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2 December 2019

UNIVERSITAT ROVIRA I VIRGILI 
STATISTICAL INFERENCE IN BIPARTITE NETWORKS APPLIED TO SOCIAL DILEMMAS AND HUMAN MICROBIAL SYSTEMS 
Sergio Cobo López



Statistical Inference in Bipartite
Multilink Networks

Sergio Cobo López

Doctoral esis
         2019

Advisors: 
Roger Guimerà Manrique
Marta Sales Pardo

Department of 
Chemical Engineering

UNIVERSITAT ROVIRA I VIRGILI 
STATISTICAL INFERENCE IN BIPARTITE NETWORKS APPLIED TO SOCIAL DILEMMAS AND HUMAN MICROBIAL SYSTEMS 
Sergio Cobo López



UNIVERSITAT ROVIRA I VIRGILI 
STATISTICAL INFERENCE IN BIPARTITE NETWORKS APPLIED TO SOCIAL DILEMMAS AND HUMAN MICROBIAL SYSTEMS 
Sergio Cobo López



Abstract

Complex systems are systems comprising many individual elements that interact with each
other in highly heterogeneous patterns. Consequently, they display nonlinear dynamics that
result in collective behaviors and emergent phenomena that cannot be explained only look-
ing at microscopic interactions. This multiscale behavior can be found in many scientific
areas, but complex systems are especially abundant in social sciences and biology. This
should not come as a surprise, since both disciplines study many problems with very in-
tricated interactions and large numbers of elements. At the same time, those problems are
usually very interesting and relevant. Being able to describe and predict the behavior of bio-
logical and social systems is not only very interesting scientifically but also very informative
and practical for social or clinical applications.
The goal of this thesis is to make interpretable predictions in complex systems using statis-
tical inference. Interpretable predictions are interesting because it is possible to understand
why they are successful or not and because they can reveal the underlying dynamics of
the systems under study. This thesis studies the problem of interpretable link prediction in
two problems from social sciences and microbiology. These problems, as many others in
complex systems can be represented as networks. Networks are simple mathematical arti-
facts that consist of individual elements called nodes and interactions between them called
links. In this regard, they conveniently represent the basic features of most complex sys-
tems. Specifically, the problems considered here can be modeled as bipartite networks with
different types of links. Bipartite networks are characterized by the existence of two species
of nodes. In general, nodes from one species only connect to nodes from the other one. In
addition, different types of connections or links allow the study of different forms of inter-
actions.
In order to make predictions in bipartite multilink networks, we implement a family of
models called Stochastic Block Models (SBM) that work under the simple assumption that
networks have blocks or communities of nodes that define the collective patterns of inter-
actions between nodes. Two particular models from that family are considered here. The
first one is a conventional approach in which communities are simply groups of nodes. The
second one, in contrast, is a mixed-membership approach that allows nodes to belong to dif-
ferent communities simultaneously. Subsequently, communities become latent or abstract.
In both cases the community structure is crucial for formulating predictions, because the
probability that two nodes are connected exclusively depends on the communities to which
each node belongs. This makes SBM highly tractable, because they reduce the problem to
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the number of groups identified. Additionally, it makes predictions interpretable, because
they ultimately depend on the community structure and probabilities of connections between
groups. Finally, SBM are very expressive of the network they represent precisely because
they depict it in terms of groups or communities.
In order to test the effectiveness of these methods, we apply them to the problems mentioned
above. In the first problem, we study how people behave when they have to make decisions.
To that end, we consider a social experiment in which a large group of people make strate-
gic decisions in a game theoretical context. We model this system as a bipartite network in
which nodes correspond to players and games and links are represented by the actions per-
formed in each game. Thus, predicting the action taken by a player in a game is equivalent
to inferring the existence of a link in the network. We applied the two models mentioned
before to this system in order to identify groups of players and groups of games according
to the similarities in the decision strategies of players and their perception of the games. We
then tested and compared their performance at making predictions in order to select the best
model. In both approaches, we found that the classification in groups of players and games
is indeed predictive of unobserved actions and informative about the behavior of players.
In the case of the conventional approach, we recover 71% of the missing information, and
74% in the mixed approach. We subsequently conclude that the mixed approach is the best
model in that it is the most predictive one. Looking at the group structure, we observed that
the groups of players reveal consistent strategic phenotypes and that games are perceived by
players in a different way than what should be expected from game theoretical criteria.
In the second problem, we study the structure of the human gut microbiome. We have
datasets containing microbial concentrations of different species in a large number of hu-
man hosts. In a similar fashion as in the first problem, we can also model this system as a
bipartite network in which nodes represent by patients and microbes. A patient and a mi-
crobe are connected by a link if that microbial species is present in the host. In this case,
we only apply the mixed approach to the problem in order to find latent groups of microbes
and latent groups of patients. Particularly, we are interested in finding latent microbial pro-
files that are informative on which groups of microbes are more abundant in patients. We
call these microbial profiles latent enterotypes. We test the predictive power of our latent
enterotypes by making predictions of unobserved abundances with around 80% accuracy.
We also find that taxonomically close microbes tend to be in the same groups identified
by our model, which implies that our latent enterotypes are able to capture the biological
information of the system. Additionally, we find a well defined ecological order among
latent groups of patients and microbes. In particular, we find that there exists an increasing
level of specialization in groups of patients and groups of microbes commonly referred to
as nestedness.
In both problems, the results show that is possible to find community structures, despite
the different nature of the problems. Moreover, these structures are robust in that they are
predictive of unobserved events. Finally, they reveal information about the internal dynam-
ics of both systems. This suggests that this inference approach could be extended to other
problems in complex systems with similar results.
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Chapter 1

Introduction

The importance of prediction in science
An important goal common to all scientific disciplines is to make rigorous and accurate pre-
dictions. The ability to predict the evolution of a system is not only very informative, but
it necessarily implies a good understanding of its underlying dynamics. It is not possible to
anticipate unobserved events without a good knowledge of the general principles that rule
that system. In science, this knowledge is usually encoded in scientific theories. Indeed,
from a scientific point of view, it is precisely the ability to make accurate predictions what
validates a hypothesis. When predictions are systematically validated in very different con-
texts, we talk about a theory.
For example, Charles Darwin was able to predict the evolution of organisms upon the hy-
pothesis that ”favorable variations would tend to be preserved, and unfavorable ones to be
destroyed” [1]. He formulated this conjecture after discovering fossil bones from large ex-
tinct mammals in Argentina and observing the existence of multiple species of finches in the
Galápagos islands [2]. He spent the rest of his scientific career making further observations
and predictions in different biological systems to validate his hypothesis of natural selection
and eventually transform it into his famous theory of the origin of species [3].
Similarly, Newton’s law of universal gravitation makes predictions about the trajectories and
positions of celestial bodies. However, these predictions arise from a good understanding
of the universal principles that govern their interactions. It is precisely the accuracy of these
predictions what validated Newton’s hypothesis about the motion of celestial bodies.

Prediction in complex systems
There are many problems in science for which we lack general theories. One particular
area in which this happens is complex systems. Complex systems consist of a large number
of individual components that interact with each other. However, interactions are highly
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14 Introduction

heterogeneous and, in general, each individual element interacts with the rest of the sys-
tem in a different way. Take an ecological system, for example. Hundreds or thousands of
living organisms coexist in the same physical space, interacting with each other and their
environment diversely: insects or herbivores feed on some plants or trees but not on others.
Some small predators may prey on rodents or insects, while others, usually bigger, prey on
large herbivores. Markets are also a paradigmatic example of complex systems: traders,
banks and other financial institutions around the world buy and sell stocks every day with
patterns of transactions that change on a daily basis. Complex systems can be found across
many different disciplines besides ecology and economics: physics, computer science, and
particularly, social sciences and biology. This heterogeneity on the interactions is inherent
to all complex systems and implies a lack of symmetries that could simplify their study. It
also gives rise to highly nonlinear behaviors. Nonlinearity in complex systems implies that
the system cannot be explained as the sum of its components. In our previous example, the
extinction of a species can be a good example of a nonlinear behavior: a given species could
dissappear from the ecosystem because its main source of food also dissappeared, a new
predator entered the ecosystem or because some environmental changes ocurred. In any
case, the cause of its extinction would be probably related to different factors concerning
the system as a whole and its interactions.
Nonlinear behaviors in complex systems can also give rise to collective or emergent phe-
nomena that again, cannot be explained by looking at the individual elements of the system.
Economic crashes or bubbles are classic examples of emergence in market systems. Massive
outages in power grids, or outbreaks in contagion networks are other common examples.
Nonlinearity is generally a big hampering for the advancement and development of scien-
tific theories and complex systems science is no exception. Nonetheless, there exist partial
theories that can explain particular observed features or families of problems. For instance,
societies are very complex systems and no theory can explain in detail the behavior of hu-
man beings in social environments, but it is possible to understand the behavior of users
in an online social network or costumers in a recommender system. Similarly, we do not
know how an aggregate of cells becomes a multicellular living organism, but we have a de-
tailed understanding of how information is transcripted from DNA to proteins , for instance.
Besides, there are always advancements towards a more complete knowledge: stochastic
processes, dynamical systems, and especially, complex networks are just a few examples.
Complex networks are essentially representations of complex systems. Typically, they con-
sist of two fundamental elements: vertices or nodes and edges or links. Nodes represent the
individual components of the system. They could be users in a social network, microbes in
a biological network, cities in a transport network and so on. Edges or links represent the
interactions between the nodes. In social networks, for instance, a link between two people
means that they have interacted at some point or they know each other.
Networks are therefore simple and convenient objects, because they mimic the basic features
of almost any complex system, and map the interactions of their individual components and
their structure. In many cases, networks have allowed for a much better understanding of
complex systems. One classic example is the Canadian cod crisis of the 1990s. During
that time there was a dramatic shortage in the cod population in the area of Newfoundland,
east Canada [4], [5]. Political authorities and fish industries attributed this shortage to an
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overpopulation of harp seals, one of the natural predators of cod, and organized hunts of
seals. However, these actions did not result in the recovery of the cod population. Mean-
while, ecologists were mapping the food web of the scotian shelf (see. Fig. 1.1) and they
eventually found out that cod is just one in the around 150 species that seals prey on. In
fact, several of these species turned out to be also cod predators, evidencing the failure of
the political solutions attempted. Without a complete picture of the ecologic system of the
scotian shelf, it was not possible to understand the complex interactions between harp seals
and cod. Besides illustrating the global structure of complex systems, networks also allow

Figure 1.1: Partial food web of the ’Scotian Shelf’ in the north-west Atlantic off eastern
Canada. Image reproduced from [4]

to shift from the macroscopic to the microscopic scales , thus shedding light on the causes
of collective and emergent effects. Specifically, networks capture a very important feature
of the nature of complex systems: they are not totally regular nor totally random.
Precisely because complex systems are not completely random, it is possible to study their
regularities and patterns within the network representation. For instance, if we are inter-
ested in the statistical properties of a complex system, we can study the degree distribution
of its corresponding network, i.e. the number of connections of each node. If we are more
interested in topological features, it is possible to analyze other properties such as the node
centrality, to see how information flows through and which nodes are more important in that
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16 Introduction

regard. Alternatively, we may be interested in the structure of a network and its mesoscopic
scale and look for communities or groups of nodes that are densely connected in the net-
work. All of these features are informative and descriptive about regularities in networks
and about the transition from the microscopic to macroscopic dynamics of complex systems.
However, in order to have complete theories about complex systems, we need to ellaborate
descriptions that are also predictive. Statistical inference is a particularly powerful tool for
making predictive descriptions of complex systems. Statistical inference is the process of
inferring general properties about a system based on observational data. The idea is to build
models that can explain the system in terms of the properties inferred. For example, suppose
we have data on a recommender system in which people rate the movies they watch. Prob-
ably, we have data on a sample of users and their rating records. Upon these observational
data we would like to infer general properties about the system or about the behavior of
people in a recommender system context: for instance, are there some popular movies that
everybody likes? What is the average number of movies rated? Are there groups of people
according to the types of movies they like the most? Using statistical inference approaches,
it is possible to test these and other hypotheses and make predictions on the whole system.
Besides, these predictions are also easily interpretable.
The network representation is also very hepful when it comes to making predictions in com-
plex systems. Because descriptions of complex systems are done in terms of the network
features (nodes and links), the predictive descriptions need to be done in regards to the same
network features.
However, statistical inference has not been applied to predictions in networks until recently.
The reason is that the formal structure of networks was not well suited for the traditional
data types used in statistical inference approaches. This has changed during the last decade.
One particular example of prediction in complex network that has become very popular is
link prediction [6], [7].
This thesis studies precisely the problem of link prediction with statistical inference mod-
eling. The models used here work on the hypothesis that the nodes in a network can be
classified in groups according to their connectivity patterns. In order to test their predictive
and descriptive power, we test these models on two novel problems from different disci-
plines.

New data, new opportunities
Another important advancement in the study of complex systems has come with the recent
availability of massive amounts of electronic data. In many cases, these sources of data have
opened the door to the study of new problems for which there was simply no data before. In
other cases, it has considerably improved the existing knowledge. This thesis considers two
of these problems for the application of our statistical inference models. The first problem
considered is related to social sciences. Here, we explore the behavior of people when they
have to make simple choices in a strategic context. The second problem is a human mi-
crobiology one, where we look for similarities in the microbial profiles of healthy patients.
We focus on social sciences and biology because they have especially benefitted from this
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explosion of data. In biology related contexts, for instance, extensive studies on human mi-
crobiota [8], [9] or genome sequencing data [10] have boosted the study of these fields and
their connection to other levels of systems biology. In social sciences, email networks from
companies or organizations [11] or mobile phone data [12], have unveiled patterns of social
interactions, leading to important predictions about human behavior.
Although the two problems considered here may seem very different in their nature, they
share some structural important similarities. Mainly, they can be both represented as a
specific subtype of networks called bipartite multilink networks. These networks are char-
acterized by the existence of two species of nodes and multiple types of links connecting
them. The possibility of having different types of links is very convenient because it allows
us to consider multiple forms of interactions. For example, it has been observed that two
drugs can interact in three different ways: [13] antagonic (they cancel the effect of each
other), synergistic (they enhance the effect of both of them) or additive (they don’t inter-
fere with each other). Modeling these interactions requires a network consisting of three
types of links to correctly understand the effect of combination of drugs. Social networks
are another example of multilink networks, because people tend to be connected in many
different ways: they can be family members, friends, work colleagues or simply acquain-
tances. From a different point of view, social ties can be positive or negative [14]. Each of
these connections represents a different interaction with its own characteriscs. An accurate
representation should take this into account, and treating these networks with a single type
of link would hide many important levels of information.
Bipartite networks, on the other hand, are very convenient when one considers systems
with two different types of actors or nodes, in which interactions only occur between nodes
from different species. Bipartite networks can be found in many ecological systems, such
as insect-plant or predator-prey networks. Recommender systems are also a very common
example of bipartite networks. These systems, briefly described above, are widely used in
e-commerce platforms or online streaming services, where the goal is to make suggestions
to costumers based on their records of previous purchases or choices. A recommender sys-
tem can be modeled as a network in which costumers and items (products or movies) are
represented by two types of nodes. A costumer and an item are connected by a link, if the
costumer has chosen or bought the item. Overall, multilink bipartite networks are a very
convenient representation for the study of many complex systems, because they add some
degrees of freedom to the conventional network representation. Particularly, the existence
of multiple types of ties introduces a more detailed picture of the problems considered. In
addition, the price of the extension of the network modelization is very low both at the for-
mal and computational levels, since the number of parameters required does not increase
substantially.

