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Abstract 
The study of hydro-mechanical (HM) coupled problems in different areas of civil, 
environmental or petroleum engineering is common in literature, but the effect of a thermal 
field by means of the heat transport by a fluid through the discontinuities is not considered in 
the current tools of analysis, in which the potential effect of the temperature gradient between 
the fluids flowing through the discontinuities and the in-situ thermal state are not taken into 
account. However, in most geomechanical problems the mechanical, hydraulic and thermal 
behaviour of the fractured porous medium may appear coupled with strong interactions 
between them.  

 In geomechanics modeling it is important to distinguish between the hydraulic behavior 
of the porous medium and that of the discontinuities, together generating a double-
permeability system where the porous medium provides a small permeability to the whole 
system and discontinuities establish preferential flow paths providing a larger permeability. 
Because of high hydraulic velocities in the discontinuities, the advection (transport) may be 
the dominant heat transfer mode. Thus, the study of THM coupled processes with thermal 
advection in discontinuities is important in problems with a certain degree of coupling 
between the mechanical, hydraulic and thermal behavior, and in which the hydraulic flow 
transports heat with a significant speed through the discontinuities.  

 It is important to establish a numerical model to study the advection phenomena that 
differentiates the discontinuity network and the porous medium contributions. In this context, 
this thesis focuses on the study, formulation, numerical implementation and verification of a 
THM fully-coupled model with large advection, able to reproduce the advective behaviour 
that occurs in discontinuities or fractures, in which heat is transported by the fluid. This 
numerical approach is carried out in the geomechanical context of a fractured porous medium, 
using the finite element method (FEM) with zero-thickness interface elements to represent the 
discontinuities or fractures (discrete approach), and assuming saturated conditions, a single 
incompressible fluid (with constant density) and small strains. It is also assumed that all the 
non-linear behaviour occurs at the interface elements by means of an elasto-plastic 
constitutive law based on fracture mechanics, while poro-elasticity is assumed for the porous 
continuum medium. 

 Additionally, the numerical approach to the thermal advection presents a singularity in 
comparison with the pure diffusive problems. When the fluid velocities are low, the numerical 
formulation can be made by traditional Finite Element Methods (Galerkin). However, when 
the fluid velocities are high enough and the advection dominates the problem, the standard 
Galerkin weighting leads to oscillatory results, and consequently the advective term requires a 
special treatment to stabilize the numerical solution. In this context, a review of different 
methodologies to solve the large advective problem are presented, selecting the Streamline 
Upwind Petrov-Galerkin (SUPG) method to solve the steady-state, a well-known method that 
leads to stable solutions for large advective problems. For transient states, this thesis starts 
with the study of the existing explicit Characteristic Galerkin Method, which carries the 
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study of the advective phenomena in a Lagrangian manner, following the particle (or heat) 
with the fluid movement, by setting a moving coordinate system that depends on the fluid 
velocity and its position in time. Then the implicit form of this method is developed, and 
finally a new variation of this method is proposed adding a parameter (𝛼𝛼) that allows to 
determine different temporal derivative positions of the advective volume, leading to the 𝛼𝛼-
Implicit Characteristic Galerkin Method. With this new procedure, the large advective 
transient solution becomes stable if the Courant condition is fulfilled. 

 In order to verify the fully-coupled THM model with large advection for continuum 
medium and zero-thickness interface elements, several simple verification examples are 
presented. Finally, an application to hydraulic fracture (HF) with a single fracture in 2-D is 
introduced in order to understand the thermal mechanisms that occur in HF problems and 
how they affect the mechanical and hydraulic fields. In addition, these results are compared 
with those obtained using the HM model, where the thermal field is not considered.  

 Additionally, in order to improve the computational capacities of the FEM code, its 
parallelization has been carried out following a subdomain decomposition strategy, leading to 
a substantial improvement in the speed of the calculations and showing a good degree of 
scalability.  
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Resumen 
El estudio de problemas hydro-mecánicos (HM) acoplados en diferentes áreas de ingeniería 
civil, ambiental o del petróleo es común en la literatura, pero los efectos térmicos del fluido 
transportando calor a través de fracturas o discontinuidades no se considera en las actuales 
herramientas de análisis, en las cuales el efecto de la diferencia de temperatura entre el fluido 
inyectado a través de las discontinuidades y la del medio in situ no se tiene en cuenta. No 
obstante, en algunos problemas geomecánicos los comportamientos mecánico, hidráulico y 
térmico del medio poroso fracturado pueden aparecer acoplados con fuertes interacciones entre 
ellos.  

 En modelación geomecánica es importante distinguir el comportamiento hidráulico del 
medio poroso del de las discontinuidades, ambas generando un sistema de doble permeabilidad 
en el cual el medio poroso proporciona una pequeña permeabilidad al sistema, mientras que 
las discontinuidades establecen caminos preferentes y proporcionan gran permeabilidad al 
mismo. Debido a las elevadas velocidades de fluido que se pueden desarrollar en las 
discontinuidades, la advección (transporte) puede ser el modo dominante de transferencia de 
calor. Por ello, el estudio de procesos THM acoplados con advección térmica en 
discontinuidades es importante en problemas con un cierto grado de acoplamiento entre los 
campos mecánico, hidráulico y térmico, y en los cuales el flujo hidráulico puede transportar 
calor a gran velocidad a través de las discontinuidades.  

 Por ello, es importante establecer un modelo numérico para estudiar el fenómeno 
advectivo que diferencie la contribución de la red de discontinuidades de la del medio 
continuo poroso. En este contexto, esta tesis está enfocada en el estudio, formulación, 
implementación numérica y verificación de un modelo THM acoplado monolítico con 
advección dominante que sea capaz de reproducir el comportamiento advectivo que ocurre en 
discontinuidades o fracturas, en las cuales el fluido transporta calor. Este estudio se lleva a 
cabo en el contexto geomecánico de un medio poroso fracturado, empleando el método de los 
elementos finitos (FEM) con elementos junta de espesor nulo para representar las 
discontinuidades o fracturas, suponiendo condiciones saturadas, un único fluido incompresible 
(con densidad constante) y pequeñas deformaciones. También se supone que todo el 
comportamiento no lineal se desarrolla en las juntas mediante el uso de una ley constitutiva 
elasto-plástica basada en mecánica de fractura, mientras que el medio continuo poroso se 
supone de comportamiento poro-elástico. 

 Adicionalmente, la solución numérica del problema térmico advectivo presenta 
singularidades con respecto a los problemas de difusión pura. Cuando las velocidades del 
fluido son bajas, la formulación numérica se puede llevar a cabo mediante Elementos Finitos 
tradicionales (Galerkin). No obstante, cuando las velocidades del fluido son suficientemente 
elevadas y la advección domina el problema el método estándar de Galerkin conduce a 
resultados oscilantes, por lo que el término advectivo requiere un tratamiento especial para 
estabilizar la solución numérica. En este contexto, se presenta una revisión de diferentes 
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metodologías para resolver el problema de advección dominante, seleccionando el método 
Streamline Upwind Petrov-Galerkin (SUPG) para resolver el problema en régimen 
permanente, un método bien conocido que conduce a soluciones estables con advección 
dominante. Para el régimen transitorio esta tesis empieza con el estudio del método de 
Características Galerkin explícito, un método existente en el que el fenómeno advectivo se 
estudia de modo Lagrangiano, siguiendo la partícula (o calor) con el movimiento del fluido, y 
estableciendo para ello un sistema de coordenadas móvil que depende de la velocidad del 
fluido y de su posición en el tiempo. Seguidamente se desarrolla la forma implícita de este 
método, y finalmente se propone una nueva variación del método, añadiendo un parámetro 𝛼𝛼 
que permite determinar diferentes posiciones de las derivadas temporales del volumen 
advectivo, concluyendo en el nuevo 𝛼𝛼-Implicit Characteristic Galerkin Method. Con esta 
nueva metodología se estabiliza el problema de gran advección en régimen transitorio si se 
cumple la condición de Courant. 

 Con el fin de verificar el modelo THM monolítico acoplado con advección dominante se 
presentan diversos ejemplos de verificación, tanto para medio continuo poroso como para 
elementos junta de espesor nulo. Finalmente, se presenta un caso de aplicación a fractura 
hidráulica (HF), llevando a cabo el análisis numérico de una sola fractura en 2-D con el 
objetivo de entender los mecanismos térmicos que ocurren en problemas de HF y como éstos 
afectan sobre los comportamientos mecánico e hidráulico. Además, los resultados de la 
modelación se comparan con los obtenidos empleando un modelo HM, en el cual no se 
consideran efectos térmicos.  

 Adicionalmente, con el objetivo de mejorar la eficiencia computacional del código de 
Elementos Finitos, se ha llevado a cabo la paralelización del mismo mediante una estrategia 
de partición de subdominios, resultando en una mejora sustancial de la velocidad de los 
cálculos y mostrando una buena escalabilidad de los mismos. 
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1. a 
 

Chapter 1 

Introduction 
 

1.1. Introduction and background 

In most geomechanical problems the mechanical, hydraulic and thermal behaviour of the 
porous medium appear coupled with strong interactions between them. This is called thermo-
hydro-mechanical (THM) coupling, and it is the main topic of this Thesis. Further, the 
creation and/or propagation of discontinuities or fractures through the porous medium may 
be strongly affected by the variation of fluid pressures and the heat that the fluid may 
transport trough these discontinuities, producing their opening or closing and leading to 
strong variations of deformability and permeability of the whole system.  

 While the study of hydro-mechanical (HM) coupled problems in different areas of civil, 
environmental or petroleum engineering is common in literature, the effect of a thermal field 
by means of the heat transport by a fluid through the discontinuities is not considered in the 
current tools of analysis, in which the potential effect of the temperature gradient between the 
fluids flowing through the discontinuities and the in-situ thermal state are not taken into 
account. 

 The study of coupled THM processes with transport (advection) in discontinuities is 
important in problems with a certain degree of coupling between the mechanical, hydraulic 
and thermal behavior, and in which the hydraulic flow transports heat with a significant 
speed through the discontinuities. 

 An important case of interest can be found in Petroleum Engineering, concretely in 
hydraulic fracture (HF) processes where the temperature of the injected fluid may lead to the 
generation of important temperature gradients that modify the fluid properties (such as 
viscosity or density) and the stress field by means of induced thermal deformations. These 
modifications may affect the fracture process, opening or closing of the fractures and, for 
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instance, the production of the reservoir. In these cases, the hydraulic fracture area is situated 
at great depth, where the temperatures are high, while the injected fluid is located on the 
surface at ambient temperature. Thus, the injection of the fluid may produce important 
temperature gradients that could lead to significant variations on the mechanical behavior of 
these fractures and the oil and gas production of the reservoir. 

 

1.2. Motivation and objectives 

 In rock and quasi-brittle materials modeling it is important to distinguish between the 
hydraulic behavior of the porous medium and that of the discontinuities, together generating 
a double-permeability system. While the porous media provides a small permeability to the 
whole system, the discontinuities establish preferential flow paths and provide the bigger 
permeability. Due to the high hydraulic velocities developed in the discontinuities, the main 
thermal transport may occur through them and the advection may be the dominant heat 
transfer mode. Thus, it is important to establish a numerical model to study the advection 
phenomena that differentiates the discontinuity network and the porous medium 
contributions. 

 In the geomechanical context of hydraulic fracture (HF), the current tools of analysis do 
not consider the potential effect of the difference in temperature between the fluids injected 
and the in-situ thermal state. However, this difference can be very significant, and existing 
literature suggests that its impact on hydraulic fracture may also be significant in some cases. 

 Additionally, the numerical approach to the thermal advection presents a singularity in 
comparison with the pure diffusive problems. When the fluid velocities are low, the 
formulation and implementation of the additional advective term in the equations can be 
made by traditional Finite Element Methods (Galerkin). However, when the fluid velocities 
are high enough, the standard Galerkin weighting leads to oscillatory results, and 
consequently the advective term requires a special treatment to stabilize the numerical 
solution. This occurs typically only in fractures or discontinuities, and not in the continuum 
medium. Determination of whether the fluid velocities are high or low is generally based on 
the so-called Péclet number (𝑃𝑃𝑃𝑃), which is a non-dimensional quantity relating the velocity of 
advection of a flow and the rate of heat conduction/diffusion in that flow:𝑃𝑃𝑃𝑃 ≤  1 for 
conduction-dominated problems (small advection) and 𝑃𝑃𝑃𝑃 >  1 for advection-dominated 
problems (large advection). 

 In this context, the main objective of this thesis is the study, formulation, numerical 
implementation and verification (with simple application examples) of a coupled numerical 
model able to reproduce the thermo-hydro-mechanical advective behaviour that occur in 
discontinuities or fractures in which heat is transported by the fluid. This numerical approach 
is carried out in the geomechanical context of a fractured porous medium, using the finite 
element method (FEM) with zero-thickness interface elements to represent the discontinuities 
or fractures (discrete approach), and assuming saturated conditions, a single incompressible 
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fluid (with constant density) and small strains. It is also assumed that all the non-linear 
behaviour occurs at the interface elements by means of an elasto-plastic constitutive law 
based on fracture mechanics, while poro-elasticity is used for the porous continuum medium. 

 Due to the complexity of the problem (three fields: thermal, hydraulic and mechanical, 
with potential coupling between all including significant advective terms, even if single-phase 
flow based on field pressures is considered), a progressive plan for 
development/implementation/testing has been envisaged, dividing the main objective in 
different preliminary objectives as follows: 

• Study of the numerical issues that arise in solving the large advection problem by the 
standard FEM procedures and present some numerical techniques which can be 
applied for its correct solution, both for steady-state and transient processes. 

• Theoretical and numerical formulation of the thermal advective problem and its 
implementation in a new FEM code (T-DRAC) to solve the large advection problem 
with a known given velocity field (with no couplings) and verify the applicability of 
the numerical method used to stabilize the thermal advective solution, both for 
continuum medium and zero-thickness interface elements. 

• Numerical implementation of the coupling loops between the available hydro-
mechanical code DRAC4 and the new thermal-advective code T-DRAC in order to 
solve the THM coupled problem with large advection using a staggered strategy. 

• Theoretical and numerical formulation of governing equations for THM advective 
coupling in fractured porous media using the FEM and zero-thickness interface 
elements (fully-coupled). 

• Numerical implementation of the fully coupled formulation in the code DRAC4.  

• Parallelization of the FEM code DRAC4 in order to improve the computational 
capacities of the code. 

• Verification examples of the THM advective model and a 2-D application example of 
hydraulic fracture processes with temperature. 

 

1.3. Methodology 

The development of this thesis has been carried out using ingredients from different areas, 
such as geomechanics, numerical methods and fracture mechanics.  

 As mentioned in the previous section, the main objective of this thesis is the formulation 
and numerical implementation of a thermo-hydro-mechanical (THM) model with large 
advection in zero-thickness interface elements, with the aim of reproduce the initiation and 
propagation of fractures in a fractured porous media, in which the fluid induces the 
propagation of fractures and also transports heat. This model is finally applied to the 
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numerical modelling of hydraulic fracture problems where the fluid transports heat at high 
speed through the fractures or discontinuities. 

 Due to the strong mechanical behaviour of hydraulic fracture problems, some concepts of 
geomechanics are necessary to study the initiation and propagation of fractures in a porous 
medium. This requires the use of concepts of fracture mechanics which are incorporated into 
the zero-thickness interface constitutive law, while the behaviour of the porous continuum is 
assumed poro-elastic. Additionally, the interaction of fluid pressures and heat with the 
mechanical problem forces the introduction of a coupled thermo-hydro-mechanical formulation 
with large advection. 

 The use of numerical methods is necessary to solve the differential equations, in this case 
by means of the FEM. It is important to notice that the solution of the thermal advective 
equation cannot be properly solved using the traditional Galerkin method when the advection 
dominates over the conduction (large advection). This situation occurs mainly in fractures or 
discontinuities, which are numerically represented by zero-thickness interface elements and 
where the flow can travel at high speed. 

 This thesis has been developed within the MECMAT (Geotechnics and Mechanics of 
Materials) research group at UPC (Technical University of Catalonia) taking as starting point 
several works developed in the past within the group, in particular the following:  

a) the initial version of the mechanical FEM code DRAC (Prat, et al., 1993) that provides 
the possibility of evolutive geometry (construction/excavation) and the optimizations 
for iterative solvers and GiD post-processing done by Caballero (2005) and the HM 
coupling implementation in 3-D done by Garolera (2017).  

b) the hydro-mechanical (HM) formulation for double-nodded zero-thickness interface 
elements proposed in 2-D by Segura (2007) and its extension to 3-D presented by 
Garolera (2017), 

c) the elasto-plastic constitutive law for zero-thickness interface elements based on fracture 
mechanics originally proposed by Carol & Prat (1990) and Carol & Prat (1995) and 
subsequently modified by Carol, et al., (1997), Carol, et al., (2001) and López (1999) for 
2D analysis and extended to 3D by Caballero, et al., (2008). 

 
 The specific lines of work of this thesis are described in the following paragraphs: 

Literature review. The literature review of this thesis has been focused in the following 
aspects: 1) formulation of the hydro-mechanical coupling in zero-thickness interface elements; 
2) numerical solution of the differential thermal equation with large advection using different 
methodologies, such as the SUPG method for steady-state or different Characteristic-based 
methods for transients; 3) numerical methods related to parallel computing; and 4) the state 
of art of hydraulic fracture and the existing modelling of the problem using a hydro-
mechanical coupling with zero-thickness interface elements. 
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Numerical formulation. The numerical improvements of this thesis focus in the numerical 
formulation of the thermo-hydro-mechanical problem with large advection in zero-thickness 
interface elements. With the aim to reach stable solutions when the advection dominates the 
problem, different formulations have been considered, using finally the SUPG method to solve 
the steady-state and a new implicit approach based in a Characteristic procedure to solve the 
transients, which incorporates an 𝛼𝛼 parameter that allows to determine different temporal 
derivative positions of the advective volume. After stabilizing the thermal advective problem, 
the fully coupled THM has been formulated for zero-thickness interface elements and for 
saturated continuum media, incompressible fluid and constant fluid density. 

FEM code development. The FEM code development, made to provide the necessary tools 
for the numerical simulation, may be divided in the following four parts: 

1) The thermal equation has been implemented into the available code DRAC4, with no 
couplings, leading to the code T-DRAC.  

2) Then, a staggered strategy has been implemented to solve the coupled THM problem with 
advection, using the available code DRAC4 to solve the HM coupled problem and the new 
T-DRAC code to solve the thermal problem with large advection. 

3) Finally, the fully coupled THM formulation with advection has been implemented in the 
code DRAC4, using a Newton-Raphson iteration strategy to solve the system of equations. 

4) Additionally, in order to improve the efficiency of the calculations, the code DRAC4 has 
been parallelized, in a first phase the HM version of the code, in collaboration with other 
members of the group (Garolera, 2017), and in a second phase, its extension to the THM 
model with large advection. The changes have focused on the modification of the code 
structure, the optimal partitioning of the FEM mesh using the library METIS 
(METIS_WebPage, 2013), the implementation of the parallel library PETSc 
(PETSc_Software, 2018) –which provides several parallel solvers–, the implementation of 
the parallel reading and writing (input/output) operations using the library HDF5 
(The_HDF_Group, 2018), the adaptation of the HDF5 outputs to the format 
visualization of Paraview (Paraview_WebPage, 2018), the minimization of RAM use and 
the optimal distribution of tasks between processors. 

Verification of the model and simulations. Different verification examples have been 
performed in order to check the numerical formulation and the code implementation of the 
THM problem with large advection, for both zero-thickness interface elements and continuum 
medium. A real application case of a 2-D hydraulic fracture problem with temperature is also 
presented. Additionally, a parallelization performance analysis of the THM fully-coupled FEM 
code is presented. 
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1.4. Structure of the thesis 

This thesis consists of six chapters: this Introduction, three chapters dedicated to the 
development of the THM advective formulation, one chapter related to the verification of the 
formulations and numerical implementations and one chapter of conclusions and future work: 

• Chapter 2: Heat transfer with advection in continuum media. The main 
objective of this chapter is to represent with a numerical model the advection 
phenomena that may occur due to the hydraulic flow in continuum media and the heat 
transport with the flow. This chapter is divided in two sections: section 2.1 presents 
the basis of the thermal advective problem and its solution using the standard FEM 
Galerkin weighting, that allows solving the problem when the conduction dominates 
the problem (small advection, 𝑃𝑃𝑃𝑃 ≤ 1); section 2.2 provides a discussion of the 
numerical problems that arise in solving the large advection problem (𝑃𝑃𝑃𝑃 > 1) with 
standard FEM procedures and presents some numerical techniques which can be 
applied for its correct solution, both for steady-state and transient processes. Finally, 
some examples of verification are presented. 

• Chapter 3: Heat transfer with advection in zero-thickness interface 
elements. The main objective of this chapter is to represent with a numerical model 
the advection phenomena that occur due to the hydraulic flow present in the 
discontinuities and the heat transport with the flow. This chapter is divided in three 
sections: section 3.1 presents a brief review of different numerical approaches for the 
numerical FEM modeling of discontinuities, concluding in the use of double-nodded 
zero-thickness interface elements as the approach used in this thesis; section 3.2 
presents a classical FEM formulation to solve the conduction-advection problem for 
zero-thickness interface elements, only valid for small advection (𝑃𝑃𝑃𝑃 ≤ 1); section 3.3 
presents the solution of the FEM problem with stabilization methodologies in order to 
solve large advection problems (𝑃𝑃𝑃𝑃 > 1). Finally, some examples of verification are 
presented. 

• Chapter 4: Thermo-hydro-mechanical coupling with advection. The main 
objective of this chapter is to represent with a numerical model the THM advective 
problem for continuum medium and zero-thickness interface elements in the context of 
fractured and saturated porous media under the hypothesis of incompressible fluid. For 
this purpose, the stabilized thermal equations from chapters 2 and 3 and the existing 
hydro-mechanical model presented by Segura (2007) and Garolera (2017) are used as 
starting point. This chapter is divided in four sections: section 4.1 describes the main 
couplings between the three THM fields; section 4.2 describes the THM solution using 
a staggered coupled strategy; section 4.3 describes the fully coupled THM formulation 
with advection for continuum medium and interfaces and section 4.4 describes briefly 
the mechanical constitutive model for zero-thickness interface elements used in this 
thesis, based on fracture mechanics.  
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• Chapter 5: Model verification and practical applications. This chapter is 
divided in two sections: the first section presents the numerical verifications of the 
THM advective model developed in the previous chapters, with special interest in the 
analytical formulations used for the validation. The second section presents the 
application of the THM advective model to a hydraulic fracture problem with heat 
transport in 2-D. The numerical analysis has been performed using the parallel FEM 
code implemented for this purpose.  

• Chapter 6: Summary, conclusions and future work. This chapter presents the 
main conclusions of this doctoral thesis and some considerations for future research. 
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2. d 
 

Chapter 2 

Heat transfer with advection in continuous 
media 
 

 Heat transfer is the exchange of thermal energy between and within physical systems. 
Heat transfer always occurs from a region of high temperature to another region of lower 
temperature and changes the internal energy of both systems involved according to the First 
and Second Laws of Thermodynamics. 

 The fundamental modes of heat transfer are four: thermal conduction, thermal advection, 
thermal convection and thermal radiation: 

• Thermal conduction is a heat transfer process based on the direct contact between two 
bodies, without exchange of matter, in which the heat flows from one body with higher 
temperature to another one of lower temperature that is in contact with the first one.  

• Thermal advection is a heat transfer process based on the transport of heat from one 
place to another by the movement of a fluid, usually a liquid. From the viewpoint of the 
numerical analysis, this is the advective heat flow. 

• Thermal convection is a heat transfer process based on the transport of heat from one 
place to another by the movement of a fluid, usually a gas (e.g. air) and can be confused 
with the advection process. However, in this case, the fluid transports a quantity of heat 
that affects the boundary of a solid, and it is transferred to the same by conduction. This 
heat transfer process may be explained as a mix of the advection and the conduction. 
From the viewpoint of the numerical analysis, it is applied as a boundary condition of the 
thermal problem. 

• Thermal radiation is a heat transfer process that occurs through a vacuum medium 
(without the presence of matter), transferring energy by means of photons in 
electromagnetic waves. All matter with a temperature above absolute zero radiates heat, 
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irrespective of the ambient temperature. This transfer mode is governed by the Stephen-
Boltzmann Law. 

 This thesis is focused on the study of heat transfer by conduction and advection in 
geomechanical problems with discontinuities (fractures), and on the numerical simulation of 
those processes using the Finite Element Method. 

 This chapter is divided in two sections. Section 2.1 presents the basics of the thermal 
advective problem and its solution using the standard FEM Galerkin weighting, that allows 
the resolution of the problem when conduction dominates the problem (small advection). 
Section 2.2 provides a discussion of the numerical problems that arise in solving the large 
advection problem by the standard FEM procedures and presents some numerical techniques 
which can be applied for its correct resolution, both for steady-state and transients processes. 

 In geomechanics, it may be assumed that in the porous media (represented numerically 
by continuum elements) the fluid velocity is small enough to generally develop small 
advection. However, the discontinuities (Chapter 3) are generally preferential paths where the 
fluid flows at higher velocities and consequently the advection phenomena may be dominant. 
In both cases it is assumed saturated medium and incompressible fluid. 

 

2.1. Heat transfer with small advection 

 This section describes the numerical solution of the thermal problem for small advection 
in continuous media. It must be noted that this procedure leads to numerical instabilities 
when fluid velocities becomes large and the advection dominates the problem. 

 

Governing equations 

 According to Fourier’s Law, the amount of heat 𝑄𝑄𝑇𝑇  per unit of time that flows through a 
wall of area 𝐴𝐴 and thickness 𝑏𝑏 (Figure 2.1) with prescribed temperatures at the wall borders 
𝜙𝜙1 and 𝜙𝜙2 (𝜙𝜙1 > 𝜙𝜙2) can be written as:  

𝑄𝑄𝑇𝑇 = 𝑘𝑘𝑇𝑇

𝑏𝑏
𝐴𝐴(𝜙𝜙1 − 𝜙𝜙2) (2.1) 

where 𝑘𝑘𝑇𝑇  is the thermal conductivity, a property of the material that can be expressed in 
[𝐽𝐽/(𝑠𝑠 𝑚𝑚 𝐶𝐶o )]. Additionally, the amount of heat that flows through a unit surface per unit of 
time is known as the heat flow and can be written as: 

𝑞𝑞𝑇𝑇 = 𝑄𝑄𝑇𝑇

𝐴𝐴
= 𝑘𝑘𝑇𝑇

𝑏𝑏
(𝜙𝜙1 − 𝜙𝜙2) (2.2) 

 The linear discretized form of Eq. (2.2) does not exist in transient processes due in 
general to the fact that the heat flow varies locally and with time. The differential equations 
equivalent to Eqs. (2.1) and (2.2) are:  
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𝑑𝑑𝑑𝑑𝑇𝑇 = −𝑘𝑘𝑇𝑇  𝑑𝑑𝑑𝑑𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 (2.3) 

𝑞𝑞𝑇𝑇 = 𝑑𝑑𝑑𝑑𝑇𝑇

𝑑𝑑𝑑𝑑
= −𝑘𝑘𝑇𝑇  ∂𝜙𝜙

∂𝑛𝑛
 (2.4) 

where 𝑛𝑛 is the distance along the direction normal to the plane of a differential element of 
surface 𝑑𝑑𝑑𝑑 through which the heat flows. The minus sign of the equations means that the 
heat flows in the direction of decreasing temperatures.  

 
Figure 2.1: Heat conduction through a wall of thickness 𝑏𝑏 and area 𝐴𝐴. 

 

 In the general case of a 3-D continuum, described by a Cartesian coordinate system 
(𝑥𝑥, 𝑦𝑦, 𝑧𝑧), and assuming isotropic conductivity, the flux described by Eq. (2.4) mey be written 
as:  

𝑞𝑞𝑥𝑥
𝑇𝑇 = −𝑘𝑘𝑇𝑇  𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
,       𝑞𝑞𝑦𝑦

𝑇𝑇 = −𝑘𝑘𝑇𝑇  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

,      𝑞𝑞𝑧𝑧
𝑇𝑇 = −𝑘𝑘𝑇𝑇  𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 (2.5) 

and the matrix form can be written as:  

𝐪𝐪𝑇𝑇 = −𝑘𝑘𝑇𝑇  𝛁𝛁𝜙𝜙         with        𝐪𝐪𝑇𝑇 = �
𝑞𝑞𝑥𝑥
𝑞𝑞𝑦𝑦
𝑞𝑞𝑧𝑧

�         and        𝛁𝛁 =
⎣
⎢⎡

𝜕𝜕/𝜕𝜕𝜕𝜕
𝜕𝜕/𝜕𝜕𝜕𝜕
𝜕𝜕/𝜕𝜕𝜕𝜕⎦

⎥⎤ (2.6) 

 Equations (2.6) are only valid for thermally isotropic materials. For non-isotropic 
materials thermal conductivity varies with direction, and the equation (2.6) may be re-written 
as:  

𝐪𝐪𝑇𝑇 = −𝐃𝐃𝑇𝑇  𝛁𝛁𝜙𝜙 (2.7) 

where 𝐃𝐃𝑇𝑇  is the symmetric second order conductivity tensor (constitutive matrix of the 
conduction problem), which is represented by the following 3x3 matrix in a three-dimensional 
problem:  

𝐃𝐃𝑇𝑇 =

⎣
⎢
⎡

𝑘𝑘𝑥𝑥𝑥𝑥
𝑇𝑇 𝑘𝑘𝑥𝑥𝑥𝑥

𝑇𝑇 𝑘𝑘𝑥𝑥𝑥𝑥
𝑇𝑇

𝑘𝑘𝑦𝑦𝑦𝑦
𝑇𝑇 𝑘𝑘𝑦𝑦𝑦𝑦

𝑇𝑇 𝑘𝑘𝑦𝑦𝑦𝑦
𝑇𝑇

𝑘𝑘𝑧𝑧𝑧𝑧
𝑇𝑇 𝑘𝑘𝑧𝑧𝑧𝑧

𝑇𝑇 𝑘𝑘𝑧𝑧𝑧𝑧
𝑇𝑇 ⎦

⎥
⎤

 (2.8) 
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where 𝑘𝑘𝑥𝑥𝑥𝑥
𝑇𝑇 = 𝑘𝑘𝑦𝑦𝑦𝑦

𝑇𝑇 , 𝑘𝑘𝑥𝑥𝑥𝑥
𝑇𝑇 = 𝑘𝑘𝑧𝑧𝑧𝑧

𝑇𝑇  and 𝑘𝑘𝑦𝑦𝑦𝑦
𝑇𝑇 = 𝑘𝑘𝑧𝑧𝑧𝑧

𝑇𝑇 .  

