and genomic distance. First, we 

observed that the genomic distance between pairs of  CTCF is relevant 

to form a chromatin loop. It can be explained by the chromatin loop 

extrusion speed and the exchange dynamics of  the SMC complex, and 

its requirement of  ATP to translocate the DNA (Ganji et al., 2018; 

Terakawa et al., 2017). Moreover, polymer simulation modelling allowed 

the study of  TAD borders, probing the interval of  distance to insulate 

neighbouring TADs, being comparable to our results (Fudenberg et al., 

2016). As expected, the convergent oriented CTCFs, highly correlated 

with the loop structure pattern, whereas divergent oriented CTCFs 

presented the opposite trend. It has been observed that the 

directionality imposed by the DNA bending-initiated loop extrusion 

model produces a higher interaction frequency with the DNA on one 

side of  it, which agrees with the low interacting frequency between 

divergent CTCF sites (Y. Guo et al., 2015; S. S. Rao et al., 2014). As for 

same-oriented CTCF pairs, which can be encountered during loop 

extrusion, nonetheless their anti-parallel orientation would be 

unfavourable for dimerization, and the extrusion will continue until 

finding a convergent site. Interestingly, this approach allowed us to 

separate the A/B compartment types, with an enrichment of  A 

compartment in the clusters presenting a loop structure pattern. We 

wanted to study in detail the chromatin states distribution through the 

CTCF-CTCF structural clusters. The promoter-enhancer state 

correlated with the A compartment type, being enriched in the 

canonical loop structure clusters, in line with the loop function, which 

is to bring together regulatory units for the proper gene expression. The 

heterochromatin state was found in between the two cluster extremes, 

which had the expected structural pattern according to the genomic 
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distance between CTCF pairs. It may be caused by the role of  active 

and bivalent chromatin into 3D chromatin organization, consequently 

organizing the heterochromatin domains. The two clusters with 

depleted interactions were enriched by promoter-polycomb state, which 

may represent cell-specific “forbidden” loops. Surprisingly, the 

polycomb-polycomb state was enriched in those clusters with more 

interactions than expected. We hypothesize that they can contribute to 

gene silencing of  the already described polycomb-dependent loops 

(Eagen, Aiden, & Kornberg, 2017), or simply appear by the overlapping 

of  polycomb-polycomb and CTCF-CTCF driven interactions. Here has 

been inspected the interval of  distance from 45 kb to 1.5 Mb in which 

CTCF it is known to play a relevant role. However, it can be applied to 

other distances, which would shed light on the complex regulation of  

the hierarchical structural layers. 

The signal deconvolution of  CTCFs pairs, also allowed us to obtain 

those specifically forming chromatin loops, which were used to train a 

CNN as a loop caller, called here LOOPbit. The lack of  ground-truth-

positive and ground-truth-negative controls, hinders the robust 

quantification of  the specificity and the sensitivity of  its performance. 

To overcome this limitation, LOOPbit was compared to a previously 

published benchmark in which a large set of  experiments by 6 different 

loop callers were analysed (Forcato et al., 2017). LOOPbit was applied 

to 33 Hi-C experiments at 5 kb resolution and to 4 experiments at 40 kb 

resolution. It presented the same trend to identify more cis interactions 

when having greater number of  filtered reads. However, this trend was 

more pronounced in LOOPbit, as the algorithm relies on the immediate 

surrounding of  the loop for its identification. Nevertheless, this higher 

tendency was not observed in the Hi-C datasets at 40 kb resolution. The 
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loops identified by LOOPbit presented a similar average distance 

between their anchors when compared to other methods. All the loop 

callers presented poor reproducibility between biological replicates, 

which normally are pooled together before the analysis to generate a 

unique sample with higher number of  reads. Then, it was not surprising 

to obtain a similar reproducibility for our method. However, LOOPbit 

was more affected by low coverage experiments, as expected by the 

higher tendency of  cis-interaction identification by greater number of  

filtered reads. Nonetheless, it is expected to perform better with higher 

coverage samples, as observed in the analysis of  Hi-C experiments with 

targeted degraded CTCF (E. P. Nora et al., 2017), which presented a 

high reproducibility between untreated and recovered CTCF samples, 

and low reproducibility of  these two samples with the CTCF degraded 

replicates. This overall poor reproducibility between replicates, may be 

explained by the fact that Hi-C experiments are an ensemble of  cells in 

different cell states and cell cycle phases, thus not having identical 

chromatin contacts. Interestingly, anchors of  the detected chromatin 

loops by LOOPbit, were highly enriched in promoter-enhancer state, 

and depleted in heterochromatin and a biologically less plausible state, 

being consistent with their biological description (Y. Guo et al., 2015; S. 

S. Rao et al., 2014). This can be a result of  the training set used to build 

LOOPbit, which consisted in CTCF-CTCF interactions that were 

classified by Meta-Waffle according to their structural pattern. Moreover, 

the chromatin loop anchors identified in (E. P. Nora et al., 2017), were 

more enriched of  CTCF ChIP-Seq peaks in the untreated and CTCF-

recovered samples, than in the degraded CTCF experiments. Our results 

indicate that LOOPbit is more specific than other tools available as it 

captured higher proportion of  functional loops. 
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Altogether, LOOPbit is comparable to other previously published 

methods for loop detection in terms of  reproducibility and sensitivity, 

but results in a better performance on detecting functional loops, as it 

detected twice as many promoter-enhancer loops than most of  the 

other callers. We can conclude, that there is no gold standard algorithm 

to identify chromatin loops. However, it is important to consider the 

usability, interoperability, stability of  the implementation, and the 

computing resources required for each algorithm. Considering the fast 

pace on data production, it is key to provide computational tools as 

LOOPbit and Meta-Waffle able to deal with high resolution datasets with 

reasonable amounts of  computational resources with easily 

exchangeable data formats, following the FAIR principles (findable, 

accessible, interoperable and re-usable) (Marti-Renom et al., 2018). 
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Quantitative comparison and automatic feature extraction 
for chromatin contact data 
 