Machine Learning

Statistical inference models are ususally built using Machine Learning (ML) techniques and
the models used here are no exception.
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ML is usually defined as the field of study that gives computers the ability to learn without
being explicitly programmed [15]. The performance of ML tools has been increasing over
time leading to higher levels of autonomy and computing power.
It is important to note that, contrary to some increasing belief, this does not imply that com-
puters and algorithms are doing science on their own. At the end of the day, their findings
are driven by a human scientist that formulates a question, comes up with a plausible hy-
pothesis, tests it on the computer, and interprets the results of the algorithm. If the results
are consistent with the hypothesis, the scientist has to build a causal relation or a theory.
Otherwise, he or she will have to modify or reformulate the hypothesis and start all over
again.
However, it is true that ML and other computer assisted methods can speed up and automate
some steps in the scientific method. In particular, we believe that ML tools allow human
scientists to formulate and test general hypotheses systematically and very fast, as we will
see in this thesis.

Outline

This thesis is divided in three chapters. The first chapter is devoted to presenting and dis-
cussing the statistical inference methods used to study the problems mentioned above. Par-
ticularly, we present a family of inference models called Stochastic Block Models (SBM).
As already stated, the hypothesis of these models is that nodes in a network can be classi-
fied into groups and that these groups are shaped by similarities in the connection patterns
and roles of nodes. Two models out of the SBM family are discussed: a conventional one
in which nodes are grouped in categories or blocks and a mixed-membership approach in
which nodes can belong to different categories simultaneously. We start the chapter dis-
cussing the convenience and advantages of SBM. Using a simple example, we next describe
the parameters needed to model a network into a conventional SBM and extend the for-
malism of SBM to model bipartite multilink networks. Next, we explain how SBM can be
used to make link predictions in bipartite multilink bipartie networks. Then, we discuss how
to find the most predictive partition of nodes into blocks using bayesian statistics analysis.
Finally, we discuss the formalism for the mixed-membership approach and the differences
with respect to the conventional approach.
In the second chapter, we apply both the conventional and mixed approaches to a human
behavior problem. In this problem, we have the results of a social experiment in which
real people were interacting in pairs and making strategic decisions within the framework
of game theory, i.e. people were playing different types of games. Our goal here is to use
both approaches to find groups of people according to behavorial patterns and groups of
games according to the perception of players. Using these classifications, we want to make
predictions of the actions of players. In addition, we include some existing information
about the games into our formalism in the form of bayesian prior distributions. From a
methodological point of view, we compare the performance of both models considered. We
conclude that the best model is the best predicting one, because it has better captured the
internal dynamics of the system. According to this criterion, we find that the best model is
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the mixed-membership approach.
In the third chapter, we consider a problem of human microbiology. Here, we have different
data sets with microbial profiles of a large number of patients. In this case, we only apply the
mixed-membership approach. As in the previous case, we use this group structure to make
predictions of microbial abundances in individual patients. We also study the predictability
of the microbial profiles of individual patients to see if some patients are easier to predict
than others. Additionally, we analyze the ecological structure of the groups of patients iden-
tified and the correlations of groups of microbes with their taxonomic information.
Finally, we make some conclusions about the results obtained and discuss possible direc-
tions for future work. These include, among others, extensions of the problems studied,
potential interesting new problems or a detailed analysis of the mechanics of our statistical
inference methods.
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Chapter 2

Stochastic Block Models

2.1 Introduction

As stated in the introduction, our goal is to make accurate, reliable, and interpretable pre-
dictions of missing links in recommender systems-like networks or bipartite multilink net-
works. Bipartite networks are characterized by the existence of two types of nodes and by
the fact that links only exist between nodes of different species. Multilink networks, on the
other side, consist of different types of links. Therefore, our problem translates here into
predicting whether two nodes from different species are connected by a link and correctly
guessing what type of link connects them. We thus need a method that can efficiently carry
out this task of interpretable link prediction.
Link prediction is a widely studied problem in network science, due to its importance in real
life applications: successfuly predicting an outage in an electric grid, a terrorist attack, an
economical crash or simply retrieving missing or corrupted information from an observed
system can be of crucial importance. Many methods and approaches have been proposed
and studied for link prediction: clustering or neural networks are two prominent examples.
However, when it comes to analyzing their results, most of these methods are not easy to
interpret. Namely, it is not possible to understand why the method makes successful predic-
tions, neither how it does it.
The problem of interpretability is particularly important because we regard link prediction
from a wide perspective: link prediction is not only a tool for recovering information, but
also a byproduct of a good understanding of the system represented by the network. That is,
we have successfully captured the regularities and patterns arising from the observed data if
we can predict missing links accurately. This is something very important from a scientific
point of view and underscores the importance of interpretability.
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2.2 What are Stochastic Block Models
In order to find a method that joins predictive accuracy and interpretability, we need a very
fundamental approach that emerges from simple assumptions.
One such approach is provided by Stochastic Block Models (SBM). SBM were proposed
and developed by sociologists as a tool to identify roles in social data and to find communi-
ties [16]. It is precisely this and its simplicity that makes them very convenient for our goal.
The main assumption in SBM is actually the idea that there exist blocks or communities
inside networks. That is, networks have a non-random internal structure. This structure is
shaped by the link patterns among the nodes and the roles played by them. Take the Figure
2.1, for instance. It depicts a very simple network with a clear community structure consist-
ing of three blocks. Note that nodes in the communities display similar roles in the network.
For example, all the nodes in the green community are connected to the brown community,
but never connect with each other. Nodes in the orange community, on the other hand, are
tightly connected to each other, but barely connected to the rest of the network. Finally, the
nodes in the brown community tend to be well connected with each other but also to nodes
of other communities.
Community detection in networks is not an exclusive feature of SBM, of course. There are
many methods to perform this task and indeed, community detection has traditionally been
a very active research field. However, there are two important aspects about the SBM that
we would like to stand out: first, no assumptions are made about the community structure
of the network. That is, there are no constraints on the number or size of the communi-
ties. Second, it is very easy (almost straightforward) to analyze the interaction between and
within communities. This is due to the fact that, given a community or block, nodes are
statistically equivalent for analytical purposes.
To illustrate this idea, let us consider the network in Fig 2.1 . If we look at the orange and
brown communities, for instance, we see that they are fully connected: all possible links ex-
ist between their nodes. We can thus say that the probability of connections is Po = Pb = 1
1 (see Fig. 2.1 b). If we now look at the green community, we see exactly the opposite: there
is not any connection between their nodes, so that the probability in this case isPg = 0. This
should not come as a surprise, since all nodes have the same connections with each other in
both cases. Now, let us take a look at the links between the green and brown communities;
we see that there are 6 out of 12 possible connections. This means that there is a probability
of connection Pr−b = 1/2 between the green and the brown communities. In SBM, we
go a step further and state that all nodes are statistically equivalent and any node from the
green community is connected with any node from the brown community with Pr−b = 1/2,
despite the fact that nodes have different numbers and patterns of connections.
This has some obvious advantages; the first one is tractability. No matter how many nodes
a network has, we only need to know the community structure to estimate the probability
of connection of any two nodes. With this in mind, link prediction arises in a very natural
and intuitive way. If we want to find a missing or spurious link between two nodes, we only

1This is actually only true if we have the certainty that that is the real structure of the network. In general,
that seldom happens, though: the data could contain observational errors or the network could change over time.
However, this simplification allows us to give an intuitive explanation of SBM.
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2.2 What are Stochastic Block Models 23

need to know the blocks or block to wich each of them belongs. Finally, we see that SBM
are very expressive: not only can we identify the community structure of the network but
we can also analyze the interplay between communities. All of this, illustrate howt SBM
are not simply a robust community detection tool, but a very powerful approach for network
analysis and link inference.
A key feature to enhance the interpretability of SBM is its formal simplicity. Importantly,
two parameters are required to describe any Stochastic Block Model: first, we need to know
the membership of nodes to blocks. Second, we need to know the probability of blocks
being connected.
We have sketched the second parameter in 2.1b. In reality, it corresponds to a matrix P of
K ×K dimensions, K being the number of blocks identified. Each matrix element corre-
sponds to the probability of block ki being connected to block kj . It is important to keep
in mind that the number of nodes in each block is irrelevant, as mentioned before. In our
example , the matrix P can be expressed as:

P =

 1 1/9 0
1/9 1 1/2
0 1/2 0


As for the membership of nodes, this information can be described by an array of mem-
bership vectors θ. This array consists of n vectors each with K dimensions, n being the
number of nodes in the network. It can also be represented as an n × K matrix. In our
example, this membership array would be:

θ =



1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1
0 0 1


The first, second and third columns correspond to the orange, brown, and green commu-

nities shown in the figure, respectively. Note that the only constraint on θ is that it can only
take 1 or 0 as numerical values, because each node can only belong to a community.
These two parameters P and θ are all that we need to characterize a Stochastic Block Model.
While θ is basically a record of the membership of every node, P provides the information
about the interaction between blocks. Of course, the numerical values of the matrix ele-
ments are also very important in this regard. Having two blocks connected with probability
1 or 0 is clearly more informative that a probability of 0.5.
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a b

Figure 2.1: Community and block structure of a simple network. (a) Network with a
community structure. The orange and brown communities have the maximum number of
possible links connecting their nodes, while the green community has its nodes completely
disconnected. Conversely, the orange and brown communities are only connected by 1 out
of the 9 theoretically possible links, the green and brown communities share half of the
12 possible links and the orange and green communities are completely disjoint. (b) A
schematic representation of the parameters of the Stochastic Block Models: memberships
of nodes into communities and the matrix of interactions among blocks.

2.2.1 Applying SBM to recommender system networks

We need to translate this formalism to bipartite multilink networks or recommender sys-
tems, since they are our object of interest. Bipartite multilink networks are obviously more
sophisticated than the simple networks described above. However, due to the simplicity
SBM rather few modifications are required. As mentioned above, bipartite networks consist
of two types of nodes. Importantly, nodes from one type only connect to nodes from the
other type and blocks are defined by the pattern of connections from one species of nodes to
the other one ( see 2.2 below). Consequently, there will also be two types of communitites
or blocks, which means that we need two membership arrays θ and η to account for the
membership of nodes to blocks. In the example shown in 2.2 θ and η would be:

θ =



1 0 0
1 0 0
1 0 0
0 1 0
0 0 1
0 0 1
0 0 1
0 0 1


η =



1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1
0 0 1


Note that the idea of probabilities of connection of nodes in the same block does not

make sense anymore since nodes from the same species never connect in bipartite networks.
The question now is the probability of connection between communities of one species and
the other one. Furthermore, since we are considering multilink networks, we are actually
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2.2 What are Stochastic Block Models 25

interested in the probability of connection with a given type of link. This implies an exten-
sion of the matrix P to an array of P matrices P1, . . . , PΛ, where Λ is the number of species
of links considered. In the example described below, Λ = 2, and we therefore have 2 3× 3
P matrices:

Pred =

 1/6 1/9 0
0 1/3 0
0 1/12 2/3

 Pblue =

 5/6 0 0
0 2/3 0
0 1/12 1/4


With these small extensions of the model, we would be able to succesfully model any

recommender system. Obviously, there is an increase of complexity, but the formalism
remains rather simple and interpretable.

a b

Figure 2.2: Community and block structure of a bipartite multilink network. (a) A sim-
ple bipartite network with two types of links. Communities are determined by the patterns of
connection of both links between nodes of different species. (b) A schematic representation
of the parameters of the Stochastic Block Models: memberships of nodes to communities
and the matrix of interactions among blocks.

2.2.2 Predictions
We have highlighted the potential of SBM for link inference before. However, we haven’t
explained how they can be used for this task. Suppose we take the example in 2.2b and
remove a few links from the original bipartite network as shown in 2.3. Suppose also that
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none of those links is so structurally important to modify the original block arrangement in
2.2 . Therefore, the membership matrices θ and η will not change in the absence of those
links. The P matrices in contrast will do, because they depend on the overall number of
links, which is smaller now. The parameters of the Stochastic Block Model of the modified
network are like follows:

θ =



1 0 0
1 0 0
1 0 0
0 1 0
0 0 1
0 0 1
0 0 1
0 0 1


η =



1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1
0 0 1


and

Pred =

 1/6 0 0
0 1/3 0
0 0 7/12

 Pblue =

 2/3 0 0
0 2/3 0
0 1/12 1/4



a b
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Figure 2.3: Incomplete observed network. (a) We remove four links from the original net-
work in a way that does not modify the block structure (b) Only the matrices of probabilities
of connection among blocks are modified by the overall reduction in number of links
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2.3 Using bayesian statistics to find the best partitions 27

Once our model is determined, we use it to try predict the existence of the four removed
links: 1-b, 3-c, 6-e, and 6-g. The protocol is as follows: first, look at the memberships
of both nodes i and j to blocks m and n in θm and ηn, respectively. Second, look at the
probability of connection of blocksm and nwith each type of link in P redmn and P bluemn . Third,
take the highest probability over a certain threshold (1/Λ = 0.5, for example) or choose no
connection if both values are below the threshold. Fourth, check whether your prediction
matches the actual links to assess the predictive power of your model.
In our example, we can succesfully predict half of the missing links (see 4.1). Note that
we are able to predict only links between communities that are densely connected both in
the original and modified version. This makes sense, since we rely on observations to make
predictions and it is generally more difficult to predict rare events.
We also observe that making link prediction in SBM is a very straightforward procedure for
which we only need to extract specific information from its parameters.

