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Abstract

Egocentric action recognition consists in determining what a wearable camera user is

doing from his perspective. Its defining characteristic is that the person himself is only

partially visible in the images through his hands. As a result, the recognition of actions

can rely solely on user interactions with objects, other people, and the scene. Egocen-

tric action recognition has numerous assistive technology applications, in particular in

the field of rehabilitation and preventive medicine.

The type of egocentric camera determines the activities or actions that can be pre-

dicted. There are roughly two kinds: lifelogging and video cameras. The former

can continuously take pictures every 20-30 seconds during day-long periods. The se-

quences of pictures produced by them are called visual lifelogs or photo-streams. In

comparison with video, they lack of motion that typically has been used to disam-

biguate actions. We present several egocentric action recognition approaches for both

settings.

We first introduce an approach that classifies still-images from lifelogs by com-

bining a convolutional network and a random forest. Since lifelogs show temporal

coherence within consecutive images, we also present two architectures that are based

on the long short-term memory (LSTM) network. In order to thoroughly measure their

generalization performance, we introduce the largest photo-streams dataset for activity

recognition. These tests not only consider hidden days and multiple users but also the

effect of time boundaries from events. We finally present domain adaptation strategies

for dealing with unknown domain images in a real-world scenario.

Our work on egocentric action recognition from videos is primarily focused on

object-interactions. We present a deep network that in the first level models person-

to-object interactions, and in the second level models sequences of actions as part of

a single activity. The spatial relationship between hands and objects is modeled using

a region-based network, whereas the actions and activities are modeled using a hier-

archical LSTM. Our last approach explores the importance of audio produced by the

egocentric manipulations of objects. It combines a sparse temporal sampling strategy

with a late fusion of audio, RGB, and temporal streams. Experimental results on the

EPIC-Kitchen dataset show that multimodal integration leads to better performance

than unimodal approaches.
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1.1 Background and Motivation

The goal of ubiquitous computing is that computers, as a technology, blend into the

physical environment, making them imperceptible to people, as formulated by Weiser

[1993]. For example, writing can be considered an invisible literacy technology to

store and transmit knowledge, lacking the shortcomings of individual-memory. It not

only encompasses printing symbols, but also grammar and syntactic rules for structur-

ing ideas [Foer, 2011]. The modern world cannot be understood without it, printing

symbols are everywhere, not only in books or magazines but also in small tea bags and

street signs.

Ubiquitous computing was described as the third wave of computing [Weiser,

1991], being the first and second the mainframes and personal computers, respectively.

An important role for this idea to become closer to reality has been played by cheaper

and smaller hardware. This has allowed that a broader array of sensors have been

1
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Figure 1.1: Evolution of wearable cameras. (a) Prototype of augmented reality camera

(adapted from Sutherland [1968]), (b) first wearable camera by Mann [1997], (c) pro-

totype wearable robot (adapted from Mayol-Cuevas et al. [2002]), (d) Microsoft Sense-

Cam chest-mounted camera, (e) GoPro head-mounted video camera, (f) Looxcie ear

camera, (g) Narrative Clip chest-mounted camera, (h) Autographer, (i) Glass video cam-

era, and (j) Microsoft HoloLens.

integrated into different and more sophisticated types of portable devices that can be

worn, i.e. wearable devices, ranging from motion to radar sensors.

The sensor diversity is due in part to more promising consumer applications from

wearable devices. Initially, the applications were limited to only relay data like move-

ment and heart rate tracking. Nowadays, these devices can measure a more complex

array of things like stress [Muaremi et al., 2013], muscle fatigue [B. Ribas Manero

et al., 2016], and mood [Budner et al., 2017]. Currently, their goal is also set to detect

and mitigate problems like spotting seizures [Vandecasteele et al., 2017].

A special kind of wearable devices are cameras, that have also been benefited by

advances on camera technologies and miniaturization trends [Zarepour et al., 2017].

Despite the fact that the wearable video cameras had already been idealized by Bush

[1945], prototyped by Sutherland [1968] and invented by Mann [1997] in the early

eighties, they become commercially available in the mid-two-thousands in the niche

of first-person sports filming. Different prototypes and consumer wearable cameras

throughout the years representing their evolution are shown in Fig. 1.1.

Wearable cameras share the following three characteristics with wearable devices.

First, their size and weight allowed them to be carried to different locations. Second,

they can non-invasively monitor and record data without human intervention. Third,

depending on the device specification, they can continuously collect data during long

periods of time. They have been successfully used for its recording capabilities on

applications for health [Albrecht et al., 2014], journalism [Cao et al., 2014], and po-

lice [Palmer, 2016].
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Unlike most wearable sensors, they capture external and directly interpretable in-

formation by a person; such as places, objects, and people around the user. In compari-

son with fixed cameras, wearable ones can daily gather large amounts of human-centric

data in a naturalistic setting, hence offering rich contextual information about the ac-

tivities of the user. As a result, activity recognition from wearable cameras has several

important applications as assistive technology, in particular in the field of rehabilitation

and preventive medicine. Examples include self-monitoring of ambulatory activities of

elderly people [Abebe et al., 2016; Zhan et al., 2015], monitoring patients suffering de-

mentia [Karaman et al., 2010, 2014], determining sedentary behavior of a user based

on their spent time watching TV [Zhang and Rehg, 2018].

Perhaps, the most ambitious consumer application for action recognition from

wearable cameras is lifelogging [Blum et al., 2006]. In rough terms, the goal of lifel-

ogging is to create a multimedia diary of everything we do and was initially glimpsed

by Bush [1945]. Its importance lies in the fact that it has sparked the creation of new

hardware and software technology. And this in turn has propelled more research on

the topic.

Although Weiser [1991] considered that ubiquitous computing did not need a rev-

olution in artificial intelligence, time has proved that sophisticated applications need

more than just more powerful wearable sensors. It is clear that these applications re-

quired egocentric vision to interpret the deluge of visual information. Specifically, new

egocentric action recognition methods are essential for its further development.

1.2 Egocentric Vision

Egocentric vision is a sub-field of computer vision that comprises the extraction, anal-

ysis, and understanding of useful information from images or video captured by a

wearable camera. The camera wearer cannot be only human, but it can also be an

animal [Iwashita et al., 2014] or a robot [Xia et al., 2015]. Since the camera is usu-

ally worn in the head or the chest, it approximates the visual field or perspective of

the camera wearer. Consequently, the term has been interchangeably used with first-

person vision. Nevertheless, research works under this definition can not include cam-

eras worn on places likes wrists [Ohnishi et al., 2016], thighs [Watanabe et al., 2011],

or waist [Ozcan et al., 2013].



4 Chapter 1. Introduction

1.3 Egocentric Action Recognition and Its Challenges

A broad definition of egocentric action recognition consists in determining what a per-

son carrying wearable devices is doing itself. The kind of actions that can be predicted

using wearable devices depends on its type of sensor and where it is worn. Early re-

search on the area starts around twenty years ago [Foerster et al., 1999; Seon-Woo

Lee and Mase, 2002]. In both works, they use an accelerometer to predict ambulatory

activities such as sitting, standing, or walking. However, our focus in this work is

concerned only with wearable cameras.

A specific definition for egocentric action recognition from wearable cameras con-

sists of determining what its user is doing from his perspective. The characteristic

problem is that the person itself is only partially visible in the images through his

hands. As a consequence, egocentric action recognition relies solely on the user con-

text: the objects he is manipulating, other persons around he is interacting with, and

the environment itself. For instance, the difference between doing an action from the

third and first-person perspectives can be appreciated in Fig. 1.2. Both perspectives

show a person riding a mountain bike in a hill, but much of the context is reduced in

the first-person perspective as only the arms holding the handlebar and the motion blur

can be seen.

Like any other kind of wearable device, the type of camera sensor also determines

the egocentric activities or actions that can be predicted. A defining characteristic is its

temporal resolution, which refers to how many pictures can take in seconds or minutes.

Wearable cameras can be roughly divided into high and low temporal resolution. The

former kind can record videos for short periods of time. The latter kind can continu-

ously take pictures at regular intervals of 20-30 seconds during day-long periods. The

(a) Third-person perspective (b) First-person perspective

Figure 1.2: Example of an action seen on a third and first-person perspectives. Original

photos of Maurice Müller.
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American breakfast
Turn on
burner

Put bowl
Take egg
container

Put egg
container

Take milk
container

Open egg
container

Take egg

(a) Half minute sampled-sequence of an activity with its respective actions captured with a

head-mounted video camera. Images taken from the GTEA+ dataset [Li et al., 2015].

Cooking

(b) Four minutes full-sequence of an activity captured by a chest-mounted photo camera. Im-

ages taken from the NTCIR-2012 dataset [Gurrin et al., 2016].

Figure 1.3: Example of consecutive frames from an egocentric video and a visual lifelog.

sequences of pictures produced by them are called visual lifelogs or photo-streams.

For example, Fig. 1.3 shows two frame sequences from wearable video (on top) and

photo (on bottom) cameras. Video sequences have enough contextual information that

the frames can explicitly depict an action. In the case of the sampled video sequence,

it contains actions such as turn on burner, put bowl, etc. And this sequence of ac-

tions defines an activity , in this case, they describe preparing American breakfast. On

the other hand, a lifelog sequence hardly contains representative frames of all actions

performed by the person. Furthermore, the actions on its captured frames might be

difficult to identify, as the objects or hands are occluded or partially visible. From this

example, we can only guess that the person in the lifelog sequence is cooking. Con-

sequently, while the focus on lifelogs has been classifying activities at large temporal

scale such as cycling or eating, in egocentric videos the focus has been classifying

short temporal scale actions like put oil, cut potato, dry hand, etc.

Moreover, this task inherits the same challenges as traditional third-person action

recognition, namely:

• First, egocentric images suffer a large variation of appearance that leads to intra-

class variation. Viewpoint changes are the result of the camera user not being

static and also being in a wide variety of scenarios. Even more, the lighting

conditions are not fixed since the camera can be worn in indoor and outdoor

settings at different times of the day.
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• Second, manual collection of training data is difficult. Although large amounts

of videos/photographs can be gathered from a single user, their manual anno-

tation is challenging. Furthermore, rich training data required to be collected

from multiple users. Another issue is that some categories rarely occurred and

produce a class imbalance. A final issue in this regard is that third-party privacy

concerns exist in gathering training data.

• Third, action/activity vocabulary is not well defined and it depends on the con-

text. The granularity of activities into actions is not properly defined because of

their temporality and compositionality. Moreover, determining what a person is

doing could be formulated as a multi-label classification problem.

• Fourth, lifelog pictures present additional challenges with respect to egocen-

tric videos. As a result of its low temporal resolution, temporally adjacent im-

ages present abrupt appearance changes making motion features infeasible to

be estimated. These features have been played a fundamental role in action

recognition as they help to disambiguate actions/activities. Furthermore, crucial

actions to identify the activity being performed can be missed and due to the

non-intentional occlusions of the photos.

1.4 Goals

The goals of this dissertation can be divided by our two venues of research exploration:

• Egocentric activity recognition from lifelogs. We consider that the task of

action recognition from lifelogs can be modeled using different time scales. It

can be modeled as fleeting instants or single images, as a successive moments

or sequences of images, and as contextual events or sub-grouped sequences of

images. As this task has received little attention in the literature, we not only

present different approaches for each time scale but also gathering enough data

to conduct generalization experiments. Additionally, their application on real

scenarios faces challenges like the performance drop of using pretrained mod-

els on new visual unseen data during training. We consider different domain

adaptation to tackle this issue.

• Egocentric action recognition from videos. We consider two previously un-

explored characteristics of egocentric object interactions. First, sequences of



1.5. Contributions 7

actions are logically performed in order to make an activity . Second, the inter-

action with objects produce sounds with distinguishable features for classifica-

tion. We propose a model for each characteristic and study its impact on action

recognition.

1.5 Contributions

Our contributions to the activity recognition from lifelogs can be summarized as fol-

lows:

• We propose an ensemble approach for still images extracted from lifelog se-

quences. This approach is a late fusion method that combines the output of the

last fully connected layers of a convolutional network using a random forest.

In order to extensively test its generalization capabilities, we annotated a subset

of images from a multiuser dataset (NTCIR-12) and present two different test

splits. Thus, making the performance evaluation more rigorous in comparison

with previous studies. Our method was tested on several deep architectures, also

making its evaluation more robust. This approach was published in [Cartas et al.,

2017b].

• We introduce two different models and one training strategy that exploits the

temporal coherence of lifelogs. Temporal coherence is the tendency of similar

concepts to appear in neighboring frames of a sequence. Our first model is an

extension in time of the ensemble approach outlined in the previous paragraph,

and it uses as a temporal mechanism long short-term memory (LSTM) units.

The second approach is a deep architecture that models the temporal relation

between adjacent overlapping frames in subsequent input batches of an LSTM.

Both approaches make use of our proposed sliding window training strategy.

This strategy splits a lifelog into overlapping frame segments of fixed length

to be used as input batches. We also present an approach that uses temporal

boundaries from segmented events of a lifelog sequence.

Our initial evaluation over the NTCIR-12 dataset demonstrates that it is possible

to capture the temporal evolution of features over time from lifelogs. We per-

form a more extensive comparison to measure the generalization capabilities in

a bigger dataset. To this end, we introduce the largest lifelog dataset of Activity

of Daily Living (ADLEgoDataset) consisting of 102,227 images from 15 users,
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and 35 different categories. We propose a robust benchmark that considers dif-

ferent metrics in not only unseen full day sequences but also unseen users during

training. These approaches are published in [Cartas et al., 2017a, 2018b, 2019].

• With the aim of measuring and improving models trained and tested on data

acquired by different cameras and people, we present domain adaptation strate-

gies to cope with this problem. Explicitly, we experimentally measure the dis-

crepancy between source and target datasets and their diminishing of classifica-

tion performance. We use the deep correlation alignment (CORAL) adaptation

method to deal with this problem and show that a good performance is not al-

ways achieved on different target datasets. We propose to use different amounts

of target data during the transfer learning training and show that competitive re-

sults can be achieved with a little amount of target labeled data. This approach

is published in [Cartas et al., 2020]

Our contributions to action recognition from videos can be summarized as follows:

• We propose a novel hierarchical deep learning architecture that models object-

interactions and their logical steps sequences to perform an activity . This ar-

chitecture models the relationship between the hands and the interacting objects

using a region-based model. The hands are the primary region obtained using

skin segmentation, whereas the interacting object region is inferred from a set

of region proposals. From the action classification of our region-based model,

our architecture also captures the sequence of actions using a hierarchical LSTM

(HLSTM). We perform a detailed ablation analysis of the various components

of our model. We demonstrate that the proposed architecture achieves signifi-

cant improvement with respect to competitive methods modeling the temporal

structure and/or object interactions. This approach is presented in [Cartas et al.,

2018a, 2017c].

• We introduce an audiovisual deep learning architecture that models the object-

interactions in an egocentric kitchen context. Specifically, our the visual sources

of our architecture optical flow and RGB frames and are modeled using a tem-

poral segments network (TSN). The audio input is the raw sound wave from

the video and a new convolutional network architecture is proposed for its clas-

sification. Both architectures are joined together using a late fusion approach

that models the action, verb, and noun independently. We provide an extensive
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evaluation and comparison with published methods of the proposed multimodal

architecture on the EPIC-Kitchens dataset. In addition to the action performance,

we provide for the first time detailed results on the object and verb components.

This approach is introduced in [Cartas et al., 2019; Cartas et al., 2019].

1.6 Thesis outline

We first review related work of action recognition to ours in chapter 2. This review

starts with a broad context on third-person methods and ends with a detailed focus

on first-person methods. Moreover, the terms action and activity used throughout this

thesis are precisely defined.

The first part of the thesis is devoted to our work on activity recognition from

lifelogs and is divided into three chapters. Chapter 3 describes our approach for single

images in lifelogs. Appealing to the temporal coherence of activities, in chapter 4 we

present our temporal methods for lifelog sequences. Considering a real-case scenario,

we detail a domain adaptation application in chapter 5.

The second part of the thesis presents methods for action recognition from ego-

centric videos. In chapter 6 we model egocentric object-interaction and the sequence

of action that describes whole activities. Next in chapter 7, we present a multimodal

model that takes into account the different sounds produced by egocentric object inter-

actions.

Finally, in chapter 8 we draw main conclusions and outline possible future lines of

work, and a list of publications from this thesis is presented in appendix A.





Chapter 2

Related Work

Contents
2.1 Action Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Third-Person Action Recognition Methods . . . . . . . . . . . . 15

2.4 Egocentric Action Recognition . . . . . . . . . . . . . . . . . . . 17

2.5 First-Person Action Recognition Methods . . . . . . . . . . . . . 18

2.6 Egocentric Action Recognition Datasets . . . . . . . . . . . . . . 23

2.7 Domain Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . 24

In this chapter we present previous work on the problems of egocentric action

recognition. We first provide a brief overview of action recognition and define the

terms action and activity (Section 2.1). Then, we introduce two deep learning mod-

els that form the basis of modern action recognition methods (Section 2.2). Next, we

present third-person approaches that have influenced first-person (Section 2.3). After-

wards, we present general egocentric action recognition (Section 2.4) as an introduc-

tion to first-person vision approaches (Section 2.5). Then, we describe the available

video and lifelogging datasets (Section 2.6). Finally, we give an overview of domain

adaptation methods (Section 2.7).

Since a growing number of papers on action recognition are published each year,

we mostly covered recent works that we considered relevant. We recommend to the

avid reader consulting action recognition surveys on historical methods [Poppe, 2010;

Weinland et al., 2011], deep learning methods [Herath et al., 2017], and wearable

sensors [Cornacchia et al., 2017; Lara and Labrador, 2013]. There are also surveys

11
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that cover egocentric vision and have special sections on first-person action recognition

methods [Bambach, 2015; Bolaños et al., 2017].

2.1 Action Recognition

The objective of action recognition is to determine what is happening in a scene [Bo-

bick, 1996]. Although this is a vague definition for a computer vision task, it en-

compasses the multiple works that have been published since the word action is an

ambiguous term [Herath et al., 2017]. The lack of a vocabulary to describe the granu-

larity and composition of actions is one of its difficulties as stated by Schmid [2016].

For example, sometimes an action is interchangeably used with the word activity [Pir-

siavash and Ramanan, 2012], other times a set of actions are part of an activity [Fanti,

2008] or vice versa [Bobick, 1997], and some other new words are defined such as

actoms [Gaidon et al., 2011].

The concept of motion has played a fundamental role in solving the action recog-

nition task. Historically, research on action recognition starts as part of a broader area

on machine perception of motion during the late seventies [Bobick, 1997]. While the

information provided by motion is important and helps to disambiguate actions such

as opening/closing a door, it is derived from time. Therefore, our taxonomy of what is

happening on a scene is in terms of its length of duration. Similarly to Fanti [2008],

we consider that an action can be as short as one millisecond or as long as a few min-

utes. Moreover, we consider that an activity is composed of two or more actions and

its duration starts at the seconds scale.

Action recognition is a classification problem and, as such, it has a more techni-

cal definition. As defined by Poppe [2010], it consists in assigning action labels to

image sequences, but this definition could be extended to any kind of temporal data.

Initial efforts are part of the called ‘model-based’ vision approaches started by Binford

[1971]. They try to reconstruct the body of a person using volumetric shapes as human

parts and describe movements such as walking [Hogg, 1983] or jumping [Horowitz

and Pentland, 1991]. Consequently, they are also categorized as top-down approaches.

The bottom-up approaches classify an action based on low-level features and be-

come the predominant methods in the field [Herath et al., 2017; Poppe, 2010]. The

general classification pipeline for low-level features is presented in the seminal work

of Yamato et al. [1992], and it is shown in Fig. 2.1. The pipeline labels a sequence of

images in three steps [Oneat,ă, 2015, p. 10]. First, it extracts a feature vector for each
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I = I1, I2, . . . , IT : Image sequence

Mesh feature

F = F1, F2, . . . , FT : Feature vector sequence

Vector quantization

O = O1, O2, . . . , OT : Symbol sequence

HMM

Figure 2.1: Early action recognition pipeline for low-level features. First, a feature vector

is extracted for each frame in an image sequence. Then, the features are clustered

(encoded) into a set of symbols using vector quantization. Finally, the classification is

performed by a hidden Markov model (HMM). Adapted with permission from Yamato

et al. [1992].

image in the sequence. Second, it performs feature encoding on the resulting vectors;

sometimes, a learned dictionary or codebook is used for vector quantization. Third,

it classifies each image based on the encoded vectors. Several approaches have used

this pipeline by varying the type of features and classifiers. For instance, Laptev et al.

[2007] classifies six different types of actions using a combination of hand-crafted fea-

tures named space-time interest points (STIPs), support-vector machines (SVMs) and

nearest neighbor (NN) as classifiers.

2.2 Deep Learning

Modern action recognition methods are bottom-up approaches that are based on the

connectionist paradigm of Artificial Intelligence (AI). New methods under this resur-

gent paradigm have been categorized under the umbrella of deep learning methods. In

this section, we describe basic deep learning architectures that form the basis for more

specialized methods for current action recognition methods.

Convolutional neural networks (CNNs) Inspired by the physiological model of the

mammalian visual system by Hubel and Wiesel [1962], several attempts for automati-



14 Chapter 2. Related Work

64

22
4

224

conv1

128

11
2

conv2

256 256

56

conv3

512 512

28

conv4

512 512

14

conv5

1

40
96

fc1

1

40
96

fc2

1

fc3+softmax

K

Type of layer

Convolutional

Pooling

Fully-connected

Softmax

Figure 2.2: Example of convolutional neural network. This architecture corresponds to

the VGG-11 network introduced by Simonyan and Zisserman [2014b].

cally learning an image representation for classification purposes have been introduced

[Fukushima, 1988; LeCun et al., 1990; Serre et al., 2005; Fidler et al., 2006]. These ap-

proaches build a hierarchical representation on top of low-level features learned from

the edges of objects. Although initially they were not widely adopted, the most suc-

cessful of them so far are the convolutional neural networks (CNNs), or simply con-

volutional networks, introduced by LeCun et al. [1990, 1998]. In comparison with

the rest of the cited models, they were designed to even learn the visual filters in an

end-to-end fashion.

Convolutional networks were designed to have as input grid-structure data. They

are multi-layer networks that can be divided into two main consecutive parts. The

first part works as a feature extractor and the second one as a classifier. The former is

composed of a stack of convolutional and pooling layers. Convolutional layers create

feature maps using learned filters from the data, whereas pooling layers downsample

them. The representation of bi-dimensional information is hierarchically captured on

each convolutional layer. For instance, when the input is image data, the first convolu-

tional layers represent filters similar to Gabor filters, and further layers form lines and

arcs until subsequent layers capture objects. The classifier part comprises one or more

Fully-Connected (FC) neuron layers followed by a softmax layer. Fig. 2.2 shows a

CNN with the layers corresponding to the feature extractor and classifier parts in blue

and red colors.

Many computer vision tasks have made great strides since Krizhevsky et al. [2012]

won the ImageNet [Russakovsky et al., 2015] classification challenge using a convo-

lutional network, namely AlexNet. In comparison with the LeNet architecture [LeCun

et al., 1998], this model implements a newer activation function named rectified lin-
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ear unit (ReLU) between the convolution and pooling layers. This activation function

allows it to have more layers with more neurons, making it a deeper network. On

the other hand, this architecture is possible thanks to more powerful computing hard-

ware. The success of AlexNet span research to improve the efficiency and accuracy of

CNNs [Simonyan and Zisserman, 2014b; Szegedy et al., 2015; He et al., 2016; Chollet,

2017b; Hu et al., 2018].

Long short-term memory Recurrent neural networks (RNNs) are another type of

neural network that is resurgent in the field. A particular kind of them has been of

special interest to the research community since they can model sequential informa-

tion. Specifically, the first model to effectively uses the backpropagation algorithm to

learn a sequence was the long short-term memory (LSTM) units proposed by Hochre-

iter and Schmidhuber [1997]. They go through a sequence state by state, and possess

a gate mechanism that determines at each state what information to keep and discard

and by how much. Another extension of this network named bidirectional LSTM

(BLSTM) [Graves and Schmidhuber, 2005] evaluates a sequence in forward and back-

ward order and merges the result. In contrast with its unidirectional version, it captures

patterns that could have been missed and potentially obtains more robust representa-

tions. New recurrent architectures have been proposed [Cho et al., 2014] and new

mechanisms have been incorporated such as attention [Xu et al., 2015].

2.3 Third-Person Action Recognition Methods

Still images Convolutional networks can straightforwardly be used to classify ac-

tions from still images. Although they cannot make abstractions of concepts like mo-

tion from single frames, they can capture spatial information for a general activity cat-

egory. For instance, the picture of a person dribbling a basketball ball next to another

can be classified as playing basketball, but not as specific as dribbling a ball.

With the purpose of exploiting contextual relationships between persons and ob-

jects in a picture, Gkioxari et al. [2015a,b] studied deep region-based models using an

object detector, i.e. R-CNN [Girshick et al., 2014; Girshick, 2015]. They proposed the

R*CNN model that takes as input one primary region and a set of candidate secondary

regions. The primary region is manually selected and contains the person whose action

has to be predicted. The candidate secondary regions are supposed to capture contex-

tual information such as objects the person is interacting with, the pose of the person,
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or what other people in the image are doing. In their architecture, all the regions and

the whole image are processed together, but each region is individually processed in

FC layers. The classification score is the addition of the primary region score plus the

maximum score from all candidate regions.

Video Although convolutional networks were used on video data [Ning et al., 2005]

before they became popular, they did not deal with motion. Initial works sought to

add temporal mechanisms to CNNs and be able to predict action. They could roughly

be divided into three basic temporal architectures that led to more complex designs

with multiple inputs of different kinds. The first of them are three-dimensional convo-

lutional layers (3D-ConvNets) to handle volumetric spatio-temporal data [Kim et al.,

2007; Baccouche et al., 2011; Ji et al., 2013; Tran et al., 2015]. Another architecture

consisted in putting LSTM units on top of convolutional layers [Baccouche et al., 2011;

Donahue et al., 2015, 2017; Ng et al., 2015]. The last architecture performs early, late,

or hybrid fusion mechanisms on different layers of a CNN [Karpathy et al., 2014].

