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Abstract

Complex systems can be understood as an entity composed by a large number of interactive
elements whose emergent global behaviour cannot be derived from the local laws characte-
rizing their constituents. The observables characterizing these systems can be observed at
different scales and they often exhibit interesting properties such as lack of characteristic sca-
les and self-similarity. In this context, power-law type functions take an important role in
the description of these observables. The presence of power-law functions resembles to the
situation of thermodynamic quantities close to a critical point in equilibrium critical pheno-
mena. Different complex systems can be grouped into the same universality class when the
power-law functions characterizing their observables have the same exponents.

The response of some complex systems proceeds by the so called avalanche process: a
collective response of the system characterized by following an intermittent dynamics, with
sudden bursts of activity separated by periods of silence. This kind of out-of-equilibrium
systems can be found in different disciplines such as seismology, astrophysics, ecology, finance
or epidemiology, just to mention a few of them. Avalanches are characterized by a set of
observables such as the size, the duration or the energy. When avalanche observables exhibit
lack of characteristic scales, their probability distributions can be statistically modelled by
power-law-type distributions. Avalanche criticality occurs when avalanche observables can
be characterized by this kind of distributions. In this sense, the concepts of criticality and
universality, which are well defined in equilibrium phenomena, can be also extended for the
probability distributions describing avalanche observables in out-of-equilibrium systems.

The main goal of this PhD thesis relies on providing robust statistical methods in order to
characterize avalanche criticality and universality in empirical datasets. Due to limitations in
data acquisition, empirical datasets often only cover a narrow range of observation, making it
difficult to establish power-law behaviour unambiguously.

With the aim of discussing the concepts of avalanche criticality and universality, two diffe-
rent systems are going to be considered: earthquakes and acoustic emission events generated
during compression experiments of porous materials in the laboratory (labquakes). The tech-
niques developed in this PhD thesis are mainly focused on the distribution of earthquake and
labquake sizes, which is known as the Gutenberg-Richter law. However, the methods are much
more general and can be applied to any other avalanche observable.
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The statistical techniques provided in this work can also be helpful for earthquake forecasting.
Coulomb-stress theory has been used for years in seismology to understand how earthquakes
trigger each other. Earthquake models that relate earthquake rates and Coulomb stress after
a main event, such as the rate-and-state model, assume that the magnitude distribution of
earthquakes is not affected by the change in the Coulomb stress. Several statistical analyses
are performed to test whether the distribution of magnitudes is sensitive to the sign of the
Coulomb-stress increase.

The use of advanced statistical techniques for the analysis of complex systems has been
found to be necessary and very helpful in order to provide rigour to the empirical results,
particularly, to those problems regarding hazard analysis.



Resum

Els sistemes complexos es poden entendre com entitats compostes per un gran nombre d’e-
lements en interacció on la seva resposta global i emergent no es pot derivar de les lleis
particulars que caracteritzen cadascun dels seus constituents. Els observables que caracte-
ritzen aquests sistemes es poden observar a diferents escales i, sovint, mostren propietats
interessants tals com la manca d’escales característiques i autosimilitud. En aquest context,
les funcions amb lleis de potència prenen un paper important en la descripció d’aquests ob-
servables. La presència de lleis de potència s’assimila a la situació dels fenòmens crítics en
equilibri, on algunes quantitats termodinàmiques mostren un comportament funcional similar
prop d’un punt crític. Diferents sistemes complexos es poden agrupar en la mateixa classe
d’universalitat quan les funcions de lleis de potència que caracteritzen els seus observables
tenen els mateixos exponents.

Quan són conduïts externament, la resposta d’alguns sistemes complexos segueix el que
s’anomonena un procès d’allaus: una resposta col·lectiva del sistema caracteritzada per se-
guir una dinàmica intermitent, amb sobtats increments d’activitat separats per períodes de
silenci. Aquesta mena de sistemes fora de l’equilibri es poden trobar en diferents disciplines
tals com la sismologia, astrofísica, ecologia, epidemologia o finances, per mencionar alguns.
Les allaus estan caracteritzades per un conjunt d’observables tals com la mida, l’energia o
la durada. Quan aquests observables mostren una manca d’escales característiques, les seves
distribucions de probabilitat es poden modelitzar estadísticament per distribucions de lleis de
potència. S’anomenen allaus crítiques aquelles en que els seus observables es poden caracte-
ritzar per aquestes distribucions. En aquest sentit, els conceptes de criticalitat i universalitat,
els quals estan ben definits per fenòmens en equilibri, es poden extendre per les distribucions
de probabilitat que descriuen els observables de les allaus en sistemes fora de l’equilibri.

L’objectiu principal d’aquesta tesi doctoral és proporcionar mètodes estadístics robusts per
tal de caracteritzar la criticalitat i la universalitat en allaus corresponents a dades empíriques.
Degut a les limitacions en l’adquisició de dades, les dades empíriques sovint cobreixen un rang
petit d’observació, dificultant que es pugui establir un determinat comportament en forma de
llei de potència de manera inequívoca.

Amb l’objectiu de discutir els conceptes de criticalitat i universalitat en allaus, es consi-
deraran dos sistemes diferents: els terratrèmols i els esdeveniments d’emissió acústica que es
generen durant experiments de compressió de materials porosos al laboratori (labquakes). Les
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tècniques desenvolupades en aquesta tesi doctoral estan enfocades principalment a la distri-
bució de la mida dels terratrèmols i labquakes, altrament coneguda com a llei de Gutenberg-
Richter. No obstant, aquests mètodes són molt més generals i es poden aplicar a qualsevol
observable de les allaus.

Les tècniques estadístistiques proporcionades en aquest treball poden també ajudar al
pronòstic de terratrèmols. Durant anys, la teoria d’esforços de Coulomb s’ha utilitzat en sis-
mologia per tal d’entendre com els terratrèmols desencadenen l’ocurrència d’altres de nous. Els
models de terratrèmols que relacionen la taxa d’ocurrència de rèpliques i l’esforç de Coulomb
després d’un gran esdeveniment, assumeixen que la distribució de la mida dels terratrèmols
no està afectada pel canvi en l’esforç de Coulomb. Diverses anàlisi estadístiques s’aplicaran
per tal de comprovar si la distribució de magnituds és sensible al signe de l’esforç de Coulomb.

S’ha provat que l’ús de tècniques estadístiques avançades en l’anàlisi de sistemes complexos
és útil i necessari per tal d’aportar rigor als resultats empírics i, en particular, a problemes
d’anàlisi de riscos.



Preface

This PhD thesis dissertation summarizes the author’s contributions to the research on the
statistical modelling of avalanche observables. In this context, special attention is paid to
power-law distributions, which are a fingerprint of criticality and a first step to establish
universality. This PhD thesis has been carried out as a part of the PhD program in Math-
ematics and Computer Science of the University of Barcelona Graduate School (EDUB) in
the period 2016-2020. The research leading to this PhD thesis has received funding from
the “La Caixa” Foundation and from the Spanish Ministry of Economy and Competitiveness
(MINECO, Spain) through the “María de Maeztu” Programme for Units of Excellence in
R&D (Grant No. MDM-2014-0445, Project 16-3, Reference BES-2016-076580).

The aim of this PhD thesis is to provide a robust statistical background to those researchers
working with power-law distributions in complex systems and, specifically, to those in the field
of avalanches in out-of-equilibrium phenomena. The document is self-contained and pretends
to provide an interdisciplinary confluence point for mathematicians, statisticians, physicists
and complex-systems researchers to study avalanche criticality and universality.

The PhD thesis is structured as follows:

• Part I : Introduction
This first part pretends to introduce the reader to the topic of avalanche criticality and
universality. At the same time, the main goals of this PhD thesis are exposed and
motivated. This introduction part is divided into three chapters:

– Chapter 1: Introduction
The state of the art of avalanche criticality and universality is explained. A review
of complex systems and equilibrium critical phenomena is exposed together with a
discussion about how the characteristic concepts of this framework can be extended
to out-of-equilibrium processes.

– Chapter 2: Modelling avalanche criticality
A general mathematical description of avalanches is provided together with the
difficulties appearing when avalanches are defined in experimental works. Typical
features of physics-based models for avalanche processes are exposed. The funda-
mental concepts of statistical modelling are also explained.
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– Chapter 3: Earthquakes and labquakes: Earth and Laboratory
This chapter presents the most important concepts regarding the main phenomena
of interest in this PhD thesis: earthquakes and acoustic emission events generated
during compression experiments of porous materials in the laboratory (labquakes).

Chapter 1 is necessary in order to understand Chapter 2. Chapters 2 and 3 are essential
in order to understand Chapter 4. Chapter 3 is fundamental in order to understand
the results exposed in Chapter 8. The whole Introduction part is needed in order to
understand the motivations and the goals of this Thesis.
The second part is intended to present to the reader the main experimental and statistical
techniques which are necessary for the development of the results exposed in this PhD
thesis.

• Part II: Methods

– Chapter 4: Experimental techniques
Experimental methods for the obtention of labquake observables from the acoustic
emission in displacement-driven compression experiments are exposed. Some basic
concepts about earthquake detection are also introduced.

– Chapter 5: Statistical techniques
The already known statistical techniques, fundamental to build up and understand
the procedures developed in the Results part are presented.

These chapters are essential in order to understand how the datasets analysed in the
results part are obtained and analysed.

• Part III: Results
Novel findings and methodologies are exposed in this part.

– Chapter 6 Acoustic emission during displacement-driven compression
experiments of porous materials: labquakes
Statistical analysis of labquakes energies and force drops found in the acoustic
emission during displacement-driven compression experiments of porous glasses.
The results presented in this chapter have been published in:
∗ Víctor Navas-Portella, Álvaro Corral, and Eduard Vives, Avalanches and force

drops in displacement-driven compression of porous glasses, Physical Review
E 94, 033005 (2016) [Navas-Portella et al., 2016].

– Chapter 7: Universality of power-law exponents by means of maximum
likelihood estimation
A statistical procedure to merge different datasets is first presented in this chapter
with two different separate aims. First, obtaining a broader fitting range for the
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statistics of different experiments or observations of the same system. Second,
establishing if two or more different systems may belong to the same universality
class. The results exposed in this chapter have been published in:
∗ Víctor Navas-Portella, Isabel Serra, Álvaro Corral, and Eduard Vives, Increas-

ing power-law range in avalanche amplitude and energy distributions, Physical
Review E 97, 022134 (2018) [Navas-Portella et al., 2018].
∗ Víctor Navas-Portella, Álvaro González, Isabel Serra, Eduard Vives, and

Álvaro Corral. Universality of power-law exponents by means of maximum
likelihood estimation, Physical Review E 100, 062106 (2019) [Navas-Portella
et al., 2019].

– Chapter 8: Effect of the Coulomb Stress on the Gutenberg-Ricther law
This chapter pursues statistical evidences that the b-value of the Gutenberg-Richter
law is affected by the value of the Coulomb stress. The results in this chapter have
been published in:
∗ Víctor Navas-Portella, Abigail Jiménez, and Álvaro Corral, No significant effect

of Coulomb stress on the Gutenberg-Richter law after the Landers earthquake.
Scientific Reports 10, 2901 (2020) [Navas-Portella et al., 2020]

• Part IV: Conclusions: A list of concluding remarks are exposed together with a set
of suggested works that can be carried out from the results and methodologies provided
in this PhD thesis.

• Part V: Appendixes: Some codes in C and R languages are provided as appendixes.

• List of publications: The publications related to this PhD thesis are presented to-
gether with additional works in which the author has contributed in.

• Nomenclature: A list of symbols and abbreviations is provided at the end of this PhD
thesis.

• Bibliography: A reference list ordered by first authors’ surname is provided at the
end.

Víctor Navas-Portella
Centre de Recerca Matemàtica, February 26, 2020
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Chapter 1

Introduction

The whole is greater than the
sum of its parts.

Aristotle

Pero dos no es igual que uno
más uno.

Joaquín Sabina

In this introductory chapter, complex systems are firstly presented by exposing their most
characteristic features as well as the main approaches used to describe them. Complex-systems
observables often exhibit lack of characteristic scales. In this context, power-law functions
play an important role. When externally driven, the dynamics of some complex systems is
manifested in terms of avalanches. Avalanches are introduced by paying special attention to
its definition within the framework of statistical physics. Criticality, understood as the lack
of characteristic scales, is discussed by providing a classification depending on the nature of
the systems which are studied. The main concepts of equilibrium critical phenomena such
as Landau theory, the renormalization group approach and universality are outlined in order
to elucidate how they are extended to out-of-equilibrium phenomena. Different frameworks
that have appeared along the last decades to describe avalanche criticality are also discussed.
Finally the importance of correctly determining critical exponents for the classification of
systems into universality classes is highlighted.

3
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1.1 Complex systems: The science of complexity
According to the dictionary [O’Neill and Summers, 2015], Complexity is the state of having
many different parts connected or related to each other in a complicated way. This definition
can be useful to introduce the study of complex systems because it contains important key
words to describe them: many, parts and connected. The word complicated can be a source
of confusion because essentially one does not know exactly what complicated means and how
complexity can be quantified [Horgan, 1995].

Generally speaking, a complex system can be understood as a large number of interacting
elements whose global behaviour cannot be derived from the local laws that characterize each
of its components. The observables characterizing the emergent response of the system can be
detected at different scales and the vast number of degrees of freedom makes prediction very
difficult [Anderson, 1972; Sherrington, 2010]. In this context, a probabilistic description of
the phenomenon is needed in order to reasonably characterize it in terms of random variables.

Taking into account this context, this work will refer to complex systems as those collec-
tions of elements which are characterized by the following general features:

• Large number of degrees of freedom.

• Interactions between the elements constituting the system.

• Emergent response of the system that cannot be derived from the local laws that char-
acterize each of its components.

The first pillar of the study of complex systems is devoted to data acquisition and the
nature of the data one is dealing with. One distinction usually done is the one regarding how
the observer influences the system [Van der Laan and Rose, 2011].

Observational data are referred to data-acquisition processes for which the observer does
not perturb the conditions in order to establish a clear relationship between induced causes
and effects. The reasons why the observer remains as a passive agent in these cases can be
diverse. Often, there is no degree of control over these systems, as it occurs in observational
sciences such as astrophysics [Lu and Hamilton, 1991; Regev, 2006], geophysics [Kagan, 2013]
or climate sciences [Corral and González, 2019].

Experimental data are those for which the observer influences the system in order to
establish a relationship between causes and effects. In this case, there exists a certain degree
of control over the system and conditions can be controlled in order to reproduce a phenomenon
many times. Examples of experimental data can be extensively found in experimental physics
[James, 2006; Roe, 2012] or in experimental biology and medicine [Bernard, 1957; Mead, 2017].
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The second pillar of the study of complex system is based on how they can be described.
• Physics-based modelling proposes a set of principles, hypotheses or rules which are

formulated in mathematical terms containing the key ingredients which are often iden-
tified with physical quantities. In order to develop these models, different areas of
mathematics play an important role: stochastic processes [Gardiner, 2009], in particular
point-processes [Lowen and Teich, 2005; Daley and Vere-Jones, 2008; Ogata, 1988], dy-
namical systems [Steven, 1994] or graph theory in the development of complex networks
[Barabási and Albert, 1999; Albert and Barabási, 2002], just to mention few of them.
Examples of physical modelling of complex systems are Ising models [Ising, 1925; Peierls,
1936] (see Secs. 1.3.2 and 2.2.2), models based on cellular automata [Von Neumann et al.,
1966; Wolfram, 1983] such as the sand-pile model [Bak et al., 1987] (see Sec. 1.3.3.1),
mollecular dynamics [Alder and Wainwright, 1959], fibber bundle models [Daniels and
Jeffreys, 1945; Hansen et al., 2015] and so on. It must be mentioned that physics-based
models are not only restricted to physical phenomena but they can be mapped in other
disciplines such as financial markets [Sornette, 2009], opinion-decision [Grabowski and
Kosiński, 2006; Carbone and Giannoccaro, 2015], social networks [Klemm et al., 2003],
and so on [Stauffer, 2008]. .

• Statistical modelling has to be understood as a data-based description of the complex
system without taking into account the underneath physical principles [Wood, 2015;
Chave, 2017]. In front of the challenge to deal with empirical datasets, the field of
statistics plays an important role and can be considered as the third pillar of the science
of complex systems. Data mining algorithms might provide techniques to properly
handle with large empirical datasets [James et al., 2014]. In this context, different
branches of probability such as time series analysis [Hamilton, 1994] or extreme value
theory [De Haan and Ferreira, 2007; Embrechts et al., 1999] take an important role.
Despite some parameters characterizing the statistical model might be related to physical
quantities, it is not object of the statistical modelling to explain the relationship among
them. In this sense, statistical modelling of complex system has to be always understood
as data-based modelling.

When the response of complex systems is characterized by observables exhibiting lack of
characteristic scales, it can be described in terms of power-law functions, f(x) ∝ x−γ, where
x (x ∈ (0,∞)) corresponds to the values that a certain observable or quantity can take, ∝
denotes proportionality and the power-law exponent γ acquires values larger than one. One
of the most important features of this kind of functions is their invariance under any scale
transformation. This property of scale invariance can be written as

f (λx) = λ−γf (x) .
The only solution for any real λ of this functional equation [Christensen and Moloney, 2005]
is a power-law f(x) = kx−γ, where k is a constant. This property of scale invariance gives
rise to a description of the response of the system when there are no characteristic scales.
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Historically, the study of complex systems has been closely related to the physics and
physics-based models through the principles and tools provided by the theory of equilibrium
statistical physics [Pathria and Beale, 2011; Huang, 2000]. In general words, statistical physics
is the branch of physics which intends to describe thermodynamics from a microscopic point of
view. In order to deal with this problem, one could use the procedures of classical mechanics
based on considering a Hamiltonian H and solving the equations of motion for all the com-
ponents of the system. Among the definitions of the Hamiltonian in physics [Goldstein, 1980;
Thornton and Marion, 2004], it can be naively said that the Hamiltonian can be understood
as a scalar function that depends on the different degrees of freedom (spatial and momentam
coordinates of all the particles which conform the system). Under certain conditions, the
Hamiltonian can be identified with the energy of the system and can be separated in different
energy contributions: particle terms, interaction terms, external potentials, etc. However,
due to the large number of degrees of freedom involved in the system, the usual approach
of classical mechanics can be theoretically formulated but not used in practice. Instead of
that, one tries to deal with this problem by considering a probabilistic description. The most
common approaches to deal with equilibrium statistical physics are the ensemble theory, the
ergodic theory and the information theory [Pathria and Beale, 2011; Huang, 2000].

Independently of which approach is used, there are some common concepts: the large
number of degrees of freedom implies working with averages, there is always a probability
assigned to a micro-state or to a point of the phase space, the Hamiltonian is always involved
and provides important information, etc. Particularly, the fact that the observables of some
complex systems can be described by power-law functions resembles to the equilibrium crit-
ical phenomena, which is actually a branch of statistical physics [Pathria and Beale, 2011;
Huang, 2000]. In this context, the theory of critical phenomena and the renormalization
group approach appear as a framework to which complex systems can be somehow mapped
(see Sec. 1.3.2 for more details).

In summary, the study of complex systems encompasses different areas of study with
a philosophy which is somehow provided by the principles of statistical physics and using
techniques provided by Mathematics and Statistics.
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1.2 Avalanche processes: General description
Sometimes, the response of externally driven complex systems proceeds by means of the so
called avalanche process. The concept “externally driven” implies that the occurrence of a
phenomenon is triggered by a perturbation caused by an agent which is not part of that system.
For example, a magnetic system can be driven by an external magnetic field or fractures can be
induced in a material when an external force is applied on it. Note that external driving does
not necessarily imply a degree of control over the system. For instance, the tectonic blocks
in the Earth crust are externally driven by the inner mechanisms of the Earth and they can
hardly be controlled. As real examples of avalanche processes one can think about earthquakes
[Turcotte, 1997; Kagan, 2013], the magnetization process of ferromagnetic materials [Perković
et al., 1995], snow avalanches [Van Herwijnen et al., 2016], rock-falls [Dussauge et al., 2003],
forest fires [Corral et al., 2008], solar flares [Lu and Hamilton, 1991] or rainfall [Peters et al.,
2010]. Not only examples from physics can be mentioned but also from neuroscience [Beggs
and Plenz, 2003], finance [Sornette, 2009; Iori, 1999], power-grid blackouts [Dobson, 2012],
epidemic processes [Pastor-Satorras et al., 2015], social networks [Cheng et al., 2014; Goel
et al., 2015].

The word “avalanche” is referred within statistical physics and condensed matter physics
context. Let us define an avalanche process as a collective response of an externally driven sys-
tem which is characterized by following an intermittent dynamics, with sudden bursts of activity
separated by periods of silence. These bursts of activity or avalanches arise from the inter-
actions among the system constituents and propagate through the spatial degrees of freedom
of the system. Several words must be underlined in this definition in order to stress their
implications.

First of all, the word “collective” implies that the system, which is an entity conformed
by a certain number of interacting agents or individuals, exhibits an emergent macroscopic
response. Due to these interactions, this global behaviour cannot be derived from the local laws
characterizing the individuals. “dynamics” implies that the observables are time-dependent.
Consequently, the system cannot be considered to be in equilibrium. The word “sudden”
means that observables exhibit changes in a very short period of time. This implies the
existence of different time scales in an avalanche process: events are characterized by short
durations D in comparison with the time between them δ. The word “burst” implies that
the observable exhibits an important change of scale where many orders of magnitude are
involved. This also points that there exists a threshold value below which a change in the
observable is not considered as an event. Apparently, the word “activity” simply reveals
that something is happening. One can identify that something is happening if nothing was
happening before. These sentences that seem extremely obvious actually hide a deep concept.
On the one hand, the fact that something is happening implies the existence of underlying
mechanisms which favour the occurrence of that phenomenon. On the other hand, there are
other underlying mechanisms which inhibit the phenomenon. Thus, there is a competition
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Fig. 1.1: Scene of Kobe, Japan, after the 1995 Hyogo-ken Nanbu earthquake (magnitude 7.2), showing a
collapsed section of the Hanshin Express-way. Photography extracted from Pan-Asia Newspaper Alliance.

between mechanisms favouring and inhibiting the occurrence of an avalanche. Therefore, this
word cannot be underestimated and it actually takes an important role in the framework of
self-organized criticality [Bak et al., 1987] (see Sec. 1.3.3.1). Finally, the word “silence” is
as important as the word “activity” because the same interpretations can be extracted from
it. This word also implies that events are separated for a time-scale longer than the internal
time-scale of duration of the event. Note that, together with the word “burst”, this word also
implies the existence of a threshold value.

Note that this general description does not argue about which mechanisms avalanches
appear through. It should be useful to know which are the set of conditions which are needed
in order to have an avalanche process. This question is discussed in Chpt. 2.

In this general framework of avalanche processes, one individual event or avalanche is
characterized by an array of observables such as the size S, the duration D, the amplitude
A, the energy E, the shape, etc. Recalling the already exposed general properties of complex
systems, avalanche observables are considered as random variables. Given that some avalanche
observables may span many orders of magnitude, it is quite common to find that they can be
described by power-law distributions. In this context, these avalanches are referred as scale-
free or critical avalanches. The fact of observing scale-free behaviour of certain observables in
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out-of-equilibrium systems opened the door to study them by using the concepts of equilibrium
critical phenomena.

1.3 Criticality and universality

1.3.1 Physical criticality versus Statistical criticality
The concept of criticality is sometimes carelessly used and it is source of confusion and con-
troversies. Let us introduce two different ways of dealing with the term “critical”.

On the one hand, one can talk about criticality from the physical point of view. This
concept is related to complex systems where it is possible to define equilibrium and non-
equilibrium states. Let us remark that equilibrium must be considered from the point of
view of thermodynamics [Zemansky and Dittman, 1981]: time independence and absence of
fluxes in the system. Originally in physics, the term “criticality” has been associated to the
existence of a critical point in an equilibrium second-order phase transition. Close to this
critical point, some observables exhibit lack of characteristic scales and can be characterized
by power-law functions. Due to its importance as a framework to understand scale invariance
in complex systems, some basic concepts about equilibrium critical phenomena are exposed
in Sec. 1.3.2. Not only the scale-invariance and self-similarity of some complex systems’
observables are interesting. Additionally, completely different systems can be grouped into
the same universality class depending on the values of the power-law exponents [Kadanoff
et al., 1989]. In this sense, some general concepts about universality are exposed in Sec. 1.3.4.

Often, this conceptual framework is extended when avalanche observables (which are
clearly out-of-equilibrium phenomena) are characterized by power-law probability density
functions [Perković et al., 1995; Salje and Dahmen, 2014; Bak et al., 1987]. Let us remark
that the general concept of scale invariance can be misleading when talking about the prob-
ability distributions of avalanche observables. Given that probability density functions must
be normalized [Wood, 2015], the presence of cut-offs is necessary. This implies that values
outside these cut-offs are excluded thus implying a restriction in the property of scale invari-
ance. Therefore, when power-law distributions of avalanche observables are found, it is more
convenient to talk about restricted scale invariance.

On the other hand, the term statistical criticality can be used whenever power-law distri-
butions are found for different complex systems, independently on whether they are physical
systems or not [Cubero et al., 2019]. This name is clearly inspired by the concepts of physical
criticality but note that there can be situations in which one cannot associate the existence of
a critical point. Just as it is possible to distinguish equilibrium from non-equilibrium states in
physical systems, the definitions of equilibrium and out-of-equilibrium are ill-defined in other
complex systems. For instance, when studying the Zipf’s law in texts or songs, one could not
say with conviction whether these systems are at equilibrium or not. And still, in these situ-
ations, some authors talk about criticality when the mapping with physical criticality might
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not be really clear [Jensen, 1998; Schwab et al., 2014]. Statistical criticality understood as the
presence of power-law distributions is clearly an abuse of language. However, conceptually it
encompasses a broader range of cases of study in complex systems.

1.3.2 Equilibrium critical phenomena and universality
Historically, critical phenomena were firstly found experimentally in 1822 by the French physi-
cist Cagniard De La Tour [1822]. By performing liquefaction experiments of gases he discov-
ered that, above a certain temperature, the system could not experience a discontinuous
change from gas to liquid. It was not until 1869, when the chemist and physicist Thomas
Andrews [Rowlinson, 1969] named this temperature as the critical temperature. Contrarily
to a first order phase transition, where liquid and gas phases can be clearly identified, it is
not possible to distinguish them at the critical point (see Fig. 1.2). Above the critical point,
there is no phase transition.

For instance, water experiences a transition from liquid to vapour at 1 atm and 100◦C
where these phases can be clearly differentiated. However, at the critical temperature Tc
(374◦C) and pressure (218 atm) phases are not distinguishable (see Fig. 1.2). This kind of

Pressure

Temperature

Fig. 1.2: Schematic representation of a phase diagram of an hydrostatic system. The state of the system is
determined by a point in this pressure-temperature diagram. Different phases are clearly separated by black
solid lines. Above the critical point (Pc, Tc), liquid and gas phases cannot be distinguished.
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phase transitions are called continuous or second-order phase transitions. The nomenclature
of first-order or second-order phase transitions is referred to the discontinuities that can be
found either in the first or second derivatives of the free energy function of the thermodynamic
system [Zemansky and Dittman, 1981; Callen, 1985].

Let us consider two important quantities in the study of equilibrium critical phenomena:
the free-energy function and the correlation length. The free-energy function F can be written
as a function of an order parameter Λ [Zemansky and Dittman, 1981; Callen, 1985; Pathria and
Beale, 2011]. This order parameter depends on every system and it is zero above the critical
temperature (disordered phase) and different from zero below it (ordered phase). Examples of
order parameter are the magnetization in ferromagnetic system or the difference of densities
in liquid-gas systems (see [Callen, 1985] for more examples). At a fixed temperature T , the
equilibrium states or macroscopic phases of the systems are represented by those values of
Λ for which F attains a minimum. Contrarily to the free-energy function, the correlation
length ξ is a microscopic quantity which can be understood as a characterization of the
range of “influence” among the components constituting the system. At the vicinity of a
critical point, the free energy and the correlation length are non-analytic. In particular,
the correlation length and other thermodynamic quantities such as the susceptibility, exhibit
power-law divergences. The exponents characterizing these power-law behaviours are referred
in the literature as critical exponents. The fact that the correlation length shows power-law
divergence near the critical point implies a lack of characteristic scales in the correlations
ruling the system. Given that correlations are independent on the observation scale, the
system is said to be self-similar or to exhibit scale invariance. This means that the statistical
properties characterizing a system near the critical point are the same independently on the
scale.

Ising spin models have had strong influence in modelling equilibrium critical phenomena
[Ising, 1925; Peierls, 1936; Pathria and Beale, 2011]. These physics-based models are often
treatable analytically and their computational implementation is rather easy. Contrarily to
the internal structure of a gas or a liquid, Ising models are inspired in the regular position of
atoms in a solid. In this sense, Ising systems can be easily mapped into a magnetic system.
In general, one considers an Ising model in a finite regular lattice where a variable called spin
takes a certain value at each node (see Fig. 1.3). A wide variety of factors can be taken into
account in the Hamiltonian of this model: lattice connectivity, lattice dimensionality, external
perturbations, range of interaction between spins, just to mention few of them. Even under
very simple conditions and rules, these models are in good agreement with the phenomenology
of equilibrium critical phenomena [Christensen and Moloney, 2005]. The importance of these
models is not only limited to the field of statistical physics but they have been used in other
research areas such as neuroscience [Hopfield, 1982], social sciences [Weidlich, 2006], economics
and finance [Sornette, 2009; Molins and Vives, 2016], and biology [Majewski et al., 2001], to
name a few.
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Fig. 1.3: Schematic representation of an Ising model in a two-dimensional regular square lattice. Arrows in
red at each node of this lattice correspond to the spins. In this case, spins can take two values: +1 if it points
upwards and -1 if points downwards.

In 1936, the Soviet physicist Lev Landau proposed a common framework to explain criti-
cal phenomena [Landau, 1936]. Despite this theory has been long debated [Menyhárd, 1970;
Hargitai et al., 1972] and extended [Ginzburg and Landau, 1965], it provides a simple ex-
planation to understand equilibrium critical phenomena and can be used to demonstrate the
existence of critical exponents. As already mentioned, the different macroscopic phases of a
thermodynamic system can be identified by different values of Λ for which the free-energy
function attains a minimum. By considering symmetries of Λ, Landau theory proposes that,
close to the critical point, the free-energy of the system can be expressed as a series expansion
of the order parameter:

F (Λ;T,H = 0) = F0 + a2 (T − Tc) Λ2 + a4Λ4 , (1.1)

where a2 6= 0, a4 ∈ R+, the external field is considered to be zero and Tc is the critical
temperature and T and H are the temperature and external field. Equilibrium states can be
found by determining the values Λ∗ that minimize F (Λ, T ):

(
dF
dΛ

)

Λ∗
= 0 =⇒ Λ∗ =





0 if T > Tc

±
(
a2
2a4

)1/2
(Tc − T )1/2 if T < Tc

(1.2)

(
d2F
dΛ2

)

Λ∗
=
{

2a2 (T − Tc) if T > Tc
4a2 (Tc − T ) if T < Tc

(1.3)

Figure 1.4 shows the free-energy of the system as a function of the order parameter Λ for
different regimes in absence of external field (H = 0).
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F

Λ

T < Tc

Λ

T = Tc

Λ

T > Tc

Fig. 1.4: Free-energy F of a physical system as a function of the order parameter Λ for three different
temperatures T : subcritical (T < Tc), critical (T = Tc) and supercritical (T > Tc).

As it can be appreciated from Eqs. 1.2 and 1.3, below the critical temperature Tc, there
are two symmetric minima corresponding to two different stables states or phases separated
by a maximum (energy barrier). These different phases would correspond to liquid and gas
in a hydrostatic system or states with positive and negative magnetization in a ferromagnet.
The order parameter characterizing the stable states of the system approaches zero (Λ = 0)
close the critical temperature with an exponent β = 1

2 (see Eq. (1.2)). The susceptibility of
the system is inversely proportional to the second derivative of the free-energy χ ∝

(
d2F
dΛ2

)−1

[Callen, 1985; Pathria and Beale, 2011]. Therefore, according to Eq. (1.3), close to Tc, the
susceptibility diverges with an exponent γ = 1. These are two of the critical exponents
that can be easily derived from the Landau theory. Other critical exponents can be easily
found by adding external fields in Eq. (1.1) and applying other thermodynamical relations
[Pathria and Beale, 2011]. This set of critical exponents correspond to the so called “mean-
field universality class” [Hohenberg and Halperin, 1977]. For temperatures greater than the
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critical temperature, the free-energy exhibits one single minimum at Λ∗ = 0 corresponding to
one stable phase.

Curiously, the values of all the critical exponents are the same for the liquid-gas transition,
for magnetic systems and for the three-dimensional Ising model [Pathria and Beale, 2011;
Sethna, 2006]. Regardless of their differences in structure and underlying physical phenomena,
the behaviour of these systems is the same near the critical point. In this sense, these systems
are considered to belong to the same universality class. The idea of universality in equilibrium
relies on classifying different systems whose power-law divergences have the same critical
exponents (and scaling functions [Stanley, 1999]).

The theoretical framework that encompasses criticality and universality for equilibrium
systems is the renormalization group approach. This theory is much more general than Landau
theory and proposes a semi-group transformation based on the homogeneity hypothesis and
the scale invariance near a critical point [Kadanoff, 1966; Kadanoff et al., 1967; Wilson, 1971,
1975]. Let us suppose that the free energy can be written as a function of two dimensionless
variables x,y corresponding to relative distances to the critical point of the control parameters,
let us say, for instance, temperature T and external field H:

x = T − Tc
Tc

,

y = H

kBT
,

where kB is the Boltzmann constant providing the denominator with the same units as the
field H. Note that these reduced variables at the critical point are (x, y) = (T = Tc, H = 0) =
(0, 0). The free-energy function can be decomposed into an analytic part Fa and singular (or
non-analytic) part Fs: F(x, y) = Fa(x, y) + Fs(x, y) [Christensen and Moloney, 2005]. The
singular part is the one containing information about the critical exponents. The homogeneity
hypothesis states that, near the critical point, this quantity can be expressed as:

Fs
(
λx, λϑy

)
= λ−νFs (x, y) , (1.4)

where λ is an arbitrary scale factor and ϑ and ν are known as critical exponents. In other
words, the singular part of the free-energy function is a generalized homogeneous function. If
one proposes λ ∼ x−1, then Eq. (1.4) can be written as:

F̃s
(
1, x−ϑy

)
= xνFs (x, y) =⇒ Fs (x, y) = x−νF̃s

(
x−ϑy

)
, (1.5)

where the function F̃s is usually called scaling function. By a convenient choice of the scaling
factor λ, any thermodynamic quantity close to the critical point can be written as a function
of one single variable.

Due to the self-similarity of the correlations near the critical point, some degrees of freedom
can be obviated without loosing the important information of the system. The renormaliza-
tion group transform is based on a coarse-graining or decimation process, where some degrees
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of freedom of the system are eliminated according to a certain rule [Kadanoff, 1966]. Once this
reduction of degrees of freedom has been carried out, the variables of the decimated system
are rescaled by a factor λ. By applying this transformation many times, the system can flow
to a fixed point characterized by a set of critical exponents [Wilson, 1983]. The same critical
exponents are found for different systems when the renormalization group transform is recur-
sively applied. In this sense, the renormalization group represents a theoretical framework
through which universality can be explained [Stanley, 1999].

1.3.3 Criticality in out-of-equilibrium phenomena
Experimental conditions in a laboratory can be controlled in order to achieve states of a
physical system that can be considered to be at equilibrium. Similarly, one can consider
a certain simulation algorithm for Ising models where an equilibrium state can be reached
[Metropolis et al., 1953]. However, this degree of control can hardly be achieved in natural
systems. Let us consider, for instance, the field of Earth Sciences and it will be extremely
difficult to find a phenomenon that can be considered to be at equilibrium.

Criticality and universality are concepts which are theoretically well established for equi-
librium systems. Unfortunately, there is still a theoretical gap in out-of-equilibrium theories
for critical phenomena. This must be taken into account because this PhD thesis is devoted to
the study of avalanche processes which are clearly out-of-equilibrium. Some works [Perković
et al., 1995; Salje and Dahmen, 2014] dealing with scale-free avalanches claim that systems
exhibit criticality just because the presence of power-law distributions in avalanche observ-
ables. This is in contradiction with the classical definition of criticality at equilibrium, which
always considers the existence of a critical point.

Let us suppose a complex system that can be studied in equilibrium and out-of-equilibrium.
This situation can be easily reproduced in Ising models [Liu and Dahmen, 2009; Lancia and
Scoppola, 2013]. Given a critical point in equilibrium, the first question that comes up is:
“Is this critical point altered when the system is brought out-of-equilibrium?”. It is generally
assumed [Salje and Dahmen, 2014] that the critical properties in equilibrium are so robust
that are valid in an out-of-equilibrium scenario. However, there are still open debates for Ising
models regarding whether a critical point which occurs in out-of-equilibrium conditions can
be destroyed at equilibrium [Aizenman and Wehr, 1989; Spasojević et al., 2011b].

Independently on whether it exists an out-of-equilibrium critical point or not, the sys-
tems are said to be critical or at criticality when avalanche observables can be described by
power-law distributions. As it occurs with the term statistical criticality, the use of the term
“criticality” in out-of-equilibrium physical complex systems is a misnomer. However, taking
into account this language abuse, the term “avalanche criticality” is used along this work when
avalanche observables exhibit power-law distributions.

Along the last decades, different frameworks have appeared with the aim of explaining
avalanche criticality. The focus of these frameworks can be diverse depending on whether
they are supported by physics-based models, a plausible theoretical framework or experimental
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results. It must be mentioned that the following classification does not intend to provide a
strong separation and the different scenarios presented here are not mutually exclusive. The
first three frameworks (self-organized criticality, disorder induced criticality and sweeping
of an instability) are devoted to explain through which mechanisms avalanche criticality is
originated. The rest of frameworks (driven interfaces in random potentials and failure of highly
heterogeneous materials) are based upon experimental works and physics-based models. In
this sense, this classification can be considered to be based on the findings of the last decades
and can be easily altered and modified.

1.3.3.1 Self-organized Criticality (SOC)

Self-Organized Criticality (SOC) [Bak et al., 1987, 1988] is a theory that was developed in the
late 80’s of the past century, which claimed that out-of-equilibrium systems tend to a critical
point by themselves. As it was explained in Sec. 1.2, there are underlying mechanisms favour-
ing and inhibiting the presence of avalanches. SOC considers that the system is externally
driven towards an active phase but there are dissipative mechanisms bringing the systems to
an inactive phase. The competition between these two mechanisms is balanced in such a way
that the system remains in a critical state. In this critical state, power-law distributions in
the different avalanche observables are found. In this sense, criticality is reached without the
necessity to tune external or internal parameters.

The sand-pile model is proposed to exhibit SOC [Bak et al., 1987, 1988; Christensen and
Moloney, 2005; Pruessner, 2012] (see Fig. 1.5 for an illustration of the sand-pile metaphor).
This physics-based model supposes that sand grains are added to a pile. At a certain point
of this process, some parts of the pile will reach a value of the slope implying the fall of a

Fig. 1.5: Sand-pile metaphor. Drawing of Mrs. Elain K. D. Wiesenfeld, U.S.A extracted from Christensen
and Moloney [2005].



17

certain number of grains due to gravity. The fall may imply that high enough values of the
slope occur also in the vicinity which induces further displacements. This collective motion
of grains is considered as an avalanche. Adding sand grains to the pile constitutes the driving
mechanism which favours the presence of avalanches in this system. However, the friction
between grains in the pile avoids avalanches to occur constantly and flatten the pile. The
avalanche size S distribution follows a power-law behaviour truncated by the finite-size effects
of the pile. Note that the response of the system is not linear and a perturbation can induce
an event at any scale. The presence of avalanches of different sizes avoids having a very steep
pile but they will not destroy the sand pile with an event comparable with the length scale of
the system. In this sense, the pile is said to self-organize into a critical state.

One interesting property of SOC is that it enables the mapping between avalanches and
branching processes [Alstrøm, 1988; Christensen and Moloney, 2005; Pruessner, 2012]. This
mapping confers an interesting point of view studied by several authors [Corral et al., 2016;
Garcia-Millan et al., 2018; Corral et al., 2018; Bordeu et al., 2019] which try to explain
avalanches from the point of view of stochastic processes.

One inconvenience about SOC is that it exhibits self-censorship when one tries to apply
the concept to real systems. Let us suppose earthquakes occurring in the Earth as a SOC
system. The Olami-Feder-Christensen model [Olami et al., 1992; Christensen and Moloney,
2005; Pruessner, 2012] is one of the most accepted models trying to explain earthquakes in the
SOC context. The Earth crust is in a critical state of stress due to two different mechanisms.
One the one hand, tectonic driving tends to accumulate stress in some regions and provokes
earthquakes whenever a rupture occurs. The release of stress after each earthquake occurrence
prevents from very large events. On the other hand, friction between tectonic plates is a
mechanism that slows down the rupture process and attenuates earthquake occurrence. In
this case, it is clear that these mechanisms cannot be controlled in such a way to destabilize
this so-called critical state. In other words, an empirical SOC system is said to be at a critical
point although this point cannot be identified in a phase diagram, simply because it is in
general not possible to bring the system out of its current state.

The SOC framework has been applied in a lot of complex systems such as atmospheric
sciences [Dessai and Walter, 2000], rainfall [Deluca et al., 2015], Barkhausen noise [Cote and
Meisel, 1991], seismology [Olami et al., 1992; Frigg, 2003], and so on [Jensen, 1998; Pruessner,
2012].
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1.3.3.2 Disorder-induced criticality (DIC)

In the early 90’s of the last century, another framework through which avalanche dynamics
can be understood appeared. In contrast to SOC, disorder induced criticality (DIC) considers
that the systems reach a critical state under a certain set of values of the variables that
control the system. In this sense, this framework can be closely related to the principles of
the equilibrium critical phenomena [Perković et al., 1995]. Different phases can be explored
and an out-of-equilibrium critical point can be identified in a phase diagram. Similarly to
equilibrium critical phenomena, this framework can be easily modelled by Ising models. In
particular, the athermal metastable random field Ising model represents the paradigmatic
model to explain DIC. For more details about this model see Sec. 2.2.2.

Let us assume an out-of-equilibrium physical system undergoing a first-order phase transi-
tion induced by an external perturbation or field H. Under these circumstances, the trajectory
of the order parameter Λ as a function of the external driving field H is an hysteresis curve
[Bertotti and Mayergoyz, 2006]. Below the critical temperature (or any other control vari-
able), the Landau theory models the free-energy landscape in pure systems as a double-well
with two stable states (see Fig. 1.4). For a given value of the external field, the system is able
to overcome the energy barrier between the two wells and changes from one phase (one stable
well) to the other one. However, this abrupt change rarely occurs in real systems and there is
a coexistence in some regions where some local domains have experienced the phase transition
whereas other regions have not. The presence of these domains is due to the impurities in the
system that can be understood as disorder. This disorder distorts the free-energy landscape
by introducing a sequence of local minima. In these local wells, the system is in a metastable
state, and very small variations of the external driving field H might bring the system from
one local minimum to another one. This change of the system from one metastable state to
another is known as an avalanche. As it occurs in SOC, any small change of the external
driving H can induce an avalanche at any scale. Temperature can also be considered as an
ingredient contributing in this dynamics. In some situations, thermal fluctuations can be
neglected and the external driving H is the unique factor that may provoke avalanches. In
this situation, this kind of phase transitions are called athermal first-order phase transitions
(aFOPT) [Pérez-Reche et al., 2001] .

The amount of disorder in the system can be characterized by a parameter R. Depending
on its values, the observables characterizing avalanches appearing during the aFOPT are
different. Let us assume that the disorder is quenched and it is not affected by the dynamics.
Let us also assume that the system is driven infinitely slowly in such away that avalanches do
not overlap each other. This regime, known as adiabatic regime, ensures that the field is varied
in such a way that the system explores all the local minima of the free-energy introduced by
the disorder. In this way, there is a clear separation of time scales: the one corresponding
to the duration D of the avalanche, and the time δ between events (D << δ). According to
the classification done by Sethna et al. [2006], the avalanche dynamics of the system can be
classified in the following three regimes depending on the values of R:
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Fig. 1.6: Left panels illustrate the three regimes through which an aFOPT occurs. The order parameter
Λ in this case is the particular magnetization and the phase transition goes from a phase with negative
magnetization through a phase with positive magnetization driven by the external field H. Right panels,
corresponding distribution of avalanche sizes S obtained from different realizations. Simulations have been
done using the athermal three-dimensional Random Field Ising Model with N = 483 spins (for more details,
see Sec. 2.2.2).
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• R < Rc: Snapping noise: The amount of disorder is so small that very few distortions in
the free-energy landscape appear between the two phases. The dynamics of the system
evolves by means of macroscopic avalanches. The distribution of avalanche sizes will be
characterized by a peak very close to the system size (see Fig. 1.6(a)).

• R = Rc: Crackling noise: The amount of disorder attains a critical value for which
avalanche observables exhibit lack of characteristic scales. In this case, the distribution
of avalanche sizes is modelled by a power-law distribution (see Fig. 1.6(b)). Note that
this power-law distribution exhibits an upper cut-off due to finite-size effects.

• R > Rc: Popping noise: The amount of disorder is so large that a lot of local-minima
have distorted the free-energy landscape. The system evolves from one phase to another
by means of microscopic avalanches. In this case, the distribution of avalanche sizes can
be roughly characterized by an exponential distribution (see Fig. 1.6(c)).

In spite of dealing with out-of-equilibrium systems, conceptually, DIC shows a lot of sim-
ilarities with the theory of equilibrium critical phenomena. The mapping between these two
theories is well supported by renormalization group approach [Dahmen and Sethna, 1996] and
thus, it confers a strong theoretical background to DIC [Sethna, 2006].

This framework has been very useful in the study experimental systems such as the
Barkhausen noise [Perković et al., 1995; Spasojević et al., 1996], capillary condensation of
gases in porous materials [Lilly et al., 1993, 1996], structural transitions in solids [Vives et al.,
1994; Carrillo et al., 1998], or superconductivity in thin films [Wu and Adams, 1995].

1.3.3.3 Sweeping of an instability (SOI)

One of the main sources of discussion between SOC and DIC is the fact of tunning of some
parameter to achieve a critical state. Some authors consider that some degree of tunning is
unavoidable and the tunning in a SOC model can be attributed to the nature of the boundary
conditions as well as the driving [Jensen, 1998]. The DIC framework assumes that one must
tune a parameter in order to observe avalanche criticality. However, SOC covers a lot of
examples in nature where avalanche criticality appears without the necessity of tunning any
parameter. With the aim of supporting DIC as the true mechanism to generate avalanche
scale-invariance, one could think that these systems are found to be at the critical state by
chance.

Sornette [1994] proposed an alternative explanation about how criticality is reached:
sweeping of an instability (SOI). This framework proposes that avalanche criticality emerges
from the slow sweeping of a control parameter towards an instability. Contrarily to DIC,
this mechanism does not assume an underlying critical parameter which is fixed during the
avalanche process. Instead of that, there exists a time-dependent interplay between interac-
tions and disorder resulting in a non-stationary underlying critical point. This approach is
somehow in between SOC and DIC. On the one hand, there are mechanisms affecting disorder
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and interactions bringing the system into a critical state similarly to SOC. On the other hand,
this non-stationary critical point enables to explore different parts of the phase diagram and
the integrated distribution of avalanche observables along this process should be a power-
law [Dahmen and Sethna, 1993]. This framework has been useful to explain several empirical
data where a progressive convergence to criticality is found [Salje and Dahmen, 2014].

1.3.3.4 Driven interfaces in random potentials (DIRP)

In parallel to DIC, another scenario appeared in the mid 90s of the 20th century. Under the
assumption that a d-dimensional system is divided in two different regions clearly separated
by a d−1-dimensional geometric object called interface, this framework defends the idea that
avalanches can be associated with the problem of depinning of that driven interface [Narayan
and Fisher, 1993]. In contrast to DIC, note that the regions separated by the interface do
not necessarily correspond to different thermodynamic phases. In this sense, the concepts of
order parameter or hysteresis do not usually apply. Another difference with DIC, which is
supported by Ising models, is that the description of this interface is usually supported by
continuous models [Narayan and Fisher, 1993; Kardar, 1998; LeBlanc et al., 2012].

In the simplest case of a two-dimensional system, the driven interface is a continuous line.
This interface is driven by an external field H in a medium where there are irregularities or
pinning centres halting its advance. These pinning centres can be understood as disorder and
are modelled according to random potentials. For this reason, this framework will be referred
as driven interface in random potentials (DIRP) from here on out. There exists a value Hc

of the external field, which is known as depinning threshold, below which the velocity of the
interface is zero and it is finite for H > Hc. Leschhorn and Tang [1994] and Falk et al. [1994]
discovered that, close to the depinning threshold Hc, the interface advances by following an
avalanche dynamics with lack of characteristic scales.

Experimental examples in which the DIRP framework can be applied are fluid fronts
moving in disordered media [Bramwell et al., 1998; Planet et al., 2009], crystal plasticity
[Tsekenis et al., 2013] or the Barkhausen effect [Urbach et al., 1995; Narayan, 1996; Zapperi
et al., 1998]. It is important to mention the case when interfaces are identified in fracture of
materials with disorder [Caldarelli et al., 1996; Zapperi et al., 1997; Alava et al., 2006; Raischel
et al., 2005; Kun et al., 2006; Bonamy et al., 2008] as well as the works relating DIRP and
seismology [Barés et al., 2019].
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1.3.3.5 Failure of highly heterogeneous materials (FHHM)

The phenomena of interest in this PhD thesis can be classified into a different framework called
Failure of highly heterogeneous materials (FHHM). As it happens in DIRP, this framework is
rooted in experimental works, specifically, in the failure of highly heterogeneous materials. Let
us consider two different classes of materials. The first class is the one related with metallic
glasses [Wang et al., 2004]. The second class encompasses materials that can be reduced to a
set of physical links: foams and highly porous materials. In some cases, these materials are
classified as soft-matter [Jones et al., 2002].

The term failure can be understood in several ways depending on the experimental case.
One the one hand, failure can be understood as a topological rearrangement of the elements
conforming the system. Given an external perturbation, the material changes its internal
configuration thus minimizing the internal energy. As an example, a granular material can
change the distribution of its elements under stress [Lherminier et al., 2019]. On the other
hand, failure might occur at different sites where the material is breaking. When failure has
occurred in this second case, the material either experiences an internal rearrangement or gets
destroyed. In any of these situations, a certain amount of energy is released in each failure
event and it can be experimentally detected.

The failure can be caused either by compression or shear stress [Rodney et al., 2011]. There
are several ways in which failure can be detected. Failure occurs in different localized regions
of the material and exhibits an avalanche-like behaviour. Whenever a failure nucleates in a
region of the material, it is manifested as a sudden burst of activity for a short time. How the
avalanches corresponding to failure events are detected is a problem related with the different
experimental methods. These avalanches can be detected in the trajectories of the force curve
exhibited as a mechanical response of the material [Antonaglia et al., 2014; Navas-Portella
et al., 2016; Zreihan et al., 2018], beams of light from photo-elastic granular materials [Barés
et al., 2017], particle tracking-techniques [Garcimartín et al., 2009; Garcimartín et al., 2011],
or by means of acoustic emission techniques [Scruby, 1987; Salje et al., 2011; Baró et al., 2013].
In most of these experimental works, avalanche criticality is detected.

Some physics-based models such as continuous damage fibber bundle models [Hidalgo
et al., 2009], micro-fracturing models [Zapperi et al., 1997] or discrete element models [Kun and
Herrmann, 1999; Kun et al., 2014] have been able to describe avalanche process with power-law
distributions characterizing their observables. There is a set of physics-based models which
are related to the presence of a critical point [Dahmen et al., 2009, 2011]. In these models,
failure of materials is considered to occur at a certain value of the stress and the distribution
of avalanche observables is power-law close to this value. Clearly, these kind of models can
be easily related with the concepts of equilibrium critical phenomena. However, there are
situations in which the material may experience several failures and the existence of a critical
point is ill-defined (see Sec. 3.3).

Despite the FHHM framework shares a lot of properties with SOC, DIC and DIRP, there
are enough reasons to consider it as an independent category. Contrarily to DIRP, in general,
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it is not possible to identify a clear rupture front or interface for FHHM. Given that failure
might nucleate anywhere in the material, one can be tempted to think that FHHM could
be understood as a nucleation process in which different domains coexist, grow and coalesce.
This would place FHHM in scenario much similar to the DIC framework. However, so far,
it has not been possible to identify an underlying phase diagram where a first-order phase
transition can occur. One could also be tempted to think of FHHM as SOC systems in which a
dissipative mechanism prevents a material from destruction and a external driving mechanism
activates avalanches. However, the external driving mechanism clearly wins the competition
once the material has been totally destroyed and SOC might not be an accurate description
in these situations.