 Besides Fourier equation (2.7), the other fundamental equation of heat flow is the heat 
continuity (or heat conservation) equation. In 2-D (Figure 2.2) this equation may be written 
as:  

𝑞𝑞𝑥𝑥
𝑇𝑇 𝑑𝑑𝑑𝑑 + 𝑞𝑞𝑦𝑦

𝑇𝑇 𝑑𝑑𝑑𝑑 − �𝑞𝑞𝑥𝑥
𝑇𝑇 + 𝜕𝜕𝑞𝑞𝑥𝑥

𝑇𝑇

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑�𝑑𝑑𝑑𝑑 − �𝑞𝑞𝑦𝑦

𝑇𝑇 +
𝜕𝜕𝑞𝑞𝑦𝑦

𝑇𝑇

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑�𝑑𝑑𝑑𝑑 + 𝑄𝑄𝑇𝑇 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝜌𝜌𝜌𝜌 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (2.9) 

This equation may be interpreted physically as the heat entering less the heat leaving must be 
equal to the accumulated heat; 𝜌𝜌 is the density [𝑘𝑘𝑘𝑘/𝑚𝑚3] and 𝑐𝑐 is the thermal capacity 
[𝐽𝐽/(𝑘𝑘𝑘𝑘 𝐶𝐶 o )] of the material. Simplification of the equation and generalization to three 
dimensions leads to: 

𝑄𝑄(𝑇𝑇) − 𝜕𝜕𝑞𝑞𝑥𝑥
𝑇𝑇

𝜕𝜕𝜕𝜕
−

𝜕𝜕𝑞𝑞𝑦𝑦
𝑇𝑇

𝜕𝜕𝜕𝜕
− 𝜕𝜕𝑞𝑞𝑧𝑧

𝑇𝑇

𝜕𝜕𝜕𝜕
= 𝜌𝜌𝜌𝜌 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 (2.10) 

where 𝑄𝑄(𝑇𝑇) is a source term that does not appear in most applications. 

 
Figure 2.2: Balance of heat flow in a two-dimensional domain 

 If the solid body is porous and the fluid circulates within the pores, another type of heat 
transfer may take place consisting of the pore fluid transporting heat from one point to 
another within the body due to its movement. This phenomenon is known as advection. 

 If the pore fluid velocity vector (Darcy's velocity) is 𝐯𝐯 = [𝑣𝑣𝑥𝑥 𝑣𝑣𝑦𝑦 𝑣𝑣𝑧𝑧]⊤, the heat flow 
vector defined by the equation of conduction in the transient problem (2.7) can be rewritten 
as: 

𝐪𝐪𝑇𝑇 = −𝐃𝐃𝑇𝑇 𝛁𝛁𝜙𝜙 +  𝜌𝜌𝜌𝜌𝜌𝜌𝐯𝐯 (2.11) 

 The field velocity 𝐯𝐯 is usually obtained as the result of the solution of a pore fluid flow 
problem. Considering that 𝐃𝐃𝑇𝑇  is expressed in principal directions (off-diagonal terms equal to 
zero), the Cartesian components of Eq. (2.11) becomes: 

𝑞𝑞𝑥𝑥
𝑇𝑇 = −𝑘𝑘𝑥𝑥

𝑇𝑇 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜌𝜌𝜌𝜌𝜌𝜌𝑣𝑣𝑥𝑥  ;    𝑞𝑞𝑦𝑦
𝑇𝑇 = −𝑘𝑘𝑦𝑦

𝑇𝑇 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜌𝜌𝜌𝜌𝜌𝜌𝑣𝑣𝑦𝑦  ;    𝑞𝑞𝑧𝑧
𝑇𝑇 = −𝑘𝑘𝑧𝑧

𝑇𝑇 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜌𝜌𝜌𝜌𝜌𝜌𝑣𝑣𝑧𝑧  (2.12) 
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Substituting Eqs. (2.12) in (2.10) results in the following: 

𝑄𝑄𝑇𝑇 + 𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑘𝑘𝑥𝑥
𝑇𝑇 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� + 𝜕𝜕

𝜕𝜕𝜕𝜕
�𝑘𝑘𝑧𝑧

𝑇𝑇 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

� + 𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑘𝑘𝑧𝑧
𝑇𝑇 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� = 𝜌𝜌𝜌𝜌 �𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝑣𝑣𝑥𝑥

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣𝑦𝑦
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣𝑧𝑧
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

� (2.13) 

 Generalizing the above equation to three dimensions and writing it in matrix form the 
transient heat conduction-advection differential equation is obtained: 

  𝜌𝜌𝜌𝜌 �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ [𝐯𝐯]⊤ 𝛁𝛁𝜙𝜙� − [𝛁𝛁]⊤ 𝐃𝐃𝑇𝑇  𝛁𝛁𝜙𝜙 − 𝑄𝑄𝑇𝑇 = 0         in       Ω (2.14) 

where 𝐃𝐃𝑇𝑇  is a diagonal matrix if the solid is thermally isotropic and [   ]⊤ denotes the 
transposed of a vector or a matrix (not to be confused with super index T which stands for 
“thermal”). 

 Note that the transient heat conduction differential equation is a particular case of Eq. 
(2.14), for 𝐯𝐯 = 0: 

𝜌𝜌𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

− [𝛁𝛁]⊤ 𝐃𝐃𝑇𝑇  𝛁𝛁𝜙𝜙 − 𝑄𝑄𝑇𝑇 = 0         in       Ω (2.15) 

 In the same way, from Eq. (2.15) and leaving out the transient terms, it is possible to 
obtain the steady-state heat conduction differential equation: 

[𝛁𝛁]⊤ 𝐃𝐃𝑇𝑇  𝛁𝛁𝜙𝜙 + 𝑄𝑄𝑇𝑇 = 0         in       Ω (2.16) 

 And the steady-state heat conduction-advection differential equation is also obtained from 
Eq. (2.14) by leaving out the transient terms: 

𝜌𝜌𝜌𝜌 [𝐯𝐯]⊤ 𝛁𝛁𝜙𝜙 − [𝛁𝛁]⊤ 𝐃𝐃𝑇𝑇  𝛁𝛁𝜙𝜙 − 𝑄𝑄𝑇𝑇 = 0         in       Ω (2.17) 

 

Boundary conditions 

 There are two basic kinds of boundary conditions applicable to the transient conduction-
advection differential equation. The first one is the Dirichlet boundary condition, in which the 
temperature values are imposed on the part of a boundary Γϕ: 

𝜙𝜙 = 𝜙𝜙(̅𝑥𝑥, 𝑦𝑦, 𝑥𝑥, 𝑡𝑡)      on      Γϕ (2.18) 

 The second one is the Neumann boundary condition, in which the normal heat flow is 
prescribed on the remaining part of the boundary Γq: 

𝑞𝑞𝑛𝑛
 𝑇𝑇 = 𝑞𝑞𝑛̅𝑛

 𝑇𝑇 (𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡)      on      Γq (2.19) 

where 𝑞𝑞𝑛𝑛
 𝑇𝑇  is the flow normal to the boundary and 𝑞𝑞𝑛̅𝑛 is the prescribed value of the flow. The 

flow 𝑞𝑞𝑛𝑛
 𝑇𝑇  is calculated as the normal projection of the flow vector 𝐪𝐪𝑇𝑇  on the boundary Γq. 

Using Eq. (2.11) this condition becomes: 
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𝑞𝑞𝑛𝑛
 𝑇𝑇 = [𝐧𝐧]⊤𝐪𝐪𝑇𝑇 = −[𝐧𝐧]⊤𝐃𝐃𝑇𝑇  𝛁𝛁𝜙𝜙 +  𝜌𝜌𝜌𝜌𝜌𝜌𝑣𝑣𝑛𝑛 (2.20) 

where 𝑣𝑣𝑛𝑛 = [𝐧𝐧]⊤𝐯𝐯 is the normal velocity at the boundary 𝛤𝛤𝑞𝑞. Using Eqs. (2.19) and (2.20) the 
same equation may be finally written as:  

− 𝜌𝜌𝜌𝜌𝜌𝜌𝑣𝑣𝑛𝑛 + [𝐧𝐧]⊤𝐃𝐃𝑇𝑇  𝛁𝛁𝜙𝜙 + 𝑞𝑞𝑛̅𝑛
 𝑇𝑇 = 0      on      Γq  (2.21) 

The term 𝑞𝑞𝑛̅𝑛 may be a known normal heat flow applied to the boundary: 

𝑞𝑞𝑛̅𝑛
 𝑇𝑇 = 𝑞𝑞 ̅𝑇𝑇    (2.22) 

 Additionally to the two basic types of boundary conditions, sometimes it may be 
necessary to consider a third type, which may be regarded as a generalization of the Neumann 
condition, and it is known as the convective boundary condition. This is applicable when a 
convective flow exists in the contact between the boundary of a solid and a fluid that 
surrounds it. The heat being transferred by convection in the boundary between both is 
defined with the Newton’s Law of Cooling: 

𝑑𝑑𝑄𝑄𝑇𝑇

𝑑𝑑𝑑𝑑
= 𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝐵𝐵𝐵𝐵  𝐴𝐴𝑠𝑠(𝜙𝜙 − 𝜙𝜙𝑒𝑒𝑒𝑒𝑒𝑒) (2.23) 

where 𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐵𝐵𝐵𝐵  is the convection coefficient for the boundary condition (𝐽𝐽/(𝑠𝑠 𝑚𝑚2 𝐶𝐶 o ), 𝐴𝐴𝑠𝑠 is the 

area of the solid in contact with the fluid, 𝜙𝜙 is the temperature of the solid surface and 𝜙𝜙𝑒𝑒𝑒𝑒𝑒𝑒 is 
the temperature of the fluid that is in contact with the solid (usually air). From the viewpoint 
of the numerical analysis, the effect of the convection is treated as a mixed-type boundary 
condition and may be written as: 

𝑞𝑞𝑛𝑛
𝑇𝑇 = 𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝐵𝐵𝐵𝐵  (𝜙𝜙 − 𝜙𝜙𝑒𝑒𝑒𝑒𝑒𝑒) (2.24) 

 Substituting Eqs. (2.22) and (2.24) in Eq. (2.20) results in the generalized Neumann 
boundary condition of the conduction-advection heat transfer problem: 

− 𝜌𝜌𝜌𝜌𝜌𝜌𝑣𝑣𝑛𝑛 + [𝐧𝐧]⊤𝐃𝐃𝑇𝑇  𝛁𝛁𝜙𝜙 + 𝑞𝑞 ̅
 𝑇𝑇 + 𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝐵𝐵𝐵𝐵  (𝜙𝜙 − 𝜙𝜙𝑒𝑒𝑒𝑒𝑒𝑒)  = 0       𝑜𝑜𝑜𝑜     Γq   (2.25) 

where 𝜌𝜌𝜌𝜌𝜌𝜌𝑣𝑣𝑛𝑛 does not appear in pure conduction problems (𝑣𝑣𝑛𝑛 = 0).  

 Finally, the initial temperature condition for the transient problem can be written as: 

𝜙𝜙(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡0) = 𝜙𝜙0(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)        in        Ω (2.26) 

 

Spatial Discretization 

 Spatial discretization of Eq. (2.14) over the domain Ω by using Finite Elements is 
accomplished assuming that the temperature inside each finite element is written as:  

𝜙𝜙 ≅ 𝜙𝜙̂ = � 𝑁𝑁 
(𝑎𝑎) 𝜙𝜙 

(𝑎𝑎)
𝑛𝑛

𝑎𝑎=1
= [𝐍𝐍]⊤𝛟𝛟e  (2.27) 
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where 𝜙𝜙 ̂is the approximate value of the temperature at a given point inside the element, 𝜙𝜙 
(𝑎𝑎) 

is the value of 𝜙𝜙 ̂at node (𝑎𝑎), 𝑁𝑁 
(𝑎𝑎) is the shape function of node (𝑎𝑎) and 𝑛𝑛 is the number of 

nodes of the element. This notation with node indices within parenthesis and located as a 
super index, is borrowed from Zienkiewicz & Taylor (2000b)  in order to avoid confusion with 
other indices necessary in the formulation.  

 Eq. (2.14) represents the strong form of the governing differential equations of the 
problem and Eqs. (2.18) and (2.25) the boundary conditions. Replacing the approximation 𝜙𝜙 ̂
in Eqs. (2.14) and (2.25), leads to:  

−𝜌𝜌𝜌𝜌 𝜕𝜕𝜙𝜙 ̂
𝜕𝜕𝜕𝜕

− 𝜌𝜌𝜌𝜌 [𝐯𝐯]⊤𝛁𝛁𝜙𝜙̂+ [𝛁𝛁]⊤ 𝐃𝐃𝑇𝑇  𝛁𝛁𝜙𝜙̂+ 𝑄𝑄 = 𝑟𝑟Ω       on       Ω   (2.28) 

− 𝜌𝜌𝜌𝜌𝜙𝜙𝑣̂𝑣𝑛𝑛 + [𝐧𝐧]⊤𝐃𝐃𝑇𝑇  𝛁𝛁𝜙𝜙̂+ 𝑞𝑞 ̅𝑇𝑇 + 𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐵𝐵𝐵𝐵  �𝜙𝜙 ̂− 𝜙𝜙𝑒𝑒𝑒𝑒𝑒𝑒� = 𝑟𝑟Γ       on       Γq  (2.29) 

where 𝑟𝑟𝛺𝛺 and 𝑟𝑟𝛤𝛤  are the residuals from the finite element approximation. For the Dirichlet 
boundary conditions (2.18), it is assumed that the condition is satisfied exactly at prescribed 
nodes (𝜙𝜙 ̂ = 𝜙𝜙).  

 Using the weighted residuals method to minimize 𝑟𝑟𝛺𝛺 and 𝑟𝑟𝛤𝛤 , the following integral 
expression is obtained: 

� 𝑤𝑤
 

Ω
𝑟𝑟𝛺𝛺 dΩ + � 𝑤𝑤����

 

Γq

𝑟𝑟𝛤𝛤  dΓ = 0      (2.30) 

where 𝑤𝑤 and 𝑤𝑤���� are weight functions. Substituting Eqs. (2.28) and (2.29) in (2.30), the weak 
form of the differential equation is obtained: 

� 𝑤𝑤�−𝜌𝜌𝜌𝜌 𝜕𝜕𝜙𝜙 ̂
𝜕𝜕𝜕𝜕

− 𝜌𝜌𝜌𝜌 [𝐯𝐯]⊤ 𝛁𝛁𝜙𝜙̂+ [𝛁𝛁]⊤ 𝐃𝐃𝑇𝑇  𝛁𝛁𝜙𝜙̂+ 𝑄𝑄𝑇𝑇 �
 

Ω
dΩ

+ � 𝑤𝑤���� �− 𝜌𝜌𝜌𝜌𝜙𝜙𝑣̂𝑣𝑛𝑛 + [𝐧𝐧]⊤𝐃𝐃𝑇𝑇  𝛁𝛁𝜙𝜙̂+ 𝑞𝑞𝑇̅𝑇 + 𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐵𝐵𝐵𝐵  �𝜙𝜙 ̂− 𝜙𝜙𝑒𝑒𝑒𝑒𝑒𝑒��

 

Γq

dΓ = 0       
 (2.31) 

 Assuming 𝑤𝑤���� = −𝑤𝑤 on the boundary and using the standard Galerkin weighing, in which 
the weight functions are made equal consecutively to each of the nodal interpolation functions 
(𝑤𝑤 = 𝑁𝑁(1), 𝑁𝑁(2), …), the previous integral form is transformed into: 

� 𝑁𝑁(𝑎𝑎) �−𝜌𝜌𝜌𝜌 𝜕𝜕𝜙𝜙 ̂
𝜕𝜕𝜕𝜕

− 𝜌𝜌𝜌𝜌 [𝐯𝐯]⊤ 𝛁𝛁𝜙𝜙̂+ [𝛁𝛁]⊤ 𝐃𝐃𝑇𝑇  𝛁𝛁𝜙𝜙̂+ 𝑄𝑄𝑇𝑇 �
 

Ω
dΩ

− � 𝑁𝑁(𝑎𝑎) �− 𝜌𝜌𝜌𝜌𝜙𝜙𝑣̂𝑣𝑛𝑛 + [𝐧𝐧]⊤𝐃𝐃𝑇𝑇  𝛁𝛁𝜙𝜙̂+ 𝑞𝑞𝑇̅𝑇 + 𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐵𝐵𝐵𝐵  �𝜙𝜙 ̂− 𝜙𝜙𝑒𝑒𝑒𝑒𝑒𝑒��

 

Γq

dΓ =

= 0       

 (2.32) 

 In order to integrate by parts the first term of the above equation, the Divergence 
Theorem needs to be written in the form: 
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� 𝜔𝜔(𝛁𝛁 · 𝛙𝛙) dΩ
 

Ω
= � 𝛙𝛙 · 𝛁𝛁𝜔𝜔 dΩ

 

Ω
+ � 𝜔𝜔 𝛙𝛙 · 𝐧𝐧 dΓ

 

Γ
 (2.33) 

 The application of this theorem to the first term of Eq. (2.32) leads to: 

� 𝑁𝑁(𝑎𝑎) �[𝛁𝛁]⊤ 𝐃𝐃𝑇𝑇  𝛁𝛁𝜙𝜙�̂
 

Ω
dΩ

= −� ��𝛁𝛁𝑁𝑁(𝑎𝑎)�⊤ 𝐃𝐃𝑇𝑇  𝛁𝛁𝜙𝜙�̂
 

Ω
dΩ + � 𝑁𝑁(𝑎𝑎) �[𝐧𝐧]⊤𝐃𝐃𝑇𝑇  𝛁𝛁𝜙𝜙�̂

 

Γ
dΓ    

(2.34) 

Substituting Eq. (2.34) in (2.32) and noticing that Γ = Γq + Γϕ, results in: 

𝜌𝜌𝜌𝜌 � 𝑁𝑁(𝑎𝑎)  𝜕𝜕𝜙𝜙 ̂
𝜕𝜕𝜕𝜕

 

Ω
dΩ + � [𝛁𝛁𝑁𝑁𝑖𝑖]⊤ 𝐃𝐃𝑇𝑇  𝛁𝛁𝜙𝜙̂

 

Ω
dΩ + 𝜌𝜌𝜌𝜌 � 𝑁𝑁(𝑎𝑎) [𝐯𝐯]⊤𝛁𝛁𝜙𝜙̂

 

Ω
dΩ

+ � 𝑁𝑁(𝑎𝑎)𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐵𝐵𝐵𝐵  𝜙𝜙 ̂

 

Γq

dΓ − 𝜌𝜌𝜌𝜌 � 𝑁𝑁(𝑎𝑎)𝑣𝑣𝑛𝑛𝜙𝜙 ̂
 

Γq

dΓ

= � 𝑁𝑁(𝑎𝑎)𝑄𝑄𝑇𝑇
 

Ω
dΩ − � 𝑁𝑁(𝑎𝑎)(𝑞𝑞 ̅𝑇𝑇 + 𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝐵𝐵𝐵𝐵  𝜙𝜙𝑒𝑒𝑒𝑒𝑒𝑒)
 

Γq

dΓ

− � 𝑁𝑁(𝑎𝑎)[𝐧𝐧]⊤ 𝐃𝐃𝑇𝑇  𝛁𝛁𝜙𝜙̂
 

Γϕ

dΓ 

(2.35) 

where ∫ 𝑁𝑁(𝑎𝑎) [𝐧𝐧]⊤𝐃𝐃𝑇𝑇  𝛁𝛁𝜙𝜙̂ 
Γϕ

dΓ is the normal flow on the boundary Γϕ where the temperature 

is prescribed.  

 Substituting the nodal approximation of Eq. (2.27) in (2.35) the following algebraic 
system of equations is obtained: 

𝐂𝐂 𝛟̇𝛟 + 𝐊𝐊 𝛟𝛟 = 𝐟𝐟 (2.36) 

where 

𝛟𝛟 = �𝜙𝜙(1), 𝜙𝜙(2),…𝜙𝜙(𝑛𝑛)�⊤       and       𝛟̇𝛟 = �𝜕𝜕𝜙𝜙(1) 
𝜕𝜕𝜕𝜕

, 𝜕𝜕𝜙𝜙(2) 
𝜕𝜕𝜕𝜕

, … , 𝜕𝜕𝜙𝜙(𝑛𝑛) 
𝜕𝜕𝜕𝜕

�
⊤

 (2.37) 

are the nodal vector of temperatures and the nodal vector of temperatures rates at time t, 𝐊𝐊 
is the global stiffness matrix, 𝐂𝐂 is the capacity matrix and 𝐟𝐟  the vector of equivalent flow, 
which are obtained by the assembly of the contribution of each element of the mesh. 
Therefore the stiffness matrix 𝐊𝐊e and the force vector 𝐟𝐟e of each element must be calculated 
first. These are defined by: 

𝐂𝐂e =
⎣
⎢
⎡

𝐶𝐶(11) ⋯ 𝐶𝐶(1𝑛𝑛)

⋮
𝑠𝑠𝑠𝑠𝑠𝑠 𝐶𝐶(𝑛𝑛𝑛𝑛)⎦

⎥
⎤ (2.38) 

𝐊𝐊e =
⎣
⎢
⎡

𝐾𝐾(11) ⋯ 𝐾𝐾(1𝑛𝑛)

⋮
𝑠𝑠𝑠𝑠𝑠𝑠 𝐾𝐾(𝑛𝑛𝑛𝑛)⎦

⎥
⎤ (2.39) 
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𝐟𝐟e = �𝑓𝑓(1), 𝑓𝑓(2),… , 𝑓𝑓(𝑛𝑛)�⊤ (2.40) 

where 

𝐶𝐶(𝑎𝑎,𝑏𝑏) = 𝜌𝜌𝜌𝜌 �  𝑁𝑁(𝑎𝑎) 𝑁𝑁(𝑏𝑏)
 

Ωe

dΩ  (2.41) 

𝐾𝐾(𝑎𝑎,𝑏𝑏) = � �𝜌𝜌𝜌𝜌 𝑁𝑁(𝑎𝑎) [𝐯𝐯]⊤ 𝛁𝛁𝑁𝑁(𝑏𝑏) + [𝛁𝛁]⊤𝑁𝑁(𝑎𝑎) 𝐃𝐃𝑇𝑇  𝛁𝛁𝑁𝑁(𝑏𝑏)�
 

Ωe

dΩe − 𝜌𝜌𝜌𝜌 � 𝑁𝑁(𝑎𝑎)𝑣𝑣𝑛𝑛

 

Γq
 

𝑁𝑁(𝑏𝑏)dΓ

+ 𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐵𝐵𝐵𝐵 � 𝑁𝑁(𝑎𝑎)𝑁𝑁(𝑏𝑏)

 

Γq
 

dΓ   
(2.42) 

𝑓𝑓(𝑎𝑎) = � 𝑁𝑁(𝑎𝑎)𝑄𝑄𝑇𝑇 
 

Ωe

dΩ − � 𝑁𝑁(𝑎𝑎) 𝑞𝑞 ̅𝑇𝑇
 

Γq
 

dΓ − � 𝑁𝑁(𝑎𝑎)(𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐵𝐵𝐵𝐵  𝜙𝜙𝑒𝑒𝑒𝑒𝑒𝑒)

 

Γq
 

dΓ − 𝑞𝑞𝑛𝑛𝑖𝑖
  (2.43) 

 The term 𝑞𝑞 ̅𝑇𝑇  appears only if the elements have some edge with an imposed flow on the 
boundary Γq and the terms with 𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝐵𝐵𝐵𝐵  coefficients appear only if the elements have some edge 
with an imposed convective boundary condition.  

 The term 𝑞𝑞𝑛𝑛𝑖𝑖
 = ∫ 𝑁𝑁(𝑎𝑎) [𝐧𝐧]⊤ 𝐃𝐃𝑇𝑇  𝛁𝛁𝑁𝑁(𝑏𝑏) dΓ  

Γϕ
 in Eq. (2.43) represents the node (𝑎𝑎) 

component of the heat flow that leaves the element across boundary Γϕ. This flow is 
calculated after obtaining the temperature values 𝜙𝜙 ̂ in the entire domain, and has the 
meaning of the “reaction” flow vector on the nodes of the element where the variable is 
prescribed. 

Also, the temperature gradient vector of the element can be written as: 

𝛁𝛁𝜙𝜙 = 𝛁𝛁([𝐍𝐍]⊤𝛟𝛟e) = [𝛁𝛁𝛁𝛁]⊤ 𝛟𝛟e = [𝐁𝐁]⊤𝛟𝛟e (2.44) 

where 𝐁𝐁 is the gradient matrix of the element: 

𝐁𝐁 = 𝛁𝛁𝛁𝛁 = �∇𝑁𝑁(1),∇𝑁𝑁(2), … , ∇𝑁𝑁(𝑛𝑛)� = �𝐁𝐁(1),𝐁𝐁(2),… , 𝐁𝐁(𝑛𝑛)� (2.45) 

 

Time Discretization 

 The second step in the transient problem formulation is to perform the time integration 
of the system of equations (2.36) using the finite difference method (FDM) assuming a linear 
evolution of the nodal temperatures between times 𝑛𝑛 and 𝑛𝑛 + 1 (Figure 2.3). 

 

Figure 2.3: FDM Scheme: selection of an intermediate point in the interval [𝑡𝑡𝑛𝑛, 𝑡𝑡𝑛𝑛+1] 
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From Figure 2.3 the following is obtained: 

𝝓𝝓 = 𝝓𝝓𝑛𝑛+𝜃𝜃 = 𝝓𝝓𝑛𝑛 + 𝜃𝜃𝜃𝜃𝝓𝝓 (2.46) 

𝝓𝝓̇ = 𝛥𝛥𝝓𝝓
𝛥𝛥𝛥𝛥

=
𝝓𝝓𝑛𝑛+𝜃𝜃 − 𝝓𝝓𝑛𝑛

𝛥𝛥𝛥𝛥
 (2.47) 

 Assuming that the spatial discretization equations (2.35) are satisfied at 𝑡𝑡𝑛𝑛+𝜃𝜃, replacing 
the corresponding expressions of 𝛟𝛟 and 𝛟̇𝛟 into (2.36), and grouping terms appropriately, leads 
to the linear matrix equation for a generic time increment: 

� 1
∆𝑡𝑡

𝐂𝐂 + 𝜃𝜃 𝐊𝐊� Δ𝛟𝛟e,𝑛𝑛+1 = −𝐊𝐊 𝛟𝛟e,𝑛𝑛 + 𝐟𝐟 = 0 (2.48) 

 In the previous equations, parameter 𝜃𝜃 defines the intermediate point 𝑡𝑡𝑛𝑛+𝜃𝜃 = 𝑡𝑡𝑛𝑛 + 𝜃𝜃∆𝑡𝑡 
within the interval [𝑡𝑡𝑛𝑛, 𝑡𝑡𝑛𝑛+1], where the differential equation is satisfied in time. 

 It is known (Zienkiewicz & Taylor, 2000c) that the scheme is unconditionally stable when 
𝜃𝜃 ≥ 1/2. If 0 ≤ 𝜃𝜃 < 1/2 the scheme is conditionally stable and requires that:  

∆𝑡𝑡 < 2
(1 − 2𝜃𝜃)𝜔𝜔𝑖𝑖

          with          𝜔𝜔𝑖𝑖 = 𝐾𝐾𝑖𝑖
𝐶𝐶𝑖𝑖

 (2.49) 

 Depending on the chosen value of 𝜃𝜃, a different name for the time discretization method 
is adopted (Table 2.1). It is also known (Zienkiewicz & Taylor, 2000c) that the best scheme to 
approximate the solution is reached with 𝜃𝜃 = 2/3. 

 Eqs. (2.50)-(2.60) presents a summary of the final FEM transient thermal problem for 
small advection in continuous media. Some particular cases of interest, as the steady-state 
problem or the pure conduction thermal problem are also presented. 

 
Table 2.1: Values of 𝜃𝜃 for the time discretization of the problem 

Value of 𝜽𝜽 Name 
𝜽𝜽 = 𝟎𝟎 Explicit Euler (“Forward”) scheme 

𝜽𝜽 = 𝟏𝟏/𝟐𝟐 Central finite difference (Crank-Nicholson) 
𝜽𝜽 = 𝟏𝟏 Implicit Euler (“Backward”) scheme 

𝜽𝜽 = 𝟐𝟐/𝟑𝟑 Galerkin 
 

 It must be noted that the use of the standard Galerkin weighting method in the spatial 
discretization only leads to stable solutions for small advection problems. For this reason, 
when the advection dominates the problem, it is necessary to use a more appropriate 
numerical methods that does not result in oscillatory solutions. This methodology is developed 
in Section 2.2. 
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Summary 1 - Thermal equation with small advection in continuum media. 

� 1
∆𝑡𝑡

𝐂𝐂 + 𝜃𝜃 �𝐊𝐊 + 𝐊𝐊𝐜𝐜 + 𝐊𝐊𝐚𝐚𝐚𝐚𝐚𝐚
𝐁𝐁𝐁𝐁 + 𝐊𝐊𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜

𝐁𝐁𝐁𝐁 ��Δ𝛟𝛟𝑛𝑛+1

= −�𝐊𝐊 + 𝐊𝐊𝐜𝐜 + 𝐊𝐊𝐚𝐚𝐚𝐚𝐚𝐚
𝐁𝐁𝐁𝐁 + 𝐊𝐊𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜

𝐁𝐁𝐁𝐁 �𝛟𝛟𝑛𝑛 + 𝐟𝐟e + 𝐟𝐟𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜
𝐁𝐁𝐁𝐁  

(2.50) 

where 𝛟𝛟 is the element nodal temperature vector (unknown), 𝐂𝐂 is the thermal capacity 
matrix, 𝐊𝐊 is the thermal conduction matrix, 𝐊𝐊𝐜𝐜 is the thermal advective matrix, 𝐊𝐊𝐚𝐚𝐚𝐚𝐚𝐚

𝐁𝐁𝐁𝐁  is the 
boundary advective matrix, 𝐟𝐟e is the element force vector and 𝐊𝐊𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜

𝐁𝐁𝐁𝐁  and 𝐟𝐟𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜
𝐁𝐁𝐁𝐁  are the 

matrix and the vector resulting of the convective boundary condition, which only appears 
when this kind of boundary conditions are applied. 

𝐂𝐂 = � 𝜌𝜌𝜌𝜌 [𝐍𝐍]⊤ 𝐍𝐍
 

Ω
 dΩ  (2.51) 

𝐊𝐊 = � [𝐁𝐁]⊤ 𝐃𝐃𝑇𝑇  𝐁𝐁
 

Ω
 dΩ (2.52) 

𝐊𝐊𝐜𝐜 = � 𝜌𝜌𝜌𝜌 [𝐍𝐍]⊤ 𝐯𝐯 𝐁𝐁
 

Ω
 dΩ (2.53) 

𝐊𝐊𝐚𝐚𝐚𝐚𝐚𝐚
𝐁𝐁𝐁𝐁 = −� 𝜌𝜌𝜌𝜌 [𝐍𝐍]⊤ 𝑣𝑣𝑛𝑛 𝐍𝐍 

 

Γq

dΓ (2.54) 

𝐟𝐟e = � [𝐍𝐍]⊤ 𝑄𝑄𝑇𝑇
 

Ω
 𝑑𝑑𝑑𝑑 − � [𝐍𝐍]⊤ 𝐪𝐪̅𝑇𝑇

 

Γq

 dΓ (2.55) 

𝐊𝐊𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜
𝐁𝐁𝐁𝐁 = 𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝐵𝐵𝐵𝐵 � [𝐍𝐍]⊤ 𝐍𝐍
 

Γq

 dΓ (2.56) 

𝐟𝐟𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜
𝐁𝐁𝐁𝐁 = −𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝐵𝐵𝐵𝐵 � [𝐍𝐍]⊤𝜙𝜙𝑒𝑒𝑒𝑒𝑒𝑒

 

Γq

 dΓ (2.57) 

 From Eq. (2.50) and leaving out the transient terms, the steady-state thermal equation 
with advection can be written as: 

�𝐊𝐊 + 𝐊𝐊𝐮𝐮 + 𝐊𝐊𝐚𝐚𝐚𝐚𝐚𝐚
𝐁𝐁𝐁𝐁 � 𝛟𝛟 = 𝐟𝐟e (2.58) 

 From Eq. (2.50) and leaving out the advective terms (v = 0), the transient thermal 
conduction equation is obtained as follows: 

� 1
∆𝑡𝑡

𝐂𝐂 + 𝜃𝜃 (𝐊𝐊 + 𝐊𝐊𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜
𝐁𝐁𝐁𝐁 )� 𝛟𝛟𝑛𝑛+1 = 𝐟𝐟e + 𝐟𝐟𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜

𝐁𝐁𝐁𝐁  (2.59) 

 Finally, the steady-state thermal conduction equation is obtained leaving out the 
transient terms from the above equation: 

𝐊𝐊 𝛟𝛟 = 𝐟𝐟e (2.60) 
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2.2. Heat transfer with large advection 

 It is well known that the standard Galerkin weighting in FEM is very well suited for 
diffusion-dominated problems, but it performs badly when transport effects prevail. For this 
reason, the main objective of this section is to represent with a numerical model the advection 
phenomena that occur due to the hydraulic flow present in the medium and that transports 
heat with the flow, that is, when the advection phenomenon dominates over the conduction 
(large advection). 