The first deep architecture to explicitly use motion derived data was proposed by

Simonyan and Zisserman [2014a]. Besides having as input a single color image (spa-

tial stream), their architecture adds another convolutional branch for handling several

optical flow frames (motion or temporal stream) using late fusion, hence the name two-

stream model. Wang et al. [2016, 2019] introduces the Temporal Segment Networks

(TSN) that splits a video into K sequential segments of an equal number of frames.

Simultaneously from each segment, spatial and temporal frames are sparsely sampled

and processed by a CNN stream. Later approaches [Carreira and Zisserman, 2017;

Tran et al., 2018] aim to treat an input video as a volume but reducing the number of

parameters of 3D convolutional layers, thus increasing the speed and number of input

frames. Girdhar et al. [2019] adapt the attention mechanism [Vaswani et al., 2017] for

language translation for an action localization task.

Audiovisual modalities Another source of information for discriminating actions in

a scene corresponds to audio input. Audio classification has been traditionally associ-

ated with speech recognition, an AI task that has the objective of converting acoustic

speech into its textual component words [Nilsson, 2009]. Standard acoustic models

used Gaussian Mixture Models (GMMs) and HMMs before deep neural networks were

considered by Hinton et al. [2012], although they were previously modeled with neural

networks designed for audio by Waibel et al. [1989] and then convolutional networks
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by LeCun and Bengio [1998]. Convolutional networks are suitable for audio informa-

tion since its spectral information can be represented in matrix form and required fewer

parameters than neural networks. Deep convolutional networks for speech recognition

were first used by Abdel-Hamid et al. [2012] and GMMs were then substituted with

LSTMs by Sak et al. [2014]. Initial cross-modalities works from audiovisual inputs fo-

cus on unsupervised tasks. For example, Harwath et al. [2016] proposed a two-stream

neural network that learns semantically meaningful words and phrases at the spectral

feature level from a natural input image and its spoken captions without relying on

speech recognition or text transcriptions.

The first deep multimodal work on action recognition was presented by Wu et al.

[2016]. Their architecture considered three streams for spatial, motion, and audio data.

Each stream was separately processed by CNN followed by an LSTM. All the streams

were joined by a late fusion mechanism. Long et al. [2018b] proposed a multimodal

attention mechanism on top of a BLSTM that had as inputs audiovisual extracted fea-

tures. Another multimodal architecture that considers irrelevant the order of the mul-

timodal features was introduced by Long et al. [2018a]. This architecture considered

each modality branch as an attention cluster. Inside each cluster, the features of each

frame were processed by a single attention unit. Several other cross-modalities works

have been reported in the context action recognition challenges [Fabian Caba Heil-

bron and Niebles, 2015; Ghanem et al., 2017, 2018] and have been in the first places,

but they lack of details. Among the reported submissions, Wenhao Wu [2018]; Zhang

et al. [2018] extended the TSN architecture for audio streams, and Zhao et al. [2017];

Yao and Li [2018] used another stream for pose.

2.4 Egocentric Action Recognition

The objective of egocentric action recognition is to determine what a person is do-

ing through the use of wearable devices. As stated by Lara and Labrador [2013], the

integrated kind of sensors to these devices can be grouped into four categories: ac-

celeration, environmental, location, and physiological. An example of each one of

them used for action recognition are accelerometers and gyroscopes [Ermes et al.,

2008], microphones and thermometers [Parkka et al., 2006], global positioning sys-

tems (GPS) devices [Hao Tian et al., 2009; Reddy et al., 2010], and heart and breathing

rate monitors [Cheng et al., 2013], correspondingly. This distinction is important as

the set of predictable actions depends on the sensor type, but also where the device is
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worn. For instance, although accelerometers are traditional associated with ambulatory

activities [Arif et al., 2014; Foerster et al., 1999; Seon-Woo Lee and Mase, 2002], they

also have been used as wrist bands to predict more precise actions like reading [Bao

and Intille, 2004].

Contrary to other types of wearable sensors, cameras capture external and in-

terpretable information of the user surroundings such as places, objects, and peo-

ple. According to Lara and Labrador [2013], wearable actions can be grouped into

seven categories: ambulation [Arif et al., 2014], transportation [Siirtola and Röning,

2012], phone usage [Berchtold et al., 2010], daily activities [Kao et al., 2009], exer-

cise/fitness [Munguia Tapia et al., 2007], military [Minnen et al., 2007], and upper

body [Cheng et al., 2010]. Wearable cameras provide more visual information to dis-

ambiguate these kinds of classes and, depending if they are video or lifelog cameras,

they can be used on several categories from the seven groups. For instance, arm mo-

tion might not provide enough information to distinguish between brushing teeth and

eating/drinking [Maurer et al., 2006], but cameras can capture the person holding a

toothbrush with his hand or looking at himself brushing his teeth in a mirror.

2.5 First-Person Action Recognition Methods

The goal of first-person action recognition is to determine what the camera wearer is

doing himself. Since only his/her hands are sometimes visible throughout the images,

the recognition methods rely only on the scene context like the manipulating objects,

other people, and the environment. The methods also depend on whether the images

come from a video or lifelog camera. The latter has low temporal resolution and motion

features like optical flow cannot be obtained from it. Thus, most of third-person meth-

ods cannot be adapted to lifelog cameras. Additionally, the methods depend where

the camera is worn, it has been reported to be used mounted in the forehead [Price

and Damen, 2019], as glasses [Bambach et al., 2015], in a necklace [Yu et al., 2019b],

or even on the wrists [Ohnishi et al., 2016]. In this regard, most of the work has

been focused on head-mounted cameras; as its perspective allows it to capture more

informative regions or to have less severe occlusions than chest-mounted cameras.

Still images Little research has been done on still egocentric images. Castro et al.

[2015] collected a dataset of 40,103 images from a single person using a chest-mounted

camera taken during a six-month period. They classified nineteen daily living activ-



2.5. First-Person Action Recognition Methods 19

ities using a late fusion approach. Specifically, given an input image, they compute

the softmax probabilities vector from a CNN (i.e. AlexNet) and combined it with its

timestamp and color histogram using a random forest (RF). Their approach exploits

the fact that a person usually performs activities like working in the same place and

time of the day, so it can presumably work on people sharing the same lifestyle.

Lifelogs Most of the work on lifelogs has been focused on their segmentation into

events [Talavera et al., 2015; Dimiccoli et al., 2017; Garcia del Molino et al., 2018]

and their summarization [Bolaños et al., 2018; Fan et al., 2018]. Yu et al. [2019a]

collected acceleration, location, time, and image data from two users having the same

lifestyle. They proposed a multimodal method that combines all these data using a late

fusion approach. This method has three independent branches for time, movement &

location, and semantic information. The time branch provides a fixed probability of

the activities that the person might be doing with respect to the time of the day. The

movement & location predicts an activity using an SVM from a feature vector formed

by movement features and GPS coordinates. The semantic branch predicts an activity

based on an object classification made by a CNN. These branches are combined using

the Dezert-Smarandache probability framework [Dezert, 2002]. Another multimodal

approach using acceleration features and images was presented by Yu et al. [2019b].

They defined a taxonomy of activities that depends on motion state categories. For

instance, the activity reading belongs to the motion states standing or seated, but not

to walking. Their proposed model is a two-level deep hierarchical architecture. The

first level classifies the acceleration features into motion states using an LSTM. De-

pending on the predicted motion state, then a CNN is used to predict only the activities

corresponding to that motion state using as input an image.

Video Much of the research on first-person action recognition from videos has been

focused on exploiting egocentric features: hands, interaction with active/passive ob-

jects, head motion (also called ego-motion), the gaze, their temporal structure, or a

combination of them. The following paragraphs detail each of these categories.

Hands. Mayol and Murray [2005] proposed a probabilistic method to detect activi-

ties performed on a table using office objects like keyboard, calculator, or a ball. Their

method calculates the probability of each activity event based on the probabilities of

the area of the hands using skin color segmentation, the class of objects using template

color histograms, and the spatial distribution of events around the field of view (FOV).
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To evaluate the importance of the location of hands in egocentric activities, Bambach

et al. [2015] first built a hand detector based on R-CNN [Girshick et al., 2014]. Their

hand proposal algorithm uses a probabilistic model of bounding boxes where the hands

might appear using a pixel skin model. They evaluated the location of hands in four

board game activities by using hand masks on full frames. García Hernando et al.

[2018] collected RGB-D video sequences dataset of 45 different actions involving the

hands. They found that methods relying on only hand pose like LSTMs and Gram

matrix [Zhang et al., 2016] outperform methods relying only on color and optical flow

like Two-Stream network.

Interaction with active/passive objects. Surie et al. [2007] created a virtual world

to experiment on three domains of the egocentric perspective first proposed by [Peder-

son, 2003]. At their core of egocentric domains is the manipulated object, that might be

seen in the observable space or it is present but not visible in the manipulable space of

the person. Pirsiavash and Ramanan [2012] model the semantic context of the objects

that appeared on the scene into active and passive. For instance, a fridge is consid-

ered active when it is opened, and passive when it is closed. Their model incorporates

this information as different parts-based models object detectors [Felzenszwalb et al.,

2010]. Additionally, they adapted spatial pyramid matching method [Lazebnik et al.,

2006] to be also temporal with respect to the video length. McCandless and Grauman

[2013] continue exploring the spatio-temporal pyramids by not sampling the frames

uniformly, but by randomly selecting the input frames and choosing the ones with

active objects. González Díaz et al. [2013] argued that activities involve sequences

of active objects and places where they are performed. For example, baking a cake

is an activity done in a kitchen using different utensils, while doing house chores re-

quires the user to move around the house. They extended the spatio-temporal pyramids

by sampling temporal neighborhoods of selected frames in a sliding window fashion.

Matsuo et al. [2014] extended the spatio-temporal pyramids model by calculating a

visual attention on active objects based on the work of Yamada et al. [2012]. Sud-

hakaran and Lanz [2018] devised an unsupervised method for predicting interacting

objects and actions from raw video. Their method is based on Class Activation Map-

ping (CAM) [Zhou et al., 2016] and convolutional LSTMs (ConvLSTMs) [Sainath

et al., 2015]. An activation map is first extracted using a preliminary classification

using a CNN. This activation map is element-wise multiplied by the las convolutional

layer and feed to a ConvLSTM. Sudhakaran et al. [2019b] continue their work and pro-

posed a novel attention mechanism named Long Short-Term Attention (LSTAs) based
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on LSTMs. They added another stream for dealing with optical flow and not only

predicted the interacting object but also the verbal action on the activation map.

Head motion. Kitani et al. [2011] proposed an unsupervised approach for action

detection on sports videos based on the head motion. Their approach encodes the head

motion in a vector that is grouped by a stacked Dirichlet process mixture model. They

encode egocentric head motion using directional and frequency components arguing

that actions like turning the head have strong instantaneous component, whereas run-

ning has strong periodic components. Poleg et al. [2014] modeled the head motion

splitting the frames into a grid. For each cell in the grid, they calculated a cumulative

displacement curve that smooths the optical flow over time.

Gaze. Bulling et al. [2011] described three different eye movements that describe

the gaze of a person: fixation points, blinks, and saccades (rapid eye movements that

scan the scene). These movements were later investigated on egocentric action recog-

nition methods. Fathi et al. [2012] proposed a generative probabilistic model that could

predict actions using the gaze. Specifically, they used three features obtained regions

near the fixation points: the scores of detected objects, colors, and texture histograms

of current and future neighborhood areas. Hipiny and Mayol-Cuevas [2012] modeled

the gaze using gradient regions around a grid near the fixation point. An action for

them is a sequence of gradient region templates and it can be predicted using a visual

bag-of-words method. Instead of using fixation points to predict actions, Ogaki et al.

[2012] use the saccades. Along the optical flow produced by the head motion, they

encode it using frequency analysis into a wordbook. Shiga et al. [2014] created a late

fusion method that combines gaze and spatial features. In the case of gaze features,

they combine fixation points and saccades into a codebook sequence that is classified

using a multi-class SVM. For the spatial features, they extract scale-invariant feature

transform (SIFT) [Lowe, 2004] around the gaze area and also classified them using a

multi-class SVM. Using the I3D architecture, Li et al. [2018] created a deep model

that predicts the gaze and action using as input RGB and optical flow frames. They

first learn an attention map using the gaze during training, and it is subsequently used

to pool visual features for action classification.

Temporal structure. Fathi et al. [2011b,a] investigated the relationships between

consecutive actions using a probabilistic model, although not their logical temporal

order. An action is modeled after object interactions, i.e. features from hands and

objects previously extracted; and an activity is modeled after sequences of actions .

Further work by Fathi and Rehg [2013] modeled the state changes of objects by first
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discovering changing regions across the frame sequences. An action is predicted by

concatenating the features of the detected changed regions from initial and final frames

into an SVM. Ryoo and Matthies [2013, 2016] investigated two methods based on

global and local descriptors, i.e. histograms of optical flow and cuboids, respectively.

Their first method relies on SVM having a kernel that looks for similarities in both

kinds of descriptors. Their second method proposed another kernel that works at a

hierarchical structure of atomic activities . With the goal of modeling atomic actions ,

Zaki et al. [2017] devised a method that extracts features from video data in a sliding

window fashion, and it later encodes this spatial features using temporal pyramid based

on the work of [Lazebnik et al., 2006]. Bokhari and Kitani [2016] devised a deep

reinforcement learning method to forecast actions of a person inside an office. Their

method models the camera wearer as an agent and rewards it for future actions with

respect to the state of interacting objects, i.e. forecasting the clean a cup if it is dirty.

Combination. Yu and Ballard [2002] presented pioneering work that incorporated

the eye velocity movement, segmented objects based on fixation points, and hand

movement. Their model predicted three activities using the parallel HMM. Behera

et al. [2012] presented a four-level hierarchical architecture in which an action is mod-

eled as a series of atomic actions . These atomic actions are modeled as bag-of-words

of accelerometer and visual features. Following the work on dense trajectories [Wang

and Schmid, 2013; Wang et al., 2013], Li et al. [2015] proposed to encode all de-

scribed egocentric cues into a Fisher vector obtaining competitive results to CNNs.

Ma et al. [2016] proposed an architecture that models an action as the composite of a

verb plus an object. Their architecture is similar to two-stream, but the spatial stream

first performs hand segmentation and location of objects of interest using skin masks

and two-dimensional Gaussian distributions, respectively. Additionally, both streams

are joint using late fusion to predict the action , verb, and the object.

Other. Singh et al. [2016] extended the two-stream architecture adding another

stream called EgoConvNet. The input of EgoConvNet has four channels containing a

skin binary mask, the horizontal and vertical head motion, and a saliency map.

Multimodal Song et al. [2016b,a] presented a multimodal dataset from sensor data

and proposed two methods, one using crafted features and the other using deep learn-

ing. The first method not only uses dense trajectories on video, but they also adapted

it for one-dimensional sensors signals like acceleration. They joined video and sen-

sors dense trajectories using Fisher vector encoding in a sliding window fashion. The
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second approach used two-stream architecture for video data and LSTMs for the sen-

sor signals. Their approach performed late fusion over the softmax scores. They

found that the crafted-features performed better than deep methods, arguing that the

dataset was not big enough. Using heart rate and acceleration data along with video

data, Nakamura et al. [2017] jointly predicts physical activities and energy expendi-

ture. Their deep model extracts features from video and raw acceleration data that

are concatenated in an early fusion. Later on, they are processed by an LSTM with

classification and a regression loss. Arabaci et al. [2018] presented an audiovisual

approach on egocentric video using several crafted features. The audio is processed

using Mel-frequency cepstrum coefficients (MFCCs) and a Gaussian mixture model

(GMM). The video data is processed using several optical flow features designed for

egocentric motion [Abebe et al., 2016] on cameras worn on different body parts. Kaza-

kos et al. [2019] introduce the Temporal Binding Network (TBN) that adds temporal

frame sampling boundaries to the TSN architecture. As in the TSN architecture, the

order of the input frames is irrelevant. One of their input modalities is a spectral audio

image, but it just covers a small fraction of the video sequence.

2.6 Egocentric Action Recognition Datasets

Video Datasets The vast majority of egocentric datasets for action recognition were

captured using video cameras [Bolaños et al., 2017; Damen et al., 2018]. Given the

high energy consumption of video cameras, this kind of datasets only covers actions

spanning up to a few hours and not whole days, as lifelog datasets. Another obstacle for

these devices is its obtrusiveness, as they are being typically mounted on the head. This

causes that the actions in these datasets are specific to one environment, usually indoor.

Examples of datasets indoor environments include tasks like cooking [Damen et al.,

2018; de la Torre et al., 2008; Fathi et al., 2011a, 2012; Li et al., 2018], interactions

with toys [Ryoo and Matthies, 2016], working [Abebe et al., 2019; Damen et al.,

2014], or daily indoor activities [Pirsiavash and Ramanan, 2012; Sigurdsson et al.,

2018]. Just a few datasets have outdoor actions such as basketball [Abebe et al.,

2016] or ambulatory activities [Poleg et al., 2016].

Lifelogging Datasets A reduced number of egocentric lifelogs datasets have been

presented during the last five years. In comparison with the video datasets detailed

above, these kinds of datasets cover full-day activities performed in a larger variety of
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settings. Both characteristics made them more difficult to acquire. First, the process is

more expensive because the recording time is longer. Second, indoor recording settings

do not have as many privacy issues as recording several locations and people. Castro

et al. [2015] introduced one of the first datasets that describe the life of one person

using 19 activities , but it did allow to test generalization capabilities on several peo-

ple. Most of the lifelogging datasets were introduced in the context of image retrieval

challenges [Gurrin et al., 2016, 2017; Dang-Nguyen et al., 2018; Gurrin et al., 2019].

They cover several weeks, but their annotated categories and images are low and only

describe ambulation and transportation activities . The life of three people was cap-

tured in the NTCIR-12 challenge dataset [Gurrin et al., 2016]. It was independently

annotated with 21 activities by [Cartas et al., 2017a,b]. Gurrin et al. [2017] presented

another dataset for image retrieval containing the pictures of two people labeled with

four distinct categories. It was later used in another challenge contest by Dang-Nguyen

et al. [2018], but only took into account one person and two categories. Gurrin et al.

[2019] introduced one last dataset consisting of pictures from two subjects performing

two activities .

2.7 Domain Adaptation

Domain adaptation (DA), also called dataset shift problem [Storkey, 2009], deals with

the learning setting where the training and testing sets are considered to be sampled

from different distributions. It is also assumed that training data is labeled and it comes

from the source domain while testing data is unlabeled and it is called the target do-

main. The task consists in finding a function that bridges both domains and generalizes

well on the target domain. For example, the training pictures may come from a dif-

ferent camera than the testing pictures, and the pictures might show different locations

and taken by different users. The mathematical formalization of this learning task is

first established by Daumé and Marcu [2006]. The first deep DA work is presented

by Glorot et al. [2011], they propose an auto-encoder for sentiment analysis. An-

other approach based on CNNs that became predominant is later introduced by Long

et al. [2015]. They presented a two-stream deep architecture in which each stream

represents the source and target model, respectively. In this approach, a domain reg-

ularization loss is used on both streams to adapt the source to the target domain. The

purpose of this loss is the shift between domains using a discrepancy metric such as

the maximum mean discrepancy (MMD) [Long et al., 2015, 2016; Yan et al., 2017;
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Long et al., 2017], the central moment discrepancy [Zellinger et al., 2017, 2019], the

correlation alignment (CORAL) function [Sun et al., 2016; Sun and Saenko, 2016],

and the Wasserstein metric [Lee et al., 2019]. Inspired by adversarial training Good-

fellow et al. [2014], another popular approach consists in finding a common feature

space using adversarial training Ganin and Lempitsky [2015]; Tzeng et al. [2017];

Saito et al. [2018a,b]. For instance, Tzeng et al. [2017] trains a source encoder CNN

and its weights are subsequently fixed to train a target encoder. The objective of the

target encoder training is to deceive a domain discriminator between samples of both

domains. Another method is presented by Ganin and Lempitsky [2015], they simulta-

neously train a generator and a discriminator by inverting the gradients using a special

layer.
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In this chapter, we present our method on activity classification from still lifelog

images. As stated in previous chapters, this problem has received little attention in the

literature in comparison with action classification from egocentric videos. This might

be partially due to the lack of available datasets, but also to the fact that motion features

cannot be reliably extracted from them, because of its low frame rate. Both things are

essential for action classification. Our method combines the outputs of different layers

from a convolutional network as the input to a random decision forest.

This chapter is organized as follows. In section 3.1 we present our ensemble ap-

proach based on convolutional networks and random forests. Subsequently, in sec-

tion 3.2 we describe the dataset we used in our classification experiments, namely the

NTCIR-12 [Gurrin et al., 2016]. We also described its annotation process and train-

ing/testing partitions. Then we present the implementation details in section 3.3. In

Section 3.4 we detail the experimental evaluation metrics that take into account the

dataset imbalance from random and temporal partitions. We then present the results in

Section 3.5. Finally, in Section 3.6 we present the concluding remarks of this chapter.

29
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Figure 3.1: Activity recognition at image-level. After fine-tuning a CNN, we combine the

softmax probabilities and other fully-connected layers into a single vector. Later on, we

train a random forest using this vector as its input.

3.1 Approach

Our method is an ensemble classifier composed of a convolutional network (CNN) and

a random decision forest. It concatenates the outputs from distinct layers of a convolu-

tional backbone network into a single vector. Depending on the backbone architecture,

the input for the random forest can be extracted from the last convolutional layer, a

fully-Connected (FC) layer, or the softmax layer. This vector is later used as the input

of the random forest (RF). For instance, an RF that takes as input the output of the first

FC layer and the softmax layer from a VGG-11 is shown in Fig. 3.1. The ensemble is

trained by first fine-tunning the backbone network on the data. Subsequently, the RF

is trained over the selected concatenated outputs from the CNN.

Our approach can be seen as the shallow version of Deep Neural Decision Forests

[Kontschieder et al., 2015], but on multiple layers. Moreover, it can be also seen as

the generalized version of the method proposed by Castro et al. [2015]. In comparison

with them, our approach does not rely on color histograms and time features, and it

combines different output layers from a CNN rather than just the final prediction. Both

characteristics made their method depend on specific context settings of the persons

from the training dataset, i.e. it might not generalize well on certain cases. For instance,

their classification might be affected by the lifestyles of different persons having the

same activity at distinct times of the day. The insight underlying our method is that

different output layers could help on the generalization of characterizing features of a

given activity among distinct users.

In comparison with the work presented by Castro et al. [2015], we performed our
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Attending a Seminar Biking Driving Talking Plane Shopping Walking Outdoor

Meeting Cooking Cleaning and chores TV Drinking together Eating together Walking Indoor

Mobile Resting Public transport Reading Working Drinking/Eating Alone Socializing

Figure 3.2: Examples of all the activity categories randomly selected from the anno-

tated NTCIR-12 dataset [Gurrin et al., 2016] captured by a chest-mounted OMG Auto-

grapher camera.

tests on three people having different lifestyles, rather than just one person. Therefore,

our approach cannot take advantage of their time information and color histogram.

Moreover, the number of labeled images for a single person in our annotated dataset

(≈ 15k) is less than half than theirs (≈ 40k). Hence, our task is more challenging

because we must deal with an increased intra-class variability with a much smaller

number of images.

3.2 NTCIR-12 Dataset

In our experiments, we used a subset of images from the NTCIR-12 dataset [Gurrin

et al., 2016]. This dataset was introduced in the context of an image retrieval challenge.

It comprises of 89,593 egocentric pictures describing the daily life of three people. The

pictures were automatically captured every thirty seconds using an OMG Autograph

camera. The total number of recorded days was 79, and each person wore the cam-

era for about three weeks. This dataset originally contained 13,883 annotated images

using six different activity categories. But these categories only described ambulation

and transportation activities, according to the groups proposed by Lara and Labrador

[2013].

We annotated a subset of 44,901 images using 21 different activity categories that

better describe the daily activities of the people. For example, a labeled image for

each category is shown in Fig. 3.2. Around 15,000 images were annotated for each
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Figure 3.3: Distribution of activity categories per user of the NTCIR-12 dataset.

person in the dataset. Although the labeled pictures correspond to different dates and

times, during the annotation process the images were not individually labeled but in

a sequential fashion. In other words, the temporal context of a continuous activity

across frames was implicitly taken into account by the annotators. The distribution of

categories per user is shown in Fig. 3.3.

We tested our methods on two different kinds of data partitions: random and tempo-

ral splits. The former randomly and proportionally divide each category of the dataset

into training and testing splits. The latter takes into account the time and proportionally

separates full lifelogging sequences for training and testing. Since similar consecutive

frames are only in one of the splits, the classification task is harder on this separation.

Both data partitions are further detailed in the following subsections.

3.2.1 Random partition

This partition considered all the pictures from the three users regardless of their date

and time. With the goal of maintaining the same percentage for each class, we first

performed stratified 10-fold cross-validation over the images. Then a validation split

for each fold containing 10% of the data was created by further making a stratified

shuffle of its training split.

3.2.2 Temporal partition

We split the 78 annotated lifelogs sequences into training, validation, and test sets. In

order to reflect the class distribution of the whole dataset across the splits as seen in

Fig. 3.4, the full sequences were allocated as follows. Since the day sequences con-

tain a different number of annotated pictures, they were grouped into bins containing
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Figure 3.4: NTCIR-12 temporal splits summary. All split distributions are normalized,

but the corresponding number of instances for each category is shown on top of each

split.

a similar number of images using the first-fit decreasing algorithm. This resulted in 50

bins containing an average of 2 days and 1,000 images. In the second step, candidates

of test splits were enumerated by considering all the possible combinations of bins us-

ing the Twiddle algorithm [Chase, 1970]. Specifically, we considered 7 out of the 50

bins for the test split, resulting in C7
(
50
)
= 99,884,400 test candidate splits. In the

third step, we found the most representative split by comparing the category distribu-

tion of each candidate split with respect to the whole dataset. The comparison measure

between distributions was the Bhattacharyya distance. We selected the test candidate

split with the shortest distance. The validation split was obtained by doing the same

steps but only with the remaining training bins, i.e. by considering 3 out of the 43 left

bins C3
(
43

)
= 12,341. The number of day sequences for training, validation, and test

splits were 59, 7, and 12, respectively.