The phenomenology related to FHHM is the one which better fits in the context of the
experimental works developed in this PhD thesis. Avalanches corresponding to failure events
are detected in serrated trajectories of the force curve of the material and through acoustic
emission in compression experiments of porous materials [Navas-Portella et al., 2016]. The
first technique is convenient for measuring avalanches in macroscopic variables, such the force
opposed by a material, where a time resolution about ∆t ∼ 10−1 is required. Acoustic emission
techniques allow to detect events at a very good time resolution (∆t ∼ 10−6 s) exhibiting thus
a broad range of values and accessibility to different scales of avalanche observables. See
Chpt.4 for more details about the experimental techniques used in this thesis.

1.3.4 Universality in out-of-equilibrium phenomena
As it occurs in equilibrium critical phenomena, different real systems and models exhibiting
avalanche behaviour share the same power-law exponents. For instance, earthquakes, com-
pressed nanocrystals [Uhl et al., 2015] and neuronal avalanches in control cultures [Yaghoubi
et al., 2018] have been suggested to belong to the same universality class. Although some
efforts have been done in order to characterize out-of-equilibrium universality in lattice sys-
tems [Hinrichsen, 2000; Ódor, 2004; Marro and Dickman, 2005], there is still a lack of a robust
theoretical background to explain phase transitions and universality out-of-equilibrium.

It has been broadly studied [Stanley, 1999; Stanley et al., 2000; Clauset et al., 2009; Ódor,
2004] that different complex systems have a common value of the power-law exponent and
can be grouped into the same universality class. Therefore, it is important to determine
rigorously these exponents not only to properly characterize phenomena but also to provide
a good classification into these universality classes.

When a physical system can be described in terms of a Hamiltonian H, this contains
information about the system dimensionality d and the order-parameter symmetry. These
quantities determine the universality class of a system in equilibrium [Stanley, 1999]. Never-
theless, in practice, exponents are difficult to measure empirically. Some experimental works
regarding physical complex systems confirm the presence of scale invariance in data by assum-
ing power-law behaviour for which data scarcely covers few orders of magnitude [Friedman
et al., 2012; Papanikolaou et al., 2011; Uhl et al., 2015].
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As it has been already mentioned, despite the concept of universality can be applied for
critical exponents of any power-law function, in this thesis, the concept of universality is
focused on probability density functions. In this context, the broader the distribution range
the more reliable the property of restricted scale invariance in experimental data. Typically the
existence of noise and/or under-counting effects affects the smallest observable values, whereas
saturation and/or lack of statistics due to under-sampling limits the largest observable values.
In most cases, these experimental limitations are not sharp due to experimental uncertainties.
These limitations distort the power-law behaviour and the property of scale invariance can
only be measured in a limited range.



Chapter 2

Modelling avalanche criticality

The method of science depends on our attempts to describe the
world with simple theories: theories that are complex may
become untestable, even if they happen to be true. Science may
be described as the art of systematic over-simplification—the
art of discerning what we may with advantage omit.

Karl Raimund Popper

Even the largest avalanche is triggered by small things.

Vernor Vinge

Some generalities about avalanche processes were exposed in Chapter 1 without paying
attention to the details of their description. The first section of this chapter presents how
avalanche criticality can be mathematically modelled by presenting avalanche processes as
arising from time series. Avalanche observables can be obtained through a transformation
from time series to temporal marked point processes. As explained in the previous chapter,
physics-based models have been very useful when trying to explain avalanche criticality. A set
of physical features which are common in some physics-based models of avalanche processes are
presented. Among the different physics-based models trying to explain avalanche criticality,
the athermal Random Field Ising model is presented within the DIC framework. Finally,
the main concepts of statistical modelling which are needed to understand all the techniques
exposed along this PhD Thesis are exposed.
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2.1 Mathematical description of avalanche criticality
The aim of this section is to provide an operational definition of avalanche processes and
avalanche criticality. By operational is meant that this definition allows to determine avalanches
and their corresponding observables in practice. Let us consider the framework in which the
avalanche process is obtained from a time series. Let us start by exposing three different
concepts:

1. Time series X(t)

2. Avalanche process: Temporal marked point process obtained from X(t). The marks are
characterized by a set of observables {X}.

3. Statistical modelling of the observables.

The first two points correspond to a mathematical description of avalanches, i.e. how avalanches
and their corresponding observables are defined. In this sense, the theory of stochastic pro-
cesses, time series and point processes are specially relevant. It must be mentioned that these
two points can be applied to any avalanche process independently on whether the observables
are characterized by power-law distributions or not. Avalanche criticality is determined by
means of statistical methods, which provide information about whether it is reasonable or not
to consider power-law models for the description of avalanche observables.

2.1.1 Time series X(t)
Let us consider a time series of a random variable X(t), which can take values X conforming a
stochastic process or signal. The random variable can be a spatial trajectory [Villegas et al.,
2019], a voltage [Scruby, 1987], the value of an asset in a financial market [Sornette, 2009]
or any other quantity which can be sampled in time. The probability P that a system has
exhibited a certain signal X(t) reaching a value Xt at a time t is given by the joint probability
of all the intermediate steps {X} = {X1,X2, ...,Xt−1,Xt} it performed:

P [X(t)] = P{[X1 = X1] ∩ [X2 = X2] ∩ · · · ∩ [Xt = Xt]}
= P [X1 = X1] · P [X2 = X2|X1 = X1] · ··
· · · P [Xt = Xt|Xt−1 = Xt−1,Xt−2 = Xt−2, ...,X2 = X2,X1 = X1] .

(2.1)

Contrarily to the usual procedures for stochastic processes, independence and Markovian
properties cannot be assumed Henceforth, all the values taken by the signal X(t) from t = 0
to t, are expressed as a new random variable called history H:

P [X(t)] = P [Xt = Xt|H] . (2.2)
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When dealing with experimental data, it is important to stress the fact that the aim of these
approaches is to describe the measured signal rather than the process as a phenomenon itself.
Let us remark that this measured signal can be affected by many factors: the instrumen-
tal response of the experimental set-up, background and experimental noises, or dissipative
effects.

The operational definition of avalanche can hardly be separated from the experimental
techniques and data analysis that are used for their detection. Two different approaches can
be considered regarding how physical systems are driven.

The first approach is based on the experimental detection of the process by assuming
that signal values {X} are detected at a certain sampling rate. This sampling rate can be
regular (equally-spaced times) or not and its value depends on the temporal resolution of
the experimental device. Both situations can be mathematically modelled by time series. A
simple random walk would be a reasonable model for a regular sampling rate [Papanikolaou
et al., 2011] whereas continuous-time random walk [Klafter and Sokolov, 2011] would be an
appropriate model for a non-regular sampling rate. Recall that these models are useful as
illustrations but not in practice, since the history H of the process has an influence in the
probability of the next step.

The second approach can be achieved in some experimental systems [Rosinberg and Vives,
2004], where the variable X(t) is obtained for a set of values of the external driving field H,
not necessarily equispaced. Therefore, this approach assumes that time can be substituted by
the external driving field H.

2.1.2 Avalanche process: Obtaining a temporal marked point pro-
cess from X(t)

As it has been already exposed, an avalanche process corresponds to a temporal marked point
process obtained from X(t): a set of points distributed along the real temporal axis each of
them characterized by a set of observables or marks. Each point of this temporal marked point
process corresponds to an avalanche which is characterized by a set of avalanche observables
{X}.

The operational definition of avalanche is thus intimately tied to the collapsing procedure
from a time series into a temporal marked point process. How is this collapse achieved? The
answer to this question depends on the nature of the signal X(t).

As stated in Sec. 1.2, the words “activity” and “silence” in the definition of avalanche
imply the existence of a value below which one considers that nothing is occurring and above
which one considers that something is happening. The existence of a threshold is thus key in
the definition of avalanche process. Two different thresholding procedures can be defined:

• One-side thresholding [Laurson et al., 2009; Font-Clos et al., 2015; Villegas et al.,
2019]: This procedure is useful when the signal exhibits relevant features for one sense
of the values that X(t) can acquire: let us say positive or negative values. From here
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on out, let us write the values that the time series can take as X(t). The j-th avalanche
starts at time tj when X(t) crosses a threshold (THR) which is set in the preferred
direction. At this point, the end of the avalanche can be defined in two ways: the
avalanche finishes when the process no longer surpasses the threshold (see Fig. 2.1(a))
or at the moment when the process has undergone the threshold and it remains below it
for a hit definition time (HDT). This second approach is quite common in experimental
studies where it is often much suitable to talk about hits instead of avalanches (see next
Sec. 2.1.4 and Chpt. 4). Once the avalanche has finished, one can define the duration
D, which constitutes the first immediate observable.
The avalanche amplitude of the j-th event corresponds to the maximum of the absolute
value acquired by the process along the avalanche duration Dj:

Aj = max [|X(t)|]tj≤t≤tj+Dj . (2.3)

The avalanche energy corresponds to the area under the absolute value of the process
along the avalanche duration:

Ej = C
∫ tj+Dj

tj
|X(t)|dt , (2.4)

where C is a constant of proportionality providing energy units. It must be mentioned
that it is also usual to define the energy by considering the square of the values of
the signal (see Chpt. 4). These observables correspond to an operational definition of
avalanche that takes into account not only the part of the process exceeding the THR
(dark blue regions in Fig. 2.1(a)) but also the corresponding part below it (light blue
regions in Fig. 2.1 (a)). An alternative definition of these observables can be stated if
one considers that the avalanche corresponds just to that part of the process exceeding
the threshold (dark blue areas in Fig. 2.1 (a)). Note that, for this case of one-side
thresholding procedure, amplitudes and energies in this alternative operational definition
of avalanche can be obtained by just subtracting the value of THR and Dj · THR to
Eqs. (2.3) and (2.4) respectively.

• Two-side thresholding [Lebyodkin et al., 2013; Baró et al., 2013; Lebyodkin et al.,
2017]. This situation is applied when the process X(t) acquires positive and negative
values and any large event (in absolute value) is relevant. This situation can be typical of
waveform signals such as electric voltages [Scruby, 1987]. In this case, two symmetrical
thresholds are set for positive and negative exceedances of the thresholds and the process
X(t) is also considered when it occurs in between these two values. In this case one
cannot consider that the event has finished when it has undergone the THR because it
can experience an excursion to an extreme value of the opposite sign. In this procedure,
the presence of the HDT is crucial in order to define when the avalanche finishes. See
Sec. 4.1.3 for a discussion of the dependence of the THR and the HDT in the avalanche
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process in a two-side thresholding process. Note that, if one considers the absolute value
of the signal, this procedure is equivalent to the one-sided trhesholding where an HDT
is considered.

Independently on which thresholding procedure is used, at the end one has reduced the
degrees of freedom of the original process by collapsing the information into a marked point
process of N avalanches characterized by a set of observables {X}:
• A time of occurrence t

• A duration D

• An amplitude A

• An energy E
One avalanche is separated by the next one by an inter-event time or waiting time δ which

accepts different definitions depending on the approach one is considering. Two different
approaches can be assumed [Paczuski et al., 2005]. One the one hand, avalanches can be
considered to have a finite duration D. In this situation, waiting-times are defined as δj =
tj+1 − (tj + Dj). On the other hand, avalanches in the temporal marked point process can
be assumed to be instantaneous (D → 0). In this case, the waiting-time is defined as the
difference between occurrence times: δ∗j = tj+1− tj. Note that both definitions yield the same
result δ ' δ∗ as long as D

δ
→ 0. This situation in which time scales can be clearly separated

is known as the adiabatic regime [White and Dahmen, 2003].
At this point, one has a temporal marked point process which can be described by three

different specifications [Lowen and Teich, 2005; Daley and Vere-Jones, 2008]:
• Interval specification: When the point process is defined through the distribution of

waiting times δ.

• Counting specification: Let us assume that the real time axis can be divided in time
intervals ∆t. A marked point process is defined by the distribution of the number of
events N that appear in a certain time interval ∆t.

• Intensity specification: When the point process is determined by an intensity % (t|H)
which is defined through the probability of having a point a certain time interval t+∆t.
The intensity of a temporal point process is given by:

% (t|H) = E
[

lim
∆t→0

P (N (t+ ∆t|H) = 1)
∆t

]
, (2.5)

where E corresponds to the expected value. let us remark that the this quantity can be
experimentally estimated by the rate of occurrence:

r(t) = N(t+ ∆t)−N(t)
∆t . (2.6)
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Fig. 2.1: (a) Realization of a random walk X(t) in order to illustrate the one-side thresholding procedure
of a stochastic process. Areas in blue correspond to two different events of duration D1 and D2 respectively
separated by a waiting-time δ. (b) Collapsing of the stochastic process in (a) into a marked point process. In
this case, the marks X correspond to the avalanche amplitude. According to this representation on can adopt
two different definitions of avalanche: (i) an avalanche is considered as that part of the signal exceeding the
threshold (dark blue area) (ii) an avalanche is considered as that part of the signal which is below X(t) when
it takes values above the threshold (THR) (the sum of dark and light blue areas).
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Although it is true that the expected values E are the same: E [r(t)] = E [%(t)] [Daley and
Vere-Jones, 2008], one must take into account that the experimental rate of occurrence
can exhibit a different distribution from the intensity %.

According to the interval specification, history-independent temporal marked point pro-
cesses can be classified in two different families:

• Homogeneous Poisson processes: The waiting-time distribution is an exponential. Ho-
mogeneous Poisson processes assume that event occurrences are independent and iden-
tically distributed (i.i.d) and the rate of occurrence does not depend on the past history
H and thus %(t|H) = %.

• Renewal processes: When the waiting-time distribution is different from an exponential.
Renewal point processes also assume that waiting times are i.i.d and independent on
the history H.

To obtain a marked point process from an arbitrary time series is a procedure that can
always be applied independently on whether power-law distributions are found for avalanche
observables or not.

2.1.3 Operational definition of avalanche processes and avalanche
criticality

At this point, the main ingredients needed to provide an operational definition of avalanche
processes and avalanche criticality have been already explained.

Operational definition of avalanche process and avalanche criticality: A driven phys-
ical system is said to exhibit an avalanche process when a temporal marked point process can
be obtained from a time series X(t) through a thresholding procedure. Avalanche criticality
occurs when the marks or avalanche observables {X} can be described by means of statistical
models exhibiting lack of characteristic scales.

In contrast with the definition of avalanche process provided in the previous chapter, this
definition is much more basic and less restrictive.
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2.1.4 Experimental detection of avalanches
Let us remark that the operational definition of avalanche process and avalanche criticality is
considered in a framework where avalanches are obtained from a time series. Note that the
previous definition of avalanche process does not take into account which are the mechanisms
inducing changes in the time series. One could apply the previous definition to any time series
independently on the underlying phenomenon. In fact, this is what was done in Fig. 2.1,
where the thresholding procedure was applied to a random walk and avalanches were defined.
However, this definition presents some disadvantages when avalanches are detected in real
systems. When the system is externally driven, avalanches arise as a collective behaviour and,
therefore, they correspond to the phenomenon of interest. Despite the previous definition is
mathematically consistent, avalanches obtained through it have no physical sense unless the
system overcomes a physical threshold thus triggering the phenomenon. Moreover, not only
a contribution from the avalanche is present in the time series but also noise can alter the
observed X(t). Contributions as a consequence of the noise need to be eliminated but also
different problems can appear due to driving rate effects and the detection devices.

Ideally, one could think about a driving regime where avalanches do not superpose each
other, that is, avalanches do not coincide in time. Independently on whether the external
driving can be controlled or not, different problems can appear when this adiabatic regime is
not achieved. For instance, let us suppose that different avalanches are triggered at different
spatial locations but very close in time in such a way that, when they spread along the system,
they superpose both in time and space. This effect is known as avalanche overlapping [White
and Dahmen, 2003]. Note that in this framework where avalanches are studied from time
series, spatial information is not necessarily known. Unless one can ensure that the system
is driven in the adiabatic regime, avalanche overlapping cannot be clearly identified by solely
studying a time series. The measured signal can be thus a superposition of avalanches and
the operational definition of avalanche provided in the previous section might be inconsistent.
If this definition is applied to this signal, it is more convenient to talk about hits rather than
avalanches. This is done in order to stress the fact that one measured hit does not necessarily
correspond to one avalanche.

Additionally, the use of HDT in the experimental procedure ( see Sec. 4.1.3) can induce
two different effects: hit splitting and hit overlapping. Let us suppose that measured signal
has remained below threshold for a certain time and a sudden re-intensification occurs. On
the one hand, hit splitting occurs when this re-intensification takes place once HDT is fulfilled
and it is considered as a separated hit. On the other hand, hit overlapping occurs when the re-
intensification occurs before HDT is fulfilled and it is considered as a part of the previous hit.
However, note that it is not possible to discern whether this re-intensification corresponds to
a new avalanche or it is still part of the previous one. Clearly, the value of HDT is influencing
the number of hits one is able to detect (see Sec. 4.1.3 for more details).
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2.2 Physics-based models for avalanche criticality

2.2.1 Usual features for avalanche response in physics-based mod-
els

The aim of physical models is based in unveiling the essential factors that are needed to
understand the behaviour of a physical system. Let us discuss a set of common physical
features that appear in physics-based models describing avalanche processes. Despite some
of these qualities are focused on the modelling avalanche processes they are somehow related
with the nature of the complex system in which they take place.

• Spatially extended systems: A system lies in a space in which avalanches can spread
out. From the physical point of view, it is clear that avalanches take place in a physical
space. For instance, earthquakes occur in the Earth crust or failure occurs at a certain
region of a material. However, one could also think of avalanche process that might
not need physical spatial degrees of freedom: market crashes or meme diffusion in social
networks [Gleeson et al., 2014] for instance. Despite these are not physical systems, they
can be modelled by means of physical models [Sornette, 2009; Molins and Vives, 2016].
As long as a graph or network in which the nodes represent system constituents and
the links or edges correspond to the interactions among them, the avalanche is able to
spread out.

• Interactions: Interactions are necessary to propagate an avalanche. It is not possible
to have an emergent behaviour in a complex system without interaction between the
elements.

• External driving: The transitions between states are induced by the external driving.
Ideally, the driving has to be considered in the adiabatic limit. However, it must be
mentioned that one might have avalanche dynamics when this condition is not fulfilled
[Corral and Paczuski, 1999]. This is what actually happens experimentally, where the
system can be driven very slowly but never reaching the adiabatic limit where avalanches
can be clearly discriminated. In other words, avalanche overlapping may affect the
statistics but, if this effect is considerably reduced, it is possible to have avalanche
processes when the temporal scale of the avalanches and the waiting-times are clearly
separated. The effects of the driving have also been studied in physics-based models
where avalanche criticality is found [Pérez-Reche et al., 2004].

• Existence of a physical threshold: At this point, it is important to highlight that
there exist two thresholds. On the one hand, the external driving has to overcome a
physical threshold in order to trigger an avalanche. On the other hand, due to the
presence of noise, thresholding procedures are necessary in order to define avalanches
from time series. Avalanches defined in this way have no physical meaning unless the
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physical threshold has been overcome by the system. Therefore, the physical threshold
is the one intimately related with the occurrence of an avalanche whereas the other
threshold is an auxiliary tool .

It must be mentioned that these features are present in systems exhibiting avalanches,
independently on whether they are critical or not. It is still not clear which are the necessary
conditions in order to ensure avalanche criticality.

The first feature can be easily satisfied in all the frameworks that try to model critical
avalanches explained in Chpt. 1. Additionally, systems have to be large enough so as to
observe avalanche observables at different scales.

There are particular features characterizing physics-based models which are specifically
focused on the different frameworks exposed in Chpt. 1. For instance, due to the similari-
ties with the theory of equilibrium critical phenomena, some thermodynamical quantities are
usually defined in models within the DIC framework. Similarly to the Landau theory of equi-
librium critical phenomena, physics-based models for DIC often define an order parameter Λ
characterizing the different states in which the system can be. This order parameter can be
either discrete or continuous. In experimental systems, the order parameter can be measured:
for instance, the magnetization in a ferromagnetic material or the densities in hydrostatic
systems. Although it might not be mathematically formulated in some situations, an under-
lying free-energy landscape with different stable, metastable and unstable states is present
in physics-based models for DIC. The existence of free-energy instabilities enables transitions
from different metastable states in which avalanches can be identified. Clearly, the features of
order parameter and free-energy function can be easily defined in the DIC framework due to
its correspondence with the theory of equilibrium critical phenomena. However, it is not clear
if these thermodynamical concepts can be extended in the rest of scenarios. Moreover, as its
name indicates, disorder is an important feature in DIC and represents the system inhomo-
geneities and might act either by favouring the occurrence and propagation of avalanches or
inhibiting them.

One of the most controversial points that faces SOC, DIC and SOI is the fact of tunning
or not some parameters or variables in order to observe avalanche criticality. As it has been
already mentioned, DIC exhibits avalanche criticality for a given value of the disorder whereas
SOC and SOI do not need the tunning of any parameter. SOC assumes that the system
self-balances the dissipative and the active mechanisms thus remaining in a critical state [Bak
et al., 1987] whereas SOI assumes that the interplay between disorder and interactions evolves
in time by approaching to a region close to criticality [Sornette, 1994].

For the different frameworks exposed in Chpt. 1, there exist several models reproducing
avalanche criticality. Among the different models that can be attributed to the different
frameworks, the athermal Random Field Ising model is explained as a paradigm of avalanche
processes by paying attention in whether some of the mentioned features are fulfilled or not.
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2.2.2 Athermal metastable Random Field Ising Model (RFIM)
The athermal (T=0) metastable Random Field Ising Model (RFIM) is a variant of the Ising
model that has been commonly used to explain avalanche processes within the DIC frame-
work [Sethna, 2006]. The model, originally thought to explain the Barkhausen noise in ferro-
magnetic materials, can be applied to describe physical systems such as structural transitions,
capillary condensation of gases in porous solids (see [Sethna, 2006; Rosinberg and Vives, 2004]
and references therein).

As indicated in Sec. 1.3.2, Ising models consist of a collection of N interactive spins si
situated at the nodes of a d-dimensional lattice. Spins can take the values si = ±1 . The
order parameter Λ in this model is given by the sum of all the spin values:

Λ =
N∑

i=1
si . (2.7)

The model contains three basic ingredients: external field, H, coupling between spins, J
(J > 0), and random fields hi at each node of the lattice. The Hamiltonian describing this
model is:

H = −
∑

〈ij〉
Jsisj −

∑

i

(H + hi)si. (2.8)

The first term accounts for interaction with nearest neighbours denoted by 〈ij〉 and the second
one for the interplay of spins with the external field and disorder. For simplicity, let us consider
J = 1. Quenched random fields {hi} are independent and Gaussian distributed according to:

fh(h) = 1√
2πR2

exp

(
− h2

2R2

)
, (2.9)

where the mean is zero and the standard deviation R characterizes the amount of disorder
present in the system. In order to generate a metastable dynamics, it is necessary to establish
a criterion to determine under which conditions the system remains in a local minimum of
the energy landscape. Following Sethna’s rule [Sethna et al., 1993], a spin is stable when it is
aligned with its effective field:

heffi =
∑

j

sj +H + hi , (2.10)

where the sum extends over the nearest neighbours of the i-th spin. Following this determin-
istic rule, a spin flips when its local field changes sign. A flipping event changes the effective
field of its nearest neighbours and any of these could become unstable. The process continues
in the same way analysing successive shells and originating an avalanche of flipping spins. The
size of the avalanche corresponds to the number of spins that have changed their state for a
fixed value of the external field H:

S = 1
2∆Λ ,
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where ∆ corresponds to the difference experienced by the order parameter after the avalanche
occurred at H. The duration corresponds to the number of steps (shells in the RFIM lit-
erature) needed to complete the avalanche [Dahmen and Sethna, 1993; Frontera and Vives,
1999]. Avalanches can be identified in the discontinuities in Λ for a fixed value of H. The
properties of these avalanches strongly depend on the quenched disorder, determining which
sites of the system are more favourable to nucleate or not.

This model can be easily interpreted in the context of the Landau theory of phase tran-
sitions. Consider the case T < Tc in Fig. 1.4 and let the system be in one of the two stable
minima. In absence of disorder, the system will experience a first-order phase transition when
the value of the external field H is large enough to overcome the energy barrier separating
both minima. However, disorder plays an important role by distorting the free-energy land-
scape and introducing a sequence of local minima separated by high energy barriers between
them. The reason why a normal distribution with zero mean is chosen for the random fields
is due to the fact that disorder is not supposed to favour any of the stable states. During
the field driven process, these free energy barriers are so large that thermally activated events
are negligible. Therefore, the external field is the only responsible for the behaviour of the
system. In the adiabatic limit, the external field H drives the system from one stable state to
the other by jumping through the different local minima. In each of these minima, the system
remains in a metastable state and the jumps between them are identified as avalanches.

The model exhibits three different regimes as a function of the value of the disorder R.
Let us consider a two-dimensional RFIM to explain the different regimes but remark that it
also applies for higher dimensions. The RFIM exhibits a subcritical regime for R < Rc, where
there is an infinite avalanche which is usually spans the system in both vertical and horizontal
directions (see Fig. 8.11 sequence a-b-c that corresponds to increasing field values). When
disorder approaches its critical value Rc, there is a peak in the average number of avalanches
spanning one system direction [Spasojević et al., 2011a] (see Fig. 8.11 sequence d-e-f). Power-
law distributions are found in some magnitudes related to avalanches in this situation (sizes
and durations). For the supercritical regime R > Rc, the avalanche process takes place by
nucleation of small domains that grow and coalesce and spanning avalanches hardly appear
(see Fig. 8.11 sequence g-h-i).

Let us check whether the set of conditions stated in Sec. 2.2.1 are fulfilled by this model:

• A spatially extended system XIn general, this model is usually thought in a d-
dimensional regular lattice although many other configurations can be considered.

• Interactions XThey are represented by the first term in the Hamiltonian in Eq. (2.8).

• External driving XThe external field H.

• Existence of a threshold XEach spin has its particular threshold given by its effective
field in Eq. (2.10). The effects of the threshold on RFIM avalanches have been studied
in [Janićević et al., 2018].
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a) H R < Rcb) c)

Hd) R ∼ Rce) f)

g) H h) R > Rc i)

Fig. 2.2: Sequence of configurations during the avalanche process in different disorder regimes for the RFIM
with metastable dynamics for a system (N = 128 × 128) with periodic boundary conditions. The values of
the disorder are R = 0.80, 0.95, 1.20 for sequences (a-b-c),(d-e-f) and (g-h-i) respectively. External field H
is increased from left to right bringing the system from negative magnetization (white regions) to positive
magnetization (coloured regions). Black coloured spins correspond to regions that have been transformed
due to avalanches that have not spanned the system in any direction. Green regions correspond to spanning
avalanches.
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The model is relatively easy to implement computationally by means of the Brute force
and the Sorted list algorithms [Kuntz et al., 1999]. Simulations start in one of the stable
minima (for instance, with all the spins pointing down {si = −1}) and external field set at
an extremely large value (H = −∞ if all spins point down at the beginning). The external
field is increased until a spin triggers an avalanche. Then the external field is kept constant
until there are no more unstable spins and the system reaches a metastable state again. The
dynamical process finishes when the system reaches the other stable well (all the spins are
pointing up {si = +1} for a very large positive value of the field H).

This model is rich enough to address different studies regarding avalanche criticality. The
effect of the external driving [Pérez-Reche et al., 2004], the range of the interactions [Pérez-
Benitez et al., 2009], the connectivity [Sabhapandit et al., 2000; Detcheverry et al., 2005;
Shukla and Thongjaomayum, 2017; Janićević et al., 2017], the effect of the finite temperature
[Illa et al., 2006] are some examples of studies that can be performed by means of the RFIM.
The author of this PhD thesis has contributed to the research topic of the RFIM by studying
the influence of the aspect ratio and boundary conditions on finite-size scaling functions
[Navas-Portella and Vives, 2016] and the crossover from two-dimensional to three-dimensional
systems [Spasojević et al., 2018]1.

2.3 Statistical modelling of avalanche criticality
The confluence point of physics-based models and the mathematical description of avalanches
exposed in Sec. 2.1 is the statistical modelling of avalanche observables. Determining whether
these observables are characterized by power-law distributions is the definitive step to check
whether a system exhibits avalanche criticality or not. Furthermore, as it has been claimed
in Chpt. 1, the accurate determination of critical exponents is crucial in order to perform a
correct classification of complex systems into different universality classes.

Let us introduce the common situation in which one wishes to determine the power-law
exponent of a probability distribution characterizing an avalanche observable. Let us assume
that this observable can be considered as a continuous random variable X characterized by
an univariate probability density function (PDF) fX (x), where the sub-index denotes the
random variable to which it is referred and x are the values that the random variable can
take. One can obtain an estimation of fX (x) by plotting the histogram of x (see Fig. 2.3
and Sec. 5.3). A power-law PDF looks like a straight line when it is plotted in log-log scale
[Christensen and Moloney, 2005]. Figure 2.3 shows the estimated PDF of the observable X
sampled from a certain probability distribution. As it can be seen, this estimated PDF looks
like a straight line when it is plotted in log-log scale. In this situation, one could be tempted
to fit a power-law distribution by means of the linear least squares method and identifying
the power-law exponent with the slope of the straight line. Although this has been a common

1This work was performed in collaboration with the University of Belgrade.
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practice for years within physics and other scientific disciplines [Goldstein et al., 2004], a
power-law distribution is not guaranteed by the simple presence of a straight line in log-log
scale. In fact, data in Fig. 2.3 have not been sampled from a power-law distribution but from
a truncated log-normal. Moreover, in case of really dealing with a power-law distribution,
the exponent measured as the slope of the straight line could be biased [Bauke, 2007; Clauset
et al., 2009; Deluca and Corral, 2013]. Note that this approach is based on the graphical
estimation of the PDF and the value of the estimated parameters might depend on the binning
procedure that has been used to construct the PDF. In conclusion, one can be easily fooled
when power-law exponents are estimated from graphical representations and more rigorous
statistical techniques are required.
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Fig. 2.3: Probability density function (PDF) for simulated values x of the random variable X in log-log
scale. Similarly to what some authors do when estimating power-law exponents [Corominas-Murtra et al.,
2015; Uhl et al., 2015; Scholz, 2019], a triangle is plot in order to illustrate the apparent slope of the PDF.
Despite one could identify a straight line, data have not been sampled from a power-law distribution but from
a log-normal with parameters µ = 10 and σ = 15 truncated at xmin = 1.
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One of the most accepted ways of fitting power-law distributions is through the maximum
likelihood estimation and hypothesis testing [Knopoff and Kagan, 1977; Clauset et al., 2009;
Deluca and Corral, 2013]. Contrarily to the least-squares method, it is not based in any
graphical representation of the PDF. Maximum likelihood estimation provides a rigorous
statistical technique supported by a mathematical background. Additionally to the estimation
of the power-law exponent, goodness-of-fit tests are necessary in order to determine whether
data have been really sampled from a power-law distribution or not.

In this section, a general overview of the different stages of statistical modelling is pre-
sented. Let us remark that, although the distributions of interest in avalanche processes are
power-laws, the concepts explained below are general.

2.3.1 Statistical inference
2.3.1.1 General definitions

Prior to expose the different steps of statistical modelling, let us define some important con-
cepts and approaches that are going to be recurrently used along this PhD Thesis. The
starting point is rooted on a given dataset containing avalanche observables. This dataset
has been sampled from an experiment, a computer simulation or any other data acquisition
technique. Henceforth, this set of observations is referred as dataset or sample indistinctly.

An usual framework to understand statistical modelling is based on the existence of an
idealized “true” probability distribution generating data [Burnham and Anderson, 2002; Paw-
itan, 2013] characterized by an array of true parameters θ̃̃θ̃θ. Let us suppose a sample of n i.i.d
observations of the random variable X from this population. If not otherwise stated, let us
assume that observables X are continuous random variables. The statistical model FX (x;θθθ)
is a mathematical object characterized by a set of estimators θθθ that establishes a link between
the sample and the population. The object of the estimation theory explained in the following
Sec. 2.3.1.3 is devoted to find the values of θθθ from the available information in the sample in
order to evaluate the true parameters θ̃̃θ̃θ.

As it has been mentioned, one of the most important mathematical characterizations of a
statistical model is, if it exists, the probability density function (PDF) fX (x,θθθ). Let us remark
that this description is reduced to uni-variate distributions. From the uni-variate PDF one
can define the cumulative distribution function (CDF) FX (x,θθθ) as:

FX (x;θθθ) = P (X < x) =
∫ x

−∞
fX (x′;θθθ) dx′ , (2.11)

which will be named as distribution or cumulative distribution indistinctly. One can also
define the complementary cumulative distribution function (CCDF) written as:

SX (x;θθθ) = P (X ≥ x) = 1− FX (x) =
∫ ∞

x
fX (x′;θθθ) dx′ , (2.12)
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where S is a notation quite used in the literature which refers to the CCDF as survivor
function [Kleinbaum and Klein, 2012].

2.3.1.2 Statistical models and likelihood

The concept that links data and the statistical model is the likelihood function. The likelihood
function can be naively understood as the probability that the actual data can be described
in terms of a statistical model. In other words, if the following question is addressed: “What
is the probability that data are described by a certain statistical model?", the answer to this
question is given by the likelihood function L (θθθ) [Pawitan, 2013; Wood, 2015]. This function
depends on the array of estimators, which can be obtained from the sample values. Therefore,
by assuming a statistical model FX characterized by a set of nL unknown parameters θθθ, the
likelihood function is the probability of the observed data {x} considered as a function of θθθ.
For more details about the likelihood function see Sec. 5.1.

Let us define the likelihood ratio between two statistical models (1) and (2):

R = L2(θθθ2)
L1(θθθ1) , (2.13)

which measures the relative probability of models (1) and (2). The models might be repre-
sented by the same function but with different values of the parameters or their functional
behaviour might be completely different. This quantity is crucial when doing model compar-
ison (see next Sec. 2.3.1.4).

2.3.1.3 Estimation theory and maximum likelihood

For any model one is working with, one can evaluate the likelihood function which is tied
to the statistical model. This model is indeed characterized by a set of values θθθ which are
intended to be similar to those from the population θ̃θθ. Estimation theory deals with the
different methods through which this relationship can be well established.

Let us define a statistic or sample statistic z as the value returned by an application Z
that receives the sample as an array of size n:

Z : Rn → R . (2.14)

Note that the statistic z is indeed a random variable which is characterized by a PDF fZ(z).
Descriptive statistics is generally focused on determining different statistics trying to charac-
terize a sample. The sample mean, the sample median or the sample standard deviation are
well-known examples of statistics.

Let us define an estimator θ̂n as an statistic which does not depend on any other unknown
parameter of the statistical model and it is entirely determined by the n values of the sample.
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An estimator is unbiased if its expected value (denoted by E) corresponds to the value of the
true parameter:

E
[
θ̂n
]

= θ̃ .

An estimator is said to be consistent as long as:

lim
n→∞

θ̂n → θ̃ ,

where θ̃ is the true parameter and the convergence is in probability. Independently on the
methodology used to calculate them, it is desirable that estimators fulfil both properties.

The method of moments assumes equalities between population and sample moments at
successive orders [Chave, 2017]. Sample and population moments are equated order by order
until there exists a solvable system of equations that can be uniquely determined by sample
moments. This method is very useful since some analytic results can be easily found but it
leads to consistent but often biased estimators [Chave, 2017].

The maximum likelihood estimation (MLE) is a methodology which considers that the
estimators correspond to those values of θθθ that maximize the likelihood function L. This
methodology is broadly accepted in statistics and provides asymptotically unbiased and con-
sistent estimators, at least for models from the exponential family (see [Pawitan, 2013] p.240).
The theory of MLE is explained in Sec. 5.1.

2.3.1.4 Model comparison

At this point, one has the set of estimators referred to one or two statistical models F(1)
(
x;θθθ1 = θ̂θθ1

)

and F(2)
(
x;θθθ2 = θ̂θθ2

)
maximizing their respective likelihood functions L1 and L2. These sta-

tistical models are referred to as fits. Determining which of both models is more suitable to
fit data can be considered either before or after estimating the parameters θ̂θθ. Methodologies
to determine the model a priori usually use the fact that a different functional behaviour
of the probability distribution is detected. As an example, one can think about a sample
exhibiting a power-law distribution in a certain range but, at a certain value, deviations from
this functional behaviour appear. In this case, more parameters have to be added in order to
exclude these deviations.

Once the parameters maximizing the likelihood function of both models have been deter-
mined, one has two different descriptions of the sample from which different properties from
the population can be inferred. There are several techniques trying to determine which model
is more suitable to describe data. Among the most popular, the Akaike information criterion
(AIC) and the likelihood ratio test (LRT) are explained in Secs. 5.7 and 5.6 respectively.
Specifically, the likelihood ratio test is a useful tool when one desires to compare a simpler
against a more complex model through the likelihood ratio in Eq. (2.13).

As an example, let us consider a sample with the height of a group of people. One could
consider a normal distribution as a plausible and simple statistical model. This PDF is
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characterized by two parameters: the mean and the standard deviation. However, for this
particular example, one could reasonably argue that extra parameters are needed in order to
truncate this distribution. One the one hand, it is not possible to have people with zero or
negative height. On the other hand, let us say that it is very unlikely to observe a human being
whose height is 10 metres. In this sense, one could add more complexity to the statistical
model by adding more parameters. Remark that complexity in this sense implies adding more
parameters to the statistical model and its meaning is rather different from the one used
in the last chapter. Let us consider a simpler model FSim (x;θθθSim) characterized by n

(Sim)
L

parameters and a more complex model FCom (x;θθθCom) characterized by n
(Com)
L parameters

(n(Com)
L > n

(Sim)
L ). As it occurs in this example, it is usual that the simpler model is a limit

case of the more complex one. In this case, it is said the the simpler model is nested into the
more complex one. It is obvious that the more parameters in the statistical model, the higher
will be the likelihood. However, at a certain point, adding more parameters will not have
a significant improvement. The limit case results in overfitting: the statistical model is in
perfect agreement with data but it is not useful to infer information from the population. For
instance, if the probability (given by the simpler statistical model) to observe an individual
higher than 5 metres is extremely small, the fact of adding an upper-truncation at this value
to the simpler model will not bring a significant improvement. Despite the likelihood might
be higher, the cost of adding one more parameter does not offer a better explanation. As a
rule of thumb, the Occam’s razor criterion is applied and, if there are two ways to describe
data, the simpler will be the preferred one. For more details about the likelihood ratio test,
see Sec. 5.6.

At the end of these procedures, independently on whether model selection has been done
previously or after parameter estimation, one has a unique fit as a candidate. Note that
this does not imply that this model corresponds to that from the population from which the
dataset has been sampled from. In order to determine whether it is reasonable or not, on has
to perform a goodness-of-fit test (see next section and Sec. 5.4 for more details).

2.3.1.5 Statistical hypothesis testing

Statistical hypothesis testing is a procedure within the context of statistical inference which
tries to test the validity of a statement. One can assume that the population distribution or
some of its parameters are unknown. Let us consider a common framework in which hypothesis
testing deals with statements referred to these unknown parameters.

The general procedure relies on a statement, usually called null hypothesis H0. The main
purpose of statistical hypothesis testing is to determine whether this statement or hypothesis
is reasonable or not against an alternative hypothesis H1 based on the information in the
sample or samples. There are two different modalities of hypothesis tests depending on how
the null hypothesis is formulated. A test is one-sided when the alternative hypothesis is uni-
directional. For instance, let us consider as a null hypothesis H0 that the population mean µ̃
is greater or equal than a certain value µ0, H0 : µ̃ ≥ µ0. The alternative hypothesis can just
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take the opposite direction, which is H1 : µ̃ < µ0. A test is two-sided as long as the alternate
hypothesis can take two different directions. For instance, in this case let us slightly change
the previous null hypothesis by this statement: H0 : µ̃ = µ0. In this case, the alternative
hypothesis can take two different directions: H1 : µ̃ < µ0 or H1 : µ̃ > µ0.

Once the null and alternative hypothesis are established, one has to impose a significance
level α to the statistical test. Rejecting H0 when it is actually true is known as type I error or
false positive [Chave, 2017]. The significance level corresponds to the probability of obtaining
a false positive:

α = P (Rejecting H0|H0 is true) . (2.15)

A significance α = 0.05 implies that the investigator risks that the null hypothesis will be
rejected in just one out of twenty samples when it was actually true. This corresponds to a
confidence level CL = 1− α = 0.95.

One could also be in a situation in which no statistical evidences are found to reject H0
when it is actually false. The non-rejection of the null hypothesis when it is false is known as
type II error or false negative, whose probability β is:

β = P (Non-Rejecting H0|H0 is false) . (2.16)

The power of the test is the ability of rejecting the null hypothesis when it is false. The power
is thus given by the complementary probability of β:

1− β = P (Rejecting H0|H0 is false) . (2.17)

The desirable situation for statistical testing is that in which the power is large and the signif-
icance level is small. In this context, the Neyman and Pearson lemma [Neyman et al., 1933]
states that, given a sample {x} from a statistical model F characterized by the parameters θθθ
and likelihood function L(θθθ), one can formulate the next null and alternative hypotheses:

H0 : θθθ = θθθ1 (2.18)
H1 : θθθ = θθθ2 (2.19)

Both hypotheses are thus characterized by two likelihood functions L1(θθθ1) and L2(θθθ2) and a
likelihood ratio R can be computed. The hypothesis test with the highest power for a given
significance level α must fulfil:

R > C for each sample inside the rejection region , (2.20)

and
R ≤ C for each sample outside the rejection region , (2.21)

where C is a positive constant which fulfils P (R > C|H0 is true) = α. In other words, among
all the statistical tests assuming a significance level α, the likelihood ratio test is the one
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maximizing the power. Therefore, the best rejection region of size α is provided by this
lemma.

Provided that the best rejection region is defined, the next step in the statistical hypothesis-
testing consists in choosing a test statistic. At this point, the sample or samples play the
important role. The test statistic can be computed independently on whether its distribution
is known or not. However, it is preferable to choose a statistic whose theoretical distribu-
tion is known. Nevertheless, sometimes the conditions are not supported by any theoretical
background and the distribution of the statistic may be estimated by means of Monte Carlo
simulations (see Sec. 5.4.1).

Once the statistic has been determined from the sample or samples information, a decision
must be taken in order to reject or not the null hypothesis. Given a significance level α, the
test statistic can acquire a value either inside or outside the rejection region, where the null
hypothesis is either rejected or not rejected. The rejection region is delimited by the critical
values of the statistic, which can be obtained by the percentiles of its distribution. Note that
the word critical in this context has nothing to the with the concepts of criticality exposed in
the previous chapter. This decision is taken either based on the critical value of the statistic
or on the p-value (pvalue). Under the assumption that the null hypothesis is true, the p-value
is the probability to find a test statistic as extreme as the one that has been observed. In
this sense, the p-value corresponds to a quantitative measure of statistical significance. If the
distribution of the test statistic is known, the p-value can be easily found. A p-value smaller
than the significance level α implies the rejection of H0. In this case, it is said that the result
is statistically significant. Coming back to the example of α = 0.05, assuming that H0 is true,
finding a pvalue < α implies that the probability to find a value of the statistic as extreme as
the one in the sample is less than a 5%. Therefore, the value of the statistic obtained from
that sample is considered unlikely unlikely and the null hypothesis is rejected.

Note that the non rejection of the null hypothesis does not imply in any case that it is
a true statement. The non-rejection means that there is no enough statistical evidence to
reject H0. In any case, the non-rejection implies that the null hypothesis is accepted. The
only conclusive result is the one rejecting the null hypothesis and accepting the alternative.
The same null hypothesis H0 can be tested by using different statistics leading to different
p-values. If one of them is below the significance level α, this is enough statistical evidence to
declare that H0 is rejected.

The hypothesis testing can be summarized by the following points:

1. Formulate the null and alternative hypothesis.

2. Establish a significance level α.

3. Select and compute a statistic z.

4. Compute the p-value (pvalue) either from its analytical distribution or by Monte-Carlo
simulations.



46

5. Decision based on pvalue:

• pvalue < α =⇒ H0 rejectable.
• pvalue ≥ α =⇒ H0 non-rejectable.

One important application of statistical hypothesis testing along this PhD Thesis relies on
the goodness-of-fit test. This test has a null hypothesis which states that the fit FX

(
x;θθθ = θ̂̂θ̂θ

)

which has been proposed to describe data is actually the same as the statistical model charac-
terizing the entire population. If not enough evidences are found to reject this null hypothesis,
then FX

(
x;θθθ = θ̂̂θ̂θ

)
is considered to be a plausible statistical model. For more details about

the goodness-of-fit test, see Sec. 5.4.
Hypothesis testing is also applied to compare different power-law exponents (Sec. 5.9),

whether different datasets have been sampled from the same population (Sec. 5.8) and it is
fundamental piece for the tools for model comparison in Sec. 2.3.1.4.

2.3.2 Summary of the general procedure to characterize the distri-
bution of an avalanche observable

Let us assume a sample of size n of an avalanche observable X , e.g. avalanche energy. The
distribution FX (x;θθθ) characterizing this observable is unknown. Due to the relevance of
power-law distributions that has been discussed so for, the parameters in θθθ should give infor-
mation about the power-law exponent and the range in which this exponent holds. The range
is important since the property of scale invariance for empirical datasets is stronger when the
range with lack of characteristic scales is broader. The importance of the exponent is capital
because it determines the universality class to which the system belongs to.

Let us expose the general procedure:

1. Model proposals: A set of statistical models exhibiting lack of characteristic scales
is proposed. The first model is simpler and is characterized by a number n(Sim)

L of
parameters.

FSim (x;θθθSim) . (2.22)

The second model is more complex in the sense that it is characterized by n(Com)
L (with

n
(Com)
L > n

(Sim)
L ):

FCom (x;θθθCom) . (2.23)

In general, the two models exhibiting pure power-law behaviour are the untruncated
and truncated power-law distributions (see Sec. 5.2 for more details ). In this case, the
untruncated power-law is a limiting case of the truncated power-law distribution.

2. Estimation of parameters: Maximum likelihood estimation (MLE) of the parameters.
One obtains the set of parameters θ̂̂θ̂θ that maximize the likelihood function. At the end
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of this procedure, one might have two different fits:

FSim
(
x; θ̂̂θ̂θSim

)
. (2.24)

FCom
(
x; θ̂̂θ̂θCom

)
. (2.25)

3. Model comparison: One can decide which model is good enough to describe data by
means of the likelihood ratio test (LRT) or the Akaike information criterion (AIC). At
the end of this procedure one might have either the simpler or the more complex model.
From here to the end of this summary, let us consider that the fit is FX

(
x; θ̂̂θ̂θ

)
.

4. Statistical goodness-of-fit hypothesis testing: Formulate the null and alternative
hypothesis:

• H0: Data have been sampled from FX
(
x; θ̂̂θ̂θ

)
.

• H1: Data have not been sampled from FX
(
x; θ̂̂θ̂θ

)
.

By means of the goodness-of-fit hypothesis testing procedure, one can determine with a
significance level α whether the null hypothesis is rejectable or not.

5. Conclusion: If the statistical hypothesis testing yields non rejection of the null hypoth-
esis, that means that there is not enough statistical evidence to reject the hypothesis
that the proposed statistical model with the set of estimators θ̂̂θ̂θ is suitable to describe
data.
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Chapter 3

Earthquakes and Labquakes: Earth
and Laboratory

In this chapter, the basic concepts that are needed in order to motivate and explain the
two phenomena of interest for the works developed in this thesis are introduced. A general
introduction to the physics of materials is presented by including the main definitions of
Continuum Mechanics as well as the Mohr-Coulomb failure criterion. After an introductory
overview of physics of materials is presented, one is able to understand the main concepts about
physics of earthquakes. The main statistical laws in seismology are also presented. Finally,
the state of the art of labquakes (synthetic earthquakes generated in laboratory compression
experiments) is presented by exposing the similarities and differences with real earthquakes.

49
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3.1 Mechanics of materials
Rheology is a sub-field of Continuum Mechanics that studies the response of materials when
they are subjected to stresses. The main purpose of this section is to give a brief overview
about the main definitions about physics of materials so as to present the basic concepts of
rheology that will be useful to understand labquake and earthquake physics.

3.1.1 General concepts in Continuum Mechanics
Let us assume that the continuum hypothesis for materials [Lautrup, 2011] is valid and let
us assume that materials are isotropic but not necessarily homogeneous. In this context, a
material can be modelled as an object which is composed by cubic blocks. The coordinate
system is denoted by the orthonormal vectors ê1, ê2, ê3, which are normal to the planes 1, 2
and 3 respectively (see Fig. 3.1). Let us focus on one of these cubic blocks and let us suppose
that it is subjected to a force per unit area, known as stress, which is acting over its faces.
Given that the force can acquire three components for each of the faces of the cube, the stress
sss has to be understood as a tensorial magnitude whose components skl correspond to the
stress in the k-th direction (k = 1, 2, 3) applied on the l-th plane of the cube (l = 1, 2, 3). A
schematic representation of the stress tensor and its components in a cube is shown in Fig. 3.1.

ê1

ê2

ê3

s31

s21s11

s33

s23s13

s32

s22s12

Plane 2

Plane 3

Plane 1

Fig. 3.1: Representation of the stress tensor sss for a cubic element of a material. Note that within this choice
of axes compression is negative.
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A stress applied on a surface can be decomposed in normal σn and shear τ components
which are perpendicular and parallel to the surface respectively. Normal and shear components
correspond to the diagonal and non-diagonal terms of the stress tensor. By the principle of
conservation of angular momentum [Lautrup, 2011], it can be shown that the stress tensor is
symmetric. Therefore, there will always exist a coordinate system in which it is diagonal. The
eigenvalues of the stress tensor are usually called principal stresses s1, s2, s3 and correspond
to forces which are perpendicular among them. Taking into account that compression is
negative (in this convention), these eigenvalues are usually called maximum, intermediate and
minimum principal stresses |s1| ≥ |s2| ≥ |s3|.

Let us now suppose that a material may experience a deformation under stress. Let us
consider that rrr is a vector that describes the position of a point element of this material and
let us define the displacement field uuu (rrr) as the vector that characterizes the displacement of
this point. The k-th component of the displacement of a nearby point originally placed at
rrr + drrr can be approximated at first order by:

uk (rrr + drrr) ' uk (rrr) +
3∑

l=1

∂uk (rrr)
∂rl

drl = uk (rrr) + duk .

The last term in this equation can be modified:

duk = 1
2

(
∂uk (rrr)
∂rl

+ ∂ul (rrr)
∂rk

)
drl + 1

2

(
∂uk (rrr)
∂rl

− ∂ul (rrr)
∂rk

)
drl = (εkl + Φkl) drl ,

in such a way that two different tensors can be defined in this last expression: ΦΦΦ is a rigid
body rotation [Stein and Wysession, 2003] and εεε corresponds to the strain tensor, whose
components are:

εkl = 1
2

(
∂uk (rrr)
∂rl

+ ∂ul (rrr)
∂rk

)
. (3.1)

The strain tensor is, by construction, symmetric and thus, there exists a basis where it is
diagonal. This system of axes is usually known as principal strain axes and the sum of the
eigenvalues or principal strains (trace of the strain tensor) corresponds to a relative volumetric
change of the material. Therefore, no volume variations will occur if the trace of the strain
tensor is zero.

A material may exhibit different mechanical regimes depending on the applied stress, its
composition, internal structure, etc. (see Fig. 3.2). An isotropic material is said to be in
elastic regime when the stress and strain tensors are proportional through a set of constants
called elastic moduli. The elastic regime is characterized by the Hooke’s law:

skl = 2µεkl + λδkl
∑

j

εjj , (3.2)

where µ and λ are the Lamé elastic moduli and have units of Pa=Nm−2. In this regime the
deformation is reversible: if the applied stress is removed, the material will not exhibit any
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permanent deformation (see Fig. 3.2(a) before fracture). A material may overcome the elastic
regime at the yielding point sc. From that point, the material can exhibit different non-linear
regimes. A material is said to be perfectly brittle when the yielding stress coincides with
the failure stress sf and a big event breaks the material (see Fig. 3.2(a)). A perfectly-plastic
behaviour is achieved above the yielding point if the stress is constant for all the strains. A
general plastic behaviour is achieved when there exists a functional relationship (linear or
not) between the applied stress and the strain above the yielding point (see Fig. 3.2(c)). In
any of the plastic regimes the deformation is irreversible: if the applied stress is removed,
the material will exhibit a permanent deformation (see Fig. 3.2(c)). A brittle-plastic material
might overcome the plastic regime at sf > sc and experience failure (see Fig. 3.2(b)).

Fig. 3.2: Mechanical response of materials exhibiting perfectly brittle (a), brittle plastic (b) and plasticity
(c) regimes. Figure extracted and modified from Stein and Wysession [2003].

