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Abstract
Several computer vision approaches have been proposed for tackling food analysis prob-
lems, due to the challenging problem it poses, the ease collection of food images, and
its numerous applications to health and leisure. However, high food ambiguity, inter-
class variability and intra-class similarity define a real challenge for the Deep learning
and Computer Vision algorithms. With the advent of Convolutional Neural Networks,
the complex problem of visual food analysis has experienced significant improvement.
Despite this, for real applications, where thousands of foods must be analyzed and rec-
ognized, it is necessary to better understand what the model learns and, from this, guide
its learning on more discriminatives features to improve its accurate and robustness.

In this thesis we address the problem of analyzing food images through methods based
on deep learning algorithms. There are two distinguishable parts. In the first part, we
focus on the food recognition task and delve into uncertainty modeling. First, we propose
a new multi-task model that is able to simultaneously predict different food-related tasks.
Here, we extend the homoscedastic uncertainty modeling to allow single-label and multi-
label classification and propose a regularization term, which jointly weighs the tasks as
well as their correlations. Second, we propose a novel prediction scheme based on a class
hierarchy that considers local classifiers, in addition to a flat classifier. For this, we define
criteria based on the Epistemic Uncertainty estimated from the ’children’ classifiers and
the prediction from the ’parent’ classifier to decide the approach to use. And third, we
propose three new data augmentation strategies that analysis class-level or sample-level
epistemic uncertainty to guide the model training.

In the second part we contribute to the design of new methods for food detection (food/non-
food classification), for ensemble of food classifiers and for semantic food detection. First,
we proposes an overview of the last advances on food/non-food classification and an op-
timal model based on the GoogLeNet architecture, Principal Component Analysis, and
a Support Vector Machine. Second, we propose a combination of multiple classifiers
for food recognition based on two different Convolutional models that complement each
other and thus, achieve an improvement in performance. And third, we address the prob-
lem of automatic food tray analysis in canteens and restaurants environment through a
new approach that integrates in the same framework food localization, recognition and
segmentation for semantic food detection.

All the methods designed in this thesis are validated and contrasted over relevant public
food datasets and the results obtained are reported in detail.
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Chapter 1

Introduction

In this chapter, we explain the problematic in the automatic food analysis from images,
which is a particular fine-grained object recognition case and stands out for having both
properties: high intra-class variability and high inter-class similarly, becoming a chal-
lenging problem for the Computer Vision community. In addition, we describe the im-
portance of research in this field focusing on possibles applications in the real life. Finally,
we present the work objectives and the research contributions.

1.1 Problem statement

Food is an essential substance for people and animals life, consisting of nourishing and
nutritive components. It can be simply understood as a substance that provides energy
to our vital engine. However it is much more than just a source of energy. Food plays an
important role in our life, not only in terms of nutrition, but also became essential in any
social activity such as events, meetings, celebrations, etc. In addition, depending on the
type of food and the situation in which we eat it can influence our mood and sometimes
brings back memories of events that occurred in our lives.

Automatic analysis of food from images has been an emerging field of research that has
recently attracted the computer vision community. Visual food analysis includes several
tasks mainly with aims of extracting semantic information, from images, at different lev-
els of abstraction. The simplest task, called food detection, claims to determine whether
or not food is present in an image. Food recognition is one of the main tasks and aims
to classify food images with a single or multiple categorization with respect to the food
items or ingredients that compose them. When classification is done pixel by pixel, this
task is known as food segmentation. On the other hand, food location is the correspond-
ing task to determine where food items are placed in an image. To name a few of the
most important tasks within this field of research.

Independently of the target food-related task, the difficulty in analyzing food images lies
in the intrinsic properties of the food appearance. Unlike general objects, most of foods
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FIGURE 1.1: Example of high intra-class (first two rows, left-right) vari-
ability for com tam and coq au vin foods; and low inter-class (last two rows,

bottom-top) variability for five different foods pairs.

are no rigid-objects and therefore do not have a well-defined spatial arrangement and
shape. Furthermore, food images are characterized by larger food deformations, high
intra-class variability and high inter-class similarity, resulting in a visually sophisticated
problem to solve. In Fig. 1.1 the complexity of food images due to its intrinsic properties
is illustrated.

With the emergence of deep learning algorithms, and particularly Convolutional Neural
Networks (CNNs), there is a "before and after" in the computer vision. There are two
main factors that made the emergence of deep learning algorithm possible: improve-
ment in hardware capabilities and availability of large data volumes. The latter is quite
relevant because these types of algorithms are prone to over-fitting when the data is not
enough. Therefore, to ensure good performance, thousands of data are needed to ease
the model learning with respect to the data distribution and thereby better generalize to
new data. When the data is limited, incorporation of regularization into the model archi-
tecture, transfer learning from a trained model on a large dataset or training with data
augmentation strategies have been applied to minimize the risk of over-fitting.

In recent years, promising performance has been demonstrated with deep learning al-
gorithms in a wide range of solutions applicable in real conditions. Some remarkable
results have been achieved industrial systems, such as: autonomous vehicles, security
and surveillance, healthcare, among others. Visual food analysis follows the same trend,
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where a huge increase in performance has been shown when comparing traditional,
hand-crafted features based methods, with deep learning methods. However, it is still
a long way to go to achieve a performance comparable with general objects.

Making a real food analysis solution requires thousands of different foods with thou-
sands of images in order to train a deep learning algorithm for this purpose. Therefore,
taking into account the difficulty of data acquisition and the visual complexity present
in food images, it is necessary to explore novel strategies to better understand what the
model learns and, from this, take steps to guide it. Here, uncertainty modeling can play
an important role in studying the behavior of the model to further improve its perfor-
mance.

In this thesis, our research covers the four food analysis tasks discussed above and delves
into uncertainty modeling theory to provide novel methods applicable to various food-
related systems in real-life settings. Some of the most relevant fields of application can
be seen in the next section.

1.2 Food Analysis Relevance

The computer vision community has highlighted numerous applications in which food
analysis from images has a positive impact. Most researchers emphasize its importance
in healthcare, but it is also useful in the restaurant industry, for recommendation systems,
social media tagging and more.

1.2.1 Food for Healthcare

In such fast-paced world, a fast food goes a long way in saving time. However, frequent
consumption can increase the risk of health problems. The fact of ignoring the implica-
tion that the ingested food produces in the body, increases the chances that it may give
rise to any disease or condition caused by a poor diet, such as: obesity, diabetes, heart
problems, kidney problems, among others. To address this, a possible solution based on
the visual food analysis would be to generate a system that allows managing and control-
ling food intake in order to be aware of the nutritional contribution of the food consumed
and thus be able to maintain a healthy diet. This system would bring both preventive and
corrective benefits for problems related to bad diet. Furthermore, it could also be useful
for anyone who must restrict their food intake, such as people with food allergies, celiac
disease, food intolerance or after surgery (e.g. organ transplant).

1.2.2 Restaurant Industry

One commercial segment that can take advantage of the visual food analysis is the self-
service restaurant. This type of restaurant offers people the possibility of choosing or
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taking for themselves the food they want to consume, from a variability of food alter-
natives grouped into main dishes, side dishes, desserts and drinks; and depending on
what is served a cashier bills it. Visually determining the food served can speed up the
billing process, which means a bottleneck at peak times, in addition to extracting useful
information to replace stocks, among other benefits.

1.2.3 Recommender Systems

Interesting applications can be developed for the recommender systems based on food
analysis. Basically, this type of systems seeks to predict the preference of a user give for
items, based on their own data or on a match with a profile created a priori extracted
from the data of other users, in order to suggest items that are relevant to him/her. In
this sense, an example of a solution could be a visual food-log system, in which the food
consumption preference can be determined and, from this, provide recommendations
to the user on where to eat or suggest recipes according to ingredients available in the
fridge.

1.2.4 Social Networking Tools

As well-known, social networking has became an essential tool for our daily life. In 2020,
84% of people with access to the internet use social media and spend more than 2 hours
on them. These tools have made it possible to reach people all over the world and main-
tain contact with people that they have directly or indirectly shared with use throughout
our lives. Among the different functionalities it offers, some social networks have incor-
porated an automatic tagging function in their systems that allows the user to group or
filter their photos in relation to the visual content. Here, an object recognition, and par-
ticularly food recognition, plays a key role in carrying out this task. A clear example of
the use of food recognition can be seen in Google Plus, which can automatically tag the
visual media through Google Photos.

1.3 Objectives

The main objective of this thesis is to develop and implement Deep Learning algorithms
based on CNNs to analyze the visual information contained in food images acquired in
real-life conditions. To meet this general objective, the specific objectives are defined as
follows:

• To review and analyze the state-of-the-art (SoA) in food-related deep learning ap-
proaches.

• To develop novel food detection, recognition, localization and segmentation algo-
rithms based on CNN.



1.4. Research Contributions 5
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FIGURE 1.2: Pipeline diagram illustrating how each food-related problem
addressed relates to different approaches designed during thesis work. In
addition, the building of a large food dataset is highlighted as a cross-

cutting task.

• To deep dive into Uncertainty modeling theory in Deep Learning and provide sev-
eral techniques leveraging different aspects of the uncertainty to improve the food
analysis performance.

• To build a large database with a wide diversity of food images from all over the
world.

• To contrast and validate the results achieved in each step contemplated within the
visual food analysis process.

1.4 Research Contributions

In this thesis, we address the problem of visual food analysis mainly taking into account
four sub-tasks: food detection, recognition, location and segmentation (see Fig. 1.2); mak-
ing a huge variety of applications possible. To tackle each one, approaches based on CNN
were considered. Specifically in the food recognition case, uncertainty modeling was in-
tegrated into the solutions. The main contributions can be summarized as follows:

1. Modeling aleatoric uncertainty in a multi-task food recognition method (see chap-
ter 3). We extend the model for Multi-Task Learning with Homoscedastic Uncer-
tainty [83] to allow dynamically weighing single-label and multi-label task losses
in the food classification problem. Furthermore, we incorporate a custom regular-
ization term in the loss function that considers negative and positive correlations
between classes that belong to different tasks. Moreover, we publish an interna-
tional food dataset comprised of multiple food-related tasks with more than 20.000
images and multi-task annotation, and a new metric for measuring tasks coherence.
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The efficiency of the proposed approach was validate in two public food datasets.
The results shown in this chapter are published in the following journal [3]:

E. Aguilar, M. Bolaños, and P. Radeva. "Regularized Uncertainty-based Multi-task Learn-
ing Model for Food Analysis." Journal of Visual Communication and Image Representation,
2019. (Scopus: Q1, ISI: Q2)

2. Hybrid food classifier based on epistemic uncertainty analysis (see chapter 4). We
provide an epistemic uncertainty-based framework, which reduces parent-to-child
errors present in the Local Classifier per Parent Node (LCPN) approach, through
the proposed criteria to judge when an LCPN or Flat approach is used to give the
final prediction. Three different methods were considered to estimate epistemic
uncertainty, these are: MC-dropout, Evidential Deep Learning and Deep Ensemble.
For all of them, a considerable reduction of parent-to-child errors propagation, as
well as improving classification performance with respect to the Flat approach was
shown within our proposal. The results shown in this chapter is published in in the
PRL journal and a conference proceeding [5]:

E. Aguilar, and P. Radeva. "Uncertainty-aware Integration of Local and Flat Classifiers for
Food Recognition." Pattern Recognition Letters, 2020. (in press) (Scopus: Q1, ISI: Q2)

E. Aguilar, and P. Radeva. "Food Recognition by Integrating Local and Flat Classifiers."
Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA), 2019. (CORE
ranking: C)

3. Uncertainty-aware data augmentation methods for food recognition (see chapter
5). We explored three different data augmentation strategies, based on uncertainty
analysis, conditioned at the class or sample level. In the first, we propose the appli-
cation of the uncertainty analysis in order to identify the type of data augmentation
that can be more beneficial or detrimental for each particular class (eg. some classes
may depend on the color feature and changing it could not contribute). In the sec-
ond, we suggested that some images may be more complex to recognize than oth-
ers, so we proposed a method that provides more synthetic samples with the same
visual content of the complex images, to help the learning of these features. In the
last one, we delved into the data augmentation at the sample level, proposing a
training procedure following the same principles of an active learning framework.
However, instead of selecting new data, the procedure contemplates the genera-
tion of new synthetic data and its subsequent incorporation into the training set,
after each training cycle, taking into account the images that met the proposed
uncertainty-based threshold. The results shown in this chapter are published in
the conference proceeding [4][7] and submitted to the ICPR’20:
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E. Aguilar, and P. Radeva. "Class-conditional Data Augmentation Applied to Image Classi-
fication." International Conference on Computer Analysis of Images and Patterns (CAIP),
2019. (CORE ranking: B)

E. Aguilar, B. Nagarajan, R. Khatun, M. Bolaños, and P. Radeva. "Uncertainty Modeling
and Deep Learning Applied to Food Image Analysis." International Joint Conference on
Biomedical Engineering Systems and Technologies (BIOSTEC), 2020.

Aguilar, B. Nagarajan, R. Khatun, M. Bolaños, and P. Radeva. "Uncertainty-aware Data
Augmentation for Food Recognition." E. International Conference on Pattern Recognition
(ICPR), 2020. (Submitted) (CORE ranking: B)

4. New method to perform food detection from images (see chapter 6). We con-
tribute in food detection problem, also called food/non-food classification, by es-
tablishing the state-of-the-art in public datasets, and further delving into the clas-
sification method, rather than simply using a CNN object recognition model pre-
viously trained on Imagenet and fine-tuned on new data. Specifically, we propose
a method that extracts the features from a CNN model, applies PCA for the fea-
ture selection and finally SVM the classification; instead of directly using softmax
for classification. Using this approach, previous results in public food/non-food
datasets were improved. The results shown in this chapter are published in a con-
ference proceeding [2]:

E. Aguilar, M. Bolaños, and P. Radeva. "Exploring Food Detection Using CNNs." Inter-
national Conference on Computer Aided Systems Theory (EUROCAST), 2017.

5. Fuzzy measures to ensemble food recognition models (see chapter 7). We analyze
how different fuzzy measures of similarity can contribute to the combination of
CNN models through a late fusion strategy based on the softmax outputs of each
one. Specifically, a Decision Template scheme was adopted in the proposed method
for fusing classifiers. In experimentation, we validated our proposal by combining
two CNN models based on different architectures, but it is flexible to any number
of models. The benefits of this approach were shown in two public food datasets,
where the baseline results were outperformed by a wide range. The results shown
in this chapter are published in a conference proceeding [1]:

E. Aguilar, M. Bolaños, and P. Radeva. "Food Recognition Using Fusion of Classifiers
Based on CNNs." International Conference on Image Analysis and Processing (ICIAP),
2017. (CORE ranking: B)

6. Novel framework for semantic food detection in food tray images (see chapter
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8). We propose a novel approach that unifies the problems of food detection, local-
ization, recognition and segmentation into a new framework that we call Seman-
tic Food Detection. The method integrates food/non-food semantic segmentation
with simultaneous food location and classification techniques through a probabilis-
tic approach and a custom non-maximum suppression procedure. This framework
was validated in a dataset containing images of canteen stock food trays, where
we evidenced a large increase in performance and reduction of false positives with
respect to the state-of-the-art methods. The results shown in this chapter are pub-
lished in a journal [6]:

E. Aguilar, B. Remeseiro, M. Bolaños, and P. Radeva. "Grab, Pay, and Eat: Semantic Food
Detection for Smart Restaurants." IEEE Transactions on Multimedia, 2018. (Scopus: Q1,
ISI: Q1)

1.5 Thesis Organization

This thesis begins in the next chapter by providing an overview to familiarize yourself
and better understand some basic concepts that support the developed methods. In
Chapter 3, we are entering the uncertainty modeling and describing a novel multi-task
recognition method. In Chapter 4 and Chapter 5, we deep dive into uncertainty modeling
theory and describe new food recognition methods based on it. Chapter 6 to Chapter 8
are devoted to the problems of food detection, ensemble of food recognition methods and
semantic food detection, where we detail the approach proposed for each one. Finally,
Chapter 9 highlights the final conclusions and possible future research lines.
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Chapter 2

Background

In this chapter, we briefly describe the basic concepts necessary to better understand the
fundamental foundation on which the proposed models are supported. The objective is
to familiarize with these concepts to facilitate the reading of the rest of the thesis.

2.1 Neural Networks

Inspired by the structure and performance of our biological neural networks, Artificial
Neural Networks (ANN) is a computational model consisting of basic computing units
can mimic some of the feature of the biological networks [177]. The fundamental cellular
unit of the brain is a neuron. A neuron is comprised mainly of three parts: a cell body,
an axon, and dendrites [163, 177]. The dendrites receive signal from other neurons. The
cell body contains the nucleus and cytoplasm, and is the place where signals from other
neurons are received and combine through the dendrites by synaptic junctions (synapse).
The axon transmits the resulting neural activity to other nerve cells or muscle fibers. The
matching of the different parts of a biological neuron with respect to an artificial neuron is
illustrated in Fig. 2.1. Let us consider the input features x and a weight matrix w, then in
this case, the multiplicative interaction of a signal transmitted from the axons (e.g. x0) to
the dendrites of the other neuron by synapse (e.g. w0) correspond to the weighting of the
i-th feature xi with respect to the i-th weight wi (e.g. w0x0). All received signals ({wixi})
are combined in the cell body (∑i wixi + b) and then sent to the output axon through an
activation function ( f (∑i wixi + b)) representing the propagation frequency of the signal
along this axon.

A single artificial neuron (unit) is capable of learning linearly separable data and can be
applied as a binary classifier algorithm. Specifically, this is the case of the perceptron al-
gorithm [139] that behaves as a threshold function; the output of the axon passes through
a binary step activation function that gives a positive response when the value is greater
than 0 and a negative response, otherwise.
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FIGURE 2.1: A cartoon drawing of a mathematical model representing a
biological neuron. Preprint [79]

ANN are typically arranged into three types of computing units blocks (layers): input
layer, which contains the patterns that are passed to the next layer; hidden layers, where
intermediate processing of signals passed from the previous layer to feed the next layer
is performed; and output layers, containing the model response in the desired format for
the target problem. The simplest type of ANN is the feedforward neural network (see
Fig. 2.2). It consists of an ANN with one or more layers that contain one or more neurons
for each one. These layers are fully-connected in which the units from adjacent layers
are fully pairwise connected through the respective weights. The signal goes from the
input to the output layer in one direction and there is no cycle in the network. When
the feedforward neural network has only one layer (the input layer is not counted) it
is called single-layer perceptron (SLP); otherwise, it is called a multi-layer perceptron
(MLP). The major difference regarding learning ability is that, unlike SLP, MLP is able to
learn a nonlinear data distribution.

X1

X2

X3

Y1

Y2

Input Layer Hidden Layers Output Layer

In
pu

ts

O
ut
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ts

FIGURE 2.2: Illustration of a feedforward neural network architecture.

The supervised learning process in a MLP occurs after each iteration through a forward



2.2. Bayesian Neural Networks 11

and backward pass. During the forward pass, the new input pattern is processed through
all units from the first to the last layer. After that, a loss function is calculated taking into
account the resulting values in the output layer. Then, a backward pass (backpropa-
gation) is made from the last to the first layer propagating the error and adjusting the
weights. Therefore, the training process can be interpreted as an optimization prob-
lem that seeks to minimize the values of the loss function after each iteration. For this
purpose, the most dominant method for optimizing the loss function is the Stochastic
Gradient Descent (SGD) [137], a stochastic (random) approximation of the Gradient De-
scent optimization method, which updates the ANN weights and bias following steps
proportional to the negative of the loss function gradient at the current training itera-
tion from a randomly selected subset of data, rather than the entire data set. In ANN,
the steps are known as the learning rate and in the SGD case they remain fixed for all
hyper-parameters to be optimized. Formally, the update of the hyper-parameters (θ)
considering the loss function L(θ) and the learning rate α is given as:

θt+1 = θt − α
∂

∂θt
L(θt).

In ANN, the loss function has a non-convex shape that, in most cases, the error surface in
the weight space corresponds to a complex hyperparaboloid with numerous valleys and
hills. For this reason, often the solution reached when the loss function converges, corre-
sponds to a local minimum and not the best possible general solution. This is easy to see
when training multiple ANN by initializing random weights and analyzing their results,
in the same data. In most cases, both overall performance and some misclassified data
will be different. Providing a single prediction of an ANN that reached a local minimum,
which is often susceptible to overfitting, may not be reliable enough for critical systems.
Bayesian Neural Network can help us provide a confidence value for our prediction and
also allows us to better understand the model behavior.

2.2 Bayesian Neural Networks

The Bayesian Neural Network (BNN) is a type of ANN that learns a probability distribu-
tion in the weights of each computing units using Bayesian inference, rather than learning
a single value (see Fig. 2.3). This type of network combines the strength of the probabilis-
tic (stochastic) and ANN models, and thus produces probabilistic guarantees about their
predictions and also generates the distribution of the parameters that it has learned from
the input data [123]. The main differences of BNN with respect to the standard ANN are:
1) the objective of the training is to learn, for each computing units, a distribution overs
weights and not to find a function that learns the data distribution on a single weight, 2)
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the output corresponds to a distribution and not a single value from the best model, and
3) it models uncertainty and can provide a confidence value in addition to the prediction.

FIGURE 2.3: Example of Common Neural Network (left) vs Bayesian Neu-
ral Network (right). Preprint [19]

From the probabilistic modeling side, the optimization process in a standard ANN is
equivalent to Maximum Likelihood Estimation (MLE) for the weights, where the aims is
to find the parameters (w) that maximize the probability (p(y|w)) of the observed data.
However, in probabilistic models, it assumes that the model parameters have some distri-
bution according to a prior belief (p(w)). The posterior probability (p(w|y)) corresponds
to the beliefs about the parameters after observing the data, which according to Bayesian
rules is proportional to multiplying the likelihood observation (p(y|w)) with p(w). An
approximation of Bayesian inference can be given by the maximum a posteriori (MAP)
estimate of w, which becomes the same that the MLE with an additional prior term.

In ANN, the prior term can be incorporated into the loss function as L2 or L1 regular-
ization that is equivalent to performing the MAP using a prior Gaussian or Laplace dis-
tribution respectively. To illustrate the described above, let us consider an ANN with a
softmax activation on the output layer to perform a classification of the data D = {xi, yi}.
Then, the posterior probability on the dataset is defined as:

p(w, D) = ∏
i

p(yi|xi, w)p(w),

where p(yi|xi, w) corresponds to the probability that the softmax output yi belongs to the
data xi given the weights w. Let us assume that prior distribution p(w) is a Gaussian
distribution with mean equal to 0 and variance equal to 1

2σ2 , then:

p(w, D) = ∏
i

p(yi|xi, w)N (w, 0,
1

2σ2 ).

Taking negative log probability, then:

−log(p(w, D)) = −∑
i

log(p(yi|xi, w)) + ∑
i

w2
i + c.
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Finally, we can drop the constant c because it does not affect the optimization and with it
we obtain the categorical cross entropy loss plus L2 regularization.

Despite being a direct solution that can easily incorporate the probabilistic approach
within an ANN, with MAP we cannot know the prediction uncertainty. To tackle with
this, the Full Bayesian (FB) approach can be used. However, in the ANN the resolu-
tion of a high-dimensional integral associated with the posterior predictive distribution
(p(y|x, D) =

∫
p(w|D)p(y|x, w)dw) becomes intractable.

Note that the standard ANN and BNN are not applicable or not accurate for image anal-
ysis. Therefore, in Section 2.3 we will describe a CNN, which is a specified network for
this type of problem. In addition, in Section 2.4, we will comment how we can model
uncertainty on CNN by applying some of the most popular methods to approximate a
FB approach using variational inference techniques and other novel approaches.

2.3 Convolutional Neural Networks

Convolutional Neural Networks is class of Deep ANN specialized to analyze images.
Early works based on it were developed in the 1990s for handwritten digit recognition
[95, 96], however it was not until 2012, after offering impressive results in recognizing
1000 objects different [91], which became popular and therefore widely used in the com-
puter vision community. In the same way as ANN, the architecture of CNN is inspired
by biology, specifically, in the analysis carried out in [67] regarding the behavior of the
visual cortex of cats. These networks are mainly made up of three architectural ideas
[95]: local receptive fields, to extract elemental visual features such as oriented edges,
end points, corners; shared weights, which optimize the computational resource usage;
and spatial sub-sampling, to reduce the feature map resolution and the sensitivity of the
output to shifts and distortions.

FIGURE 2.4: LeNet architecture for document recognition. Preprint [96]

The basic structure of a CNN is illustrated in Fig. 2.4. Generally, a CNN contains an
input layer, one or more convolutional blocks, and ends with an MLP. In this case, the
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convolutional block consists of a convolutional layer followed by a subsampling layer.
The convolutional layer is comprised of multiple filters (convolution kernels), with nxn
receptive fields (kernel size), and weights independently for each one. As for the subsam-
pling layer, it acts directly on to the feature maps generated by the convolutional layer,
reducing their resolution through of a pooling operation like max or mean pooling. Dur-
ing the forward pass, the process consists of the features extraction and combining (in
higher layers) by local convolution operations, frequently with a kernel size of 3x3,5x5 or
7x7, throughout the image using a sliding window technique. After that, the generated
feature maps (one for each filter) are passed to a non-linear activation as a ReLU function,
increasing the nonlinearity in the data, enhancing the features distinction and avoiding
gradient issues (during optimization) that they occur when the input value is too high or
low. Next, the feature maps are reduced by applying a pooling method to feed the follow
layer, which can be an additional convolutional block or the MLP. In the case of MLP,
the output of the subsampling layer is flattened and fully connected to the first hidden
layer. Finally, the results are given by the output layer using an activation according to
the target problem.