 This section is divided in three subsections. The first subsection provides a discussion of 
the numerical problems that arise in solving the large advective problem by the standard 
FEM (Galerkin, Section 2.1) and introduces the concept of Péclet number, that allows to 
determine when a problem (or an element of the FEM mesh) is advection-dominated or not. 
The second and third subsections present different numerical techniques that can be applied 
for its correct resolution, both for steady-state and transient problems. 

 

2.2.1. Numerical instabilities and Péclet number 

 When the fluid velocities are low, the formulation and implementation of the additional 
term in the equations can be made by traditional FEM methods (Galerkin weighting, Section 
2.2). However, when the fluid velocities are high enough, the advective term requires a special 
treatment. Determination of whether the fluid velocities are high or low is generally based on 
the so-called Péclet number. The Péclet number (𝑃𝑃𝑃𝑃) is a non-dimensional number that 
relates the velocity of advection of a flow and the rate of heat conduction/diffusion in that 
flow: 

𝑃𝑃𝑃𝑃 = advective transport rate
diffusive transport rate

 (2.61) 

 In order to show the challenges of the numerical modelling of the advection-diffusion 
equation, considering first the one-dimensional steady-state problem. The governing equation 
can be written from Eq. (2.48) as: 

𝑣𝑣 𝑑𝑑𝜙𝜙
𝑑𝑑𝑑𝑑

− 𝑑𝑑
𝑑𝑑𝑑𝑑

�𝑘𝑘𝑇𝑇  𝑑𝑑𝜙𝜙
𝑑𝑑𝑑𝑑

� − 𝑄𝑄𝑇𝑇 = 0   (2.62) 

where 𝜙𝜙 is the unknown nodal variable (e.g. the temperature), 𝑣𝑣 is a known velocity field  
(e.g. as a result of the hydraulic flow problem), 𝑘𝑘𝑇𝑇  is the diffusion coefficient and 𝑄𝑄𝑇𝑇  
represents the source or reaction term (𝑣𝑣, 𝑘𝑘𝑇𝑇  and 𝑄𝑄𝑇𝑇  are assumed to be constants and 𝜙𝜙 a 
scalar variable). 

 After discretizing a domain of length 𝐿𝐿 into 𝑛𝑛 elements of equal size ℎ, and applying the 
standard Galerkin weighting method (weight functions equal consecutively to each of the 
interpolation shape functions 𝑤𝑤 = 𝑁𝑁(1),𝑁𝑁(2), … ), the following equation is obtained for 
central nodes (not at the boundaries): 
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(−𝑃𝑃𝑃𝑃 − 1)𝜙𝜙(̂𝑎𝑎−1) + 2𝜙𝜙(̂𝑎𝑎) + (𝑃𝑃𝑃𝑃 − 1)𝜙𝜙(̂𝑎𝑎+1) − 𝑄𝑄𝑇𝑇 ℎ2

𝑘𝑘𝑇𝑇 = 0           𝑎𝑎 = 2, 𝑛𝑛 − 1 (2.63) 

where 𝑛𝑛 is the number of nodes and 𝑃𝑃𝑃𝑃 is the Péclet number, which is defined as: 

𝑃𝑃𝑃𝑃 = 𝜌𝜌𝜌𝜌 𝑣𝑣 ℎ
2𝑘𝑘𝑇𝑇    (2.64) 

 Eq. (2.63) is identical to the usual central finite difference approximation and can be 
solved leading to the solution of the problem 𝜙𝜙(̂𝑎𝑎). However, as the Péclet number increases 
the accuracy deteriorates and for 𝑃𝑃𝑃𝑃 → ∞, when only advective terms are of importance, the 
solution is purely oscillatory and bears no relation to the underlying problem, as shown in the 
next simple example (where 𝑄𝑄𝑇𝑇 = 0). 

 

Simple academic example: oscillatory results in 1D 

 A simple academic example in 1-D is presented in order to demonstrate that the standard 
Galerkin weighting leads to oscillatory results when 𝑃𝑃𝑃𝑃 > 1. The geometry (Figure 2.4) 
consists in a horizontal rod element divided in 8 segments of equal length. The boundary 
conditions are: prescribed temperature to 0℃ at the left-hand side node of the rod, prescribed 
temperature to 80℃ at the right-hand side node of the rod and a constant velocity from left 
to right. With the only variation of the velocity magnitude four results are obtained with 
different Péclet numbers (Figure 2.5), where it is observed that the solutions begins to 
oscillate when 𝑃𝑃𝑃𝑃 > 1. 

 

 

Figure 2.4: Geometry of the domain and boundary conditions. 

 

 Summarizing, the solution presented in section 2.2 for the conduction-advection heat 
transfer problem is only stable when 𝑃𝑃𝑃𝑃 ≤ 1. When the advection component of the thermal 
flow dominates over the diffusion thermal flow (𝑃𝑃𝑃𝑃 > 1), the resolution of the problem 
requires a special numerical treatment. This condition must be fulfilled for all the elements of 
the FEM mesh, since the Péclet number involves the size of each FE and the velocity of the 
flow that travels through it.  
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Figure 2.5: Solutions of the simple academic example for different velocities using the traditional Galerkin weighting 
method in FEM. Oscillations appears when 𝑃𝑃𝑃𝑃 > 1. 

 

2.2.2. Steady-state large advection problem 

 Since the Péclet number (2.64) governs the advection-diffusion equation, it is possible to 
solve this problem with the standard Galerkin weighting by refining the mesh until reaching a 
length h of the element small enough so that the Péclet number is equal or smaller than the 
unity. However, this procedure increase the number of elements of the mesh, and therefore the 
number of degrees of freedom and the size of the system of equation that must to be solved, 
making this procedure computationally impracticable for most applications. 

 For this reason, different methods were proposed to accurately solve the advection-
diffusion problem without requiring such highly refined meshes as the Galerkin method does. 
This section presents the most common techniques to deal with the numerical problems 
presented in the previous section for the steady-state problems. 

 The most common method used in order to stabilize the diffusion-advection problem is 
the Streamline Upwind Petrov-Galerkin (SUPG) method, which is based on the modification 
of the stiffness matrix by using modified weighting functions (𝑤𝑤 ≠ 𝑁𝑁(1), 𝑁𝑁(2), … ) in order to 
give more weight to the information of the nodes located upwind. The first upwind approach 
was proposed by Zienkiewicz, et al. (1976) and was used by Christie, et al. (1976) and 
Zienkiewicz, et al. (1977), expanding the method for quadratic elements in Heinrich & 
Zienkiewicz (1977). Then Hughes & Brooks (1979) proposed a new weighting function, leading 
to the Streamline Upwind (SU) method. Due to the poor accuracy of this method, Brooks & 
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Hughes (1982) further developed the Streamline Upwind Petrov-Galerkin (SUPG) technique, 
with an optimal weight function, which was further justified in Johnson, et al. (1984). In 
parallel, a Variational Principle was introduced by Guymon, et al. (1970) and improved by 
Hughes & Atkinson (1980). Later, in addition, the Galerkin Least-Squares (GLS) method was 
presented by Hughes, et al. (1989), the Bubble Functions Method by Biaocchi, et al. (1993), 
the Discontinuous Galerkin methods by Cockburn, et al. (2000) and the Finite Increment 
Calculus (FIC) Method by Oñate (1998). Additionally, many other works have been published 
in order to improve the SUPG method, such as Hughes, et al. (1987), Hughes & Tezduyar 
(1984), Hughes & Mallet (1986), Codina, et al. (1992) or Codina (1992), among others. 
 

Full Upwind Solution in 1-D 

 Following the developments of Section 2.2.1 and in order to obtain the full upwind 
solution, Eqs. (2.63) are transformed changing the central finite difference form to a lateral 
finite difference form, obtaining the full upwind solution as follows:   

(−2𝑃𝑃𝑃𝑃 − 1)𝜙𝜙(̃𝑎𝑎−1) + (2 + 2𝑃𝑃𝑃𝑃)𝜙𝜙(̃𝑎𝑎) + 𝜙𝜙(̃𝑎𝑎+1) − 𝑄𝑄𝑇𝑇 ℎ2

𝑘𝑘𝑇𝑇 = 0   (2.65) 

With this upwind difference approximation, realistic (though not always accurate) solutions 
can be obtained through the whole range of Péclet numbers. However, exact nodal solutions 
are only obtained for pure advection (𝑃𝑃𝑃𝑃 = ∞), in a similar way as the Galerkin finite 
element form gives exact nodal solutions for pure diffusion (Zienkiewicz & Taylor, 2000c). 
 

Streamline Upwind Petrov-Galerkin (SUPG) in 1-D 

 This method is introduced in order to improve the above approximations and stabilize 
the oscillatory solutions, the Petrov-Galerkin method (SUPG) is presented. The method is 
based on the modification of the stiffness matrix by using modified weighting functions such 
that instead of directly equal to 𝑁𝑁(1), 𝑁𝑁(2),… now 𝑤𝑤 is defined consecutively as 

 𝑤𝑤 = 𝑁𝑁(𝑎𝑎) + 𝛼𝛼𝑤𝑤 
∗ (2.66) 

where 𝑤𝑤 
∗ represent a set of functions, for which a convenient form is the following 

discontinuous function in 1-D:  

 𝑤𝑤 
∗ = ℎ

2
𝑑𝑑𝑑𝑑(𝑎𝑎)

𝑑𝑑𝑑𝑑
(sign 𝑣𝑣) (2.67) 

where ℎ is the length of the element in the direction of flow. 

 With the above weighting functions the approximation equivalent to that of Eq. (2.63) 
becomes 

[−𝑃𝑃𝑃𝑃(𝛼𝛼 + 1) − 1]𝜙𝜙(̃𝑎𝑎−1) + [2 + 2𝛼𝛼𝛼𝛼𝛼𝛼]𝜙𝜙(̃𝑎𝑎) + [−𝑃𝑃𝑃𝑃(𝛼𝛼 − 1) − 1]𝜙𝜙(̃𝑎𝑎+1) − 𝑄𝑄𝑇𝑇ℎ2

𝑘𝑘𝑇𝑇 = 0 (2.68) 
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where for 𝛼𝛼 = 0 the standard Galerkin approximation (2.63) is obtained, and for 𝛼𝛼 = 1 the 
full upwind solution is obtained, each giving exact nodal results for pure diffusion and for pure 
advection respectively.  

 

 

 

 

Figure 2.6: Results obtained in a one-dimensional case for a different Péclet numbers (kT, v, h constants). Comparison 
between the results obtained using a standard Galerkin discretization (left) and the results obtained with the SUPG 

method (right), which stabilizes the solution. 

 

 In order to obtain exact nodal values for any 𝑃𝑃𝑃𝑃 value, an optimal value of 𝛼𝛼 (𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜) must 
be used (Zienkiewicz & Taylor, 2000c): 

 |𝛼𝛼| = 𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜 = coth|𝑃𝑃𝑃𝑃| − 1
|𝑃𝑃𝑃𝑃|

 (2.69) 
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 Finally, in order to test the SUPG formulation in 1-D, the simple academic example of 
Section 2.2.1 (Figure 2.5) is repeated. Figure 2.6 shows the results using an standard Galerkin 
discretization in comparison with the results using the SUPG in 1-D. The SUPG method 
stabilizes the solution and leads to exact node results in 1-D. 
 

Balancing Equation Method in 1-D 

 An alternative method to reach the same solution is the Balancing Equation Method, in 
which an additional or fictitious diffusion coefficient, 𝑘𝑘𝑏𝑏

𝑇𝑇 , is used:  

𝑘𝑘𝑏𝑏
𝑇𝑇 = 1

2
𝛼𝛼𝛼𝛼ℎ   (2.70) 

 This artificial diffusion is added to the ordinary diffusion of Eq. (2.62), and is solved 
using the standard Galerkin method. This method is simpler than the Petrov-Galerkin 
method, especially in 2-D and 3-D problems. However, this procedure is only valid for 
constant values of 𝑄𝑄𝑇𝑇 . Otherwise it leads to inaccurate results similar to those obtained for 
𝛼𝛼 = 0. 
 

Streamline Upwind Petrov-Galerkin Method (SUPG) in 3-D 

 The last stabilization method presented is the 3-D extension of the Streamline Upwind 
Petrov-Galerkin method (SUPG). This method has been widely tested and it is the method 
finally used in the developments and calculations of this thesis.  

 Expanding de SUPG method to 3-D one may write the 1-D weighting function (2.67) in 
indicial notation as: 

𝑤𝑤 = 𝑁𝑁(𝑎𝑎) +
𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜 ℎ𝑐𝑐𝑐𝑐𝑐𝑐

2
𝑣𝑣𝑖𝑖
|𝐯𝐯|

𝜕𝜕𝜕𝜕(𝑎𝑎)

𝜕𝜕𝜕𝜕𝑖𝑖
 (2.71) 

where 𝑁𝑁(𝑎𝑎) are the usual shape functions, 𝑣𝑣𝑖𝑖 are the velocities, ℎ𝑐𝑐𝑐𝑐𝑐𝑐 is the characteristic length 
of the element (length of the element in the direction of the flow) and 𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜 is defined by 
(2.69) in order the obtain exact nodal values for any Péclet value. In this expression, the 
Péclet number is defined as follows for thermal problems: 

𝑃𝑃𝑃𝑃 = 𝜌𝜌𝜌𝜌 𝑣𝑣 ℎ𝑐𝑐𝑐𝑐𝑐𝑐
2𝑘𝑘𝑇𝑇    (2.72) 

where 𝑘𝑘𝑇𝑇  is the thermal conductivity, 𝜌𝜌 is the density, 𝑐𝑐 is the specific heat and the value of 
ℎ𝑐𝑐𝑐𝑐𝑐𝑐 can be approximated by the following expressions: 

2 − D: ℎ𝑐𝑐𝑐𝑐𝑐𝑐 =  
√

𝐴𝐴2          ;        3 − D: ℎ𝑐𝑐𝑐𝑐𝑐𝑐 = 
√

𝑉𝑉3    (2.73) 
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where 𝐴𝐴 and 𝑉𝑉  are the area (2-D) and the volume (3-D). This approximation can lead to 
incorrect solutions of the steady-state problem when one dimension of the element is much 
larger than the others, as shown in Figure 2.7.a. In this case it is very important to calculate 
the maximum size of the element in the direction of the velocity vector, as shown in Figure 
2.7.b. As the Péclet number depends strongly on ℎ𝑐𝑐𝑐𝑐𝑐𝑐, the solution will also do. An example 
confirming this fact is presented at the end of this section. 

 As presented in Section 2, the weak form for the conduction-advection steady-state 
problem is defined as follows:  

� 𝑤𝑤 �−𝜌𝜌𝜌𝜌 [𝐯𝐯]⊤𝛁𝛁𝜙𝜙̂+ [𝛁𝛁]⊤ 𝐃𝐃𝑇𝑇  𝛁𝛁𝜙𝜙̂+ 𝑄𝑄𝑇𝑇 �
 

Ω
dΩ + � 𝑤𝑤���� �[𝐧𝐧]⊤𝐃𝐃𝑇𝑇  𝛁𝛁𝜙𝜙̂+ 𝑞𝑞 ̅𝑇𝑇 �

 

Γq

dΓ = 0 (2.74) 

 Assuming 𝑤𝑤���� = −𝑤𝑤 , applying the Theorem of the Divergence to the first term of the 
equation, applying the spatial discretization defined by Eq. (2.27) and using the Petrov-
Galerkin weighing of Eq. (2.73), the following system of equations is obtained: 
 

Summary 2 - Steady-state thermal equation for large advection in continuum 
media. 

(𝐊𝐊 + 𝐊𝐊𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒) 𝛟𝛟 = (𝐟𝐟e + 𝐟𝐟𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒) (2.75) 

  where 𝛟𝛟 is the element nodal temperature vector (unknown), 𝐊𝐊 is the element thermal 
conduction-advection matrix, 𝐟𝐟e is the element force vector and 𝐊𝐊𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 and 𝐟𝐟𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 are the 
element thermal stabilization matrix and the element force stabilization vector from the 
SUPG method, respectively: 

𝐊𝐊 = � (𝜌𝜌𝜌𝜌 𝐍𝐍 [𝐯𝐯]⊤ 𝐁𝐁 + [𝐁𝐁]⊤ 𝐃𝐃𝑇𝑇  𝐁𝐁)
 

Ω
dΩ  (2.76) 

𝐊𝐊𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒
 = � �𝜌𝜌𝜌𝜌 � 

𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜 ℎ𝑐𝑐𝑐𝑐𝑐𝑐

2|𝐯𝐯|
 [𝐯𝐯]⊤ 𝐁𝐁� [𝐯𝐯]⊤ 𝐁𝐁

 

Ω

+ �
𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜 ℎ𝑐𝑐𝑐𝑐𝑐𝑐

2|𝐯𝐯|
 [𝐯𝐯]⊤ 𝛁𝛁𝛁𝛁�𝐃𝐃𝑇𝑇  𝐁𝐁�dΩ        

(2.77) 

𝐟𝐟e =  � [𝐍𝐍]⊤ 𝑄𝑄𝑇𝑇  dΩ 
 

Ω
− � 𝐍𝐍 𝐪𝐪̅𝑇𝑇

 

Γq
 

 𝐝𝐝𝐝𝐝 − 𝐪𝐪𝐧𝐧
𝑇𝑇            (2.78) 

𝐟𝐟𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒
 = � ��

𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜 ℎ𝑐𝑐𝑐𝑐𝑐𝑐

2|𝐯𝐯|
 [𝐯𝐯]⊤ 𝐁𝐁� 𝑄𝑄𝑇𝑇 � dΩ 

 

Ω
  (2.79) 

 

 

 The second term of Eq. (2.77) is cancelled for linear elements. Finally, the global matrices 
and vectors of the system of equations (2.75) are obtained by assembling of the contribution 
of each element of the mesh.  
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 It must to be noted that the SUPG method is only applicable for steady-state problems, 
not for transient ones. 

               
(a)       (b) 

Figure 2.7: (a) Finite continuum element with the flow direction and the correct ℎ𝑐𝑐𝑐𝑐𝑐𝑐. Taking ℎ𝑐𝑐𝑐𝑐𝑐𝑐 =  
√

𝐴𝐴2   leads to a 
very different (and wrong) ℎ𝑐𝑐𝑐𝑐𝑐𝑐 value. (b) Determination of ℎ𝑐𝑐𝑐𝑐𝑐𝑐 as the maximum size of the element in the direction of 

the velocity vector for a 2-D problem. 

 

Simple academic example 1: continuum medium in 2-D using the SUPG 
method 

 The objective of this example is to compare the solutions between the standard Galerkin 
FEM method and the SUPG and verify that the last one provides stable solutions when 
𝑃𝑃𝑃𝑃 > 1 in a 2-D simple example. 

 The geometry of this example consists of three horizontal layers composed of two 
different materials in a continuous medium (Figure 2.8.a). In order to observe the heat 
transport, a known and constant velocity field from left to right (Figure 2.8.a) is imposed in 
the intermediate layer, as a preferential conduction layer throughout the continuous medium. 

 The initial state of the thermal problem is shown in Figure 2.8.b, which is the result of a 
steady-state problem where two values of temperature have been imposed on the left and 
right hand side of the domain, obtaining a linear distribution of temperatures for 𝑡𝑡 = 0 
(Figure 2.8.b). The velocity field is imposed on the described initial state.  

 In the first calculations (Figure 2.9) the standard Galerkin weighting is used for a small 
advection problem (Péclet numbers of 0.3 and 0.9, respectively). In both cases the SUPG 
method leads to sable solutions.  

 Finally, the velocities are increased until reaching 𝑃𝑃𝑃𝑃 > 1. Figure 2.10.a shows that the 
solution becomes oscillatory using the standard Galerkin weighting. However, using the new 
numerical solution (Petrov-Galerkin weighting, SUPG method), the solution is stabilized, as 
shown in Figure 2.10.b. In both cases the characteristic length of the element ℎ𝑐𝑐𝑐𝑐𝑐𝑐 is taken as 
the length of the element in the direction of the velocities. 
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(a)          (b) 

Figure 2.8: (a) Imposed velocities in the intermediate layer and (b) steady-state temperature distribution at t=0 (after 
velocity application). 

 

 

 

     
(a)          (b) 

Figure 2.9: (a) Temperature distribution due to the applied velocities and Pe = 0.3. (b) Temperature distribution due to 
the applied velocities when the Péclet number increases but Pe < 1 (Pe = 0.9). 

 

 

 As explained, the Petrov-Galerkin method involves the use of a characteristic length of 
the element (ℎ𝑐𝑐𝑐𝑐𝑐𝑐), which is important for accuracy. In this example, taking ℎ𝑐𝑐𝑐𝑐𝑐𝑐 =

√
𝐴𝐴 for 

each element, even using the SUPG weighting, the solution becomes also unstable, as shown 
in Figure 2.11.  
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 (a)          (b) 

Figure 2.10: (a) Oscillatory distribution of temperatures using the standard Galerkin weighting when Pe = 7.2 in the 
intermediate layer (the rest of the domain Pe = 0). (b) Correct distribution of temperatures using the SUPG method for 

the same problem. Graphs referred to the horizontal symmetry axis of the figures. 

 

  

    
Figure 2.11: Distribution of temperatures using Petrov-Galerkin weighting when 𝑃𝑃𝑃𝑃 > 1, but using a bad value for ℎ𝑐𝑐𝑐𝑐𝑐𝑐. 

The solution becomes unstable even using the SUPG method. 
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2.2.3. Transient large advection problem 

 As in the steady-state conduction-advection problem (Section 2.2.2), the numerical 
solution of the conduction-advection transient problem using the FEM and the standard 
Galerkin weighting is not stable when 𝑃𝑃𝑃𝑃 > 1. For this reason, when the advection dominates 
the problem, it is necessary to solve the problem using a more appropriate numerical method 
that does not result in oscillatory solutions. 

 In order to solve the transient problem, the first obvious approach would be to use the 
same techniques described in Section 2.2.2 for the steady-state problem. In this context, many 
authors have used the SUPG method, such as Yu & Heinrich (1986), Yu & Heinrich (1987), 
Johnson (1986), de Sampaio, et al. (1993), Cardle (1995), Idelsohn, et al. (1996), Codina 
(1998) or Maji & Biswas (1999), among others, but the non-symmetric mass matrices were 
difficult to use for any explicit method (Zienkiewicz & Taylor, 2000c). Also the Galerkin least 
squares (GLS) procedure has been used by Nguen & Reynen (1984), Carey & Jiang (1988) or 
Jiang & Carey (1988), among others, but the extension of this method to the transient 
problem involves the use of space-time finite elements (Zienkiewicz & Taylor, 2000c), which 
are computationally expensive and are not applicable to explicit schemes. 

 Since the application of the SUPG and GLS methods is not appropriate to solve the 
advective transient problem, other methodologies have been developed. The first and most 
significant ones are known as Characteristic Methods. The first characteristic method was 
proposed by Adey & Brebbia (1974) and it is known as the "Mesh Updating method". Then 
Morton (1985) proposed the generalization of the same, leading to the so-called 
Characteristic-Galerkin methods. Many variants of this method have been developed 
successfully and described by Ewing & Russell (1981), Douglas & Russell (1982), Pironneau 
(1982), Bercovier, et al. (1982), Bercovier, et al. (1983), Lin & Morton (1997) or Pironneau et 
al. (1992), among others. However, due to its computational complexity, a simple explicit 
Characteristic-Galerkin Method was first published by Zienkiewicz, et al. (1984) and then 
discussed by others, such as Zienkiewicz, et al. (1984b), Löhner, et al. (1985), Zienkiewicz, et 
al. (1985) and Zienkiewicz, et al. (1986). Later, the Taylor-Galerkin method was introduced 
by Donea (1984), which is equivalent to the Finite Difference Lax-Wendroff Method (Hirsch, 
1989) and gives, for scalar variables, an identical solution to the Characteristic-Galerkin 
Method. These methods also introduce a kind of artificial diffusion, as does the SUPG method 
(Zienkiewicz & Taylor, 2000c). 

 In order to solve the large heat advection transient problem, this thesis focuses in the use 
of the Characteristic-Galerkin procedures, which are more intuitive methods and fully justifies 
the numerical procedures used. Thus, starting from the simple explicit characteristic method, 
an extension to a new Implicit Characteristic Galerkin method is proposed (𝛼𝛼-ICGM). 

 It is important to mention some other methods to solve the transient advective problem 
that appear in the literature, such as the Galerkin Least-Squares method (GLS) presented by 
Hughes, et al. (1989); the Bubble Functions method described by Brezzi, et al. (1992) and 
Franca & Farhat (1994); the Finite Volume method (Idelsohn & Oñate, 1994); the Subgride 



2.2. Heat transfer with large advection 

31 

 

Scale Models (SGS) described by Hughes (1995) and Codina (1998); the Finite Increment 
Calculus method (FIC) introduced by Oñate (1998); the Mesh Free Finite Point Methods 
described by Oñate & Idelsohn (1988), Oñate, et al. (1996) and Oñate, et al. (1996b); the 
High Resolution SUPG method described by Nadukandi, et al. (2010) and Nadukandi, et al. 
(2012) or the more recent techniques which applies the Back and Forth Error Compensation 
and Correction algorithm (BFECC) as described in Costarelli, et al. (2013). 

 

2.2.3.1. Introduction to the Characteristic Methods 

 From Eq. (2.14) it is possible to write the differential equation for the conduction-
advection transient problem in indicial notation as follows 

𝜌𝜌𝜌𝜌 �𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕

+ 𝑣𝑣𝑖𝑖
𝜕𝜕𝜙𝜙
𝜕𝜕𝑥𝑥𝑖𝑖

� − 𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

�𝑘𝑘𝑖𝑖𝑖𝑖
𝑇𝑇  𝜕𝜕𝜙𝜙

𝜕𝜕𝑥𝑥𝑗𝑗
� − 𝑄𝑄𝑇𝑇 (𝑥𝑥𝑖𝑖) = 0     (2.80) 

 In order to simplify the numerical resolution and determine the main behaviour patterns 
of this equation, a change of the independent variable 𝑥𝑥 to 𝑥𝑥′ is proposed. Considering a 
moving coordinate system 𝑥𝑥′ defined by 

𝑑𝑑𝑑𝑑′𝑖𝑖 = 𝑑𝑑𝑑𝑑𝑖𝑖 − 𝑣𝑣𝑖𝑖𝑑𝑑𝑑𝑑   (2.81) 

and noting that 𝜙𝜙 = 𝜙𝜙(𝑥𝑥′
𝑖𝑖, 𝑡𝑡), the material derivative of the temporal derivative of Eq. (2.80) 

can be written as 

𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕

�
𝑥𝑥≡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

=   𝜕𝜕𝜙𝜙
𝜕𝜕𝑥𝑥′𝑖𝑖

�
𝑡𝑡≡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

· 𝜕𝜕𝑥𝑥′𝑖𝑖
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕

�
𝑥𝑥′≡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

· 𝜕𝜕𝑡𝑡
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝜙𝜙
𝜕𝜕𝑥𝑥′𝑖𝑖

· 𝜕𝜕𝑥𝑥′𝑖𝑖
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕

�
𝑥𝑥′≡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

=  −𝑣𝑣𝑖𝑖 · 𝜕𝜕𝜙𝜙
𝜕𝜕𝑥𝑥′𝑖𝑖

+ 𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕

�
𝑥𝑥′≡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

 
(2.82) 

 Performing a change of the independent variable 𝑥𝑥𝑖𝑖 to 𝑥𝑥′
𝑖𝑖 on (2.80), the differential 

equation becomes simply:  

𝜌𝜌𝜌𝜌 𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕

− 𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖′

�𝑘𝑘𝑖𝑖𝑖𝑖
𝑇𝑇  𝜕𝜕𝜙𝜙

𝜕𝜕𝑥𝑥𝑖𝑖′
� − 𝑄𝑄𝑇𝑇 (𝑥𝑥𝑖𝑖

′) = 0   (2.83) 

 In the previous development has been assumed that the partial derivatives of 𝑥𝑥𝑖𝑖 becomes 
partials of 𝑥𝑥′

𝑖𝑖 because are partial derivatives for 𝑡𝑡 ≡ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

𝑑𝑑𝑑𝑑′𝑖𝑖 = 𝑑𝑑𝑑𝑑𝑖𝑖 − 𝑣𝑣𝑖𝑖𝑑𝑑𝑑𝑑  
𝑡𝑡≡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
�������� 𝑑𝑑𝑑𝑑′𝑖𝑖 = 𝑑𝑑𝑑𝑑𝑖𝑖  (2.84) 

 Equation. (2.83) has the same form as the traditional diffusion equation but formulated 
on the moving coordinate system 𝑥𝑥′, where the advection term has disappeared. This type of 
equations can be solved using the standard discretization procedures with the standard 
Galerkin spatial approximation, as usual for the pure diffusion problems. 
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 The coordinate system of Eq. (2.81) describes the so-called characteristic directions of the 
problem, and it is a moving coordinate system that depends on the velocity of the fluid (or 
particle) in a time increment, which means the distance travelled by the particle in a ∆𝑡𝑡. This 
concept leads to the so-called Characteristic-based methods (Zienkiewicz & Taylor, 2000c).  

 Considering a pure advection problem and leaving out the source terms of equation 
(2.83), the following expression results: 

𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕

= 0  (2.85) 

from which it is possible to deduce that 𝜙𝜙(𝑥𝑥′) = 𝜙𝜙(𝑥𝑥 − 𝑣𝑣∆𝑡𝑡) is constant along a characteristic. 
Indeed, this is the equation of a wave propagating with a velocity 𝑣𝑣 in the 𝑥𝑥-direction (Figure 
2.12) and shows the wave nature of the equations. In the case 𝑘𝑘𝑇𝑇 ≠ 0, the result is similar to 
a wave that attenuates with the distance travelled. 
 

 
Figure 2.12: Solution for no diffusion and constant velocity v, similar to the propagation of a single undamped wave 

(Zienkiewicz & Taylor, 2000c). 

 

 These methods assume the study of the pure advective problem in a Lagrangian manner, 
studying the fluid from its updated position (with a movement defined by the velocities 𝑣𝑣𝑖𝑖 
and the chosen ∆𝑡𝑡), while the diffusion problem is studied in an eulerian manner (along 𝑥𝑥′). 
Thus, the characteristic based methods are known as quasi-Lagrangian methods.  

 The following sections present some methodologies derived from this concepts, as the 
Mesh Updating Method or the Galerkin-Characteristics Methods. 

 

2.2.3.2. Mesh Updating and Interpolation Method 

 The mesh updating method was the first Characteristic-based method, introduced by 
Adey & Brebbia (1974). 