Table 2.1: Predictions

Node1 Block1 Node2 Block2 Pred Pblue Predicted Actual T/F
1 Purple b Green 1/6 2/3 Blue Blue True
3 Purple c Yellow 0 0 None Red False
6 Brown e Yellow 1/12 0 None Red False
6 Brown g Black 1/6 2/3 Red Red True

2.3 Using bayesian statistics to find the best partitions

So far, we have described the main features and formalism of Stochastic Block Models, we
have discussed how to adapt them to recommender system networks, and how to exploit
their potential to make link prediction. However, we haven’t explained how to actually find
a partition of a network into blocks or, more specifically, how to find the best partition out
of the many possibilities that are theoretically possible. We apply a bayesian approach to
solve this problem and find that the best partition is the most plausible one or the one that
maximizes the posterior probability of the model parameters. We next discuss how to do
this.
Suppose we have a record of observations Ao from a recommender system network with Λ
possible ratings and we want to find the most plausible partition of that network into blocks.
Formally speaking, this is equivalent to finding the most plausible membership vectors θ and
η, i.e. the ones that maximize the posterior probability P (θ,η|Ao). That is, the probability
of the membership vectors θ, η given the observations Ao. Importantly, finding the most
plausible partition is in general equivalent to finding the most predictive one [17].
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Our first step is to marginalize over the p-matrices (what is marginalization?):

P (θ,η|Ao) =
∫
p

dpP (θ,η,p|Ao)

=

∫
p

dp
P (Ao|θ,η,p)P (θ,η|p)P (p)

P (A0)
, (2.1)

where we have introduced the Bayes’ theorem to express the integrand in terms of the like-
lihood of the model P (Ao|θ,η,p), the prior information P (θ,η|p)P (p), and the evidence
P (Ao). P (Ao) acts as a normalization constant for the whole integrand, and we can actually
regard it as a partition function in a similar fashion as it occurs in statistical mechanics:

P (θ,η|Ao) =
∫
dpP (Ao|θ,η,p)P (θ,η|p)P (p)∫

dθ′dη′dp′P (Ao|θ′,η′,p′)P (θ′,η′|p′)P (p′)
=

1

Z

∫
dpP (Ao|θ,η,p)P (θ,η|p)P (p),

(2.2)
Next, we have the prior P (θ,η|p)P (p). In Bayesian statistics, the prior reflects our previ-
ous knowledge about the system. An example of a prior in a recommender system could be
some information about a preference towards a certain item from a subset of the users. We
will assume P (θ,η|p)P (p) = const in the present discussion.

Finally, the likelihood P (Ao|θ,η,p) represents the probability that the model gives rise
to the observed data Ao, and it can be expressed as:

P (Ao|θ,η,p) =
∏
k∈K

∏
`∈L

Λ∏
λ=1

pλ(k, `)
nλk` , (2.3)

where pλ(k, `) is the probability that the group of users k rates the group of items ` with λ
and nλk` is the total number of such interactions in the observed network Ao.

Thus, inserting the likelihood in the previous equation, we get:

P (θ,η|Ao) = 1

Z

∫
dp

∏
k∈K

∏
`∈L

Λ∏
λ=1

pλ(k, `)
nλk` , (2.4)

This integral is a multivariable beta function and can be solved analitically (see Appendix
A):

P (θ,η|Ao) = 1

Z
∏
k`

n1k`!n
2
k`! . . . n

Λ
k`!

(n1k` + n2k` + · · ·+ nΛk` + Λ− 1)!
. (2.5)

In order to reduce the computational cost of the process, we take the exponential of the
natural logarithm of P (θ,η|Ao):

P (θ,η|Ao) = 1

Z
exp

∑
k`

[ Λ∑
λ=1

ln
(
nλk`
)
!− ln

(
nk` + Λ− 1

)
!

]
, (2.6)
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with nk` = n1k` + · · · + nΛk` being the total number of observations from group k to group
`. Then, introducing :

H(θ,η) =
∑
k`

[
ln
(
nk` + Λ− 1

)
!−

Λ∑
λ=1

ln
(
nλk`
)
!

]
(2.7)

we can express the previous equation as:

P (θ,η|A0) =
1

Z
exp [−H(θ,η)] . (2.8)

Finally, we obtain the most plausible partitions (θ∗, η∗) of players and games by minimizing
H, that is:

(θ∗, η∗) = argmin
θ,η

H(θ,η) . (2.9)

Because this is a combinatorial optimization problem, we use simulated annealing for the
minimization (Appendix A, Section 1). Note that we do not have to fix the number of groups
k and `; we obtain these groups as a result of the inference process.

2.4 Beyond regular Stochastic Block Models. Mixed Mem-
bership Stochastic Block Models

In the above discussion we have implicitly assumed that each player and each item in the
recommender system belong exclusively to a single block. However, this assumption can
be too strong in many contexts. Think of a movie recommender system, for instance. It is
very reasonable to think that many movies will not fall under a single category like ’drama’,
’comedy’ or ’action’ and will rather be a mixture of different genres in variable proportions.
The same could be possibly applied to users. Certainly, most of them are not ”unidimen-
sional” watchers. Very likely, the regular Stochastic Block Models discussed so far, would
fail to predict the preferences of users in this system.
This problem can be solved using Mixed Membership Stochastic Block Models (MMSBM)
[18]. MMSBM are essentially a generalization of Stochastic Block Models in which nodes
belong in general to all blocks simultaneously with different intensities. As a result, blocks
are not just groups of nodes anymore. Rather they become latent entities variably repre-
sented in nodes. This is comparable to what genres of movies represent in the example
discussed above.
From a formal point of view, the MMSBM introduce important changes in the membership
vectors θ and η. Instead of zeros or ones, their elements become now real numbers be-
tween 0 and 1 (membership vectors are normalized and

∑K
k=1 θ

k
i = 1 and

∑L
`=1 η

`
j = 1

for every user i and movie j). This implies a considerable higher computational cost
to find the best partition; it is not possible anymore to exactly marginalize over the p-
matrices. Therefore, we assume that the distribution P (θ,η,p|A0) is very peaked around
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p∗ = argmaxp P (θ,η,p|A0) and use the approximation [19].

P (θ,η|A0) ≈ P (θ,η,p∗|A0) . (2.10)

Because θ and η are not discrete as in the single-strategy model, one can use a varia-
tional approach to obtain analytic expressions for the optimal membership vectors θ∗ and
η∗, as well as for p∗.
As in the regular Stochastic Block Models, our goal is to maximize the posterior probability
P (θ,η,p|Ao). This quantity is unknown, but we can use again the Bayes’ theorem and get:

P (θ,η,p|Ao) = P (Ao|θ,η,p)P (θ,η|p)P (p)
P (Ao)

(2.11)

As in the previous case, P (Ao|θ,η,p) is the likelihood , the prior information is represented
by P (θ,η|p)P (p), and P (Ao) is the evidence. We consider the prior and evidence to be
constant, which reduces the equation to:

P (θ,η,p|Ao) = P (Ao|θ,η,p) (2.12)

and we only need to maximize the likelihood, whose expression is known:

P (Ao|θ,η,p) =
∏

u,i∈Ao

∑
k,`

θukηi`pk`(rui), (2.13)

where rui is the rating given by user u to item i in the observed data. Notice that the like-
lihood in the Mixed Membership approach is different from that in the regular SBM, as it
depends indirectly on every couple of user and item. The reason is that, as stated before,
blocks are not groups of nodes anymore. This increases the complexity of the model, and it
is the main reason we use an Expectation-Maximization algorithm to find the values of the
parameters θ, η, and p that maximize the posterior.
The first step to develop this algorithm is to take the logarithm of the likelihood (loglikeli-
hood). We do this in order to take advantage of the properties of the logarithm and also to
reduce computational costs:

logP (Ao|θ,η,p) =
∑

u,i∈Ao
log
∑
k,`

θukηi`pk`(rui) (2.14)

Next, we introduce the auxiliary distribution ωui(k, `):

logP (A0|θ,η,p) =
∑

u,i∈Ao
log

(∑
k,`

ωui(k, `)
θukηi`pk`(rui)

ωui(k, `)

)
, (2.15)

ωui(k, `) being the probability that a rating rui is due to u and i belonging to groups k and
`, respectively.
Now we apply the Jensen’s inequality log x > log x to the right hand of this expression and
get (see Appendix A):

log

(∑
k,`

ωui(k, `)
θukηi`pk`(rui)

ωui(k, `)

)
>
∑
k,`

ωui(k, `) log
θukηi`pk`(rui)

ωui(k, `)
, (2.16)
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where the lower bound of the inequality holds if:

ωui(k, l) =
θukηi`pk`(rui)∑

k′`′ θuk′ηi`′pk′`′(rui)
, (2.17)

which gives the expectation step in the algorithm. The loglikelihood thus becomes:

logP (A0|θ,η,p) =
∑

u,i∈Ao

∑
k,`

ωui(k, `) log
θukηi`pk`(rui)

ωui(k, `)
. (2.18)

For the maximization step, we need to derive update equations for the parameters θ, η and
p. We take derivatives of the loglikelihood. We need to include Lagrange multipliers to
account for the normalization constraints of the θ and η. The function to take derivatives is
thus:

L = logP (A0|θ,η,p)− γ θuk − φ ηi` − χpk`(r) (2.19)

with γ, φ, and χ being the Lagrange multipliers. That means that if we derive (2.19) with
respect to θuk, we would have:

∂L
∂θuk

= 0 =⇒ ∂logP
∂θuk

= γ (2.20)

Similarly for ηil:
∂L
∂ηi`

= 0 =⇒ ∂logP
∂ηi`

= φ , (2.21)

and for pk`(r):
∂L
∂pk`

= 0 =⇒ ∂logP
∂pk`

= χ . (2.22)

With this in mind, we take derivatives with respect to θuk:

∂ logP

∂θuk
=
∑
i∈Ao

∑
`

ωui(k, `)
1

θuk
= γ =⇒∑

i∈Ao

∑
`

ωui(k, `) = γθuk (2.23)

Now, we take the summation over all k on both sides:∑
i∈Ao

∑
kl

ωui(k, l) = γ
∑
k

θuk (2.24)

Because both θu and ωkl(i, g) are normalized, we have:

du = γ, (2.25)

where du is the degree of item i, i.e. the number of users to which it is connected. Combin-
ing this result with (2.23), we get:

θuk =

∑
i∈Ao

∑
` ωui(k, `)

du
. (2.26)
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The derivation for ηil is analagous and we get:

ηil =

∑
u∈Ao

∑
k ωui(k, `)

di
, (2.27)

di, being the degree of user u or the number of items that he or she has rated. Finally, for
the p, we take derivatives respect to pkl(r):

∂ logP

∂pk`(r)
=

∑
u,i∈Ao|rui=r

ωui(k, `)
1

pk`(r)
= χ =⇒

∑
u,i∈Ao|rui=r

ωui(k, `) = χpk`(r) . (2.28)

Summing over all ratings r on both sides:∑
r

∑
u,i∈Ao|rui=r

ωui(k, `) = χ
∑
r

pk`(r) . (2.29)

Because the pk`(r) are normalized, we have:∑
u,i∈Ao

ωui(k, `) = χ . (2.30)

Replacing the value of χ in Eq. 2.28, we get:

pk`(r) =

∑
u,i∈Ao|rui=r ωui(k, `)∑

u,i∈Ao ωui(k, `)
. (2.31)

2.5 Conclusions
We have studied the potential of SBM and MMSBM for community detection and link pre-
diction. Ultimately, we have seen their potential to develop both tasks in a very interpretable
way. Specifically, the model parameters allow us to extract valuable information about the
internal dynamics of the system in both approaches.
Generally, it has been observed that MMSBM have a higher predictive power than conven-
tional SBM [20]. This is consistent with the idea that in many systems we cannot expect
each node to belong to a single category or block but rather to different categories at the
same time. Even if we study a system in which nodes have a very unidimensional nature,
we must not forget that SBM are a particular case of MMSBM. Finally, altough counter-
intuitively, interpretability of MMSBM can be easier than in regular SBM in some specific
aspects. The reason is that it has been empirically observed that P matrices tend to have less
informative numerical values in SBM (i.e., closer to 0.5) that in MMSBM, where matrix
elements tend to be very close to 0 or 1. As we will see in the next chapters, P matrices offer
very valuable information in terms of the internal dynamics of the system.
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This does not mean that we have to completely discard conventional SBM. First, MMSBM
work under the assumption that the posterior distribution is very peaked around a single
value of the member parameters. SMBs on the other hand are more robust in that it is pos-
sible to marginalize over parameters to find its posterior probability. They also have a lower
number of model parameters, making them formally simpler.
All in all, we have a powerful toolset to accomplish our goal of interpretable link predic-
tion in bipartite multilink networks. In the next two chapters we will analyze the results of
applying it to two different problems. In particular, the second chapter shows a compar-
ison between the two approaches and a practical case of bayesian prior information. The
third chapter is less focused on the methodology and we directly use the Mixed Membership
approach to analyze predictability and interpretability.
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Chapter 3

An Application to Social Systems

3.1 Introduction

Many human activities have strong recurrent patterns that make them easy to predict [21,
22]. Other activities involve active decision making and are, therefore, not so obviously
predictable. These include relatively simple decisions about, for example, which movie to
watch or which book to purchase (as discussed in the introduction [23, 19]), as well as com-
plex strategic decisions in which individuals need to anticipate and take into consideration
the decisions of others. For these complex strategic decisions, the question of whether the
decision-making process is predictable, and to what extent, has been largely unexplored.

Strategic decision making has been studied in the social sciences, especially in politi-
cal science and in economics [24, 25]. Experimental approaches, in which individuals play
simplified games that pose specific social dilemmas, have been particularly insightful and
have demonstrated that individuals often do not act “rationally” to maximize their profits
[26, 27, 28]. This makes their behaviors more unpredictable than one may have anticipated.
Unfortunately, approaches to analyze data from these experiments have focused mostly on
characterizing aggregate behaviors (qualitatively or using regression-based approaches) and
on measuring deviations from rationality, on the aggregate and at the level of individuals
[29]. In general, however, they have not assessed quantitatively the power of existing theo-
ries to predict accurately the actions of each individual.

The lack of such analyses is significant because quantifying predictability provides a
rigorous framework to compare theories of decision-making. Indeed, if we formalize the-
ories into models and compare their predictive power, the most plausible theory will be, in
general, the one that makes the most accurate predictions [30, 17]. Similarly, given a simple
model that we aim to refine and improve, the refinements should increase predictability; oth-
erwise, they ought to be revised or discarded [30]. All in all, studying the predictive power
of theories and models opens the door to advance our understanding of human behavior on
solid grounds [30].

In this chapter, we aim precisely at narrowing this gap by proposing models for strategic
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36 An Application to Social Systems

decision making, by developing rigorous model inference approaches, and by showing that
individual strategic decisions are, to a large extent, predictable. Specifically, we focus on
a recent large-scale study of individuals playing a variety of dyadic games in a controlled
setting [31]. We propose the two models and inference approaches discussed in the previous
chapter and show that are more predictive than those built upon expectations of individuals’
rationality. In this case, Stochastic Block Models are based on the assumption that there are
groups of individuals that use similar decision-making strategies (have similar behavioral
phenotypes [32, 33, 34, 31]), and groups of games that are perceived similarly by individ-
uals. We are agnostic a priori about which groups of individuals are most appropriate, so
that the groups we obtain arise from fitting the models and are the ones that describe the ob-
served behaviors most parsimoniously [17]. Similarly, we do not make strong assumptions
about the groups of games that are perceived similarly by individuals and, in particular, we
do not assume that games with the same Nash equilibrium [35] are in the same group. How-
ever, we do exploit existing information on the similarities between the payoffs of particular
pairs of games. Importantly, our approach gives predictive models that are interpretable,
which enables us to conclude that: (i) the perception of games by individuals is at odds with
their game-theoretical structure; (ii) individuals do not use a single strategy when making
decisions but rather a combination of multiple simple strategies, which our approach reveals
naturally.