Like any ANN, for CNN training, a loss function must be designed or chosen according
to the problem to be treated. For example, in the supervised image classification case, the
loss function evaluate the candidate solution (output prediction) with respect to the real
solution (ground-truth) and, from them, quantify the error (loss). Common single-label
(SL) and multi-label (ML) image classification losses are categorial-cross entropy (Lcce)
and binary-cross entropy (Lbce), respectively:

Lcce(ŷ, f W(x)) = −
C

∑
i

ŷilog( f W(x)i),

Lbce(ŷ, f W(x)) = −
C

∑
i
(ŷilog( f W(x)i) + (1− ŷi)log(1− log( f W(x)i))),

where C is the number of classes or labels, ŷ is a binary vector that represent the ground-
truth and f W(x) corresponds to the prediction from the output layer after applying a
softmax (for SL) or sigmoid (for ML) activation for the input image x given the weights
W. During training, the W is adjusted to provide minimal loss and learn better data dis-
tribution. For this purpose, SGD and ADAM [85] are two of the most popular optimizer
used to minimize the loss function in Deep Learning based methods. SGD stands out
for its simplicity and generalization capacity and ADAM for its fast training speed [169].
Unlike SGD, ADAM is an adaptive optimizer that maintains, and automatically updates
an individual learning rate for each hyper-parameter though the estimation of both the
first (mean) and second raw (uncentered variance) moment of the gradients. For Adam,
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the equation that defines the hyper-parameters update is as follows:

θt+1 = θi − α
m̂t√

v̂t + ε
,

where m̂t and v̂t denotes the first and second raw moment corrected by an exponential
decay rate.

Sometimes when the data is not enough, CNN can model a complex function that models
the distribution of data providing a near-perfect result in the training set but poor in the
test set. Applying a regularization to weights can help us simplify this function and im-
prove generalizability. Here, the L2 and L1 regularization has been frequently adopted.
In practical terms, regularization is an additional term that updates the result of the loss
function, which forces weights to decay towards zero. That is the reason why L2 regu-
larization is commonly referred to as weight decay. To illustrate this, consider a SL image
classification problem, so the loss function with L2 regularization can be defined as:

L = Lcce + λ ∑
i

w2
i ,

where λ is a trainable hyperparameter to control the strength of the regularization.

Modern CNN architecture maintains almost the same layer arrangement than LeNet [96],
but are deeper, wider, adding new type of layers and/or residual connections. For ex-
ample, in [91] a dropout layer was proposed before each fully connected layer to avoid
over-fitting, randomly disabling and activating some connections between two consec-
utive layers during training. In the [159] case, an inception layer was proposed, where
several filters with different kernel sizes are convoluted in parallel along the input (im-
age or feature map) in order to better handle the feature extraction for objects present in
multiple scales. Also, residual blocks have been incorporated into the CNN architectures
(e.g. [59],[66],[181]) enabling the generation of a deeper network without loss of infor-
mation. On the other hand, instead of simply making the model deeper and/or wider,
in [161] an efficient approach is proposed to scale the model depending on the size of the
input data.

In general terms, it is interesting to highlight the fact that CNN-based models have been
successfully applied in computer vision problems, and became a better alternative than
traditional ANNs, since they are characterized by preserving the spatial relationship be-
tween pixels and optimize the computing resource by sharing the parameters and learn-
ing just the weights of each filter instead of all possibles computing units connections.
Particularly for image analysis, these properties allow CNN-based models to scale well
to high-resolution images. Methods for modeling and quantifying uncertainty in Deep
CNN are described in section 2.4.
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2.4 Uncertainty in Deep Learning

Deep learning has revolutionized all kinds of industries, making it possible to create var-
ious real-world applications based on it. The models are often assumed to be accurate.
However, despite providing good performances in multiple disciplines, the systems have
sometimes not worked as expected. An example of this is the classification algorithm
used in Google Photos to automatically tag images, which in 2015 mistakenly classified
two African friends as gorillas. Another example is the fatal event occurred in 2016 by
a self-driving Tesla car, where a man from Ohio was killed crashed into a tractor-trailer,
because the autopilot system, based on computer vision, misinterpreted the image like
a lighted sky and for this reason the brakes were not applied. Moreover, numerous re-
searches have shown the ease of breaking the performance of the CNN models simply
by applying small changes to the input data. For example, self-driven car can be bam-
boozled by adding some stickers on the road signs, producing an incorrect interpretation
of them [45]; image classification systems can dramatically change the prediction when
linear perturbation (noise) is added to the input image, despite being imperceptible to
human vision [54]; among others. Therefore, accurate and robust models are required.

Uncertainty modelling into a CNN model will help us better understand what it have
learned from the data and allow us to make better decisions against an unexpected input
data, considering how uncertain the given predictions are. There are two main types
of uncertainty one can model [82]: aleatory uncertainty, which captures noise inherent
in the observation; and epistemic uncertainty, which captures our ignorance about the
data distribution learned by the model from training data. Epistemic uncertainty can be
reduced with enough data, while aleatory uncertainty cannot, yet it can be learned. To
model uncertainty, a probabilistic approach can be applied as in BNN. However, directly
applying an FB approach on Deep CNN is intractable. Variational inference provides
a good alternative approach to approximate the posterior probability (p(w|D)) for FB
models. This approach consists of finding, during the optimization, a probability density
function over the weights (qθ(w)) parametrized on θ that minimizes the Kullback-Leibler
(KL) divergence with respect to the exact p(w|D). The resulting loss function is:

L(θ) = KL(qθ(w)||p(w|D)),

then, applying Bayesian’s rule in p(w|D),

L(θ) = KL(qθ(w)||p(w))−
∫

qθ(w)logp(D|w)dw,

finally, using Monte Carlo sampling, the loss for a single simulation is approximated as:

L(θ) ≈ log qθ(w)− log p(w)− logp(D|w).
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Therefore, minimizing the objective (L(θ)) is equivalent to finding a density function
(qθ(w)) that compensates the loss with respect to our a priori knowledge about the weights
distribution (p(w)) and the data likelihood (p(D|w)).

Novel approaches have been proposed to efficiently approximate Bayesian inference through
variational inference for Deep Learning models [19, 86, 136, 50, 107, 121]. Most of them
select a flexible distribution (e.g. Gaussian) to capture the true posterior probability, but
simple enough for efficient optimization [19, 86, 121]. Others prioritize to choosing the
approximate posterior distribution closest to the real distribution, rather than efficient
computation, building complex distributions based on the normalization flow strategy
[136, 107]. However, the simplest and efficient approach to easily incorporate to any
CNN is MC-dropout [50]. The idea behind this method is that the common dropout
technique frequently used to avoid over-fitting is equivalent to an approximation to the
probabilistic deep Gaussian process, when dropout is applied to each weight layer. The
authors define qθ(w) as a Bernoulli distribution and show that minimizing the KL diver-
gence is equal to minimizing the negative log-likelihood loss plus a regularization. Note
that this approach only requires to keep the dropout layer active during the training and
prediction phases, but does not require any other change regarding the model setting.

Non-Bayesian inference methods have also been proposed to efficiently quantify uncer-
tainty in Deep Learning models such as: Deep Ensemble [94] or Evidential Deep Learning
[146]. Both approaches are used and described in Chapter 4.

In recent years, diverse and successful works have been published in computer vision
that take uncertainty into account in their deep learning based proposal. For example, in
the image classification case, uncertainty has been modeled into Large-Margin Softmax
Loss [106] improving the classification in unbalanced datasets [84] and also modeled on
input labels improving the robustness of the model against adverse attacks [129]. For im-
age segmentation, MC-dropout Bayesian method was adopted to weights the predictions
from a multi-view inputs generated from different transformation on a 3D data [171] and
an uncertainty-aware metric and annotation were proposed to solve the night-time se-
mantic segmentation through a curriculum model adaptation from the correspondence of
day-night images content [144]. As for object detection, modeling bounding boxes with a
Gaussian distribution was proposed in [30, 60] and an aleatory and epistemic uncertainty
has been modeled through a Laplace-based [82] and variational dropout [86] loss func-
tion, respectively, to improve the 3D pedestrian localization[17]. In addition, they have
been published for multi-modal learning [40, 156], for person re-identification [180], for
video-based face recognition [191], for image processing [176, 188], to name a few more.
Although they are all interesting applications, we have no evidence of uncertainty-based
methods applied to food analysis before us.
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Chapter 3

Regularized Uncertainty-based
Multi-Task Learning Model for Food
Analysis

3.1 Introduction

Being aware of our daily life, diet is an important issue if we want to follow balanced
and healthy lifestyle. The amount of people that suffer from nutrition-related health
conditions like obesity or cardiovascular diseases is increasing among our society [168].
Moreover, people that have any of these medical conditions, tend to spend more money
on medical care and usually have a shorter lifespan. Thus, the need for increasing the
awareness of the importance of following a healthy diet is vital.

Considering the importance of food in our daily life, together with the proliferation of
social networks, new trends arose. A rather extended trend related to nutrition consists
in taking pictures of food in restaurants or other special events of the daily life. Several
users that follow this tendency, are used to share pictures on social networks like Insta-
gram or Pinterest. Considering the huge amount of food-related pictures that are already
available online due to these routinary actions, it is natural to think of using them for
developing automatic methods for food recognition and analysis.

Given the importance of food and the challenging image analysis problem, the com-
puter vision community proposed different food analysis methods like food detection
[2], recognition [1, 111], localization [21], ingredients recognition [27], multi-attributes
recognition [184], recipes retrieval [145], calorie counting [42], food-tray recognition [6],
or portion estimation [39], among others. Some of the purposes of these methods could
include: 1) easing the tracking of our daily nutrition intake, which would lead to offer-
ing recommendations for improvement; 2) providing alerts when recognizing a product
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FIGURE 3.1: Food-related tasks predicted by our model.

that could contain potential allergens; 3) provide cooking recommendations; 4) automatic
billing in self-service restaurants; just to mention a few.

Although the potential of food analysis systems is clear, several challenges need to be
solved. In particular, if we compare food images to other visual analysis problems like
object recognition, food classes have much higher inter-class similarity and intra-class
variability, making any food analysis problem very difficult to solve. Considering the
particular problems of food-related tasks, ingredients recognition can be of high difficulty
considering that some ingredients can be present in several textures and shapes, and
others can be invisible.

In this chapter, we argue that most tasks related to food analysis can be interconnected
(e.g. swiss cuisine, fondue and cheese). To this aim, we explore the problem of food
multi-task learning and propose a Regularized Uncertainty based Multi-Task Learning
model in which different food-related characteristics that are correlated can be predicted
from an input image: a) dish, b) cuisine, c) categories and d) ingredients (see Fig. 3.1).
One of the problems of most multi-task methods is that they do not necessarily consider
the correlations between tasks. Note that for multi-label classification problems, the rela-
tionship between labels have been studied extensively [100, 174, 105, 99]. Instead, as far
as we know, there are no proposals for multi-task learning case, where the relationship
of the labels between the different tasks being single-label or multi-label are used to reg-
ularize the predictions. Furthermore, we argue that different tasks should influence in
different degree to the overall model according to their uncertainty. To this purpose, we
propose in this chapter the following contributions:

1. We extend the model for Multi-Task Learning with Homoscedastic Uncertainty [83]
to allow single-label and multi-label classification.

2. We propose a Multi-Task regularization term that weighs existent negative and pos-
itive correlations between classes belonging to different tasks.

3. We publish a new Multi-Attribute Food dataset (MAFood-121) with more than
20.000 images and multi-task annotations, including: dish, cuisine and food cat-
egories.
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4. We propose a new metric called Multi-Task Accuracy (MTA), which measures the
prediction agreement and coherence between tasks.

We prove that our model outperforms the state-of-the-art techniques on MAFood-121
and VIREO Food-172 not only using traditional evaluation metrics, but also on our newly
proposed metric that ensures the coherence of the different tasks.

The chapter is organized as follows: in the following section, Sec. 3.2, we review the
state-of-the-art related to the most relevant food analysis problems on the computer vi-
sion field. In Sec. 3.3, we present our proposal for multi-task learning, detailing both our
model and the loss functions that we introduce for training.Then, in Sec. 3.4, we intro-
duce the multi-attribute food datasets, the MTA metric and compare the results obtained
by different methods. Finally, in Sec. 3.5, we present the concluding remarks.

3.2 Related Work

In recent years, there have been several studies focused on recognition of food categories.

Food Recognition is one of the most active topics on food-related problems. Most of
the initial studies tackling this task proposed the use of hand-crafted features based on
color, texture and shape [29, 73, 22, 112, 80]; with the exception of [175], that exploited
relationships between ingredients, using statistics of pairwise local features to perform
the recognition. All of them were evaluated mainly on datasets with too specific, or a
limited number of images. Moreover, most of them were taken in restricted conditions
[22, 175] or with up to 50 different dishes [22, 73, 80].

Lately, the emergence of Convolutional Neural Networks made possible to tackle the
problem on more challenging food datasets with a large number of images and a wide
diversity of dishes [23, 81]. A significant increase of the performance was shown com-
pared to hand-crafted features [23, 173]. Most of the results on CNNs have been obtained
using fine-tuned models based on winners of the ImageNet challenges [141], being [58,
104, 173] notable examples that improved the results by a great margin.

Instead of just fine-tuning, a different approach is proposed by [1], which fused several
CNN models and explored different fuzzy similarity measures, evidencing better results
than using a single network. Finally, Martinel et al. [111] proposed a wide-slide residual
network, which provided the best performance in two benchmark datasets, 90.27% on
Food-101, and 83.15% on UECFood-256.

Food Group Recognition can serve as a way to represent a group of dishes instead of
a particular dish. Food recognition is a complex problem due to its fine-grained nature,
which has the particularity of being a problem with a high intra-class variability and high
inter-class similarity. In [46], a food dataset with 8 categories related to restaurant menus
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was proposed. In their dataset, images depicting mixed food (e.g. second course and
side dish) were labeled with multiple labels. Instead, the work in [153, 170] adopted a
semantic categorization of food, in [170] the authors proposed a three-leveled hierarchy
of food in order to make better mistakes on the food recognition problem. The authors
of [153] proposed a new dataset with 11 categories considering the major food groups
defined by the United States Department of Agriculture. Regarding the results on Food-
11, Aguilar et at. [1] achieved the best performance by fusing three classifiers based on
CNNs.

Ingredients Recognition can be a possible solution to the high diversity of dishes existent
in the food recognition problem. Right now, there are more than 8,000 dishes (according
to Wikipedia) [20]. On the other hand, certain ingredients are not visible or are indistin-
guishable in the image. Taking into account all these challenges, few works considered
the ingredients recognition problem so far. Chen et al. in [27] proposed a model that si-
multaneously recognizes the dish and the visible ingredients. Bolaños et al. [20] tackled
the ingredients recognition problem by considering any present ingredient either visi-
ble or not. In addition, they opted for a model with a single output to avoid the loss of
generalization capabilities on unseen recipes/dishes.

Cuisine Recognition can be characterized as capturing the set of ingredients, cooking
methods and presentation of a certain region in the world. Sajadmanesh et al. [143]
showed that, due to the geographical locality of the ingredients, some of them are rep-
resentative to a specific cuisine, and thus, they play a main role to classify the cuisine
[118, 143, 155, 185]. From the computer vision point of view, an early model is proposed
by [185], which is based on high-level features detecting 16 ingredients characteristic of
certain cuisines. A more recent work [118] took into account that the information of the
ingredients, in some cases is not sufficient to classify the cuisine. Therefore, it proposed
a multi-modal framework which simultaneously modeled the visual content and textual
ingredients to tackle the problem.

Taking into account that on an image we can perform different recognition tasks, our
main goal is to propose a highly performing model that boosts prediction using the rela-
tionship between different food recognition tasks.

3.2.1 Multi-Task Learning based on CNNs

Recently, MTL approaches using CNNs have been adopted by several works to jointly
learn related tasks. Several works when applied on face or pedestrian appearance anal-
ysis tasks (e.g. facial landmark detection, human pose estimation, etc.), have shown a
significant improvement in performance [98, 108, 118, 178, 179, 187, 52]. A novel archi-
tecture that utilizes the hierarchical features from different tasks was proposed in [52].
The authors suggest that features of different CNN levels from multiple tasks are not
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FIGURE 3.2: Regularized Uncertainty-based Multi-Task Learning model
for classification of food-related tasks.

identical when the tasks are loosely related. They tackle this problem by concatenating
the features of different tasks at different CNN levels. Later, they apply a discriminative
dimensionality reduction in order to learn a discriminative feature embedding that sat-
isfies the channel size of the following CNN layers. Instead, in our case we deal with
highly related tasks. Additionally, we force the joint learning of the features from the
different tasks within the loss function by weighing tasks according to their uncertainty
and applying a class regularization term. The good results evidenced in the literature
has inspired the emergence of new food analysis works that deal with the simultaneous
prediction of two or more tasks. Zhang et al. [184] proposed a MTL based on AlexNet
CNN, to recognize three tasks: food, cooking method and ingredients. Chen et al. [27]
recognized food and ingredients simultaneously, and the authors in [42] applied simulta-
neous food recognition and calories estimation. An interesting aspect to highlight is that
with the exception of [179], previous works weighted uniformly the loss of each individ-
ual task [98, 178] or manually tuned them [27, 42, 179, 184]. In contrast, Yin et al. [179]
proposed a dynamic-weighting scheme that fixed the main task with a weight equal to
1, and learned the weights for each side-task. Although not in the food analysis field, a
completely dynamic-weighting is proposed by [83], where a multi-task loss function was
derived based on maximizing the Gaussian likelihood with homoscedastic uncertainty
for both regression and classification tasks.

3.3 Regularized Uncertainty-based Multi-Task Learning model
for food analysis

The Regularized Uncertainty-based Multi-Task Learning model (RUMTL) that we pro-
pose addresses the problem of multi-attribute food prediction. Our goal is to generate
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coherent and simultaneous recognition of different food-related attributes that are corre-
lated: 1) dish, 2) cuisine, 3) food categories and 4) ingredients. We propose tackling the
problem in a MTL deep learning framework.

3.3.1 Model Design and Activation Functions

We adopted the ResNet-50 [59] as a base for our RUMTL architecture due to the good
performance demonstrated in computer vision problems related to object detection and,
in particular, for food-related problems [1, 111, 145]. For our purpose, we modified the
original design of ResNet-50 by removing the last Fully Connected layer (FC), and instead
connected as many FC layers, as tasks we have, with a FC shared layer located at the top
of the network containing 2048 neurons (see model architecture in Fig. 3.2).

Taking into consideration that we have two different types of outputs: a) single-label
for dish and cuisine; and b) multi-label for categories and ingredients, we need to use
different activation functions in the outputs layers.

For the Single-Label tasks, we apply the softmax activation function, due to its ability to
obtain a probability distribution that enhances the single most probable class, defined as:

so f tmax( f Wt
(x)i) =

exp( f Wt
(x)i)

∑j exp( f Wt(x)j)
,

where f Wt
(x)i is the final activation of the network for the sample x on the i-th label

and the t-th task, t = 1, 2; i = 1, . . . , |C|t; where |C|t is the number of classes in task t,
which has a set of weights Wt. On the other hand, for the Multi-Label tasks, we apply
the sigmoid activation function:

sigmoid( f Wt
(x)i) =

1
1 + exp(− f Wt(x)i)

,

which provides an independent probability for each class and enables the prediction of
multiple classes [20]. From these activations, we can determine the probability that the
output yt corresponds to the target label(s) ŷt for the task t given the image x, as follows:

1. SL probability:
p(yt = ŷt|x) = so f tmax( f Wt

(x)ŷt)
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2. ML probability:

p(yt = ŷt|x) =
|C|t

∏
i

p(yt
i = ŷt

i|x)

=
|C|t

∏
i

sigmoid( f Wt
(x)i)

ŷt
i × (1− sigmoid( f Wt

(x)i))
1−ŷt

i

3.3.2 Multi-task Uncertainty-based Loss

Regarding the loss functions for the model optimization, we apply the categorical cross-
entropy for the dish and cuisine tasks, and binary cross-entropy loss for the food cate-
gories and ingredients. Note that, for SL and ML tasks the loss function is calculated as:
− log p(yt = ŷt|x).

One of the important issues in MTL concerns on how to combine multiple objectives
and train them jointly in order to capture the existent relationships between tasks. Us-
ing a manually defined weighing procedure is expensive to tune, increasingly difficult
and makes the training process both very sensitive to the parameters and also compu-
tationally inefficient. To cope with these problems, the authors in [83] proposed to use
a weighing procedure for learning and combining different tasks based on probabilistic
uncertainty modeling. In Bayesian modeling, there are two main types of uncertainty
[82]: epistemic uncertainty, related to the lack of training data, and aleatoric uncertainty
related to the missing information that our data cannot explain. The later can be divided
into 2 subcategories: heteroscedastic uncertainty (data-dependent) that is predicted as a
model output and homoscedastic (task-dependant) that varies between different tasks.

The authors in [83] proposed a MTL loss function maximizing the Gaussian likelihood
with homoscedastic uncertainty. Let f W(x) be the output of a neural network with
weights W and input x. In the case of MTL, the likelihood is expressed as: p(y1, y2, . . . , yT)

considering f W(x) as a sufficient statistics. Assuming a Gaussian distribution, the loss
expressed as a negative log likelihood L(W, σ) for each SL classification probabilistic out-
put, modeling the homeoscedastic uncertainty σ, can be approximated by [82]:

L(W, σ) ≈ 1
σ2 L(W) + log σ2,

using the softmax function as an activation function. The authors defined the MTL loss
function integrating the uncertainty along tasks as a sum of the individual multi-task
losses: L(W, σ1, ..., σT) = ∑T

t=1 L(W, σt).

In contrast to [83] in our case, we have SL as well as ML classification tasks. A straight-
forward alternative to solve the ML classification is to transform the N possible outputs
of the multi-label classification to N independent single-label binary classifiers. With this
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transformation every output value could become an independent classification task with
two labels - relevant or irrelevant (binary relevance method [186]). Then, the loss func-
tion with uncertainty based on the categorical cross-entropy might be used for the loss of
each binary classification, treating them as independent single-label tasks. However, the
binary relevance method assumes independence between outputs, which is not true in
our case. Thus, their relationship is not taken into account during the learning. Instead,
to avoid suboptimal results due to the ignorance of label correlations, we propose a loss
function with uncertainty for the binary cross-entropy. To this purpose, we derive the
uncertainty ML classification loss as follows:

L(W, σ) = − log p(yt = ŷt|x, σ)

= − log ∏
i

p(yt
i = ŷt

i |x, σ)

= −∑
i

log(sigmoid( f Wt
(

x
σ2 )i)

ŷt
i (1− sigmoid( f Wt

(
x
σ2 )i))

1−ŷt
i )

=
1
σ2 L(W) + ∑

i
log(

exp
1

σ2 f W(x)i +1

(exp f W(x)i +1)
1

σ2
)

≈ 1
σ2 L(W) + K log σ2

where L(W) is the sigmoid binary cross-entropy, and K corresponds to the number of la-
bels. Note that in order to simplify the objective function, similar to [83], in the last tran-

sition we introduce the assumption that 1
σ2 (exp

f W (x)i
σ2 +1) ≈ (exp f W(x)i +1)

1
σ2 , becomes an

equality when σ2 → 1.

Therefore, we extend the multi-task objective with homoscedastic task uncertainty for SL
and ML classification task as:

L(W, σ1, . . . , σi) = ∑
i

1
σ2

i
L(W) + K log σ2

i (3.1)

where for SL classification task, K takes a value of 1 and L(W) corresponds to the cat-
egorical cross entropy, which coincides with the SL loss expression in Kendall’s work
[83].

The advantage of this model is that it learns the relative weights, σt in a well-founded
way. The loss is smoothly differentiable and prevents the task weights σt from converg-
ing to 0. The parameters σt model the observational noise, that is, they capture how much
noise is manifested in the output. During the training process, the log likelihood is maxi-
mized with respect to the model parameters W and the observation noise parameters σt,
t = 1, ...T.
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3.3.3 Multi-task Class Regularization

In our case of food analysis, it is natural that some of the classes from different tasks can
be correlated negatively (for example, fondue is not typical for Japanese cuisine).

To this purpose, we create a task-exclusion matrix, Tkl = {tkl
ij }, i = 1, ...|C|k and j =

1, ...|C|l where:

tkl
ij =

{
-1, if class i and class j are exclusive,
1, otherwise.

To determine the class exclusions, we explored the ground-truth of the training data im-
posing the condition that if there are no examples of images from class i in task k and
class j in task l, then it will be an exclusive relationship.

In our RUMTL model, we penalize when the multi-task classification infers classes of
different tasks that are mutually exclusive (e.g. the dish goulash and the cuisine Japanese).
Thus, we define the following penalizing term:

Rk,l
− =

1
skl

|C|k

∑
i=1

|C|l

∑
j=1

max(0,−tkl
ij ) · p(yk

i |x) · p(yl
j|x)

where skl is a normalization factor defined as follows:

skl =



1, k and l are SL,

∑|C|
l

j=1 max(0,−mini(tkl
ij )), k is SL and l is ML,

∑|C|
k

i=1 max(0,−minj(tkl
ij )), l is SL and k is ML,

∑|C|
k

i=1 ∑|C|
l

j=1 max(0,−tkl
ij ), k and l are ML.

On the other hand, when the classes are not exclusive (e.g. the category pasta and the
cuisine italian), the optimization process should push the likelihood of both classes to be
as high as possible. Note that this case covers as positive correlation as no correlation
between classes. To this purpose, we introduce a second term defined as follows:

Rkl
+ =

∑|C|
k

i=1 ∑|C|
l

j=1 ŷk
i ŷl

j(1− p(yk
i |x) · p(yl

j|x))

∑|C|
k

i=1 ∑|C|
l

j=1 ŷk
i ŷl

j

where:

ŷt
c =

{
1, if x belongs to class c from task t,
0, otherwise.
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Finally, we define the regularization term as a weighed sum of R− and R+:

R =

(
T
2

)−1 T−1

∑
k=1

T

∑
l=k+1

(αRkl
− + βRkl

+)

where α and β look for a trade-off between both terms. In our case, without loss of
generality, we used α = 0.5 and β = 0.5. Note that due to the regularization term, if
two classes from different tasks are not likely to occur together (that is in some way they
are exclusive and in this case, tk,l

i,j = −1), but the classifiers obtain high probabilities
(p(yk

i |x) · p(yl
j|x) is high), the regularization term will penalize the loss function. On the

other hand, if for a given sample x, there is a clear relation between the classes and at the
same time there is no exclusive relation between classes (tk,l

i,j = 1), the regularization term
will try to push the likelihood of the most probable classes close to 1. The final definition
of the loss function becomes:

L(W, σ, γ) =
T

∑
t=1

(
1
σ2

t
Lt(Wt) + K log σ2

t ) + γR (3.2)

where γ is a parameter to weigh the importance of the regularization term (γ = 1, in our
case).