The development of C-based experiments and their technical 

improvements, allowed their implementation as a lab routine technique, 

highly increasing the number of publicly available datasets. It opened 

the need of new algorithms able to compare chromatin structure 

between conditions and/or species. Nowadays, there are no available 

methods able to automatically compare and classify the identified 3D 

structural changes between contact matrices. To overcome this 

limitation, we developed CHESS, an automated, systematic and feature 

extraction tool, which correspond to the visual perception of structural 

differences. It is important to notice that CHESS is not limited to 

compare specific regions within a dataset, but genome-wide 

comparisons between samples, cell types, developmental stages and 

species. To note that other available methods for Hi-C comparison are 

bin-based, meaning that they rely on the comparison between individual 

bins from the contact matrices, or that will biased towards detecting 

local structural patterns such as loops or TADs. What makes CHESS 

unique is that it is structure-free and region-based. It will scan full 

genomic regions, and will compute their degree of similarity, from 

which the differential structural features would be extracted and 

classified. Furthermore, CHESS performance was faster and highly 

efficient with a small memory footprint, compared to diffHiC, HOMER 

and ACCOST. CHESS achieved 4, 7 and 320 times speed up, 

respectively, at 3 times lower memory consumption than the three other 

methods, making CHESS more usable without the need of an advanced 

computational infrastructure. Moreover, CHESS can be parallelizable, 
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allowing to do a countless number of comparisons if wanted, to address 

more complex biological questions. 

CHESS also proved to be highly robust to experimental noise and 

usable even on shallow sequenced datasets. This makes CHESS widely 

applicable to a large amount of additional types of chromatin 

conformation capture datasets. For instance, CHESS was applied to 

mouse high-resolution Capture-C data (Despang et al., 2019) from the 

Sox9-Kcnj2 locus, where they studied how genome-editing affected TAD 

function and gene expression. CHESS proved to identify the same 

structural rearrangements as in the experimental study with manually 

curated detection of structural differences. Nonetheless, it was able to 

spot subtle changes, such as the gain of a stripe in the Inv-Intra mutant, 

which had the Kcnj2 TAD inverted without affecting the border 

between the two genes. This mutant showed a structural rearrangement 

without drastic effects on gene expression. Loop extrusion models have 

suggested that stripes/flames at CTCF sites are formed when an 

extruder finds a single barrier in one orientation but can continue 

tracking along the chromatin fiber in the other direction. Stripes have 

been identified in population-based methods, which accumulate 

snapshots of this dynamic process, giving rise to an increase of contact 

frequency coming out from the barrier site (Mirny, Imakaev, & 

Abdennur, 2019). 

As stated before, CHESS is a structure-free method, which is very 

promising to de novo discovery of structurally similar regions between 

two experiments. For instance, CHESS was applied to mice and human 

“structurally syntenic” region pairs providing fundamental insights on 

the evolution of nuclear architecture and its 3D constraints. CHESS 

also identified different degrees of structural conservation across 
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mammalian evolution, indicating variable evolutionary 3D genomic 

rearrangements paces. The results, thus, suggest that evolutionary 

conserved regions will require a specific regulatory requisites, which will 

need the formation of large structured domains, while less conserved 

regions will not have the same demands and will depend less on such 

structures. 

Additionally, several studies identified the association between 

structural variation and 3D rearrangements, being translated to gene 

expression mis-regulation. The identification of structural changes will 

help to shed light to evaluate the contribution of chromatin 

organization and disease-generating processes. To demonstrate how 

CHESS can contribute, it was applied to detect chromatin 

conformation alterations genome-wide in human B-cells from a diffuse 

large B-cell lymphoma (DLBCL) patient in comparison with normal B-

cells, without the need of previous knowledge of the aberrations. 

Interestingly, the identified differential regions contained long non-

coding RNAs (lncRNAs) and pseudogenes instead of protein coding 

genes. For instance, lncRNAs have been observed to participate in 

normal B-cell differentiation, and its deregulation can lead to B-cell 

malignancies such as DLBCL, being their discovery of prognostic value 

(Dahl, Kristensen, & Gronbaek, 2018). Moreover, from those 

differential regions, the gain of structural features, classified as TADs 

and loops, were systematically identified. 

As mentioned before, the vast majority of available algorithms to detect 

structural differences between experiments are structure-biased, such as 

TAD and loop callers. It limits the study between structure and function 

relationship as they are focused on the role of mammalian TADs in 
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spatially regulating cis-regulatory elements, which it is not clear to apply 

to all scenarios and species. Nonetheless, as CHESS is a feature-free 

algorithm, it will not be biased and will provide all the set of structural 

changes regardless their structure. An integrative analysis of other 

patient-matched genome-wide datasets, such as RNA-seq, ATAC-seq, 

will be highly useful to determine the cause and consequence of the 

CHESS detected 3D structural rearrangements and its relation to 

disease. Furthermore, apart from the mentioned scenario in which 

CHESS can be applied, it might also be used to assess the 

reproducibility between biological replicates. However, this utility has 

not been inspected in detail in Chapter II. 

In conclusion, CHESS is an unsupervised algorithm that can 

automatically retrieve a quantification of the structural similarity and the 

differential structural feature classification between two genomic 

regions from chromosome conformation data. Moreover, CHESS 

proved to be highly robust and tolerant to library size and noise level of 

datasets. Finally, CHESS can be applied to a wide range of biological 

scenarios, including the ranking of known region pairs by structural 

similarity, such as syntenic regions, and the discovery of structural 

changes between conditions, such as disease-associated structural 

variations for clinical applications. 
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Conclusions 

 

From Chapter I, we can specifically infer: 

I. We developed Meta-Waffle, an algorithm to deconvolve the 

structural patterns of DNA binding proteins within specific 

intervals of distances by combining Hi-C and ChIP-seq 

data. 

II. We revealed the presence of 10 CTCF-CTCF 

subpopulations within 45 kb and 1.5 Mb interval of 

distance, with different structural patterns and functional 

signatures. 

