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Abstract
Mechanical resonators are one of the most fundamental and omnipresent
physical systems at all scales. They play a substantial role in all kinds of
physical and technological systems, for example, computers, cell phones or
televisions. In the last decade, efforts have been made different approaches
to control, to couple and to read out their motion. At the micrometre- and
nanometre-scale, the first approach that emerged was to couple mechani-
cal structures to electrical circuits. More recently, researchers have investi-
gated the use of electromagnetic radiation to control and probe mechanical
elements. This field, called optomechanics, has been used to explore fun-
damental physics problems like testing quantum mechanics on heavy mass
structures or for quantum information processing. Many of these experi-
ments require the mechanical resonator to be at the ground state of motion.
This only happens at low temperature and under very specific conditions.

The aim of my thesis is to unravel other important aspects of coupling light
to mechanical objects that do not require to operate at the ground state. In
particular, I will discuss two experiments performed at room temperature
focused on applying optomechanics to technological approaches.

The first experiment is related to the ability of optomechanical systems to
detect small forces applied to a mechanical resonator. We employ a micro-
sphere optomechanical sensor to detect the force induced by an extremely
small magnetic field. The force is produced by a resonant phenomena that
involves magnons and phonons on a ferromagnetic material. The magnetic
field sensor is characterized by a pico-Tesla peak sensitivity with a band-
width of 100 kHz. In addition, the tunability of the frequency response in-
creases the device frequency operation up to a dynamic range of 1.1 GHz.
This device is a proof of concept that opens a window to develop ultra-high
sensitive optomechanical magnetometers, which are crucial in many areas
covering geology, medical imaging systems, or defence.

The second experiment reported in this thesis describes a fundamental chal-
lenge of nanoscale physics that is the synchronization of two optomechanical
cavities connected by a weak coupling. We show that exploiting the interac-
tion between the mechanical elements and the nonlinearity of the light field,
we can strategically modify the dynamic state of the oscillators. We show that
the nanobeams are oscillating individually in a coherent, high amplitude and
sustained state. We also experimentally demonstrate that the system evolves
to a regime where the two oscillators are fully synchronized in anti-phase.
The results of this experiment could be setting a base for low-noise commu-
nications between optomechanical devices.
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Chapter 1

Introduction

The use of measures has been one of the fundamental pillars of societies to
advance throughout history. Measurements are used daily to study nature.
Today, people interact with measurement instruments directly, such as ther-
mometers, clocks or scales, and indirectly, such as accelerometers or heart
rate monitors in a smartphone. Scientific research demands more and more
precise measurement devices in order to understand, for example, the most
fundamental elements that make up matter, basic functions of living micro-
organisms or astronomical events in the universe. Measurements are at the
basis of scientific and technological progress.

Among the multiple existing measurement methods, those based on opti-
cal forces play an important role in current measurement advances. Optical
forces were noticed since the 17th century, when Johannes Kepler observed
that the tail of comets always pointed away from the sun [1]. Since then, the
use of optical forces applied to measurement instruments has been signifi-
cantly studied and broadly extended, for example, in optical trapping exper-
iments, where a highly focused laser beam is employed to isolate, manipulate
and measure microscopic particles, atoms or ions [2]. They are also used for
high precision measurements in interferometer sensors, such as gravitational
waves detectors [3–5].

Most sensors used today require the ability to measure mechanical motion
with high sensitivity since many physical parameters can be inferred from a
position shift of a certain component. Optical techniques offer high accuracy
to measure displacement due to the interaction of light with mechanical el-
ements. A natural way to increase this displacement sensitivity consists on
trapping light in an optical cavity, increasing the interaction time between
the light field with the mechanical object. As the cavity volume becomes
smaller, the optical and mechanical interaction becomes stronger. Thus, to
obtain high precision sensors it becomes crucial to combine optical micro-
cavities and mechanical resonators. This thesis reports on two experiments,
which in principle follow different objectives, but both have in common the
idea of employing optomechanical cavities as the sensing element that allows
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transducing the magnitude to be measured into a dynamical modulation of
the light stored within it.

In the recent decades, mechanical resonators have undergone a huge devel-
opment. The emergence of Nano-Electro-Mechanical Systems (NEMS), gave
rise to the appearance of multiple sensors to detect physical quantities such
as displacement [6], mass [7] or magnetic fields [8]. At the same time, optical
microcavities accomplished a rapid progress. Their small sizes allowed the
confinement of light at high powers. They also offered high quality factors,
resulting in devices with low loss. The use of optical microcavities rapidly
extended from studying fundamental physical problems [9, 10] to applied
research, ranging from laser sources [11–13], filters [14], switches [15], delay
lines[16] to biosensors [17–19]. This thesis is focused on optomechanical sys-
tems, which combines the properties of optical micro- and nanocavities with
mechanical resonators embedded in it [20].

The coupling in optomechanical systems is enhanced by storing light dur-
ing long times in a confined space. Multiple optomechanical systems can be
found in the literature, covering a large range of sizes, extending from levi-
tated nanoparticles in optical traps [21] to suspended mirrors with kilogram-
scale mass [22]. There exist multiple different geometries for the optical and
the mechanical cavities including microspheres [23], microdisks [24, 25], mi-
crotoroids [26], capacitive drum resonators coupled to resonant microwave
cavities [27] and photonic crystals cavities [28–31].The canonical example of
a sensor based in optomechanics is the modified version of a Fabry Perot
cavity with one of its two mirrors attached to a spring. The operational prin-
ciple of this device relies on measuring the variation in distance between the
two mirrors using light. The electromagnetic field amplitude in the cavity
increases as it bounces between the mirrors. The optical force exerted on the
moving mirror makes it to displace, changing the total length of the cavity.
This effect modifies the resonant frequency of the cavity and the light phase
that decouples from it and finally collected by the detector. Similar effects are
observed in whispering gallery mode cavities [9, 23], where light propagat-
ing within a circular dielectric cavity applies optical force on its boundary,
exciting radial modes.

Recently, with an improved understanding of the optomechanical interac-
tions and the fast progress in nanofabrication technologies of optical micro-
cavities and mechanical resonators with high quality factors, the micro- and
nanophotonic community has explored the possibility of integrating optome-
chanical devices within photonic circuits [20, 32, 33]. Contrary to standards
photonic circuits, the response of which can be difficult to be reconfigured,
the use of optical forces in optomechanical circuits reveals a new approach
to develop integrated systems with a high tuning response. In addition, op-
tomechanical devices also offer the possibility to explore and measure me-
chanical systems in the quantum regime [34, 35].

In optomechanical systems, the coupled light can offer unprecedented sensi-
tivity to detect mechanical motion [36, 37]. Early studies of optomechanical
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microspheres showed displacement sensitivity similar to traditional optical
sensors [38]. Nowadays, one of the most remarkable experiments developed
in the last decades are the gravitational wave detectors [3–5]. The best sen-
sitivity was obtained by the LIGO detector, which is able to detect displace-
ment of 10−19 m√

Hz
[39]. At the nanoscale, optomechanical crystals are not yet

capable of the same level of performance, but they can reach a displacement
sensitivity of 10−16 m√

Hz
[40]. With this sensitivity, optomechanical cavities

were considered for integrated sensing applications. For example mass sen-
sors and accelerometer, with reported sensitivities of 10−15 kg√

Hz
[41] and 10

µg√
Hz

[42] , respectively.

In addition to sensitivity, another figure of merit required for a high perfor-
mance sensor is related to noise. In any functional measurement, signals are
mixed with noise arising from contributions of various sources. One of the
main advantage of optomechanical sensors is that light can transport infor-
mation with low noise. However, the operation of optomechanical systems
at high power increases the noise level and can degrade the sensing perfor-
mance. Moreover, intrinsic sources associated with mechanical resonators
coupled to the thermal environment are unavoidable and need to be consid-
ered. Then, reducing the noise level becomes important for several sensing
applications like time keeping and frequency stabilization. The motivation
of this thesis, which is detailed in the next section, is to explore the use of op-
tomechanics in sensing applications and the problem of reducing the phase
noise level by weakly coupling two optomechanical systems.

1.1 Motivation

Among the physical quantities mentioned in the Introduction that can be
measured with high sensitivity using optomechanical cavities, this thesis ex-
plores the possibility to detect small magnetic fields. Magnetic field detection
is critical in multiple areas such as geology, medical imaging systems and
space exploration [43]. Currently, the Superconducting Quantum Interfer-
ence Device (SQUID) magnetometers are one of the leaders in ultra-sensitive
magnetometry, achieving sensitivities of 10 −15 T Hz−1/2 [44, 45]. This sensi-
tivity is even surpassed by the Spin Exchange Relaxation Rate magnetometer
(SERF), reaching sub-femto Tesla sensitivities [46, 47]. Nevertheless, most of
the mentioned systems present restrictions like working at cryogenic tem-
peratures, like in the case of SQUID’s magnetometers, or they are limited to
work at small dynamical range, that is, they are restricted to work over a low
magnetic fields. Also, the frequency sensitivity is constrained to operate at
low frequencies (∼ 100 Hz).

In the last decade, optomechanical magnetometers have emerged as a new
tool for measuring magnetic fields with high sensitivity at room temperature
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[48–50]. The operation of optomechanical magnetometers relies on the de-
formations that mechanical objects suffer under the influence of an applied
magnetic field. The response of the material to magnetic fields alters the me-
chanical structure of the cavity and this provokes a shift of the optical reso-
nance. This modulation can be read out giving a measurement of the applied
field. Our approach consist of using glass microspheres with high quality fac-
tor optical and mechanical modes deposited on a Yttrium Iron Garnet (YIG)
thin film. The transduction principle involves the conversion of an RF mag-
netic field that resonantly excites magnons, into mechanical vibrations in the
YIG film via magnetostriction. The mechanical vibrations excite the mechan-
ical modes of the sphere and the response is detected on the optical signal.
The sensitivities obtained is comparable with state-of-the-art optomechanical
magnetometers. The system described in this thesis presents a tunable fre-
quency operation extending the magnetometer use to the GHz range, which
exceeds by one order of magnitude other optomechanical magnetometers.

Optomechanics has opened a landscape for integrated optomechanical cir-
cuit, combining several functions in a single chip. Nevertheless, most of these
functionalities are studied at a single level, ignoring the possibility of con-
necting two or more optomechanical cavities. From this situation, it emerges
the question concerning the connection of several optomechanical crystals.
This idea leads to the second motivation of this thesis, which consists of ex-
ploring the dynamics of coupled optomechanical cavities, in particular, the
synchronization of two optomechanical crystals. The motivation for synchro-
nizing optomechanical crystals relies on the possibility of reducing the phase
noise of optomechanical systems when driven to a mechanical lasing regime.
This is important in several sensing applications that require low noise. It is
known that the noise could be reduced by N−1 when synchronizing N me-
chanical oscillators [51]. Thus, synchronization could be seen as an effective
strategy to develop optomechanical sensors with low noise.

Experimentally, the phenomena has previously been explored by several rou-
tes, including disk resonator placed in proximity and coupled through a
common optical mode [52, 53],cascaded microdisks connected by an optical
waveguide [54], to optomechanical cavities placed in distant chips [55, 56].
However, these experiments are controversial since it is not clear if all the re-
quirements imposed by the definiton of synchronisation are satisfied. In this
thesis, we adopt a very rigorous set of criteria for synchronization to discuss
some previous experiments and to demonstrate that our system really ful-
fils the requirements imposed by the adopted definition. In addition to the
sensing aspects, the results reported within this thesis are important to de-
velop precise metrology systems with low noise like frequency stabilization
and time keeping applications.These results open the route towards scaling
up the number to N coupled oscillators that could show different complex
dynamic, paving the way to future optomechanical networks.
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1.2 Thesis outline

In this thesis, I describe two different experiments concerning the coupling
of light to mechanical objects. In the first experiment I present a new type
of optomechanical sensor to measure magnetic fields. The sensitivity of the
device is characterized by a state-of-the-art peak value for room temperature
optomechanical magnetometers. The system consist of a hybrid device that
involves magnons in a ferromagnetic substrate with phonons and photons
in a high-Q optomechanical resonator. The chapters that are related to this
experiment are Chapter 4 and Chapter 5.

The second experiment presented on this thesis that demonstrates the spon-
taneous synchronization of two optomechanical cavities mechanically linked.
The system fulfils all the requirements of a synchronized system. We record
the optical transmission temporal traces of each of the two cavities conclud-
ing that, in the synchronized state, they mechanically oscillate in anti-phase,
which is in agreement with the predictions of our numerical model. The re-
sults of the experiments are found in Chapter 6.

1.3 Chapter overview

The results of the experiments shown in this thesis are part of the collabo-
rative work carried out in a laboratory where many colleagues have partici-
pated. The contents of each individual chapter are given below.

• Chapter 2 is an introduction to Cavity Optomechanics. The Fabry Perot
model is discussed and the governing equations of motion for the me-
chanics and the optics are given. The fluctuation dissipation theorem is
briefly discussed to illustrate the link between the spectral density with
the displacement quantity. Finally, the mechanism used to transduce
mechanical motion with light is given.

• Chapter 3 is a general introduction to optomechanical resonators. Two
types of optomechanical systems are used throughout this thesis: the
whispering gallery modes microspheres and the one dimensional op-
tomechanical crystals. The mechanical and optical properties of these
systems are given here. In this chapter is also explained the experi-
mental technique used to couple to optomechanical cavities, the fiber
tapered method.

• Chapter 4 investigates the main properties of magnetically ordered ma-
terial and spin waves. The ferromagnetic resonance method is described
and used to characterize Yttrium-Iron-Garnet thin films. Finally, a de-
scription about the coupling of magnons with mechanical degrees of
freedom is given.

• Chapter 5 describes the experiment of the optomechanical magnetome-
ter. Mechanical and optical characterization of the device is given. The
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transduction principle on which it is based is discussed and a sensitiv-
ity measurement is given.

• Chapter 6 demonstrates the spontaneous synchronization of two op-
tomechanical crystals by mechanical interaction. In order to illustrate
the challenge a definition of synchronization is given and also the pre-
vious approach to the synchronization problem at the nanoscale is men-
tioned. Then a description of the devices used is given, followed by the
optomechanical characterization of the system. Then, the description of
the synchronization experiment is described. A switching experiment
of the synchronized state by external actuation is discussed. Finally, a
numerical model that supports the obtained results is given.

• Chapter 7 discuss the main results of this thesis. A perspective view on
future experiments is also given.

• In Appendix A is described the integrals used to calculate the optome-
chanical coupling value. The discussions of this appendix are used
mainly in the context of Chapter 3 and Chapter 6.

• In Appendix B the magnetic field calibration is given. The transmission
line equation of the system are derived and the circulating current is
obtained. The results of this appendix are used in Chapter 5.

• In Appendix C the Laser Doppler Vibrometer interferometry technique
is described. This set up is used to measure the vibrations generated in
the ferromagnetic film induced by the ferromagnetic resonance. The
results of these measurements are used in the context of Chapter 5.
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Chapter 2

Fundamentals of Cavity
Optomechanics

In this chapter, I will introduce some basic concepts founds Cavity Optome-
chanics (OM). Since this field and their significance in physics is vast, I will
focus on the aspects that are related with the purpose of this thesis. The typ-
ical model of OM systems will be given and the governing equations will be
derivated. I will describe the solution for the particular case when the me-
chanical frequency is much smaller than the optical decay rate. Finally, I will
show how the mechanical motion can be detected from the optical signal.

2.1 Introduction

The paradigmatic figure of an optomechanical cavity is a Fabry Pérot cavity
with a movabale mirror. It is shown in Fig. 2.1. The cavity has two mirrors,
one with perfect reflectivity and mounted on a spring. The second mirror
has a partial reflectivity and is fixed in position, allowing the interaction and
coupling of a light field with the cavity. A laser illuminating the cavity that
is in resonance with one of the mode of the undeformed caivity. Light inside
of the cavity will satisfy the relation of a standing wave: nλn = 2Le f f , being
Le f f the effective length of the cavity (the distance between the mirrors) and
n an integer number. This means that the wavelengths of the optical modes
in the Fabry Pérot are multiples of two times the cavity length. Therefore,
the frequencies of the modes are: ωn/2π =

cn
2Le f f

, being c the speed of light

in the medium. The fact of being mounted on a spring causes that the sec-
ond mirror is displaced x(t) by the effect of radiation pressure force. This
makes the total length to vary in time and consequently leads to a depen-
dency of the optical resonances with the mechanical motion that can be writ-

ten as ωn =
cnπ

Le f f + x(t)
. This modulation changes optical path of the cavity

and modulates the light outcoupled from it. This is the key point of Cavity
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Optomechanics: a mechanical displacement will induce a change in the op-
tical properties of the system [20, 57]. This effect reveals a direct application
of optomechanics that is detecting displacement with high sensitivity. From
this example we can observe that in order to maximize the frequency shift, it
is on our interest to use the smallest possible cavity length. This is the moti-
vation behind using micro and nanoscale cavities, where light is confined in
a very small volume for a long time, providing extremely high displacement
sensitivity.

x

Leff

Figure 2.1: Incident laser light is trapped in a optical cavity
formed by two mirrors. The left one is fixed and is partially
reflective, allowing light to couple in and out of the optical cav-
ity. The right mirror is perfectly reflective and is mounted on
a spring. The motion of the right mirror by a length x modi-
fies the effective length of the cavity Le f f , which modulates the
amount of energy stored in the cavity, causing the modulation
of the out coupled light.

The effect of light being modulated by the mechanical motion also occurs
in the opposite direction. If the mirror is small enough, or the number of
photons inside the cavity is high enough, the mirror spring constant can be
modified by radiation pressure. This additional effect causes on the optome-
chanical system to change also the mirror’s position, and modifying again
the optical force applied to the mirror, moving again the mirror and so on...
Then, the optomechanical interaction can dynamically make the spring con-
stant softer or stiffen, and amplify or damp the mirror’s motion.
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At first glance, the optomechanical cavities used in this thesis do not present
similarities with the Fabry Pérot model of Fig. 2.1. Nevertheless, in both
cases all the relevant physics is contained in the simple model of mirrors and
spring. On the following section, we will explain the origin of this coupling
between light and mechanical motion.

2.2 Mechanical effects of light

It turns out from the equation of the Fabry Pérot cavity, that the optical fre-
quency of the cavity depends on the motion x(t). Considering only that the
displacement x(t) is small relative to the effective lenght, |x| � Le f f , we can
make a Taylor expansion for the optical frequency ωc at x =0 and get:

ωc = ωc,0 +
dωc,0

dx
x(t) + ... ' ωc,0 + gOMx(t) (2.1)

where ωc,0 is the optical cavity resonance for n =0 at x =0.

We have truncated Eq 2.1 at the first term since all the experiments described
in this thesis are in the linear regime. The nonlinear effect treated in Chapter
6 is also explained by a linear optomechanical coupling ωc

Le f f
and its nonlin-

ear aspect comes from the optical material properties. The term that couples
the mechanical motion with the optical resonance of the cavity is defined by
gOM =

dωc,0
dx = ωc

−Le f f
. This constant represents how much the optical mode is

shifted by unit of displacement and is frequently known as optomechanical
coupling strength.

In the Fabry Perot example introduced in section 2.1, radiation pressure force
arises from the momentum imparted by photons to the movable mirror. It is
connected with the optomechanical coupling gOM by:

F(t) = −h̄nc
ωc

Le f f
(2.2)

where nc is the number of photons stored in the optical cavity. The force is
obtained from an interaction Hamiltonian by given F = − dHint

dx , being Hint =
−h̄ncgOMx. From these relations, we observe that the mutual interaction has
reciprocal effects. On the one hand, the optical mode is frequency shifted by
an amount gOMx(t). On the other hand, a single photon in the cavity pushes
the mechanical element with a force h̄gOM, and thus the spring constant of
the mechanical motion is changed by k = h̄gOM

x(t) .
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2.3 Equations of motion

To derive the equations of motion of the optomechanical system we consider
first the classical limit where the mechanical motion x(t) is a classical variable
and the optical field is the complex amplitude of the electric field a(t). At
the quantum limit the mechanical motion will be obtained by substituting
the classical variables by the operator x̂ = xzp f

(
b̂ + b̂†

)
, being xzp f the zero

point fluctuation xzp f =
√
〈0
∣∣x̂2
∣∣0〉. The standard equation of motion for the

mechanical position, x, and the optical field, a, are given by:

mẍ(t) + mω2
mx(t) + mΓẋ(t) = Fth + h̄gOMnc(t) (2.3)

ȧ(t) = i (ωc − x(t)gOM) a(t)− κ

2
a(t) +

√
κinain(t) (2.4)

The Eq. 2.3 correspond to a forced harmonic oscillator. We have used Γ as the
mechanical damping rate of the mechanical motion, m is the moving mass of
the mode, and ωm is the mechanical resonance frequency. We have also con-
sidered the thermal noise that accounts for the interaction of the mechanical
degrees of freedom with the environment. This interaction is approximated
as a heat bath, and its action on the system as a random force Fth. The last
term of the Eq. 2.3, is the radiation pressure force of the photons on the me-
chanical oscillator defined on section 2.2.

For the optical mode we have used the optical total decay rate of the cavity
κ. We have also separated the decay rate to the environment into detected
(extrinsic), and undetected (intrinsic) channels, κe and κi, and the input laser
drive ain. Finally, we also note that the intracavity photon number, nc is given
by the normalized intensity of the optical field |a(t)|2. Therefore, the dynamic
of the system is governed by two coupled differential equation which are not
linear in their interaction.

A useful procedure to solve the Eq. 2.4 is to consider that the driving term
is usually done by a single laser at a frequency ωl, so we can rewrite the
driving amplitude ain(t) = amaxe−iωl t, where the input rate of photons is

amax =
√

Pin
h̄ωl

, with Pin the input laser power. Thus, we can make in Eq. 2.4 a

rotating frame substitution for the optical field a(t) = â(t)e−iωl t and rewrite
the equation of motion:

˙̂a(t) = i (∆− x(t)gOM) â(t)− κ

2
â(t) +

√
κin âin(t) (2.5)

where we have defined the detuning of the laser from the cavity as ∆ = ωl −
ωc. The state of the system can be classified by the sign of ∆: for ∆ < 0 the
state is named ”red detuned”, for ∆ > 0 is called ”blue detuned” and ∆ = 0
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correspond to a state in resonance with the laser field. For simplicity, we can
rename â = a, and use it from now on understanding that we are solving the
equations in the rotating frame. Therefore, the equations of motion to solve
are:

ȧ(t) = i (∆− x(t)gOM) a(t)− κ

2
a(t) +

√
κinain(t) (2.6)

ẍ(t) = −ω2
mx(t)− Γẋ(t) +

Fth
m

+
h̄gOM

m
nc(t) (2.7)

A more complete description needs a coupled mode theory treatment and
can be found on the following References [58, 59].

2.3.1 Mechanical modes solution

The coupled set of equations Eq. 2.6 and Eq. 2.7 are nonlinear and in most
of the cases they do not present an analytical solution. However, it is a stan-
dard procedure to consider that the optomechanical interaction and the me-
chanical amplitudes are small enough to approximate numerically solutions.
For convenience, we disregard the optomechanical coupling (gOM = 0), and
study the behavior of the mechanical mode driven by thermal forces. It is
useful to rewrite the solutions of Eq. 2.7 in the Fourier space:

−ω2mx(ω) = −ω2
mmx(ω)− iΓωmx(ω) + Fth(ω) (2.8)

where we have used the Fourier transform of the mechanical motion, x(ω) =
F [x(t)], the property F [ẋ(t)] = iωx(ω) and F [Fth(t)] = Fth(ω). After rea-
gruping, the solution for the displacement spectrum of x is:

x(ω) =
1

m(ω2
m −ω2)− iΓmω

Fth(ω) = χ(ω)Fth (2.9)

where we have defined the oscillator’s susceptibility as χ(ω) = [m(ω2
m −

ω2)− iΓmω)−1]. For a general non linear interacting force it will be hardly
possible to calculate the susceptibility. We define the mechanical quality fac-
tor, Qm = ωm

Γ , that is related with the time that takes to the resonator to
release the energy stored in a particular mechanical mode into the thermal
bath. For mechanical resonators with high Qm we can approximate the sus-
ceptibility in Eq. 2.9 like a sharp Lorentzian. In Fig. 2.2 we show examples
of the absolute value of susceptibility, |χ(ω)|. These plots serve to examine
how is the response of the mechanical resonator to varying typical parame-
ters. We note that the response of the system decreases like 1/ω2 for ω � ωm
and the DC value (ω = 0) decreases like 1/ω2

m. The response on resonance
at ω = ωm gives the mechanical quality factor Qm.
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Qm

21/w
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(ω
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21/w m

Figure 2.2: (a) A plot with several norm susceptibility |χ(ω)|,
with multiples Qm values. We observe that the system de-
creases like 1/ω2 for ω � ωm (b) A plot of |χ(ω)|, with varying
ωm. We note that the response of the resonator decreases like
1/ω2

m for ω = 0.

Fluctuation dissipation theorem

The detection of displacement x on the experiments described on this the-
sis is not direct but instead is made by measuring the spectral density. This
quantity is related with the spectrum associated to a fluctuating quantity. We
assume that x(t) is a time homogeneous process so there is no special time
t on the process, which allows to correlate the displacement of two different
time t and t′ like x(t′)x(t) = x(t− t′)x(0). According to the Wiener-Khinchin
theorem, the spectral density is equal to the Fourier transform of the autocor-
relation function (see ref. [60]),

Sxx(ω) =
∫ 〈

x(t)x(0)
〉
eiωt =

〈
xx
〉

ω
(2.10)

The latter expression is very convenient because the autocorrelation func-
tion is associated with theoretical considerations while the spectral density is
what we measure in the experiments. For a classical variable x, the spectral
density is a symmetric function: Sxx(ω) = Sxx(−ω). The units of the spec-
tral density for the discplacement, Sxx(ω), are m2 Hz−1. It is also common to
find in literature the square root of the spectral density,

√
Sxx(ω), which has

units of m Hz−1/2. It can also be demostrated the property that the integral
of spectral density give the variance of the displacement,

∫
Sxx(ω)

dω

2π
=
〈

x2〉 (2.11)
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The classical version of Fluctuation Dissipation Theorem links the displace-
ment spectral density with the dissipative term of susceptibility. The dis-
sipation term of susceptibility is given by its imaginary part, Im[χ(ω)] =

Γω

(ω2
m−ω2)

2
+(ωΓ)2 , and the relation with spectral density is,

〈
xx
〉

ω
=

2kBT
ω

Im[χ(ω)] (2.12)

where kB is the Boltzmann constant and T is the temperature of the bath.
Thus, considering the case Γ << ωm and ωm ' ω, we can approximate the
dissipative term of susceptibility like:

Im[χ(ω)] ' ω

4ω2
m

Γ
(ω−ωm)2 + (Γ

2 )
2

(2.13)

t

x(
t)

Γ<<ωm

<x x>w

wm-wm

2

2

m

B

m

Tk

w
×
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Γ

Figure 2.3: (a) Plot of the displacement as a function of time
for a case with a mechanical damping rate, Γ is much smaller
than the mechanical frequency. The mechanical motion oscil-
lates many times before losing the energy. This case allows to
approximate the dissipation term as a Lorentzian Im[χ(ω)]] (b)
Spectral density of the mechanical motion as a function of fre-
quency.It correspond to a lorentzian function centered at ωm

with a FWHM= Γ and a peak height of 2
Γ

kBT
mω2

m
. The area of

〈
xx
〉

ω

is equal to the variance
〈

x2〉 due to thermal motion.

which gives the following expression for the spectral density:

〈
xx
〉

ω
=

kBT
2mω2

m

Γ
(ω−ωm)2 + (Γ

2 )
2

(2.14)

The last equation obtained for the spectral density, corresponds to a lorentzian
function with a linewith of Γ, and a peak height of 2

Γ
kBT

mω2
m

. It is straightforward
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to demonstrate that integrating for all frequencies this expression, we obtain
the displacement variance due to thermal motion:

∫ 〈
xx
〉

ω

dω

2π
=

kBT
mω2

m
=
〈

x2〉 (2.15)

Quantum fluctuation dissipation theorem

Although this thesis will not deal with experiments described by quantum
formalism, the quantum version of fluctuation dissipation theorem is given
in a similar way as the classical case considering that the phonons in thermal
equilibrium are described by the Maxwell-Boltzmann distrubution. There-
fore the spectral density is given by:

〈
xx
〉

ω
=

2h̄

1− e
h̄ω

kBT
Im[χ(ω)] (2.16)

It is immediate to check that the classical theorem is obtained by making
kBT � h̄ω.