To sum up, the proposed regularization allows to guide the joint learning of the differ-
ent tasks considering two factors: the negative (R-) and non-negative (R+) correlation
between the classes of different tasks.

• For R-, first of all we must build the task-exclusion matrix from the training data.
With this we can determine during the training, if two classes of different tasks are
correlated or not. In case the prediction of the model obtains uncorrelated classes,
the regularization factor will increase the value of the loss function. As it can be
inferred, the model will tend to generate fewer incoherent predictions, but it does
not assure us that the prediction really will be correct to the image. For this, we
propose the second term of the R+ regularization.

• The term, R+ does not need to use the exclusivity matrix, but considers the ground
truth of the image. The aim is to obtain the highest possible probability given by the
model to the ground truth of the image for the different tasks, so it will be penalized
as long as this probability for the ground truth labels is less than 1.

• When using both terms together we have found a balance between the improve-
ment of the performance and the coherence of the output between the different
tasks.



3.4. Experimental Results 29

3.4 Experimental Results

In this section, we first present the datasets used, second we describe evaluation mea-
sures, third we present the experimental setup and then we describe the results obtained
with the proposed RUMTL approach compared to using single-task models.

3.4.1 Multi-Attribute Food Datasets

In order to justify the results and prove the advantages of our newly proposed multi-
task framework, we need a challenging datasets with multiple food-related attributes. In
[114], different sets of data with annotations of different tasks were used. However, this
is not suitable for building a multi-task model, which requires a single set of data with
the annotations for all the tasks. The only publicly available multi-task food dataset is
VIREO Food-172 [27], which has annotations for two tasks (dish and ingredients). To
highlight the benefits of our approach considering at the same time more realistic multi-
task problems, we propose a new dataset with three complementary tasks that have not
been exploited so far, two single-label tasks (dish and cuisine) and one multi-label task
(food group/categories).

MAFood-121.

We built and make public here a dataset of food images comprising 3 different tasks:
a) dish, b) cuisine and c) categories. It consists of 21.175 images, distributed as 72.5%
for training, 12.5% for validation and 15% for test. We named the resulting dataset as
MAFood-121. Both dish and cuisine can take only one value per image, while categories
have multi-label annotations. In order to choose the images to include, we selected the
top 11 most popular cuisines in the world according to Google Trends (www.google.com/
trends) (see Fig. 3.3). For each cuisine, 11 traditional dishes were chosen. In total, the
dataset consists of 121 dishes, where each one belongs to at least one of the following
10 food categories: Bread, Egg, Fried food, Meat, Noodles/Pasta, Rice, Seafood, Soup,
Dumpling and Vegetable. 8 of the 10 categories used coincide with those proposed by
[153]. Regarding the food classes, the images were collected from 4 different sources, 3
of them were the public datasets Food-101[23], UEC-Food256[81] and Turk-15 [56]. To
reduce the bias that could be present due to the different amount of images per dish, we
selected a maximum of 250 images for each one. Regarding Food-101, 250 images were
collected from the original test set. As for UEC-FOOD256 and Turk-15, the images were
randomly chosen.

For our purpose, it was necessary to collect 38 new dishes along 5 different cuisines from
Google Search Engine, because the existing public food datasets consist mainly of food
images of a specific geographic region [23, 56, 81]. We restricted the search to the country

www.google.com/trends
www.google.com/trends
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FIGURE 3.3: Examples of images from the MAFood-121 dataset divided in
the 11 different cuisines considered.

that represents a specific cuisine and also restricted their minimum sizes to 256 pixels
per side. For each dish, 200 images were downloaded and, following the procedure in
[23], all images were rescaled to have a maximum size of 512 pixels. The images acquired
were reviewed to remove those with explicit copyright, duplicates, and also those that
are not representative of the respective dish. To achieve this, we first applied the au-
tomatic food/non-food classifier proposed by [2], and then we manually inspected the
remaining images. Consequently, an average of 119 images were obtained per dish. Af-
ter gathering the images from 11 cuisines and their respective 121 different dishes, we
manually labeled the food categories for each image considering the visible ingredients.
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VIREO Food-172.

This public multi-task dataset consists of 172 popular chinese dishes collected by Baidu
and Google image search. VIREO Food-172 has annotations for two tasks: dishes and in-
gredients. For the last one, the authors only consider the annotation of visible ingredients
among 353 ingredients labels, with an average of 3 ingredients per image. In total, the
dataset contains 110, 241 images corresponding to 172 dishes and 353 ingredient labels,
distributed as 60% for training, 10% for validation and the remaining 30% for testing.

3.4.2 Metrics

In order to evaluate the performance for each individual task, we chose four standard
measures frequently used: Overall Accuracy, for SL; and Recall, Precision and F1-score (F1),
for ML. However, these measures do not reflect the quantity of samples asserted by all
the tasks at the same time. To this purpose, we propose a new and more strict measure,
we name Multi-Task Accuracy (MTA), which represents the ratio of images correctly clas-
sified by all tasks at the same time (i.e. measures the prediction agreement and coherence
between tasks). We formally define the MTA measure as follows:

MTA =
1
N

N

∑
i=1

T

∏
t=1

|ytrue
i,t ∩ ypred

i,t |

|ytrue
i,t ∪ ypred

i,t |
,

where |.| stands for the cardinality for both label sets ground-truth (ytrue) and predictions
(ypred), N and T denote the number of images and tasks, respectively. Note that the
denominator specially has sense for the ML data, since it allows to obtain 1 for a special
i and j, iff all ML predicted and ground-truth labels coincide.

Note that MTA allows us to evaluate the performance of Multi-task classifiers as a whole.
If we have different classifiers with the same performance with respect to the individual
tasks, it does not ensure that they provide the same results because the errors of each task
can come from different images. We believe that it is of interest to have classification that
concentrates the tasks errors in the same images in order to get consistent outputs. In this
sense, MTA can help to identify better classifiers even when F1 and accuracy are similar
for each task. We illustrate it with the following example: suppose we have classifiers C1

and C2, and images I1 and I2, both with the same accuracy for tasks T1 and T2, but with
different classification results. C1 mis-classifies both tasks for I1, and C2 mis-classifies I1

for T1 and I2 for T2. Thus, C1 obtains 50% and C2 a 0%, with respect to the MTA metric.
Therefore, despite having the same accuracy, the classifier C1 produces more coherent
results among tasks. Let us consider another example: C1 (accuracies 0.8 and 0.8) and
C2 (accuracies 1.0 and 0.6). Let us assume that both tasks are single-label and focus on
which data/images the error is produced. In this case, MTA(C1) will be equivalent to
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MTA(C2) only when the 0.2% Acc. error of each task occurs in different images. In the
rest of the cases, MTA(C1) > MTA(C2), while MeanAcc(C1) = MeanAcc(C2). In other
words, if we consider that 100 images were predicted by both algorithms, C2 will have
inconsistencies in 40 of them, and in the best case C1 will produce only 20 completely
misclassified images and all the rest will be correctly classified. Therefore, if we did not
consider the data (images) and only looked at the global results, with C1 we would have
less misclassified data when considering the coherence between the tasks predictions.
Note that the MTA is a lower bound metric of the classical definition of the accuracy of
multi-task learning (Mean Acc) i.e. improving MTA leads to improve the accuracy too.
In other words, the maximum MTA value achievable is equal to the Mean Acc. When
classifications for all tasks are correct for most of the samples: MTA is close to Mean Acc.
However in the case that at least one of the tasks is misclassified for most of the samples:
MTA tends to 0.

Furthermore, considering the human factor when analyzing the results obtained by a
multi-task classifier, MTA allows us to obtain a higher acceptance rate by the end users.
To illustrate it, imagine a scenario where we should show the performance of our multi-
task model to an end user having two tasks (T1 and T2). On the one hand, if our classifier
is wrong on at least one task (MTA=0.0, Mean Acc=0.5), the user usually perceives the
outputs as wrong. For instance, a sample with GT dish (T1) = "spaghetti carbonara"
and food group (T2) = "pasta" is correctly predicted as dish (T1): "spaghetti carbonara"
but misclassified as food group (T2): "meat"; it would be difficult that the end-user per-
ceives the model as well-performing. On the other hand, if our classifier obtains coherent
predictions among tasks, both T1 and T2 will be either both correct or both incorrect
(MTA=0.5, Mean Acc=0.5). Thus, the user will perceive as correct at least the predictions
that provide task coherence, providing a better user acceptance rate of the model.

Summarizing, MTA is a stricter measure of performance that opens room for new re-
search distinguishing data where all classifiers have difficulties to learn from data where
some of the classifiers achieve to learn, that could be an indicator for the quality of the
data. Hence, providing more specific metrics with respect to the performance of tasks
and classifiers (like MTA) will allow to study in the future the different kinds of errors
present (epistemic, homoscedastic or heteroscedastic) and thus, ease the improvement of
the model.

3.4.3 Experimental setup

We trained end-to-end a CNN architecture (see Fig. 3.3) using the proposed multi-loss
function in Eq. (3.2) optimized with Adam. Note that the number and type of output
layers of our model depend on the attributes considered for each dataset (MAFood-121,
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Vireo Food-172). In total, four multi-task configurations applying different σ and γ pa-
rameters were evaluated. Additionally, single models focused on a specific task were
trained for comparative purpose. The models are named as follows:

1. Single-task models: These models trained independently for each task are considered
as a baseline.

2. MTL (σi = 1, γ = 0): "Base" MTL model with the weights of tasks losses uniformly
distributed.

3. RMTL (σi = 1, γ = 1): "Base" MTL model with the weights of tasks losses uniformly
distributed and the proposed regularizing term.

4. UMTL (σi = d, γ = 0): MTL model with uncertainty-modeling weights.

5. RUMTL (σi = d, γ = 1): MTL model with uncertainty-modeling weights and the
proposed regularizing term.

As for training, first all models were pre-trained on the ILSVRC dataset. Then, we re-
trained the models during 100 epochs with a batch size of 20, and a learning rate of
2e − 4. In addition, we applied a decay of 0.2 every 8 epochs. The training was done
using Keras with Theano as backend.

Regarding the weighting of losses, in order to smooth out the difference in the magni-
tudes of the losses between the SL and ML tasks, we assign an initial weight of 1 for
SL tasks and 0.1 for ML task in MAFood-121 and 1 for SL task and 0.02 for ML task
in VIREO Food-172. Specifically for the models UMTL and RUMTL, the loss weights
are updated dynamically considering the uncertainty obtained by minimizing the tar-
get function L(W, σt, γ) in each epoch using Adam optimization . Note that the σt were
initialized to 1.

3.4.4 Results

In order to evaluate the performance of our approach in MaFood-121 dataset, we trained
four variants of our model by changing the σ and γ values. In addition, we trained a
set of single-task models for each task as baseline models. When σ takes the value 1, it
implies a naive weighted sum of losses. On the other hand, when σ = d, it implies the
use of uncertainty weighted of the losses. As for γ, it can take the values 1 or 0, whether
we apply the proposed regularizing term or not. The results obtained for all the models
for each task are shown in Table 3.1. Different measures were used depending on the
nature of the tasks. In the case of ML, we show the results in terms of Pre, Rec and F1

score. However, these measures mean the same in the case of SL multi-class approaches
[128]. Therefore instead, we show the results with overall accuracy measure. In addition,
we show the coherence of the results obtained among the individual tasks based on the
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TABLE 3.1: Results of the different variants of our model compared to the
use of single-task models on MAFood-121 dataset.

Dish Cuisine Categories
Acc Acc F1 Pre Rec MTA

Single-task 82.50% 85.71% 82.98% 84.15% 81.83% 62.45%
MTL 83.73% 88.23% 83.74% 86.38% 81.26% 67.05%
R−MTL 83.76% 88.79% 83.81% 87.29% 80.59% 67.22%
R+MTL 82.85% 88.01% 84.09% 86.16% 82.11% 67.24%
RMTL 83.35% 88.86% 84.27% 86.57% 82.09% 67.65%
UMTL 83.47% 88.92% 84.55% 86.61% 82.58% 68.22%
RUMTL 83.82% 88.35% 85.02% 86.40% 83.69% 68.85%

TABLE 3.2: Results of our proposed model compared to the use of single-
task models on VIREO-172 dataset.

Dish Ingredients
Acc F1 Prec Rec MTA

VGG [27] 80.41% 60.81% - - -
ResNet-50 84.67% 76.62% 81.35% 72.40% 62.96%
Arch-D [27] 82.06% 67.17% - - -
MTL 84.34% 70.79% 79.28% 63.94% 56.69%
RUMTL 85.19% 76.87% 81.30% 72.89% 64.99%

MTA measure. The latter is applied on the multi-task models and also on all single-task
models considering them as a unified model. In general terms, the variants of multi-task
models were able to improve the performance on all tasks. Furthermore, according to
the MTA metric, the application of the regularization term proposed together with the
uncertainty weights allows us to jointly guide the learning of the tasks, with which we
obtained better and more coherent results, achieving a total improvement of around 7%
with respect to the single task models. Note that, the influence of the both terms of our
proposed regularization can be easily seen from R−MTL and R+MTL when we compare
the results obtained with respect to MTL in the food categories task for precision and
recall metrics. In the case of R−MTL, the precision increases, but the recall decreases,
on the contrary, for R+MTL the recall increases, but the precision decreases. Integrat-
ing both terms (RMTL model) we are able to balance their contributions achieving an
improvement with respect to the MTL of 0.6% considering the MTA score. The bene-
fit of the regularization also is evidenced when the uncertainty is included (UMTL vs
RUMTL), in this case the performance is improved by 0.63%.
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FIGURE 3.4: Success (top 3) and failure (bottom) cases of RUMTL on
MAFood-121.

FIGURE 3.5: Success (top 3) and failure (bottom) cases of RUMTL on Vireo-
172.
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FIGURE 3.6: From left to right: Loss values and task uncertainty (σ2) for
the dish, cuisine and food families tasks obtained during the training of

the RUMTL model on MAFood-121.

The results obtained with our proposed model RUMTL in VIREO Food-172 dataset can
be seen in Table 3.2. In the same way to the results obtained in MaFood-121, our proposed
model shows a better performance when it is evaluated for each task independently.
Furthermore, despite the slight difference in the performance of the individual tasks of
our proposal compared to single models based on ResNet-50 for each tasks, when we
evaluate the joint classification (MTA metric), the result is about 2% better for our model
RUMTL. Keep in mind that the MTA metric allows us to know what the behavior of the
models is considering the performance achieved for all tasks in each image. Therefore,
despite of single tasks are slightly worse, it is possible to have a large difference in MTA
when the errors for each task are present in different images. This claims that if we want
a system to simultaneously predict more than one task at once, RUMTL provides much
better results than using single-task models.

We illustrate the results obtained for our proposed model on MAFood-121 (see Fig. 3.4)
and VIREO Food-172 (see Fig. 3.5) datasets. In both cases, the good performance achieved
(top 3 dishes) is observed on very diverse dishes. Furthermore, when our method fails,
the results of the different tasks maintain a coherence (bottom image on MaFood-121)
or are wrong but provide coherent predictions considering the image at hand (bottom
image on VIREO Food-172). Finally, in Fig. 3.6 and Fig. 3.7, we show the loss functions
evolution and uncertainty obtained for each task during training of the RUMTL model
on MAFood-121 and VIREO Food-172 datasets respectively.
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FIGURE 3.7: Loss values and task uncertainty (σ2) for the dish (left) and
ingredients (right) tasks obtained during the training of the RUMTL model

on VIREO Food-172.

3.5 Conclusions

In this chapter, we proposed a new model for MTL that improves the coherence of the
outputs compared to the single-task models by testing it on two food datasets. The im-
provement is achieved by modeling the uncertainty in the proposed MTL method, ex-
tending the proposal of Kendall [83] to allow SL and ML classification, as well as the
incorporation of a MTL regularization term in the loss function. RUMTL allows an end-
to-end training with automatic optimization of tasks weights. Furthermore, we publish
a new dataset for multi-attribute food analysis and a new metric for measuring tasks
coherence to serve as a basis for future works in MTL and food analysis fields.





39

Chapter 4

Uncertainty-aware hybrid classifier
for food recognition

4.1 Introduction

Nowadays, there exists in the literature a large number of food image datasets to perform
food recognition [81, 23, 56]. However, if we take into account the most common foods in
all over the world, the amount provided by these datasets remains low compared to those
needed for a real food recognition application, where thousands of different food classes
are required. On the other hand, Convolutional Neural Networks have shown promising
results in several Machine learning and Computer Vision tasks, and particularly in large-
scale object recognition problems. Despite this, the model performance is affected by
two factors [109]: 1) the number of classes that will be recognized and 2) the number
of images that belong to each class. Some samples of the aforementioned classes can be
seen in [181], where the proposed model decreases the performance in about 10% when
compared the results of cifar-10 [90] with cifar-100 [90]. The same effect can be seen in
the food domain, where a reduction of 7% is shown in [111] when compared the results
on 100 food classes recognition in UECfood-100 [112] with respect to the recognition of
256 classes in UECfood-256 [81]. This suggests that single CNN models are not easily
scalable, being not able to recognize a large number of food classes well enough.

In general, the strategies solving classification problems can be grouped in two ways
[152]: 1) flat classification approach, where a single model is trained for all classes to
be predicted (see the right part of Fig. 4.1), and 2) hierarchical classification approach,
where the classes to be predicted are organized into a class hierarchy (see the left part of
Fig. 4.1). As for the latter, there are three types of local classifiers to perform the predic-
tions [152]: 2.1) Local Classifier Per Node Approach (LCN), where a binary classifier for
each node of the class hierarchy must be trained; 2.2) Local Classifier Per Parent Node
Approach (LCPN), where multi-class classifier for each parent node in the class hierar-
chy must be trained to distinguish between its child nodes; and 2.3) Local Classifier Per
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FIGURE 4.1: Illustration of a class hierarchy for a Local Classifier per Parent
Node and Flat Classifier approaches on MAFood-121 dataset. A, A1-A11

and B denote the classifiers for the nodes shown within each rectangle.

Level Approach (LCL), where a multi-class classifier is trained for each level of the class
hierarchy. In the food image domain, few approaches based on hierarchical classifica-
tion have been proposed. One of them proposed a hierarchical approach incorporating
an LCL strategy to ensure error closer to the real class when there is miss-classification
[170]. The other one proposed hierarchically organizing several combinations of features
(Color, HoG, LBP) with aims to find, for each class, the optimal combination for classifi-
cation [132]. One of the main problems of hierarchical classification approaches is being
prone to inconsistency (see Table 4.1). In the LCPN case, parent-child error propagation
affect directly to the final prediction. To illustrate it, we can see the left part of the Fig.4.1.
Let us consider A as the cuisine classifier, and A.1 to A.11 are local dish classifiers. Given
an input image x, if classifier A miss-classifies the cuisine type of x like C11, the dish
recognition (A.11) automatically will be wrong because the only labels provided by this
classifier are from D111 to D121. Aiming to reduce the error propagated for the LCPN
approach, we propose to classify with this strategy those predictions that are highly con-
fident, and the remainder ones to classify with a flat classification approach. The likely
good predictions may be identified by complementing the decision of the local classifier
for the parent node with the most probable child node obtained from the analysis of Epis-
temic Uncertainty (EU). The EU captures the ignorance about which model generated the
collected data [82], and therefore, the analyses of the EU can be a key clue to identify the
correct local classifier for the child node. This is due to the fact that it is highly likely that
we get a low uncertainty in the cases where the image to be predicted belongs to some
class for which it was trained.

Our main contributions of this work are as follows: 1) we provide an epistemic uncertainty-
based method, which integrates and takes advantage the benefits of two classification
approaches: LCPN and flat; 2) we propose criteria to decide when to apply a local or flat
classifier; and 3) we demonstrate the effectiveness of the proposed approach with three
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TABLE 4.1: Advantages and disadvantages of traditional classification ap-
proaches and our proposal.

Characteristics Flat LCN LCPN LCL Our
Ignore the class hierarchy yes no no yes no
Number of classifiers 1 high medium low medium
Prone to inconsistency no yes yes yes LT LCPN
Uncertainty-aware method no no no no yes

different methods of estimating EU, minimizing in all cases the propagation of parent-to-
child errors produced in an LCPN approach, as well as improving classification perfor-
mance with respect to the flat approach.

4.2 Related Work

Our proposal fits in the middle of two research fields, namely: 1) Food recognition and
2) Uncertainty estimation.

4.2.1 Food recognition

Food recognition is a challenging problem of object recognition that is characterized by
its high intra-class variance and low inter-class variance among the food classes. To
tackle this problem, deep learning features have proven to be much more effective than
hand-crafted features [23, 173]. Consequently, researchers in recent years have addressed
food recognition through classifiers based on CNNs, primarily by fine-tuning models
pre-trained on ImageNet [104, 58, 1, 111, 89, 161]. Instead of just fine-tuning, more so-
phisticated approaches have been recently proposed in the best performing models of
the state-of-the-art [111, 71, 189]. The WISeR architecture that combines two network
branches was proposed in [111]. One branch is a Wide Residual Networks (WRNs) to
extract the traditional food traits and the another one a custom slice network to capture
the vertical structure of food images. On the other hand, in [71], a Multi-Scale Multi-View
Feature Aggregation (MSMVFA) scheme was presented to capture semantic information
from food images, composed by three different types of features: 1) high-level semantic
features, from the output layer of a categorical network; 2) mid-level attribute features,
from the output layer of ingredients network; and 3) deep visual features, from the layer
before the output layer of a categorical network. Lastly, an efficient and accurate method
has been proposed in [189], which consists of a compact network trained jointly, based
on the knowledge distillation [62], to generate a high food recognition method applica-
ble to mobile devices. Although the aforementioned methods have provided promising
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results on popular food benchmark datasets [23, 81, 27], these datasets are not represen-
tative enough to a real food recognition application, where we would need thousands of
different foods that are eaten in all over the world.

FIGURE 4.2: Main scheme of the proposed method, which shows the pro-
cedure performed when the predictions in the first level of the hierarchy
are equal to 1. The suffix wod denotes the prediction with the dropout
turned off, wd denotes the prediction with the dropout turned on, the
terms SO, MSO and EU, denote Softmax Output, Mean Softmax Output

and Epistemic Uncertainty.

4.2.2 Uncertainty estimation

In Bayesian modeling, the uncertainty can be divided in two types [82]: aleatoric (data-
related) uncertainty, stemming from the missing information that our data cannot explain
and epistemic (model-related) uncertainty, due to the lack of enough training data. The
model uncertainty can be captured from a Bayesian Neural Network formulation. How-
ever, the exact Bayesian inference on the weights of a deep neural network is intractable
due to the non-linear activations between consecutive layers [19, 50, 146]. Instead, ap-
proximation techniques such as variational Bayesian methods [19, 50, 121, 107] can be
used. From these techniques, MC-dropout [50] is the most popular one due to its simple
implementation and minimum adjustment required in the network design. An alterna-
tive of BNN is the method proposed by [94] that, motivated by the fact that dropout
may be interpreted as an ensemble model combination [154], also proposed a simple
method providing comparable or even better results than BNN, by applying a deep en-
semble to uncertainty estimates. Evidential Deep Learning (EDL) [146] is another pow-
erful method, based on the Theory of Evidence [37, 74], where a Dirichlet distribution on
the class probabilities is employed to quantify belief masses and uncertainty in classifica-
tion tasks.
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4.3 Method for Uncertainty-based Hybrid Classification

In this section, we explain in detail the steps involved in the proposed approach, which
considers local and flat classifiers to provide the final image prediction. In the following
subsections, we first explain the pipeline of our proposed prediction framework, second
we describe the quantification of EU by different considered methods and finally we
comment on some considerations that must be kept in mind in CNN models.

4.3.1 Prediction by integrating local and flat classifiers

Let us consider the LCPN approach represented as a tree structure, where each non-leaf
node (parent node) has an associated local classifier cp to recognize its nci child nodes.
The final (leaf node) image prediction is chosen following a pathway of the most probable
parent nodes, according to the classifications given by all cp. As well-known, one of the
main problems with this approach is the parent-to-child error propagation, that is, if the
parent node is incorrectly classified, the prediction of the leaf node will be wrong. To
reduce this problem, we propose criteria, based on the EU analysis, to decide whether
the input image will be classified by a local or flat classifier. Our aim is to perform the
classification by the LCPN approach only when the prediction given for all local parent
classifiers is likely to be correct. Otherwise, the classification should be performed by a
flat classifier. Our criteria are defined as follows:

• The 1st criterion consists of comparing the predicted label of the parent classifier cl
p

(with dropout turned off) with respect to the label given through the analysis of the
EU along the child classifiers cl+1

p , where l denotes the level of the hierarchy and
takes values between 0 to L − 1. Regarding the EU analysis, the process consists
of estimating the EU of the input image using each cl+1

p and, from this, determine
the image label according to the label of the parent node corresponding to the cl+1

p

which provides the least uncertainty. We use the LCPN to perform the classification
if both predictions are the same.

C1 :pred(so f tmax( f W(xt))) = pred({. . . , EUi(xt), . . . })

• The 2nd criterion is similar to C1, but this criterion considers the average of several
softmax outputs, using the cl

p with dropout turned on, to determine the prediction.
The idea is to focus on those predictions that remain stable despite disabling any
connections between neurons, and then compare them to the predicted label from
the EU analysis.

C2 :pred(so f tmax( f W(xt))) = pred({. . . , EUi(xt), . . . })
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• The 3rd criterion is the strictest of our proposed criteria, where both C1 and C2
must be met to perform the classification with LCPN.

C3 :C1 ∧ C2

• The 4th criterion is the most flexible of all criteria, where C1 or C2 must be met to
perform the LCPN classification.

C4 :C1 ∨ C2

An example of the proposed prediction scheme can be seen in the Fig.4.2. To perform the
prediction first, we must train all the models required for both approaches (LCPN and
flat) and also the models used to estimate the EU, which may not necessarily be the same
as those used for the LCPN predictions. Then, the final prediction is determined using
one of the proposed criteria (in this case, C3). Since all predictions provide the same
label, the final prediction is given by the respective cl+1

p with dropout turned off. Note
that we illustrate the scheme for two levels of hierarchy, but it can be easily extended to
more levels.