3.1.1.1 Mohr-Coulomb failure criterion

Determining when a material is going to collapse under applied stress is one of the cornerstones
in science of materials. There are several ways to establish a failure criterion sf = f (sss) as
a function of the components of the stress tensor. The Mohr-Coulomb failure criterion is a
mathematical model which aims to determine failure of brittle materials (sf = sc). The Mohr-
Coulomb criterion considers that the intermediate principal stress s2 does not have influence
on the failure criteria. There are other failure criteria taking into account the influence of
the intermediate principal stress and there is still debate on whether they have an influence
or not on the failure criteria [Bernt Aadnøy, 2010]. Nevertheless, due to its mathematical
simplicity and easy physical interpretation, the Mohr-Coulomb failure criterion is one of the
most accepted in literature.

The Mohr-Coulomb failure criterion assumes that the failure will occur in a planar surface
of the material which is named as rupture surface. Given that the important phenomenon
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Fig. 3.3: Geometric configuration of the Mohr-Coulomb failure criterion on the section of a rectangular
sample. {ê1̂e1̂e1, ê3̂e3̂e3} correspond to the principal axes where the stresses s1 and s3 (in green) are acting. The red
line corresponds to the rupture surface and {ê′1̂e′1̂e′1, ê′3̂e′3̂e′3} (in blue) are normal and tangential to this surface.

occurs in a surface and the influence of the intermediate stress is assumed to be negligible, the
problem can be solved in a two-dimensional system. Let us consider that, in the principal axes
coordinate system, the largest and the smaller principal stress are s1 and s3 with |s1| ≥ |s3|.
Note that, under the convention that compressive stresses are negative, these principal stresses
are considered in absolute value (|s1| ≥ |s3|). Let us denote as {ê1̂e1̂e1, ê3̂e3̂e3} the principal axes
system, where the stress tensor is diagonal, and let us consider the angle θ between the vector
ê′1̂e
′
1̂e
′
1 normal to the rupture surface and the direction of the principal stress ê1̂e1̂e1 (see Fig. 3.3). In
order to find the components of the stress tensor in the coordinate system given by {ê′1̂e′1̂e′1, ê′3̂e′3̂e′3},
one needs to perform a rotation of angle θ:

(
s
′
11 = σn τ
τ s

′
33

)
= sss

′ =
(

cos θ sin θ
− sin θ cos θ

)(
s1 0
0 s3

)(
cos θ − sin θ
sin θ cos θ

)
(3.3)

=
(
s1 cos2 θ + s3 sin2 θ (s1 − s3) sin θ cos θ
(s1 − s3) sin θ cos θ s3 cos2 θ + s1 sin2 θ

)
(3.4)

=
(
s1+s3

2 + s1−s3
2 cos 2θ s3−s1

2 sin 2θ
s3−s1

2 sin 2θ s1+s3
2 + s3−s1

2 cos 2θ

)
, (3.5)

where the normal component s′11 corresponds to σn.
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The normal σn and shear τ components are thus represented by:

σn = s1 + s3

2 + s1 − s3

2 cos 2θ , (3.6)

τ = s3 − s1

2 sin 2θ . (3.7)

Fig. 3.4: Mohr-circle: Given a material whose stress tensor has principal components s1 and s3, all the
possible rupture planes are represented by this Mohr-circle. For a rupture plane whose normal vector forms
an angle θ with the principal axis of the material, the normal and critical shear stresses σn and τf will lie in
the point of the circle determined by the angle 2θ measured clockwise with respect the −σn axis.

Note that these equations correspond to the parametric equations of a circumference with
radius s3−s1

2 centred at
(
s1+s3

2 , 0
)
. This circumference in the σn-τ plane is usually known as

the Mohr circle (see Fig. 3.4). In other words, all the possible orientations of the rupture
planes are represented in the Mohr circle. The values of σn and τ over the rupture plane are
given by the point in the circle placed at angle 2θ, measured clockwise from the −σn axis (see
Fig. 3.4).

In this framework, the Mohr-Coulomb criterion states that failure will occur when the
shear stress on the rupture planes surpasses the critical value τf given by:

τf = C − µ′σn , (3.8)
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where C is the cohesion and µ′ the effective fault friction coefficient (including the contribution
of the pore pressure [Cocco and Rice, 2002; King et al., 1994]). Care must be taken with the
convention of signs in the normal stress, which is not the same in geophysics than in solid
mechanics. Remark that convection in this work is the one from geophysics, which takes the
negative sign for compression, this is the reason for the negative sign before µ′. From this
failure criterion it is natural to define the Coulomb stress as

C = τ + µ′σn , (3.9)

which signals failure by C > C. Therefore, the Coulomb stress has to be understood as a linear
combination of the normal and shear stresses. It must be mentioned that the nomenclature
used in seismology for the Coulomb stress, CFS, has been omitted in order to avoid confusion
with other symbols used along this PhD thesis. The Coulomb stress is relevant when studying
models for earthquake forecasting (see Sec. 3.2.2.5), specially in the case of physics-based
models, where the forecasted rates of events depend on the Coulomb stresses calculated in the
region of interest (see Sec. 3.2.2.5 for more details).

3.2 Seismology
The aim of this section is to expose general concepts of seismology that are relevant to un-
derstand the works exposed in this PhD thesis.

3.2.1 Physics of Earthquakes
3.2.1.1 Faulting geometry

Let us consider as “common” earthquakes those that have been induced either by tectonic
driving or by precedent shocks [Stein et al., 1992; King et al., 1994; Steacy et al., 2005; Nandan
et al., 2016; Ishibe et al., 2015]. The geometrical spaces where these common earthquakes
occur are called faults. Although the real geometry of a fault can be very complex, the usual
approach is to consider faults as planar surfaces separating tectonic blocks. In this sense,
a fault can be understood as the rupture surface in the Mohr-Coulomb theory exposed in
Sec. 3.1.1.1. Due to the internal dynamics of the Earth, stress is accumulated in some regions.
These regions experience failure whenever that stress surpasses the strength of the material
and tectonic blocks move with respect to each other. That failure is the earthquake. The
materials that conform the Earth crust are constantly under stresses and suffer deformations
with respect their original length, area or volume. In addition to tectonic driving, it must be
mentioned that there are other mechanisms through which the stress changes in a region: by
volcanic activity [Segall et al., 2013] or by artificial means such as injection of fluids [Cesca
et al., 2014] or aquifer withdrawal [Shirzaei et al., 2016].
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Fig. 3.5: Fault geometry shown for the foot wall block. The fault plane is defined by the normal vector
n̂ and the sense of the movement is determined by the slip vector ˆ̀. The vector pointing to the geographic
north forms an angle Θ with the axis x1, x3 points upwards and x2 is perpendicular to x1 and x3. The focal
mechanism is defined by the angles Θ, d and ρ. Figure modified from Stein and Wysession [2003].

In a general case in which the tectonic blocks are not at the same height, the block situated
at the upper side of the fault is known as the hanging-wall block whereas the one placed at the
lower side is called foot-wall block. Figure 3.5 shows the foot wall block in order to illustrate
the standard configuration of fault geometry. The fault plane is determined by the normal
vector to the fault n̂̂n̂n. The slip vector ˆ̀̀̂̀̂ is contained in the fault lane (n̂̂n̂n · ˆ̀̀̂̀̂ = 0) and determines
the direction in which the hanging wall block moved with respect to the foot wall block. The
system of axes {x1x1x1,x2x2x2,x3x3x3} is chosen in such a way that x1x1x1 is defined by the intersection of
the fault plane with the Earth surface, the axis x3x3x3 is normal to the Earth surface and x2x2x2 is
perpendicular to x1x1x1 and x3x3x3 (see Fig. 3.5). Three different angles can be defined in order to
determine the fault geometry: the strike Θ, dip d, and rake ρ. The strike angle Θ takes values
from 0◦ to 360◦ and is defined by x1x1x1 and the vector pointing to the geographic North. The
dip angle d acquires values from 0◦ to 90◦ and is defined by x2x2x2 and the orientation of the fault
plane. The dip d is measured from the −x2x2x2 axis and determines the sense of the axis x1x1x1 in
such away that d ≤ 90◦. The rake angle ρ takes values from −180◦ to 180◦ and arises from
the intersection of the slip vector ˆ̀̀̂̀̂ with the axis x1x1x1. By considering x1x1x1 as a reference, the rake
ρ is measured counter-clockwise whereas the strike Θ is measured clockwise. In seismology,
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this set of angles is known as the focal mechanism of the earthquake.
Assuming a coordinate system in which the stress tensor is diagonal and one axis is normal

to the Earth surface, different styles of faulting can be determined depending on the distri-
bution of the stresses. The general classification considers three styles of faulting: normal,
strike-slip and thrust (see Fig. 3.6). A sub-classification can be done for strike-slip faults de-
pending on the relative movement of both sub-blocks. By considering the frame of reference

Fig. 3.6: Different faulting regimes: (top) normal, (center) strike-slip and (down) thrust. The parallelepiped
at left corresponds to two different tectonic blocks subjected to the different compressing stress |s1| ≥ |s2| ≥ |s3|
and moving with respect each other. Beach-ball diagrams are presented for each case: compressional quadrants
are shadowed and dilatational quadrants are white. Figure modified from Vavryčuk [2015].
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at one tectonic block facing the other block, right-lateral strike-slip faults are those where the
other tectonic block moves to the right, whereas left-lateral strike-slip faults are those where
it moves to the left. It is interesting to note that faulting regimes can be also determined
by the rake angle: ρ = 90◦ for pure thrust faults, ρ = −90◦ for pure normal faults, ρ = 0◦
for pure left-lateral strike slip and ρ = 180◦ for pure right-lateral strike slip. In reality, this
classification is more flexible and each style of faulting can be characterized by a range of rake
angles ρ:

• Thrust: 45◦ ≤ ρ ≤ 135◦

• Normal: −135◦ ≤ ρ ≤ −45◦

• Strike-slip left-lateral: −45◦ ≤ ρ ≤ 45◦

• Strike-slip right-lateral: 135◦ ≤ ρ ≤ 180◦ and −180◦ ≤ ρ ≤ −135◦

The normal n̂̂n̂n and slip ˆ̀̀̂̀̂ vectors as a function of the strike, dip and rake angles are presented
in Sec. 8.1.1.

3.2.1.2 Nodal planes

The stored elastic energy before an earthquake is released in the form of pressure waves
and heat. Given the nature of the process through which these pressure waves have been
generated, they are commonly referred as seismic waves. In this context, an earthquake can
be understood as a point source radiating seismic waves when the surrounding stress field
has experienced some variations. Part of these seismic waves is detected as a perturbation
by means of seismometers, from which the location of the source where the earthquake has
occurred can be inferred. This point source is called hypocenter and is determined by three
spatial coordinates: latitude, longitude and depth. The projection of the hypocenter to the
surface is called epicenter. More details about the detection of earthquakes are exposed in
Sec. 4.2.

The first waves detected by a seismometer are longitudinal waves which compress and
dilatate the medium in the propagation direction of the perturbation. Given that these waves
are the first ones arriving, they are called Primary (P) waves. The seismometer detects Sec-
ondary (S) shear waves which are slower than P waves and are transversal to the propagation
direction of the perturbation. All these perturbations can be detected by different seismome-
ters at different sites. Each seismometer generates a seismogram which is crucial to determine
the fault geometry and the focal mechanism.

Depending on the location of the seismometer, the first detected motions corresponding to
P waves arriving to the seismometer from below will bring the material towards the position
of the seismometer (compression) or away from it (dilatation). This movement generates a
vertical component in the seismometer pointing upwards or downwards when the material
is either compressing or dilating. In this sense, the first motions detected in an earthquake
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Fig. 3.7: Simple example of a right-lateral strike-slip earthquake in a vertical fault whose first motions are
detected at two different stations. For the station placed in the left, the first motion points upwards (“Up")
whereas for the one placed in the left it points downwards (“Down"). The nodal planes separate compressive
from dilatational quadrants. The shadowed nodal plane corresponds to the real fault plane. Note that it is not
possible to distinguish which of them is the actual fault plane given these first motions data. Figure extracted
from Stein and Wysession [2003].

define four quadrants (see Fig. 3.7) [Stein and Wysession, 2003]. These quadrants are defined
by the intersection of two planes which are perpendicular to each other. These planes, which
are called nodal planes, separate the quadrants where the material is compressed from those
where it experiences dilatation. One of these nodal planes corresponds to the real fault plane.
Nevertheless, given that the first motions can be very similar for both nodal planes, there
usually exists an ambiguity in their association to the real and the fictitious one. Despite
additional geological information can be used in order to clearly discern which is the actual
fault plane, it is not always possible to determine it unambiguously [Stein and Wysession,
2003].

A useful tool to graphically illustrate the nodal planes and the focal mechanism of an
earthquake are beach-ball diagrams (see Fig. 3.6). Beach ball diagrams correspond to the
stereographic projection of the nodal planes onto a circle. One can roughly understand that
the material is moving from white to shadowed regions of the circle. Depending on each
focal mechanism, each of these quadrants will be compressional or dilatational. The beach
balls associated to each focal mechanism are shown in Fig. 3.6 and are a very useful pictorial
resource to see which is the rupture tendency for an earthquake sequence occurring in a fault.

As already mentioned, it is not possible to determine the fault plane from the first motions
unambiguously and it should be necessary to have also the focal mechanism in the auxiliary
plane [Stein and Wysession, 2003]. It is thus necessary to establish a way to compute the
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focal mechanism in the complementary plane from the focal mechanism in the other one and
vice-versa. For more details about how to compute the focal mechanism in the other plane,
see Sec. 8.2.4.

3.2.2 Statistical seismology
Whenever an earthquake occurs, some observables characterizing it, such as the spatial loca-
tion or the moment magnitude, can be reported in an earthquake catalog for further statistical
analysis. As a general approach, these observables are considered as random variables that
follow a certain probability distribution. This is the starting point of statistical seismology
[Kagan, 2013]. In this framework, it is important to determine the existence of statistical
patterns in order to associate a probability of occurrence to a certain event. These statistical
patterns can reflect the existence of temporal correlations, a scale-free behaviour of the prob-
ability distribution of some observables, etc. The knowledge of these statistical patterns is a
fundamental step for the development of earthquake forecasting.

Two main different approaches can be assumed when studying statistical seismology [Sor-
nette and Werner, 2011]:

• Holistic approach: The statistical analysis of large catalogs is performed without much
focusing on the geophysical details of every earthquake [Kagan, 1999; Godano and
Pingue, 2000]. There is no reason to assign a hierarchy of events and there are no
earthquakes which are more important than other ones. In this sense, the holistic ap-
proach defends a universal point of view of the statistical seismological laws.

• Reduccionist approach: Detailed modelling and analysis for the understanding of partic-
ular faults. Much attention is paid in the geophysical details: classification of different
environments, stress conditions, fault types, rock properties, temperature, underwater
earthquakes, clusters, etc. [Zaliapin and Ben-Zion, 2013].

In statistical terms, one can consider that a phenomenon is described by a population
which is power-law distributed with a certain exponent. One can select samples from that
population in order to perform statistical inference. However, these samples are not necessarily
power-law distributed with exactly the same exponent. Depending on the sample sizes, there
exists a range of values for which exponents are compatible (see Sec. 5.9). Undoubtedly, it is
important to determine whether these differences are statistically significant or not in order
to see whether universality can be rejected or not.
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3.2.2.1 The Gutenberg-Richter law

One of the most important laws in statistical seismology is the one that tries to characterize
the probability distribution of earthquake sizes. The knowledge of this distribution is crucial
in models for earthquake forecasting [Scholz, 2019] since it associates probabilities to the
different earthquake sizes.

First of all, as it was explained in the previous section, one needs a convenient way to
measure earthquake sizes. Among the different scales that one can choose for this purpose,
the one which is considered along this PhD thesis is the moment magnitude scale. This
scale is widely accepted to represent the size of an earthquake since it is related with a
physical quantity, the seismic moment. Moreover, contrarily to the Ricther magnitude [Stein
and Wysession, 2003], this scale does not saturate for large earthquakes. The scalar seismic
moment M [Brune, 1968; Yeats et al., 1997; Stein and Wysession, 2003; Scholz, 2019] is
defined as:

M = µ`Ar , (3.10)

where µ is the Lamé elastic shear modulus from Eq. (3.2), ` is the mean slip originated by
the earthquake and Ar is the rupture area. The moment magnitude has energy units and can
be easily interpreted since it keeps the idea that, the larger the rupture is (the average slip
and the ruptured area caused by the earthquake) the larger the size one can associate to that
earthquake. The shear modulus depends on the medium and it is reasonable to think that
the process to originate the rupture on a material will also depend on its properties.

At this point one could wonder: Is the moment magnitude somehow related with the energy
released by the earthquake? Whether the ratio of seismically radiated energy over the seismic
moment is independent on the moment magnitude is still an unsolved question [Kanamori
and Brodsky, 2004]. This ratio may depend on different earthquake parameters such as
moment magnitude and the depth of the source [Brodsky and Kanamori, 2001; Vassiliou and
Kanamori, 1982; Izutani and Kanamori, 2001; Kanamori and Heaton, 2013]. On the contrary,
the seismically radiated energy is in some cases underestimated such as the ratio may be
considered as constant [Ide and Beroza, 2001; Wang, 2015; Bilek et al., 2004; Zollo et al.,
2014]. The value of this unique factor seems to be Er

M
= 10−4.6 [Bormann, 2015], where Er is

the energy radiated by the earthquake.
The moment magnitude m is related to the seismic moment according to:

m = 2
3

(
log10

M

M0
− 9.1

)
, (3.11)

where the moment magnitude m is dimensionless and M0 is a reference moment magnitude
of 1 Nm. More details about the moment magnitude scale are exposed in Sec. 4.2.2.

As soon as there is a way of quantifying earthquake sizes, one is in a position to consider
earthquake magnitude as a random variable m which follows a certain probability distribution.
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The distribution of earthquake magnitudes is known as the Gutenberg-Richter (GR)
law [Utsu, 1999]. This law states that, above a lower cut-off value, earthquake magnitudes
follow an exponential distribution; in terms of the magnitude PDF

fm(m) = (b ln 10)10−b(m−mmin) ∝ 10−bm , (3.12)

defined for m ≥ mmin, with m the moment magnitude, mmin the lower cut-off in magnitude
and b the so called b-value which turns out to be close to one (b ' 1). As the b−value is directly
related to the log-ratio between the number of small and large earthquakes, variations in b can
be associated with the ability of an earthquake rupture to propagate (more large events, low b)
or not (less large events, high b). A straightforward property of the exponential distribution
leads to the fact that the rate (the number per unit time of earthquakes above a certain
magnitude m) is also a decreasing exponential function of the magnitude, with the same
b-value.

The GR law is a power-law distribution when it is written as a function of the seismic
moment M as can be derived from Eqs. (3.11) and (3.12):

fM(M) = 2
3

b

Mmin

(
M

Mmin

)−(1+ 2
3 b)

= γ − 1
Mmin

(
M

Mmin

)−γM
, (3.13)

where it has been conveniently defined γM = 1 + 2
3b and Mmin corresponds to the value of

the seismic moment when the cut-off magnitude mmin is introduced in Eq. (3.11). Note that
this PDF has support M ∈ [Mmin,+∞) as b > 0, then γM > 1. One of the most interesting
properties of this law is that, given the measured values of the exponent γM , the first moment
of the seismic moment diverges (see Sec. 5.2.1). This fact implies that the mean is not well
defined and the central limit theorem cannot be applied [Corral and Font-Clos, 2013].

This genuine description of the GR law does not take into account all the deviations at
the tail from the expected behaviour. Corral and González [2019] checked that a different be-
haviour appeared for moment magnitudes larger than 7.4 in global earthquakes. The authors
proposed that the tail could be described by another power-law behaviour with a b-value close
to b ' 1.5. Serra and Corral [2017] proposed several statistical models with the aim of describ-
ing the tail of the GR law. If one desires a unique power-law behaviour, one can exclude all
these big events that deviate from the power-law simply by imposing an upper cut-off Mmax

to this statistical law and properly normalizing the PDF (see Sec. 5.2.2). Note that the fact of
modelling the tail of the GR law by an exponential tail or working with an upper truncation
eliminates the divergence of the first moment but the restricted scale invariance property can
just be considered in a narrower range.

Independently of the deviations appearing in the tail of the GR law, it has been long
debated [Kamer and Hiemer, 2015] whether the b-value is essentially universal [Kagan, 2013]
(accordingly to the holistic approach) or, on the contrary, it is affected by different geophysical
conditions (as the reductionist approach would support). Some studies [Schorlemmer et al.,
2005; Narteau et al., 2009] have correlated the b−value with the focal mechanism [Wyss and
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Wiemer, 2000]. These studies indicate that (at least for California, for a long time period)
b ≈ 1.03 for normal events, b ≈ 0.87 for strike-slip events, and b ≈ 0.79 for thrust events
[Schorlemmer et al., 2005].

As it has been already mentioned, this PhD thesis will discuss whether this seismological
law can be considered to be universal (see Chpt. 7) or whether it is affected by geophysical
quantities, such as the Coulomb stress increase (see Chpt. 8).

3.2.2.2 The Omori law

The Omori law [Omori, 1894; Utsu et al., 1995] is the main seismological law which reflects
the temporal clustering of earthquakes. The mere fact of considering clusters of earthquakes
is somehow making differences among them; which is somewhat in contradiction with the
holistic approach of assigning the same relevance to all the events.

Let us consider a big earthquake, which will be named as mainshock, occurring at a time
tMS and a sequence of smaller subsequent earthquakes appearing at a time t ( t > tMS) after
this main event. These smaller earthquakes are known as aftershocks and are specially relevant
in earthquake forecasting for being potentially hazardous [Scholz, 2019]. The aftershocks
have been somehow triggered by the mainshock and this implies the existence of a temporal
dependence. The hallmark of these temporal dependence can be mathematically expressed
by means of the Omori law:

dnAS = rAS(t)dt = C
(K + t− tMS)π dt , (3.14)

where rAS(t) corresponds to the number nAS of aftershocks per unit time (also called activity
rate) at a time t > tMS. π is known as the Omori exponent and is usually around 1, and C
and K are constants with units. This phenomenological law states that the seismic activity
is very large for small times after a mainshock has occurred and decreases for larger times
as a power-law with exponent π. Therefore, the Omori law reflects that earthquakes tend to
cluster in time.

3.2.2.3 The Productivity law

The productivity law [Helmstetter, 2003] reflects the relationship between earthquake sizes
and the number of aftershocks in a sequence. This law states states that the number of
aftershocks scales with the mainshock size as:

nAS (m) ∝ 10αpm −→ nAS (M) ∝Mαp
2
3 (3.15)

where ∝ denotes proportionality. The number of aftershocks generated by a mainshock is
related to its magnitude (or seismic moment) through the productivity exponent αp > 0.
Despite the measured value of αp clearly depends on which definition of mainshocks and
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aftershocks is considered, this value is found to be robust [Helmstetter, 2003]. This law thus
implies that earthquakes tend to form larger clusters for larger mainshocks.

Under the assumption that the Omori law and the productivity law are valid, the rate of
aftershocks as a function of time and the energy of the mainshock can be written as [Baró i
Urbea, 2015]:

dnAS
dt

(t,M) dt = rAS (t,M) dt = C
M

2
3αp

(K + t− tMS)π dt . (3.16)

This term is relevant in the development of the Epidemic Type Aftershock Sequence (ETAS)
model [Ogata, 1998]. Note that this expression implies that, if different Omori curves for
different mainshock energies are graphically represented, they will collapse into one single
curve when times and the rate of aftershocks are conveniently rescaled [Helmstetter, 2003].

3.2.2.4 The Unified Scaling law of waiting-times

Not only earthquake size is an observable which is of special interest in earthquake forecasting
but one also is concerned about when an event is going to occur. In this sense, one must also
pay attention in the distribution of the time between consecutive events (or waiting-time δ).

Let us consider a certain threshold in magnitudes mTh or seismic moment MTh and a
number nTh of earthquakes whose magnitude is larger or equal than this threshold. The effect
of thresholding results in a new sequence of earthquakes separated the one from another by
a waiting-time δ. By taking into account the spatial degrees of freedom, a regular grid of
cells of size L is considered and waiting-times δ are computed for those consecutive events
whose magnitudes are larger than the threshold and occur in the same cell. According to this
procedure, the four dimensional problem (latitude, longitude, time and earthquake size) has
been reduced to a one dimensional problem where solely the temporal degrees of freedom are
considered.

Bak et al. [2002] proposed the Unified law of waiting-times. By averaging L × L regions
for different thresholds MTh, the unified scaling law of waiting times can be written as:

fδ (δ; 〈δMTh,L〉) = 〈δMTh,L〉−1G
(

δ

〈δMTh,L〉

)
, (3.17)

where G is an universal scaling function and 〈δMTh,L〉 is the mean waiting time for a given
threshold MTh and region sizes L. This equation is true for any value of the threshold MTh

and the size of the region [Corral, 2005a,b].
The waiting-time distribution in earthquakes has been extensively studied and it has been

long debated about its universal features [Corral, 2003, 2004a; Davidsen and Goltz, 2004;
Lindman et al., 2005; Corral and Christensen, 2006; Touati et al., 2009]. The waiting-time
distribution exhibits power-law regimes spanning several orders of magnitude in time [Corral,
2003, 2004a]. This fact is indicative that seismology understood as a marked point process
cannot be described in terms of Poisson processes. It must be mentioned that some authors
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have debated this holistic point of view of the unified scaling law of waiting-times [Davidsen
and Goltz, 2004]. It has been also argued that the power-law distributed waiting-times are
artifacts that appear when a threshold is imposed [Janićević et al., 2016].

3.2.2.5 Earthquake forecasting

One of the main purposes of statistical seismology is to develop models to forecast earthquakes
and thus try to reduce the human and material damages as a consequence of this natural
hazard. Without the aim of reviewing all the kinds of models and methodologies [Scholz, 2019],
one of the most common procedures of earthquake hazard forecasts usually comprises two
stages: in the first one, the rate of events is forecasted, while in the second one, the Gutenberg-
Richter law is applied to those rates in order to obtain the probabilities of occurrence for
each magnitude threshold. In the case of physics-based models, the forecasted rates of events
depend on the Coulomb stresses calculated in the region of interest. These models are variants
of the rate-and-state model by Dieterich [1994]

r(t)dt = r0
[
1 +

(
e−∆C/B − 1

)
e−t/ta

]−1
dt , (3.18)

where r(t) is the rate of events (i.e., aftershocks) at any given time t after a mainshock, r0
is the rate of background seismicity, ∆C is the increase in Coulomb stress induced by the
mainshock, B is a constant, for our purposes, and ta is the characteristic relaxation time
[Dieterich, 1994]. Note that, for short times t << ta and ∆C > 0, the rate-and-state model is
in agreement with an Omori law with exponent π = 1:

r(t)dt '

(
1− e−∆C/B

)−1
r0ta

(e∆C/B − 1)−1
ta + t

dt .

Note that in the application of the Gutenberg-Richter law to the forecasted rate r(t)
given by the previous expression it is implicit that the Coulomb-stress change caused by a
mainshock does not alter the fulfilment of the GR law for the aftershocks, in particular, this
law remains the same no matter whether ∆C is positive or negative. In some sense, r(t)
inherites the dependence of the background rate r0 with the magnitude. Therefore, the rate-
and-state formulation [Dieterich, 1994; Parsons et al., 2000; Toda et al., 2005; Chan et al.,
2012; Cattania et al., 2014, 2015] assumes the fulfillment of the GR law for the incoming
events (aftershocks), with no change in the b−value. This assumption is made when inverting
earthquake rates to obtain stress changes [Seeber and Armbruster, 2000; Dieterich et al., 2000;
Segall et al., 2013]. Physics-based models also assume the magnitude distribution does not
depend on the stress values, so that forecasted rates can be translated into probabilities of
occurrence for different magnitudes.

According to Mohr-Coulomb theory [Narteau et al., 2009; Kanamori and Brodsky, 2004],
thrust faults rupture at much higher Coulomb stress than normal faults (with strike-slip faults
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in between, assuming the same value for the effective fault friction coefficient µ′). When the
stress required to initiate a rupture is higher, stress interactions are enhanced and cracks can
propagate faster in many different directions, yielding larger earthquakes [Narteau et al., 2009],
consistent with the empirically observed b−values for thrust faulting [Schorlemmer et al.,
2005]. Conversely, for lower rupture thresholds, one should find indeed the large b−values
characterizing normal faulting. Despite the threshold for triggering might be different for the
different styles of faulting, the rupture or not of a fault also depends on its previous state.
Chapter 8 is focused on investigating, with rigorous statistical tools, whether the GR law is
affected by the binary choice between positive and negative increases of the Coulomb stress,
using the sequence of events after the 1992 Landers earthquake.

3.3 Earthquakes in the Laboratory: Labquakes
One of the main difficulties in studying earthquakes is the large spatial, temporal and energy
scales involved in these phenomena [Ben-Zion, 2008; Rundle et al., 2003]. Not only these
vast scales are problematic but it is almost impossible to control the Earth as a system to
generate an earthquake at a given time. In this sense, earthquake catalogs are considered
as observational data, where the observer cannot perturb the conditions of the Earth in
order to establish a clear relationship between causes and effects. It has been extensively
discussed whether there exists an experimental system which can generate earthquakes in
such a way that experimental conditions can be somewhat controlled. Given that some of the
main statistical laws in seismology were reproduced in rock fracture experiments [Mogi, 1967;
Scholz, 1968; Davidsen et al., 2007], brittle fracture of materials has been found to be a good
experimental mechanism to represent earthquakes at laboratory scale .

Power-law distributions were found for the different definitions of fracture-size [Main, 1996;
Alava et al., 2006; Davidsen et al., 2007]. Despite the differences between the reported ex-
ponents with those found in real earthquakes, it is quite accepted in literature that a GR
law is found for laboratory experiments of rock-fracture. Not only the exponents were dif-
ferent but they were not stationary and exhibited temporal variations as the materials got
damaged [Alava et al., 2006].

The Omori law was also found in rock-fracture experiments [Mogi, 1967; Hirata, 1987].
Note that this law turns out to be impossible to analyse in rock-fracture experiments if one
considers the big fracture as a mainschock. The different Omori laws analysed in labora-
tory experiments suggested that the Omori exponent π was far from one and non-stationary
[Hirata, 1987]. The productivity law had not been found for any brittle-fracture laboratory
experiments but it was in plastic deformation [Weiss and Miguel, 2004]. The waiting-time dis-
tribution had also been measured in laboratory experiments [Mogi, 1967; Alava et al., 2006].
However, the unified scaling law of waiting-times did not exhibit the functional form with two
power-law branches, as it occurs in real earthquakes [Corral and Christensen, 2006].
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A remarkable advance was done in 2011 when acoustic emission during compression ex-
periments of porous materials was studied [Salje et al., 2011]. The acoustic emission (AE)
events or avalanches appeared as a consequence of the fractures during the compression of
materials [Scruby, 1987; Baró et al., 2013; Main, 2013]. By now, let us consider this simple
definition of AE avalanches and a deeper insight on how they are defined will be explained in
Chpt. 4. Uni-axial compression experiments without lateral confinement of porous samples
placed between two compressional plates were performed by controlling the applied force over
the samples. This framework is referred to as force-driven compression. The AE was detected
by placing a piezoelectric transducer embedded in one or two of the compressional plates.

Some authors consider a big failure in the material as a critical point in order to explain
the universal features of compression experiments [Uhl et al., 2015]. However, the compression
experiments of porous material does not finish when the sample is destroyed. This implies
that there is not a unique failure point in order to associate it to a “critical point”. The great
advantage about the existence of multiple failure points is that it enables for better statistics
[Baró et al., 2013].

A typical output from one of these experiments is shown in Fig. 3.8. The number of AE
avalanches occurring in a certain time window (also referred as activity rate r(t)) as well
as the cumulative number of AE avalanches are presented in panel (a). The energy of AE
avalanches as well as the evolution of the sample height as a function of the time is shown
in panel (b). It is important to stress different facts that can be immediately observed from
this output. First of all, it must be noticed that thousands of AE events appear all along the
compression process and the rate of activity exhibits very large changes (note the logarithmic
scale in Fig. 3.8(a)). The steep steps in the number of AE avalanches can also be observed
when the activity dramatically increases. Secondly, the energy of these AE events can acquire
values in a range about eight orders of magnitude. Note that, although the largest energy
events are associated to the largest drops in the sample height, there are also high energetic
events without an apparent macroscopic change in height. This fact is particularly evidenced
in the last part of the experiment (for times larger than 16000 seconds) where there is still
AE activity when the sample height has been enormously reduced and just tiny fragments
are compressed. Note also that the largest macroscopic change in the sample height does not
correspond with the period with largest activity rate of all the experiment (occurring around
12000 s).

One thing which is not evident in this output but it must also be mentioned is that AE
avalanches have a duration typically ranging from microseconds to milliseconds. It must be
taken into account that the experimental set-up does not provide a correct information about
the location of the AE events. This implies that, contrarily to what happens in earthquakes,
spatial degrees of freedom are not available in this experimental set-up. In spite of this lack
of information, one could speculate that the fracture sizes in the sample might range from
micrometres to few millimetres. Therefore the space, time and energy scales differ enormously
with respect those of earthquakes.
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Fig. 3.8: Output from a force-driven compression experiment of a Vycor sample performed at a rate of 1.6
kPa/s. (a) activity rate of labquakes as a function of the time r(t) in time intervals of 20 seconds (in red) and
the temporal evolution of the number of labquakes N(t). (b) energy of labquakes occurred at a time t (in red)
and temporal evolution of the height of the sample h(t). (Extracted from Baró et al. [2013]).
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In spite of these differences in scales, the main seismological laws can also be found when
the observables of these AE are studied.
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Fig. 3.9: Estimated probability density function for the energy of labquakes occurred in different time
windows of 3000 seconds during a force-driven compression experiment of a Vycor sample performed at a rate
of 1.6 kPa/s from Baró et al. [2013] (see Fig. 3.8(b)). Inset: the evolution of the fitted exponent γ̂E as a
function of the lower cut-off Emin of the power-law distribution.

A stationary GR law was found along more than six orders of magnitude (see Fig. 3.9).
The power-law shape of the PDF was unaltered independently on the time window in which
AE avalanches were observed. However, the b-value of the GR law was somewhat smaller
(γ̂E = 1.4 → b̂lab ' 0.6) than the the one reported for earthquakes (bEarth ' 1). Despite this
difference, this power-law model for earthquake and labquakes with these exponents implies
that it is not possible to define a finite first moment. In other words, a mean value for
earthquake or labquake sizes cannot be defined. Although the power-law distribution for the
event size in fracture experiments was already known [Main, 1996; Alava et al., 2006; Davidsen
et al., 2007], the relevant improvement with respect previous works was the fact of finding
a stable exponent along time and valid for an important number of orders of magnitude in
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energy (as it can be observed in the inset of Fig. 3.9).
There is still an open debate to explain this difference in the GR law exponent. On the one

hand, Pérez-Reche et al. [2008] suggested that the driving mechanism might have an influence
in the power-law exponents of the different avalanche observables. AE avalanches found in
Baró et al. [2013] were generated during force-driven compression experiments. Nevertheless,
the compressive mechanism can also be carried out by controlling the displacement and mea-
suring the force opposed by the material. Such a framework is referred as displacement-driven
compression. This is a good starting point to wonder whether the energy exponent is the same
or not for a different compressional driving mechanism (see Chpt. 6). On the other hand, this
difference could be also attributed to the nature of the material and its internal structure [Xu
et al., 2019]. The composition of the Earth crust is highly heterogeneous [Goff and Holliger,
2003] and the mechanical response of the materials composing it can be very different from
the samples that have been studied in the laboratory (see Chpts. 6 and 7).

As it happens when studying earthquakes, these AE avalanches can also be studied as a
marked point process represented by Fig. 3.8(b). The Omori law was also found with an expo-
nent somewhat smaller (π ' 0.75) than the one of earthquakes. An important achievement of
these experiments was that the productivity law was also fulfilled with a value αp ' 0.5, which
is somewhat smaller than the one reported for earthquakes [Helmstetter, 2003]. In spite of
this smaller value, it is still positive thus implying that, the larger the mainshock is the larger
the number of triggered aftershocks will be. The unified scaling law of waiting times was also
found. The universal scaling function has a double power-law structure with exponents very
close to those found for earthquakes [Corral, 2004b; Baró et al., 2013].

Because of the fulfilment of these main seismological laws, AE events occurring during
the uni-axial compression experiments of materials will henceforth be named as labquakes
[Main, 2013]. Given that labquakes were found to be a reasonable experimental system to
reproduce earthquakes in a laboratory scale, multiple experiments generating labquakes were
subsequently studied for different materials such SiO2-based minerals [Nataf et al., 2014],
wood [Mäkinen et al., 2015] or porcine cortical bones [Baró et al., 2016]. The work from Baró
et al. [2013] also inspired other researchers to study if these seismological laws are also present
in different systems showing avalanche behaviour: ethanol-dampened charcoal [Ribeiro et al.,
2015], confined-granular matter under continuous shear [Lherminier et al., 2019] or AE of
crumpled plastic sheets [Costa et al., 2016], to mention few of them.
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3.3.1 Open questions in labquakes
Similarly to astrophysics and other observational sciences, it is not possible to study the
causes and effects under controlled protocols in earthquakes. Some non-tectonic earthquakes
can be induced through other mechanisms such fluid injection [Cesca et al., 2014; Baró et al.,
2016] or bomb explosions [Plenkers et al., 2011; Kornei, 2019]. However, the ‘experimental
conditions’ in these cases are exceptional and can hardly be controlled. Despite the enormous
difference in the characteristic scales (see Sec. 4.3 for more details), the main seismological
laws are also fulfilled in labquakes. Therefore, labquakes can be considered as a benchmark to
study earthquakes in a laboratory where the experimental conditions can be easily controlled.
Experiments can be repeated many times under different conditions and with very good
statistics. This can be a good starting point in order to develop, for instance, forecasting
algorithms.

Nevertheless, as it was exposed in the previous Sec. 3.3, some values of the exponents
characterizing the main seismological laws in labquakes are found to be quite different from
those for earthquakes. Therefore, one can realize that there are different open questions
regarding their comparison with real earthquakes. Just to mention few of them:

• Does the exponent of the GR law for labquakes depend on the experimental conditions?
For instance on the compressional driving mechanism?

• Does the exponent of the GR law for labquakes depend on the internal structure of the
compressed material? Is there a material which exhibits an exponent closer to the one
of earthquakes?

• If the previous question has an affirmative answer, are the other laws of statistical
seismology fulfilled with the same parameters as for earthquakes?

• To which extent it is possible to strengthen the scale-invariance property by finding a
validity for the GR law holding for more orders of magnitude?

• Is it possible to obtain information about the spatial degrees of freedom?

As mentioned in Chpt. 1, universality implies that power-law exponents characterizing
avalanche observables can be considered to be the equal. But, what does exactly mean that
power-law exponents are equal? How can this statement be quantified? The answer to this
question needs to be rigorously studied with the proper statistical techniques. However, very
few works provide robust statistical methods to check avalanche criticality and universality
[Kagan, 2013; Deluca and Corral, 2013; Deluca et al., 2016]. One of the main goals of this
PhD thesis is to provide rigorous statistical techniques in order to characterize avalanche
criticality and universality in empirical data. By means of different statistical tools and always
considering their limitations, the works presented in the Results part of this PhD thesis try
to answer the first, second and fourth questions.
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In Chpt. 6, displacement-driven compression of the porous glass Vycor (the same material
as the one used by Baró et al. [Baró et al., 2013]) are performed with the aim of studying
whether the exponent of the GR law is altered or not [Navas-Portella et al., 2016]. With
the aim of answering the second question, a displacement-driven compression experiment of
charcoal is performed by finding an exponent of the GR law much closer to the one found for
earthquakes.

With the aim of answering the fourth question, more displacement-driven compression
experiments of the porous glass Vycor have to be performed by changing the experimental
parameters. These changes in the experimental conditions enable to study the distribution
of the AE energy in different energy windows. A statistical technique for merging different
datasets is used in order to check the validity of the GR along the different observation
windows. This technique is also useful in order to try to merge charcoal labquake with real
earthquake catalogs. All these results are shown in Chpt. 7.

The rest of questions are still open but this thesis will try to provide the needed tools so
as to answer them in future works (see the Conclusions part for more details).
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Chapter 4

Experimental Techniques

In this chapter, the experimental techniques used to record labquakes and their corresponding
observables are defined. It is crucial for the further statistical analysis to understand how
avalanches are defined in the acoustic emission experiments.

Earthquake detection and how the observables characterizing them are defined has been
studied since long ago. It is not the intention of this chapter to expose all the details that
seismology has been dealing with along decades. Some basic concepts about earthquake
detection are introduced together with a brief explanation on how to obtain the moment
magnitude scale.
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4.1 Labquake detection
In general terms, a labquake is an acoustic emission (AE) event occurred during a compression
experiment of a porous material. As it was exposed in Chpt. 3, in spite of the difference in
length, time and energy scales, these AE events exhibit some statistical similarities with real
earthquakes [Salje et al., 2011; Baró et al., 2013]. In this sense, labquakes are often considered
as synthetic earthquakes that can be reproduced in a laboratory. Some questions need to be
addressed:

1. Which materials generate labquakes? What is their internal structure?

2. Which is the mechanism generating labquakes?

3. Which is the experimental set-up for labquakes detection?

4. How are the characteristic observables of a labquake defined?

5. Which experimental limitations exist in labquake detection?

The first question is considered in Sec. 4.1.6, where the porous materials which are used
to generate the labquake catalogs analysed in this PhD thesis are presented.

The second question can be answered by stating that labquakes are generated during
uni-axial compression experiments without lateral confinement of porous samples. The com-
pression can be performed in two different ways: either by controlling the applied force on the
sample and measuring the displacement (force-driven compression), or by imposing a displace-
ment rate over the sample and measuring the force opposed by the material (displacement-
driven compression). Labquakes generated by means of force-driven compression experiments
have been broadly studied [Salje et al., 2011; Baró et al., 2013; Nataf et al., 2014]. The
displacement-driven compression mechanism is the object of study in this PhD thesis.

The experimental set-up through which displacement-driven compression experiments of
porous materials are performed is shown in Fig. 4.1. All the parts of the experimental set-up
are detailed in Secs. 4.1.1, 4.1.2 and 4.1.4. The two fundamental pieces of the experimental
set-up are the compression mechanism and the AE recording. The compression is the external
mechanical driving which induces failures in different regions of the sample. These failures are
detected as AE sources by one or more transducers. The detected AE signal is processed to
generate the labquake catalog. In order to answer the last three questions, this experimental
set-up together with the definition of labquakes are presented in Sec. 4.1.2.

It must be mentioned that, contrarily to what happens in earthquake detection, the ex-
perimental setup used in this work does not allow labquake location in the sample because
only one AE transducer is used.Therefore, spatial degrees of freedom are not accessible for the
labquakes studied in this work. All the experiments exposed in the Results part have been
performed in the Laboratory of Materials of the Condensed Matter Physics Department at
the University of Barcelona.
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Fig. 4.1: Experimental set-up for the compression mechanism. (A) Compressional plates. Transducers are
imbedded in the plates. (B) AE chanel connecting the transducer with the preamplification. (C) Load cell
measuring the force F (t). (D) Output chanels of the force and the displacement z(t) with respect the original
position to the TestExpert software. Photo edited by V.N.P. From this compression mechanism one can obtain
the value of the force F (t) opposed by the sample and the distance between the two plates z(t). A piezoelectric
transducer is placed in one of the compressional plates where the porous sample is placed. The transducer
detects the AE signal U(t). Bottom, schematic representations of the different stages through wich an the AE
signal (in red) as well as the additional measured parameters (in blue) (F (t) and z(t)) are recorded.
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4.1.1 Compression and associated parameters
The main components of the experimental setup for the compression of the samples are:

• Conventional test machine Z005 (Zwick/Roell): Test machine which represents the ex-
ternal driving over the sample.

• Load Cell Xforce P (Zwick/Roell): Measures the force oposed by the sample with a
maximal nominal force of 5 kN.

• Test Expert Software [Zwick-Roell, 2019]: Processes and records the force and the dis-
placement with respect the original position.

Uni-axial compression experiments of porous samples are performed in a conventional test
machine Z005 (Zwick/Roell). Samples with no lateral confinement are placed between two
plates that approach each other at a certain constant rate ż (see top panel in Fig. 4.1). With
the aim of compressing close to the adiabatic regime in which avalanches do not overlap each
other [Sethna et al., 2001], the compression rate is chosen to be as low as possible. Note
that, strictly speaking, the adiabatic regime cannot be achieved experimentally because the
relaxation time scale of some events is too long in comparison with the driving rate. Therefore,
one must assume that not all the avalanches can be completely discriminated and some overlap
will occur (see Sec. 4.1.2).

The displacement z(t) with respect the original position as well as the force F (t) can be
measured at this stage and output for further analysis (see blue links in Fig. 4.1 bottom). For
more details about the detection of this additional experimental parameters, see Sec. 4.1.4.

4.1.2 Acoustic emission (AE) recording
AE is a non-destructive technique that have been broadly used in order to study properties of
materials [Scruby, 1987] such as damage evaluation, structural phase transitions [Vives et al.,
1995], domain-wall motion [Kusanagi et al., 2005], etc. [Scruby, 1987]. These techniques are
based on placing one or more sensors in the material in order to detect a wide range of events
taking place in it. The equipment used in this work consists of:

• Piezoelectric transducers (micro-80 from Mistras Group France) working in a frequency
range of 0.1 Hz-10 kHz. They detect pressure changes and convert them into an electric
voltage U(t).

• Pre-amplifiers: Amplification of the original signal U(t) into UP (t) for further analysis.

• Analog-Digital (AD) card with 18 bits resolution: Receives and processes the electric
signal UP with a sampling rate of 40 MHz. The card can also detect external analog
parameters at a sampling rate of 10 kHz.



79

• AE-Win PCI2 Software (Version 1.30) [Mistras, 2004] Real-time analysis of the AE
signal: definition of AE hits, determination of avalanche observables, etc.

During the compression experiment, recording of an AE signal is performed by using a piezo-
electric transducer embedded in one of the compression plates. Failures occurring in the
sample release energy in form of pressure waves [Scruby, 1987] which is detected by the piezo-
electric transducer and converted into a voltage due to the piezoelectric effect [Gautschi,
2002].

It is very common in AE literature to work with dB units instead of voltages [Scruby,
1987]. The relationship between this two units is given by:

U(t) (in dB) =
[
20 log10

(
|U(t)|
U0

)]
, (4.1)

where U0 = 1µV is a reference voltage. Note that, in this logarithmic scale, an increase of 20
dB corresponds to a difference of one order of magnitude in voltages.

The detected AE signal U(t) is then pre-amplified and band filtered (between 20 kHz and
2 MHz) in order to be ready for the following step, in which signal analysis is performed.
Signal pre-amplification is necessary if one wants to record small AE events. The largest
pre-amplification is of 60dB, which actually means to multiply the value of the signal by
1000 whereas the case without pre-amplification corresponds to 0 dB (see Fig. 4.1). The
pre-amplified signal is denoted by UP (t).

The pre-amplified signal UP (t) arrives to the PCI-2 acquisition system (see bottom panel
in Fig. 4.1). The AD card together with the AE-Win PCI2 software acts as a signal processing
center detecting the AE signal (red links in Fig. 4.1) as well as the force F (t) and displacement
z(t) from the compression setup (blue links in Fig. 4.1). This signal processing device can
work in three different modes:

• Hit-based detection mode: Reads the pre-amplified AE signal Up(t) at 40 MHz in order
to detect individual AE hits. Given that this is the best resolution at which this signal
processing device can work, this signal has to be understood as the time series X(t)
exposed in Sec. 2.1. Note that this time series is affected by many external factors:
noise in the transducer, in the AD card, in the wires through which the signal travels,
the labquake itself, rebounds from the same failure, etc. Thus, a thresholding procedure
is needed in order to define AE hits from the time series X(t). The main purpose of
this thresholding procedure relies in establishing a correspondence between AE hits and
labquakes. For more details about how to obtain a labquake catalog see next Sec. 4.1.3.

• Time-based detection mode: Records the values of external experimental parameters (
F (t) and z(t), see next Sec. 4.1.4) as well as the cumulated energy every ∆t (usually ∆t
seconds). The energy computed in this mode corresponds to the cumulated energy in
∆t. This detection mode is important in order to have an additional recording of the
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force and the displacement apart from the one provided by the TestExpert software (see
Sec. 4.1.4).

• Waveform detection mode: Reads the pre-amplified AE signal Up(t) and records the
waveform at 2 MHz. This detection mode is activated manually when the user is inter-
ested in recording the AE waveform in certain time window of the experiment. For an
example of a waveform obtained during a experiment, see Fig. 4.2.

The three detection modes can work simultaneously. However, care must be taken when
using the waveform detection mode because, although the sampling rate has been reduced
with respect the hit-based detection, it is easy to run-out of memory in the computer and
stop the recording of all the detection modes.

All the experimental measurements are always subjected to the resolution of the experi-
mental device and are thus discontinuous. Independently on the sampling rate, the AD works
with 18 bits precision [Mistras, 2004]. This should be kept in mind when considering some of
the measures as real values (energy or voltage).

4.1.3 From the AE signal to a labquake catalog
4.1.3.1 Definition of AE hits

Working in the hit-based detection mode, the main purpose of this section is to establish
a thresholding procedure to the signal U(t) in order to define AE hits.According to this
thresholding procedure the information of the signal will be expressed as a temporal marked
point process. As mentioned in Sec. 2.1.4, it is not always possible to associate an AE hit to
a labquake unambiguously. Depending on the set of parameters chosen for the thresholding
procedure, rebounds of the same labquake can be considered as a part of an AE hit, several
labquakes can be considered as one single AE hit or labquake overlapping may occur. As it
will be seen in next Sec. 4.1.3.1.3, it is possible to have a number of AE hits which is stable for
a wide range of values of the parameters involved in the thresholding procedure (essentially
the HDT). This would indicate that, problems regarding hit overlapping and splitting would
be reduced. Nonetheless, since overlapping of labquakes cannot be resolved just from the AE
signal (see Sec. 2.1.4), working in this set of parameters involved in the thresholding procedure
would not ensure a clear correspondence between AE hits and labquakes. Taking into account
these limitations and, as an abuse of language, the terms labquake, avalanche and AE hit are
used indistinctly along this PhD thesis.

Provided that the AE signal is a voltage and can take positive and negative values, the
two-sided thresholding procedure exposed in Sec. 4.1.3 is the most convenient in order to
define avalanches. An AE hit starts at the time t when the signal U(t) crosses a fixed detection
threshold (THR) and finishes at time t+D when the signal remains below threshold (|U(t)| <
THR) for a hit definition time (HDT) from t+D to at least t+D+HDT (see Fig. 4.2).
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Fig. 4.2: (a) Real signal U(t), i.e. the one received in the transducer (not the preamplified) measured in
V during 20s at 2 MSPS in the experiment performed with a charcoal sample. The largest event has an
amplitude of 70 dB. (b) Zoom of the AE signal in a time interval of 1.1 ms around 12.265 s. In this time
intervals, hits j (highlighted in green) and j+1 (highlighted in blue) are detected with durations Dj and Dj+1
respectively. The threshold THR is set at 23 dB (14.1µV) and the HDT=200µs. The HLT is not represented
because this time is so small (HLT=2 µs) that cannot be appreciated at the present resolution.
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Experimental protocols as well as limitations in the definitions of AE hits are exposed in
the following paragraphs.

4.1.3.1.1 Blank measurements
Conditions in the laboratory can vary due to several factors thus altering the electric back-
ground noise in the electronic devices. This is the main reason why a previous blank measure-
ment must be performed before any experiment. This blank measurement provides informa-
tion about how the values of the threshold should be for a given pre-amplification in order to
ensure a good recording of the AE signal. The background noise level will be a reference in or-
der to set the value of the threshold. Blank measurements are performed without compressing
sample but the compressional mechanism can be either working or not. These experiments
are also useful in order to check the standard deviation (error bars) of some quantities, such
as the force, when no labquakes are occurring.

4.1.3.1.2 Threshold

As it has been already mentioned, the threshold must be high enough so as to avoid the
background noise from the experimental devices, electronic lectures and in the wires. There
are two major source of noise affecting the AE signal at different stages of the experimental
set-up. The first electronic noise is present in the transducer as well as in the channels
carrying the AE signal. Values of the the voltage below a threshold U (Trans)

THR ' 23 dB (14.1
µV approximately) are affected by it. The supper-script (Trans) refers to the threshold in
the transducer. This implies that the electric signal U(t) detected in the transducer must be
above this value in order to avoid this noise. As it can be appreciated in the bottom panel
of Fig. 4.2, where the THR has been set at this level of noise 14.1 µV, no clearly defined AE
events can be identified below this THR and the AE signal U(t) fluctuates around zero.