3.3 Implementation

We used three CNN architectures as the backbone of our ensembles, namely the VGG-

16 [Simonyan and Zisserman, 2014b], InceptionV3 [Szegedy et al., 2016], and ResNet-

50 [He et al., 2016]. The input of the RFs in our ensembles was the output of each and

all FC layers following the last convolutional layer. The following subsections provide

further implementation details for all the models.
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3.3.1 CNN Training

All the CNN models were pre-trained on ImageNet [Russakovsky et al., 2015] using

the Keras framework [Chollet et al., 2015]. All models were fine-tuned in two phases

using the stochastic gradient descent (SGD) as an optimization method. In the first

phase, only the FC layers were back-propagated with the objective of initializing their

weights. During the second phase, also the last convolutional layers were added to

the fine-tuning process. As a mechanism for regularization, dropout layers Srivastava

et al. [2014] were added after each FC and average pooling layers. The class imbalance

was handle only for the random partition models using the class weighting scheme

proposed by King and Zeng [2001].

VGG-16

Random Partition We fine-tuned a VGG-16 network [Simonyan and Zisserman,

2014b] as being the closest to AlexNet [Krizhevsky et al., 2012]. During the first

phase, we used SGD for 10 epochs for all folds, a learning rate α = 1×10−5, a batch

size of 1, a momentum µ = 0.9, and a weight decay equal to 5×10−6. In the second

phase, the last three convolutional layers were also fine-tuned. Moreover, the SGD

ran for another 10 epochs for each fold and set with the same parameters except the

learning rate α = 4×10−5.

Temporal Partition The VGG-16 was fine-tuned for 14 epochs. For the first 10

epochs, only the FC layers were optimized with a learning rate α = 1×10−5, a batch

size of 1, a momentum µ = 0.9, and a weight decay equal to 5× 10−6. In the last 4

epochs, the last 3 convolutional layers were added and the learning rate was modified

to α = 1×10−5.

InceptionV3

Random Partition During the first phase, the last FC layer of InceptionV3 [Szegedy

et al., 2016] was optimized using SGD for 10 epochs for all folds, a learning rate

α = 1× 10−5, a batch size of 32, a momentum µ = 0.9, and a weight decay equal to

5×10−6. In the second phase, the last inception block was added to the optimization

process and the network was optimized for another 10 epochs setting the learning rate

α = 4×10−5 and the batch size to 10.
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Temporal Partition InceptionV3 was fine-tuned for 12 epochs. The first phase con-

sisted of 10 epochs in which the only FC layer was optimized with a learning rate

α = 1× 10−5, a batch size of 10, a momentum µ = 0.9, and a weight decay equal to

5× 10−6. In the second phase, the last inception block was also added to the fine-

tuning process and the learning rate α increased to 4×10−5.

ResNet-50

Random Partition In the first phase, the last FC layer of ResNet-50 [He et al., 2016]

was fine-tuned for 10 epochs for all folds, a learning rate α = 1× 10−3, a batch size

of 32, a momentum µ = 0.9, and a weight decay equal to 5×10−6. In the last phase,

the last residual block was also optimized using SGD with the same learning rate and

a batch size of 10 for three additional epochs.

Temporal Partition ResNet-50 was fine-tuned for 4 epochs. In the first 2 epochs,

only the FC layer was optimized with a learning rate α = 1×10−3, a batch size of 10,

a momentum µ = 0.9, and a weight decay equal to 5×10−6. In the last 2 epochs, the

last residual block was also fine-tuned but the training hyperparameters remained the

same.

3.3.2 Random Forests training

With the goal of finding an adequate number of trees for each RF, we trained all the RF

combinations from each CNN using a number of trees equal to 50,75,100,200, . . . ,900.

Their training criterion was the Gini impurity [Breiman et al., 1984] and their nodes

were expanded until all the leaves were pure. The mean accuracy of all validation splits

was calculated for each RF and number of trees, as depicted in Fig. 3.5. The number

of trees to be used for each RF was the lowest one after which the performance did not

improve significantly. The random forests (RF) in our ensembles were trained using

the Scikit Learning framework [Pedregosa et al., 2011]. The training details of each

ensemble configuration are given below.

VGG-16+RF

Random Partition Five different RF were trained using the distinct layers of the best

epoch from the fine-tuned VGG-16 for each fold. The combinations of layers for the
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Figure 3.5: Mean accuracy of the validation split for each random forest with respect to

different number of trees. The maximum accuracy values is pointed by a star mark.

ensembles were: FC1, FC2, FC1+FC2, FC1+FC3, and FC2+FC3. Their respective

number of trees of each combination were 400, 500, 600, 300, and 200. The maximum

depth of each combination was 49, 47, 53, 58, and 48, correspondingly.

Temporal Partition The five combinations of RFs previously described were trained

for this data partition using a number of trees equal to 500. Explicitly, the combinations

of layers for the ensembles were: FC1, FC1+FC2, FC1+FC3, FC2, and FC2+FC3.

Their maximum depth for each combination was 55, 48, 60, 52, and 51, respectively.

For comparative purposes, the Convolutional Neural Network Late Fusion Ensem-

ble (CNN LFE) [Castro et al., 2015] was also implemented using the VGG-16 as

backbone network. This RF model received as input the softmax probability scores,

the day of the week, the time of the day, and 10-bin size histogram for each color

channel. Its number of trees was 500 and its maximum depth was 47.

InceptionV3+RF

Random Partition A random forest was trained using the global average pooling

(GAP) layer from InceptionV3. This random forest had 100 trees as estimators and a

maximum depth of 58.
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Temporal Partition The GAP layer was also used as input for an RF with 100 esti-

mators and a maximum depth of 72.

ResNet50+RF

Random Partition A random forest was trained using the average pooling (AP) layer

from the previously ResNet-50 network. This random forests had 400 trees as estima-

tors and a maximum depth of 49.

Temporal Partition A random forest was trained on the AP layer using 500 estima-

tors and its resulting max. depth was 53.

3.4 Evaluation Metrics

Since the dataset is highly imbalanced, the classification performance is measured by

not only using the accuracy, but also other macro metrics for precision, recall, and

F1-score. These additional macro metrics are an unweighted average of the metrics

taken separately for each class, therefore they do not consider the available number of

instances for each class. Moreover, the results are cross-validated.

3.5 Results

3.5.1 Random Data Partition Results

The classification results on the random data partition are presented in Table 3.1. These

results show that the CNN+RF ensembles improve the performance of all backbone

CNNs achieving a similar classification performance. The improvement of the baseline

accuracy for the VGG-16, InceptionV3, and ResNet-50 are 6.04%, 8.2%, and 1.31%,

correspondingly. This suggests that the ResNet-50 training is more robust and that

its output feature vector encodes the information better. Although the best ensemble

is VGG-16+RF on FC2+FC3, the macro metrics indicate that the ResNet-50+RF on

AP has a similar or even better performance. Considering that ResNet-50 is a lighter

architecture than VGG-16, the best ensemble is the ResNet-50+RF on AP.

The recall scores in Table 3.1 show that some of the categories with fewer learning

instances improved their recall significantly, i.e. Cooking, and Cleaning and Choring.
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Attending a seminar 76.93 78.70 80.57 77.75 78.21 78.11 78.21 78.11 78.70 78.31

Biking 92.32 91.93 99.17 98.20 97.57 97.98 97.17 97.98 98.80 99.20

Cleaning and chores 61.84 57.14 92.22 92.06 92.13 92.62 92.26 92.74 92.61 92.39

Cooking 84.78 81.98 91.69 96.48 95.97 95.79 95.47 96.49 95.10 96.15

Drinking/eating alone 74.92 75.94 88.25 88.70 89.77 89.71 89.65 89.71 90.85 90.37

Drinking together 89.42 80.74 94.93 96.48 95.98 96.05 95.91 95.84 95.63 95.49

Driving 99.50 99.60 99.90 99.74 99.77 99.77 99.73 99.77 99.83 99.83

Eating together 88.78 80.58 96.42 96.75 97.26 97.26 96.89 97.36 96.50 98.11

Meeting 90.00 80.92 96.61 95.36 95.49 95.49 95.54 95.43 93.29 96.78

Mobile 93.32 89.59 95.27 97.55 97.46 97.36 97.30 97.34 97.22 97.58

Plane 84.94 87.67 82.61 77.21 80.66 81.15 81.54 83.58 87.16 75.70

Public Transport 89.17 89.23 92.41 90.87 91.14 91.53 91.27 91.59 91.46 91.59

Reading 88.23 81.40 96.83 96.49 96.67 96.67 96.59 96.59 97.35 97.69

Resting 92.87 87.97 91.54 94.56 94.90 95.14 94.90 95.11 91.07 91.02

Shopping 82.44 81.07 93.18 94.98 95.57 95.14 95.57 95.65 95.40 96.68

Socializing 91.60 89.13 97.47 98.47 98.46 98.46 98.57 98.73 97.37 98.63

Talking 76.25 72.36 89.64 93.53 93.50 93.50 93.65 93.61 95.54 94.10

TV 92.59 93.74 96.04 97.21 96.91 96.69 97.05 96.91 96.55 96.54

Walking indoor 79.63 79.17 92.73 94.81 94.92 94.75 95.04 94.87 95.15 95.85

Walking outdoor 90.89 90.95 94.61 96.96 97.03 96.94 97.00 96.83 97.35 98.27

Working 96.27 95.82 97.34 98.18 97.98 97.91 97.96 97.91 98.81 99.38

Accuracy 89.46 87.07 94.08 95.26 95.41 95.41 95.41 95.50 95.27 95.39

Macro precision 87.06 83.85 92.60 94.63 94.59 94.62 94.57 94.61 94.96 96.14

Macro recall 86.51 84.08 93.31 93.92 94.16 94.19 94.15 94.39 94.37 94.27

Macro F1-score 86.45 83.77 92.78 94.11 94.23 94.28 94.23 94.38 94.53 95.00

Table 3.1: Comparison of the ensembles of CNN+Random forest on different combina-

tions of layers on the random data partition. Upper table shows the recall scores per

category and the lower table shows the performance metrics.

Moreover, the confusion matrices of the convolutional networks depicted in Fig. 3.6

show that the classes Drinking/Eating alone and Eating together suffer overlapping. It

also shows that CNN+RF ensembles increase their recall for all backbone networks.

The category Plane was the only one with a decreasing recall for the VGG-16+RF

on FC2+FC3 ensemble. We consider that its decrease is a consequence of the ran-

dom forest balancing the prediction error among classes, as its baseline recall is high

(87.67%) with respect to its number of training instances (1,026).
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Figure 3.6: Normalized confusion matrices of the best combination of layers for each

baseline convolutional neural network.

Some classification examples for the CNN and CNN+RF models are shown in Fig.

3.7. The first and second columns show an example where most of the CNN+RF im-

proved the activity classification. An example where both the CNN and CNN+RF

wrongly classified an activity is presented in the third column. The last column ex-

emplifies an activity that was correctly classified by the CNN but incorrectly by the

CNN+RF.

3.5.2 Temporal Data Partition Results

The classification results on the temporal data partition are shown in Table 3.2. In

comparison with the results of the random data partition (Table 3.1), the classifica-

tion performance dropped significantly as expected. Specifically, the accuracy was

diminished on average by 17.71% for all methods. The results show that the CNN+RF

ensemble only improves the prediction for one of the three CNN tested models, i.e. the

VGG-16. Furthermore, the best model was a CNN model, namely InceptionV3. This

suggests that newer convolutional networks encode better the information at the end of
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Figure 3.7: Classification activity examples. On top of each image is shown its true ac-

tivity label and on bottom its top 5 predictions by VGG-16, ResNet-50 and InceptionV3.

Additionally, the result of the ensembles VGG-16+RF on FC2+FC3, ResNet-50+RF on

AP, and InceptionV3+RF on GAP is highlighted on color in its corresponding table. The

green and red colors means true positive and false positive classification, respectively.

the convolutional layers, thus the random forests did not improve their performance.

The results also showed that not all combinations of final layers for CNN+RF im-

proved the performance. In the case of the VGG-16 only the FC1 plus the FC3 layers

were better than the baseline. Moreover, the CNN LFE method [Castro et al., 2015]

was better than the latter. This might be due to the additional information from the

color histograms and the date & time, but also because of the reduced number of eval-

uated people.
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Macro Precision 68.50 72.44 73.06 70.77 69.52 71.93 69.12 69.78 69.66 76.64 73.68

Macro Recall 67.49 70.62 69.94 65.06 65.91 66.86 65.60 66.08 67.79 62.61 67.24

Macro F1-score 66.80 69.85 70.60 65.80 65.93 67.51 65.60 66.28 66.99 64.94 68.54

Table 3.2: Comparison of the ensembles of CNN+Random forest for different combina-

tions of layers on the temporal data partition.

3.6 Conclusion

In this chapter we introduced an ensemble approach that combines convolutional net-

works and random forests (CNN+RF) for image-level activity recognition. We pre-

sented a classification performance comparison between the CNN+RF and their re-

spective CNN backbone models for random and temporal data partitions. The results

showed that all the CNN+RF models outperformed their corresponding CNN baseline

for the random partition. The best model for this partition was the VGG-16+RF on

FC2+FC3 ensemble achieving a 95.50% of accuracy. Nonetheless, a similar perfor-

mance was achieved by ResNet-50+RF on AP, but its backbone architecture is lighter.

The results for the temporal partition showed that the CNN+RF models not always

improved its CNN baseline. The best tested model was the InceptionV3 and only one

ensemble for the three tested networks resulted in better performance, i.e. VGG-16+RF

on FC1+FC3. In the next chapter, we present more robust generalization tests on the

same methods on a dataset captured by a large number of people having a wide variety

of lifestyles.
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In this chapter, we present our method for activity recognition from sequences of

visual lifelogs. One of its main obstacles is the very low frame-rate, they typically

have between 2 or 3 frames per minute. In consequence, motion-based features such

as optical flow cannot be reliably estimated. Nevertheless, they still exhibit temporal

coherence of concepts as presented by Byrne et al. [2010]. The temporal coherence

refers to the tendency of similar concepts to appear in neighboring frames of a se-

quence. For example, an activity such as cooking has associated repetitive objects like

fridge, stove, and the kitchen itself.

This tendency is usually present in visually consistent and even visually varied ac-

tivity sequences. Both types of sequences are illustrated in Fig. 4.1. Visually consistent

sequences are characterized for mostly presenting the same concepts throughout all the

frames. In the case of the working sequence in Fig. 4.1a, the laptop computer, and the

43
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Figure 4.1: Temporal coherence of concepts in lifelogging activity sequences. Although

each sequence was captured at 2 fps, the temporal coherence concepts is preserved

in (a) visually consistent and (b) visually varied activity sequences. Images taken from

the NTCIR-2012 dataset [Gurrin et al., 2016].

hands are present in all the sequences. In a visually varied sequence, the concepts ap-

pear only in some consecutive frames. In the case of the walking outdoor sequence in

Fig. 4.1a, a car appears in three of the middle frames of the sequence. The temporal

coherence of concepts is preserved in drastic changes in appearance.

Furthermore, temporal coherence provides valuable information for single frames

that are difficult to interpret alone. One of these difficulties is occlusion of arms/hands,

near objects, and other persons; as seen in all the activity sequences of Fig. 4.1. An-

other difficulty is the abrupt changes of the field of view, like the one in the first and

second frames of the walking outdoor sequence in Fig. 4.1b. The correct activity

prediction of these individual frames cannot be made without looking at neighboring

frames.

The temporal coherence of an action or activity is defined by their starting and

ending boundaries. When they are known, they are implicitly used for training tempo-

ral action recognition algorithms1. These boundaries in lifelogs sequences are clearly

unknown but splitting them into similar temporal subsequences could provide further

1Otherwise, the task of determining not only the action but their starting and ending times are known
as action detection.
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Figure 4.2: Initial frames of five consecutive events segmented from a lifelog sequence

using SR-Clustering method proposed by [Dimiccoli et al., 2017]. Each row shows the

first 13 frames of each event.

information for action recognition. These subsequences or events are obtained by clus-

tering sequential images in homogeneous groups with respect to criteria. These criteria

are specific to the application at hand. For example, Poleg et al. [2014] modeled events

as temporal segments characterized by the same global motion and partitioned ego-

centric videos based on motion-features. As another example, Furnari et al. [2016]

modeled events as groups of pictures highlighting the presence of personal locations

of interest specified by the end-user. We focus on the definition provided by Talav-

era et al. [2015] and Dimiccoli et al. [2017], they define events as temporal semantic

segments sharing semantic and contextual information. For example, Fig. 4.2 shows

five consecutive subsequences segmented from a lifelog using the method proposed by

Dimiccoli et al. [2017].

In this chapter, we also present our lifelogging dataset, the ADLEgoDataset. One

of the main challenges of activity recognition from lifelogs is the lack of data col-

lected from different users performing a wide set of activities . In consequence, robust

generalization tests cannot be performed. Unlike egocentric videos, lifelogs cover full-

day activities performed in a larger variety of settings. Both characteristics made the

lifelogging datasets more difficult to acquire. First, it requires longer recording times

that also makes the process more expensive. Second, recording several locations and

people during a day has more privacy restrictions than indoor locations.

In section 4.1, we present one temporal training strategy and two temporal architec-

tures for activity recognition that work directly over egocentric lifelogs. These meth-
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Time Time

Figure 4.3: Thirteen activity day sequences of annotated photos from two people of the

NTCIR-12 dataset [Gurrin et al., 2016].

ods use long short-term memory (LSTM) units [Hochreiter and Schmidhuber, 1997]

on top of a CNN to discover long-range temporal relationships and to learn how to

integrate information over time. Complementary to them, we present in section 4.2 an-

other approach that uses temporal boundaries estimated from segmented events. Next,

in section 4.3 we throughly describe ADLEgoDataset, consisting of 105,529 images,

from 15 users, with an average of 6,682 images per user. In section 4.3.4, we describe

its training and testing splits considering not only seen users during training, but also

unseen users. We explain our experimental settings and implementation details on

the NTCIR-12 and ADLEgoDataset in section 4.4, followed by the evaluation metrics

in section 4.5. Finally, in section 4.6 we discussed the obtained results and provide

concluding remarks in section 4.7.

4.1 Temporal Approaches

Encouraged by Byrne et al. [2010], our hypothesis is that successive images in lifelog

sequences encode temporal information that makes more accurate activity predictions.

Since the duration of a lifelog can be from a few hours to a whole day, it contains differ-

ent activities performed by a person. Despite the sparseness of these annotated activi-

ties , temporally adjacent frames share the same label, as seen in the sequences of Fig.

4.3. Our approaches aim to exploit these characteristics by using LSTM units [Hochre-

iter and Schmidhuber, 1997]. They have been proved successful on third-person action

recognition in several works [Baccouche et al., 2011; Donahue et al., 2015, 2017; Ng
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Figure 4.4: Sliding window training mechanism for lifelog sequences. A lifelog sequence

is divided into overlapping subsequences that are the input of a CNN+LSTM architec-

ture.

et al., 2015]. We propose a training mechanism for lifelogs called sliding window, and

two LSTM architectures: the CNN+RF+LSTM and the Piggyback LSTM.

Sliding Window Training Mechanism Instead of feeding a full lifelog sequence to

a CNN+LSTM network, this training mechanism splits the lifelog into overlapping

frame segments of fixed length, as illustrated in Fig. 4.4. In comparison with previous

works on third-person action recognition [Donahue et al., 2017; Ng et al., 2015], the

model is not supposed to determine a single activity but to improve the prediction of

neighboring frames depicting the same activity . In other words, we do not expect that

it learns the temporal evolution of features, but to smooth the predictions of similar

frames when not knowing the event boundaries.

CNN+RF+LSTM Architecture This architecture is the temporal version of our static

egocentric image classifier CNN+RF, proposed in chapter 3. The temporal mechanism

used on this architecture are LSTM units, as shown in Fig. 4.5a.

Piggyback LSTM Architecture This architecture explicitly models the temporal re-

lation between adjacent overlapping frames in subsequent input batches of an LSTM

architecture. Since a day lifelog can be composed of around two thousand frames, it

is infeasible for an LSTM to learn such long-range dependencies [Gers et al., 2000].

The purpose of this model is to learn these complex long-range temporal dependen-

cies without considering each lifelog as a single sequence. A similar model to ours

was independently presented at the same time by Lee et al. [2017], by it was used for

skeleton-based action recognition.

Our architecture consists of a backbone CNN, a fully-connected (FC) layer, an
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Figure 4.5: Proposed architectures for activity recognition using temporal contextual

information: (a) CNN+RF+LSTM and (b) CNN+Piggyback LSTM with a window size

and overlap of 5 and 2 frames, respectively.

LSTM unit, and a final FC layer, as shown in Fig. 4.5b. It carries the information across

consecutive input batches by overlapping n frames between them. This is achieved by

specifically making the output dimensions of the first FC layer and the LSTM equal. In

this way, after feedforwarding the first sequence batch, the LSTMs output of the last n

frames is stored. In subsequent passes, these values are the input for the first n LSTM

units. For instance, Fig. 4.5b shows a configuration composed of 5 timesteps with

overlapping of 2 output/input frames. For the first input sequence (frames 1-5 in Fig.

4.5b), the LSTM has as input the output of the FC layers. For subsequent sequences,

the overlapping frames are 4-5 and 7-8 in Fig. 4.5b. For these frames, the LSTM input

is the output of the LSTM layer from the previous sequence.

4.2 Event-Based Approach

Our approach consists of first splitting a lifelog into events. These events are defined

as temporally adjacent pictures that share contextual and semantic features. These fea-

tures correspond to visual concepts and features extracted from convolutional network

[Dimiccoli et al., 2017].

In order to exploit the temporal boundaries determined by the event segmentation,

we proposed to use an LSTM variant as a temporal learning mechanism. We combined

the encoding produced by a CNN with a bidirectional LSTM (BLSTM) [Graves and
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Figure 4.6: Proposed architecture for activity recognition using events segmentation.

Event boundaries are determined after clustering a lifelog sequence into subsequences

sharing contextual and semantic features. These boundaries are later used on a

CNN+BLSTM architecture.

Schmidhuber, 2005]. This recursive neural network evaluates a sequence in forward

and backward order and merges the result. Thus, it captures patterns that might have

been missed by the unidirectional version and it obtains potentially more robust rep-

resentations [Chollet, 2017a]. A schematic overview of our approach is illustrated in

Fig. 4.6.

4.3 ADLEgoDataset

The purpose of our dataset was to tackle two main issues with existing lifelog datasets.

Namely, (i) the reduced number of people and lifelog sequences and (ii) the small num-

ber and diversity of activity categories. Both issues prevent thoroughly generalization

tests for activity recognition on lifelog sequences.

A comparison summary between the lifelogs datasets presented in section 2.6 and

ours is shown in Table 4.1. Besides considering the number of people, annotated

classes, and images, it also shows the number of day lifelogs. This number is relevant

when performing robust generalization tests on frame-sequence data, as they must be

done on full sequences rather than only frames. Moreover, Table 4.1 also highlights

the diversity of activities of our dataset, since it has more categories belonging to more

activity groups proposed by Lara and Labrador [2013].
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Dataset Camera
Body

#Frames #Days #People #Classes
#Annotated

Activity Groups
Location Frames

NTCIR-12
Gurrin et al. [2016]

Cartas et al. [2018b]
Autographer Chest 90k 90 3

6
Gurrin et al. [2016] 13.8k Ambulation, Transportation

21
Cartas et al. [2018b] 44.9k

Ambulation, Transportation,

Device Usage, Daily Activities

NTCIR-13 Narrative
Chest 110k 90 2 4 5.8k Ambulation, Transportation

Gurrin et al. [2017] Clip

NTCIR-14
Autographer Chest 81k 43 2 2 8.9k Ambulation, Transportation

Gurrin et al. [2019]

Castro, et al.
Castro et al. [2015] Looxcie Ear 40k 182 1 17 39.1k

Transportation, Daily Activities,

Exercise/Fitness

ADLEgoDataset
Narrative

Clip Chest 105k 191 15 35 100k

Ambulation, Transportation,

Device Usage, Daily Activities,

Exercise/Fitness

Table 4.1: Comparison between existing egocentric lifelogs datasets and the ADLEgo-

Dataset. The activities are grouped according to the taxonomy proposed by Lara and

Labrador [2013]. The highest attribute values are highlighted in bold.

4.3.1 Data Collection

The pictures were collected by 15 computer science post-graduates students the wore

a necklace lifelogging camera. The participants were 3 women and 12 men. The

collected pictures mainly show distinct outdoor and indoor locations across one city.

The common location for all participants was the university where they study or work.

Each participant was instructed to wear the camera while performing their daily ac-

tivities during whole days. The minimum period for wearing the camera was 10 days.

For privacy concerns, they were allowed to cover the camera in private situations, e.g.

using the restroom. Additionally, they have permission to discard sensitive pictures,

even images from whole days.

The participants wore the first and second versions of the Narrative Clip camera,

but only two of them used the first version. Both cameras autonomously take two pic-

tures per minute, but the latter has a wider field of view and an 8 megapixels resolution

instead of 5. Their battery charge can last for almost 12 hours, thus allowing them to

collect between 1,200 and 1,900 images per day.

The activity categories were based on previous works [Cartas et al., 2017a,b,

2018b; Castro et al., 2015], but their purpose was not to model the student lifestyle

and were indirectly filtered after the data collection. Specifically, the original cate-



4.3. ADLEgoDataset 51

Using
Pets Walking Outside Walking Inside tablet/cellphone Train/Metro Shopping Walking Outside

10:33 11:47 11:57 12:05 12:10 12:36 12:42

Using
Eating Dishwashing Cycling Walking outside tablet/cellphone Relaxing Bus
8:48 9:05 12:44 13:02 13:20 13:49 16:13

Figure 4.7: Sampled pictures from the ADLEgoDataset. Each row corresponds to an-

notated pictures from two different people with their respective activity and time.

gories included a broader set of activities like child rearing, meditating, painting, or

praying. Nevertheless, the participants did not choose any of them during the anno-

tation process. The final categories are general activities that belong to five distinct

groups proposed by Lara and Labrador [2013], as seen in Fig. 4.8.