III. Each CTCF subpopulation presented an epigenetic 

enrichment, for instance the canonical loop was enriched in 

enhancer-promoter and enhancer mark, whereas polycomb-

promoter mark was found in those regions with less 

interactions than expected. 

IV. The classification of Meta-Waffle of the CTCF loops, was 

used to train a CNN, LOOPbit, which can be used to scan 

genome-wide and identify cis-interactions. 

V. LOOPbit proved useful to capture functional chromatin 

loops, which were enriched in enhancer-promoter and 

enhancer marks. 

VI. Meta-Waffle and LOOPbit are publicly-available and open-

source python packages. 
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From Chapter II, we can specifically infer: 

I. We developed CHESS, an algorithm to systematically 

compare and classify differential structural features between 

contact matrices. 

II. CHESS is highly robust and consistent over different levels 

of experimental noise, resolutions and sequencing depths. 

III. CHESS is highly efficient and fast, with a very small 

memory footprint in comparison to other similar methods. 

IV. CHESS can be used to study multiple biological scenarios, 

by comparing samples, cell types, developmental stages and 

even species. 

V. CHESS can be used to analyse chromatin conformation 

capture datasets, as Capture-C, by extracting and classifying 

differential structural features, such as TADs and loops. 

VI. CHESS is a publicly-available and open-source python 

package. 
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served lamina-associated domains (LADs) are formed by genomic regions that contact the

NL. Lamins are also found in the nucleoplasm, with a yet unknown function. Here we map the
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genome and follow its dynamics during the epithelial-to-mesenchymal transition (EMT).
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reduced levels of lamin B1 alters the EMT transcriptional signature and compromises the

acquisition of mesenchymal traits. Thus, during EMT, the process of genome reorganization
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N
uclear genome folding occurs at multiple levels, and the
dynamic folding of chromatin is known to be elemental in
regulating gene expression. Alterations in these folding

units are associated with multiple diseases and cancer1. One key
level of organization involves the interaction between chromatin
and the nuclear lamina (NL)2,3. Lamins (A/C and B) are type V
intermediate filaments and are the major components of the NL.
Chromatin regions that are in close contact with NL are called
lamina-associated domains (LADs)4–6. These domains were
initially identified using the DamID method, in which bacterial
DNA adenine methyltransferase fused with lamin B1 methylate
DNA regions that are in contact with NL7. LADs can be also
detected by chromatin immunoprecipitation coupled with deep
sequencing (ChIP-seq)8–10 and by fluorescent in situ hybridiza-
tion. LADs are formed by heterochromatin defined as chromatin
regions with low gene frequency, transcriptionally silent, and
enriched in the repressive histone marks, H3K9me2/311. Impor-
tantly, LADs are extremely conserved between species, although
some show a certain degree of dynamism11. Despite the extensive
data published about NLs, little is known regarding its structural
organization. High-resolution confocal microscopy and three-
dimensional (3D) structured illumination microscopy showed
that A- and B-type lamins form separated but interconnected
meshworks with distinct roles12,13. Recently, it has been
demonstrated that A- and B-type lamins assemble into tetrameric
filaments of 3.5 nm, a structure surprisingly different than that of
other cytoskeletal elements14. Moreover, these filaments are
variable in length and are found to form both sparsely and
densely packed regions, which are both detected around dense
nuclear material that could be chromatin14. Unlike A-type,
B-type lamins remain permanent farnesylated and carbox-
ymethylated,and thus remain tightly associated with the
membrane15. There is also evidence of the existence of a
nucleoplasmic pool of lamins (A/C and B) that are assembled into
stable structures with characteristics different from the A- and B-
type lamins located in the NL16. This finding suggests that
nucleoplasmic lamins may have a role distinct from that of
perinuclear lamins6,17. In fact, recent ChIP-seq genome-wide
studies have shown that lamin A/C contact euchromatin18,19 and
have suggested a functional role for lamin A/C in creating a
permissive environment for gene regulation18. These findings are
of high interest for two main reasons: (1) they demonstrate
interactions between large euchromatin regions and nucleo-
plasmic lamin A; and (2) methodologically, they show how
enrichment of different chromatin fractions can reveal distinct
lamin A-associated domains20. Importantly, although DamID
maps of lamin A and B are similar, a fraction of lamin A is found
throughout the nucleus that is not detected by DamID, for yet
unknown reasons11,21. This fact, together with evidence that
lamins form separate but interconnected networks12,13 and
interact with nuclear structures distinct from the NL6,16,17, led us
to hypothesize that lamin B1 filaments could also interact with
euchromatin.

Here we used euchromatin enrichment and ChIP-seq to map
the localization of lamin B1, and we then analyzed its dynamism
using the epithelial-to-mesenchymal transition (EMT) model22.
The EMT program describes a series of events by which epithelial
cells lose many of their epithelial characteristics and take on
properties that are typical of mesenchymal cells. These cells
undergo complex changes in both cell architecture and beha-
vior23. Developmental biologists have long recognized that EMT
is a crucial process for the generation of tissues and organs during
embryogenesis of both vertebrates and invertebrates, and it also
has an important role in pathological processes, such as fibrosis
and cancer24. During progression to metastatic competence,
carcinoma cells acquire mesenchymal gene expression patterns

and properties, resulting in modified adhesive characteristics and
in activation of proteolysis capacity and motility; these changes
allow tumor cells to metastasize and establish secondary tumors
at distant sites22. Recent studies suggest that chromatin re-
organization during EMT is an essential step for the conversion of
an epithelial cell into a mesenchymal cell25,26. However, local and
3D chromatin roles in EMT and tumorigenesis are incompletely
understood.