The second noise is due to the AD card lecture and disables records below a certain value
U

(AD)
P,THR.The supper-script (AD) refers to the threshold in the AD card. This implies that,

pre-amplified voltages below U
(AD)
P,THR are not be correctly detected. Consequently, when the

pre-amplification is changed, the value of the threshold for the signal in the transducer U(t)
must be accordingly varied. Both values of the threshold U (Trans)

THR and U (AD)
P,THR can be sensible

to the laboratory conditions and this is the reason why performing blank measurements is
important in order to avoid spurious lectures.

4.1.3.1.3 Hit definition time (HDT) and hit overlapping
As it was discussed in Sec. 4.1.3, the existence of the hit definition time (HDT) can favour hit
overlapping as well as hit splitting. In this sense, the definition of an AE hit is also intimately
tied to HDT. Note that the compression driving rate can influence which HDT is selected.
If the adiabatic regime could be reached, one would just have to choose an HDT in order
to avoid the rebounds of the same labquake. Nevertheless, strictly speaking, the adiabatic
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regime cannot be experimentally achieved and a labquake can nucleate in other sample regions
with a very short inter-event time. If the HDT is too large in comparison with this intervent-
time, different labquakes will be considered in the same AE hit thus causing hit overlapping.
This obscuration effect might appear after big events and it can affect the statistical analysis
implying undercounting effects [Lippiello, E. et al., 2010]. One could be tempted to select a
smaller HDT in order to avoid this effect. However, if an AE event has not really finished
and the AE signal has remained below threshold for more than the predefined HDT, a single
AE hit might be splitted into several ones. This effect is known as hit splitting. Therefore,
a compromise between these two effects must be achieved in order to avoid them as much as
possible.

In order to study these effects, the waveform of the AE signal has been recorded during 20
seconds in the waveform detection mode (see Fig. 4.2). Despite the sampling rate in this case
(2 MHz) is significantly smaller than the one in the hit-based detection (40 MHz), this AE
waveform has been useful in order to study the effects of the threshold as well as the HDT in
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Fig. 4.3: Number of avalanches as a function of the threshold THR of the original signal in dB for different
values of the HDT for the signal in Fig. 4.2. HLT= 2µs
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the AE hits. The number of detected AE hits as a function of the threshold in dB for different
values of HDT is shown in Fig. 4.3.

Hit overlapping can be clearly observed in Fig. 4.3, where the curve with the largest HDT
is always accounting for less events. This fact can also be appreciated in hit A in the bottom
panel in Fig. 4.2, where the AE signal has apparently fulfilled a relaxation time and a re-
intensification of the signal crosses the THR before the HDT has finished. Let us remark that
it is not possible to distinguish whether this corresponds to a reflection of the same labquake
or it is actually a new one. As mentioned in Sec. 2.1, spatial information is needed in order to
determine if different avalanches actually overlap or not. Hit splitting can also be appreciated
for the curve with the smallest HDT in Fig. 4.3. It can be seen that, over a threshold of
23 dB, there exists a regime along two orders of magnitude in HDT in which the number of
events does not show remarkable differences.

Figure 4.4 shows different CCDFs of the AE hit durations for different values of HDT for
a fixed value of the threshold of THR= 25 dB. As it can be observed, the smaller the HDT
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Fig. 4.4: CCDF of avalanche durations for THR=25 dB for different values of the HDT for the signal in
Fig. 4.2. HLT= 2µs
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the shorter the durations. However, there exists a regime from 20µs to 400µs in which the
distributions of AE hit durations do not exhibit relevant differences. This implies that the
distribution of durations, as well as amplitudes and energies, are quite independent of HDT
in this regime. Lebyodkin et al. [Lebyodkin et al., 2013] shown that the effect of the HDT
on the energy distribution is not very relevant. Taking into account this stability regime the
value of HDT which has been used for all the experiments is HDT= 200µs.

4.1.3.1.4 Hit Lockout Time (HLT)

No labquakes are considered in a Hit Lockout Time (HLT) immediately after D +HDT .
This time is crucial if one is interested in the first stages of an AE hit when the avalanche
process reaches the highest values. In this case, in order to obviate the avalanche decay or
coda, the HDT is set as low as possible and the HLT as high as possible in order to obviate
the coda and not to account for reflections. The existence of this time might involve a loss of
information if a new real AE event occurs before this time has finished. The presence of this
time is thus quite meaningless if one desires to study the entire avalanche. For this reason,
the HLT is an irrelevant parameter in the experiments exposed in this work and is set as low
as possible: HLT= 2µs.

4.1.3.1.5 Saturation effects
Pre-amplification can be useful when one is interested in detecting small AE hits. However,
some values of the pre-amplified signals are so large that cannot be correctly detected by the
acquisition system. The AD card can detect signals up to 140 dB (after pre-amplification).
This implies that, for pre-amplifications of 60, 40 and 20 dB, the largest values of the AE
signal U(t) that can be detected are of 80, 100 and 120 dB respectively (see Table 4.1). This
fact leads to a saturation in the amplitude and, consequently, an underestimated energy of the
AE event which exceeds these values under these pre-amplifications (See next Sec. 4.1.3.2).
This effect can be immediately observed in the distributions of the amplitude, Fig. 4.5, where
there is an excess of AE hits in the last bin for an experiment with pre-amplification 60 dB
and threshold 23 dB.

Preamp (dB) Utop
0 140
20 120
40 100
60 80

Table 4.1: Maximum values Utop of the AE signal U(t) that can be recorded by the AD card for each
pre-amplification.



86

4.1.3.2 AE hit observables

4.1.3.2.1 Labquake amplitude
The AE hit, avalanche or labquake amplitude A recorded in dB follows the expression:

A =
[
20 log10

(
|V |
V0

)]
in dB, (4.2)

where V = max |U(t)| is the peak voltage achieved by the AE signal U(t) during the AE hit,
V0 = 1µV is a reference voltage, and the brackets round the value to its nearest integer in dB.
Note that the terminology A refers to the amplitude in dB whereas the peak voltage V will
be referred to simply as amplitude, in agreement with previous literature [Scruby, 1987]. The
amplitude A is an observable which can take continuous values but it is recorded in dB. From
the values of A one can obtain the values ψ of the discretized peak-voltage:

ψ = g(A) = V010A/20 in µV. (4.3)

As the values of A are integer, the values of ψ will no longer be integer but they will collapse
into a set of values {ψ1, ψ2, ..., ψj, ..., ψk} measured in µV .

Special attention must be paid to correct the preamplification. Let us rewrite the amplitude
read by the AD card in Eq. (4.2) as:

A =
[
20 log10

(
|V |
V0

)]
=
[
20 log10

(
|VP |
V0

)]
− Preamp in dB (4.4)

where V is the peak-voltage read by the transducer, i.e. the one corresponding to the original
signal U(t), whereas VP = max |UP (t)| corresponds to the pre-amplified peak-voltage from the
UP (t) signal read by the AD card.

4.1.3.2.2 Labquake energy

The energy E of an AE hit, avalanche or labquake occurred at time t is determined as

E = 1
R

∫ t+D

t
U2(t)dt, (4.5)

where R is a reference resistance of 10 kΩ related to the electrical circuit. Let us recall that
this integral is computed for a ∆t = 2.5 × 10−8s, which corresponds to the sampling rate
of 40 MHz of the hit-based detection mode. By considering that the characteristic voltages
and durations of the smallest AE hits are of the order of µV and µs, the order of magnitude
associated to the energy is about 10−22J. Therefore, a convenient scale to measure the energy
of AE hits is the aJ= 10−18J.
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Fig. 4.5: Estimated probability mass function of the amplitude in dB for a experiment performed at Preamp
of 60 dB and Threshold THR of 23. Details about the experiment are exposed in Table 4.2. Error bars are
estimated as the standard deviation for each bin.

4.1.3.2.3 Modulation of AE hit observables

An additional effect that must be taken into account is the modulation of the AE wave
when it travels from its origin to the AE sensor [Stehly et al., 2008; Scruby, 1987]. Modulation
means that the medium can attenuate the radiated energy of the AE waves by absorbing
certain frequencies. Modulation effects can also appear due to the response of the transducer
to certain frequencies, thus detecting better certain frequencies than other ones. These effects
result in a distortion of the shape of the measured AE signal. Given that the distances from
the labquakes source to the transducer are small, one can assume that this modulation does
not affect the measured value of the avalanche amplitudes and energies [Baró i Urbea, 2015].
This implies that there are not preferent ranges and the measured amplitudes and energies
are proportional to those associated to the original source. In other words, if different AE
hits whose amplitudes are A and 2A respectively are detected, one expects that the original
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sources that have generated these hits keep the same proportion.

4.1.4 Additional experimental parameters
As it was mentioned in Sec. 4.1.1, the compressional set-up can also measure the values of the
displacement z(t) with respect the original position as well as of the force F (t) opposed by the
sample. On the one hand, the displacement z(t) is measured by means of the test machine
Z005 (Zwick/Roell) which simply calculates the distance travelled since the beginning of
the experiment by the rotation of the mechanical engine. On the other hand, the force
opposed by the material is measured by means of the load cell. Both values are measured by
the testXpert Testing software [Zwick-Roell, 2019] where are processed and recorded every
∆t = 0.1 s. Blank measurements were performed in order to evaluate the electronic noise
when measuring the force. These experiments indicate that the standard deviation of the
force is σ =

√
〈F 2〉 − 〈F 〉2 = 9, 4 × 10−3N ∼ 10−2 N. Consequently, if a force change below

this value is found, it will not be considered in the analysis.
Two channels connect the force and the displacement outputs recorded in the testXpert

testing software to the AD-card which detects the AE. These channels need to be previously
calibrated and are recorded in a time step of ∆t = 0.5s. Therefore, displacement and force are
recorded twice: one in the test machine (∆t = 0.1s) and the other one in the AE recording
set-up (∆t = 0.5s). It must be noted that there might be electrical noise and losses in the
wires which connect both machines. This might imply that the values read by the AD card
are slightly smaller than the ones measured in the compression machine although calibration
is correctly done.

Finally, despite the time resolution of these parameters is much lower than the one from
the AE set-up, let us remark that these mechanical quantities can be also useful for the study
of avalanches.

4.1.5 Final labquake catalog
A displacement-driven compression experiment can last few hours (103 − 104s) before the
sample height has been enormously reduced. At the end of one experiment, one has a catalog
or collection of events each of them characterized by a time of occurrence t, duration D,
amplitude A in dB, energy E, and the values of the compression parameters F and z (see
Fig. 4.6).



89

Fig. 4.6: Snapshot of a labquake catalog with the different measured labquake observables for two different
time periods of the same experiment. The time is measured in s, force F is measured in N, the displacement
z with respect the original position in mm, the duration D measured in µs, the amplitude A as well as the
threshold THR are measured in dB and the energy E in aJ.

4.1.6 Samples
4.1.6.1 Vycor

Vycor is a synthetic nanoporous silica (SiO2) glass with 40% porosity [Bentz et al., 1998]
produced by Corning Incorporated [Corning, 2020]. Two different series of experiments with
Vycor at room temperature were performed looking for different goals.

The first series consists of the compression of 13 different Vycor cylinders with different
diameters and heights as well as different rates. A cleaning protocol before compression can
be performed. It consist in cleaning the samples with a 30% solution of H2O2 during 24 h and
dried at 130◦C. It has been checked that the different cleaning protocols before the experiment
do not alter the results. Such a number of experiments was performed in order to evaluate
the variability of the energy exponent ε for these experiments. With the goal of checking
whether the driving mechanism can alter the value of the energy exponent, this first series
of experiments is analysed in Chpt. 6. With the aim of having the same conditions for all
the experiments, the second series consists of four Vycor cylinders with the same diameters
Φ = 4.45mm and heights H = 8mm, and the compression rate is fixed at ż = 0.005 mm/min.
In order to obtain catalogs spanning different observation windows, these experiments have
been performed for different values of the pre-amplification and the detection threshold. In this
case, the four experiments have been performed with the following pre-amplification values:
60 dB, 40 dB, 20 dB and 0 dB, and the respective values of the detection threshold 23 dB, 43
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Fig. 4.7: Reconstructed image of Vycor. The sizes of the cube are about 100 µm. Figure extracted from
Bentz et al. [1998]

dB, 63 dB and 83 dB referring to the signal U(t), not the pre-amplified signal (in such a way
that after pre-amplification the threshold always moves to 83 dB). This value of the threshold
is above the level of noise of 63 dB in the AD card. This second series of experiments is
analysed in Chpt. 7.

4.1.6.2 Charcoal

Charcoal is generally originated by the combustion of wood or any other organic matter in a
limited supply of air [Harris, 1999]. One experiment with a prismatic charcoal sample (basis
of 8.47 mm × 5.96 mm and height H = 14.22 mm) was performed at a constant compression
rate ż = 0.005 mm/min with a pre-amplification of 40 dB and a value of 24 dB for the
detection threshold (in such a way that after pre-amplification the threshold moves to 64 dB).
This value of the threshold was set as low as possible in order to avoid parasitic noise. The
sample corresponded to commercially available fine art fusains (HB 5 mm, NITRAM, Canada)
[Nitram, 2020].

As an important improvement with respect the experiments with Vycor samples, a ceramic
compression plate was used for this experiment instead of the aluminium one. This change of
material improved the acoustic coupling between the transducer and the compression plate.
Consequently, a larger number of AE events was found in this experiment. An important dif-
ference between these two materials is the degree of heterogeneity. The synthetic mesoporous
silica structure of Vycor is much more homogeneous than the one of the charcoal which has
been formed through different natural processes and it may contain voids and macropores.
These structural differences may lead to differences in the energy exponents [Xu et al., 2019].
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Fig. 4.8: Optical microscope image of charcoal taken on reflected light oil immersion. Figure extracted from
Xu et al. [2019].

All the details related to experiments are listed in Table 4.2.

Sample Material Φ(mm) H(mm) ż (mm/min) Preamp (dB) Threshold (dB)
V105 Vycor 1 0.5 2× 10−3 60 23
V11 1 1 2× 10−3 60 23
V115 1 1.5 2× 10−3 60 23
V12 1 2 2× 10−3 60 23
V125 1 2.5 2× 10−3 60 23
V205 2 0.5 1× 10−2 60 23
V21 2 1 1× 10−2 60 23
V22 2 2 1× 10−2 60 23
V23 2 3 1× 10−2 60 23
V26 2 6 1× 10−2 60 23
V28 2 8 1× 10−2 60 23
V212 2 12 1× 10−2 60 23
V24 2 4 5× 10−2 60 23
VP60 4.45 8 5× 10−3 60 23
VP40 4.45 8 5× 10−3 40 43
VP20 4.45 8 5× 10−3 20 63
VP00 4.45 8 5× 10−3 0 83
CP40 Charcoal Prismatic Sample 5× 10−3 40 24

Table 4.2: Summary of sample dimensions (Φ diameter and H the height), compression rates ż, pre-
amplifications and thresholds for the different experiments reported in this work.



92

4.2 Earthquake catalogs
As it has been already exposed in Sec. 3.3, the main seismological laws fulfilled by real earth-
quakes are also reproduced by labquakes. One of the main goals of this PhD Thesis is to check
differences in the distributions of earthquake and labquakes observables, mainly in their sizes.
In this sense, it is also important to know how earthquakes are registered in catalogs. The
similarities between these systems are such that the same set of questions addressed in the
last section can also be formulated for earthquakes by simply changing the word labquakes
by earthquakes. Despite some of these questions are still an open debate today, it is not the
intention to answer them exhaustively.

1. Which materials are involved in earthquake occurrence? How is their internal structure
characterized?

2. Through which mechanisms are earthquakes generated?

3. Which is the experimental set-up through which earthquakes are detected?

4. How are earthquake observables defined?

5. Which experimental limitations exist in earthquake detection?

The first question could be answered by stating that earthquakes occur in the Earth crust.
It is composed by several materials whose spatial distribution depends on whether one is
considering continents or ocean basins. These continental and oceanic crusts are separated
from the dense Earth mantle by the sharp Mohorovicic discontinuity. Broadly speaking,
continents are composed by silica based materials whereas oceanic basins are composed by
basaltic rocks which are generally denser [Yeats et al., 1997].

The Earth crust is divided in tectonic blocks which are separated by locus called faults.
In order to answer the second question, one could say that stress is accumulated in a region
until a rupture occurs. Despite close the fault edges the mechanics of the rupture process
can be very difficult to describe, the natural accepted driving mechanism is that tectonic
plates are driven at constant velocity at far enough distances from the faults [Larson et al.,
1997]. The failure criterion is explained in Sec. 3.1.1.1. This rupture in which a certain
amount of energy is released in the form of seismic waves is known as earthquake. The third
question can thus be answered by saying that these seismic waves are detected in the Earth
surface as ground motion which is recorded by means of a seismometer. From a network
of seismometers one can obtain the location of the earthquake, i.e. spatial determination of
the hypocenter. The observable taking more relevance along this PhD thesis is related to
earthquake sizes. Although the definition of earthquake size has been extensively studied and
discussed in seismology, a unique definition does not exist. Along all the variables and scales,
the moment magnitude scale is one of the most accepted ways of measuring earthquake size.
The definition as well as the way it is measured are exposed in Sec. 4.2.2.
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Given this definition in which an earthquake can be considered as the original pulse that
has been generated from the rupture process (see Fig. 4.9), there are many experimental
limitations that may influence its detection: the attenuation of the seismic waves due to the
scattering, reflection of seismic waves, noise from the electronic devices detecting the ground
motion, energy dissipation, etc. The signal recorded in a seismogram is thus affected by of all
these factors. In fact, the underlying principles and limitations found in earthquake detection
are very similar to those for labquake detection in Sec. 4.1. However, additional limitations
are found in earthquake detection. The first important limitation is due to the small size
of the detecting device with respect the characteristic size of an earthquake. This implies
that a very small fraction of the earthquake radiated energy is detected by seismometers.
A second limitation arises from the fact that soil conditions can vary from the earthquake
source to the seismometer emplacement and isotropy and homogeneity assumptions are quite
far from reality. The third important limitation is due to the differences in seismometers,
their calibration due to different environmental factors such as the barometric pressure, the
temperature, the magnetic field, among others [Wielandt, 2002]. These conditions make
earthquake information very difficult to compare when it is obtained obtained from different
seismometers.

Fig. 4.9: Schematic representation of the original earthquake rupture (source pulse) and the proccess through
which it is recorded in a seismogram. Figure extracted from Stein and Wysession [2003]
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4.2.1 Recording earthquakes
Earthquakes are recorded by means of seismometers which detect ground motions. Seis-
mometers generate seismograms that can be analyzed in order to extract information from
the earthquake. In general, a seismogram can either measure the ground displacement or the
velocity. A classic seismometer can be easily understood as a damped harmonic oscillator
whose design is controlled by the nature of the damping material as well as its natural fre-
quency [Yeats et al., 1997; Stein and Wysession, 2003]. Seismometers have constantly evolved
in the last century but their basic operation is based on a coil attached to the mass of the
damped harmonic oscillator that moves in a magnetic field thus generating an electric current.
This electric signal can be digitally analysed in order to generate the seismogram [Stein and
Wysession, 2003].

One of the most revolutionary advances in earthquake detection was the break-in of broad
band seismometers [Yeats et al., 1997]. These devices allow to register earthquakes in a wide
range of frequencies. As it is explained below, the frequency detected by the seismometer
is intimately tied to the size of the earthquake which is able to detect. In order to provide
the orders of magnitude involved in earthquake detection, one must take into account that an
earthquake can last from seconds to few minutes (∼ 10−1−102s) [Shoji et al., 2005; Goodfellow
and Young, 2014]. This implies working in a frequency range typically of 0.01 − 10 Hz. For
extremely large earthquakes on can also use strong-motion accelerographs, which measure the
acceleration of the ground as a fraction of the Earth gravity g.

From a seismogram one can extract information about the observables characterizing an
earthquake. Let us recall that P waves are the first ones that can be identified in a seismogram
at a time tP whereas S waves are slower and are identified afterwards at a time tS. By using
a network of seismometers one can locate the hypocenter by assuming that the velocities of
P and S waves as a function of the distance to the source are known. By taking these into
account, one can compute the distance to the source by means of the time difference between
the arrival of P and S waves ∆t = tS−tP . Then one can assume that the source is placed in the
surface of a sphere with that radius. By computing these spheres from different seismograms,
the location of the hypocenter is thus reduced to a geometrical problem [Stein and Wysession,
2003].

4.2.2 Earthquake size: the moment magnitude scale
The moment magnitude scale [Hanks and Kanamori, 1979; Lay and Wallace, 1995; Stein and
Wysession, 2003] is one of the most accepted ways of determining earthquake size because
it is defined through a directly measurable physical magnitude: the seismic moment. The
direct dependence with a physical quantity has some advantages with respect other magnitude
scales based on empirical assumptions and conditioned to experimental parameters [Stein and
Wysession, 2003]. Therefore, in order to determine the moment magnitude, one has to compute
the seismic moment previously.
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As it was explained in Sec. 3.2.2.1, the seismic moment is a quantity that has energy
units and can be thus related to the energy released by an earthquake. The simplest physical
definition of the scalar seismic moment is given by its proportionality to the rupture area
and earthquake slip through the shear modulus (see Eq. (3.10) in Sec. 3.2.2.1). Although the
procedure to compute the seismic moment can be complex to derive in some cases, a sketch
is presented here in order to show how it can be determined in order to obtain the moment
magnitude.

The seismic moment can be theoretically determined by analysing the fault geometry and
the earthquake rupture process. However, this information cannot be directly measured and
it must be obtained from the seismogram records. As a general approach to determine the
seismic moment, one can consider that in the far field approximation (seismic waves detected
at large distance from the seismic source, r →∞) [Aki and Richards, 2002; Lay and Wallace,
1995; Stein and Wysession, 2003; Stork and Verdon, 2014] the displacement u detected in a

Fig. 4.10: (a) Model of the time evolution of the seismic momentM(t) = Mς(t) whereM is the total seismic
moment and ς(t) is the source time function. (b) Seismic moment rate function Ṁ(t) = Mς̇(t). As stated
in the text, the seismic moment rate function is proportional to the far-field displacement pulse detected in
a seismometer (see Eq. (4.6)). (c) Logarithm of the moment rate spectrum as a function of the logarithm of
the frequency ω. For frequencies below the corner frequency ωc, the spectral amplitude of the seismogram is
prpoortional to the seismic moment M . Figure modified from Stork and Verdon [2014].
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seismogram can be written as:
u(r, t) = 1

veffµ

1
r
Ṁ(t) , (4.6)

where veff = 4π
Rp

ρ
µ
v3
wave is an effective velocity that depends on a geometric factor Rp that

takes into account the radiation pattern, the medium shear modulus µ and density ρ and the
velocity of the seismic wave vwave. Note that the displacement of a seismic wave decays as
the inverse of the distance r and is proportional to the seismic moment rate Ṁ(t), which is
usually known as source pulse [Stein and Wysession, 2003; Stork and Verdon, 2014]. Note
also that, in general, the seismic moment is a quantity with tensorial character and in this
case is considered, for simplicity, as a scalar magnitude. In general the temporal evolution of
the seismic moment can be expressed as [Madariaga, 1989; Schubert, 2015]:

M(t) = Mς(t) (4.7)

where M is the total seismic moment and ς(t) is the source time function that expresses its
temporal dependence. This function can be understood as the shape of body-wave pulses
due to faulting process. In other words, the source time function contains information about
the time dependence of the rupture process. Different source models can be proposed in
order to obtain a proper description of the source-time function. One of the most accepted is
the Haskell source model [Haskell, 1966; Madariaga, 1978] which assumes a one-dimensional
fault with unilateral rupture and a constant velocity of propagation of the seismic wave but
other models are also widely accepted [Stork and Verdon, 2014]. A typical model of this
pulse is shown in Fig. 4.10 (a) and (b). In any case, the source time function must fulfil
limt→∞ ς(t) =constant. It must be mentioned that the characterization of the source has been
also studied in acoustic emission [Yu and Clapp, 1987], which would correspond to the case
of interest in labquakes.

By taking into account the time evolution of the seismic moment, Eq. (4.6) can be written:

u(r, t) = 1
veffµ

M

r
ς̇(t) =⇒

∫ ∞

0
u(r, t)dt ∝M

∫ ∞

0
ς̇(t)dt , (4.8)

where in the last step integration over time is performed. Note that ∝ denotes proportionality
It is obvious that the rupture does not take infinite time and the integral can be performed in
a finite time interval (see Fig. 4.10(a)). At this point, one could find the total seismic moment
M by simply converting the seismogram into a displacement (if it is recorded as a velocity) and
integrating it in the time domain. However, in practice this procedure has a lot of limitations
that avoid a good estimation. The main factors affecting this calculation are the difficulties
in correctly determine t1 and t2, the poor signal-to-noise ratio and the possible artefacts that
can appear in the conversion to a displacement seismogram, among others [Stork and Verdon,
2014]. However, Eq. (4.8) can be written in the frequency domain [Bender and Orszag, 1999]:

M lim
ω→0
|˜̇ς(ω)| ∝ lim

ω→0
|ũ(r, ω)| , (4.9)
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where, in the limit of small frequencies ω, the moment magnitude is proportional to the
spectral amplitude of the displacement through the value of the limit of the Fourier transform
of the derivative of the source-time function. Independently on the source model used, the
finite duration of the rupture process implies the existence of a corner frequency ωc below
which the spectral amplitude of the displacement is constant and proportional to the seismic
moment M [Doornbos, 1982; Aki and Richards, 2002; Lay and Wallace, 1995; Stein and
Wysession, 2003; Stork and Verdon, 2014] (see Fig. 4.10 (c)).

The existence of the corner frequency has implications related to the experimental set-
up used for earthquake detection. One the one hand, in general it can be stated that the
smaller the earthquake the shorter its duration. This implies that these small events will
have an associated higher corner frequency. Therefore, sample rates need to be high enough
in order to capture this corner frequency. On the other hand, larger earthquakes imply
larger times and, consequently, smaller corner frequencies. In order to correctly record and
associate a moment magnitude M to these bigger earthquakes, the frequency at which the
experimental device works should be smaller than the corner frequency. If the experimental
device cannot register frequencies smaller than ωc, the corner frequency cannot be detected
and thus the relationship with the seismic moment cannot be established for that earthquake.
This is the reason why some magnitude scales saturate for large earthquakes. Surface wave,
body wave or local magnitude scales are defined by means of the amplitude of the waves
with a predefined frequency detected in the seismogram [Stein and Wysession, 2003; Yeats
et al., 1997]. As already mentioned, modern broad-band seismometers try to cover a range
of frequencies typically from few mHz to 5 Hz [Ahern, 2003] in order to detect a reasonable
range of earthquake sizes.

Once the seismic moment is determined, the moment magnitude m scale [Hanks and
Kanamori, 1979] can be found according to:

m = 2
3

(
log10

(
M

M0

)
− 9.1

)
, (4.10)

where M0 is a reference seismic moment of 1 N·m and M is measured in Nm. Contrarily to
other scales [Stein and Wysession, 2003; Yeats et al., 1997] such as the Richter scale, the local
magnitude or the surface wave magnitude, the moment magnitude does not exhibit saturation
effects. Provided that the moment magnitude scale depends on a physical magnitude rather
than on experimental parameters (such as the characteristic frequency of the seismometer),it
is one of the most accepted scales in seismology [Lay and Wallace, 1995; Stein and Wysession,
2003; Yeats et al., 1997].
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4.2.3 Earthquake catalogs used in this thesis
Earthquakes catalogs covering different magnitude ranges have been chosen for this thesis with
the aim of investigating the scale-invariance properties of the size distribution of earthquakes.
A convenient combination of these datasets will give us a larger range of validity of the GR
law with a unique exponent. Let us briefly describe the catalogs that have been used in this
work (see also Fig. 4.11):

• Global Centroid Moment Tensor (CMT) catalog: It comprehends earthquakes worldwide
from 1977 to 2017 [Dziewonski and Woodhouse, 1981; Ekström and Dziewonski, 2012].
This catalog reports the values of the moment magnitude as well as the seismic moment.
Given that the seismic moment is provided with three significant digits, the resolution
of the magnitude in the catalog is approximately ∆m ' 10−3.

• Yang–Hauksson–Shearer (YHS) A catalog: It records the earthquakes in Southern Cal-
ifornia with m ≥ 0 in the period 1981-2010 [Yang et al., 2012]. This catalog does not
report the seismic moment but a preferred magnitude that is converted into seismic
moment according to Eq. (3.11). The resolution of the magnitude in the catalog is
∆m = 0.01.

• Yang–Hauksson–Shearer (YHS) B catalog: It is a subset of YHS A that contains the
earthquakes in the region of Los Angeles in the period 2000-2010 [Yang et al., 2012].
LA region is defined by the following four vertices in longitude and latitude: (119◦W,
34◦N),(118◦W, 35◦N) ,(116◦W, 34◦N), and (117◦W, 33◦N) (see Fig. 4.11). This region
has been selected because it is among the best monitorized ones [Hutton et al., 2010;
Schorlemmer and Woessner, 2008]. Furthermore, we selected this time period due to the
better detection of smaller earthquakes than in previous years [Hutton et al., 2010]. This
should reduce the completeness magnitude of the catalog [Schorlemmer and Woessner,
2008]. The resolution of this catalog is the same as YHS A.

It must be mentioned that all these catalogs report the focal mechanism of the earthquakes.
This is important when computing the Coulomb stress in Chpt. 8.

Figure 4.12 shows a snapshot of some relevant earthquake observables provided in the
CMT catalog for two different time windows. Note that in this catalog the seismic moment
M is provided in units of dyn·cm (1dyn = 10−5N) and Eq. (4.3) is rewritten as:

m = 2
3

(
log10

(
M

M0

)
− 16.1

)
, (4.11)

where M0 is a reference seismic moment of 1 dyn·cm.
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Fig. 4.11: Earthquake epicenters of the different catalogs used in this work. Horizontal and vertical axes
correspond to longitude and latitude in degrees respectively. Top, full CMT catalog for the period 1977-2017
[Dziewonski and Woodhouse, 1981; Ekström and Dziewonski, 2012]. Middle, entire YHS A Catalog [Yang
et al., 2012] of Southern California for the period 1981-2010. Bottom, region (YHS B) of the YHS catalog
for Los Angeles area for the period 2000-2010. Maps in cylindrical equal-area projection (top) and sinusoidal
projection (middle and bottom), produced with Generic Mapping Tools [Wessel et al., 2019].
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Fig. 4.12: Snapshot of the CMT earthquake catalog with the different observables characterizing earthquakes
for two different time periods. The first four columns correspond to the earthquake occurrence time, whereas
the fifth, sixth and seventh columns correspond to spatial coordinates: latitude, longitude and depth. The
next two columns represent the seismic moment measured in dyn·cm and the moment magnitude.

4.3 Earthquakes and labquakes: Experimental similar-
ities and differences

Given that earthquake and labquake catalogs together with the definition of their respective
observables have been already exposed, let us explain the main differences and similarities
between these phenomena.

First of all, let us consider the snapshots of Figs. 4.6 and 4.12 in order to illustrate the most
evident differences. The most remarkable difference is the lack of spatial degrees of freedom
in labquake catalogs. Although it would be interesting to study the spatial distribution
of labquakes, they are analysed indistinctly of their occurrence site. Apart from placing the
statistical analysis in an easier scenario, the fact of finding similarities between the probability
distributions of labquake and earthquake observables reinforces the postulates of the holistic
approach.

The second difference is related to the scales involved in these phenomena [Rundle et al.,
2003]:
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• Characteristic time scales: The first main difference is the time scale at which these
phenomena occur. The time scale of a short labquake is about ∼ 10−6 s whereas for
a short earthquake it is typically about 1 s. The total duration of a compression ex-
periment is about 2-3 hours (∼ 104s) whereas earthquake catalogs available nowadays
record earthquakes about 50 years (∼ 109) (see for instance the catalogs in Sec. 4.2).
Note that, in both cases, there is a difference of six orders of magnitude between earth-
quakes and labquakes temporal scales. The ratio between the typical time scale for a
short labquake with respect the duration of the total experiment is about 10−10. If
the same ratio is assumed for the shortest earthquakes, a complete displacement-driven
compression experiment would correspond to a time scale of 1010−1011s, which is about
thousands of years.

• Characteristic energy scales: At this point, one could wonder whether a seismic moment
(an energy) could be associated to labquakes (see Sec. 4.1.2). Recall that the reasonable
energetic quantity to compare AE and earthquakes is the radiated energy. As stated in
Sec. 3.2.2.1, the value of the seismic moment is about 104 times larger than the radiated
energy. This implies that the AE energies of labquakes, which are of the order of 10−18

Fig. 4.13: Different parts of the frequency spectrum and their associated phenomena. Figure extracted from
Park et al. [2013].
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J, are translated into seismic moments of the order of 10−14 Nm. A big earthquake
with moment magnitude m = 9 would have a seismic moment about M ' 4× 1022 Nm
corresponding to 4×1018 J. There is a difference around 30 orders of magnitude between
earthquake and labquake radiated energy.

• Characteristic frequencies: The characteristic time scale is directly tied to the frequency
range of the detection device. By taking into account that characteristic frequencies
can be obtained from the inverse of the characteristic durations, earthquakes have a
frequency range about 0.01 − 10 Hz whereas labquakes cover a frequency range about
103 − 106 Hz. Fig. 4.13 shows the different ranges in the frequency spectrum and their
associated phenomena.
The concept of corner frequency ωc can also be extended for AE [Goodfellow and Young,
2014]. Figure 4.14 shows the dependence of the corner frequency with the seismic mo-
ment as well as for the moment magnitude for different scales of seismicity reported in
the literature [Goodfellow and Young, 2014]. Most of the data points with negative mo-
ment magnitude correspond to AE experiments. Valuable information can be extracted
from this figure. For instance, an earthquake with moment magnitude m ' 5 has an
associated corner frequency about 1 Hz. This means that a seismometers working at
higher frequencies would not be able to correctly measure this event. An event with
seismic moment M ∼ 1 Nm has an associated corner frequencies of the order of MHz,
which is indeed the frequency range at which the AE equipment works. This means that
the AE set-up could not correctly detect the observables of AE hits whose associated
energy is larger than 1 Nm.

• Characteristic spatial scales: Ruptures associated to earthquakes can span from few
meters to kilometres (∼ 1 − 103 m) whereas failure events corresponding to labquakes
have a characteristic size of the order of 10−6 m. As it has been already mentioned,
one important difference between earthquake and labquake detection is the difference
in the size of the detection devices with respect the characteristic spatial scale of the
phenomenon. For labquakes, the surface of the transducer is very large with respect
to the characteristic labquake size. In this case, an important fraction of the labquake
energy can be detected. On the contrary, the size of a seismometers is very small with
respect the characteristic size of the rupture caused by an earthquake. In this case, a
tiny fraction of an earthquake is detected.

Other differences and similarities can be related to the mechanics of both phenomena.
As it was explained in Sec. 3.2.1, the mechanics associated to a rupture can be extremely
complex and it cannot be limited to the compressive stress through which labquakes are
induced. Furthermore, as it has been already mentioned, the mechanical properties of the
samples where labquakes occur can be very different from those in the Earth crust.



103

Fig. 4.14: Dependence of the corner frequency with the seismic moment (and its translation to moment
magnitude) for AE data in microseismic events (Goodfellow & Young, 2014 (URL) in the legend) m in
comparison with manmade and natural seismicity reported in the literature. Figure extracted from Goodfellow
and Young [2014].

It is remarkable that, despite the difference in scales and in the underlying physical mech-
anisms in which earthquake and labquakes take place, similar statistical behaviours are found
for their observables.
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Chapter 5

Statistical Techniques

In this chapter, the statistical techniques, fundamental to build up and understand the proce-
dures developed in the Results part of this PhD thesis, are exposed. The Maximum Likelihood
Estimation (MLE) is presented as a method to estimate the parameters of the statistical model.
Afterwards, this technique is focused on the particular case of interest of power-law distri-
butions. Graphical estimation of the probability density function as well as the cumulative
distribution function from an empirical dataset are exposed by paying special attention to the
power-law case. Afterwards, a series of statistical tests that are recurrently used along this
PhD thesis are explained. The likelihood-ratio test is presented as a statistical version of the
Occam’s razor criterion that will be useful in order to discern between a simpler and a more
complex statistical model. The Akaike information criterion is explained as an alternative and
complementary procedure to the likelihood-ratio test. The two-sample Kolmogorov-Smirnov
(KS) test and the permutational test are useful tools in order to state whether two power-law
distributions significantly differ between each other or not. Finally, the residual Coefficient
Variation test is presented as a tool to know whether the tail of a power-law distribution
deviates from the expected behaviour or not.
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5.1 Maximum Likelihood Estimation (MLE)

5.1.1 Concepts and definitions
5.1.1.1 The log-likelihood function and main goal of the MLE

As stated in Sec. 2.3.1.3, the link between data and the statistical model is the likelihood
function L(θθθ). This likelihood function is characterized by a nL-dimensional array of parame-
ters θθθ which are inherently related with the proposed statistical model to describe data. The
likelihood function is thus a real function that receives an array of dimensions nL and returns
a real value:

L : RnL → R .

The general framework to understand the maximum likelihood estimation (MLE) is to
consider a sample of size n whose values can be described in terms of a random variable X
that follows a certain univariate probability distribution FX (θθθ). The values that the random
variable takes are represented as x1, x2, ..., xi, ..., xn. By assuming independent and identically
distributed (i.i.d) random variables, the likelihood function describes the joint probability
density that all these values occur:

L(θθθ) =
n∏

i=1
fX (X = xi;θθθ) , (5.1)

where fX (x;θθθ) is the probability density function (PDF) conveniently normalized in its do-
main. Unless otherwise stated, PDFs are assumed to be continuous. By taking the natural
logarithm of the likelihood function, one can define the log-likelihood function as:

logL(θθθ) = log
(

n∏

i=1
fX (X = xi;θθθ)

)
=

n∑

i=1
log fX (X = xi;θθθ) , (5.2)

which is useful when developing calculations.
The main purpose of MLE is to find the array θ̂θθ whose values of the estimators maxi-

mize the likelihood function for a given sample. Therefore, MLE is reduced to a problem of
maximization of a function of nL parameters.

At this point it is important to mention that, as its name indicates, MLE provides an
estimation of the set of parameters that maximize the likelihood that the dataset has been
sampled from a population characterized by a certain statistical model. The array of param-
eters (true parameters) is denoted as θ̃θθ. As it will stated in the following sections, the MLE
does not ensure whether the population from which the dataset has been sampled from is
suitably characterized by that statistical model. In the next section, the consistency of the
MLE is illustrated in the sense that the estimators θ̂θθ are arbitrary close to the true value of
the parameters θ̃θθ for large enough samples.
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5.1.1.2 Regularity conditions

The results and properties of the maximum likelihood estimators explained in this section
are true as long as the following regularity conditions are fulfilled ([Pawitan, 2013] p.241 and
[Wood, 2015] p.85):

1. The PDF characterized by the array of parameters θθθ is different for different values of
the components of θθθ.

2. The array of parameters θθθ is contained inside the space of parameters. If θθθ is placed at
a boundary of the space of parameters, regularity is not ensured.

3. The first three derivatives with respect the parameters of the log-likelihood function in
a vicinity of θ̂θθ exist and are finite.

4. The matrix III of the second derivatives of the log-likelihood function evaluated at θ̂θθ is
negative semi-definite. This condition ensures that the eigenvalues are negative and that
L
(
θθθ = θ̂θθ

)
is indeed a maximum.

5. The expansion of the log-likelihood function up to second order is sufficient in order to
fulfil consistency.

5.1.1.3 Score function and score equations

Given the likelihood function L(θθθ), one can define a nL-dimensional Score function SSS:

SSS : RnL → RnL .

The j-th component of this array is defined by the partial derivative of the log-likelihood
with respect the j-th parameter:

Sj (θθθ) =
n∑

i=1

1
fX (xi, θθθ)

∂fX (xi, θθθ)
∂θj

. (5.3)

It can be easily shown ([Pawitan, 2013] p.216 [Wood, 2015] p.79) that the expected value
of the j-th component of the Score function array evaluated at the real value of the set of
parameters θ̃θθ is identically zero:

ESj
(
θθθ = θ̃̃θ̃θ

)
= 0 . (5.4)

This result will be important when discussing about the consistency and the distribution of
the ML estimators.

The log-likelihood function attains a maximum when the Score array leads the null vector
000:

SSS
(
θθθ = θ̂̂θ̂θ

)
=
∂ logL

(
θ̂̂θ̂θ
)

∂θθθ
= 000 .
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This set of equations is known as score equations. In some particular cases, the solution
of score equations can be solved analytically and a closed expression for the values of the
estimators can be easily found. For other statistical models, it might not be possible to find
an analytical expression for the components of θ̂θθ. In these cases, one has to find the estimators
for which the maximum is attained by means of numerical techniques.

5.1.1.4 The matrix of the second derivatives

Once the values of the estimators maximizing the likelihood are found, one could be tempted
to question whether this array of estimators corresponds to a maximum of the log-likelihood
function or not. One can define a matrix of second derivatives III evaluated at the array of
estimators θ̂θθ whose components can be written as:

Ijk
(
θθθ = θ̂θθ

)
= −∂

2 logL(θ̂θθ)
∂θj∂θk

= −
n∑

i=1

1
fX
(
xi, θ̂θθ

)
∂2fX

(
xi, θ̂θθ

)

∂θj∂θk
, (5.5)

with indices j = 1, ..., nL and k = 1, ..., nL. This matrix is usually named as the Observed
Fisher Information [Pawitan, 2013; Wood, 2015]. If the regularity conditions of the log-
likelihood function are fulfilled, this matrix is symmetric and thus it exists a basis where it is
diagonal. Note that the matrix is defined with a negative sign and the sign of the components
of this matrix is entirely determined by the sign of the second derivatives of the PDF. For the
case in which PDFs are from the exponential family, such as the normal, the exponential or
the gamma PDF, the sign of the second derivative is always negative and it can be ensured
that the log-likelihood function evaluated at θ̂θθ corresponds to a maximum. Given that the
power-law PDF is from the exponential family, the same reasoning can be applied.

By following a similar reasoning to the one done with the Score statistic, the expected
information matrix III, whose components correspond to the expected values of the components
of the matrix of the second derivatives, can be defined as:

Ijk = EIjk
(
θθθ = θ̃θθ

)
. (5.6)

It is important to remark that the expected information is not the same as the real value
of Ijk extracted from the dataset and computed at θ̂θθ. The expected information has to be
understood as an average quantity obtained along many samples from the original PDF with
the real parameters θ̃θθ. Another important result that can be easily shown is that the elements
of the covariance matrix conformed by the different components of the Score array correspond
to the elements of the expected information matrix [Pawitan, 2013] p.217 and [Wood, 2015]
p.80 :

cov
[
Sj
(
θθθ = θ̃θθθ = θ̃θθθ = θ̃

)
, Sk

(
θθθ = θ̃̃θ̃θ

)]
= Ijk

(
θθθ = θ̃̃θ̃θ

)
. (5.7)
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5.1.2 Consistency and Distribution of the ML Estimator
In order to present the consistency and how the ML estimators are distributed, it is useful
to previously consider some important results. Let us split the different contributions of the
Score function array by considering that for the i-th point in the sample (i = 1, ..., n) the
nL-dimensional array can be defined as:

lll′(i) ≡
1

fX (xi, θθθ)
∂fX (xi, θθθ)

∂θθθ
.

Note that
n∑

i=1
lll′(i) = ∂ logL (θθθ)

∂θθθ
= SSS (θθθ) .

By using this notation, one can consider a sample lll′(1), lll
′
(2), ..., lll

′
(n) where, according to Eqs. (5.4)

and (5.7), fulfils:
El′(i)j

(
θθθ = θ̃θθ

)
= 0 ,

cov
[
l′(i)j

(
θθθ = θ̃θθ

)
, l′(i)k

(
θθθ = θ̃θθ

)]
≡ I(i)jk .

These results, together with the Central Limit Theorem imply that:

√
n
(
l′(i)j − 0

)
→ N

(
0, I(i)jk

)
=⇒ Sj (θθθ)√

n
→ N

(
0,
√
I(i)jk

)
, (5.8)

where the arrow→ implies convergence in distribution to the normal distribution. Therefore,
for large samples, the j-th component of the Score function array is normally distributed with
zero mean and standard deviation I(i)jk.

Regularity condition number 5 in Sec. 5.1.1.2 is useful to introduce the concept of consis-
tency of the MLE as well as to investigate the behaviour of the ML estimator in the asymptotic
limit. Let us suppose a very large dataset (n→∞) sampled from a distribution characterized
by the array of real parameters θ̃θθ. Let us expand the Score function around the vector of the
real parameters:

SSS (θθθ) ' SSS
(
θ̃θθ
)

+ III
(
θ̃θθ
) (
θθθ − θ̃θθ

)
+ h.o.t. ,

where h.o.t is the abbreviation of higher order terms. This function can be evaluated at θ̂θθ, so
that SSS

(
θθθ = θ̂θθ

)
= 0, and can also be multiplied at both sides by

√
n:

−nIII−1
(
θ̃θθ
) SSS

(
θ̃θθ
)

√
n

=
√
n
(
θ̂θθ − θ̃θθ

)
.
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By taking into account Eq. (5.8) and the Slutsky Theorems which ensure the convergence
in distribution and probability (see [Pawitan, 2013] p.234) it can be said that, for the j-th
component:

θ̂j → N
(
θ̃j,
√
I−1

(i)jk

)
. (5.9)

Note that I−1
(i)jk 6=

(
I(i)jk

)−1
but the jk-th component of the inverse matrix III−1 (which is

not the same unless III is diagonal). The distribution of the ML estimators are normally
distributed with mean θ̃θθ and standard deviation I−1

(i)jk. A large value of I(i)jk would indicate
that the normal distribution shows a very small dispersion around the mean value and thus
the ML estimators θ̂̂θ̂θ are very close to the real ones θ̃̃θ̃θ. This result confirms the consistency of
the ML estimators under the regularity conditions and is giving information about how these
estimators are distributed. Therefore, one way to estimate the dispersion or the error of the
MLEs is through the matrix of second derivatives.

It is important to remark that this is just a first step in the inference process. In order to
know whether the proposed statistical model is reasonable or not to describe data, one needs
more information which is not given by the MLE. Given a statistical model, MLE provides the
array of parameters which maximizes the log-likelihood for a certain sample. For instance, one
could apply MLE to a sample under the assumption that data are normally distributed and
obtain the estimates which maximize the log-likelihood function. However, this is not giving
any information about how reasonable is to consider that data are sampled from a normal
distribution or from any other distribution. One could just compare two different statistical
models by means of a likelihood ratio test (see Sec. 5.6) and check which of them is more likely
to describe data. Nevertheless, not even in this case one is able to determine whether these
statistical models are reasonable to describe data or not. If one just wishes to check whether
it is reasonable or not to state that data are sampled from a certain probability distribution
with the estimates obtained via MLE, one might use the goodness-of-fit test explained in
Sec. 5.4.

In order to fix ideas about a general problem that can be solved by using MLE, one can
consider a sample of size n of the random variable X to which one wants to link with a
particular statistical model: the normal distribution. This distribution is characterized by a
two-dimensional array of parameters θθθ = (µ, σ) and its PDF is fX (x;µ, σ) = 1√

2πσ2 e
− (x−µ)2

2σ2 .
The log-likelihood and the equations defining the Score array in this case are:

logL (µ, σ) = −n2 log
(
2πσ2

)
− 1

2σ2

n∑

i=1
(xi − µ)2 , (5.10)

Sµ = ∂ logL (µ̂, σ̂)
∂µ

= 1
σ̂2

(
n∑

i=1
xi − nµ̂

)
= 0 =⇒ µ̂ = 1

n

n∑

i=1
xi , (5.11)
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Fig. 5.1: Consistency of ML estimators for the mean and the standard deviation respectively θ̂̂θ̂θ = (µ̂, σ̂) for
increasing sample sizes obtained from simulated datasets sampled from a N (0, 1).
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Sσ =∂ logL (x; µ̂, σ̂)
∂σ

= −n
σ̂

+ 1
σ̂3

n∑

i=1
(xi − µ̂)2 = 0 , (5.12)

=⇒ σ̂ =
√√√√ 1
n

n∑

i=1
(xi − µ̂)2 =

√√√√ 1
n

n∑

i=1
x2
i −

(
1
n

n∑

i=1
xi

)2

. (5.13)

The ML estimators θ̂θθ = (µ̂, σ̂) for the normal distribution correspond to the sample mean
and the unadjusted sample standard deviation. By following the procedure explained before,
one might be able to construct the matrix of the second derivatives as:

III
(
θ̂θθ
)

=
(

n
σ̂2 0
0 2 n

σ̂2

)
, (5.14)

whose eigenvalues are positive, thus indicating that the log-likelihood exhibits a maximum
at θ̂θθ (note that III was defined with a negative sign). In order to illustrate the consistency of
the MLE estimators for the normal distribution, one can simulate n numbers sampled from
a known N (0, 1) distribution and check the value of the MLEs for increasing sample sizes.
Figure 5.1 shows how the values of the estimates θ̂̂θ̂θ = (µ̂, σ̂) obtained through the Eqs. (5.11)
and (5.13) converge to the real parameters θ̃̃θ̃θ = (µ̃, σ̃) as the sample size increases.

5.2 Fitting power-law distributions to empirical data
via MLE

The PDF of main interest in this PhD thesis is the power-law distribution. Two different
power-law behaviours are going to be considered depending on whether there is an upper
truncation (truncated power-law) or not (untruncated power-law). There are PDFs, such
as the Gamma or the truncated Gamma distributions [Serra and Corral, 2017], that exhibit
power-law regimes together with other behaviours that may appear at a certain characteristic
scale. The main goal is to study pure power-law regimes searching for a statistical model
describing the lack of characteristic scales in physical systems. Truncations are considered
in order to either normalize or to exclude deviations from the power-law behaviour. Such
distortions need to be discussed in detail for each particular dataset. One of the goals in
this work is to defend the idea that these deviations come from irregularities in the data
acquisition processes or finite-size effects and are not intrinsically related to the physical
phenomenon itself.
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5.2.1 Untruncated power-law distributions
The untruncated power-law is the simplest form of power-law PDF in which the random
variable X has support x ∈ [xmin,∞). The value xmin (xmin > 0) corresponds to the lower
cut-off of the power-law and, in this case, this PDF is said to be untruncated because it is not
upper-bounded. The untruncated power-law is written as:

fX (x)dx = Cx−γdx , (5.15)

where γ is the power-law exponent (γ > 1) and C is a normalizing constant that can be easily
found by imposing:

∫ ∞

xmin
fX (x)dx = 1 =⇒ C = γ − 1

x1−γ
min

.

Note that, for γ < 1, the integral diverges and normalization cannot be achieved. There-
fore, the correct expressions of the untruncated power-law PDF and Cumulative Distribution
Function (which is denoted indistinctly as F or CDF ) are:

fX (x;xmin, γ) dx = γ − 1
x1−γ
min

x−γdx , (5.16)

FX (x;xmin, γ) =
∫ x

xmin
fX (x′)dx′ = 1−

(
x

xmin

)1−γ
. (5.17)

Note that the moments of this distribution diverge if γ < 2.
Let us suppose a sample of size n from which one wishes to estimate the parameters of an

untruncated power-law distribution. As explained in the previous section, in order to perform
MLE in this context, the first step consists in writing the log-likelihood function:

logL = log
n∏

i=1
fX (xi;xmin, γ) =

n∑

i=1
log fX (xi;xmin, γ) , (5.18)

where n is the number of data between xmin and ∞, the set of parameters characterizing the
distribution are θθθ = (xmin, γ) and nL = 2. If Eq. (5.16) is introduced into this equation one
obtains:

logL = n log
(
γ − 1
x1−γ
min

)
− γ

n∑

i=1
log xi . (5.19)

At this point, it is important to remark that xmin is considered here as a parameter that will
not be estimated by means of MLE. Instead of that, xmin is fixed and the exponent γ is the
only estimator computed via MLE. This is the reason why, although the PDF is written as
fX (xi;xmin, γ) as if the array of parameters had two components, it actually has just one
free parameter to be computed via MLE. Calculations are thus simplified since the array of



114

parameters consists solely in a scalar. Hence, the Score function array just consists in a single
component and the unique Score equation in this case can be read:

S (xmin, γ = γ̂) =
(
∂ logL
∂γ

)

γ=γ̂
= n

γ̂ − 1 + n log xmin −
n∑

i=1
log xi = 0 , (5.20)

where the estimation of the exponent γ̂ can be easily found analytically by:

γ̂ = 1 + n
∑n
i=1 log

(
xi

xmin

) . (5.21)

Hence, for a given value of xmin, the set of parameters that maximize the log-likelihood-
function are:

θ̂θθ =

1 + n

∑n
i=1 log

(
xi

xmin

)


 .
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Fig. 5.2: Log-likelihood logL(γ) (in red) and Score function S(γ) (in blue) per datum for synthetic untrun-
cated power-law data with exponent γ = 1.35, n = 104 and xmin = 1.
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Fig. 5.3: Consistency of ML estimator γ̂ for the power-law exponent for synthetic untruncated power-law
data with exponent γ̃ = 1.35, xmin = 1 and increasing sample size n.