2.3.2 Optical mode solution

The mode amplitude a(t) follows a time evolution according Eq. 2.5. In a
similar spirit like in the mechanical equation of motion, we can neglect first
the optomechanical coupling interaction (gOM = 0) and consider the steady
state solution of Eq. 2.6 for a constant drive and setting ȧ(t) = 0, we get the
following expression for the intracavity amplitude field:

a =

√
κinain

κ
2 − i∆

(2.17)

We find two different schemes in Optomechanics to couple light into the cav-
ity that has an impact on how we can interrogate the system to extract its
response. The two different types of schemes are shown in Fig. 2.4. They are
named single and double-sided coupling cavities. They are classified con-
sidering the number of channels that light has to couple out from the optical
cavity.

For both schemes, it is valid that κ = κe + κi. The difference resides in the
rate at which light couples into/out of the optical resonator. In Fig. 2.4a,
we show the single-sided case, where light leaving the cavity has only one
channel to couple. Practically, this means that for an experiment with such
a configuration scheme, it would be possible, in principle, to collect 100% of
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the light decoupled from the cavity, which is something desirable for a max-
imum signal collection. In this case we have κin = κe. In the double-sided
coupling cavity (see Fig. 2.4b), light has two ways to leave the optical cavity,
either forward or backward. Thus, for this case κin = κe/2 and this means
that an experiment with this scheme it only possible to detect 50% of light
outcoupled from the optical cavity in the best case.

ke

ain

aout ki

k+k =ki e

a)

ain

aout

aout

ki

k /2e

k /2e k+k =ki e

b)

Figure 2.4: (a) A single sided coupling showing a waveguide
(orange recatangle) and a cavity, schematized by two mirrors.
The input optical field ain is coupled from the waveguide with
a coupling loss rate κin = κe. The cavity reflects aout character-
ized by an intrinsic loss κi (b) The double-sided coupling cor-
respond when the light of the waveguide is coupled backward
and forward from the cavity with a extrinsic loss rate κe in each
direction. For the single and double-sided coupling scheme the
total decay rate is κ = κe + κi.

The work in this thesis has used both single and double-sided coupling schemes.
For simplicity, the following derivations will be performed on the single
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sided coupled cavity but keeping in mind that the derivations for the double-
sided scheme is similar with basic modifications.

Since normally we can not obtain directly the optical field a, we need to inter-
rogate the cavity response by using a light field and measuring the reflection
or transmission signal aout. This is accomplished by coupling a laser field in
and out of the cavity to an optical waveguide or an optical fiber taper and
place it in the near field of the optical mode. The relation between the aout,
ain, and a is obtained by energy conservation requirements [59], and is given
by:

aout =
√

κea− ain (2.18)

For convenience, we introduce the coupling efficiency parameter defined as
η = κe/κ to distinguish between different regimes [23] that will be described
in the following derivations. The Eq. 2.18 allows to calculate the cavity pa-
rameter knowing the input and output fields by using Eq. 2.18 in Eq. 2.17:

aout = ain

(
κη

i∆ + κ
2
− 1
)

(2.19)

We can now compute the power reflected by the cavity and collected by a

photodetector. The detected signal is given by R =
∣∣∣ aout

ain

∣∣∣2 :

R = 1− κ2η (1− η)

∆2 + κ2

4

(2.20)

We observe from this equation that sweeping the frequency detuning be-
tween the laser and the cavity, the reflection spectrum presents a lorentzian
shape. When the losses are dominated by intrinsic losses of the cavity, we
have η < 1/2 (κi > κe). The signal collected back from the cavity into the
waveguide channel is smaller than the field propagating in the waveguide.
When the cavity loss rate equals the coupling rate, we have η = 1/2 (κi > κe).
This regime is called critical coupling since the signal coupled back from the
resonator and the field propagating in the waveguide interferes leading to
zero reflection. Finally, when coupling rate exceeds the intrinsic loss rate, we
obtained η > 1/2 (κe > κi), and the magnitude of the field collected from the
resonator is larger than the propagating field on the waveguide channel. This
is shown in Fig. 2.5 where we plot the reflection spectrum for different values

of η. We note that the reflection spectrum can be written like R = 1− κ2η(1−η)
κ2/4 .

The reflection dip on resonance increases from 1 to 0 as the coupling factor η
increases from 0 to 1/2. Then, when η increases from 1/2 to 1, the resonance
dip decreases and the reflection goes from 0 to 1.
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Figure 2.5: (a) Plot of the normalized reflection spectrum in
under-coupled regime. The lorentzian dip on resonance goes to
zero as η = κe/κ approaches to 1/2. This condition implies that
κe = κi and all the light coupled to the cavity is lost to the en-
vironment (b) Reflection spectrum in the over-coupled regime.
Note that while η approaches to one, the extrinsic decay rate κe
approaches to κ and no light is lost through κi

Looking at the imaginary part of Eq. 2.19 normalized by ain, we can observe
the phase response of the optical signal. The expression of the phase response
φ is given by:

φ =
κη∆

∆2 + κ2

4

(2.21)

This expression is important to monitor the mechanical motion when system
is in resonance. The phase response of the reflected light is plotted in Fig. 2.6
a. Note that the phase change is maximized at ∆ = 0, where the reflection
spectrum is 0.

Finally, we can obtain the steady-state number of photon in the cavity nc. In
Fig. 2.22, we plot the phase response as a function of the detuning ∆. The
expression for the phase of the reflected signal is calculated by taking the
norm-square of Eq. 2.17, and is given by:

n =
κη

∆2 + κ2

4

|ain|2 (2.22)
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Figure 2.6: (a) Plot of the Phase response of the reflected signal
as a function of the detuning for various values of η. The phase
response increases with the value of η. The Phase change is
maximized on resonance (b) Plot of the normalized intracavity
photon number setting ain =

√
κin

2.4 Mechanical mode detection

Once derived the reflection spectrum, we can illustrate an experimental way
to measure the mechanical motion x(t). As it was explained in section 2.2,
the optomechanical coupling gOM = dω

dx links the mechanical motion with
the optics of the resonator. This means that mechanical motion shifts the
frequency resonance of the optical cavity. Therefore, setting the detuning at
relative value to the optical resonance, the mechanical motion will cause a
change in the reflected power. To first order, the reflected signal is:

R(t, ∆) = R(∆) +
dR
d∆

d∆
dx

= R(∆) +
dR
d∆

gOMx(t) (2.23)

We observe that to first order, the first term correspond to a DC value of the
reflected signal and the second term of the equation reveals that the mechan-
ical motion is proportional to the derivative of the reflected signal. Using Eq.
2.20, we get an expression for dR

dx in terms of the extrinsic and intrinsic rate
losses:

dR
d∆

=
2κ2η(1− η)∆(

∆2 + κ2

4

)2 (2.24)

In Fig.2.7, we plot the derivative of the reflected signal as a function of de-
tuning. Note that the maximum transduction of motion is obtained when
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∆ = κ/2. It is also relevant to note that the transduction is zero when δ = 0.
However, when the system is on resonance, a phase sensitive detection tech-
nique can be used, since the derivative of the phase dφ

dδ is maximized, such as
the homodyne detection. We can calculate now the modulated power due to
mechanical motion is given by:

P(t) = Pin
dR
d∆

gOMx(t) = 2gOMh̄ωl |ain|2
κ2η(1− η)∆(

∆2 + κ2

4

)2 x(t) (2.25)

where we have used that input power Pin = h̄ωl |ain|2. Normally, this power
is measured on a spectrum analyzer, thus the power spectral density SPP(ω)
is related with the displacement spectral density Sxx(ω) as:

SPP =

(
Pin

dR
d∆

gOM

)2

Sxx(ω) (2.26)
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Figure 2.7: Derivative of the reflection signal with respect to
detuning, as a function of detuning. We have used Eq. 2.23
with κe/κ = 0.8.
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Chapter 3

Optomechanical resonators

In this chapter, I will discuss the two types of OM resonator used throughout
this thesis. First, I will focus on the Whispering Gallery Modes (WGM) mi-
crospheres that are going to be used in Chapter 5. I will explain the confine-
ment of optical modes in the microspheres and give approximated formulas
to calculate the eigenmodes frequencies. Then, the WGM glass microsphere
fabrication process will be specified. To couple light on the cavities, we use
a tapered fiber, which fabrication and characterization will be given. Then
I will discuss the one dimensional optomechanical crystals (1D OMC’s), in
particular, the corrugated nanobeam used in Chapter 6. In this second part
I explain the engineering, fabrication, characterization and dynamics of the
OM crystals triggered by non linear optical effects.

Either in the WGM and the 1D OMC cavitties, light is confined in the cavity
with sufficiently high OM coupling gOM such that allows the transduction
of mechanical modes. However, the difference between both cavities, apart
from the geometry, resides on the mechanism used to drive the mechanical
modes. On the microsphere experiment explained in Chapter 5, we will drive
this motion with an external mechanical force originated by an alternate mag-
netic field via magnetostriction. On the OMC’s cavity experiment explained
in Chapter 6, mechanical motion will be driven by an internal mechanism
whose origin comes from the competition of optical nonlinear effects.

3.1 Whispering gallery modes in silica microsphere

3.1.1 Introduction

The light confinement on spherical dielectric particles was first studied by
Mie in the 19th century [61]. He observed that the scattered light spectrum of
these elements presented sharp resonances for specific wavelengths. These
dips were attributed to the resonant circulation of light within the sphere,
close to its surface. The optical modes are confined in the sphere by a repet-
itive process of total internal reflection at the dielectric-air interface. These



22 Chapter 3. Optomechanical resonators

optical mode are commonly known as whispering gallery modes (WGM),
by analogy with the acoustic phenomenom studied by Lord Rayleigh on his
work titled ”The problem of the whispering gallery” [62]. It described the
situation that ocurred in the gallery of the dome of St. Paul’s cathedral in
London, where a word whispered against the wall could be heard at the op-
posite side of the gallery. The explanation comes by the fact that travelling
waves propagated close to the 32 meter diameter wall.

Figure 3.1: Top view of the whispering gallery mode res-
onators used on this work. Incident light is coupled to the mi-
crosphere using a tapered optical fiber, via frequency match-
ing between the optical mode of the fiber and the WGM of the
sphere.

Whispering gallery modes in silica microspheres have been extensively stud-
ied in the last decades. The light confinement in these optical microcavities
is both temporally, since they can exhibit quality factors above 109, and spa-
tially, since they are tipically characterized by optical mode volumes in the
microscale range [63–65]. Originally, the WGM cavities consisted on dielec-
tric droplets created by surface tension. Due to their high Q factor, they
attracted the interest for multiple experiments, ranging from fundamental
physics [66, 67] to low threshold laser [68]. Later, micro-droplets spheres
were substituted by silica spheres created by different methods like polish-
ing, chemical etching, and fast solidification of liquid droplets. Another suc-
cessful technique to create permanents, single pure and undoped silica mi-
crospheres consisted on heating the tip of a fiber. The fabricated sphere could
have typical sizes covering from 10 to 200 µm in diameter [69]. The fiber can
be melted by an hydrogen torch [70], electric arc [71] or a focused beam of a
CO2 laser[23, 72]. The melted fiber adopts a spherical shape by the pulling
effect of surface tension.
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The adopted fabrication method for the spheres used in this thesis relies on
the use of a vertical furnace were an inert gass melts a glass previously pre-
pared [73–75]. This method allows to obtain spheres with diameters from 4
to 100 µm. The advantage with respect to other fabrication methods resides
on the possibility of fabricating a large number of microspheres in one fabri-
cation batch. Another advantage that this method presents is that the primal
glass could be prepared with a doping material.

The main disadvantage that microsphere resonators present are related with
the difficulties to integrate these devices with electrical and micromechanical
functions. In the last decades, fabrication processes were developed with the
objective of circumvent the incompatibilities of fiber based WGM resonator
with microelectronic integration. The fabrication of disk and microtoroids
employing standard lithography on silicon supposed a step forward on inte-
gration and a potential tool for experiments on Quantum Optics [35, 76, 77].
Nevertheless, microspheres are convenient devices to work due to their high
simmetry. WGM resonator are used for studying biophysical applications
[78–80], non linear optics [63, 81], and quantum electrodynamics [77, 82].
The natural circulation of light in WGM cavities makes them useful to create
laser cavities by incorporating a gain medium. This is usually performed in
silica microsphere via doping of the bulk glass with a rare earth ion before
the melting process [83]. If the doping concentrations is high enough, the mi-
crosphere becomes an active cavity and a gain medium for lasing emission.
The lasing action can enhance the sensitivity of the WGM cavity, achieving
low detection due to their narrow linewidths [73, 84–86]

In the following sections, I will describe the electromagnetic field distribution
of the WGM cavities. The resonant frequencies of WGM will be derived. It
will serve as the theoretical introduction and terminology used throughout
this thesis, especially the experiment described in Chapter 4.

3.1.2 Optical properties of WGM resonators

The optical modes of a spherical WGM resonator is obtained by solving the
Helmholtz equation in spherical coordinates (this has can be found in detail
in [87–89]). A simplified version is given by:

1
r2

∂2

∂r
(rE) +

1
sinθ

∂

∂r

(
sinθ

∂

∂θE

)
+

1
r2sin2θ

∂2

∂φ2 − n2k2E = 0 (3.1)

The problem has been simplified assuming that the sphere is an homoge-
neous medium and the electric field polarization is constant along the opti-
cal trajectories. This allows to calculate the field components analytically by
separation of variables [87]. Two classes of solutions are obtained from the
scalar Helmholtz equations, TE-modes and TM-modes. TE-modes are char-
acterized by having an electric field parallel to the surface of the sphere (~E||~θ)
while TM modes are characterized by having the magnetic field parallel to
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the surface of the sphere (~B||~θ), giving an electric field predominantly radial
for the TM case. The solutions for the field are given obtaining the radial, az-
imuthal and polar components from the scalar Helmholtz equation, and they
are associated to a specific mode number which are q for the radial compo-
nent, l for the polar component and m for the azimuthal. The field solutions
for both TE and TM modes are given by:

ETE
l,m(r, θ, φ) = E0

fl(r)
k0r

~Ym
l (θ, φ)

BTE
l,m(r, θ, φ) = − i

ck0
∇× ETE

l,m(r, θ, φ)

(3.2)

and

ETM
l,m (r, θ, φ) = − i

ck0n2∇× BTM
l,m (r, θ, φ)

BTM
l,m (r, θ, φ) = − iE0

c
fl(r)
k0r

~Ym
l (θ, φ)

(3.3)

where n is the refractive index of the sphere, k0 = ω/c is the wavevector and
fl(r) is a function associated to the radial dependence that can be expressed
as the Bessel function jl(r) and the Hankel function hl(r). ~Ym

l (θ, φ) are the
vector spherical harmonic, which are obtained from the scalar spherical har-
monic in the following way:

~Ym
l (θ, φ) =

1√
l(l + 1)

∇Ym
l (θ, φ)×~r (3.4)

with

Ym
l (θ, φ) =

√
2l + 1

4π

(l −m)!
(l + m)!

Pm
l (cos(θ))eimφ (3.5)

being Pm
l the Legendre functions. The optical modes are finally determined

by matching the solutions at the sphere-air boundary, given by

j′l(nk0a)
jl(nk0a)

=
h′l(k0a)
hl(k0a)

(3.6)

where the prime denotes the dericative of the function with respect to the
argument and a is the radius of the sphere r = a.

The equation Eq. 3.6 depends only on the polar number l, supporting infi-
nite number of solution given the oscillatory nature of the Bessel and Hankel
functions. These solutions are labeled by the radial number q, which gives
the number of zeros of the electric field inside the sphere. For this reason, the
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Figure 3.2: (a) Calculated Intensity |E|2 in the radial direction
for a microsphere with a radio of 30 µm for a radial number
q=1 and q=2. The cyan color is associated to the dielectric and
the light blue to the air medium. Part of the WGM leaks the
energy outside to the air and decays exponentially. (b) Intensity
profile of the electromagnetic field obtained with COMSOL for
the radial numbers plotted in (a).

solutions associated to WGM are the one with low q value, since the mode is
localized at the sphere surface. Since for WGM’s it is needed a low q value,
it can be demonstrated that |m| ∼ l. The azimuthal mode number presents a
degeneracy of 2l+1 and can be field intensity distribution on the polar plane
(θ =cte). Fig. 3.2a shows the solution to the radial equation for the first
two radial number for a 30 µm microsphere. The Intensity distribution is ob-
tained by using a WGM Toolbox for Matlab explained in Ref. [90].The field
intensity is plotted at the dielectric-air interface, with magenta/light bue col-
ors associated, respectively. The electromagnetic field node are given by the
radial number q. Outside the sphere the field decays exponentially. The total
electromagnetic field is plot in Fig. 3.2b in the (r,θ) plane.
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Approximated formulas to obtained the eigenmodes for spheres in the rele-
vant condition of high l for WGM can be found in Refs. [87]. The solutions
are given in function of the zero of the Airy functions ζ0

q , with Ai(ζ0
q) = 0 and

the radial number q (ζ0
1 ≈ 2.338). The first three terms of the eigenfrequencies

are given by:

ωq,l =
c

2πR

(
l + 1/2 + ζ0

q

(
l + 1/2

2

)1/3

+O
(

l + 1/2
2

)1/3

+ ...

)
(3.7)

3.1.3 Fabrication of silica microspheres

The microspheres used on this thesis are fabricated from a barium titanium
silicate (BTS) glass. The fabrication was performed at Universidad de la La-
guna [73, 83, 84, 91] , where the glass microsphere elaboration was developed
based on the technique explained by Elliot et al [75]. This method is based
on the spherical shape that a melted particle gets by surface tension pulling
when it rapidly passes to a cooler region. Due to the fact that one of the orig-
inal purposes for the microspheres was the study of lasing emission, they
were doped with 1.5% Nd2O3 (in the molar ratio).

The first part of the process is to obtain the BTS bulk substrate. Commercial
powders with certified purity larger than 99.9% of BaCO3, TiO2, SiO2 and
Nd2O3 were combined and melted in a platinum-rhodium crucible at 1500
◦C for one hour in an electric furnace. The bulk glass is crushed with a pestle
and mortar to the convenient size before the microsphere fabrication. Then
the particles are classified by size. This classification helps to use only the
particles with the similar size to the one desired for the sphere. The large par-
ticles can be separated easily but the small are normally attracted to the recip-
ient surface and form conglomerates. This is normally solved by using iso-
propanol. Once the particle size is obtained, the mixture is dropped through
a vertical tube furnace at the BTS fusion temperature, which is around 900
◦C. While the particle are falling, most of the splinters melt and surface ten-
sions pulls them into a spherical shape. When the spheres fall from the hot
part to the room temperature zone, they cool down and quickly solidify.

The obtained material after the quenching process is a mixture of micro-
spheres and undesired particles. A classification process is again needed.
This can be done by an iterative decantation process. The smaller spheres
will be placed at the bottom of the container. Using this method it is possible
to obtain spheres with diameters ranging from 4 to 100 µm (see Fig. 3.1).



3.1. Whispering gallery modes in silica microsphere 27

3.1.4 Coupling scheme to WGM with a tapered fiber fabrica-
tion procedure

In this section, I will describe the coupling of light to the WGM. This method
will be also used to couple light within the 1D OMC’s. Here it will also be
possible to find the fabrication procedure characterization of tapered fibers.

The coupling of light into and out of the WGM microsphere is achieved by
using a tapered optical fiber. This are essentially fiber on which the cen-
tral part is pulled to a diameter on the order of the wavelength of the cou-
pled light. A fiber with this diameter only allows the propagation of a single
mode. The electromagnetic field propagates through the fiber but part of the
mode leaks to the surrounding air, where it decays exponentially, in a similar
way as the intensity drop in transverse direction of the WGM’s shown in Fig.
3.2. Light is coupled into the structures thanks to the long tail of the evanes-
cent field of the optical mode of the fiber. The coupling is enabled when the
propagation constant of the taper equals with the propagation constant of
the WGM [88].

For the fiber fabrication,a homemade setup is used, in which a telecom op-
tical fiber (SMF-28) is stretched in a controlled way using two motorized
stages. The setup is shown in Fig. 3.3. The central part of the fiber is lo-
cally heated to a temperature of 1180 ◦C with a microheater.

20 µm/s

20 µm/s

Fiber

Microheater

T=1180 °C

Figure 3.3: Lateral view of the tapered fiber fabrication setup.
Two motorized stages on which the fiber is clampled, pulled at
a 20 µm/s. The central part of the fiber is heated with a micro-
heater to a temperature of 1180 ◦C
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The fiber transmission at the wavelength of 1.5 µm is monitored during the
pulling process (see Fig. 3.4b). The signal is applied to a short time Fast
Fourier Transform(FFT) algorithm to check the frequency components of prop-
agating mode. Before starting the pulling process, the fiber is monomode
and when is heated and pulled it becomes multimode, so that the signals
starts to show intereferences between different supported modes. This is
shown in the left part of Fig. 3.4b where the transmission signal is oscillat-
ing. The multimode character is confirmed by Fig. 3.4c, showing the FFT
signal with a peak function. When these frequency components disappear,
the monomodal condition is achieved (see Fig. 3.4d and the right part of Fig.
3.4b). The experiments are carried out with optical fibers having diameters
in the thinnest section of∼ 1.8 µm Fig. 3.4a, which is commensurate with the
wavelength needed and ensures an evanescent field tail of several hundreds
of nanometers.
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Figure 3.4: (a) SEM image of the thinnest part of a ta-
pered fiber.( b) Transition from multimode to monomode while
pulling the two extremes of the fiber as seen in temporal scale.
(c) FFT of the transmitted signal before the transition to single
mode. (d) FFT of the transmitted signal after the transition to
single mode.

The WGM resonator is placed below the tapered fiber and its position is con-
trolled with nanometer-scale precision. The thickness of the tapered fiber is
∼1µm. The fiber is shaped into a microloop form with a radio of R∼10µm, al-
lowing the local excitation of microsphere (and nanobeams) with a nanometer-
scale precision on a region of 5µm2. The microloop is created once the pulling
process is stopped by first rotating the fiber clamps around itself. This will
twist the fiber. Then, the two fiber ends are gently approach several hundreds
of micrometers so that the loop is formed with a large diameter. Finally the
two ends are pulled again apart reducing the loop size. In that process, the
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two parts of the fiber at the loop thinnest point slide in opposite senses. The
microspheres resonator have been measured approaching the fiber in contact
with the sample.

3.2 Optomechanics in a corrugated nanobeam

3.2.1 Introduction to 1D optomechanical crystals

Alternative structures to WGM that confine light and couple to mechanical
vibrations is achieved by optomechanical crystals. OMC’s are simultane-
ously photonic and phononic crystals, so that the electromagnetic field and
the mechanical displacement is co-localized spatially in a particular zone of
the structure leading to an enhanced interaction [29, 30, 92–95]. OMC’s are
fabricated by a periodic modulation at the nanoscale of the refractive index
and material density. This allows to include a structural defect in the oth-
erwise regular dielectric lattice forming a cavity. Analogously, due to the
density modulation it is possible to confine mechanical modes to the same
structural defect. In practice, this is performed by doing periodic holes in
a membrane (2D OMC) or a nanobeam (1D OMC). Such periodicity modi-
fies the phonon and photon dispersion relation, giving rise to photonic and
phononic band gaps, i.e., forbidden wave propagation for a given frequency
range.

These structures have applications in both classical and quantum phenom-
ena. One of the most practical advantage of the OMC’s with respect, for
example, with microspheres is that they can be integrated in chip platforms,
enabling the design of multiple elements as optomechanical circuits. The
optical transduction of phonons in OMC’s has leveraged sensing systems
of different magnitudes, like small displacements, mass, and force [6, 41,
96, 97]. Moreover, several experiments have exploited interaction between
phonons and photons at a fundamental level, like optomechanical induce
transparency [98], the ground state cooling of a mechanical resonator [99] or
squeezed light [100]. All this experiments among other suggest that OMC’s
can be considered possible building blocks for phonon circuits.

The P2N group has a strong experimental background using the efficient op-
tomechanical coupling obtained in nanobeams structures in a Silicon plat-
form to create phonon sources [30, 101–105] and to study complex dynamics
by exploiting material nonlinearities [95]. In order to understand the syn-
chronization experiment described in Chapter 6 with two linked nanobeams,
an introduction to the single OMC used and the its main properties must be
given in the following section.
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3.2.2 The corrugated nanobeam

The 1D OMC device that will be investigated in this thesis is crystal built in
a Silicon nanobeam with circular holes and a corrugation shape made with
rectangular stubs. A SEM image of the nanobeam is shown in Fig. 3.5. The
design of the lattice is based on the repetition of the unit cell shown in Fig.
3.5. It consists on a square with a circular holes and two symmetric stubs
on the sides. The geometrical parameters that characterize the unit cell are
the pitch distance (a), the radius of the hole (r), and the stubs length (d) with
the following nominal values a= 500 nm, r= 150 nm, and d= 250 nm. The full
structure is formed by a total number of 32 cells with a cavity length of 15µm.
The thickness of the nanobeam is given by the SOI wafer of 220 nm.

Quadratic reduction 
a, r and d

Mirror

Mirror

Figure 3.5: SEM image of the corrugated OMC. The structure
consists on the repetition of the unit cell (yellow inset) with the
following geometrical parameters: a= 500 nm, r= 150 nm and
d= 250 nm. The mirror cells have nominal values and the de-
fect is created decreasing quadratically towards the center the
values of a, r and d.

The ten initial cells at both sides are mirror cells defined by the nominal geo-
metrical parameters. The 12 central cells are the structural defect that forms
the cavity. The cavity is created by varying quadratically towards the center
of the structure the geometrical parameters of pitch, hole radius and the stub
simultaneously. The maximum reduction of the parameters is denoted by Γ,
which is the quotient between pitch of the central cell and the nominal cell of
the mirror.
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One of the key features in the choice of the geometry described above for the
corrugated OMC structure is because it presents a photonic band diagram
with a TE pseudogap and phononic band diagram with full gap [30]. This
aspect is the main difference with respect to other OMC used in the literature,
which presented pseudo gaps in their phononic band diagrams [28, 92, 106].
The advantage is that a full gap guarantees the absence of propagation of
phonons from any band in frequency range while a pseudogap is defined by
the absence of bands in a particular symmetry.
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Figure 3.6: (a) Photonic band diagram of the mirror cell. It
shows a bandgap for TE modes (grey area). (b) Phononic band
diagramd of the mirror cell with symmetry in the z=0 plane
(half of the cell). The diagram presents a full gap between 3 to
4.5 GHz (grey area).