4.3.2 Annotation Process

Most of the participants were also involved in the annotation process. Their involve-

ment had two goals: (i) determine the right activity label for their images, and (ii)

establish when the activities started and ended. The temporal context is important

when annotating the images since the correct label can be lost when inspecting single

frames due to occlusions. For example, a frame in a cycling sequence might hide the

bicycle handlebar and could lead to a mislabeling like walking outside. In order to

meet both goals, the pictures were annotated in sequences using our annotation tool

introduced by Cartas et al. [2017b].

4.3.3 Dataset Details

The ADLEgoDataset consists of 105,529 egocentric pictures taken from 15 post-graduate

students, covering in total 191 days and 35 activities . In comparison with egocentric

video datasets, its activities are not restricted to a specific domain like kitchen, and
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Figure 4.8: Distribution of activity categories in the ADLEgoDataset according to the

proposed groups by Lara and Labrador [2013]. Note that the horizontal axis has a

logarithm scale.

were mainly performed in different outdoor and indoor locations in a city. These ac-

tivities are based on previous works [Cartas et al., 2017a,b, 2018b; Castro et al., 2015]

and belong to five of the seven categories introduced by Lara and Labrador [2013], as

seen on Fig. 4.8. All participants wore an egocentric camera during a different number

of days and times, resulting in 14.6 days and 6,816.73 images per user on average. Fig.

4.7 shows two activity sequences of two users in different settings.
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4.3.4 Dataset split

Our goal in doing the training and testing partitions was to make possible the evalu-

ation of generalization capabilities of the methods presented in this and the previous

chapter. As mentioned in section 3.2, random training/testing partitions are not reli-

able on sequential data since consecutive frames depicting similar information might

be present in both partitions. Therefore, instead of hiding single random frames from

the training split, we selected in a test split full-day sequences from seen users during

training. This selection was made as proportional as possible with respect to the cate-

gories since it had to be representative of the dataset. Contrary to the temporal partition

of the NTCIR-12 dataset in section 3.2.2, we considered that this kind of partition is

not enough to assess the generalization performance, because similar days might depict

similar activities in the same context of a person. Consequently, we made another test

split consisting of unseen users during training. This test split was not constrained to

be representative of the training split. The data percentage of the seen and unseen test

users was around 10% and 5%, respectively. Moreover, we discarded the activities that

had less than 200 instances or that were performed by only one user, except for four

categories (airplane, cleaning, gym, and pets). These categories were also considered

for further comparisons in the experiments of the next chapter.

We first created the unseen users split because it reduced the complexity of the seen

users split. The procedure is detailed as follows:

Unseen users split First, we calculated all the possible combinations of unseen

users from the 15 participants (i.e. 32,767) by using the Twiddle algorithm [Chase,

1970]. Then we calculated the total number of images for each combination and fil-

tered the ones that did not have between 4.5% and 5% of images from the total amount

of images in the ADLEgoDataset. Finally, we selected the combination with the lowest

number of participants.

Seen users split This split is focused on separating complete days of images (or

full-day sequences) from users, rather than separating users. A full-day sequence is

composed of several images with different activity labels from one user. The objective

of this test split is to separate full-day sequences from the training that maintains a

similar category distribution as the whole dataset and thus being representative of what

it is intended to learn. We measure the similarity between category distributions using

the Bhattacharyya distance.
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Figure 4.9: ADLEgoDataset splits summary. Our splitting method generated data splits

with similar distribution shapes, except for the unseen users split. Note that the distri-

butions are normalized and their vertical axis has a logarithm scale.

After removing the unseen users from the dataset, the remaining number of users

is 9 and their number of full-day sequences is 103. By counting the number of images

from each full-day sequence, 10% of the dataset for the split is obtained by selecting

between 6 and 32 full-day sequences. We considered that the most representative full-

day sequences are the ones with the closest category distribution with respect to the

whole dataset. Consequently, finding it involves comparing the category histograms

between the whole dataset and all possible combinations of full-day sequences. Al-

though the number of test days is low, the search is prohibitively expensive as is char-

acterized by combinatorial growth. For instance, the number of test sets considering 6

days out of the 103 is ≈ 1.42×109, but for 32 days out of the 103 is ≈ 4.42×1026.

Finding the best full-day sequences for the split was performed as a two-step opti-

mization search using heuristics. With the goal of reducing the search space, instead

of dealing with single full-day sequences, we first grouped them into bins of one or

more full-day sequences. This was modeled as a bin packing problem, where the ob-

jects were full-day sequences, and their weight was its number of images. To further

reduce the search space by half, these bins were matched in pairs with similar category

distributions. The idea is that one bin was destined for the training set and the other

for the test set. The resulting number of bin pairs was 32 containing between one and

two full-day sequences.

The second step evaluated all test split candidates to find the most similar to the

ADLEgoDataset distribution. A test split candidate is a combination of bin pairs that

contains all activity categories and its number of images is approximately 10% of the

data. The distributions of all our final splits are depicted in Fig. 4.9. It shows that

all split distributions have a similar shape, except for the unseen users split because it
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considered random users as described above.

4.4 Experimental Settings

The aim of our experiments was to measure the effectiveness of our proposed methods.

Our experiments were carried out in the NTCIR-12 and the ADLEgoDataset datasets.

Concretely, we used the temporal splits described in sections 3.2.2 and 4.3.4. We

first measured the performance of all the temporal methods described in section 4.1

in the NTCIR-12 dataset. A more robust comparison was later done over the ADLE-

goDataset, but only using the temporal methods that showed good performance. Ad-

ditionally, the event approach was also tested in the ADLEgoDataset over the same

split.

All the models were implemented using the Keras framework [Chollet et al., 2015].

Our optimization algorithm was stochastic gradient descent (SGD). For regularization

purposes, we used dropout layers [Srivastava et al., 2014], batch normalization, and

early stopping criteria.

4.4.1 Temporal Methods Implementation

The backbone network for the models trained over NCTIR-12 was the VGG-16 ar-

chitecture [Simonyan and Zisserman, 2014b], whereas the backbone network for the

models trained over ADLEgoDataset was the ResNet-50 He et al. [2016]. The main

difference in their training is that the weights of the ResNet-50 were frozen during

training of the temporal models. We considered data augmentation to randomly ap-

plied horizontal flips, translation and rotation shifts, and zoom operations. All the

configuration and training details are provided below.

VGG-16 CNN We used the same trained VGG-16 network as previously described in

section 3.3. This model served as the initial weights of all temporal models.

VGG-16 CNN+LSTM Architecture. We used the same architecture for training using

the full lifelog sequence and the sliding window mechanism. Specifically, we removed

the last two original FC layers from the VGG-16 network, and instead added an LSTM

layer of 256 units followed by an FC layer with 21 outputs.
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Training. The initial fine-tuning weights were the ones obtained for the VGG-16

baseline model. For both kinds of training, the first four blocks of convolutional layers

remained frozen during the optimization process.

Full-sequence. We trained the CNN+LSTM model for 38 epochs using a timestep

input of 10 frames, a learning rate α = ×7.5−5, a momentum µ = 0.9, and weight

decay equal to 5×10−6.

Sliding window. We trained three LSTM configurations with a time step of 5, 10,

and 15 frames. All the configurations had different learning rates, but the same mo-

mentum µ = 0.9 and weight decay equal to 5×10−6. The learning rate α for the time

step configuration of 5, 10, 15 was 2.5×10−5, 1×10−4, 1×10−4, correspondingly.

VGG-16 CNN+Piggyback LSTM Architecture. The last two FC layers of the VGG-

16 network were substituted by a FC layer with a 256 dimension output, an LSTM layer

of 256 units, and a FC layer with 21 outputs. A filter layer was used to implement the

feedback for the overlapping frames in the sequence. In consequence, the architecture

had one additional input for the previous batch and one used as a mask.

Training. The training consisted of two phases. The objective of the first phase

was to learn the high-level features from adjacent frames. In this phase, the lifelog se-

quences were treated without overlapping and the training followed the sliding window

mechanism. The goal of the second phase was to learn temporal patterns throughout

the sequence, and thus the overlapping of m frames were considered between consecu-

tive input batches. During this phase, all the convolutional layers and the first FC layer

were frozen. In order to consider all frames from a sequence, the first n frames of a

lifelog were considered as the first frames of independent sequences.

We trained three different configurations of timesteps equal to 5, 10, 15 frames

and overlapping equal to 2, 3, and 4, respectively. All the configurations shared the

same momentum µ = 0.9 and weight decay equal to 5× 10−6, but different learning

rate. The learning rate α for the timestep configuration of 5, 10, 15 was 2.5× 10−5,

1×10−4, 1×10−4, correspondingly.

VGG-16 CNN+RF+LSTM Architecture. Our architecture takes as input the results

of a trained CNN+RF model and consists of an LSTM of 32 units followed by an

FC layer. With the purpose of performing regularization, dropout layers were added

between the connections of the LSTM layer. The five ensembles of CNN+RF for the

VGG-16 described in section 3.3 were used. Explicitly, the ensembles combining the
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layers FC1, FC1+FC2, FC1+FC3, FC2, and FC2+FC3.

Training. For all the baselines ensembles, we trained three configurations with a

timestep of 5, 10, and 15 frames. They were trained using the sliding window mecha-

nism described above. The training hyperparameters were a learning rate α= 1×10−2,

momentum µ = 0.9, and weight decay equal to 5×10−6,

ResNet-50 CNN We used ResNet-50 He et al. [2016] as CNN network and replaced

the top layer with a fully-connected layer of 28 outputs. The fine-tuning considered the

class-weighting scheme proposed by King and Zeng [2001]. Moreover, the last ResNet

block and the only FC layer were unfrozen. The CNN initially used the weights of

a pre-trained network on ImageNetRussakovsky et al. [2015]. It was trained during

7 epochs using a learning rate α = 1× 10−2, a learning rate decay of 5× 10−4, a

momentum µ = 0.9, and a weight decay equal to α = 1×10−3.

ResNet-50 CNN+LSTM and CNN+BLSTM Architecture. These models removed the

top layer of the ResNet-50 network and respectively added an LSTM and BLSTM

layer having 256 units, followed by a fully-connected layer of 28 outputs.

Training. For both models, the learning rates of the full sequence and the sliding

window training were α = 1×10−2 and α = 1×10−3, correspondingly. They had the

same momentum µ = 0.9, weight decay equal to α = 5×10−6, batch size of 1, and a

timestep of 5.

ResNet-50 CNN+RF Two random forests were trained using the output of different

layers from the previously described ResNet-50 network. Specifically, the first RF was

trained using as input the features extracted from the average pooling layer. The second

RF uses the average pooling layer plus the concatenation of the FC layer. Additionally,

the Convolutional Neural Network Late Fusion Ensemble (CNN LFE) [Castro et al.,

2015] was also implemented using as input the softmax probability scores, the day of

the week, the time of the day, and 10-bin size histogram for each color channel. The

number of trees for all of them was set to 500 and used the Gini impurity criterion

Breiman et al. [1984].

ResNet-50 CNN+RF+LSTM and CNN+RF+BLSTM Architecture. These models re-

spectively added an LSTM and BLSTM layer having 30 units, followed by a fully-

connected layer of 28 outputs.
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Training. Both models were trained using as input the prediction of the best

CNN+RF model, namely the combination of the avg. pooling and the FC layers. The

learning rate for both models and types of training was α = 1× 10−3, a momentum

µ = 0.9, weight decay equal to α = 5×10−6, batch size of 1, and a timestep of 5.

4.4.2 Event-based Methods Implementation

The following models take into account the event boundaries extracted using the algo-

rithm presented by Dimiccoli et al. [2017]. They use as initial weights the trained CNN

and CNN+RF ResNet-50 models. All of them have the same architecture as their coun-

terparts described in the section above. With the purpose of making a fair comparison,

their weights and outputs of the backbone models were frozen during training.

ResNet-50 CNN+LSTM and CNN+BLSTM For both models, the learning rates for

training were α = 1× 10−2 and α = 1× 10−3, correspondingly. They had the same

momentum µ= 0.9, weight decay equal to α= 5×10−6, batch size of 1, and a timestep

of 5.

ResNet-50 CNN+RF+LSTM Both models were trained using as input the combina-

tion of the avg. pooling and the FC layers. The learning rate for both models and

types of training was α = 1× 10−3, a momentum µ = 0.9, weight decay equal to

α = 5×10−6, batch size of 1, and a timestep of 5.

4.5 Evaluation Metrics

The activity recognition problem from lifelogs is different from the action recognition

from videos, as it is naturally posed as many-to-many sequence classification. Accord-

ingly, the evaluation is carried out on the frame level and without any kind of average

over the full lifelog sequence. Since the classes of both datasets are imbalanced, using

the accuracy as the only classification metric might be misleading. With the purpose of

offering a solid performance comparison, our evaluation takes into account the accu-

racy, the mean average precision (mAP), and macro metrics for precision, recall, and

F1-score.
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CNN CNN+LSTM CNN+Piggyback
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Accuracy 75.97 79.68 80.39 81.73 81.62 75.97 79.04 78.51

Macro Precision 68.50 72.96 75.25 76.68 76.03 69.74 72.98 73.00

Macro Recall 67.49 71.36 71.86 74.04 75.38 62.98 71.88 69.52

Macro F1-score 66.80 70.87 71.97 74.16 74.63 63.24 71.06 69.88

(a) Fully deep temporal methods (CNN+LSTM and CNN+Piggyback LSTM)

CNN+RF+LSTM
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Accuracy 85.96 86.87 85.55 75.86 82.20 81.87 85.45 87.71 86.24 85.73 86.78 85.38 85.89 86.85 86.35

Macro Precision 79.81 80.45 80.00 69.97 76.75 74.53 79.29 81.55 80.05 81.22 81.37 79.71 79.62 80.22 80.11

Macro Recall 81.36 81.36 79.34 65.19 73.85 73.99 79.11 81.88 80.79 80.56 80.97 79.80 80.35 81.19 80.74

Macro F1-score 80.00 80.39 78.45 65.63 74.08 73.62 78.05 81.10 79.56 79.96 80.37 78.63 78.82 80.23 79.51

(b) Random Forest based method (CNN+RF+LSTM)

Table 4.2: Comparison of all temporal methods on the NTCIR-12 dataset.

4.6 Results

4.6.1 Temporal Methods over NTCIR-12

The results of our first experiments over the NTCIR-12 using fully deep temporal ar-

chitectures are presented in Table 4.2a. While the temporal coherence improved the

CNN baseline, the models still failed to correctly predict highly correlated categories

such as attending a seminar and meeting, as seen on the confusion matrices on Fig.

4.10.

The best fully deep temporal architectures were the CNN+LSTM, achieving 81.73%

of accuracy. Although the best mechanism for training this architecture was the slid-

ing window, it was not clear its superiority with respect to training from the full day

sequence. The results in Table 4.2a show that, despite improving the CNN baseline for

two of the three configurations, CNN+Piggyback LSTM architecture had significantly

less improvement than the CNN+LSTM architecture. This might be due to not hav-

ing clear temporal patterns throughout the full day sequences, as shown in Fig. 4.3.

Therefore, the CNN+Piggyback LSTM was not further tested in the ADLEgoDataset.
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Figure 4.10: Normalized confusion matrices of all models for CNN+LSTM and CNN

Piggyback LSTM for the NTCIR-12 dataset.

The results of our CNN+RF+LSTM over the NTCIR-12 are shown in Table 4.2b.

In this case, they also confirmed that the temporal coherence helps the activity clas-

sification. Coincidentally, the best timestep for all models was 10. The best method

achieved an accuracy of 87.71% and used the first and last fully connected layers,

i.e. FC1+FC3. They showed a higher improvement over their fully deep counterparts

methods of Table 4.2a. Although our temporal models obtained a good performance

in the NTCIR-12 dataset, the results changed in a more extensive validation by using a

more modern convolutional network and a larger scale dataset, as described in the next

subsection.

4.6.2 Temporal Methods over ADLEgoDataset

The performance results of all the static and temporal models on the seen and unseen

test partitions are presented in Table 4.3. The best models for the seen and unseen

test splits were CNN+BLSTM (80.64%) and CNN+LSTM (79.87%), respectively. In

both test splits, the sliding window training resulted in better performance. Although

both models achieved a similar accuracy on the test splits, the rest of the metrics re-

mained significantly different. This indicates that the CNN+BLSTM model suffers

from overfitting on unseen users. Overall, the best model for both test splits was the

CNN+LSTM achieving an 80.12% accuracy, as it had a similar performance on the

seen users split, and better performance on the unseen users split.

In contrast with the results presented in the last subsection, our experiments in-
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STILL IMAGE LEVEL IMAGE SEQUENCE LEVEL
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Accuracy 79.46 78.70 78.71 78.40 79.34 78.11 77.61 79.01 79.93 80.23 79.13 80.64

mAP 63.06 66.08 66.05 62.75 64.35 55.79 59.63 63.84 69.74 70.62 68.21 69.96

Macro precision 67.83 67.41 67.59 66.95 66.35 56.49 73.04 71.67 68.56 67.91 67.17 68.16

Macro recall 65.04 60.36 60.50 60.12 58.11 48.78 48.45 57.84 64.44 67.53 62.74 68.55

Macro F1-score 64.22 61.92 62.07 61.72 59.19 49.27 53.51 60.95 64.37 65.60 63.27 66.85

U
N

S
E

E
N

U
S

E
R

S Accuracy 75.44 73.71 73.79 72.51 75.40 74.29 69.00 73.44 77.88 79.87 76.00 78.05

mAP 53.42 55.71 56.05 51.43 52.03 50.28 46.27 51.20 59.02 62.01 58.03 59.03

Macro precision 41.24 48.78 47.98 50.87 52.58 40.41 48.51 59.75 55.89 53.01 52.14 48.28

Macro recall 43.74 43.11 43.23 42.57 46.46 40.61 40.71 46.85 49.47 49.63 48.71 46.44

Macro F1-score 39.52 40.97 40.99 41.22 44.09 37.70 38.28 45.76 47.07 47.30 44.94 43.45

A
LL

Accuracy 78.30 77.26 77.29 76.71 78.21 77.01 75.13 77.41 79.34 80.12 78.23 79.90

mAP 59.02 62.92 62.97 59.70 61.27 54.71 56.01 60.47 66.52 67.45 65.08 66.96

Macro precision 64.74 66.32 66.39 66.04 66.63 57.36 72.60 71.33 67.96 67.79 66.51 67.25

Macro recall 60.95 56.53 56.67 56.11 54.86 47.33 44.82 53.98 60.97 64.16 59.06 64.25

Macro F1-score 60.80 58.89 58.97 58.62 57.91 48.65 49.75 57.91 61.84 63.71 60.83 64.01

Table 4.3: Comparison of all temporal methods on the ADLEgoDataset.

dicate that the CNN+RF models decreased the overall accuracy of the ResNet-50

network. Considering both test splits, the macro precision improved whereas the

macro recall decreased. Thus, indicating that the CNN+RF models are confident

in their predictions, but they miss a large number of class samples. Consequently,

both temporal models trained on top of this configuration (CNN+RF+LSTM and

CNN+RF+BLSTM) have a decreasing score in all the considered metrics with re-

spect to the CNN baseline.

The confusion matrices of the best CNN+BLSTM and CNN+LSTM models for

the seen and unseen test splits are illustrated in Fig. 4.11. A straight comparison

of all classes between each test split cannot be made, as the number of test samples

is different and it might be misleading. For instance, not all categories appear on

the unseen test split like airplane or watching tv. Additionally, the proportion of the
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Figure 4.11: Normalized confusion matrices of the best models for the seen and un-

seen test sets and their difference with respect to the CNN model. The increase and

decrease of confidence is represented by the intensity of red and blue colors. Note that

the classes Airplane, Cleaning, Going to a bar, Gym, and Watching TV do not appear

on the unseen users test set.

number of test samples is less in some classes, e.g. stairclimbing.

Nevertheless, a comparison between the results of each temporal model and the

CNN model can be done by calculating their difference, as shown at the right of each

confusion matrix row in Fig. 4.11. Since the accuracy improvement with respect to the

baseline is higher on the unseen than on the seen test split, there are more changes in

its difference. Moreover, the plots show low performance on the CNN model for the

categories Cleaning, Relaxing, Drinking, and Writing. They might be due to the large

intra-class variability of the category (Relaxing), the social context ambiguity (Formal

and Informal meeting), and to the fact that same activities occurs on very similar places

(Cleaning, Cooking and Dishwashing).
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STILL IMAGE
IMAGE SEQUENCE LEVEL

LEVEL
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Accuracy 79.46 78.71 79.34 78.12 77.61 78.00 79.93 79.65 79.13 79.38

mAP 63.06 66.05 64.35 61.44 59.63 60.89 69.74 67.47 68.21 67.73

Macro precision 67.83 67.59 66.35 63.60 73.04 71.84 68.56 67.49 67.17 66.42

Macro recall 65.04 60.50 58.11 56.66 48.45 51.80 64.44 62.86 62.74 62.24

Macro F1-score 64.22 62.07 59.19 56.29 53.51 56.66 64.37 63.21 63.27 62.44

U
N

S
E

E
N

U
S

E
R

S Accuracy 75.44 73.79 75.40 75.65 69.00 69.59 77.88 77.37 76.00 75.20

mAP 53.42 56.05 52.03 51.13 46.27 45.21 59.02 58.20 58.03 58.11

Macro precision 41.24 47.98 52.58 47.18 48.51 48.64 55.89 57.91 52.14 55.70

Macro recall 43.74 43.23 46.46 47.10 40.71 41.30 49.47 49.32 48.71 53.83

Macro F1-score 39.52 40.99 44.09 44.33 38.28 38.81 47.07 47.88 44.94 48.22

A
LL

Accuracy 78.30 77.29 78.21 77.41 75.13 75.58 79.34 78.99 78.23 78.17

mAP 59.02 62.97 61.27 58.67 56.01 56.99 66.52 64.58 65.08 64.30

Macro precision 64.74 66.39 66.63 63.62 72.60 71.31 67.96 66.93 66.51 65.33

Macro recall 60.95 56.67 54.86 53.57 44.82 47.88 60.97 59.05 59.06 58.10

Macro F1-score 60.80 58.97 57.91 54.95 49.75 52.81 61.84 60.91 60.83 59.45

Table 4.4: Comparison between full-day sequences and event segmentation on the

ADLEgoDataset.

4.6.3 Event-based Methods

The results of using the event segmentation on the temporal methods are shown in Ta-

ble 4.4. Although its difference with respect to the methods trained using the full day

sequence is small, its performance is lower. The best method overall is the CNN+LSTM

using the full day sequence in both seen and unseen partitions. In comparison with the

results presented using sliding window in Table 4.3, the performance using event seg-

mentation is significantly lower. This might be explained for two main reasons. First,

although the segmented events have consistent groups of sequential images, they still

contain different activities . Second, the sliding window exploits the temporal neigh-

borhood of frames and, thus, having a smoothing effect over the sequence.
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4.7 Conclusions

In this chapter, we introduced three methods that exploit the temporal coherence of

lifelogs and a method based on event segmentation. All our methods used features

extracted from a CNN and LSTM units as a temporal mechanism. We first pre-

sented a training mechanism over lifelogs named sliding window and two architectures:

CNN+RF+LSTM and CNN+Piggyback LSTM. The sliding window training mecha-

nism generates consecutive training batches of a fixed size from a lifelog sequence.

Continuing the work from the last chapter, the CNN+RF+LSTM architecture sets a

random forest before the temporal mechanism. Our last temporal architecture is the

CNN+Piggyback LSTM, that it is able to handle information of previous batches from

a sequence by reprocessing a fixed number of overlapping frames. Then we presented

an event-based approach that extracts temporal boundaries from temporal segments

sharing semantic and contextual information from lifelogs.

Additionally, we presented the ADLEgoDataset, the so-far largest egocentric lifelog

dataset of activities of daily living consisting of 105,529 annotated images. It was

recorded by 15 different participants wearing a Narrative Clip camera while perform-

ing 35 activities of daily life in a naturalistic setting during a total of 191 days. With

respect to other available lifelog datasets, it contains many more categories, annotated

images, users, and types of activities, hence allowing to perform generalization tests

on unseen users.

We first tested the three temporal approaches over the NTCIR-12 dataset. These

initial tests showed that training a CNN+LSTM in a sliding window fashion had a bet-

ter performance than considering the lifelog as a full day sequence, achieving 81.73%

accuracy. In the other hand, the CNN+Piggyback LSTM showed an improvement

over the CNN baseline by achieving a 79.04% accuracy, but it did not represent an

improvement over the CNN+LSTM architecture. Our last temporal architecture, the

CNN+RF+LSTM model, obtained the best performance overall achieving 87.71% ac-

curacy.

Since the initial tests were done in a small dataset containing a few users, they

were validated in the ADLEgoDataset. Moreover, this validation was carried out using

a more modern convolutional network architecture, namely ResNet-50; because the

features extracted from the VGG-16 proved not to be as robust as more modern archi-

tecture as reported in the last chapter. The results confirmed that the best training mech-

anism for lifelogs was the sliding window using a CNN+LSTM or a CNN+BLSTM.



4.7. Conclusions 65

The best overall method was the CNN+LSTM obtaining an 80.12% of accuracy, but the

CNN+BLSTM had a better performance in the seen users partitions having an 80.64%.

They also showed that the CNN+RF overfit when trained on a wider context having

more users and images, and thus its temporal counterpart the CNN+RF+LSTM model.

Finally, the event-based approach did not prove to be as effective as training with the

full day sequence. This might be a consequence of the LSTM having a smoothing

effect over neighbor frames in a sequence and the segmented events not defining strict

activity boundaries.





Chapter 5

Domain Adaptation Applications for

Activity Recognition on Lifelogs

Contents
5.1 Domain Adaptation Using a Regularization Loss . . . . . . . . . 69

5.2 Source and Target Datasets . . . . . . . . . . . . . . . . . . . . . 70

5.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

In real-world lifelogs applications, a system pretrained on a large scale dataset is

commonly deployed on new unseen visual data. In these scenarios, the distribution of

the training is also called source, and typically differs from the distribution of new data,

also called target. For instance, this is always the case when the target data are acquired

by a different wearable camera than the source data, or when the target data have been

collected by people having a very different lifestyle than those who collected the source

data, i.e. having different jobs/hobbies and living in different countries. In addition,

new data can be unlabeled or scarcely labeled. Therefore, ensuring performance on

unseen users from the same domain does not assure that the model could be employed

in real-world applications. In addition, to guarantee the robustness of the method,

performance should keep stable on larger and more varied datasets.