3.1.1 Data - Game theory
We consider a dataset [31] consisting of 541 individuals playing a collection of dyadic
games in which each player has to choose between two actions: cooperation (C) or defection
(D). Therefore, the games have four possible outcomes and each of them is characterized
by a so called payoff matrix (Fig. 3.1a) that displays the results of those outcomes: if both
players choose cooperation, they both obtain a “reward” R; if both defect, they both get a
“punishment” P ; and if one cooperates and the other defects, the cooperator gets a “sucker’s
payoff” S and the defector a “temptation payoff” T .

For the experiments, the reward and punishment were fixed to R = 10 and P = 5,
whereas the other payoffs took values S ∈ {0, 1, . . . , 10} and T ∈ {5, 6, . . . , 15}, summing
up to 121 games in total (see Fig. 3.1 b ). Depending on the different values of S and
T , games have optimal strategies or choices. These are called Nash equilibria [35] and
can be described as the assumed rational behaviors in which no players have incentives
to change their behavior or action. According to these Nash equilibria, the 121 games
are divided into four groups (Fig. 3.1 b) [31]: harmony game (HG), snowdrift game (SG)
(also known as chicken game or hawk-dove game), stag hunt (SH) game, and prisoner’s
dilemma (PD). The Nash equilibria of HG and PD prescribe cooperation and defection as
pure strategies, respectively. This means that a rational player playing HG would choose
cooperation unconditionally. For instance, if she were to play iteratively against the same
opponent, she would stick to cooperation every time. SG has a stable equilibrium that
corresponds to a mixed strategy (that is, players have a certain probability of defecting and
a certain probability of cooperating) [35, 31]. To illustrate the idea of mixed strategy, we
can think of Rock-Scissors-Paper. If we always choose Rock, for example, our opponent
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will eventually guess our action and will play paper consistently. Eventually, we’d be losing
every time. Therefore, we would want to choose a mixed-strategy in which we alternate at
least two choices with equal probabilities.

Each individual in the dataset played an average of 14 rounds, each one with a randomly
selected payoff matrix (that is, a randomly chosen (S, T ) pair) and against a different, un-
known, and randomly-selected player (that is, in general there were no repeated interactions
between pairs of players). Based on the payoffs they obtained, participants received tickets
for a lottery (one ticket for 40 payoff points), in which they could win four coupons of 50
euro redeemable at predefined stores [31].

We observe that the behavior of each player during the first four rounds is erratic, which
leads to their behavior being less predictable during those rounds (Fig. B1). After round 4,
all rounds are statistically indistinguishable by the metrics we use in what follows. There-
fore, we discard the first four rounds of each player and consider all others as indistinguish-
able.

A gets S
B gets T

A gets P
B gets P

Cooperates

DefectsCooperates

A gets R
B gets R

Defects
A gets T
B gets S

Player  B

P
la

ye
r 

 A

a

b c

Figure 3.1: Structure of the dyadic games. (a) Payoff matrix for the dyadic games played
by individuals. (b) The games are typically divided into four groups depending on the
different Nash equilibria and on the payoffs S and T (given thatR and P are constant for all
games). (c) In our models, we do not impose any group structure for games, but we assume
that neighboring games are a priori more likely to belong to the same group. The neighbors
of the game marked in red are marked in dark blue.
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3.2 Single-strategy model, multiple-strategy model
It has been postulated that individuals can be classified into “behavioral phenotypes” de-
pending on how they make decisions when facing social dilemmas [32, 33, 31]. The idea
behind the concept of phenotype is that individuals apply general rules when making de-
cisions, regardless of the structure of individual games. For example, players displaying
the “envious” phenotype in Ref. [31] cooperate if, and only if, cooperation leads to higher
payoffs for them than their opponents, regardless of whether that corresponds to the Nash
equilibrium. In practice, among all possible combinations of strategies for single games
there are only a few phenotypes that are followed by players. Here, we formalize this idea
into group-based generative models of decision making, and go a step further to investigate
to what extent these groups can be used to predict unobserved decisions.

We propose two models: a single-strategy model and a multiple strategy model that
correspond to the conventional Stochastic Block Models (SBM) [36] and the Mixed Mem-
bership Stochastic Block Models (MMSBM) [18, 19, 37] discussed in Chapter 1. In the
former, we assume that each player i belongs to one group of players k. Similarly, each
game g (defined by the payoff values T and S) belongs to solely one group of games `.
We encode this information in the membership vectors θi and ηg that track the member-
ship of any player and game to a given group. The probability of player i taking action
aig ∈ {C,D} on game g depends exclusively on the groups k and `, so that the probability
of cooperation is

Pr[aig = C] = pk` (3.1)

with pk` ∈ [0, 1]. The element pkl can therefore be interpreted as the strategy of players in
group k for each of the games in group ` (see Fig. 3.2). In a slight abuse of language we also
call strategy the vector pk of strategies for all game groups; because in the single-strategy
model each individual has a single strategy, pk also defines their phenotype. Note that in our
approach we do not make any assumption about the strategies for individual games, which
can either be pure (pkl ∈ {0, 1}) or mixed (0 < pkl < 1) [38].

In the multiple-strategy model, players do not always follow the same strategy but rather
adopt different strategies with certain probabilities. We formalize this idea exactly as we did
in the discussion of the MMSBM: we allow players to belong to a mixture of groups, with
θik being the probability that player i belongs to group k (

∑
k θik = 1), that is, that i

adopts strategy k. Similarly, we assume that games are not always regarded by players as
belonging to the same group, and allow games to also belong to a mixture of groups; ηg` is
the probability that game g is regarded as belonging to group ` (

∑
` ηg` = 1). In this model,

the probability that player i cooperates in game g is thus

Pr[aig = C] =
∑
k,`

θikηg`pk` , (3.2)

where pk` is the same as in the single-strategy model and the sum is over the K groups
for players and the L groups for games (Fig. 3.2). In fact, if we restrict the elements of
the membership vectors θ and η to be either 0 or 1 (that is games/players are restricted to
belong to a single group) we recover the single-strategy model, so in what follows we use
the multiple-strategy formulation without loss of generality.
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Figure 3.2: Single-strategy and multiple-strategy models. The matrix of cooperation
probabilities (left) indicates the probability with which players in a player group cooperate
in games in game group. In the single-strategy model (top right), players belong to a single
group, so that their decisions are given directly by the corresponding row in the matrix of
cooperation probabilities. In the multiple-strategy model (bottom right), each player can
simultaneously belong to different groups of players with given weights. Their decisions
are given by the weighted average of the corresponding rows in the matrix of cooperation
probabilities.

3.3 Game metadata and prior modeling
A critical aspect in the modeling process (especially if we have limited data) is to specify
how the a priori information we have about players and games affects the plausibilities of
model parameters, namely the strategy matrices p and the group membership vectors θ and
η. In our case, we only have auxiliary information (metadata) on the games. Therefore, we
make no a priori assumptions about which values for p and θ are more plausible. In con-
trast, we expect games with similar payoffs (S, T ) to be regarded by players as similar. This
means that games that are neighbors in the TS-plane are more likely to have similar mem-
bership vectors. We model this expectation by choosing a prior distribution that introduces
an exponential penalty when membership vectors of neighboring games are dissimilar

P (η) ∝ exp

−α∑
〈gg′〉

(1− ηg · ηg′)

 . (3.3)

Here, the sum runs over all pairs of games that are nearest-neighbors in the TS-plane, that is
that differ by plus or minus one in S or T (but not both; Fig. 3.1c), and α ≥ 0 is a parameter
that we call the game aggregation factor. Note that α plays a similar role as the interaction
in Ising, Potts and N-spin models [39, 40], so that for α = 0 we recover the uniform prior,
whereas increasing values of α make it more likely that neighboring games have similar
mixing vectors. Note that in the single-strategy model, Eq. (3.3) is in reality a prior over
partitions of games into groups πg , since, as for the players, the model considers only the
set of membership vectors η that result in disjoint partitions.

These models are reminiscent of existing models, but differ in important aspects. The
single-strategy model is the formalization of the idea that there exist “behavioral pheno-
types,” and that decisions depend only on those phenotypes [31, 32, 33]. Unlike previous
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work, however, we do not assume that the groups of games are known a priori. The idea of
allowing the existence of more than one strategy is reminiscent of the population strategy
models used in evolutionary game theory in which competing strategies can coexist within
a population [38]. The difference is that, in our case, each individual is allowed to simulta-
neously consider more than one strategy to make decisions, rather than having a population
in which different strategies are represented. Moreover, as we previously mentioned, in our
approach we make no assumptions about which strategy (pure or mixed) players are using
in each game; we can determine whether players are using mixed strategies or not as an
outcome of the inference process. This possibility is especially interesting in the analysis of
real data since the empirical relevance of this concept has been so far hard to prove [41, 42].

Also unlike previous models, we are able to use the available game metadata, which
we introduce in the model through the prior distribution of model parameters, an approach
that is reminiscent of what has been used in networks [43] (an alternative is to model the
metadata together with the data [44]). Modeling game similarity through the scalar product
of game membership vectors opens the door to modeling other network-like systems whose
nodes, like games, are embedded in a low-dimensional space.

For the single strategy model, we introduce the prior distribution 3.3 in the Eq. 2.2 for
the posterior probability:

P (θ,η|Ao) = 1

Z

∫
dpP (Ao|θ,η,p)P (η). (3.4)

Because the prior distribution only depends on η but not on p or θ, we can take P (η) out of
the integral. Therefore, the solution to the integral is identical to the case with uniform priors
(see Eq. 2.6 in the previous chapter) and the ”Hamiltonian” only changes by an additive
constant introduced precisely by the prior distribution:

H(θ,η) =
∑
k`

[
ln
(
nk` + Λ− 1

)
!−

Λ∑
λ=1

ln
(
nλk`
)
!

]
+ αF, (3.5)

with F =
∑
〈gg′〉 (1− ηg · ηg′) being the number of neighboring pairs of games that are not

in the same group and α the game aggregation factor. The effect of the prior distribution is
thus to globally penalyze partitions where neighbouring games belong to different groups,
as mentioned in the previous section.
Furthermore, since only two actions are allowed in conventional games (Cooperation, C or
Defection, D), we have Λ = 2. Therefore, the Hamiltonian further simplifies to:

H(θ,η) =
∑
k`

[
ln
(
nk` + 1

)
!− ln

(
nCk`
)
!− ln

(
nDk`
)
!

]
+ αF. (3.6)

This is the function we need to minimize to find the best partition into groups under the
game prior condition.
In the case of the mixed strategy model, we started considering the natural logarithm of the
likelihood (or posterior, since they were equivalent under the uniform prior condition) in
the previous chapter (see Eq 2.14 ). Considering now the prior distribution, we take the
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logarithm of the posterior probability. Simplifying to two types of links (Cooperation and
Defection), we get:

logP (θ,η,p|Ao) =
∑

i∈U ;g∈Ci

log pig +
∑

i∈U ;g∈Di

log(1− pig)− α

1−
∑
〈gq〉

ηg · ηq

 .

(3.7)
Here, U represents the total set of players, Ci/Di is the total set of observed games in which
player i cooperates/defects, and pig is a short notation for the probability that player i coop-
erates at game g, pig(C) =

∑
k,` θikηg`pk`. Since there are only two available actions and

the probabilities are normalized, pig(D) = 1− pig(C).
Introducing the auxiliary distribution ωC/Dig (k, `) and the Jensen’s inequality in the posterior
with the prior distribution, we have:

logP (θ,η,p|A0) >
∑

i∈U ;g∈Ci
k`

ωCig(k, `) log
θikηg`pk`
ωig(k, `)

+
∑

i∈U ;g∈Ci
k`

ωDig(k, `) log
θikηg`(1− pk`)

ωDig(k, `)
− α

1−
∑
〈gq〉

ηg · ηq

 , (3.8)

where the equality holds again for:

wCig(k, `) =
θikηg`pk`∑

k′`′ θik′ηg`′pk′`′
(3.9)

wDig(k, `) =
θikηg`(1− pk`)∑

k′`′ θik′ηq`′(1− pk′`′)
. (3.10)

The approach for the maximization step is also the same as in Eq. 2.19, and the presence
of the prior information only affects the equation for η. Therefore, we take derivatives of
the log posterior under the normalization constraints imposed by the lagrange multipliers:

θik =

∑
g∈Ci

∑
` w

C
ig(k, `) +

∑
g∈Di

∑
` w

D
ig(k, `)

di
(3.11)

ηg` =

∑
i∈Cg

∑
k w

C
ig(k, `) +

∑
i∈Dg

∑
k w

D
ig(k, `)

dg + α
∑
r∈∂g ηr · ηg

+
α
∑
r∈∂g ηr`ηg`

dg + α
∑
r∈∂g ηr · ηg

, (3.12)

where di =
∑
q∈Ci

∑
k` w

C
iq(k, `)+

∑
n∈Di

∑
k` w

D
in(k, `) and dq =

∑
i∈Ci

∑
k` w

C
iq(k, `)+∑

m∈Di
∑
k` w

D
mq(k, `), and Cg and Dg are the set of users that cooperate or defect in game

g, respectively.
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Finally, for pk`, we get:

pk` =

∑
(i,g)∈C w

C
ig(k, `)∑

(i,g)∈C w
C
ig(k, `) +

∑
(m,n)∈D w

D
mn(k, `)

, (3.13)

We have thus shown how to include a prior information about the system into our two
inference approaches. In the first part of the section, we took some knowledge we had and
modeled it into a prior distribution; we first discussed how that knowledge could affect the
dynamics of the system and we then modeled that knowledge in a way that is consistent with
our bayesian method for finding the most plausible partitions both in the single and mixed
strategy approaches. Importantly, we included a parameter to tune the relative intensity of
the prior in a continuous way.
In the second part of the section, we extended the formalism presented in the previous chap-
ter to include a prior distribution. We did this for the membership vectors of games, but this
can equally be done for any other model parameters, as long as the prior can be modeled.
It could be argued that there is some sort of arbitrariness in our choice of the prior distri-
bution. However, we can validate it if we test the predictive power of our models and, as
we will see in the next section, our assumptions prove to be successful: for non-negligible
values of the game aggregation parameter α we see a significant increase in the predictive
power of both approaches. Moreover, since the main effect of the prior distribution is to
remove statistical fluctuations, interpretability becomes much easier; again, prediction and
interpretability are two sides of the same coin and our results underscore this.

3.4 Predictive power
To test the predictive power of our models, we use cross-validation. The idea of cross-
validation schemes is to divide a dataset in two splits or sets: one split (usually larger) is
used to train the algorithm such that it outputs a predictive model. The other one is used to
test the ability of the resulting model at making predictions.
Here, we implement a 5-fold cross-validation scheme: we divide the data in five equally-
sized splits, and then use four splits as a training and the remaining split as a test to assess
the capacity of the model to predict unobserved data. We repeat this for the five possible
train-test combinations.
The idea is to provide enough data to train the model in each iteration, but at the same time
run over the whole dataset to prevent statistical fluctuations.