Here we define the existence of LADs formed when lamin B1
contacts euchromatin regions, which we term euchromatin LADs
(eLADs) to differentiate them from conventional LADs. Lamin
B1 ChIP-seq from an enriched euchromatin fraction, RNA
sequencing (RNA-seq), and assay for transposase-accessible
chromatin using sequencing (ATAC-seq) allowed us to detect
these domains and to analyze their dynamism in the context of
EMT. In combination with whole-genome chromatin con-
formation capture (Hi-C), we demonstrated that eLADs are
located in the active (A) compartment and that, at the onset of
EMT, the amount of lamin B1 increased at TAD borders con-
comitantly with increased border strength. Moreover, over the
time course, additional eLADs were formed involving genes that
belong to the EMT pathway. Finally, depletion of lamin B1 from
the euchromatin fraction massively affected the gene expression
profile (as determined by RNA-seq) at a key time point of this
cellular transformation, resulting in impaired EMT.

Results
Lamin B1 associates with euchromatin regions that are
dynamic during EMT. To induce EMT cellular transformation,
normal mouse mammary epithelial cells (NMuMG) were treated
with the transforming growth factor transforming growth factor
(TGF)-β27. We first confirmed by confocal microscopy the pre-
sence of lamin B1 in the nuclear envelope as well as the nuclear
interior of cells that were either untreated or treated with TGF-β
for 8 or 24 h (Supplementary Fig. 1a). Colocalization with emerin,
an integral protein of the NL28, was only observed in the nuclear
envelope (Supplementary Fig. 1b). We then performed ChIP-seq
for lamin B1 on an enriched euchromatin fraction. As chromatin
preparation is key to the identification of genomic-associated
regions18,29, chromatin was sheared by low sonication to obtain
DNA fragments of 300–600 bp. This sonication condition favors
shearing of accessible chromatin (e.g., euchromatin) but leaves
heterochromatin regions intact18,20,30. In this way, hetero-
chromatin regions can be excluded from Ilumina sequencing due
to their size18; indeed, the bioanalyzer intensity profile showed a
substantial fraction of fragments larger than 1 kb that were
excluded from sequencing (Supplementary Fig. 1c). We identified
significant lamin B1-positive sites (lamin B1+) in chromatin in
all three conditions (Fig. 1a), with a total of 4645 peaks in
untreated cells, 10,484 peaks in 8 h TGF-β-treated cells, and 7083
peaks in 24 h TGF-β-treated cells. The distribution of ChIP-seq
peaks across the genome showed a significant enrichment around
the transcription start site (TSS) of specific genes (Fig. 1b) (of
4454 genes in untreated cells, 8755 genes in 8 h TGF-β-treated
cells, and 6595 genes in 24 h TGF-β-treated cells) that did not
overlap with canonical LADs (cLADs; Fig. 1a). Importantly, as all
the immunoprecipitated chromatin could be analyzed by ChIP-
quantitative PCR (qPCR) without size selection exclusion, we
were also able to detect lamin B1 in a cLAD region (Fig. 1c).
Moreover, the specificity of the antibody used for the genome-
wide mapping of lamin B1 was confirmed by lamin B1 immu-
noprecipitation from NMuMG cells infected with lentivirus
carrying either an irrelevant short hairpin RNA as a control (C),
or specific for lamin B1 (knockdown, KD), in low-sonicated
chromatin (Fig. 1d).
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B1 ChIP-seq peaks. The distal region is that within 2.5 and 0.5 Kb upstream of a gene’s TSS, and the proximal region, within 0.5 Kb of a gene’s TSS (top).

The average distribution of lamin B1 ChIP-seq reads is shown, as well as the corresponding IgG control experiments, at 2 Kb around the TSS of lamin B1+
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medium, and high) according to their expression levels
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Further characterization showed that, in contrast to A/T-rich
constitutive LADs31, lamin B1+ sites were strongly associated
with C/G-rich sequences (Fig. 1e) and contained a substantially
higher number of genes. To determine whether these genes were
decorated with canonical euchromatin or were instead associated
to heterochromatin histone marks, bioinformatics Enrichr
analysis32 was performed. We found how histone marks
associated to these genes were characteristic for euchromatin
(Supplementary Fig. 2a). We repeated the same analysis on genes
that were not enriched in lamin B1 at each time point and
H3K9me2/3, the classical heterochromatin histone mark, was
enriched (Supplementary Fig. 2b). In addition, RNA-seq and
ATAC-seq data from these samples showed that lamin B1-
enriched genes were actively transcribed, with their promoters
located in accessible chromatin regions (Fig. 1f). On the other
hand, non-lamin B1-enriched genes presented low expression
rates and less chromatin accessibility (white plots; Fig.1f). To
analyze whether a correlation between lamin B1 binding and gene
expression exists during EMT, we stratified the full set of mouse
genes on each time point into four groups based on RNA-seq data
(of silent, low, medium, and high expression). We then plotted
the lamin B1 levels obtained by ChIP-seq for each gene set and
observed a strong correlation between expression and lamin B1
around the TSS (the higher the levels of expression, the higher the
lamin B1 enrichment) (Fig. 1g).

Comparing lamin B1+ sites during EMT revealed that, of the
total of 10,350 target genes identified in the three time points,
only 2933 genes (28%) maintained lamin B1 throughout the EMT
process, whereas a vast majority (7417; 72%) changed at the onset
of EMT (Fig. 2a). Taken together, these data suggest that lamin
B1 can be found in expressed euchromatin regions associated
with C/G regions that are gene-rich, accessible, decorated with
euchromatin histone marks, and change dynamically during EMT
transformation.