4.3.2 Epistemic uncertainty estimation

The analysis of EU corresponds to a key element of our scheme (see green part of the Fig.
4.2). For this purpose, we consider the application of three simple but efficient methods:
MC-dropout, Deep Ensemble and EDL. All of them quantify the EU through the entropy
measure of the output probabilities, which is defined as follows:

EU(xt) = −
C

∑
c=1

p(yc = ŷc|xt) ln(p(yc = ŷc|xt)), (4.1)

where xt denotes the input image, C is the number of classes, yc is the predicted class and
ŷc is the ground-truth.

Note that p(yc = ŷc|xt) used to estimate the EU depends on the method chosen:

• In the case of MC-dropout sampling, p(yc = ŷc|xt) is obtained by performing K
times predictions to the input image using the same classifier with the dropout
turned on. Then, the average of the K softmax outputs provides the predictive
probability for each class (see Equation (4.2)):

p(yc = ŷc|xt) =
1
K

K

∑
k=1

pk(yc = ŷc|xt). (4.2)
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• As for the Deep Ensemble method, p(yc = ŷc|xt) is calculated from K predictions
on the input image, where K corresponds to the number of classifiers used in the
ensemble. The pk(yc = ŷc|x) given by all classifiers are averaged and then, in the
same way as MC-dropout, the predictive probability is given by Equation (4.2).

• Finally, with respect to the EDL, unlike MC-dropout or Deep Ensemble, we need
just one prediction to estimate p(yc = ŷc|xt). Different from the previous meth-
ods, EDL classifiers do not directly provide prediction as probability because their
architecture does not allow a softmax activation in the output. Instead, the logis-
tic output ( f W(xt)) for a sample xt represents the evidence vector predicted by the
network. Then, the estimation of the class probability is given by the following
equation:

p(yc = ŷc|xt) =
αi

∑C
i=1 αi

, (4.3)

where αi = f W(xt) + 1 corresponds to the parameters of the Dirichlet distribution.

4.3.3 CNN Model

In order to use the proposed scheme, we must consider two aspects in the architecture
of the classifiers. The first applies to all the classifiers to be used in the LCPN approach,
which consists of using CNN models with a dropout layer after each hidden fully con-
nected layer. The second one, required to quantify the EU based on EDL method, corre-
sponds to the application of an activation to ascertain non-negative output [146]. For the
latter, we use a RELU activation.

4.4 Experiments

In this section, we first describe the datasets, second we show the experimental setup and
finally we describe the results.

4.4.1 Datasets

The proposed method is validate in two public food datasets:

MAFood-121 [3] is a multi-task food image dataset comprising 3 related tasks: a) dish, b)
cuisine, and c) categories/food groups. The dataset consists of 121 dishes from the top
11 most popular cuisines. In total, 21.175 images are gathered from 4 different sources,
3 public food datasets [23, 81, 56], and Google Search Engine. As for the distribution,
72.5% of the images are used for training, 12.5% for validation and 15% for test. Regard-
ing the experiments, we consider all the images with their dish and cuisine annotations,
respectively.
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Food-101 [23] is one of the most popular food datasets, with 101 international food classes
and 1,000 images each. The dataset is distributed with 75% of the images for training and
the rest for testing. Unlike MAFood-121, this dataset only has the annotations for the
class name. Since our method requires a hierarchical annotation architecture, we added
a new one that groups dishes into a high-level attribute called food group (see Sec.4.4.2).

4.4.2 Experimental setup

In order to evaluate our method, we adopt ResNet-50 [59] as the base CNN architecture
for all the classifiers. This model was modified by removing the output layer, and instead,
we added one hidden fully connected layer of 2048 neurons, followed by a dropout layer
with a probability of 0.5 and finally an output layer with softmax activation.

For our experiments, since the tree structure for the LCPN in the target datasets has three
levels (see Fig. 4.1), we denoted three types of classifiers: 1) Local Parent Classifier (LPC),
corresponding to the classifier trained for the first level of the hierarchy; 2) Local Child
Classifiers (LCCs), corresponding to the classifiers trained for the second level; and 3)
Flat, the classifier trained on all leaf nodes. Specifically, these types of classifiers were
trained for the following purposes:

1. LPC: CNN Model to perform the cuisine (MAFood-121) or food group (Food-101)
classification.

2. LCC: CNN Model to perform the local dish classification. In the MAFood-121 case,
for the cuisines: American (am), Japanese (ja), Italian (it), Greek (gr), Turkish (tu),
Chinese (ch), Mexican (me), Indian (in), Thai (th), Vietnamese (vi) and French (fr).
In the Food-101 case, for the food groups: Egg, Soup and Pasta (fg1); Seafood,
Rice, Fried food (fg2); Bread, Dip and Dumpling (fg3); Meat, Vegetable and Dairy
products (fg4); and Dessert (fg5).

3. Flat: CNN Model to perform the flat classification on all the dishes.

Regarding the neurons used in the output layer, they were assigned by the number of
child nodes of the respective parent node. In the MAFood-121 case, there were 121 neu-
rons for the Flat model and 11 for the LPC and LCC models. As for Food-101, there were
101 neurons for the Flat model, 5 for the LPC and 20 for the LCC models from fg1 to fg4
and 21 for fg5.

With respect to the models used to estimate the EU, the same LCC models trained for the
LCPN were used for the MC-dropout method (with K = 100). For the Deep Ensemble,
we trained the LCC models five times with the same training parameters, but changing
the initialization of the weight and shuffling the input images. For the EDL case, we
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TABLE 4.2: Cuisine classification results on MAFood-121 in terms of accu-
racy taking into account only the minimum entropy criterion.

Cuisine MC-dropout Deep Ensemble EDL
am 55.30% 71.46% 74.49%
ch 49.81% 48.25% 78.72%
fr 43.39% 80.34% 62.80%
gr 40.31% 71.20% 68.06%
in 50.00% 61.58% 85.18%
it 42.42% 62.09% 76.27%
ja 62.77% 70.57% 68.05%
me 64.54% 75.72% 64.21%
th 46.77% 66.67% 59.68%
tu 80.09% 86.06% 67.89%
vi 59.59% 71.50% 83.73%
all 54.09% 69.59% 71.73%

replaced the base architecture output layer with a RELU output layer, and then trained
once the LCC models like in Deep Ensemble.

Concerning the loss function, we used the categorical cross-entropy loss, for the majority
of the models, with the exception of the models trained to estimate EU by EDL. In this
case, Equation (5) defined in [146] was applied. For both losses, the Adam optimizer was
selected.

As for the training process, the Flat model was re-trained from a pre-trained model on
ImageNet [91], during 50 epochs with a batch size of 32, and an initial learning rate of
1e− 4. With respect to the LPC and LCC models, they were re-trained just on the layers
after the last convolutional layer from the pre-trained Flat model, during 32 epochs with
a batch size of 32, and an initial learning rate of 1e− 5. In the case of the EDL models, we
did not apply decay. Otherwise, we applied a decay of 0.5 every 8 epochs. Regarding the
data augmentation process, traditional strategies like random crops and horizontal flips
were applied. The training was done using Keras with Tensorflow as backend.

Finally, the standard metric for object recognition, overall Accuracy was used to evaluate
and compare the proposed method with respect to both approaches: LCPN and Flat.

4.4.3 Results

In this section, we present the results obtained on the MAFood-121 and Food-101 by the
LCPN and Flat classification approaches individually, and also by our proposed method,
which integrates both approaches during image prediction.

Regarding MAFood-121, to determine the cuisine to which the image belongs, our ap-
proach contemplates the EU analysis of a particular image when it is sent to numerous
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TABLE 4.3: Results on MAFood-121 in terms of Accuracy.

Cuisine Local Flat Overall
Approach EU method #Imgs Acc #Imgs Acc #Imgs Acc Acc
GT+Local - 3177 100.00% 3177 89.61% - - 89.61%
LCPN - 3177 87.19% 2770 91.71% - - 79.96%
Flat - - - - - 3177 81.37% 81.37%
our MC-dropout 1579 96.96% 1531 96.08% 1598 70.21% 81.62%
our Deep Ensemble 2039 96.34% 1967 96.68% 1138 62.89% 81.62%
our EDL 2095 96.24% 2019 96.50% 1082 61.74% 81.52%

FIGURE 4.3: Samples of the Smallest and Largest EU within the same food
class.

local classifiers, one for each type of cuisine. The fact that the EU is explained with suffi-
cient data suggests that if the features extracted from an input image are similar to those
learned by a model, EU should be small, implying that this image most likely belongs to
one of its classes.

Just analyzing the EU, we can achieve impressive results in cuisine prediction (see Ta-
ble 4.2), but far from what a local classifier provides. The cause is because the shared
features among different cuisines harm the prediction based on the EU. For this reason,
we consider EU as a complement to the cuisine recognition classifier, rather than directly
applying it to determine the cuisine of the image. The same occurs in Food-101, but for
the food group classification.

The cumulative distribution function (CDF) for the entropy of the predictive out-of-
distributions and in-distribution for six local cuisine classifiers can be seen in the top and
bottom rows of Fig. 4.4 respectively. The estimated entropy considers all images in the
test set that belong to a different (out-of-distributions) or equal (in-distribution) classes
contemplated for the training of each local classifier. As expected, we can see that the
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FIGURE 4.4: CDF for the entropy of the predictive distributions on the
out-of-distribution (1st & 2nd row) and in-of-distribution (3rd & 4th row)

cuisines on MAFood-121.

EU tends to be small when the test images are similar to the images used in the classifier
training (see bottom of Fig. 4.4). However, despite belonging to the same distribution, it
is possible to obtain high value for the EU. We illustrate the latter in Fig. 4.3, where we
show a sample for some classes in which we get the largest and smallest estimate of EU.



50 Uncertainty-aware hybrid classifier for food recognition

TABLE 4.4: Results on Food-101 in terms of Accuracy.

Food Groups Local Flat Overall
Approach EU method #Imgs Acc #Imgs Acc #Imgs Acc Acc
GT+Local - 25250 100.00% 25250 87.96% - - 87.96%
LCPN - 25250 91.90% 23205 89.49% - - 82.24%
Flat - - - - - 25250 83.26% 83.26%
our MC-dropout 11611 94.03% 10918 88.62% 13639 83.22% 83.28%
our Deep Ensemble 20534 97.00% 19918 93.74% 4716 54.26% 84.08%
our EDL 20898 96.94% 20259 93.10% 4352 53.70% 83.96%

In Table 4.3 and Table 4.4, we summarize the results achieved by the four approaches
evaluated on MAFood-121 and Food-101 datasets: a) GT+Local, to reflect the perfor-
mance of the flat classifier (dish) when we have a perfect LPC; b) LCPN, considered as
baseline when we chose LCC directly from the LPC prediction; c) Flat, which performs
recognition with a classifier trained with all classes; and d) Our model, which integrates
LCPN and Flat approaches taking into account the EU to decide the classifier responsible
for the final prediction. For the latter, we show three results, one for each method used to
estimate EU. The results obtained show that it is possible to achieve a large increase in ac-
curacy when we consider a perfect LPC recognition and perform the final prediction with
the LCC (see GT+Local). Instead, due to error propagation, the lowest classification accu-
racy is achieved when we choose the LCC directly from the LPC prediction even though
the LPC provided high performance (91.71% on MAFood-121 and 89.49% on Food-101).
Regarding our scheme, we show that it allows to reduce the miss-classification produced
by errors in LPC predictions regardless the method used to estimate the EU. From all
of them, the best result is achieved when the EU is quantified by the Deep Ensemble
method. This method not only has the best overall accuracy, but also provides the best
result by the local classifiers. Furthermore, we are able to recognize well, using local
classifiers, more than 60% of total images in both datasets. Interestingly, regardless of
the method used to estimate the EU, our method outperforms the classification results
obtained through LCPN and Flat approaches.

Finally, in Table 4.5, we can see how the different criteria considered in our scheme af-
fect the overall accuracy. When we use the Deep Ensemble method to estimate the UE,
both C1 and C2 provide better performance than the LCPN and Flat approaches in both
datasets. However, the criterion applied in the best performance achieved differs be-
tween the datasets. From the results, we note that the better the LPC, the better the
overall accuracy can be with C4, otherwise with C3.
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TABLE 4.5: Accuracy of our proposal for both datasets, according to the
criteria applied, using the Deep Ensemble method to estimate uncertainty.

Criteria MAFood-121 Food-101
C1 81.55% 83.58%
C2 81.40% 83.60%
C3 81.62% 83.10%
C4 81.33% 84.08%

4.5 Conclusions

In this chapter, we demonstrate the benefits of our proposal to perform food recogni-
tion by the integration of a hierarchical classification with a flat classifier and uncertainty
modeling. The proposed method deals with the propagated error from parent to child
nodes in a hierarchical classification approach. To tackle this, we use local classifiers as
long as it is very likely that the prediction will be good. Otherwise, the classification is
performed with the flat classifier. For this purpose, we define novel criteria that com-
bine local classifier predictions (with dropout turned on or off) with the analysis of the
EU. We observed that our approach provides a good performance, not only using MC-
dropout to estimate the EU, but also when we use Deep Ensemble and EDL methods. In
all cases, the proposal allowed us to further reduce the propagation error. As a conclu-
sion, we show the high accuracy and flexibility of the proposed approach that does not
depend on a particular EU estimation method, which allows us to face the prediction of a
large number of food classes in a beneficial way. Finally, as future work, we will explore
the application of EU within an active learning framework to ease the process of image
annotation necessary to achieve food recognition of thousands of different food classes.
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Chapter 5

Uncertainty-aware data
augmentation for food recognition

5.1 Introduction

In the current world society, sometimes unhealthy habits are disregarded in favour of try-
ing to optimize our time by spending less time on tasks that we do not consider essential.
Cooking healthy food, or even looking for what is healthy and what is not when we buy
groceries is not always an action on which we are willing to spend enough time. Further-
more, not only the lack of time, but also the lack of knowledge or awareness about the
nutritional value of food that we eat during our daily life affects our eating patterns [10].
Following unhealthy food habits is a situation too common in developed countries, and
in the long term, they lead to chronic medical conditions like diabetes, cardiovascular
diseases or obesity. Additionally, even if we are fully aware, it is not easy to manually
calculate the nutritional information associated to the food that we eat [142]. The devel-
opment of automated systems that aid on logging each food that we eat daily could help,
in most of the cases, to prevent us from following unhealthy eating behaviours [24]. At
the same time, these methods could be transformed into tools oriented to both healthcare
and nutrition professionals in order to better understand the eating problems of a certain
individual or, in a larger scale analysis, even of the society as a whole [43].

The creation of automated food recognition algorithms would, at the same time, help in
several other daily life problems. A clear example of this would be applying them to
create self checkout systems for self-service restaurants [6].

Since the last decade, deep learning has become a must when developing new algorithms
that aim for offering solutions in real-world scenarios. This popularity becomes even
natural when comparing their extraordinary results against more traditional methods
[157]. Even though, from a machine learning perspective, dealing with the food recog-
nition problem offers several challenging tasks due to the nature of food images (Fig.
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FIGURE 5.1: Example of high intra-class (left-right) and low inter-class
(bottom-top) variability in food images for prime_rib (top) and steak (bot-

tom) classes.

5.1). In addition, we must never forget other problems like data over-fitting, recurrent
when working with deep learning models. In order to avoid it, we must overcome the
challenge of acquiring datasets diverse enough that are able to represent all the possible
aspects of real-world data.

When data is scarce (e.g. less than 1000 images per class), data augmentation is a manda-
tory technique that must be considered in model training in order to increase sample size
and variability. In this way, we can prevent the classifier from being over-fitting and take
better advantage of the learning capabilities provided by deep learning algorithms. Tra-
ditional data augmentation methods are applied in training time by performing several
transformations (e.g. flips, cropping, rotation, etc.) on each image before sending it to the
classification model. However, are all data augmentation techniques appropriate for any
types of data? Do we really need to increase all the data interchangeably? Can there be
data that require more attention than others? We argue that, within a dataset, on the one
hand there could be some techniques that can be beneficial or detrimental for training,
depending on the type of image that will be analyzed. For example, in the context of
food recognition adjusting the color balance could be counterproductive, when we have
to learn the distinctive features of near classes as white rice with brown rice or pumpkin
soup with carrot or tomato soup, among other. On the other hand, there could be more and
less complex classes; or some images could be more beneficial for the classification than
others; therefore more emphasis should be placed on these data. For instance, using by
additional data augmentation methods to hard samples we could help the model learn
the distinctive features that characterize them. So the next questions are: how can we
discover the appropriate data augmentation techniques according to the type of data?
How can we discover hard samples to classify correctly within a dataset? Uncertainty
modeling is a research field that can help us determine those techniques or data samples
that the model has not yet been able to learn.

In this work, we proposes three uncertainty-based method. In the first, a class-conditional
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data augmentation method is proposed. where we observe the variation of epistemic un-
certainty for the samples of a particular class when we change data augmentation strate-
gies to determine which method is likely to be beneficial for each class. The second is
a method that explore a combination of both fields: GANs and uncertainty modelling,
with the aim of generating new data focusing on the samples that the model has not been
able to learn well (with high uncertainty). The last one correspond to train a Convolu-
tional Neural Network following the principles applied in an active learning framework,
where the new data to be added corresponds to synthetic data generated on the training
data set that meet our uncertainty-based criteria.

Our major contributions are: a) we provide an epistemic uncertainty-based method,
which allows incorporating specific image processing techniques, chosen according to
the class in which the input images belong. b) we demonstrate the importance of fo-
cusing on an uncertain sample to perform data augmentation, instead of applying it on
the all training data; and c) we provide an uncertainty-aware method based on an active
learning framework, which allows to get an improvement in the performance and a bet-
ter balance in the classification on datasets with unbalanced data. The rest of the work
is organized as follows: Section 5.2 presents the recent literature related to our work.
Section 5.3 details the proposed methods. Section 5.4 describes the experiments. Finally,
Section 5.5 provides the conclusions and final remarks.

5.2 Related Work

In this section, the most relevant recent literature related to the research fields of the
proposed methods is discussed.

5.2.1 Food Recognition

Automated food recognition is a challenging computer vision task. Food images are very
complex [166] - they may be mixed or composed of many food items in a single plate.
The food classes have high intra-class variance and low inter-class variance (see Fig. 5.1),
making them fine-grained in nature.

Early food recognition literature works dealt with the problem in a constrained environ-
ment. Some of the tasks involved using different hand-crafted features such as color,
texture and shape [112, 73, 22]. Public food images datasets were available as early as
2009 [29]. However, these initial datasets had fewer images and/or small number of
classes [32, 112, 27].

With the advent of CNNs, the task of food recognition handled more complex data. Dif-
ferent CNN architectures have been applied either directly or modified for the task of
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food recognition. AlexNet [173], GoogLeNet [170, 104], Network-In-Networks [162], In-
ception V3 [58], ResNet50 [120], Ensemble NN [124], Wide Residual Networks [111], and
CleanNet [97] are some noteworthy examples. With more computation capabilities, net-
works were able to handle large image sizes [116] and complex networks such as fusion of
CNNs [1], Teacher-Student learning [189] and attention networks [119] have been devel-
oped and have also proved effective. Current food image datasets cover a wider variety
of classes and also have a larger number of images in each class [23, 33, 41].

With more diverse food cuisines, food recognition has moved from single-labeled to
multi-labeled data, which also increases the complexity of the problem. To handle the
complexity of the task, different approaches such as using food detection networks pre-
ceding the food recognition networks [12], using food localization and recognition [21],
food segmentation networks [11, 28], and others semantically combining both segmenta-
tion and detection networks [6] were proposed. Multi-task learning [3, 193] networks are
the latest interests in the domain of food recognition.

One of the major challenges for creating models with better recognition performance is
the diversity of images. Collecting large datasets with more classes and more images are
difficult and it is also not possible to have images that differentiate the high inter-class
similarity of food classes. To tackle this challenge, data augmentation strategies can be
helpful in increasing data and its variability.

5.2.2 Data Augmentation Strategies

Diversity of images used for training determines the performance of the network. The
more diverse the images are, the better generalization performance the model obtains.
Data augmentation is used to create more variety of synthetic data from real images.
Augmentation strategies fall under geometric transformations, color space transforma-
tions, kernel filters, mixing images, random erasing, feature space augmentation, adver-
sarial training and GAN-based augmentation [165].

Flipping, cropping, rotation and translation are common geometric transformations. Adding
noise to images improves the robustness of the model [122]. The Synthetic Minority Over-
sampling Technique [25] selects and joins nearest neighbors to create new data. Random
erasing [192], mixing images by random cropping and concatenation [158] and Kernel
filters [78] have shown interesting and promising performance improvements. In all
the above literature, data augmentation schemes are proven effective, but they require
a manual selection of the method. Automatic selection of the augmentation policy that
increases the model performance was proposed as AutoAugment [35] and later a faster
search scheme was proposed as Fast AutoAugment [101]. Data Augmentation using
these schemes is able to generate synthetic data, but they always are confined within the
space of the original images.
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GANs are generative networks used to create synthetic images from an existing distribu-
tion which can be different from the source images. Traditional GANs generate images
either unsupervisedly or following a condition. However, with more deeper architec-
tures, more realistic images have been possible [183]. Recent GAN networks are designed
to handle imbalance in datasets. BAGAN [110] uses a framework to handle unbalanced
datasets by augmenting images from minor classes. Fine-grained generation and classi-
fication of minority classes are handled in MFC-GAN [9]. GANs are also able to learn
from single images [147] to generate the synthetic ones.

GAN-based augmentation has been applied to generate food images from source datasets
[65, 68]. Synthetic food images were also created from lists of ingredients [57] or from the
recipe of the food [194]. With more diverse food images, it was also possible to create
food classes that are unseen during training [64]. However, all the food-based GANs
require considerably large training sets.

We argue that by understanding better the model uncertainty, it is possible to select the
dataset part that would be effective to augment and thus to improve the classifier perfor-
mance.

5.2.3 Uncertainty Modeling

Uncertainty can simply be defined as ignorance about the behavior of the trained model
with respect to a dataset. This can be categorized as either aleatory or epistemic [82].
The aleatory uncertainty case corresponds to the uncertainty that is present in almost all
data, and reflects the noise that may be present in the observations (e.g. random errors
produced by the measuring instrument). The epistemic uncertainty case corresponds to
the model uncertainty and can be reduced by gathering more data, leading to a better fit
of the distribution.

In Deep Learning, stochastic variational inference has been adopted to capture uncer-
tainty rather than directly using a Bayesian neural network, because the latter becomes
intractable in deeper networks [19, 50, 146]. Among the successful variational inference
methods applied [19, 50, 121, 107], the most popular is the Monte Carlo (MC)-dropout
[50], which provides a simple way to estimate uncertainty.

There are several recent image classification works that consider uncertainty modeling
in their method. Some of them incorporate the uncertainty in the loss function to weigh
different losses in a multi-task learning framework [82, 3], or to guide the learning taking
into account the difficulty of each class or image [84]. Others analyze uncertainty in
order to decide the method of data augmentation that can best contribute to learning
the discriminating features of a particular class [5], to judge when to use a hierarchical
or flat classifier to give the final prediction [4] or to incorporate new synthetic images
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generated by SINGAN from highly uncertain training images [7]. However, more related
to our work are those who use uncertainty in an active learning framework [51, 16, 126].
In all of them the uncertainty is analyzed to identify samples that are likely to contain
new information, instead of selecting them randomly and, therefore, should improve the
model performance. Unlike [51, 16], in [126] the new samples correspond to synthetic
images generated by a GAN model trained on the real ones. On the other hand, instead
of selecting uncertain samples, in [113], the authors propose an active learning method
that considers generating such samples using a trained GAN.

Our proposal differs primarily from the uncertainty-based active learning approach in
the following: a) After each training cycle, we analyze the uncertainty to select an ap-
propriate set of images from the training set, taking into account those that meet our
uncertainty-based criterion C1, and from them generate new synthetic ones; b) the new
image automatically has the same label as the real one, and therefore we do not need an
external oracle to annotate the labels.

5.3 Uncertainty-based Data Augmentation Methods

In this section, we describe the three proposed uncertainty-based data augmentation
methods: Class-Conditional Data Augmentation (CCDA), Uncertainty-Aware GAN-augmented
Food Recognition (UAGAN), and Uncertainty-Aware Data Augmentation (UDA).

5.3.1 Class-Conditional Data Augmentation

FIGURE 5.2: Flowchart of the proposed class-conditional data augmen-
tation procedure. SDA_model_D denotes the model which incorporate
the Dth specific data augmentation technique (eg. color, contrast) into the

generic data augmentation process.
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In this subsection, we explain each step involved in the proposed approach, which takes
advantage of the epistemic uncertainty intrinsic in the data to determine the type of data
augmentation process applying to the images during the training of the model. We argue
that some data augmentation techniques may depend on a particular class. To validate
it, we focus on traditional transformations and propose group them into two subgroups:
generic data augmentation techniques (GDA), those that apply geometric transforma-
tions to images (e.g. crops, reflection, zoom, etc.), which are independent of the image
class; and specific data augmentation techniques (SDA), those based on the pixel trans-
forms of the images (e.g. color, brightness, contrast, etc.), which are class-dependent.

The MC-dropout method was adopted in our scheme to determine the epistemic uncer-
tainty. In practical terms, it means to predict K times the same image using the model
with the dropout layer turned on. Then, EU will correspond to the predictive entropy
calculated from the K predictions given.

Formally, EU can be expressed as follows:

Let p(yc = ŷc|x) be the average probability that the prediction yc is equal to ground-truth
ŷc given the image x, calculated from K MC-dropouts simulations. Then,

EU(xt) = −
C

∑
c=1

p(yc = ŷc|xt) ln(p(yc = ŷc|xt)), (5.1)

where

p(yc = ŷc|x) =
1
K

K

∑
k=1

p(yk
c = ŷk

c |x). (5.2)

As we discussed earlier, our intention is to determine, through the EU, which data aug-
mentation technique is most appropriate for the images of a particular class. By defini-
tion, the EU tends to reduce when we increase the samples in the dataset. So, if we are
able to reduce the EU for some classes, when we incorporate specific data augmentation
techniques, it is likely that these techniques contribute to the learning of these classes.
Therefore, in our case, it is interesting for us to know the average EU considering all
the samples within each class, we will name it as Class Epistemic Uncertainty (CEU).
In the proposed method, CEU is used to compare between a model trained with GDA
with other models that incorporate the SDA to the generic one. Then, we consider that a
specific technique is appropriate for a class when the model trained with this technique
incorporated in the data augmentation process obtains the lowest CEU value.