3.4.1 Baseline Model
We start by studying the predictive power of the model proposed in Ref. [31], which we will
consider as a baseline prediction. In this model, games are divided into four fixed groups
(harmony game, snowdrift game, stag hunt game, and prisoner’s dilemma). Each user i is
then characterized by a strategy vector vi that quantifies their propensity to cooperate in
each of the four types of games. In the baseline model, players are grouped according to
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the similarity in their strategy vectors using k-means. For each training set, we find the
player groups, and estimate pk`, the probability that players in group k cooperate in games
in group `, as the frequency with which players in group k cooperate in games in group ` in
the empirical data. Then, we use these frequencies to predict cooperation in the test data, so
that if pkl > 0.5 then the prediction is that all users in group k will cooperate in games in
group `. We obtain an average predictive accuracy of 0.683±0.005 (Fig. 3.3a).

3.4.2 Single-strategy models: maximally predictive partitions reveal
perception of games by players

Next, we study the predictive power of the single-strategy model as a function of the game
aggregation parameter α, which controls how strongly neighboring games are pushed into
the same group. For the sake of consistency, we use the same 5-fold cross validation scheme
as before. For each split, we obtain the optimal partitions of players and groups from
Eq. (2.8) and, as before, use the observed cooperation frequencies of groups of players
in groups of games to make predictions on the test set.

We find that the predictive power of the model increases withα and reaches its maximum
for α = 2, at which point it is significantly more predictive than the baseline model with a
predictive accuracy of 0.714±0.008 (Fig. 3.3 a).

A close inspection of the optimal partitions for players and games reveals that the game
aggregation factor has an effect on the partition of both players and games into groups
(Fig. 3.3 b,c–f). With respect to the number of groups of players, we observe that the
number of groups decreases as we increase α, and stabilizes for α > 2 at around 20 groups.
Note that many of these player groups are small since 5 or 6 groups typically account over
50% of the players (see bottom row of Fig. 3.3 c–f). With respect to the partitions of games
we observe two noteworthy aspects. First, that the absence of a prior for game memberships
(α = 0) makes game groupings (and as a surrogate player’s groupings) too susceptible to
fluctuations, which results in low predictive power. Second, that as α increases the prior
helps disregard statistical fluctuations in favor of a well-defined structure of game groups
within the TS-plane, leading to a higher predictive performance. Despite the fact that the
prior acts on the games alone, it also leads to a lower number of player groups because with
fewer game groups the number of possible strategy vectors is also smaller. Interestingly,
games fall into groups defined by the difference between sucker and temptation payoffs
∆ = (T − S), and are qualitatively different from the four regions that follow from game-
theoretic considerations (Fig. 3.1b). More specifically, at the optimal aggregation factor
α = 2 we observe three regions that are distributed in a roughly diagonal pattern. These
regions correspond approximately to: (i) S > T , where most players cooperate; (ii) S <
T − P = T − 5, where most players do not cooperate (although some do, including a
few that always cooperate); (iii) the intermediate region where some cooperate and others
do not. These groups are consistent with the observations described in Ref. [31], but in
our analysis arise naturally from the rigorous comparison of models, and get incorporated
in the models. In this sense, our approach illuminates the way in which individuals are
“predictably irrational” [45].
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Figure 3.3: Single-strategy model. (a) Predictive accuracy of the single-strategy model
as a function of the game aggregation factor α. Each point represents the average of a 5-
fold cross-validation; error bars indicate the standard error of the mean. The solid black
line represents the accuracy of the baseline model (see text and Ref. [31]). (b) Average
number of groups of players 〈Ng〉 as a function of the game aggregation factor α. Each
point represents the average of the number of groups for players identified for each of the
5 folds; error bars indicate the standard error of the mean. (c-f) Groups of games in the
TS-plane (top) and cooperation matrix p (bottom) for aggregation factors α equal to: (c) 0,
(d) 1, (e) 2, (f) 4. In the game plots, each color indicates a different group of games in the
most plausible partition as obtained from Eq. (2.8) for each value of α. In the cooperation
matrices, each row corresponds to a group of players k (with height proportional to the
number of players in the group), and each column to a group of games ` as indicated by
the colors at the top (with width proportional to the number of games in the group). Each
element pk` represents the probability that an individual in group k cooperates when playing
a game in group `, with dark red meaning always cooperate and dark blue always defect.
The game groups and the cooperation matrices correspond to one of the folds in the 5-fold
cross-validation, but are very consistent across folds (see Fig. 5.3).
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To further investigate the collective behavior of players, we focus on the phenotypes
associated to the three largest groups of players identified for α = 1, 2 (Fig. 3.4). In both
cases we see that the largest group is characterized by two facts: i) players only distinguish
between two types of games (S ≥ T and S < T ); and ii) players display pure strategies
in these games: always cooperate in games with S ≥ T and always defect in games with
S < T (Fig. 3.4). Interestingly, this phenotype is precisely the envious phenotype identified
in [31], but in our case it arises naturally from our model-selection criteria without having
to make any assumptions about the structure of the TS-plane or about the number of player
groups. The two remaining most common phenotypes for α = 1, 2 also show that players
fully cooperate in games with S ≥ T . However, the cooperation patterns for S < T cannot
be mapped directly into any behavioral phenotype described previously in the literature,
and, despite being strongly correlated with ∆ and leading to better predictions, they are not
as informative as the most common phenotype. In part, this is due to the large number of
observed phenotypes (Fig. 3.3c–f); in the following section, we show that the multiple-
membership model provides a more parsimonious and straightforward description of this
variety of phenotypes.

3.4.3 Multiple-strategy models are more predictive and easier to inter-
pret than single-strategy models

Finally, we investigate the predictive power of models in which players are allowed to use
mixtures of strategy vectors. As we show in Fig. 3.6, we find that, again, predictive per-
formance grows with the game aggregation α and saturates after α = 3. Remarkably, the
multiple-strategy model is, in all cases, significantly more predictive than the single-strategy
model, with a maximum predictive accuracy of 0.744±0.007. This is consistent with our
remarks about the predictive power of both approaches in the previous chapter, namely that
MMSBM are generally more predictive than regular SBM. Likewise, it suggests that our
data may be better explained in terms of a mixed membership approach.

Let us consider first the effect of mixed-membership on game grouping. We start looking
at how the membership of games is spread across all L = 4 latent groups for different values
of α = 0, 2, 4, 8. To that end, we compute the Shannon Entropy Hg for every membership
vector ηg:

Hg =
L∑
`=1

ηg` logL(ηg`), (3.14)

where low values of Hg imply memberships concentrated in one or two groups, whereas
values close to 1 would indicate a membership equally distributed among the four groups.
The distribution of entropies of membership vectors (Fig. 3.5 ) shows that most games
have a very low Shannon Entropy and that the main effect of α is actually to further reduce
it. If we plot the top membership of each game in the T-S plane (see Fig. 3.6 ), we see
that the membership matrix strongly resembles the game classification for single-strategy
models in Fig. 3.3, especially for α > 0. This confirms that the perception of games by
players following the difference ∆ = (T − S) is robust and that mixed-membership does
not play a major role in game grouping, since games end up belonging mostly to a single
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Figure 3.4: Most common behavioral phenotypes for single-strategy models. Game
groups (top; as in 3.3 , and cooperation probability in each game group for the three largest
player groups (or behavioral phenotypes) for: (a) α = 1, (b) α = 2. The groups and
cooperation probabilities correspond to one of the folds in the 5-fold cross-validation,
but are very consistent across folds.

well-defined group as in the single-strategy model (Fig. 3.6). Therefore, the increase in
predictive performance must be due to the multiple membership of players, that is, to the
fact that players are best described as not making decisions following a unique strategy but
rather using a combination of strategies. Indeed, we find that the majority of players use
a mixture of strategies (center row in Fig. 3.6), and that three global strategies are enough
to make the most accurate predictions of players’ decisions (bottom row in Fig. 3.6). Note
that, unlike the single-strategy model, we need to fix the number of groups; but we find
that such a small number of strategies (i.e., K = 3) provides the most accurate predictions
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Figure 3.5: Distribution of Shannon Entropies of the game membership vectors η. Each
bin represents the number of occurrences of games significantly belonging to one, two, three
or four memberships.

(Fig. 5.2). Interestingly, these global strategy vectors are for the most part combinations
of pure strategies in which players either fully cooperate or fully defect in games. This
is an example of a common phenomenon usually seen in MMSBMs and briefly described
in the previous chapter. That is, the fact that P matrices (the set of three strategy vectors
in our case) tend to have numerical values closer to 1 and 0 than in regular SBMs. In
general, this makes interpretability much easier in terms of the interactions between latent
groups. In this particular case, we can much better understand the behavioural patterns of
groups of players. For example, we can clearly identify the envious strategy (to cooperate
only in games with S ≥ T ), which is also present in the single-strategy model and in
Ref. [31]. Additionally, aggregating over the θ membership vectors, we see that it is slightly
more common than the others, also in consistency with the single strategy approach Fig. 3.6
b-e) . The other two strategies correspond to: (i) a more rational strategy that leads to
cooperation for half of the games (including all harmony games) and to defection for the
other half (including all prisoner’s dilemma games); (ii) a strategy that accounts for non-
rational behaviors, including incomplete cooperation in harmony games and full cooperation
for most other games, including prisoner’s dilemma games. This last strategy may seem
counterintuitive but arises from the need to assign non-zero probability to all behaviors;
without this strategy, for example, any observed non-cooperation in games with S ≥ T
would lead to zero likelihood. It may seem surprising, however, that this deviant strategy is
used in as many as 25% of all the decisions

3.5 Discussion and conclusions

In this chapter, we have explored the power of group-based models to predict decisions
made by individuals in simple classes of dyadic games that involve strategic thinking. Such
decisions are known to deviate from the rationally expected behavior. However, our analysis
proves that they still are highly predictable (74% of the decisions can be correctly predicted)
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and that group-based models are good models of strategic decision making.
More importantly, proposing interpretable models of human behavior and comparing

them in terms of their predictive accuracy sets the bases for advancing the social sciences
on solid grounds [30]. In this regard, we have shown that the most explanatory groupings
of games reveal the perception of games by players, which differs from game-theoretical
expectations. Our approach also gives the most explanatory cooperation strategies followed
by players, and suggests that models in which players are allowed to use multiple strategies
(rather than sticking to a single strategy) are more predictive than those models in which
players are restricted to a single strategy. Multiple-strategy models are also more parsimo-
nious in that they summarize the wide variety of phenotypes suggested by single strategy
models as combinations of a small number of simple strategies. In fact, the combination of
these two factors (perception of games by players and multiple strategies) accounts well for
the rich variety of phenotypes observed in real data.

More broadly, we believe that our approach and models can be used to analyze many
other behavioral experiments and datasets. Indeed, whenever humans face distinct (discrete,
non-overlapping) situations and take distinct actions, their decisions can be modeled using
the exact same approaches we have proposed here.
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Figure 3.6: Mixed-strategy model. (a) Predictive accuracy of the multiple-strategy model
(green) as a function of the game aggregation factor α. We show results for K = 3 latent
groups of players andL = 4 latent groups of games; increasing the number of groups did not
result in an increase in accuracy (see Fig. 5.2). Each point represents the average of a 5-fold
cross-validation; error bars indicate the standard error of the mean. Grey symbols represent
the predictive accuracy of the single-strategy model as in Fig. 3.3 a, and the solid black line
represents the accuracy of the baseline model. (b-e) Top group memberships for each game
(top), distribution of the entropies of player membership vectors (middle), and cooperation
matrices p (bottom) for α = 0, 2, 4, 8. In the game membership plots, each color indicates
a different group of games in the most plausible model as obtained from Eqs. (3.11)-(3.13).
The saturation of the color indicates how distributed a game is among groups, so that games
with multiple memberships are paler (Fig. 3.5 ). In the distribution of the player entropies,
players with a single strategy vector have entropy H = 0 (red dashed line); players that
mix two strategy vectors with equal weights have H = log3 2 = 0.63 (blue dashed line);
and players that mix three strategy vectors with equal weights have H = 1 (green dashed
line). In the cooperation matrices p, each row corresponds to a group of players k, and each
column to a group of games ` as indicated by the colors at the top. The height of player
group k is proportional to the effective number of players in that group

∑
i θik. The width

of game group ` is proportional to the effective number of games in that group
∑
g ηg`.

Each element pk` represents the probability that an individual in group k cooperates when
playing a game in group `, with dark red meaning always cooperate and dark blue always
defect. The groups, entropies, and cooperation matrices correspond to one of the folds in
the 5-fold cross-validation, but are very consistent across folds (see Fig. 5.4).
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Chapter 4

An Application to Human
Microbiology

4.1 Introduction

The study of the human microbiome has become very popular during the last decade. This
is partially due to the recent availability of data provided by large scale experiments such as
the Human Microbiome Project (HMP) [8], [9]. These experiments have shed light on the
importance of microbiome in multiple aspects. For instance, many pieces of evidence sug-
gest that the microbial system is tightly related to several immune and digestive functions
and that it may be related to certain health disorders such as Inflammatory Bowel Disease
(IBD) and other autoimmune diseases [46], [47], [48] . However, the microbiome is a very
complex system that interacts at different scales with human biology, hence making it diffi-
cult to understand its functioning.
One interesting question in this regard is whether there are universal traits in the human
microbiome. In particular, it has been proposed that there might be universal types of hu-
man gut microbial profiles according to their compositions. These classifications are usually
referred to as enterotypes. However, results on the existence of enterotypes have been con-
troversial [49], mainly because it is difficult to find regularities in microbial data. Here, we
redefine this idea by proposing latent enterotypes, a more general and abstract version of the
conventional ones. The idea is that hosts have microbial profiles that are a combination of
latent enterotypes in different proportions. We believe that latent enterotypes could be more
consistent with the extreme variability of microbial data. Taking real datasets from open
repositories, we use MMSBM to find groups of microbes and patients upon which latent
enterotypes are defined.
We validate our results by testing the ability of our model to predict abundances of missing
microbial species in individual patients. We find that our approach is significantly more
predictive than previously used ones. We also find a correlation between the predictabil-
ity of individual patients and microbes and the degree of mixing among different groups.
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Importantly, we also observe a significative correlation between membership vectors of mi-
crobes and their taxonomic classifications. Finally, we observe a well defined ecological
order among latent enterotypes called nestedness[50]. The nestedness corresponds to an
increasing degree of specialization on the enterotypes, in the sense that some enterotypes
contain fewer groups of microbes than others.
Altogether, our results show that it is possible to find universal patterns of individual micro-
bial profiles, that these patterns are similar to those found in some ecological networks and
that it is possible to make predictions upon them, both at an individual and a global scale.
We also see that patients and microbes have varying degrees of predictability and that our
model parameters can partially capture the taxonomic proximity of microbial species.