The photonic band diagram of the corrugated OMC is shown in Fig. 3.6a.
It is obtained by simulating the mirror cell using COMSOL. The diagram
presents a full gap for bands with TE polarization (TM polarization is not
shown). The variation on the geometrical parameters towards the center of
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the cavity creates an effective potential that confines the optical modes. In
particular the modes of the second and third TE band are pulled towards
gap region from the X point (k=π/a).

The phononic band diagram is represented in Fig. 3.6b. The spectrum is
calculated for the perfect structure. It reveals a phononic bandgap which
expands from about 3.5 GHz to 4 GHz. The investigation of high frequency
modes can be found in Refs. [30, 104]

3.2.3 Fabrication

The structures were fabricated at the Politechnic University of Valencia. We
use a standard silicon-on-insulator (SOI) SOITEC wafers with a top silicon
layer thickness of 220 nm (resistivity ρ ∼1−10 Ω cm−1, p-doping of ∼1015

cm−3) and a buried oxide layer thickness of 2 µm. The OMC’s fabrication
process is based on electrom beam lithography (EBL) on a 170 nm resist layer
of polymethyl methacrylate (PMMA) baked at 950 K.

The optimized structures were obtained with an EBL exposure characterized
by the following parameters: acceleration voltage of 10 KeV and an aperture
size of 30 µm with a Raith150 equipment. Since the PMMA is a positive
resist, the exposed pattern are negatives, then, the developer removes the
areas that have been exposed, leaving the remaining resist as a mask. After
developing the samples with MIBK/IPA, the patterns were transfer to the
silicon layer with an inductively coupled plasma-reactive ion etching. The
gases used were SF6/C4F8. The two gases are injected simultaneously under
typical recipes for silicon etching (pressure: 20 mT, low-bias voltage, and a
SF6/ C4F8 flow ratio: 1.5), which produce anisotropic etching with smooth
lateral walls. Finally, once the silicon is etched, the nanobeams are released
from the silicon oxide substrate by a buffered HF wet etching process.

3.2.4 Optomechanical properties of the nanobeam

In this section I will address the optical and mechanical properties of the
nanobeams. By placing the tapered fiber close to the OM structures, it is pos-
sible to couple light in and out of the cavities. Detecting the transmission of
an infrared laser at a low power (<10 µm), the optical spectrum like the one
shown in Fig. 3.7a is obtained. Several resonances are measured correspond-
ing to the localized optical modes of the OMC.

The tapering introduced by design allows to confine optical modes with high
Q factor. For example, the optical mode shown in Fig. 3.7b, that correspond
to the mode highlighted in blue in Fig. 3.7a. From a Lorentz fit of the optical
resonance the optical mode is characterized by an optical quality factor Q=
2.3· 104, with an extrinsic decay rate κe= 1.88 · 1010 s−1 and intrinsic decay
rate κi= 3.58 · 1010 s−1.
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In order to identify how is the electric field distribution of the localized opti-
cal mode measured, an imported SEM image of the real device was simulated
in COMSOL. Fig. 3.7b shows the obtained electric field distribution Ey of the
optical mode measured at∼ 196.8 THz. The observed mode correspond to an
hybridization of the mode families associated to the second and third band.
The optical modes presents an asymmetry distribution of Ey along the x-y
plane. This is goind to play an important role on the optomechanical cou-
pling calculation. (See Appendix ?? for details on the obtention of gOM)
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Figure 3.7: (a) Normalized transmission spectrum of the cor-
rugated nanobeam. The spuctrum is taken for low laser power
(<10 µW). (b) Optical resonance under study is highlighted in
blue. The electric field componen Ey associated to the optical
mode

The RF spectrum associated to the optical transduction of thermally activated
mechanical modes is shown in Fig. 3.8. Several peaks are obtained that cor-
respond to in-plane and out-of-plane string-like mode of the nanobeam. For
symmetry consideration, this mechanical modes should not present a high
gOM value, however, since the optical mode is asymmetric in the yx plane
by geometrical inhomogeneities in the vertical direction (see Fig. 3.7), the
different integral involved in the gOM extraction, contributes in an unbal-
anced way giving high optomechanical coupling values. In particular, the
displacement profile of the eigenmode at 54 MHz is shown in Fig. 3.8. This
mechanical mode corresponds to a third order in-plane mode, since it dis-
plays two antinodes in the center of the beam. The mentioned eigenmode is
particularly relevant since is the one that will be exploited to explore the non
linear dynamics activated by self pulsing in the next section and also Chapter
6.

3.2.5 Self Pulsing mechanism

In this section I will discuss the self pulsing (SP) mechanism in an optical
cavity. SP is a process that emerges in optical cavities that is driven by an
optical power large enough to activate the nonlinear effects on the resonator,
involving free-carriers and temperature rises [101, 105, 107–109]. When these
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Figure 3.8: RF spectrum obtained by exciting the cavity with
the first-order optical mode. Displacement profile of the third
order in-plane mechanical mode.

nonlinearities are activated they start to compete, and are described by a cou-
pled system of equation. For specific conditions, the solutions result in a pe-
riodic modulation of the refractive index of the optical mode, and then, the
intracavity radiation pressure force. SP then experimentally described as an
"optical frequency comb" with multiple peaks spectrally located at integers
of main SP frequency (νSP). The dynamic behavior of the intracavity photon
number is equivalent to what could be reached by an external modulation of
the input laser, although in this case the optical modes are pumped with a
continuous wave source.

In Silicon-based optical resonators in the near infrared, two photon absorp-
tion (TPA) is the main process in generating free carriers. The free carriers
generated can decay through several processes with a particular decay time.
This effect is described by a rate equation for the free carrier density (N) and
is named free-carrier-dispersion, since the free carrier population induces a
dispersion effect on the in the optical resonance λr, resulting in a blueshift
of its cold position (λ0) [108]. A second effect that needs to be considered is
related with the temperature rise (∆T) of the cavity due to the fact that the
free carriers generated by photon absorption is given to the lattice, convert-
ing this energy into heat, and obeys its own rate equation. This second effect
is named thermo-optic (TO), and results in a redshift of the optical resonance
with increasing temperature [109]. The rate equation for N and ∆T are given
by [107]:

Ṅ = − 1
τFC

N + β

(
hc3

n2λ0V2
0

)
n2

0

∆Ṫ = − 1
τT

∆T + αFCNn0

(3.8)

where Vo is the optical mode volume, λ0 is the cavity resonance wavelength
at room temperature and αFC is defined as the rate of temperature increase
per photon and unit free-carrier density. The first term of the free carrier
concentration equation rate, is a surface recombination term governed by a
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characteristic lifetime τFC. The second term is a generation of free carriers by
TPA, being β the tabulated TPA coefficient. The TO effect equation reflects the
balance between the fraction of photons that are absorbed and transformed
into heat due to FCA and the heat dissipated to the surroundings of the cavity
volume, which is governed by a characteristic lifetime τT. Both generation
terms of Eq. 3.8 are coupled by the intracavity photon number n, which can
be written as

n = n0
∆λ2

0

4 (λl − λr)
2 + ∆λ2

0
(3.9)

where n = n0 = 2Plκeλ0/κ2hc is the number of photons in perfect resonance.
Pl and λl are the laser power and the wavelength, respectively. Both Pl and
λl are the only tunable parameters in the experiment, being controlled by
the infrared laser source. Also in Eq. 3.9, κe and κ and are the extrinsic and
overall optical damping rates, respectively.

The dispersion effects on the cavity resonant wavelength can be approxi-
mated to first order, giving:

λr ≈ λ0 −
∂λr

∂N
N +

∂λr

∂T
∆T (3.10)

We can also asume that the number of photons is given by the steady state
solution in the linear case, due to the different timescales between the dy-
namics of N and ∆T and the decay of the cavity (κ−1 << τFC, τT), which can
be considered to respond adiabatically to any perturbation in time.

Other processes can be considered, but these are the leading one in silicon in
the NIR and suffice to explain the dynamics that will be described later on,
so we concentrate on solving these group of equations. As it was mentioned
before, experimentally, we have access to both laser parameters (Pl and λr),
which are included in the dynamic equations implicitly in n, thus impacting
the generation rates.

The dynamic of the system can be illustrated from the phase trajectories of
{N, ∆T} for different wavelengths, obtained from the simulated solutions of
Eq. 3.8. Fig. 3.9 plots the simulated phase portraits {N, ∆T} for specific
values of λl, keeping Pl fixed. The trajectories (red curves) are calculated by
imposing initial conditions in such a way that the cavity is red-detuned with
respect to the laser by an amount equal to λ0.

The nullclides have been included in Fig. 3.9, defined as the curves where
either Ṅ = 0 (green curves) or ∆̇T = 0 (blue curves). Generally, the solutions
of Eq. 3.8 are given by a stable fixed point, where either for Ṅ= 0 and ∆Ṫ= 0.
This is illustrated in Fig. 3.8a. In this case, if the system is driven away from
the fixed point, its dynamic decays exponentially to equillibrium.

By continuing increasing λl to specific value, the stable fixed point under-
goes a supercritical Hopf bifurcation. The fixed point becomes a weak stable
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Figure 3.9: Phase trajectories of N, ∆T for different wave-
lengths λr. Different cases are shown (a) below the supercritical
Hopf bifurcation, (b) above the bifurcation (c) SP limit cycle and
(d) interception with a second unstable fixed point and end of
SP. The green and blue lines correspond to values of Ṅ = 0 and
∆Ṫ = 0, respectively. The red lines correspond to the trajecto-
ries evolution. This figure has been obtained from [95]

fixed point (see Fig. 3.9). For λl above the Hopf bifucartion, the fixed point
becomes unstable and the systems enters into the SP regime. The trajectories
starts to oscillates periodically at a frequency νSP. This dynamic is called a
limit cycle in nonlinear physics. Although the trajectories are periodic, they
oscillate in highly anharmonic way.

The SP dynamic is robust for a wide frequency range, being only deactivated
when a second unstable fixed point is close enough to deflect the trajectory
again to equilibrium (see Fig. 3.9).

In this thesis, the operational frequencies of SP νSP are found in the from tens
of MHz to a few hundred MHz (1 to 0.01 µs) [101]. Several works report-
ing SP regimes at room temperature can be found in literature. For exam-
ple, in Ref. [110], it is reported a slow SP with periodicity from hundreds of
miliseconds to hundreds of seconds in Si Nitride microdisk. In fused silica
microsphere, SP dynamics governed only by TO effect has been observed in
Ref. [111]. Similar works to the SP dynamics explained in this sections can
be found in Refs. [107, 112–114].
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3.2.6 Non linear dynamics activated by self pulsing

The main consequence that the SP mechanism has on the OM cavity is the
fact that its intracavity photon number will be modulated, following the dy-
namic of N and ∆T. Then, the radiation pressure force, that is related with
n by F0 = h̄gOMn, will be also modulated at the frequency of the SP, νSP.
For convenience neglecting the Langevin force, the mechanical modes of the
nanobeam can be described as damped linear harmonic oscillators driven by
the anhamonic force:

mẍ + m
ωm

Qm
ẋ + ke f f x = F0 (3.11)

where x is the generalized coordinate for the displacement of the mechanical
mode and m, ke f f and ωm are its effective mass, spring constant and eigen-
frequency, respectively.

The dispersive effect that these nonlinear processes produce on the resonance
position, including the mechanical motion is given by λr ≈ λ0 − ∂λr

∂N N +
∂λr
∂T ∆T +

λ2
0gOM
2πc x. It worth noting that response of n to mechanical deforma-

tion is adiabatic since κ is few orders of magnitude smaller than ωm.

The dynamics of the system is now described by the four variables N, ∆T, x, ẋ.
Eq. 3.11 with to the pair of equations in Eq. 3.10, form a four dimensional
nonlinear system, being all linked through the intracavity photon number.
The phase trajectories portraits becomes more complex. A detailed descrip-
tion of the phase trajectories can be found in Ref.[95].

The most significant feature that needs to be highlighted occurs when the
frequency of the SP νSP equals one integer multiple of the the mechanical
motion frequency, MνSP = ωm. When this condition is satisfied, a self sus-
tained mechanical motion state is achieved. The main properties of this state
are that is of high amplitude and coherent, which together with the self sus-
tained property, fulfills the requirements to be identified as a phonon lasing
state [101].

In Fig. 3.10a, the RF spectra is presented in a 2D color plot as a function of
the laser wavelength λl. The plot shows the system evolution from a simple
transduction, that is shown in the graph for λl <1527 nm, to a chaotic regime
(λl >1536 nm) passing through different lasing states and pure SP regimes.
For the purpose of this thesis, we are particularly interested in the lasing
state that correspond to the wavelength in yellow for λl= 1533.5 nm, where
the system is found at a lasing state at νSP = ωm for ωm= 54 MHz. This mode
correspond to the third order flexural mode described in Fig. 3.8. From Fig.
3.10 it is observed that the lasing state is very robust, since once the system
start to lase, it is frequency and phase locked for a large range in wavelength.
The single wavelength RF spectra is shown in Fig. 3.10b. From this plot, the
lasing state becomes evident since the linewidth of the main RF peak is a few
kHz. Finally, for specific values of λl, the dynamics of the system becomes
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Figure 3.10: (a) Color contour plot of the RF spectra as a func-
tion of wavelength. The system evolves from pure transduc-
tion to chaos (green light) passing through mechanical lasing
(yellow line). (b) RF spectra obtained for λl = 1534 nm. It cor-
respond to a mechanical lasing state (νSP = ωm). (c) RF spectra
below at λl = 1537 nm. The systems evolves to a chaotic regime.

more complex, giving rise to a period doubling and finally a chaotic regime
(see Fig. 3.10c). A detailed description on the complete dynamical evolution
of the system is given in Ref. [101]

To conclude, the phonon lasing regime in an 1D OMC is the first challenge
that needs to be tackle for the synchronization experiment treated in Chapter
6. In order to synchronized two mechanical resonator, the first requisite is
that the system needs to be in a self sustained oscillation. This condition is
satisfied by the phonon lasing state triggered by the SP.
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Chapter 4

Spin waves and phonons in
ferromagnets

In this chapter I will discuss about the main properties of magnetic ordered
material and the resonant excitations that can be excited and measured on
them. I will describe a particular technique for exciting and detecting magnons
with microwave photons, the ferromagnetic resonance technique. Then, I
will characterize the uniform magnetization precession of a YIG film that is
used throughout this thesis. Finally, I will explain the interactions between
the magnetic degrees of freedom with elastic deformations, showing the dis-
persion relations and the hybrid bands that emerge as a consequence of the
mutual coupling.

4.1 Introduction

The history of magnetism goes back a long time. In 1800, Alessandro Volta
discovered the electric battery as a voltage source [115], which was the be-
ginning of a new era of acive investigations of galvanic processes. In 1820,
Oesterd experimentally demostrated that the orientation of a needle was af-
fected when a wire with circulating current was placed in proximity [116].
In 1865, James Clerck Maxwell presented a theory that unified electricity and
magnetism in four basic equations [117]. From that moment, the understand-
ing and control of electric and magnetic phenomena has supposed a techno-
logical revolution in the past 20th century. In 1947, John Bardeen, Walter
Brattain and William Shockley invented the transistor, establishing the foun-
dation of modern computer technology [118]. Ever since, the information
processing technology has been accelerated and became crucial in the mod-
ern age. However, the size of transistor is approaching a physical limit. This
has increased the fundamental problem of dissipation of charge currents due
to Joule effect. Thus, new routes and concepts for information technology are
vigorously investigated nowadays.
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In parallel, at the beginning of 20th century, since the Stern-Gerlach experi-
ment, the spin property of electrons and nuclei started the investigation of
spin related phenoma [119]. This field of physics had a huge impact in fun-
damental physics. It also brought relevant technological applications. For
example, the nuclear magnetic resonance [120], which is an important imag-
ing resource for medical diagnosis nowadays. The giant magnetoresistance
(GMR) [121] effect is nowaday exploited by hard disk to read out data effi-
ciently.

A novel approach to process data consists on exploiting the spin nature of
materials rather than its charge. The control of pure spin currents, i.e., a
directional wave of angular momentum, are predicted to be dissipationless
[122]. The sources based on these principles could set the beginning of low
power consumption technology, enabling the transition from electronics to
spintronics [123], which is about coupling spin waves in condensed mat-
ter structures and devices. In recent years, new fields based on spin waves
have emerged, namely, spin caloritronics [124, 125] and spin mechanics [126],
which deal with the coupling and control of spin waves/magnons via tem-
perature gradients and coherent vibrations in solids. Understanding the cou-
pling of magnons to other fundamental quasi particles reveals to be crucial
to develop new technological applications.

In the section below, I will present a brief introduction to the magnetic prop-
erties of materials.

4.2 Spin waves in ferromagnetic materials

Magnons are collective excitations of spin waves found in magnetically or-
dered materials. Ignoring some exceptions, all materials can be classified in
two classes according to their magnetic properties: those that are formed by
atoms having permanent magnetic moments and those that do not. Among
the ones that contain permanent magnetic moments, we can differentiate be-
tween those that do not present large volumes where the magnetic dipoles
are aligned parallel to each other and those that do present long range order.
In this thesis we are dealing with the last group mentioned, which are called
ferromagnetic materials.

Ferromagnets are materials in which, below a critical temperature, all their
magnetic moments are spontaneously aligned parallel to each other. The
permanent moments in ferromagnetic media are generally formed by local
domains in absence of external magnetic field. The collective ordering of the
electron spins creates a macroscopic magnetic moment, i.e., magnetization.
In a given domain, the moments are aligned but the direction between dif-
ferent domains is considered to change significantly at the boundaries, as
shown in Fig. 4.1a. Thus, it is possible to consider each individual domain as
a single magnet of smaller volume. In equilibrium, the individual domains
are oriented in a way that they try to minimize the magnetostatic energy,
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so the net magnetization is minimal. When a magnetic field is applied, the
domains begin to align with the external magnetic field giving a nonzero
magnetization.

a)

b) k

µ

Figure 4.1: (a) Schematic representation of a ferromagnetic
material. Each domain can be considered an individual mag-
net with large number of magnetic moments.(b) Spin wave
schematic. The precession angle varies on individual domain
in the direction of~k

Any disturbance in the local magnetic order propagates in the ferromagnet in
form of a wave (see Fig. 4.1b), which are called magnons. They were first pre-
dicted by Bloch in 1930 [127]. Magnons present dispersion relation and can
be treated in a similar way as lattices vibration, i.e., phonons [128]. Thermal
fluctuations try to prevent the alignment of magnetic materials at nonzero
temperature. Increasing temperature, the thermal fluctuations increase and
the magnetic order becomes smaller and smaller until it vanishes. The tem-
perature at which ferromagnetism dissapears is called Curie temperature.
Above this temperature, the ferromagnetic material becomes paramagnetic.

An important aspect of magnonics is the magnetization control and manip-
ulation for diverse spin waves applications. Therefore, it is important to
control the magnetic degrees of freedom by coupling magnons with diverse
quantized particles. Possible candidates to couple magnons are phonons via
magnetoelastic effect. In this thesis we investigate this coupling following
an inverse approach, using magnons to induce vibrations using the magne-
toelasticity of materials, or magnetostriction [129]. This strategy of inducing
vibrations in a ferromagnetic material has been used to resonantly couple
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to the mechanical modes of an optomechanical cavity and detect magnetic
fields.

4.3 Growth method of YIG films

Magnons exist over a broad frequency range, covering from hundreds of
megahertz to terahertz frequencies. Their wavelength can be reduced to the
micro and nanoscale, making them good candidates for information process-
ing technologies [130]. Among the most important materials for microwave
applications we found the magnetic garnets and ferrites. In particular, in
this thesis, we have used films of single crystal yttrium iron garnet (YIG),
Y3Fe5O12. YIG has been extensively used for microwave devices, like delay
lines, filters or high Q microwave oscillators. The only magnetic component
of YIG comes from the Fe3+ ions. The lattice arrangement of these ions gives
a net moment due one iron ion per formula unit. YIG presents very low mag-
netic damping, which allows the propagation of magnons over centimeters
distances [131].

YIG also presents good properties for magneto-optical applications. It is
transparent in the infrared, and it has a large Verdet constant, which charac-
terizes the strength of Faraday effect. The main optical devices that employ
YIG are Faraday rotators, isolators, and sensors [132, 133]. In recent years,
there has emerged new hybrid systems that are both high Q magnon and
photon cavities. Those systems offer the possibility of coupling magnons to
photons with high efficiency [134, 135].

The sample used in this thesis consists on a commercial YIG film. The sample
is a 1 µ m thick layer of single crystal YIG (see the Fig 4.2 a). The sample is
grown by liquid phase epitaxy (LPE) on gadolinium gallium garnet substrate
(GGG), Gd3Ga5O12. LPE is a growth technique that produces high quality
YIG films with the thickness ranging from a few microns to several microns.
This technique is preferred with respect to other like molecular beam epitaxy
(MBE), chemical vapor deposition (CVD) or pulsed laser deposition (PLD)
because LPE growth rate is a factor of 10 to 100 times faster. However, PLD
or MBE techniques are required to obtain layers with nanometer thickness,
like the sample shown in Fig. 4.2c. A typical LPE growth equipement is
shown in Fig. 4.2b, which is detailed in [136]. It consists on a vertical heat
chamber, with several heaters, a motor to dip and rotate the substrate (GGG)
on a crucible that contains the oxides. A detailed description of the chemical
process can be found in reference [137].

4.4 Magnetization dynamics

I will employ a classical approach to describe the behavior of spins in ferro-
magnets. A common procedure is to replace the spins by the classical vector
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Figure 4.2: (a)Schematic of the YIG sample used in this thesis.
Single crystal YIG is grown by LPE on a GGG substrate. (b)
Representation of the LPE equipment for growing YIG. [136]
(c) TEM image of a YIG film of 30 nm thick grown on a GGG
substrate grown by PLD. [133]

of Magnetization, ~M, that takes into account the collective spins of the in-
dividual magnetic domains. The time evolution of the magnetization by an
effective magnetic field ~H is given by the torque applied on ~M.

d ~M
dt

= −γ ~M× ~H (4.1)

where γ = gµB
h̄ is the gyromagnetic ratio, µB = eh̄

2me
is the Bohr magneton and

g is the Landé factor. Note that the effective magnetic field ~H is the contri-
bution of all fields that produce a torque on ~M. The equation 4.1 describes
a precession of magnetization that does not contemplate damping. Thus the
magnetization vector would be precessing foreverer at a given frequency.
Considering that in real experiments the magnetization precession decays in
a finite time, we usually add phenomenologically a damping term, which
modifies the magnetization dynamic as

d ~M
dt

= −γ ~M×
(
~H − α

γMs

d ~M
dt

)
= −γ ~M× ~H +

α

Ms
~M× d ~M

dt
(4.2)
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where we have introduced the term α. This term is a dimensionless damping
constant. The term Ms is the saturation magnetization. This form of equation
receives the name of Landau-Lifshiftz-Gilbert equation (LLG). The equation
was first obtained by Gilbert [138], but it can be derived from a previous
version suggested by Lifshiftz and Landau[139]. This damping term results
from the transfer of energy from the magnon to the lattice vibrations. The
coupling can be visualized in this way, the spin wave interaction depends on
the distance between the spin location. Then, lattice vibration can modulate
the interaction giving rise to the spin-lattice coupling [140].

4.4.1 Ferromagnetic resonance

A common technique to induce a coherent magnetization rotation is the fer-
romagnetic resonance (FMR). The magnetization precession at a frequency ω

is excited by microwave photons via a transverse radiofrequency field ~Br f in
resonance with that frequency. The ferromagnetic sample measured in this
thesis is a single cristal YIG layer with a saturation magnetization, ~MS, ori-
ented along the ẑ direction, as shown in Fig. 4.3. A static field BDC is applied
in the ẑ direction and perpendicular to ~Br f , as shown in the left diagram in
Fig. 4.3 (~B = µ~H).

l

l
e

M(t)
→

mx

→ y^

z^

x^
my

→

MS

→

BDC

→

Brf

→

z^
y^

x^

Figure 4.3: Left. Precession of ~M around the static magnetic
field ~BDC. An external magnetic field ~Br f , pushes the magneti-
zation and makes it to precess around ~BDC. Right. Geometry of
the YIG film with dimensions l = 5 mm and thickness e =1 µm

We define the effective field inside the YIG layer as the one that takes into ac-
count the static field, the demagnetization field and the rf field. The demag-
netization is the field associated to the shape of the sample and is defined by
the demagnetization factors Nx, Ny and Nz. Therefore, the effective field is
defined by the following components: ~B= (-Nx µ0 mx, -Ny µ0 my , BDC- Nz µ0
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mz), with µ0 defined as the vacuum magnetic permeability. For a configura-
tion with the external field parallel to the plane of the film (see Fig. 4.3), we
can consider Ny = Nz = 0 and Nx = 4πµ0 [141]. We simplify the problem
by setting the time derivative of ~M(t) in the direction of ~BDC equal to zero,
such that ~Mz = Msẑ. Thus, the magnetization rotation as a function of time
is given by ~M(t) =

(
mx(t), my(t), Ms

)
. We consider also that the radio fre-

quency field Br f is an harmonic function, which allows to express the time
evolution with a factor eiωt, and assume the same for the magnetization com-
ponents. Inserting the fields expression in Eq. 4.2, taking only linear terms in
α and writing the equations in the frequency domain we get:

iωmx = γBDCmy − iωαmy

iωmy = −γ [BDC + 4πMs]mx − iωαmx
(4.3)

The solution of Eq. 4.1 exists only if the determinant of the system of linear
equations is zero, which gives the known Kittel equation:

ω2 = γ2 (BDC (BDC + 4πµ0Ms)) (4.4)

This equation gives the precessional frequency of the uniform magnon mode
of the ferromagnet. FMR can be excited using an frequency dependent field
Br f . This happens when the sample is placed in a microwave field that is
swept. When the resonance condition is achieved, ω0 = ω, energy is ab-
sorbed and a dip appears in the reflected spectrum.

It can be demostrated that the linewidth of the resonance is proportional to
the magnetic damping α (see for example page 101 of Ref. [140]). I will use
FMR to characterized the YIG sample. Then, in Chapter 5, I will use this
resonance phenomena to monitor the frequency of the uniform FMR mode.

4.5 Ferromagnetic resonance characterization of YIG
films

In this section, I present the FMR characterization of a YIG film. The mea-
surement is based on the coherent detection of the reflected power using a
microwave coplanar waveguide. First, I will describe the measurement tech-
nique and, then, I will present the measurements results, showing the fre-
quency dependence of the resonance position in the absorption spectrum.
I will also show that the measurements agree well with the Kittel formula
given by Eq. 4.4.
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4.5.1 Experimental set up

We present here the set up used to measure FMR on YIG films. It is schemat-
ically shown in Fig. 4.4a. We measure the power reflected on a microwave
coplanar strip waveguide (CSW). The waveguide is used to generate an al-
ternate magnetic field Br f . The YIG film that is charactized is placed on the
waveguide. A parallel static magnetic field is applied by a dipole electro-
magnet (GMW 5403).