The process involved in our scheme to determine the SDAs is as follows (see Fig. 5.2):

1. A model that considers generic data augmentation technique (GDA-model) is trained
with the aim of being compared with the models that also incorporate a specific
data augmentation technique.
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2. A model is trained for each specific data augmentation technique (SDA-model) that
we would like to incorporate into the process. Each model adds only a specific
technique to the generic one, which will be used during the training.

3. The best model is chosen with respect to the accuracy obtained in the validation set
for the models trained in steps 1 and 2.

4. CEU is computed for all models in step 3.

5. With the results in step 4, the GDA-model is compared with the SDA-model. To
those classes in which the SDA-model obtains a lower CEU than the GDA-model,
we assign them the respective specific technique used by that SDA-model.

6. Finally, considering the specific techniques selected for each class from step 5, we
train a new model using data augmentation with generic techniques for all classes
and also the selected one for each class.

5.3.2 Uncertainty-Aware GAN-augmented Food Recognition

FIGURE 5.3: Main scheme of the our UAGAN food recognition method.

In this subsection, we describe all phases involved in the Uncertainty-Aware GAN-Augmented
method to perform food recognition using uncertainty modeling and GANs. As you can
see in Fig. 5.3, the method contemplates 3 main phases with the following purposes: a)
hard samples discovery, b) synthetic image generation and c) final training.

The first step of our proposed approach involves the analysis of the food images of the
training set, with the aims of identifying those that are hard to classify. To do this, our
criterion is based on the analysis of Epistemic Uncertainty through the calculation of the
entropy. The samples with high uncertainty are those in which the model has not been
able to learn well their discriminant features and, therefore, are considered hard samples.
On the other hand, we adopt the method called MC-dropout [50] for EU estimation,
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mainly due to its simple implementation. Basically, we need to add a dropout layer
before each fully connected layer, and after the training, we perform K predictions with
the dropout turned on. The K probabilities (softmax outputs) are averaged and then the
entropy is calculated to reflect the EU. Finally, the images are ordered with respect to
their EU, and we select the top n images with higher EU to perform the next step.

Once the images have been chosen, the next step corresponds to increasing the data with
nearby images in terms of visual appearance. We believe that one of the determining fac-
tors that does not allow the model to learn the features of hard images corresponds to the
fact that they differ from most images that represent a particular class. This hard images
may be present in the training set due to the complexity of the acquisition and also after
dividing the data for the training. The latter is due to the fact that during the generation
of subsets only the sample size is considered and not the variability of the sample. There-
fore, we propose to make new images by applying small changes to the original ones.
The best method for this purpose is the recent GAN-based method called SINGAN [147],
which can learn from a single image and generate different samples carrying the same
visual content of the input image. In this step, we adopt the SINGAN to generate one
synthetic image for each chosen image according to the uncertainty criterion.

Finally, in the last step, the whole CNN model is trained with both types of images: the
synthetic images obtained with SINGAN and the original images.

5.3.3 Uncertainty-Aware Data Augmentation

In this subsection, we describe the proposed Uncertainty-aware Data Augmentation method
for model training.

The motivation of our work is that when homogeneous data augmentation across the
dataset is no longer useful for improving performance, we should focus on data sam-
ples that the model has been unable to learn well in order to improve it further. The
idea behind this is that not all images are equally complex. Thus, for difficult images we
need to provide more data samples with alternative visual appearances in order to ease
the model learning for this type of content. To guide the model learning, the proposed
method follows an active learning framework taking into account the epistemic uncer-
tainty. Unlike other approaches, we do not analyze uncertainty in new unlabeled images
in order to incorporate them into the training set. Instead, we focus on increasing the
data by generating new images from the original ones.

Let us consider Li = {(xj, yj)} the set of labeled images from the training set and Mi the
model trained in the i-th training cycle, where M0 corresponds to the model trained with
the real images L0. After completing each training cycle, we can identify food images that
are difficult to classify based on Epistemic Uncertainty analysis by calculating the entropy
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as EUi(xj) = ∑yj
−Pi(yj|xj)log(Pi(yj|xj)). In CNN models, the easiest way to estimate the

EU of the image xj, is through the MC-dropout method [50], which performs, during the
prediction, K forward passes with dropout turned on. From this, we can obtain Pi(yj|xj)

averaging the K softmax outputs. Note that when the images into the dataset are not
properly curated, the most uncertain images are most likely outliers. For this reason,
instead of directly using the most uncertain images, we define an upper threshold Tu, to
avoid selecting and generating new images from out-distribution data. Furthermore, we
also define a lower threshold Tl to avoid the generation of data from images that may not
contribute to recognition, making the training process faster and more efficient. Then,
after each cycle, we select the real images that meet with the criterion C1 : EU(xj) >

Tl ∧ EU(xj) < Tu, and from them generate the new synthetic images x∗j (or acquire new
images) with a visual appearance close to the real ones. After that, we incorporate the
new images in the training set (Li+1 = Li ∪ {(x∗j , yj)}) and retrain the full model. The
training cycle is repeated until satisfactory results are met.

Algorithm 1: UDA procedure
input: Labeled Data L0, Synthetic Data Si ← ∅, Lower Threshold Tl , Upper
Threshold Tu, Generator G;

while we are not satisfied with the performance do
Train the classifier Mi on {L0 ∪ Si};
for xj ∈ L0 do

Calculate the EU(xj);
if Tl < EU(xj) < Tu then

Create the synthetic image x∗j with G;
Update Si ← Si ∪ {x∗j };

end
end

end

The UDA training procedure is summarized in Algorithm 1 and involves the following
steps:

1. Train a CNN model Mi on training set Li.

2. Select the images that meet the criterion C1.

3. Acquire images or generate synthetic ones from the real images (xj) that meet the
criterion.

4. Incorporate the images into the training set (Li+1).

5. Repeat the steps until we meet a satisfactory result.
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5.4 Validation

In this section, we describe the datasets chosen to validate the proposed CCDA, UAGAN
and UDA methods; the metrics used to perform the analysis of the trained models; the
experimental setup and present the results obtained with the different approaches eval-
uated.

5.4.1 Food datasets

The three public datasets chosen to validate our methods are described below. Specif-
ically, the food datasets: Food-101 and UECFOOD-256, were chosen for CCDA; and
MAFood-121 for UAGAN and UDA.

Food-101

This is an international food dataset which contains the top 101 most popular food plates[23].
For each dish, the dataset provides of 1, 000 images collected from foodspotting.com. The
distribution of the dataset given by the authors is of 75% for training and the remaining
25% for testing. In our case, we keep the same data for the test set, but we divide the train
set leaving 90% for training and 10% for validation.

UECFOOD-256

This is a food image dataset, containing 256 dishes and 31, 395 images [81]. The dataset
mainly includes Japanese dishes, but also consists of foods from several countries such
as China, France, Indonesia, Italy, Thailand, United States and Vietnam. Each image has
annotations for the type of dish and also the bounding box information where the dish
is located. In addition, the authors provide a 5-fold cross validation annotations that
include 28, 280 images, with a minimum, maximum and average of images per class of
87, 637 and 110.47. In our case, we used the first fold for the test and, from the remaining
four folds, we randomly selected about 90% for training and 10% for validation. Note
that, the object (food) bounding box information is not used in our experiments.

MAFood-121

This is a multi-attribute food dataset comprising of 21,175 images belonging to 121 food
dishes distributed evenly across 11 different types of cuisine. The dataset contains 72.5%
images for training, 12.5% for validation, and the remaining 15% for testing. Particularly
for UAGAN, we use all the images of the dishes that belong to the Italian cuisine. In total,
11 dishes were chosen, which are composed of 2468 images with a maximum, minimum
and average of 250, 104 and 224 images, respectively. The data within this class group is
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distributed as 72% of the images for training, 11% for validation and 17% for test. In the
UDA case, all dataset was used.

Note that one of the main challenges for the deep learning algorithm is being able to
learn the distribution of data from small datasets. Here, data augmentation is a must
in order to avoid over-fitting and improve the performance. To highlight the benefits of
our proposals (UAGAN and UDA), we chose the food dataset MAFood-121 [3], mainly
because it has a small or medium number of images per class (from 100 to 250) and
provides annotations that allow us to divide this dataset and independently evaluate our
approach into any of the 11 semantically coherent class groups.

5.4.2 Evaluation metrics

In order to evaluate the performance and highlight the benefits that the proposed meth-
ods provide, we define particular metrics for each.

Metrics for CCDA

The standard metric for object recognition, overall Accuracy, and the mean Epistemic
Uncertainty are used to evaluate our approach. As for the latter, the maximum value
depends on the numbers of classes, and for this reason we normalized it leaving the
possible values between zero to one, which we call Normalized Epistemic Uncertainty
(NEU). Both metrics are formally defined as follows:

Acc =
1
T

C

∑
c=1

TPc, (5.3)

where C is the number of classes, TPc (True Positives) is the amount of images belonging
to the class c classified correctly, and T is the total images evaluated.

NEU =
1
T

T

∑
t=1

EU(xt)

ln(C)− ln(1)
, (5.4)

where ln(C)− ln(1) corresponds to the normalization factor obtained when the average
prediction for each class is equal to a random prediction.

Metric for UAGAN

Overall Accuracy (Equation 5.3) is used to evaluate our proposal. We running 5 times
the same experiments and show the result in terms of mean accuracy and the respective
standard deviation.
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Metrics for UDA

Taking into account that we face a multi-class classification problem in an unbalanced
dataset, we decided to evaluate the model performance based on the recall metric using
both macro- and micro-averaging, with the aim of understanding the behavior of the
model at the class and sample level. Formally, the metrics used are defined as:

Rmicro(y, ŷ) =
|y ∩ ŷ|
|ŷ|

and
Rmacro(y, ŷ) =

1
|C| ∑

c∈C
Rmicro(yc, ŷc)

where y, ŷ, C denote the set of predicted labels - ground-truth and classes - for all our
data; and yc and ŷc correspond to the subset of y and ŷ specifically with class c.

Note that the results shown correspond to the median performance when running each
experiment 5 times.

5.4.3 Experimental Setup

All experiments have been carried out by adopting ResNet50 [59] as the base CNN archi-
tecture. To calculate the uncertainty based on the MC-dropout method, we adapted the
model by removing the output layer, and instead added an output layer with softmax
activation and neurons equal to the number of classes of the respective dataset preceded
by a dropout layer, with dropout rate of 50%. For simplicity, the resulting architecture
preserve the same name as the original (ResNet50).

As for training, we use the categorical cross-entropy loss and the Adam optimizer to train
all models with initial learning rate of 0.0002, decay of 0.2 every 8 epochs and patience of
10 epochs. In the CCDA case, the training was during 50 epochs with a batch-size of 16.
In the UAGAN and UDA case, the training was during 40 epochs with a batch-size of 32.
Keras with TensorFlow as backend was used as our deep learning training framework.

Additional specific setups considered in the experiments to validate each method are
discussed below.

Specific setups for CCDA

Eight models were trained for each dataset based on the same architecture, but changing
the data augmentation applied. The models considers for benchmark purpose are the
following:

1. ResNet50: CNN Model trained without applying data augmentation.
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2. ResNet50+DA: CNN model with the traditional randoms crops and horizontal flips
strategies to data augmentation.

3. ResNet50+DA+B: The base is ResNet50+DA with the incorporation of a random
adjustment of the image brightness in the data augmentation process.

4. ResNet50+DA+CN: The base is ResNet50+DA with the incorporation of a random
adjustment of the image contrast in the data augmentation process.

5. ResNet50+DA+CL: The base is ResNet50+DA with the incorporation of a random
adjustment of the image color in the data augmentation process.

6. ResNet50+DA+S: The base is ResNet50+DA with the incorporation of a random
adjustment of the image sharpness in the data augmentation process.

7. ResNet50+DA+A: The base is ResNet50+DA with the incorporation of a random
adjustment of the all image enhancement strategies (brightness, contrast, color, and
sharpness) to the images in the data augmentation process.

8. CCDA: The base is ResNet50+DA with the incorporation of a random adjustment of
image enhancement strategies in the data augmentation process, which are selected
according to the image class. Note that, in some cases, all or none of the strategies
could be applied.

Regarding the data augmentation process, for models 2 to 8, the original image is re-
sized to (256,256) and then randoms crops with a size of (224,224) and horizontal flip
with a 50% probability are applied. In the case of models 3 to 8, in addition, we apply
image enhancement methods available from the image processing library PIL. With the
aim that the application of specific techniques of data augmentation do not drastically
affect the information contained in an image, we empirically select a range of values
between 0.75 and 1.25 for all methods, where the value applied in the images will be
obtained randomly in each iteration. Notice that a value equal to 1 means obtaining the
same image. On the other hand, a value equal to 0 is obtained for the brightness, the
color, the contrast or the sharpness, that is to obtain a black, black and white, solid gray
or blurred image, respectively. Therefore, a factor less than 1 means, for example, less
color and vice versa.

Examples of the resulting images with the minimal and maximal value can be seen in the
Fig. 5.4.

Specific setups for UAGAN

Three different training strategies of the same model are used for a benchmark purpose:
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FIGURE 5.4: An example of the resulting image when we apply the min-
imal (top) and maximal (bottom) values used in the experimentation for

each strategy corresponding to the image enhancement methods.

• ResNet50: baseline model training with the original images without data augmen-
tation.

• ResNet50+SDA: baseline model with standard data augmentation applying during
the training, like random crops and horizontal flips.

• UAGAN: ResNet50+SDA using the real and synthetic images.

With respect to the image generation, we use the default parameters proposed by the
authors of SINGAN.

Specific setups for UDA

For comparative purposes, four different training strategies in ResNet50 were conducted:

• S1: training with real images without applying any type of data augmentation,

• S2: training with standard online data augmentation, such as random crops and
horizontal flips, applied on real images only,

• S3: training with standard online data augmentation, applied on a dataset consist-
ing of both synthetic images (one for each real image) and real images,

• S4: training with standard online data augmentation, applied on a dataset gener-
ated by our UDA method.

Regarding the parameters used in the proposed approach, we set the UDA thresholds
to Tl = 10%×Umax and Tl = 90%×Umax, where Umax denotes the maximum entropy,
which is given by the equation Umax = Log(|C|). Furthermore, we set to three the maxi-
mum training cycles.
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For all the strategies, we trained the same model 5 times, with random initialization of
the weights and shuffling the images. In the proposed method case, for each training
cycle we select the model that provides the median result, considering the metric Rmicro,
to discover the most uncertain images and generate new ones.

With respect to the generation of synthetic images, we simultaneously apply various
transformations on the real images, such as rotation, width and height shift, shear, zoom,
etc. Fig. 5.5 shows an example of the generated images.

FIGURE 5.5: Sample of the synthetic images from the generator applied.

5.4.4 CCDA Results

In this section, we present the results obtained by the models in the datasets Food-101
and UECFOOD-256.

As we explained in Sec. 5.3, to train our proposed approach, we must first select the spe-
cific data augmentation techniques that will be applied to each image taking into account
the class to which the image belongs. For this purpose, we trained five models, one used
as reference (ResNet50+DA) and other four models which incorporate one SDA tech-
nique each one (ResNet50+DA+B, ResNet50+DA+CN, ResNet50+CL and ResNet50+S).
Once the models have been trained, we calculate the epistemic uncertainty of the samples
contained in the validation sets. Then, we average the epistemic uncertainty of the sam-
ples within the same class (CEU). After that, we compared the CEU of the ResNet50+DA
model with respect to the rest of the models for each class. If at least one of models have
a CEU smaller than the reference model, we consider that the enhanced method incorpo-
rated in these models is likely to benefit the learning of this class. The results obtained
by applying this procedure can be seen in Fig. 5.6. In this figure, we show in red color
the SDA techniques selected for each class in the UECFOOD-256 datasets. For example:
in case that images belong to the cid = 0, we obtain that we must to adjust randomly the
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(a) (b) (c) (d)

FIGURE 5.6: From left to right: classes selected of UECFOOD-256 to apply
adjustment of: a) brightness, b) color, c) contrast and d) sharpness. The
class identifier (cid) can be obtained for the formula: cid = 16 ∗ col + row,
where the first position (upper-left corner) corresponds to (row, col) =

(0, 0).

brightness, the color, the contrast and the sharpness; for the images belongs to cid = 15,
brightness and contrast; and so on.

Regarding the results during the test phase, these can be seen, in terms of Acc (with
dropout turned down) and NEU (with dropout turned up), in Table 5.1 and Table 5.2 for
the Food-101 and UECFOOD-256 datasets respectively. As one might expect, the lowest
performance in terms of Acc was achieved in both datasets, when we trained the model
without data augmentation (ResNet50). Despite this, it is interesting to highlight that
this model has the best result in terms of NEU. Note that NEU is calculated from the
predictive entropy, so, in essence, a high value also implies a high entropy and, conse-
quently, the model is more prone to change the prediction when there are perturbations
in the data that produces a loss of some discriminative feature. For this reason, a model
with low NEU means that the model remains stable against the perturbation, keeping
the good and bad predictions. On the other hand, when analyze the results obtained
with ResNet50+DA+A, we can see that the incorporation of all SDA techniques into the
data augmentation process negatively affects the learning of our model, reducing the cor-
rect prediction rate and model stability. Finally, when we compare our proposed method
with the rest, we can see that a correct trade-off between both measure was achieved, the
Acc is improved, and the NEU is the lowest regarding to the models trained with data
augmentation.

5.4.5 UAGAN Results

In this section, we present the results obtained by the proposed method. The first step
of our method corresponds to selecting those images difficult to classify (with high un-
certainty). After training the model with the original images, we determine the EU and
build a histogram for the training images (see Fig. 5.7). The right side of the histogram
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TABLE 5.1: Results on Food-101 in terms of Acc and NEU for the mod-
els trained with different data augmentation techniques. For NEU, less is

better.

Model Acc NEU
ResNet50 77.66% 19.85%
ResNet50+DA 82.65% 27.35%
ResNet50+DA+A 82.54% 29.45%
Proposed method 82.82% 26.25%

TABLE 5.2: Results on UECFOOD-256 in terms of Acc and NEU for the
models trained with different data augmentation techniques. For NEU,

less is better.

Model Acc NEU
ResNet50 61.00% 30.22%
ResNet50+DA 65.02% 33.55%
ResNet50+DA+A 64.65% 36.53%
Proposed method 65.54% 33,51%

corresponds to all the images considered to generate the new ones. The criterion applied
corresponds to selecting all images with EU equal to or greater than the uncertainty cal-
culated by the average between the maximum and minimum uncertainty predicted for
all images. A total of 120 images was selected.

In Fig. 5.8, we can see the distribution of the training images along each dish, the average

FIGURE 5.7: Histogram for the entropy of the predicted images.
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FIGURE 5.8: Training images vs epistemic uncertainty.

TABLE 5.3: Results obtained on the test set in term of accuracy with the
standard deviation.

Method Acc Std
ResNet50 79.15% 0,60%

ResNet50 + SDA 81.00% 0,78%
UAGAN (our proposal) 82.32% 0,96%

entropy in all the images, the proportion of the selected images and the average entropy
for the selected images. Unlike the evidence shown in [84] for CIFAR-10, for this type
of data, the frequency of the images is not a factor that determines a high or low uncer-
tainty for a specific class. In our case, we believe that uncertainty occurs due to the great
variability of visual appearance that may be present in the images belong to the same
class of dish, where the factor to consider is the diversity of the collected sample and not
only the size of the sample. To fill the gap of poorly represented sample for a class, we
duplicate the presence of images with high uncertainty through a generation of synthetic
images with the SINGAN method. In Fig. 5.9, some examples of the generated images
are shown.

With a total of 1889 training images, 1679 originals and 120 synthetic ones, we train the
final model. The results obtained by three different training strategies of the same model
are shown in the Table 5.3. All models were fine-tuned from ImageNet [91] and retrained
the whole network using the target training set. For each strategy, 5 models were trained
with random initialization values and random order of images. Then, we calculated
the average accuracy and the standard deviation achieved for the best model obtained
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FIGURE 5.9: Synthetic image generated on the selected images from the
training set.

TABLE 5.4: Synthetic images added after each training cycle. We mark
with * the last images added for each selected model.

Dataset Cycle0 Cycle1 Cycle2

American 504 410 434*
Chinese 326* 274 258
French 362 388 283*
Greek 266 260 224*
Indian 279 268 253*
Italian 554 438 439*

Japanese 388 381 303*
Mexican 642* 458 518

Thai 331 312* 292
Turkish 455 397* 354

Vietnamese 291 382* 241

on each iteration according to the performance on the validation set. For the results
achieved, we can see that UAGAN improved the performance in terms of accuracy with
respect to the rest of strategies. Specifically, the improvement is 3,17% on ResNet50 and
1,32% on ResNet50+SDA.

5.4.6 UDA Results

In this section, we present and analyze the results of the different strategies evaluated on
the ResNet50 model, including the proposed UDA method.
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FIGURE 5.10: Histogram of the entropy after each training cycle when
training with UDA (S4).

Like in the active learning frameworks, the proposed UAD method follows training cy-
cles and augments training data before starting each new cycle. Consider that for the
initial cycle, we use the same ResNet50 model trained with S2 strategy. Then, to illus-
trate how the EU changes after each training cycle, we plotted a histogram of 10 bins for
four of the eleven sub-datasets used for evaluation (see Fig. 5.10). As expected, when
new data is incorporated into the training set, the EU tends to decrease. However, it is
interesting to note that with our UDA approach, higher reductions are achieved by only
adding less than 30% of synthetic samples (see Table 5.4) to the training data (orange bar
in Fig. 5.10). Furthermore, we can see that after each cycle, more data is less uncertain.
However, the improvement in the first two cycles is markedly greater than the last two.
This behaviour can be explained by the need, in some very hard samples, of a generator
that provides more diverse transformations. As we can see in Fig. 5.11, there are some
images for which, despite having added synthetic samples related to them during three
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FIGURE 5.11: Number of synthetic images generated after the third train-
ing cycle.

TABLE 5.5: Results obtained on the test sets in terms of Rmicro.

Dataset ResNet50 (S1) ResNet50 (S2) ResNet50 (S3) ResNet50 (S4)
American 82,07% 83,84% 84,09% 84,34%
Chinese 89,49% 89,49% 91,44% 91,83%
French 89,49% 91,53% 92,88% 92,20%
Greek 90,05% 90,05% 91,10% 92,15%
Indian 87,37% 92,63% 93,16% 92,11%
Italian 79,15% 81,75% 82,70% 83,65%

Japanese 89,36% 81,84% 92,20% 91,49%
Mexican 79,23% 79,87% 82,11% 81,15%

Thai 76,88% 82,26% 82,26% 81,18%
Turkish 91,37% 91,59% 91,81% 92,04%

Vietnamese 85,49% 87,59% 88,60% 90,16%

cycles, the model can not yet learn their discriminative features (shown in red). On the
other hand, we can see in the same figure that, after three cycles, our approach selects
less than 50% of the initial hard samples (blue vs red bars). This means that the model
successfully learns most of the samples that were considered hard in the initial cycle.

In Table 5.5, Table 5.6 and Table 5.7 we present the results obtained, for the four train-
ing strategies in eleven subsets consisting of dishes belonging to each cuisine type from
MAFood-121, in terms of Rmicro, Rmacro and |Rmicro − Rmacro|. From these tables, we can
see that the UDA method (S4) provides better results in more datasets than the remaining
strategies, both when we evaluate the performance at sample level (Rmicro) and at class
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TABLE 5.6: Results obtained on the test sets in terms of Rmacro.

Dataset ResNet50 (S1) ResNet50 (S2) ResNet50 (S3) ResNet50 (S4)
American 81,99% 83,69% 84,10% 84,26%
Chinese 87,93% 90,05% 90,60% 91,17%
French 89,01% 90,33% 94,12% 92,54%
Greek 89,12% 89,34% 89,90% 92,11%
Indian 87,67% 92,96% 93,29% 92,41%
Italian 80,72% 82,44% 84,31% 84,07%

Japanese 88,08% 90,85% 91,20% 90,93%
Mexican 79,12% 80,37% 81,64% 81,96%

Thai 70,98% 79,91% 79,85% 79,22%
Turkish 91,44% 91,65% 91,92% 92,15%

Vietnamese 84,67% 86,99% 88,14% 89,85%

TABLE 5.7: Results obtained on the test sets in terms of |Rmicro − Rmacro|.

Dataset ResNet50 (S1) ResNet50 (S2) ResNet50 (S3) ResNet50 (S4)
American 0.08% 0.15% 0.01% 0.08%
Chinese 1.56% 0.55% 0.84% 0.66%
French 0.48% 1.19% 1.24% 0.34%
Greek 0.93% 0.71% 1.20% 0.04%
Indian 0.3% 0.33% 0.13% 0.31%
Italian 1.57% 0.68% 1.61% 0.42%

Japanese 1.28% 0.99% 1.00% 0.56%
Mexican 0.11% 0.50% 0.47% 0.81%

Thai 5.9% 2.35% 2.41% 1,97%
Turkish 0.07% 0.05% 0.10% 0.11%

Vietnamese 0.82% 0.57% 0.47% 0.31%

level (Rmacro). Moreover, it is the strategy that provides less bias in the classification with
respect to the classes with more or less images (see Table 5.7). Therefore, focusing on hard
samples not only provides an efficient way to augment the data by reducing the required
images (e.g. S4 use much less than S3), but also contributes to achieving the right balance
during classification.

Note that although there is some generic resemblance to active learning, an explicit com-
parison with such approaches is out of scope. Our goal is to demonstrate that focusing
on hard samples to generate the synthetic new ones can help the model learn about the
features it represents. Then, the objective is how to design the generation of new data
rather than deciding the order or selection of samples to feed the classifier model.
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5.5 Conclusions

In this chapter, we presented three methods to perform data augmentation based on the
analysis of the epistemic uncertainty: CCDA, UAGAN and UDA.