 As mentioned in the previous section, if the spatial coordinate is advective in the manner 
described by Eq. (2.81), then the advective term of Eq. (2.80) disappears and the resulting 
problem is a standard diffusion problem (2.83), which may be solved with the standard 
discretization procedures presented in Section 2.1. 
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 The most obvious use of this concept in the FEM context is to update the position of the 
mesh points in a Lagrangian manner. For any 𝑖𝑖-node of the mesh and considering 𝑣𝑣 as a 
constant in the considered time-step, the updated position of the node may be written as: 

𝑥𝑥𝑖𝑖
𝑛𝑛+1 = 𝑥𝑥𝑖𝑖

𝑛𝑛 + 𝑣𝑣𝑖𝑖 ∆𝑡𝑡 (2.86) 

 Figure 2.13.a shows a mesh update for the one-dimensional problem of Eq. (2.83) during 
an interval ∆𝑡𝑡. On the "updated" mesh only the pure diffusion problem needs to be solved. 

 

      
 (a)         (b) 

Figure 2.13: Mesh updating and interpolation; (a) forward, (b) backward (Zienkiewicz & Taylor, 2000c). 

 

 The process of continuously updating the mesh and solving the diffusion problem on the 
new mesh is computationally not viable. When applied to 2D or 3D meshes, very distorted 
elements may result and difficulties will occur on the boundaries of the domain. Consequently, 
it seems obvious that after completion of a single time step, a return to the original mesh 
should be made by interpolating from the updated values to the original mesh positions 
(Figure 2.13.a). 

 In this context, the problem is split in two parts, with the diffusion and advection 
changes occurring separately. This idea can be generalized and gives the basis of the so-called 
Characteristic-Galerkin methods, as it is developed in the next section. 

 

2.2.3.3. Characteristic-Galerkin Method 

 This method was first proposed by Morton (1985) as a generalization of the Mesh 
Updating Method, in which the study of the advection and the diffusion is carried out 
separately. Splitting the advection-diffusion equation in two parts such that: 

𝜙𝜙 = 𝜙𝜙∗ + 𝜙𝜙∗∗ (2.87) 

and 
𝜕𝜕𝜙𝜙∗

𝜕𝜕𝜕𝜕
+ 𝑣𝑣 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 

= 0 (2.88) 
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is a purely advective system, while: 

𝜕𝜕𝜙𝜙∗∗

𝜕𝜕𝜕𝜕
− 𝜕𝜕

𝜕𝜕𝑥𝑥 
�𝑘𝑘𝑇𝑇 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥 
� − 𝑄𝑄𝑇𝑇 = 0 (2.89) 

represents the diffusion. Both 𝜙𝜙∗ and 𝜙𝜙∗∗ are approximated by:  

𝜙𝜙∗ ≈ 𝜙𝜙∗̂ = [𝐍𝐍]⊤𝛟𝛟∗                      𝜙𝜙∗∗ ≈ 𝜙𝜙∗̂∗ = [𝐍𝐍]⊤𝛟𝛟∗∗ (2.90) 

and in a single step 𝑡𝑡𝑛𝑛 to 𝑡𝑡𝑛𝑛+1 = 𝑡𝑡𝑛𝑛 + ∆𝑡𝑡 it is assumed that the initial conditions are: 

𝜙𝜙∗(𝑡𝑡𝑛𝑛) = 0             𝜙𝜙∗∗(𝑡𝑡𝑛𝑛) = 𝜙𝜙𝑛𝑛 (2.91) 

 Standard Galerkin discretization of the diffusion Eq. (2.89) allows to determine 𝛟𝛟∗∗𝑛𝑛+1 on 
the fixed mesh by solving the equation 

� 1
∆𝑡𝑡

𝐌𝐌 + 𝜃𝜃 𝐊𝐊�∆𝛟𝛟∗∗𝑛𝑛+1 = −𝐊𝐊𝛟𝛟𝑛𝑛 + 𝑓𝑓 (2.92) 

 In solving the advective problem of Eq. (2.88) it is assumed that 𝜙𝜙∗ remains unchanged 
along the characteristic direction. However, the initial value of 𝜙𝜙∗𝑛𝑛 interpolated by standard 
shape functions (2.90) at time 𝑛𝑛 becomes shifted and distorted, as shown in Figure 2.14. The 
new value is given by: 

𝜙𝜙∗𝑛𝑛+1 = [𝐍𝐍(𝑦𝑦)]⊤𝛟𝛟∗𝑛𝑛                  𝑦𝑦 = 𝑥𝑥 + 𝑣𝑣∆𝑡𝑡 (2.93) 

 Because it is necessary to approximate 𝜙𝜙∗𝑛𝑛+1 by standard shape functions, a projection 
for smoothing of these values may be written as  

� [𝐍𝐍]⊤([𝐍𝐍]⊤𝛟𝛟∗𝑛𝑛+1 − [𝐍𝐍]⊤(𝑦𝑦)𝛟𝛟∗𝑛𝑛)
 

Ω
𝑑𝑑𝑑𝑑 = 0 (2.94) 

obtaining 

𝐌𝐌𝛟𝛟�∗𝑛𝑛+1 = � ([𝐍𝐍]⊤𝐍𝐍(𝑦𝑦)𝑑𝑑𝑑𝑑)
 

Ω
𝛟𝛟∗𝑛𝑛 (2.95) 

where 𝐍𝐍 = 𝐍𝐍(𝑥𝑥) and 𝐌𝐌 = ∫ [𝐍𝐍]⊤𝐍𝐍 𝑑𝑑𝑑𝑑 
Ω

.  

 

 
Figure 2.14: Distortion of advected shape functions (Zienkiewicz & Taylor, 2000c). 
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2.2.3.4. A simple explicit Characteristic Method 

 The methods proposed in the previous sections are computationally complex and time-
consuming. Thus, a simple alternative method was proposed by Zienkiewicz, et al. (1984). 
This simple explicit method avoids the difficulties of the previous methods but is conditionally 
stable.  

 
Figure 2.15: Basis of the characteristic-Galerkin method with an explicit scheme, that shows the distance travelled by the 

particle (𝛿𝛿) from time n to time n+1 (Zienkiewicz & Taylor, 2000c). 

 

 The first step of this procedure consists on the time discretization of Eq. (2.83) along the 
characteristic, using the FDM: 

𝜌𝜌𝜌𝜌 1
Δ𝑡𝑡

�𝜙𝜙𝑛𝑛+1|𝑥𝑥 − 𝜙𝜙𝑛𝑛|(𝑥𝑥−𝛿𝛿)�

≈ 𝜃𝜃 � 𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑘𝑘𝑇𝑇  𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕

� − 𝑄𝑄𝑇𝑇 �
𝑛𝑛+1

�
𝑥𝑥

+ (1 − 𝜃𝜃) � 𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑘𝑘𝑇𝑇  𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕

� − 𝑄𝑄𝑇𝑇 �
𝑛𝑛
�
(𝑥𝑥−𝛿𝛿)

  
(2.96) 

where 𝜃𝜃 is equal to zero for explicit schemes and between zero and one for implicit schemes. 
The advective term disappears from the equation because it is evaluated along the 
characteristics. The boundary terms are the same as defined by equation (2.25). 

 In order to obtain the solution value at time 𝑛𝑛 + 1 it is necessary to evaluate the 
equations at time 𝑛𝑛 but at the position 𝑥𝑥 − 𝛿𝛿 (position at where the particle that is currently 
at 𝑥𝑥 for time 𝑛𝑛 + 1, was at time 𝑛𝑛). 𝛿𝛿 is the distance travelled by the particle in the 𝑥𝑥 
direction (Figure 2.15) and can be expressed as 

𝛿𝛿 = 𝑣𝑣∆̅𝑡𝑡  (2.97) 

where 𝑣𝑣 ̅ is the average value of 𝑣𝑣 along the characteristic, which can be approximated as 
described in Zienkiewicz & Codina (1996) by the expression 

𝑣𝑣̅ =
𝑣𝑣𝑛𝑛+1 + 𝑣𝑣𝑛𝑛|(𝑥𝑥−𝛿𝛿)

2
  (2.98) 

The functions can be approximated at 𝑥𝑥 − 𝛿𝛿 using Taylor expansions as follows: 
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𝜙𝜙𝑛𝑛|(𝑥𝑥−𝛿𝛿) ≈ 𝜙𝜙𝑛𝑛 − 𝛿𝛿 𝜕𝜕𝜕𝜕𝑛𝑛

𝜕𝜕𝜕𝜕
+ 𝛿𝛿2

2
𝜕𝜕2𝜙𝜙𝑛𝑛

𝜕𝜕𝑥𝑥2 + 𝑂𝑂(∆𝑡𝑡3)  (2.99) 

𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑘𝑘𝑇𝑇  𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕

�
𝑛𝑛
�
(𝑥𝑥−𝛿𝛿)

≈ 𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑘𝑘𝑇𝑇  𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕

�
𝑛𝑛

− 𝛿𝛿 𝜕𝜕
𝜕𝜕𝜕𝜕

� 𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑘𝑘𝑇𝑇  𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕

�
𝑛𝑛
� + 𝑂𝑂(∆𝑡𝑡2) (2.100) 

𝑄𝑄𝑛𝑛|(𝑥𝑥−𝛿𝛿) ≈ 𝑄𝑄𝑛𝑛 − 𝛿𝛿 𝜕𝜕𝑄𝑄𝑛𝑛

𝜕𝜕𝜕𝜕
+ 𝑂𝑂(∆𝑡𝑡2)  (2.101) 

𝑣𝑣𝑛𝑛|(𝑥𝑥−𝛿𝛿) ≈ 𝑣𝑣𝑛𝑛 − ∆𝑡𝑡 𝑣𝑣𝑛𝑛 𝜕𝜕𝜕𝜕𝑛𝑛

𝜕𝜕𝜕𝜕
+ 𝑂𝑂(∆𝑡𝑡2)  (2.102) 

Substituting Eqs. (2.97)-(2.102) into (2.96) and imposing 𝜃𝜃 = 0.5 the following is obtained 

𝜌𝜌𝜌𝜌 1
Δ𝑡𝑡

(𝜙𝜙𝑛𝑛+1 − 𝜙𝜙𝑛𝑛)

= −𝜌𝜌𝜌𝜌 𝑉𝑉 𝑛𝑛+1
2
𝜕𝜕𝜙𝜙𝑛𝑛

𝜕𝜕𝜕𝜕
+ 𝜌𝜌𝜌𝜌 Δ𝑡𝑡

2
𝑣𝑣𝑛𝑛 𝜕𝜕𝑉𝑉 𝑛𝑛

𝜕𝜕𝜕𝜕
𝜕𝜕𝜙𝜙𝑛𝑛

𝜕𝜕𝜕𝜕
+ 𝜌𝜌𝜌𝜌 Δ𝑡𝑡

2
𝑣𝑣𝑛𝑛+1/2 𝑣𝑣𝑛𝑛+1/2 𝜕𝜕2𝜙𝜙𝑛𝑛

𝜕𝜕𝜕𝜕2

+ 𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑘𝑘𝑇𝑇  𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕

�
𝑛𝑛+1/2

− Δ𝑡𝑡
2

𝑣𝑣𝑛𝑛+1/2 𝜕𝜕
𝜕𝜕𝜕𝜕

� 𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑘𝑘𝑇𝑇  𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕

�
𝑛𝑛
� − 𝑄𝑄𝑛𝑛+1/2

+ Δ𝑡𝑡
2

𝑣𝑣𝑛𝑛+1/2 𝜕𝜕𝑄𝑄𝑛𝑛

𝜕𝜕𝜕𝜕
  

(2.103) 

where 

𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑘𝑘𝑇𝑇  𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕

�
𝑛𝑛+1/2

= 1
2

𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑘𝑘𝑇𝑇  𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕

�
𝑛𝑛+1/2

+ 1
2

𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑘𝑘𝑇𝑇  𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕

�
𝑛𝑛
 

 

𝑄𝑄𝑛𝑛+1/2 = 𝑄𝑄𝑛𝑛+1 + 𝑄𝑄𝑛𝑛

2
                       𝑣𝑣𝑛𝑛+1/2 = 𝑣𝑣𝑛𝑛+1 + 𝑣𝑣𝑛𝑛

2
 

(2.104) 

 
 In order to get the fully explicit scheme the terms at n+1/2 can be approximated using 
their value at n: 

𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑘𝑘𝑇𝑇  𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕

�
𝑛𝑛+1/2

= 𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑘𝑘𝑇𝑇  𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕

�
𝑛𝑛
 

 

𝑄𝑄𝑛𝑛+1/2 = 𝑄𝑄𝑛𝑛                       𝑣𝑣𝑛𝑛+1/2 = 𝑣𝑣𝑛𝑛 

(2.105) 

 And substituting Eq. (2.105) into (2.103) and generalizing to three dimensions, the final 
form of the explicit characteristic-Galerkin method may be written as: 
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𝜌𝜌𝜌𝜌 ∆𝜙𝜙 = 𝜌𝜌𝜌𝜌 (𝜙𝜙𝑛𝑛+1 − 𝜙𝜙𝑛𝑛)

= −Δ𝑡𝑡�𝜌𝜌𝜌𝜌 𝑣𝑣𝑗𝑗
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

− 𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

�𝑘𝑘𝑖𝑖𝑖𝑖
𝑇𝑇 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥𝑖𝑖
� + 𝑄𝑄�

𝑛𝑛

+ Δ𝑡𝑡2

2
𝑣𝑣𝑘𝑘

𝑛𝑛 𝜕𝜕
𝜕𝜕𝑥𝑥𝑘𝑘

�𝜌𝜌𝜌𝜌 𝑣𝑣𝑗𝑗
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

− 𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

�𝑘𝑘𝑖𝑖𝑖𝑖
𝑇𝑇 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥𝑖𝑖
� + 𝑄𝑄�

𝑛𝑛

 

(2.106) 

 Finally, the spatial discretization can be performed using the FEM using the standard 
Galerkin weighting (𝑤𝑤 = 𝑁𝑁(1),𝑁𝑁(2),…) and applying the Theorem of the Divergence, resulting 

 � 1
Δ𝑡𝑡

𝐂𝐂�Δ𝛟𝛟𝑛𝑛+1 = − �𝐊𝐊 + 𝐊𝐊𝐯𝐯 + 1
2
𝐊𝐊𝐬𝐬�𝛟𝛟𝑛𝑛 + �𝐟𝐟e + 𝐟𝐟𝐬𝐬,e� (2.107) 

where 

𝐂𝐂 = � 𝜌𝜌𝜌𝜌 [𝐍𝐍]⊤𝐍𝐍
 

Ω
dΩ (2.108) 

𝐊𝐊𝐯𝐯 = 𝜌𝜌𝜌𝜌 � [𝐍𝐍]⊤𝑣𝑣𝑖𝑖
𝜕𝜕𝐍𝐍
𝜕𝜕𝑥𝑥𝑖𝑖

 

Ω
dΩ (2.109) 

𝐊𝐊 = � 𝜕𝜕𝐍𝐍⊤

𝜕𝜕𝑥𝑥𝑖𝑖
𝑘𝑘𝑖𝑖𝑖𝑖

𝑇𝑇 𝜕𝜕𝐍𝐍
𝜕𝜕𝑥𝑥𝑗𝑗

 

Ω
dΩ (2.110) 

𝐊𝐊𝐬𝐬 = ∆𝑡𝑡� 𝜌𝜌𝜌𝜌 𝜕𝜕[𝐍𝐍]⊤

𝜕𝜕𝑥𝑥𝑖𝑖
𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗

𝜕𝜕𝐍𝐍
𝜕𝜕𝑥𝑥𝑗𝑗

 

Ω
dΩ (2.111) 

𝐟𝐟e = � [𝐍𝐍]⊤𝑄𝑄𝑇𝑇
 

Ω
dΩ + 𝑏𝑏. 𝑡𝑡. (2.112) 

𝐟𝐟𝐬𝐬,e = ∆𝑡𝑡
2

� 𝑣𝑣𝑖𝑖
𝜕𝜕[𝐍𝐍]⊤

𝜕𝜕𝑥𝑥𝑖𝑖

 

Ω
𝑄𝑄𝑇𝑇  dΩ + 𝑏𝑏. 𝑡𝑡. (2.113) 

where 𝐂𝐂 is the standard element mass matrix, 𝐊𝐊𝐯𝐯 is the element advective non-symetric 
matrix, 𝐊𝐊𝐬𝐬 is an artificial diffusion term similar to that shown using the SUPG method in the 
steady-state problem, 𝐊𝐊 is the standard diffusion matrix and 𝐟𝐟𝐬𝐬,e is the modified element force 
vector. Another term that may come from the boundary condition defined by Eq. (2.54) must 
be also considered in Eq. (2.107). 

 The explicit form presented above is only conditionally stable. As described by 
Zienkiewicz & Taylor (2000c), the stability condition for the explicit scheme is given by 

∆𝑡𝑡 ≤ ∆𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = ∆𝑡𝑡𝜎𝜎∆𝑡𝑡𝜐𝜐
∆𝑡𝑡𝜎𝜎 + ∆𝑡𝑡𝜐𝜐

 (2.114) 

where 

∆𝑡𝑡𝜎𝜎 = ℎ𝑐𝑐𝑐𝑐𝑐𝑐
|𝐯𝐯|

 (2.115) 

∆𝑡𝑡𝜐𝜐 = ℎ𝑐𝑐𝑐𝑐𝑐𝑐
2𝑘𝑘𝑇𝑇  (2.116) 
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where ℎ𝑐𝑐𝑐𝑐𝑐𝑐 is the characteristic length of the element described in Section 2.2.2. For pure 
advection, this stability condition turns to ∆𝑡𝑡𝜎𝜎 and may be rewritten as:  

C = |𝑣𝑣|Δt
ℎ𝑐𝑐𝑐𝑐𝑐𝑐

≤ 1 (2.117) 

where C is the Courant number of the element. This condition turns more restrictive when 
the diffusion term appears, as described by Eq. (2.114). However, if the explicit scheme is 
transformed to a semi-implicit scheme applying 𝜃𝜃 ≥ 0.5 to the diffusion term only, the 
stability condition turns to ∆𝑡𝑡𝜎𝜎, that can be defined by Eq. (2.117), which can present an 
appreciable benefit (Zienkiewicz & Taylor, 2000c). 

Finally, the time-increment condition due to the diffusion problem must also be satisfied:  

𝛥𝛥𝛥𝛥𝑑𝑑,𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜌𝜌𝜌𝜌 ℎ𝑐𝑐𝑐𝑐𝑐𝑐
2

2𝑘𝑘𝑇𝑇  (2.118) 

 

Comparison between the simple explicit Characteristic-Galerkin method and 
the SUPG method 

 It is of interest to examine the behaviour of the solution when the steady-state is reached 
with the simple explicit Characteristic-Galerkin procedure in comparison with the SUPG 
solution obtained in Section 2.2.2.  

 Leaving out the source and force terms, the SUPG steady-state solution defined by Eq. 
(2.75) can be written as: 

(𝐊𝐊 + 𝐊𝐊SUPG) 𝛟𝛟 = 0   (2.119) 

where 𝐊𝐊, 𝐊𝐊SUPG and 𝛟𝛟 are the element conductivity matrix, the element advective matrix 
and the element temperature vector, respectively. Developing Eq. (2.119) leads to 

��  𝜌𝜌𝜌𝜌 [𝐍𝐍]⊤𝐯𝐯 𝐁𝐁
 

Ω
 dΩ + � [𝐁𝐁]⊤𝐃𝐃𝑇𝑇 𝐁𝐁

 

Ω
 dΩ + 1

2
𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜 ℎ𝑐𝑐𝑐𝑐𝑐𝑐

|𝐯𝐯|
� 𝜌𝜌𝜌𝜌 [𝐁𝐁]⊤𝐯𝐯 [𝐯𝐯]⊤𝐁𝐁

 

Ω
 dΩ �𝛟𝛟 

𝑛𝑛 = 0   
(2.120) 

where 𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜 = coth|𝑃𝑃𝑃𝑃| − 1
|𝑃𝑃𝑃𝑃| . 

 In the same manner, the solution with the simple explicit characteristics method for the 
steady-state problem may be written from Eq. (2.107) by imposing ∆𝛟𝛟 = 0 as follows 

(𝐊𝐊 + 𝐊𝐊𝐯𝐯 + 𝐊𝐊𝐬𝐬)𝛟𝛟 
𝑛𝑛 = 0 (2.121) 

Substituting the above equations into Eqs. (2.109)-(2.111) leads to: 
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��  𝜌𝜌𝜌𝜌 [𝐍𝐍]⊤𝐯𝐯 𝐁𝐁
 

Ω
dΩ + � [𝐁𝐁]⊤𝐃𝐃𝑇𝑇  𝐁𝐁

 

Ω
dΩ + 1

2
Δt� 𝜌𝜌𝜌𝜌 [𝐁𝐁]⊤𝐯𝐯 [𝐯𝐯]⊤ 𝐁𝐁

 

Ω
dΩ �𝛟𝛟 

𝑛𝑛 = 0 (2.122) 

 Note that the scheme based on the explicit method of characteristics for an infinite time 
(steady-state) is coincident with the SUPG method if  

Δ𝑡𝑡 =
𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜 ℎ𝑐𝑐𝑐𝑐𝑐𝑐

|𝐯𝐯|
 (2.123) 

where 𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜  is coincident with the Courant number of the element: 

𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜 = |𝐯𝐯|Δ𝑡𝑡
ℎ𝑐𝑐𝑐𝑐𝑐𝑐

= C (2.124) 

 Thus, the equivalence condition between both schemes always satisfies the Courant 
stability condition. It follows that for both schemes to be equivalent when the solution tends 
to steady-state, the time step to be applied has to be 

Δ𝑡𝑡𝑒𝑒𝑒𝑒 =
𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜 ℎ𝑐𝑐𝑐𝑐𝑐𝑐

|𝐯𝐯|
  (2.125) 

 However, each element of the domain may have a different characteristic dimension and a 
different fluid velocity, so it is very unlikely that all elements of the mesh reach 
simultaneously that condition: in irregular meshes and where fluid velocities vary between 
elements of the mesh, the value of Δ𝑡𝑡𝑒𝑒𝑒𝑒 would be different for each element, while the value 
of Δ𝑡𝑡 is set equal for all the elements of the mesh.  

 As explained in Zienkiewicz & Taylor (2000c), with smaller time increments, the more 
accurate will be the transient solution. However, in this case, the optimal solution for 
transients and steady-state can't be reached simultaneosly and the optimum explicit 
characteristic formulation for the transient state will not be the optimal for the steady-state 
SUPG method. 

 Finally, examination of Eqs. (2.107) to (2.113) shows that the Characteristic-Galerkin 
method could have been obtained by applying a SUPG weighting such as 

 [𝐍𝐍]⊤ + ∆𝑡𝑡
2

𝑣𝑣𝑖𝑖
𝜕𝜕[𝐍𝐍]⊤

𝜕𝜕𝑥𝑥𝑖𝑖
 (2.126) 

to the various terms of the governing Eq. (2.83) excluding the term 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕, to which the 
standard Galerkin weighting of [𝐍𝐍]⊤ is attached. 

 

2.2.3.5. An Implicit Characteristic-Galerkin Method 

 The preceding section presents a conditionally stable explicit characteristic procedure to 
solve large advection transient problems (𝑃𝑃𝑃𝑃 > 1), which was originally proposed by 
Zienkiewicz, et al. (1984). As an extension of that work, this thesis proposes the formulation 
of an implicit scheme that is unconditionally stable.  
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 The first step of this procedure, as in the explicit scheme, consists on the time 
discretization of Eq. (2.83) along the characteristic, using the Finite Difference Method: 

𝜌𝜌𝜌𝜌 1
Δ𝑡𝑡

�𝜙𝜙𝑛𝑛+1|𝑥𝑥 − 𝜙𝜙𝑛𝑛|(𝑥𝑥−𝛿𝛿)�

≈ 𝜃𝜃 � 𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑘𝑘𝑇𝑇  𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕

� − 𝑄𝑄𝑇𝑇 �
𝑛𝑛+1

�
𝑥𝑥

+ (1 − 𝜃𝜃) � 𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑘𝑘𝑇𝑇  𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕

� − 𝑄𝑄𝑇𝑇 �
𝑛𝑛
�
(𝑥𝑥−𝛿𝛿)

  
(2.127) 

where 0 ≤ 𝜃𝜃 ≤ 1; 𝑛𝑛 indicates the 𝑛𝑛-th time-increment; and 𝛿𝛿 is the distance travelled by the 
particle (Figure 2.15). As in the explicit scheme, the advective term disappears from the 
equation because it is evaluated along the characteristics. The boundary terms are the same 
as defined in Eq. (2.25). 

The functions can be approximate at 𝑥𝑥 − 𝛿𝛿 using Taylor expansions as follows: 

𝜙𝜙𝑛𝑛|(𝑥𝑥−𝛿𝛿) ≈ 𝜙𝜙𝑛𝑛 − 𝛿𝛿 𝜕𝜕𝜕𝜕𝑛𝑛

𝜕𝜕𝜕𝜕
+ 𝛿𝛿2

2
𝜕𝜕2𝜙𝜙𝑛𝑛

𝜕𝜕𝑥𝑥2 + 𝑂𝑂(∆𝑡𝑡3) (2.128) 

𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑘𝑘𝑇𝑇  𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕

�
𝑛𝑛
�
(𝑥𝑥−𝛿𝛿)

≈ 𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑘𝑘𝑇𝑇  𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕

�
𝑛𝑛

− 𝛿𝛿 𝜕𝜕
𝜕𝜕𝜕𝜕

� 𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑘𝑘𝑇𝑇  𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕

�
𝑛𝑛
� + 𝑂𝑂(∆𝑡𝑡2) (2.129) 

𝑄𝑄𝑇𝑇 𝑛𝑛�(𝑥𝑥−𝛿𝛿) ≈ 𝑄𝑄𝑇𝑇 𝑛𝑛 − 𝛿𝛿 𝜕𝜕𝑄𝑄𝑇𝑇 𝑛𝑛

𝜕𝜕𝜕𝜕
+ 𝑂𝑂(∆𝑡𝑡2) (2.130) 

𝑣𝑣𝑛𝑛|(𝑥𝑥−𝛿𝛿) ≈ 𝑣𝑣𝑛𝑛 − ∆𝑡𝑡 𝑣𝑣𝑛𝑛 𝜕𝜕𝜕𝜕 𝑛𝑛

𝜕𝜕𝜕𝜕
+ 𝑂𝑂(∆𝑡𝑡2) (2.131) 

The distance 𝛿𝛿 travelled by the particle (Figure 2.15) can be expressed as 

𝛿𝛿 = 𝑣𝑣∆̅𝑡𝑡 (2.132) 

where 𝑣𝑣 ̅ is the average value of 𝑣𝑣 along the characteristic, which can be approximated by 
leaving out the second term of Eq. (2.131) as 

𝑣𝑣̅ =
𝑣𝑣𝑛𝑛+1 + 𝑣𝑣𝑛𝑛|(𝑥𝑥−𝛿𝛿)

2
≈ 𝑣𝑣𝑛𝑛+1 + 𝑣𝑣𝑛𝑛

2
 (2.133) 

And substituting Eq. (2.133) into (2.132): 

𝛿𝛿 = 𝑣𝑣∆̅𝑡𝑡 = ∆𝑡𝑡 𝑣𝑣𝑛𝑛+1 + 𝑣𝑣𝑛𝑛

2
= ∆𝑡𝑡 𝑣𝑣𝑛𝑛+1/2 (2.134) 

Substituting Eqs. (2.128)-(2.134) in Eq. (2.127) the following is obtained: 
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𝜌𝜌𝜌𝜌 1
Δ𝑡𝑡

(𝜙𝜙𝑛𝑛+1 − 𝜙𝜙𝑛𝑛)

= −𝜌𝜌𝜌𝜌 𝑣𝑣𝑛𝑛+1/2 𝜕𝜕𝜙𝜙𝑛𝑛

𝜕𝜕𝜕𝜕
+ 𝜌𝜌𝜌𝜌

2
Δ𝑡𝑡 𝑣𝑣𝑛𝑛+1/2 𝑣𝑣𝑛𝑛+1/2 𝜕𝜕2𝜙𝜙𝑛𝑛

𝜕𝜕𝑥𝑥2

+ 𝜃𝜃 � 𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑘𝑘𝑇𝑇  𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕

� − 𝑄𝑄𝑇𝑇 �
𝑛𝑛+1

+ (1 − 𝜃𝜃) � 𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑘𝑘𝑇𝑇  𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕

� − 𝑄𝑄𝑇𝑇 �
𝑛𝑛

− (1 − 𝜃𝜃) �Δ𝑡𝑡 𝑣𝑣𝑛𝑛+1/2 � 𝜕𝜕
𝜕𝜕𝜕𝜕

� 𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑘𝑘𝑇𝑇  𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕

�� − 𝜕𝜕𝑄𝑄𝑇𝑇 𝑛𝑛

𝜕𝜕𝜕𝜕
�� 

(2.135) 

 Leaving out the third order terms and performing the spatial discretization, applying the 
Theorem of the Divergence to the diffusion terms and using the FEM with the standard 
Galerkin weighting (𝑤𝑤 = 𝑁𝑁(1),𝑁𝑁(2),…) results in: 

� 1
Δ𝑡𝑡

𝐂𝐂 + 𝜃𝜃𝐊𝐊� ∆𝛟𝛟 = −�𝐊𝐊 + 𝐊𝐊𝐯𝐯 + 1
2

𝐊𝐊𝐬𝐬�𝛟𝛟 
𝑛𝑛 + �𝐟𝐟e + 𝐟𝐟𝐬𝐬,e� (2.136) 

where 

𝐂𝐂 = � 𝜌𝜌𝜌𝜌 [𝐍𝐍]⊤𝐍𝐍
 

Ω
dΩ (2.137) 

𝐊𝐊 = � 𝜕𝜕[𝐍𝐍]⊤

𝜕𝜕𝑥𝑥𝑖𝑖
𝑘𝑘𝑖𝑖𝑖𝑖

𝑇𝑇 𝜕𝜕𝐍𝐍
𝜕𝜕𝑥𝑥𝑗𝑗

 

Ω
dΩ (2.138) 

𝐊𝐊𝐯𝐯 = � 𝜌𝜌𝜌𝜌 [𝐍𝐍]⊤𝑣𝑣𝑖𝑖
𝑛𝑛+1/2 𝜕𝜕𝐍𝐍

𝜕𝜕𝑥𝑥𝑖𝑖

 

Ω
dΩ (2.139) 

𝐊𝐊𝐬𝐬 = ∆𝑡𝑡 � 𝜌𝜌𝜌𝜌 𝜕𝜕[𝐍𝐍]⊤

𝜕𝜕𝑥𝑥𝑖𝑖
𝑣𝑣𝑖𝑖

𝑛𝑛+1/2𝑣𝑣𝑗𝑗
𝑛𝑛+1/2 𝜕𝜕𝐍𝐍

𝜕𝜕𝑥𝑥𝑗𝑗

 

Ω
dΩ (2.140) 

𝐟𝐟e = (1 − 𝜃𝜃) � [𝐍𝐍]⊤𝑄𝑄𝑇𝑇 𝑛𝑛
 

Ω
dΩ + 𝜃𝜃 � [𝐍𝐍]⊤𝑄𝑄𝑇𝑇 𝑛𝑛+1/2

 

Ω
dΩ + 𝑏𝑏. 𝑡𝑡. (2.141) 

𝐟𝐟𝐬𝐬,e = (1 − 𝜃𝜃)∆𝑡𝑡 � [𝐍𝐍]⊤𝑣𝑣𝑖𝑖
𝑛𝑛+1/2 𝜕𝜕𝐍𝐍

𝜕𝜕𝑥𝑥𝑖𝑖

 

Ω
𝑄𝑄𝑇𝑇 𝑛𝑛 dΩ + 𝑏𝑏. 𝑡𝑡. (2.142) 

 The time-integration scheme is always stable when 0.5 ≤ 𝜃𝜃 ≤ 1. Additionally, as in the 
implicit scheme, the Courant condition (Eq. (2.117)) must be satisfied for each element of the 
FEM mesh. For this reason, the maximum time-increment that can be applied due to the 
advection effect is: 

𝛥𝛥𝛥𝛥𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚 = ℎ𝑐𝑐𝑐𝑐𝑐𝑐
𝑣𝑣

 (2.143) 

 Eq. (2.143) shows that to satisfy the Courant condition it is necessary that the applied 
time-increment decreases as the size of the element decreases (for a fixed velocity). Also, as 
velocity increases, the time-increment has to decrease (for a fixed size of the element). It is 
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important to note that while the applied time-increment is constant for the entire FE mesh, 
the velocities and the size of the elements are not. Thus, the element of the mesh with the 
smaller ℎ𝑐𝑐𝑐𝑐𝑐𝑐/𝑣𝑣 ratio sets the maximum admissible time increment. 