Figure 5.3 shows the consistency of the MLE of the power-law exponent for increasing sample
sizes. The log-likelihood and the Score function per datum for a simulated power-law sample
with x̃min = 1, exponent γ̃ = 1.35 and sample size n = 104 are shown in Fig. 5.2. In this case,
the matrix of the second derivatives (defined in Sec. 5.1 with a negative sign) is composed by
a unique element:

I = n

(γ̂ − 1)2 , (5.22)

which is positive, confirming thus the fact that the log-likelihood evaluated at γ̂ is a maximum.
As it was explained in Sec. 5.1.2, this ML estimate is normally distributed about the true value
of the exponent γ̃ with a standard deviation

√
I−1 for large enough samples. This standard

deviation is giving an estimation of the error when estimating the exponent. Consequently, it
can be written that the standard deviation or error of the estimated exponent is:

σγ = γ̂ − 1√
n

. (5.23)
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5.2.2 Truncated power-law distributions
The untruncated power-law PDF assumes that the power-law behaviour is kept from the cut-
off value xmin to infinity. However, there is a wide casuistry that might cause deviations from
the power-law behaviour for large values: finite-size effects, the presence of an exponential
tail, a change of the power-law exponent, etc. In order to exclude these deviations from a
pure power-law behaviour, one can consider that the power-law is restricted to a limited range
from a lower cut-off xmin to an upper cut-off xmax. This procedure is used along this PhD
thesis in order to discriminate the power-law regimes in the global distribution. For instance,
if the tail of the distribution can be modelled by an exponential decay with a characteristic
scale, one can set the xmax in order to exclude this behaviour and approximate the rest of the
distribution by a truncated power-law.

The truncated power-law PDF fX (x; γ, xmin, xmax) is thus characterized by θθθ = (xmin, xmax, γ):
two values for the lower xmin and upper xmax truncations and the exponent γ (γ 6= 1). The
the random variable X has support x ∈ [xmin, xmax]. Therefore the normalizing constant is:

∫ xmax

xmin
fX (x)dx = 1 =⇒ C = 1− γ

x1−γ
max − x1−γ

min

. (5.24)

By introducing this normalizing constant into Eq. (5.15) one obtains:

fX (x;xmin, xmax, γ) dx = 1− γ
x1−γ
max − x1−γ

min

x−γdx , (5.25)

FX (x;xmin, xmax, γ) =
∫ x

xmin
fX (x′;xmin, xmax, γ) dx′ = x1−γ − x1−γ

min

x1−γ
max − x1−γ

min

. (5.26)

Note that, contrarily to untruncated power-law distributions, the first moment is well defined:

〈x〉 =
∫ xmax

xmin
xfX (x)dx =





γ−1
γ−2

x2−γ
min−x

2−γ
max

x1−γ
min−x

1−γ
max

for γ 6= 1 and γ 6= 2
1−γ

x1−γ
min−x

1−γ
max

log
(
xmax
xmin

)
for γ = 2

,

In order to obtain by means of MLE the parameters which link a truncated power-law
PDF to an empirical dataset of n values x1, ..., xn, one has to write the log-likelihood function
as:

logL = log
n∏

i=1
fX (xi; γ, xmin, xmax) =

n∑

i=1
log fX (xi; γ, xmin, xmax) . (5.27)

At this point, as it happens for the MLE of untruncated power-law PDFs, it must be mentioned
that the cut-offs xmin and xmax are not estimated via MLE but are fixed instead. The only
parameter that is estimated by means of MLE is the power-law exponent γ. Again, the log-
likelihood, the Score function and the matrix of second derivatives are simply scalar functions:

logL = n
[
log (|1− γ|)− log

(
|x1−γ
max − x

1−γ
min|

)]
− γ

n∑

i=1
log xi . (5.28)
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The Score equation in this case can be read:

S (xmin, xmax, γ = γ̂) =
(
∂ logL
∂γ

)

γ=γ̂

= n

[
1

γ̂ − 1 + x1−γ̂
max log xmax − x1−γ̂

min log xmin
x1−γ̂
max − x1−γ̂

min

]
−

n∑

i=1
log xi

= 0 ,

(5.29)

where the exponent γ̂ can be found by a numerical method to determine the root of this
equation. Two different numerical methods are going to be used along this thesis: the function
“optimize", which is already implemented in R programming language [R Documentation,
2017; Brent, 2002] and the false-position method [W. H. Press and Flannery., 1992]. The
matrix of the second derivatives is a scalar function that can be separated into two different
terms [Aban et al., 2012]:

I =
(
∂S
∂γ

)

γ̂

= n

(γ̂ − 1)2 − n

(
xmin
xmax

)γ̂−1
log2

(
xmin
xmax

)

(
1−

(
xmin
xmax

)γ̂−1
)2 . (5.30)

This separation is done in order to evidence that the first term is exactly the same that
appeared for the untruncated case in Eq. (5.22), and the second term is the one keeping
information about the upper cut-off. Note that this second term vanishes for the untruncated
case, which occurs at the limit xmin

xmax
→ 0. Taking into account that the standard deviation of

the estimated exponent σγ =
√
I−1, it can be written:

σγ = 1√
n




1
(γ̂ − 1)2 −

(
xmin
xmax

)γ̂−1
log2

(
xmin
xmax

)

(
1−

(
xmin
xmax

)γ̂−1
)2




− 1
2

. (5.31)

Note that Eq. (5.23) is recovered in the limit xmin
xmax

→ 0. It must be mentioned that the standard
deviation of the exponent can also be estimated by means of Monte Carlo simulations (see
Sec. 5.4.1).
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5.3 Graphical representation of the estimated probabil-
ity density function and the cumulative distribution

Along this thesis, many samples of different nature are analysed with the aim of fitting the
parameters θθθ that characterize the statistical model which they have been generated from and
also to check whether it is statistically reasonable to state that a certain dataset has been
sampled from that statistical model. Statistical techniques such MLE shown in Sec. 5.1 or
the hypothesis tests that will be shown in the forthcoming sections are very important tools
to show quantitative evidences of these goals. However, plotting data in a convenient way
can offer an intuitive point of view that can be helpful in order to illustrate how a sample is
distributed in a visual way.

The procedure through which one can graphically estimate a PDF from an empirical
dataset as well as the CDF, is exposed in this section. The graphically estimated PDF and
CDF are denoted as fX ,(e)(x) and FX ,(e)(x) respectively. Henceforth, the subscript e refers to
empirical.

The classical approach to deal with this problem is to perform a binning procedure of the
variable X . Let us suppose a sample of size N that takes the values x1, ..., xi, ..., xn, ..., xN .
Note that n (n ≤ N) corresponds to the number of data-points in the sample that follow a
certain PDF. Let us define xlow = min{x} and xtop = max{x} and consider a partition of the
real axis given by a set of d+1 points such that x[0] = xlow < x[1] ≤ ... < xtop < x[d]. Note that
the notation x[k] does not denote the k-th value in the sample but the value of the real axis of
the variable X in which the k-th point (k = 0, ..., d) in the partition is placed. This partition
is thus made of consecutive semi-open intervals

[
x[k], x[k+1]

)
called bins, which include the

closed interval [xlow, xtop]. This partition is called linear binning if these d points are equally-
spaced in linear scale (x[k+1] − x[k] =constant), whereas if the points are equally-spaced in
logarithmic scale (

(
x[k+1]
x[k]

)
=constant), the partition is called logarithmic binning [Hergarten,

2002; Christensen and Moloney, 2005; Pruessner, 2012].
The main goal is to build up an estimation of the PDF from the sample histogram. The

standard approach to deal with this problem is to consider that the different intervals in
which the horizontal axis has been splitted are called bins and the number of these objects
is nbins = d. At this point, it is important to remark the fact that bins can be graphically
represented by steps or boxes whose width corresponds to the semi-open interval

[
x[k], x[k+1]

)
.

However, one could be interested in representing this box or step by a point. This approach
has more sense not only from the mathematical point of view of estimating a PDF but also
to have a reasonably overlap with the theoretical curve of the PDF. The point corresponding
to the k-th bin is placed at the midpoint x[k] of x[k] and x[k+1]. The midpoint corresponds to
the arithmetic mean of x[k] and x[k+1] in linear binning and to the geometric mean of x[k] and
x[k+1] in logarithmic binning (see below). There are other choices to associate a point to a
certain bin [Hergarten, 2002]. However, the reason why the midpoint of the interval is chosen
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is because it is not necessary to assume that data are distributed according to a certain PDF.
Consequently, the estimated PDF fX ,(e) is a function which receives x[k] with k = 0, ..., nbins−1
as arguments.

In the classical linear binning approach, the horizontal axis is splitted into different bins
with a bin-width ∆ determined by

∆ = x[d] − x[0]

nbins
.

Each of these bins covers a certain range of data and are indexed from k = 0 to k = nbins− 1.
Let us define the function C(k) as the number of points from data (counts) contained in the
k-th bin. What is, the i-th point from the sample is placed at the k-th bin with k = bxi−xlow∆ c,
where the brackets b and c indicate the floor function (closest integer smaller or equal than the
part inside the brackets), and contributes to the number of counts in that bin C(k)→ C(k)+1.
Once this counting procedure has been completed for all the points in the sample, one has
an histogram with nbins that has to be correctly normalized in order to have a PDF. The
normalization is carried out by dividing the number of counts C(k) in each bin by the product
of the bin-width ∆ and the sample size N :

fX ,(e)(x[k]) = C (k)
N∆ .

Since this is an estimated PDF, each value of fX ,(e)(xk) needs to be provided by an error
bar. The error bars correspond to the standard deviation of fX ,(e)(x[k]). In order to com-
pute the error bars for each bin, let us consider that data points are independent and that
the probability that the k-th bin contains C(k) counts is given by a binomial distribution(
N
C(k)

)
(1− q)C(k) (q)N−C(k), where q is the probability that an occurrence does not correspond

to the k-th bin. Given that the estimated PDF is proportional to C(k), the coefficient of
variation of C(k) (understood as a binomial random variable) will also hold for the estimated
PDF:

σf
µf

=
√

q

N (1− q) '
1√
C(k)

, (5.32)

where in the last step it has been considered that q ' 1, and the mean number of occurrences
in the k-th bin (appearing in the denominator inside the square-root) has been replaced by
the number of occurrences in that bin. Therefore, the standard deviation σf or errorbar
corresponding to the k-th bin can be approximated by:

σ(x[k]) '
fX ,(e)(x[k])√
C(k)

. (5.33)

However, the paradigmatic distribution of interest in the works presented along this thesis
is the power-law and some considerations are needed in order to properly plot it. Since these
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distributions span several orders of magnitude, it is not convenient to plot them in linear
scale. A power-law distribution looks like a straight line when it is represented in log-log
scale. Nonetheless, when the classical linear binning in which bins are equally spaced along
the linear axis is performed in logarithmic scale, the bin-width depends on the value they are
placed and the bins will have a distorted appearance. In order to avoid this distortion of the
bin-width, the binning procedure needs to be performed in such a way that bins are equally
spaced in logarithmic scale. This binning procedure is called logarithmic binning.

Logarithmic binning is based on splitting each decade by a certain number of bins nbdec.
Once the number of bins per decade is chosen, it is necessary to define a minimal index kmin
defined by kmin = bnbdec log10 (xlow)c. According to this definition, the bin k = 0 corresponds
to the first bin whereas the last bin is placed at kmax =

[
nbdec log10

(
xtop
xlow

)]
. The i-th point xi in

the sample is assigned to the k-th bin according to k = bnbdec log10 (xi)c−kmin. Consequently,
the number of counts in that k-th bin will imply an increase in one unit C(k) → C(k) + 1.
When all points from the sample are placed according to this criterion, one has an histogram
of counts that needs to be normalized by dividing each bin by its corresponding bin-width
and the sample size N .

An important question to take into account is to decide to which value of the horizontal
axis the k-th bin corresponds to. If the same criterion of placing the xk at the midpoint
of xk and xk+1 considered for linear binning is applied in logarithmic scale, one obtains:
x[k] = √xk+1xk = 10

k+kmin
2nbdec

√
10

1
nbdec − 1 [Deluca and Corral, 2013]. This implies that the

binwidth ∆ depends on the position of the bin:

∆(k) = x[k+1] − x[k] = 10
k+kmin
nbdec

(
10

1
nbdec − 1

)
.

Taken into account all these considerations, the estimated PDF for the k-th bin is then
written:

fX ,(e)(x[k]) = C (k)
N∆(k) = C(k)

N10
k+kmin
nbdec

(
10

1
nbdec − 1

) .

The errorbars are constructed in the same way as in Eq. (5.33) but, in this case, it is
important to remark that, given that the PDF is plotted in log-log scale, errorbars will not be
graphically symmetric. Consequently, errorbars for a estimated power-law PDF will appear
distorted although they are numerically symmetric.

Let us remark that this graphical representation of the PDF is done without assuming any
underlying statistical model. One can perform the same procedure by assuming that data
follow a certain PDF fX

(
x; θ̂θθ

)
whose parameters have been estimated θ̂θθ. In this case, the

graphical representation can be improved if one takes into account that x′[k] corresponds to
those values of x whose corresponding density gives the probability of being in the k-th bin
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divided by its width [Hergarten, 2002; Deluca and Corral, 2013]:

fX ,(e)(x′[k]) = 1
x′[k] − x′[k+1]

∫ x′[k+1]

x′[k]

fX
(
x; θ̂θθ

)
=
FX

(
x′[k+1]; θ̂θθ

)
− FX

(
x′[k]; θ̂θθ

)

x′[k] − x′[k+1]
. (5.34)

The solution for a power-law distribution with exponent γ̂ is given by [Deluca and Corral,
2013]:

x′[k] = x[k]


(γ̂ − 1)

10
γ̂

2nbdec
−1 (101/nbdec − 1

)

10
γ̂

nbdec
−1 − 1




1/γ̂

= 10
k+kmin
2nbdec

√
10

1
nbdec − 1


(γ̂ − 1)

10
γ̂

2nbdec
−1 (101/nbdec − 1

)

10
γ̂

nbdec
−1 − 1




1/γ̂ . (5.35)

This selection of x′[k] provides better matching with the fit but, as it has been already men-
tioned, needs a previous estimation of the parameters and a goodness-of-fit test and for this
reason it will not be used in this PhD thesis.

The graphical representation of the empirical CDF is a very well known procedure that is
carried out by sorting the sample in ascending order: x(1), x(2), ..., x(i), ..., x(N). Parentheses in
the subindex indicate that this index is denoting order in such a way that x(1) ≤ x(2) ≤ ... ≤
x(i) ≤ ... ≤ x(N). When the sample is sorted, the empirical CDF can be easily constructed by:

FX ,(e)(x(i)) = i− 1
N

. (5.36)

The complementary cumulative distribution function (CCDF) can be constructed by simply
SX ,(e)(x(i)) = 1−Fe(x(i)). Since no binning procedure is needed in this process, the FX ,(e)(x(i))
does not exhibit distortions that can lead to misleading interpretations when it is plotted in
log-log scale.

As a final remark, it is important to mention that the sub-sample of size n is the one
of interest because it exhibits a certain regime, for instance a power-law behaviour, which is
distorted in the rest of the bigger sample of size N . However, it is interesting to show the
complete sample with its distortions in order to highlight the interesting regime that has been
fitted. Let us denote as fX (x, θ̂̂θ̂θ) and FX (x, θ̂̂θ̂θ) to the PDF and the CDF to which the sample
of size n has been fitted. Along this thesis, these functions are referred as fits. Overlapping is
not achieved if one tries to plot the fits together with the estimated PDF and CDF referred
to the bigger sample. Therefore, some corrections need to be done in order to see a matching
between fits and estimated PDF and CDF. Since the PDF is referred to the bigger sample,
thus normalized for a number of data N , overlapping is not achieved due to a normalization
problem. In that case, the fit has to be multiplied by a factor n

N
. The same reasoning would

be applied for the CDF when it is not upper-bounded. Nevertheless, when the CDF exhibits
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an upper cut-off xmax (for instance, when dealing with a truncated power-law), the fit has
to be also shifted by a factor: FX ,(e) (x = xmax). Consequently, the fit of the CDF has to be
corrected by firstly multiplying by n

N
and then adding SX ,(e) (xmax) in order to match with

the empirical CDF.

5.4 Goodness-of-fit test
As stated in Sec. 5.1, MLE is a technique to estimate the parameters that characterize the
statistical model from which a dataset has been “supposedly” sampled from. The word “sup-
posedly” needs to be highlighted in the previous sentence because MLE does not provide
information about how reliable is the assumption that data has been really generated accord-
ing to that statistical model. MLE assumes the PDF a priori and estimates the parameters
characterizing this statistical model that maximize the likelihood function. However, this does
not imply that data are really sampled from a population characterized by this PDF. In order
to provide quantitative information about the reliability that data has been sampled from a
certain PDF, one needs to perform a goodness-of-fit test [Maydeu-Olivares and García-Forero,
2010; Chave, 2017].

Let us consider a sample of the random variable X as x1, ..., xn that has been really
generated by the probability distribution F̃X (x,θθθ) which is actually unknown. Let us apply
MLE so that the parameters that maximize the log-likelihood function are θ̂θθ. In this context,
a goodness-of-fit test is a non-parametric hypothesis test whose null and alternate hypothesis
are: 




H0 : Data are drawn from F̃X
(
x, θ̂θθ

)

H1 : Data are not drawn from F̃X
(
x, θ̂θθ

)
.

(5.37)

Once the null and alternate hypothesis are established, one has to impose a significance level
α and to choose a test statistic whose distribution may be known or not. When the test
statistic has been computed for the empirical dataset, a p-value can be computed either from
its analytical distribution or by means of Monte Carlo simulations.

5.4.1 Monte Carlo Simulations of power-law distributed data
The standard procedure to simulate power-law distributed data [Devroye, 1986; Deluca and
Corral, 2013] is explained in this section. Although there are packages in R [Gillespie, 2015]
and other programming languages which have already implemented the generation of ran-
dom power-law distributed numbers, it is worth explaining how to obtain them from random
uniform numbers, which can be easily generated in most of high-level programming languages.

The inverse transform sampling method [Devroye, 1986] can be applied in order to ob-
tain power-law distributed random numbers. The purpose is to obtain a sample of n i.i.d.
power-law distributed with exponent γ random numbers. Let us consider the general case
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where the power-law exhibits an upper truncation xmax. By means of the probability integral
transform theorem [Angus, 1994], the CDF in Eq. (5.26) can be considered as random variable
U uniformly distributed acquiring values u between 0 and 1:

x1−γ − x1−γ
min

x1−γ
max − x1−γ

min

= u .

By isolating x from this last expression one obtains:

x = xmin

[
1−

(
1−

(
xmax
xmin

)1−γ
)
u

] 1
1−γ

, (5.38)

which is a simple equation to generate a power-law distributed number x with exponent γ
between xmin and xmax from a uniform random number u. Untruncated power-law numbers
can be generated by taking the limit xmax →∞ in this expression (note that γ > 1).

x = xmin (1− u)
1

1−γ . (5.39)

As a general procedure to estimate the p-value, one can compute Nsim simulations of n power-
law distributed random numbers and compute the fraction of simulations N>

sim in which the
test statistic computed for simulated data is greater or equal than the one found for the
empirical dataset.

pvalue = N>
sim

Nsim

. (5.40)

In order to provide an errorbar to the estimated p-value, one can understand it as a
binomial random variable. Therefore, the errorbar can be considered as the standard deviation
of a binomial random variable:

σpvalue =
√
pvalue (1− pvalue)

Nsim

. (5.41)

5.4.2 Kolmogorov-Smirnov (KS) Goodness-of-fit test
The main test statistic used in this thesis is the well-known Kolmogorov-Smirnov (KS) statistic
[Kolmogorov, 1933; Concise, 2008; W. H. Press and Flannery., 1992]. The KS statistic mea-
sures the supremum of the set of distances between the empirical CDF, Fe, and its analytic
counterpart F :

de = sup
∣∣∣FX ,(e) (x)− FX (x; γ̂, xmin, xmax)

∣∣∣. (5.42)

Note that, in order to obtain the value of this test statistic, the exponent γ̂ needs to be
previously computed via MLE. An important point to take into account when computing
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Fig. 5.4: CCDF Sd of the KS Statistic for simulated untruncated power-law data n = 104 and γ = 1.35 for
104 realizations. Black solid line corresponds to the KS distribution for n = 104. Blue horizontal solid lines
correspond to the 5 and 20 percentiles. As it can be appreciated, the p-value is always larger if one considers
the KS distribution instead of the distribution of the statistic.

the KS distance is that the emprical CDF FX ,(e) is constructed as a stepwise function. This
implies that, for each point in the sample, two sets of distances between the empirical and the
theoretical CDF can be defined:

d+
e,i =

∣∣∣FX ,(e) (xi)− FX (xi; γ̂, xmin, xmax)
∣∣∣ ,

d−e,i =
∣∣∣FX ,(e) (xi−1)− FX (xi; γ̂, xmin, xmax)

∣∣∣ .

Each point has a unique distance which corresponds to de,i = sup{d+
e,i, d

−
e,i}. Consequently,

Eq. (5.42) can be rewritten:

de = sup (de,i) for i = 1, .., n . (5.43)

Given that the distribution of the KS statistic is well known in the asymptotic limit [Feller,
1948; Smirnov, 1948; W. H. Press and Flannery., 1992], one can easily compute the p-value
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as:
lim
n→∞

P
(√

nde ≤ z
)

=
√

2π
z

∞∑

k=1
e−

π2(2k−1)2

8z2 . (5.44)

Note that the factor
√
n enables the comparison between the empirical KS statistic and

the KS distribution for finite n. Inflated p-values are found if the value of the estimator is
used in the goodness-of-fit test. Therefore, the p-value computed from the KS distribution is
biased when the KS distance is used as a test statistic if one uses Eq. (5.42) with the empirical
estimator γ̂ [Deluca and Corral, 2013]. Consequently, this procedure leads to inflated p-values
and can derive in misleading conclusions. In order to avoid this problem, one can estimate
the p-value by means of Monte Carlo simulations as explained in Sec. 5.4.1. Figure 5.4 shows
how the p-value obtained from the KS distribution is higher than the one computed through
Monte Carlo simulations for power-law distributed data.

If the p-value of the fit exceeds a certain threshold pc (typically 0.05) then one considers
that the null hypothesis is accepted (in the sense that it cannot be rejected).

5.5 Fitting a power-law distribution to empirical data
Let us now suppose a sample of size N which exhibits a power-law distributed regime for a
certain range of data but some deviations from this behaviour may appear for small or large
values. It could also be the case that several power-law regimes with different exponents may
appear in the same sample. In any of these cases, one would desire to find this limited power-
law regime by fitting a truncated power-law distribution which does not include all the sample
but a sub-sample of size n that acquires values in the range x ∈ [xmin, xmax]. In order to know
where the power-law regime (or regimes) is, one needs to know where the cut-offs xmin and
xmax are. Unfortunately, there is not an efficient procedure to know them in advance and
they have to be computed by trying different combinations of xmin and xmax (xmin < xmax).
The dependence of the power-law exponent as function of the imposed cut-offs can be studied
by means of MLE maps [Baró and Vives, 2012]. Despite this representation does not provide
information about the reliability of the fitted exponent, it can be useful in order to check its
stability. This technique is used in different works of this PhD thesis for exploratory issues.
For all the sub-samples generated by the imposition of the cut-offs, one can perform MLE and
goodness-of-fit test in order to check if data are compatible with a power-law distribution in
that range and with which value of the exponent γ. In order to put together all the concepts
explained so far, a summary of how to fit a truncated power-law distribution is shown in a
flow diagram in Fig. 5.5. This task can imply an excessive computational effort if the cut-offs
are imposed at each point of the sample (assuming that there are not repeated values in the
sample

(
N
2

)
sub-samples should be checked ). In order to reduce the computational effort,

one can sample equally spaced values in logarithmic scale of xmin and xmax, thus reducing
the number of combinations. At the end of this procedure, one might have obtained several
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subsets for which the power-law hypothesis is not rejected. In this case of multiplicity of
sub-samples with a non-rejectable p-value, one has to decide which of them is the definitive
fit depending on the nature of the problem.

• Maximizing statistics: One could be interested in determining the power-law range
covering the largest fraction of data. Moreover, for a given value of the exponent γ̂,
the larger the number of data the better the accuracy will be. In order to obtain such
a measure, one needs to reduce the standard deviation of the MLE by selecting the
non-rejectable fit containing the maximum number of data: max (n).

Sub-sample of size n
xmin ≤ x ≤ xmax

Sample of size N

log L =
∑n

i=1
log f (xi ; γ, xmin, xmax) =

∑n
i=1

log
(

1−γ

x1−γ
max −x1−γ

min
x−γ

i

) Exponent γ̂ that maximizes the
log-likelihood: ∂ log L

∂γ |γ=γ̂ = 0

n simulated events sampled from
f (x ; γ̂, xmin, xmax)

de = max |Fe (x ; γ̂, xmin, xmax) −
F (x ; γ̂, xmin, xmax) |

Exponent γ̂s that maximizes the simulated log-likelihood:
∂ log L

∂γ
|γ=γ̂s = 0

ds = max|Fs (x s ; γ̂s , xmin, xmax)− F (x s ; γ̂s , xmin, xmax) |

If de ≤ ds −→ N>
sim = N>

sim + 1

p − value =
N>

sim
Nsim

.
p − value ≥ pc = 0.05?

No Yes

This sub-sample is not power-law
distributed in the range [xmin, xmax].

Sub-sample of size n is power-law
distributed with exponent γ̂ in the

range [xmin, xmax].

×Nsim

Fig. 5.5: Flow diagram for the procedure to fit a truncated power-law for the variable X from a sample of
size N .
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• Maximizing the fitting range: If one is interested in a power-law regime as broad as
possible, one should choose the fit that covers the broadest range: max

(
xmax
xmin

)
. A

broader range of validity of the power-law regime implies a stronger evidence of scale-
invariance.

Note that both criteria are equivalent as long as xmax → ∞. The procedure explained in
Fig. 5.5 can be implemented in a programming language. The source code for C language is
provided in Appendix 9.3.

5.6 Likelihood-ratio test
The likelihood-ratio test (LRT) is a statistical procedure used to check whether it is worth
using a more complex statistical model Com (characterized by a set of n(Com)

L parameters)
rather than a simpler one Sim (characterized by a set of n(Sim)

L parameters). Usually, the
simpler model is nested into the more complex one. The null hypothesis of this test states
that the simpler model Sim is good enough to describe the data and a more general model
Com does not provide more information. In order to perform this test, the statistic which
can be used is the log-likelihood ratio:

R = log


LCom

(
θ̂Comθ̂Comθ̂Com

)

LSim
(
θ̂Simθ̂Simθ̂Sim

)


 = logLCom

(
θ̂Comθ̂Comθ̂Com

)
− logLSim

(
θ̂Simθ̂Simθ̂Sim

)
. (5.45)

Where the likelihoods are evaluated at those values of the set of parameters for which they
reach their maximum values.

Under the regularity conditions exposed in Sec. 5.1.1 and for nested models, it is well
established that the test statistic 2R is distributed according to a chi-squared distribution
with n

(Com)
L − n(Sim)

L > 0 degrees of freedom [Pawitan, 2013]. Once the significance level α
of the test has been fixed, one is able to determine the critical value 2Rc. If the empirical
value of the statistic is below this threshold, then one can consider that there is not enough
statistical evidence to say that the more complex model Com is needed in order to describe
the data. In this situation, due to its simplicity, model Sim is preferable to fit data. This
procedure can be naively understood as a statistical version of the Occam’s razor criterion.

It must be mentioned that the p-value can be computed analytically by taking into account:

pvalue = 1− Fχ2 (2R) , (5.46)

where Fχ2 is the CDF of a chi-squared distribution with n(Com)
L −n(Sim)

L > 0 degrees of freedom.
Note that the rejection of the null hypothesis does not imply the rejection of model Sim

as a fit to data and, on the contrary, the non-rejection of model Sim does not imply that it is
a good model to describe the data. The test is just a relative comparison between two models
which are candidates to describe data.
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As it is done for the goodness-of-fit test, one could also compute an estimation of the p-
value of the LRT by means of Monte Carlo simulations when not all the regularity conditions
exposed in Sec. 5.1.1 are fulfilled. If not all the regularity conditions are ensured, it can
be numerically checked wheter the statistic 2R actually follows a chi-squared distribution
with n(Com)

L − n(Sim)
L > 0 degrees of freedom or not [Serra and Corral, 2017]. An example of

numerical results to check this are shown in Fig. 7.6 in Sec. 7.1.4.

5.7 Akaike information criterion
A different comparison comes from the application of the Akaike information criterion (AIC)
[Akaike, 1973]. The AIC for a particular model is defined as:

A = 2nL − 2 logL
(
θ̂̂θ̂θ
)
. (5.47)

Two different contributions can be clearly identified in this equation: the first term keeps the
information about the number of parameters of the statistical model whereas the second term
contains the information of the log-likelihood function of the statistical model evaluated at θ̂̂θ̂θ,
where it is maximum. In general, the larger the number of parameters describing the model
the larger will be the likelihood. However, it is reasonable to think that at a certain point,
adding more parameters to the statistical model does not imply a significant improvement in
describing data and may cause overfitting problems. This is the main reason why the AIC
criterion is commonly used for model comparison since it keeps a compromise between the
likelihood and the cost of introducing more parameters to describe data. Therefore, for a
given set of different candidate models to describe a dataset, the one with smallest AIC is
preferred.

Let us consider a simpler model (Sim) characterized by n(Sim)
L and a more complex model

(Com) characterized by n(Com)
L parameters. The simpler model is nested into the more complex

one. Let us compute the difference between AIC referred to these models:
∆A = ACom −ASim

= 2
(
n

(Com)
L − n(Sim)

L

)
− 2

(
logLCom

(
θ̂Comθ̂Comθ̂Com

)
− logLSim

(
θ̂Simθ̂Simθ̂Sim

))
.

(5.48)

The AIC difference and the LRT statistic can be easily related by:
∆A = 2

(
n

(Com)
L − n(Sim)

L

)
− 2R . (5.49)

Given that the distribution of the LRT statistic is known, one could also relate the AIC with
a p-value through the following expression:

pvalue = 1− Fχ2

(
2
(
n

(Com)
L − n(Sim)

L

)
−∆A

)
. (5.50)

where Fχ2 is the CDF of a chi-squared distribution with n(Com)
L −n(Sim)

L > 0 degrees of freedom.
In this way, the LRT and AIC provide exactly the same information about which model is
preferred [Burnham and Anderson, 2002; Murtaugh, 2014].
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5.8 Two-sample Kolmogorov-Smirnov test
The two-sample KS test is a statistical test which aims to determine whether two different
datasets have been sampled from the same population or not. Let us consider two datasets (1)
and (2) with sizes n1 and n2 which have been sampled from the distributions F1(x) and F2(x)
respectively. The null and alternative hypotheses of the two-sample Kolmogorov-Smirnov test
state that:

{
H0 : F1 (x) = F2 (x)
H1 : F1 (x) 6= F2 (x) (5.51)

The test statistic can be constructed by computing the empirical CDF for each sample
(see Sec. 5.3) and finding:

dn1,n2 = max
∣∣∣F (1)
e (x)− F (2)

e (x)
∣∣∣. (5.52)

For large n1 and n2, the p-value of the test can be easily calculated by replacing n by n1n2
n1+n2

in Eq. (5.44) [Feller, 1948; W. H. Press and Flannery., 1992].
Note that this statistical test does not take into account the particular shape of the prob-

ability distribution data come from. Let us consider, for instance, two samples whose under-
lying distributions are already known, the functional form of both distributions is the same
but some parameters characterizing them may differ. One question that could be interesting
to determine is whether the parameters characterizing both distributions are significantly dif-
ferent or not. In that case, this test would provide a good solution to know whether these
differences are significant or not without estimating any of the parameters.

5.9 Compatibility of power-law exponents
Let us consider two samples (1) and (2) with sizes n1 and n2 which are power-law distributed
with exponents and standard deviations γ̂1, σ1 and γ̂2,σ2 respectively, all of them computed
by means of MLE. In this framework, the objective lies in knowing whether these exponents
are significantly different or not.

The null and alternative hypotheses for this test are:
{
H0 : γ̂1 = γ̂2

H1 : γ̂1 6= γ̂2
(5.53)

As it was shown in Sec. 5.1.2, power-law exponents estimated by means of MLE are normally
distributed around their real value in the asymptotic limit. This implies that the two-sample
z-statistic for the test comparing two means can be used [Kagan, 1999]:

z = γ̂2 − γ̂1√
σ2

2 + σ2
1

, (5.54)
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where the population variance is approximated by those from the samples (1) and (2) and
zero covariance between γ̂1 and γ̂2 is assumed.

An additional assumption is that z is normally distributed, which is supported by the
theory in the asymptotic limit (n1 and n2 going to infinity [Pawitan, 2013]). By assuming
normality the null hypothesis is tested by just comparing the value of z with the standard
normal distribution and the hypothesis is rejected if the value of z is too extreme for a given
significance level. In quantitative terms this is given by a p−value, called pnorm, smaller than
the significance level α (for instance 0.05 thus corresponding to 0.95 confidence).

If one does not want to believe that the asymptotic regime has been reached the best
option is to use a permutation test [Good, 2011]. Under the null hypothesis, one is allowed to
aggregate both samples (1) and (2) and take, without repetition, two random sub-samples of
size n1 and n2; note that this is equivalent to take a permutation of the aggregated sample and
separate it into two parts ((1) and (2)). One proceeds in the same way as in the original data,
calculating (by MLE) γ̂∗1 , γ̂∗2 , and from here σ∗1, σ∗2, and z∗, where the asterisk marks that the
values are those from the permuted data. Repeating the permutation procedure many times,
the distribution of z∗ can be found so as to compare to the original value z. The p−value of
the permutation test, pperm, is given by the fraction of permutations for which |z∗| is larger
than |z| (the empirical value).

Let us highlight the fact that this technique is less restrictive than the two-sample KS test
since not all the parameters characterizing both power-law distributions have to be necessarily
compatible. This test can be applied when the power-law distributions are defined in different
ranges, whereas the two-sample KS will reject the null hypothesis in this case even if the
power-law exponents are the same.

5.10 Residual coefficient of variation (CV) test
The Residual Coefficient of Variation (CV) test [del Castillo and Puig, 1999] was originally
thought as a statistical test to distinguish between exponential and truncated normal dis-
tributions. However, by considering the logarithm of data, this test can check whether an
untruncated power-law distribution is a reasonable model to fit the tail [Malevergne et al.,
2011]. Despite talking about CV test can be a misnomer with respect the original test, the
CV test is used under this name along this thesis with the purpose of identifying power-law
tails.

Let us suppose that we have a variable X that acquires n values {x}. We define x(j) as the j-
th value of the variable when it is sorted in ascending order: x(1) ≤ x(2) ≤ ... ≤ x(j) ≤ ... ≤ x(n).
The null hypothesis of the test states that there exists a power-law tail in the range x > x(k).
The alternative hypothesis can be formulated in two different ways. The hypothesis test would
be one- sided if one considers that the alternative hypothesis is that there exists a truncated
log-normal in the range x > x(k). If the alternative hypothesis is simply that that it does
not exist a power-law distribution in the range x > x(k), then the hypothesis test is two-
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sided. Nevertheless, the original test [del Castillo and Puig, 1999] deals with the one-sided
case (truncated log-normal alternative) The test is based on the idea that for an untruncated
power-law distribution the logarithmic CV is close to 1:

CVl = sl
ml

, (5.55)

where ml corresponds to the mean of the logarithm of the rescaled variable l = log(x/x(k)):

ml = 1
n− k

n∑

j=k+1
log

(
x(j)

x(k)

)
, (5.56)

and s2
l is its adjusted variance:

s2
l = 1

n− k − 1

n∑

j=k+1

(
log

(
x(j)

x(k)

)
−ml

)2

. (5.57)

Given a value of k or x(k), in order to check whether the value of the residual CV is close to
one or not for a particular number of remaining data, one simulates many samples power-law
distributed with the same number of data n− k in order to extract a distribution for CVl. It
is important to remark that the distribution of the statistic does not depend on the power-law
exponent and, therefore, it is not necessary to estimate it previously. Once one determines
the significance level α for the test, one can obtain just one critical value (one-sided version
of the test) or both upper and lower critical values of the statistic (in the two-sided version
of the test). The one-sided version of the test would simply deal with one critical value
that would be obtained from the percentile 100 · α of the distribution of simulated values. If
the empirical value of CVl is below this value, the power-law model is rejected in favour of a
truncated log-normal [del Castillo and Puig, 1999]. For the two-sided version of the test, if the
empirical value of CVl lies between the critical values (percentiles 100 ·α/2 and 100 ·(1−α/2)),
one cannot reject the null hypothesis of power-law tail. Otherwise, if the empirical value is
below percentile 100 ·α/2, the power-law is rejected; if the empirical value is above percentile
100 · (1− α/2) the power-law is rejected but there is no alternative.

One proceeds by computing the residual CVl for increasing values of the index k, thus
analysing the remaining values in the tail of distribution. Figure 5.6 shows three CV plots
for untrucated power-law, truncated power-law and a truncated power-law regime with an
untruncated tail. As it can be appreciated, the fat tail of the untruncated case remains
inside the confidence interval whereas for the truncated case the CV plot remains below
the percentile 2.5 because the test detects the upper truncation. The mixed case where an
untruncated power-law emerges at xmax = 104 with an exponent γ2 = 2 detects this fat tailed
with 120 events. This last mixed case is a useful illustration to justify that the CV plot
can give information about where a truncation in a power-law regime exists and a different
power-law behavior emerges from that point.
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Fig. 5.6: CV plots for synthetic power-law distributed data. CV plot for untruncated power-law distributed
data with exponent γ = 1.5, xmin = 1 n = 104 in red, CV plot for truncated power-law distributed data with
exponent γ = 1.5, xmin = 1, xmax = 104 and n = 104 in blue, and CV plot for a truncated power-law from
xmin = 1, xmax = 104, n1 = 9880 with an untruncated power-law tail with exponent γ2 = 2 arising from
x′min = xmax = 104 with n2 = 120. 95% confidence interval shown in black dashed lines.
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Chapter 6

Acoustic emission during
displacement-driven compression
experiments of porous materials:
labquakes

Novel findings in the statistical study of labquakes are presented in this chapter. The results
obtained from the AE data recorded during displacement-driven compression experiments of
Vycor are presented in Sec. 6.1 and analysed by using the techniques explained in Chpt. 5.
One important goal of the statistical analysis is to determine whether the exponent of the dis-
tribution of AE energy found in displacement-driven compression experiments is significantly
different from those found in force-driven compression experiments [Salje et al., 2011; Baró
et al., 2013]. The statistics of force drops in displacement-driven compression experiments of
Vycor as well as their relationship with the AE energy are investigated in Sec. 6.2. Results
exposed in Secs. 6.1 and 6.2 correspond to the paper:

• Víctor Navas-Portella, Álvaro Corral, and Eduard Vives, Avalanches and force drops
in displacement-driven compression of porous glasses. Physical Review E 94, 033005
(2016) [Navas-Portella et al., 2016].

By means of the methods explained in Sec. 5.5, the energy distribution of labquakes generated
during the displacement-driven compression of charcoal is studied in Sec. 6.3.
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6.1 Independence on the driving mechanism for the en-
ergy distribution of labquakes in Vycor

As it was exposed in Chpt. 3, Baró et al. [2013] found statistical similarities between earth-
quakes and the AE during compression experiments of porous materials. In that case, the
experiments were performed using the applied force as a driving parameter, which means
that the force increases linearly in time (force-driven compression). Within the context of
structural phase transitions, it has been shown that avalanche scale-invariance manifests in
different ways depending on the driving mechanism [Pérez-Reche et al., 2008]. If the control
variable for the driving is the force, disorder plays an important role leading to a dominant
nucleation process and the criticality is of the order-disorder type. However, if the driving
mechanism consists in the control of the displacement, the critical state is reached indepen-
dently of the disorder and by means of a self-organized criticality mechanism. These results
were experimentally confirmed [Vives et al., 2009; Planes et al., 2013] based on the study of
amplitude and energy distributions in AE experiments of martensitic transformations. The
influence of the driving mechanism has been studied in the slip events occurring in compressed
microcrystals [Maaß et al., 2015]. One important question is whether the driving mechanism
will influence or not the distributions of AE events in the case of failure under compression
experiments. This question is important because when comparing with earthquakes, the nat-
ural accepted mechanism is that tectonic plates are driven at constant velocity at far enough
distances from the faults [Larson et al., 1997].

In force-driven compression experiments of porous glasses [Salje et al., 2011; Baró et al.,
2013] it was found that the energy PDF fE(E) of AE events follows an untruncated power-law
with exponent γ̂E = 1.39± 0.05 independently of the loading rate (0.2 kPa/s - 12.2 kPa/s),

fE(E) = (γE − 1)EγE−1
min E−γE , (6.1)

where Emin ∼ 1 aJ is the lower bound required for the normalization of the PDF (see Chpt. 3
for more details about force-driven experiments).

The first series of experiments in Table 4.2 in Chpt. 4 were performed in order to study
the value of the energy exponent γE for displacement driven experiments. Figure 6.1 shows a
typical experimental output for the sample V12. Panel (a) displays the sequence of energies of
the AE events and the evolution of the force as a function of the time. The acoustic activity
rate r has been computed as the number of events per unit time recorded along windows of
20 seconds. Its behaviour is shown in Figure 6.1(b) together with the cumulative number of
events as a function of the time. It must be noticed that the values of the energy acquire
values along five or six orders of magnitude whereas force drops occur along the whole curve
and clearly show variability on three or four orders of magnitude. In general, the largest force
drops coincide with AE events with very large energy. Figure 6.2 shows an example of his-
togram of the energy of AE events for the sample V12 in one displacement-driven experiment.
As can be seen, data seems to follow the Gutenberg-Richter law for more than 6 decades.
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Fig. 6.1: Typical output for the sample V12. (a) Energy of the AE events as well as the measure of
the force as a function of time. Green lines represent those time intervals (∆t = 0.1 s) in which the force
increases whereas blue lines represent those for which the force decreases (force drops). (b) Activity rate of
the experiment as well as cumulative number of AE events N(t) as a function of time.
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Fig. 6.2: Energy distribution for the sample V12 for different time windows (in kilo-seconds ks) as well as
for the whole experiment. The numbers in parentheses account for the number of AE events in each time
interval.

The different curves, corresponding to consecutive time windows of approximately 2000 sec-
onds, reveal that the energy distribution looks stationary.

The procedure exposed in Sec. 5.5 is applied in order to guarantee statistical significance in
the fit of the untruncated power-law distribution with exponent γE and lower threshold Emin.
Considering as a null hypothesis that the energy distribution follows an untruncated power-
law (see Eq. (6.1)), MLE for the exponent γE is computed for increasing values of the lower
threshold Emin (see Figure 6.2). For each lower threshold and its corresponding exponent, the
KS test explained in Sec. 5.4 is performed with a resulting p-value. The final values of the
exponent and the threshold are chosen once the p-value has first overcome the significance
level pc = 0.05 and the power-law hypothesis cannot be rejected. The obtained values for
every sample are shown in Figure 6.3 together with the standard deviation of the MLE.
The horizontal line in panels (a) and (b) of Fig. 6.3 shows the average value and associated
standard deviation of the exponents µγE = 1.35± 0.05. The values of the exponents show the
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existence of some degree of sample to sample variability, and so, the concept of universality
cannot be established. Despite the apparent change of the exponent with the cut-off Emin
(see Fig. 6.3(a)), the fitting method does not rule out the presence of a power-law regime.
Apparently, the value of the exponent follows a normal distribution with mean µγE = 1.35 and
standard deviation σγE = 0.05. Under the null hypothesis that the exponents are normally
distributed with these ML estimators, the Lilliefors test for normality [Lilliefors, 1967] gives
a p-value of 0.61, which implies that this null hypothesis cannot be rejected. Complementary
information obtained from the fitting method is presented in Table 6.1. The average value
of the fitted exponents (µγE = 1.35 ± 0.05) found for the present 13 displacement-driven
experiments is compatible with the value found in force-driven measurements γE = 1.39±0.05
(3 experiments [Baró et al., 2013]). Not only the confidence intervals of these exponents overlap
but also the test for comparing power-law exponents exposed in Sec. 5.9 gives a p-value of
0.61, thus finding not enough evidence to reject the hypothesis that both exponents are
compatible. These statistical evidences elucidate that the difference between the exponent
found for displacement-driven and force-driven compression experiments is not significant.
Contrarily to what happens in martensitic transformations [Planes et al., 2013], it can be
concluded that there are no clear evidences that the driving mechanism changes the value of
the exponent of the AE energy distribution in compression experiments.

Sample N n Emin(aJ) Etop (aJ) γ̂E σ
V105 869 495 2.968 1.84×105 1.40 0.01
V11 1438 1358 0.635 2.69×106 1.310 0.008
V115 836 700 1.008 1.10×106 1.37 0.01
V12 2314 825 10.076 5.16×105 1.46 0.02
V125 1097 794 1.563 4.94×105 1.38 0.01
V205 4160 2429 3.075 9.97×106 1.358 0.007
V21 4170 1048 47.943 1.07×107 1.40 0.01
V22 3683 746 117.583 6.57×106 1.39 0.01
V23 1275 1146 0.645 7.16×106 1.284 0.008
V26 2071 2065 0.644 1.38×107 1.307 0.007
V28 974 973 0.503 2.82×106 1.288 0.009
V212 1646 1004 3.15 4.37×106 1.31 0.01
V24 2129 534 80.385 5.97×106 1.34 0.01

Table 6.1: Total number of AE events N , number of those which are power-law distributed n, value of the
lower threshold Emin, maximum value Etop, exponent γ̂E and standard deviation of the MLE σ.
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6.2 Force drops and relationship between AE energy
and force drops

When changing the driving mechanism from force driven to displacement driven, the first
main macroscopic difference is that force fluctuates and shows drops that, as will be shown,
correlate with AE energy. Recall that the force is measured and recorded according to the
procedure explained in Sec. 4.1.4. Illa et al. [2015] have shown that the driving mechanism
influences the nucleation process in martensitic transformations and these microscopic effects
can lead to macroscopic changes in stress-strain curves in which force fluctuations appear.
A power-law distribution with an exponential tail has been found for torque drops in shear
experiments of granular matter [Lherminier et al., 2019]. Serrations or force drops have also
been studied in metallic single crystals [Lebyodkin et al., 1995], metallic glasses [Antonaglia
et al., 2014; Sun et al., 2010; Dalla Torre et al., 2010] and in high-entropy alloys [Carroll
et al., 2015]. These studies are essentially focused on the presence of power-law distributions.
Furthermore, Dalla Torre et al. [2010] studied the AE during the compression of metallic
glasses and concluded that there exists a correlation between AE bursts and stress drops.

The evolution of the force as a function of time is shown in Figure 6.1(a). Force changes
are defined as ∆F (t) = − (F (t+ ∆t)− F (t)), with a time step ∆t = 0.1 s, so that force drops
are positive. As can be observed in Fig. 6.4(a)-(c), the distribution of ∆F can exhibit several
contributions. There is a possible Gaussian-like peak corresponding to negative ∆F that
shifts to the left when increasing the compression rate. This peak is related to the average
elastic behaviour of the porous material. The rest of contributions in the negative part of
the histogram correspond to the different elastic regimes of the material as it experiences
successive failures.

Statistical analysis is focused on the positive part of this distribution which corresponds to
the force drops. The main question to be addressed is whether the force drops are power-law
distributed or not. In Figure 6.5(a)-(c) the distribution of force drops (∆F > 0) corresponding
to Figure 6.4 is shown in log-log scale. For completeness, CCDFs are also shown in Fig. 6.6
(a)-(c). The hypothesis is that force drops ∆F can be described as a random variable φ which
follows an untruncated power-law PDF:

fφ(∆F ) = γφ − 1
∆F 1−γφ

min

∆F−γφ .

In order to determine from which value ∆Fmin the power-law hypothesis holds, the fit of the
right tail of the distribution of ∆F is performed following the same procedure as that followed
for the energy distribution. In Figure 6.7(a) MLEs of the exponent γ̂φ as a function of the
lower threshold ∆Fmin for the samples compressed at different compression rates are shown.
Three samples have been excluded due to wrong sampling of the measurement of the force 1.

1The wrong sampling of the force was due to a problem with the Test Expert software which stopped the
recording of values of the force when the memory capacity was exceeded.
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Sample nD n ∆Fmin(N) ∆Ftop(N) γ̂φ σ
V115 9960 174 1.73×10−2 8.31 1.79 0.06
V12 32323 445 2.12×10−2 27.61 1.95 0.05
V125 26104 208 1.93×10−2 24.31 1.80 0.06
V205 5603 334 3.55×10−2 853.36 1.53 0.03
V21 10787 149 0.16 977.78 1.72 0.06
V22 6609 133 9.05×10−2 801.63 1.57 0.05
V23 9987 162 1.61×10−2 593.19 1.46 0.04
V28 8881 113 1.72×10−2 340.22 1.53 0.05
V212 9030 202 1.45×10−2 247.56 1.55 0.04
V24 3742 53 5.80×10−2 797.63 1.32 0.04

Table 6.2: Total number of force drops N and the resulting values of the number of those data which are
power-law distributed n, values of the lower threshold ∆Fmin and the value of the largest force drop ∆Ftop,
fitted exponent γ̂φ and standard deviation of the MLE.

Vertical lines of different colors represent the selected threshold ∆Fmin for each sample. Note
that, contrarily to what happens in the MLE of the energy exponent, for the lowest values
of ∆Fmin where the power-law hypothesis is not already valid, there is an overestimation of
the exponent due to the presence of the Gaussian peak. The value of the exponents γ̂φ for
the different samples is shown in Figure 6.7(b). The value of the exponent is higher for the
slower compression rate and decreases for increasing compression rates. Moreover, power-law
regime holds for three decades in the case of the slower compression rate and four decades for
the higher ones. This difference is essentially due to the difference of sample surfaces. The
larger the surface contact between the sample and the plate, the larger the force opposed by
the material. Note that, in contrast to Fig. 6.4, the distribution of ∆F is conditioned to ∆F
larger or equal than the lower threshold ∆Fmin obtained from the fit. Additional parameters
resulting from fits are shown in Table 6.2.

Dalla Torre et al. [2010] found that there exists a correlation between force drops and AE
events but no evidence of correlation between the amplitude of these signals and the magnitude
of the force drops was found. Nevertheless, the energy could show a certain correlation with
force drops since not only the amplitude plays an important role in its calculation but also
the duration of the AE events. As it can be appreciated in Figure 6.1(a), the largest force
drops correspond with the highest energy of AE events. This could indicate that it actually
exists a certain relationship with the values of the energy and force drops.

It is interesting to study this correlation for two reasons: on the one hand, it would set a
relation between the energy of AE events, which is from microscopic nature (aJ), and force
drops, which are at the macroscopic scale (N). On the other hand, force drops appear every
time there is a micro-failure in the sample and thus they can be understood as releases of
elastic energy. In the same way as Dalla Torre et al. [2010] a correspondence in time between
the occurrence of force drops and the presence of AE events is found.
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Fig. 6.4: PDFs of ∆F for three samples with different compression rates restricted to the values of ∆F
close to zero. Sample V12 compressed at ż = 2 × 10−3mm/min is shown in (a), sample V212 compressed at
ż = 1× 10−2mm/min in (b) and sample V24 compressed ż = 5× 10−2mm/min is presented in (c).
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Sample nU nD nAEU nAED nAE nUAE nDAE
nUAE
nAEU

nDAE
nAED

V115 20119 9960 119 217 836 191 645 1.61 2.97
V12 47663 32323 251 820 2314 345 1969 1.37 2.40
V125 37028 26104 141 313 1097 215 882 1.52 2.82
V205 26564 5603 1028 336 4160 2093 2067 2.04 6.15
V21 32380 10787 1324 223 4170 2572 1598 1.94 7.17
V22 24388 6609 930 177 3683 2066 1617 2.22 9.14
V23 24922 9987 423 70 1275 804 471 1.90 6.73
V28 25468 8881 359 83 974 638 336 1.78 4.05
V212 27367 9030 453 135 1646 882 764 1.95 5.66
V24 8114 3742 602 41 2129 1745 384 2.90 9.37

Table 6.3: Numbers which are involved in the construction of W∆t. nU and nD are the total number of
intervals where the force has raised up or dropped. nAEU and nAED are the number of force rises and drops with
AE events. nAE is the total number of AE events, nUAE and nDAE are the number of AE events associated to
rises and drops of the force, respectively. The last two columns correspond to the mean number of AE events
encapsulated in force rises and drops respectively.