In CCDA case, we differentiate the traditional data augmentation in two type, where one
of them depends on the class of the image. For the latter, the techniques to be used are
selected by the analysis of the epistemic uncertainty for each class of the same model
trained with different data augmentation strategies. Note that the selection process can
be considered computationally expensive. However, the cost involved in this process is
only present in the training time. Therefore, it does not harm the model performance dur-
ing the prediction regarding the use of resources computational or response time. From
the results obtained, we observed that the proposed approach outperforms the results
with respect to the rest of the model evaluated without affecting its stability. Summariz-
ing, we have shown that it is beneficial for model learning to incorporate specific data
augmentation techniques taken into account the class to which the image belongs.

As for UAGAN, correspond to a novel method for sample-level uncertainty-aware data
augmentation composed of three phases: 1) identification of hard samples, by means of
analysis of the epistemic uncertainty; 2) generating new data from identified samples;
and 3) performing the final training with the original and synthetic images. We demon-
strated the effectiveness of the approach proposed on the Italian dishes from MAFood121
public dataset. The result obtained shows that our proposal outperforms the classifica-
tion by incorporating only 120 synthetic images based on the uncertainty analysis (5% of
the total).

Finally, UDA is a novel method for uncertainty-aware data augmentation that follows an
active learning framework and takes into account the most uncertain images in order to
generate new ones. We validated our approach on eleven subsets of data from the public
food dataset MAFood-121, where each one consists of dishes that belong to the same type
of cuisine. The results obtained show that, in many cases, it is not necessary to generate
data-augmented images for all the samples, but it is possible to improve the performance
only by focusing on those that present a greater uncertainty. Furthermore, our method
contributes to getting more balanced classification in the unbalanced dataset.

As future work, we will explore both sample-level and class-level uncertainty together
to increase deep learning on datasets through an active learning framework, explore the
application of epistemic uncertainty in outlier detection and dive deeper into the data
generation process, based on uncertain samples, incorporating them into GAN-based
methods.
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Chapter 6

Exploring Food Detection using
CNNs

6.1 Introduction

In the last decades, the amount of people with overweight and obesity is progressively
increasing [125], whom generally maintain an excessive unhealthy diet consumption.
Additionally to the physical and psychological consequences involved to their condition,
these people are more prone to acquire chronic diseases such as heart diseases, respira-
tory diseases, and cancer [127]. Consequently, it is highly necessary to build tools that
offer high accuracy in nutritional information estimation from ingested foods, and thus,
improve the control of food consumption and treat people with nutritional problems.

Recently, the computer vision community has focused its efforts on several areas devoted
to developing automated systems for visual food analysis, which usually involve using
a food detection method [76, 21, 114, 153]. These methods, also called food/non-food
classification, have as purpose to determine the presence or absence of food in an im-
age. Generally, they are applied as a pre-processing prior to food analysis, and can also
be useful for selecting food images from huge datasets acquired from the WEB or from
wearable devices.

Food detection has been investigated in the literature in different works [76, 153, 87, 48,
130], where it has been proven that the best results obtained are based on Convolutional
Neural Networks. The first method based using this technique was proposed by [76],
which achieved a 93.8% using AlexNet model [91] on a dataset composed of 1,234 food
images and 1,980 non-food images acquired from social media sources. They proved that
using a CNN provided a 4% higher accuracy compared to using hand crafted features
[87]. In [75], the authors improved the accuracy on this dataset to 99.1% using the NIN
model [103]. In addition, they evaluated their model on other datasets, IFD and FCD,
obtaining 95% and 96% of accuracy, respectively. Evaluation on a huge dataset with
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FIGURE 6.1: Method overview for our food detection approach.

over 200,000 images constructed from Food101 [23] and ImageNet Challenge was done
in [114], where the authors achieved 99.02% using an efficient CNN model based on in-
ception module called GoogLeNet [159]. The same model was used in [21], the authors
obtained 95.64% of accuracy on a dataset composed of Food101; food-related images ex-
tracted from the ImageNet Challenge dataset; and Pascal [44] (used as non-food images).
Evaluation of different CNN models and settings was proposed by [130] on a dataset
that we call RagusaDS. The authors obtained the best results using AlexNet for feature
extraction and Binary Support Vector Machine (SVM) [34] for classification. In terms of
accuracy, they achieved 94.86%. In [153], the authors apply fine-tuning on the last six lay-
ers of a GoogLeNet obtaining high accuracy, but tested their model on a balanced dataset
of only 5,000 images (Food-5k). Since the proposed models were evaluated on different
datasets, the results obtained are not directly comparable. Therefore, in order to compare
our results with the state-of-the-art, we selected the available datasets with more than
15,000 images.

Furthermore, we explored the food detection problem using the GoogLeNet, because
this CNN model presented the best results in the classification of objects in the ILSVRC
challenge [141]. In particular for food detection it has also presented good results on mul-
tiplies datasets with images acquired in different conditions [21, 114, 153]. Specifically,
we propose a food detection model combining GoogLeNet for feature extraction, PCA
[72] for feature selection and SVM for classification, which prove the best accuracy in the
state-of-the-art with respect to the previous works on the same datasets.

This chapter is organized as follows: in section 6.2, we present our methodology. In
section 6.3, we present and discuss the datasets used and the results obtained. Finally, in
section 6.4, we present conclusions and future work.

6.2 Methodology for food detection

We propose a methodology for food detection, which involves the use of the GoogLeNet
model for feature extraction, PCA for feature selection and SVM for classification. In
Fig.6.1, we show the pipeline of our food detection approach which will be explained
below.
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6.2.1 GoogLeNet for feature extraction

The first step in our methodology consists in training the GoogLeNet CNN model. For
this purpose, we pre-train the GoogLeNet model on ImageNet [141], as a base model,
and then we change the number of classes in the output layer for our binary classification
problem (food/non-food). Then, GoogLeNet is fine-tuned on the last two layers until the
accuracy on training set stops to increase, then we choose the model that gives the best
accuracy on the validation set.

Once GoogLeNet is fine-tuned, we use the resulting model as a feature extractor. The
feature vector for each image is extracted using the penultimate layer, with which a 1024-
dimensional vector is obtained for each image. Then, we calculate a transformation that
distributes normally the data through a Gaussian distribution function with zero mean
and unit variance, by means of the feature vectors obtained from the training set. Finally,
we normalize the data, in a range of [−1, 1], by applying this transformation to each
extracted feature vector.

6.2.2 PCA for feature selection

The following step in our methodology consists in reducing the dimensions of the feature
vectors obtained in the previous steps by means of Principal Component Analysis (PCA)
[72], which transforms the data to a new coordinate system leaving the greatest variance
of the images in the first axes (principal components). We apply PCA on all feature vec-
tors normalized from the training set and then the principal components are analyzed
to select the first dimensions that retain the most discriminant information. To do this,
we selected the features based on the Kaiser Criterion [77], which consists of retaining
those components with eigenvalues greater than 1. The feature vectors reduced are used
during the training of SVM and also during classification.

6.2.3 SVM for classification

An SVM is a classification algorithm that optimizes a boundary f (x) = Wx + b for max-
imizing the margin between two types of data, where the maximum margin is found
solving a quadratic optimization problem. The dual SVM formulation is defined as fol-
lows:

max
α

n

∑
i=1

αi −
1
2

n

∑
i=1

n

∑
j=1

αiαjyiyjK(xi, xj)

s.t. 0 ≤ αi ≤ C, i = 1, 2, . . . , n,
n

∑
i=1

αiyi = 0.
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where xi are the reduced feature vectors calculated from the n training set images, yi the
images class identified by the label -1 or 1, αi are the Lagrange multipliers, and K(xi, xj) =

tanh(γxT
i xj) is the chosen kernel function, as in [130], for SVM classifier. The parameters

C and γ are obtained by means of the GridSearchCV strategy, and the parameters αi are
adjusted during the optimization.

With the solution of the optimization problem, we compute the parameters of the objetive
function f(x), where W = ∑n

i=1 αiyixi, and b is the bias. Finally, the class is predicted
using the sgn( f (x)) function, which returns +1 when f (x) is positive and -1 when f (x)
is negative.

6.3 Experiments

6.3.1 Datasets

In this section, we present the selected datasets for the evaluation of the proposed model
and comparison of the results. Both datasets, FCD and RagusaDS, were selected because
they contain a significant amount of images, at least 15.000, and also they have free access
to the images.

FCD was constructed from two public datasets widely used: Food-101 [23] and Caltech-
256 [55] for food and non-food images, respectively (see Fig.6.2). Food-101 is a dataset
for food recognition, which contains 101 international food categories with 1.000 images
each one. Caltech256 contains 256 categories of objects with a total of 30.607 images, in
which each object has a minimum of 80 images. For the construction of FCD, not all im-
ages of these datasets were considered. To balance the amount of food and non-food, we
selected 250 images for each category in the Food101. The selection was based on the
color histogram of the images, keeping those with the highest color variance within the
same category and thus, keeping the most highly variable set, obtaining a total of 25.250
food images. In Caltech 256, all images were selected except the food-related ones, re-
sulting in 28.211 non-food images. To evaluate our approach, we used 64% of the images
for training, 16% validation and 20% test.

RagusaDS consists of three datasets acquired in different conditions: UNICT-FD889 [47]
and Flickr-Food [48] for positive; and Flickr-NonFood [48] for negative samples. UNICT-
FD889 is a dataset composed of 3.583 images of meals of 889 different dishes acquired
from multiple perspectives with the same device in real-world scenarios, where images
were acquired from a top view avoiding the presence of other objects. The Flickr images
datasets were manually labeled as being food or non-food images. These datasets, which
are called Flickr-Food and Flickr-NonFood, contain 4.805 images of food and 8.005 of
non-food, respectively. Compared to UNICT-FD889, they contain less restricted images,
and specifically for Flickr-Food the images can contain additional objects as well as food
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FIGURE 6.2: Example of images contained in the FCD Dataset. Top row
shows food images from Food101 and bottom row shows non-food images

from Caltech256.

FIGURE 6.3: Example of images contained in the RagusaDS Dataset. Top
row shows food images from UNICT-FD889, middle row shows food
images from Flickr-Food, and bottom row shows non-food images from

Flickr-NonFood.

and were taken from different points of view. In total, the dataset contains 8.388 images
of food and 8,005 of non-food (see Fig.6.3). From the UNICT-FD889 dataset we split 80%
of the data for training and 20% for validation. The first 3.583 images of Flickr-NonFood
were also used for validation, and the remaining 4,422 as well as all images from Flickr-
Food were used for testing.

6.3.2 Experimental Setup

We used Caffe [70] for training our CNN model. We fine-tuned the last two layers of
our model applying ten times the default learning rate. We set a learning rate of 1× 103,
with a decay of 0.96 every 5.000 iterations and a batch size of 32. We pre-processed the
images by resizing them to 256× 256 pixels, subtracted the training average of ImageNet
and maintained the original color pixels scale. During training, data augmentation was
applied by using horizontal mirroring and random crops of 224 × 224 pixels. During
prediction, a center crop is applied.
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TABLE 6.1: Results obtained by models based on CNN on RagusaDS and
FCD datasets on the food detection task. All results are reported in %.

RagusaDS FCD
Acc TPr TNr Acc TPr TNr

AlexNet + SVM [130] 94.86 94.28 95.50 - - -
NIN [75] - - - 96.40 96.00 97.00
GoogLeNet 94.66 91.53 98.06 98.87 98.48 99.22
GoogLeNet + SVM 94.95 91.53 98.67 98.96 98.85 99.06
GoogLeNet + PCA-SVM 94.97 91.57 98.67 99.01 98.85 99.15

TABLE 6.2: Results obtained when GoogLeNet + PCA-SVM is trained
on both datasets together (RagusaDS+FCD) and evaluated separately and

jointly.

Test dataset Acc TPr TNr
RagusaDS 95.78% 93.65% 98.10%
FCD 98.81% 98.60% 99.01%
RagusaDS+FCD 97.41% 96.19% 98.61%

The GoogLeNet was fine-tuned during 10 epochs, in the case of FCD, and during 40
epochs for RagusaDS. Training of the models was stopped when accuracy converged in
the training set. The feature vector extracted from each image is reduced selecting the
principal components based on the Kaiser Criterion, resulting in 186 dimensions on Ra-
gusaDS and 206 dimensions on FCD. As for the optimization of C and γ parameters, we
applied a 3-fold cross validation. We defined a range of 14 values uniformly distributed
on a base-10 logarithmic scale. In the case of the C parameter, we used a range from
1× 10−4 to 1× 102 and for γ parameter from 1× 10−8 to 1× 10−2. Finally, the best pa-
rameters are used to train the SVM from scratch with all the training set.

6.3.3 Metrics

We used different metrics to evaluate the performance of our approach, namely: overall
Accuracy (Acc), True Positive rate (TPr) and True Negative rate (TNr), which are defined
as follows: Acc = TP+TN

T , where TP (True Positive) and TN (True Negative) are the
amount of correctly classified images as Food and Non-Food, respectively; TPr = TP

TP+FN ,
where FN (False Negative) is the amount of misclassified images as Non-Food; TNr =

TN
FP+TN , where FP (False Positive) is the amount of images misclassified as food.

6.3.4 Results

In this section, we present the results obtained during the experiments. In Table 6.1, the
first two rows correspond to the state-of-the-art algorithms that gave the best prediction
on RagusaDS and FCD datasets, respectively. The last three methods are variations of
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FIGURE 6.4: FP (top) and FN (bottom) on RagusaDS dataset.

our proposal, which is based on the GoogLeNet. The results show the Acc, the TPr and
TNr obtained when evaluating each method on the FCD and RagusaDS datasets. In
the case of the FCD, it can be seen that the model obtains a high precision in the global
classification and maintains a slightly higher performance on TNr, which may be due
to the small imbalance between food and non-food images of this dataset. On the other
hand, for RagusaDS the difference between TPr and TNr is about 7% better for TNr.
We believe that this occurs considering that food images used during training are very
different from those used for evaluation and therefore the model is not able to recover
enough discriminant information that allows to generalize over a sample acquired under
different conditions. GoogLeNet + PCA-SVM is selected for the next experiment given
that it achieved the best results on both datasets.

Following, we trained the best model and evaluated its performance using RagusaDS
and FCD datasets together, maintaining the same sets of training, validation and test,
which we named RagusaDS+FCD. Table 6.2 shows the results obtained by training our
approach using the training sets from RagusaDS+FCD and evaluating on the test sets
from RagusaDS+FCD, RagusaDS and FCD. The results show that, when the model is
trained on RagusaDS+FCD, it improves the classification significantly on RagusaDS al-
though it presents a slight decrease on FCD. We believe that the improvement on Ragu-
saDS is mainly due to an increase in the detection of food-related images. We deduce
that by combining the training datasets, our method is able to extract features from var-
ious types of food acquired in different conditions, which allows to have a more robust
classifier achieving a better generalization on the test set of RagusaDS dataset.

Some FPs FNs obtained in both datasets are shown in Fig. 6.4 and Fig. 6.5. Analyzing
the FNs, we can observe that in the case of RagusaDS most errors occurred in images in
which food was a liquid (drink, coffee, etc). The reason for this is because the training set
contains a wide variety of dishes but none of these correspond to beverages and therefore
the classifier does not recognize them as food. In addition, other factors that influence
classification are poorly labeled images such as food and also the cases where in the
same image there are a lot of dishes. In the case of FCD, there are also some errors caused
by wrong labels in both categories.
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FIGURE 6.5: FP (top) and FN (bottom) on FCD dataset.

6.4 Conclusions

In this chapter, we addressed the food detection problem and proposed a model that uses
GoogLeNet for feature extraction, PCA for feature selection and SVM for classification.
Furthermore, we applied a benchmark on the two more widely used publicly available
datasets. From the results obtained, we observed that the best accuracy is achieved in
both datasets with our proposed approach. Specifically, the improvement in the overall
accuracy is more than 2% on FCD and about 1% for RagusaDS, when both datasets are
combined for training and evaluated on the respective datasets. In addition, the overall
accuracy when combining both datasets is 97.41%. As a conclusion, we explored the
problem of food detection comparing the last works in the literature and our proposed
approach provides an improvement on the state-of-the-art with respect to both public
datasets. Moreover, models based on GoogLeNet, independently of the settings, gave the
highest accuracy on the food detection problem. As future work, it would be interesting
to evaluate the performance of CNN-based models on larger datasets containing a much
wider range of dishes and beverages such as food images and diversity of environments
for non-food images. In addition, considering the large number of possible images of
food and non-food, it is very likely that the model will behave unexpectedly in some
images with visual content never seen before. To provide a more robust food detection
method, we can model uncertainty to make a better decision on uncertain predictions.
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Chapter 7

Food Recognition using Fusion of
Classifiers based on CNNs

7.1 Introduction

As we previously commented, food recognition has caused a lot of interest for researchers
considering its applicability in solutions that improve people’s nutrition and hence, their
lifestyle [167]. In relation to the healthy diet, traditional strategies for analyzing food
consumption are based on self-reporting and manual quantification [149]. Hence, the
information used to be inaccurate and incomplete [140]. Having an automatic monitoring
system and being able to control the food consumption is of vital importance, especially
for the treatment of individuals who have eating disorders, want to improve their diet or
reduce their weight.

Food recognition is a key element within a food consumption monitoring system. Orig-
inally, it has been approached by using traditional approaches [23, 104], which extracted
ad-hoc image features by means of algorithms based mainly on color, texture and shape.
More recently, other approaches focused on using Deep Learning techniques [104, 173,
111, 58]. In these works, feature extraction algorithms are not hand-crafted and addi-
tionally, the models automatically learn the best way to discriminate the different classes
to be classified. As for the results obtained, there is a great difference (more than 30%)
between the best method based on hand-crafted features compared to newer methods
based on Deep Learning, where the best results have been obtained with Convolutional
Neural Networks architectures that used inception modules [58] or residual networks
[111].

Food recognition can be considered as a special case of object recognition, being a very
active topic in computer vision lately. The specific part is that dish classes have a much
higher inter-class similarity and intra-class variation than usual Imagenet objects (cars,
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FIGURE 7.1: General scheme of our CNNs Fusion approach.

animals, rigid objects, etc.) (see Fig.7.3). If we analyze the last accuracy increase in the Im-
ageNet Large Scale Visual Recognition Challenge (ILSVRC) [141], it has been improved
thanks to the depth increase of CNN models [91, 182, 159, 59] and also to the fusion of
CNNs models[182, 59]. The main problem of CNNs is the need of large datasets to avoid
overfitting the network as well as the need of high computational power for training
them.

Considering the use of different classifiers, in general, trained on the same data, one can
observe that patterns misclassified by the different models would not necessarily overlap
[88]. This suggests that they could potentially offer complementary information that
can be used to improve the final performance [88]. An option to combine the outputs
of different classifiers was proposed in [93], where the authors used what they call a
decision templates scheme instead of simple aggregation operators such as the product
or average. As they showed, this scheme maintains a good performance using different
training set sizes and is also less sensitive to particular datasets compared to the other
schemes.

In this chapter, we integrate the fusion concept into the CNN framework, with the pur-
pose of demonstrating that the combination of the classifiers’ output, by using a decision
template scheme, allows to improve the performance on the food recognition problem.
Our contributions are the following: 1) we propose the first food recognition algorithm
that fuses the output of different CNN models, 2) we show that our CNNs fusion ap-
proach has better performance compared to the use of CNN models separately, and 3) we
demonstrate that our CNNs Fusion approach keeps a high performance independently
of the target (dishes, family of dishes) and dataset validating it on 2 public datasets.

The organization of the chapter is as follows. In section 7.2, we present the CNNs Fusion
methodology. In section 7.3, we present the datasets, the experimental setup and discuss
the results. Finally, in section 7.4, we describe the conclusions.
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7.2 Methodology

In this section, we describe the CNN Fusion methodology (see Fig. 7.1), which is com-
posed of two main steps: training K CNN models based on different architectures and
fusing the CNN outputs using the decision templates scheme.

7.2.1 Training of CNN models

The first step in our methodology involves separately training two CNN models. We
chose two different kind of models winners of the ILSVRC in the object recognition task.
Both models won or are based on the winner of the challenges made in 2014 and 2015
proposing novel architectures: the first based its design on "inception models" and the
second on "residual networks". First, each model was pre-trained on the ILSVRC data.
Later, all layers were fine-tuned by a certain number of epochs, selecting for each one
the model that provides the best results in the validation set and that will be used in the
fusion step.

7.2.2 Decision templates for classifiers fusion

Once we trained the models on the food dataset, we combined the softmax classifier
outputs of each model using the Decision Template (DT) scheme [93].

Let us annotate the output of the last layer of the k-th CNN model as (ω1,k, . . . , ωC,k),
where c = 1, ..., C is the number of classes and k = 1, ...K is the index of the CNN model
(in our case, K=2). Usually, the softmax function is applied, to obtain the probability
value of model k to classify image x to a class c: pk,c(x) = eωk,c

∑C
c=1 eωk,c . Let us consider the

k-th decision vector Dk:

Dk(x) = [pk,1(x), pk,2(x), ..., pk,C(x)]

Definition [93]: A Decision Profile, DP for a given image x is defined as:

DP(x) =

 p1,1(x) p1,2(x) ... p1,C(x)
. . .

pK,1(x) pK,2(x) ... pK,C(x)

 (7.1)

Definition [93]: Given N training images, a Decision Template is defined as a set of
matrices DT = (DT1, . . . , DTC), where the c-th element is obtained as the average of the
decision profiles (7.1) on the training images of class c:

DTc =
∑N

j=1 DP(xj)× Ind(xj, c)

∑N
j=1 Ind(xj, c)

,
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where Ind(xj, c) is an indicator function with value 1 if the training image xj has a crisp
label c, and 0, otherwise [92]. Finally, the resulting prediction for each image is deter-
mined considering the similarity s(DP(x), DTc(x)) between the decision profile DP(x)
of the test image and the decision template of class c, c = 1, . . . , C. Regarding the ar-
guments of the similarity function s(., .) as fuzzy sets on some universal set with K × C
elements, various fuzzy measures of similarity can be used. We chose different measures
[93], namely 2 measures of similarity, 2 inclusion indices, a consistency measure and the
Euclidean Distance. These measures are formally defined as:

S1(DTc, DP(x)) =
∑K

k=1 ∑C
i=1 min(DTc

k,i, DPk,i(x))

∑K
k=1 ∑C

i=1 max(DTc
k,i, DPk,i(x))

,

S2(DTc, DP(x)) = 1− sup
u
{
∣∣DTc

k,i − DPk,i(x)
∣∣ : i = 1, . . . , C, k = 1, . . . , K},

I1(DTc, DP(x)) =
∑K

k=1 ∑C
i=1 min(DTc

k,i, DPk,i(x))

∑K
k=1 ∑C

i=1 DTc
k,i

,

I2(DTc, DP(x)) = inf
u
{max(DTc

k,i, DPk,i(x)) : i = 1, . . . , C, k = 1, . . . , K},

C(DTc, DP(x)) = sup
u
{min(DTc

k,i, DPk,i(x)) : i = 1, . . . , C, k = 1, . . . , K},

N(DTc, DP(x)) = 1−
∑K

k=1 ∑C
i=1(DTc

k,i − DPk,i(x))2

K× C
,

where DTc
k,i is the probability assigned to the class i by the classifier k in the DTc, DTc

k,i

is the complement of DTc
k,i calculated as 1 − DTc

k,i, and DPk,i(x) is the probability as-
signed by the classifier k to the class i in the DP calculated for the image, x. The final
label, L is obtained as the class that maximizes the similarity, s, the inclusion index,
the consistency measure or the Euclidean distance between DP(x) and DTc: L(x) =

argmaxc=1,...,C{s(DTc, DP(x))}.

7.3 Experiments

7.3.1 Datasets

The data used to evaluate our approach are two public datasets of very different im-
ages: Food-11 [153] and Food-101 [23], which are chosen in order to verify that the clas-
sifiers fusion provides good results regardless of the different properties of the target
datasets, such as intra-class variability (the first one is composed of many dishes of the
same general category, while the second one is composed of specific fine-grained dishes),
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FIGURE 7.2: Images from the Food-11 dataset. Each image corresponds to
a different class.

FIGURE 7.3: Example images of Food-101 dataset. Each image represents
a dish class.

inter-class similarity, number of images, number of classes, images acquisition condition,
among others.

Food-11 is a dataset for food recognition [153], which contains 16,643 images grouped
into 11 general categories of food: bread, dairy products, dessert, egg, fried food, meat,
noodle/pasta, rice, seafood, soup and vegetable/fruit (see Fig. 7.2). The images were
collected from existing food datasets (Food-101, UECFOOD100, UECFOOD256) and so-
cial networks (Flickr, Instagram). This dataset has an unbalanced number of images for
each class with an average of 1,513 images per class and a standard deviation of 702. For
our experiments, we used the same data split, images and proportions, provided by the
authors [153]. These are divided as 60% for training, 20% for validation and 20% for test,
that is 9,866, 3,430 and 3,347 images for each set, respectively.

Food-101 is a standard to evaluate the performance of visual food recognition [23]. This
dataset contains 101.000 real-world food images downloaded from foodspotting.com,
which were taken under unconstrained conditions. The authors chose the top 101 most
popular classes of food (see Fig. 7.3) and collected 1,000 images for each class: 75% for
training and 25% for testing. With respect to the classes, these consist of very diverse and
fine-grained dishes of various countries, but also with highly intra-class variation and
inter-class similarity in most occasions. In our experiments, we used the same data splits
provided by the authors. Unlike Food-11, and keeping the procedure followed by other
authors [104, 111, 58], we validate and test our model on the same data split.

7.3.2 Experimental Setup

As usually, every CNN model was pre-trained on the ILSVRC dataset. Following, we
adapted them by changing the output of the models to the number of classes for each
target dataset and fine-tuned the models using the new images. For the training of the
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CNN models, we used the Deep Learning framework Keras1. The models chosen for
Food-101 dataset due to their performance-efficiency ratio were InceptionV3 [160] and
ResNet50 [59]. Both models were trained during 48 epochs with a batch size of 32, and
a learning rate of 5× 10−3 and 1× 10−3, respectively. In addition, we applied a decay
of 0.1 during the training of InceptionV3 and of 0.8 for ResNet50 every 8 epochs. The
parameters were chosen empirically by analyzing the training loss.