 Finally, as in the explicit scheme, the time-increment condition due to the diffusion 
problem must also be satisfied as in Eq. (2.118). 

 

2.2.3.6. A new Implicit Characteristic-Galerkin Method (𝛼𝛼-ICGM) 

 This section introduces a new implicit Characteristics-Galerkin procedure to solve the 
transient advection-diffusion problem, which incorporates an implicit scheme generalized with 
an 𝛼𝛼 parameter. This procedure will be called “𝛼𝛼-ICG Method”. 

 

 
Figure 2.16: Basis of the 𝛼𝛼-ITCG Method method with an implicit scheme, that shows the distance travelled by the 
particle (𝛿𝛿) from time 𝑛𝑛 to time 𝑛𝑛 + 1. Different 𝛼𝛼 values determine different temporal derivative positions of the 

advective volume. 

 

 In the implicit method described in the previous section, the conduction terms are finally 
evaluated at 𝑥𝑥, while the temporal derivatives are evaluated at 𝑥𝑥 and 𝑥𝑥 − 𝛿𝛿. This means that 
the advective volume that is followed in the time discretization is the volume that at the 
beginning of the interval is at location 𝑥𝑥 − 𝛿𝛿, and at the end of the interval is at location 𝑥𝑥. In 
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order to improve the numerical efficiency, in this generalized method the temporal derivatives 
are evaluated centered around the solution point 𝑥𝑥, taking 𝑥𝑥 − (1 − 𝛼𝛼)𝛿𝛿  for time 𝑛𝑛 and 
𝑥𝑥 + 𝛼𝛼𝛼𝛼 for time 𝑛𝑛 + 1 (Figure 2.16). That is, the advective volume considered for time 
discretization is the volume that at the beginning of the interval is at location 𝑥𝑥 − (1 − 𝛼𝛼)𝛿𝛿 , 
and at the end of the interval is at location 𝑥𝑥 + 𝛼𝛼𝛼𝛼. Note that if 𝛼𝛼 = 0 one recovers the 
previous implicit scheme. 

 Once more, the first step consists on the time discretization of Eq. (2.83) along the 
characteristic, using the Finite Difference Method: 

𝜌𝜌𝜌𝜌 1
Δ𝑡𝑡

�𝜙𝜙𝑛𝑛+1|𝑥𝑥+𝛼𝛼𝛼𝛼 − 𝜙𝜙𝑛𝑛|[𝑥𝑥−(1−𝛼𝛼)𝛿𝛿]�

≈ 𝜃𝜃 � 𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑘𝑘𝑇𝑇  𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕

� − 𝑄𝑄𝑇𝑇 �
𝑛𝑛+1

�
𝑥𝑥+𝛼𝛼𝛼𝛼 

+ (1 − 𝜃𝜃) � 𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑘𝑘 𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕

� − 𝑄𝑄𝑇𝑇 �
𝑛𝑛
�
[𝑥𝑥−(1−𝛼𝛼)𝛿𝛿]

 

(2.144) 

 The functions at 𝑥𝑥 − (1 − 𝛼𝛼)𝛿𝛿 and 𝑥𝑥 + 𝛼𝛼𝛼𝛼  can be approximated using Taylor expansions 
as follows 

𝜙𝜙𝑛𝑛|[𝑥𝑥−(1−𝛼𝛼)𝛿𝛿] ≈ 𝜙𝜙𝑛𝑛 − (1 − 𝛼𝛼)𝛿𝛿 𝜕𝜕𝜕𝜕𝑛𝑛

𝜕𝜕𝜕𝜕
+ (1 − 𝛼𝛼)2𝛿𝛿2

2
𝜕𝜕2𝜙𝜙𝑛𝑛

𝜕𝜕𝑥𝑥2 + 𝑂𝑂(∆𝑡𝑡3) (2.145) 

𝜙𝜙𝑛𝑛+1|(𝑥𝑥+𝛼𝛼𝛼𝛼 ) ≈ 𝜙𝜙𝑛𝑛+1 + 𝛼𝛼𝛼𝛼 𝜕𝜕𝜕𝜕𝑛𝑛+1

𝜕𝜕𝜕𝜕
+ (𝛼𝛼𝛼𝛼)2

2
𝜕𝜕2𝜙𝜙𝑛𝑛+1

𝜕𝜕𝑥𝑥2 + 𝑂𝑂(∆𝑡𝑡3) (2.146) 

𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑘𝑘𝑇𝑇  𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕

�
𝑛𝑛
�
[𝑥𝑥−(1−𝛼𝛼)𝛿𝛿]

≈ 𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑘𝑘𝑇𝑇  𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕

�
𝑛𝑛

− (1 − 𝛼𝛼)𝛿𝛿 𝜕𝜕
𝜕𝜕𝜕𝜕

� 𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑘𝑘𝑇𝑇  𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕

�
𝑛𝑛
� + 𝑂𝑂(∆𝑡𝑡2) (2.147) 

𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑘𝑘𝑇𝑇  𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕

�
𝑛𝑛+1

�
(𝑥𝑥+𝛼𝛼𝛼𝛼 )

≈ 𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑘𝑘𝑇𝑇  𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕

�
𝑛𝑛+1

+ (𝛼𝛼𝛼𝛼) 𝜕𝜕
𝜕𝜕𝜕𝜕

� 𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑘𝑘𝑇𝑇  𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕

�
𝑛𝑛+1

� + 𝑂𝑂(∆𝑡𝑡2) (2.148) 

𝑄𝑄𝑇𝑇 𝑛𝑛�[𝑥𝑥−(1−𝛼𝛼)𝛿𝛿] ≈ 𝑄𝑄𝑇𝑇 𝑛𝑛 − (1 − 𝛼𝛼)𝛿𝛿 𝜕𝜕𝑄𝑄𝑇𝑇 𝑛𝑛

𝜕𝜕𝜕𝜕
+ 𝑂𝑂(∆𝑡𝑡2) (2.149) 

𝑄𝑄𝑇𝑇 𝑛𝑛+1�
(𝑥𝑥+𝛼𝛼𝛼𝛼 )

≈ 𝑄𝑄𝑇𝑇 𝑛𝑛+1 + (𝛼𝛼𝛼𝛼 ) 𝜕𝜕𝑄𝑄𝑇𝑇 𝑛𝑛+1

𝜕𝜕𝜕𝜕
+ 𝑂𝑂(∆𝑡𝑡2) (2.150) 

𝑣𝑣𝑛𝑛|[𝑥𝑥−(1−𝛼𝛼)𝛿𝛿] ≈ 𝑣𝑣𝑛𝑛 − (1 − 𝛼𝛼)∆𝑡𝑡 𝑣𝑣𝑛𝑛 𝜕𝜕𝜕𝜕𝑛𝑛

𝜕𝜕𝜕𝜕
+ 𝑂𝑂(∆𝑡𝑡2) (2.151) 

𝑣𝑣𝑛𝑛+1|(𝑥𝑥+𝛼𝛼𝛼𝛼 ) ≈ 𝑣𝑣𝑛𝑛+1 + 𝛼𝛼∆𝑡𝑡 𝑣𝑣𝑛𝑛+1 𝜕𝜕𝜕𝜕𝑛𝑛+1

𝜕𝜕𝜕𝜕
+ 𝑂𝑂(∆𝑡𝑡2) (2.152) 
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 In previous expressions δ is the distance travelled by the particle during the time interval 
considered (Figure 2.16) and it can be expressed as 

𝛿𝛿 = 𝑣𝑣∆̅𝑡𝑡 (2.153) 

where 𝑣𝑣 ̅ is the average value of velocity 𝑣𝑣 along the characteristic, which in turn can be 
approximated leaving out the second term of Eqs. (2.151)-(2.152) by 

𝑣𝑣̅ =
𝑣𝑣𝑛𝑛+1|[𝑥𝑥−(1−𝛼𝛼)𝛿𝛿] + 𝑣𝑣𝑛𝑛|(𝑥𝑥+𝛼𝛼𝛼𝛼)

2
≈ 𝑣𝑣𝑛𝑛+1 + 𝑣𝑣𝑛𝑛

2
 (2.154) 

By substituting (2.154) in (2.153), the same expression as in the previous implicit formulation 
is obtained 

𝛿𝛿 = 𝑣𝑣∆̅𝑡𝑡 = ∆𝑡𝑡 𝑣𝑣𝑛𝑛+1 + 𝑣𝑣𝑛𝑛

2
= ∆𝑡𝑡 𝑣𝑣𝑛𝑛+1/2 (2.155) 

 Substituting the above approximations (2.145)-(2.155) into Eq. (2.144) and leaving out 
third-order terms the following is obtained: 

𝜌𝜌𝜌𝜌 1
Δ𝑡𝑡

(𝜙𝜙𝑛𝑛+1 − 𝜙𝜙𝑛𝑛)

= −(1 − 𝛼𝛼)𝜌𝜌𝜌𝜌 𝑣𝑣𝑛𝑛+1/2 𝜕𝜕𝜙𝜙𝑛𝑛

𝜕𝜕𝜕𝜕
+ (1 − 𝛼𝛼)2

2
𝜌𝜌𝜌𝜌Δ𝑡𝑡 𝑣𝑣𝑛𝑛+1/2 𝑣𝑣𝑛𝑛+1/2 𝜕𝜕2𝜙𝜙𝑛𝑛

𝜕𝜕𝑥𝑥2

− 𝛼𝛼𝛼𝛼𝛼𝛼 𝑣𝑣𝑛𝑛+1/2 𝜕𝜕𝜙𝜙𝑛𝑛+1

𝜕𝜕𝜕𝜕
− 𝛼𝛼2

2
𝜌𝜌𝜌𝜌Δ𝑡𝑡 𝑣𝑣𝑛𝑛+1/2 𝑣𝑣𝑛𝑛+1/2 𝜕𝜕2𝜙𝜙𝑛𝑛+1

𝜕𝜕𝑥𝑥2

+ 𝜃𝜃 � 𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑘𝑘𝑇𝑇  𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕

� − 𝑄𝑄𝑇𝑇 �
𝑛𝑛+1

+ (1 − 𝜃𝜃) � 𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑘𝑘𝑇𝑇  𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕

� − 𝑄𝑄𝑇𝑇 �
𝑛𝑛

+ (1 − 𝜃𝜃) �αΔ𝑡𝑡 𝑣𝑣𝑛𝑛+1/2 𝜕𝜕𝑄𝑄𝑇𝑇 𝑛𝑛

𝜕𝜕𝜕𝜕
� − 𝜃𝜃 �(1 − α)Δ𝑡𝑡 𝑣𝑣𝑛𝑛+1/2 𝜕𝜕𝑄𝑄𝑇𝑇 𝑛𝑛+1

𝜕𝜕𝜕𝜕
� 

(2.156) 

 Leaving out third order terms and performing the spatial discretization, applying the 
Theorem of the Divergence to the diffusion terms and using the FEM with the standard 
Galerkin weighting (𝑤𝑤 = 𝑁𝑁(1),𝑁𝑁(2),…) results in: 
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Summary 3 - Transient thermal equation for large advection in continuum 
media using the 𝜶𝜶-Implicit Characteristic Galerkin method. 
 

� 1
Δ𝑡𝑡

𝐂𝐂 + 𝛼𝛼𝐊𝐊𝐯𝐯+𝛼𝛼2

2
𝐊𝐊𝐬𝐬 + 𝜃𝜃𝐊𝐊� ∆𝛟𝛟 = −�𝐊𝐊 + 𝐊𝐊𝐯𝐯 + �1

2
− α�𝐊𝐊𝐬𝐬� 𝛟𝛟 

𝑛𝑛 + �𝐟𝐟e + 𝐟𝐟𝐬𝐬,e� (2.157) 

where 

𝐂𝐂 = 𝜌𝜌𝜌𝜌 � [𝐍𝐍]⊤𝐍𝐍
 

Ω
dΩ (2.158) 

𝐊𝐊 = � 𝜕𝜕[𝐍𝐍]⊤

𝜕𝜕𝑥𝑥𝑖𝑖
𝑘𝑘𝑖𝑖𝑖𝑖

𝑇𝑇 𝜕𝜕𝐍𝐍
𝜕𝜕𝑥𝑥𝑗𝑗

 

Ω
dΩ (2.159) 

𝐊𝐊𝐯𝐯 = � 𝜌𝜌𝜌𝜌 [𝐍𝐍]⊤𝑣𝑣𝑖𝑖
𝑛𝑛+1/2 𝜕𝜕𝐍𝐍

𝜕𝜕𝑥𝑥𝑖𝑖

 

Ω
dΩ       (2.160) 

 𝐊𝐊𝐬𝐬 = ∆𝑡𝑡� 𝜌𝜌𝜌𝜌 𝜕𝜕[𝐍𝐍]⊤

𝜕𝜕𝑥𝑥𝑖𝑖
𝑣𝑣𝑖𝑖

𝑛𝑛+1/2𝑣𝑣𝑗𝑗
𝑛𝑛+1/2 𝜕𝜕𝐍𝐍

𝜕𝜕𝑥𝑥𝑗𝑗

 

Ω
dΩ (2.161) 

𝐟𝐟e = (1 − 𝜃𝜃)� [𝐍𝐍]⊤𝑄𝑄𝑇𝑇 𝑛𝑛
 

Ω
𝑑𝑑Ω + 𝜃𝜃 � [𝐍𝐍]⊤𝑄𝑄𝑇𝑇 𝑛𝑛+1/2

 

Ω
dΩ + 𝑏𝑏. 𝑡𝑡. (2.162) 

𝐟𝐟𝐬𝐬,e = (1 − 𝜃𝜃)𝛼𝛼∆𝑡𝑡 � [𝐍𝐍]⊤𝑣𝑣𝑖𝑖
𝑛𝑛+1/2 𝜕𝜕𝐍𝐍

𝜕𝜕𝑥𝑥𝑖𝑖

 

Ω
𝑄𝑄𝑇𝑇 𝑛𝑛 dΩ

− 𝜃𝜃(1 − α)Δt� [𝐍𝐍]⊤𝑣𝑣𝑖𝑖
𝑛𝑛+1/2 𝜕𝜕𝐍𝐍

𝜕𝜕𝑥𝑥𝑖𝑖

 

Ω
𝑄𝑄𝑇𝑇 𝑛𝑛+1/2 dΩ + 𝑏𝑏. 𝑡𝑡. 

(2.163) 

 

 

 It is important to note that the boundary condition defined by Eq. (2.54) must be added 
to the above formulation. 

 As in the implicit scheme presented in the previous section, the time-integration scheme 
is always stable when 0.5 ≤ 𝜃𝜃 ≤ 1. Additionally, the Courant (Eq. (2.117)) has to be satisfied, 
while the maximum time-increment that can be applied due to the advection effect is given 
by Eq. (2.143). Finally, the time-increment condition due to the diffusion (Eq. (2.118)) must 
also be satisfied.  
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Simple academic example 2: transient thermal conduction-advection in 
continuum medium using the 𝜶𝜶-Implicit Characteristic Method 

 The objective of this example is to compare the solutions between the standard Galerkin 
FEM method and the new 𝛼𝛼-ICG method and verify that latter one provides stable solutions 
when 𝑃𝑃𝑃𝑃 > 1 in a 2-D simple example. 

 The geometry of this example consists of three horizontal layers in a domain of 400x250m 
(Figure 2.17.a). In order to observe the heat transport, a known and constant velocity field of 
magnitude 𝑣𝑣 = 0.32 𝑚𝑚/𝑠𝑠 (Figure 2.17.a) is imposed from the left to the right in the 
intermediate layer, as a preferential conduction layer throughout the continuous medium. 

 The initial state of the thermal problem is shown in Figure 2.17.b, which is the result of a 
steady-state problem where two values of temperature have been imposed on the left and 
right hand side of the domain, obtaining a linear distribution of temperatures for 𝑡𝑡 = 0. The 
velocity field is imposed on the described initial state maintaining the Dirichlet boundary 
conditions used to reach the steady-state solution. 
 

           
(a)          (b) 

Figure 2.17: (a) Imposed velocities in the intermediate layer and (b) steady-state temperature distribution at t=0 (after 
velocity application). 

 

 Figure 2.18 shows the results of the transient thermal problem with large advection 
(𝑃𝑃𝑒𝑒 = 2.2), first using the standard Galerkin weighting, which leads to oscillatory results, and 
then using the 𝛼𝛼-ICG method, which leads to the stable correct solution. In this case, it has 
been verified that the best result is reached for 𝛼𝛼 = 0, which corresponds to the Implicit 
Characteristic Galerkin Method. Note that the Courant number is smaller than 1 (𝐶𝐶 = 0.72), 
a necessary condition to obtain a stable solution. 
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Time 

     

     

     

     

      
 (a)        (b) 

Figure 2.18:  Transient thermal solution for Pe = 2.2. (a) Oscillatory results using the standard Galerkin weighting. (b) 
Correct solution using the new 𝛼𝛼-ICG method with 𝛼𝛼 = 0 for advective transport. 
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Simple academic example 3: transient pure advection in a continuum medium 
using the 𝜶𝜶-Implicit Characteristic Method 

 The geometry of this example consists of a horizontal domain of 400x80 meters with the 
initial temperature distribution shown in Figure 2.19. The transient problem is solved with a 
known uniform velocity field of magnitude 𝑣𝑣 = 0.75 𝑚𝑚/𝑠𝑠 from left to right. A correct solution 
consists of a temperature distribution moving from left to right with no oscillations. The FE 
mesh has 1377 nodes and 1280 continuum elements. Additionally, the thermal conductivity is 
equal to zero and the Péclet number tends to infinite. 

 The initial temperature distribution is moved to the right leading to oscillatory results 
using the standard Galerkin weighting (Figure 2.20) and to correct results using the new 𝛼𝛼-
ICG method with 𝛼𝛼 = 0.25 (Figure 2.21). Comparison of both figures (taken at t = 100 s) 
shows that the new method of characteristics used to solve the transient thermal problem 
with advection stabilizes the solution, leading to correct results. 

  
Figure 2.19: Mesh of the example and initial temperature distribution. 

 

  

     
     Figure 2.20: Transient thermal solution for Pe = ∞ using standard Galerkin weighting (t = 100 s). The plot shows 

the temperature distribution at the axis of symmetry. 

-20

0

20

40

60

80

100

0 50 100 150 200 250 300 350 400

T
 (ºC

) 

Distance (m) 



2.2. Heat transfer with large advection 

49 

 

 In both cases the Courant number is less than 1 (𝐶𝐶 = 0.75), which is a necessary 
condition to obtain a non-oscillatory result using the method of characteristics. Similar results 
and conclusions can be reached at other times during the transient problem when comparing 
the standard Galerkin weighting method and the new method of characteristics. As in the 
previous example, the best solution in this case is reached for 𝛼𝛼 =  0.25. 

  

      

Figure 2.21: Transient thermal solution for Pe = ∞ using the implicit characteristic method for advective transport (t 
= 100 s). The plot shows the temperature distribution at the axis of symmetry. 

 

Simple academic example 4: transient pure advection in a continuum medium 
using the 𝜶𝜶-Implicit Characteristic Method 

 The FE mesh of this example consists of a 2D horizontal domain of 1200x10 meters 
(Figure 2.22) composed of 480 continuum elements and 962 nodes. The initial distribution of 
temperatures of the thermal problem consists of a Gaussian distribution of temperatures, as 
shown in Figure 2.23. The transient problem is solved applying a known uniform velocity field 
of magnitude 𝑣𝑣 = 0.10 𝑚𝑚/𝑠𝑠 from left to right along the x-direction.  

 The thermal conductivity is assumed equal to zero and therefore the Péclet number tends 
to infinite (pure advection thermal problem). The Courant number in all the elements of the 
mesh is less than 1 (𝐶𝐶 = 0.61), which is a necessary condition to obtain a non-oscillatory 
result using the method of characteristics. 
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Figure 2.22: Mesh of the example (480 continuum elements and 962 nodes). 

 

 
(a) 

 
(b) 

Figure 2.23: Initial distribution of temperatures: (a) 3-D profile; (b) 2-D profile. 

 

 As the time passes the initial temperature distribution has to move from left to right in 
the domain keeping the initial distribution profile. First, the analysis has been carried out 
with α = 1/10 (Figure 2.24). These figures show that the method maintains the initial 
distribution of temperatures with small oscillations of +/- 0.60℃ at the top of the "bell" and 
at the front of the temperature profile. 

 The analysis can be carried out using other values of 𝛼𝛼. However, it has been observed 
that the best results are obtained for α = 1/4 and the solution becomes unstable for α > 1/2 
and for α < 0. Figure 2.25 shows the results for α = 1/4, so that the temporal derivatives are 
evaluated centred around the solution x (Figure 2.16.b). In this case it is observed that the 
method maintains the initial distribution of temperatures with small oscillations of ±0.10℃, 
only at the top of the “bell”. Moreover, Figure 2.26 shows the results for α = 2/5, where it is 
observed that the oscillations become larger (±4℃). 

 Finally, Figure 2.27 shows the results using the standard Galerkin weighting method, 
with which the original shape of the temperature profile is not maintained, with the peak 
value decreasing significantly as the “bell” base becomes much wider as time progresses. 

 Another test has been carried out with more refined meshes. In this case, the oscillations 
that appear in the front of the temperature profile become smaller and the solution improves 
significantly, producing lower loss of height of the temperature profile for both using the 
standard Galerkin weighting method and the 𝛼𝛼-Implicit Characteristic Galerkin method for 
all 𝛼𝛼-values. 
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 It can be concluded that the 𝛼𝛼-Implicit Characteristic Galerkin method leads to better 
solutions than the standard Galerkin weighting on FEM, and that the best solution is 
achieved for a value of 𝛼𝛼=1/4. Meanwhile, the standard Galerkin weighting leads to solutions 
that have no relation to the real phenomenon in pure advective problems. 

 

 

Figure 2.24: Distribution of temperatures using the 𝛼𝛼-ICG Method for different times (𝛼𝛼 = 1/10). 

 

 

 

Figure 2.25: Distribution of temperatures using the 𝛼𝛼-ICG Method for different times (𝛼𝛼 = 1/4). 

 

-5

0

5

10

15

20

25

30

35

40

0 200 400 600 800 1000 1200

T
 (

ºC
) 

Distance (m) 

t=0s t=2350s t=4700s t=7050s t=9400s t=11700s

-5

0

5

10

15

20

25

30

35

40

0 200 400 600 800 1000 1200

T
 (

ºC
) 

Distance (m) 

t=0s t=2350s t=4700s t=7050s t=9400s t=11700s



Chapter 2 - Advection in continuous media 

52 

 

 

Figure 2.26: Distribution of temperatures using the 𝛼𝛼-ICG Method for different times (𝛼𝛼 = 2/5). 

 

 

Figure 2.27: Distribution of temperatures for different times (Standard Galerkin Weighting). 

 

Simple academic example 5: transient pure advection in a continuum medium 
using the 𝜶𝜶-Implicit Characteristic Method 

 The FE mesh of this example is the same as in the previous example (Figure 2.22) and 
consists of a 2D horizontal domain of 1200×10 meters composed of 480 continuum elements 
and 962 nodes. The initial distribution of temperatures of the thermal problem consists of a 
trapezoidal distribution of temperatures, as shown in Figure 2.23. The transient problem is 
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solved by applying a known uniform velocity field of magnitude 𝑣𝑣 = 0.10 𝑚𝑚/𝑠𝑠 from the left to 
the right along the x-direction.  

 The thermal conductivity it is also assumed equal to zero and therefore the Péclet 
number tends to infinite (pure advection thermal problem). The Courant number in all the 
elements of the mesh is less than 1 (𝐶𝐶 = 0.61), which is a necessary condition to obtain a 
non-oscillatory result using the method of characteristics. 

 

 
(a) 

 

(b) 

Figure 2.28: Initial distribution of temperatures: (a) 3-D profile; (b) 2-D profile. 

 

 As the time passes the initial temperature distribution has to move from the left to the 
right of the domain keeping the initial distribution profile. First, the analysis has been carried 
out with α = 1/10 (Figure 2.29). The figure shows that, in this case, the method is not able 
to maintain the initial distribution of temperatures and leads to oscillations of +/- 2.40℃ at 
the top of the “platform” and at the front of the temperature profile. 

 The analysis can be carried out using other values of 𝛼𝛼. However, it has been observed 
that the best results are obtained for α = 1/4 and the solution becomes unstable for α > 1/2 
and for α < 0. Figure 2.30 shows the results for α = 1/4, where it is observed that the 
method maintains the initial distribution of temperatures with small oscillations of ±0.40℃, 
at the top of the “platform” and at the front of the temperature profile. Moreover, Figure 2.31 
shows the results for α = 1/2, where it is observed that the oscillations become larger 
(±1.80℃) and the initial distribution of temperatures is not maintained. 

 In this case, the shape of the initial distribution of temperatures strongly influences the 
obtained results. The reason lies on the two nodes of the distribution where the temperature 
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undergoes a sudden change. Thus, the main oscillations appear around these “jump” nodes, 
leading to the known Gibbs phenomenon. 

 Finally, Figure 2.32 shows the results using the standard Galerkin weighting method, 
with which the original shape of the temperature profile is not maintained, with the peak 
value decreasing significantly as the “platform” base becomes much wider as time progresses. 

 

 

Figure 2.29: Distribution of temperatures using the 𝛼𝛼-ICG Method for different times (𝛼𝛼 = 1/10). 

 

 

Figure 2.30: Distribution of temperatures using the 𝛼𝛼-ICG Method for different times (𝛼𝛼 = 1/4). 

-5

0

5

10

15

20

25

30

35

40

45

0 200 400 600 800 1000 1200

T
 (

ºC
) 

Distance (m) 

t=0s t=2350s t=4700s t=7050s t=9400s t=11700s

-5

0

5

10

15

20

25

30

35

40

45

0 200 400 600 800 1000 1200

T
 (

ºC
) 

Distance (m) 

t=0s t=2350s t=4700s t=7050s t=9400s t=11700s



2.2. Heat transfer with large advection 

55 

 

 

Figure 2.31: Distribution of temperatures using the 𝛼𝛼-ICG Method for different times (𝛼𝛼 = 1/2). 

 

 

Figure 2.32: Distribution of temperatures using the 𝛼𝛼-ICG Method for different times (Standard Galerkin Weighting). 

 

Simple academic example 6: transient pure advection in a continuum medium 
using the 𝜶𝜶-Implicit Characteristic Method 

 The FE mesh of this example is shown in Figure 2.33 and consists of a 2D mesh 
composed of 3000 continuum elements and 3311 nodes. In order to obtain a velocity field for 
the advective problem, the steady-state hydraulic problem is solved with the boundary 
conditions shown in Figure 2.35, which leads to the radial distribution of velocities with 

-5

0

5

10

15

20

25

30

35

40

45

0 200 400 600 800 1000 1200

T
 (

ºC
) 

Distance (m) 

t=0s t=2350s t=4700s t=7050s t=9400s t=11700s

-5

0

5

10

15

20

25

30

35

40

0 200 400 600 800 1000 1200

T
 (

ºC
) 

Distance (m) 

t=0s t=2350s t=4700s t=7050s t=9400s t=11700s



Chapter 2 - Advection in continuous media 

56 

 

decreasing value which is shown in the same figure. These velocities, which vary from 0.60 to 
1.80 m/s, are applied to the transient thermal problem, with the initial distribution of 
temperatures shown in Figure 2.34. The thermal conductivity is equal to zero and the Péclet 
number tends to infinite (pure advection thermal problem). The Courant number varies 
between 0.21 and 0.63 over the mesh (Figure 2.36). 

 
Figure 2.33: Mesh of the example (3000 continuum elements and 3311 nodes). 

 

 

    
(a) 

 
(b) 

Figure 2.34: Initial distribution of temperatures: (a) 2-D profile; (b) 3-D profile. 
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Figure 2.35: Boundary conditions of the hydraulic problem (imposed pressures) and the velocities obtained from the 
analysis. The velocities decrease towards the right of the domain. 𝑃𝑃1 and 𝑃𝑃2 are the imposed pressures of the problem. 

 

 The analysis has been carried out using the new 𝛼𝛼-Implicit Characteristic Galerkin 
method, first assuming α = 1/4, which is, as described in the previous examples, the best 
value to stabilize the solution. The results for α = 1/4 are presented in Figure 2.37. The 
figure shows that, as times progresses, the temperature distribution becomes narrower in the 
direction of velocities (x), and the maximum value of the temperatures remains constant, 
complying with the principle of heat preservation (the “volume” of the temperature field 
remains constant and because of that also the total amount of heat). Figure 2.38 shows the 
temperature distribution on the axis of simmetry of the domain. Small oscillations with values 
around ±0.5℃ can be perceived. 

 Moreover, the analysis has been carried out for other different values of α. Figure 2.39 
shows the results using α = 0, which is coincident with the Implicit Carachteristic Galerkin 
method. In this case the oscillations become bigger with values around ±1.2℃. Finally, 
Figure 2.40 shows the results using α = 0.50. In this case the oscillations become bigger with 
values around ±1.7℃. 

 

    

Figure 2.36: Courant number over the FEM mesh. 

P2 = 0 P1 

P1 >>>> P2 
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Figure 2.37: Distribution of temperatures for different times using the 𝛼𝛼-ICG method with 𝛼𝛼 = 1/4. Legend in figure 
Figure 2.34.a. 
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Figure 2.38: Distribution of temperatures for different times (axis of symmetry) for 𝛼𝛼 = 1/4. 

 

 

Figure 2.39: Distribution of temperatures for different times (axis of symmetry) for 𝛼𝛼 = 0. 

 

 Finally, Figure 2.41 shows the results using the standard Galerkin weighting method with 
which the original shape of the temperature profile is not maintained, and the peak value 
decreases significantly as the base becomes much wider. This effect is the same observed in 
the previous examples. 
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Figure 2.40: Distribution of temperatures for different times (axis of symmetry) for 𝛼𝛼 = 1/2. 

 

 

Figure 2.41: Distribution of temperatures for different times (axis of symmetry) (Standard Galerkin Weighting). 

 

Simple academic example 7: transient pure advection in a continuum medium 
using the 𝜶𝜶-Implicit Characteristic Method 

 The FE mesh of this example consists of a quadrangular 500×500m domain with a 2D 
regular mesh composed of 10000 continuum quadrilateral elements and 10201 nodes. The 
initial distribution of temperatures of the thermal problem is trapezoidal, as shown in Figure 
2.42. The thermal conductivity coefficient is assumed equal to zero and therefore the Péclet 
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number tends to infinite (pure advection thermal problem). During the transient thermal 
analysis a circular velocity field (𝜔𝜔 = 5·10-04 rad/s) around the geometric centre of the 
domain is applied. Therefore, the physical solution of the problem consists of the initial 
temperature distribution rotating unaltered around the domain center. The Courant number 
varies between 0 (centre of the domain) and 0.50 (corners of the domain). 

 

     

(a) 

 
(b) 

Figure 2.42: Initial distribution of temperatures. (a) 2-D profile; (b) 3-D profile. 