Gene ontology (GO) showed that genes enriched in lamin B1
only in untreated cells or that maintain their level of lamin B1
during the entire EMT process belong to chromatin modification

and general gene transcription (Fig. 2a; for the full list of GO
categories in each time point, see Supplementary Fig. 3a). We
next focused on the set of genes that emerged as new lamin B1
targets upon EMT induction by TGF-β treatment (8 and 24 h).
We found 5896 genes positive for lamin B1, which encoded
proteins with functions belonging to embryonic morphogenesis
and pattern specification, both of which strongly related to the
EMT process (Fig. 2a). In order to identify potential drivers
responsible for the increase in lamin B1 occupancy at these
regions, we determined the enrichment of transcription factor
(TF) motifs at these new lamin B1 sites. The enriched factors
identified were involved in developmental and differentiation
process (Supplementary Fig. 3b, c; Supplementary Table 1), and
some of them are members of the TGF-β signaling pathway33,34.
These data suggest that TGF-β-activated TFs may have a role in
recruiting lamin B1 to these specific sites. Finally, the percentage
of lamin B1+ genes for which we observed a change in
expression at the onset of EMT were 42% (1872/4454) in the
epithelial state, 37% (3269/8755) at 8 h after TGF-β treatment,
and 38% (2545/6595) at 24 h after TGF-β treatment (Fig. 2b).

Definition of eLADs and the putative role of lamin B1 as an
architectural protein. cLADs have been traditionally highlighted
as genomic regions enriched in lamins that emerged from com-
parison with the corresponding control experiments4,18. We
similarly defined eLADs as clusters of neighboring lamin B1+
sites that occur within a delimited region of the genome (see
Supplementary Methods). We identified 2051 eLADs in untreated
cells, 2429 eLADs in 8 h-treated cells, and 2949 eLADs in 24 h-
treated cells (Fig. 3a), with an average size of 0.34Mb (and
therefore smaller than LADs, which are about 1Mb4). The cov-
erage of the mouse genome for each set of eLADs was 25.9%,
31.7%, and 40.1%, respectively. As expected, genes within eLADs
were active and located in accessible chromatin (Fig. 3b).

Given that lamin A/C also occupies euchromatin regions18, we
analyzed the degree of overlap between both sets of ChIP-seq
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data. As expected, eLADs had an extended overlap with
euchromatin regions enriched in lamin A/C (Fig. 3c).

Intermediate filaments are major contributors to cell archi-
tecture35. As genome function relies on the genomic spatial
architecture36, we hypothesized that lamin B1 could help to shape
the new mesenchymal genome architecture. Genome organiza-
tion and architecture was thus analyzed by Hi-C experiments37

during EMT transformation. Sequencing Hi-C libraries from
untreated cells or those treated with TGF-β (for 8 or 24 h)

resulted in 89–106M valid interactions per time point (Supple-
mentary Table 2), which allowed us to generate chromosome-
wide interaction maps at 100 and 40 Kb resolution for A/B
(activated/repressed) compartments and TAD analyses, respec-
tively. Hi-C maps showed overall compartment changes between
untreated and 8 h-treated cells, with about 2400 bins of 100 Kb
that changed compartments (Fig. 3a). These structural changes
were further reinforced after a 24 h TGF-β treatment, with 2228
bins of EMT-related genes changing from B to A and 942
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changing from A to B (Fig. 4a, Supplementary Fig. 4). We next
sought to analyze to which extent the dynamic changes of lamin
B1+ sites and eLADs were related to genome architecture (i.e., in
A/B compartments and at TAD borders). As expected, transcrip-
tion, ATAC signal, lamin B1+ sites, and eLADs were enriched in
A compartment (Fig. 3b), whereas cLADs were located in B
compartments. In addition, we observed that lamin B1+ sites
and eLADs decreased in A compartments and increased in B
compartments during EMT (Fig. 4b); these corresponded to
newly formed eLADs (Supplementary Table 3).

As borders between TADs are enriched in TSS, located in
transcriptional active genomic regions, and enriched in archi-
tectural proteins38–40, we analyzed TAD border behavior at the
onset of the EMT and their relation to lamin B1. We observed
that, although TAD borders were conserved during EMT
transformation (with 50% of all borders conserved over the three
time points), they increased in overall strength with longer
treatment, indicative of more stable borders and increased intra-
TAD interactions (Fig. 4c, left panel); this may reflect novel and
biologically relevant chromatin interactions within TADs36,41. As
changes in border strength could be due to changes in gene
transcription41, we checked the transcription rates after treatment
at the TAD borders that had increased levels of lamin B1.
Intriguingly, transcription was maintained in these TAD borders
during EMT, suggesting that the increase in border strength is not
due to changes in transcription (Fig. 4c, right panel). The
increased number of lamin B1+ sites after TGF-β treatment
(Fig. 2a) correlated with an increase in the percentage of lamin
B1-containing borders, enhanced TAD border strength, and an
enrichment of lamin B1 at TAD borders (with p-values of 10–28,
10–68, and 10–32 in untreated, 8 h-treated, and in 24 h-treated
cells, respectively) (Fig. 4d). Overall, these results suggested that
lamin B1 could contribute to 3D genome organization during
EMT.

Altered lamin B1 levels impair EMT. Finally, we assessed the
functional relevance of lamin B1 in a KD model, using NMuMG
cells. It is noteworthy that the KD was kept at about 50% effi-
ciency to avoid indirect effects (Fig. 5a). Given the low protein
turnover of nuclear lamins once these are stably integrated in the
NL42, we reasoned that knocking down lamin B1 would mainly
affect non- or less-NL-integrated lamin B1. Nuclei from control
and KD NMuMG cells were extracted, and soluble and loosely
bound chromatin proteins were separated from the insoluble
chromatin fraction. Importantly, the soluble fraction of lamin B1
was affected to a greater extent in the KD cells as compared with
control cells (Fig. 5b). To further confirm that the KD affected
mainly the nucleoplasmic (or less-NL-integrated) lamin B1
fraction rather than the high-NL fraction, we used fluorescence
recovery after photobleaching (FRAP). NMuMG cells transfected
with human mCerulean-lamin B1 were subjected to short hairpin
RNA (shRNA) lentivirus infection (with a control or human

lamin B1-specific shRNA). Although recovery from bleaching was
similar for the NL mCerulean-lamin B1 in both control and KD
conditions, the nucleoplasmic fraction of mCerulean-lamin B1
recovered faster in the control cells than in the KD cells (Fig. 5c,
left panel). Quantification data showed the mean recoveries for
ten cells (Fig. 5c, right panel). Indeed, lamin B1 occupancy was
reduced by 50% in lamin B1+ sites in KD cells, as shown by
ChIP-qPCR (Fig. 4d), whereas cLADs were not affected (Fig. 5e).
Under these conditions, KD cells had the same growth rate as
control cells (Supplementary Fig. 5a) did not have a disrupted NL
(Supplementary Fig. 5b) and did not enter into senescence
(Supplementary Fig. 5c), all traits related with a massive loss of
lamin B143.