As a visual example, Fig. 5.1 shows egocentric images of different people washing

the dishes in their respective houses captured with three different wearable cameras.

Besides the visual variability of tap and sinks in different kitchens, one can notice the

contrast of fields of view and the angle distortion produced by different lenses. Due to

67



68 Chapter 5. Domain Adaptation Applications for Activity Recognition on Lifelogs

ADLEgoDataset

Narrative Clip 2

Chest mounted

Castro et al.

[Castro et al., 2015]

Looxcie

Ear mounted

NTCIR-12

[Gurrin et al., 2016]

Autographer

Chest mounted

Figure 5.1: Examples of people performing the same activity from different domain

datasets. Below each image is its corresponding dataset, egocentric camera type, and

body wearing location.

the different nature of the source and target domains, performance on the target domain

typically experiences a drop.

In this chapter, we aim at mitigating the performance drop by applying a semi-

supervised learning technique, namely domain adaptation (DA). Our goal is to as-

sess the performance between egocentric domains with and without transfer learning,

rather than proposing a new adaptation method tailored at egocentric lifelog sequences.

Therefore, we strictly focus on a simple image-based DA method, the Deep Correlation

Alignment (CORAL) regularization loss proposed by Sun and Saenko [2016].

We perform two experiments using the ADLEgoDataset as the source domain, and

the NTCIR-12 [Gurrin et al., 2016] and Castro et al. [2015] datasets as target domains.

These datasets were selected as target domains, as they are the closest to our dataset in

the number of activity categories and annotated images, and were recorded with dif-

ferent cameras, as it can be appreciated in Table 4.1. In the first experiment, we mea-

sure the performance of adding annotated images from different domains for training

without using DA, and we quantify the difference between the target and the source

domains. In the second experiment, we use the CORAL loss function as DA method

on the target datasets and calculate the amount of labeled target data needed to achieve

a good classification performance. Specifically, we consider it in a semi-supervised

context, where different amounts of labeled target examples are taken into account.

This chapter is organized as follows. In Section 5.1, we detail the domain adapta-
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Figure 5.2: Domain adaptation training pipeline. During training, two CNNs with shared

weights are used for the source and target data domains, respectively. Since the target

domain labels are unknown, only the classification loss for the source CNN is evalu-

ated. The adaptation from the source to the target domain comes from penalizing the

discrepancy of their predictions using the domain adaptation loss. In this example, the

discrepancy of both images should be high, because the source and target images

correspond to the classes eating and driving.

tion technique we used, namely the CORAL regularization loss. Next, in Section 5.2

we outline the datasets we used and their splits in our experiments. In Section 5.3, we

thoroughly describe the implemented models. The experimental results evaluation and

discussion are presented in Section 5.4. Finally, we present our conclusions in Section

5.5.

5.1 Domain Adaptation Using a Regularization Loss

Let LS = {yi}, i ∈ {1, ...,L} be the labels from the source domain, and let us assume

that the target domain has only unlabeled examples. During training, both domains

have their own CNN architecture with shared weights, but only the source domain

has a classification loss `CLASS. In order to adapt the learned model from the source

to the target domain, a regularization loss `DA is used. This domain regularization

loss penalizes the discrepancy between the output distributions from two single feature

layers having a dimension d. This is a common setting used by Long et al. [2015];

Sun and Saenko [2016]; Zellinger et al. [2019] and it is illustrated in Fig. 5.2, where a

single DA loss is penalizing the output of the fully-connected (FC) layers. The training
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loss function can be expressed as:

`= `CLASS +
n

∑
i=1

λi`DA (5.1)

where n is the number of DA regularization layers in the network and λ denotes the

hyperparameter that trades off the adaptation with classification accuracy. Since our

CNNs only had one FC layer, we only used one DA loss.

Specifically, we used the CORAL regularization loss Sun et al. [2016]; Sun and

Saenko [2016]. One of its advantages is that only the hyperparameter λ requires to be

set. In this context, the output features of the source and target layers are said to come

from the source domain DS = {xi}, x ∈ Rd and the target domain DT = {ui}, u ∈ Rd ,

respectively. Then the CORAL regularization loss can be defined as:

`CORAL =
1

4d2‖C(DS)−C(DT )‖2
F (5.2)

where ‖ · ‖2
F denotes the squared matrix Frobenius norm and C is the covariance of D

given by:

C(D) =
1
m
(D>D− 1

m
(1>D)>(1>D)) (5.3)

where m is the number of data in the domain D and 1 is a column vector with all

elements equal to 1. The CORAL loss penalizes the discrepancy between domain

features, so that when the source and target images correspond to different classes the

penalty is high.

5.2 Source and Target Datasets

In our experiments, we used the ADLEgoDataset as the source domain dataset, and

the NTCIR-12 [Gurrin et al., 2016] and Castro et al. [2015] as target domain datasets.

Both datasets were selected as target domains since they used different cameras and

have more annotated categories and images than other lifelogging datasets, as can be

appreciated in Table 4.1. Additionally, the domain visual difference with respect to our

dataset can be appreciated in Fig. 5.1. We did not consider using the NTCIR-12 Gur-

rin et al. [2016] and Castro’s datasets as source domains since they have fewer people,

half of the images, and fewer activity categories. Since their labels correspond to a

different set of activity categories than ours, we manually mapped the matching cate-

gories. More categories would have required an automatic matching between words.

The resulting categories and data distributions are shown in Fig. 5.3. The correspond-

ing number of images of the source and the target for the NTCIR-12 was 96,632 and
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(a) Mapping between the ADLEgoDataset and Castro’s.
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Figure 5.3: Categories mapping between the source and target domains with their data

distributions. The source domain corresponds to the ADLEgoDataset, whereas the

target domains are the (a) Castro’s dataset and the (b) NTCIR-12 dataset. Note that

the vertical axis has a logarithm scale.

44,902, and for the Castro’s dataset was 68,507 and 39,166. The specific data splits for

each experiment are detailed below.

Training without Domain Adaptation The goal of this experiment was to measure

the performance of adding images from two different domains only during training

without using DA. Therefore, we combined the source dataset with each target dataset

for the training and validation splits, but the testing split only considered images from

the source domain. Explicitly, we used the same splits for the source images as de-

scribed in Section 4.3.4. The images from the target domains were randomly stratified

in a 90/10% proportion for the training/validation splits.

Domain Adaptation on the Target Datasets The objective of this experiment was

to (i) use transfer learning in a practical setting and (ii) determine the required amount
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of labeled data from the target domain to obtain a good classification performance.

The initial setting of the experiment considered that only the source domain data was

labeled, but later different proportions of labeled data from the target domain were

added.

First, we randomly stratified the source data into training and validation sets, and

the target data into training and testing sets. Throughout the experiment, the propor-

tion of training and validation data of the source images was fixed and set to 90/10%,

whereas the proportion of training and testing data of the target images was initially set

to 85/15%. Subsequently, different proportions (10,20, . . . ,50%) of images were ran-

domly and incrementally removed from the target training split. These images were

added to the training/validation splits of the source domain while maintaining their

original 90/10% proportion.

5.3 Implementation

The following paragraphs describe the training settings for each experiment.

Training without Domain Adaptation We used a ResNet-50 [He et al., 2016] net-

work as a CNN model and replaced its top layer with a FC layer of 28 outputs. In

order to have comparative results with the classification baseline presented in the last

chapter, we explicitly used the same network. It was trained using stochastic gradient

descent (SGD) with its weights initialized on ImageNet [Russakovsky et al., 2015].

The last ResNet block and the FC layer were unfrozen during fine-tuning procedure.

The training parameters were a learning rate α = 1× 10−2, a learning rate decay of

5×10−4, and a momentum µ = 0.9. Since we used two validation splits, the training

was stopped when their epoch losses were not further improved. The number of epochs

for the target datasets NTCIR-12 and Castro’s one were 6 and 9, respectively.

Domains discrepancy As a means to quantify the difference between the source

dataset and the target datasets, we calculated the maximum mean discrepancy (MMD) [Fortet

and Mourier, 1953] between them for each shared category. First, we sampled between

500 and 1,000 images per category that were both in the source and the target datasets.

These sampled images took into account all users and all days. Then, for each sampled

image, we extracted a feature vector from the last pooling layer of a ResNet-50 CNN

pre-trained on ImageNet [Russakovsky et al., 2015]. Finally, we calculated the MMD
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between the sets of feature vectors of the source and target datasets using a Gaussian

kernel with a σ = 0.1.

Domain Adaptation on the Target Datasets We initially used two CNN architec-

tures, i.e. Xception [Chollet, 2017b] and ResNet-50, as they are more robust and have

better performance than AlexNet [Krizhevsky et al., 2012], the original network used

by Sun and Saenko [2016]; Long et al. [2015]; Zellinger et al. [2019].

Architecture setup In comparison with AlexNet, the Xception and ResNet-50 ar-

chitectures have only one FC layer, making it the only layer suitable for the CORAL

loss. The weights of this FC layer were initialized with N (0,0.005) and its learning

rate was set ten times bigger than the other layers, as stated by Sun and Saenko [2016].

The rest of the layers were initialized using pre-trained weights on ImageNet [Rus-

sakovsky et al., 2015]. We initially kept frozen all the layers except the classification

layer, but it had a negative impact on the performance in the target domain. Hence, the

layers from the last ResNet block of the ResNet-50 architecture and the exit flow block

of the Xception architecture were unfrozen. We used SGD as an optimization method

for both networks.

Learning rate α tuning We experimentally found that an adequate learning rate α

had to be high enough to produce a significant CORAL distance between the source

and the target domain, but not so high that it did not converge. In order to find it,

we first varied the learning rates while maintaining the other parameters constant and

setting λ = 0. In other words, the training was performed without penalizing the dis-

crepancy between domains, but measuring their distance. For instance, Fig. 5.4 illus-

trates significantly different CORAL distances for two different learning rates on both

target datasets. In both cases, the highest learning rates were used as their training

converged. Additionally, in our experiments, the lower learning rate did not produce

higher accuracy scores for the training split of the target domain.

The final training parameters for ResNet-50 were a learning rate of α = 5×10−3,

a batch size of 60, a momentum equal to 0.9, and a weight decay equal to 5× 10−4.

Additionally, the training parameters for the Xception network were a learning rate of

α = 5× 10−2, a batch size of 40, a momentum equal to µ = 0.9, and a weight decay

equal to 5×10−4.
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Figure 5.4: Sensitivity of the CORAL distance due to different learning rates using (a)

ResNet-50 and (b) Xception network. These results were obtained by only measuring

the CORAL distance and not penalizing it (i.e. by having a fixed λ = 0).

CORAL loss weight λ tuning After finding an adequate learning rate, we trained

the ResNet-50 and Xception networks for λ = 0,0.1, . . . ,1. The best value of λ was

obtained considering only the highest validation accuracy of the source domain, as

the target data is supposed to be unknown. The best values of λ for ResNet-50 were

0.3 and 0.5 on the NTCIR-12 and Castro’s datasets, respectively; whereas the best

values of λ for Xception were 0.5 and 0.2 on the NTCIR-12 and Castro’s datasets,

correspondingly.

The validation accuracy plots for ResNet-50 and Xception networks on both datasets

are shown in Fig. 5.5. Two observations can be made from these plots. First, the areas

between the minimal and maximal values of the accuracy obtained using the differ-

ent values of λ suggest that the training of Xception network is more unstable than

the ResNet-50 network. Consequently, no further experiments were implemented us-

ing the Xception network. Second, the difference between the target accuracy of both

datasets (≈ 73.22% for Castro and ≈ 47.92% for NTCIR-12) shows that a good per-

formance is not always achieved using the CORAL loss alone. Therefore, more data

from the target domain is needed to be labeled during training.

Addition of target labeled data to the source domain After fine-tuning the hyper-

parameters, we separately trained the ResNet-50 network adding different percentages

of random target labeled data to the source domain. The considered percentages of tar-
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Figure 5.5: Validation accuracy for the ResNet-50 and Xception on the transfer learning

to the Castro’s dataset (top) and the NTCIR-12 dataset (bottom). Each plot shows

the validation accuracy obtained with the best value of λ and without using domain

adaptation (λ= 0). Additionally, the blue and violet areas represent the range between

the minimal and maximal values of the accuracy for λ = 0.1,0.2, . . . ,1.0 on the source

and target domains, correspondingly.

get data were 0,10%, . . . ,50% and were selected as described in Section 5.2.

5.4 Results

Training without Domain Adaptation The objective of this experiment was to (i)

measure the activity classification performance when mixing the source and target

datasets during training without DA method and (ii) estimate how different were the

source and target domains. Given the class imbalance present in the dataset and for

comparative purposes, we used the same performance metrics as the experiments pre-

sented in Section 4.5. The discrepancy between shared categories of the source and

target domains was calculated using the MMD as described in Section 5.3.
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Table 5.1: Activity classification performance results obtained by adding the Cas-

tro’s [Castro et al., 2015] and NTCIR-12 [Gurrin et al., 2016] datasets for training without

domain adaptation. The best result per measure is shown in bold. Note that not all cat-

egories appeared on the unseen users test set.
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Figure 5.6: Maximum mean discrepancy (MMD) between the categories from the

source and target datasets. The closer the value to zero the more similar the domains

for that category.

The classification results of separately adding Castro’s and NTCIR-12 datasets for

training are presented in Table 5.1. It shows that the addition of labeled data from

the target domains diminished all the evaluated performance metrics; in particular, the

accuracy was lower by 13.71% on average. The overall classification performance of

adding Castro’s dataset was better than when adding the NTCIR-12 dataset. This is

also reflected in their calculated discrepancy with respect to the source domain. Fig.
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Castro 58.34±0.2 72.47 46.70±0.4 75.58 78.75±0.0 79.04 79.50±0.0 79.73 80.07±0.0 81.18 65.83±0.3 81.88

NTCIR-12 45.21±0.0 45.14 77.85±0.0 78.46 82.60±0.0 81.81 84.91±0.0 84.90 87.34±0.0 87.40 87.77±0.0 87.76

Table 5.2: Action recognition accuracy for the domain shifts from the ADLEgoDataset

dataset using ResNet-50.Best result per measure is shown in bold.

5.6 shows the MMD for each shared category between each target and source domains,

and a horizontal line representing its mean. The MMD mean for the Castro’s dataset

is lower than for the NTCIR-12 dataset, thus meaning that it is more similar to the

ADLEgoDataset. This difference in discrepancy also is reflected in the performance

of domain adaptation as describe below.

Domain Adaptation on the Target Datasets The objective of this experiment was

to use transfer learning in a practical setting and to determine the required amount of

labeled data from the target domain to obtain a good classification performance. As in

previous works [Sun and Saenko, 2016; Donahue et al., 2014; Ganin and Lempitsky,

2015; Gong et al., 2012; Long et al., 2015; Zellinger et al., 2019], we use the prediction

accuracy as evaluation metric for five different training runs. Our results only consider

ResNet-50 architecture, since the training of the Xception network was unstable as

discussed above. The summarized results are shown in Table 5.2 and plot in Fig. 5.7.

The results in Table 5.2 show that ResNet-50 was also susceptible to instability

during training, producing a high variance in some training runs. This instability only

affected Castro’s dataset and can be visually seen in the plot of Fig. 5.7. Therefore,

the accuracy median was also considered to measure performance improvement.

The results confirm that performing domain adaptation without using labeled target

data does not necessarily achieve a good performance on all target datasets. Specifi-

cally, the median accuracy of the NTCIR-12 was 45.14% whereas for Castro’s dataset

was 72.58%. This low performance was improved by adding a small subset of labeled

target data to the training. The largest increment in median accuracy was obtained by

adding 10-20% of labeled data, i.e. for the NTCIR-12 it improved by 33.32% when

adding 10% and for Castro’s dataset it improved by 6.57% after adding 20%. The
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labeled images to the training/validation source data using ResNet-50. The colored

areas denotes the mean value ± standard deviation.

most benefited dataset was the NTCIR-12 since their initial discrepancy was higher as

shown by the previous experiment. The mean and median accuracy curves from Fig.

5.7 show a decreasing increment that settles around 40%. Although a straight com-

parison with previous works cannot be made [Castro et al., 2015], the mean accuracy

values at 40% of added data are competitive. Originally, the accuracy obtained for

Castro’s and NTCIR-12 datasets were 83.07% and 94.08%, correspondingly.

5.5 Conclusions

In this chapter, we evaluated the performance of trained methods in new data for

real scenarios. Our aim was to mitigate the performance drop by applying a semi-

supervised learning technique, namely domain adaptation (DA). Specifically, we pre-

sented experiments of generalization in different domains. We first showed that the

evaluated source and target datasets have a large discrepancy that diminished the clas-

sification performance by 13.71% on average. Finally, we used the CORAL loss func-

tion as a DA technique and showed that a good performance is not always achieved on

different target datasets. Specifically, we obtained a median accuracy value of 72.47%

and 45.14% on Castro’s and the NTCIR-12 datasets. We also showed that the perfor-

mance can improve by incorporating a small percentage of labeled target data to the

training. In the case of the NTCIR-12 dataset, the performance improved to 78.46%

by randomly adding 10% of target data.
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In this chapter we propose a semantically driven approach to classify actions in

egocentric videos that learns first-person object interactions at frame level and the dy-

namics of actions at temporal level. In the context of this chapter, we refer to an action

as a short-term human-object interaction such as close fridge, consisting of an action

verb (i.e. close) and an interacting object (i.e. fridge). Similarly, we say that an activ-

ity indicates a sequence of actions such as take bread, take cheese, open ketchup, etc.

performed with a specific goal, i.e. making a sandwich.

Our approach aims at reasoning about different semantic entities in images across

space and/or time since it is able to learn relevant image regions at frame-level and the

dynamics of actions at temporal level. At frame-level, we model first-person object in-

teractions as spatially structured regions in a deformable star configuration, consisting

of primary and secondary regions corresponding to the user hands and to the objects

being potentially interacted with, respectively (see Fig. 6.1).

81



82 Chapter 6. Region-Based Action Recognition From Egocentric Videos

First-person action predictions

Video shot 1 Video shot 2 Video shot 3

Figure 6.1: Our model takes as input for each frame a primary region corresponding

to the user hands (red boxes) and a set of secondary regions corresponding to object

proposals (green boxes). These regions are used to make action predictions at frame

level, that are aggregated firstly at shot level and then across shots to capture the

temporal structure of human-object interactions.

At temporal-level, we model first-person activities as sequences of actions and we

aim at exploiting temporal structure to improve predictions. Our temporal model is

based on the observation that when different people perform an activity with a partic-

ular goal, i.e. make tea, the temporal order matters. For instance the action poor milk

in cup is typically preceded by take milk, open milk, etc.

As stated in chapter 2, several approaches to first-person object interactions have

been presented. They can roughly be grouped according to their used egocentric fea-

tures like hand location and pose [Bambach et al., 2015; Fathi et al., 2011a], head

motion and gaze [Fathi et al., 2012], manipulated objects [McCandless and Grauman,

2013; Pirsiavash and Ramanan, 2012; Baradel et al., 2018], or as a combination of

them [Li et al., 2015; Ma et al., 2016; Singh et al., 2016; Sudhakaran and Lanz, 2018].

However, only a few of them [Fathi et al., 2011a; Baradel et al., 2018; Sudhakaran and

Lanz, 2018] are specifically aimed at reasoning about different semantic entities in im-

ages across space and/or time. Our approach follows the same direction by capturing

object-interactions using regions and modeling their temporal structure. A comparison

of all these approaches and ours is presented in Table 6.1.

We evaluated our approach on three public datasets: the GTEA [Fathi et al., 2011b],

Gaze [Fathi et al., 2012], and the GAZE+ [Li et al., 2015] benchmarks. Quantitative

comparisons to five state-of-the-art methods demonstrated both the effectiveness and

the potential of our approach, which is able to outperform current methods even with-
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Method Hands Objects Motion Gaze
Spatio-temporal

Spatio-temporal

reasoning

Spatial Temporal

feature reasoning on reasoning

modelling hand-objects on actions

Fathi et al. [2011a] X X X X X
Fathi et al. [2012] X X X X X

Pirsiavash and
Ramanan [2012]

X X X

McCandless and
Grauman [2013]

X X X X

Bambach et al.
[2015]

X
Li et al. [2015] X X X X

Ma et al. [2016] X X X X
Singh et al. [2016] X X X X

Sudhakaran and
Lanz [2018]

X X X

Baradel et al.
[2018]

X X X

Ours X X X X

Table 6.1: State of the art egocentric object-interaction recognition methods and their

characteristics

out relying on motion information. Unlike most available architectures, where motion

is processed through a dedicate stream, in our approach, we explicitly model the dy-

namics of human-object interaction at temporal-level.

The reminder of this chapter is organized as follows. First, in section 6.1 we in-

troduce our proposed approach and data augmentation strategies. Then in section 6.2

we detail the datasets we used, namely the GTEA, GAZE, and GAZE+. Next in sec-

tions 6.3 and 6.4 we describe the implementation details and evaluation settings of

our model, respectively. In section 6.5 we throughly discuss our ablation studies and

benchmark results. Lastly, in section 6.6, we draw our conclusions.

6.1 Proposed approach

The proposed approach aims to model: 1) the contextual cues that characterize person-

to-object interactions, 2) the temporal evolution of contextual cues within a shot, and

3) the temporal order of actions. In section 6.1.1 and section 6.1.2 we detail how

the proposed approach models and exploits contextual information of actions and the

temporal order that characterizes activities, respectively.
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Pour water on cup Take bread

Take bread Clean table with napkin

Figure 6.2: Examples of primary and secondary regions. On top of each image it is

described its corresponding action . The primary and secondary regions are highlighted

in red and green boxes, respectively.

6.1.1 Frame-Level Modeling

In order to capture contextual cues of actions , we adapted the R*CNN framework

proposed by Gkioxari et al. [2015b] for action recognition in still images captured

by a third-person camera. This approach takes as input a manually selected primary

region containing the person whose action has to be predicted, and a set of secondary

regions that are supposed to capture contextual information such as objects the person

is interacting with, the pose of the person or what other people in the image are doing.

The primary region is manually selected, whereas the set of candidate secondary

regions are provided by using object proposal methods such as selective search [Ui-

jlings et al., 2013], constrained parametric min-cuts (CPMC) [Carreira and Sminchis-

escu, 2012], and multiscale combinatorial grouping (MCG) [Pont-Tuset et al., 2015].

The convolutional network automatically estimates the secondary region, among those

provided automatically, that helps to describe an action the most.

In our egocentric setting, the model is defined by a previously detected primary

region corresponding to hands plus a set of parts regions corresponding to manipulated

objects with associated CNN features.

Primary region detection Since the person-to-object interactions are mainly done

by manipulating the objects with the hands, we focus on the area covering the hand

starting from the wrist to the tip of its middle finger. We define a primary region as
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Figure 6.3: Examples of primary regions extraction taken from random frames from the

GTEA and GAZE+ datasets. The green-colored regions show detected skin pixels, the

yellow dots are the wrist center locations, and the red bounding box shows the located

primary region.

the single area covered by one or both hands of the person. Fig. 6.2 depicts four

examples where the primary regions detected with the proposed approach are shown

in red bounding boxes.

Our method determines the primary region based on skin regions and wrists lo-

cated points. First, we perform skin pixel detection using the algorithm proposed by

Li and Kitani [2013]. The training examples for this method are images containing

visible arms and their respective skin masks. This method trains a random forest for

each training example using a cluster from a set of local appearance features, such

as different colorspaces (RGB, HSV, LAB) or spatial descriptors (SIFT [Lowe, 2004],

HOG [Dalal and Triggs, 2005], BRIEF [Calonder et al., 2010]). The skin classification

is done by globally combining the output of each random forest using a probabilistic

model. We restricted the skin pixel detector to trained using only colorspaces.

The location of the wrists is performed using the parts affinity fields (PAFs) model

introduced by Cao et al. [2017]. This CNN model has two branches that separately

predict confidence maps for body part detection and part affinity fields. The PAFs

encode the orientation and location of limbs over the image. Both kinds of confidence

maps are associated using a bipartite graph matching algorithm. The results are body

poses for each person on the scene. Specifically, we only used the confidence maps

generated for body part detection, since other body joints are not visible and their

association cannot be made.

Once the skin regions and wrist location points were calculated, the primary region

is determined as follows. If no skin regions and wrist location points are found, then
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the primary region is considered to be the full-frame (see the last column in the second

row of Fig. 6.3). When no wrist points are located, then the complete skin region is

determined to be the primary region. This case usually happens when a small part of

the hand is seen (see the third column on the first row Fig. 6.3). In case, where no skin

regions are found, then a fixed area near the wrists is considered as the primary region

(see the fourth column of the second row on Fig. 6.3). Finally, when both wrists points

are located and skin regions are found, then wrists points determine the right, left and

lower sides of the primary region, while the skin determine its upper side (i.e. first two

columns of the first row of Fig. 6.3).

Secondary regions prediction In contrast to Gkioxari et al. [2015b], where sec-

ondary regions are defined as those that overlap the primary region, our set of sec-

ondary regions coincides with the set of proposed regions. The reason is that often

while performing an action as take, poor water etc., the hands are not in contact with

the object during the full duration of the shot. Considering the performance results

obtained by Hosang et al. [2014], we compute region proposals by using MCG [Pont-

Tuset et al., 2015] instead of Selective Search [Uijlings et al., 2013] as originally pre-

sented by Gkioxari et al. [2015b].

Action prediction The score function implemented by the R*CNN architecture cor-

responds to those of a latent SVM formulation. In a latent SVM, each example x is

scored by a function of the following form

fw(x) = max
z∈Z(x)

w ·φ(x,z),

where w is a vector of model parameters, z are latent values, and φ(x,z) is a feature

vector.