 

 The analysis can be carried out using the 𝛼𝛼-ICG method for different values of 𝛼𝛼. 
However, as in the previous examples, it has been observed that the best results are obtained 
for 𝛼𝛼 = 1/4 and the solution becomes unstable for 𝛼𝛼 > 1/2 and for 𝛼𝛼 < 0. 

 Figure 2.43 shows the results for α = 1/4, where it is observed that the method maintains 
well the initial distribution of temperatures with small oscillations of ±1.3℃ , mainly at the 
top of the “platform”. However, a few small residual waves appear around the domain with 
the movement of the platform, which have small values (±5 · 10−3℃ ), as shown in Figure 
2.44. 
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(a) t = 0 s.       (b)  t = 1000 s. 

         
(c) t = 2000 s.     (d)  t = 3500 s. 

          
(e) t = 5000 s.       (f)  t = 6300 s. 

Figure 2.43: Distribution of temperatures for different times using the 𝛼𝛼-ICG method with 𝛼𝛼 = 1/4. 
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Figure 2.44: Distribution of temperatures after one complete rotation using the 𝛼𝛼-ICG method with 𝛼𝛼 = 1/4. As it is 
observed, a few residual waves around the domain with values 5 · 10−3º𝐶𝐶 appear. 

 

 Figure 2.45 shows the distribution of temperatures at the axis of the domain for the 
initial distribution, the distribution after a rotation of 180º and after 360º of rotation (Figure 
2.43.f). 

 

 

Figure 2.45: Distribution of temperatures for the initial distribution, after a rotation of 180º and after a rotation of 
360º (axis of symmetry) using the 𝛼𝛼-ICG method with 𝛼𝛼 = 1/4.  

 
Figure 2.46 and Figure 2.47 show the results using the standard Galerkin weighting method 
with which the original shape of the temperature profile is not maintained as the “platform” 
rotates around the centre of the domain. 
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(a) t = 0 s.       (b)  t = 1000 s. 

         
(c) t = 2000 s.     (d)  t = 3500 s. 

          
(e) t = 5000 s.       (f)  t = 6300 s. 

Figure 2.46: Distribution of temperatures for different times (Standard Galerkin Weighting). 
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Figure 2.47: Distribution of temperatures after one complete rotation using the Standard Galerkin Weighting. 

 

Simple academic example 8: transient pure advection in a continuum medium 
using the 𝜶𝜶-Implicit Characteristic Method 

 The FE mesh of this example consists of a circular domain (diameter 500m) with a 2D 
regular mesh composed of 12000 continuum elements (hexahedrons) and 12240 nodes. The 
initial distribution of temperatures of the thermal problem consists in a trapezoidal 
distribution of temperatures and a Gaussian distribution of temperatures, both separated 
180º, as shown in Figure 2.48. The thermal conductivity coefficient is assumed equal to zero 
and therefore the Péclet number tends to infinite (pure advection thermal problem). During 
the transient thermal analysis, a circular velocity field (𝜔𝜔 = 5·10-04 rad/s) around the 
geometric centre of the domain is applied. Therefore, the physical solution of the problem 
consists of the initial temperature distribution rotating unaltered around the domain centre. 
The Courant number depends on the size of the element and the velocities and varies between 
0.35 and 0.45. 

 The analysis can be carried out using the 𝛼𝛼-ICG method for different values of 𝛼𝛼. 
However, as in the previous examples, it has been observed that the best results are obtained 
for 𝛼𝛼 = 1/4 and the solution becomes unstable for 𝛼𝛼 > 1/2 and for 𝛼𝛼 < 0. 

 Figure 2.50 shows the results for α = 1/4, where it is observed that the method maintains 
well the initial distribution of temperatures with small oscillations of ±3.1℃, mainly at the 
base of the “platform”, while the oscillations at the top of both distributions are around 
±0.2℃. Additionally, a few small residual waves appear around the domain with the 
movement of the temperature distributions, which have small values (±5 · 10−3℃), as shown 
in Figure 2.49. 
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(a) 

    

(b) 

Figure 2.48: Initial distribution of temperatures. (a) 2-D profile; (b) 3-D profile. 

 

 

    

Figure 2.49: Distribution of temperatures after one complete rotation using the 𝛼𝛼-ICG method with 𝛼𝛼 = 1/4. As it is 
observed, a few residual waves around the domain with values 5 · 10−3º𝐶𝐶 appear. 
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(a) t = 0 s.       (b)  t = 1000 s. 

         
(c) t = 2000 s.     (d)  t = 3500 s. 

          
(e) t = 5000 s.       (f)  t = 6300 s. 

Figure 2.50: Distribution of temperatures for different times using the 𝛼𝛼-ICG method with 𝛼𝛼 = 1/4. 



Chapter 2 - Advection in continuous media 

68 

 

 Figure 2.51 shows the distribution of temperatures at the axis of the domain for the 
initial distribution and the distribution after a rotation of 360º (Figure 2.50.f). 

 

 

Figure 2.51: Distribution of temperatures for the initial distribution and after rotation of 360º (axis of symmetry) using 
the 𝛼𝛼-ICG method with 𝛼𝛼 = 1/4.  

 

 Finally, for comparison Figure 2.52 and Figure 2.53 show the results using the standard 
Galerkin weighting method with which the original shape of the temperature profile is not 
maintained as the “platform” rotates around the centre of the domain. 

 

    

Figure 2.52: Distribution of temperatures after one complete rotation using the Standard Galerkin Weighting. 
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(a) t = 0 s.       (b)  t = 1000 s. 

         
(c) t = 2000 s.     (d)  t = 3500 s. 

          
(e) t = 5000 s.       (f)  t = 6300 s. 

Figure 2.53: Distribution of temperatures for different times (Standard Galerkin Weighting). 
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3. d 
 

Chapter 3 

Heat transfer with advection in zero-
thickness interface elements 
 

 The main objective of this Chapter is to represent with a numerical model the advection 
phenomena that occur due to the hydraulic flow present in the discontinuities and the heat 
transport with the flow, assuming saturated conditions and incompressible fluid. 

 In modeling rock and quasi-brittle materials it is important to distinguish between the 
hydraulic behavior that occurs in the porous medium and through the discontinuities, both of 
them generating a double-permeability system. While the porous media provides a small 
permeability to the whole system, the discontinuities establish preferential flow paths and 
provide the main permeability of the same. Due to the high hydraulic velocities developed in 
the discontinuities, the main thermal transport may occur through them and the advection 
may be the dominant heat transfer mode. Thus, it is important to establish a numerical 
model to study the advection phenomena that differentiates the discontinuity network and 
the porous medium contributions. 

 When the fluid velocities are low the formulation and implementation of the additional 
advective term in the equations can be made by traditional FEM methods (Galerkin). 
However, when the fluid velocities are high enough, the standard Galerkin weighting leads to 
oscillatory results as it does in continuum elements, and consequently the advective term 
requires a special treatment to stabilize the numerical solution. However, this effect occurs 
typically only in fractures or discontinuities, and not in the continuum medium.  

 This Chapter follows the work of Segura (2007) and Garolera (2017), where the hydraulic 
flow for double-nodded zero-thickness interface elements was proposed in 2-D and 3-D, 
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respectively. In this context, this Chapter presents the extension of this numerical approach 
in interfaces for thermal advective flow. 

 The first section of this Chapter presents a brief review of the different numerical 
approaches for the FEM modeling of discontinuities, concluding in the use of double-noded 
zero-thickness interface elements as the approach used in this thesis. The second section of 
this Chapter presents a classical FEM formulation to solve the conduction-advection problem 
for zero-thickness interface elements, only valid for small advection (𝑃𝑃𝑃𝑃 ≤ 1). Finally, a third 
part presents the solution of the FEM problem considering stabilization methodologies in 
order to solve large advection problems (𝑃𝑃𝑃𝑃 > 1), already explained for continuum media in 
Chapter 2.  

 

3.1. Numerical approach for discontinuities 

 The effect of the discontinuities may be studied using two different approaches (Figure 
3.1). The first one is based in the discrete representation of individual joints and is known as 
discrete approach. The other one is the equivalent continuum method, in which the effect of 
existing discontinuities is studied by using an equivalent continuum material model. The 
discrete approach is in general used to describe the joint behavior in detail, while the 
equivalent continuum method is usually adopted when the problem involves a large number of 
discontinuities distributed with a certain homogeneity throughout a rock mass, defining an 
equivalent material in which the properties of the joint system are taken into account within 
the properties of the rock  (Olofsson, 1985). The selection of the more appropriate approach 
depends on the scale of study of the considered problem. 

 
Figure 3.1: Equivalent continuum and discrete approaches for discontinuous media (Segura, 2007). 

 

 The discrete approach is based on the explicit representation of each discontinuity in an 
individualized manner by means of interface elements. In the FEM, the interface elements 
have been widely studied from the first works of Goodman, et al. (1968), Zienkiewicz, et al. 
(1970) and Ghaboussi, et al. (1973). In this context there are two major groups of interface 
elements: “thin-layer” and “zero-thickness” (Figure 3.2). 

• The “thin-layer” interface elements consider the discontinuities as a thin continuum 
layer. In the FEM context these elements are standard continuum finite elements in 
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which one of the dimensions is much smaller than the others and a constitutive model 
for continuum media is used. They were introduced by Desai, et al. (1984) and 
improved by Sharma & Desai (1992). 

• The “zero-thickness” interface elements reduce the mechanical and diffusive 
formulations to the mid-plane of the joint. This type of element was originally 
developed by Goodman, et al. (1968) and their use is justified by the small thickness 
of the discontinuities in comparison with the dimensions of the problem. Since the 
1980s, the “zero-thickness” interface models have been developed and applied to many 
practical problems in geomechanics and are nowadays well established, both in the 
mechanical and flow contexts. Section 4.4 presents the elasto-plastic mechanical 
constitutive law used in this thesis for zero-thickness interface elements, which is based 
in fracture mechanics and fracture energies.  
 

 
Figure 3.2: “Zero-thickness” and “thin-layer” interface elements inserted between two continuum 

finite elements (Segura, 2007). 

 

 In the diffusion context, the zero-thickness interface elements may be classified into 
single, double and triple-nodded (Figure 3.3). A detailed review of this type of elements is 
described in Segura (2007).  

 

 

Figure 3.3: Single, double and triple node interfaces for diffusion analysis (Segura, 2007). 
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 As the mechanical problem formulation is performed using zero-thickness double-nodded 
interface elements (Section 4.3), the more convenient strategy is to use the same kind of 
interface elements for the hydraulic and thermal problems. In this way, the same FEM mesh 
is used for the three problems, which is convenient in order to formulate the thermo-hydro-
mechanical coupled problem in interface elements. Thus, the current thesis focuses on the 
study of the discontinuities from a discrete point of view by using double-nodded zero-
thickness interface elements, which are pre-inserted along the FEM mesh before the 
calculations. This approach pre-establishes the possible paths of fracture, so it is important to 
determine a priori the main potential fracture paths of the problem and insert these interface 
elements in the most appropriate locations throughout the mesh. 

 It is important to note that the discontinuities can be classified in two groups: the pre-
existing discontinuities and the new or developing ones. Pre-existing discontinuities in a rock 
mass are usually studied with Rock Mechanics, while the initiation and propagation is studied 
by Fracture Mechanics, which studies the crack propagation due to the existence of loads 
(mechanical, hydraulic or thermal). In this work, the interface elements are pre-inserted in the 
FEM mesh before the calculations, ant both types of discontinuities are treated indistinctly 
from the numerical point of view. 

 This thesis follows the definition of zero-thickness interface element proposed by 
Goodman, et al. (1968). In this type of elements one of the dimensions is collapsed and the 
integration is reduced one order; lines for 2D and surfaces for 3D problems (Figure 3.4).  

 

 

Figure 3.4: Double-nodded zero-thickness interface element. Example of a quadrilateral interface element, where 𝑛𝑛𝑖𝑖 are 
the element nodes and 𝑚𝑚𝑚𝑚𝑖𝑖 the mid-plan nodes (Garolera, 2017). 

 

 The mechanic, hydraulic or thermal longitudinal (or in-plane) problem is formulated at 
the mid-plane surface, which is defined via isoparametric elements, such as lines, triangles or 
quadrangles, in the same manner as in the continuum medium (Figure 3.5). Once the results 
are obtained at the mid-plane, the temperatures at the nodes of the element are obtained 
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assuming that the temperature at the mid-plane is the average of the temperature of the two 
original nodes of the interface.  

 Additional to the longitudinal flow, the existence of a discontinuity may also represent a 
resistance to the temperature flow in the transversal direction, which would result in a 
localized temperature drop across the interface, as it is explained in Section 3.2. In this case, 
also the thermal problem is formulated at the mid-plane nodes. However, in order to obtain 
the temperature values at the nodes of the element, it is assumed that the potential thermal 
drop at the mid-plane nodes is defined as the difference of potential between the two nodes of 
the interface, and not as an average of them as for the longitudinal flow. 

 One of the most important issues in the use of this kind of interface elements is to 
establish the appropriate local reference systems to carry out the calculations along the mid-
plane of the elements, especially in 3-D problems, where the interfaces are represented as 
curved surfaces. In this context, two different reference systems are defined for each local 
point of the mid-plane: 

• Local coordinate system (𝝃𝝃, 𝜼𝜼): are the local coordinates defined along the mid-plane 
of the element, which corresponds to the one defined within the isoparametric element 
(Figure 3.5). This reference system does not satisfy the condition of orthonormality and 
can't be used for the calculations. 

• Local orthogonal coordinate system (𝒏𝒏, 𝒍𝒍𝟏𝟏, 𝒍𝒍𝟐𝟐): since the local coordinate system 
does not satisfy the orthonormality condition, a new local basis is generated at each point 
of the mid-plane. For this, a tangent plane to each point of the mid-plane is defined. The 
first component of the new local basis is defined as the perpendicular unit vector to this 
plane, and the second and third components are contained in it, conforming an 
orthonormal basis with normal and tangential components. The calculations at each point 
of the interface elements are performed using this reference system. 

 Furthermore, the rotation matrices between these reference systems and the global 
system (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) must be also defined. More details of the variables and geometry aspects that 
involve the double-nodded zero-thickness interface elements formulation can be found in 
Section 2.2.2. of Garolera (2017). 
 

 

Figure 3.5: Coordinate systems of a zero-thickness interface element. Global coordinate system (𝑥𝑥, 𝑦𝑦, 𝑧𝑧), local element 
coordinate system (𝜉𝜉, 𝜂𝜂) and local orthogonal coordinate system (𝑛𝑛, 𝑙𝑙1, 𝑙𝑙2) (Garolera, 2017). 
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3.2. Formulation of the thermal problem with small advection in 
interfaces 

 This Section develops the formulation of the thermal problem with small advection using 
the zero-thickness interface elements presented in the previous Section 3. This approach 
follows the work of Segura & Carol (2004), which was the first in using this kind of interface 
elements applied to diffusion problems. 

 The formulation of this kind of elements is composed of two terms: the longitudinal flow 
along the interface and the transversal flow across the same, as described by Segura & Carol 
(2004), Segura (2007), Segura & Carol (2008a), Segura & Carol (2008b) and Garolera (2017). 

 A set of equations describing both longitudinal and transversal heat flow is developed in 
this section, assuming three-dimensional interface elements with a local orthogonal coordinate 
system {𝑛𝑛, 𝑙𝑙1, 𝑙𝑙2}, where 𝑙𝑙1 and 𝑙𝑙2 are the local directions of the interface along the mid-plane. 

 It is also assumed that the discontinuity is surrounded by a continuum medium and, as in 
the hydraulic flow described by Segura (2007), the thermal flow can leak from the 
discontinuity to the continuum medium and vice versa. 

 

Longitudinal flow 

 The longitudinal flow vector 𝐪𝐪L
𝑇𝑇  defined by the conduction-advection equation in the 

transient problem can be written from Eq. (2.11) as: 

𝐪𝐪L
𝑇𝑇 = −𝑘𝑘𝐿𝐿

𝑇𝑇  𝛁𝛁𝐽𝐽 𝜙𝜙 +  𝜌𝜌𝜌𝜌𝜌𝜌𝐯𝐯L (3.1) 

where 𝑘𝑘L
𝑇𝑇  is the longitudinal thermal conductivity; 𝛁𝛁𝐽𝐽  = � 𝜕𝜕

𝜕𝜕𝑙𝑙1
  𝜕𝜕

𝜕𝜕𝑙𝑙2
�
⊤
 is the partial 

differential operator for the local in-plane axis; 𝐯𝐯L is the longitudinal velocity (known) field at 
the mid-plane of the interface element; 𝜙𝜙 is the temperature field; and 𝜌𝜌 and 𝑐𝑐 are the density 
and the thermal capacity of the material filling the interface, respectively. In 3-D interfaces 
the longitudinal flow is the flow at the mid-plane of the interface, also known as in-plane flow. 

 The longitudinal heat transfer problem in a discontinuity is studied along the mid-plane 
of the interface (Figure 3.4). By imposing heat conservation in the longitudinal direction of a 
differential interface element (Figure 3.6) the continuity equation is obtained: 

−[𝛁𝛁𝐽𝐽]⊤𝐐𝐐L
𝑇𝑇 = 𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 (3.2) 

where 𝑟𝑟𝑁𝑁  is the interface aperture, source terms are left out for simplicity and 𝐐𝐐L
𝑇𝑇  is the 

longitudinal heat flow rate derived from Darcy's law and Eq. (3.1) and can be written as: 

𝐐𝐐L
𝑇𝑇 = 𝑟𝑟𝑁𝑁 𝐪𝐪L

𝑇𝑇 = −𝑟𝑟𝑁𝑁𝑘𝑘𝐿𝐿
𝑇𝑇 𝛁𝛁𝐽𝐽𝜙𝜙 + 𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌𝜌𝜌𝐯𝐯L (3.3) 
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Substituting (3.3) into (3.2) leads to: 

𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌 �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ [𝐯𝐯L]⊤𝛁𝛁𝐽𝐽𝜙𝜙� − 𝑟𝑟𝑁𝑁 [𝛁𝛁𝐽𝐽]⊤𝑘𝑘𝐿𝐿
𝑇𝑇  𝛁𝛁𝐽𝐽𝜙𝜙 = 0       in     Ω𝐽𝐽 (3.4) 

where 𝛺𝛺𝐽𝐽  is the local mid-plane longitudinal coordinate defined by the system {𝑙𝑙1, 𝑙𝑙2, 𝑛𝑛}. 

 

 

Figure 3.6: Thermal flow through a differential interface element (Segura, 2007). 

 

 There are two kinds of boundary conditions applicable to the transient conduction-
advection differential equation. The first is the Dirichlet boundary condition, in which the 
temperature values are imposed on a boundary Γϕ: 

𝜙𝜙 = 𝜙𝜙(̅𝑥𝑥, 𝑦𝑦, 𝑥𝑥, 𝑡𝑡)      on      Γϕ (3.5) 

 The second is the Neumann boundary condition, in which the normal heat flow is 
prescribed on a boundary Γq: 

𝑞𝑞𝑁𝑁
𝑇𝑇 = 𝑞𝑞𝑁̅𝑁

 𝑇𝑇 (𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡)      on      Γq (3.6) 

where 𝑞𝑞𝑁𝑁
𝑇𝑇  is the heat flow normal to the boundary and 𝑞𝑞𝑁̅𝑁

 𝑇𝑇  is the prescribed value of the heat 
flow. The heat flow 𝑞𝑞𝑁𝑁

𝑇𝑇  is calculated as the normal projection of the heat flow vector 𝐐𝐐L
𝑇𝑇  on 

the boundary Γq. Using Eq. (3.1) this condition becomes:  

𝑞𝑞𝑁𝑁
𝑇𝑇 = [𝐧𝐧]⊤𝐐𝐐L

𝑇𝑇 = −[𝐧𝐧]⊤𝑟𝑟𝑁𝑁 𝑘𝑘𝐿𝐿
𝑇𝑇  𝛁𝛁𝐽𝐽𝜙𝜙 + 𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌𝜌𝜌𝑣𝑣𝐿𝐿,𝑁𝑁  (3.7) 

where 𝑣𝑣𝐿𝐿,𝑁𝑁 = [𝐧𝐧]⊤𝐯𝐯L is the normal longitudinal component of the velocity at the boundary 
Γq. Using Eq. (3.6) and (3.7) the same equation may be finally written as:  

−𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌𝜌𝜌𝑣𝑣𝐿𝐿,𝑁𝑁 + [𝐧𝐧]⊤𝑟𝑟𝑁𝑁 𝑘𝑘𝐿𝐿
𝑇𝑇  𝛁𝛁𝐽𝐽𝜙𝜙 + 𝑞𝑞𝑁̅𝑁

 𝑇𝑇 = 0         on     Γq (3.8) 

The term 𝑞𝑞𝑁̅𝑁
 𝑇𝑇  may be a known normal heat flow applied to the boundary: 

𝑞𝑞𝑁̅𝑁
 𝑇𝑇 = 𝑞𝑞𝑇̅𝑇    (3.9) 
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 Substituting Eq. (3.9) into (3.8) results in the complete Neumann boundary condition of 
the conduction-advection heat transfer problem: 

−𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌𝜌𝜌𝑣𝑣𝐿𝐿,𝑁𝑁 + [𝐧𝐧]⊤𝑟𝑟𝑁𝑁 𝑘𝑘𝐿𝐿
𝑇𝑇  𝛁𝛁𝐽𝐽𝜙𝜙 + 𝑞𝑞𝑇̅𝑇        on     Γq   (3.10) 

 Finally, the initial temperature condition for the transient problem can be written in the 
same form of Eq. (2.26). 

 Using the FEM to perform the spatial discretization of Eq. (3.4) along the mid-plane of 
the interface, the temperature can be written as:  

𝜙𝜙 ≅ 𝜙𝜙̂ = �𝑁𝑁𝐽𝐽
 (𝑎𝑎) 𝜙𝜙𝑚𝑚𝑚𝑚

  (𝑎𝑎)
𝑚𝑚

𝑖𝑖=1
= 𝐍𝐍𝐽𝐽 𝛟𝛟mp 

         𝑎𝑎 = 1,2, . . 𝑚𝑚 (3.11) 

where ϕ̂ is the approximate value of the temperature; 𝜙𝜙𝑚𝑚𝑚𝑚
  (𝑎𝑎) and 𝑁𝑁𝐽𝐽

 (𝑎𝑎) are the value of the 
temperature and the shape function at the (𝑎𝑎) mid-plane node respectively; and 𝑚𝑚 is the 
number of mid-plane nodes of the interface element (equal to half of the nodes for double-
node interface elements). 

 Eq. (3.4) represents the strong form of the governing differential equations of the problem 
and (3.5) and (3.10) the boundary conditions. Replacing the approximation 𝜙𝜙 ̂ in (3.4) and 
(3.10) leads to:  

𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌 �𝜕𝜕𝜙𝜙 ̂
𝜕𝜕𝜕𝜕

+ [𝐯𝐯L]⊤𝛁𝛁𝐽𝐽𝜙𝜙�̂ − 𝑟𝑟𝑁𝑁 [𝛁𝛁𝐽𝐽]⊤𝑘𝑘𝐿𝐿
𝑇𝑇  𝛁𝛁𝐽𝐽𝜙𝜙 ̂ = 𝑟𝑟Ω𝐽𝐽

       in       Ω𝐽𝐽   (3.12) 

−𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌𝜙𝜙𝑣̂𝑣𝐿𝐿,𝑁𝑁 + [𝐧𝐧]⊤𝑟𝑟𝑁𝑁𝑘𝑘𝐿𝐿
𝑇𝑇  𝛁𝛁𝐽𝐽𝜙𝜙 ̂ + 𝑞𝑞𝑇̅𝑇 = 𝑟𝑟Γ       on       Γq  (3.13) 

where 𝑟𝑟Ω𝐽𝐽
 and 𝑟𝑟Γ are the residuals from the finite element approximation. For the Dirichlet 

boundary conditions (3.5), it is assumed that the condition is satisfied exactly at prescribed 
nodes (𝜙𝜙 ̂ = 𝜙𝜙). 

 Using the weighted residuals method to minimize 𝑟𝑟Ω𝐽𝐽
 and 𝑟𝑟Γ, the following integral 

expression is obtained: 

� 𝑤𝑤
 

Ω𝐽𝐽

𝑟𝑟Ω𝐽𝐽
 dΩ𝐽𝐽 + � 𝑤𝑤����

 

Γq

𝑟𝑟𝛤𝛤  dΓ = 0         𝑎𝑎 = 1,2,… 𝑚𝑚 (3.14) 

where 𝑤𝑤 and 𝑤𝑤���� are weight functions. Substituting Eqs. (3.12) and (3.13) in (3.14), considering 
the mid-plane nodes of the element and assuming 𝑤𝑤���� = −𝑤𝑤 on the boundary, the weak form of 
the problem is obtained: 
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� 𝑤𝑤
 

Ω𝐽𝐽

�𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌 𝜕𝜕𝜙𝜙 ̂
𝜕𝜕𝜕𝜕

+ 𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌 [𝐯𝐯L]⊤𝛁𝛁𝐽𝐽𝜙𝜙 ̂− 𝑟𝑟𝑁𝑁 [𝛁𝛁𝐽𝐽]⊤𝑘𝑘𝐿𝐿
𝑇𝑇  𝛁𝛁𝐽𝐽𝜙𝜙�̂ dΩ𝐽𝐽

− � 𝑤𝑤
 

Γq

�−𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌𝜙𝜙𝑣̂𝑣𝐿𝐿,𝑁𝑁 + [𝐧𝐧]⊤𝑟𝑟𝑁𝑁𝑘𝑘𝐿𝐿
𝑇𝑇  𝛁𝛁𝐽𝐽𝜙𝜙 ̂ + 𝑞𝑞𝑇̅𝑇 � dΓ = 0 

(3.15) 

Using the standard Galerkin weighing (𝑤𝑤 = 𝑁𝑁𝐽𝐽
 (𝑎𝑎), 𝑎𝑎 = 1,… , 𝑚𝑚) the integral form is 

transformed into: 

� 𝑁𝑁𝐽𝐽
 (𝑎𝑎)

 

Ω𝐽𝐽

�𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌 𝜕𝜕𝜙𝜙 ̂
𝜕𝜕𝜕𝜕

+ 𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌 [𝐯𝐯L]⊤𝛁𝛁𝐽𝐽𝜙𝜙 ̂− 𝑟𝑟𝑁𝑁 [𝛁𝛁𝐽𝐽]⊤𝑘𝑘𝐿𝐿
𝑇𝑇  𝛁𝛁𝐽𝐽𝜙𝜙�̂ dΩ𝐽𝐽

− � 𝑁𝑁𝐽𝐽
 (𝑎𝑎)

 

Γq

�−𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌𝜙𝜙𝑣̂𝑣𝐿𝐿,𝑁𝑁 + [𝐧𝐧]⊤𝑟𝑟𝑁𝑁𝑘𝑘𝐿𝐿
𝑇𝑇  𝛁𝛁𝐽𝐽𝜙𝜙 ̂ + 𝑞𝑞𝑇̅𝑇 � dΓ = 0 

(3.16) 

where 𝑁𝑁𝐽𝐽
 (𝑎𝑎) is each of the mid-plane shape functions of the interface element.  

 Applying the spatial discretization defined by Eq. (3.11) and the Theorem of the 
Divergence to the first term of Eq. (3.16) the final expression is obtained: 

𝐐𝐐Lmp
= 𝐊𝐊Lmp

𝛟𝛟mp 
+ 𝐂𝐂Lmp

 𝛟̇𝛟mp 
  (3.17) 

where  

𝐊𝐊Lmp
= 𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌 � �[𝐍𝐍𝐽𝐽

  ]⊤ 𝐯𝐯L 
  𝐁𝐁𝐽𝐽

 �
 

Ω𝐽𝐽

dΩ𝐽𝐽 + 𝑟𝑟𝑁𝑁 � ([𝐁𝐁𝐽𝐽
  ]⊤ 𝑘𝑘𝐿𝐿

𝑇𝑇  𝐁𝐁𝐽𝐽
 )

 

Ω𝐽𝐽

dΩ𝐽𝐽

− 𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌 � �[𝐍𝐍𝐽𝐽
  ]⊤ 𝑣𝑣𝐿𝐿,𝑁𝑁 

  𝐍𝐍𝐽𝐽
 �

 

Γq

dΓ  
(3.18) 

𝐂𝐂𝐋𝐋mp
= 𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌 � [𝐍𝐍𝐽𝐽

  ]⊤ 𝐍𝐍𝐽𝐽
 

 

Ω𝐽𝐽

 dΩ𝐽𝐽  (3.19) 

and 

𝐁𝐁𝐽𝐽
 = 𝛁𝛁𝐽𝐽𝐍𝐍𝐽𝐽

  (3.20) 

𝛟𝛟mp
 = �𝜙𝜙𝑚𝑚𝑚𝑚

  (1)  𝜙𝜙𝑚𝑚𝑚𝑚
  (2)  … 𝜙𝜙𝑚𝑚𝑚𝑚

  (𝑚𝑚)�
⊤
         𝐯𝐯L = �𝑣𝑣𝐿𝐿

 (1)  𝑣𝑣𝐿𝐿
 (2)  … 𝑣𝑣𝐿𝐿

 (𝑚𝑚)�
⊤
    (3.21) 

 

 In order to obtain the final FEM formulation related to the nodes of the mesh (and not 
to the mid-plane nodes), an additional assumption is necessary: 

𝜙𝜙𝑚𝑚𝑚𝑚
  (𝑎𝑎)  =

𝜙𝜙𝑡𝑡𝑡𝑡𝑡𝑡
  (𝑎𝑎) + 𝜙𝜙𝑏𝑏𝑏𝑏𝑏𝑏

  (𝑎𝑎)

2
               𝑎𝑎 = 1,2,…𝑚𝑚 (3.22) 

where 𝜙𝜙𝑡𝑡𝑡𝑡𝑡𝑡
  and 𝜙𝜙𝑏𝑏𝑏𝑏𝑏𝑏

  are the temperatures at each side of the discontinuity. That means that 
the temperature at the mid-plane is the average of the temperature at the corresponding 
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nodes of the element. The temperature at the mid-plane of the interface can be written in 
terms of the element’s nodal temperatures (see Figure 3.4) as: 

𝛟𝛟mp 
 = 1

2
 [𝐈𝐈𝑚𝑚  𝐈𝐈𝑚𝑚] 𝛟𝛟e

 = 𝕋𝕋�L 𝛟𝛟e
  (3.23) 

where 𝕋𝕋�L = 1
2 [𝐈𝐈𝑚𝑚  𝐈𝐈𝑚𝑚]  is the longitudinal transference matrix, 𝐈𝐈𝑚𝑚 is the 𝑚𝑚 × 𝑚𝑚 identity 

matrix and the element’s temperature vector is defined by: 

 𝛟𝛟e = �𝜙𝜙(1)    𝜙𝜙(2)  … 𝜙𝜙(2𝑚𝑚)�⊤  (3.24) 

For two-dimensional interfaces Eq. (3.23) may be written as: 

𝛟𝛟mp 
 = �

𝜙𝜙𝑚𝑚𝑚𝑚
  (1)

𝜙𝜙𝑚𝑚𝑚𝑚
  (2)� =

⎣
⎢⎢
⎡

𝜙𝜙(1) + 𝜙𝜙(3)

2
𝜙𝜙(2) + 𝜙𝜙(4)

2 ⎦
⎥⎥
⎤

= 1
2
 [𝐈𝐈𝑚𝑚  𝐈𝐈𝑚𝑚] 𝛟𝛟e

 = 𝕋𝕋�L 𝛟𝛟e
  (3.25) 

Additionally, using the Principle of Virtual Work (PVW) in a discrete form, 

[𝛿𝛿𝛟𝛟e
 ]⊤ 𝐐𝐐Le 

= �𝛿𝛿𝛟𝛟mp
 �⊤ 𝐐𝐐Lmp 

 (3.26) 

𝐐𝐐Le 
= �𝕋𝕋�L

 
�
⊤
𝐐𝐐Lmp 

 (3.27) 

that is, a dual relation to Eq. (3.23) is obtained to relate the “thermal force” (heat discharge) 
element vector 𝐐𝐐Le 

 (which is thermodynamically dual to the temperature element vector 𝛟𝛟e
 ) 

to the mid-point vector 𝐐𝐐Lmp
 (which is thermodynamically dual to the mid-point vector 

𝛟𝛟mp
 ). Note that this relation involves the rectangular matrix 𝕋𝕋�L

 
 which appears transposed in 

comparison to the dual expression in Eq. (3.23). 