Vector
Network 
Analyzer

Port 1

a)

b) c)

SMA
Connector

hrf

Waveguide

YIG

1 mm

BDC

Dipole 
electromagnet

Sample

Figure 4.4: (a) Schematic of the FMR measurements. We use
a VNA to drive a coplanar strip waveguide, that generates an
rf field, Br f . A dipole electromagnet is used to sweep the static
magnetic field. (b) Top draw of the coplanar strip waveguide
fabricated on copper. (c) Cross section of the YIG film deposited
of the coplanar strip waveguide.

The microwave signals are generated by a Vetor Network Analyzer (VNA,
R&S ZVA50) working in a frequency range from 10 MHz to 60 GHz. The re-
flected power from the waveguide is detected by measuring S11 on the VNA.
The transmission line that sends the rf signal from the VNA to the waveg-
uides is formed by the high frequency cables (R&S ∼ 50 GHz), the coplanar
strip waveguide fabricated on a PCB board and a SMA connector (see FIg.
4.4b).

The coplanar strip waveguide consist on a copper stripline of 1 mm width
and 3 cm large. It is shorted at its end in order to maximize the reflected
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power. As it is shown in Fig. 4.4c, an oscillating magnetic field Br f is gener-
ated by sending an alternating current through the waveguide. The magni-
tude of the magnetic field is given by the Biot-Savart law, Br f (ω) = µ0 I(ω)

2πd ,
being µ0 the magnetic susceptibility in vacuum and d the distance from the
center of the wire. The field lines are circles around the stripline. To create
a magnetic field of 3 µT at a distance of 1 µm of the stripline, one would
need to apply a current of 0.015 mA. The high frequency currents applied
through the transmission line will carry losses due to energy dissipation. In
order to extract the magnetic field generated by the waveguide, we needed
to calibrate the losses on the line (See Appendix A).

4.5.2 FMR results

In this subsection I present the FMR detection on YIG films. We use the tech-
nique described in the previous subsection, to generate the rf magnetic field
created by the waveguide to excite the uniform magnetization precession on
YIG, i.e, uniform magnon mode or FMR mode. All measurements described
here were done at room temperature, and using a fixed microwave power 0
dBm.

Fig.4.5b and c shows the reflected power S11 as a function of frequency. The
VNA sweeps the frequency excitation driving the microwave waveguide and
collects back the power reflected. On Fig. 4.5b, a static field of 81 mT drives
the uniform magnon mode at 4.06 GHz, the YIG absorbs energy from the mi-
crowave field and a dip is measured in the power reflected. In Fig. 4.5c we
plot the absortion spectrum for different static fields. The resonance frequen-
cies are found in the range of hundreds of MHz, and correspond to BDC from
0 to 2.5 mT. We observe that the resonance linewidths at high frequencies are
narrower than the one obtained for low magnetic fields.

In Fig. 4.5a, we show the position of the resonance for different applied
statics field. The blue dots correspond to the experimental data and the
solid black line is the curve fitted to the Kittel formula for the FMR mode,
ω = γ

√
BDC (BDC + 4πµ0MS), that was derived in Section 4.4.1. The fit

agrees well with the data and demonstrates that we are exciting the uniform
magnon mode. From the fit, it is possible to obtain the saturation magnetiza-
tion µ0MS= 0.17±0.01 mT and the gyromagnetic ratio γ= 28 GHz/T for YIG.
The values are consistent with the ones reported in literature (see Appendix
A from Ref. [140]).

4.6 Magnon interaction with phonons

In this section we deal with the propagation of spin waves and phonons in
ferromagnetic materials. In particular, we will describe the uniform magnon
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Figure 4.5: (a) The static magnetic field BDC (in-plane) depen-
dence of the FMR mode frequency. The frequency of the mode
increases with BDC following the Kittel law. The blue dots cor-
respond with the data and the solid line correspond to the fit-
ting curve to Eq. 4.4. (b) Measured S11 for a static magnetic
field of 81 mT. The FMR mode is measured at 4 GHz. (c) For
low magnetic fields, the FMR is measured in the MHz range.

modes found for YIG. First, I will derive the wave equations and the band di-
agrams. I will also show how the magnon bands are flat in the large k-limit.
Then, we will describe the phonon bands in YIG films and how they cross
with the magnon bands.

4.6.1 Spin waves equations in YIG.

In this subsection, I describe the propagation of magnons in YIG considering
the time and space dependence of fields like ei~k·~r−iωt, with~k being the vector
in the propagation direction. This allows us to rewrite the Maxwell equations
replacing the time derivatives with the factor −iω. The action of ∇ operator
on i~k can be written in the following way,
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∇ei~k·~r =
[
~xikx +~yiky +~zikz

]
ei~k·~r = i~kei~k·~r (4.5)

Then the Maxwell equations can be written as follow:

~k× ~H = −ωε~E

~k× ~E = ωµ0

(
~H + ~M

) (4.6)

Taking the cross product at both sides on the first equation and substituting
~k× ~E gives

~kk · ~H − k2~H = −ω2µ0ε
(
~H + ~M

)
(4.7)

where we have used the identity~k × ~H = k̄ · ~H, being k̄ the antisymmetric
matrix given by k̄ ≡ k × Ī, and being Ī the identity matrix. The term ~kk is
defined as the dyadic product that satisfy the identity, ~kk = k̄ · k̄ + k2 Ī. We
have also used~k · ~B = µ0~k ·

(
~H + ~M

)
= 0, that allows to get~k · ~H = −~k · ~M.

Then, it is possible to solve ~H, giving

~H =
k2

0
~M− ~kk · ~M
k2 − k2

0
(4.8)

being k2
0 = ω2µ0ε. A similar procedure can be followed to obtain ~E in terms

of ~M, that is given by

~E =
ωµ0~k× ~m

k2 − k2
0

(4.9)

Finally, using the maxwell equation ∇× ~H = −ωε~E we get

∇× ~H = −
k2

0
~k× ~m

k2 − k2
0

(4.10)

Note that in the limit for large k, Eq. 4.9 and Eq. 4.10 vanish as k−1 while Eq.
4.8 is finite since both the numerator and denominator depend on k2. Thus,
it is possible to approximate in first terms the following

∇× ~H = 0

∇ · ~B = 0
(4.11)
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These equations are known as magneto-quasiestatic approximation and de-
scribe waves in the large k limit [140]. The fields can be determined con-
sidering the constitutive relations for a magnetized ferrite, ~B = µ̄ · ~H, with
µ̄ = µ0 ( Ī + χ̄), the permeability tensor which for a isotropic material, in ab-
sence of exchange and considering the static field is applied in the ẑ direction
~H = HDC ẑ, can be written as

µ̄ = µ0

1 + χ −iκ 0
−iκ 1 + χ 0

0 iκ 1

 (4.12)

where χ = ω0ωM
ω2

0−ω2 , κ = ωωM
ω2

0−ω2 , with ωM = −γµ0MS and ω0 = γµ0HDC. We

can write ~H = −∇φ using ∇× (∇φ), being φ a scalar function. Introducing
this expression in Eq. 4.11, we get

∇ · (µ̄ · ∇φ) = 0 (4.13)

The solutions of Eq. 4.13 can be obtained assuming a plane wave approx-
imation for φ ∼ ei~k·~r. Using Eq. 4.5, the plane wave propagation becomes
(1 + χ)

(
k2

x + k2
y

)
+k2

z=0. Considering an arbitrary direction parametrized

by the angle β with respect to the ẑ direction, we get k2
x + k2

y = k2sin2β and
k2

z = k2cos2β. Substituting these equations in Eq. 4.13, we get

χsin2β = −1 (4.14)

which in terms of frequency gives

ωk =
[
ω0

(
ω0 + ωMsin2β

)]1/2
(4.15)

This equation is the Kittel equation obtained in Eq. 4.4. We note that the
dispersion relation is independent of k. The band for this mode is flat for
all values of k, in the large k limit. For β = 0, the dispersion relation corre-
spond to the propagation parallel to the BDC and for β = π/2, correspond
to propagation perpendicular to the static field. In Fig. 4.6, we present the
two bands of uniform magnetization precession in a YIG film for the two
configurations. The value of static magnetic field used was BDC = 0.1 mT. We
note that the magnetostatic approximation is not valid when the exchange
effects or finite sample effects are considered. The exchange term becomes
relevant when λexk2 ∼ 1, being λex the exchange constant and with a value
of λex = 3 × 10−16m2 for YIG [141]. When k2λex � 1, the excitations are
called dipole waves or magnetostatic waves.
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Figure 4.6: Dispersion relation for magnons (black lines) in
YIG calculated using Eq. 4.15. The band for β =0 correspond
to the propagation parallel to BDC and for β = π/2, for prop-
agation perpendicular to BDC= 0.1 mT. Acoustic phonon bands
for YIG. The green curve correspond to longitudinal phonon
calculated using Eq. 4.17. The red line correspond to transverse
phonon calculated using Eq. 4.18.

4.6.2 Elastic wave equations

The quanta of lattice vibrations are described in a continuum approximation
by the displacement function u(x,y,z,t). In the long wavelength limit, the
equation of motion for the elastic displacement is given by [141]

ρü = (λ + 2µ)∇ (∇ · u)− µ∇×∇× u (4.16)

where ρ is the density, µ and λ are the Lamé coefficient that are character-
istic of the material. The equation of motion solution considering a plane
wave approximation for the displacement field, is defined by two dispersion
relations. For displacement parallel to the propagation direction we get the
longitudinal band

ω =

√
2µ + λ

ρ
k = vLk (4.17)
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being vL the longitudinal propagation velocity, which has the value of vL =
7.2 · 103m/s for YIG [142]. For transverse waves

ω =

√
µ

ρ
k = vTk (4.18)

being vT the transverse velocity with a corresponding value of vT = 3.84 ·
103m/s for YIG. Both dispersion relations are linear with ω. In Fig. 4.6 we
show the two bands for phonons in YIG propagating in the [100] direction.

4.6.3 Magnetoelastic coupling

The coupling between spin waves and acoustic waves in ferromagnets is
described in this subsection. Magnetic interaction depends on the distance
between the interacting particles. This fact suggests the possibility of res-
onantly couple magnons with the lattice vibration when the frequencies of
both are similar [143]. The effect that causes a ferromagnetic material to
change its shape upon a magnetization is the magnetostriction. Mechani-
cal deformations are introduced in the equations of magnetization dynamics
and vice versa, the elastic degrees of freedom are affected by a modification
in the magnetic properties of the system. A mechanistic approach of magne-
tostriction arises from the strain dependence on the magnetocristalline free
energy density F [144]. It is described by the contribution of several compo-
nents: magnetocrystalline anisotropy Fk, elastic Fe, Zeeman FZ and exchange
energy Fex

F = Fk + Fe + FZ + Fex (4.19)

The magnetoelastic energy, Fme, is obtained by a Taylor expansion of the mag-
netocrystalline anisotropy energy, giving

FK
(
m, εij

)
= Fa + Fme

(
m, εij

)
(4.20)

where Fa is the anisotropy energy and represents the energy required to flip
magnetization between different crystalline axes. For a cubic symmetry it
can be expressed as

Fa = K1

(
m2

xm2
y + m2

ym2
z + m2

zm2
x

)
(4.21)

where K1 is the anisotropy constant, m is a unit vector along the direction
of the magnetization M. For YIG, the anisotropy constant is K1= -610 J/m3

[140]. The magnetoelastic interaction is given by

Fme
(
m, εij

)
= ∑

ij
∑
νµ

(
bij
)

µν
mµmνεij (4.22)
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where
(
bij
)

µν
is the tensor of magnetoelastic interaction constants and εij is

the elastic strain tensor. For a cubic crystal, which is the case of YIG, we have
B1 = b1111 = B2 = b2323. The reported value B2 for YIG is 7.3 10 · 10−5 J/m3

[142]
The low order term of the elastic interaction energy has the form of

Fe =
1
2 ∑

ijkl
∑
νµ

cijklεijεkl (4.23)

The Zeeman energy is given by

FZ = −Ms

(
~m · ~H

)
(4.24)

The final coupled equations of motion for the magnetization and the elastic
displacement are given by

ṁi =
γ

Ms
(~m× ~m∇mF)

ρüi =
∂

∂xk

∂F
∂εik

(4.25)

where εij = ∂
∂xi

uj +
∂

∂xj
ui and εii = ∂

∂xi
ui. In these equations it is straight-

foward to check that in the solution for longitudinal elastic waves there is
no coupling to magnetization (there are no crossing terms multiplied). From
now on we consider only transverse phonon in the coupling to magnetiza-
tion.

We consider elastic waves linearly polarized propagating perpendicular to
the static field ~BDC = BDC ẑ. For simplicity, we neglect exchange term and as-
sume that ~Br f = Bŷ with an eiωt dependence. Then, the nonvanishing terms
of Eq. 4.25, for propagation in the x̂ direction, are given by the following
equations

iωṁx = −γ
(

Bdcmy −MsBr f
)

iωṁy = −γ

(
Bdcmx + B2

∂

∂x
uz

)
−ρω2uz = µ

∂2

∂x2 uz +
B2

Ms

∂

∂x
mx

(4.26)

The time dependent magnetization, mx(t) , can be decomposed into a spa-
tially dependent mx(x) part and a uniform part, m0x. Combing the first two
equations from Eq. 4.26, regrouping and solving for mx we obtain
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Figure 4.7: Magnetoelastic bands( blue curves) resulting from
the coupling of uniform magnon modes (black curve) and
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curves). The antricrossing region plotted was obtained for a
BDC = 8 mT

mx = m0x + mx(x) = −
iωMωBr f

4π
(
ω2 −ω2

H
) + ωkγB2(

ω2 −ω2
k

) ∂

∂x
uz (4.27)

where ωk is the magnon frequency obtained in Eq. 4.15. Once obtained the
the spatially dependent magnetization term, we can get the partial derivative
of magnetization ∂

∂x mx in the last equation of Eq. 4.26, getting

− ρω2uz =

(
µ +

γB2
2ωk

Ms
(
ω2 −ω2

k

)) d2uz

dx2 (4.28)

taking the plane wave approximation, uz ∼ e−ikx we get the dispersion rela-
tion, which is given by

(
ω2 −ω2

k

) (
v2k2 −ω2

)
+

γB2
2

ρ
ωkk2 = 0 (4.29)
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The dispersion band with the corresponding uncoupled band is shown in
Fig. 4.7. We observe that the coupling at the crossing point for the band at
β = π/2 is smaller than the coupling with the magnon band at β = 0.
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Chapter 5

Resonant magnon optomechanical
magnetometer

5.1 Introduction

The ability to measure low amplitude and broadband frequency range mag-
netic fields has revealed to be crucial for nanoscale magnetic applications
and plays an important role in many areas such as geology, space explo-
ration, biology and medical imaging [43, 145]. Ultra senstive magnetic field
sensors, i.e. magnetometers, are based on multiple different physical phe-
nomena, including quantum intereference in superconductors [46], the Hall
effect [146], the electron spin resonance [147], magnetostriction [148], optical
pump [47], among others [149, 150]. Currently, the superconducting quan-
tum interference device (SQUID) magnetometers, are used for the most de-
manding applications [44, 151, 152], since they reach femto tesla sensitivities.
For example, SQUID magnetometry is used for measuring the residual mag-
netization of ancient rocks, which brings useful geological information like
establishing the distributions of continents, providing critical proofs to the
theory of plate tectonics [153]. Although they achieve excellent sensitivities,
SQUID based magnetometers present the disadvantage of being restricted to
operate at cryogenic temperature. The recent development of atomic mag-
netometers has offered the possibility of reaching subfemto tesla sensitivities
in noncryiogenic environments, opening new possibilities for ultra low field
magnetometry. For example, the magnetometer using the spin exchange re-
laxation free (SERF) technique has reported a sensitivity of 160 aT Hz −1/2 at
40 Hz [47], operating at room temperature.

In terms of dimensions, combined with high sensitivity, a small sensor is
important for many applications. For example, magnetic resonance force mi-
croscopy can detect the single magnetic dipole moments. Then, it is crucial
to reduce the distance between the sample and the sensor [154]. In medical
applications, imaging of the magnetic fields generated by small organs, de-
mand sensors with small sizes and high sensitivity. For instance, neurons in



58 Chapter 5. Resonant magnon optomechanical magnetometer

the brain generate fields in the order of tens of fT [43] and magneto cardiogra-
phy relies on the detection of pT fields [155]. Therefore, an array of multiple
small and highly sensitive magnetometers could be the ideal platform to map
magnetic fields of organs.

In the last decade, optomechanical magnetometers have emerged as a new
platform for measuring magnetic fields with high sensitivity at room temper-
ature [48–50, 156]. Their key point is to exploit the highly developed fabrica-
tion techniques of cavities with high optical and mechanical quality factors.
Optomechanical cavities support low–volume resonant optical modes that
are coupled to the mechanical degrees of freedom of the device through the
optomechanical interaction. This enables ultra sensitive optical transduction
of mechanical motion, allowing, for instance, the possibility to resolve the
position of a mechanical resonator close to the Heisenberg uncertainty limit
[35]. The operation principle of optomechanical magnetometers are founded
on the deformations that mechanical objects suffers under the influence of
an applied magnetic field. The response of the material to magnetic fields
modifies the mechanical structure of the cavity and this causes a shift of the
optical resonance. This modulation can be read out giving a measurement
of the applied field. Previous works based on this principle consisted on us-
ing Terfenol-D as the magnetostrictive material deposited on a microtoroidal
optomechanical cavity (see Fig. 5.1).

a) b)

Figure 5.1: Optomechanical magnetometer. (a) Silica micro-
toroidal optomechanical cavity with major and minor diame-
ters of 60 µm and 4 µm, respectively on which it is deposited
a Terfenol-D grain. The graph is obtained from [48]. (b) An
improved fabricated magnetometer where the Terfenol-D has
been sputtered. The image is obtained from [156].

Optomechanical magnetometers offer state of the art magnetic field sensitiv-
ity, room temperature operation and excellent micro and nano integration.
They require low optical power consumption and present a bandwidth of
hundreds of kilohertz. This chapter presents our approach to exploit op-
tomechanics for magnetometry. It combines the use of glass microspheres
with high quality factor optical and mechanical modes with thin films of YIG
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with narrow FMR. The basic transduction principle involves the conversion
of an RF magnetic field, that resonantly excites magnons, into mechanical vi-
brations in the YIG film via magnetostriction. As it is treated in Chapter 4, at
microwave frequencies, magnons excited on YIG are coupled to transverse
mechanical modes on the film. The mechanical vibration of the film reso-
nantly excites the mechanical breathing modes of the sphere and a response
above the thermal noise is obtained in the spectrum. By using an external
DC magnetic field, we tune the frequency of the magnon and extend the re-
sponse range of the magnetometer by driving mechanical modes at different
frequencies.

The chapter structure is organized in this way: first, it is presented the mag-
netometer concept in correspondence to the Fabry Perot scheme presented in
Chapter 2. Then, it is described the measurement noise treatment to calculate
the magnetometer sensitivity. The following this section shows an optome-
chanical characterization of the microspheres. In order to confirm the vibra-
tions induced on the YIG film we use a Laser Doppler Vibrometer to measure
the YIG vibrations, which is described afterwards. Finally the magnetometer
principle is shown and the sensitivity is calculated.

5.2 Fabry Perot cavity

The success of cavity optomechanics relies on the development of optical
microcavities with high quality factors and the advances of mechanical mi-
croresonators. The performance of an optomechanical system is described
by the efficiency to couple light to mechanical degrees of freedom. The fun-
damentals of cavity optomechanics have been briefly discussed in Chapter
2. Here we use a particular type of optomechanical system, the whispering
gallery mode resonator. Like in most of optomechanical cavities, light is cou-
pled to the cavity by frequency match between the fundamental mode of a
tapered fiber and optical mode of the resonator. When the fiber is placed in
the near field of the optical resonator, light is coupled from one to the other.
A scheme of the light coupling mechanism is shown by Fig 5.2. Once light
is coupled to the cavity, it remains confined in terms of total internal reflec-
tions and is characterized by a quality factor. Inside the cavity, light interacts
with mechanical modes and is collected back by the fiber following the same
mechanism. A more detailed descriptions of the whispering gallery modes
cavities can be found in Chapter 3.

A schematic picture of the optomechanical magnetometer principle is shown
in Fig. 5.2.a The sensor can be modeled as a Fabry Perot optical interfer-
ometer in which one of the mirrors is attached to a spring and responds
mechanically to an applied magnetic field. Typically, in a realistic system
this response is due to magnetostriction that originates in the ferromagnetic
material, i.e, the generation of an oscillating stress when an alternate mag-
netic field is applied. This stress acts as a source force for mechanical mo-
tion of the mirror, greatly amplified when the initial drive is resonant with
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a mechanical eigenfrequency. The two main forces actuating the mechan-
ical modes are thus the thermal Langevin force Fth and the one associated
with the RF magnetic field, Fmag. It is worth noting that the optical forces are
neglected and are only exploited to transduced the mechanical oscillations.
These forces cause a variation of the cavity length, shifting the optical reso-
nance by δωoptical = gOMx, where gOM is the optomechanical coupling rate,
defined as the optical frequency shift by a unit mechanical displacement.

S

N Fmag

Fth

YIG

Waveguide

microsphere

Whispering Gallery Mode

Li
gh

t i
n

Li
gh

t o
ut

Fmag

Fth

a) b)
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Figure 5.2: (a) Conceptual schematic of the cavity optome-
chanical magnetometer. The optomechanical magnetometer is
presented as a Fabry Perot cavity with one of the mirror at-
tached to a spring. The motion of the spring by the fact of
having a temperature will exert a thermal forced on the spring
Fth. The novelty of the model is that we incorporate an extra
force that is coming associated to the magnetic field, Fmag. (b)
Coupling light scheme between the tapered fiber and the BTS
microsphere. (c) Schematic figure of the real system. The mi-
crosphere is placed on YIG films, which is at the same time on
a coplanar waveguide.

An illustration of the main part of the real hybrid system is shown in Fig.
5.2c. It consists of a 0.5 × 0.5 mm2 and 1 µm thick film of YIG grown over a
Gadolinium Garnet substrate. The YIG film is the one that was characterized
in Chapter 4. Glass microspheres of BTS with a diameter between 40 µm and
70 µm were deposited on the YIG thin film. These microspheres are used
as high quality OM cavities supporting both optical WGM and mechanical
breathing modes with large gOM values[77, 157].
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5.3 Stress induced magnetostriction

Optomechanical magnetometers are based on the use of magnetostrictive
materials, i.e., the stress that is induced in a material when a magnetic field is
applied. The magnetostrictive material selected in the experiment is a single
crystal YIG thin film. Generally, the stress is described by the magnetostric-
tive tensor, T̂(~r), which is defined as the force per unit of area [158]. For sim-
plicity, in this thesis we consider only an homogeneous and unidirectional
stress along the x direction. These simplifications gives only a single nonzero
component of stress and allows to relate the magnetic field with the stress in
the following way

Txx = λMB (5.1)

being λM the magnetostrictive coeficcient that is characteristic of each mag-
netostrictive material. The first experiments on optomechanical magnetome-
ters exploited the fact of using the highest magnetostrictive material available
commercially. The material selected was Terfenol D since it is an alloy of iron,
dysprosium and terbium and was characterized by the largest magnetostric-
tive coefficient known with a value of λM = 5 · 108 N

Tm−2 [159]. Despite YIG
is less magnetostrictive than Terfenol D, with a value of λM = 3.8 · 107 N

Tm2

[160], it presents a very low damping parameter (see Chapter 4). This allows
the excitation of magnons that can propagate long distances on the sample.
It also grant to measure ferromagnetic resonance at room temperature. This
will help to excite different mechanical modes by magnetostriction.

For what concerns to the experiment of this Chapter, we can consider that
on the surface of the YIG layer, an effective force will drive the mechanical
modes of the optomechanical resonator placed on top. The origin of this force
is the mentioned magnetostriction of the YIG layer.

5.4 Magnetometer mechanical response

The performance of the optomechanical magnetometer described in this the-
sis relies on how efficient is the magnetic signal to drive the mechanical
modes of the mechanical resonator. In this experiment the optomechanical
oscillator used were glass microspheres of Barium-Titanium-Silicate (BTS)
deposited on the YIG layer.

According to the equipartition theorem, each mechanical degree of freedom
of the microsphere is defined by a mean energy of kBT/2 (with kB is the
Boltzmann constant and T the temperature). As it was treated in Chapter 2,
this energy excites incoherent motion of the resonator close to the mechanical
modes. The mechanical modes detected on optical signal will be the one
with sufficiently high optomechanical coupling gOM, this is, the mechanical
modes that are able to couple with the optical WGM of the microsphere. The
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mechanical eigenmodes can be obtained from a model microsphere with a
Finite-Element-Method (FEM) simulation.

We use the solid mechanics package of the software COMSOL Multiphysics
to obtain the eigenmodes of a microsphere with BTS elastic constants and
a dimension similar to the one used in the real experiment. Several modes
are found ranging from hundreds of MHz to the GHz. The fundamental
mechanical breathing mode for a sphere of R =30 µm radius is shown in Fig.
5.3.

The magnetic field detection efficiency also depends on the competition be-
tween the signal response to magnetic field, with the particular noise associ-
ated to the experiment. The first source of noise is intrinsic of the material,
and is related with the fact that the mechanical resonator is at a finite temper-
ature, and therefore is thermally excited. The second source of noise are the
one that are given by the measurement, like the shot noise from the laser.

R=30µm

-10m =10  kg eff

-13 3V =10  m  eff

sphere

Figure 5.3: Conceptual schematic of the YIG film and the BTS
sphere. At the right we show the mechanical eigenmodes of a
sphere with similar size to the one used in the experiment is
shown (R = 30 µm). FEM simulations shows that the effective
mass for the radial breathing is me f f = 1 · 10−10 kg.

Fluctuation dissipation theorem (see Chapter 1) states that the thermal force
noise Fth corresponding to one degree of freedom ωm, is associated to a ther-
mal force power spectral density Sth, given by

Sth =
∫
〈Fth(τ)Fth(0)〉dτ =

2me f f ωmkBT
Qm

(5.2)

where me f f is the effective mass of the mechanical mode. Then the thermal
force can be express as:

Fth =

√
2me f f ωmkBT

Qm
(5.3)

A good magnetometer must present characteristics that allows it to have a
low thermal noise. From Eq. 5.2 we can extract that a low effective mass is
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important for reducing the thermal noise. The effective mass me f f for one
mechanical modes resonance ωm is calculated from the maximum displace-
ment max(~u) as:

me f f =
ρ

max(~u)

∫
|~u|2dV (5.4)

The effective mass obtained for a microsphere of R = 30 µm is me f f ∼ 10−10kg.
It is also important a high mechanical Qm factor, since it would take longer
to the resonator to dissipate its energy.

In the previous section we mentioned that the magnetic field response is en-
coded in a mechanical forced exerted on the microsphere. We assume that
the relation between the magnetic response, Fmag, and the magnetic field is
in the following way:

Fmag = cmagB (5.5)

being cmag, a magnetic parameter. In principle, before experimental confir-
mation, this parameter can present a complex expression. Nevertheless, we
will assume that the relation between Fmag and the magnetic field B is linear,
giving a constant value for cmag. This will be supported by the experimental
results in the following sections.