In our particular case, given an image x and the primary region p in x containing

the hands, the score for the action α is defined as

f (α;x, p) = wα
p ·φ(x, p)+ max

z∈Z(p,x)
wα

z ·φ(x,z) (6.1)

where z is the latent variable representing a secondary region corresponding to an ob-

ject, Z(p,x) is the set of candidates for the secondary region (object proposals), wα
p and

wα
z are the model parameters.

The probability that given the hand p on the image x, and the action being per-

formed α, is computed using softmax as in Gkioxari et al. [2015b].
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Figure 6.4: Overview of our proposed region-based architecture. The left part shows

the hierarchical action recognition pipeline across different video shots. The output of

the last LSTM unit of each shot in the first level serves as input for an LSTM unit of

the second level of the hierarchy. The right part shows the frame level processing,

the primary (red), and secondary regions (green) boxes are previously estimated and

passed as input to the network. The R*CNN architecture is applied to each frame within

the video shot. The action prediction is measured at frame-level, as the output of the

softmax of the first layer of LSTM.

The feature vector φ(·) and the vectors of model parameters, wα
p and wα

z , are learned

jointly for all actions using a CNN in an end-to-end fashion (see Fig. 6.4).

6.1.2 Temporal modeling

Our architecture models sequences of human-object interactions using a hierarchical

training structure. Variations between successive frames in a video encode useful in-

formation to make more accurate action predictions. A standard way to account for

such variations is to feed the output of a CNN to an LSTM in an end-to-end fashion.

Consequently, at the bottom level of our hierarchy, we use a many-to-many LSTM to

explicitly capture the temporal coherence of action probabilities within a video shot.

Every LSTM unit at time step i takes as inputs the action probabilities returned by

R*CNN for the i-th frame and the hidden state from the previous LSTM unit. Addi-

tionally, each LSTM output is connected to a dense layer and a softmax to output action

probabilities that account for these of previous frames (see Fig. 6.4). The top-level of

our hierarchy captures a long time temporal dependencies across actions . Specifically,

the LSTM output of the last frame of each shot is fed to another LSTM unit, which

also takes as input the hidden state of the LSTM units of the previous shot.

The loss function of our complete hierarchical LSTM (HLSTM) architecture is as
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Figure 6.5: Two different action sequences for all users from the GTEA dataset.

follows:

L = (1−β)LN +βLM (6.2)

where β (0≤ β≤ 1) is a hyper-parameter used to trade-off between two objectives and

LN and M2 are the cross-entropy loss defined at frame-level and shot-level, respec-

tively. They are defined as follows:

LN =
N

∑
i=1

L(yi, ŷi), LM =
M

∑
j=1

L(y j, ŷ j) (6.3)

where N is the total number of frames, M is the total number of shots, yi is the ground

truth action at the i−th frame and ŷi is the action prediction, accordingly. Similarly, y j

is the ground truth action at the j−th shot and ŷ j is the action prediction.

6.1.3 Data augmentation

We performed visual and temporal data augmentation in two separate ways. The vi-

sual data augmentation rotates the video frames while maintaining the temporal con-

sistency between consecutive ones. The proposed algorithm tries to mimic the head

movements of the camera user. The goal of the temporal data augmentation was to

extend the sequences of actions in a logical way. The tasks for the camera users in all

the evaluated datasets were cooking/preparing something in a kitchen or table. Since
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Figure 6.6: Visual data augmentation process.

a cooking recipe can be followed by doing its steps in different order and time, it can

have slightly different action sequences as long as it preserves the logical order, as seen

in the original sequences shown in Fig. 6.5. For instance, the original order of three

actions for a sequence named making a ham sandwich could be take ham, take bread,

and put ham on bread, but it could be augmented by changing the order of the first two

actions. Both data augmentation techniques are detailed in the following paragraphs.

Visual data augmentation This data augmentation process consisted in rotating the

frames of all videos in a continuous manner as illustrated in Fig. 6.6. Given a video

from the dataset containing N frames and a uniformly sampled random number r ∈[
0, 1

2

]
, the rotation angle θ(n) for the n− th frame is calculated using the following

pair of equations:

ρ(n) = 2π

(C
N

n+ r
)

(6.4)

θ(n) = Θmax

M

∑
i

λi sinγiρ(n) (6.5)

where the constants C, γi, and ∑
M
i λi = 1 determine the sinusoidal behavior of θ within

a period. The purpose of the function θ(n) is to generate continuous rotation angles

for each sequence in the range [−Θmax,Θmax].

After rotating a frame n by the angle θ, then its largest inscribed rectangle is

cropped. This rectangle represents the augmented version of the n− th frame. The

width wr and height hr of this rectangle is calculated as follows. Let s = min(w,h) and

l = max(w,h) denote the value of the shortest and longest side respectively.
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Original sequence Grouped actions Swapped/moved Skipped Addition

1. Turn on burner

2. Take oil container

3. Open oil container

4. Pour oil on pan

5. Close oil container

6. Open fridge
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8. Close fridge

1. Turn on burner

1. Take oil container

2. Open oil container

3. Pour oil on pan

4. Close oil container
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3. Close fridge
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3. Close fridge

4. Turn on burner

5. Take oil container

6. Open oil container

7. Pour oil on pan

8. Close oil container

1. Turn on burner

2. Take oil container

3. Open oil container

4. Pour oil on pan

5. Close oil container

1. Take oil container

2. Open oil container

3. Turn on burner

4. Pour oil on pan

5. Close oil container

6. Open fridge

7. Take carrots

8. Close fridge

Figure 6.7: Examples of sequence data augmentation. The first and second columns

show the original sequence and its grouped action subsequences. The last three

columns show three distinct combination operations.

If
s

l
> 2 · |sinθ||cosθ|

wr =
w|cosθ|−h|sinθ|

cos2θ
(6.6)

hr =
h|cosθ|−w|sin(θ)|

cos2θ
(6.7)

else if w > h

wr =
s

2|sinθ|
, hr =

s
2|cosθ|

(6.8)

otherwise

wr =
s

2|cosθ|
, hr =

s
2|sinθ|

(6.9)

The primary region previously obtained is rotated with respect to its new center

location. Afterward, a new bounding box is computed using the rotated corners. The

secondary regions are calculated again for the augmented version of the n− th frame

by using the MCG algorithm. This process duplicated our training data.

Sequence data augmentation The temporal sequences of the datasets are augmented

in a two-step process. First, a meta-sequence is manually created for each video se-

quence in the dataset. This meta-sequence defines all the possible logical combinations

that the sequence can have. Second, an alternate sequence is randomly generated from

its meta-sequence during training.
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In order to create a meta sequence, groups of related actions are created along with

their possible combinations. The groups can be combined using three different oper-

ations: they can be swapped/moved, skipped, or added to one another. For example,

Fig. 6.7 shows the start of a cooking sequence with three groups of actions shown in

different colors. Additionally, it also shows three combinations using each operation,

but more combinations can be found by mixing them.

6.2 Datasets

Our experiments were done using the GTEA [Fathi et al., 2011b], GTEA Gaze [Fathi

et al., 2012], and the GTEA GAZE+ [Li et al., 2015] datasets. In these datasets, all the

subjects in the videos manipulated the same objects in the same place, thus preserv-

ing the same conditions through all videos. Their description is provided in the next

paragraphs and they are illustrated in Fig. 6.8.

GTEA The GTEA dataset consists of 21 videos acquired by 4 different subjects while

performing scripted activities such as making a cheese sandwich, an instant coffee,

sweet tea, and a peanut butter sandwich. Each activity contains sequences of actions

that are freely performed by the subject. For instance, the activity making coffee starts

with the following action sequences: take cup, take coffee, open coffee, take spoon,

and scoop coffee with spoon. The dataset includes two subsets of 71 and 61 actions.

Gaze The GTEA Gaze dataset consists of 17 videos from 14 different subjects fol-

lowing unscripted food recipes. The dataset has two subsets of 25 and 40 actions, such

as open milk or take carrot. Both action subsets have the same fixed training and test

data splits as presented by Li et al. [2015].

GTEA
[Fathi et al., 2011b]

Gaze
[Fathi et al., 2012]

Gaze+
[Li et al., 2015]

Figure 6.8: Examples of people performing the same action (put cheese on bread) from

all the evaluated datasets.
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Gaze+ The GAZE+ dataset has 37 videos of 7 activities recorded by 6 participants.

The subjects were asked to perform some activity with the available objects. The total

number of evaluated actions is 40. Some examples of the activities include prepare a

Greek salad and making cheese burger, whereas some examples of actions are put milk

container and open fridge drawer.

6.3 Implementation details

The following paragraphs describe the implementation details of our proposed ap-

proach.

Primary regions As stated in section 6.1.1, our method estimates the primary region

by detecting skin regions and locating wrists points. The skin pixel detector presented

by Li and Kitani [2013] was trained for each video of every dataset using skin masks.

For datasets not including the skin mask, a different number of frames were uniformly

sampled from each video and the skin contour was annotated using LabelMe [Russell

et al., 2008]. In the case of the GTEA dataset, we used only the 814 skin masks

provided. For the Gaze dataset, an average of 37 frames per video were annotated,

giving a total of 625 skin masks. Lastly, 2,230 skin masks were annotated for the

GAZE+ dataset, thus having an average of 60 annotated frames per video. The wrists

points were detected by using the PAFs network [Cao et al., 2017]. This network was

originally trained using the COCO 2016 keypoints challenge dataset [Lin et al., 2014],

which contains over 100K person instances for training. Specifically, we only used the

confidence maps generated for part detection and one scale for the wrist point detection

for each dataset.

Secondary regions We used the MCG method for computing the object proposals

for all datasets. This method was pre-trained on the PASCAL 2012 [Everingham et al.,

2015] and the BSDS500 [Arbelaez et al., 2011] segmentation datasets. This method

generated an average of 1,484 proposals per video frame.

Visual Data augmentation We visually augmented the training data for all our ex-

periments following the description of section 6.1.3. The value of the angle of rotation

was in the set [−7◦,7◦]. This process roughly duplicated our training data.
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Frame-level modeling We fine-tuned the R*CNN model on top of a pretrained VGG-

16 network [Simonyan and Zisserman, 2014b] on ImageNet for each dataset. More-

over, all the fully-connected layers were fine-tuned. The optimization procedure used

the stochastic gradient descent (SGD) with a step learning policy. The step decay learn-

ing rate was γ = 1e−1 for every 30K iterations. Depending on the dataset, the learning

rate α was between 1e−4 and 2e−4 with a momentum µ = 9e−1 and a batch size of

10. We randomly selected 10 regions from the set of proposal regions as described by

Gkioxari et al. [2015b], but without considering overlapping thresholds with respect to

the primary region. All the models were trained between 60K and 90K iterations.

Temporal modeling We trained our hierarchical model for all datasets by using the

SGD optimization method and the resulting weights of the previous frame-level mod-

eling stage as initialization. The output of the softmax for each frame is provided as

input to the HLSTM model. We first trained the model with β = 0 and then we used

the resulting weights as initialization for the training with β > 0. The model with β = 0

was trained by using a step decay learning rate γ = 1e−1 for every 30K iterations. Its

learning rate α was between 1e−4 and 2e−4, depending on the dataset, a momentum

µ = 9e−1, and a batch size of 6. The optimization was performed between 30K and

60K iterations. For β > 0, we trained the model between 5 and 8 epochs depending on

the dataset by using a step decay learning rate γ≈ 9.5e−1, and starting with a learning

rate α = 5e−5, a momentum µ = 9e−1, and a batch size of 6.

Since the second LSTM layer captures the sequence of actions across the videos,

during test all the video frames are fed sequentially to the network, and the prediction at

frame-level of the first layer of the LSTM is used to measure the performance. Thus,

shot boundary information coming from the second LSTM layer is not needed for

testing in our hierarchical model.

Sequence Data Augmentation We perform sequence data augmentation only for

the GAZE+ dataset on a specific ablation study, and the comparison with other methods

did not include it.

6.4 Evaluation

We evaluated the effectiveness of our trained model on the action recognition task.

Since our model only uses the temporal structure of the entire video sequence during
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Figure 6.9: Diagram of the test architecture. We only used the first level LSTM to

determine the action of every single video shot. The final prediction is the average

prediction of all processed frames.

training, the evaluation was carried out considering individual video shots and only

the first level LSTM. Thus we are using the same given information for testing as

previous works on first-person action recognition [Simonyan and Zisserman, 2014a;

Wang et al., 2016; Ma et al., 2016; Sudhakaran and Lanz, 2018]. Fig. 6.9 illustrates

the configuration used during the testing of our model. The performance measurements

were done using the frame average accuracy score per sequence. In addition, other

methods that used the accuracy score at the frame level are indicated on the reported

results.

Method GTEA 61* GTEA 71 GAZE 25* GAZE 40* GAZE+

Fathi and Rehg [2013]† 39.7 - - - -

Li et al. [2015]† 66.8 62.1* 60.9 39.60 60.50

Two-Streams Network
57.64 49.65 - - 58.77

Simonyan and Zisserman [2014a]

Temporal Segments Network
67.76 67.23 - - 55.25

Wang et al. [2016]

Ma et al. [2016] 75.8 73.24 62.40 43.42 66.40

Sudhakaran and Lanz [2018] 77.59 77 - - 60.13

VGG-16 Baseline † 54.67 48.95 43.44 40.76 49.83

Ours (frame level) 68.97 64.74 56.94 47.25 52.75

Ours (1 level LSTM) 69.83 71.04 63.89 49.45 58.41

Ours (Hierarchical LSTM) 70.69 72.95 65.28 52.75 59.96

Table 6.2: Action recognition accuracy for different methods on the GTEA, Gaze, and

Gaze+ datasets. Note: * fixed split, † accuracy measured at frame level.
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GTEA 61 GTEA 71 GAZE 25 GAZE 40 GAZE+

Avg. Levenshtein
2.36 2.57 15.12 19.40 50.40

distance

Table 6.3: Similarity between sequences of actions in videos for each dataset. The

closer the value to zero the more similar.

6.5 Results

Our main results are presented in Table 6.2. They are further commented along other

ablation studies in section 6.5.1 and a comparison is draw in section 6.5.2.

6.5.1 Ablation Studies

Component Analysis On the last rows of Table 6.2 we report performances obtained

by using different modules of the proposed architecture. The module that performs

spatial reasoning alone determines a consistent improvement with respect to the VGG

baseline (13.79 %). The first LSTM layer is responsible for an increase of 8.19 % of per

frame accuracy on average on all datasets. The second LSTM layer is responsible for a

further increase of 2.69 %. It is worth to stress that the hierarchical model has a much

smaller training set compared to the single layer LSTM, which explains the relatively

small improvement in performance. Moreover, the dissimilarity between the sequences

of actions in the datasets explains the difference in performance improvement among

them. We measure the similarity as the minimal cost of transforming one sequence

into the other using the Levenshtein distance [Levenshtein, 1966], as shown in Table

6.3. The more similar the action sequences are, the higher the accuracy improvement.

Since we work with action probabilities instead of image features, our model could

benefit of the training of other datasets or action sequences augmentation techniques.

To better quantify the impact of our frame-level model, we compared its perfor-

mance to those of the VGG-16 network [Simonyan and Zisserman, 2014b] pretrained

on ImageNet, since it serves as the basis for the R*CNN architecture. We observed a

considerable improvement of performance of 24.70% on average.

The effect of the hierarchical training over the first level LSTM can be seen using

different values of β. First, we trained our model using a β= 0 (i.e. only the first LSTM

level) until the optimization process converged. We then performed a grid search vary-

ing the learning rate α and the hyperparameter β on a single split of each dataset. In

particular, we first found a suitable learning rate α, and then we looked for the best
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Figure 6.10: GTEA 61 test curves for different values of β. The horizontal dotted blue

line indicates the test accuracy obtained for β = 0. See text for more details.

Method Subject 1 Subject 2 Subject 3 Subject 4 Average

Ours (frame level) 62.6 68.42 58.46 69.47 64.74

Ours (1 level LSTM) 73.28 73.68 70.0 67.18 71.04

Ours (Hierarchical LSTM) 74.05 73.68 73.08 70.99 72.95

Table 6.4: Classification accuracy on each split of the GTEA 71 dataset.

value of β in the set {0.5,0.6, . . . ,0.9}. For example, the effect of different values for

β can be seen in Fig. 6.10. Moreover, the plot shows the resulting test curves for the

first split of the GTEA 61 dataset. The classification accuracy for the first and second

levels are measured per frame and shot, respectively.

Primary Region Importance Furthermore, to gain understanding about the impor-

tance of the primary region in our model, we trained the R*CNN architecture with both

manually provided regions and with fixed regions covering the low central part of each

image. For a single split of the GTEA 71, we achieved 66.11% accuracy when trained

with ground truth primary region, 63.80% when trained with our method, 65.05%

when trained using the skin as primary region, and 61.93% when trained with a fixed

region. Although limited to a single split, these experiments suggest the importance of

accurately detecting the primary region. We also report the results of our approach on

each evaluated split on Table 6.4 and Table 6.5.
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Method Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Average

Ours (frame level) 49.8 58.05 46.11 60.66 51.02 50.83 52.75

Ours (1 level LSTM) 56.55 65.77 47.58 63.16 63.27 54.17 58.41

Ours (Hierarchical LSTM) 58.53 64.43 51.37 64.54 64.63 56.25 59.96

Table 6.5: Classification accuracy on each split of the GAZE+ dataset.

Shot Evaluation Sequence
Splits

Average
Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6

Avg. Prediction
Original 55.56 64.09 45.89 62.88 61.9 56.67 57.83

Augmented 56.55 65.77 47.58 63.16 63.27 54.17 58.41

Weighted Original 54.56 63.76 47.79 62.88 62.59 57.08 58.11

Avg. Prediction Augmented 56.94 63.76 49.47 63.16 60.54 54.58 58.08

Table 6.6: Classification performance comparison using visual data augmentation on

the GAZE+ dataset for 44 categories. See text for more details.

Visual Data Augmentation We measured the classification performance of the vi-

sual data augmentation by comparing it against the original sequence. We considered

all the splits from the GAZE+ dataset using the first level LSTM model. The accuracy

was obtained using the normal and weighted average prediction for each video shot.

The results of this experiment are shown in Table 6.6.

Sequential Data Augmentation In order to understand the effect of temporally aug-

menting the data sequences, we measure the accuracy performance of our model on

the GAZE+ dataset. We trained over all the splits of the dataset using the visually

augmented frames. For each split, we trained using as initial weights the best resulting

models from the first level LSTM. In addition to calculating the average prediction

per shot, we also measured the linearly weighted average prediction. The results of

this experiment is shown in Table 6.7. The results show that there is no significant

improvement over the original sequences.

6.5.2 Comparison with the state of the art

We tested the proposed approach on five datasets from three well known benchmarks

(GTEA, Gaze, Gaze+) and performed comparisons to five states of the art methods. On

average, each competitive method has been tested on 3 datasets. We achieved a gain

of 6.11%, 5%, on the GTEA Gaze, and GTEA Gaze+, respectively. On the GTEA

dataset we achieved similar performance to Ma et al. [2016]. On this latter dataset, we
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Shot Evaluation Sequence
Splits

Average
Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6

Avg. Prediction
Original 58.53 64.43 51.37 64.54 64.63 56.25 59.96

Augmented 58.33 65.44 51.37 63.99 64.63 55 59.79

Weighted Original 58.13 63.42 52.21 63.44 62.59 57.08 59.48

Avg. Prediction Augmented 57.74 64.09 52 65.10 63.26 56.67 59.81

Table 6.7: Classification performance comparison using sequence data augmentation

on the GAZE+ dataset for 44 categories. See text for more details.

Pour chocolate on
bread

Pour sugar with spoon
Scoop coffee with

spoon
Open tea Open mustard

Scoop peanut with
knife

Pour milk on cup Spread peanut on
bread

Take knife Open cheese

Cut tomato with knife Open Fridge Put plastic spatula Open bread container Crack egg on bowl

Figure 6.11: Examples of true predictions on all evaluated datasets using our proposed

model. The primary and secondary regions are the bounding boxes highlighted in red

and green colors, respectively.

observed that often the predictions at frame level within one shot were all incorrect, so

that the HLSTM is not able to improve the results for such shots.

Note that with respect to the state of the art, our method does not rely on motion

information and shot boundary information is required solely during training. These

results demonstrate the effectiveness of reasoning about the spatial arrangement of rel-

evant regions at frame level on the one side, and how important it is to exploit the

temporal structure of videos on the other side. We also provide some examples of

qualitative results in Fig. 6.11 and 6.12. In particular, in Fig. 6.11 we show examples

of true predictions, whereas in Fig. 6.12, we show examples of failure. We observed

that, in case of failure, very often either the action verb or the action object are cor-

rect. Specifically, a false verb prediction can often be attributed to the lack of motion

modeling.
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Shake tea on cup
Pour sugar with spoon

Take bread
Take honey

Close water
Take water

Close honey
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Take bowl
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Cut tomato with knife
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Put tomato on plate

Put plastic spatula
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Figure 6.12: Examples of false predictions on all evaluated datasets using our proposed

model. The true action category and its false prediction appears on top of the image

on white and blue colors, respectively. The primary and secondary regions are the

bounding boxes highlighted in red and green colors, accordingly.

6.6 Conclusions

This chapter introduced a novel approach for egocentric action recognition able to rea-

son at spatial level about semantically meaningful regions of the image and at temporal

level about the sequence of actions being performed. The proposed neural network ar-

chitecture consists of a CNN module, followed by an HLSTM able to capture temporal

dependencies within and across shots. Experiments demonstrate that the proposed ar-

chitecture achieves significant improvement with respect to competitive methods mod-

eling the temporal structure and/or object interactions. We have also performed a de-

tailed ablation analysis of the various components of our network.
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Our interaction with the world is an inherently multimodal experience. We employ

different senses to perceive new information both passively and actively when we ex-

plore our environment and interact with it. In particular, object manipulations almost

always have an associate sound (e.g. open tap), and we naturally learn and exploit

these associations to recognize object interactions by relying on available sensory in-

formation (audio, vision, or both). However, the understanding of human-to-object in-

teractions has historically been addressed focusing on a single modality. In particular,

a limited number of works have considered integrating the visual and audio modalities

for this purpose.

In this chapter, we focus on the recognition of actions involving object manip-

ulations. More specifically, our goal is to identify egocentric actions of the type

verb+noun, i.e. pouring+jam performed in a kitchen environment. We propose a

method that integrates visual and audio features. Fig. 7.1 shows how audio cues are

101
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What is the person doing?

Checking

the

co�ee pot

Closing

the

fridge

Closing

the

tap

... ...

... ...

... ...

Figure 7.1: Audio and vision are complementary sources of information for recogniz-

ing egocentric object interactions. A limited number of interactions do not have an

associated audio signal (top), but in most cases, auditory sources provide valuable in-

formation in situations such as the occlusion of the hands and objects (middle), and in

some others they just strengthen the visual information (bottom).

crucial to identify the activity being performed especially when visual information is

ambiguous from an egocentric perspective due to self-occlusions. Our proposal aims

at exploiting the complementarity of visual and audio features to obtain robust multi-

modal representations.

Our approach combines a sparse temporal sampling strategy with a late fusion

of audio, spatial, and temporal streams. Experimental results on the EPIC-Kitchens

dataset show that multimodal integration leads to better performance than unimodal

approaches. In particular, we achieved a 5.18% improvement over the state of the art

on verb classification.

The rest of the chapter is organized as follows. First, section 7.1 introduces the

proposed approach. Next, in section 7.2 the EPIC-Kitchens dataset is described. In

sections 7.3 and 7.5 we detail the experimental setup and discuss the results, respec-

tively. Finally, section 7.6 concludes by summarizing the main findings.

7.1 Proposed approach

In this section, we describe our multimodal approach for action recognition, which is

summarized in Fig. 7.2. We first present our vision-based recognition approach that
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Spatial CNN

Spatial CNN

Spatial CNN

Temporal CNN

Temporal CNN

Temporal CNN
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Video Segments

Audio
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Average
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T
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e
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Figure 7.2: Pipeline of our multimodal proposed approach. A video is divided into

K = 3 time segments shown in green, red, and blue colors. Then, RGB and optical

flow frames are sparsely sampled from each time segment to be processed in their

respective spatial and temporal streams. At the end of each stream, the average con-

sensus of the softmax scores is computed. A spectrogram is calculated from the raw

audio signal and processed in its audio stream. The class scores of each stream are

joined together using late fusion.

uses Temporal Segments Network (TSN) [Wang et al., 2016] for the spatial (RGB) and

temporal (optical flow) visual modalities. Then, we present our audio-based recogni-

tion approach that uses two different convolutional neural networks (CNNs): VGG-

11 [Simonyan and Zisserman, 2014b] and a custom network based on the one pre-

sented by Sainath and Parada [2015]. Finally, we detail our fusion strategy to integrate

the different modalities.

Vision The visual-spatial and temporal input modalities are RGB and optical flow

frames calculated using the method proposed by Zach et al. [2007]. Each visual modal-

ity was trained as a TSN stream. On the TSN model, the frames of a video are grouped

into K sequential segments of equal size. Similarly to Wang et al. [2016], we decided

to set K = 3 as originally presented. Simultaneously from each segment, a frame is

sparsely sampled and processed by a CNN. In our case, we used as backbone networks

a ResNet-18 and ResNet-50 [He et al., 2016] in our experiments. Then, a consensus

of the scores from each processed frame is done. We used as a consensus function the
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Layer type Output size #Filters Kernel size Dilation

Conv2D 331×248 64 11×7 9×4

max-pool

Conv2D 166×124 64 6×4 9×4

Conv2D 166×124 32 6×4 9×4

Conv2D 166×124 16 6×4 9×4

max-pool

Dense 256 - - -

Dense 256 - - -

Table 7.1: Architecture of our proposed traditional dilated network for audio classifica-

tion.

average of the softmax scores. This model is an extension of the two-stream model pro-

posed by Simonyan and Zisserman [2014a], but it learns long-range temporal structure

of the action in the video.

Audio The audio modality uses as input the spectrogram of the raw audio signal from

the video. The spectrogram is calculated as follows. First, when the video has multiple

audio channels, we join them by obtaining their mean. Then, we compute the short-

time Fourier transform (STFT) from this signal and not the Mel-frequency cepstral

coefficients (MFCCs), as we are interested in noises rather than in human voices. We

use a sampling frequency of 16 KHz, as it covers most of the band audible to the

average person [Heffner and Heffner, 2007].