 All the matrices and vectors defined at the mid-plane of the interface have to be 
transformed using the transference matrix, in order to obtain the similar relations between full 
element vectors including the pairs of nodes that appear in the FEM mesh. Substituting Eqs. 
(3.23) and (3.27) into Eq. (3.17) those relations are obtained as follows:  

𝐐𝐐Le 
= 𝐂𝐂Le 

 𝛟̇𝛟e + 𝐊𝐊Le 
 𝛟𝛟e (3.28) 

where 

𝐂𝐂Le 
=  �𝕋𝕋�L

 
�
⊤
 𝐂𝐂Lmp  𝕋𝕋�L (3.29) 

𝐊𝐊Le 
= �𝕋𝕋�L

 
�
⊤
 𝐊𝐊Lmp 

 𝕋𝕋�L  (3.30) 

 

Transversal flow  

 Additional to the longitudinal flow, the existence of a discontinuity may also represent a 
resistance to the temperature flow in the transversal direction, which would result in a 
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localized temperature drop across the interface (Figure 3.4). With double-node interface 
elements the temperature drop is natural to occur across the discontinuity, and it is assumed 
that this temperature drop 𝜙𝜙𝑁̌𝑁 is related to the transverse heat flow 𝑞𝑞𝑁𝑁

𝑇𝑇  by a simple discrete 
version of Fick's law, in which the temperature drop plays the role of the temperature 
gradient: 

𝑞𝑞𝑁𝑁
𝑇𝑇  = 𝑘̌𝑘𝑁𝑁

𝑇𝑇   𝜙𝜙𝑁̌𝑁 (3.31) 

 In this equation, 𝑘̌𝑘𝑁𝑁
𝑇𝑇  is the transversal thermal conductivity of the interface. The 

potential thermal drop across the discontinuity is defined by the temperature difference 
between the two surfaces of the interface as follows: 

𝜙𝜙𝑁̌𝑁 = 𝜙𝜙𝑏𝑏𝑏𝑏𝑏𝑏
 − 𝜙𝜙𝑡𝑡𝑡𝑡𝑡𝑡

  (3.32) 

 

Figure 3.7: Scheme of the potential thermal drop across a differential interface element (Segura, 2007). 

 

 Performing the spatial discretization of the transversal jump 𝜙𝜙𝑁̌𝑁  at the mid-plane nodes 
of the interface, yields: 

𝜙𝜙𝑁̌𝑁mp
(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) ≅ � 𝑁𝑁𝐽𝐽

(𝑎𝑎) 𝜙𝜙𝑁̌𝑁𝑚𝑚𝑚𝑚

(𝑎𝑎)
𝑁𝑁

𝑎𝑎=1
= 𝐍𝐍𝐽𝐽

  𝛟𝛟�Nmp
 (3.33) 

where the unknown vector can be written as: 

𝛟𝛟�Nmp
     = [−𝐈𝐈𝑚𝑚  𝐈𝐈𝑚𝑚] 𝛟𝛟e

 = 𝕋𝕋�N 𝛟𝛟e
  (3.34) 

where 𝕋𝕋�N = [−𝐈𝐈𝑚𝑚  𝐈𝐈𝑚𝑚] is the transference transversal matrix. That means that the potential 
temperature drop at the mid-plane node is the difference of potential between the two actual 
nodes. This condition may be written for one-dimensional interface elements as: 

𝛟𝛟�Nmp
 =

⎣
⎢⎡

𝜙𝜙𝑁̌𝑁𝑚𝑚𝑚𝑚

(1)

𝜙𝜙𝑁̌𝑁𝑚𝑚𝑚𝑚

(2)
⎦
⎥⎤ = �𝜙𝜙(1) − 𝜙𝜙(3)

𝜙𝜙(2) − 𝜙𝜙(4)� = [𝐈𝐈𝑚𝑚  −𝐈𝐈𝑚𝑚] 𝛟𝛟e
 = 𝕋𝕋�N 𝛟𝛟e

  (3.35) 
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 The FEM formulation for the mid-plane is obtained using the Principle of Virtual Work, 
which can be expressed for the transverse thermal flow problem as: 

�𝛿𝛿𝛟𝛟�Nmp
     �

⊤
𝐐𝐐Nmp

= � 𝛿𝛿𝜙𝜙Ňmp
  𝑞𝑞𝑁𝑁mp

𝑇𝑇  dΩ𝐽𝐽

 

Ω𝐽𝐽

           ∀𝛿𝛿𝛟𝛟�Nmp
  (3.36) 

And substituting Eqs. (3.31) and (3.33) into (3.36), 

𝐐𝐐Nmp
= 𝐊𝐊Nmp

𝛟𝛟�Nmp
  (3.37) 

𝐊𝐊Nmp
= �  [𝐍𝐍𝐽𝐽

  ]⊤ 𝑘̌𝑘𝑁𝑁
𝑇𝑇  𝐍𝐍𝐽𝐽

  dΩ𝐽𝐽 
 

Ω𝐽𝐽

 (3.38) 

where 𝐊𝐊Nmp
 is the transversal thermal conductivity matrix at the mid-plane. The vector of 

temperatures is defined by the same equation as in the longitudinal flow, Eq. (3.24). 

 Additionally, using the PVW in a discrete form, 

[𝛿𝛿𝛟𝛟e
 ]⊤ 𝐐𝐐Ne

 = �𝛿𝛿𝛟𝛟mp
 �⊤ 𝐐𝐐Nmp

 (3.39) 

𝐐𝐐Ne
= �𝕋𝕋�N

 
�
⊤
𝐐𝐐Nmp

 (3.40) 

 As in the longitudinal case, all the matrices and vectors formulated at the mid-plane of 
the interface element have to be transformed using the transference matrix, to obtain the 
corresponding nodal values of the FEM mesh. Substituting Eqs. (3.39) and (3.40) into Eq. 
(3.37):  

𝐐𝐐Ne
= 𝐊𝐊Ne

 𝛟𝛟e (3.41) 

where 𝐊𝐊Ne
 is the transversal conductivity matrix of the element which, taking into account 

Eq. (3.34), can be written as: 

𝐊𝐊Ne
= �𝕋𝕋�N

 
�
⊤
𝐊𝐊Nmp

𝕋𝕋�N  (3.42) 

 
Integrated formulation: longitudinal and transversal flow  

 To obtain an integrated conductivity matrix it is necessary to combine the longitudinal 
and the transversal flow as a sum of both: 

𝐐𝐐e
 = 𝐐𝐐Le

+ 𝐐𝐐Ne
= 𝐂𝐂Le

 𝛟̇𝛟e + 𝐊𝐊Le
 𝛟𝛟e + 𝐊𝐊Ne

 𝛟𝛟e (3.43) 

𝐐𝐐e
 = 𝐂𝐂Le

 𝛟̇𝛟e + (𝐊𝐊Le
+ 𝐊𝐊Ne

) 𝛟𝛟e (3.44) 

 The last step in the solution of the transient problem is to perform the time integration of 
the system of Eqs. (3.44) using the FDM: 

� 1
∆𝑡𝑡

𝐂𝐂Le
+ 𝜃𝜃�𝐊𝐊Le

+ 𝐊𝐊Ne
��𝛟𝛟e

𝑛𝑛+1 = 0 (3.45) 
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 Finally, the global matrices and vectors of the system of equation are obtained by the 
assembly of the contribution of each element of the mesh resulting in: 

� 1
∆𝑡𝑡

𝐂𝐂 + 𝜃𝜃(𝐊𝐊L
 + 𝐊𝐊N

 )�𝛟𝛟e
𝑛𝑛+1 = 0 (3.46) 

 

Final remarks  

 In order to obtain the steady-state formulation of the thermal advection problem for 
double-node interfaces it is sufficient to set 𝐂𝐂Le

= 0 in Eq. (3.44) and solve the following 
system of equations: 

𝐊𝐊e
  𝛟𝛟e

𝑛𝑛+1 = 𝐐𝐐e (3.47) 

 On the other hand, to solve the thermal problem for double-node interfaces without 
advection (pure conduction) it is sufficient to set 𝐯𝐯L

 = 0 in Eq. (3.18) and solve the system of 
Eq. (3.45) for the transient problem or solve the system of Eq. (3.47) for the steady-state 
problem. 
 

Summary 4 - Thermal equation for small advection in zero-thickness interface 
elements. 

� 1
∆𝑡𝑡

𝐂𝐂Le
+ 𝜃𝜃�𝐊𝐊Le

+ 𝐊𝐊Ne
��𝛟𝛟e

𝑛𝑛+1 = 0 (3.48) 

where 𝛟𝛟e
𝑛𝑛+1 is the nodal temperature vector of the element (unknown), 𝐂𝐂Le

 is the thermal 
capacity matrix of the element and 𝐊𝐊Le

 and 𝐊𝐊Ne
 are the longitudinal and transversal 

thermal conduction-advection matrices of the element. Boundary conditions are left out for 
simplicity. 

𝐊𝐊Le
= �𝕋𝕋�L

 
�
⊤

�𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌 � ([𝐍𝐍𝐽𝐽
  ]⊤ 𝐯𝐯L

  𝐁𝐁𝐽𝐽
 )

 

Ω𝐽𝐽

dΩ𝐽𝐽 + 𝑟𝑟𝑁𝑁 � ([𝐁𝐁𝐽𝐽
  ]⊤ 𝑘𝑘𝐿𝐿

𝑇𝑇  𝐁𝐁𝐽𝐽
 )

 

Ω𝐽𝐽

dΩ𝐽𝐽

− 𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌 � �[𝐍𝐍𝐽𝐽
  ]⊤ 𝑣𝑣𝐿𝐿,𝑁𝑁 

  𝐍𝐍𝐽𝐽
 �

 

Γ
dΓ�𝕋𝕋�L    

(3.49) 

𝐂𝐂Le
= �𝕋𝕋�L

 
�
⊤

�𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌 � [𝐍𝐍𝐽𝐽
  ]⊤ 𝐍𝐍𝐽𝐽

 
 

Ω𝐽𝐽

dΩ𝐽𝐽 �𝕋𝕋�L (3.50) 

𝐊𝐊Ne
= �𝕋𝕋�N

 
�
⊤

�� [𝐍𝐍𝐽𝐽
  ]⊤ 𝑘𝑘𝑁𝑁

𝑇𝑇  𝐍𝐍𝐽𝐽
  dΩ𝐽𝐽 

 

Ω𝐽𝐽

�𝕋𝕋�N (3.51) 

 

 
 Finally, the global matrices of the system of Eq. (3.48) are obtained by the assembly of 
the contribution of each element of the mesh.  

 The steady-state problem is obtained as a particular case of the above formulation leaving 
out the transient terms. Moreover, the pure conduction formulation is obtained leaving out 
the advective terms (𝐯𝐯L

  =  0).  
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3.3. Formulation of the thermal problem with large advection in 
interfaces 

 As mentioned in the introduction of this chapter, the existence of discontinuities generate 
preferential paths where the hydraulic flow velocities are frequently much higher than in the 
porous medium and the advection tends to dominate the heat problem. Consequently, the 
standard Galerkin FEM method leads to oscillatory results in the interface elements as it does 
in the continuum elements and requires the use of stabilization methods. 

 This section presents the Streamline Upwind Petrov-Galerkin (SUPG) method to solve 
the steady-state problem and the new 𝛼𝛼-Implicit Characteristic-Galerkin Method (𝛼𝛼-ICGM) 
to solve the transient problem, both developed previously for the continuum medium in 
Sections 2.2.2 and 2.2.3, respectively. 

 Also, it is assumed that the large advection affects only the longitudinal flow of the 
interfaces, while transversal flow remains unchanged from the formulation developed in 
previous Section 3.2. 

 

3.3.1. Steady-state thermal problem with large advection in interfaces 

 In order to stabilize the numerical solution of the steady-state thermal problem with large 
advection in interfaces, the SUPG method presented in Section 2.2.2 is used as in the 
continuum medium. This method uses a different weighting function in the space 
discretization process (𝑤𝑤 ≠ 𝑁𝑁(1),𝑁𝑁(2),…): 

𝑤𝑤 = 𝑁𝑁(𝑎𝑎) +
𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑐𝑐𝑐𝑐𝑐𝑐

2
𝑣𝑣𝑖𝑖
|𝐯𝐯|

𝜕𝜕𝑁𝑁(𝑎𝑎)

𝜕𝜕𝜕𝜕𝑖𝑖
 (3.52) 

where 𝑁𝑁(𝑎𝑎) are the usual shape functions, 𝑣𝑣𝑖𝑖 is the velocity field, ℎ𝑐𝑐𝑐𝑐𝑐𝑐 is the characteristic 
length of the element (length of the element along the flow line) and 𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜 is defined by Eq. 
(2.69) in order to obtain exact nodal values for any Péclet value. 

 Starting from the weak form defined by Eq. (3.15), leaving out the transient terms and 
using the SUPG weighing defined by Eq. (3.52) the integral form is transformed into: 

� �𝐍𝐍𝐽𝐽
  +

𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑐𝑐𝑐𝑐𝑐𝑐

2
𝐯𝐯L 

 

�𝐯𝐯L 
 �

𝛁𝛁𝐽𝐽𝐍𝐍𝐽𝐽
 �

 

Ω𝐽𝐽

�𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌 [𝐯𝐯L]⊤𝛁𝛁𝐽𝐽𝜙𝜙 ̂− 𝑟𝑟𝑁𝑁 [𝛁𝛁𝐽𝐽]⊤𝑘𝑘𝐿𝐿
𝑇𝑇  𝛁𝛁𝐽𝐽𝜙𝜙�̂dΩ𝐽𝐽

− � �𝐍𝐍𝐽𝐽
  +

𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑐𝑐𝑐𝑐𝑐𝑐

2
𝐯𝐯L 

 

�𝐯𝐯L 
 �

𝛁𝛁𝐽𝐽𝐍𝐍𝐽𝐽
 �

 

Γq

�−𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌𝜙𝜙𝑣̂𝑣𝐿𝐿,𝑁𝑁 + [𝐧𝐧]⊤𝑟𝑟𝑁𝑁𝑘𝑘𝐿𝐿
𝑇𝑇  𝛁𝛁𝐽𝐽𝜙𝜙 ̂ 

+ 𝑞𝑞𝑇̅𝑇 � dΓ = 0 

(3.53) 

Reordering terms leads to: 
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𝑟𝑟𝑁𝑁 � [𝛁𝛁𝐽𝐽𝐍𝐍𝐽𝐽
  ]⊤ 𝑘𝑘𝐿𝐿

𝑇𝑇  𝛁𝛁𝐽𝐽𝜙𝜙 ̂dΩ𝐽𝐽 + 𝑟𝑟𝑁𝑁 � �
𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑐𝑐𝑐𝑐𝑐𝑐

2
𝐯𝐯L 

 

�𝐯𝐯L 
 �

𝛁𝛁𝐽𝐽𝐍𝐍𝐽𝐽
 � [𝛁𝛁𝐽𝐽]⊤ 𝑘𝑘𝐿𝐿

𝑇𝑇  𝛁𝛁𝐽𝐽𝜙𝜙 ̂dΩ𝐽𝐽

 

Ω𝐽𝐽

 

Ω𝐽𝐽

− 𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌 �  𝐍𝐍𝐽𝐽
   [𝐯𝐯L]⊤𝛁𝛁𝐽𝐽𝜙𝜙 ̂dΩ𝐽𝐽

 

Ω𝐽𝐽

− 𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌 � �
𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑐𝑐𝑐𝑐𝑐𝑐

2
𝐯𝐯L 

 

�𝐯𝐯L 
 �

𝛁𝛁𝐽𝐽𝐍𝐍𝐽𝐽
 � [𝐯𝐯L]⊤𝛁𝛁𝐽𝐽𝜙𝜙 ̂dΩ𝐽𝐽

 

Ω𝐽𝐽

+ 𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌 � [𝐍𝐍𝐽𝐽
  ]⊤𝜙𝜙𝑣̂𝑣𝐿𝐿,𝑁𝑁

 

Γq

dΓ

+ 𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌 � �
𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑐𝑐𝑐𝑐𝑐𝑐

2
𝐯𝐯L 

 

�𝐯𝐯L 
 �

𝛁𝛁𝐽𝐽𝐍𝐍𝐽𝐽
 � 𝜙𝜙𝑣̂𝑣𝐿𝐿,𝑁𝑁

 

Γq

dΓ

− 𝑟𝑟𝑁𝑁 � [𝐍𝐍𝐽𝐽
  ]⊤

 

Γq

[𝐧𝐧]⊤𝑘𝑘𝐿𝐿
𝑇𝑇  𝛁𝛁𝐽𝐽𝜙𝜙 ̂dΓ

− 𝑟𝑟𝑁𝑁 � �
𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑐𝑐𝑐𝑐𝑐𝑐

2
𝐯𝐯L 

 

�𝐯𝐯L 
 �

𝛁𝛁𝐽𝐽𝐍𝐍𝐽𝐽
 �

 

Γq

[𝐧𝐧]⊤𝑘𝑘𝐿𝐿
𝑇𝑇  𝛁𝛁𝐽𝐽𝜙𝜙 ̂dΓ = 0 

(3.54) 

 Applying the Divergence Theorem to the diffusive terms and substituting Eq. (3.11) into 
(3.54) results in the following expression for the longitudinal flow along the mid-plane of a 
single element of the mesh: 

𝐐𝐐Lmp
= 𝐊𝐊Lmp

𝛟𝛟mp 
  (3.55) 

where 
𝐊𝐊Lmp

= 𝐊𝐊Lmp
+ 𝐊𝐊Lmp

SUPG  (3.56) 

𝐊𝐊Lmp
= 𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌 �  𝐍𝐍𝐽𝐽

   [𝐯𝐯L]⊤ 𝐁𝐁𝐽𝐽
   dΩ𝐽𝐽

 

Ω𝐽𝐽

+ 𝑟𝑟𝑁𝑁 � ([𝐁𝐁𝐽𝐽
  ]⊤ 𝑘𝑘𝐿𝐿

𝑇𝑇  𝐁𝐁𝐽𝐽
 )

 

Ω𝐽𝐽

dΩ𝐽𝐽 (3.57) 

𝐊𝐊Lmp

SUPG = 𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌 � �
𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑐𝑐𝑐𝑐𝑐𝑐

2|𝐯𝐯L
 |

�𝐯𝐯L 
 �⊤𝐁𝐁𝐽𝐽

  � �𝐯𝐯L 
 �⊤𝐁𝐁𝐽𝐽

 
 

Ω𝐽𝐽

dΩ𝐽𝐽

+ 𝑟𝑟𝑁𝑁 � �
𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑐𝑐𝑐𝑐𝑐𝑐

2|𝐯𝐯L
 |

�𝐯𝐯L 
 �⊤𝛁𝛁𝛁𝛁𝐽𝐽

  �  𝑘𝑘𝐿𝐿
𝑇𝑇  𝐁𝐁𝐽𝐽

 
 

Ω𝐽𝐽

dΩ𝐽𝐽 
(3.58) 

where 𝐁𝐁𝐽𝐽
 , 𝛟𝛟mp

  and 𝐯𝐯L 
  are defined by Eqs. (3.20) and (3.21). Note that the second 

integration term of Eq. (3.58) is cancelled for linear elements. 

 All the matrices and vectors defined at the mid-plane of the interface have to be 
transformed using the transference matrix to obtain the matrices and vectors defined at the 
nodes of the element, as described in Section 3.2 by Eqs. (3.22)-(3.30), obtaining finally the 
following relation for the longitudinal flow matrix: 

 𝐊𝐊Le
= �𝕋𝕋�L

 
�
⊤
 𝐊𝐊Lmp

𝕋𝕋�L  (3.59) 

 As the large advection affects only the longitudinal flow, the transversal formulation is 
the same as presented in Section 3.2 by Eqs. (3.31)-(3.42). Additionally, the matrix assembly 
of both longitudinal and transversal flow is achieved in the same manner as presented in the 
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same section by Eqs. (3.43) and (3.44). Leaving out the force terms, the global system of 
equations is obtained finally by the assembly of the contributions of each element, resulting 
the following simple expression: 

�𝐊𝐊L + 𝐊𝐊L
SUPG + 𝐊𝐊T� 𝛟𝛟e

  = 0 (3.60) 

 

Summary 5 - Steady-state thermal equation for small advection in zero-
thickness interface elements using the SUPG method. 

�𝐊𝐊Le
+ 𝐊𝐊Le

SUPG + 𝐊𝐊Ne
 �𝛟𝛟e

 = 0 (3.61) 

where 𝛟𝛟e
  is the nodal temperature vector of the element (unknown), and  𝐊𝐊Le

, 𝐊𝐊Le

SUPG and 
𝐊𝐊Ne

  are the longitudinal and transversal thermal conduction-advection matrices of the 
element. Boundary conditions are left out for simplicity. 

𝐊𝐊Le
= �𝕋𝕋�L

 
�
⊤

�𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌 �  𝐍𝐍𝐽𝐽
   [𝐯𝐯L]⊤ 𝐁𝐁𝐽𝐽

   dΩ𝐽𝐽

 

Ω𝐽𝐽

+ 𝑟𝑟𝑁𝑁 � ([𝐁𝐁𝐽𝐽
  ]⊤ 𝑘𝑘𝐿𝐿

𝑇𝑇  𝐁𝐁𝐽𝐽
 )

 

Ω𝐽𝐽

dΩ𝐽𝐽�𝕋𝕋�L    (3.62) 

𝐊𝐊Le

SUPG = �𝕋𝕋�L
 
�
⊤

�𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌 � �
𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑐𝑐𝑐𝑐𝑐𝑐

2|𝐯𝐯L
 |

�𝐯𝐯L 
 �⊤𝐁𝐁𝐽𝐽

  � �𝐯𝐯L 
 �⊤𝐁𝐁𝐽𝐽

 
 

Ω𝐽𝐽

dΩ𝐽𝐽

+ 𝑟𝑟𝑁𝑁 � �
𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑐𝑐𝑐𝑐𝑐𝑐

2|𝐯𝐯L
 |

�𝐯𝐯L 
 �⊤𝛁𝛁𝛁𝛁𝐽𝐽

  �  𝑘𝑘𝐿𝐿
𝑇𝑇  𝐁𝐁𝐽𝐽

 
 

Ω𝐽𝐽

dΩ𝐽𝐽�𝕋𝕋�L 
(3.63) 

𝐊𝐊Ne
 = �𝕋𝕋�N

 
�
⊤

�� [𝐍𝐍𝐽𝐽
  ]⊤ 𝑘̌𝑘𝑁𝑁

𝑇𝑇  𝐍𝐍𝐽𝐽
  dΩ𝐽𝐽 

 

Ω𝐽𝐽

�𝕋𝕋�N (3.64) 
 

 

 Finally, the global matrices of the system of Eq. (3.61) are obtained by the assembly of 
the contribution of each element of the mesh.  

 

Simple academic example 9: steady-state large advection thermal problem in 
2-D for interfaces using the SUPG method 

 The objective of this example is to compare the solutions between the standard Galerkin 
FEM method and the SUPG and verify that the last one provides stable solutions when 
𝑃𝑃𝑃𝑃 > 1 in a 2-D simple example using interfaces. 

 The geometry of this example consists of three horizontal layers with an interface at the 
symmetry axis (Figure 3.8.a), composed of 600 continuum elements and 20 interface elements. 
In order to visualize the heat transport, a known and constant velocity field from left to right 
(Figure 3.8.a) is imposed along the discontinuity, as a preferential path through the 
continuum medium.  
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(a)         (b) 

Figure 3.8: (a) Imposed velocities along the discontinuity (b) steady-state temperature distribution at t=0 (after velocity 
application). 

 

            

     
 (a)          (b) 

Figure 3.9: (a) Oscillatory distribution of temperatures using the standard Galerkin weighting when Pe = 3.8 along the 
discontinuity (the rest of the domain Pe = 0). (b) Correct distribution of temperatures using SUPG method for the 

same problem. Graphs referred to the discontinuity of the problem. 

 

 The initial state of the thermal problem is shown in Figure 3.8.b, which is the result of a 
steady-state problem where two values of temperature have been imposed on the left and 
right hand side of the domain, obtaining a linear distribution of temperatures for 𝑡𝑡 = 0. The 
velocity field is imposed on the described initial state. 

 In the first calculations the standard Galerkin weighting is used for a steady-state large 
advection problem (𝑃𝑃𝑃𝑃 =  3.8). As it is observed, the solution becomes purely oscillatory 

0
25
50
75
100
125
150
175

0 100 200 300 400

T (ºC) 

Distance (m) 

0
25
50
75
100
125
150
175

0 100 200 300 400

T (ºC) 

Distance (m) 



Chapter 3 - Advection in interfaces 

88 

 

using the standard Galerkin weighting, as shown in Figure 3.9.a. However, using the new 
numerical solution (Petrov-Galerkin weighting, SUPG method), the steady-state solution is 
stabilized, as shown in Figure 3.9.b. In both cases the characteristic length of the element 
ℎ𝑐𝑐𝑐𝑐𝑐𝑐 is taken as the length of the element in the direction of the velocities. 

 

 

3.3.2. Transient thermal problem with large advection in interfaces 

 In order to stabilize the numerical solution of the transient thermal problem with large 
advection in interfaces, the new Implicit Characteristic-Galerkin Method (𝛼𝛼-ICGM) presented 
in Section 2.2.3 is used as in the continuum medium. Also, it is assumed that the large 
advection affects only the longitudinal flow of the interfaces, while transversal flow remains 
unchanged from the formulation developed in Section 3.2. 

 The differential equation for the one-dimensional transient problem in interfaces can be 
written from Eq. (3.4) as 

𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑟𝑟𝑁𝑁 𝑘𝑘𝐿𝐿
𝑇𝑇  𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
− 𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌𝜌𝜌𝑣𝑣𝐿𝐿� = 𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 (3.65) 

where 𝑙𝑙 is the local coordinate system for the one-dimensional problem {𝑙𝑙, 𝑛𝑛}. Considering a 
moving coordinate system 𝑙𝑙′ defined by 

𝑑𝑑𝑑𝑑′ = 𝑑𝑑𝑑𝑑 − 𝑣𝑣𝐿𝐿 𝑑𝑑𝑑𝑑   (3.66) 

the differential equation becomes simply: 

𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜕𝜕
𝜕𝜕𝜕𝜕′

�𝑟𝑟𝑁𝑁 𝑘𝑘𝐿𝐿
𝑇𝑇  𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕′
� (3.67) 

where the advective term of the equation disappears and the new equation is evaluated along 
the characteristics (Section 2.2.3). 

 The first step of this procedure consists on the time discretization of Eq. (3.67) using the 
FDM. Following the 𝛼𝛼-ICG Method developed earlier (Section 2.2.3) for the continuum 
medium: 

𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌 1
Δ𝑡𝑡

�𝜙𝜙𝑛𝑛+1|𝑥𝑥+𝛼𝛼𝛼𝛼 − 𝜙𝜙𝑛𝑛|(𝑥𝑥−(1−𝛼𝛼)𝛿𝛿)� ≈

≈ 𝜃𝜃 �𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑟𝑟𝑁𝑁 𝑘𝑘𝐿𝐿
𝑇𝑇  𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
��

𝑛𝑛+1
�
𝑥𝑥+𝛼𝛼𝛼𝛼

+ (1 − 𝜃𝜃) �𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑟𝑟𝑁𝑁 𝑘𝑘𝐿𝐿
𝑇𝑇 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
��

𝑛𝑛
�
(𝑥𝑥−(1−𝛼𝛼)𝛿𝛿)

  
(3.68) 

Substituting Eqs. (2.145)-(2.155) into Eq. (3.68) and leaving out third-order terms results: 
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𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌 1
Δ𝑡𝑡

(𝜙𝜙𝑛𝑛+1 − 𝜙𝜙𝑛𝑛) =

= −(1 − 𝛼𝛼)𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌 𝑣𝑣𝐿𝐿
𝑛𝑛+1/2 𝜕𝜕𝜙𝜙𝑛𝑛

𝜕𝜕𝜕𝜕
+ (1 − 𝛼𝛼)2

2
𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌Δ𝑡𝑡 𝑣𝑣𝐿𝐿

𝑛𝑛+1/2 𝑣𝑣𝐿𝐿
𝑛𝑛+1/2 𝜕𝜕2𝜙𝜙𝑛𝑛

𝜕𝜕𝑙𝑙2

− 𝛼𝛼𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌 𝑣𝑣𝐿𝐿
𝑛𝑛+1/2 𝜕𝜕𝜙𝜙𝑛𝑛+1

𝜕𝜕𝜕𝜕
− 𝛼𝛼2

2
𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌Δ𝑡𝑡 𝑣𝑣𝐿𝐿

𝑛𝑛+1/2 𝑣𝑣𝐿𝐿
𝑛𝑛+1/2 𝜕𝜕2𝜙𝜙𝑛𝑛+1

𝜕𝜕𝑙𝑙2

+ 𝜃𝜃 �𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑟𝑟𝑁𝑁 𝑘𝑘𝐿𝐿
𝑇𝑇 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
��

𝑛𝑛+1
+ (1 − 𝜃𝜃) �𝜕𝜕

𝜕𝜕𝜕𝜕
�𝑟𝑟𝑁𝑁 𝑘𝑘𝐿𝐿

𝑇𝑇 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

��
𝑛𝑛
 

(3.69) 

 Performing the spatial discretization of this equation along the mid-plane of the 
discontinuity, the temperature can be approximated as:  

𝜙𝜙 ≅ 𝜙𝜙̂ = �𝑁𝑁𝐽𝐽
 (𝑎𝑎)𝜙𝜙𝑚𝑚𝑚𝑚

 (𝑎𝑎)
𝑚𝑚

𝑎𝑎=1
 (3.70) 

where 𝜙𝜙 ̂is the approximate value of the temperature, 𝜙𝜙𝑚𝑚𝑚𝑚
 (𝑎𝑎) is the value of the temperature at 

the (𝑎𝑎) mid-plane node, 𝑁𝑁𝐽𝐽
(𝑎𝑎) is the shape function at the mid-plane node and 𝑚𝑚 is the 

number of mid-plane nodes of the element.  

 The extension of the above formulation to 3D is automatic by considering a local 
coordinate system such as 𝒍𝒍𝑖𝑖 = (𝑙𝑙1, 𝑙𝑙2) and the corresponding nodes and mid-plane nodes 
depending on the type of element used (triangular or quadrangular interfaces). 