As to the Food-11 dataset, we kept the ResNet50 model, but changed InceptionV3 by
GoogLeNet [159], since InceptionV3 did not generalize well over Food-11. We believe
that the reason is the small number of images for each class not sufficient to avoid over-
fitting; the model quickly obtained a good result on the training set, but a poor perfor-
mance on the validation set. GoogLeNet and Resnet50 were trained during 32 epochs
with a batch size of 32 and 16, respectively. The other parameters used for the ResNet50
were the same used for Food-101. In the case of GoogLeNet, we used a learning rate of
1× 10−3 and applied a decay of 0.1 during every 8 epochs, that turned out empirically
the optimal parameters for our problem.

7.3.3 Data Preprocessing and Metrics

The preprocessing made during the training, validation and testing phases was the fol-
lowing. During the training of our CNN models, we applied different preprocessing
techniques on the images with the aim of increasing the samples and to prevent the over-
fitting of the networks. First, we resized the images keeping the original aspect ratio as
well as satisfying the following criteria: the smallest side of the resulting images should
be greater than or equal to the input size of the model; and the biggest side should be less
than or equal to the maximal size defined in each model to make random crops on the im-
age. In the case of InceptionV3, we set to 320 pixels as maximal size, for GoogLeNet and
ResNet50 the maximal size was defined as 256 pixels. After resizing the images, inspired
by [58], we enhanced them by means of a series of random distortions such as: adjust-
ing color balance, contrast, brightness and sharpness. Finally, we made random crops
of the images, with a dimension of 299x299 for InceptionV3 and of 224x224 for the other
models. Then, we applied random horizontal flips with a probability of 50%, and sub-
tracted the average image value of the ImageNet dataset. During validation, we applied
a similar preprocessing, with the difference that we made a center crop instead of random
crops and that we did not apply random horizontal flips. During test, we followed the
same procedure than in validation (1-Crop evaluation). Furthermore, we also evaluated
the CNN using 10-Crops, which are: upper left, upper right, lower left, lower right and
center crop, both in their original setup and also applying an horizontal flip [91]. As for
10-Crops evaluation, the classifier gets a tentative label for each crop, and then majority

1www.keras.io
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TABLE 7.1: Overall test set error rate of Food-11 obtained for each model.
The distance measure is shown between parenthesis in the CNNs Fusion

models.

Authors Model 1-Crop 10-Crops N/A
[153] GoogLeNet - - 16.5%

us GoogLeNet 9.89% 9.29% -
us ResNet50 6.57% 6.39% -
us CNNs Fusion (S1) 6.36% 5.86% -
us CNNs Fusion (S2) 6.12% 5.65% -
us CNNs Fusion (I1) 6.36% 5.89% -
us CNNs Fusion (I2) 6.30% 5.65% -
us CNNs Fusion (C) 6.45% 6.07% -
us CNNs Fusion (N) 6.36% 5.92% -

voting is used over all predictions. In the cases where two labels are predicted the same
number of times, the final label is assigned comparing their highest average prediction
probability.

We used four metrics to evaluate the performance of our approach, overall Accuracy,
Precision, Recall, and F1 score.

7.3.4 Experimental Results on Food-11

The results obtained during the experimentation on Food-11 dataset are shown in Table
7.1 giving the error rate (1 - accuracy) for the best CNN models, compared to the CNNs
Fusion. We report the overall accuracy by processing the test data using two procedures:
1) a center crop (1-Crop), and 2) using 10 different crops of the image (10-Crops). The
experimental results show an error rate of less than 10 % for all classifiers, achieving a
slightly better performance when using 10-Crops. The best accuracy is achieved with our
CNNs Fusion approach, which is about 0.75% better than the best result of the classifiers
evaluated separately. On the other hand, the baseline classification on Food-11 was given
by their authors, who obtained an overall accuracy of 83.5% using GoogLeNet models
fine-tuned in the last six layers without any pre-processing and post-processing steps.
Note that the best results obtained with our approach have been using the point-wise
measures (S2, I2). The particularity of these measures is that they penalize big differences
between corresponding values of DTs and DP being from the specific class to be assigned
as the rest of the class values. From now on, in this section we only report the results
based on the 10-Crops procedure.

As shown in Table 7.2, the CNNs Fusion is able to properly classify not only the images
that were correctly classified by both baselines, but in some occasions also when one or
both fail. This suggests that in some cases both classifiers may be close to predicting the
correct class and combining their outputs can make a better decision.
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TABLE 7.2: Percentage of images well-classified and misclassified on Food-
11 using our CNNs Fusion approach, distributed by the results obtained
with GoogLeNet (CNN1) and ResNet50 (CNN2) models independently

evaluated.

CNNs evaluated independently
CNNs Fusion Both wrong CNN1 wrong CNN2 wrong Both fine
Well-classified 3.08% 81.77% 54.76% 99.97%
Misclassified 96.92% 18.23% 45.24% 0.03%

FIGURE 7.4: Misclassified Food-11 examples: predicted labels (on the top),
and the ground truth (on the bottom).

Samples misclassified by our model are shown in Fig. 7.4, where most of them are pro-
duced by mixed items, high inter-class similarity and wrongly labeled images. We show
the ground truth (top) and the predicted class (bottom) for each sample image.

In Table 7.3, we show the precision, recall and F1 score obtained for each class separately.
By comparing the F1 score, the best performance is achieved for the class Noodles_Pasta
and the worst for Dairy products. Specifically, the class Noddles_Pasta only has one im-
age misclassified, which furthermore is a hard sample, because it contains two classes
together (see items mixed in Fig. 7.4). Considering the precision, the worst results are ob-
tained for the class Bread, which is understandable considering that bread can sometimes
be present in other classes (e.g. soup or egg). In the case of recall, the worst results are
obtained for Dairy products, where an error greater than 8% is produced for misclassify-
ing several images as class Dessert. The cause of this is mainly, because the class Dessert
has a lot of items in their images that could also belong to the class Dairy products (e.g.
frozen yogurt or ice cream) or that are visually similar.

7.3.5 Experimental Results on Food-101

The overall accuracy on Food-101 dataset is shown in Table 7.4 for two classifiers based
on CNN models, and also for our CNNs Fusion. The overall accuracy is obtained by
means of the evaluation of the prediction using 1-Crop and 10-Crops. The experimental
results show better performance (about 1% more) using 10-Crops instead of 1-Crop. From
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TABLE 7.3: Some results obtained on the Food-11 using our CNNs Fusion
approach.

Class #Images Precision Recall F1
Bread 368 88.95% 91.85% 90.37%
Dairy products 148 89.86% 83.78% 86.71%
Meat 432 94.12% 92.59% 93.35%
Noodles_Pasta 147 100.00% 99.32% 99.66%
Rice 96 94.95% 97.92% 96.41%
Vegetable_Fruit 231 98.22% 95.67% 96.93%

TABLE 7.4: Overall test set accuracy of Food-101 obtained for each model.

Author Model 1-Crop 10-Crops N/A
[58] InceptionV3 - - 88.28%
[111] ResNet200 - 88.38% -
[111] WRN - 88.72% -
[111] WISeR - 90.27% -

us ResNet50 82.31% 83.54% -
us InceptionV3 83.82% 84.98% -
us CNNs Fusion (S1) 85.52% 86.51% -
us CNNs Fusion (S2) 86.07% 86.70% -
us CNNs Fusion (I1) 85.52% 86.51% -
us CNNs Fusion (I2) 85.98% 86.71% -
us CNNs Fusion (C) 85.24% 86.09% -
us CNNs Fusion (N) 85.53% 86.50% -

now on, in this section we only report the results based on the 10-Crops procedure. In
the same way as observed in Food-11, the best accuracy obtained with our approach was
by means of point-wise measures S2, I2, where the latter provides a slightly better per-
formance. Again, the best accuracy is also achieved by the CNNs Fusion, which is about
1.5% higher than the best result of the classifiers evaluated separately. Note that the
best performance on Food-101 (overall accuracy of 90.27%) was obtained using WISeR
[111]. In addition, the authors show the performance by another deep learning-based
approaches, in which three CNN models achieved over a 88% (InceptionV3, ResNet200
and WRN [181]). However, WISeR, WRN and ResNet200 models were not considered
in our experiments since they need a multi-GPU server to replicate their results. In ad-
dition, those models have 2.5 times more parameters than the models chosen, which
involve a high cost computational especially during the learning stage. Following the
chapter steps, our best results replicating the methods were those using InceptionV3 and
ResNet50 models used as a base to evaluate the performance of our CNNs Fusion ap-
proach.

As shown in Table 7.5, in this dataset the CNNs Fusion is also able to properly classify
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TABLE 7.5: Percentage of images well-classified and misclassified on Food-
101 using our CNNs Fusion approach, distributed by the results obtained
with InceptionV3 (CNN1) and ResNet50 (CNN2) models independently

evaluated.

CNNs evaluated independently
CNNs Fusion Both wrong CNN1 wrong CNN2 wrong Both fine
Well-classified 1.95% 73.07% 64.95% 99.97%
Misclassified 98.05% 26.93% 35.05% 0.03%

FIGURE 7.5: Misclassified examples for the Food-101 classes that obtained
the worst (steak) and best (edamame) classification results by F1 score

(groundtruth label - bottom).

not only the images that were correctly classified for both classifiers, but also when one or
both fail. Therefore, we demonstrate that our proposed approach maintains its behavior
independently of the target dataset.

Table 7.6 shows the top three worst and best classification results on Food-101 classes. We
highlight the classes with the worst and best results. As for the worst class (Steak), the
precision and recall achieved are 60.32% and 59.60%, respectively. Interestingly, about
26% error in the precision and 30% error in the recall is produced with only three classes:
Filet mignon, Pork chop and Prime rib. As shown in Fig. 7.5, these are fine-grained
classes with high inter-class similarities that imply high difficulty for the classifier, be-
cause it should identify small details that allow to determine the corresponding class of
the images. On the other hand, the best class (Edamame) was classified achieving 99.60%
of precision and 100% of recall. Unlike Steak, Edamame is a simple class to classify, be-
cause it has a low intra-class variation and low inter-class similarities. In other words,
the images in this class have a similar visual appearance and they are quite different
from the images of the other classes. Regarding the only one misclassified image, its
visual appearance is close to the class Edamame as for the shape and color.

7.4 Conclusions

In this chapter, we addressed the problem of food recognition and proposed a CNNs
Fusion approach based on the concepts of decision templates and decision profiles and
their similarity that improves the classification performance with respect to using CNN
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TABLE 7.6: Top 3 better and worst classification results on Food-101.

Class Precision Recall F1
Spaghetti Bolognese 94.47% 95.60% 95.03%
Macarons 97.15% 95.60% 96.37%
Edamame 99.60% 100.00% 99.80%
Steak 60.32% 59.60% 59.96%
Pork Chop 75.71% 63.60% 69.13%
Foie Gras 72.96% 68.00% 70.39%

models separately. Evaluating different similarity measures, we show that the optimal
one is based on the infinimum of the maximum between the complementary of the de-
cision templates and the decision profile of the test images. On Food-11, our approach
outperforms the baseline accuracy by more than 10% of accuracy. As for Food-101, we
used two CNN architectures providing the best state-of-the-art results where our CNNs
Fusion strategy outperformed them again. As a future work, we plan to evaluate the
performance of the CNN Fusion strategy as a function of the number of CNN models.
Furthermore, it would be interesting to analyze epistemic uncertainty to weigh the im-
portance of each model within an ensemble for the classification of the input image.
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Chapter 8

Grab, Pay and Eat: Semantic Food
Detection for Smart Restaurants

8.1 Introduction

Having a poor routine of physical exercises and poor nutritional habits are two of the
main possible causes of people’s health-related issues like obesity or diabetes, among
others. For these reasons, nowadays people are more concerned about these aspects of
their daily life. Therefore, the need for applications that allow to keep track of both phys-
ical activities and nutrition habits are rapidly increasing, a field in which the automatic
analysis of food images plays an important role. Focusing on self-service restaurants,
food recognition algorithms could enable both monitoring of food consumption and the
automatic billing of the meal grabbed by the customer. The latter is quite relevant be-
cause remove the need for a manual selection of the chosen dishes, allowing to speed-up
the service offered by these restaurants.

From the computer vision side, several approaches have been proposed to tackle the
problem, most of them using Convolutional Neural Networks [75, 130, 2, 153]. Several of
the published work consider the development of methods for food recognition, i.e. be-
ing able to recognize the dish depicted in a picture in which a single plate is shown. An
important consideration to take into account when modeling visual food-related infor-
mation is its fine-grained nature, meaning that specially in the problem of food analysis
the intra and inter-class similarity are hardly making difficult the problem of obtaining
robust food recognition methods.

Several works in the literature have proposed methods for food intake self-monitoring
[8, 164], in which the user should take pictures of each meal and the system would con-
sequently track any nutritional information associated. Other approaches related to the
problem of food intake include food portion estimation by using two images acquired by
mobile devices [36]; food ingredients recognition from recipes using CNNs as multi-label
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FIGURE 8.1: Example of images used in traditional approaches to food
analysis (left) and food tray analysis (right).
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FIGURE 8.2: Main tasks of our Semantic Food Detection framework.

predictors [20, 27]; multimodal multitask deep belief networks for learning both visual
information and image-ingredient representation [118]; bayesian models for analyzing
similarities between cuisines [117]; or cross-modal learning for multi-attribute recogni-
tion and recipe retrieval [26].

Instead of applying personalized tracking, there are several contexts where social moni-
toring or recognition is required. A clear example is food tray detection in public spaces
[31, 32], where the sample consists of a tray picture that includes all the food that a user
is about to consume (see Fig. 8.1) and the model is intended to process all pictures from
any possible users taking food at the same restaurant. The development of a system able
to apply food tray detection in a controlled, but social and public environment could
enable several applications. The most straightforward context of applicability would be
automatic billing in self-service restaurants, where the system could solve the need for a
person selecting what the customer grabbed before paying. A different application could
consider the design of smart trays [131], which could provide food recommendations
depending on what the customer is selecting. The provided recommendations could be
based on calorie counting, healthy food, specific nutritional composition, etc. In addi-
tion, if we also consider a system able to log the food consumed by every individual
along time, it could provide health-related recommendations in a long-term way.

There are several aspects that make the food tray analysis a challenging problem [32]: 1)
multiple foods placed on the same placemat, 2) different foods served in the same dish,
3) visual distortions and illumination changes due to shadows, and 4) objects placed on
a tray that do not correspond to any type of food. On the other hand, unlike traditional
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approaches to food analysis, difficulties due to intra-class variability have less influence
on the problem of food tray detection.

In this work, we propose a novel method that unifies the problems of food detection,
localization, recognition and segmentation into a new framework that we call Semantic
Food Detection. As Fig. 8.2 shows, we integrate the information extracted by two main
approaches: a) food segmentation and b) object detection trained for food detection, by
taking advantage of the benefits provided by both algorithms in a CNN framework. The
first one allows us to determine where the food is in terms of pixel and bounding boxes.
The second one allows us to locate and recognize the foods present in the images. The
Semantic Food Detection framework combines the information that both algorithms pro-
vide in order to prevent false food detections and thus provide a better performance.

Our main contributions are: 1) a novel framework that integrates the problems of food
detection, localization, recognition and segmentation; and 2) a novel approach to ad-
dress the problem of food tray analysis, that integrates a fully convolutional network for
semantic segmentation and a convolutional neural network for object detection through
a probabilistic approach and a custom non-maximum suppression. Our method achieves
about 90% in terms of F2-score, and it is able to outperform the state-of-the-art methods
by more than 10% and 20% with respect to recall and mean average accuracy.

The remainder of this chapter is organized as follows: Section 8.2 includes an overview of
the related work, Section 8.3 presents the proposed Semantic Food Detection approach,
Section 8.4 shows the experimental results and discussion, and Section 8.5 closes with the
conclusions and future research.

8.2 Related Work

Nowadays, there is a great interest in conducting research for visual food analysis, mainly
in its applicability for diet monitoring based on the intrinsic nutritional information con-
tained in food images. In this field, researchers have focused on different several aspects
related to automatic food analysis.

The most basic aspect tackled in the literature is the binary food detection problem that
determines the presence or absence of food in an image. This problem is also called
food/non-food classification or food detection [76]. The first approximation was pro-
posed by Kitamura et al. [87], who combine a BoF model and a SVM achieving a high
accuracy on a tiny dataset of 600 images. An improvement of about 4% is achieved in
terms of overall accuracy using a CNN-based method [76]. From this, numerous re-
searchers have proposed CNN-based models either for feature extraction [130, 2] or for
the whole recognition process [75, 153]. The best results obtained on public datasets with
more than 15,000 images [75, 130] have been reported in [2] through the combination



100 Grab, Pay and Eat: Semantic Food Detection for Smart Restaurants

of CNN GoogLeNet for feature extraction, PCA for dimension reduction and SVM for
classification. As for its applicability, this problem has commonly been investigated for
indexing WEB images [87] or as a pre-processing method for an automatic food recogni-
tion system [75, 153]. It has been also used to detect bounding boxes in an food images
[21], and to automate the process of image cleaning required when gathering images of a
food dataset [115].

In food analysis, once images containing food are identified, food recognition is usually the
next step to apply. Again, CNN-based models have been able to progressively improve
the results of food recognition models reaching an accuracy of about 90% in datasets
with around 100 different food classes [111]. In general, the best proposals are based on
the winning models of the ILSVRC challenge [141], and a fine-tuning process is usually
applied either making some architectural model changes (e.g. addition or removal of
layers) [173, 104] or not [58]. Several datasets have been proposed to tackle this prob-
lem: a) datasets including fine-grained classes (e.g. apple pie, pork chop, pizza), like
UECFOOD-256 [81] or Food-101 [23]; and b) datasets based on high-level categories (e.g.
dessert, meat, soup), like Food-11 [153]. The best result when using fine-grained classes
was achieved by the WISeR model [111], which combines the food traits and the vertical
structure of some food, extracted by the standard squared convolutional kernel and the
proposed slice convolutional kernel, respectively. Regarding the high-level categories,
the best results were obtained by [1] through a novel approach that fuses several CNN
models, achieving a 10% improvement in terms of accuracy with respect to the baseline
method.

Most of the approaches focused on food recognition only exploit the visual content, but
they ignore the context. However, geolocation and other information have also been ex-
plored in the literature for restaurant-oriented food recognition: on-line restaurant infor-
mation is used in [18], similarly to [15] in which nutritional information is also retrieved;
whilst the menu, the location and user images of dished are used in [172]. On the other
hand, Herranz et al. [61] go a step further since their target is not only to improve both
classification performance and efficiency, but also to better model contextual data and its
relation with the other elements.

To date, most food recognition algorithms and datasets focus on classifying images that
include only one dish [111, 104, 58]. However, in some cases, there may be more than
one dish in the image and, in some cases, the dish can contain several kinds of food. Food
localization and food segmentation are two tasks intended to cope with these problems.
The former consists in extracting the regions of the images where the food is located.
Up to our knowledge, the only available approach that does not require segmenting the
food before extracting the bounding boxes is the one proposed by [21]. The task of food
segmentation consists in classifying each pixel of the images representing a food. The
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latest research for food segmentation proposes an automatic weakly supervised methods
[150, 151], which are based on Deep Convolutional Neural Networks and Distinct Class-
specific Saliency Maps, respectively.

Regarding image segmentation for general purposes, fully convolutional networks (FCNs)
[148] are the state-of-the-art in semantic segmentation. They are composed of convo-
lutional layers only, i.e they do not have any fully-connected layer. They consist of a
down-sampling path and an up-sampling path, which allow to take input images of ar-
bitrary size and produce outputs of equivalent size, by means of an efficient inference
and learning process. Several FCN models can be found in the literature applied to se-
mantic segmentation. SegNet [14] is a deep FCN that consists of a VGG16-based encoder,
a decoder and a final pixel-wise classification layer. DeepLab [28] uses atrous convolu-
tions in the up-sampling path, allowing to incorporate larger context with no increase
in parameters. RefineNet [102] is a multi-path refinement network that allows to obtain
high-resolution predictions by using residual connections. PSPNet [190] is a pixel-level
prediction framework that includes a pyramid pooling module to exploit the capability
of global context information. Tiramisu [69] is an extension of Densely Connected Con-
volutional Neural Networks (DenseNets) for semantic segmentation, based on the idea
of connecting each layer to every other layer in a feed-forward fashion. Its main benefits
include a more accurate and easier training, with much less parameters.

According to the experimentation presented in the respective manuscripts, PSPNet [190]
and Tiramisu [69] are the most competitive models. PSPNet is based on Residual Net-
works (ResNets), whilst Tiramisu is based on DenseNets. DenseNets can be seen as an
extension of ResNets, with some characteristics that make them very appropriate for se-
mantic segmentation problems: parameter efficiency, implicit deep supervision, and fea-
ture reuse. For all these reasons, Tiramisu will be the model of reference in our research.

In this manuscript, we deal with the identification of different foods placed on a food
tray, by integrating the four food analysis problems mentioned above. To the best of our
knowledge, only one approach with this purpose has been evidenced in the literature
[32]. The authors introduced an additional food dataset composed of images taken in
a canteen environment named UNIMIB2016. In addition, they proposed a pipeline for
food recognition that performs classification based on the candidate regions obtained by
combining two separate images segmentation processes, through saturation and color
texture (JSEG). The best result was achieved by combining global and local (patch-based)
classification approaches. Regarding the classification, for each region, they are carried
out both in a sub-image (global strategy) and in several image patches (local strategy), the
feature extraction using a CNN model based in AlexNet, and then the classification by an
SVM. Furthermore, in the local strategy, an additional post-processing phase is needed to
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FIGURE 8.3: Detailed workflow of the proposed Semantic Food Detection
method: food segmentation and food detection methods are applied in
parallel, before combining them for a final detection on food tray images.

merge the labels of all image patches of the respective region. Then, the classification ob-
tained by both approaches is combined by exploiting the sum of posterior probabilities to
judge the final classification decision. Our approach differs mainly in three aspects: 1) we
perform semantic segmentation by learning the best discriminant features between dif-
ferent foods from the dataset instead of using a segmentation approach based on generic
image processing methods; 2) we locate and classify simultaneously all the foods placed
in the tray by considering the context instead of performing the classification for each
region individually, which implies a significant improvement in both result and process-
ing time; and 3) we integrate the outputs of both methods to avoid false detections and
thus make better decisions, instead of performing the classification directly based on the
segmentation results. Additionally, our method is able to perform the food segmentation
and detection processes in parallel, allowing to speed up the processing time.

8.3 Semantic Food Detection

This work proposes a method for food tray semantic detection that integrates food vs
non-food semantic segmentation with food localization and recognition. Fig. 8.3 depicts
the pipeline of our approach, subsequently explained in detail.

8.3.1 Food Segmentation

Food segmentation deals here with the problem of separating the food and food-related
items, from the tray and other background elements, thus obtaining a binary image.
For this purpose, we apply semantic segmentation techniques that work in a supervised
learning framework, unlike the most segmentation methods that focus on image proper-
ties (e.g. color or texture). Notice that semantic segmentation could be used to directly
segment the input image into the different food categories. However, the most recent
methods in this field provide great results with datasets that contain a relatively low
number of classes, such as CamVid with 11 semantic classes or Gatech with 8 [69]. The
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number of categories used in food analysis is much higher, thus increasing the difficulty
of the task and providing not so satisfactory results [148].

Among the FCN models found in the literature applied to semantic segmentation, the
Tiramisu model was considered [69], as mentioned in Section 8.2. Its down-sampling and
up-sampling paths are connected by skip connections, and its architecture is composed
of dense blocks, each one of them containing a set of concatenated layers for a better
training.

After training our FCN model with food tray images, the binary images predicted by
it are used in the next step, which aims at tracing the exterior boundaries of the food
regions, avoiding the holes inside them. In this manner, small holes that may appear
inside regions are discarded and thus the regions are homogenized. For this task, we use
the Moore-Neighbor tracing algorithm modified by Jacob’s stopping criteria [53].

Once the boundaries are traced, the bounding boxes that contain the regions are deter-
mined, thus obtaining a binary food detection. As small regions may also appear in the
predicted images, and they usually correspond to false positives, this step also includes
their elimination by considering a threshold criterion. Fig. 8.4 illustrates an example of
the outputs obtained in the food segmentation procedure, including the binary image
provided by the FCN model, the boundaries extracted and the bounding boxes gener-
ated.

FIGURE 8.4: Food segmentation output (left to right): binary prediction by
FCN, regions boundaries and food bounding boxes.

8.3.2 Food Detection

In this work, following the definition of the object detection problem [141], we consider
as Food Detection the localization and recognition of food. For this purpose, we propose
re-training an object detection algorithm to apply food detection instead. In particular,
we chose one of the best object detection approaches in the state-of-the-art, YOLOv2 [134,
135]. As for the model, the authors propose a new FCN called Darknet-19, composed by
19 convolutional layers and 5 max pooling layers to tackle the recognition task. They
modified this network for object detection by removing the last convolutional layer and
adding four convolutional layers for producing 13x13 feature maps. At each cell on the
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output feature maps, the network predicts B bounding boxes with five coordinates for
each, among them is the confidence score to, and c = 1, . . . , C conditional class prob-
abilities, Pr(Classc|Object). Predictions are obtained from the last convolutional layer
having a size equal to 1 × 1 and F filters, where the number of filters is calculated as:
F = (B × (5 + C)). From this, it is possible to determine the class-specific confidence
score, CSc for each bounding box as follows:

CSc =Pr(Classc|Object) ∗ σ(to) (8.1)

where σ(.) stands for a logistic activation to constrain the predictions to fall in the range
between 0 and 1. Note that, in the experiment, we use the original setting of B (equal to
5).