AE
Force 
rises

Force 
drops

Fig. 6.8: Schematic plot with illustrating the numbers exposed in Table 6.3. Red lines correspond to AE
events, green lines to force rises and blue lines to force drops.
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In order to associate a certain energy to the i-th force drop, the following quantity can be
defined:

W∆t
D,i =

niAE∑

j=1
ED
j , (6.2)

where niAE is the number of AE events that occur within the time interval of duration ∆t = 0.1
s where the i-th force drop appears, ED

j is the energy of those AE events and D refers to
“Drop”. The same construction can be done for force rises by defining W∆t

U from EU
j , where

U refers to “Up”. This construction is divided in two steps ( see Fig. 6.8): the first one
consists in splitting the time axis in intervals of duration ∆t so that there is a correspondence
between AE events and force rises or drops. The second step consists in applying Eq. (6.2)
and its counterpart for W∆t

U for every interval with AE events. In Figure 6.9(a) the different



149

distributions involved in this construction for the sample V12 are presented. The inset shows
the histogram of the number nAE of AE events encapsulated in time intervals of ∆t in which
there are force drops for the sample V12. There are two random variables corresponding to
the first step of the transformation: ED corresponds to the energy of AE hits when a force
drop appears whereas EU corresponds to the energy of AE hits when force rises appear. In
other words, the random variable E corresponding to the energy is divided in two subsets.
The second step of the transformation is reflected in the quantities W∆t

D and W∆t
U , which

correspond to the sum of energies in every force drop and in every force rise respectively.
This kind of construction implies that the quantityW∆t (representing eitherW∆t

D orW∆t
U )

can be considered as a random variableW which is composed by the sum of nAE independent
and power-law distributed energies all of them sampled from the same power-law distribution:

W = E1 + E2 + ...+ EnAE .

One could wonder whether the distribution of this new variable exhibits a power-law behaviour
or not. One can try to estimate the distribution of the sum of nAE power-law distributed
random varialbes (energies in this case) in the Laplace space, where the convolution becomes
the Laplace transform of a power-law distribution raised to the power of nAE:

fW (s) = fE (s)nAE ,

where s is the variable in Laplace space.
Let us first try to unveil the functional expression of fE(E) in Laplace space [Corral, 2015]:

fE (s) = (γE − 1)EγE−1
min

∫ ∞

Emin
dEe−sEE−γE

= (γE − 1)EγE−1
min

[
sγE−1Γ (1− γE, sEmin)

]
.

(6.3)

Note that Γ refers to the incomplete Gamma function Γ(x,m) =
∫∞
m tx−1e−tdt. At this point,

it is useful to consider the following equality (Eq. (6.5.29) in Abramowitz and Stegun [1965]):

(sEmin)γE−1 Γ (1− γE, sEmin) =

= (sEmin)γE−1 Γ (1− γE)−
∞∑

k=0

(−sEmin)k

(k + 1− γE) k! ,

where Γ refers to the Gamma function Γ(x) =
∫∞
0 tx−1e−tdt. The sum appearing in the last

term can be approximated by:

(sEmin)γE−1 Γ (1− γE, sEmin) =

= 1
γE − 1

[
C̃sγE−1 +

(
1 + Emin

1− γE
2− γE

s

)
+ h.o.t(s)

]
,
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where C̃ = (γE − 1) Γ (1− γE) (Emin)γE−1 has been defined in order to group all the constants
and simplify the expression. Note that this expression is valid as long as γE 6= 1, 2. If one is
interested in the asymptotic behaviour at the tail of the distribution of the original variable E ,
the interesting regime in Laplace space can be obtained by taking the limit s→ 0. Note that
up to this point, the original distribution was a power-law distribution but, in this asymptotic
analysis, the result can be extended to any distribution with a power-law tail. In this context,
by taking the logarithms and expanding log(1 + x) ' x, one obtains:

log
[
(sEmin)γE−1 Γ (1− γE, sEmin)

]
=

− log (γE − 1) + C̃sγE−1 + Emin
1− γE
2− γE

s+ h.o.t(s) .

If this expression is substituted into Eq. (6.3):

fE (s) = exp
(
C̃sγE−1 + Emin

1− γE
2− γE

s+ h.o.t(s)
)
. (6.4)

If 1 < γE < 2, which is exactly the situation under study, the first term in the exponential is
the one determining the functional behaviour:

fE (s) ' exp
(
C̃sγE−1

)
' 1 + C̃sγE−1 . (6.5)

Hence, the Laplace transform of the distribution of the variable W :

fW (s) = fE (s)nAE '
(
1 + C̃sγE−1

)nAE ' 1 + nAEC̃s
γE−1 (6.6)

This last expression confirms that the Laplace transform at the tail of the distribution of
the new variable W follows the same functional behaviour as the Laplace transform of the
former variable E . This means that the power-law exponent of the energy distribution is not
altered when studying the tail of the distribution of the variable W , which is indeed a sum
of nAE power-law distributed random variables. Note that nAE is not fixed but a random
variable. However, mixing a finite number of power-law distributed random variables will give
a power-law tail with the same exponent. In other words, the probability distribution of the
sum of a random number of power-law distributed random variables exhibits a power-law tail
with a similar exponent as the original one.

In order to have numerical evidences of this mathematical reasoning, Fig. 6.10 shows the
PDF corresponding to nW = 104 values of the variable W∆t constructed from n = 23983
power-law simulated energies with exponent γE = 1.35 and Emin = 1. In this particular case,
the number n is due to the choice of nAE, which is sampled from the empirical distribution
shown in the inset of Fig. 6.9. As it can be observed, the tail of both PDFs is power-law with
the same exponent γ̂W = γE.

Given that the power-law exponent is kept in this construction, the key question is whether
the range of values that the variable W can take is the same for force drops or force rises.
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The main plot in Fig. 6.9 reinforces the importance of the relation between force drops and
AE events since the distributions of EU and W∆t

U are restricted to low values of the energy
whereas the range of the distributions of ED and W∆t

D is very similar to the original one.
The maximum of the histogram in the inset is at nAE = 2 and decreases up to the maximum
encapsulation of nAE = 24. The numbers involved in these constructions are shown for all
the samples in Table 6.3. The fact that there are force rises associated to AE activity could
be explained by the presence of force drops that have not been identified in a ∆t interval
where the force has globally increased. This prediction agrees with the assumption that the
energy associated to force rises covers a small range corresponding to low energy values of the
total energy distribution (see Fig. 6.9). It is important to remark that, despite the fraction of
AE events associated to force drops decreases as the compression rate increases, the fraction
that accounts for the average number of events encapsulated in a force drop (nDAE/nAED ) is
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Fig. 6.10: In blue, PDF corresponding to n = 23983 power-law simulated energies with exponent γE = 1.35
and Emin = 1 together with the theoretical curve (in blue). In red, PDF of nW = 104 values of the variable
W∆t constructed by assuming that nAE is sampled from the empirical distribution shown in the inset of
Fig. 6.9. Red-lined fit presents the following parameters γ̂W = 1.353, Wmin = 2818.38, n = 1369.
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Fig. 6.11: Scatter plots of the energy released in each force drop versus the value of the force drop for all the
samples compressed at ż = 2× 10−3 mm/min in (a), at ż = 10−2 mm/min and ż = 5× 10−2 mm/min in (b).
Panel in (c) shows the Pearson correlation coefficient for the logarithm of the variables for all the samples.
Colour code provided for each sample is the same as in panel (c).
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always larger than the average number of AE events encapsulated in intervals where the force
is increasing (nUAE/nAEU ) (See the last two columns in Table 6.3). Hence, increments of AE
activity are essentially associated to drops in the force. The total duration of the experiment is
given by T = (nU + nD) ∆t 2. Note that, despite the big difference between the total number
of force drops nD and the number of force drops with AE activity nAED (see Table 6.3), this
second number is in the same order of magnitude as the number of power-law data in Table 6.2.
This could indicate that power-law distributed force drops are those containing AE events.

In Figure 6.11 scatter plots for the different compression rates are presented. It must be
noticed that the largest cumulative AE events are appreciated in those force drops which are
power-law distributed (∆F > 10−2 N, see values of ∆Fmin in Table 6.2). The associated
energy of the remaining force drops is relatively low compared with those with large values of
∆F .

Under these circumstances, the energy associated to force drops is studied with the aim of
unveiling whether there exists any correlation between the magnitude of force drops and their
corresponding AE energies. It must be mentioned that, as it has been already exposed in
Sec. 4.1.4, the range of interest of force drops is restricted to those values which exceed 10−2

N. Below this value, the load cell exhibits noise and the values of the force are not reliable.
In Fig. 6.11(c) the Pearson correlation coefficient [Ross, 1998] of the logarithm of the

variables W∆t
D and ∆F shown for each sample (∆F > 0). By considering the null hypothesis

that the Pearson correlation coefficient is null: H0 : R = 0, one can perform a permutational
test in order to state whether the correlations are significant (rejection of H0). The Pearson
correlation coefficient is computed for the reshuffled data R∗ in order to compare it with
the empirical value R. By repeating this procedure many times, a p-value for the test can
be found [Good, 2011; Chave, 2017]. Table 6.4 shows the values of the Pearson correlation
coefficient together with the p-values of the test. All the p-values are below a significance
level of 0.05. Therefore, it can be concluded that the correlations can be considered to be
statistically significant. The correlation is positive and it establishes a relation between AE
events, which are of microscopic nature, with a magnitude of macroscopic character, the force
drops.

2This equality is true for all the experiments presented in this work except for the sample V12, where three
time intervals of ∆t = 0.1 s have been found with a null value of ∆ and no associated AE.

V115 V12 V125 V205 V21 V22 V23 V28 V212 V24
R 0.66(10) 0.56(5) 0.66(8) 0.53(6) 0.47 (11) 0.50(8) 0.53(13) 0.48(15) 0.44(12) 0.40(16)
pvalue 0 0 0 0 0.0168(4) 0 1(1)× 10−5 4(2)× 10−5 0.0028(2) 0.0101(3)

Table 6.4: Values of the Pearson correlation coefficient for the logarithm of the variables and the p-values of
the permutational test for all the samples. p-values are computed with 105 realizations.
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6.3 Energy distribution of charcoal labquakes
The aim of this section is to present the difference in the exponent of the energy distribution
of AE events when labquakes are generated during the compression of a disordered material
whose inner structure is substantially different from the one of Vycor. Whereas Vycor is a
synthetic SiO2-based material with an homogeneous structure composed by pores at micro
and nanoscale, charcoal has been created through different natural processes and presents
more heterogeneities. These differences in the internal structure might involve a different
failure process [Xu et al., 2019]. The mean features characterizing the failure processes can
be qualitatively appreciated in Fig. 6.12, where the force curves are presented together with
the AE activity. Note that the activity is presented in logarithmic scale.

For both materials, the force curve starts with an adaptation with the compression plate
(which is not relevant for the study due to the poor AE activity) and evolves in an elastic
regime where the force increases monotonously. See Sec. 3.1 where the different regimes that
a material may experience when it is under stress are presented. As it was exposed in Sec. 6.2,
this elastic regime can be suddenly interrupted by small micro-fractures that might nucleate
in the sample and are manifested by the presence of force drops and AE activity. However,
the material is able to recover and the force can acquire higher values than the ones which
previously caused the micro-fracture. For the case of Vycor, these small fractures do not
alter the elastic behaviour and the force keeps monotonously increasing with a similar slope
as before. This effect is known as hardening [Xu et al., 2019]. For the case of charcoal, the
elastic regime tends to exhibit a flat or decreasing trajectory after a force drop (see Fig. 6.12
and Figs. 2 and 9 in Xu et al. [2019]). This kind of behaviour is very common for materials
exhibiting plasticity and is known as weakening [Xu et al., 2019]. In the case of Vycor, the
elastic regime is suddenly interrupted when the force reaches a maximum value and the curve
exhibits a large force drop where the sample gets destroyed. Nevertheless, the force curve
for charcoal does not exhibit such an extreme event. Although there are large force drops,
these are not so sharp, and the sample gets destroyed by a continuously weakening process
manifested in a sequence of smaller stress drops with a constant presence of AE activity.
These qualitative differences indicate a different mechanical behaviour that might affect the
statistics of labquakes for these materials [Xu et al., 2019]. In order to check whether there
is difference in the statistics or not, the distribution of the energy of charcoal labquakes is
studied by considering an untruncated power-law distribution.

N n Emin (aJ) Etop (aJ) γ̂E pvalue
101524 18448 5.012 1.86× 107 1.657(5) 0.088(9)

Table 6.5: Fitting parameters for the enegy distribution of charcoal labquakes. An untruncated power-
law with exponent γ̂E with lower cut-off Emin gives p-value larger than pc = 0.05. Numbers in parenthesis
correspond to the standard deviations of the MLE and the p-value. N is the total number of data and n is
the number of points entering into the fit.
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This is supported by the CV plot shown in Fig. 6.13, where the hypothesis of a unique power-
law tail cannot be rejected for E > 10 aJ. Therefore, there are not clear evidences of deviations
from the power-law behaviour along all the distribution and no upper cut-offs are needed. Let
us consider that the energy of charcoal labquakes is a random variable E which is distributed
according to an untruncated power-law (see Eq. (6.1)) whose fitting parameters are computed
according to the procedure explained in Sec. 5.5 and are shown in Table 6.5. A power-law
exponent of γE = 1.656± 0.005 holds for six orders of magnitude in energy (see Fig. 6.14).
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As it can be appreciated in Fig. 6.15, the value of the exponent γ̂E as a function of the
cut-off Emin is always within 2σ. This exponent is clearly different from the ones found for
Vycor samples. If one considers the results for Vycor exposed in Sec. 6.1 (µγE = 1.35± 0.05)
and computes the z-statistic (z = 3.108) exposed in Sec. 5.9, the test rejects the compatibility
of the exponents with a pnorm = 0.002. Therefore, the inner structure of the material can be
a factor that affects not only the mechanical behaviour but also the statistics of labquakes
which are generated during the compression experiment.

At this point it is important to stress the fact that, given the incompatibility of these power-
law exponents, charcoal and Vycor labquakes cannot be considered into the same universality
class.
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indicate the fit parameters Emin and γE exposed in Table 6.5.



Chapter 7

Universality of power-law exponents
by means of maximum likelihood
estimation

A statistical procedure to merge different datasets is first presented in this chapter with two
different separate aims. First, obtaining a broader fitting range for the statistics of different
experiments or observations of the same system. Second, establishing if two or more differ-
ent systems may belong to the same universality class. By means of maximum likelihood
estimation and goodness-of-fit test, this methodology provides rigorous statistical information
to discern whether power-law exponents characterizing different datasets can be considered
equal among them or not. Afterwards, some novel results found in the statistical study of
labquakes are presented. Vycor labquake datasets are merged according to the methodology
presented in Sec. 7.1, finding global energy and amplitude distributions ranging for more than
nine and five orders of magnitude respectively. The methodology can also elucidate that, at
least in statistical terms, labquakes generated from the compression of the mesoporous silica
glass Vycor are different from those generated by the compression of charcoal. The method-
ology is also applied for merging earthquake catalogs finding a Gutenberg-Richter law with
global exponent Γ ' 1.67 (b ' 1) holding for more than eight orders of magnitude. Finally,
earthquake and labquake datasets are merged in order to check whether these phenomena are
candidates to be classified into the same universality class or not. The results exposed in this
chapter have been published in:

• Víctor Navas-Portella, Isabel Serra, Álvaro Corral, and Eduard Vives, Increasing power-
law range in avalanche amplitude and energy distributions, Physical Review E 97, 022134
(2018) [Navas-Portella et al., 2018].

• Víctor Navas-Portella, Álvaro González, Isabel Serra, Álvaro Corral, and Eduard Vives,
Universality of power-law exponents by means of maximum likelihood estimation, Phys-
ical Review E 100, 062106 (2019) [Navas-Portella et al., 2019].
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7.1 Merging catalogues/datasets method
By considering nds datasets of Ni (i = 1, ..., nds) observations each, one wants to fit a general
power-law distribution with a unique global exponent for all of them. Let us assume that for
the i-th dataset, the variable X (seismic moment if one works with the GR law for earth-
quakes or AE energy or amplitude if one works with labquakes) follows a power-law PDF
fX (x; γi, x(i)

min, x
(i)
max) given by Eq. (5.25) from a certain lower cut-off x(i)

min to an upper cutt-off
x(i)
max with exponent γi and number of data ni (ni ≤ Ni) in the range

[
x

(i)
min, x

(i)
max

]
. Note that

one also can consider the untruncated power-law model for the i-th dataset if x(i)
max →∞. By

means of the methods explained in Sec. 5.5 (see also Deluca and Corral [2013]; Corral and
González [2019], o alternatively, Clauset et al. [2009]), one can state that data from the i-th
dataset does not lead to the rejection of the the power-law hypothesis for a certain range.
Note that, in the i-th dataset, the variable X can acquire values in a range typically spanning
several orders of magnitude.

Generally, the procedure of merging datasets is performed by selecting upper and lower
cut-offs x(i)

min and x(i)
max (x(i)

min < x(i)
max) for each dataset. Data outside these ranges are not

considered. All the possible combinations of cut-offs {xmin} and {xmax} are checked with a
fixed resolution (see below). By assuming that a different power-law regime can be found at
the tail of the distribution, the CV test can be used to fix some upper cut-offs, thus reducing
the computational effort. For more details about the CV test, see Sec. 5.10.

Given a set of cut-offs, datasets can be merged by considering two different models:

• Model One Exponent (OneExp): All datasets are merged by considering a unique
global exponent Γ (γi = Γ for all datasets).

• Model Multi Exponent (MultiExp): All datasets are merged, but each one with
its own exponent γi (i = 1, ..., nds).

Note that model OneExp is nested in model MultiExp and the difference in the number of
parameters characterizing these models is n(MultiExp)

L − n
(OneExp)
L = nds − 1. Since one is

interested in merging datasets with a unique global exponent (model OneExp), no statistical
evidence that this MultiExp model is more suitable to fit the data should be found. Note that
model OneExp can be a good model to fit if the particular exponents γ̂i do not exhibit large
differences among each other in relation to their uncertainty. For a given set of cut-offs, the
fit is performed by means of the following protocol:

1. Maximum Likelihood Estimation (MLE) of model OneExp: The log-likelihood
function of model OneExp can be written as:

logLOneExp =
nds∑

i=1

ni∑

j=1
log fX

(
xij; Γ, x(i)

min, x
(i)
max

)
, (7.1)
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where xij corresponds to the ni values of the variable X that are in the range x(i)
min ≤

xij ≤ x(i)
max in the i-th dataset, log is the natural logarithm and Γ is the global exponent.

The definition of likelihood is consistent with the fact that likelihoods from different
datasets can be combined in this way [Pawitan, 2013][p.27]. At this step, one has to
find the value Γ̂ of the global exponent Γ that maximizes the log-likelihood expression in
Eq. (7.1). For the particular expressions corresponding to the truncated and untruncated
power-law PDF, see Eqs. (5.25) and (5.16) in Sec. 5.2. If all the power-law distributions
are untruncated, this exponent can be easily found analytically [Navas-Portella et al.,
2018] as

Γ̂ = 1 +
∑nds
i=1 ni∑nds
i=1

ni
γ̂i−1

,

where the hats denote the values of the exponents that maximize the log-likelihood of
the particular power-law distribution (model MultiExp) and the general one in Eq. (7.1).
See Sec. 7.1.1 for more details about the relationship between the global and the par-
ticular exponents. If truncated power-law distributions are considered, one has to use a
numerical method in order to determine the exponent Γ̂ that maximizes this expression
[Baró and Vives, 2012; Deluca and Corral, 2013].

2. MLE of model MultiExp: The log-likelihood function of model MultiExp can be
written as:

logLMultiExp =
nds∑

i=1

ni∑

j=1
log fX

(
xij; γi, x(i)

min, x
(i)
max

)
, (7.2)

using the same notation as in Eq. (7.1). For the particular expressions corresponding to
the truncated and untruncated power-law PDF, see Eqs. (5.25) and (5.16) in Sec. 5.2.
The values of the exponents that maximize Eq. (7.2) are denoted as γ̂i.

3. Likelihood-ratio test: The likelihood-ratio test (LRT) for the models OneExp and
MultiExp in order to check whether model OneExp is good enough to fit data or not
in comparison with model MultiExp. For more details about the LRT see Sec. 5.6. If
model OneExp “wins”, the procedure goes to step (4). Otherwise, this fit is discarded
and a different set of cut-offs {xmin} and {xmax} is chosen, and the procedure goes back
to step (1).

4. Goodness-of-fit test: In order to check whether it is reasonable to consider model
OneExp as a good candidate to fit data, the next null hypothesis is formulated H0:
the variable X is power-law distributed with the global exponent Γ̂ for all the datasets.
Two different statistics are used in order to carry out the goodness-of-fit tests: the
Kolmogorov-Smirnov Distance of the Merged Datasets (KSDMD) and the Composite
Kolmogorov-Smirnov Distance (CKSD). The KSDMD statistic can be used as long as
datasets overlap each other whereas the CKSD statistic does not require this condition.
For more details about how these statistics are defined and how the p-value of the test
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is found, see Sec. 7.1.3. If the resulting p-value is greater than a threshold value pc (in
the present work the thresholds pc = 0.05 and pc = 0.20 are used) this is considered
as a valid fit and it can be stated that the variable X is power-law distributed with
exponent Γ̂ along all the different datasets for the different ranges {xmin} and {xmax}.
Otherwise, this fit is not be considered as valid. A different set of cut-offs is chosen and
the procedure goes back to step (1).

When all the combinations of cut-offs have been checked, one may have a list of valid fits.
In order to determine which of them is considered the definitive fit, the following procedure
is carried out:

1. The fit that covers the largest sum of orders of magnitude: max
[∑nds

i=1 log10

(
x

(i)
max

x
(i)
min

)]
is

chosen. If the power-law fit is untruncated, x(i)
max can be substituted by the maximum

observed value x(i)
top. If there is a unique candidate with a maximum number of orders of

magnitude, then this is considered as the definitive global fit. Otherwise the procedure
goes to the next step.

2. The fit with the broadest global range: max



max
(
x

(i)
max

)

min
(
x

(i)
min

)

 for i = 1, ..., nds is chosen. If

there is a unique candidate, this is considered as the definitive global fit. Otherwise the
procedure goes to the next step.

3. The fit with the maximum number of data N = ∑nds
i=1 ni is considered as the definitive

global fit.

By means of these three steps, a unique fit has been found for all the datasets analysed
in this work. Nevertheless, one could deal with datasets in which more conditions are needed
in order to choose a definitive fit unambiguously. At the end of this procedure, if a solution
is found, one is able to state that the datasets that conform the global fit correspond to
phenomena that are candidates to be be classified into the same universality class, at least
regarding the observable X . If no combination of cut-offs is found to give a good fit, then
it can be said that there exists at least one catalog that corresponds to a phenomenon that
must be classified in a different universality class.
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7.1.1 Global exponent and particular exponents
Let us consider nds catalogs with ni events characterized by a variable X . In order to simplify
and have exact calculations, let us consider also that data in the i-th catalog follows an
untruncated power-law distribution with exponent γi from a lower cut-off x(i)

min:

fX (x; γi, x(i)
min) = γi − 1

x
(i)1−γi
min

x−γi . (7.3)

By finding the values of the particular exponents that maximize the log-likelihood expression
in Eq. (5.27) one obtains [Deluca and Corral, 2013; Clauset et al., 2009]:

γ̂i = 1 + ni
∑ni
j=1 log

(
xj/x

(i)
min

) . (7.4)

Let us consider that data in these nds catalogs follow PDFs with different cut-offs x(i)
min but

sharing a global exponent Γ. If these PDFs are brought to the global log-likelihood fo Eq. (7.1),
one obtains:

logL =
nds∑

i=1
ni log (Γ− 1) +

nds∑

i=1
ni (Γ− 1) log x(i)

min − Γ
nds∑

i=1

ni∑

j=1
log xij . (7.5)

By deriving this expression with respect Γ, the value of the global exponent that maximizes
the log-likelihood is:

Γ̂ = 1 + N
∑nds
i=1

∑ni
j=1 log

(
xij/x

(i)
min

) , (7.6)

where N = ∑nds
i=1 ni. This global exponent can be related with the particular exponents from

Eq. (7.4) leading to:
N

Γ̂− 1
=

nds∑

i=1

ni
γ̂i − 1 , (7.7)

which is indeed the same equation as the one exposed in Sec. 7.1. Hence, for the case of non-
truncated power-law PDFs, the global exponent is related to the weighted harmonic mean of
γ̂ − 1, being γ̂ the exponent of the particular PDF of the i-th catalog.
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7.1.2 Merging histograms: Algorithmic and numerical procedures
Histograms have been commonly used to graphically represent PDFs of empirical data. The
most common situation is to have a dataset sampled from some probability distribution in
a certain range and the histogram is simply built up by the usual techniques explained in
Sec. 5.3. However, the situation gets more complicated if one tries to construct a single
histogram by using different datasets that may span different ranges of values and different
sampling “intensity” (number of data).

The problem can be addressed in the following terms: Let us consider nds samples from the
same population with sizes ni each one spanning

[
x

(i)
low, x

(i)
top

]
, where i = 1, ..., nds. According to

this notation, it is important to remark that datasets are ordered according to x(i)
low ≤ x

(i+1)
low .

Let us define xabslow = min
(
x

(1)
low

)
and xabstop = max

(
x

(i)
top

)
and let us split the real axis by a set

of w points such that x[1] = xabslow < x[2] ≤ ... < xabstop < x[w]. Note that the notation x[j] does not
denote the j-th value in the sample but the value of the real axis of the variable X in which the
j-th point (j = 1, ..., w) is placed. This axis is thus divided in nint = w − 1 consecutive semi-
open intervals

[
x[j], x[j+1]

)
separating regions in which different datasets overlap each other or

not. Overlapping intervals are those in which the intersection of two or more different datasets

1 2 3 4 5

(1) (2) (3)

Fig. 7.1: Schematic representation of the PDFs of three different power-law datasets (1), (2) and (3)
overlapping each other. According to the values of x(i)

low and x(i)
top (i = 1, 2, 3) the real axis is splitted in five

intervals (j = 1, 2, 3, 4, 5.)
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is not null. Contrarily to the procedure exposed in Sec. 5.3, note that these semi-open intervals
do not necessarily correspond to the bins. For instance, let us consider a simple case in which
there are three samples (1), (2) and (3) for which x(1)

top ≤ x
(2)
top ≤ x

(3)
top (See Fig. 7.1). For this

particular case, the configuration of the intervals would be:

• j = 1: (1) ∩ (2) = ∅ and (1) ∩ (3) = ∅ . (Non-Overlapping interval)

• j = 2: (1) ∩ (2) 6= ∅ and (1) ∩ (3) = ∅ . (Overlapping interval)

• j = 3: (1) ∩ (2) ∩ (3) 6= ∅ . Overlapping interval)

• j = 4: (1) ∩ (2) = ∅, (1) ∩ (3) = ∅ and (2) ∩ (3) 6= ∅ . Overlapping interval)

• j = 5: (1) ∩ (2) = ∅, (1) ∩ (3) = ∅ and (2) ∩ (3) = ∅ . (Non-Overlapping interval)

Each particular problem will have a certain configuration of the intervals depending on the
values of each dataset.

In this framework, the goal is to construct a single histogram composed by these samples.
In order to deal with this problem two different approaches can be considered: the algorithmic
procedure, which essentially consists in giving a certain weight to each data point, and the
numerical procedure, which consists in minimizing a χ2 statistic. The underlying philosophy
of both methods is quite different. On the one hand, the algorithmic procedure considers that
all the points in the sample should account differently according to the overlapping or non-
overlapping region they belong to. This methodology can be used as long as datasets overlap
each other. On the other hand, the numerical procedure can be thought as a non-parametric
inference technique which can assign counts to regions where no observations are measured.
In this sense, this method can be quite counter-intuitive when it is applied to merge datasets
where there is a big difference in the scale of the observations. These methodologies are
applied to power-law distributed synthetic data with the same value of the exponent but in
different ranges. Both methodologies yield similar results.

7.1.2.1 Algorithmic procedure

The methodology is based on assembling recursively datasets by pairs and is independent on
the shape of the histogram. Contrarily to the usual procedure for constructing histograms
explained in Sec. 5.3, instead of considering one element as a count (as in Fig. 7.2 (a) and
(c)) each individual contributes as the inverse of the sample intensity (number of data). For
simplicity, let us first consider two uniformly distributed datasets (1) and (2) and let k1 be
the number of elements from (1) overlapping with those in (2) and k2 the number of elements
from (2) overlapping with those in (1).

The first step consists in considering that non-overlapping elements from (1) and (2)
contribute 1

k1
and 1

k2
respectively whereas the overlapping elements contribute 1

k1+k2
to the

global histogram. The latter assumption comes from the fact that if one uses 1
ki

for the
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overlapping data, an histogram twice as high as it should be (due precisely to the overlapping)
would be obtained. Weighting each contribution by ki

k1+k2 leads to the 1
k1+k2

value. After this
first rescaling, datasets (1) and (2) are merged in a single (smooth) histogram (1 + 2).

In order to add a new dataset (3), the contribution of ((1) + (2)) that overlaps with (3)
has to be evaluated. Let us define k12 as the number of elements of (1) and (2) overlapping
with (3). Each of these elements contribute with its respective weight to a global weight

ω12 = 1
k1

+ 1
k1

+ ...+ 1
(k1 + k2) + 1

(k1 + k2) + ...+ 1
k2

+ ...

︸ ︷︷ ︸
k12terms

where the three different terms in the sum come from the data in (1) that do not overlap with
(2), the data in (1) that overlap with (2) or vice versa, and the data in (2) that do not overlap
with (1), respectively (and with all of them overlapping with (3)).

In order to compare properly the histogram (1) + (2) with (3), the former should come
with a weight k12 (instead of ω12), so the former is rescaled by the factor k12

ω12
. In this way, the

histogram from (1) + (2) turns out to have the different contributions k12
k1ω12

, k12
(k1+k2)ω12

, and
k12
k2ω12

(depending on which part of the domain each data point comes from).
The next step consists in applying the original procedure to (1)+(2) and (3), thus rescaling

in each case by 1
k12

, 1
k12+k3

, or 1
k3
, where k3 refers to the number of data from (3) overlapping

with (1) + (2) (i.e., with (1) or (2)). To be precise, data points from the already assembled
histogram ((1) + (2)) not overlapping with (3) contribute introducing the extra factor 1

k12
,

yielding the weights Ω
1

k1ω12
,

1
(k1 + k2)ω12

,
1

k2ω12
,

for each case; the overlapping data points contribute 1
(k12+k3) , yielding the weights Ω

k12

k1(k12 + k3)ω12
,

k12

(k1 + k2)(k12 + k3)ω12
,

k12

k2(k12 + k3)ω12
,

if the data point came from (1) or (2), and 1
k12+k3

if they come from (3); and non-overlapping
data points from the new dataset (3) contribute 1

k3
.

One can iterate this procedure in order to add as many datasets as necessary. In any
case, note that one can only add datasets that overlap, as the overlapping region is used
as a way of “calibration”. This method is independent of the shape of the histogram (a
convenient change of variables can transform any distribution into a uniform one, without
affecting the procedure). Once each point has a certain weight Ωr (r = 1, ...,N , where
N = ∑nds

i=1 ni) assigned, one constructs the histogram in the same way as it was explained
in Sec. 5.3. However, note that instead of contributing one unity, each point in the dataset
contributes according to the weight Ωr assigned by the algorithmic procedure. In order to
have an estimation of a PDF, firstly, rescaled counts should be divided by the bin-width for
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each bin and, secondly, the resulting histogram has to be divided by the effective number of
counts (neff = ∑N

r=1 Ωr) in order to fulfil normalization.
As already mentioned, depending on which overlapping or non-overlapping region a point

from data comes from, each point has a certain weight Ωr. By sorting data in ascending order,
it is easy to construct the empirical Cumulative Distribution Function (CDF) for the merged
datasets by using the following expression:

FX ,e(x(l)) =
∑l
r=1 Ωr∑N
r=1 Ωr

, (7.8)

with l = 1, ...,N and the sub-index e refers to the empirical CDF. Note that, for a standard
situation in which datasets are not merged, all the weights would be Ωr = 1 ∀r [Deluca and
Corral, 2013]. Note also that the Complementary Cumulative Distribution Function (SX ,e) is
SX ,e(x(k)) = 1− Fe(x(k)).

Figure 7.2 shows this procedure for three datasets (Datasets (1), (2) and (3)) of the same
size n = 105 sampled from untruncated power-law distributions with the same exponent 1.5
but with different lower cut-offs: x(1)

min = 1, x(2)
min = 103, x(3)

min = 105. The structure of these
samples is similar to the schematic representation in Fig. 7.1. In left panels of Fig. 7.2,
irregularities can be appreciated in the histogram of counts as well as in the CCDF for three
datasets, where the algorithmic procedure has not been applied yet. Right panels show the
merged PDF and CCDF after applying the procedure.

7.1.2.2 Numerical procedure

Let Cij be the number of counts from the i-th sample in the j-th interval defined by
[
x[j], x[j+1]

)
.

The number of counts from the i-th sample in the j-th interval will be zero if none of the ni
observations is contained in

[
x[j], x[j+1]

)
. However, this does not necessarily imply that the

probability to find an observation in that interval is zero. If no observations have occurred, this
might be due to experimental limitations in the acquisition of data, due to poor statistics, etc.
This procedure is based on the assumption that the probability to find an observation in the
j-th interval is proportional to the number of counts; even where there are no observations
from the i-th sample, one would expect a finite value of Cij. In this context, it must be
considered that the observed Cij is unknown if the i-th sample is not contained in the j-th
interval. Under this framework, the goal of building a single histogram is reduced to determine
the unknown Cij.

If independence is both assumed among samples and among observations, then an arbitrary
observation can be measured by two random variables D and J : D corresponds to the sample
index where the observation was collected and J is the label of the interval where it is
contained. The variable D takes values i = 1, ..., nds and J takes values j = 1, ..., nint. The
probability that an observation from the i-th sample lies in the j-th interval can be estimated
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by:
P (J = j|D = i) ' Cij∑nint

j=1 Cij
.

Under the assumption of independence among samples and among observations, one can
compute an expected value of the ij-th entry:

eij = ni

nds∑

r=1
P (J = j|D = r) =

∑nds
r=1 Crj

∑nint
l=1 Cil∑nds

r=1
∑nint
l=1 Crl

, (7.9)

where r and l are dummy indexes. Then the unknowns cij can be determined by minimizing
the Pearson’s χ2 statistic:

χ2 =
nds∑

i=1

nint∑

j=1

(Cij − eij)2

eij
. (7.10)

Therefore, under the assumption of independence, building up an histogram of merged
datasets has been reduced to an optimization problem where one might use numerical methods
to find the values of the unknonws that minimize the χ2 statistic.

Let us apply this numerical procedure to the same samples that were merged in the previous
section. In this particular case, there are three samples i = 1, 2, 3 which can be classified into
five different intervals j = 1, ..., 5. According to this procedure, one can construct the table of
counts shown in Table 7.1.

Intervalj 1 2 3 4 5 ∑
j

Samplei
1 96774 2882 344 C14 = 0 C15 = 0 105

2 C21 = 0 90165 9762 73 C25 = 0 105

3 C31 = 0 C32 = 0 99356 636 8 105
∑
i 96774 93047 109462 709 8 3× 105

Table 7.1: Table of the initial observed (real) counts for each sample in each interval.

In this particular example, there are six unknowns C14, C15, C21, C25, C31, C32 which are
initialized at zero. Once this table is known, it is easy to construct the table of the expected
values according to Eq. (7.9) (see Table 7.2). Table 7.3 shows all the contributions to the
chi-square statistic computed from Eq. (7.10). At this step, the main goal is to find the value
of the six unknowns (which are assumed to be larger or equal than zero) that minimize the
χ2 statistic. In order to do that, the solver tool provided by the Excel software [Microsoft
Corporation, 2018] as well as the function “optimize", which is already implemented in R
programming language [R Documentation, 2017; Brent, 2002], enable to optimize the value of
the statistic for these unknowns. Once this numerical method is applied, it is found that the
minimum value of the statistic in this case is χ2 = 4.34, and the solutions of the unknowns
are exposed in Table 7.4.
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Intervalj 1 2 3 4 5 ∑
j

Samplei
1 32258 31015.67 36487.33 236.33 2.67 105

2 32258 31015.67 36487.33 236.33 2.67 105

3 32258 31015.67 36487.33 236.33 2.67 105
∑
i 96774 93047 109462 709 8 3× 105

Table 7.2: Table of the expected counts for each sample in each interval.

Intervalj 1 2 3 4 5 ∑
j

Samplei
1 129032 25519.46 35802.58 236.33 2.67 190593.04
2 32258 112802.46 19575.11 112.88 2.67 164751.12
3 32258 31015.67 108324.42 675.88 10.67 172284.64∑
i 193548 169337.60 163702.10 1025.10 16 χ2=527628.80

Table 7.3: Table with the different contributions to the χ2 statistic. Initial value of the χ2 statistic is shown.

Given that the value of the unknowns that minimize the statistic are determined, the
number of counts of each sample is known for each interval and the PDF can be easily
constructed just by adding all the contributions of the samples for each interval. Once each
interval has a certain contribution from each sample, one builds the histogram in the same
way as it was explained in Sec. 5.3. In Fig. 7.3 the merged histogram is obtained by means of
the numerical procedure. As it can be seen, algorithmic and numerical approaches practically
overlap. Tiny deviations can be associated to the numerical method.

Although this numerical method gives similar results to those obtained with the algorith-
mic procedure, the computational effort is higher and it requires complementary numerical
methods whose convergence is not ensured or it might be difficult to reach. Note that, in the
worst situation, datasets will overlap consecutively (x(i)

top > x
(i+1)
low and x(i)

top < x
(i+2)
low < x

(i+1)
top ,

∀i) in pairs thus maximizing the number of unknowns nun = 2 (nds − 1)2. This implies that
for three datasets one would have to find eight unknowns and for ten datasets, 162 unknowns.
The number of unknowns increases dramatically with the number of merged datasets.

Intervalj 1 2 3 4 5 ∑
j

Samplei
1 96774 2882 344 C14 = 2.07 C15 = 0.03 100002.08
2 C21 = 2.997× 106 90165 9762 73 C25 = 0.79 3.097× 106

3 C31 = 3.037× 106 C32 = 9.137× 105 99356 636 8 3.139× 107
∑
i 3.347× 107 1.007× 106 109462 711.06 8.81 3.458× 107

Table 7.4: Table with the solutions that minimize the χ2 statistic.
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This is the main reason why, except stated otherwise, the algorithmic method will be the
preferred one when plotting PDFs or in goodness-of-fit tests.

7.1.3 Different goodness-of-fit test
Determining whether the null hypothesis of considering a global exponent Γ is compatible with
the values of the particular fits shows some differences with the standard Kolmogorov-Smirnov
(KS) goodness-of-fit test presented in Sec. 5.4. Two different statistics for the goodness-of-fit
test that have been used for the global fit are presented: the first statistic is essentially an
adaptation of the standard KS test for the merged case whereas the second method uses a
statistic which is a composition of KS distances. When the value of the global exponent Γ̂
has been found through MLE, one can understand that each dataset contributes to the global
PDF with a global exponent Γ̂ in their particular ranges

[
x

(i)
min, x

(i)
max

]
(i = 1, ..., nds). The

global distribution can be understood as a global power-law PDF with exponent Γ ranging
from Xmin = min{x(i)

min} to Xmax = max{x(i)
max}. In this situation where several datasets are

merged, it is necessary to redefine the KS distance.

• Kolmogorov-Smirnov Distance of the Merged Datasets (KSDMD): This statis-
tic can be used as long as datasets overlap each other. Once the merged FX ,e(x) has
been constructed according to the procedure explained in Sec. 7.1.2, the KS distance
can be easily computed for the truncated power-law case by:

d(M)
e = max

∣∣∣∣∣


 x1−Γ̂ −X1−Γ̂

min

X1−Γ̂
max −X1−Γ̂

min


− FX ,e(x)

∣∣∣∣∣ , (7.11)

where the values of x are taken from the ranges
[
x

(i)
min, x

(i)
max

]
. In Fig. 7.4 the distribution

of the KSDMD statistic is shown for three simulated power-law datasets of size n = 103

each, with exponent γ = 1 + 2
3 for 104 realizations. The distribution approximately

follows a KS distribution.

• Composite KS Distance (CKSD): This second statistic can be computed inde-
pendently on whether datasets are overlapping each other or not. This statistic is
constructed from the nds particular KS distances:

de,i = max
x

(i)
min≤x≤x

(i)
max

∣∣∣∣∣


 x1−Γ̂ − x(i)1−Γ̂

min

x
(i)1−Γ̂
max − x(i)1−Γ̂

min


− FX ,e,i

(
x;x(i)

min, x
(i)
max

)∣∣∣∣∣ , (7.12)

where the subindex i refers to the i-th catalog and FX ,e is the empirical CDF computed
according the methodology explained in Sec. 5.4. Note that these distances are computed
for each individual dataset, therefore, the power-law cut-offs correspond to those of
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each dataset
[
x

(i)
min, x

(i)
max

]
In order to compute the statistic, the following summation is

performed:

d(C)
e =

nds∑

i=1

√
niDe,i , (7.13)

where the factors √ni are due to the scaling of the KS distance with the number of data
[W. H. Press and Flannery., 1992].
In Fig. 7.5 the distribution of the CKSD statistic is shown for three simulated power-law
datasets of size n = 103 each, with exponent γ = 1 + 2

3 for 104 realizations.

Once the statistic is computed, one needs to determine whether it is big or small in relation
to the one found for data sampled from a PDF with the same parameters {x(i)

min},{x(i)
max}, Γ

and {ni}. Similarly to the goodness-of-fit test in Sec. 5.4, the p-value obtained from the
theoretical distribution of the KSDMD statistic is biased when the KSDMD is computed with
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the estimated value of the exponent. Consequently, it is necessary to perform Monte Carlo
simulations in order to obtain an unbiased p-value.

Simulated data is sampled from a power-law PDF in the range given by the i-th catalog
with probability qi = ni/N , where N = ∑nds

i=1 ni. Note that the particular number in each
simulated dataset is not necessarily the empirical one ni but the total number of data N is
maintained. Hence, one needs a first random number to choose the dataset i and therefore the
range

[
x

(i)
min, x

(i)
max

]
and a second one to generate the random truncated power-law number in

that range with exponent Γ̂ [Deluca and Corral, 2013]. When N events have been generated
according to this procedure, one finds the global exponent Γ̂sim by maximizing the global log-
likelihood and computes either d(M)

sim or d(C)
sim for the merged simulated datasets. By performing

several realizations of the previous procedure, one can estimate the p-value by computing the
fraction of simulated datasets where the simulated statistic is larger than the empirical one.
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7.1.4 Performance over synthetic datasets
Once the methodology for merging datasets has been presented together with the different
goodness-of-fit tests, it is important to check the performance of the method over synthetic
data. In order to carry out this analysis, two untruncated power-law distributed datasets with
exponents γ1 and γ2, lower cut-offs x(1)

min and x(2)
min and sizes n1 and n2 are generated. In order

to simplify the analysis, the sizes of both datasets are considered to be equal n1 = n2. The
global exponent Γ̂ of the merged catalogs is estimated according to the methodology exposed
in the main text and the LRT statistic 2Re is computed according to the methods exposed
in Sec 5.6. Both KSDMD and CKSD statistics are computed together with their respective
p-vales p(M)

value and p
(C)
value. The source code in C for this analysis is shown in Appendix 9.4.

As mentioned in Sec. 5.6, it must be checked whether the distribution of the statistic follows
a χ2 distribution with as many degrees of freedom as the difference of parameters between the
more complex and the simpler model or not. Figure 7.6 shows the distribution of the statistic
2Re for 104 pairs of power-law datasets under the null hypothesis that data can be described
by the simpler model (both exponents are the same γ1 = γ2 = 1.5). As it can be observed,
the distribution is in agreement with a χ2

1 distribution with one degree of freedom. This is
in agreement with the results exposed by [Serra and Corral, 2017]. This result ensures using
the critical value provided by the theoretical distribution of the statistic. This is important in
order to avoid performing Monte-Carlo simulations to compute a p-value for the LRT, which
would imply a higher computational effort. Given that the difference between between the
number of parameters in model 1 and 2 in this case is 1, the critical value of the test with
a significance level equal to 0.05 is 2Rc = 3.84. If the empirical LRT statistic is found to
be larger than the critical one, one then rejects the null hypothesis that the simpler model 1
is good enough to describe data and, consequently, more parameters are needed. Once the
global exponent and the likelihood ratio statistic are found, the two different goodness-of-fit
test exposed in Sec 7.1.3 are performed.

The analysis is performed for different dataset sizes as well as different power-law exponents
γ1 and γ2. The results of the method for synthetic datasets are shown in Table 7.5. Five
groups are presented depending on the relative difference δγ between exponents. The p-values
of the CKSD and the KSDMD goodness-of-fit tests have been computed with 104 Monte
Carlo simulations. In order to compare our results with a test that checks whether two
power-law exponents are significantly different or not, the pnorm-value of the z-test exposed
in Sec. 5.9 is also shown. These p-values can be computed by assuming that, for a sufficiently
large sample sizes, the z-statistic follows a normal distribution with zero mean and standard
deviation equal to one. As one would expect, if both datasets have exactly the same power-
law exponent, the null hypothesis that variable X is power-law distributed for all the datasets
with the global exponent Γ̂ is not rejected. When the CKSD goodness-of-fit test rejects the
null hypothesis of a power-law distribution with a global exponent, the z-test also rejects the
null hypothesis of considering γ1 = γ2. The same does not apply for the KSDMD goodness
of fit test, where some fits yield to non-rejectable p-values whereas the z-test clearly rejects
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the null hypothesis. In this sense, one can consider that the KSDMD statistic is less powerful
than the CKSD statistic. However, for the sample sizes which are involved in this work, both
goodness-of-fit tests reject the null hypothesis for sufficiently large difference in the exponents.
It can also be seen that, the null hypothesis is rejected independently on the goodness-of-fit
test for those fits in which the Likelihood Ratio statistic exceeds the critical value 2Rc = 3.84.
This fact justifies the decision of performing the LRT before the goodness-of-fit test.

Finally, let us remark that, based on this analysis, the goodness-of-fit test performed with
the CKSD statistic is much better than the one performed with the KSDMD. Not only it
is much powerful but also it can always be computed, independently on whether datasets
overlap or not.
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Fig. 7.6: Red points correspond to different values of the statistic 2R computed with a simpler (one
global fitted exponent Γ̂) and a more complex model (assuming two different fitted exponents γ̂1, γ̂2) of two
untruncated power-laws with exponents γ1 and γ2 (under the null hypothesis γ1 = γ2), sizes n1 = n2 = 104.
Black line corresponds to a χ2

1 distribution with one degree of freedom.
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7.1.4.1 Effect of the magnitude resolution in earthquake catalogs

A different question that can be addressed is whether the resolution of magnitudes m in
earthquake catalogs affects the fitting procedures when PDFs are considered as continuous.
As explained in Sec. 4.2, some catalogs provide the magnitudes with a certain resolution ∆m,
leading to discretized values when they are transformed into seismic moments in order to fit a
power-law distribution. In order to check the effect of the resolution ∆m when fitting a power-
law, n exponentially distributed magnitudes are generated according to the Gutenberg-Richter
law from uniform random numbers u according to

m = mmin −
log10 (1− u)

b
.

Once they are generated, these values are rounded according to the bin-width or resolution
∆m and converted into seismic moment according to Eq. (3.11).
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Fig. 7.7: ML estimator b̂-value as a function of the resolution in magnitudes ∆m for different sample
sizes. Data are sampled from a Gutenberg-Ricther law with mmin = 3 and b-value= 1. Horizontal black line
corresponds to the real b-value.
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The fitting procedure explained in Sec. 5.5 is then applied and the results for different sample
sizes (n = 102, n = 103 and n = 104) of magnitudes sampled from a Gutenberg-Richter law
(b-value= 1 and mmin = 3) and discretized according to different values of the resolution ∆m
are shown in Table 7.6.

In Fig. 7.7 the fitted b̂-value as a function of the resolution ∆m is shown for the three
different sample sizes. As it can be observed, the value of the ML estimator converges to the
expected b-value= 1 as the magnitude bin-width is decreased. The ML estimator is signifi-
cantly biased for resolutions larger than 0.1 for the sample sizes analyzed and is acceptable,
within the error bars, for smaller values of the resolution [Bender, 1983]. However, the results
of the goodness-of-fit test lead to rejectable p-values for large samples even when the ML
estimator is not significantly biased.

∆m mmin b-value n b̂ σ pvalue
1 3 1 102 3.948 0.394 0

103 4.4326 0.140 0
104 4.024 0.040 0

0.5 3 1 102 1.448 0.145 0
103 1.876 0.059 0
104 1.840 0.018 0

0.1 3 1 102 1.070 0.106 0
103 1.113 0.035 0
103 1.122 0.011 0

0.05 3 1 102 0.994 0.099 0.022± 0.001
103 1.060 0.033 0
104 1.086 0.011 0

0.01 3 1 102 1.050 0.105 0.578± 0.004
103 1.013 0.032 0.267± 0.004
104 0.997 0.010 0

0.005 3 1 102 1.076 0.108 0.856± 0.004
103 1.039 0.033 0.396± 0.005
104 0.995 0.010 0.033± 0.002

0.001 3 1 102 1.067 0.102 0.588± 0.005
103 1.018 0.0322 0.828± 0.004
104 1.009 0.010 0.386± 0.005

Table 7.6: Results of simulating magnitudes sampled from a Gutenberg-Richter law with mmin = 3 and
b-value= 1 for different sample sizes n and different resolutions ∆m. The fitted b̂-values and their standard
deviations σ are computed by means of MLE and p-values are extracted from the KS goodness-of-fit test
explained in Sec. 5.4.
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A resolution of ∆m = 10−3 ensures that the largest sample of n = 104 yields non-rejectable
p-values. Some results exposed in this chapter deal with catalogs whose resolution and number
of events would result in rejectable fits. However, non-rejectable p-values are found instead
leading to the conclusion that data in real catalogs are even more reliable to follow a power-law
distribution.

7.2 Merging labquake catalogs
As explained in Sec. 4.1.6, experiments performed at different values of the pre-amplification
lead to different observation ranges in the energy and amplitude distributions. In this section,
the distributions of energy and amplitudes of labquakes generated during the displacement-
driven compression experiments of charcoal and Vycor are studied by using techniques ex-
plained in Secs. 5.5 and 7.1.

7.2.1 Energy distribution of Vycor Labquakes
Let us consider four labquake catalogs generated during the displacement-driven compression
of Vycor and recorded for different values of the pre-amplification: 60 dB, 40 dB, 20 dB
and 0 dB. Let us consider that, for the i-th (i = 1, ..., 4) experiment, the random variable E
corresponding to energy follows a continuous truncated power-law distribution,

fE(E)dE = 1− γE,(i)
E

1−γE,(i)
max − E1−γE,(i)

min
E−γE,(i)dE . (7.14)

Given that each experiment covers a different observation window, the methodology explained
in Sec. 7.1 can be applied in order to merge the four labquake catalogs with the aim of exploring
the range of validity of the power-law behaviour. In this particular case, the log-likelihood of
model OneExp is written as:

logLOneExp =
nds=4∑

i=1

ni∑

j=1
log fE

(
Eij; ΓE, E(i)

min, E
(i)
max

)
. (7.15)

Given that there exist limitations due to saturation effects for high energy AE events,
it is convenient to check at which value of the energy it is necessary to establish an upper
truncation for the power-law regime. A first exploration can be performed by plotting the
variations of the MLE of the particular exponents γ̂E,(i) as a function of the cut-offs (see
the MLE maps shown in Fig. 7.9). The residual CV-plots are shown in Fig. 7.8 in order
to illustrate the different behaviour at the tail of the distributions. The residual CV-test
reveals the upper truncations of the experiments performed at 60, 40 and 0 dB but it does not
provide conclusive results for the experiment at 20 dB. In order to explore fewer combinations
of cut-offs, thus reducing the computation time, the upper truncations E(1)

max, E(2)
max and E(4)

max
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(corresponding to vertical black lines in Fig. 7.8) are fixed whereas E(3)
max is considered as a

free parameter. The labels (1), (2), (3) and (4) correspond to the experiments performed at
60, 40, 20 and 0 dB respectively.

Five intervals per decade equally spaced in logarithmic scale are sampled for each catalog
and all the possible combinations of cut-offs E(1)

min, E
(2)
min, E

(3)
min, E(3)

max, E
(4)
min are checked for

fixed upper-truncations E(1)
max, E(2)

max and E(4)
max.