4.2 Data
We have datasets for the five human gut microbiome studies shown in Table 4.1 . Each
dataset consists of an Operational Taxonomic Unit (OTU) matrix M , where columns rep-
resent human samples or patients and rows correspond to microbial species. Each element
Mij corresponds to the relative abundance of the microbial species i relative to the host
sample j. For practical purposes, we have considered abundances below 10−4 as negligi-
ble. Also, we have removed microbes that were present in less than 5 % of all patients. In
addition to OTU matrices, we have taxonomic information on the microbes provided by the
same sources. For each microbre we have the Phylum, Class, Order, Family, and Genus
level.

Table 4.1: Datasets

Dataset Study Name Microbes Patients
S-8 Unique Features of Ethnic Mongolian Gut Micro-

biome revealed by metagenomic analysis [51]
128 107

V-10 Alterations of the human gut microbiome in liver cir-
rhosis [52]

137 92

V-22 Linking the Human Gut Microbiome to Inflammatory
Cytokine Production Capacity [53]

134 467

V-23-24 Structure, function and diversity of the healthy human
microbiome & Strains, functions and dynamics in the
expanded Human Microbiome Project [54], [55]

118 222

V-25 Personalized Nutrition by Prediction of Glycemic Re-
sponses [56]

144 883

We model OTU matrices as bipartite multilink networks. Here, nodes correspond to
patients and microbes, and edge values correspond to relative abundances in each host.
Since relative abundances are continuous and our models require a discrete number of edge
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values or categories, we need to discretize relative abundances. We choose to discretize
them according to orders of magnitude. In all five datasets, abundances range from 10−4 to
10−1, so we consider three types of links or discrete abundances corresponding to: null or
negligible (0) ( Mij < 10−4) , low (µ) ( 10−4 ≤ Mij ≤ 10−3) ), and high (ν) abundance
(Mij > 10−3). This discretization is more informative from a clinical point of view and it
allows us to keep a connection with the real values of abundances. This connection would
not have existed with other discretization schemes such as quantiles. On the other hand, it
could be argued that 9.99 · 10−3 and 1 · 10−4 are too close to belong to different categories,
but this problem will arise in any other discrete categorization we could think about.

4.3 Methods

4.3.1 Enterotypes

A common question in the study of the human gut microbiome is whether people can be
classified into a reduced number of groups according to similarities in their gut microbial
ecosystems. Each one of these groups is characterized by an enterotype: a specific profile of
microbe concentrations in the gut [57], [58], [59]; for instance, a set of clusters of microbes
with different average abundances each. The idea of enterotypes has been often questioned;
the lack of a standardized procedure to define them [49], and the extreme variability of mi-
crobial composition related to diet [60],[61], [62], age [63], health state [64], or simply time
[65], challenges the idea of universal rigid patterns in gut microbial composition. However,
it is certainly plausible that some regularities exist across humans, since it appears that the
human gut microbiome performs critical biological functions [66], [67].
A possible explanation that would reconcile the existence of enterotypes with the observed
variability is that patients are mixtures of enterotypes in different proportions. Therefore,
changes according to diet, age, time or even health state could be explained as transitions
between enterotypes. In that regard we propose the idea of latent enterotypes. Latent en-
terotypes are universal microbial profiles, but they do not generally correspond to a group
or population of patients. Instead, each patient belongs to several latent enterotypes with
different weights (see Fig. 4.1 ). The same logic applies to microbes. Each microbial
species can belong to many groups in different proportions. In reality, our model identifies
latent groups of patients and latent groups of microbes. Thus, we define a latent enterotype
(hereafter, enterotype) as an abundance pattern. Each pattern associated to a specific latent
group of patients is characterized by the abundances of the latent groups of microbes.

4.3.2 Mixed Membership Stochastic Block Models

The idea of latent enterotypes is formally analogous to the idea of the multiple strategy
approach discussed in the previous chapter. Players and games are thus replaced by patients
and microbes. Therefore, given K groups of patients and L groups of microbes, we have
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Figure 4.1: Conventional enterotypes and latent enterotypes. a) Matrix of probabilities.
Rows correspond to groups of patients and columns represent groups of microbes. Colors
represent the probability that a group of patients hosts a group of microbes. Each entire row
represents an enterotype or microbial profile. b) Example of a conventional enterotypes and
latent enterotypes. In a conventional enterotype, each patient corresponds to a microbial
profile or enterotype. When considering latent enterotypes, a patient can have an enterotype
that is a linear combination of latent enterotypes.

mixed-membership vectors for each patient p and microbe m:

θp =
[
θ1p, θ

2
p, . . . , θ

K
p

]
ηm =

[
η1m, η

2
m, . . . , η

L
m

]
(4.1)

where θp and ηm are normalized, so that:

K∑
k=1

θpk = 1
L∑
l=1

ηml = 1 (4.2)

As for the interaction between groups of patients and microbes, instead of latent strategies,
we have latent enterotypes. Latent enterotypes in our model correspond to the vector of
probabilities of connection of a group of patients to all L groups of microbes.
In order to validate the existence of latent enterotypes, we test the ability of our method
to predict unobserved microbial abundances in patients. That is, given a patient p and a
microbe m, we ask ourselves what is the probability that microbe m is present in patient p
with an abundance A.
This probability is given by:

Pr[apm = A] =
∑
k,`

θpkηm`p
A
k` (4.3)

with pAk` being the probability that the group of patients k contains the group of microbes
` with an abundance A 1 . Our estimation of the abundance of microbe m in patient p, is

1 Note that p0, pµ, and pν are matrices of K × L dimensions. Rows in these matrices represent exactly the
latent enterotypes
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given by the maximum numerical value of Pr[apm = 0], Pr[apm = µ], and Pr[apm = ν],
i.e. :

Prediction = max
x
{Pr[apm = x]} (4.4)

We thus look for the membership vectors θ and η that yield the highest predictive power of
unobserved abundances.

4.3.3 Inference of the most predictive latent enterotypes
Given an OTU matrix Ro of observed microbial abundances, we want to find the most
plausible membership vectors θ, η, as well as the most plausible p matrices.
Since we do not have any metadata that we could use as a prior to model the system, the
formalism is just the particular case of the Mixed Membership Stochastic Block Model
(MMSBM) with three types of links or ratings (see Chapter 1).
Therefore, the equations for the model parameters are:

θpk =

∑
m∈0p

∑
` w

0
pm(k, `) +

∑
m∈µp

∑
` w

µ
pm(k, `) +

∑
m∈νp

∑
` w

ν
pm(k, `)

dp
,

(4.5)

ηm` =

∑
p∈0
∑
k w

0
pm(k, `) +

∑
p∈µ

∑
k w

µ
pm(k, `) +

∑
p∈ν

∑
k w

ν
pm(k, `)

dm
, (4.6)

pAk` =

∑
[(p,m)∈Ro|apm=A] ωpm(k, `)∑

(p,m)∈Ro ωpm(k, `)
. (4.7)

Here, 0, µ, and ν are the sets of low, medium, and high abundances observed in the OTU
matrix Ro. 0p, µp, and νp are the subsets of observed low, medium, and high abundances
corresponding to the patient p. Correspondingly, 0m, µm, and νm, are the subsets of patients
that contain microbe m with low, medium, and high abundance. dp and dm are the total
degrees of p and m, that is, the number of microbes in patient p, and the total number
of patients in which microbe m is present with any type of abundance (low abundance
included).
Finally, wApm(k, `) is a distribution representing the probability that patient p having the
microbe m with relative abundance A is due to p and m belonging to latent groups k and `:

ωApm(k, l) =
θpkηm`p

A(k, `)∑
k′`′ θpk′ηm`′p

A
k′`′

. (4.8)

4.4 Results

4.4.1 Cross validation experiments
In order to assess the prediction accuracy, we perform cross validation experiments with
OTU matrices corresponding to the datasets described before. That is, we remove a given
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number of relative abundances in the OTU matrix and use the rest of the matrix as an in-
put to the model. Because we want to make predictions on individual patients, we always
remove abundances from a single patient. Particularly, we do a 5-fold cross validation for
each patient: we divide its microbial abundances in five equally sized groups at random, and
remove one of those groups of abundances to test the performance of our model. We train
our model with the remaining data in the OTU matrix (i.e. the four remaining groups of
patients plus the whole information on all other patients). We repeat this process for all five
groups in order to prevent statistical fluctuations.

4.4.2 Baseline
To assess the advantages of the modeling approach we propose, we start by selecting a refer-
ence model with which we will obtain a baseline. We will use this baseline to compare our
results. Specifically, we consider the pipeline described in [49] to obtain enterotypes from
OTU matrices. In this work, enteroyptes are found using multiple clustering approaches
that combine 2 different methods, 5 distance metrics, and 9 different possible numbers of
clusters (ranging from 2 to 10), yielding 90 clusterings in total. From these 90 possibilities,
the best clustering is then selected measuring the performance on three different metrics:
Silhouette width (SI), Prediction Strength (PS), and Jaccard threshold. There is a threshold
for each of these metrics below which no clustering is generated. Note that this work was
not intended to make predictions of unobserved abundances, but to find (conventional) en-
terotypes in a rigorous way.
We test the predictive power of the enterotypes produced by this pipeline with three different
metrics: accuracy, recall, and precision. Because recall and precision are binary magnitudes,
we reduce the problem to predicting whether a microbial species is present or not in a pa-
tient. To that end, we merge the low (µ) and high (ν) abundances into a single category. For
simplicity, we will denote both categories as 0 and 1. Our goal is thus to correctly predict 0
and 1 abundances under the three aforementioned metrics. Accuracy is simply the fraction
of correctly predicted data points (true positives or 1s and true negatives or 0s) out of the
total (see Fig. 4.2 ). It is a particularly useful metric if the number of 1s is comparable to
the number of 0s. However, that is not often the case, and thus accuracy can be a misleading
metric. For instance, in very sparse datasets (OTU matrices with a large proportion of en-
tries equal to 0), even the simplest baseline would have very high accuracy rates. To prevent
this, we use the recall and precision. The recall measures the fraction of true positives out
of the total existing ones in the test dataset. However, the recall on its own is not completely
informative; we could come up with a method that simply overclassifies data points as 1s or
positives. Therefore, the recall would be very high, but many predictions would be wrong
due to a biased tendency to missclassify 0s as 1s. To circumvent this problem, we compute
the precision, which measures the fraction of true positives out of all predicted positives.
These three metrics are complementary and provide an overall picture of the performance
of a method in a prediction task. In Fig. 4.3, we show the prediction performance toghether
with the results of our model. For each patient, we measure her aggregated accuracy, pre-
cision, and recall over the five folds. We then take the average over all patients in the data set.
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Positive
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Actual
Positive

Negative
Predicted

True positive (tp)

False negative (fn) True negative (tn)

False positive (fp)

Figure 4.2: Contingency matrix of a classification method Elements in the diagonal are
correctly predicted data points (true positives and true negatives). Off-diagonal elements
represent missclassified data points either as false positives or false negatives. The precision
measures the ratio of true positives out of all predicted positives, recall measures the fraction
of true positives out of the total positives, and accuracy measures the ratio of correctly
predicted observations.

4.4.3 Latent enterotype models

We now look at the results for our MMSBM latent enterotype model. For the sake of con-
sistency, we apply the same cross validation scheme as before. First of all, we observe that
the best predictive combination of parameters corresponds to considering 10 latent groups
of patients (K = 10) and 20 latent groups of microbes (L = 20). Both in our model and
the baseline, we observe that the performance is highest for the accuracy, slightly lower for
the precision, and significantly lower for the recall (see Fig. 4.3 ) . We speculate that this is
due to the larger proportion of 0s or null abundances, which drives both models to correctly
classify most 0s and probably to missclassify a considerable number of 1s abundances (es-
pecially those corresponding to former low abundances µ, at least in our model). However,
we observe that our model outperforms the baseline in all datasets and metrics, particularly
for the precision and recall. The precision is slightly lower, but still very consistent across
all five datasets. Finally, the recall is significantly lower than accuracy and precision, but
over 0.7 in all datasets except V-23-24.
An interesting question is whether these predictive metrics vary across patients and mi-
crobes. That is, are there individuals or microbes where abundances are easier to predict?
From a clinical point of view this is a relevant question, since patients harder to predict fall
out of the common patterns.
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Figure 4.3: Predictive performance [a-e] Patient wise accuracy, precision, and recall for
the latent enterotype model and the baseline for all five datasets considered

4.4.4 Individual predictability

To answer this question, we explore the predictability of individual patients and microbes
according to how their membeships are spread across latent groups. We measure the spread-
ing of memberships by computing the Shannon entropy Hp/Hm of each patient p/microbe
m membership vector θp/ηm, respectively. Low values of Shannon entropy correspond to
a membership being concentrated in one or two groups, while high values indicate a mem-
bership distributed across many groups. Fig. 4.4 [a, f], shows the distribution of Shannon
entropies for patients and microbes, respectively. For patients, we observe that the majority
of membership vectors have entropies that lie between Hp = 0.4 and Hp = 0.6, with rela-
tively few membership vectors having very low Shannon entropies and the highest entropy
being Hp = 0.81. For microbes, Shannon entropies are more equally distributed. There are
some membership vectors with very low entropies and Hm = 0.701 is the highest value.
We then measure the relation of the Shannon entropies Hp and Hm with individual preci-
sion, recall, accuracy, and held-out loglikelihood of patients and microbes (see Fig. 4.4).
Here precision, recall, and accuracy have the same meaning as in the previous section and
they are also aggregated. The held-out loglikelihood represents the loglikelihood assigned
to the abundances in the test set. The numerical values of the held-out loglikelihood range
between 0 and 1. Low values indicate that the abundances in the test set are very likely
according to the model. High values, on the contrary, indicate that these values are not ex-
pected by the model. Therefore, very low values are a good indicator of the performance of
the model in the sense that it has captured the important patterns of the data.
In regards to the relation of these predictive measures and Shannon entropy, we see a gen-
eral trend of Hp and Hm being negatively correlated with prediction metrics. That is, the
lower the Shannon entropy, the higher the predictability of the patient/microbe. In the case
of microbes, the correlation is stronger and more statistically significant, the only possible
exception being the held-out loglikelihood (p-value=0.0118). In the case of patients, the
correlation between Hp and precision is practically inexistent.
Such negative correlations are consistent across the four remaining datasets, although statis-
tical significance varies and it is lowest in the datasets S-8 and V-10. Here, the p-values for
the correlation betweenHp and patient’s precision are 0.952635 and 0.528857, respectively.
In the case of Hm and the held-out loglikelihood, the p-values are 0.960426 and 0.493331,
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respectively (see Supplementary Materials). Our results suggest that microbes and patients
with lower Shannon entropies have a more regular pattern and are therefore easier to predict.