We can model the mechanical response due to the magnetic field applied by
using a an effective foces applied (Fmag) on the base of the mechanical oscil-
lator. In Fig. 5.4a we show the modeled system, the BTS microsphere are
deposited on a PMMA substrate layer and a YIG layer. In order to simulate
a more realistic situation that is that the microsphere can presents imperfec-
tions, we have cropped the base of the microspheres by a distance of 0.5 µm.
This flattes the base of the sphere increasing the contact region between the
mechanical modes of the resonator and the vibrating layer.

If the mechanical driving exists, the energy density stored in the cavity would
vary in frequency with a coherent forced in a frequency domain study. In
Fig. 5.4b we illustrate the simulated configuration. The displacement energy
stored as a function of frequency for sinusoidal force a force applied is shown
in Fig. 5.4c. The resonances shown correspond to radial mechanical modes
of the microsphere that are excited by the applied force. We have assumed
a linear elastic model for all materials of the simulation. In order to open
the system and also allow energy to dissipate through the substrate we have
used perfect matching layers on the bottom part of the system.

5.5 Magnetometer sensitivity

The sensitivity of a magnetometer sensor is defined as the minimum mag-
netic field that can be measured by the device. As we have seen in Section 5.4,
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Figure 5.4: (a) Conceptual schematic of the model used to sim-
ulate the mechanical excitation of the microspheres resonances.
(b) 3D visualization of the model used. A thin layer of PMMA
(100 nm) is used on top of the YIG layer (1 µm). A BTS mi-
crospheres (R = 30 µm) is placed on top of the film. (c) Normal-
ized energy stored in the microsphere with an applied magnetic
force Fmag. The displacement profile of the eigenfrequency ex-
cited is shown in the graph.

the mechanical resonator presents multiple mechanical modes, with different
displacement profiles, mechanical frequency, dissipation rates, and effective
masses. As it was discussed in Chapter 2, considering a single mechani-
cal mode, the equation of motion that describes the mechanical resonator is
given by a forced harmonic oscillator. Also each mode is excited differently
by the forced associated to the magnetic field. Nevertheless, the physics of
the system is well described with a single mode and it can be extended im-
mediately to include multiple resonances.

With similar arguments than in Chapter 2 for Eq. 2.9, and also in Ref. [145],
the mechanical motion is given by,

ẍ + Γẋ + ω2
mx =

Fth
m

+
Fmag

m
+

FOM

m
(5.6)
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where Fmag is the force applied by the magnetic field, FOM is the radiation
pressure force from the presence of the optical field coupled to mechanical
motion, Γ is the dissipation rate of the mechanical mode ωm, and m is the
mass of the mechanical oscillator, or the effective mass of a more complex
vibration mode of the structure. In this case, is the effective mass of the me-
chanical mode in the sphere and is calculated by Eq. 5.4.

Eq. 5.6 can be expressed in the frequency domain as

x(ω) = χ(ω)
(

Fth(ω) + Fmag(ω) + FOM(ω)
)

(5.7)

being χ(ω) the mechanical susceptibility of the sistem given by

χ(ω) =
1

m (ω2 −ω2
m + iΓω)

(5.8)

From fluctuation dissipation theorem, the force is Fth =
√

2me f f ωmkBTQ−1
m .

As treated in Chapter 2, the radiation pressure force term is given by FOM =

h̄gOMn, being gOM = dωc
dx , the optomechanical coupling rate and n the intra-

cavity photon number.

The mechanical displacement shift the optical resonance via the optomechan-
ical coupling, as δωc = gOMx. In real experiments, mechanical motion is
measured via the frequency shift in the optical resonance. This is given by

δωc = gOMχ(ω)

(√
2me f f ωmkBTQ−1

m + h̄gOMn + Fmag

)
(5.9)

Due to the small number of photon fluctuations on the experiment, we can
neglect the radiation pressure force term from now on.

The spectrum analyzer measures the power spectral density. It is composed
by the spectral density from the magnetic field to detect, Smag(ω), and the
noise in the signal detected, Snoise(ω). These terms are given by [161]

Smag = |〈δωc(ω)〉|2

Snoise = 〈|δωc(ω)|2〉 − |〈δωc(ω)〉|2 + Smeas(ω)
(5.10)

where Smeas(ω) is the noise power spectral density, and represents the noise
introduced by the measurement apparatus due to electronic noise, and laser
noise[162]. In the experiment that I am discussing here, the main source
of noise is the laser shot noise. The measurement noise is independent of
the mechanical motion x(t). We take Fmag(ω) at a single frequency ωmag,
Fmag(ω) = Fmagδ(ω−ωmag), which in terms of spectral noise gives Smag(ω) =

g2
OM|χ(ω)|2F2

magδ(ω−ωmag). Then, the spectral noise term is given by
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Snoise = g2
OM|χ(ω)|2

[
2me f f ωmkBTQ−1

m

]
+ Smeas(ω) (5.11)

The minimum forced that can be detected is obtained by integrating the mag-
netic and noise spectral densities contribution over the bandwidth ∆ωRBW
and making the signal to noise ratio (SNR) equal to one, i.e. setting the mag-
netic and noise power spectral densities equal:

Fmin
mag

∆ωRBW
=

√
2me f f ωmkBTQ−1

m +
Smeas

g2
OM|χ(ω)|2

(5.12)

Finally, according to Eq. 5.5, the minimum detectable magnetic field is given
by

Bmin

∆ωRBW
=

1
cmag

[
Sth +

Smeas

g2
OM|χ(ω)|2

]1/2

(5.13)

From this equation we observe that the measurement noise, Smeas, and the
magnetic estimated field, Bmin, are minimized at the mechanical frequency,
since the mechanical susceptibility diverges at ωm. In contrast, we know
from Eq. 5.3 that the thermal noise is flat. A high mechanical quality factor
Qm is always advantageous for reducing the thermal noise Sth and also, in
resonance, reducing the Smeas due to the contribution on the susceptibility.

In Fig. 5.5a, we plot the sensitivity as a function of frequency, ω, for different
normalized measurement spectral noise, considering that Smeas is flat. This
assumption is acceptable since assuming that Smeas is only limited by the
shot noise of the laser, it depends mainly on the optical linewidth κ [161].
We have defined the term Bth as Bth =

(
2me f f ωmkBTQ−1

m
)

/cmag and Bmeas as
Bmeas = S1/2

meas/cmagg2
OM|χ(ω)|. When Bth dominates, the sensitivity is flat on

the range of frequency from ω = 0 until it reaches the value ω = ωm.

In Fig. 5.5b, we plot the on resonance (ω = ωm) minimum detectable mag-
netic field as a function of the measurements noise inaccuracies (Bmeas/Bth).
When the thermal term Bth, dominates over the measurement term, Bmeas,
the sensitivity (Bmin) is flat. Once the measurements noise equals the thermal
noise, the sensitivity Bmin increases.

The optical quality factor Qopt, does not have an influence on the sensitivity.
However, high Qopt cavities are useful for reducing the Smeas. The measure-
ment method consist on measuring currents I on the detector, which is pro-
portional to the resonance frequency δωopt, and consequently to mechancial
motion x(t). Therefore, the current is increased by the optical quality factor

I ∼ δω ·Qopt ∼ x ·Qopt (5.14)
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Figure 5.5: (a) Magnetic field as a function of frequency.
The detectable magnetic field strength Bmin is normalized by
Bth, which is defined as Bth =

(
2me f f ωmkBTQ−1

m
)

/cmag. The
noise spectral density due to noise is written like Bmeas =
S1/2

meas/cmagg2
OM|χ(ω)|. The different color lines correspond to

values of Bmeas/Bth =
(
105, 103, 10, 10−1, 10−3, 10−5). (b) On

resonance (ω = ωm) magnetic field sensitivity normalized by
Bth as a function of the measurement spectral noise normalized
Bmeas/Bth. The mechanical quality factor used was Qm = 100
and the bandwidth ∆ω = 1 Hz.

5.6 Optomehcanical characterization of BTS micro-
spheres

5.6.1 Optomechanical setup

The experimental set up used to characterize the microsphere is the standard
one employed in multiple experiments in optomechanics [95, 101, 134]. The
set up is schematized in Fig. 5.6. A infrared tunable laser, that covers the
spectral range between 1440 nm to 1640 nm, is used as a light source. Light is
coupled to a tapered fiber. A fiber polarization controller is used to set the po-
larization state of light that will be coupled to the microsphere. The thinnest
part of the tapered fiber is placed in contact with the microsphere. In order
to make the characterization in similar conditions to those used during the
magnetometer operation, the microsphere is characterized on the YIG film,
which is placed on the micro strip waveguide (see the picture on Fig. 5.6).
The presence of a radio frequency modulation of the transmitted signal, was
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detected by an InGaAs fast photodetector with a bandwidth of 12 GHz. The
radio-frequency voltage output is connected to the 50 Ω input impedance of
a signal analyser with an operational bandwidth of 13.5 GHz. All measure-
ments of the optomechanical characterization and the magnetometer opera-
tion were performed in an antivibration cage at atmospheric conditions of air
and temperature.

SA12 GHz

YIG 
Waveguide

FPC

(1.4-1.6mm)

PMMA

Figure 5.6: Schematic of the optomechanical set up. We mea-
sure the optical whispering gallery modes of the microspheres
with an infrared tunable laser source connected to tapered fiber.
The tapered fiber has a loop shape and couples light evanes-
cently to the microsphere. The outcoupled light is collected by
the fiber and analysed with a spectrum analyser.

5.6.2 Optical characterization

We selected microsphere resonators since they are versatile cavities to store
light with high quality factors. They can be made of multiple materials, from
polymers to glassy compounds [9, 84, 157]. In such geometry, quality fac-
tors Qopt up to 109 have been reported, on which the main mechanism of
loss is established by the material absorption [9]. The normalized spectrum
of optical modes of the microsphere is shown in Fig. 5.7. The characteri-
zation is performed using the set up described in the previous section and
schematized in Fig. 5.6, but instead of using a fast photodetector connected
to the spectrum analyser, we used a Ge biased detector (Thorlabs, DET550B)
connected to a voltmeter.

In Fig. 5.7 we show the typical optical transmission spectrum from a micro-
sphere of about 40 µm in diameter with multiple WGMs. The optical power
used for this characterization was about 60 µW. The multiple dips are ob-
tained every time the laser wavelength is resonant with the a WGM. We note
that the resonances are compound by multiple modes, whose linewidths are
found to be smaller than δλ < 1 pm, exceeding then the laser resolution
(δλ = 1 pm). This sets a lower bound for the quality factors of Qopt > 106.
Independent measurements with an oscilloscope confirmed quality factors
around Qopt ∼ 108. The measurement consisted on scanning the optical
mode with the photodetector connected to the oscilloscope which offers a
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Figure 5.7: (a) Optical whispering gallery modes spectrum
measured on a microsphere of R = 38 µm radius. (b) Zoom
region highlithed in red on (a). The optical modes linewidth is
smaller than the laser resolution δλ < ∼ 1 pm. The inset shows
a simulation of the optical WGMs.

better time resolution. By knowing the speed scan, we were able extract the
linewidths of the mode and then obtain the quality factor.

An important comment that is needed to be made is that due to the differ-
ence of the refractive index between the YIG film (n = 2.19) and the BTS mi-
crosphere sphere (n = 1.4), we use an intermediate layer of 100 nm of PMMA
that preserves the high Q-factors of the optical modes (see Fig. 5.6). With this
configuration, the light confined on the microsphere did not leaked to the
substrate. The use of PMMA does not change the experimental result since
PMMA is non magnetic.

The contact position of the fiber on the microsphere is also an important as-
pect to take into account in order to avoid light to be lost to the YIG sub-
strate. The electromagnetic energy of the WGM is assumed to be confined
in the equatorial plane of the contact position between the microsphere and
the fiber. Then, a vertical contact position of the fiber loop on the sphere is
translated on an optical path which finds YIG the substrate (either YIG or
PMMA), resulting on an extra channel for losses. In Fig. 5.8, two optical
images showing a top view of the fiber-microsphere contact. We preferred a
lateral position in order to avoid losing light to the YIG substrate.



70 Chapter 5. Resonant magnon optomechanical magnetometer

Top View

Lateral contact Vertical contact

Figure 5.8: Optical images showing a top view of the fiber-
microsphere contact. The vertical contact was excluded in order
to avoid losing light to the YIG substrate.

We also note that, the laser power used during the whole experiment was
maintained in such a way that the optical nonlinear effects were not acti-
vated. Optical powers above ∼ 100 µW leaded to homogeneous heating
effects inducing thermo-optic non linearity. This results in a redshift of the
optical resonance on the transmission spectrum. The resonance shift in wave-
length can reach several nanometers.

5.6.3 Mechanical characterization

The long tail of the evanescent field of the fiber excites the resonant optical
mode of the sphere. Once in resonance, the mechanical motion of thermal
populated mode activated by thermal Langevin force causes that the trans-
mitted intensity to be modulated around a static value (see Fig. 5.7). The
strength of this modulation is given by the optomechanical coupling rate (see
Chapter 1). In Fig. 5.9 we show the radiofrequency spectrum obtained on the
spectrum analyzer. Mechanical modes with a non-negligible optomechanical
coupling rate appear as narrow peaks in the spectrum.

The spectrum shown in Fig. 5.9 correspond to a sphere of 40 µm radius. We
observe that by measuring microspheres with different sizes, the frequency
of the fundamental mechanical mode decreases with increasing the micro-
sphere size. Nevertheless, the mechanical quality factor Qm factor measured
was found between 102 and 103 for all sizes. This is because the main source
of loss of displacement energy is given by the visco-elastic damping with air.

Interestingly, not all WGMs from Fig. 5.7 show enough optomechanical cou-
pling rate to transduce mechanical eigenmodes above the noise level of the
RF spectrum. For the sphere used in this experiment there was only one opti-
cal mode at 1509 nm with a coupling strength enough to transduce mechan-
ical modes. On the spectrum shown in Fig. 5.9 we observe five mechanical
modes at 109, 206, 292, 338 and 465 MHz. According to FEM simulations
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Figure 5.9: Transduced mechanical modes of the characterized
microsphere. A radiofrequency modulation is detected on the
Spectrum Analyzer.

from COMSOL, we can identify the displacement profile of the mechanical
modes, they correspond to radial modes and they are also shown in Fig. 5.9.

5.7 Magnetometer characterization

In this section, I describe the different characterization of the magnetometer
perfomance. First, I will show the signal observed in the Spectrum Analyzer
and magnetic field calibration for a single peak. Then, I will describe the
coherent response of the magnetometer using a Vector Network Analyzer,
showing the operational bandwidth of the magnetometer. After the dynamic
response is shown, I will show that by tuning the ferromagnetic resonance
of YIG we can move the dynamic range of the magnetometer for different
frequency ranges up to 1.1 GHz. Finally, I will show the design of a future
magnetometer fabricated YIG.

5.7.1 Incoherent spectral response

The experiment that sets the first proof of principle of the optomechanical
magnetometer with a resonant ferromagnetic resonance is shown in the top
part of Fig. 5.10. We use the same optomechanical set up shown in Fig. 5.6
for the optical excitation and read out of mechanical motion on the BTS mi-
crosphere. The novelty here is that an alternate magnetic field will be applied
on the system YIG film-microsphere. The microsphere is placed on top of the
YIG film and in turn the film is placed on a microstrip coplanar waveguide
that creates the AC field that is going to be detected. The microstrip is driven
by the Vector Network Analyzer. The FMR mode is tuned by two copper
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coils on which by being circulated by a current, they create a static magnetic
field BDC. For the first part of the experiment, we will use a low BDC in order
to find the FMR mode at low frequencies.

In the bottom part of Fig. 5.10, we show the transduction spectrum of the
same sphere characterized in Fig. 5.9. We apply an alternate field oscillating
at a frequency of ωcal = 206 MHz. This frequency will be used for calibra-
tion. The RF power applied on this measurement was -10 dBm. On Fig. 5.10,
above the thermal motion corresponding to the mechanical modes close to
that frequency, the spectrum shows a peak at the frequency of the applied
magnetic field. The force induced by vibrations on the YIG modifies the me-
chanical spectrum of the microsphere with a corresponding signal response
characterized by a Signal-to-Noise-Ratio (SNR) of 8 dB, as illustrated on the
zoom spectrum in Fig. 5.11. Such a peak disappears when the sphere is lifted
from the YIG and the mechanical contact is lost, which demonstrates the me-
chanical origin of the signal.
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Figure 5.10: A simplified schematic of the full experimental
setup. A fiber taper is used to probe the optomechanical modes
of the microsphere. Two electromagnetic coils are used to gen-
erate static magnetic field. This static field tunes ferromagnetic
(magnon) resonance mode on the YIG film. The microwave
magnetic field is provided by the waveguide. The FMR of the
YIG film are monitored by the measurement of S11 on the Vector
Network Analyzer. In the bottom image we show the Brownian
noise spectrum with magnetic excitation at 206 MHz.
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We measure the SNR for different applied magnetic fields at ωcal. As shown
in Fig. 5.11b, we observe a linear dependence of square root of SNR at fre-
quency on the applied RF magnetic field (B). The amplitude of the field B
acting on the YIG and the sphere is obtained estimating the RF current that
passes through the CSW, by measuring the characteristic impedance of the
circuit and considering the applied RF power (see Appendix A for detail).
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Figure 5.11: (a) Mechanical spectrum of the silica microsphere
excited by applying an RF magnetic field of 2.3 µT at 206 MHz,
in red. The black curve corresponds to the mechanical mode
without excitation. (b) Signal to noise ratio (SNR) of the system
as a function of RF magnetic field applied

We use the magnetic field dependence in Fig 5.11b to calculate the sensitiv-
ity at a single frequency, which is given by the field strength at which the
spectral peak height is equal to the noise (SNR=1), for a 1 Hz measurement
resolution bandwidth. The correspondent magnetic field obtained at ωcal is
B = 0.51 mT with a resolution bandwidth of ∆ωRBW = 30 kHz. Then the
sensitivity is given by

δBmin =
Bmin√
∆ωRBW

= 2.94
nT√
Hz

(5.15)

5.7.2 Coherent response

The dynamic response of the sensor over a wide frequency range is demon-
strated by using the set up schematized in Fig. 5.12. We measure the S21
trace on the VNA, on which we have connected the waveguide excitation
from port 1, and port 2 is connected directly with the detector. We use the
VNA to sweep the frequency of the AC field from 50 MHz to 1.2 GHz. This
allows to detect coherently the optical modulation, N(ω), coming only at the
frequency of the AC field.
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Figure 5.12: (Top) Schematic illustration of the set up used for
the magnetometer coherent response characterization. In this
configuration, we measured the S21 trace on the VNA on which
we have connected the waveguide excitation on port 1, and the
signal from the photodetector on port 2. (Bottom) System re-
sponse N(ω) measured using the VNA to sweep the frequency
of the rf field.

In bottom part of Fig. 5.12, we observe a dip in the VNA signal N(ω) wher-
ever ω is resonant with a mechanical mode with sufficiently high value of
gOM (see Fig. 5.9). Besides the mechanical modes that were transduced on
the Spectrum Analyzer on Fig. 5.9, we can detect modes at 374 MHz and 456
MHz that in the thermally activated spectrum obtained in Fig. 5.9 were be-
low the noise level. The reason of this resides on the enhanced noise rejection
of the VNA.

5.7.3 Magnetometer sensitivity

A frequency dependent sensitivity is obtained by combining the spectral cali-
bration at a single frequency, performed in the previous subsection, the noise
power spectrum in absence of a magnetic field S(ω), and the network re-
sponse N(ω). We follow a similar procedure as in Refs. [162] and [163]. The
operational bandwidth of the magnetometer is defined wherever ω is reso-
nant with a mechanical mode. Then, it will determined by the mechanical
modes linewidths. This is shown in Fig. 5.13a, where the spectrum is sepa-
rated by different windows (labeled from I to V). The frequency dependent
sensitivity on every window is given by
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δBmin(ω) =

√
S(ω) · N(ωcal)

S(ωcal) · N(ω)
δBmin (5.16)
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Figure 5.13: (a) System response N(ω) measured using a VNA
as a function of the frequency of the RF field. The FMR is shown
(inverted) on the back of the graph to illustrate the mechani-
cal modes affected by the resonant effect. (b) Magnetic field
sensitivity δBmin(ω) of the optomechanical magnetometer as a
function of the frequency defined where there is overlap with
mechanical modes. The five mechanical modes (labelled from I
to V) excited allow to calculate sensitivity in a frequency win-
dow of ∼ 10 MHz around the frequencies of the mechanical
resonances. A peak sensitivity of δBmin(ω) = 864 pT Hz −1/2 is
achieved close to the mechanical mode at 206 MHz.

In Fig. 5.13b it is shown the sensitivity within the frequency range associated
to the first five mechanical modes of the microsphere observed in Fig. 5.13.
The FMR is shown on the back of the graph of Fig. 5.13a in grey color. This
correspond to a value of static magnetic field BDC of 0.17 mT.

The lowest sensitivity value obtained is 864 pT Hz−1/2 close to the mechan-
ical mode at 206 MHz. This mode presents a large overlap with the optical
whispering gallery mode, since its displacement field profile is concentrated
along the edge of the sphere (see Fig. 5.9 and Fig. 5.7). It is also worth not-
ing that the frequency of the mode is still several tens of MHz away from the
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center of the FMR resonance (see Fig. 5.13a) so that the reported value of min-
imum sensitivity may still be substantially improved by fine tuning the FMR
position. The sensitivity remains around 1 nT Hz−1/2 within the linewidth
of the mechanical resonances (10 MHz), for five mechanical modes.

Figure 5.14: System response as a function of frequency for dif-
ferent FMR modes excited on the YIG film. Gray curves show
FMR resonances for different values (0.17, 2.2, 3.6, 6.1 and 7.4
mT) of the applied static magnetic field.

The control of the FMR resonant frequency with BDC provides our system
with precise tunability in the operational frequency range. In Fig. 5.14, we
show the system response N(ω) as a function of frequency for different val-
ues of BDC.

It is worth noting that for this measurement a second sphere with a similar
radius, mechanical spectrum and optical quality factors was measured. The
grey curves of Fig. 5.14, show VNA-FMR spectra as a function of frequency.
As mentioned earlier the FMR frequency increases with increasing the BDC,
accompanied by a spectral narrowing of the dip. This behavior confirms that
the signal appears only when the linewidth of the FMR resonance overlaps
with the mechanical resonances of the microsphere. In addition, it evidences
the presence of mechanical modes that are hidden below the noise level of
the SA. This confirms the necessity of the magnon to enhance the magne-
tostriction effect and the magnetometer performance.

In Fig. 5.15a we obtain the peak sensitivity for the different measured po-
sitions of the FMR mode. We note that the magnetometer detects magnetic
fields even above 1 GHz because of the presence of mechanical modes on
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the GHz range. This is shown in Fig. 5.15b, where a signal peak is im-
posed on top of the mechanical modes at 936 MHz. An SNR=11dB is ob-
tained for a power of -10dBm applied on the waveguide. On Fig. 5.15c, we
show the corresponding FMR position for the previous measurement. The
linewidth of the FMR and the mechanical mode cover the same frequency
region, enhancing the resonant effect and the sensitivity of the magnetome-
ter. The measured sensitivities shown in Fig. 5.15a, are comparable with the
one reported in Fig. 5.13 (∼ 1 nT Hz−1/2). This value is a lower bound of the
operational frequency limited by experimental constraints on the BDC. In a
typical FMR setup, frequencies of 10 GHz are achievable.
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Figure 5.15: (a) Peak magnetic field sensitivity obtained by
moving the magnon mode on a wide range of frequency.(b)
Zoom in of the spectrum showing in detail the mechanical
mode of the microsphere and the signal peak with a corre-
sponding SNR=11dB (c) FMR measured on the waveguide for
a static magnetic field applied of 7 mT.
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As noted above, the FMR resonance obtained are rather broad given that the
electromagnets were placed several centimeters away from the sample, re-
sulting in a not fully uniform BDC. The linewidths of the FMR resonances
shown in Fig. 5.14 are a factor of two larger than the one shown in Fig.
4.5c, which were obtained measuring YIG in a set up with a highly homo-
geneous BDC. On the positive hand, under these conditions, the operational
frequency range is increased several mechanical modes can be covered with-
out changing the BDC. On the other hand, a much improved sensitivity could
be attained with a narrower and deeper FMR.

5.8 Vibrometer measurement

We have performed additional experiments to support the interpretation that
the results that we report here are due to vibrations on the YIG film. The
alternative technique was based on Laser Doppler Vibrometry.

b)

a)

Figure 5.16: (a) Magnon resonance resolved with LVD on the
YIG film. A peak amplitude of 4.7 pm is obtained at the center
of the resonance (RBW = 2.5 kHz). (b) Amplitude dependence
with voltage of the LDV. The measurement was taken at 250
MHz at the resonance peak.
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A high frequency laser Doppler vibrometer (LDV) was used to measure vi-
bration at the surface of YIG in the absence of the microsphere. This laser
interferometric technique measures displacement in absolute units with pi-
cometer sensitivity. The basic principle relies on the Doppler shift that light
suffers when is reflected from a moving object. From this spectral shift the
motion velocity can be extracted, from which finally displacement can be
obtained (See Apendix C for more details). The advantage of using this tech-
nique is its non-contact nature, allowing the possibility of measuring vibra-
tions in YIG without the optomechanical cavity.

We applied an RF magnetic field to the waveguide and tune the FMR mode
resonance with a permanent magnet like it is described in Fig. 5.12. Using a
VNA as RF source and measuring S11 allows a standard measurent of FMR
as it is described in Chapter 4. The measurement of FMR is shown at the
right axis of Fig. 5.16a in solid line, where the resonance is centered at 250
MHz. This measurement is used as reference to compare with the one that
will be obtained with the LDV.

The left axis of Fig. 5.16a shows the LDV measurement of displacement as
a function of frequencies. The measured amplitudes were obtained for fre-
quencies between 100 MHz to 400 MHz at 3 V applied from the vibrometer
source. The dots correspond to the measurement values. Comparing the two
measurements, we observe that LDV values coincide with the FMR, having
similar linewidths. This means that the vibrometer registers vibrations in the
same spectral range than FMR, confirming the YIG layer generates mechan-
ical vibrations on its surface on the FMR frequency range via magnetostric-
tion.

We report the linear dependence between amplitude and voltage in Fig. 5.16b.
From the linear fit we can estimate the amplitude that corresponds to the
equivalent voltage applied to the waveguide for the minimum peak sensi-
tivity on the microsphere experiment. The details of the experiment and the
measurement results are described in Appendix C.

5.9 Comparison with the State of the Art

As it was mentioned on Section 5.1, magnetometers have multiple applica-
tions, depending on the sensitivity, work requirements and the physical op-
erating nature. The size and sensitivity are considered two crucial and com-
peting parameters, that indicate how small will be the sensor and what is the
smallest magnetic field that may be detected.