Next, we analyzed the transcription profile of lamin B1 KD
NMuMG cells treated with TGF-β during EMT by RNA-seq at
each time point (Fig. 6). Principle component analysis revealed
that KD cells at 8 h TGF-β were the most highly divergent from
the control cells (Fig. 6a). Importantly, this is the time point in
where we observed the highest number of newly formed lamin
B1+ regions. Further, differentially expressed genes showed
again a maximum dependence of lamin B1 at the 8 h TGF-β time
point, with more than 2000 genes differentially expressed as
compared with control cells (Fig. 6b). Strikingly, around 50% of
these genes were direct lamin B1 targets (bar colors, Fig. 6b).
Moreover, the differentially expressed genes that were upregu-
lated in KD conditions did not belong to the EMT pathway,
which completely changed the EMT transcriptional program
(Fig. 6c, Supplementary Fig. 6). Indeed, western blot data showed
alterations in classical EMT markers, a lack of fibronectin, N-
cadherin upregulation, E-cadherin downregulation, and a loss of
migrative and invasive capacities normally acquired during EMT
(Fig. 6d, e). Finally, ChIP-qPCR in LB1+ EMT genes at 8 h TGF-
β (such as fibronectin, vimentin, and twist) showed loss of lamin
B1 enrichment in KD conditions as compared with control cells
(Fig. 6f). Importantly, overexpressing human GFP-lamin B1 in
KD cells restored the migratory capacity of mesenchymal cells
(Fig. 6g).

Discussion
The presence of lamins in the nuclear interior has been long
known but considered to be a transient pool on the way to
assembly into the NL. Although B-type lamins remain perma-
nently farnesylated and carboxymethylated (and therefore
tightly associated to membranes15), they have also been reported
to localize in the nuclear interior44. Polymerized lamins A and B
exists within the nucleoplasm6,16,17,45, but their specific orga-
nization, state of polymerization, solubility, and degree of
integrity within the NL remains to be determined. Lamins are
known to bind DNA, histones, and histone-binding pro-
teins46,47, and recent reports have also shown that lamin A/C
bind to euchromatin regions, with an important role in gene
regulation18. It is thus conceivable that all type of lamins in the

Fig. 3 Definition of eLADs. a UCSC Genome Browser overview of one region across the chromosome 11 (mm9) containing the following information (from

top to bottom): lamin B1 ChIP-seq profiles subtracting the IgG control in untreated NMuMG cells (blue) or in cells treated with TGF-β for 8 h (orange) or

24 h (red); eLADs identified in each condition (black); previously published LADs from mouse embryonic fibroblast cells (green); and RNA-seq strand-

specific expression profiles at each time point (red for untreated NMuMG cells, green for cells treated with TGF-β for 8 h, and blue for cells treated for

24 h). b Gene expression within eLADs (given in FPKM) in NMuMG cells that were untreated (blue) or treated with TGF-β for 8 h (orange) or 24 h (red),

as compared with the rest of genes (white) (left). Promoter ATAC-seq enrichment of lamin B1+ genes (measured in number of normalized reads) in

NMuMG cells that were untreated (blue) or treated with TGF-β for 8 h (orange) or 24 h (red), as compared with the rest of genes (white) (right). Genes

from eLADs were more likely to be expressed and located in accessible chromatin than other genes. The bottom and top fractions in the boxes represent

the first and third quartiles, and the line, the median. Whiskers denote the interval between 1.5 times the interquartile range (IQR) and the median. c Bar

plot showing the overlap between eLADs and lamin A/C LADs obtained after low or high sonication (12 cycles or 30 cycles, respectively) and with two

different antibodies (3A6 and N18)
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nuclear interior contribute to chromatin organization, although
little is known about their potential roles in gene regulation.
Lamins A/C have a functional role accommodating chromatin
environment for gene regulation18. We now present evidence
that the presence of lamin B1 in euchromatin is dynamic and
has a role in the execution of the EMT transcriptional program,
suggesting that lamin B1 also has a crucial role in gene reg-
ulation. We believe that this role is not exclusive to EMT. In fact,
the GO categories found in genes enriched in lamin B1 in the
epithelial state belong to general transcription, which suggests a

general role of lamin B1 in gene regulation in response to a
given stimulus.

Given that intermediate filaments are the major contributors of
cell architecture35 and, specifically, that nuclear lamins provide
structural stability to the nucleus48,49 and participate in multiple
nuclear activities, we propose a role for lamin B1 in helping the
3D chromatin rearrangements occurring during EMT (Fig. 7).
Hi-C data in combination with lamin B1 ChIP-seq showed that
eLADs are present in the A compartment during the entire
process, and that there is a significant increase of eLADs in the B
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compartment over time during EMT. Data analyses showed that
this increase in the B compartment corresponds to newly formed
eLADs, rather than simply reflecting a movement of eLADs from
A to B. Interestingly, genes present in these new eLADs have to be
in a repressive state when cells become mesenchymal, further
supporting this function as a chromatin organizer. Moreover, the
correlation of lamin B1 enrichment and border strength suggests
a possible role of lamin B1 as an architectural protein that has a
critical role in the establishment of a new genomic architecture
during EMT (Fig. 7). The increase in border strength might be a
consequence of transcriptional changes that occur during EMT.
However, we did not observe dramatic transcriptional changes at
TAD borders enriched in lamin B1, suggesting that transcription
is not the main cause of these changes. Our results are in

accordance with other models that have shown that redistribution
of architectural proteins is responsible for establishing new gen-
ome interactions41. We cannot rule out that other proteins are
also involved in establishing long-range interactions. Notably,
RNA polymerase II and/or its associated—but not the process of
transcription per se—have been identified as mediators of inter-
actions throughout the A compartment50,51.