4.4.5 Correlation between model parameters and taxonomic informa-
tion

We have validated our modeling approach by testing the predictive power of the latent en-
terotype model. To further underpin the biological meaning of our results, we now check
whether taxonomically close microbes are also close in latent space, i.e. if they have similar
membership vectors. This would mean that our model is capable of capturing a biological
information that is not directly provided. It would also suggest that taxonomic proximity
is relevant to define the enterotypes. In order to test this, we consider all taxonomic levels:
phylum, class, order, family, and genus. For each taxonomic level, we group microbes ac-
cording to all existing taxa in that level and compare the similarity of membership vectors
from the same and different taxa, i.e. the intra and inter-taxa similarities.
Suppose we have a taxonomic level T with t1, . . . , tn taxa. For each taxa tk, we take all
possible pairs of microbes’ membership vectors (ηik, η

j
k), such that i, j ∈ tk and i 6= j and

measure their similarity dij(tk) calculating the euclidean distance between them. We repeat
this process over all taxa and then compute the mean intra-taxa distance as:

〈dintra〉 =
1

NP
intra

n∑
k=1

∑
i6=j

dij(tk) , (4.9)

where N intra
p is the number of pairs of microbes from the same taxa. The next step is to

measure the mean inter-taxa distance. To that end, we take all possible pairs of membership
vectors from different taxa (ηik, η

j
k′) such that k 6= k′ and measure the euclidean distances.

We repeat this process for all pairs of different taxa and calculate the mean:

〈dinter 〉 =
1

NP
inter

n∑
k 6=k′

∑
i,j

dij(tk, tk′) . (4.10)

Finally, we take the log of the ratio intra-inter distances log(〈dintra〉/〈dinter 〉) for all
five taxonomical levels (see Fig. 4.5).
We observe that the average intra-category distance is smaller than the average inter-category
distance in all cases, except for the Phylum, Class, and Order of the dataset V-10 (the small-
est one). That is, on average, microbes of the same taxa are closer than those from different
clades. This means that our model partially captures the taxonomic similarities of the mi-
crobes. Also, we see that the ratio becomes smaller for the lowest taxonomic levels: family
and genus. This is probably due to the fact that the lower the taxonomic level, the more
similar the microbes in the same taxa are.
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Figure 4.4: Individual predictability. [a,f] Distribution of Shannon entropies of mem-
berships. Gray dashed lines represent numerical values of the Shannon Entropy such that
the membership is equally spread among n groups. [b,g] Precision of individual patients
and microbial species vs Shannon Entropies. Each colored square/triangle represents an
individual patient/microbe. Color and shape (if applies) represent its top membership. In
both cases there is a negative correlation between individual precisions and Shannon En-
tropies, although it is only statistically significant and larger for microbes. [c,h] Recall for
individual patients and microbial species vs Shannon Entropies. Again, there is a negative
correlation between individual recalls and Shannon Entropies, that only shows statistical
significance for the microbes. [d,i] Individual accuracies for patients and microbes vs Shan-
non Entropies. Negative correlations and p-values are similar in both cases. [e,j] Individual
held-out-loglikelihoods vs Shannon Entropies. The correlation is only significant for the
patients.
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Figure 4.5: Log-ratio of the average intra/inter clade distances of microbes For each
dataset, we take the 20-dimensional membership vectors of all microbes and group them
in the different existent taxonomic groups (phyla, classes, orders, families, and genera).
Then, we measure the euclidean distances of all possible pairs of intraclade and interclade
vectors. Finally, we compute the main intraclade and interclade distance and take the log-
ratio. We observe a generalized trend of decreasing log-ratios, especially at the Family and
Genus level. Also, we note that most log-ratios are negative, indicating a smaller intra-clade
than inter-clade distance. This suggests that our model successfully captures the taxonomic
proximity of different microbes.

4.4.6 Nestedness in latent abundance patterns

Nestedness is a well known property of some ecological systems, particularly so called
mutualistic networks [68], [50], [69], which are characterized by mutually beneficial trophic
or reproductive relations. A common example are insect-plant networks, where both insects
and plants benefit from their mutual interactions: insects obtain their food, while plants are
pollinized by insects or have their seeds dispersed around. In many cases, there is a nested
pattern in these systems: some insects (usually called specialists) feed on a very specific
subset of plants, while others (generalists) feed on a majority of plants in the ecosystem.
The same is also true for plants, with some being specialized in a few species of insects an

UNIVERSITAT ROVIRA I VIRGILI 
STATISTICAL INFERENCE IN BIPARTITE NETWORKS APPLIED TO SOCIAL DILEMMAS AND HUMAN MICROBIAL SYSTEMS 
Sergio Cobo López



62 An Application to Human Microbiology

others being prevalent among all insects. Additionally, the insects that feed from a specialist
plant are a subset of those insects that feed on generalist plants (see Fig. 4.6). Nestedness
can actually be quantified for real mutualistic networks. Usually, it ranges from n = 0 to
n = 1, with larger values indicating more nested networks.
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Figure 4.6: Perfectly nested mutualistic network Specialist animals or insects (rightmost
columns) feed on plants that are a subset of the plants from which generalist animals or
insects feed (leftmost columns). (Figure based in [50])

In healthy individuals, it also occurs that both the host and its gut microbial system
benefit from mutual interactions. For example, dietary fibers are indigestible for humans,
but the gut microbiome is involved in generating digestible byproducts, while at the same
time obtaining energy for the microbes involved in this task [70]. We therefore explore
the possibility of a nested ecological order in these systems. In particular, we analyse it
at the level of latent enterotypes. As mentioned before, latent enterotypes are microbial
profiles or abundance patterns of a set of groups of microbes. For simplicity, we limit
ourselves to consider whether a group of microbes exists in an enterotype or not. That is, we
consider again only negligible (0) or non-negligible (1) abundances. Also, we approximate
the probability Pr[apm = 1] that a group of microbes m is present in a group of patients p
to 0 or 1: if this probability is larger than 0.5, we assign it the value 1 and a 0 otherwise.
This choice is justified because most of the probalities are indeed equal to 0 or 1 or very

UNIVERSITAT ROVIRA I VIRGILI 
STATISTICAL INFERENCE IN BIPARTITE NETWORKS APPLIED TO SOCIAL DILEMMAS AND HUMAN MICROBIAL SYSTEMS 
Sergio Cobo López



4.4 Results 63

close to these values. Because our optimal choice of parameters (i.e., the one leading to the
best predictive power) was K = 10 groups of patients and L = 20 groups of microbes, we
have 10 latent enterotypes containing 20 groups of microbes each.
In order to measure the nestedness of the latent enterotypes, we use the metric presented in
[71] and given by:

n =

∑
i<j q

(p)
ij +

∑
i<j q

(m)
ij∑

i<j min(q
(p)
i , q

(p)
j ) +

∑
i<j min(q

(m)
i , q

(m)
j )

, (4.11)

with qij representing the number of shared interactions between latent groups i and j and
qi being the number of interactions of group i. m and p represent latent groups of microbes
and patients, respectively. As mentioned above, the numerical value of n ranges from 0 to
1.
Fig. 4.7 shows the enterotypes for all five datasets. In all plots we observe a consistent
pattern of nestedness across the enterotypes when we order rows and columns according
to the number of non-negligible matrix values: on the bottom rows, there are specialist en-
terotypes that contain just a small fraction of groups of microbes, whereas enterotypes in
the top rows are generalists in that they contain a majority of groups of microbes. On top of
that, the groups of microbes contained in a specialist enterotype are a subset of the groups of
microbes contained in generalist enterotypes, confirming our initial expectation. The nest-
edness can be observed in all five datasets with high statistical significance.
It is important to note that nestedness here has a slightly different meaning than that de-
scribed in insect-plant mutualistic networks, because patients are isolated ecosystems not
interacting with each other. Here, the nestedness implies that some groups of patients are
specialists in that they interact with a reduced number of groups of microbes, and others
are generalists because they interact with a majority of groups of microbes. From the point
of view of the groups of microbes, it implies that some microbial species are prevalent in
almost all patients while others only exist in a small fraction of them.
One may object that this nested pattern only happens in the latent space and it is not rep-
resentative of the actual system. However, making the same two approximations as before,
it is possible to observe a nested pattern in the actual OTU matrices as well (see Fig 4.8 ).
This makes sense, since patients and microbes belong to all groups with different weights,
and are therefore linear combinations of all latent groups. Unsurprisingly, the nestedness
signal is weaker in the actual OTU matrices, because it is precisely the latent enterotypes
that capture the collective patterns and regularities of the system.
The fact that there is a well ordered ecological structure in human microbiome systems is
something remarkable. It suggests the possibility that health is not necessarily related to
microbial diversity.
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Figure 4.7: Nestedness of the Latent Enterotypes [a-e] Nestedness of the latent en-
terotypes and significance plots for all five datasets considered. In the heatmaps (top), rows
represent enterotypes, and columns correspond to latent groups of microbes in a similar
fashion as the example shown in Fig. 4.1. Red/blue colored squares represent the pres-
ence/absence of a group of microbes in an enterotype. The colored squares and triangles
label enterotypes and groups of microbes. The color and shape (if it applies) code is the
same as in Fig. 4.4. Red and blue squares in the heatmap indicate that the correspond-
ing latent group of microbes is not connected to the latent enterotype. Rows and columns
have been ordered to hightlight the nestedness of the system. The numerical value of the
nestedness is shown in the inset of the plots. The bottom plot shows the distribution of
nestedness values of 1000 randomizations of the latent enterotypes. We randomize the la-
tent enterotypes by preserving the average number of connections between latent groups
of patients and microbes. The black solid line corresponds to the observed value of the
nestedness.

4.5 Discussion

Our work proposes an approach in which enterotypes are not necessarily rigid microbial
profiles. Subsequently, individuals’ microbiomes are combinations of different enterotypes
in variable degrees. We believe that this flexibility is more consistent with the variability
of biological data, while still capturing universal patterns, hence increasing the predictive
power. On top of that, it enables to uncover features such as the nestedness, suggesting an
analogy with mutualistic systems. To our knowledge, this is the first time nestedness is re-
ported in human microbial systems. The fact that there is an ecological order in the human
gut microbiome across individuals raises some questions about their collective behavior: for
instance, we wonder whether nestedness is a property of healthy populations and whether it
could be affected by certain diseases or health disorders.
We validate our results showing that our latent enterotype model can make successful predici-
tons of unobserved microbial abundances both on a global scale and on individual patients.
Additionally, we observe that our model can partially capture the taxonomic proximity of
microbial species. We believe that this could have potential clinical applications in individ-
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Figure 4.8: Nestedness of the OTU matrices [a-e] Nestedness of the OTU matrices and sig-
nificance plots for all five datasets. In the upper plots, rows represent patients, and columns
represent microbial species. Red and blue squares in the heatmap mean that the correspond-
ing groups of patients and microbes are or are not connected. Rows and columns have been
ordered to hightlight the nestedness of the system. The numerical value of the nestedness
is shown in the inset of the plots. The bottom plot shows the nestedness of 1000 random-
izations of the latent enterotypes with the black solid line representing the nestedness value
of the original OTU matrix. Randomizations are made preserving the average number of
connections between patients and microbes.

ualized medicine. We leave for future work the possibility of making predictions in time
evolving systems such as transitions to a healthy/diseased state. Another interesting ques-
tion is if we could increase the predictive power of our model extending our approach to
other levels of systems biology such as metabolomics, epigenetics etc. Indeed, this could
improve our understanding of the human gut microbiome.
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Chapter 5

Conclusions and perspectives

The main goal of this thesis was to build statistical inference models for interpretable link
prediction in multilink bipartite networks. The interest in bipartite networks relied on their
ubiquity in many natural and social systems. Likewise, we were interested in a multilink
approach because we wanted to consider different types of interactions in order to make
more sophisticated analyses. Formally, this required an additional level of complexity, but
we believed it is well justified due to the potential to study many interesting and relevant
problems.
Link prediction is a very important problem in that it has many obvious practical applica-
tions, ranging from information retrieval to prediction of future events in different contexts.
But more importantly, we believe that the ability of making predictions about the behavior
of a system is a natural byproduct of the understanding of its underlying dynamics, which is
ultimately the goal of science and research.
In order to fulfill this goal, we started this thesis presenting two models of the family of
Stochastic Block Models (SBM). SBM are generative models that allow us to infer un-
known properties and features of a system given data corresponding to that system. The
choice of SBM was motivated by three important features: their formal simplicity, their
tractability and their expresiveness. As it turns out, interpretable link prediction arises very
naturally from these three aspects. The formal simplicity of Stochastic Block Models can
be partly explained because the only assumption made is that there exist groups of nodes
in networks. Given a group structure in a network, it is possible to infer the existence of
a missing link between two nodes based exclusively on the groups to which those nodes
belong. This greatly simplifies the problem of link prediction, because it reduces it to the
number of groups identified, hence the tractability of SBM. Finally, it is very easy to an-
alyze the interaction of groups or communities, which allows for expressive explanations
of the dynamics of the group structure (and the system, implicitly) and a straightforward
interpretation of the predictions.
The first model presented is a conventional approach that classifies nodes in different groups
or communities according to their similarities in terms of the roles displayed in the net-
work and their connectivity patterns. The second model is a mixed-membership approach
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in which nodes can belong to several communities simultaneously. Therefore, communities
become latent and they do not generally correspond to groups of nodes any longer. Although
the idea of latent communities adds an important degree of abstraction to the model, it turns
out that predictions are more interpretable in the mixed approach than in the conventional
one.
After discussing the Stochastic Block Models, we applied these models to two different
problems. In the first problem we considered a social experiment in which a large sample
of people were playing dyadic games iteratively. The experiment consisted of 541 partici-
pants or players and 121 games. Each player was confronted with an average of 14 rounds
of randomly selected games against randomly selected players. Based on the records of all
players and implementing our models, we showed that people can be grouped in behavioural
phenotypes according to the similarities in their decision-making strategies. Similarly, we
found classifications of games according to the perception of people, which turned out to be
different from game-theoretical criteria. Additionally, we incorporated existing information
(metadata) about the games into the formalism. This resulted in a more explanatory group
structure and in an increase of the predicting performance. Upon these classifications, we
could predict as much as 71% of people decisions in the conventional approach and 74%
in the mixed-membership approach. Our results thus suggest that people are very consis-
tent when confronted to simple decisions, although further experiments might be helpful to
provide more evidence. On the other hand, these results arose from a rigorous comparison
between three models: a baseline model, the conventional and the mixed-strategy approach:
in all three cases, we treated the data in the same way and concluded that the best model
was the best predicting one. We suggest that this could pave the way for the design of model
comparison protocols in future works.
Our second problem was a human microbiology one. Here, we had data about the gut mi-
crobiome of a large number of patients. In particular, we had five studies each on a different
cohort of healthy people. In all cases, we had the microbial profiles of each patient, consist-
ing on the concentrations of the microbial species detected, together with their taxonomic
information. This system can also be regarded as a bipartite network in which patients and
microbes are represented the two kinds of nodes and links correspond to different inter-
vals of microbial concentrations or abundances. In this case, we directly implemented the
mixed-membership approach, given our evidence of its higher predictive strength and the
large size of the datasets considered here (usually it is computationally cheaper to imple-
ment the mixed-strategy model). In a similar fashion as in the first problem, we found latent
groups of patients and latent groups of microbes with which we built an inference model
that can predict whether a microbe is present in a given patient with 80% accuracy. On top
of that, we found that there is a consistent nestedness pattern among latent groups of patients
and microbes. This pattern can also be found to a lesser extent in the original datasets.
Overall, we have shown that a single family of statistical inference models allows us to
make predictions of unobserved events in two very different problems. Moreover, we could
actually learn general aspects of their dynamics despite the different nature of both systems.
Perhaps counterintuitively, the fact that both problems are so different from each other is
not a drawback, but it actually underpins the versatility and robustness of our models. We
believe that these models have a huge unexplored potential to solve many other problems in
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which interpretable prediction can be of fundamental importance. Additionally, their ability
to provide information about the internal dynamics of the systems under study could unveil
many important details of their nature and advance theories that explain them. We would
like to explore some of these problems and also see how our models would adapt to different
types of networks or sources of prior information. For instance, if we had had information
about patients (gender, age, diet) in our second problem, how could we have introduced it
as a prior distribution in the model?
However, several questions remain yet unanswered about the problems studied here. In the
case of the social system, subjects in the experiment were playing an average of 14 rounds,
as mentioned before. This is certainly not a very large number. We wonder if our predictions
would have been more accurate with larger records of actions or they would have remained
stable because the strategies of players were mostly fixed at that number of rounds. Be-
sides, we have considered the simplest possible scenario to model human interactions and
decisions, with games involving only two people with two available choices each. Despite
the large number of variations for this scenario accounted for (121 games), decisions faced
by human beings in their daily life are often far more complicated, with many possibilities
available and more than two people involved. We wonder if it would be possible to come
up with formal approaches that would allow us to come closer to real life decision making
scenarios and how predictions would be affected.
In regards to our human microbiology problem, even more questions remain open; for a
start, we wonder whether nestedness could be sensitive to the health state of the population
considered. Would nestedness change or dissappear if we considered cohorts of diseased
patients? This question would be especially relevant in autoimmune or microbiome-related
diseases, such as inflammatory bowel diseases. We also wonder if we could study the tem-
poral evolution of the microbiome within our approach. Taking snapshots of the microbiome
of patients at different times, we could establish connections between microbiome and di-
etary habits, age or potentially related diseases. From a clinical point of view, we could try
to predict the success of different therapies such as antibiotics or fecal microbial transplant
(FMT). In the same spirit, we wonder if we could add more elements to the microbiome pic-
ture; systems biology is a multiscale problem in which microbiome is just one layer deeply
connected to several others, such as genetics, proteomics, metabolomics or even the envi-
ronmental conditions to which we are exposed. By bringing in some of these layers to our
analysis, we could improve our understanding of microbiome dynamics and human biology.
Needless to say, this might also shed some light on the nature of the diseases mentioned be-
fore. We could probably model this idea very intuitively using multilayer networks.
Finally, we observe that despite the high accuracy of our predictions in both problems, there
is a 5% difference between them. This significant disparity poses some questions. First of
all, are some systems more predictable than others? Surely data plays a role: some datasets
can be noiser than others, for instance. And generally, a larger amount of data will yield bet-
ter predictions because the signal is better represented. But, even in large datasets, is there
a way we could tell the signal from the noise? Actually, is there a limit to predictability that
we could identify? On the other hand, is the predictive power of our models limited? If so,
to which extend and how could we improve them? Moreover, do our models constrain the
way in which we see the data? For example, we have said before that the p matrices of the
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MMSBM tend to have very informative values (i.e., close to 0 or 1), but we don’t know with
certainty why this happens. It is also left for future work the task of better understanding
the inner mechanics of our models.
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Appendices