The STFT uses a Hamming window of length equal to 30 ms with 50% time over-

lapping. The signal spectrogram is calculated as the logarithm value of the squared

magnitude of its STFT. The final step consists in normalizing all the input spectro-

grams. The spectrogram has a resulting dimension size for the frequency of 331. We

only consider the first four seconds of the audio spectrogram. When it has less than

four seconds duration then a zero padding is applied. This constraint results in a time

dimension size of 248 for the input spectrogram. Thus, the size of the input spectro-

gram image for CNN is 331×248.

A single spectrogram covers a larger time window than the visual input frames.

Therefore, our model only needs one CNN to process the audio modality. Nonethe-

less, for longer video durations a long short-term memory (LSTM) could be added

as proposed by Sainath et al. [2015]. Our backbone audio CNN models are a VGG-

11 [Simonyan and Zisserman, 2014b] network and a proposed smaller CNN based on

the one proposed by [Sainath and Parada, 2015]. We call the latter traditional dilated
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network and show its architecture in Table 7.1. This network was adapted to spectro-

grams with bigger sizes by using dilation convolutions introduced by Yu and Koltun

[2016].

Audio-visual fusion In our experiments, we used two late fusion methods. The first

method is the weighted sum of the class scores from each stream. The second method

uses a network with two fully connected (FC) layers. Its input vector is calculated

by concatenating the outputs of the penultimate FC layers from each stream. During

training, the weights of each modality CNN stream are kept frozen.

7.2 EPIC Kitchens Dataset

We carried out our experiments on the EPIC Kitchens dataset introduced by Damen

et al. [2018]. Each video segment in the dataset shows a participant doing one specific

cooking-related action in a kitchen environment. Some examples of their labels are

“cut potato” or “wash cup”. The EPIC Kitchens dataset includes 432 videos recorded

from a first-person perspective by 32 participants in their own kitchens while cook-

ing/preparing something. Each video was divided into segments in which the person

is doing one specific action (a verb plus a noun). The total number of verbs and nouns

categories in the dataset is 125 and 352, correspondingly. Thus, it is naturally highly
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Figure 7.3: Heatmap of the number of action instances in the EPIC Kitchens dataset

training split. This plot only considers 22,018 action segments of verbs and nouns

having more than 100 instances.
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Figure 7.4: Statistics and histogram of the time duration of the video segments in the

training partition of the EPIC Kitchens with a bin size of half a second.

unbalanced as seen in Fig. 7.3. Moreover, the duration statistics of the action segments

are shown in Fig. 7.4. It shows that roughly 4 seconds covers 80.697% of all video

segments.

For comparison purposes, we considered two data partitions derived from the la-

beled data of the EPIC Kitchen Challenge:

Home made partition In this partition, all the participants were considered for the

training, validation, and test splits. The data proportions for the validation and test

splits were 10% and 15%, accordingly. Since the resulting distribution of action classes

is highly unbalanced, the data split was done as follows. At least one sample of each

action category was put in the training split. If the category had at least two samples,

one of them went to the test split. We also report the results obtained on the EPIC

Kitchens Challenge board from the models trained on this partition.

Unseen verb partition The second data partition was the one proposed by Baradel

et al. [2018]. This partition only used the verb classes from the labeled data. Moreover,

the training and test splits are on the participants 01-25 and 26-31, respectively. There-

fore, the test set is only composed of unseen kitchens. In order to train our methods,

we created a randomly stratified validation split with 10% of data from the training

split.
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7.3 Experimental Setup

The main objective of our experiments was to measure the performance of our pro-

posed multimodal approach on an egocentric object interaction recognition task from

videos. More specifically, the task consists of predicting what a person is doing (verb)

using a specific object (noun). Both classifications can be trained and evaluated sep-

arately or combined as a single action classification. Therefore, our secondary objec-

tive was to determine the contribution of audio and visual information on each type

of classification (noun, verb, action). Contrary to previous works reported by Fabian

Caba Heilbron and Niebles [2015]; Ghanem et al. [2018, 2017], we did not make any

assumption on which classification type the audio source would perform better.

7.3.1 Implementation

We first trained all modality streams separately on each training split for verb, noun,

and action. Subsequently, we trained their late fusion on different combinations of

audio and vision streams. In our experiments, we searched for the best learning rates

while performing early stopping using the validation split. The following paragraphs

provide more training details for each part of the model.

Audio We only trained our audio network on the spectrogram of the first four seconds

of each video segment. As seen in Fig. 7.4, setting a time threshold of 4 seconds allows

to completely cover 80.697% of all video segments using a single time window. For all

our experiments we used the stochastic gradient descent (SGD) optimization algorithm

to train both networks from scratch. We used a momentum and a batch size equal to

0.9 and 6, correspondingly. The learning rates for VGG-11 [Simonyan and Zisserman,

2014b] on verb, noun, and action classification were 5×10−6, 2.5×10−6, and 1.75×
10−6, respectively. The learning rates for the traditional dilated network on verb, noun,

and action classification were 4.5×10−4, 7.5×10−5, and 1×10−4, accordingly. It was

trained using a learning rate equal 1× 10−5 and a batch size of 22 during 65 epochs.

The difference between the different data splits was the number of training epochs.

The training times for the VGG-11 and the Traditional Dilated network were around

fifteen and eleven hours on an Nvidia GeForce GTX 980, respectively.

Vision We followed similar training specifications used by Damen et al. [2018], but

considering the spatial and temporal CNNs as single networks rather than two joined
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streams. As previously stated, we used ResNet-18 and ResNet-50 as backbone CNNs.

The former was used only in the data split presented by Baradel et al. [2018] for com-

parison purposes, while the latter was used in all other experiments. Each backbone

CNN was used for both visual streams and was initialized using pre-trained weights

on ImageNet Russakovsky et al. [2015]. Moreover, we trained both visual modalities

between 40 and 80 epochs using the same learning rate of 1×10−3 and decreasing it

by a factor of 10 after epochs 20 and 40. The tests were done using 25 samples with

1 spatial cropping. The training of each modality and category took approximately

twelve hours on an Nvidia Titan X GPU.

Audio-visual fusion For the weighted sum of class scores, the weights were found

using a grid search of values between 1 and 2. For the neural network method, de-

pending on the backbone network used on each modality, the length of the input vector

of the first FC layer was between 4,352 and 5,120. The second FC layer had and in-

put vector length of 512. We used a momentum and a batch size equal to 0.9 and 6,

correspondingly. The learning rates for the fusion of all modalities on verb, noun, and

action classification were 1×10−4, 1×10−3, and 3×10−4, respectively.

7.4 Evaluation metrics

Following the work of Damen et al. [2018], we measured the classification perfor-

mance using aggregate and per-class metrics. As aggregate metrics for measuring

the classification performance, we used the top-1 and top-5 accuracy, whereas as per-

class metrics we used precision and recall. Moreover, the per-class classification im-

provement was measured by calculating the accuracy difference between the visual

(RGB+Flow) and the audiovisual (RGG+Flow+Audio) sources. We also computed

two baselines using the largest classes and random classifiers for each experiment. The

latter baseline was approximated by sampling a multinomial distribution, but specifi-

cally, the random classification accuracy of N categories was calculated as

acc =
N

∑
i

ptrain
i · ptest

i (7.1)

where ptrain
i and ptest

i are the occurrence probability for class i in the train and test

splits, accordingly.
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Top-1 Accuracy Top-5 Accuracy Avg Class Precision Avg Class Recall

VERB NOUN ACTION VERB NOUN ACTION VERB NOUN ACTION VERB NOUN ACTION

Chance/Random 11.38 01.58 00.43 47.58 07.74 02.12 01.00 00.34 00.06 01.00 00.34 00.07

Largest class 20.19 04.11 02.10 66.93 18.38 07.54 00.21 00.01 00.00 01.05 00.36 00.07

A
ud

io VGG-11 34.48 09.51 03.56 74.50 26.63 12.17 05.26 01.32 00.28 04.04 01.32 01.72

Traditional Dilated 34.82 15.44 06.26 74.72 36.96 17.83 04.53 05.77 01.12 03.88 04.95 01.39

TSN Flow 49.08 22.72 13.54 81.60 46.32 30.77 10.80 08.81 02.53 07.12 04.97 02.23

V
is

io
n TSN RGB 50.65 54.01 32.51 88.63 80.87 59.72 25.96 38.83 16.23 19.36 34.43 18.94

RGB+Flow 55.47 52.82 32.76 88.48 78.01 58.13 28.94 39.82 13.53 14.25 27.81 14.22

Flow+Audio 50.06 26.26 15.13 81.02 51.45 33.49 11.72 11.32 02.99 06.61 06.42 02.42

M
ul

tim
od

al

RGB+Audio 53.51 53.11 32.21 87.35 79.63 57.82 26.57 38.89 13.67 13.07 28.98 14.94

RGB+Flow+Audio 56.27 51.09 32.27 87.24 77.15 55.96 25.06 37.17 11.81 11.34 24.28 12.05

W
ei

gh
te

d Flow+Audio 51.40 26.39 15.62 81.57 51.54 34.24 11.86 12.57 03.37 06.98 06.48 02.72

RGB+Audio 54.24 54.90 33.84 88.19 80.89 59.72 31.21 38.96 15.03 15.07 31.74 16.73

RGB+Flow+Audio 56.65 53.90 33.86 87.70 79.47 58.37 25.75 40.87 13.36 12.58 28.17 14.02

FC

Flow+Audio 52.00 33.02 20.22 82.24 58.50 39.37 09.72 18.58 05.80 08.11 16.63 06.58

RGB+Audio 55.41 55.08 35.21 87.15 79.78 60.27 20.49 38.47 15.35 14.28 33.55 17.64

RGB+Flow+Audio 60.21 56.14 38.55 89.07 80.96 62.97 27.05 39.89 17.14 19.09 33.85 19.28

Table 7.2: Classification performance for the equally stratified action data split for the

verb+noun fusion. The scores in gray color were calculated based on the verb+noun

classifiers.

7.5 Results

Noun The performance results for the noun classification on the home made parti-

tion are shown in Table 7.2. The best accuracy score was achieved by the weighted

multimodal combination that improved the visual baseline by 1.24%. These results

also indicate that the separated or combined unweighted fusion of the optical flow and

audio decreases the top-1 and top-5 accuracy of the task. This effect can also be seen

on the higher number of classes that decreased their accuracy on Fig. 7.5. The most

misclassified pair of objects are spoon-knife, spoon-fork, plate-bowl, tap-sponge, and

knife-fork.
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Figure 7.5: Accuracy difference of the noun split for the unweighted test predictions that

changed with respect to RGB+Flow and RGB+Flow+Audio.
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Verb The verb classification results on the home made partition are also presented

in Table 7.2. Each visual method combination boosted their respective performance

by adding the unweighted audio score. The multimodality combination is greater than

the best visual method by 4.74%. According to Fig. 7.6, the multimodality helps

to disambiguate turn-on and turn-off verbs, but fails on verbs that lack of sound like

scoop or adjust. The most misclassified pair of verbs are take-put, put-open, take-close,

take-open, and put-close.
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Figure 7.6: Accuracy difference of the verb split for the unweighted test predictions that

changed with respect to RGB+Flow and RGB+Flow+Audio.

Action The results of our experiments on the homemade partition are presented in

Table 7.3. They show that using multimodal information outperforms single audio

or visual classification when training separately the verb and noun classifiers. Even

though the best top-1 accuracy was achieved when considering the verb and noun la-

bels as a single action classification problem, all other performance metrics were lower

than when considering them separately. Table 7.2 shows that the accuracy of noun is

diminished when adding audio scores to the action classification. The categories that

changed their prediction on the multimodality setting for the action classifier are pre-

sented in Fig. 7.7.

Some qualitative results of true and false positive predictions are shown in Fig. 7.8.

The action predictions made by the audio modality rely more on the verb than noun

classification. For instance, it correctly predicts the verb wash in Fig. 7.8, but falsely

predicts the noun hand instead of cloth. The visual modality obtained similar accuracy

on verb and noun classification. Their predictions fail in cases where the actions occur

in similar contexts, for example, the actions take cup and wash cup can occur in the

sink, as illustrated in in Fig. 7.8. The combination of audio and visual modalities help

to disambiguate actions where the objects are occluded such as open drawer and close

drawer, as shown in first row of the fusion column in Fig. 7.8. Their complementarity

also helps on the classification of actions with the same verb, but different noun, such
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Figure 7.7: Accuracy difference of the action split for the unweighted test predictions

that changed with respect to RGB+Flow and RGB+Flow+Audio.

as the case of washing glass and bowl, shown in the second row of the fusion column

in Fig. 7.8.

Comparison with other methods Tables 7.4 and 7.5 show the results obtained on

the EPIC Kitchen Challenge board using the models trained on the homemade parti-

tion. These results indicate that directly training over the action performs better than

the combination of verb+noun. Our multimodal models obtained better scores than

the challenge baseline and have similar results as previous works [Sudhakaran et al.,

2019b]. Additionally, the results obtained on the unseen participants (S2) test split are

Top-1 Accuracy Top-5 Accuracy Avg Class Precision Avg Class Recall

VERB NOUN ACTION VERB NOUN ACTION VERB NOUN ACTION VERB NOUN ACTION

Chance/Random 11.38 01.58 00.43 47.58 07.74 02.12 01.00 00.34 00.06 01.00 00.34 00.07

Largest class 20.19 04.11 02.10 66.93 18.38 07.54 00.21 00.01 00.00 01.05 00.36 00.07

A
ud

io VGG-11 29.44 05.99 05.84 70.49 16.90 17.41 00.92 00.51 00.20 01.86 00.79 00.45

Traditional Dilated 32.16 06.86 10.77 72.22 22.34 25.86 01.64 00.84 03.04 02.31 01.90 04.58

TSN Flow 36.70 14.82 22.54 75.98 37.25 41.52 02.94 03.46 05.98 03.89 03.06 07.04

V
is

io
n TSN RGB 34.06 31.01 32.80 76.71 63.90 59.06 04.17 13.45 15.37 04.83 11.16 19.62

RGB+Flow 37.12 30.15 36.19 79.56 62.02 59.92 04.96 11.94 15.14 04.19 09.21 17.84

Flow+Audio 38.04 13.03 25.35 77.42 35.81 45.06 03.89 04.52 09.25 03.59 03.21 09.32

M
ul

tim
od

al

RGB+Audio 37.65 27.03 34.93 79.52 59.41 60.69 04.03 13.88 16.08 03.66 09.49 18.50

RGB+Flow+Audio 39.95 27.45 36.78 80.47 59.17 60.38 03.30 11.03 15.51 04.02 08.26 16.96

W
ei

gh
te

d Flow+Audio 39.66 14.44 26.03 77.53 39.15 46.16 03.60 04.78 09.30 03.97 03.39 09.29

RGB+Audio 38.80 30.15 35.50 80.31 63.44 61.71 04.22 14.97 16.71 04.20 10.91 19.63

RGB+Flow+Audio 40.06 29.68 36.92 80.82 61.69 61.14 03.16 12.47 15.56 04.12 09.47 17.76

FC

Flow+Audio 41.58 21.26 27.34 79.63 48.33 47.84 05.81 07.16 12.63 05.08 05.69 14.01

RGB+Audio 40.85 36.39 35.94 76.84 70.05 61.31 09.03 17.13 16.40 07.11 12.88 19.57

RGB+Flow+Audio 42.56 36.81 40.15 77.06 70.38 64.19 08.48 18.08 19.21 07.55 12.93 22.68

Table 7.3: Classification performance for the equally stratified action for the action clas-

sifier. The scores in gray color were calculated based on the action classifier.
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AUDIO VISUAL FUSION
Open tap Close tap Open bin Wash spatula Pour water Close drawer

Open cupboard Close cupboard Dry hand Adjust hob Wash glass Wash bowl

Wash hand
Wash cloth

Wash sponge
Close tap

Take lid
Open oil

Remove container
Put container

Pour water
Add water

Turn-on hob
Turn-on oven

Put knife
Put tongs

Turn-off tap
Close tap

Put potato
Take potato

Wash cup
Take cup

Open cupboard
Open dishwasher

Wash water
Put water

Figure 7.8: Qualitative results for the unweighted multimodal action classification exper-

iment. The top and bottom rows shows true and false positive prediction, respectively.

The columns indicate when the audio, vision, or their fusion scores were the final multi-

modal decision. The true and false labels are shown in white and red colors.

Top-1 Accuracy Top-5 Accuracy Avg Class Precision Avg Class Recall

VERB NOUN ACTION VERB NOUN ACTION VERB NOUN ACTION VERB NOUN ACTION

Chance/Random 12.62 01.73 00.22 43.39 08.12 03.68 03.67 01.15 00.08 03.67 01.15 00.05

Largest Class 22.41 04.50 01.59 70.20 18.89 14.90 00.86 00.06 00.00 03.84 01.40 00.12

A
ud

io Traditional Dilated (Verb+Noun) 35.11 10.65 03.95 75.33 28.63 13.01 15.43 06.19 01.75 11.03 06.64 01.26

Traditional Dilated (Action) 34.06 05.31 07.43 73.51 18.24 20.94 05.19 02.74 01.81 07.85 04.14 03.08

V
is

ua
l

TSN BNInception (FUSION) 48.23 36.71 20.54 84.09 62.32 39.79 47.26 35.42 10.46 22.33 30.53 08.83

Damen et al. [2018]

TSN ResNet-50 55.08 38.59 24.38 86.36 64.16 45.37 43.69 38.59 14.91 28.63 32.10 12.12

(Verb+Noun) (FUSION)

TSN ResNet-50 38.62 25.84 27.95 79.51 54.18 49.12 10.50 24.63 14.13 14.30 21.12 14.61

(Action) (FUSION)

LSTA (two stream) 59.55 38.35 30.33 85.77 61.49 49.97 42.72 36.19 14.46 38.12 36.19 17.76

Sudhakaran et al. [2019b]

3rd Place Challenge 63.34 44.75 35.54 89.01 69.88 57.18 63.21 42.26 19.76 37.77 41.28 21.19

Sudhakaran et al. [2019a]

2nd Place Challenge 64.14 47.65 35.75 87.64 70.66 54.65 43.64 40.52 18.95 38.31 45.29 21.13

Ghadiyaram et al. [2019]

1st Place Challenge 69.80 52.27 41.37 90.95 76.71 63.59 63.55 46.86 25.13 46.94 49.17 26.39

Wang et al. [2019]

M
ul

tim
od

al
Ve

rb
+N

ou
n Ours 56.37 37.69 24.00 85.47 63.45 44.66 48.15 38.02 13.49 25.54 30.31 10.50

Ours (Weighted) 56.44 39.42 25.26 85.87 65.27 46.27 51.39 38.36 14.88 26.66 32.88 11.90

Ours (FC) 58.88 39.13 27.35 87.15 64.83 47.68 46.36 37.92 16.63 38.13 34.90 15.00

A
ct

io
n

Ours 40.80 22.29 28.83 81.04 50.59 49.68 11.43 23.00 15.89 13.40 17.90 14.18

Ours (Weighted) 41.22 24.29 29.09 81.16 53.25 50.57 11.24 23.61 15.35 14.04 19.72 14.51

Ours (FC) 44.64 30.64 29.13 76.41 59.39 49.71 19.90 32.28 16.51 21.99 25.28 16.54

Table 7.4: Performance comparison with EPIC Kitchens challenge baseline results for

the seen test partition. The results highlighted in bold blue are the best obtained by

our method.
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Top-1 Accuracy Top-5 Accuracy Avg Class Precision Avg Class Recall

VERB NOUN ACTION VERB NOUN ACTION VERB NOUN ACTION VERB NOUN ACTION

Chance/Random 10.71 01.89 00.22 38.98 09.31 03.81 03.56 01.08 00.08 03.56 01.08 00.05

Largest Class 22.26 04.80 00.10 63.76 19.44 17.17 00.85 00.06 00.00 03.84 01.40 00.12

A
ud

io Traditional Dilated (Verb+Noun) 30.73 07.20 02.53 67.26 21.65 09.90 13.92 04.52 01.90 09.79 04.68 01.20

Traditional Dilated (Action) 31.96 03.89 03.96 64.73 13.96 13.45 05.05 01.66 00.97 07.91 04.04 01.94
V

is
ua

l

TSN BNInception (FUSION) 39.40 22.70 10.89 74.29 45.72 25.26 22.54 15.33 05.60 13.06 17.52 05.81

Damen et al. [2018]

TSN ResNet-50 45.72 24.89 14.95 77.06 49.37 31.07 24.44 20.30 08.79 18.04 18.96 10.10

(Verb+Noun) (FUSION)

TSN ResNet-50 36.63 18.06 17.14 75.28 42.03 34.65 11.38 10.89 07.27 12.96 14.38 10.78

(Action) (FUSION)

LSTA (two stream) 47.32 22.16 16.63 77.02 43.15 30.93 31.57 17.91 08.97 26.17 17.80 11.92

Sudhakaran et al. [2019b]

3rd Place Challenge 49.37 27.11 20.25 77.50 51.96 37.56 31.09 21.06 09.18 18.73 21.88 14.23

Sudhakaran et al. [2019a]

2nd Place Challenge 55.24 33.87 23.93 80.23 58.25 40.15 25.71 28.19 15.72 25.69 29.51 17.06

Ghadiyaram et al. [2019]

1st Place Challenge 59.68 34.14 25.06 82.69 62.38 45.95 37.20 29.14 15.44 29.81 30.48 18.67

Wang et al. [2019]

M
ul

tim
od

al
Ve

rb
+N

ou
n Ours 46.88 25.16 14.58 77.13 48.69 31.00 28.72 16.63 08.93 17.25 17.83 08.55

Ours Weighted 47.46 25.95 15.74 77.16 50.12 31.85 28.71 16.47 09.26 17.85 19.21 09.94

Ours FC 47.49 26.36 15.98 76.68 49.37 31.75 24.64 20.61 09.80 20.59 21.35 10.03

A
ct

io
n

Ours 38.37 15.23 18.40 75.15 39.84 35.64 10.93 11.60 06.88 11.75 13.31 10.91

Ours (Weighted) 38.10 16.76 18.23 75.38 42.23 35.68 11.58 12.83 07.72 11.79 14.16 11.26

Ours (FC) 40.87 20.38 17.65 69.27 45.82 33.73 15.72 15.35 09.61 17.34 16.95 12.20

Table 7.5: Performance comparison with EPIC Kitchens challenge baseline results for

the unseen test partition. The results highlighted in bold blue are the best obtained by

our method.

in the top-ten ranking of the first challenge. We can also observe that the unweighted

addition as a fusion method for noun diminishes the aggregate and per-class perfor-

mance, not only for our method but also in the baseline results [Damen et al., 2018].

The results on the comparison data split originally presented by Baradel et al.

[2018] are shown in Table 7.6. Our method obtained an improvement in accuracy

of 5.18% with respect to the ORN method [Baradel et al., 2018]. This test on un-

seen kitchens showed that methods that only rely on RGB underperform optical flow

methods. Likewise, they also showed that audio classification methods can have sim-

ilar performance to visual methods. The addition of auditory sources increased the

performance of the best visual method by 3.47%.

Comparison of audio CNN architectures The VGG-11 and the Traditional Dilated

network have similar classification performance. The results in Tables 7.2 and 7.3

indicate that the Traditional Dilated network has better results on seen test users, but

the results on Table 7.6 shows that the VGG-11 network outperforms the Traditional
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Method Top-1 Accuracy Top-5 Accuracy Avg. Class Precision Avg. Class Recall

Chance/Random 11.75 48.87 00.99 00.98

Largest class 21.27 69.44 00.31 01.41

A
ud

io Traditional Dilated 30.51 74.19 04.71 03.60

VGG-11 33.27 74.13 05.72 04.08

V
is

io
n

ResNet-18 He et al. [2016]† 32.05 - - -

I3D ResNet-18 Carreira and Zisserman [2017]† 34.20 - - -

TSN ResNet-18 RGB 34.69 77.13 08.38 05.08

ORN Baradel et al. [2018]† 40.89 - - -

TSN ResNet-18 Flow 44.48 77.88 08.15 06.18

RGB+Flow 43.36 78.77 09.98 05.58

M
ul

tim
od

al

RGB+Audio VGG-11 41.09 80.10 08.82 04.76

Flow+Audio VGG-11 45.75 80.34 08.41 05.57

RGB+Flow+Audio VGG-11 45.86 80.72 09.33 05.25

W
ei

gh
te

d RGB+Audio VGG-11 40.83 79.42 09.45 04.85

Flow+Audio VGG-11 43.74 79.80 09.68 05.31

RGB+Flow+Audio VGG-11 46.07 80.76 09.34 05.30

FC

RGB+Audio VGG-11 42.08 79.44 12.51 06.55

Flow+Audio VGG-11 44.50 78.68 08.17 06.86

RGB+Flow+Audio VGG-11 45.92 80.33 11.01 07.31

Table 7.6: Classification performance results on the comparison verb data split. The

results marked with † were originally reported in Baradel et al. [2018].

Dilated network on unseen test users.

7.5.1 Discussions

The experimental results show that our model improves the top-1 accuracy by 3.61%

in average for verb, noun, and action classification on our homemade data partition.

Likewise, the results suggest that audiovisual multimodality benefits the classification

of verb, and consequently action, more than for the classification of noun. Further-

more, although multimodality improves the aggregate performance metrics and avg.

class precision for noun classification, the unweighted fusion decreases their value as

observed in Table 7.2. This might be as a consequence of three main reasons. First,

an interacting object can produce several sounds and not being described by one in

particular. For instance, the sounds of a fridge being opened and closed are character-

istically different. Second, rather than describing an object, sounds are better suited

for describing the materials they are made of. For example, water and milk are liquids,

and their emitting sound while being poured is indistinguishable. Third, objects lack

a time dimension, but doing an action and making a sound involve time. Nonetheless,

not all actions produce any sound, like checking the coffee pot. Our results show that

the multimodality classification on verbs fails on categories that does not produce any
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sound and that are more visually abstract, like checking the heat. Additionally, harder

audiovisual classes are empty, flip, and squeeze. The most discriminative input source

for the noun, verb, and action comes from the RGB frames. However, their perfor-

mance decreases when the test is performed on images from unseen persons and the

optical flow achieves higher accuracy, as seen in Table 7.6.