In Fig. 5.17, I have plotted the main parameters that characterizes several
recent magnetometers found in literature. The most extended used magne-
tometers with high sensitivity are the SQUID, which can reach sensitivities of
1 fT Hz−1/2 [151, 152]. However, the main limitation they present is that they
need to operate at cryogenic temperature conditions. As it was mentioned
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Figure 5.17: The sensitivity values plotted correspond to
SQUID magnetometers [151, 152, 164], spin exchange relax-
ation free magnetometers [46, 47, 165], Hall magnetometers
[166], Bose Einstein condensate magnetometers [149], NV cen-
ter [167–170], cavity optomechanical magnetometers [49, 162]
and magnon assited optomechanical magnetometer

in the introduction of the chapter, the cryogenic operation was surpassed
by the spin exchange relaxation free magnetometer, reaching sensitivities of
160 aT Hz−1/2 at 40 Hz. Nevertheless, these magnetometers are restricted to
small bandwidth and dynamic range [46]. NV diamond magnetometers can
achieve sensitivities from 1 nT Hz−1/2 to 1 pT Hz−1/2. Their bandwidth are
on the hundred Hz range. The main advantage this type of magnetometer
presents is the possibility of using ensembles with micrometer spatial reso-
lution.

Recently, cavity optomechanical magnetometers present nano and pico tesla
sensitivities [49, 50, 156, 162]. They operate at room temperature and have
bandwidths of hundreds of kilohertz. The FMR assisted optomechanical
magnetometer presented in this chapter can reach comparable sensitivities
and bandwidths. Instead of using the highest magnetostrictive material, it
exploits the resonant effect induced by magnons on material with high qual-
ity ferromagnetic resoance. This allows to detect magnetic field on the GHz
range that compared with the other conventional optomechanical magne-
tometers was restricted to 40 MHz in the best case. Despite that single crystal
YIG was found to be less magnetostrictive than Terfenol-D [171], the high
performance of the OMM reported here is due to the use of YIG to display a
high quality FMR and the use of a high Q optical resonator.
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Compared with room temperature operation devices like diamond NV cen-
ters magnetometers, the device reported here shows a similar peak sensitiv-
ity as the decive reported in Ref [147], with the advantage of having a fiber
based optical detection. The sensitivity values reported here outperform elec-
trically Lorentz Force magnetometers [172] of comparable size by three or-
ders of magnitude. Furthermore, our sensitivity is five orders of magnitude
larger than magnetometers based on superconducting quantum interference
devices.

5.10 Perspective

On this subsection, we will present a possible future magnetometer that would
be one step forward following the idea proposed in this Chapter. It con-
sists on joining the optical and mechanical cavity on the ferromagnetic ma-
terial. The fact of having the optomechanical cavity on YIG would allow to
excite a high quality and intense FMR on the device, bringing the magnon-
mechanical-photon interaction to the same scenario and increasing the cou-
pling efficiency.

On Fig. 5.15a, we show an schematic illustration of the coulpling mechanism.
The fiber taper would couple to the optical whispering gallery modes via
the evanescent field. In Fig. 5.15b, we show the optical mode confinement
calculated by FEM simulations. The contrast of refractive index between the
GGG substrate (n= 1.93) and YIG (n= 2.19) is sufficiently high to allow the
localization of optical modes on the THz range. Several disk thicknesses and
diameters have been calculated in order to know the minimum dimension
that can localize optical resonances. The minimum disk dimensions found
was 1 µm thick and a 20 µm radius. With these dimensions, radial breathing
modes are found well in the GHz range.

The fabrication of nanostructured ferromagnetic thin films is a challenging
process that is being intensively investigated [173, 174]. In order to preserve
the ferromagnetic properties of the material, it is important to control the
shape anysotropies. Then it is crucial to develop a high resolution geomet-
ric patterning of the ferromagnet. The fine etching of single crystal YIG thin
film has long been a demanding process for studying magnon applications at
submicrometer dimensions. The main etching processes for YIG consist on
wet etching process based on using phosphoric acid after ion milling or pho-
toresist patterning [175, 176]. The main complications of these processes are
that they are restricted fabricate devices with large dimensions, high rough-
ness and not vertical walls. Novel processes have recently emerged, offering
the fabrication of nanometers devices by lithographical lift-off of YIG on a
GGG substrate followed by an annealing at high temperature [174]. This last
process would be ideal to fabricate YIG disk to create the optomechanical-
magnonic device proposed in this section and shown in Fig. 5.18.
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Figure 5.18: (a) YIG disk magnetometer design. The disk is a
whispering gallery optical and mechanical resonator. (b) The
contrast of refractive index between GGG and YIG allows the
optical confinement of modes in the THz’s.

5.11 Conclusions

To conclude, we have demonstrated a hybrid system composed by a mag-
netic resonator coupled by mechanical interaction to a whispering gallery
mode optomechanical cavity to detect weak oscillating magnetic fields. A
peak magnetic field sensitivity of 864 pT Hz−1/2 is achieved associated to a
mechanical mode at 206 MHz. In addition to the above excellent characteris-
tics, the tunability of the frequency response up to 1 GHz by changing a static
magnetic field, room temperature operation and simplicity in fabrication of-
fer the opportunity of designing a high-performance magnetometer. Larger
bandwidths are necessary for real-time applications such as high-speed de-
tection, mechanical signal processing and for high resolution imaging meth-
ods [145]. The conversion efficiency can be improved by using the disk cavi-
ties made of ferromagnetic YIG. Efforts are in process towards scaling down
and also improving the surface quality of the YIG sphere to increasing the
WGM quality factors [134]. In addition to the possibilities of designing a
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new magnetometer our hybrid device also opens a path towards studying
phenomena related to phonon-magnon coupling. Currently, magnons are
gathering increasing attention in spintronics experiments (e.g. magnonics
[128] and spincaloritronics areas [124, 177]) as a means of processing spin
information and managing heat in nanoscale structures. Its superior proper-
ties make YIG nearly ideal choice for spintronic applications. However, little
is known about the underlying physical mechanisms involved, mainly re-
lated to phonon-magnon interactions. Our experiment can be seen as a novel
method to improve the understanding about these interactions, in particular
investigating phonon contributions via the magnetostrictive coupling.
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Chapter 6

Synchronization of two
optomechanical crystals by
mechanical interaction

6.1 Introduction

Back in the 17th century, Lord Huygens was the first scientist that observed
and described a physical phenomena that later on was identified as syn-
chronization [178]. He discovered that two separated pendulum clocks sus-
pended from the same wooden support, that were oscillating at first one in-
dependently from the other, ended up oscillating in phase opposition. Huy-
gens accurately described his observations and suggested that synchroniza-
tion was established because of the oscillation of the wooden beam on which
the pendulum were hanging from. The original objective of Huygens’s ex-
periment with clocks was to determine the longitude during a sea trial [179].

Synchronization is a physical phenomena that manifest in all branches of
nature and science. It happens when two or more oscillatory and indepen-
dent systems, which are not isolated from their environment, spontaneously
lock to a common frequency. After Huygens’s experiment, in the nineteenth
century, Lord Rayleigh discovered synchronization in acoustic systems [180].
He observed that two distinct organ-pipes started to sound in unison if they
were similar enough. He also discovered the suppression of oscillation when
the coupling became too strong, phenomena that is known as quenching.

Synchronization studies reached a new level with the development of radio
and electrical engineering. Eccles and Vincent demonstrated that two cou-
pled triode generators oscillate with the same frequency even when their
natural frequencies were different before the coupling force was turned on
[181]. Shortly after that, Appleton and van der Pol extended the experi-
ments of Eccles and Vincent and developed the first theoretical analysis of
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synchronization on triode generators [182, 183]. This research was of par-
ticular importance since triode generators were the main elements of radio
communication devices.

The mechanism of synchronization appears at all observational lengths ex-
tending from the subatomic to the cosmic scales [184–189]. Traditionally, the
center of gravity of research in synchronization phenomena was established
in biological systems, where it was possible to find synchronization in mul-
tiple cases: from fireflies blinking in synchronicity [186], group formation of
schools of fish and flocks of birds [187] to synchronous phenomena in bacte-
ria [188] and cells [189].

In the last decade, with the advents of modern technology, there has been
interest in the observation of synchronization on different devices. For exam-
ple, a laser emits coherent light from synchronized atoms emitting in phase
[190]. Josephson Junctions are systems formed by two superconductors sep-
arated by a thin insulating layer. The synchronization of two Josephson Junc-
tion is the basic principle of a SQUID device, which is used to measure ex-
tremely low magnetic fields (see Chapter 5) [191, 192].

Technological interest on synchronized nano mechanical oscillator systems
(NEMS) is also high, because of their wide practical applications that goes
from their scalable architecture, accurate control of operating frequencies to
their quality factors by design [193–195]. Synchronized NEMS will provide
the basis for a new class of self-driven NEMS networks for on-chip robust
time keeping [196] and for mass [197], gas [198, 199], or force sensors [154]
with extremely low phase noise [179]. Another possible use of synchronized
NEMS would by the implementation of neural networks[200], which would
be supported on the vast theoretical literature dedicated to the synchroniza-
tion of oscillator networks [201–203].

The impressive progress in the field of optomechanics (OM) during the last
decade [99, 100, 204, 205] has led to the conclusion that micro and nano-
optomechanical systems are also ideal platforms for the observation, control
and exploitation of synchronization phenomena [198]. However, the field of
OM oscillator networks is in its infancy, being restricted to purely theoretical
work and experimental proposals [206, 207].

In this chapter it is demonstrated unambiguously the synchronization of the
coherent mechanical motion of a pair of one-dimensional silicon OM pho-
tonic crystals (OMCs) integrated in the same chip. The OMCs interact weakly
by means of an engineered mechanical link, thus avoiding the need for ex-
ternal feedback loop schemes. The Chapter is organized as follows: first I
give a precise definition for synchronization; then, I explain different syn-
chronization approaches in optomechanics and NEMS systems; after that I
will describe the device used in this experiments; finally, I will detail the ex-
periments that demonstrate synchronization of the OMCs.
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6.2 Synchronization definition

Synchronization is a deep tendency towards order in nature. Despite that
synchronization phenomena is pervasive, it is possible to assign some ba-
sic fingerprints to synchronized systems. They obey some fundamental laws
even though the differences in the coupling nature and dynamics of the par-
ticular examples. Therefore, in order to discard ambiguity, a precise defini-
tion for synchronization must be given. This will address synchronization to
specific conditions that different experiments need to achieve so we can dis-
tinguish what is and what is not synchronization. A clear-cut definition for
synchronization, and the one used throughout this Chapter, can be found in
Ref [179] (see, for example page 8) and can be summarized in the following
way:

• First and foremost, the individual system needs to be in a particular
state of self sustained oscillation. The rhythm must be maintained by
a source that is characterized only by internal properties of the system.
However, since real systems present dissipation channels because of
multiple processes, the overall system needs to pump energy from a
DC source and convert it into and oscillatory motion. In this sense, the
system can not be a resonantly driven mechanical oscillator.

Figure 6.1: A classical example of synchronization of two
metronomes sitting on a board which lies on two wheels. The
metronomes start at different frequencies and after a while they
end up oscillating sharing the same phase.

• The second condition is that the systems adjust their frequency due to
a weak coupling. This means that the oscillators need to be almost in-
dependent from each other. If we look at any of them at a particu-
lar instant we can find them oscillating with different amplitudes and
different frequencies. This is summarized by saying that the energy
scale of the mechanism that induces the interaction is much smaller
than their particular energy scale. The weak coupling in Huygens ex-
periment was the bar on which the pendulums were supported. This
beam could bend, or it may vibrate slightly but this motion was not af-
fecting much to the pendulums. The significant role of the supporting



88 Chapter 6. Synchronization of two optomechanical crystals
by mechanical interaction

structure was only that the motion of each pendulum was transmit-
ted through it. In Fig. 6.1, it is shown a classical synchronization ex-
periment with metronomes supported by a common platform on two
wheels. The metronomes oscillate independently at different frequen-
cies at the beginning and finally end up oscillating in phase due to the
fact of sharing the same movable floor.

• The third condition is that such synchrony only happens when the nat-
ural oscillation frequencies of the set of objects are close enough to each
other. The adjustment of rhythm occurs from a certain range of systems
mismatch. Therefore, the detuning of the oscillating system should be
small.

6.3 Previous experiments on synchronization

Several routes have been explored to demonstrate synchronization of two
or more systems at the nanoscale in the last decade. However, regarding
optomechanical oscillators, there is some controversy if these experiments
satisfy all the requirements imposed by the definition given in the previous
section for a synchronized system.

As examples that illustrate how challenging is to achieve synchronization,
we name two works from Zhang et al. [52, 208] and Bagheri et al. [53]. The
first reference deals with the synchronization of two double disk resonator
separated by a distance of 400 nm, as shown on Fig. 6.2a. As a consequence
of the near field coupling, the optical modes of the disks formed one symmet-
ric and an anti-symmetric supermode. This makes that light coupled to one
of these optical resonances travels through both cavities. Then, by optome-
chanical interaction, the mechanical oscillation of one cavity was coherently
driven and this tuned the mechanical oscillation of the second cavity. Due
to the mutual optical interaction, the modulation of the second cavity was
reciprocal on the first cavity, recieving also an incoming modulation from
the second system. The two cavities then evolved to an oscillating frequency
common to both cavities. On the second experiment referenced from Zhang,
the number of cavities was extended up to an array of six double disk res-
onator [208]. The work from Bagheri investigates the synchronization of two
mechanical resonators separated by 80 µm distance [53] (see Fig. 6.2b). The
two resonator consisted in a beam that could be buckled up or down and
both were part of a single optical racetrack. Light coupled from a laser circu-
lated by the two beams.

In both experiments explained in both articles by Zhang and Bagheri, two
mechanical oscillators were coupled to one single optical cavity driven at
high power. Then, both experiments compromise the weak interaction con-
dition to observe spontaneous synchronization. This becomes more evident
if the interaction of both modes with the optical field is strong because of
the emergence of mechanical hybridized modes that naturally induces the
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Figure 6.2: (a) Synchronization of two double disk separated
by a distance of 400 nm. [52, 208] (b) Mechanical resonators
linked in an optical racetrack [53] (c) Optomechanical GaAs
disk resonators coupled to a suspended tapered waveguide
[54].

simultaneous oscillation of the resonators at intermediate frequencies. We
cite another experiment, reported by Gil-Santos et al. [54], in which they re-
port the frequency locking in optically coupled cascaded resonators (see Fig.
6.2c). They used a single laser to shift the wavelength of one cavity via the
termo-optic effect, reducing the spectral difference between the resonances of
the different cavities and driving both of them to mechanical lasing state and
finally frequency locking. They used this mechanism to synchronize several
OM disk resonators. However, the coupling mechanism involved a biderec-
tional optical coupling, as in the previous works referred.

Concerning NEMS with purely mechanical coupling, Shim et al. [193] re-
ported a resonant excitation of coupled resonators using an external source.
This conflicts with the condition that the oscillators must be self-sustained.
It is particularly relevant the work from Matheny et al. [195], where they
set a playground for the study of synchronization since both the coupling
strength and the natural frequencies of the oscillators could be controlled,
however the high impact of the external feedback loops required for both
self-sustained motion and weak interaction make this type of system a com-
plicated candidate for strictly on-chip operation.
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A couple of works have reported long-range synchronization between OM
cavities placed in different chips [55, 56, 209]. The coupling mechanism in
the first case relies on modulating the optical excitation of one of the cavi-
ties with an electro-optical modulator (EOM) that reproduces the dynamics
of the other cavity. On the second case the two cavities are connected to an
electrically driven frequency comb. The conflict with the definition of spon-
taneous synchronization in both cases would be on the external actuation (in
this case the EOM or the comb) are affecting the dynamical state of both sys-
tems.

10 µm1 m

Figure 6.3: (Left) Original draw illustrated by Christiaan Huy-
gens. The two pendulum clocks connected by a common sup-
port. (Right) Nanosized ‘Pendulum’ formed by two optome-
chanical crystals connected by a silicon beam. This experiment
is equivalent to a shrunken version of Huygens’s pendulum.

To summarize, the objectives of the experiments could be described in two:

• Unambiguously demonstrate synchronization of the motion of two me-
chanical oscillators based in optomechanical crystals, following the def-
inition given in Section 6.2

• Ease on-chip integration. This would be guaranteed by the use of sili-
con based technology. In this experiments, the coupling of light is per-
formed with tapered fiber with the possibility of waveguide integration
in the same chip.

For such purpose we decided to take the primal experiment by Huygens with
macroscopic pendula and to rescale it to the nanoscale. In the subsequent
section we will describe the device use throughout this chapter and how it
tackles the requisites imposed to achieve synchronization.
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6.4 Device description

The device investigated in this Chapter is a pair of nominally equivalent one
dimensional OMCs integrated on the same chip. The nanobeams are fabri-
cated using standard Si nanofabrication processes in a silicon on insulator
wafer. The relevant parts of the device are shown in Fig. 6.4.

Engineered coupling

Mechanical link

OM C
aviti

es

5 µm

Figure 6.4: (a) SEM image of the pair of OMCs under study.
The two cavities are corrugated nanobeams that are anchored
to the frame. The two cavities are separated by a distance of 2
µm. Both system are mechanically couple by a mechanical link
and also the common frame.

As it is shown in Fig. 6.4, the device is formed by two corrugated nanobeam
separareted by a distance of 2 µm. The nanobeams are clamped to the par-
tially underetched Silicon frame. This allows to decouple the mechanical
modes from the frame and confine them to the central region of the OMCs.
Each cavity is designed to support high Q optical cavity modes at around 1.5
µm.

The defect region of the OMCs, shown in the central part of the green square
in Fig. 6.4, consists of 12 central cells in which the lattice distance (a), the
radius of the hole (r) and the stubs length (d) are decreased in a quadratic way
towards the centre. The maximum reduction of the parameters is denoted by
the parameter Γ. At both sides of the defect region a 5 period mirror followed
by 5 cells clamped to the frame are included. The nominal geometrical values
of the cells of the mirror are a = 500 nm, r = 150 nm, and d = 250 nm. The
total number of cells is 32 and the whole device length is about 15 µm. All
the results presented in this work correspond to the structure with Γ = 85%.

The OMCs are mechanically interconnected on one side by a tether that links
the inner stubs of the last cells. The physical separation between the two
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Figure 6.5: Optical and mechanical modes of the nanobeam. In
the The cavity at the left (Slave) is charactirezed by an optical
mode with wavelength λS = 1525 nm and a mechanical mode
of 94.6 MHz. The cavity at the right (Master) presents an optical
and mechanical mode of λM = 1527 nm and 95.2 MHz

nanobeams is large enough to prevent optical crosstalk while allowing for
their simultaneous optical excitation using a single tapered fiber that is placed
in between. We investigate the fundamental mode optical cavity mode of
each OMC, which is shown in the top part of Fig. 6.5. These modes dis-
play high values of single-particle OM coupling rate (gOM) for in-plane (xy
plane) flexural modes. In particular, the ones having three antinodes along
the x direction (shown in the bottom part of Fig. 6.5), which display a fre-
quency of ΩM= 95.2 and ΩS= 94.6 MHz in each OMC and a calculated value
of gOM;M/2π = 514 and gOM;S/2π 330 kHz. Hereinafter, we adopt the nota-
tion M and S to denote master and slave, where the OMC displaying higher
frequency and longer optical resonance wavelengths is the master and the
other the slave.
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It is worth remarking that the adopted master and slave notation must not
be associated with any sort of injection locking scheme since the oscillator
used in this experiment can freely adapt their oscillation phase. The notation
reflects the fact that, in the self sustained oscillation (mechanical lasing in this
experiment), the master oscillation amplitude is significantly larger, so that
its dynamics is much less sensible to the slave oscillations than the other way
around. This notation is commonly found in literature for oscillators with
unidirectional coupling.

To guarantee a weak mechanical interaction, it is important that the two cav-
ities have different wavelengths in order to prevent direct optical interaction.
In order to solve this, we use the intrinsic fabrication disorder, that for the
fabricated geometry leads to a difference of 2 nm in the wavelength of the
cavities. This is shown in Fig. 6.5, where the optical modes of the investi-
gated device are obtained from imported SEM images. It can be seen that the
spatial distribution of the electromagnetic field is localized on the center of
each nanobeam. One cavity presents the fundametal mode at λS = 1525 nm
and the second at λM = 1527 nm.

The last requirement for spontaneous synchronization about the slight mis-
match in mechanical frequency is also granted by the dispersive effect of fab-
rication imperfections. The simulated mechanical modes are shown in Fig.
6.5. For our fabricated structure we see that the third order string-like mode
(the one that eventually is driven to the self sustained state in the experiment)
of the two beams exhibit a frequency mismatch of around 0.7 MHz.

In contrast to the previous works in literature [52–54, 208], the OMCs are op-
tically isolated from each other, independently measured, and individually
driven to a state of high-amplitude, coherent, and self-sustained mechani-
cal motion using the anharmonic modulation of the radiation pressure force
due to the activation of a self-pulsing (SP) regime described in Chapter 3
and detaily reported in literature [95, 107, 210]. Essentially, the SP limit cy-
cle is the solution of the system of coupled differential equations governing
the free-carrier concentration and the effective temperature of the cavity re-
gion within a wide range of excitation laser wavelengths and powers. That
dynamical interplay between free-carrier-dispersion (FCD) and the thermo-
optic (TO) effect implies an oscillation of the cavity resonance around the
laser line at a frequency (νSP) that depends on the laser parameters. If a me-
chanical mode is partially resonant with one of the harmonics of νSP, it can
be driven into mechanical lasing. Moreover, by means of the OM coupling,
the mechanical motion frequency entrains the SP such that νSP is forced to
be a simple fraction of the mechanical eigenfrequency. An important feature
of this regime is that its frequency can be thermally tuned by modifying the
laser wavelength, given that the average temperature of the OMC increases
with the laser wavelength around which the mechanical lasing limit cycle
takes place due to a larger average intracavity photon number (no).
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6.5 Synchronization experiments

6.5.1 Optical differentiation of cavities

The first experiment that we performed on the studied device is an optical
characterization of the OMCs. We observed a set of pairs of modes in the
full span measured with the objective of identifying the optical resonances
of both cavities. We show in the top panel of Fig. 6.6a the first two modes.
In principle, before confirmation these two modes are supposedly the funda-
mental optical cavity modes of the two beams.
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Figure 6.6: (a) The two cavities optically differentiated by us-
ing the spectral redshift of the TO effect. The top panel shows
two optical modes from the transmission spectra and the posi-
tion where the first optical mode is shifted at high power. The
bottom panels is the optical spectra obtained with the second
laser. It shows that the second resonances is not shifted con-
firming that it belongs to the second cavity. (b) Experimental
set up. Two infrared laser are used to send light to the device.
The two beams are TE polarized with a Fiber Polarization Con-
troller (FPC) are combined before exciting the cavities. We use a
tapered fiber placed in between the nanobeams. The light is at-
tenuated with a Variable Optical Attenuator (VOA) and is sent
to a photodetector.

In order to check whether the observed optical resonances are hosted by dif-
ferent OMCs, we excite the first resonance and redshift it using the TO effect
around 1 nm from λ = 1525 nm to λ = 1526.2 nm. In the top panel of Fig.
6.6a, we show the position of the optical resonance with a green dash line.
The power used in the laser was P∼ 10 mW (the set up used is shown in Fig.
6.6b). In this configuration, we perform a low-power measurement with a
second laser from λ = 1526.5 nm to λ = 1529 nm. If the spectral position of
the second resonance is not changed it means that the region of space where
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it is localized is not affected by the temperature rise, proving that the mode
is localized in the other nanobeam.

In the bottom panel of Fig. 6.6a we show the measured spectra with the sec-
ondary laser around the spectral position of the second mode. It reveals that
optical resonance remains unchanged, demonstrating that the optical cavity
modes correspond to the other nanobeam. This procedure is used to identify
the correspondence between optical modes a cavities on these devices.

6.5.2 Synchronization in the frequency domain

The experiment that demonstrates synchronization of the dynamics of the
two OMCs is illustrated in Fig. 6.7, where the left (slave) and right (master)
panels report the radio frequency (rf) spectra of the optical transmission asso-
ciated to the laser exciting the slave and master, respectively. The protocol to
observe synchronization needs to be carefully designed in order to maintain
the two optical cavities spectrally apart despite the presence of themo-optic
shifts.

We start using one laser to scan in between the two optical resonances and
use it to push the resonance of the master at high power from λM = 1527 nm
to λM = 1531 nm using the TO effect. The second laser is then used to excite
the resonance of the slave at λS 1529 nm, also at high power. At this point the
two cavities are 2 nm away from each other, ensuring no optical crosstalk.

The observed transmission spectra through the fiber with a Spectrum Ana-
lyzer setting the filter resonant with the second laser, shows the mechanical
state of the left nanobeam. This is shown in Fig. 6.7a, where we observe a
sharp and intense radio frequency tone when λ−filter1 is tuned at λS 1529
nm. The incident power values were Pin,M = 8 mW and Pin,S = 3 mW, re-
spectively. The master is mechanically excited by the coherent motion of the
slave leaking its motion to the other cavity. This phonon detection from the
master cavity is due to the nonzero mechanical intercoupling of both OMCs.
Indeed, when detecting at λM = 1531 nm this excitation appears as a sharp rf
tone at 94.6 MHz, as shown in Fig. 6.7b. A broad peak centered at 95.3 MHz
is also present under this configuration, which is associated to the transduc-
tion of the thermally activated motion of the mechanical mode localized in
the master.

From now on, we fix the laser driving and continue sweeping the first laser
to drive the master cavity. By further redshifting λM up to λM = 1540.2 nm,
a mechanical lasing regime is also established in the master. A strong tone
appear in the spectra shown in Fig. 6.7c and 6.7d. At this point, the two
oscillators are in a self sustained state but oscillating at different frequencies.
We also observe that ΩM decreases due to material heating. This latter effect
appears to be also experienced by ΩS to a weaker extent; i.e., part of the heat
generated in the master could end up increasing the effective temperature of
the slave. However, it is also plausible that the master is frequency pulling



96 Chapter 6. Synchronization of two optomechanical crystals
by mechanical interaction

the slave towards lower frequencies [184]. Due to the fact that both OMCs
are in a mechanical lasing regime, the spectral oscillation amplitude of the
optical resonance is much larger than its linewidth and the transduction be-
comes extremely nonlinear [211]. Therefore, an additional rf peak appears at
the beating frequency (ΩM−ΩS) together with symmetric sidebands at both
sides of the lasing tones of the OMCs, which still lase at their own rhythm
(shown in Fig. 6.7c and 6.7d).

The comparison of the rf spectra of both OMCs show that the mechanical am-
plitude of the master is much larger than that of the slave as expected from
the larger go,M/2π and Pin,M values. The dynamical state of the two OMCs
remain qualitatively the same until λM reaches λM = 1542.3 nm, where the
coupled system enters into a transition region. There, the slave displays a
complex rf spectrum of multiple peaks in which the main one is at ΩM (see
6.7e and 6.7f, where λM = 1542.9 nm). This state is not yet synchronization,
even though the slave is strongly affected by the dynamics of the master,
the resulting state being of a quite complex nature. The peak initially ad-
scribed to its particular motion being already smaller in amplitude than the
one coming from the other nanobeam, whose motion is barely affected by the
oscillation state of the slave cavity.