5.1 A. Stochastic Block Models

5.1.1 A1: Multivariate beta function integrals
In this section we show the solution to the Eq 2.4 . Let us start decoupling the integrals for
all p:

P (θ,η|Ao) = 1

Z
∏
k∈K

∏
`∈L

∫ 1

0

dp1(k, `) p1(k, `)
n1
k`

∫ 1−p1

0

dp2(k, `) p2(k, `)
n2
k` . . .

∫ 1−p1−···−pΛ−2

0

dpΛ−1(k, `) pΛ−1(k, `)
nΛ−1
k` (1− p1(k, `)− · · · − pΛ−1(k, `))n

Λ
k` . (5.1)

Note that we impose the constraint that all probabilities have to sum up to 1, i.e.:

Λ∑
λ=1

pλ(k, `) = 1 , (5.2)

hence the upper limits of the integrals. Now, let us start solving the innermost integral. For
the sake of simplicity, we’ll reduce the notation by taking pλ = pλ(k, `) and nλ = nλk`:∫ 1−p1−···−pΛ−2

0

dpΛ−1 p
nΛ−1

Λ−1 (1− p1 − · · · − pΛ−1)n
Λ

. (5.3)

The first step is to take v = 1− p1 − · · · − pΛ−2, which gives:∫ v

0

dpΛ−1 p
nΛ−1

Λ−1 (v − pΛ−1)n
Λ

. (5.4)

Now we perform the change of variable pΛ−1 = vt, which gives dpΛ−1 = vdt and changes
the integral limits to 1 and 0:∫ 1

0

dt vn
Λ−1+nΛ+1 tn

Λ−1

(1− t)n
Λ

= vn
Λ+nΛ−1+1

∫ 1

0

dt tn
Λ−1

(1− t)n
Λ

. (5.5)
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The right-hand side integral is a beta function, whose solution is known:

vn
Λ−1+nΛ+1B(nΛ−1 + 1, nΛ + 1) = (1− p1 − · · · − pΛ−2)n

Λ+nΛ−1+1 nΛ!nΛ−1!

(nΛ + nΛ−1 + 1)!
.

(5.6)

Inserting this in Eq. 5.1, we have:

P (θ,η|Ao) = 1

Z
∏
k∈K

∏
`∈L

∫ 1

0

dp1(k, `) p1(k, `)
n1
k`

∫ 1−p1

0

dp2(k, `) p2(k, `)
n2
k` . . .

∫ 1−p1−···−pΛ−3

0

dpΛ−2(k, `) pΛ−2(k, `)
nΛ−2
k` (1− p1(k, `)− · · · − pΛ−2(k, `))n

Λ
k`+n

Λ−1
k` +1 nΛk`!n

Λ−1
k` !

(nΛk` + nΛ−1k` + 1)!
.

(5.7)

We can now solve the next innermost integral using the same procedure as before:∫ 1−p1−···−pΛ−3

0

dpΛ−2(k, `) pΛ−2(k, `)
nΛ−2
k` (1− p1(k, `)− · · · − pΛ−2(k, `))n

Λ
k`+n

Λ−1
k` +1

= (1− p1(k, `)− · · · − pΛ−3(k, `))n
Λ
k`+n

Λ−1
k` +nΛ−2

k` +2 nΛ−2k` !(nΛk` + nΛ−1k` + 1)!

(nΛk` + nΛ−1k` + nΛ−2k` + 2)!
(5.8)

Introducing this again in Eq. 5.3, we get:

P (θ,η|Ao) = 1

Z
∏
k∈K

∏
`∈L

∫ 1

0

dp1(k, `) p1(k, `)
n1
k`

∫ 1−p1

0

dp2(k, `) p2(k, `)
n2
k` . . .

∫ 1−p1−···−pΛ−4

0

dpΛ−3(k, `) pΛ−3(k, `)
nΛ−3
k` (1− p1(k, `)− · · · − pΛ−3(k, `))n

Λ
k`+n

Λ−1
k` +nΛ−2

k` +2

nΛ−2k` !((((((((
(nΛk` + nΛ−1k` + 1)!

(nΛk` + nΛ−1k` + nΛ−2k` + 2)!

nΛk`!n
Λ−1
k` !

((((((((
(nΛk` + nΛ−1k` + 1)!

.

(5.9)

Doing the remaining integrals and repeating the same protocol in each of them, we get the
result in Eq. 2.6.

5.1.2 A3: Jensen’s Inequality
In our particular case, the complete form of Jensen’s inequality is:

log
∑
x

p(x)x ≥
∑
x

p(x)log(x) (5.10)

replacing x and p(x), by the auxiliary distribution ωui(k, `) and the quotient θukηi`pk`(rui)ωui(k,`)

respectively, we recover Eq. 2.16 .
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5.1.3 A2: Simulated annealing
As discussed in the text, we use simulated annealing to find the group assignments θ and η
that maximize the expression for the posterior in Eq. 2.8 or alternatively minimize the energy
Hmin in 2.7 of Chapter 2. However, solving this problem analytically is computationally
infeasible, given the vast number of possible partitions (group assignments) of the system.
Therefore, we implement a simulated annealing algorithm to perform this task [72]. The
idea of this method is the following: starting from a given partition of players and games
whose energy H0 is known, new partitions are proposed by randomly moving players and
games to different groups and energies are computed. The new partitions are automatically
accepted if Hnew < H0. Otherwise, they are accepted with probability e−∆H/T , where
T represents the temperature. In this case, the temperature basically controls the tolerance
of the system to switching towards partitions with higher energies. The key point of the
simulated annealing is that the temperature gradually decreases with the number of itera-
tions. That way, the system can initially explore the whole landscape and escape from a
local minima, for instance. For each value of the temperature, we allow N2

players+N2
games

movements of players and games. Then, we cool the system by a factor λ = 0.99. That
is, Tnew = λTold. Finally, if the system doesn’t change its energy after 10 temperature
changes, the algorithm automatically stops its execution.

5.2 B. An Application to Social Systems

5.2.1 Initial rounds in the empirical data
We observe that the behavior of each player during the first four rounds is erratic, which
leads to their behavior being less predictable during those rounds (Fig. 5.1). After round
4, all rounds are statistically indistinguishable by the metrics discussed in the main text.
Therefore, we discard the first four rounds of each player and consider all others as indistin-
guishable.

5.2.2 Number of groups in the single-strategy and multiple-strategy
models

In the single-strategy model, the number of groups is determined automatically by the sim-
ulated annealing optimization. Since group plausibilities are calculated by marginalizing
exactly over the p matrices (Eq. 1 above), Eq. 5 above already penalizes complex mod-
els, and the optimization will naturally choose the optimal number of groups. The optimal
model consists of around 20 groups (depending on the cross-validation fold), although 5 or
6 of them alone typically account for more than 50% of the players.

For the multiple-strategy model, the number of groups needs to be fixed manually. As
shown in Fig. B2, we find that the optimal predictions are obtained for K=3 groups of
players and L=4 groups of games, although performance is not very sensitive to these values.
In fact, for larger values of K and L, the performance is similar but some groups are, in
practice, left empty.
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Figure 5.1: Predictive accuracy of the single-strategy model after removing the first
rounds of the players’ histories. The error bars show the standard error of the mean of the
results for the 5 folds.

5.2.3 Robustness of the results
In Figs. 3.3 and 3.4 of the main text, we show results for a single fold of the 5-fold cross-
validation (except panel a in each of them, that shows the average over the five folds).
Figures 5.3 and 5.4 show equivalent results for a different fold, and are very similar to those
in the main text, thus indicating that they are robust.

5.3 C. An Application to human microbiology

5.3.1 Robustness of the results
We show the correlations betweenHp andHm and predictive metrics for the four remaining
datasets not shown in the main text: S-8, V-10, V-22, and V-23-24.
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Figure 5.2: Dependence of the predictive accuracy of the multiple-strategy model for
different values of K and L. We show the predictive accuracy for different combinations
of K and L (the number of latent groups of players adn games) for α = 0. Each point
represents the average of a 5-fold cross-validation; error bars indicate the standard error of
the mean. Note that for any choice of parameter values the accuracy of the mulitiple-strategy
model is above the accuracy of the single-strategy model.
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Figure 5.3: Same as Fig. 3.3 in the main text for a different split of the 5-fold cross
validation. Note how the results we obtain for partitions of games and users are very similar
to the ones shown in Fig. 2 of the main text, thus suggesting that the results are robust.
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Figure 5.4: Same as Fig. 3.5 in the main text for a different split of the 5-fold cross
validation (same split as in Fig. 5.3). Note how rows b), c) and d) are very similar to those
shown in 3.5 of the main text, thus suggesting that the results are robust.
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Figure 5.5: Same as Fig. 4.4 in the main text for data set S-8.
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Figure 5.6: Same as Fig. 4.4 in the main text for data set V-10.

UNIVERSITAT ROVIRA I VIRGILI 
STATISTICAL INFERENCE IN BIPARTITE NETWORKS APPLIED TO SOCIAL DILEMMAS AND HUMAN MICROBIAL SYSTEMS 
Sergio Cobo López



80 Conclusions and perspectives

0 0.25 0.5 0.75 1
0

1

2

3

4

De
ns

ity

a Patients

0 0.25 0.5 0.75 1
0

1

2

3

4

De
ns

ity

f Microbes

0.2 0.4 0.6 0.8

0.5

0.6

0.7

0.8

0.9

Pr
ec

isi
on

b

Spearman: -0.101626
p-value: 0.028094

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

g

Spearman: -0.082036
p-value: 0.396419

0.2 0.4 0.6 0.8

0.5

0.6

0.7

0.8

0.9

Re
ca

ll

c

Spearman: -0.234039
p-value: 0.000000

0.0 0.2 0.4 0.6

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll
h

Spearman: -0.276952
p-value: 0.001197

0.2 0.4 0.6 0.8

0.65

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

d

Spearman: -0.247312
p-value: 0.000000

0.0 0.2 0.4 0.6
0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

i

Spearman: -0.325845
p-value: 0.000122

0.2 0.4 0.6 0.8
Hpatients

0.12

0.11

0.10

0.09

0.08

0.07

0.06

Lik
el

ih
oo

d

e

Spearman: -0.371659
p-value: 0.000000

0.0 0.2 0.4 0.6
Hmicrobes

2.5

2.0

1.5

1.0

0.5

0.0

Lik
el

ih
oo

d

j

Spearman: -0.291747
p-value: 0.000626

Figure 5.7: Same as Fig. 4.4 in the main text for data set V-22.
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Figure 5.8: Same as Fig. 4.4 in the main text for data set V-23-24.
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[9] Barbara A. Methé, Karen E. Nelson, Mihai Pop, Heather H. Creasy, Michelle G.
Giglio, et al. A framework for human microbiome research. Nature, 486(7402):215–
221, 2012.

[10] C. Harger, G. Chen, A. Farmer, W. Huang, J. Inman, et al. The Genome Sequence
DataBase. Nucleic Acids Research, 28(1):31–32, 01 2000.
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[13] R. Guimerà and M. Sales-Pardo. A network inference method for large-scale un-
supervised identification of novel drug-drug interactions. PLoS Comput. Biol.,
9(12):e1003374, January 2013.

[14] Michael Szell, Renaud Lambiotte, and Stefan Thurner. Multirelational organization of
large-scale social networks in an online world. Proceedings of the National Academy
of Sciences, 107(31):13636–13641, 2010.

[15] A. L. Samuel. Some studies in machine learning using the game of checkers. IBM
Journal of Research and Development, 44(1.2):206–226, Jan 2000.

[16] P. W. Holland, K. B. Laskey, and S. Leinhardt. Stochastic blockmodels: First steps.
Soc. Networks, 5:109–137, 1983.
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