In Table 7.7 the results of the global fits for Vycor catalogs for the KSDMD and the
CKSD statistics are presented. In both cases, the global exponents are very similar but
the fit performed with the KSDMD statistic maximizes the sum of orders of magnitude
∑nds
i=1 log10

(
x

(i)
max

x
(i)
min

)
. The same combination of cut-offs would not be a good fit if the CKSD

statistic were used instead. This fact can be justified by the performance of the method for
synthetic data by applying the goodness-of-fit test with both statistics. The goodness-of-fit
test for the KSDMD statistic tends to exhibit non-rejectable p-values for the same datasets for
which the CKSD statistic clearly rejects the null hypothesis. See Sec. 7.1.4 for more details.
Although the fit performed with the KSDMD covers a larger number of orders magnitude, the
definitive fit is the one performed with the CKSD and pc = 0.20 (see Table 7.7). Given that
the ranges covered by the other non-rejectable fits lead to the rejection of the global power-law
hypothesis when the CKSD is used with pc = 0.20, this definitive fit is more restrictive than
the other ones (see Sec. 7.1.4) and it is the ’safest’ choice. The definitive fit covers about nine
orders of magnitude in energy with a number of data N = 24496 entering into the fit.

Note that the value of the global exponent is in agreement with the weighted harmonic
mean

Γ̂E = 1.354± 0.002 ' 1 + N
∑nds
i=1

ni
γ̂E,(i)−1

= 1.355,

see Sec. 7.1.1 for a justification of this result. Due to the upper-truncations, the value of the
global exponent is not exactly the same as the value of the harmonic mean of the particular
exponents.

By considering the sample performed with zero pre-amplification and under the hypothesis
that a power-law distribution with the same exponent can be extended for larger values of
the energy, the probability P

(
E > E

(0dB)
top

)
turns out to be 0.0461. The number of observed

events whose amplitude is larger than E(0dB)
min is 209. For these Ni = 209 trials, the probability

of having no events in this range can be estimated by (1− 0.0461)209 = 5.22 × 10−5. Based
on these simple calculations, one could justify the existence of a corner value due to the finite
size of the sample properties [Serra and Corral, 2017]. However, this corner value would be
only visible for the experiment at zero amplification; the same calculation for the experiment
at 20 dB gives a probability of having no events above Etop of 0.02, which is not a negligible
value at all.
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The values of the particular exponents γ̂E,(i) as well as the global exponent Γ̂E of Vycor
labquake catalogs differ remarkably from those found for earthquakes and charcoal labquakes
[Navas-Portella et al., 2018]. As it was expected from the results obtained in Sec. 6.3, no
combination of the cut-offs has lead to a good fit if Vycor labquakes are merged with char-
coal labquakes or earthquakes. Therefore, Vycor labquakes can be considered outside this
universality class.

7.2.2 Amplitude distribution of Vycor Labquakes
The same procedure for merging labquake catalogs in order to obtain a broader fitting range
for the energy can also be performed for the amplitude of Vycor labquakes (See Fig. 7.11). Let
us consider that, for the i-th experiment, the random variable V corresponding to amplitude
(i.e., the peak voltage, whose values are denoted by V ) follows a truncated continuous power-
law distribution,

fV(V )dV = 1− γV,(i)
V

1−γV,(i)
max − V 1−γV,(i)

min
V −γV,(i)dV . (7.16)

However, the true value of V is not accessible from the experiments, and what one has instead
is its discretized counterpart Ψ (the discretized peak voltage, whose values are denoted by
ψ), which is concentrated in k discrete values (but not equispaced) of the amplitude A (see
Sec. 4.1.3). In fact, the values V that the variable V can take are the real values of the voltages
read by the AD card, but they are transformed into amplitudes A in dB, losing precision.

Under the assumption of a power-law distributed V , one is allowed to state that the variable
Ψ has probability mass function

fΨ (ψ) dψ = P (Ψ = ψ) = P [g (A−∆) ≤ V < g (A+ ∆)] dψ , (7.17)

fΨ (ψ) dψ = [g (A+ ∆)]1−γV,(i) − [g (A−∆)]1−γV,(i)

V
1−γV,(i)

max − V 1−γV,(i)
min

dψ

= 2 sinh[2.30(1− γV,(i))∆/20]
V

1−γV,(i)
max − V 1−γV,(i)

min

1
ψγV,(i)−1dψ ,

(7.18)

where ψ = g (A) is the transformation from amplitudes in voltages V to amplitudes in dB A
defined in Eq. (4.3), ∆ = 0.5 dB is a vicinity around the values of A, 2.30 ' log 10. Note that,
although in practice one can use the expression with the cumulatives in Eq. 7.17, fΨ (ψ) is a
power law but with exponent γV,(i)−1. As a matter of notation, it must be mentioned that ∆
(which was defined as the bin-width in a histogram in Sec. 5.3) has been maintained because
it can also be understood as half-of the bin-width for the discretized or binned amplitudes.
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Fig. 7.11: Estimated probability mass functions of the amplitude in dB for the complete datasets of the
different experiments performed at different pre-amplifications Preamp and Thresholds THR. Details about
the experiments are exposed in Table 4.2. Error bars are estimated as the standard deviation for each bin.

The log-likelihood of the amplitudes for a particular experiment can be written as:

logL =
Amax∑

j=Amin

ωj log fΨ (g(j))

=
Amax∑

j=Amin

ωj

[
log

(
2 sinh[2.30(1− γV )∆/20]

V 1−γVmax − V 1−γV
min

)
− (γV − 1) logψj

]
,

(7.19)

where γV is the power-law exponent, and Amin and Amax are the values of the amplitude in dB
corresponding to the cutoffs imposed on the sample for the analysis. Note that the index j
does not consider all the sample values one by one but the values of the random variable. The
frequency ωj is the number of events with discretized peak voltage ψj = g(j). The value of
the exponent γV that maximizes Eq. (7.19) is computed by means of the function “optimize",
which is already implemented in R programming language [R Documentation, 2017; Brent,
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2002]. The values of the fitted exponents γ̂V for different values of Amin and Amax are shown
in Fig. 7.12 by using MLE exponent maps [Baró and Vives, 2012].

With the aim of merging labquake catalogs for the amplitude, let us write the log-likelihood
function of model OneExp as:

logLOneExp =
nds∑

i=1

A(i)
max∑

j=A(i)
min

ωij log fΨ (g(j))

=
nds∑

i=1

A(i)
max∑

j=A(i)
min

ωij


log


2 sinh[2.30(1− ΓV )∆/20]

V
(i),1−ΓV

max,(i) − V 1−ΓV
min,(i)


− (ΓV − 1) logψij


 ,

(7.20)

where ΓV is the global power-law exponent, and A(i)
min and A(i)

max are the values of the amplitude
in dB corresponding to the cutoffs imposed on the sample for the analysis. The frequency ωij
is the number of events from the i-th experiment with discretized peak voltage ψij = g(j).
As it was done for the energy, MLE maps are useful for a first exploratory analysis of the
dependence of the power-law exponent with the different cut-offs that can be imposed in the
samples. As it can be appreciated in Fig. 7.12, power-law exponents are quite stable along all
the detected range of amplitudes except for the sample with pre-amplification of 40 dB. The
stability of the power-law exponents as well as the saturation effects allow for the imposition
of an upper cut-off that can be set to Amax = Atop − 1. By fixing some of the upper cut-offs,
the number of combinations to explore is reduced. However, the only sample for which there
is not a clear stability of the exponent is the one performed at 40 dB. The upper cut-off in
this sample is considered as a free parameter.

After maximization of the log-likelihood function in Eq. (7.20), next step consists in deter-
mining whether the null hypothesis of considering a power-law distribution global exponent
Γ̂V is plausible or not. As it was explained in Sec. 7.1.3, two different goodness-of-fit test can
be performed. The results of the global fits for the amplitude distributions of Vycor catalogs
for the KSDMD and the CKSD statistics are presented in Table 7.8. In both cases, the ranges
for which the largest number of orders of magnitude is achieved is the same, with very lit-
tle difference in p-values. Furthermore, this fit overcomes both p-value thresholds pc = 0.05
and pc = 0.20 for both statistics. Consequently, there is a unique fit which is presented in
Table 7.8. Note that each experiment detects labquakes within 2.8 decades in amplitude but
all the experiments together would yield a total range of 5.8 decades. This range is broader
than other ranges of AE amplitudes [Petri et al., 1994; Vives et al., 1995; Carrillo et al., 1998;
Weiss et al., 2000; Koslowski et al., 2004; Richeton et al., 2005; Weiss et al., 2007].
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The global fit yields a global exponent Γ̂V = 1.740 ± 0.006 with a p
(C)
value = 0.36 for

N = ∑nds
i=1 ni = 31441 events. Note that the value of the global exponent is in agreement with

the weighted harmonic mean

Γ̂V = 1.740 ' 1 + N
∑nds
i=1

ni
γ̂V,(i)−1

= 1.741,

see Sec. 7.1.1 for a justification of this result. Due to the upper-truncations, the value of the
global exponent is not exactly the same as the value of the harmonic mean of the particular
exponents.

10−11
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1

101 102 103 104 105 106 107

f V
(V

)(
µ
V
−

1 )

V (µV )

Fit

Fig. 7.13: Merged amplitude PDF of the global distribution with exponent αg = 1.740±0.006, p-value= 0.36,
and number of fitted data N = 31441. Events corresponding to the experiments performed at 40, 20, and 0
dB below their respective lower cut-offs as well as those corresponding to the experiments performed at 60,
40, and 20 dB above their respective upper cut-offs have been excluded. Black solid line shows the fit of a
truncated power-law with exponent α̂g = 1.740 and ranging almost 5 decades, from g(32−∆) = 37.58 µV to
g(122 + ∆) = 1.33× 106 µV.
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Similarly to the simulations performed in Sec. 7.1.4, four synthetic catalogs have been
merged with the same parameters as in Table 7.8, yielding acceptable p-values. It must be
mentioned that performing the particular fits by simply assuming that the discrete variable
Ψ directly follows a truncated continuous power-law leads to the rejection of this hypothesis
in the goodness-of-fit test.

Figure 7.13 shows the global PDF for the amplitudes and the global fit. Observe how the
global exponent is valid along 4.5 orders of magnitude, giving an unprecedented broad fitting-
range in amplitudes. The procedure to construct this aggregated histogram is explained in
Sec. 7.1.2. As the estimation of the PDF is done using bins [Deluca and Corral, 2013], note
that one can safely replace the unknown values of the random variable V by the known
discretized values of Ψ. The only requirement is that the width of the bins is not smaller than
the discretization of Ψ.

The same reasoning which was carried out for labquake energies can be also applied in
this case in order to determine the existence of a corner value. According to the range of
detection for the experiment performed at 0 dB, one could be able to observe events up to 139
dB. Nevertheless, the maximum in this sample corresponds to 123 dB. Under the hypothesis
that a power-law distribution with the same exponent (γ̂A = 1.61 ± 0.04) can be extended
for larger values of the amplitude, the probability P (123dB < A < 140dB) turns out to be
0.042. The number of observed events whose amplitude is larger than Amin = 84 dB is 529.
For these Ni = 529 trials, the probability of having no events in this range can be estimated
by (1− 0.042)529 = 1.4 × 10−10. However, the same calculation for the experiment at 20 dB
gives a probability of having no events above Atop of 0.11, which is not a negligible value at
all. As it occurred for the energy, one could justify the existence of a corner value due to the
finite size of the sample properties [Serra and Corral, 2017].

Once both amplitude and energy distributions have been fitted with global exponents
holding for several decades, a relationship between amplitudes and energies can be established.
Scatter plots for the complete datasets are shown in Fig. 7.14. Rectangular windows with
the same color as the points of a single experiment correspond to the ranges in which both
amplitudes and energies are power-law distributed. Saturation effects are clear and are left
outside of these windows which conform global fits. Bak et al. [1988] proposed a relationship
between exponents of power-law distributed avalanche observables.

Let us assume that the energy of labquakes is related to their amplitude by a relationship
of this kind, E (A) ∼ A%, where ∼ denotes proportionality and % is an exponent establishing
thus a scaling relationship between energy and amplitude. A rough estimation of this exponent
can be easily found by applying:

% = 1− Γ̂V
1− Γ̂E

= 1− 1.74
1− 1.35 = 2.11 ' 2 . (7.21)
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Fig. 7.14: Scatter plot for the complete datasets energies and amplitudes. Black solid line with slope 2
serves as a guide to eye to illustrate the relation E ∼ A2. Rectangular windows with the same color code
as the point correspond to those ranges in which amplitude and energy are power-law distributed for that
particular experiment and conform the global fit.

The relationship in Eq. 7.21 is illustrated in Fig.7.14 where a line with slope 2 is plotted
as a guide to the eye. More accurate studies must be performed in order to give a rigorous
mathematical sense to this kind of relationships.
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7.3 Merging earthquake catalogs: Gutenberg-Richter
law

As it was explained in Sec. 3.2.2.1, the GR law states that the seismic moment can be con-
sidered as a random variableM which is power-law distributed:

fM(M)dM = 2
3

b

Mmin

(
M

Mmin

)−(1+ 2
3 b)

dM = γM − 1
Mmin

(
M

Mmin

)−γM
dM . (7.22)

In its usual form, the GR law fits a power-law model that contemplates a unique power-law
exponent. Nevertheless, several studies have elucidated the existence of a double-power-law
behaviour in the GR law for global seismicity [Corral and González, 2019; Pacheco et al.,
2012; Yoder et al., 2012]. Corral and González [2019] claim that a truncated power-law with
exponent γ ' 1.66 cannot be rejected up to mmax ' 7.4 and a second power-law tail emerges
from m′min = 7.67 with an exponent γ′M = 2.1 ± 0.1. These results have been checked by
using the residual CV-test (see Fig. 7.15). Furthermore, by fixing the upper truncation at
mmax = m′min = 7.67, the truncated power-law hypothesis cannot be rejected (see Table 7.9).
Consequently, if one wants to fit a power-law PDF with a unique exponent, one has to exclude
all those earthquakes with m ≥ mmax = 7.67. For the CMT catalog, the upper cut-off is fixed
atMmax = 10 3

2mmax+9.1 whereas the rest of catalogs exposed in Sec. 4.2.3 can be safely fitted by
untruncated power-law PDFs because the CV-test does not reject the hypothesis of a unique
power-law tail and the magnitudes which are studied are considerably smaller than those in
the CMT catalog.

Therefore, two untruncated power-law distributions and a third one which is truncated
for the CMT catalog are considered in order to merge catalogs. For each decade, 5 values of
M

(i)
min equally spaced in logarithmic scale are sampled, and all the possible combinations of

cut-offs M (1)
min, M

(2)
min, M

(3)
min are checked for a fixed upper-truncation M (3)

max. The labels (1),
(2) and (3) correspond to the catalogs YSH B, YSH A and CMT respectively.

N n mmin Mmin (Nm) mtop Mtop(Nm) b̂-value γ̂M pfit
(1) YHS B 26330 3412 1.93 1012 5.39 1.53× 1017 0.99(3) 1.66(2) 0.072(8)
(2) YHS A 152924 4353 3.17 7.08× 1013 7.20 7.94× 1019 0.98(1) 1.65(1) 0.080(9)
(3) CMT 48637 22336 5.33 1.24× 1017 9.08 5.25× 1022 0.982(7) 1.655(5) 0.36(2)

Table 7.9: Results of fitting the GR law for each individual catalog. The total number of earthquakes in
each catalog is given by N whereas the number of data entering into the fit is n. The value mtop corresponds
to the maximum observed value for each catalog. The GR law is valid for each catalog from [mmin,mmax]
with a particular b-value. mmax has no upper-limit for any of the fits except for the CMT catalog, in which
m

(3)
max = 7.67 (M (3)

max = 4.03× 1020 Nm). Numbers in parentheses correspond to the error bar estimated with
one σ in the scale given by the last digit. The p-value of the fits has been computed with 103 simulations and
pc = 0.05. For completeness, values of cut-offs in seismic moment M and power-law exponents γ̂ have been
included.
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In Table 7.10 the results of the global fit for models OneExp and MultiExp are shown.
The values of the statistics as well as the resulting p-values are shown in Table 7.11. It can
be observed that, for this particular set of cut-offs and as it happened with the synthetic
datasets in Sec. 7.1.4, the CKSD test has a smaller p-value and can be considered to be a
more powerful statistic than the KSDMD. A b-value very close to one holds for more than
8 orders of magnitude in seismic moment from mmin = 1.93 to mmax = 7.67. The value of
the global exponent is approximately in agreement with the harmonic mean of the particular
exponents of the GR-law for each catalog [Navas-Portella et al., 2018; Kamer and Hiemer,
2015]. Due to the upper-truncation, the value of the global exponent is not exactly the same
as the value of the harmonic mean of the particular exponents. The results for the CKSD
statistic do not show remarkable differences if the critical p-value is set to pc = 0.20 (see
Table 7.10). The definitive fit is the one whose goodness-of-fit test has been performed with
a threshold value of pc = 0.20.

0.6

0.8

1

1.2

1.4

7.2 7.4 7.6 7.8 8 8.2

C
V

m
Fig. 7.15: Values of the residual coefficient of variation as a function of the moment magnitude m for the
CMT catalog. Dotted lines correspond to 95% confidence intervals computed for 104 simulations.
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pc = 0.05 n Mmin Mmin (Nm) OM b̂-value γ̂M pvalue
(1) YHS B 3412 1.93 1012 5.18 0.99(1) 1.66(2) 0.072(8)
(2) YHS A 3500 3.27 1014 5.90 0.99(2) 1.66(1) 0.089(9)
(3) CMT 19003 5.40 1.58× 1017 3.40 0.98(8) 1.655(5) 0.26(1)
Model OneExp N ∑OM b̂g-value Γ̂M pvalue
2Re = 1.337

25915 1.93 1012 14.48 0.991(6) 1.661(4) 0.079(9)

pc = 0.20 n Mmin Mmin (Nm) OM b̂-value γ̂M p
(C),0.05
value

(1) YHS B 3412 1.93 1012 5.18 0.99(1) 1.66(2) 0.072(8)
(2) YHS A 3500 3.27 1014 5.90 0.99(2) 1.66(1) 0.089(9)
(3) CMT 10422 5.67 3.98× 1017 3 1.00(1) 1.663(7) 0.62(2)
Model OneExp N ∑OM b̂g-value Γ̂M p

(C),0.20
value

2Re = 1.124
17334 1.93 1012 14.08 1.000(8) 1.667(5) 0.326(5)

Table 7.10: Results of fitting the models OneExp and MultiExp to the earthquake catalogs when doing the
goodness-of-fit test with the CKSD statistis and different values of pc. If the goodness-of-fit test is performed
with the KSDMD statistic, the same set of cut-offs as the fit done by using d(C),0.20

e is found no matter the
value of pc (see Table 7.11). Same symbols as in Table 7.9. Values of the LRT statistic 2Re are provided
in this case (recall that, the critical value in this case corresponds to the percentile 95 of a χ2

2 distribution
with 3 degrees of freedom 2Rc = 5.99). The value M (i)

max is replaced for M (i)
top for untruncated fits. Note that

7.67− 1.93 = 5.74 units in magnitude correspond to 8.6 orders of magnitude in seismic moment.

de pvalue
d(M),0.20
e 0.018487 0.20(1)
d(C),0.05
e 3.25082 0.079(9)
d(C),0.20
e 2.778202 0.326(5)

Table 7.11: Results of fitting model OneExp to all the catalogs when doing the goodness-of-fit test with the
KSDMD and the CKSD statistics for pc = 0.05 (same cut-offs for all the catalogs) and for the set of cut-offs
for which the p-value is larger or equal than pc = 0.20 for the CKSD statistic. KSDMD has a unique fit
because the fit already exceed pc = 0.20 and no valid fits are found with a smaller p-value.

As far as the author knows, this is the broadest fitting range that has been found for the
Gutenberg-Richter law for earthquakes with a unique value of the exponent [Kagan, 2010].
There are catalogs of tiny mining-induced earthquakes which exhibit a much smaller com-
pleteness magnitude [Plenkers et al., 2011] than the ones of natural seismicity used in this
work. They were not considered here because they are not currently public and show b-values
significantly different [Kwiatek et al., 2010] from the one found here, which would result
in non-acceptable fits when merging them with the rest of catalogs, possibly pointing to a
different universality class.
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7.4 Merging earthquakes and charcoal labquake cata-
logs

Motivated by the fact that the power-law exponents of earthquake catalogs and charcoal
labquakes are very similar (see Tables 7.9 and 6.5), the methodology exposed of merging
datasets explained in Sec. 7.1 is applied by adding also the catalog of charcoal labquakes.

As discussed in Sec. 3.2.2.1, it is important to stress the fact that the seismic moment
does not correspond with the energy radiated Er by the earthquake, which would be the
reasonable energy to compare with the AE energy. For this study, the ratio of seismically
radiated energy over the seismic moment is considered as constant so that the values of the
seismic moment should just be multiplied by an unique factor. The value of this unique factor
is Er

M
= 10−4.6 [Bormann, 2015], where M is the seismic moment. In this case, Er corresponds

to the energy radiated in seismic waves by earthquakes and the AE energy. Let us remark
that the measured AE energy is the part of the radiated energy which is collected by the
transducer. In this sense, let us assume that the total energy radiated by a labquake is of the
same order of magnitude as this detected energy.

It can be shown that, for both models OneExp and MultiExp, multiplying the variable by
a constant factor only introduces a constant term in the log-likelihood that does not change
neither its maximum nor the difference of the log-likelihoods.

Let us suppose nds datasets and that data in the i-th dataset is described, for simplicity
and without losing generality, in terms of untruncated power-law PDFs. The log-likelihood
function for both OneExp and MultiExp models are:

logLOneExp =
nds∑

i=1

ni∑

j=1
log fX (xij)

=
nds∑

i=1

ni∑

j=1
log

(
Γ− 1
x

(i)1−Γ
min

x−Γ
ij

)
.

(7.23)

logLMultiExp =
nds∑

i=1

ni∑

j=1
log fX (xij)

=
nds∑

i=1

ni∑

j=1
log

(
γi − 1
x

(i)1−γi
min

x−γiij

)
.

(7.24)

Let us now suppose that the values taken by the variable X in the i-th dataset are multiplied
by a certain factor λi as well as the lower cut-off x(i)

min:

xij → λixij ,

x
(i)
min → λix

(i)
min .
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Note that this is not strictly speaking a scale transformation since not only the variable but
some parameters characterizing the function are changed. The likelihoods of the transformed
data LT for both models are:

logLTOneExp =
nds∑

i=1

ni∑

j=1
log




Γ− 1
(
λix

(i)
min

)1−Γ (λixij)−Γ




= logLOneExp −
nds∑

i=1
ni log λi ,

(7.25)

logLTMultiExp =
nds∑

i=1

ni∑

j=1
log




γi − 1
(
λix

(i)
min

)1−γi (λixij)−γi



= logLMultiExp −
nds∑

i=1
ni log λi .

(7.26)

The transformed likelihoods can be expressed in terms of the likelihood functions of the
original data together with an additive constant term that does not depend neither on the
exponent nor the cut-off. This means that maximum of the transformed log-likelihood is
attained at exactly the same value as the maximum of the original one. Given that the
likelihood-ratio statistic is a subtraction of the likelihood of both models, the relation between
the original statistic 2R and the one corresponding to transformed likelihood functions is:

2RT = 2
(
logLTMultiExp − logLTOneExp

)

= 2 (logLMultiExp − logLOneExp) = 2R .
(7.27)

Since the two additional terms in the transformed likelihoods are the same for both models,
they cancel and the statistic for the likelihood-ratio test is invariant under this transformation.
As the CKSD statistic is a weighted average of the particular KS distances of each dataset, it
does not change neither. Therefore, the results shown in Table 7.9 as well as those resulting
when merging catalogs would not change except for the values of the cut-offs.

For each decade, 5 different values of x(i)
min equally spaced in logarithmic scale, for a fixed

upper-truncation x(3)
max are checked and all the possible combinations of cut-offs x(0)

min, x
(1)
min,

x
(2)
min, x

(3)
min are checked for a fixed upper-truncation x(3)

max. The labels (0), (1), (2) and (3)
correspond to the catalogs of the charcoal experiment, YSH B, YSH A and CMT respectively.

The results of the global fit for the CKSD statistic are presented in Table 7.12. In this
case, not all the catalogues overlap each other and the CKSD statistic is the only one that
can be used for the goodness-of-fit test. The value of the global exponent is approximately in
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agreement with the harmonic mean of the particular exponents of the GR-law for each catalog
[Navas-Portella et al., 2018]. The results do not show remarkable differences if the critical p-
value is set to pc = 0.20 (see Table 7.12). The definitive fit is the one whose goodness-of-fit test
has been performed with a threshold value of pc = 0.20. These results are shown in Fig. 7.17
and are compatible with the ones obtained from synthetic catalogs shown in Sec. 7.1.4.

Given that there is no overlapping between the charcoal catalog and the earthquakes’
ones, an alternative procedure must be applied in order to construct the histogram of the
estimated global PDF. First of all, the three earthquake catalogs are merged according to the
procedure exposed in Sec. 7.1.2. The earthquakes from the CMT catalog which are above the
upper cut-off x(3)

max are also plotted. Earthquakes from the YSH B, YSH A and CMT catalogs
which are below x

(1)
min, x

(2)
min and x(3)

min are respectively exlcuded. This piece of the histogram,
which is not normalized yet, is denoted as Ea, from Earthquakes. The charcoal catalog
histogram is plotted by following the procedures exposed in Sec. 5.3 without normalizing by
any number of events yet. The piece of histogram corresponding to charcoal is denoted as La,
from Labquakes. Given that no normalization has been performed yet, at this point of the
procedure, the pieces (Ea) and (La) are not aligned in logarithmic scale. Consequently, the

pc = 0.05 n mmin Er,min (Nm) OM b̂-value γ̂Er pfit
(0) Charcoal 15906 - 6.31× 10−18 6.47 0.988(8) 1.658(5) 0.15(1)
(1) YHS B 1353 2.33 9.99× 107 4.58 0.98(3) 1.66(2) 0.10(1)
(2) YHS A 234 4.47 1.59× 1011 4.10 0.98(6) 1.65(4) 0.62(2)
(3) CMT 7689 5.80 1.59× 1013 2.80 1.00(1) 1.667(9) 0.393(5)
Model OneExp N ∑OM b̂g-value Γ̂Er p

(C),0.05
value

2Re = 4.794
d(C)
e = 3.590 25182 6.3× 10−18 17.95 1.003(6) 1.669(4) 0.057(7)

pc = 0.20 n mmin Er,min (Nm) OM b̂-value γ̂Er pfit
(0) Charcoal 3555 - 6.31× 10−17 5.47 1.04(2) 1.69(1) 0.88(1)
(1) YHS B 1007 2.47 1.59× 108 4.38 0.99(3) 1.66(2) 0.058(7)
(2) YHS A 234 4.47 1.59× 1011 4.10 0.98(6) 1.65(4) 0.62(2)
(3) CMT 3014 6.20 6.33× 1013 2.20 1.00(2) 1.67(2) 0.59(2)
Model OneExp N ∑OM b̂g-value Γ̂Er p

(C),0.20
value

2Re = 4.184
d(C)
e = 2.998 7810 6.3× 10−17 16.15 1.03(1) 1.688(8) 0.21(1)

Table 7.12: Results of fitting models OneExp and MultiExp to the charcoal and earthquake datasets for two
different values of pc. Same notation as in previous tables. Values of the LRT statistic 2Re are provided in
this case (recall that, the critical value in this case corresponds to the percentile 95 of a χ2

3 distribution with 3
degrees of freedom 2Rc = 7.81). Note that Er represents the radiated energy in seismic waves by earthquakes
and the radiated AE energy.
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Fig. 7.17: Estimated PDF of the radiated energy Er for the merged earthquake and charcoal labquake
catalogs. The fit is represented by a solid black line. The methodology to construct the histogram with the
three earthquake catalogs is the same as the one explained in Sec. 7.1.2, whereas the addition of the charcoal
histogram to this fit has been done by conveniently rescaling both parts (those corresponding to charcoal and
earthquakes respectively). Each part has been divided by an effective number of events by assuming that the
probability in each part corresponds to that obtained from a global power-law exponent with exponent Γ̂ from
x

(0)
min to x(3)

max. Note that events from the CMT, YSH A and YSH B catalogs below their respective lower
cut-offs xmin have been excluded in the plot.

fit of a global power-law with exponent Γ̂ from x
(0)
min to x(3)

max will not overlap with both pieces.
Note that one could be tempted to use the numerical procedure for merging histograms

in Sec. 7.1.2 in this case where these pieces do not overlap each other. Nevertheless, the
procedure would assign a certain number of counts to the big gap between the two pieces
that conform the histogram thus blurring them and weakening the important message: the
big difference in energy scales.

In order to align both pieces, one has to assume that data from x
(0)
min to x(3)

max follows a
power-law distribution with exponent Γ̂. Given that this assumption is supported by statistical
results that have been already found, it can be imposed that the probability represented by
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each piece corresponds to this theoretical probability. In order to achieve this imposition, the
total number of counts in each piece is divided by the effective number of events in that piece:

FX
(
x = x

(0)
top;x

(0)
min, x

(3)
max, Γ̂

)
− FX

(
x = x

(0)
min;x(0)

min, x
(3)
max, Γ̂

)
=
C
(
x

(0)
min ≤ x ≤ x

(0)
top

)

nLaeff
,

FX
(
x = x(3)

max;x
(0)
min, x

(3)
max, Γ̂

)
− FX

(
x = x

(1)
min;x(0)

min, x
(3)
max, Γ̂

)
=
C
(
x

(1)
min ≤ x ≤ x(3)

max

)

nEaeff
.

where C() corresponds to the number of counts in the interval considered inside the parenthesis,
FX corresponds to the CDF of a truncated power-law (see Eq. (5.26)) FX

(
x = x

(0)
min;x(0)

min, x
(3)
max, Γ̂

)
=

0 and FX
(
x = x(3)

max;x
(0)
min, x

(3)
max, Γ̂

)
= 1 . Provided that x(0)

min, x
(0)
top, x

(1)
min, x

(1)
top as well as the

observed number of counts in these ranges are known, the effective number of counts nEaeff and
nLaeff can be easily isolated from the last expressions. Note that these numbers are integers
for the (La) piece, but not for the (Ea) given that it has been constructed by merging several
datasets and an event does not contribute necessarily one unity (see Sec. 7.1.2). By dividing
the piece (Ea) by nEaeff and the piece (La) by nLaeff , the histograms are aligned and overlapping
with the theoretical fit. However, given that data outside the fit is also considered in the
construction of the histogram, the integral of both pieces (Ea) and (La) will not be one and
the effective area Aeff at this point corresponds to:

Aeff =
C
(
x

(0)
low ≤ x ≤ x

(0)
top

)

n
(La)
eff

+
C
(
x

(1)
min ≤ x ≤ x

(3)
top

)

n
(Ea)
eff

.

In order to normalize the PDF, both pieces together with the theoretical fit must be divided
by Aeff . Contrarily to the procedure to construct a merged histogram explained in Sec. 7.1.2,
this procedure is performed by assuming that the theoretical PDF is known a priori in order
to obtain a graphical representation.

Earthquake catalogs have been also merged with a charcoal labquake catalog with a global
power-law exponent Γ̂Er = 1.688 suggesting that these different systems might be classified
into the same universality class. Further investigations involving different observables, such
as the distribution of waiting times, might be necessary in order to properly classify charcoal
labquakes and real earthquakes into the same universality class. However, interesting conclu-
sions can be extracted from this global statistical law. Recall that this truncated power-law
has been fitted with cut-offs xmin = 6.31×10−17 Nm, xmax = 1.01×1016 Nm and the exponent
Γ̂Er = 1.688. According to this statistical model, one could state that about 2 × 1021 events
whose radiated energy is in the interval 10−16 < Er < 10−15 will occur for each earthquake in
the interval 1015 < Er < 1016 Nm (7 < m < 7.66 in moment magnitude).



Chapter 8

Effect of the Coulomb Stress on the
Gutenberg-Ricther law

The Mohr-Coulomb theory was exposed in Sec. 3.1.1.1 with the aim of contextualizing the mo-
tivation of the results explained in this chapter. This chapter pursues statistical evidence that
the b-value is affected by the value of the Coulomb stress. First of all, the procedure through
which Coulomb stresses are computed at the fault plane for each aftershock is explained in
Sec. 8.1.1. The aftershock sequence after the Landers mainshock (m = 7.3, California, 1992) is
chosen in order to compute the values of the Coulomb stress increase for each aftershock. The
election of this mainshock is due to its importance (it is the largest earthquake in California
at least since 1952), and because it is recorded in a catalog where the focal mechanisms of
aftershocks (which are needed for the calculations of Coulomb stresses increase on the fault
planes) are reported. This aftershock sequence has been broadly studied and different slip
models have been proposed to characterize the slip at each point of the fault rupture caused
by Landers. These models are briefly explained in Sec. 8.1.2.

After computing the increases of Coulomb stresses for Landers aftershocks, two different
subsets of earthquakes can be distinguished: the ones which have received a positive increase
in Coulomb stress and those which have received a negative increase in Coulomb stress. The
b-values of the Gutenberg-Richter law are then computed for these subsets by using the statis-
tical techniques exposed in Chpt. 5. These magnitude distributions and their corresponding
b-values are compared in order to check whether they are sensible to the sign of the increase
in Coulomb stress.

The results exposed in this chapter have been accepted for publication in:

• Víctor Navas-Portella, Abigail Jiménez, and Álvaro Corral, No Significant Effect of
Coulomb Stress on the Gutenberg-Richter Law after the Landers Earthquake. Scientific
Reports 10, 2901 (2020) [Navas-Portella et al., 2020]
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8.1 Computation of the Coulomb stress

8.1.1 General procedure
Coulomb-stress theory has been used to forecast spatial patterns of aftershock rates, as well as
assessing the likelihood of earthquake rupture sequences [Quigley et al., 2019; Parsons et al.,
2000]. Although there exist instances where its predictive skills are arguable [Hardebeck et al.,
1998; Marsan, 2003; Mallman and Zoback, 2007; Felzer and Brodsky, 2005], the monitoring
of the changes in the stress field represents a valuable information for seismic and volcanic
hazard forecasting and to proposing the adequate mitigation measures.

Whenever an earthquake occurs, an underlying mechanical process takes place and the
faults or the systems of faults experience a change in geometry in the form of a rupture and
a slip. In practice, it is generally difficult to know the configuration of faults due to the in-
accessibility of this information or the complexity of the fault system. A useful approach to
deal with this problem is by means of slip models, which try to geometrically characterize the
faults and the displacement they have experienced. However, after a large earthquake (main-
shock), not only the fault in which the earthquake has occurred experiences a rupture but
also the surrounding region experiences a deformation. The deformation at each point of the
surrounding (deformation field uuu or displacement) is computed by means of the dMODELS
software [Battaglia et al., 2013]. The local coordinate system for dMODELS is east-north-up,
ENU, which is explained in Sec. 3.2.1. Although there exist many programs that calculate
deformation caused by earthquakes, this package has been thoroughly tested, and can intro-
duce many different sources of deformation, which can be translated into stress changes in a
straightforward way.

After introducing the corresponding slip model (also called source model) for the mainshock
of interest (slip models for Landers mainshock are explained in the next Sec. 8.1.2), the
projections in the ENU axes of the deformation field uuu caused by the mainshock at the position
of each aftershock (and also at its neighborhood, in order to take derivatives) are obtained.
The strain tensor associated to uuu can be obtained by calculating the (symmetrized) gradient
of the deformation according to Eq. (3.1) (with a spatial step equal to 1 km). Afterwards, an
isotropic and elastic material is assumed for calculating the stress tensor [Lautrup, 2011], or,
more precisely, the contribution of the mainshock to the stress tensor, according to Eq. (3.2)
with the Lamé elastic moduli given by µ = λ = 3× 104 MPa [Kanamori and Brodsky, 2004]
(Poisson ratio ν = λ (λ+ µ)−1 /2 = 0.25). Note that in order to be realistic, the Coulomb-
stress changes have to be calculated onto the planes of the actual faults so that one can actually
evaluate if the new events could have been triggered by the induced stress or not. [McCloskey
et al., 2003; Ishibe et al., 2017]. This contrasts with an approach in which Coulomb stresses
are calculated onto the so-called optimally oriented planes [King et al., 1994], when the only
information available is the regional stress. However, optimally oriented planes are imaginary
planes that might not correspond to the actual geology.
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Given the fault plane and slip vector of an aftershock in East-Nord-Up (ENU) coordinates,
the changes in the normal σn and shear (or tangential) τ stresses are calculated in that
orientation and position, as

∆σn =
∑

kl

nksklnl and ∆τ =
∑

kl

`ksklnl, (8.1)

with ni and `i the components of the normal and slip vectors, respectively (see Sec. 3.2.1).
The relationship between the focal mechanism (which is available from the YHS catalog,

see Sec. 4.2.3) and the normal vector of the fault is given by

n̂̂n̂n =



nE
nN
nU


 =




cos Θ sin d
− sin Θ sin d

cos d


 (8.2)

in the ENU coordinate system [Smith, 2006]. In the same way, the slip vector is obtained as

ˆ̀̀̂̀̂ =



`E
`N
`U


 =




sin Θ cos ρ− cos Θ cos d sin ρ
cos Θ cos ρ+ sin Θ cos d sin ρ

sin d sin ρ


 , (8.3)

where d, Θ and ρ are the dip, strike and rake angles defined in Sec. 3.2.1.
As it has been exposed in Sec. 4.2, high quality catalogs incorporating focal-mechanism

solutions are nowadays available. Given the distribution of acceptable mechanisms, the pre-
ferred solution is the most probable one [Hardebeck and Shearer, 2002]. The ambiguity of the
actual fault plane is solved by considering that the preferred nodal planes are those associated
with the preferred solution listed in the catalog [Yang et al., 2012]. The focal mechanism,
in concrete, the rake angle, together with Landers stress field derived from the slip model,
allows the calculation of the Coulomb-stress increases (positive or negative) induced by the
mainshock on the actual orientations of the aftershock ruptures. Nevertheless, if one does not
trust the preferred solutions reported in the catalog, an alternative procedure can be applied
based on selecting the nodal plane in which the Coulomb stress increase is maximum [Strader
and Jackson, 2014].

The change in Coulomb stress at the aftershock fault plane due to the mainshock will be

∆C = ∆τ + µ′∆σn, (8.4)

with ∆τ and ∆σn coming from Eq. (8.1) (see Sec. 3.1.1.1). Thus, positive increases of the
Coulomb stress bring the fault closer to failure, whereas negative increases distance it away
from failure.

The complete procedure to obtain the Coulomb stress is summarized in Fig. 8.1.
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Slip model Several choices

Deformation Battaglia et al. (2013)

Strain εkl =
1
2

(
∂uk(rrr )
∂rl

+ ∂ul(rrr)
∂rk

)

Stress tensor skl = 2µεkl + λδkl
∑

j εjj

Stress
orientation

Focal Mechanism
Yang et al. (2012)
∆σn =

∑
kl nksklnl

∆τ =
∑

kl ℓksklnl

Coulomb
stress

∆C = ∆τ + µ′∆σn

Fig. 8.1: Flowchart summarizing the procedure to obtain the Coulomb stress on each aftershock fault plane
from the slip model and the focal-mechanism catalog.

8.1.2 Slip Models for Landers earthquake
Although describing the slip experienced by a fault or system of faults due to an earthquake
is an extremely complex task, slip models try to simplify the fault geometry and associate a
certain value of the slip to each part of the fault. The first simplification for modelling faults
is based on the assumption that they can be considered as planar surfaces which are divided
into equally-sized cells called fault patches. There exist several techniques, such as Very Long
Baseline Interferometry (VLBI), Satellite Laser Ranging (SLR), inversion techniques by using
Global Position System (GPS) and Synthetic Aperture Radar interferometry (inSAR) (see
for instance [Yeats et al., 1997] p.100-106), through which one can associate a certain slip, in
meters, to each fault patch.

The June 28, 1992, Landers earthquake (34.22◦N, 116.43◦W at 11:57:35 Coordinated Uni-
versal Time (UTC)) occurred with a moment magnitude m = 7.3 and a rake angle ρ = −177◦,
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Fig. 8.2: Map of the surrounding region of Landers mainshock, which is represented by a star symbol ? .
Aftershocks are represented as circles with magnitudes given by the legend. Dark lines correspond to the fault
surface and the hatchured lines are the projection of the three fault segments of the wald slip model. Figure
extracted from Wald and Heaton [1994].
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Fig. 8.3: Pictorical representation of the wald slip model for the Landers Earthquake [King et al., 1994].
White star corresponds with the hypocenter of the Landers earthquake. The color of every fault patch
represents the experienced slip due to the Landers event in meters.

Fig. 8.4: Pictorical representation of the hernandez slip model for the Landers Earthquake [Hernandez
et al., 1999]. The numbers in every fault patch represents the experienced slip due to the Landers event in
meters. Positive numbers correspond to right-lateral (Landers’ focal mechanism) whereas negative numbers
correspond to left-lateral. Note that, contrarily to the orientation exposed in Fig. 8.3, the North is at right
whereas South is at left.

corresponding to strike-slip focal mechanism, thus being the strongest one in Southern Cali-
fornia at least since 1952. The earthquake and its subsequent aftershock sequence have been
extensively studied [Hill et al., 1993; Hauksson et al., 1993; Gomberg et al., 2001], with a
number of slip distributions that describe its rupture [Wald and Heaton, 1994; Spotila and
Sieh, 1995; Hernandez et al., 1999; Steacy et al., 2004].

Four slip models are used here to calculate the strain:
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• Wald and Heaton (referred here to as wald)[Wald and Heaton, 1994]: This slip model
has been derived from joint inversion of strong motion, teleseismic, geodetic, and surface
slip data. This model is composed by three planar surfaces, with 11, 15 and 13 cubic
fault patches each with an edge of 5 km. The planar surfaces are normal to the plane
conformed by the ground, where they span around 70 km and 15 km in depth. See
Figs. 8.2 and 8.3.

• Hernandez et al. (hernandez) [Hernandez et al., 1999],: Slip model constructed by
means of GPS and InSAR techniques. The model is geometrically defined by three
planar surfaces with 15, 15 and 18 cubic patches each with an edge of 5 km. Note that
this configuration is very similar to the one in wald and the spatial distribution of the
planar surfaces can also be understood from Fig. 8.2. The planar surfaces are normal
to the plane conformed by the ground, where they span around 70 km and 15 km in
depth. Some fault patches change its sign from right-lateral (Landers’ focal mechanism)
to left-lateral. See Fig. 8.4.

• Landers Big-Bear California (bbcal) [Steacy et al., 2004]: The largest Landers’ after-
shock was the Big Bear earthquake m = 6.3 (34.29◦N, 116.82◦W which occurred the
same day as Landers at 15:05:30 UTC (approximately three hours later than Landers)
with a rake angle ρ = −180◦ [Steacy et al., 2004]). This slip model is constructed with
the same fault geometry as the hernandez slip model but, instead of Landers, the Big
Bear earthquake is considered as a temporal reference. The slip corresponding to this
earthquake is included in an additional fault patch.

• Landers Surface Rupture (lsurfrup) [Spotila and Sieh, 1995]: Slip model made of 11
irregular quadrilateral fault patches which are placed at the ground.

The terminology is the same as the one used by Steacy et al. [2004]. Distances from each event
to the fault are computed as the minimum Euclidean distance from the aftershock hypocenter
to the center of each fault patch as given by the slip model.

8.2 Results

8.2.1 Spatio-temporal window
In order to better detect the influence of the Landers stress change a time window of 100 days
after the mainshock and a spatial window going from 10 to 150 km from the Landers rupture
are taken. This spatio-temporal window defines Landers aftershocks for the purposes of the
statistical analysis. The reason to exclude events closer than 10 km is the uncertainty of the
deformation field near the edges of the subfaults [Okada, 1992], as the finite-fault approx-
imation provides spurious values near the fault zone because of boundary effects. Landers
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earthquake is taken as the temporal reference for all the slip models except for the bbcal
whose temporal reference is the Big-Bear earthquake. The temporal window ensures that the
activity rate has decreased after 100 days and the influence of Landers is rather small (see
Fig. 8.5). Two different subsets with positive and negative increase in Coulomb stress can be
distinguished for each slip model with a cut-off magnitude mmin = 3. Scatter plots illustrat-
ing the dependence of the absolute value of the increase of Coulomb stress |∆C| as a function
of the distance to the fault dev−fault are shown in Fig. 8.6 for the four slip models. As it is
implicit by the Coulomb theory, the value of the increase of Coulomb stress decays as the cube
of the distance to the fault. Aftershocks with positive and negative increase of Coulomb stress
placed in the window of study for the hernandez slip model and µ′ = 0.4 are presented in
Figs. 8.7, 8.8 and 8.9. Given that the results exposed in this section do not show remarkably
differences depending on the values of the friction coefficient, if not otherwise specified, this
value is taken as µ′ = 0.4 (see Sec. 8.2.4 for more details).
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Fig. 8.5: Number of earthquakes per day of any magnitude (in red) and for m ≥ 3 (in blue) before and after
the Landers mainshock in the YHS catalog in the area selected for this study (10 km≤ dev−fault ≤ 150 km).
Black lines show the temporal window chosen in this work.



211

10
−4

10
−3

10
−2

10
−110
0

10
1

10
2

10
3

|∆C|(MPa)

10
−5

10
−4

10
−3

10
−2

10
−110
0

10
1

10
2 10

1
10

2

|∆C|(MPa)

d
ev
−f

a
u
lt

(k
m

)
10

1
10

2
d
ev
−f

a
u
lt

(k
m

)

∆
C

>
0

he
rn

an
de

z
∆
C

<
0

he
rn

an
de

z
∆
C

>
0

w
al

d
∆
C

<
0

w
al

d

∆
C

>
0

bb
ca

l
∆
C

<
0

bb
ca

l
∆
C

>
0

su
rf

ru
p

∆
C

<
0

su
rf

ru
p

F
ig

.
8.

6:
D
ep

en
de
nc
e
of

th
e
ab

so
lu
te

va
lu
e
of

th
e
ch
an

ge
in

th
e
C
ou

lo
m
b
st
re
ss

∆
C
as

a
fu
nc
tio

n
of

th
e
di
st
an

ce
to

th
e
fa
ul
t
of

th
e
af
te
rs
ho

ck
s
fo
r
ea
ch

sli
p
m
od

el
,m

m
in

=
3
an

d
µ
′

=
0.

4.
A
ft
er
sh
oc
ks

co
rr
es
po

nd
to

th
e
fir
st

10
0
da

ys
af
te
r
th
e
La

nd
er
s
m
ai
ns
ho

ck
(e
xc
ep
t
fo
r
th
e

bb
ca

ls
lip

m
od

el
,w

hi
ch

ha
s

th
e
B
ig

B
ea
r
ea
rt
hq

ua
ke

as
a
te
m
po

ra
lr

ef
er
en
ce
).

D
ist

an
ce

of
af
te
rs
ho

ck
s
to

th
e
La

nd
er
s
ru
pt
ur
e
is

re
st
ric

te
d
to

be
be

tw
ee
n
10

an
d
15
0
km

.
B
la
ck

da
sh
ed

lin
e
w
ith

slo
pe
−

3,
as

st
at
ed

by
C
ou

lo
m
b
th
eo
ry
,i
s
sh
ow

n
as

a
gu

id
e
to

th
e
ey
e.



212

Fig. 8.7: Focal mechanism representation for strike-slip Landers aftershocks, separated in terms of ∆C, as
calculated from the hernandez slip model (time window of 100 days after the mainshock). Top: ∆C > 0.
Bottom: ∆C < 0. Color scale represents the sense of slip (rake) and fault traces are also shown using the
same color code: red for right-lateral (ρ close to ±180◦), light blue for left-lateral (ρ close to 0◦), green for
normal (ρ close to −90◦) and dark blue or purple for thrust faulting (ρ close to 90◦). An area of 550 × 500
km is shown; aftershocks are restricted to m ≥ 4 (for clarity sake). Aftershocks beyond the limit of 150 km
are also shown. Both axes display distances with respect an arbitrary origin, in km.
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Fig. 8.8: Same as previous figure, for aftershocks with normal focal mechanism.
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Fig. 8.9: Same as previous figure, for aftershocks with thrust focal mechanism.



215

8.2.2 Comparison of distributions
Table 8.1 shows the estimated b-values obtained from the application of the MLE and goodness-
of-fit test explained in Sec. 5.2 to the different subcatalogs obtained from the Landers sequence.
As it can be seen, in the overall case (when events are not separated in terms of Coulomb-
stress change), the GR law is fulfilled with an average value b̂all = 0.92. Each slip model leads
to a different value of b̂all because the fault geometry is different for each of them, and events
too close to the fault are discarded. This b−value for the Landers aftershocks is found, not
surprisingly, to be close to the average for aftershocks in California, b̂ ' 0.9 [Reasenberg and
Jones, 1989; Jones, 1994], and somewhat below the long-term value of Southern California (all
events), b̂ ' 1.0 [Hutton et al., 2010] (although other works report b̂ ' 1.0 for Landers after-
shocks, probably due to the consideration there of a much smaller magnitude of completeness
[Shcherbakov et al., 2005]).

Slip Model N n b̂−value σ pvalue

wald ∆C > 0 5213 509 b̂> = 0.927 0.041 0.313± 0.005
∆C < 0 814 51 b̂< = 0.766 0.107 0.861± 0.003
All 6027 560 b̂all = 0.909 0.038 0.243± 0.004

hernandez ∆C > 0 5027 465 b̂> = 0.926 0.043 0.505± 0.005
∆C < 0 765 62 b̂< = 0.866 0.110 0.197± 0.004
All 5792 527 b̂all = 0.919 0.040 0.231± 0.004

bbcal ∆C > 0 3641 309 b̂> = 0.978 0.056 0.232± 0.004
∆C < 0 1191 82 b̂< = 0.948 0.105 0.327± 0.005
All 4832 391 b̂all = 0.971 0.049 0.053± 0.002

surfrup ∆C > 0 5534 548 b̂> = 0.890 0.038 0.290± 0.005
∆C < 0 774 68 b̂< = 0.891 0.108 0.555± 0.005
All 6308 616 b̂all = 0.890 0.036 0.239± 0.004

Table 8.1: Results of fitting the Gutenberg-Richter law to the Landers aftershocks, separating positive and
negative Coulomb-stress increases, for different Slip models, µ′ = 0.4 and mmin = 3. Aftershocks correspond
to the first 100 days after the Landers mainshock. Distance of aftershocks to the Landers rupture is restricted
to be between 10 and 150 km. The p−value of the goodness-of-fit test is computed with 104 simulations and is
denoted by pvalue. Its uncertainty corresponds to one standard deviation. In no case the Gutenberg-Ricther
law can be rejected.

After separating by the sign of the Coulomb-stress change, the first result that becomes
apparent from the table is that the number of aftershocks with positive increases is much larger
than the number for the negative case [King et al., 1994; Steacy et al., 2005], no matter the
slip model (nor the value of µ′) used to calculate ∆C (see next Sec. 8.2.4). All the quantities
with sub-indices > and < correspond to those computed for aftershocks with ∆C > 0 and
∆C < 0 respectively. Regarding the b−values, although they depend on the slip model, they
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Fig. 8.10: Estimation of the PDFs (a) and of the complementary cumulative distribution functions (CCDF)
(b) of seismic moment M for Landers aftershocks with ∆C > 0 and ∆C < 0 for the wald slip model using
µ′ = 0.4 in the calculation of ∆C. Curves corresponding to ∆C < 0 have been conveniently multiplied by
a factor 100 and 10 respectively for clarity sake. Error bars in (a) denote one standard deviation, and are
symmetric, despite the appearance in log scale [Deluca and Corral, 2013].
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can be summarized by taking the mean of the four models and taking µ′ = 0.4 as b̂> ' 0.93
and b̂< ' 0.87 with individual uncertainties around 0.04 and 0.11 respectively. Note that the
magnitude distribution for the overall case is a mixture of the distributions corresponding to
∆C > 0 and ∆C < 0, and therefore, the value of b̂ in the overall case turns out to be the
harmonic mean of b̂> and b̂<, i.e.,

b̂−1
all = n>b̂

−1
> + n<b̂

−1
<

n> + n<
, (8.5)

see Sec. 7.1.1. Despite the fact the values of b̂> and b̂< do not look much different between
them, statistical testing becomes necessary in order to establish significance [Corral et al.,
2015].

Slip Model z pnorm pperm d2ks p2ks ∆A
wald 1.396 0.163 0.156± 0.004 0.139 0.311 0.234

hernandez 0.511 0.609 0.596± 0.005 0.095 0.690 1.748
bbcal 0.254 0.800 0.828± 0.004 0.063 0.952 1.936
surfrup -0.010 0.992 0.994± 0.001 0.094 0.643 1.999

Table 8.2: Results of the statistical tests comparing the estimated b̂-values and magnitude distributions for
positive and negative Coulomb-stress changes, using different slip models and µ′ = 0.4. Values of the AIC
∆A = A2 −A1 are also included. Same data as previous table. Columns 2 to 4: testing the null hypothesis
that there is no difference between the b−values (i.e., b> = b<). Both asymptotic normality of the z statistic
and a permutation test are used for the calculation of the p−value (labeled as pnorm and pperm, respectively).
The number of permutations is 104, and the uncertainty of pperm corresponds to one standard deviation.
Columns 5 to 6: testing the null hypothesis using the 2-sample Kolmogorov-Smirnov test. d2ks and p2ks are
the Kolmogorov-Smirnov statistic and its p−value.