Above λM = 1543 nm, both OMCs coherently oscillate at ωsync ≈ ΩM. This is
shown in Fig. 6.7g and 6.7h, where λM = 1543.6 nm. At this point, synchro-
nization is achieved. Both rf spectra look very similar with the remarkable
difference of the presence of broad sidebands on the signal corresponding to
the slave, which are absent from the rf spectra of the master. Those sidebands
are clear signatures of master-slave synchronization and have been reported
and analyzed in previous works addressing synchronization of photonic cav-
ities [53]. Their origin lies in the effect of the thermal force noise on the dy-
namics of the system. These forces push the slave phase trajectory out from
the limit cycle of the synchronized state, returning back in an oscillatory fash-
ion at a frequency of (ΩM−ΩS). On the contrary, no sidebands appear on the
master spectrum, as it overdampedly returns to the limit cycle when driven
away from it (see Supplemental Material of Ref. [212]).

The color 2D plots of Figs. 6.7i and 6.7j show the full travel in wavelength,
showing the transition from independent lasing of the two oscillators to the
synchronized state. It is clear that while the mechanical frequency of the
master nanobeam is reduced due to increased heating, the frequency of the
slave increases. This frequency pulling is a fingerprint present on the path
toward synchronization. Even though the mechanical link is essentially bidi-
rectional, the highest oscillation amplitude of the master cavity both due to a
higher photon number and to a higher optomechanical coupling as seen via
the simulated structure, they bias the bidirectionality of the interaction.

Despite having established that we are in a master- slave configuration, we
can observe from Fig. 6.7i and 6.7j that this definition of the coupled system is
fact an oversimplification since ΩM is also slightly pulled towards ΩS. This
is evidenced in the abrupt frequency jumps of ΩM both when entering the
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Figure 6.7: Top panel.(a)–(h) Radio-frequency spectra of the
optical transmission associated to the slave (left panels) and the
master (right panels) for different values of the wavelength of
the laser driving the master (λM). The wavelength of the laser
driving the slave is fixed at λS = 1529 nm. (i)–(j) Color contour
plots of the rf spectra as a function of λM of the slave and master
[(i) and (j),respectively]. Bottom panel. Schematic of the exper-
imental setup. The optical transmission of a single cavity can
be isolated from the other by means of λ-filters. Variable opti-
cal attenuator (VOA); fiber polarizer controller (FPC); spectrum
analyzer (SA); oscilloscope (OSC); photodetector (PD)
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transition region above λM = 1542.3 nm and the synchronized states above
λM = 1543 nm.

6.5.3 Synchronization in the time domain

Besides the frequency domain analysis of the synchronization experiment,
we have also measured and analyzed the temporal traces of the two oscilla-
tors. As shown by Fig. 6.8c, the set up configuration for this experiment used
two λ-filters and two detectors connected to the oscilloscope.
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Figure 6.8: (a) Temporal traces of the optical transmission of
the master and slave cavities (black and red curves, respec-
tively) as recorded simultaneously in the two channels of the
oscilloscope. (b) Enlargement of a single period of the two sig-
nals. The simulated normalized generalized mechanical defor-
mation corresponding to the experimental transmission traces
are also reported (dashed lines). (c) Schematic of the experi-
mental setup. In this experiment the outcoupled light is splitted
and we use two filter and two photodetectors.(d) Finite element
simulation of the two nanobeams oscillating in antiphase.

The temporal traces of the transmitted optical signal associated with each
OMC are simultaneously recorded over a time span of 4 µs. In Fig. 6.8a we
report the first 300 ns and an enlargement of a single period appears in Fig.
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6.8b. We note here that there is no phase retardation between the two sig-
nals, i.e., they have the same frequency. An important point to consider here
is that the maximum mechanical deformation of the master is achieved in
between the two minima of the optical transmission of the slave, as is shown
in Fig. 6.8b. We can thus conclude that the temporal delay between the me-
chanical signals of each oscillator is about half of the period, i.e., there is a π
phase shift between the mechanical oscillations. This type of configuration is
depicted in Fig. 6.8d.
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Figure 6.9: Poincare map of the full temporal traces using
the stroboscopic technique with a sampling frequency of ΩSync.
Each colored curve corresponds to a different value of the ini-
tial delay (∆t). The magnitude of the vertical axis has been cho-
sen to be sin(ΩSync) to illustrate that the trajectory in the phase
space is a closed cycle.

In order to analyze the quality of the synchronization signal, we show in
Fig. 6.9 the Poincare map associated with both temporal traces. This map
is obtained using a stroboscopic technique; i.e., we collect the pair of values
transmission master, transmission slave at a specific sampling frequency. If
the oscillators are synchronized and the temporal traces are sampled at ωsync,
a point on the Poincare map is always found in the same position. In that case
the phases of the two oscillators are the same for every sampled point of the
traces, which is consistent with the experimental observations. Each of the
colored curves in Fig. 6.9 corresponds to a stroboscopic sampling at ωsync for
a specific value of the initial delay [∆t; see Fig. 6.8b]. The Poincare map of
the system is then formed by changing the initial ∆t from 0 to 2π = Ωsync in
the following way,

ti = ∆t +
2πN
Ωsync
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it is possible to rebuild the limit cycle of the synchronized state in the opti-
cal transmission phase space. The points remain in a confined volume of the
phase space that is dominated by the experimental noise.

6.6 Synchronization switching experiment

Finally, in order to add functionality to our system, we explore the effect
of illuminating the master cavity region with a top heating laser. Based on
previous work on a single OMC showed that its dynamical state is modified
when the laser is switched on because of photothermal effects [213]. Now, be-
fore switching on the top pumping, we set the parameters of the laser driving
the slave in a way that its dynamical state is a mechanical lasing regime at
ΩSync activated by the 3rd harmonic of the optical force [210]. The master
is then driven to a mechanical lasing regime using the 1st harmonic of the
force, where both cavities synchronize their mechanical oscillations at ΩSync,
as it is shown in Figs. 6.10a and 6.10c.

It is important to note that, under this configuration, the first harmonic of
the optical transmission of the slave is at ΩSync = 3 and that there are no
signs of the 1st and 2nd harmonic of that signal when measuring the master.
The latter observation is a conclusive evidence of a pure mechanical cou-
pling between the OMCs, the leaked mechanical energy being enough to be
transduced despite the rather low cross coupling go (see Supplementary In-
formation of Ref. [212]).

When the heating laser is switched on the system is perturbed and the syn-
chronized state is deactivated and a dynamical state similar to the one re-
ported in Fig. 6.7c and Fig.6.7d is achieved in the slave. This is shown in Fig.
6.10b. The master still shows a coherent tone at ΩSync [Fig. 6.10d] but nar-
row symmetric sidebands appear associated with frequency beating with the
coherent mechanical oscillation of the slave. Although the elastic constants
of the master are slightly relaxed due to heating, ΩM shifts to a higher fre-
quency value. This counter intuitive effect is a result of the attenuation of the
frequency pulling effect induced by the coupling to the slave mechanical dy-
namics; i.e., when the synchronized state is spoiled the coupling is reduced
and ΩM goes towards the eigenfrequency of the master at that temperature.
The same phenomenon occurs to ΩSync in the opposite direction and in a
much larger scale [red arrow of Fig. 6.10b].

By using the set up configuration shown in Fig. 6.10h, we can imposing a the
modulation of the top pumping laser following the temporal profile of Fig.
6.10e. This allows to dynamically switch between the two states described
above. We take the temporal traces of the master and the slave triggering the
oscilloscope with the modulation signal. Both traces are shown in Fig. 6.10f
and Fig. 6.10g, respectively. When the pump is switched off the OMCs take
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Figure 6.10: Switching on and off the synchronized state.
(a)–(d) Radio-frequency spectra of the transmitted signal of the
slave [(a) and (b)] and master [(c) and (d)] when the pump is off
[(a) and (c)] and on [(b) and (d)]. The right panels correspond
to an enlargement in the spectral region around the mechanical
modes frequencies. The synchronized state frequency (ΩSync)
is highlighted with a vertical line on the right panels. A vertical
red arrow indicates ΩSync in the right panel (b). (e) Temporal
trace of the top pumping laser when the modulation is active.
(f)–(g) Temporal traces of the optical transmission of the master
and slave cavities [(f) and (g), respectively] when the master is
illuminated with a modulated top pumping laser. (h) Schematic
of the set up configuration.
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about ∼10 microseconds to adjust their oscillation rhythms and stabilize the
mechanical synchronized state, which is a direct consequence of their weak
interaction.

6.7 Numerical model for synchronization

In this section, a numerical model to study the dynamics of the coupled
OMCs is presented. The model consists on a set of eight first order non
linear equations, four for each of nanobeam. The full dynamic of each sys-
tem is described by the nonlinear effects that trigger the self pulsing mecha-
nism (already explained in Chapter 3), the mechanical displacement and its
derivative (ui and u̇, respectively).Apart from the displacement variables we
consider the free carrier population (Ni), the average cavity temperature in-
crease (∆Ti). The subindex i is associated to one of the two cavities i=M,S. For
simplicity, we have considered that the OMCs are equivalent in all their char-
acteristic parameters but the mechanical eigenfrequencies (Ωi), which have
been taken from the experiment.

Then, the dynamic of the system is described by the following equations:

Ṅi = −
1

τFC
Ni + β

(
hc3

n2λoV2
o

)
n2

o,i (6.1a)

∆Ṫi = −
1
τT

∆Ti + αFCNn2
o,i (6.1b)

üi+
Ωm,i

Qm,i
u̇i + Ω2

m,iui + δi,SD(uM − uS) =
Fo,i

me f f
(6.1c)

The four equations Eqs.6.1a and Eq.6.1b have been explained in Chapter 3
in the context of the self pulsing mechanism. Eqs. 6.1a describe the Two-
Photon Absorption (TPA) generation term, where β is the tabulated TPA
coefficient and a surface recombination term governed by a characteristic
lifetime τFC. Vo is the optical mode volume and λo is the cavity resonance
wavelength at room temperature. Eqs. 6.1b reflect the balance between the
fraction of photons that are absorbed and transformed into heat due to free-
carrier-absorption and the heat dissipated to the surroundings of the cavity
volume, which is governed by a characteristic lifetimeτT. αFC is defined as
the rate of temperature increase per photon and unit free-carrier density.

Finally, the equations Eqs. 6.1c are the one that correspond to harmonic os-
cillators driven by optical forces Fo,i. The mechanical coupling is introduced
as a reactive (non dissipative) contribution of the form D (uM-uS), being D
the coupling strength coefficient. This coupling term can be understood as
an elastic restoring force caused by the deviation of the length of the linking
tether from its value at rest. The reactive contribution term introduces anhar-
monicity in the system and increases with the dephasing between oscillators,
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being maximum when they are in complete antiphase. In order to imple-
ment the Master-Slave configuration we have considered that the coupling
is unidirectional towards the Slave, i.e., the reactive term is only present in
the Slave harmonic oscillator equation. This situation is equivalent to consid-
ering bidirectional coupling with the Master oscillating with a much larger
mechanical amplitude. The optical pumping parameters of the model are
chosen so that a mechanical lasing regime is achieved in each OMCs in the
absence of coupling (D=0).

The two OMCs are coupled mechanically in a unidirectional way while, in
the case of a single OMC, the SP and the mechanics are coupled bidirection-
ally. The driving terms of Eqs.6.1 depend on the number of intracavity pho-

tons (n), which can be written as n = no
∆λ2

o
4(λl−λr)2+∆λ2

o
, where n = no =

2Plκeλo
κ2hc

in perfect resonance. Pl and λl are the laser power and wavelength, respec-
tively. The terms κe and κ and are the extrinsic and overall optical damp-
ing rates, respectively, the latter determining the cavity resonant linewidth
(∆λo =

λ2κ
2π ). The position of the resonance incorporates the FCD and the TO

contributions and the effect of the OM coupling with the mechanical mode
localized in the same OMC and with that mostly localized in the other OMC.

Taking all the previous considerations into account, the optical resonance is

determined by the following terms: λr,i ≈ λo,i−
∂λr,i
∂Ni

Ni +
∂λr,i
∂∆Ti

∆Ti−
λ2

r,igo,i
2πc ui−

λ2
r,igo,ij
2πc uj. Importantly, the response of n to the various contributions is adia-

batic since κ is much larger than 1/τFC, 1/τT and Ωm,i.

The parameters used in Eqs. 6.1a and 6.1b are the one that reproduce the SP
dynamics, identical to the ones used in Chapter 3. The corresponding values
are τT= 0.5 µs, τFC= 0.5 ns and αFC= 4 ·10−13K·cm3 · s−1. The initial conditions
verify that ∂λr,i

∂∆Ti
∆Ti(t = 0) = λl,i − λ0,i and Ni(t = 0) = ui(t = 0) = u̇i(t =

0) = 0. TO and FCD coefficients were independently calculated by assuming
that the observed wavelength shift is only associated to an average change
in the Si refractive index within the region overlapping with the electromag-
netic fields and using tabulated values for its dependence with T and N. This
procedure leads to the following values: ∂λr,i

∂Ni
= 7·10−19 nm· cm3 and ∂λr,i

∂∆Ti
= 6

·10−2 nm·K−1. The simulations cover a temporal span of 1·10−4 s discretized
in time steps of 2·10−11s, which ensure both enough sampling rate to account
for the fastest dynamics of the system and reaching a stationary dynamical
regime.

The stationary dynamics of the decoupled system is shown in Fig. 6.11. We
have used a coupling coefficient that ensures synchronization (D = 1 ·1015

s−2) for decreasing values of ΩM, reproducing then the heating effect when
increasing λM, as observed in the experiment. We define a relative change of
ΩM as ∆M =

(ΩM−ΩM,o)
ΩM,o

, where ΩM = ΩM,o, o at room temperature. The Fast
Fourier Transform (FFT) of the simulated optical transmission associated to
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Figure 6.11: Numerical simulations of the coupled OMCs. (a),
Colour contour plot of the simulated radio-frequency (RF) spec-
trum of the optical transmission of the Slave as a function of the
normalized frequency shift of the Master ∆M =

(ΩM−ΩM,o)
ΩM,o

The
frequency of the RF spectrum ( f ) is referred and normalized to
the frequency of the Master at room temperature (ΩM,o). The
dashed white line indicates the f = ΩM curve (b)-(d), Phase
portraits of the deformation of the Master (uM) and the Slave
(uS) for different values of ∆M

the Slave cavity as a function of ∆M (Fig. 6.11a) shows several of the features
appearing in the experimental results in Fig.6.7.

For ∆M = 0 the main peak of the simulated RF spectrum of the Slave appears
at a frequency f ≈ ΩS together with sidebands due to frequency beating.
In this case, the phase diagram uM, uS almost fills the phase space in which
the deformations are confined (Fig. 6.11b). By decreasing ∆M, the sidebands
become closer to the main peak, which remains fixed. An abrupt transition
occurs at ∆M ≈ -2.1 ·10−3, where the main Fourier peak switches to f ≈ ΩM,
entering a transition region that we associate to that observed in the experi-
ment reported in Fig. 6.7e and Fig. 6.7f. Interestingly, by further decreasing
∆M the relative dephasing between uM and uS becomes more and more con-
fined (Fig. 6.11c). Mechanical synchronization occurs for ∆M < -4.5 ·10−3,
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where a single peak appears at f = Ωsync ≈ ΩM with two symmetric side-
bands that appear by introducing mechanical kicks in the uM and/or uS dy-
namical equations. Under those conditions, the FFT spectrum of the optical
transmission associated to the Master cavity does not display sidebands (see
below). Moreover, as shown in Fig 6.11d, uM and uS appear to be π−shifted
with respect to each other, which is consistent with the experimental obser-
vations in the synchronized state reported in Fig. 6.8.

Figure 6.12: Numerical simulations of the coupled OM cavi-
ties. (a), colour contour plot of the simulated radio-frequency
spectrum of the optical transmission as a function of the cou-
pling constant (D). (b)-d, Phase portraits of the deformation of
the Master cavity (uM) and the Slave cavity (uS) for different
values of D.

Fig. 6.12 reports results of the stationary dynamics of the coupled system for
different values of D. When analysing the Fast Fourier Transform (FFT) of
the simulated optical transmission associated to the Slave cavity (Fig. 6.11a).
In Fig. 6.11 we also analyse the relative dephasing of the mechanical defor-
mations of each OMC by plotting uM with respect to uS (right panels of Fig.
6.12). As mentioned before, for D = 0 both OMCs are in the phonon laser
regime with no interaction, so the spectrum of Fig. 6.12a consists of a single
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peak at ΩS and the phase diagram of Fig. 6.11b completely fills the phase
space in which the deformations are confined. By increasing D, sidebands
appear in the spectra of Fig. 6.12a, the relative dephasing becomes more and
more confined (Figs. 6.12d and 6.12e). Eventually the main Fourier peak
switches to ΩM, which is the situation reported in Fig. 6.12e (D=8×1014s−2).
The dynamics of the two cavities become synchronized for D values greater
than D∼ 9×14s−2, where a single peak appears at Ωsync ∼ ΩM with two
symmetric sidebands at a frequency of Ωsync ± (ΩM −ΩS).

Figure 6.13: Temporal dynamics of the transmitted optical sig-
nal (a), deformation (b), free-carrier-population (c) and the av-
erage cavity temperature increase (d) associated to the Master
(black) and the Slave (red) when the coupled system is in a syn-
chronized state as in Fig. 6.11d.

In Fig. 6.13 we represent the stationary dynamics achieved in each OMC in
a synchronized state obtained at D= 9×14 s−2 (these are the conditions used
also for the results showed in Fig. 6.11) and the associated optical trans-
mission temporal traces. It is worthwhile emphasizing that the deformation
maximum is found in between the two minima of the transmission trace, i.e.,
where the limit cycle trajectory verifies λl > λr . Thus, the direct OM cou-
pling contribution not only locks the main frequency of the SP to a simple
fraction of the mechanical eigenfrequency (in the case of Fig. 6.13 they are
locked at the mechanical frequency of the Master) but also impacts the duty
cycle by modifying the time distance between both transmission minima.
The two trajectories belonging to Master and Slave appear to be π−shifted
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with respect to each other, which is consistent with the experimental obser-
vations in the synchronized state reported in Fig. 6.8. The simulated mechan-
ical amplitudes are similar as we have assumed the two OMCs to be roughly
equivalent. Thus, it is reasonable that both simulated temporal traces shapes
look alike, in contrast to what observed experimentally. Indeed the experi-
mental temporal trace of the optical transmission associated to the Slave (Fig.
6.8a and Fig.6.8b) shows a smaller duty cycle than the Master counterpart be-
cause the mechanical amplitude is sensibly smaller in the former case.

We have also noted that the cross-linked OM coupling has negligible effects
in what concerns the overall dynamics of the system, obtaining equivalent
results when gOM,MS = 0. From this latter result it is possible to conclude
that the meaningful coupling between the two OMCs is purely mechanical,
i.e., the important term is the reactive coupling one described above.

Figure 6.14: Temporal traces of the mechanical deformation
associated to the Slave (panels a and c) and Master (panels b
and d) after a kick has been applied to the system. A zoom of a
region where the stationary regime has been achieved again is
reported on the right panels.

Once the system has acquired a stationary dynamics we have perturbed both
the Master and the Slave with a kick that would take the role of thermal forces
or other sources of instability impacting the system. We have implemented
the kick as a sudden change of the deformation of each of the OMCs of up to
10% with respect to the value taken in the previous time step. When the cou-
pled system is initially found in a synchronized state, the phase trajectory
described by the Slave after the kick is an oscillatory one around the syn-
chronized state limit cycle solution performed at a frequency of (ΩM −ΩS).
The amplitude of this hypermodulation is exponentially decaying with time
so that after a few cycles the synchronized state stationary solution is recov-
ered. This effect is better illustrated by plotting the temporal trace associated
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to uS after the kick (Fig. 6.14a) but a consistent effect is also experienced by
NS and ∆TS since they are coupled to us.

On the contrary, the Master overdampedly returns to the limit cycle when
driven away from it. When comparing Fig. 6.14a and Fig. 6.14b it is clear that
it takes more time for the Slave to converge again to its stationary limit cycle.
After several µs the system has fully recovered the stationary synchronized
dynamics, recovering the π phase-shift between the phase trajectories.

Figure 6.15: Simulated radio-frequency (RF) spectrum of the
optical transmission of the Slave (a) and the Master (b) when a
kick has been applied to the system.

Fig. 6.15 shows the Fourier transform of the simulated optical transmission
(RF signal) corresponding to the data showed in Fig. 6.14, i.e., of tempo-
ral traces registered after the kick. Both RF spectra display a main peak at
Ωsync ≡ ΩM, the clear difference between them being that the Slave spectra
display sidebands associated to the modulation showed in Fig. ??a. On the
contrary, no sidebands appear on the Master RF spectrum. This is consistent
with what observed experimentally, for example in Figs. 6.7g and 6.7h.

6.8 Conclusion

In conclusion, in this Chapter, we have unequivocally demonstrated spon-
taneous synchronization of the mechanical oscillations of a pair of optome-
chanical crystal cavities by introducing a weak mechanical coupling. Pro-
vided that our numerical model indicates that the observed features are com-
patible with a reactive type of coupling (see Supplemental Material of Ref.
[212]).
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Further experimental studies will unveil whether the transition to synchro-
nization is through phase locking or suppression of the natural dynamics,
which are the two mechanisms of synchronization in reactively coupled os-
cillators [184]. Finally, we have demonstrated that the synchronization dy-
namics can be dynamically switched off and on by introducing an external
heating source on the master cavity.

Figure 6.16: Toward network of synchronized optomechanical
oscillators.

The system presented here could be upscaled to realize complex networks
comprising many more nodes without substantially increasing the techno-
logical requirements. For instance, one could easily think of a silicon chip
integrating an array of optomechanical cavities accessed optically via inte-
grated waveguides [214, 215] and interconnected via mechanical links, simi-
lar to the illustration shown in Fig. 6.16.

Our results are the first step towards building networks of coupled optome-
chanical crystal cavities able to display collective dynamics prone to be modi-
fied by addressing single structures with external perturbations. These rather
unique features are to be exploited in neuromorphic photonic computing
applications [216], for instance, for pattern recognition tasks or more com-
plex cognitive processing. Eventually it will be possible to experimentally
investigate the limits, in terms of network complexity, of coherent collective
behaviors and the intriguing transition towards incoherence, where the so
called Chimera states [217, 218] of synchronous and incoherent behavior are
expected to emerge.
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Chapter 7

Conclusions and perspectives

In this chapter I summarise the main results presented in this thesis. After
listing the main conclusions, I discuss the relevance of the results obtained
here for optomechanics field. I suggest possible ideas to improve the perfor-
mance of both systems. Finally I will propose a possible way to combine the
magnetostriction properties of YIG and optomechanical crystals in a single
experiment, which would open a window with multiple possibilities in the
field.

First, a new type of optomechanical magnetometer is presented. It con-
sists of a hybrid system that combines the synergies between magnons and
phonons in ferromagnetic thin films of YIG and photons localized in whis-
pering gallery mode glass microspheres. The resonant enhancement of me-
chanical and optical interaction in optomechanical cavities enables their use
as an extremely sensitive magnetic field sensor. The main results of the op-
tomechanical magnetometer presented in this work are:

• The magnon excitation in YIG has been observed and characterized us-
ing a standard tool for probing magnons and spin dynamics of ferro-
magnetic materials namely, ferromagnetic resonance.

• The optomechanical properties of the glass microspheres have been
measured. A fiber taper system has been used to couple light in and
out from the sphere in the near field. Optical and mechanical quality
factors of Qo ∼108 and Qm ∼102 are found for the microspheres, respec-
tively.

• The performance of the magnetometer relies on how efficient the mag-
netic signal is to drive the mechanical modes above the thermal noise.
The magnetic response is modeled as an extra force that acts on the
harmonic oscillator that describes the mechanical modes of the micro-
sphere. From COMSOL simulations it is found that the magnetostric-
tive force drives the radial mechanical modes of the microsphere.

• The magnetic response that drives the mechanical modes with power
was found to be linear. This means that the square root of the re-
sponse is linear with the magnetic field, which is a typical requirement
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for a magnetometer. This is checked by two measurements of the me-
chanical signal as a function of the magnetic field. The first measure-
ment was registered in a spectrum analyzer, where the recorded signal
showed the thermal spectrum and the magnetic driving of the mechan-
ical modes. The second experiment used a vector analyzer, where only
coherent signal coming from the magnetic driving was recorded.

• The magnetic response is found to have its origin on the surface of
the YIG film where the spheres are deposited. A high frequency laser
doppler vibrometer was used to measure vibration at the surface of
YIG in the absence of the microsphere. This laser interferometric tech-
nique measures displacement in absolute units with picometer sensi-
tivity. The vibrometer registered vibrations in the same spectral range
than FMR, confirming that the YIG layer generates mechanical vibra-
tions on its surface in the FMR frequency range via magnetostriction.

• The magnetometer sensitivity was characterized as a function of fre-
quency in different spectral windows where the mechanical modes of
the sphere were present was determined. A magnetic field peak sensi-
tivity of ∼ 850 pT Hz−1/2 at 206 MHz. The sensitivity remains around
1 nT Hz−1/2 within the linewidth of the mechanical resonances, which
for most of the mechanical modes are in the spectral range of∼ 10 MHz.

• The magnetometer operates at room conditions of pressure and tem-
perature.

• The frequency response of the magnetometer depends on the spectral
overlap between the FMR and the mechanical modes of the sphere.
Since this resonance can be tuned with a static magnetic field BDC it
is demonstrated that the spectral response of the magnetometer can be
extended to frequencies into the GHz range with a sensitivity around a
few nT Hz−1/2.

The results enumerated before make the optomechanical magnetometer an
excellent sensor of magnetic fields. The room temperature operation makes it
a possible choice for a wide range of applications including magneto-encepha-
lography, geology, and nuclear magnetic resonance spectroscopy to identify
chemical composition, among others. Currently the most extended used
magnetometer is the SQUID, which can reach sensitivities of ∼ 1 fT Hz−1/2.
However, the operation at cryogenic temperatures is a major disadvantage.

The full capabilities of the optomechanical magnetometer are yet to be ex-
plored. For example, the value of the operational frequency given is a lower
bound limited by the maximum BDC reachable in our experimental setup. A
possible future experiment would be to test the magnetometer response well
above 1 GHz using an improved static field and a FMR set up, that could
reach 10 GHz operation.

The magnetometer sensitivity can be improved by using microspheres with
higher mechanical quality factors. The sensitivity scales with quality factor
as δBmin∼ Q−1/2

m . For instance, by measuring in vacuum, a factor three in
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sensitivity would be gained using microspheres with mechanical quality fac-
tors of Qm∼103 instead of 102, used in this work. An order of magnitude
could be gained using Qm∼104, but this would increase the requirements for
microsphere fabrication.

Apart from the previously mentioned applications purely related to mag-
netometry, numerous opportunities may arise based on the optomechanical
magnetometer experiment. For example, it can be combined with the use of
doped microspheres on the YIG film. If the bulk glass material from which
the spheres are fabricated is doped with a rare earth ion, like Neodymium
or Erbium, the passive cavity becomes active and a gain medium for lasing
emission. Then, the modulation effect caused by the magnetic driving of the
YIG layer will be imposed on the lasing wavelength. This would result in an
alternative way to modulate light at megahertz rates.

Tapered loop

Optical fiber

YIG cavity

GGG substrate

Figure 7.1: YIG disk magnetometer design. The disk is a whis-
pering gallery optical and mechanical resonator. Since the disk
is ferromagnetic, it would be possible to excite FMR, combining
magnons, photons and phonons in a single platform.