8.3.3 Semantic Food Detection

In object detection, one of the most common errors are false positives, which can be clas-
sified based on the type of error: localization error, confusion with similar objects, con-
fusion with dissimilar objects, and confusion with background [63]. Our Semantic Food
Detection proposal focuses on reducing two of the most common errors of object detec-
tors [134]: localization errors, specifically those corresponding to duplicate detections;
and errors produced by the confusion with the background. For this purpose, we pro-
pose the following procedure that integrates the detection and segmentation algorithms:

Background Removal

The first step involves the application of both boundaries extracted (contour and bound-
ing box) from the Food Segmentation procedure in order to remove the background de-
tections. Let Y = {bY

1 , . . . , bY
N} be the set of bounding boxes obtained with the detection

method, S1 = {bS
1 , . . . , bS

L} and S2 = {cS
1 , . . . , cS

L} the set of bounding boxes and contours
extracted by the Food Segmentation method, respectively. Considering each element
belonging to the sets named above as a set of points (x, y) that defines a polygon, we cal-
culate the probability of a bounding box, bY

i to belong to the background Bkg as follows:

Pr(Bkg|bY
i ) = min(CSc(bY

i ), max(Pr(S1|bY
i ), Pr(S2|bY

i )))

where CSc(bY
i ) is the complement of the confidence score, 1 − CSc(bY

i ) for the i-th de-
tection, Pr(S1|bY

i ) is the probability that bY
i is a false detection on the extracted boxes,

S1:

Pr(S1|bY
i ) = 1− max

j=1,...,L

|bY
i ∩ bS

j |
|bY

i |
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where |.| stands for the cardinality of a set of pixels corresponding to an image region,
and Pr(S2|bY

i ) the probability that bY
i does not intersect with any contour in S2:

Pr(S2|bY
i ) = min

j=1,...,L
Ind(bY

i ∩ cS
j = ∅)

where Ind(∗) is an indicator function with value 1 if the condition is true, and 0 other-
wise.

Bounding boxes with a probability higher than 50% to be background (Pr(Bkg|bY
i ) >

T, T = 0.5) are considered to be false detections, and are therefore removed.

Non-Maximum Suppression

The second step involves the application of a greedy procedure to eliminate duplicate
detections by non-maximum suppression [49]. Once the Background Removal is applied,
the remaining detections Y′ ⊆ Y are sorted in descending order by the confidence score
CSc(bY

j ) and grouped into C sets Y1, . . . , YC ⊂ Y′, where C is the number of classes.
Then, for each Yc, c = 1, ...C, we greedily select the highest scoring bounding boxes while
removing detections that are lower in the ranking and their maximum intersection ratio
(MIR) with respect to the i-th previously selected bounding boxes is more than 50%,
where MIR score for the j-th bounding box is calculated as:

MIRj = max
∀i,i<j

|bY
i ∩ bY

j |
min(|bY

i |, |bY
j |)

Notice that the chosen food detection method already incorporates a non-maximum sup-
pression procedure. In our framework, we propose an additional personalized non-
maximum suppression that differs mainly in two aspects: 1) we consider the predicted
classes for the bounding boxes, and 2) we propose a MIR score instead of the traditional
IoU. The last one was applied because in some cases the overlapped predictions for the
same class could have a completely different dimension and proportion, and then, the
IoU score will be very small even if one bounding box is completely inside the other.

8.4 Experimental Results

In this section, we first describe the dataset used to evaluate the proposed approach,
which is composed of images taken in self-service restaurants. Then, we describe the
evaluation measures used and present the results obtained with the different methods
and model configurations.
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8.4.1 Dataset

UNIMIB2016 [32] is a food dataset that has been collected in a self-service canteen. Each
image includes a tray with some food placed both on plates and placemats. The acquisi-
tion process was performed on a semi-controlled environment using a Samsung Galaxy
S3 smartphone. As a result, images acquired have a resolution of 3264× 2448 in RGB,
and present visual distortions and variable illuminations, making them challenging for
any task of automatic food analysis.

The dataset is composed of 1,027 images that include a total of 73 food categories. Among
them, only 1,010 images and 65 categories were used for experimentation, as suggested in
[32] due to the low number of samples of the categories not considered. For experimental
purposes, the dataset has been split in training and test sets: the former contains 650
images (≈ 64%), whilst the latter contains 360 (≈ 36%).

The annotations included in the dataset contain, for each food item: the polygon defining
its boundaries, the bounding box and the food label. Fig. 8.5 illustrates an image of the
UNIMIB2016 dataset with its corresponding annotations.

FIGURE 8.5: A representative sample of the UNIMIB dataset [32]: original
image (left) and food annotations (right).

8.4.2 Food Segmentation

Metrics. In order to evaluate the different food segmentation approaches, several per-
formance measures have been used. First, two pixel-wise metrics commonly used in
semantic segmentation problems have been considered [148]:

• Global pixel accuracy (GA). The pixel-wise accuracy computed over all the pixels of
the dataset.

• Intersection over Union (IoU). Also known as Jaccard index, it is defined as:

IoU(c) = ∑i ti == c ∧ pi == c
∑i ti == c ∨ pi == c

(8.2)
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where c is a class, i represents all the pixels of the dataset, ti are the target labels,
and pi are the predicted labels. Note that this metric is calculated for each single
class c, and then the mean across the classes is computed.

To perform a fair comparison with [32], three region-based metrics have been also con-
sidered [13]:

• Covering (CO). The covering of the ground truth (GT) by the segmented (S) images
measures the level of overlapping between each pair of regions (R and R′):

C(S→ GT) =
1
N ∑

R∈GT
|R| ·max

R′∈S

|R ∩ R′|
|R ∪ R′| (8.3)

where N is the number of pixels of the image.

• Rank index (RI). It compares the compatibility of assignments between pairs of ele-
ments in the ground truth (GT) and the segmented (S) images:

RI(S, GT) =
1
(N

2 )
∑
i<j

[
I(ti == tj ∧ pi == pj) + I(ti 6= tj ∧ pi 6= pj)

] (8.4)

where (N
2 ) is the number of possible unique pairs among the N pixels of each image,

and I is the identity function.

• Variation of information (VI). It measures the distance between the ground truth (GT)
and the segmented (S) images in terms of their average conditional entropy:

VI(S, GT) = H(S) + H(GT)− 2 ·MI(S, GT) (8.5)

where H and MI are, respectively, the entropy and the mutual information. In this
case, the lower the better.

Notice that these three metrics are calculated for each single image, and then the mean
across images is computed.

Experimental setup. Regarding the methods used for semantic segmentation, we trained
three networks based on Tiramisu [69]: 1) Tiramisu56: 56 layers, with 4 layers per dense
block and a growth rate of 12; 2) Tiramisu67: 67 layers, with 5 layers per dense block and
a growth rate of 16; and 3) Tiramisu103: 103 layers, with a variable number of layers per
dense block (from 12 to 4 in the downsampling path, and from 4 to 12 in the upsampling)
and a growth rate of 16. Additionally, the Classic Upsampling, which uses standard con-
volutions in the upsampling path instead of dense blocks [138], has been also considered
for comparative purposes.
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All the FCN models were trained with the UNIMIB2016 dataset [32] (images resized to
360× 480), and two-target labels: food vs non-food. The models were initialized with
HeUniform and trained with RMSprop [69]. The training process consists of two steps:
first, the models were trained with cropped images (224× 224) for data augmentation
and batch size 3, with an initial learning rate of 1e− 3 and an exponential decay of 0.995
per epoch; and second, their parameters were fine-tuned with full size images (360× 480)
and batch size 1, using a learning rate of 1e− 4. The outputs were monitored using the
global accuracy and the IoU, with a patience of 100 during pre-training and 50 during
fine-tuning.

Table 8.1 includes the results achieved with the four networks for semantic segmenta-
tion, as well as with the two segmentation methods from [32]: the JSEG algorithm [38],
and the segmentation pipeline proposed in [32]. With respect to the pixel-wise measures,
all the networks produced competitive results (over 0.96). The Tiramisu models outper-
formed the Classic Upsampling, thanks to the dense blocks, despite a lower number of
parameters used. In general, the Tiramisu model benefits from having more parameters
and depth. However, in this binary problem the Tiramisu103 produced overfitting whilst
the Tiramisu67 achieved the best results, with a good trade-off between depth and per-
formance. Regarding the region-based measures, all the FCNs provided better results
than the two approaches from [32], which demonstrated the adequacy of the proposed
methods for our problem.

TABLE 8.1: Results obtained with our Food Segmentation approach in test
set.

No. Pixel-wise Region-based

param GA IoU CO RI VI

JSEG [38] - - - 0.385 0.389 3.106

Ciocca et al. [32] - - - 0.916 0.931 0.429

Classic Upsam. 12.7M 0.991 0.962 0.984 0.982 0.125

Tiramisu56 1.4M 0.992 0.967 0.986 0.984 0.112

Tiramisu67 3.5M 0.993 0.971 0.987 0.986 0.105

Tiramisu103 9.4M 0.992 0.968 0.986 0.984 0.111

8.4.3 Semantic Food Detection Performance

Metrics. In order to evaluate food recognition and localization, we chose three standard
measures commonly used in multi-class object recognition problems:

• Recall (Rec). The proportion of true positives detected.

• Precision (Pre). The proportion of the true positives against all the positive results.
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• Fβ-measure. A weighted average of precision and recall. We use β = 2 (F2) to place
more emphasis on wrong classified or undetected foods.

For comparative purposes, the measures used by Ciocca et al. [32] were also considered:

• Standard Accuracy (SA). It is equivalent to the recall.

• Macro Average Accuracy (MAA). The proportion of correctly classified foods, but
taking into account the class imbalance of the dataset:

MAA =
1
C

C

∑
c=1

TPc

NFc
, (8.6)

where C is the number of classes, TPc is the number of correctly classified foods of
class c, and NFc is the total number of foods of class c.

• Tray Accuracy (TA). The percentage of trays for which all the foods contained are
correctly recognized:

TA =
1
T

T

∑
t=1

Ind(
TPt

NFt
= 1), (8.7)

where T is the number of food tray images, TPt is the number of correctly classified
foods on the tray t, and NFt is the total number of foods on the tray t.

Experimental setup. YOLOv2 was first pre-trained on the ILSVRC dataset. Following,
we adapted it by changing the output of the model to 65 classes and applied a fine-
tuning using UNIMIB2016 images (resized to 416 × 416). For training the model, we
used the framework Darknet [133]. The models were trained during 4000 iterations with
a batch size of 32, and a learning rate of 1e − 3. In addition, we applied a decay of 0.9
to the iterations 3000 and 3500. To avoid overfitting, we use standard data augmentation
procedures with random crops and distortions in the HSV color space [135].

Once YOLOv2 training is completed, the next step is to determine the confidence thresh-
old to be used during localization and recognition of the food. A low confidence thresh-
old implies a greater number of detections, which maximizes the likelihood that all the
foods present in the image will be detected. At the same time, it also increases the chances
of obtaining false detections. Taking into account that the confidence defined by the de-
tection method considers two factors (the fit of the bounding box to the object and the
predicted class), we chose the minimum threshold according to the number of classes.
Given that the target dataset has 65 classes, the minimum threshold chosen is 1

65 . With
this value, it can be interpreted that the bounding boxes extracted will have a recognition
probability greater than a random value when the detected bounding box fits the object
perfectly. Following the interpretation given, we chose 1

2 as maximum threshold, which
implies a high probability, at least 50%, that the localized object is correctly classified.
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TABLE 8.2: Results obtained by YOLOv2 and the proposed approach in
training set using different confidence thresholds.

1/65 1/32 1/16 1/8 1/4 1/2
Y

O
LO

v2
[1

35
] Pre 0.511 0.687 0.832 0.926 0.968 0.994

Rec 0.999 0.998 0.997 0.995 0.988 0.966

MAA 0.999 0.997 0.995 0.992 0.981 0.952

TA 0.997 0.992 0.988 0.982 0.960 0.895

Pr
op

os
ed

Pre 0.918 0.952 0.973 0.984 0.991 0.996

Rec 0.998 0.997 0.996 0.994 0.987 0.965

MAA 0.999 0.999 0.996 0.994 0.981 0.951

TA 0.995 0.992 0.988 0.982 0.957 0.894

TABLE 8.3: Tray Food Analysis results, from top to bottom: food detec-
tion method 1) without segmentation, 2) with segmentation, and 3) with
ground-truth segmentation to perform the recognition. The best results

per block are in boldface.

F2 Pre Rec MAA TA

YOLOv2 [135] 0.786 0.489 0.927 0.850 0.769

YOLOv2 + 8.3.3 0.856 0.659 0.925 0.849 0.772

Ciocca et al. [32] - - 0.798 0.636 0.789

YOLOv2 + 8.3.3 0.844 0.628 0.923 0.846 0.761

Proposed 0.905 0.841 0.922 0.845 0.764

Mezgec et al. [115] - - 0.864 - -

Ciocca et al. [32] - - 0.891 0.684 0.871

YOLOv2 + 8.3.3 0.854 0.651 0.926 0.850 0.769

Proposed 0.911 0.856 0.926 0.850 0.775

Table 8.2 shows the results obtained in the training set using different confidence thresh-
olds. The tested thresholds range from the minimum and maximum values mentioned
above. As can be observed, when the threshold increases, the precision also increases
considerably, whilst the rest of the indicators are hardly affected. When comparing the
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FIGURE 8.6: a) Distribution of the trays according to the number of foods
that are placed in them. b) Results in terms of Recall (blue) and TA (orange),

for each item of the distribution.

results obtained between YOLOv2 and the proposed method, for the minimum thresh-
old, it can be observed that a significant improvement in precision is obtained (≈40%)
with only a slight decrease in the other indicators (0.1%-0.2%). Another interesting as-
pect to highlight is the comparison of results when using the maximum threshold, since
they are practically identical for both methods. This means that, for a threshold of 1

2 , there
are almost no false detections that can be reduced with our procedure. For the remaining
experiments, the minimum threshold was chosen for two main reasons: 1) it obtains the
best results for the Recall, MAA and TA indicators; and 2) it allows us to discard the false
positives that appear when combining the results with the food segmentation procedure.

The Semantic Food Detection results on the test set are shown in Table 8.3. In order to see
the performance of the different parts of our pipeline, we group the results of this table
in three rows: the first one corresponds to the results obtained with YOLOv2 retrained
for food detection, and our proposed framework without considering the information
extracted from the segmentation method to perform the classification (YOLOv2 + 8.3.3);
the second one corresponds to the results of the baseline method [32], our framework
without considering the personalized non-maximum suppression procedure (YOLOv2 +
8.3.3), and our proposed framework; and the third row is similar to the second one, but
replacing the segmentation method by the ground truth segmentation. As for the results
achieved, it should be highlighted that our proposal outperforms the food recognition,
with respect to the state-of-the-art method (Ciocca et al. [32]) in a 12.4% for Recall and
20.9% for MAA. Regarding TA, a decrease of 2.5% is observed. However, we consider that
this measure does not reflect how well the recognition works mainly due to the imbalance
in the quantity of food in the trays, which varies between 1 and 9 (see Fig. 8.6 (a)), as well
as because TA measures the amount of food trays in which all positive samples have been
correctly predicted, but does not penalize when there are false positives.
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FIGURE 8.7: Results of our proposal when varying the background re-
moval (BR) and non-maximum-suppression (NMS) thresholds.

In order to apply a complete comparison, we also replicated the evaluation proposed by
[32], in which the authors considered a perfect segmentation using the ground truth (GT)
and applied their detection method (bottom section of Table 8.3). In our case, there is no
significant improvement with respect to the use of the proposed semantic segmentation,
because our proposal considers the integration of the extracted information with the seg-
mentation to refine the predictions already obtained by the object detection method. In
contrast, Ciocca et al. [32] performed the recognition directly on the segmented objects.
Comparing to the results obtained in [32], we can see that their method improves signif-
icantly in terms of Recall using the GT for segmentation, achieving to match our results.
However in terms of MAA, despite improving its performance, our results are still about
16% better. A low MAA with a high Recall implies that the classifier has a strong bias to-
wards the classes that have a greater amount of instances. Therefore, even if we consider
a perfect segmentation to contrast the results, our proposal keeps a better performance
for recognition and a lower bias towards the dominant classes.

The results obtained with the proposed approach based on the number of objects to be
classified per food tray is shown in Fig. 8.6 (b). As expected, the TA measure tends
to decrease as the number of objects increases, however there is no clear trend for the
Recall. One of the lowest results in both measures is obtained in trays containing 6 foods,
whereby we can determine that the errors correspond to 17 misclassified objects along
12 trays, that is, an average error of 1.42 objects per incorrectly classified tray. Despite
having a low TA (0.478), the results are good considering the Recall obtained, since it is
preferable to minimize the number of errors per tray if we think of a semi-automatic food
billing system, in which the operator would make minor corrections if necessary.

When reviewing the overall mean of errors by misclassified trays, we can see that our
classifier has an average of 1.09 errors along 85 trays classified incorrectly, compared to
[32] that has an average of 3.33 errors along 76 trays classified incorrectly. That said,
even though the baseline method achieves to completely classify 9 trays more than our
proposal, due to its overall performance, the misclassified trays have about three times
as many objects wrongly classified per tray.
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FIGURE 8.8: Some samples of the results obtained using the proposed ap-
proach, from left to right: food tray with all the objects correctly detected
(blue), false detection sample (orange), and two samples with one misclas-

sified object (red).

The results achieved with our approach consider a value of 0.5 for the thresholds used
in both procedures, Background Removal (BR) and Non-Maximum Suppression (NMS).
However, our approach achieves a good performance not only with a unique combina-
tion of values, but also with a wide range of them. Specifically, for the problem at hand,
we can obtain results close to the ones described with any value in the ranges [0.3-0.6] for
BR and [0.3-0.5] for NMS thresholds (see Fig. 8.7). The flexibility of choosing threshold
values in a wide range suggests that our approach is robust with respect to its parame-
ters. Furthermore, considering the F2 score, any value of the parameters for our proposed
method produces better results than YOLOv2 + III-C1.

Finally, some examples of the results obtained by means of our proposed Semantic Food
Detection method are shown in Fig. 8.8. In general terms, the classifier achieves a good
performance in a variety of food items, where the main difficulties encountered are due
to the following issues: 1) unlabeled food items, because they are not part of the 65 classes
(eg. fresh cheese) or because they are not belonging to the same tray and that have been
recognized by our algorithm; 2) the same food items placed very close (eg. mandarine); 3)
foods ignored because they are not clearly distinguishable whether correspond to a meal
or not (eg. pudding); and 4) confusions with classes corresponding to different kinds of
cakes (eg. torta_cream), meats, pastas, among others.

8.5 Conclusions

We present a novel system that performs Semantic Food Detection applied to the problem
of food tray analysis in self-service restaurants. More precisely, we integrate both tech-
niques, food/non-food semantic segmentation with food detection, through the applica-
tion of two procedures: a probabilistic procedure that allow us remove the background
detections, and a custom non-maximum suppression procedure to avoid the occurrence
of duplicate detections.

Regarding the architecture, we deal with the problem at hand using two pathways in
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parallel for food detection and semantic segmentation. The purpose of applying this sep-
arate computation is to take advantage of the benefits of each method separately to later
combine them. In this manner, they do not condition each other, but reinforce them-
selves. In particular, if we propose an end-to-end architecture which directly feeds the
segmentation output into the detection, the segmentation errors could not be recovered
and, therefore, they could negatively influence the detection performance.

As for the results, our proposal significantly outperforms the state-of-the-art in terms of
recall and mean average accuracy. Furthermore, our model is less sensitive to class im-
balance and the mean of errors per foods placed on a tray is about 1, when the classifier
is not able to recognize the whole tray well. The latter is quite relevant if our approach
is applied in a semi-automatic billing system, in which the cashier would have to make
only small changes to generate the final bill, and in this way to streamline the process in-
volved in a self-service restaurant of grab a meal, pay, and eat. Furthermore, our proposed
approach takes less than 0.5 seconds to predict all foods present in a image, considering
the use of a personal computer with a low performance GPU (GeForce 940MX).

Our future research is focused on semantic detection of food ingredients and completely
automating the self-service billing by integrating the restaurant menu by geolocalization.
Moreover, it is interesting to explore if modeling the uncertainty for the bounding box
location and food segmentation will minimize possible false positives and provide more
reliable predictions.
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Chapter 9

Conclusions and Future Lines

In this chapter we provide the concluding remarks derived from the work carried out in
this thesis and future lines of research.

There is no doubt that deep learning algorithms have revolutionized the industry with
computer vision solutions, feasible under real-life conditions, that were previously unimag-
inable. Food analysis is one of the fields benefited by the appearance of this type of ma-
chine learning algorithms. However, the complexity of the food itself requires more effort
to provide robust and accurate algorithms.

In this thesis, we addressed the problem of visual food analysis, breaking it down into
some of the most relevant tasks required to provide an automatic food analysis system.
After an extensive review of the literature, we designed solutions for food detection, food
recognition, and semantic food detection, and introduced uncertainty analysis into our
proposed food recognition frameworks. For all the proposals, we decided as a common
training step to transfer the learning from the deep learning models previously trained in
the large scale ImageNet dataset to our domain. Even though there are not too many class
of foods within ImageNet, the knowledge gained by the pretrained model regarding low
or medium level features (e.g. edges, corners, colors) was helpful in guiding the learning
of our models on different food datasets avoiding early overfitting and obtaining better
results than training them from scratch. In all the food analysis tasks described above,
we contrasted and improved the results. For this, in food detection, we proposed a more
elaborate method of classifying rather than simply using the softmax classifier. For food
recognition, uncertainty-aware methods and a fuzzy similarity measures to ensemble the
CNN models were proposed. And for semantic food detection, we integrated semantic
segmentation and object detection approaches into a custom framework.

Specifically, in the first part of our work, we contributed by deepening uncertainty anal-
ysis in many ways, resulting in novel uncertainty-based food recognition approaches.
First, we proposed a new model for MTL that expanded the aleatoric (homocesdatisc)
uncertainty-based method proposed in [83], to enable its application in SL and ML image
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classification tasks, which also incorporated a MTL regularization term into the loss func-
tion to improve coherence of the outputs from different food-related task. Additionally,
we designed a new uncertainty-based hybrid food recognition method that considers a
criterion based on quantifying uncertainty to make the final prediction through a LCPN
or flat approach, which takes advantage of the benefits of hierarchical approaches and
minimizes the propagation of parent-to-child errors frequently present on them. More-
over, we proposed three uncertainty-aware methods to perform data augmentation ac-
cording to class-level uncertainty or sample-level uncertainty. For the method based on
class-level uncertainty, we shown through the proposed frameworks that the incorpora-
tion of specific data augmentation techniques taken into account the class to which the
image belongs leads to better learning by the model. Furthermore, regarding methods
based on sample-level uncertainty, we demonstrated the importance of increasing the
data of the training set with synthetic images generated from those difficult to classify in
order to ease the learning of its discriminatory features. We could also observe with this
approach, that it was possible to minimize the bias that occurs on the dominant classes
in unbalanced databases.

As for the second part we contributed in three different tasks within visual food analysis.
In the food detection case, we overcomes the SoA in two public dataset, FCD and Ragu-
saDS, through a model that considers GoogLeNet for feature extraction, PCA for feature
selection and SVM for classification. As for food recognition task, we proposed a CNNs
fusion approach based on the concepts of decision templates and decision profiles and
their similarity that improves the classification performance on Food-11 (more than 10%)
and Food-101. Regarding the semantic food detection task, we significantly outperforms
the SoA in terms of recall and average accuracy in UNIMIB2016 dataset by means of a
novel system that integrate both techniques, food/non-food semantic segmentation with
food detection, through the application of two procedures: a probabilistic procedure that
allow us remove the background detections, and a custom non-maximum suppression
procedure to avoid the occurrence of duplicate detections.

In addition to the experiments, during this thesis we contributed to building a large in-
ternational food data set with more than 500,000 images, 650 classes and annotations of
multiple food-related attributes (single label and multi-label). A subset of this dataset,
named MAFood-121, became available to the community and was published in [3] (www.
ub.edu/cvub/mafood-121/).

Although we have made important contributions in the field of visual food analysis, there
is a wide range of possible problems to be resolved. In the following section we discuss
some ideas and research lines that may become future studies within this field.

www.ub.edu/cvub/mafood-121/
www.ub.edu/cvub/mafood-121/
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9.1 Future works

There are several ways to improve the visual analysis of foods that can extend the work
of this thesis or on sub-tasks (new or recent) that were not addressed here, such as:

• Combo-plate food items recognition: Although most works consider recognizing
a single class from food images, in some cases a particular served dish may com-
prise more than one food. This is the combo-plate case, where ML food recognition
is required. Recipe extraction and ingredient recognition are two ML task widely
researched. However with theses tasks, we known whether the image contains a
single plate with mixed items (e.g. sushi) or a combo plate (e.g. salmon, rice and
avocado serviced in a dish). Combo-plate food items recognition is a challenging
new field of research that can help to better description of food images.

• Integrating GNN and CNN for food recognition: The incorporation of the re-
lationship of the different food concepts within the learning process has not been
studied too much. In this thesis we considered it into our method as a straight-
forward regularization term (see Chapter 3). We suggest that the integration of
knowledge of food ontology with a powerful method such as Graph neural net-
work (GNN), with the features extracted from visual content through CNN, may
be beneficial for the final classification.

• Model uncertainty into GAN methods: Generative adversarial networks have
shown to be efficient to generate synthetic data conserving the visual content from
the source images, but increasing the variability of the data. Theses characteristics
have conducing their application in the data augmentation process. We shown, in
Chapter 5, the importance of incorporating uncertain images to improve the perfor-
mance of food recognition algorithms. Therefore, a possible improvement would
be to directly model the uncertainty in the GAN models to generate good quality
and uncertain images instead of selecting rich images after generating them.

• Volume or portion estimation: Monitor food consumption in people who are over-
weight or obese is one of the most attractive applications based on visual food anal-
ysis. Here, it is very important to take a correct balance on calorie intake to prevent
the development of chronic disease related to poor diet. Recognizing a food is not
enough to provide an exact value on the calories involved, but it is also very impor-
tant to know the volume or the portion. Therefore, volume or portion estimation is
a very recent and useful task that needs more effort to be applicable in real life.

Finally, a cross-sectional future work is to minimize dependency and the time spent by
the user to capture food images. We propose to evaluate and extend the visual food
analysis methods on images acquired from wearable cameras, which is clearly a more
complex and challenging source of data.
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