Table 8.2 compares b̂> and b̂< for the different slip models taking µ′ = 0.4, and shows
that the difference in the b̂−values cannot be considered significantly different from zero with
a confidence larger than 0.95; so, the null hypothesis b̂> ' b< can not be rejected. The
statistical test to check the compatibility of power-law exponents exposed in Sec. 5.9 is first
performed thus providing the value of the z-statistic as well as the p-values obtained through
the permutational pperm test and the one obtained from the normal distribution pnorm. Table
8.2 also shows the results of the two-sample KS test and the calculation of ∆A explained
in Secs. 5.8 and 5.7, leading in both cases to the result that no change in the distributions
as a function of positive and negative ∆C can be established. In concrete, ∆A is always
greater than the critical value ∆Ac = −1.84 [Burnham and Anderson, 2002; Murtaugh, 2014]
at significance level of 0.05. The wald slip model is the one for which both distributions
(positive and negative) appear as more different; however, the difference is not significant.
Figure 8.10 shows the PDFs as well as the CCDFs in this case.
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8.2.3 Influence of the focal mechanism
As mentioned in the introduction, some authors have unveiled a direct dependence of the
b−value on the focal mechanism of the events, which implies a dependence of b on the total
stress (not the stress increase) [Schorlemmer et al., 2005]. The rake angle is associated to the
focal mechanism in the following way: values of the rake around −90◦ correspond to normal
events (labelled as no), values around 0◦ or ±180◦ to strike-slip events (ss), and values around
90◦ to thrust events (th).

After calculating and analyzing the b-values, no significant effect of the rake on the b−value
is found (see Table 8.3), due to the low number of events in the normal and thrust regimes
(which increases the uncertainty). But despite the large uncertainty, the values of bno and bss
are roughly in agreement with the results of Schorlemmer et al. [2005]; however, the value of
bth turns out to be rather large in comparison (but compatible, within the error bars).

It is also observed that in strike-slip and normal events the contribution from ∆C > 0 is
higher than in thrust events. This is verified by the ratios n>ss/n<ss and n>no/n<no, which are
larger than n>th/n<th (see Table 8.3). Comparing with the number of earthquakes with each
focal mechanism for the 5 years previous to Landers it can be concluded that it is indeed the
low number of thrust aftershocks with positive ∆C which is anomalous (and not the relatively
high number of them for negative ∆C), due to an increase in the number of normal events and
an even higher increase in strike-slip events triggered (∆C > 0) by the Landers mainshock.
This difference in numbers becomes visually apparent in Figs. 8.7, 8.8 and 8.9.
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8.2.4 Robustness of the results
Given that there are many factors that might influence the results exposed in the last sub-
section 8.2.2, it is interesting to check the robustness of these results by selecting different
spatial windows, a different criterion for the selection of the fault plane and different values
of the effective friction coefficient.

First, Fig. 8.11 shows the values of b̂> and b̂< for other choices of the limits of the spatial
window. Similar results as those presented in Table 8.1 are found and no significant differences
in b-values are appreciated.
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Fig. 8.11: Values of the exponents b> and b< (blue and red respectively) computed for those events placed
at distances to fault larger than d and smaller than 150 km for the wald slip model, with mmin = 3 and
µ′ = 0.4. Green and purple dashed lines correspond to the p-values of the goodness-of-fit test shifted 0.5
for convenience. Horizontal black dashed line corresponds to the threshold pperm-value pc = 0.05 shifted 0.5.
Observe that in all cases pperm > 0.05.
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Second, instead of using the solutions provided by the YHS catalog one could also consider
the focal mechanism in the complementary nodal plane. Given the focal mechanism in one
plane (Θ, d, ρ), one can easily obtain the focal mechanism of the other plane (Θ∗, d∗, ρ∗) by
imposing that the slip vector of one plane corresponds to the normal vector of the auxiliary
plane and vice-versa ˆ̀ = n̂∗, ˆ̀∗ = n̂. By imposing these conditions and after applying some
arithmetic and trigonometric calculations one can obtain the focal mechanism in the auxiliary
plane as a function of the focal mechanism in the original plane:

d∗ = arccos (sin d sin ρ) (8.6)

ρ∗ = arcsin
( cos d

sin d∗

)
= arcsin

(
cos d

sin (arccos (sin d sin ρ))

)
(8.7)

Θ∗ = Θ− arcsin
( cos ρ

sin d∗

)
= Θ− arcsin

(
cos ρ

sin (arccos (sin d sin ρ))

)
(8.8)

Either (Θ, d, ρ) or (Θ∗, d∗, ρ∗) will correspond to the correct solution for the focal mechanism
in the real fault plane. Care must be taken when finding the appropriate quadrants for the
angles [Stein and Wysession, 2003]. Once the focal mechanisms are known for both nodal
planes, the nodal plane in which the Coulomb stress increase is maximum is considered as
the fault plane [Strader and Jackson, 2014]. The results obtained through this procedure are
shown in Tables 8.4 and 8.5. The wald is the only slip model for which some significant
difference between exponents is found. However, the results can be considered robust since
just one from all the cases that have been analyzed exhibits significant differences.

Slip Model N n b̂−value σ pvalue

wald ∆C > 0 5474 525 b̂> = 0.936 0.041 0.330± 0.005
∆C < 0 553 35 b̂< = 0.637 0.108 0.909± 0.003
All 6027 560 b̂all = 0.909 0.038 0.243± 0.004

hernandez ∆C > 0 5210 482 b̂> = 0.938 0.043 0.439± 0.005
∆C < 0 582 45 b̂< = 0.754 0.112 0.255± 0.004
All 5792 527 b̂all = 0.919 0.040 0.231± 0.004

bbcal ∆C > 0 4059 337 b̂> = 0.993 0.054 0.190± 0.004
∆C < 0 773 54 b̂< = 0.854 0.116 0.357± 0.005
All 4832 391 b̂all = 0.971 0.049 0.053± 0.002

surfrup ∆C > 0 5750 565 b̂> = 0.902 0.038 0.245± 0.004
∆C < 0 558 51 b̂< = 0.772 0.108 0.864± 0.003
All 6308 616 b̂all = 0.890 0.036 0.239± 0.004

Table 8.4: Same as Table 8.1 but computed at the nodal plane where ∆C is maximum.
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Slip Model z pnorm pperm ∆A
wald 2.600 0.009 0.006± 0.001 -3.460

hernandez 1.534 0.125 0.116± 0.003 -0.094
bbcal 1.081 0.280 0.312± 0.005 0.909
surfrup 1.136 0.256 0.256± 0.004 0.814

Table 8.5: Same as Table 8.2 but computed at the nodal plane where ∆C is maximum.

Finally, as the real value of the effective friction coefficient µ′ is uncertain [Kanamori and
Brodsky, 2004], the analysis is also done for different values of it [Hardebeck et al., 1998] for
the wald slip model. These results are exposed in Tables 8.6 and 8.7.

N n b̂−value σ pvalue

Overall 6027 560 ball = 0.909 0.038 0.243± 0.004
µ′ = 0.1, ∆C > 0 5083 488 b̂> = 0.925 0.042 0.451± 0.005

∆C < 0 944 72 b̂< = 0.818 0.096 0.162± 0.004
µ′ = 0.2, ∆C > 0 5157 497 b̂> = 0.929 0.042 0.297± 0.006

∆C < 0 870 63 b̂< = 0.783 0.099 0.712± 0.006
µ′ = 0.4, ∆C > 0 5213 509 b̂> = 0.927 0.041 0.313± 0.005

∆C < 0 814 51 b̂< = 0.766 0.107 0.861± 0.003
µ′ = 0.6, ∆C > 0 5204 512 b̂> = 0.934 0.041 0.315± 0.005

∆C < 0 823 48 b̂< = 0.710 0.102 0.757± 0.004
µ′ = 0.8, ∆C > 0 5138 509 b̂> = 0.920 0.041 0.315± 0.005

∆C < 0 889 51 b̂< = 0.815 0.114 0.632± 0.005

Table 8.6: Same as Table 8.1 for different values of the effective friction coefficient µ′ in the wald slip model.

µ′ z pnorm pperm d2ks p2ks

0.1 1.021 0.307 0.304± 0.002 0.158 0.047
0.2 1.949 0.051 0.0495± 0.002 0.156 0.041
0.4 2.029 0.042 0.042± 0.002 0.159 0.046
0.6 1.991 0.046 0.047± 0.002 0.170 0.030
0.8 1.834 0.067 0.069± 0.003 0.176 0.024

Table 8.7: Same as Table 8.2 for different values of the effective friction coefficient µ′ in the wald slip model.
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Discussion
The positive Coulomb-stress increase associated to the Landers mainshock triggered a very
large number of strike-slip events and also a large number of normal events, but much less
thrust events. Although this result seems easy to establish, as it can be obtained without the
calculation of ∆C (due to the fact that most of the events have ∆C > 0 and thus, this subset
dominates the overall statistics) these events have been unambiguously associated to those
with positive ∆C. On the other side, the events in the opposite regime (with ∆C < 0) keep
a proportion between normal, strike-slip, and thrust events rather different to the ∆C > 0
case, and close to that of the immediately previous record (1987-1992, up to Landers). These
results are largely independent on the slip model used to calculate the change in Coulomb
stress, the value of µ′ and the selection of nodal plane. The b-values of the Gutenberg-Richter
law for events with positive ∆C (for which b̂> ' 0.93) are in general larger than the b−values
for the events with negative ∆C (b̂< ' 0.87); nevertheless, this difference is not statistically
significant for any of the slip models used to compute the change in the Coulomb stress.

Finally, in a preliminary analysis it has been observed that there is no substantial difference
in the fulfilment of the Omori law [Omori, 1894; Utsu, 1961; Utsu et al., 1995] in the two
populations of events (∆C > 0 and < 0). Indeed, if one compares this for the two subsets
the “characteristic” power-law Omori decay of the rate is found with very similar values of
the Omori exponent. Note that this is in disagreement with the rate-and-state formulation
[Dieterich, 1994], which does not predict Omori behavior in the case of negative ∆C.

Certainly, more research using other mainshocks (for which detailed slip models were avail-
able) is necesary, in order to reduce the statistical uncertainty by means of aggregated distri-
butions, which could lead to the detection of small significant differences in both populations
of events.
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Chapter 9

Conclusions and perspectives

9.1 Conclusions
The important results of this PhD thesis can be summarized as the development of statistical
methods in order to establish avalanche criticality and universality. These methods have been
applied to empirical datasets, mainly earthquakes and labquakes.

• Avalanche criticality and universality have been discussed in the introduction. The
different limitations and contradictions associated to these terms have been exposed.
The importance of rigorously determine power-law exponents in order to characterize
criticality and provide a good classification of phenomena in different universality classes
has been highlighted.

• Different displacement-driven compression experiments of porous materials have been
performed in the Condensed Matter Physics Department of the Universitat de Barcelona.
With the aim of determining whether the exponent of the energy distribution of labquakes
is affected by the compressional driving mechanism, a first series of displacement-driven
compression experiments of Vycor have been performed:

– The Gutenberg-Richter law is found for the energy distribution of labquakes in
the same way it was previously found for force-driven compression experiments
[Baró et al., 2013]. Regarding the values of the exponents, it can be concluded
that they do not seem to be affected by the driving mechanism in compression
experiments. The independence with the driving mechanism has also been found
in the measurement of slip events in microcrystals Maaß et al. [2015].

– When the driving variable turns out to be the displacement, the release of elastic
energy is not only expressed by means of AE, but it is also manifested as drops
in the force which turn out to be power-law distributed with a compression-rate-
dependent exponent. These drops can also be observed in computer simulations
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near the big failure event [Kun et al., 2013, 2014]. Nevertheless, some tuning of the
disorder should be arranged in simulations in order to replicate a situation with a
similar level of heterogeneity as in the experiments in this PhD thesis. Further-
more, force drops and their associated energies have been found to be significantly
correlated.

• A statistical procedure to merge different datasets in order to validate the existence of
universal power-law exponents across different scales or phenomena has been developed.
This methodology can be useful in the study of different complex systems in order to
check whether the power-law exponents obtained via maximum likelihood estimation
are statistically compatible among them or not. Therefore, this procedure provides
a statistical tool that allows to establish whether different complex systems can be
classified into the same universality class or not. In this work, the methodology has
been applied to the Gutenberg-Ricther law for earthquakes and labquakes:

– By merging earthquake catalogs, a global power law with a global exponent Γ̂M =
1.667 holds for more than eight orders of magnitude in seismic moment (from
mmin = 1.9 to mmax = 7.7 in moment magnitude). To our knowledge, this is the
broadest fitting range that has been found for the Gutenberg-Richter law for earth-
quakes with a unique value of the exponent [Kagan, 1999]. There are catalogs of
tiny mining-induced earthquakes which exhibit a much smaller completeness mag-
nitude [Plenkers et al., 2011] than the ones of natural seismicity used in this work.
They were not considered here because they are not currently public and show b
values significantly different [Kwiatek et al., 2010] from the one found here, which
would result in nonacceptable fits when merging them with the rest of catalogs,
possibly pointing to a different universality class.

– For the case of the amplitude probability distribution of labquakes, a global ex-
ponent Γ̂V = 1.74 has been found spanning 4.5 orders of magnitude. To our
knowledge, this is the broadest fitting range that has been found for the amplitude
distribution of AE hits.

– For the case of the energy of Vycor labquakes, the catalogs (or datasets) have
been merged and a Gutenberg-Richter law with exponent Γ = 1.35 for the energy
acoustic emission hits has been found to hold for nine orders of magnitude. As it
was proposed by Xu et al. [2019], the labquakes in this material have been found
to belong to a different universality class than earthquakes and charcoal labquakes.

– Earthquake catalogs have been also merged with a charcoal labquake catalog with
a global power-law exponent for the energies Γ̂ = 1.688 suggesting that these
different systems might be classified into the same universality class. Further in-
vestigations involving different observables, such as the distribution of durations,
amplitudes and waiting times, might be necessary in order to properly classify
charcoal labquakes and real earthquakes into the same universality class.
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• A methodology to calculate the change in Coulomb stress induced by a mainshock in
the fault plane for every aftershock has been presented. By using different slip models,
this procedure has been applied to the Landers event (California, USA, 1992, moment
magnitude 7.3). Earthquake models that relate earthquake rates and Coulomb stress
after a main event, such as the rate-and-state model, assume that the magnitude dis-
tribution of earthquakes is not affected by the change in the Coulomb stress. Several
statistical analyses are applied in order to test whether the distribution of magnitudes
is sensitive to the sign of the Coulomb-stress increase.

– Positive Coulomb-stress increase associated to the Landers mainshock triggered a
very large number of strike-slip events and also a large number of normal events,
but much less thrust events. Although this result seems easy to establish, as it can
be obtained without the calculation of ∆C (due to the fact that most of the events
have ∆C > 0 and thus, this subset dominates the overall statistics), these events
have been unambiguously associated to the positive ∆C. On the other side, the
events in the opposite regime (with ∆C < 0) keep a proportion between normal,
strike-slip, and thrust events rather different to the ∆C > 0 case, and close to that
of the immediately previous record (1987-1992, up to Landers). These results are
largely independent on the slip model used to calculate the change in Coulomb
stress.

– The b-values of the Gutenberg-Richter law for which the Landers event yielded
a positive ∆C (with b> ' 0.93) are in general larger than the b−values for the
events with negative ∆C (b< ' 0.87); nevertheless, this difference is not statis-
tically significant for any of the slip models used to compute the change in the
Coulomb stress. A non-significant result teaches that the differences in b−values
may be spurious and that certainly, more research is necessary in order to overcome
statistical limitations.
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9.2 Future works derived from this PhD Thesis
Different studies can be performed from the contents exposed in this PhD thesis.

• Different works can be done by using the datasets which have been used in this PhD
thesis:

– To develop rigorous statistical techniques in order to compare exponents in the
Omori law both for earthquakes and labquakes [Baró i Urbea, 2015]. Note that, in
principle, the Omori law is not a probability density function.

– To apply rigorous statistical techniques to study the distribution of waiting-times δ
both for earthquakes and labquakes. The double power-law distributions which are
usually found [Corral, 2004a; Baró et al., 2013] could be studied with more statis-
tical rigour in order to check whether they are compatible with those distributions
found for earthquakes.

– To study the distribution of labquake durations.
– Inspired by the works trying to model the source of acosutic emission [Yu and

Clapp, 1987], spectral analysis of acoustic emission waveforms could be applied in
order to explore the existence of corner frequencies in labquakes. The existence
of corner frequencies in labquakes could be a new way of measuring labquakes
energies. It would be interesting to study how these energies computed from the
corner frequency are related to the current definition of AE energy hit.

• Regarding the statistical methods applied to earthquake and labquake datasets, the
works developed in this PhD thesis can be helpful in order to:

– Incorporate new sources of uncertainty in the determination of the power-law ex-
ponents. The nature of the uncertainties derived from the different statistical
techniques to check avalanche criticality or universality presented in this PhD the-
sis is purely statistical. However, there exist other uncertainty sources such as the
experimental resolution of the experimental devices that should be also taken into
account. Although there exists methods that take into account sample-to-sample
variability for power-law distributed samples [Deluca et al., 2016], it would be inter-
esting to develop a powerful method encompassing as many source of uncertainty
as possible.

– Study different earthquake catalogs in order to find a broader fitting range of the
Gutenberg-Richter law and also to check whether different regions have compatible
power-law exponents or not. Particular interest should be paid to those catalogs
with small completeness magnitudes. This kind of studies would be of interest in
order to statistically strengthen the geological arguments that justify the difference
in the b values observed in some regions [Yoder et al., 2012].
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– The labquake energies obtained in the first series of displacement-driven compres-
sion experiments in Chapter 6 could also be merged according to the statistical
procedure exposed in Chapter 7. If the the null hypothesis that all datasets can
be described by a unique global exponent ΓE is not rejected, this would provide an
alternative comparison with the energy exponent derived from force-driven com-
pression.

– To deepen into the study of bivariate power-law distributions in order to establish
relationships among the different avalanche observables.

• A number of extensions and improvements could be incorporated to the approach used
in the study of the effects of the Coulomb stress in the seismicity after Landers:

– Slip models with relatively low resolution in space have been used; so, it would be
interesting to know if higher resolution slip models [Olsen et al., 1997; Peyrat et al.,
2001] lead to somewhat different values of the strain and the stress, in particular
close to the fault.

– Some authors have argued that real faults should have rather low values of the
µ′ coefficient [Mulargia and Bizzarri, 2016]. Some check of this has been studied
leading to the conclusion that µ′ has little influence on the b−values. However,
it would be interesting to obtain a spatial distribution of µ′ based on geological
information and check whether the results are robust under the spatial variations
of this parameter.

– Further, in the temporal window of 100 days, the effect of viscoelastic relaxation
[Sabadini R., 2016] should be important; so, this would need to be incorporated
into the calculation of the stress.

– Perhaps more relevant but easier to implement would be the contribution to the
stress of the triggered events [Felzer et al., 2003]. Knowing the focal mechanism of
each of these events allows us to calculate the slip direction, which, together with an
estimation of the slip value from the magnitude, can be considered an elementary
slip model. From this, the event’s contribution to the strain can be computed in
the same way as for the mainshock.

– The study of other aftershock sequences for which both knowledge of focal mech-
anisms as well as detailed slip models for the mainshock are available is crucial.
It may happen, as for the Landers sequence, that the restrictions in space, time,
magnitude, and Coulomb-stress change are too many to yield significant results
(in our case, the restriction m ≥ 3 is particularly strong, but necessary for the
fulfilment of the Gutenberg-Richter law). In such a case of low statistics, aggre-
gation (stacking) of sequences from different mainshocks could reduce statistical
uncertainty and lead to significant results.
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9.3 Source codes for fitting a truncated power-law

9.3.1 R Language
Source code in R which applies the procedure explained in Fig. 5.5 in Sec. 5.5 to a data array
“dades”. Definitions of all the variables, allocations, comments and printings are included.

library(poweRlaw)
library(sfsmisc)
library(stats)

dataoriginal<- # Array of data
sort(dataoriginal)
xmaxabsolute<-max(dataoriginal)
xminabsolute<-min(dataoriginal)
xmax<-max(dataoriginal)
xmin<-min(dataoriginal)
partitions<-5 # Number of partitions per decade
kmax<-1+partitions*log10(xmaxabsolute) # Maximal index
kmin<-partitions*log10(minimabsolute) # Minimal index

indexwrite=1 # Writing index
# Define arrays
pvalor<-c()
xminev<-c()
xmaxev<-c()
exponentev<-c()
errorexp<-c()
nev<-c()
pvalor[indexmin]=0

for(j in 1:partitions*log10(xmaxabsolute/xminabsolute)){
corre<-0
pvalorparticular<-0

while(xmax>xmin & pvalorparticular<0.20){
indexmin=indexmin+1
corre=corre+1
xmin<-10^((j+kmin)/parititions)
xmax<-10^((kmax-corre)/parititions)
data<-dataoriginal[dataoriginal>=xmin & dataoriginal<=xmax]
data<-sort(data)
n<-length(data)
loglikelihood<-function(exponent) n*log((1-exponent)/(xmax^(1-exponent)-xmin^(1-exponent)))
-exponent*sum(log(data))
exponent<-optimize(loglikelihood,interval=c(0.2,3),maximum =TRUE, tol=1E-3)$maximum

dkse<-dksecomp(data,xmin,xmax,exponent)
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nsimulations<-1E4
pexit<-0
kssint<-c()
exponentsint<-c()

for(i in 1:nsimulations){
datasint<-c()
primer<-c()
ps<-c()
contadades<-0
while(contadades<n){

sint<-xmin/(1-(1-(xmin/xmax)^(exponent-1))*runif(1))^(1/(exponent-1))
if(sint<=xmax){

contadades=contadades+1
datasim[contadades]<-sint

}
}
loglikelihoodsim<-function(exponent) n*log((1-exponent)/
(xmax^(1-exponent)-xmin^(1-exponent)))-exponent*sum(log(datasint))
exponentsim<-optimize(loglikelihoodsim,interval=c(0.2,3),maximum =TRUE, tol=1E-3)$maximum
exponentsint[i]<-exponentsim
dkssint[i]<-dksecomp(datasint,xmin,xmax,exponentsim
if(dkssint[i]>=dkse) pexit=pexit+1

}

# Write the results of the fit
xminev[indexmin]<-xmin
xmaxev[indexmin]<-xmax
nev[indexmin]<-n
exponentev[indexmin]<-exponent
pvalor[indexmin]<-pexit/nsimulations
pvalorparticular<-pvalor[indexmin]
errorexp[indexmin]<-sd(exponentsint)

}

}

# Functions
###########################################################################################
# Function with the CDF of the truncated power-law
cdf<-function(x,xmin,xmax,alpha) (x^(1-alpha)-xmin^(1-alpha))/(xmax^(1-alpha)-xmin^(1-alpha))
# Function computing the KS distance
dksecomp<-function(dades,xmin,xmax,exponent){

xs<-sort(dades)
z<-ecdf(dades)
n<-length(dades)
dkse1<-c()
dkse2<-c()
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dksemaxpartial<-c()
for(i in 1:(n-1)){

dkse+[i]<-abs(z(xs[i])-(cdf(xs[i],xmin,xmax,exponent)))
dkse-[i]<-abs(z(xs[i-1])-(cdf(xs[i],xmin,xmax,exponent)))
dksemaxpartial[i]<-max(dkse+[i],dkse-[i])

}

dkse<-max(dksemaxpartial)

}

9.3.2 C Language
Source code in C which applies the procedure explained in Fig. 5.5 in Sec. 5.5 to a data array
“dades”. Definitions of all the variables, allocations, comments and printings are included.
This code also chooses the fit with largest number of data and the fit with the broadest range.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_sort.h>
#include <stdint.h>

int mle(double *dades, double *xmax,double *xmin, double *exponent, double *error,
double* pvalue,gsl_rng * rn, int size, int *n);
double func(double x, double xmin, double xmax, int n, double sumlog);
double rtflsp(double x1, double x2, double xacc, double xmin, double xmax, int n, double sumlog);
int main(){
int i, j;
// Set for random number generator
const gsl_rng_type * T;
gsl_rng * rn;
gsl_rng_env_setup();
T = gsl_rng_default;
rn = gsl_rng_alloc (T);
//Data
const int size=1E3; // Size of data
double *dades; // Define array of data
dades=(double *)malloc(size*sizeof(double)); // allocate memory
gsl_sort(dades,1,size); // sort data
// Variables for MLE and allocation
double *xmin, *xmax, *exponent, *pvalue, *error;
int *n;
// Allocations
xmin=(double *)malloc(1*sizeof(double));
xmax=(double *)malloc(1*sizeof(double));
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exponent=(double *)malloc(1*sizeof(double));
error=(double *)malloc(1*sizeof(double));
pvalue=(double *)malloc(1*sizeof(double));
n=(int *)malloc(1*sizeof(int));
// Fit parameters of maxim N fit
double xminmaxn, xmaxmaxn,exponentmaximn, errorexpmaximn,pvalormaximn ;
// Fit parameters of maxim Range fit
double xminmaxrange, xmaxmaxrange, exponentmaximrange, errorexpmaximrange, pvalormaximrange;
int nmaximrange; // number of data in fit with maximum range
double maximn=1; //initial value of maximum N
double maximrange=1; //initial value of maximum range

double maxim=dades[size-1]; // Determine maximum of your data
double minim=dades[0]; // Determine minimum of your data
double particions=5.0; // Number of subdivisions per decade
int imin=particions*log10(minim); // minimal index
int imax=1+particions*log10(maxim); // maximal index
//Variables for the loop
int indexcorremin=-1; // index for xmin in the loop
int indexcorremax; // index for xmax in the loop
int rejectmain=0; // rejection set to 0

// Loop for xmax
for(indexcorremax=0; indexcorremax< (particions*log10(maxim/minim)); indexcorremax++){

xmax[0]=pow(10.0, (double)(imax-indexcorremax)/particions);
indexcorremin=-1;

do{
indexcorremin=indexcorremin+1;
xmin[0]=pow(10.0, (double)(indexcorremin+imin)/particions);

if(xmax[0]>xmin[0]){
// MLE function
rejectmain=mle(dades,xmax,xmin,exponent,error,pvalue,rn,size,n);
// If the fit is not rejected
if(rejectmain==1){
// Change the fit with largest N

if(n[0]>maximn){
maximn=n[0];
xminmaxn=xmin[0];
xmaxmaxn=xmax[0];
exponentmaximn=exponent[0];
errorexpmaximn=error[0];
pvalormaximn=pvalue[0];

}
// Change the fit with largest range
if((xmax[0]/xmin[0])>maximrange){

maximrange=xmax[0]/xmin[0];
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xminmaxrange=xmin[0];
xmaxmaxrange=xmax[0];
exponentmaximrange=exponent[0];
errorexpmaximrange=error[0];
nmaximrange=n[0];
pvalormaximrange=pvalue[0];

}
}

}else{
rejectmain=1; // if xmax<xmin, skip

}
}while(rejectmain == 0);

}

fprintf(stderr,"Fit largest N \n");
fprintf(stderr,"%lf \t %lf \t %lf \t %lf \t %d \t %lf \n",xminmaxn,xmaxmaxn, exponentmaximn,
errorexpmaximn,maximn, pvalormaximn);
fprintf(stderr,"Fit with largest range \n");
fprintf(stderr,"%lf \t %lf \t %lf \t %lf \t %d \t %lf \n",xminmaxrange,xmaxmaxrange,
exponentmaximrange, errorexpmaximrange,nmaximrange, pvalormaximn);

gsl_rng_free (rn);
return EXIT_SUCCESS;
}
/////////////////////////////////////////////////////////////////////////////////////////
//// FUNCTIONS
/////////////////////////////////////////////////////////////////////////////////////////
mle(double *dades, double *xmax,double *xmin, double *exponent, double *error, double *pvalue,
gsl_rng * rn,int size, int *n){
// Definition of variables for the function
int i, j, reject, pexit, sizeactual, conta;
double *dadesactuals, *dadesactualsaux, xminim, xmaxim,*cumempirica, *cumteorica, sumlog,
distks, distksprima, dmaxempirica ; // Variables of the empirical data
double *vectoru, *cumsint, *cumteoricasint, dmaxsintetic, distkssintprima, distkssint,sumlogsim,
exposim,aux,meansim, meansim2; // Variables for synthetic data
const int nit=1E4; // number of simulations
double pc=0.20; // Threshol p-value
int contador=0;

// Allocation of auxiliar array with data
dadesactualsaux=(double *)malloc(size*sizeof(double));
// Reject is 0 at the beggining
reject=0;

// Computing the PL exponent
n[0]=0;
sumlog=0;

for(i=0; i<size; i++){
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if(dades[i]>=xmin[0] && dades[i]<=xmax[0]){
sumlog=sumlog+ log(dades[i]); // sum of logarithm of data
dadesactualsaux[contador]=dades[i];
contador=contador+1;
n[0]=n[0]+1;

}
}

sizeactual=n[0];

// Allocations of data, Empirical and theoretical CDFs
dadesactuals=(double *)malloc(sizeactual*sizeof(double));
cumempirica=(double *)malloc((sizeactual)*sizeof(double));
cumteorica=(double *)malloc((sizeactual)*sizeof(double));

for(i=0; i<sizeactual; i++){
// Current data after imposing cut-offs

dadesactuals[i]=dadesactualsaux[i];
}

free(dadesactualsaux); // Free auxiliar array¡
gsl_sort(dadesactuals,1,sizeactual); //Sorting Data
//xmin and xmax to compute the PL exponent
xminim=xmin[0];
xmaxim=xmax[0];
//Computing the exponent
exponent[0] = rtflsp(1.05, 3, 1E-3, xminim, xmaxim, sizeactual, sumlog);
//Construct the theoretical and empirical CDF and compute KS distance
dmaxempirica=0; // Initiallize KS distance at 0

for(i=0; i<sizeactual; i++){
cumempirica[i]=(double) i/ (double) (sizeactual-1);
cumteorica[i]=(pow(dadesactuals[i],1.0-exponent[0])- pow(xmin[0],1.0-exponent[0])) /
(pow(xmax[0],1.0-exponent[0])- pow(xmin[0],1.0-exponent[0]));
distks=fabs(cumempirica[i]-cumteorica[i]); // KS+
if(i>0){

distksprima=fabs(cumempirica[i-1]-cumteorica[i]); // KS-
if(distksprima>distks){
distks=distksprima; // max(KS+,KS-)
}

}
if(distks>dmaxempirica){

dmaxempirica=distks; // Determine the KS distance
}

}

// Allocations fot the variables with synthetic data
vectoru=(double *)malloc(sizeactual*sizeof(double));
cumsint=(double *)malloc(sizeactual*sizeof(double));
cumteoricasint=(double *)malloc(sizeactual*sizeof(double));
// Initiallize <exponentsim> and <exponenstims2> at 0
meansim=0;
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meansim2=0;
pexit=0; // number of times in which KSsim>KSemp
for(i=0; i<nit; i++){ // Loop for simulated Datasets

conta=0;
while(conta<sizeactual){

// PL simulated data
aux=xmin[0] /(pow( 1.0 - gsl_rng_uniform (rn)*(1.0-pow((xmin[0]/xmax[0])
,(exponent[0]-1.0)) ), (1.0/(exponent[0]-1.0)))) ;
vectoru[conta]=aux;
conta=conta+1;

}
gsl_sort(vectoru,1,sizeactual); // Sort the vector
sumlogsim=0;
for(j=0; j<sizeactual; j++){

sumlogsim=sumlogsim+ log(vectoru[j]);
}
// Compute the simulated exponent
exposim= rtflsp(1.05, 3, 1E-3, xminim, xmaxim, sizeactual, sumlogsim);
meansim=meansim+exposim;
meansim2=meansim2+ exposim*exposim;
dmaxsintetic=0; // Initialize KS distance at 0
// KS of simulated Data
for(j=0; j<sizeactual; j++){

cumsint[j]=(double) j/ (double) (sizeactual-1);
cumteoricasint[j]=(pow(vectoru[j],1.0-exposim)-
pow(xmin[0],1.0-exposim))/(pow(xmax[0],1.0-exposim)-
pow(xmin[0],1.0-exposim));
distkssint=fabs(cumsint[j]-cumteoricasint[j]); // KS+ Sim
if(j>0){

distkssintprima=fabs(cumsint[j-1]-cumteoricasint[j]); // KS- Sim
if(distkssintprima>distkssint){

distkssint=distkssintprima; // max(KS+Sim, KS-Sim)
}

}
if(distkssint>dmaxsintetic){

dmaxsintetic=distkssint; // KS for synthetic data
}

}
if(dmaxsintetic>=dmaxempirica){

pexit=pexit+1;
}

}
// <exponentsim> and <exponenstims2>
meansim=meansim/ (double) nit;
meansim2=meansim2/(double) nit;
error[0]=sqrt(meansim2-meansim*meansim); // estimation of the error of the MLE
pvalue[0]=(double) pexit / (double) nit; // Resulting p-value
// Decision
if(sizeactual<10 || pvalue[0]>=pc){
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reject=1;
}
// free arrays
free(vectoru);
free(cumsint);
free(cumteorica);
free(cumempirica);
free(cumteoricasint);

return reject;

}

///////////////////////////////////////////////////////////////////////////////////
double func(double x, double xmin, double xmax, int n,double sumlog){
double value;
value = sumlog + (double) n/(1- x) -(double) n*( (pow(xmax,1- x)*log(xmax) -
pow(xmin,1- x)*log(xmin)) / (pow(xmax,1- x)-pow(xmin,1- x)) );
return value;
}

///////////////////////////////////////////////////////////////////////////////////

#include <math.h>
#define MAXIT 30
double rtflsp( double x1, double x2, double xacc, double xmin, double xmax,
int n, double sumlog){
void nrerror(char error_text[]);
int j;
double fl,fh,xl,xh,swap,dx,del,f,rtf;
fl= +sumlog + (double) n/(1- x1) - (double) n*( (pow(xmax,1- x1)*log(xmax) -
pow(xmin,1- x1)*log(xmin)) / (pow(xmax,1.- x1)-pow(xmin,1.- x1)) );
fh= +sumlog + (double) n/(1- x2) - (double) n*( (pow(xmax,1- x2)*log(xmax) -
pow(xmin,1- x2)*log(xmin)) / (pow(xmax,1.- x2)-pow(xmin,1.- x2)) );
if (fl*fh > 0.0);// fprintf(stderr,"Root must be bracketed in rtflsp \n ");
if (fl < 0.0) {

xl=x1;
xh=x2;

}else{
xl=x2;
xh=x1;
swap=fl;
fl=fh;
fh=swap;

}
dx=xh-xl;
for (j=1;j<=MAXIT;j++) {

rtf=xl+dx*fl/(fl-fh);
f=+sumlog + (double) n/(1- rtf) - (double) n*( (pow(xmax,1- rtf)*log(xmax) -
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pow(xmin,1- rtf)*log(xmin)) / (pow(xmax,1- rtf)-pow(xmin,1- rtf)) );
if (f < 0.0) {

del=xl-rtf;
xl=rtf;
fl=f;

} else {
del=xh-rtf;
xh=rtf;
fh=f;

}
dx=xh-xl;
if (fabs(del) < xacc || f == 0.0) return rtf;

};
return 0.0;
}

9.4 Source code for merging different datasets
Source code with the methodology for merging two datasets presented in Chpt. 7. By assuming
that the global distributions follows an untruncated power-law, the different goodness-of-fit
tests are also exposed. This code corresponds to the case where the cut-offs in both datased
are fixed.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_sort.h>
#include <stdint.h>

double *agcdf(double *dades1, double *dades2, int n1, int n2); // cdf agregada
double ksd(double *dades, int n, double expo, double xmin); // KS distance
double pvalueksdmd(double *dades1, double *dades2, double xmin1, double xmin2, int n1, int n2,
double exponentglobal);
double pvaluecksd(double *dades1, double *dades2, double xmin1, double xmin2, int n1, int n2,
double exponentglobal);

int main(){
int i,j;
// Random number generator setup
const gsl_rng_type * T;
gsl_rng * rn;
gsl_rng_env_setup();
T = gsl_rng_default;
rn = gsl_rng_alloc (T);
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double *data1, *data2, *dadesfinals; // datasets 1 and 2
int n1=1E4;
int n2=1E4;
int nt=n1+n2;
// allocations
dades1=(double *)malloc(n1*sizeof(double));
dades2=(double *)malloc(n2*sizeof(double));
dadesfinals=(double *)malloc((nt)*sizeof(double));
// Cut-offs which are proposed for the analysis
double xmin1=1;
double xmin2=1E3;
for(i=0; i<(nt); i++){

if(i<n1){
dadesfinals[i]=dades1[i];

}
if((i>=n1) & (i<(nt))){

dadesfinals[i]=dades2[i-n1];
}

}
//Sort data
gsl_sort(dades1,1,n1);
gsl_sort(dades2,1,n2);
gsl_sort(dadesfinals,1,nt);
double sumlog1=0;
double sumlog2=0;
for(i=0; i<n1;i++){

sumlog1=sumlog1+log(dades1[i]);
}
for(i=0; i<n2;i++){

sumlog2=sumlog2+log(dades2[i]);
}
// Empirical Exponents
double sumlog=sumlog1+sumlog2;
// In this case, the global exponent can be computed analitically
double exponentglobal=1+ (double)(nt)/(sumlog-n1*log(xmin1)-n2*log(xmin2));
double likelihoodglobal=(nt)*log(fabs(exponentglobal-1.0)) - (1.0-exponentglobal)*
(n1*log(xmin1)+n2*log(xmin2))-exponentglobal*sumlog;
double expo1= 1.0 + n1/ (sumlog1-n1*log(xmin1));
double expo2= 1.0 + n2/ (sumlog2-n2*log(xmin2));
double sigmadata1= (expo1-1.0)/sqrt(n1);
double sigmadata2=(expo2-1.0)/sqrt(n1);
// LR Statistic
double piece1=n1*log(expo1-1.0)-n1*(1.0-expo1)*log(xmin1)-expo1*sumlog1;
double piece2=n2*log(expo2-1.0)-n2*(1.0-expo2)*log(xmin2)-expo2*sumlog2;
double likelihoodcomplex= piece1 + piece2;
double likelihoodratio=2.0*fabs(likelihoodcomplex-likelihoodglobal);
double likelihoodratioc=3.84; // In this case

if(likelihoodratio<likelihoodratioc) { // LR filter
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// At this point, one can select any of two statistics
// CKSD or KSDMD
////////////////////////////////////// KSDMD //////////////////////////////////////
double *cumempirica, *cumteorica;
cumempirica=(double *)malloc((nt)*sizeof(double));
cumteorica=(double *)malloc((nt)*sizeof(double));
double distksdmd;
double distksdmdprima;
double dmaxempirica;
// Call the function to construct the empirical merged CDF
cumempirica=agcdf(dades1, dades2, n1, n2);
// Now compute KSDMD
for(i=0; i<nt; i++){

cumteorica[i]=pow((dadesfinals[i]/xmin1),1.0-exponentglobal);
distksdmd=fabs(cumempirica[i]-cumteorica[i]);
if(i>0){

distksdmdprima=fabs(cumempirica[i-1]-cumteorica[i]);
if(distksdmdprima>distksdmd){

distksdmd=distksdmdprima;
}

}
if(distksdmd>dmaxempirica){
dmaxempirica=distksdmd;
}

}
// Definitive DKSDMD
double dksempiricadefksdmd;
dksempiricadefksdmd=dmaxempirica;
// Now the p-value of the KSDMDM
double pksdmd=pvalueksdmd(dades1,dades2,xmin1,xmin2, n1,n2,exponentglobal,dksempiricadefksdmd);

////////////////////////////////////// CKSD //////////////////////////////////////
double cksd, ks1, ks2;
// Particular KS Distances
ks1= ksd(dades1,n1,exponentglobal, xmin1);
ks2= ksd(dades2,n2,exponentglobal, xmin2);
// CKSD
double dksempiricadefcksd;
dksempiricadefcksd= sqrt((double)n1)*ks1 + sqrt((double)n2)*ks2;
//Now the p-value of the CKSD
double pcksd=pvaluecksd(dades1,dades2,xmin1,xmin2, n1,n2,exponentglobal,dksempiricadefcksd);
}else{
fprintf(stderr,"LRT rejected \n");
}
gsl_rng_free (rn);
return EXIT_SUCCESS;
}
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//////////////////////////////////////////////////////////////////////////////////
/////////////// FUNCTION ////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////

// Function to compute the empirical KS distance for a dataset
double ksd(double *dades, int n, double expo, double xmin){ // KS distance
double distks,distksprima,dmaxempirica,*cumemprica,*cumteorica;
cumempirica=(double *)malloc(n*sizeof(double));
cumteorica=(double *)malloc(n*sizeof(double));

for(i=0; i<(n); i++){
cumempirica[i]=1.0-(double) (i) / (double) (n1-1);
cumteorica[i]=pow((dades[i]/xmin),1.0-expo);
distks=fabs(cumempirica[i]-cumteorica[i]); // KS+

if(i>0){
distksprima=fabs(cumempirica[i-1]-cumteorica[i]);//KS-
if(distksprima>distks){

distks=distksprima;
}

}
if(distks>dmaxempirica1){
dmaxempirica=distks;
}

}
return dmaxempirica;

}

//////////////////////////////////////////////////////////////////////////////////
/////////////// FUNCTION ////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////

// function to compute the pvalue of the ksdmd statistic
double pvalueksdmd(double *dades1, double *dades2, double xmin1, double xmin2, int n1, int n2,
double exponentglobal, double distksdmd){
double *dadessim1, *dadessim2, *cumempiricasim, *cumteoricasim, *dadesfinalssim;
dadessim1=(double *)malloc((n1)*sizeof(double));
dadessim2=(double *)malloc((n2)*sizeof(double));
cumempiricasim=(double *)malloc((nt)*sizeof(double));
cumteoricasim=(double *)malloc((nt)*sizeof(double));
dadesfinalssim=(double *)malloc((nt)*sizeof(double));
int pexit=0;
int nsimu=1E4;

for(j=0; j<nsimu; j++){
double sumlogsim1=0;
double sumlogsim2=0;
for(i=0; i<n1;i++){

dadessim1[i]=xmin1*pow((1-gsl_rng_uniform (rn)),(-1.0/(exponentglobal-1.0)));
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sumlogsim1=sumlogsim1+log(dadessim1[i]);
}

for(i=0; i<n2;i++){
dadessim2[i]=xmin2*pow((1-gsl_rng_uniform (rn)),(-1.0/(exponentglobal-1.0)));
sumlogsim2=sumlogsim2+log(dadessim2[i]);

}
double sumlogsim=sumlogsim1+sumlogsim2;
double exponentglobalsim=1+ (nt)/(sumlogsim-n1*log(xmin1)-n2*log(xmin2));
double dmaxempirica1sim=0;
double dmaxempirica2sim=0;

gsl_sort(dadessim1,1,n1);
gsl_sort(dadessim2,1,n2);

for(i=0; i<(nt); i++){

if(i<n1){
dadesfinalssim[i]=dadessim1[i];

}
if( (i>=n1) & (i<(nt))){

dadesfinalssim[i]=dadessim2[i-n1];
}

}
gsl_sort(dadesfinalssim,1,nt);

double dmaxempiricasim=0;
// Construct the merged CDF
cumempiricasim=agcdf(dadessim1, dadessim2, n1, n2);

for(i=0; i<nt; i++){
cumteoricasim[i]=pow((dadesfinalssim[i]/xmin1),1.0-exponentglobalsim);
distksdmd=fabs(cumteoricasim[i]-cumteoricasim[i]);
if(i>0){

distksdmdprima=fabs(cumempiricasim[i-1]-cumteoricasim[i]);
if(distksdmdprima>distksdmd){

distksdmd=distksdmdprima;
}

}
if(distksdmd>dmaxempiricasim){
dmaxempiricasim=distksdmd;
}

}

double dkssimadef= dmaxempiricasim;

if(dkssimadef>=dksempiricadef){
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pexit=pexit+1;
}

}

double pvalueksdmd= (double)pexit/(double)nsimu;
return pvalueksdmd;
}

//////////////////////////////////////////////////////////////////////////////////
/////////////// FUNCTION ////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////

// function to compute the pvalue of the cksd statistic
double pvaluecksd(double *dades1, double *dades2, double xmin1, double xmin2, int n1, int n2,
double exponentglobal, double distksdmd){
double *dadessim1, *dadessim2, *cumempiricasim, *cumteoricasim, *dadesfinalssim;
dadessim1=(double *)malloc((n1)*sizeof(double));
dadessim2=(double *)malloc((n2)*sizeof(double));
cumempiricasim=(double *)malloc((nt)*sizeof(double));
cumteoricasim=(double *)malloc((nt)*sizeof(double));
dadesfinalssim=(double *)malloc((nt)*sizeof(double));
int pexit=0;
int nsimu=1E4;

for(j=0; j<nsimu; j++){
double sumlogsim1=0;
double sumlogsim2=0;
for(i=0; i<n1;i++){

dadessim1[i]=xmin1*pow((1-gsl_rng_uniform (rn)),(-1.0/(exponentglobal-1.0)));
sumlogsim1=sumlogsim1+log(dadessim1[i]);

}

for(i=0; i<n2;i++){
dadessim2[i]=xmin2*pow((1-gsl_rng_uniform (rn)),(-1.0/(exponentglobal-1.0)));
sumlogsim2=sumlogsim2+log(dadessim2[i]);

}
double sumlogsim=sumlogsim1+sumlogsim2;
double exponentglobalsim=1+ (nt)/(sumlogsim-n1*log(xmin1)-n2*log(xmin2));
double dmaxempirica1sim=0;
double dmaxempirica2sim=0;

gsl_sort(dadessim1,1,n1);
gsl_sort(dadessim2,1,n2);

double dks1sim=ksd(dadessim1,n1,exponentglobalsim, xmin1);
double dks2sim=ksd(dadessim2,n2,exponentglobalsim, xmin2);

double dkssimadef= sqrt((double)n1)*dks1sim + sqrt((double)n2)*dks2sim;
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if(dkssimadef>=dksempiricadef){
pexit=pexit+1;

}
}

double pvaluecksd= (double)pexit/(double)nsimu;
return pvaluecksd;
}

//////////////////////////////////////////////////////////////////////////////////
/////////////// FUNCTION ////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////

// Function that constructs the merged CDF for the KSDMD
double *agcdf(double *data1, double *data2, int cont1, int cont2){
int i, j;
gsl_sort(data1,1,cont1);
gsl_sort(data2,1,cont2);
double min1=data1[0];
double max1=data2[cont1-1];
double min2=data2[0];
double max2=data2[cont2-1];
double k1=0;
double k2=0;
double cdfaux=0; // auxiliar variable to construct the CDF
double sumweight=0; // sum of weights
int sizet=cont1+cont2;
double *weightdata, *dadesfinals, *cdf;

// Allocations
dadesfinals=(double *)malloc((sizet)*sizeof(double));
weightdata=(double *)malloc((sizet)*sizeof(double));
cdf=(double *)malloc((sizet)*sizeof(double));

for(i=0; i<cont1; i++){
if((data1[i]>=min2) & (data1[i]<=max1)){

k1=k1+1;
}

}

for(i=0; i<cont2; i++){
if((data2[i]>=min2) & (data2[i]<=max1)){

k2=k2+1;
}

}

for(j=0; j<sizet; j++){
if(j<cont1){

datafinal[j]=data1[j];



250

}
if( (j>=cont1) & (j<(cont1+cont2))){

datafinal[j]=data2[j-cont1];
}

}

gsl_sort(datafinal,1,sizet);

for(j=0; j<sizet; j++){

//Datapoints from (1)
if((dadesfinals[j]>=minim1) & (dadesfinals[j]<minim2)){

weightdata[j]=(1.0/(k1));
}
//Overlapping(1)(2)
if((dadesfinals[j]>=minim2)&(dadesfinals[j]<maxim1)){

weightdata[j]=(1.0/((k1+k2)));
}
//Datapoints from (2)
if((dadesfinals[j]>=minim2)&(dadesfinals[j]>=maxim1)){

weightdata[j]=(1.0/((k2)));
}
//CDF
cdf[j]=cdfaux+weightdata[j];
cdfaux=cdf[j];
}

for(i=0; i<sizet; i++){
// Calculo larea que cobreix l’histograma

sumweight=sumweight+pesdada[i];
}
for(j=0; j<sizet; j++){

cdf[j]=1.0-(cdf[j]/area);
}
return cdf;
// Free arrays
free(pesdada);
free(dadesfinals);
free(cdf);
}
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Nomenclature

As a general fact, bold symbols represent vectors or matrices.

2R Likelihood ratio statistic

α Significance level

αp Productivity exponent

∆ Bin-width

δ Waiting time between consecutive events

Γ Generic exponent of the Global power-law distribution

γ Generic power-law exponent

θ̂θθ Array with the set of the estimated parameters characterizing the statistical model

λ First Lamé elastic modulus

A Akaike information criterion

C(k) Number of counts inside the k-th bin of an histogram of counts

H Hamiltonian

L Likelihood

P Probability

X Generic random variable

C Coulomb failure stress

d Dip angle in fault geometry

µ Lamé elastic shear modulus
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µ′ Effective pore pressure

Ω Weight given by the algorithmic procedure to each data point in a merged histogram

` Mean earthquake slip

π Omori exponent

ˆ̀̀̂̀̂ Slip vector

n̂̂n̂n Normal vector to the fault

III Expected information matrix

SSS Score function

θθθ Set of parameters characterizing a distribution F

III Matrix of the second derivatives of the log-likelihood function

rrr Position vector

uuu Deformation Field

ψ Discretized values of the peak voltage

ρ Rake angle in fault geometry

τ Tangential or shear stress.

Θ Strike angle in fault geometry

θ̃θθ Array with the set of the real parameters characterizing the statistical model that has
generated a dataset

εij Components of the strain Tensor

ς Source time function

A Amplitude of the AE avalanche in dB

Ar Rupture area of an earthquake

b b-value: Exponent of the Gutenberg-Richter law

D Avalanche duration.

d Kolmogorov-Smirnov distance
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d(C) Composite Kolmogorov-Smirnov Distance

d(M) Kolmogorov-Smirnov distance of the Merged Datasets

E Avalanche energy

Er Radiated energy by either earthquakes or labquakes

FX ,e Estimated empirical Cumulative Distribution Function (CDF) of the random variable
X

fX ,e Estimated empirical Probability Density Function (PDF) of the random variable X

FX Probability Distribution or Cumulative Distribution Function (CDF) of the random
variable X

fX Probability density function of the random variable X

H External driving field

H0 Null hypothesis

H1 Alternative hypothesis

hi Local quenched random fields in the Random Field Ising model

M Seismic moment

mmin Completeness magnitude

n Number of observations in a sample

nL Number of parameters characterizing the Likelihood Function L

nbdec Number of bins per decade in a histogram of counts

nbins Number of bins in a histogram of counts

Nsim Number of Monte Carlo simulations

nn Nearest neighbours

OM Orders of magnitude

pvalue p-value

R Amount of disorder in Ising Models
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r Activity rate of events (number of events per unit time)

SX Complementary cumulative distribution function of the random variable X

sij Components of the stress tensor

t Time

u Random uniform number

V Amplitude of the AE avalanche in V

x Values that the generic random variable X can take

xlow Minimum value in a sample

xmax Upper cut-off of a power-law distribution

xmin Lower cut-off of a power-law distribution

xtop Maximum value in a sample

z Generic statistic used in statistical hypothesis testing

AE Abbreviation for Acoustic emission

AIC Abbreviation for Akaike Information Criterion

CCDF Abbreviation for Complementary cumulative Distribution Function

CDF Abbreviation for Cumulative Distribution Function

CKSD Abbreviation for Composite Kolmogorov-Smirnov Distance

DIC Abbreviation for Disorder Induced Criticality

DIRP Abbreviation for Driven Interfaces in Random Potentials

FHHM Abbreviation for Failure of Highly Heterogeneous Materials

GR Abbreviation for Gutenberg-Richter

HDT Abbreviation for Hit Definition Time

HLT Abbreviation for Hit Lockout Time

i.i.d. Independent Identically Distributed Random Variables
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KS Abbreviation for Kolmogorov-Smirnov

KSDMD Abbreviation for Kolmogorov-Smirnov Distance of the Merged Datasets

LRT Abbreviation for Likelihood ratio test

ML Abbreviature for Maximum Likelihood

MLE Abbreviation for Maximum Likelihood Estimation

RFIM Abbreviation for Random Field Ising Model

SOC Abbreviation for Self-Organized Criticality

SOI Abbreviation for Sweeping of an Instability

THR Abbreviation for Threshold
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