7.6 Conclusions

We presented a multimodal approach for egocentric action classification and we val-

idated it on the EPIC Kitchens dataset. Our approach combines audiovisual input

sources. Specifically, its audio input is the spectrogram extracted from the raw au-

dio of the video, while its visual inputs are RGB and optical flow frames. We tested

and analyzed our approach for classifying each separate category (verb and noun) or

merged (action). The obtained results show that our model improves the top-1 accu-

racy by 3.61% on average. Additionally, the results suggest that multimodal informa-

tion is spacially beneficial for the verb recognition problem. Indeed, our multimodal

approach outperformed the state of the art methods on verb classification by 5.18%

accuracy.
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In this dissertation, we presented novel approaches for the egocentric action recog-

nition from lifelogs and videos. The proposed models for lifelogs were defined accord-

ing to different time scales. Whereas the models proposed for videos had a particular

focus on object-interactions.

In this final chapter we present a summary of our contributions and findings in

Section 8.1 and discuss about future research lines in Section 8.2.

8.1 Summary of Contributions

In chapter 2, we discussed the ambiguity of the terms action and activity in the con-

text of computer vision and provided our definition throughout this thesis. Later on,

we briefly presented a historically relevant context of action recognition that high-

lighted the low-level features approaches. Since our models are based on deep learning,

we thoroughly described convolutional architectures. We started describing relevant

works on third-person action recognition and finished detailing first-person methods

for lifelogs and egocentric videos.

In chapter 3, we presented an ensemble method for still images from lifelog se-

quences, namely the CNN+RF model. This method combines the output of different

fully connected layers from a backbone convolutional network using a random forest.

This method can be seen as the generalization of the CNN LFE approach that uses the
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softmax prediction of a CNN with information such as date&time. In order to make

a robust evaluation of our method, we extended the NTCIR-12 dataset consisting of

three people by annotating it with 21 different activities . Moreover, we considered

more metrics than accuracy alone and the tests were not only in a random split but

also a temporal split. Our preliminary results in this chapter showed that our approach

benefited early convolutional architectures.

In chapter 4 we argued that although lifelogs lack of motion features, they still

show temporal coherence within neighboring frames that can be exploited. Under

this premise, we first proposed two temporal models. The first is the extension of

the CNN+RF by adding a long short-term memory (LSTM) unit. The second is the

CNN+Piggyback LSTM that models the temporal relation between adjacent overlap-

ping frames in subsequent input batches. Both models used as training strategy a slid-

ing window approach that samples a lifelog sequence in overlapping frame segments

of fixed length. The initial tests over the NTCIR-12 showed that both architectures

improved the baseline performance of a CNN, thus showing that they were able to

capture the temporal evolution of features over time. However, the CNN+Piggyback

LSTM model did not present any improvement over the CNN+LSTM architecture.

Since a robust generalization test required data from multiple users, more lifelog

sequences, and more activities , we introduced the ADLEgoDataset. Our dataset con-

sists of 105,529 annotated images, captured by 15 different people performing 35

different activities . We propose a robust benchmark that considers unseen full-day

sequences and unseen users during training. In this dataset, we tested the temporal

methods described above using a more modern convolutional architecture and the bidi-

rectional counterpart of LSTMs. Our results showed that, in comparison with full-day

sequences, the best training mechanism for lifelogs was the sliding window indiffer-

ently of the LSTM or BLSTM temporal mechanism. We also showed that the best

overall architecture was the CNN+LSTM, but the CNN+BLSTM had a better perfor-

mance in the seen users testing partition. The last result confirmed that the CNN+RF

model overfits when trained on a wider context having more users and images, and

thus its temporal version (CNN+RF+LSTM model) overfits as well.

We also presented an event-based approach that takes into account the temporal

boundaries from segmented events of a lifelog. These events were extracted using the

SR-Clustering algorithm that extracts temporal segments sharing semantic and contex-

tual information. This approach was also tested in the ADLEgoDataset benchmark but

did not prove to be as effective as training with the full-day sequence. The smoothing
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effect that the LSTM has over neighbor frames in a sequence neglected the effect of

the temporal boundaries, as the events showed to contain sparse activities .

In chapter 5 we evaluated the performance of trained convolutional networks in

new data for real scenarios and proposed domain adaptation strategies to cope with

them. First, we experimentally measured the discrepancy of two target datasets with

respect to a source domain. The metric we used was the maximum mean discrepancy

and then showed the diminishing of the classification performance. Then we added

different amounts of labeled data from the target domains and showed that competitive

results can be obtained with a little amount of extra data.

In chapter 6, we proposed a novel deep architecture that learns spatial and temporal

egocentric object-interactions. The spatial object-interactions were modeled using a

region-based approach. In this model, the region containing the hands of the person

was considered to be the primary region. The interacting object was found using a set

of region candidates. After an action was inferred from the first level of an LSTM,

then an activity was inferred from a second level LSTM. We demonstrated that spatial

egocentric relations of persons and interacting objects along their logical sequence into

actions improved the classification.

In chapter 7, we presented a deep model that combines audiovisual modalities using

a late fusion method. Visual information coming from RGB and optical flow frames

was modeled using a temporal segments network. The audio information was learned

using a convolutional network that takes as input its frequency spectrogram. The clas-

sification was independently modeled for actions and the combination of a verb plus a

noun. Using different late fusion strategies, the results showed that audio consistently

improved the classification performance for all of them, but especially for verb and

action. Audio also proved to be a reliable modality when evaluating videos not seen

during training.

8.2 Future Work

We outline the possible future research venues in the following points:

• Since a person can do one or more activities at the same time, we consider that

the activity recognition from lifelogs is more naturally posed as a multi-label

problem. For instance, a person might be exercising on a static bicycle while

watching the TV or reading a book while commuting on a train. This kind of
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more precise description has implications in monitoring health patients of lifel-

ogging applications.

• The temporal activity boundaries for lifelogs are still not well understood. In

order to exploit the temporal boundaries, we believe that the sparse occurrence

of activities should be taken into account and modeled.

• Classification uncertainty of activity recognition models for lifelogs is another

open research line. It is important to quantify the confidence of egocentric clas-

sification methods in images from new unseen people, as they can completely

have different lifestyles that do not reflect at all in the trained model.

• In this work, we modeled person-object interactions for a set of actions with a

single purpose or activity. This can be extended by also modeling person-to-

person interactions with a collaborative goal. For example, a team of basketball

players perform several actions with a ball, but also among each other, and they

collaboratively play to score points.

• We explored the addition of an audio modality for the classification of egocen-

tric actions . On one hand, this exploration needs to be validated in uncontrolled

environments to measure its performance. On the other hand, new devices are

offering new sources of information. Their incorporation in new machine learn-

ing methods could not only predict what action is doing a person but also how

well is he/she doing it.
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D. Oneat,ă. Robust and Efficient Models for Action Recognition and Localization. PhD
thesis, Université Grenoble Alpes, France, 7 2015. Cited on page 12.

K. Ozcan, A. K. Mahabalagiri, M. Casares, and S. Velipasalar. Automatic fall detection
and activity classification by a wearable embedded smart camera. IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, 3(2):125–136, June 2013.
Cited on page 3.

D. Palmer. 22,000 london police are getting wearable cameras to video crime. ZDNet,
Oct 2016. Cited on page 2.

J. Parkka, M. Ermes, P. Korpipaa, J. Mantyjarvi, J. Peltola, and I. Korhonen. Activity
classification using realistic data from wearable sensors. 10(1):119–128, Jan 2006.
Cited on page 17.

T. Pederson. From Conceptual Links to Causal Relations — Physical-Virtual Artefacts
in Mixed-Reality Space. PhD thesis, Umeå University, Computing Science, 2003.
Cited on page 20.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011. Cited on page 35.

H. Pirsiavash and D. Ramanan. Detecting activities of daily living in first-person cam-
era views. In Proceedings of the IEEE Computer Vision and Pattern Recognition
(CVPR), pages 2847–2854. IEEE, 2012. Cited on pages 12, 20, 23, 82, and 83.



Bibliography 137

Y. Poleg, C. Arora, and S. Peleg. Temporal segmentation of egocentric videos. In 2014
IEEE Conference on Computer Vision and Pattern Recognition, pages 2537–2544,
June 2014. Cited on pages 21 and 45.

Y. Poleg, A. Ephrat, S. Peleg, and C. Arora. Compact cnn for indexing egocentric
videos. In Applications of Computer Vision (WACV), IEEE Winter Conference on,
pages 1–9, 2016. Cited on page 23.

J. Pont-Tuset, P. Arbeláez, J. Barron, F. Marques, and J. Malik. Multiscale com-
binatorial grouping for image segmentation and object proposal generation. In
arXiv:1503.00848, March 2015. Cited on pages 84 and 86.

R. Poppe. A survey on vision-based human action recognition. Image Vision Comput-
ing, 28(6):976–990, June 2010. Cited on pages 11 and 12.

W. Price and D. Damen. An evaluation of action recognition models on epic-kitchens,
2019. Cited on page 18.

S. Reddy, M. Mun, J. Burke, D. Estrin, M. Hansen, and M. Srivastava. Using mobile
phones to determine transportation modes. 6(2):13:1–13:27, 03 2010. Cited on
page 17.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge. International Journal of Computer Vision (IJCV), 115(3):
211–252, 2015. Cited on pages 14, 34, 57, 72, 73, and 108.

B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman. Labelme: A database and
web-based tool for image annotation. 77(1):157–173, May 2008. Cited on page 92.

M. Ryoo and L. Matthies. First-person activity recognition: Feature, temporal struc-
ture, and prediction. 119(3):307–328, 2016. Cited on pages 22 and 23.

M. S. Ryoo and L. Matthies. First-person activity recognition: What are they doing
to me? In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2730–2737, 2013. Cited on page 22.

T. Sainath and C. Parada. Convolutional neural networks for small-footprint keyword
spotting. In Interspeech, 2015. Cited on pages 103 and 104.

T. Sainath, O. Vinyals, A. Senior, and H. Sak. Convolutional, long short-term memory,
fully connected deep neural networks. pages 4580–4584, 04 2015. Cited on pages
20 and 104.

K. Saito, Y. Ushiku, T. Harada, and K. Saenko. Adversarial dropout regularization. In
International Conference on Learning Representations, 2018a. Cited on page 25.

K. Saito, K. Watanabe, Y. Ushiku, and T. Harada. Maximum classifier discrepancy for
unsupervised domain adaptation. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2018b. Cited on page 25.



138 Bibliography

H. Sak, A. W. Senior, and F. Beaufays. Long short-term memory recurrent neural
network architectures for large scale acoustic modeling. In INTERSPEECH, pages
338–342, 2014. Cited on page 17.

C. Schmid. Recent progress in spatio-temporal action location. In the First NIPS
Workshop on Large Scale Computer Vision Systems, 2016. Cited on page 12.

Seon-Woo Lee and K. Mase. Activity and location recognition using wearable sensors.
1(3):24–32, July 2002. Cited on pages 4 and 18.

T. Serre, L. Wolf, and T. Poggio. Object recognition with features inspired by visual
cortex. In 2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05), volume 2, pages 994–1000 vol. 2, June 2005. Cited on
page 14.

Y. Shiga, T. Toyama, Y. Utsumi, K. Kise, and A. Dengel. Daily activity recogni-
tion combining gaze motion and visual features. In Proceedings of the 2014 ACM
International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct
Publication, pages 1103–1111. ACM, 2014. Cited on page 21.

G. A. Sigurdsson, A. Gupta, C. Schmid, A. Farhadi, and K. Alahari. Charades-ego: A
large-scale dataset of paired third and first person videos. 2018. Cited on page 23.

P. Siirtola and J. Röning. Recognizing human activities user-independently on smart-
phones based on accelerometer data. 1(5):38–45, 06/2012 2012. Cited on page 18.

K. Simonyan and A. Zisserman. Two-stream convolutional networks for action recog-
nition in videos. In Advances in Neural Information Processing Systems, pages
568–576. 2014a. Cited on pages 16, 94, and 104.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. abs/1409.1556, 2014b. Cited on pages 14, 15, 33, 34, 55, 93,
95, 103, 104, and 107.

S. Singh, C. Arora, and C. V. Jawahar. First person action recognition using deep
learned descriptors. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016. Cited on pages 22, 82, and 83.

S. Song, V. Chandrasekhar, B. Mandal, L. Li, J.-H. Lim, G. S. Babu, P. P. San, and N.-
M. Cheung. Multimodal multi-stream deep learning for egocentric activity recogni-
tion. In Workshop on Egocentric (First-person) vision, in conjunction with the In-
ternational Conference on Computer Vision and Pattern Recognition. IEEE, 2016a.
Cited on page 22.

S. Song, N.-M. Cheung, V. Chandrasekhar, B. Mandal, and J. Liri. Egocentric activity
recognition with multimodal fisher vector. In International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 2717–2721. IEEE, 2016b. Cited on
page 22.



Bibliography 139

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout:
A simple way to prevent neural networks from overfitting. Journal of Machine
Learning Research, 15:1929–1958, 2014. Cited on pages 34 and 55.

A. Storkey. When training and test sets are different: Characterising learning transfer.
In J. Quionero-Candela, M. Sugiyama, A. Schwaighofer, and N. D. Lawrence, ed-
itors, Dataset Shift in Machine Learning, chapter 1, pages 3–28. MIT Press, 2009.
Cited on page 24.

S. Sudhakaran and O. Lanz. Attention is all we need: Nailing down object-centric
attention for egocentric activity recognition. In Proceedings of the British Ma-
chine Vision Conference 2018, BMVC 2018, Northumbria University, Newcastle,
UK, September 3-6, 2018, page 229, 2018. Cited on pages 20, 82, 83, and 94.

S. Sudhakaran, S. Escalera, and O. Lanz. FBK-HUPBA submission to the epic-
kitchens 2019 action recognition challenge. abs/1906.08960, 2019a. Cited on pages
112 and 113.

S. Sudhakaran, S. Escalera, and O. Lanz. Lsta: Long short-term attention for egocen-
tric action recognition. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 9954–9963, 2019b. Cited on pages 20, 111, 112,
and 113.

B. Sun and K. Saenko. Deep coral: Correlation alignment for deep domain adaptation.
In G. Hua and H. Jégou, editors, Computer Vision – ECCV 2016 Workshops, pages
443–450, Cham, 2016. Springer International Publishing. Cited on pages 25, 68,
69, 70, 73, and 77.

B. Sun, J. Feng, and K. Saenko. Return of frustratingly easy domain adaptation. In
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAI’16,
pages 2058–2065. AAAI Press, 2016. Cited on pages 25 and 70.

D. Surie, T. Pederson, F. Lagriffoul, L.-E. Janlert, and D. Sjölie. Activity recognition
using an egocentric perspective of everyday objects. In J. Indulska, J. Ma, L. T.
Yang, T. Ungerer, and J. Cao, editors, Ubiquitous Intelligence and Computing, pages
246–257. Springer Berlin Heidelberg, 2007. Cited on page 20.

I. E. Sutherland. A head-mounted three dimensional display. In Proceedings of the De-
cember 9-11, 1968, Fall Joint Computer Conference, Part I, AFIPS ’68 (Fall, part I),
page 757–764, New York, NY, USA, 1968. Association for Computing Machinery.
Cited on page 2.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich. Going deeper with convolutions. In Computer Vision
and Pattern Recognition (CVPR), 2015. Cited on page 15.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception
architecture for computer vision. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2016. Cited on pages 33 and 34.



140 Bibliography

E. Talavera, M. Dimiccoli, M. Bolaños, M. Aghaei, and P. Radeva. R-clustering for
egocentric video segmentation. In Pattern Recognition and Image Analysis, pages
327–336. Springer, 2015. Cited on pages 19 and 45.

D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning spatiotemporal
features with 3d convolutional networks. In The IEEE International Conference on
Computer Vision (ICCV), December 2015. Cited on page 16.

D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and M. Paluri. A closer look at
spatiotemporal convolutions for action recognition. In 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 6450–6459, 2018. Cited on
page 16.

E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell. Adversarial discriminative domain
adaptation. In 2017 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages 2962–2971, 2017. Cited
on page 25.

J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and A. W. M. Smeulders. Selective
search for object recognition. 104(2):154–171, 2013. Cited on pages 84 and 86.

K. Vandecasteele, T. De Cooman, Y. Gu, E. Cleeren, K. Claes, W. V. Paesschen,
S. V. Huffel, and B. Hunyadi. Automated epileptic seizure detection based
on wearable ecg and ppg in a hospital environment. 17(10):2338, Oct 2017.
PMC5676949[pmcid]. Cited on page 2.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin. Attention is all you need. 2017. Cited on page 16.

A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. J. Lang. Phoneme recognition
using time-delay neural networks. IEEE Transactions on Acoustics, Speech, and
Signal Processing, 37(3):328–339, March 1989. Cited on page 16.

H. Wang and C. Schmid. Action recognition with improved trajectories. In 2013 IEEE
International Conference on Computer Vision, pages 3551–3558, Dec 2013. Cited
on page 22.

H. Wang, A. Kläser, C. Schmid, and C.-L. Liu. Dense trajectories and motion boundary
descriptors for action recognition. International Journal of Computer Vision, 103
(1):60–79, 2013. Cited on page 22.

L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Val Gool. Temporal
segment networks: Towards good practices for deep action recognition. In European
Conference on Computer Vision (ECCV), pages 20–36, 2016. Cited on pages 16, 94,
and 103.

L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Van Gool. Temporal
segment networks for action recognition in videos. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 41(11):2740–2755, Nov 2019. Cited on page 16.



Bibliography 141

X. Wang, Y. Wu, L. Zhu, and Y. Yang. Baidu-uts submission to the epic-kitchens action
recognition challenge 2019. abs/1906.09383, 2019. Cited on pages 112 and 113.

Y. Watanabe, T. Hatanaka, T. Komuro, and M. Ishikawa. Human gait estimation using
a wearable camera. In 2011 IEEE Workshop on Applications of Computer Vision
(WACV), pages 276–281, Jan 2011. Cited on page 3.

D. Weinland, R. Ronfard, and E. Boyer. A survey of vision-based methods for action
representation, segmentation and recognition. Computer Vision and Image Under-
standing, 115(2):224 – 241, 2011. Cited on page 11.

M. Weiser. The computer for the 21 st century. Scientific American, 265(3):94–105,
1991. Cited on pages 1 and 3.

M. Weiser. Ubiquitous computing. Computer, 26(10):71–72, Oct. 1993. Cited on
page 1.

Z. L. Wenhao Wu, Wenbo Chen. Samsung & siat submission to activitynet challenge
2018. In the ActivityNet Large Scale Activity Recognition Challenge, at the Interna-
tional Conference on Computer Vision and Pattern Recognition (CVPR) Workshop,
2018. Cited on page 17.

Z. Wu, Y.-G. Jiang, X. Wang, H. Ye, and X. Xue. Multi-stream multi-class fusion of
deep networks for video classification. In Proceedings of the 24th ACM Interna-
tional Conference on Multimedia, MM ’16, pages 791–800, New York, NY, USA,
2016. ACM. Cited on page 17.

L. Xia, I. Gori, J. K. Aggarwal, and M. S. Ryoo. Robot-centric activity recognition
from first-person rgb-d videos. In 2015 IEEE Winter Conference on Applications of
Computer Vision, pages 357–364, Jan 2015. Cited on page 3.

K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel, and Y. Ben-
gio. Show, attend and tell: Neural image caption generation with visual attention.
In F. Bach and D. Blei, editors, Proceedings of the 32nd International Conference
on Machine Learning, volume 37 of Proceedings of Machine Learning Research,
pages 2048–2057, Lille, France, 07–09 Jul 2015. PMLR. Cited on page 15.

K. Yamada, Y. Sugano, T. Okabe, Y. Sato, A. Sugimoto, and K. Hiraki. Attention
prediction in egocentric video using motion and visual saliency. In Y.-S. Ho, editor,
Advances in Image and Video Technology, pages 277–288, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg. Cited on page 20.

J. Yamato, J. Ohya, and K. Ishii. Recognizing human action in time-sequential images
using hidden markov model. In Proceedings 1992 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition, pages 379–385, June 1992.
Cited on pages 12 and 13.

H. Yan, Y. Ding, P. Li, Q. Wang, Y. Xu, and W. Zuo. Mind the class weight bias:
Weighted maximum mean discrepancy for unsupervised domain adaptation. In The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017.
Cited on page 24.



142 Bibliography

T. Yao and X. Li. YH technologies at activitynet challenge 2018. CoRR,
abs/1807.00686, 2018. Cited on page 17.

C. Yu and D. H. Ballard. Understanding human behaviors based on eye-head-hand
coordination. In H. H. Bülthoff, C. Wallraven, S.-W. Lee, and T. A. Poggio, editors,
Biologically Motivated Computer Vision, pages 611–619. Springer Berlin Heidel-
berg, 2002. Cited on page 22.

F. Yu and V. Koltun. Multi-scale context aggregation by dilated convolutions. In ICLR,
2016. Cited on page 105.

H. Yu, W. Jia, Z. Li, F. Gong, D. Yuan, H. Zhang, and M. Sun. A multisource fusion
framework driven by user-defined knowledge for egocentric activity recognition.
2019(1):14, 2019a. Cited on page 19.

H. Yu, G. Pan, M. Pan, C. Li, W. Jia, L. Zhang, and M. Sun. A hierarchical deep
fusion framework for egocentric activity recognition using a wearable hybrid sensor
system. 19(3), 2019b. Cited on pages 18 and 19.

C. Zach, T. Pock, and H. Bischof. A duality based approach for realtime tv-l1 optical
flow. In F. A. Hamprecht, C. Schnörr, and B. Jähne, editors, Pattern Recognition,
pages 214–223. Springer Berlin Heidelberg, 2007. Cited on page 103.

H. F. M. Zaki, F. Shafait, and A. Mian. Modeling sub-event dynamics in first-person ac-
tion recognition. In 2017 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 1619–1628, July 2017. Cited on page 22.

E. Zarepour, M. Hosseini, S. S. Kanhere, A. Sowmya, and H. R. Rabiee. Applications
and challenges of wearable visual lifeloggers. Computer, 50(3):60–69, 2017. Cited
on page 2.

W. Zellinger, T. Grubinger, E. Lughofer, T. Natschläger, and S. Saminger-Platz. Cen-
tral moment discrepancy (CMD) for domain-invariant representation learning. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings, 2017. Cited on page 25.

W. Zellinger, B. A. Moser, T. Grubinger, E. Lughofer, T. Natschläger, and S. Saminger-
Platz. Robust unsupervised domain adaptation for neural networks via moment
alignment. Information Sciences, 483:174 – 191, 2019. Cited on pages 25, 69,
73, and 77.

K. Zhan, S. Faux, and F. Ramos. Multi-scale conditional random fields for first-person
activity recognition on elders and disabled patients. 16:251 – 267, 2015. Selected
Papers from the Twelfth Annual IEEE International Conference on Pervasive Com-
puting and Communications (PerCom 2014). Cited on page 3.

X. Zhang, Y. Wang, M. Gou, M. Sznaier, and O. Camps. Efficient temporal sequence
comparison and classification using gram matrix embeddings on a riemannian man-
ifold. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 4498–4507, June 2016. Cited on page 20.



Bibliography 143

X. Zhang, Y. Bao, F. Zhang, K. Hu, Y. Wang, L. Zhu, Q. He, Y. Lin, J. Shao, and
Y. Peng. Qiniu submission to activitynet challenge 2018. abs/1806.04391, 2018.
Cited on page 17.

Y. C. Zhang and J. M. Rehg. Watching the tv watchers. 2(2):88:1–88:27, 07 2018.
Cited on page 3.

Y. Zhao, B. Zhang, Z. Wu, S. Yang, L. Zhou, S. Yan, L. Wang, Y. Xiong, D. Lin,
Y. Qiao, and X. Tang. CUHK & ETHZ & SIAT submission to activitynet challenge
2017. In the ActivityNet Large Scale Activity Recognition Challenge, at the Interna-
tional Conference on Computer Vision and Pattern Recognition (CVPR) Workshop,
2017. Cited on page 17.

B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Learning deep features
for discriminative localization. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2921–2929, June 2016. Cited on page 20.


	Introduction
	Background and Motivation
	Egocentric Vision
	Egocentric Action Recognition and Its Challenges
	Goals
	Contributions
	Thesis outline

	Related Work
	Action Recognition
	Deep Learning
	Third-Person Action Recognition Methods
	Egocentric Action Recognition
	First-Person Action Recognition Methods
	Egocentric Action Recognition Datasets
	Domain Adaptation

	I Egocentric Activity Recognition From Visual Lifelogs
	Activity Recognition at Image-Level
	Approach
	NTCIR-12 Dataset
	Random partition
	Temporal partition

	Implementation
	CNN Training
	Random Forests training

	Evaluation Metrics
	Results
	Random Data Partition Results
	Temporal Data Partition Results

	Conclusion

	Activity Recognition at Sequence-Level
	Temporal Approaches
	Event-Based Approach
	ADLEgoDataset
	Data Collection
	Annotation Process
	Dataset Details
	Dataset split

	Experimental Settings
	Temporal Methods Implementation
	Event-based Methods Implementation

	Evaluation Metrics
	Results
	Temporal Methods over NTCIR-12
	Temporal Methods over ADLEgoDataset
	Event-based Methods

	Conclusions

	Domain Adaptation Applications for Activity Recognition on Lifelogs
	Domain Adaptation Using a Regularization Loss
	Source and Target Datasets
	Implementation
	Results
	Conclusions


	II Egocentric Action Recognition From Videos
	Region-Based Action Recognition From Egocentric Videos
	Proposed approach
	Frame-Level Modeling
	Temporal modeling
	Data augmentation

	Datasets
	Implementation details
	Evaluation
	Results
	Ablation Studies
	Comparison with the state of the art

	Conclusions

	Multimodal Action Recognition From Egocentric Videos
	Proposed approach
	EPIC Kitchens Dataset
	Experimental Setup
	Implementation

	Evaluation metrics
	Results
	Discussions

	Conclusions

	Conclusions
	Summary of Contributions
	Future Work

	Publications
	Bibliography