Hundreds of proteins are able to interact with lamins52. As
different tissues express different sets of lamina-associated pro-
teins53, the organization of lamina filaments can potentially vary
significantly among tissues. Our results show that, once the EMT
program is activated, new lamin B1 sites are formed that are
enriched in TF-binding motifs belonging to developmental pro-
grams, including the TGF-β signaling pathway, suggesting a
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putative role for these TFs in recruiting lamin B1 (although
further experiments will be required to demonstrate this). The
apparently distinct configuration between epithelial and
mesenchymal cell types, together with the fact that different
antibodies were used, might explain why Gesson et al.18 did not
detect lamin B1 in euchromatin regions, although they were also
working with low sonication conditions.

Finally, it is still unclear why the presence of lamins (A/C and
B1) in contact with euchromatin regions cannot be detected by
the DamID method. Notably, DamID was recently proposed to
favor the identification of stable interactions21. DamID methy-
lation is modulated by the local chromatin structure, which
means that open chromatin regions (euchromatin) may reach
similar or even higher levels than the sites of specific methylation.
Correction of the methylation levels by Dam unfused proteins
could be responsible for a loss of lamin-euchromatin signal, and
we now know that there is a more stable lamin pool in the NL
that will always provide stronger signal.

To summarize, although lamin B1 filaments in contact with
repressed chromatin are mainly located in the B compartment,
where they form cLADs4, our present work also shows that
transcriptionally active chromatin in the A compartment can
interact with lamin B1, to form eLADs. This is consistent with
previous models showing lamin A/C also contact euchromatin18,
and with the fact that these two filaments form an interconnected
meshwork12,13. Importantly, these two types of lamin B1 domains
—cLADs and eLADs—behave differently: while cLADs are static,
eLADs are dynamic and change during EMT. Moreover, the
correlation of lamin B1 enrichment and border strength suggests
a possible participation of these domains in establishing new
genomic architecture during EMT (Fig. 7). Many questions still
remain to be addressed: is the molecular structure of lamin B
filament networks distinct in cLADs and eLADs? Is this lamin B1
pool soluble, or is it still membrane-bound but less stably inte-
grated (and therefore more dynamic)? Are eLADs universal? Do
they have a role in all types of cellular transformation processes?
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Which are the signals and/or TFs responsible for recruiting lamin
B1 to different loci? Are the changes in interactions the cause or
consequence of lamin B1 enrichment at TAD borders? Answers
to these questions will contribute to our understanding of how
genome is reorganized during cellular transformation, and the
role of euchromatin-lamin contacts in this re-organization and,
therefore, in gene regulation.

Methods
Nuclear fractionation. Nuclear fractionation of infected NMuMG cells with either
irrelevant shRNA or LB1 shRNA was performed using a Nuclear Extract Kit
(ab219177, Abcam).

NMuMG cells were seeded in p150 plates and the assay was performed at 4 °C
following manufacturer’s instructions.

Cytochemical staining for SA-β-gal. Cytochemical staining for senescence-
associated galactosidase (SA-β-gal) was performed using a Senescence β-
Galactosidase Staining Kit (Cell Signaling Technology) at pH 6.0.

NMuMG cells infected and selected with puromycin were seeded in six-well
plates, and 48 h after the assay was performed following manufacturer’s
instructions. In brief, culture medium was removed from the plates and two washes
with phosphate-buffered saline (PBS) were performed. Cells were then fixed with
Fixative solution provided with the Kit during 15 min at room temperature. Two
more washes with PBS were performed before the addition of β-Galactosidase
staining solution. Plates were sealed with parafilm and incubated overnight at 37 °C
in a dry incubator. To avoid evaporation, corners of the plates were filled with PBS.

ChIP experiments. ChIP experiments were performed as described54. In brief,
NMuMG cells were crosslinked in 1% formaldehyde for 5–10 min at 37 °C.
Crosslinking was stopped by adding glycine to a final concentration of 0.125 M for
2 min at room temperature. For nuclear fractions, cells were scraped with cold soft-
lysis buffer (50 mM Tris-HCl, 10 mM EDTA, 0.1% NP-40, and 10% glycerol)
supplemented with protease inhibitors. Samples were then centrifuged at 800 × g
for 15 min and the nuclei pellets were lysed with SDS-lysis buffer (1% SDS, 10 mM
EDTA, and 50 mM Tris pH 8) supplemented with protease inhibitors. Extracts
were sonicated to generate 200–600 bp DNA fragments, incubated on ice for
20 min, centrifuged at 16,000 × g for 10 min, and then diluted 1:10 with dilution
buffer (0.01% SDS, 1.1% Triton X-100, 1.2 mM EDTA, 16.7 mM Tris pH 8 and 167
mM NaCl). For ChIP analysis, the primary antibody or an irrelevant antibody
(IgG) was added to the sample, and the mixture was incubated overnight with
rotation at 4 °C. Chromatin bound to the antibody was then immunoprecipitated
using unblocked protein A beads (Diagenode) for 3 h with rotation at 4 °C. Pre-
cipitated samples were then washed three times with low-salt buffer (0.1% SDS, 1%
Triton X-100, 2 mM EDTA, 20 mM Tris-HCl pH 8.0, 150 mM NaCl) and with
high-salt buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl pH
8.0, 500 mM NaCl), and twice with LiCl buffer (250 mM LiCl, 1% Nonidet P-40,
1% sodium deoxycholate, 1 mM EDTA, 10 mM Tris-HCl pH 8.0) using columns.
To verify antibody specificity, samples were eluted with 2 × western blotting
loading buffer for 5 min at 95 °C. Proteins were separated by SDS–polyacrylamide

gel electrophoresis and probed with the anti-lamin B1 antibody. For qPCR
detection of genomic regions of ChIP-sequencing analysis, washed samples were
treated with elution buffer (100 mM Na2CO3 and 1% SDS) for 1 h at 37 °C and
then incubated at 65 °C overnight with the addition of a final concentration of 200
mM NaCl to reverse the formaldehyde crosslinking. After proteinase K solution
(0.4 mg/ml proteinase K (Roche), 50 mM EDTA, 200 mM Tris-HCl pH 6.5)
treatment for 1 h at 55 °C, DNA was purified with MinElute PCR purification kit
(Qiagen) and eluted in nuclease-free water. Genomic regions were detected by
qPCR. Primers used are listed in Supplementary Table 4 (Supplementary Table 4).
Results were quantified relative to the input and the amount of irrelevant IgG
immunoprecipitated in each condition.