Recently, magnons are gathering increasing attention in spintronics experi-
ments (e.g. magnonics and spin caloritronics areas) as a means of process-
ing spin information and managing heat in nanoscale structures. YIG is an
ideal choice in spintronics applications due to its excellent magnetic proper-
ties. However, the underlying physical mechanism is still being under study,
mainly related to phonon-magnon interactions. Most of the current experi-
ments related to study the spin-phonon and magnon-phonon interactions are
conceived to investigate the coupling through the spin or magnon manipu-
lation. This is because the magnetic or spin aspect of devices are easier to
access and actuate via voltages and currents at a chip level with the current
fabrication technologies. In this sense, the phonon information is obtained
indirectly from the magnetic measurement. Our hybrid-system can be also
exploited to understand further the physics of phonon-magnon coupling in
YIG, or other ferromagnetic and magnetostrictive materials, in a complemen-
tary way. With our device, the magnon-phonon information is obtained from
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the phonons of the optomechanical cavities, which are driven by the phonons
of the magnetic material.

In order to go advance on the investigation of magnon and phonons at a fun-
damental level, a strong magneto-elastic interaction is needed. A possible
way to increase the magnon-phonon coupling and improve the optical read-
out efficiency of the device would be to fabricate the optomechanical cavity
in YIG, either by testing a sphere geometry or a much more integrated one
such as a disk or ring resonator (see Fig. 7.1). This type of devices would
allow to control the operational frequency by design and increase the fre-
quency of the mechanical modes. Nevertheless, with the current fabrication
methods, this cavities are still very demanding to fabricate due to the dif-
ficulty in obtaining vertical etching of YIG with small roughness. Future
efforts will be undertaken in this direction to fabricate YIG disk to create an
optomechanical-magnonic device.

The second experiment studied in this thesis is related to the demonstration
of synchronization of two optomechanical crystals. The two cavities, which
at first start oscillating at a different frequency, end up oscillating in a com-
mon one. The optomechanical crystals are connected via a tiny mechanical
link. This allows to create the analogy with Christiaan Huygens’s primal
synchronization experiment. The main conclusions of the synchronization
experiment that can be found in thesis are summarized as follow:

• The optical and mechanical properties of the two corrugated optome-
chanical crystals are individually characterized using the taper fiber
system. The optical modes of both cavities are found in the near infra-
red range with wavelengths of λ ∼ 1500 nm. The mechanical modes
used in the synchronization experiment correspond to in-plane flexural
modes, in particular, the one of third order characterized by three anti-
nodes of displacement along the beam and frequencies of ∼ 90 MHz.

• It is shown that the oscillatory nature of the two optomechanical cavi-
ties works individually. In this sense, they can be considered indepen-
dent optomechanical entities.

• An experimental method of heating the optical modes via the thermo-
optic effect to differentiate each cavity.

• The optomechanical crystals are individually driven to a self sustained
oscillation by employing the self pulsing mechanics, which is activated
by the nonlinear effects present in optical cavities. However, since the
real system presents dissipation, an optical DC source to pump energy
to the overall system is used.

• A spectral analysis of the synchronization process is presented. This
measurement confirms the dynamical process toward the synchronized
state by a starting point with the two cavities lasing at different frequen-
cies. The synchronization is achieved in a Master-Slave configuration
since the oscillation amplitude of one of the two cavities is stronger
than the other and this makes that the master pulls the frequency of the



115

slave towards frequencies closer to its own frequency. Nevertheless,
both cavities are mutually affected. The spectral analysis also reveals
’transition zones’ where the dynamics of the two cavities is not yet syn-
chronized but both are affected as a consequence of the coupling.

• From the temporal analysis of the optical signals coming from each of
the cavities it is demonstrated that they oscillate in anti-phase.

• A stroboscopic method is presented to confirm the synchronization state.
By sampling at the synchronization frequency Ωsync the temporal sig-
nals at a fixed time delay ∆t, it is demonstrated that corresponds to a
fixed point in the Poincare map formed by the amplitude of both os-
cillator and the sampling amplitude given by sin(Ωsync∆ t) . It is also
shown that by sweeping the temporal delay the for all times from 0 to
2π = Ωsync, the point becomes a close trajectory in the Poincare map,
which is what correspond to a synchronized state.

• It is presented a numerical model to study the dynamic of the cou-
pled optomechanical crystals. The model is described by the eight non-
linear equations, four for each cavity. The mechanical link is modelled
as a reactive coupling, introduced in a unidirectional way toward the
slave cavity. The model describes well the dynamics of the system to-
wards synchronization and are in agreement with the spectral and tem-
poral measurements obtained. They also show consistency with the
anti phase oscillation obtained in the measurement.

• A switching experiment is presented. The optomechanical crystals are
initiated in a synchronized state. A top heating laser is used to mod-
ify the dynamics deactivate synchronization. By imposing a modula-
tion on the heating laser, it is observed that the synchronization takes
around 10 ms to be recovered. This is a consequence of the weak cou-
pling.

The results related with the synchronization experiment suppose a signif-
icant contribution to optomechanical community. It is the first work that
demonstrate synchronization of two optomechanical crystal by a mechanical
coupling. All the optomechanical experiments found in literature proving
synchronization are systems where the coupling is given through the optics
[53, 56, 208, 209]. A laser is coupled to a single optical field common to all
the mechanical oscillators, providing the driving power to achieve the self
sustained oscillations and also the coupling mechanism. Then, the coupling
on these works is internalized in the radiation pressure force Fo, which de-
pends on the amplitude of the optical field a(ui) as Fo ∝ |a(ui, uj)|2, and this
in turn depends on the displacement ui of each oscillator. In the work shown
in thesis the coupling is explained by an elastic restoring force with the form
D(ui − uj), which depends only on the displacement of each oscillator. This
type of coupling results in a more simple and compact type of interaction.
It allows to isolate the process to reach the self sustained state to the one to
reach synchronization. From a fundamental point of view, the platform pre-
sented in this thesis is ideal to study in detail the onset of synchronization of
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mechanical oscillators, not only in optomechanical systems but as a general
process.

Future experiments on the optomechanical cavities will be directed to fur-
ther study the transition zones prior to synchronization. Also, we will quan-
tify the frequency size on which synchronization is achieved as a function of
the coupling strength, which in the terminology of the field is known as the
Arnold tongue. Reconstructing the Arnold tongue will give a more complete
description of the system. Using the configuration presented in this work,
synchronization has been observed with the slave cavity lasing at the second
harmonic tone and the master at the first harmonic. Knowing the width of
the Arnold tongue will also reveal if it is possible to observe synchronization
at higher harmonics than the first and second order tones.

SiAlN 10 µm

Figure 7.2: Opto-electromechanical device from the PHE-
NOMEN project. The device consists on a silicon layer with
a top layer of aluminum nitride (AlN) layer. The corrugated
cavity is fabricated in silicon with a waveguide to couple light
to the cavities. IDT’s are fabricated in Aluminum to create co-
herent phonons by surface acoustic waves.

The synchronization results are part of an international collaboration included
in the FET Open project PHENOMEN. The objectives of the project are the
combined use of phonons, photons and RF electronic signals to achieve pho-
non circuits functionalities in a silicon chip operating at room temperature.
The final device of the project is similar to the one depicted in Fig. 7.2. It con-
sists on an electro-optomechanical circuit fabricated in a silicon platform with
a top layer of Aluminum Nitride (AlN). The device fabricated on the silicon
part (green rectangle), are the corrugated nanobeams shown in this thesis
and the AlN is used as the medium to transport surface acoustic waves gen-
erated by interdigital transducers (IDT) fabricated in Al. PHENOMEN pro-
poses to build the first practical optically-driven phonon sources and detec-
tors including the engineering of phonon lasers to deliver coherent phonons
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to the rest of the chip pumped by continuous wave optical sources. Differ-
ent functionalities have been investigated on this project: phonon switching,
memories, filters, polarization manipulation and mechanical phase synchro-
nization. Future experiments will investigate the synchronization strength
by the actuation of surface acoustic waves launched from the IDT’s.

One of the main applications of synchronizing mechanical oscillators is re-
lated with the potential to improve measurements that require low noise.
The theory predicts that the phase noise is reduced by N−1 when coupling
N mechanical oscillators [51]. This can be important for systems where the
noise is imposed by the fact that the mechanical oscillators are coupled to the
thermal bath of the environment, which is the case of the two experiments
studied in this thesis. The reduction of the thermal noise is important for
several applications like time-keeping, frequency stabilization and sensing.
In this way, it emerges a connection with the magnetometer experiment pre-
sented in this work. The sensitivity of the magnetometer was determined by
the minimum force detectable above the noise floor. If the thermal noise is
reduced by a factor N−1, the sensitivity would improve by N−1/2. Synchro-
nization provides a way to reduce the thermal noise and then increase the
sensitivity. Future experiments needs to be directed to develop self sustained
oscillation of optomechanical coupled cavities in magnetostrictive material.

A possible idea to be explore in the future that combines optomechanics and
magnetic properties in integrated systems would be the fabrication of op-
tomechanical crystals on a silicon layer grown on a YIG substrate. This type
of platform would result in a new way to actuate on the optomechanical sys-
tems, not by electric fields inducing SAW on the surface like it is shown in
Fig. 7.2, but on magnetic fields inducing vibrations on the surface of the
chip. The technological problem of fabricating optomechanical crystals in
different platform than SOI wafers would be solved by using nanocristalline
silicon (ncSi), which is obtained by annealing amorphous silicon deposited
on a grown layer of silicon oxide [219]. This process allows to think on a
design where multiple substrates can be used. In particular, an interesting
choice would be to use a YIG layer under the silicon oxide. The YIG is known
to grow with good crystal quality from a GGG substrate. Then the prototype
chip would be composed by layers of GGG-YIG-SiO2-ncSi.

A long-term goal that can be extracted from the results presented in this work
is to explore the synchronization applied not in two optomechanical systems
but in a collective arrangement of optomechanical cavities. The simple de-
sign presented here can be up-scaled to increase the number of optomechan-
ical crystals coupled by mechanical links. This process can be seen as an
improvement that would not add many extra technological difficulties. The
challenge of building arrays of optomechanical oscillators is the dispersion
in operational mechanical frequency of each oscillator presents due to un-
avoidable statistical variations in the fabrication [194, 195, 198]. This effect
adversely affects operations that require a coherent performance of the sys-
tem.
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Several applications can be derived from exploiting the coherent operation
of optomechanical arrays. For example, they can be used to create neuro-
morphic networks. These systems are artificial architectures that imitates its
biological homologous to perform different tasks related with the manipula-
tion of big amount of data, such as image recognition, natural language pro-
cessing or communications. While neural networks have been introduced
already in the 50’s [220], they have really taken relevance in last decade. An
hypothetical optomechanical neural network would be formed by matrices
modules consisting on multiple optomechanical crystals connected a single
or multiple mechanical links. One of the modules can be programmed to
realize different tasks, leaving two module to input/output information on
the network. The information could be transmitted in the amplitude of light
pulses coupled into the network by external lasers. Light propagates through
the different modules, which process the information by linear operations
[221]. The operation on different modules needs to be activated by a nonlin-
ear function [222]. Synchronization, which is intrinsicaly non linear, could be
the nonlinear activation process on each neuron.

Finally, another interesting direction that can be taken from the results shown
in this thesis are related with synchronization and the chaotic regime that
can be achieved in optomechanical cavities. The chaotic dynamic can be ex-
ploited in the environment of secure communications. A secret message can
be masked in the chaotic signal of one nanobeam, that would act as an emit-
ter. A second nanobeam in a chaotic state would receive the secret emission
and recover the information by subtracting the chaotic signal. If part of the
signal of one crystal is injected in the other and vice versa both system will
end up synchronizing obtaining a bidirectional communication system. The
communication through a synchronized chaotic cavities presents the advan-
tage of providing a way to detect any kind of external interception attempt,
since the dynamical state of both cavities would immediately be affected, los-
ing the synchronization state and interrupting the communication channel.
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Appendix A

Finite element method simulations
and OM coupling calculations

The effective masses and optomechanical coupling rates gOM are obtained
by using COMSOL finite-element-method (FEM) simulations of a complete
structures. In order to obtained accurate values, the real fabricated devices
are imported instead on the nominal designs from a SEM image. The contour
of the SEM image shown in Fig. A.1 has been extracted graphically and then
imported in the FEM solver. Since the thickness value can not be extracted
from the SEM image, it is assumed that of the top Si layer of the SOI wafer
(250 nm). This procedure ensures a good agreement between the measured
optical and mechanical modes and those extracted from simulations.

The mechanical modes considered either in Chapter 3 and Chapter 6 are the
in-plane flexural modes with three antinodes illustrated in Fig. 3.8 and Fig.
6.4. For the case of the coupled nanobeams illustrated in Fig. A.1 the cal-
culated effective masses are me f f = 5 pg for both mechanical modes. The
optical modes used for both structures is the fundamental. From now on we
will restrict to the coupled nanobeams.

The OM coupling rates are estimated by taking into account both the photoe-
lastic (PE) and the moving interfaces (MI) effects [102, 106, 107]. The PE effect
is a result of the acoustic strain within bulk silicon while the MI mechanism
comes from the dielectric permittivity variation at the boundaries associated
with the deformation. The calculation of the MI coupling coefficient gMI is
performed using the integral given by Johnson et al. [107];

gMI = −
πλr

c

∮
(Q · n̂)(∆εE2

|| − ∆ε−1D2
⊥)∫

E ·DdV

√
h̄

2me f f Ωm
(A.1)

where Q is the normalized displacement (max{|Q|}=1), n̂ is the normal at
the boundary (pointing outward), E is the electric field and D the electric
displacement field.ε is the dielectric permittivity, ∆ε−1 = ε−1

silicon − ε−1
air . λr is

the optical resonance wavelength, c is the speed of light in vacuum, h̄ is the
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Figure A.1: Top-view SEM micrograph of the coupled Op-
tomechanical Crystal Cavities. The extracted geometrical con-
tour imported by the FEM solver is depicted in red. A sketch of
the unit-cell is shown in the inset.

reduced Planck constant and Ωm is the mechanical mode eigenfrequency, so
that

√
h̄

2me f f Ωm
is the zero-point motion of the resonator.

A similar result can be derived for the PE contribution [102, 107]:

gPE = −πλr

c
〈E|δε|E〉∫

E ·DdV

√
h̄

2me f f Ωm
(A.2)

where δεij = εairn4pijklSkl, being pijkl the PE tensor components, n the refrac-
tive index of silicon, and Skl the strain tensor components. The addition of
both contributions results in the overall OM coupling rate:

gOM = gMI + gPE (A.3)

The PE contributions to the optomechanical coupling rate obtained in Eq.
A.2 are on the order of Hz, that compared with the MI counterpart can be
neglected. In Fig. A.2 we illustrate the MI surface density (the integrand of
Eq. A.1) associated to the Slave optical mode when evaluating the contribu-
tion of the Slave and the Master flexural modes (panels a and b respectively).
Similar results are obtained when performing the same study for the Master
optical mode. The slight asymmetry of the field distribution with respect to
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Figure A.2: Optomechanical coupling contributions. Normal-
ized surface density of the integrand in Eq. A.1 for the Slave
optical mode, showing the contributions to gMI of the mechan-
ical mode associated to the Slave (a) and the Master (b).

the centre of the OMCs along the xz plane unbalances the MI surface den-
sity towards the region of the OMC cavity that is closer to the centre of the
frame, thus giving rise to overall calculated values of gOM,M/2π=514 kHz
and gOM,S/2π=330 kHz for in-plane (xy plane) flexural modes belonging to
the Master and Slave respectively.

Although the energy of the mechanical modes under consideration is mostly
confined to the region between the clamping tethers of a single OMC, the
presence of a mechanical link extends their spatial distribution to the central
part of the other OMC. Cross contributions values of gOM,MS/2π=6 kHz and
gOM,MS/2π=8 kHz were calculated as well, where the first subindex denotes
the OMC associated to the optical mode. In this context, Fig. A.2b shows, for
the case of the flexural mode of the Master and the optical mode of the Slave,
that the source of cross MI contribution is the small partial overlap of the me-
chanical deformation with the Slave Cavity region, while there is a negligible
contribution due to the overlap of the Slave optical mode with the Master
OMC. The two order of magnitude in difference between the couplings and
cross coupling allow us to consider that the two OMCs can be considered to
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be optically isolated from each other by design.
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Appendix B

Magnetic field calibration

The magnetic field in the waveguide is obtained by measuring the frequency
dependent current circulating in the circuit. We calibrate the system using the
equations of a lossy transmission line. The circuit diagram is shown in Fig.
B.1. Standing waves losses due to the finite length of the RF cable (lc = 1.06
m) and waveguide (lw = 0.04 m) are described by the propagation constants
γc = αc + iβc and γw = αw + iβw. Alpha and beta are respectively the at-
tenuation and phase constants. The voltage and current equations along the
transmission line are:

V(x ≥ lw) = V1eγc(x−lw) + V2e−γc(x−lw) (B.1a)

Z0 I(x ≥ lw) = V1eγc(x−lw) −V2e−γc(x−lw) (B.1b)

V(x ≤ lw) = V3eγwx −V4e−γwx (B.1c)

Z0 I(≤ lw) = V3eγwx + V4e−γwx (B.1d)

At the boundaries for x = 0, x = lw and x = lw + lc, we can extract from equa-
tions 2: V(0) = 0 → V4 = −V3, Zw(x) = Z0 tanh(γwx), V2 = V1e−γwlω , V3 =

Figure B.1: (a) Conceptual schematic of the transmission line.
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−V1e−2γwlω and V(lω + lc) = V1(eγclc + e−2ωwlw e−γclc) = Vi + Vr,where Vi,r
and Ii,r are the incident (reflective) voltage and current on the transmission
line. The power supplied to the waveguide Pi(lw) in function of the incident
power from the VNA can be obtained as Pi(lc + lw) = 1

2 Re[Vi(lc + lw)I∗i (lc+

lw)] =
|V1|2
2Z0

e2αclc = Pi(lw)e2αclc . This allows to know V3 and V4 as a function
of the source power Pi(lw + lc). Finally, the current in the waveguide is:

i(x) = Re[I(x)] =

√
2Pi

Z0
e−αclc [e−αw(x−lc)cos(βw(x− lw))+

e−αw(x+lc)cos(βw(x + lw))]

(B.2)

The magnetic field in the waveguide is

B(x) =
µ0

2d
i(x) (B.3a)

being d=1 mm the width of the signal line.

i(
A

)

Frequency (GHz)

0 5 10
−500

0

500

1000

0 5 10
−500

0

500

1000

|I
m

(Z
)|

 (
W

)
w

x=l /2w

-4
x10 -8

x10

B
(T

)

R
e

|(
Z

)|
 (
W

)
w

Frequency (GHz)Frequency (GHz)

a)

b) c)

x=lw

x=0

Figure B.2: (a)(Left) Frequency dependent current in A on
the waveguide with P=-10dBm. (Right) Magnetic field B in-
tensity in Tesla.(b)(c)Imaginary and Real part of the calculated
impedance Zw on the waveguide.

We can obtain γclc and γwlw doing network analysis. From a transmission
measurement connecting only the cables before the waveguide we get S21 =
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e−γclc , then γclc = −ln(S21). The total impedance of the circuit can be ob-
tained by measuring the parameter S11 = Z−Z0

Z+Z0
, then solving for Z we have

Z = Z0
1+S11
1−S11

. The impedance of the waveguide Zw can be obtained from

Z = Z0
Zw(lw)+Z0tanh(γclc)
Z0+Zw(lw)tanh(γclc)

, then Zw(lw) = Z0
Z0tanh(γclc)−Z
Ztanh(γclc)−Z0

. Finally, we have

γwlw = atanh(Zw(lw)
z0

). The obtained values of magnetic field B(T), current
i(A), and impedance are shown in Fig B.2.
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Appendix C

Laser Doppler Vibrometer
Characterization of YIG

We used a Laser Doppler Vibrometer (Polytec UHF 120) to measure the vibra-
tions created on the YIG surface. This laser based interferometric technique,
measures displacement in absolute units with picometer sensitivity. In Fig.
C.1a we show the schematic set up of the LDV. A laser light (532 nm) is fo-
cused on the YIG like in Fig. C.1b with a 20x objective. A Signal Generator
sends the excitation frequency at which we want to measure. In a standard
measurement the output signal is connected to a vibrating plate that shakes
the sample. In this case, the excitation is connected to the waveguide. The
excitation signal is also sent to a photodetector placed in the same place as
the laser. The rf signal sent to the photodetector is used to detect the reflected
light at this frequency, in an heterodyne scheme. The light detected, is shifted
in frequency which depends on the sample’s velocity (due to Doppler effect),
from which in turn the displacement is obtained.

In Fig. 5.16a from Chapter 4 we obtain a peak amplitude of 4.7 pm at 250
MHz with a RBW = 2.5 kHz, which corresponds to a displacement sensitivity
of 94 fm Hz−1/2. Assuming that the signal at the entrance of the waveguide
was the one given by the source (3 V), the corresponding rf field is B = 80 µT
and a senstivity of δBmin = B√

RBW
=1.6 µT Hz−1/2.

From the linear fit reported on Fig. 5.16 on Chapter 4 we can estimate the am-
plitude that corresponds to the equivalent voltage applied to the waveguide
for the minimum peak sensitivity on the microsphere experiment. A vibra-
tion amplitude of ∼ 90 fm measured by the vibrometer on the YIG surface
would be induced by an applied rf magnetic magnetic field of 0.51 µT. This
value is a rough approximation since the values of voltages smaller than 2 V
in Fig. C.1b correspond to signals close the minimum amplitude that can be
achieved with the instrument (∼ 1pm).

We compare the square root of signal to noise ratio on the measurement with
the vibrometer and the YIG-sphere magnetometer as a function of magnetic
field intensity (see Fig. C.1b). Since both measurement were performed at
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different bandwidths, the square root of the SNR was multiplied by the res-
olution bandwidths used on each experiment. We note that the YIG-Silica
sphere hybrid system measures larger signals for the same magnetic fields
and its response extends to smaller magnetic fields.
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Figure C.1: (a) Schematic of the LDV set up. A Signal Gener-
ator sets the frequency of the coherent measurement. It is con-
nected to the waveguide and the Laser. This allows to detect
the reflected signal in an heterdyne scheme. (b) Optical image
of the LDV measurement. A 20x objective focus the laser beam
(532nm) on the sample. The YIG film is placed on top of the
waveguide to create the rf field. (c) Response signal comparison
between the vibrometer measurement and the magnetometer
as a function of magnetic field. In order to compare the differ-
ent measurment the response is represented as the square root
of SNR multiplied by the bandwiidth used in each experiment.
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Vuletić, Nikolai Kiesel, and Markus Aspelmeyer. “Cooling of a lev-
itated nanoparticle to the motional quantum ground state”. Science
(2020).

[22] Gregory M Harry, LIGO Scientific Collaboration, et al. “Advanced
LIGO: the next generation of gravitational wave detectors”. Classical
and Quantum Gravity 27.8 (2010), p. 084006.

[23] Ming Cai, Oskar Painter, and Kerry J Vahala. “Observation of critical
coupling in a fiber taper to a silica-microsphere whispering-gallery
mode system”. Physical review letters 85.1 (2000), p. 74.

[24] Pierre Etienne Allain, Lucien Schwab, Colin Mismer, Marc Gely, Es-
telle Mairiaux, Maxime Hermouet, Benjamin Walter, Giuseppe Leo,
Sébastien Hentz, Marc Faucher, et al. “Optomechanical resonating
probe for very high frequency sensing of atomic forces”. Nanoscale
12.5 (2020), pp. 2939–2945.

[25] Rodrigo Benevides, Michaël Ménard, Gustavo S Wiederhecker, and
Thiago P Mayer Alegre. “Ar/Cl 2 etching of GaAs optomechanical
microdisks fabricated with positive electroresist”. Optical Materials Ex-
press 10.1 (2020), pp. 57–67.

[26] Ewold Verhagen, Samuel Deléglise, Stefan Weis, Albert Schliesser, and
Tobias J Kippenberg. “Quantum-coherent coupling of a mechanical
oscillator to an optical cavity mode”. Nature 482.7383 (2012), pp. 63–
67.



Bibliography 133

[27] John D Teufel, Tobias Donner, MA Castellanos-Beltran, Jennifer W
Harlow, and Konrad W Lehnert. “Nanomechanical motion measured
with an imprecision below that at the standard quantum limit”. Na-
ture nanotechnology 4.12 (2009), pp. 820–823.

[28] Jasper Chan, TP Mayer Alegre, Amir H Safavi-Naeini, Jeff T Hill, Alex
Krause, Simon Gröblacher, Markus Aspelmeyer, and Oskar Painter.
“Laser cooling of a nanomechanical oscillator into its quantum ground
state”. Nature 478.7367 (2011), pp. 89–92.

[29] Amir H Safavi-Naeini, Jeff T Hill, Seán Meenehan, Jasper Chan, Si-
mon Gröblacher, and Oskar Painter. “Two-dimensional phononic-pho-
tonic band gap optomechanical crystal cavity”. Physical Review Letters
112.15 (2014), p. 153603.

[30] Jordi Gomis-Bresco, Daniel Navarro-Urrios, Mourad Oudich, Said El-
Jallal, Amadeu Griol, Daniel Puerto, Emiglio Chavez, Yan Pennec,
Bahram Djafari-Rouhani, Franscesca Alzina, et al. “A one-dimensional
optomechanical crystal with a complete phononic band gap”. Nature
communications 5.1 (2014), pp. 1–6.

[31] Parag B Deotare, Irfan Bulu, Ian W Frank, Qimin Quan, Yinan Zhang,
Rob Ilic, and Marko Loncar. “All optical reconfiguration of optome-
chanical filters”. Nature Communications 3.1 (2012), pp. 1–8.

[32] Jing Ma and Michelle L Povinelli. “Applications of optomechanical
effects for on-chip manipulation of light signals”. Current Opinion in
Solid State and Materials Science 16.2 (2012), pp. 82–90.

[33] Xiang Guo, Chang-Ling Zou, Xi-Feng Ren, Fang-Wen Sun, and Guang-
Can Guo. “Broadband opto-mechanical phase shifter for photonic in-
tegrated circuits”. Applied Physics Letters 101.7 (2012), p. 071114.

[34] Georg Anetsberger, Emanuel Gavartin, Olivier Arcizet, Quirin P Un-
terreithmeier, Eva Maria Weig, Michael L Gorodetsky, Jörg Peter Kot-
thaus, and Tobias J Kippenberg. “Measuring nanomechanical motion
with an imprecision below the standard quantum limit”. Physical Re-
view A 82.6 (2010), p. 061804.

[35] Albert Schliesser, Olivier Arcizet, Rémi Rivière, Georg Anetsberger,
and Tobias J Kippenberg. “Resolved-sideband cooling and position
measurement of a micromechanical oscillator close to the Heisenberg
uncertainty limit”. Nature Physics 5.7 (2009), p. 509.

[36] V.B. Braginsky and Y.I. Vorontsov. “Quantum-mechanical limitations
in macroscopic experiments and modern experimental technique”.
Sov. Phys. Ups 17.5 (1975), pp. 644–650.

[37] V.B. Braginsky and A. Manukin. Measurement of Weak Forces in Physics
Experiments. University Press of Chicago, 1977.

[38] Michelle L Povinelli, Steven G Johnson, Marko Lončar, Mihai Ibanescu,
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