For ChIP-seq analysis, two parallel ChIPs were performed and mixed after
elution with nuclease-free water. The NEBNext Ultra DNA library Prep Kit for
Illumina was used to prepare the libraries and samples were sequenced using
Illumina HiSeq 2500 system.

MTT assays. Cells previously infected and selected for 48 h with puromycin were
counted with Neubauer’s Chamber and 10,000 cells/condition were seeded in 96-
well plates by triplicate.

MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays
were performed by adding 0.5 mg of MTT (Sigma) per mL of Dulbecco’s modified
Eagle’s medium (DMEM) without fetal bovine serum (FBS) for 3 h at 37 °C to
determine the percentage of viable cells. Cells were solubilized with dimethyl
sulfoxide-isopropanol (1:4). The absorbance of insoluble formazan (purple) at
590 nm, which is proportional to the number of viable cells, was then determined.
Cell viability was quantified during four consecutive days.

Migration and invasion. For migration experiments, control (Irrelevant shRNA)
and KD (shRNA_LB1) NMuMG cells were treated with TGF-β. After 24 h, 50,000
cells were resuspended in DMEM 0.1% FBS–0.1% bovine serum albumin, reseeded
on a transwell filter chamber (Costar 3422) and incubated for 6–8 h. For invasion
assays, cells were placed in Matrigel-coated transwell filter (BD356234) and
incubated for 12–16 h. In both cases, DMEM with 10% FBS was added to the lower
chamber and used as a chemoattractant. Non-migrating and non-invading cells
were removed from the upper surface of the membrane, whereas cells that adhered
to the lower surface were fixed with paraformaldehyde 4% for 15 min. Nuclei were
stained with PBS-DAPI (4′,6-diamidino-2-phenylindole) (0.25 μg/mL). DAPI-
stained nuclei were counted in four fields per filter by ImageJ software.

Fluorescence recovery after photobleaching. NMuMG cells were first trans-
fected with human mCerulean-Lamin B1-10, which was a gift from Michael
Davidson (Addgene plasmid #55380)55 using TransIT-X2® Dynamic Delivery
System (Mirus Bio LLC). After 8 h, transfected cells were infected using irrelevant
shRNA and human shRNA LB1 and selected using puromycin (1 μg/mL) for 24 h.
Transfected and infected cells were seeded in 35 mm MatTek dishes. After 24 h,
Leica TCS SP5 confocal system with the LAS-AF application wizard was used to
perform FRAP experiment. Cells were kept in a fully incubated (CO2 and 37 °C)
chamber, while imaging with a × 63, 1.4 objective and 458 nm laser line of the
Argon laser for excitation. Selected nuclear areas were bleached for five times using
maximum laser intensity and 100 frames after the photobleach were collected, with
370 ms intervals, using the minimal laser power required. Before photobleaching,
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Fig. 7 Schematic representation of the dynamism of eLADs during the EMT process
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10 frames were collected as an internal control of the experiment. Signal recovery
was measured by ImageJ software using pre-bleached (pb), background (bg), and
non-bleached (nb) areas (regions of interest, ROIs) to normalize the data. For every
time point, the data was normalized according to the formula: (ROIb− ROIbg)/
(ROInb− ROIbg) / (pbROIb− pbROIbg)/(pbROInb− (pbROIbg)

56.

Statistical analysis. Statistical significance was assessed using a two-tailed
unpaired Student’s t-test. The symbols *, ** and *** indicates significant differences
with p < 0.05, p < 0.01 and p < 0.001, respectively.

RNA sequencing. RNA-seq experiments were performed with two biological
replicates of NMuMG cells (with or without shRNA of either control or KD) that
were untreated or treated with TGF-β for 8 or 24 h. After RNA extraction with
GenEluteTM Mammalian Total RNA Miniprep Kit (Sigma-Aldrich), samples were
sequenced using the Illumina HiSeq 2500 system.

ATAC sequencing. The ATAC experiment was performed as described57.
NMuMG cells were either untreated or treated with TGF-β for 8 or 24 h, and then
collected and treated with transposase Tn5 (Nextera DNA Library Preparation Kit,
Illumina). DNA was purified using MinElute PCR Purification Kit (Qiagen). All
samples were then amplified by PCR using NEBNextHigh-Fidelity 2× PCR Master
Mix (New Englands Labs) with primers containing a barcode to generate libraries.
DNA was again purified using MinElute PCR Purification kit and samples were
sequenced using Illumina HiSeq 2500 system.

Hi-C experiments. Hi-C libraries were generated from NMuMG cells (that were
untreated or treated with TGF-β for 8 or 24 h) according the previously published
Hi-C protocol, with minor adaptations58. Five million cells were crosslinked with
1% formaldehyde for 10 min at room temperature. Before permeabilization, cells
were treated for 5 min with trypsin to obtain single cells. DNA was digested with
400 units of Dpn II and the ends of restriction fragments were labeled using
biotinylated nucleotides and ligated in a small volume (in situ Hi-C). Libraries were
generated independently in the three conditions (e.g., treated with TGF-β for 8 or
24 h, or untreated), controlled for quality, and sequenced on an Illumina HiSeq
2000 sequencer.

Data availability. Sequencing samples (raw data and processed files) are available
at NCBI GEO under the accession code GSE96033.
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