 Substituting Eq. (3.70) into (3.69), using the standard Galerkin weighting (w𝑖𝑖 = 𝑁𝑁𝑖𝑖) and 
applying the Theorem of the Divergence to the diffusive terms results in the following 
expression for the longitudinal flow along the mid-plane of a single element of the mesh: 

𝐐𝐐Lmp
= 𝐂𝐂Lmp

𝛟̇𝛟mp + �𝐊𝐊Lmp
+ 𝐊𝐊𝐯𝐯,Lmp

 + 𝐊𝐊𝐬𝐬,Lmp
 �𝛟𝛟mp  (3.71) 

where 

𝐂𝐂Lmp
= 𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌 � [𝐍𝐍𝐽𝐽

 ]⊤ 𝐍𝐍𝐽𝐽
  

 

Ω𝐽𝐽

dΩ𝐽𝐽  (3.72) 

𝐊𝐊Lmp
= � ([𝐁𝐁𝐽𝐽

 ]⊤ 𝑟𝑟𝑁𝑁 𝑘𝑘𝐿𝐿
𝑇𝑇  𝐁𝐁𝐽𝐽

 )
 

Ω𝐽𝐽

dΩ𝐽𝐽   (3.73) 

𝐊𝐊𝐯𝐯,Lmp
 = 𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌 � ([𝐍𝐍𝐽𝐽

 ]⊤ 𝐯𝐯L
  𝐁𝐁𝐽𝐽

 )
 

Ω𝐽𝐽

dΩ𝐽𝐽    (3.74) 

𝐊𝐊𝐬𝐬,Lmp
 = 𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌 ∆𝑡𝑡� ([𝐁𝐁𝐽𝐽

 ]⊤ [𝐯𝐯L
 ]⊤𝐯𝐯L

  𝐁𝐁𝐽𝐽
 )

 

Ω𝐽𝐽

dΩ𝐽𝐽  (3.75) 

where 𝐁𝐁𝐽𝐽
 , 𝛟𝛟mp

  and 𝐯𝐯L
  are defined by Eqs. (3.20) and (3.21). Additionally, the boundary 

term of Eq. (3.18) must be added to the above formulation. 
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 All the matrices and vectors defined at the mid-plane of the interface have to be 
transformed using the transference matrix to obtain the matrices and vectors defined at the 
nodes of the element, as described in Section 3.2 by Eqs. (3.22)-(3.30), obtaining finally the 
following relation for the longitudinal flow matrices: 

 𝐂𝐂Le
= �𝕋𝕋�L

 
�
⊤
𝐂𝐂Lmp

𝕋𝕋�L  (3.76) 

𝐊𝐊Le
 = �𝕋𝕋�L

 
�
⊤
𝐊𝐊Lmp

 𝕋𝕋�L  (3.77) 

𝐊𝐊𝐯𝐯,Le
 = �𝕋𝕋�L

 
�
⊤
𝐊𝐊𝐯𝐯,Lmp

 𝕋𝕋�L  (3.78) 

𝐊𝐊𝐬𝐬,Le
 = �𝕋𝕋�L

 
�
⊤
𝐊𝐊𝐬𝐬,Lmp

 𝕋𝕋�L  (3.79) 

 It is important to note that, as the large advection affects only the longitudinal flow, the 
transversal formulation is the same as presented in Section 3.2 by Eqs. (3.31)-(3.42). 
Additionally, the matrix assembly of both longitudinal and transversal flow is achieved in the 
same manner as presented in the same section by Eqs. (3.43) and (3.44).  

 The last step in the solution of the transient problem is to perform the time integration of 
the system of Eqs. (3.71) using the FDM, resulting in the Eq. (3.80). 

 

Summary 6 - Transient thermal equation for large advection in zero-thickness 
interface elements using the 𝜶𝜶-Implicit Characteristic Galerkin method. 

� 1
Δ𝑡𝑡

𝐂𝐂Le
 + α𝐊𝐊𝐯𝐯,Le

 + 𝛼𝛼2

2
𝐊𝐊𝐬𝐬,Le

 + 𝜃𝜃 �𝐊𝐊Le
 + 𝐊𝐊Te

 ��∆𝛟𝛟e
𝑛𝑛+1  

=  − �𝐊𝐊Le
 + 𝐊𝐊𝐯𝐯,Le

 + �1
2

− α�𝐊𝐊𝐬𝐬,Le
 �𝛟𝛟e

𝑛𝑛 
(3.80) 

where ∆𝛟𝛟e
𝑛𝑛+1 is the nodal increment temperature vector of the element (unknown), 𝐂𝐂Le

  is 
the thermal capacity matrix of the element, 𝐊𝐊Le

  and 𝐊𝐊Ne
  are the longitudinal and transversal 

thermal conduction matrices of the element, respectively, and 𝐊𝐊𝐬𝐬,Le
  and 𝐊𝐊𝐯𝐯,Le

 are the 
longitudinal advective matrices. Boundary conditions are left out for simplicity. 

𝐊𝐊Le
 = �𝕋𝕋�L

 
�
⊤

�𝑟𝑟𝑁𝑁 � ([𝐁𝐁𝐽𝐽
 ]⊤ 𝑘𝑘𝐿𝐿

𝑇𝑇  𝐁𝐁𝐽𝐽
 )

 

Ω𝐽𝐽

dΩ𝐽𝐽�𝕋𝕋�L    (3.81) 

𝐊𝐊𝐯𝐯,Le
 = �𝕋𝕋�L

 
�
⊤

�𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌 � ([𝐍𝐍𝐽𝐽
 ]⊤ 𝐯𝐯L

  𝐁𝐁𝐽𝐽
 )

 

Ω𝐽𝐽

dΩ𝐽𝐽�𝕋𝕋�L    (3.82) 

𝐊𝐊𝐬𝐬,Le
 = �𝕋𝕋�L

 
�
⊤

�𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌 ∆𝑡𝑡� ([𝐁𝐁𝐽𝐽
 ]⊤ [𝐯𝐯L

 ]⊤𝐯𝐯L
  𝐁𝐁𝐽𝐽

 )
 

Ω𝐽𝐽

dΩ𝐽𝐽�𝕋𝕋�L    (3.83) 



3.3. Thermal problem with large advection in interfaces 

91 

 

𝐂𝐂Le
 =  �𝕋𝕋�L

 
�
⊤

�𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌 � [𝐍𝐍𝐽𝐽
 ]⊤ 𝐍𝐍𝐽𝐽

 
 

Ω𝐽𝐽

dΩ𝐽𝐽 �𝕋𝕋�L (3.84) 

𝐊𝐊Ne
 = �𝕋𝕋�n

 
�
⊤

�� [𝐍𝐍𝐽𝐽
 ]⊤ 𝑘𝑘𝑁𝑁

𝑇𝑇  𝐍𝐍𝐽𝐽
  dΩ𝐽𝐽 

 

Ω𝐽𝐽

�𝕋𝕋�n (3.85) 

 

 

 Finally, the global matrices and vectors of the system of Eq. (3.48) are obtained by the 
assembly of the contribution of each element of the mesh.  

 

Simple academic example 10: transient large advection thermal problem in 2-
D for interfaces using the 𝜶𝜶-Implicit Characteristic Method 

 The objective of this example is to compare the solutions between the standard Galerkin 
FEM method and the α-Implicit Characteristic Method and verify that the last one provides 
stable solutions when 𝑃𝑃𝑃𝑃 > 1 in a 2-D simple example with interfaces. 

 The geometry of this example consists in a domain of 400×250m of three horizontal 
layers with an interface at the symmetry axis (Figure 3.8.a), composed by 600 continuum 
elements and 20 interface elements. In order to observe the heat transport, a known and 
constant velocity field of 𝑣𝑣𝐿𝐿 = 0.19 𝑚𝑚/𝑠𝑠  from left to right (Figure 3.8.a) is imposed along the 
discontinuity, as a preferential path throughout the continuous medium.  

 The initial state of the thermal problem is shown in Figure 3.8.b, which is the result of a 
steady-state problem where two values of temperature have been imposed on the left and 
right hand side of the domain, obtaining a linear distribution of temperatures for 𝑡𝑡 = 0. The 
velocity field is imposed on the described initial state solving the transient problem. 

 Figure 3.10 shows the results of the transient thermal problem with large advection 
(𝑃𝑃𝑃𝑃 =  273), first using the standard Galerkin weighting, which leads to oscillatory results, 
and then using the 𝛼𝛼-ICG method, which leads to the stable correct solution. In this case it 
has been verified that the best result is reached for 𝛼𝛼 = 0.25. Note that the Courant number 
is smaller than 1 (𝐶𝐶 = 0.67), a necessary condition to obtain a stable solution. 
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Time 

    

    

    

    

     
 (a)        (b) 

Figure 3.10: Transient thermal solution for Pe = 273. (a) Oscillatory results using the standard Galerkin weighting. (b) 
Correct solution using the new 𝛼𝛼-ICG method with 𝛼𝛼 = 0 for advective transport. 
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Simple academic example 11: transient pure advection problem in interfaces 
using the 𝜶𝜶-Implicit Characteristic Method 

 The FE mesh of the example is shown in Figure 3.11 and consists of a 2D mesh composed 
by 480 zero-thickness interface elements and 962 nodes. The imposed velocity field consists of 
a constant velocity field of 𝑣𝑣𝐿𝐿 = 0.1 𝑚𝑚/𝑠𝑠 from left to right along the x-direction. The thermal 
conductivity coefficient is assumed equal to zero and therefore the Péclet number tends to 
infinite (pure advection thermal problem). The Courant number in all the elements of the 
mesh is equal to 0.54. 

 The initial distribution of temperatures of the thermal problem consists of a Gaussian 
distribution of temperatures, as shown in Figure 3.11. This example is an analogy of the 
academic example 4 but using interfaces. 

 

 

Figure 3.11: Mesh and initial distribution of temperatures along the interfaces. 

 

 Figure 3.12 shows the results for α = 0, which corresponds to the Implicit Galerkin 
Characteristic method. In this case, the initial temperature distribution exhibits oscillations of 
±0.25℃.  

 

 

 

 

 

Figure 3.12: Distribution of temperatures along interface elements for different times (𝛼𝛼 = 0). 

 

T = 40℃ 

t = 0 s. 

t = 3950 s. 

t = 7900 s. 

t = 11800 s 
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 Figure 3.13 shows the results for α = 1/4, with which the method maintains better the 
initial distribution of temperatures with small oscillations at the top of the bell of ±0.15℃.  

 Figure 3.14 shows the results for α = 1/2, with the temporal derivatives evaluated 
centred around the solution x (Figure 2.16.b). In this case, the initial distribution of 
temperatures exhibits oscillations of ±0.40℃.  

 

 

 

 

 

Figure 3.13: Distribution of temperatures along interface elements for different times (𝛼𝛼 = 1/4). 

 

 

 

 

 

 

Figure 3.14: Distribution of temperatures along interface elements for different times (𝛼𝛼 = 1/2). 

t = 0 s. 

t = 3950 s. 

t = 7900 s. 

t = 11800 s 

t = 0 s. 

t = 3950 s. 

t = 7900 s. 

t = 11800 s 
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 Finally, Figure 3.15 shows the results using the standard Galerkin weighting method. 
With this method, the original shape of the temperature profile is not maintained, and the 
peak value decreases significantly as the “bell” base becomes much wider.  

 The best solution of the problem using the 𝛼𝛼-ITCG Method is achieved again by using 
α = 1/4. 

 

 

 

 

 

Figure 3.15: Distribution of temperatures along interface elements for different times (Standard Galerkin Weighting). 

 

Simple academic example 12: transient pure advection problem in interfaces 
using the 𝜶𝜶-Implicit Characteristic Method 

 The FE mesh of this example is shown in Figure 3.16 and consists of a 2D mesh 
composed by 480 zero-thickness interface elements and 962 nodes. The imposed velocity field 
consists of a constant velocity field of 𝑣𝑣𝐿𝐿 = 0.10 𝑚𝑚/𝑠𝑠 from left to right along the x-direction. 
The thermal conductivity coefficient is assumed equal to zero and therefore the Péclet number 
tends to infinite (pure advection thermal problem). The Courant number in all the elements 
of the mesh is equal to 0.54. 

 The initial distribution of temperatures of the thermal problem is trapezoidal, as shown in 
Figure 3.16. This example is an analogy of the academic example 5 but using interfaces. 
 

 

Figure 3.16: Mesh and initial distribution of temperatures along the interfaces. 

T = 40℃ 

t = 0 s. 

t = 3950 s. 

t = 7900 s. 

t = 11800 s 
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 Figure 3.17 shows the results for α = 1/4, with which the method maintains better the 
initial distribution of temperatures with small oscillations of ±0.5℃. Figure 3.18 shows the 
results obtained for α = 1/2, wich corresponds to the temporal derivatives evaluated centred 
around the solution x (Figure 2.16.b). In this case, the initial distribution of temperatures 
exhibits oscillations of ±2.2℃. 

 

 

 

 

 

Figure 3.17: Distribution of temperatures along interface elements for different times (𝛼𝛼 = 1/4). 

 

 

 

 

 

 

Figure 3.18: Distribution of temperatures along interfaces for different times (𝛼𝛼 = 1/2). 

t = 0 s. 

t = 3950 s. 

t = 7900 s. 

t = 11800 s 

t = 0 s. 

t = 3950 s. 

t = 7900 s. 

t = 11800 s 
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 Finally, Figure 3.19 shows the results using the standard Galerkin weighting method. 
With this method, the original shape of the temperature profile is not maintained, and the 
peak value decreases significantly as the “bell” base becomes much wider.  

 The best solution of the problem is obtained, again, when using the 𝛼𝛼-ITCG Method with 
α = 1/4. 

 

 

 

 

 

 

Figure 3.19: Distribution of temperatures along interfaces for different times (Standard Galerkin Weighting). 

 

 

 

 

 

 

 

 

 

 

 

t = 0 s. 

t = 3950 s. 

t = 7900 s. 

t = 11800 s 
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4. d 
 

Chapter 4 

Thermo-hydro-mechanical coupling with 
advection 
 

Fully coupled approaches are not common in the thermo-hydro-mechanical (THM) analysis of 
discrete discontinuities. This chapter follows the work of Segura & Carol (2008a) and 
Garolera (2017), in which the hydro-mechanical (HM) coupled formulation for continuum 
media and zero-thickness interface elements (assuming saturated medium and incompressible 
fluid) were developed for 2D and 3D analysis, respectively. In their formulation, the mutual 
interaction between the fluid pressure and the solid deformation (with discontinuities) is 
achieved combining classic mechanical formulations and a diffusive flow model that introduces 
a transversal potential drop across the discontinuity, which causes also a drop in the effective 
stresses between its both sides. In fractured porous media, this mutual interaction may 
produce the fracture propagation due to the effect of fluid pressure. In their work all non-
linear behaviour is assumed to occur at the interface elements, while poro-elasticity is 
assumed for the continuum porous medium. The method has been successfully applied to oil 
engineering in fractured reservoirs, in particular for the solution of fracture hydraulic 
problems. 

 The study of coupled THM processes with advection in discontinuities is important in 
problems with a certain degree of coupling between the mechanical, hydraulic and thermal 
behavior, and in which the hydraulic flow transports heat with a significant speed through the 
discontinuities. In this context, the 3D thermal advective formulations described in Chapter 2 
and 3 are coupled with the HM formulation referenced before (Segura & Carol, 2008a; 
Garolera 2017).  

 This chapter describes two different approaches to solve the THM coupled problem with 
advection for saturated geomaterials, considering the continuum medium and the double-
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nodded zero-thickness interface elements introduced in Section 3. The first approach is the 
partitioned or staggered approach, which makes use of different codes, appropriately linked, to 
solve the THM advective problem. The second strategy is the fully coupled (i.e. monolithic) 
approach, which directly solves the whole THM system of equations using the Newton-
Raphson iterative method. In both cases the solution is obtained by using the Finite Element 
Method (FEM). 

 From a mechanical point of view, the fluid pressure is introduced with the effective stress 
principle and the influence of the temperature by the solid (continuum) deformation as a 
function of the thermal expansion coefficient of the material. From a hydraulic point of view, 
the deformation produces changes in the fluid storage capacity and in the longitudinal 
conductivity of the interfaces. Finally, temperature changes modify the viscosity and density 
of the fluid, although in this thesis the variation of the fluid density with temperature is 
assumed negligible. Also, from a thermal point of view, the mechanical deformation of the 
interfaces influences their thermal storage capacity and longitudinal conductivity, while the 
fluid velocities (Darcy velocities) generates heat transport with the fluid. 

 In this thesis, the displacement of the solid phase, the fluid pressure and the temperature 
are considered as the main unknowns. Following continuum mechanics conventions, tension is 
assumed positive and compression negative. Then the relative displacements on the interface 
elements are positive in opening, and fluid pressures are negative and suctions are positive. 
Moreover, the zero-thickness interface elements used in the mechanical, hydraulic and thermal 
formulations are the same, and therefore, only a single FEM mesh is needed to solve the THM 
problem for both staggered and fully coupled approaches. The present formulation also 
assumes small strains, negligible inertial forces, saturated porous medium and incompressible 
fluid. 

 This chapter presents the THM advective coupled formulation for continuum medium 
and zero-thickness interface elements that can be numerically implemented following a fully 
coupled or a staggered strategy. It is divided in four sections: Section 4.1 describes the main 
couplings between the three THM fields; Section 4.2 describes the THM solution using a 
staggered coupled approach; Section 4.3 describes the monolithic THM formulation with 
advection for continuum medium and zero-interfaces; and Section 4.4 describes briefly the 
mechanical constitutive model for zero-thickness interface elements, which is based on fracture 
mechanics.  

 

4.1. THM couplings 

 This section presents the different interactions between the thermal, hydraulic and 
thermal fields considering a saturated and fractured porous medium. This study, previous to 
the formulation and numerical implementation of the THM coupled problem, is essential to 
establish a framework and the main hypothesis about the interactions between the three 
fields. 
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4.1.1. Thermo-mechanical coupling 

 This section presents the two main phenomena that produce coupling between the 
thermal and mechanical fields. The first phenomenon is thermal expansion, which can be 
defined as the tendency of matter to change in shape, area or volume in response to a change 
of temperature. Thus, in the mechanical calculations, the change of volume due to the 
thermal effects may be considered as an induced strain that depends on the temperature 
increment and the coefficient of thermal expansion of the solid material: 

Δ𝛆𝛆𝑇𝑇 = 𝛼𝛼𝑠𝑠
𝑇𝑇  Δ𝑇𝑇   (4.1) 

where Δ𝛆𝛆𝑇𝑇  is the strain increment due to the thermal effects, 𝛼𝛼𝑠𝑠
𝑇𝑇  is the coefficient of thermal 

expansion of the solid material [℃−1] and Δ𝑇𝑇  is the temperature increment that produces the 
thermal expansion. This phenomenon only affects the continuum porous medium and not the 
interfaces. 

 This thermal expansion of the solid material produces the variation of the total volume 
and, consequently, of the total pore volume, modifying the available space for the fluid in the 
porous medium. This change of the pore volume modifies the pressure distribution in the 
hydraulic problem and, due to the hydro-mechanical coupling, generates changes in the 
mechanical problem (effective stresses). 

 Additionally, the temperature variation affects the fluid that fills the pores or 
discontinuities, leading to volume changes of the fluid that are proportional to its coefficient 
of thermal expansion 𝛼𝛼𝑓𝑓

𝑇𝑇 . This change of the fluid volume modifies the pressure distribution in 
the hydraulic problem, and subsequently the effective stresses in the mechanical problem. 
However, this thermal expansion affects first the hydraulic problem, as explained in section 
4.1.2. 

 The second phenomenon that produces coupling between the mechanical and thermal 
fields affects only the interfaces. The opening of the discontinuities may change the quantity 
of fluid that fills them (considering saturated medium), leading to a variation on the in-plane 
heat transmissivity, since the heat storage capacity depends on the quantity of fluid filling the 
discontinuities. Moreover, the transversal heat transmissivity may be also modified with the 
opening of the interfaces due to the volume change of the fluid in the transversal direction 
that the heat flow has to cross. As mentioned, this condition does not affect the continuum 
medium. 

 

4.1.2. Hydro-thermal coupling 

 This section presents the two main phenomena that produce coupling between the 
thermal and hydraulic fields. The first consists on the variation of viscosity and density of the 
fluid due to the variation of temperature. This can also lead to volume changes of the fluid, 
modifying the pressure distribution in the hydraulic problem. In this thesis it is assumed that 
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the fluid filling the pores and discontinuities is water. The variation of the water density and 
viscosity with temperature is well known (IAPWS, 2008; Huber et al. 2009) and is reproduce 
here in Figure 4.1. 

 

Figure 4.1: Variation of water density and dynamic viscosity with temperature. 

 

 The variation of viscosity and density with temperature can be modeled by interpolation 
of exponential functions to the data shown in Figure 4.1: 

𝜇𝜇(𝑇𝑇 ) = a · e −𝑏𝑏 𝑇𝑇 = 2.1 · e −0.02 𝑇𝑇   (4.2) 

𝜌𝜌𝑓𝑓(𝑇𝑇 ) = α · e−𝛽𝛽 𝑇𝑇 = 1004 · e−0.0004 𝑇𝑇   (4.3) 

where 𝜇𝜇 [mPa · s] and 𝜌𝜌𝑓𝑓  [kg/m3] are the dynamic viscosity and density of the water and 𝑇𝑇  is 
the temperature [℃]. 

 Figure 4.1 shows that the variation of water density in the temperature range from 10 to 
60℃, which is the range of temperature variation in the applications of interest in this thesis, 
is around 1.5%. For this reason, the variation of density of the fluid is left out in the THM 
formulation developed in this Chapter. 

 The variation of temperature modifies also the dynamic viscosity of the fluid and the 
hydraulic conductivity, leading to a variation of the fluid velocity field (Darcy velocities), 
which produces heat transport with the fluid and a variation of the distribution of 
temperatures obtained from the thermal analysis. This transport is known as advection and 
has been extensively discussed in Chapters 2 and 3 of this thesis, where the Darcy velocity 
appears directly in the conduction-advection equations (2.157)-(2.163) and (3.80)-(3.85). 
Thus, the variation of the dynamic viscosity changes the fluid velocity field and, 
subsequently, the distribution of temperatures in the thermal problem. 
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 It is important to note that the advection affects mainly the discontinuities, because they 
are preferential paths for the hydraulic flow and heat can be transported along them with 
significant speed. 

 The second phenomenon is related with the volume changes produced due to the effect of 
thermal expansions, as explained in section 4.1.1. Both volume changes affect the fluid 
pressure distribution in the hydraulic problem, unless 𝛼𝛼𝑠𝑠

𝑇𝑇 = 𝛼𝛼𝑓𝑓
𝑇𝑇 , in which case both volumes 

are equal and variation of temperature does not affect the pressure distribution. 

 

4.1.3. Hydro-mechanical coupling 

 The hydro-mechanical interaction is well known since the classical contributions of 
Terzaghi (1925) and Biot (1941) to consolidation analysis, and the FEM “u-p” formulation 
introduced by Zienkiewicz & Bettess (1982). This section follows the work of Segura (2007), 
where an extensive review of the HM coupling can be found. 

 In the analysis of saturated geomaterials it is assumed that the fluid fills the pores and 
the discontinuities of the fractured porous media. The resulting pressures of the hydraulic 
analysis and the deformations of the mechanical analysis are reciprocally affected. This 
mutual interaction is introduced by the effective stress principle: 

𝜎𝜎′ =  𝜎𝜎 + 𝑝𝑝  (4.4) 

where 𝜎𝜎 is the total stress (positive in tension), 𝑝𝑝 is the fluid pressure (positive in 
compression) and 𝜎𝜎′ is the effective stress. Thus, the pressure modifies the effective stress in 
the porous medium, leading to its deformation and may also produce propagation of the 
discontinuities.  

 In addition, from a hydraulic point of view, the interface opening modifies its hydraulic 
storage capacity and longitudinal conductivity, which depend on the aperture. 

 

4.2. Coupled THM scheme based on a staggered approach 

 This section presents the solution of the THM advective coupled problem using a 
staggered scheme. In this type of scheme, two or more codes are sequentially used to reach 
the coupled solution by the introduction of the appropriate coupling loops between them. A 
driver must link these codes to handle the exchange of information between them at each 
iteration and check the convergence in order to decide whether to advance to the following 
time-step or to iterate again. The degree of coupling reached depends on the exchange of 
information between the codes involved in the staggered procedure. 

 This thesis has made use of the available code DRAC (Prat, et al., 1993), in which the 
HM fully coupled problem for continuum and interface elements proposed by Segura & Carol 
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(2008a) and Garolera (2017) was already implemented. In this context, the thermal problem 
with advection described in Chapters 2 and 3 has been implemented in a new code similar to 
DRAC (T-DRAC), so that the thermal problem may be solved independently.  

 Thus, in the staggered approach used here to solve the THM advective coupled problem, 
code DRAC solves the HM problem and code T-DRAC solves the thermal advective problem. 
In order to carry out this staggered scheme, some modifications have been introduced in both 
codes. In one hand, code DRAC generates three different files with the nodal displacements, 
the nodal pressures and the fluid Darcy velocities at Gauss points, and it reads the nodal 
temperature increments file generated by code T-DRAC. On the other hand, code T-DRAC 
generates a file with the nodal temperature increments and can read the files with nodal 
displacements and fluid Darcy velocities at Gauss points generated by code DRAC. Finally, a 
driver linking both codes has been programmed, which manages the exchange of information 
between codes DRAC and T-DRAC and is able to read the files with nodal temperatures, 
nodal pressures and nodal displacements of the current and previous staggered iterations in 
order to evaluate the convergence and perform the necessary iterations to reach a final 
solution. 

 In the staggered iterative process, when a solution with the HM code is obtained, the new 
estimate value of the nodal displacements, nodal pressures and fluid velocities can be 
introduced again in the thermal code. The same procedure is carried out with the new 
estimated value of the nodal temperatures obtained from the thermal code, which are applied 
to the HM code. This sequential procedure iterates from one code to the other until the 
results achieve a certain prefixed tolerance. The number of staggered iterations increases with 
the degree of coupling between the HM and T problems. In this case, as the advection 
produces a strong coupling between both problems, this may cause convergence 
inconveniences in THM staggered calculations.  

 Additionally, it is important to note that the HM and T formulations use the same 
double-nodded interface elements. Consequently, the same FE mesh can be used for both 
problems, which is an advantage for the exchange of information between both codes. 

 The staggered approach is schematically illustrated in Figure 4.2 and briefly summarized 
as follows: 

a) The driver calls DRAC in order to solve the HM problem. Then code DRAC reads the 
nodal temperature increments file generated by code T-DRAC and solves the HM 
problem. In this solution, the thermo-mechanical (TM) coupling is achieved imposing the 
thermally-induced strains to the mechanical problem, which results from the 
multiplication of the nodal temperature increments by the coefficients of thermal 
expansion of each material. Additionally, the thermo-hydraulic (TH) coupling is achieved 
considering that the variation of the temperature produces variation of the viscosity of 
the fluid in the hydraulic problem and therefore modifies the conductivity of the fluid, the 
velocities and the pressure distribution of the hydraulic problem. Finally, at the end of 
the calculation, code DRAC generates three files with the resulting displacements and 
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fluid pressures at all nodes in the domain and the fluid Darcy velocities at all Gauss 
points in the domain (continuum medium and interfaces). 

 

b) The driver calls code T-DRAC in order to solve the thermal advective problem. Then 
code T-DRAC reads the files with nodal displacements and fluid Darcy velocities 
generated by code DRAC and solves the thermal advective problem. In this solution, the 
hydro-thermal (HT) coupling is achieved by the imposition of the Darcy velocities to the 
thermal problem, which involves heat transport with the fluid (formulation in Chapters 2 
and 3) and leads to a variation on the distribution of temperatures of the thermal 
solution. Additionally, the mechanic-thermal (MT) coupling is achieved considering that 
the displacements of the mechanical problem cause the opening of the discontinuities, 
modifying the thermal storage capacity and the longitudinal conductivity of the interfaces 
(due to the variation in the amount of fluid filling them). At the end of the calculation, 
code T-DRAC generates a file with the resulting nodal temperatures at all nodes in the 
domain. 

 

c) The driver reads the temperature, pressure and displacement files written by codes 
DRAC and T-DRAC, and evaluates the convergence from the increments of the variables 
between the current and the previous staggered iteration. If specified tolerances for 
temperatures, pressures and displacements are satisfied, the driver continues to the next 
time-step; otherwise, the driver performs the necessary iterations between the two codes 
for each time-step until convergence is reached. 

 

     
Figure 4.2: Scheme of the staggered approach for the THM coupling. 
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4.3. Thermo-Hydro-Mechanical fully coupled formulation 

 The monolithic or fully coupled scheme consists in a procedure that numerically solves 
simultaneously the whole system of coupled (thermal, hydro and mechanical) equations. Thus, 
the displacements, fluid pressures and temperatures at the nodes are obtained simultaneously.  

 This section presents the THM advective fully coupled formulation for continuum 
medium and zero-thickness interface elements using the FEM and the FDM for the spatial 
and time discretization, respectively. 

 

4.3.1. THM formulation for continuum medium 

 In the following paragraphs, the THM advective fully coupled formulation for continuum 
media is presented, divided in four parts. The first three parts develop the mechanical, 
hydraulic and thermal formulations, respectively. The fourth part presents the solution of the 
non-linear THM fully coupled problem using a Newton-Raphson strategy.  

 

Mechanical Formulation for continuum medium 

 The governing equation of the mechanical problem is the balance of linear momentum 
equation, which can be written, leaving out the acceleration terms, as follows: 

[𝐋𝐋𝐜𝐜
𝑢𝑢]⊤ 𝛔𝛔 + 𝜌𝜌 𝐠𝐠 = 0 (4.5) 

where 𝐋𝐋𝐜𝐜
𝑢𝑢 is a differential operator; 𝛔𝛔 is the total stresses tensor in Voigt notation; 𝐠𝐠 is the 

gravity vector; 𝜌𝜌 is the average density in which 𝑛𝑛 is the porosity and 𝜌𝜌𝑠𝑠 and 𝜌𝜌𝑓𝑓  are the solid 
and fluid densities. 

[𝐋𝐋𝐜𝐜
𝑢𝑢]⊤ =

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎛

𝜕𝜕
𝜕𝜕𝜕𝜕

0 0

0 𝜕𝜕
𝜕𝜕𝜕𝜕

0

0 0 𝜕𝜕
𝜕𝜕𝜕𝜕

   

𝜕𝜕
𝜕𝜕𝜕𝜕

0 𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕
𝜕𝜕𝜕𝜕

0

0 𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕
𝜕𝜕𝜕𝜕⎠

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎞

 (4.6) 

𝛔𝛔 = (𝜎𝜎𝑥𝑥 𝜎𝜎𝑦𝑦 𝜎𝜎𝑧𝑧   𝜏𝜏𝑥𝑥𝑥𝑥 𝜏𝜏𝑦𝑦𝑦𝑦 𝜏𝜏𝑧𝑧𝑧𝑧 )⊤ (4.7) 

𝐠𝐠 = (𝑔𝑔𝑥𝑥 𝑔𝑔𝑦𝑦 𝑔𝑔𝑧𝑧 )⊤ (4.8) 

𝜌𝜌 = (1 − 𝑛𝑛)𝜌𝜌𝑠𝑠 + 𝑛𝑛 𝜌𝜌𝑓𝑓 (4.9) 

 The boundary conditions associated with the linear momentum equation can be written 
as: 

[𝐧𝐧𝛔𝛔
 ]⊤𝛔𝛔 − 𝐭𝐭̃ = 0 (4.10) 
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where 𝐭𝐭 ̃are the prescribed stress tractions on the boundary Γq and 𝐧𝐧𝛔𝛔
  is the operator defined 

as: 

[𝐧𝐧𝛔𝛔
 ]⊤ =

⎝
⎜⎛

𝑛𝑛𝑥𝑥 0 0
0 𝑛𝑛𝑦𝑦 0
0 0 𝑛𝑛𝑧𝑧

   
𝑛𝑛𝑦𝑦 0 𝑛𝑛𝑧𝑧
𝑛𝑛𝑥𝑥 𝑛𝑛𝑧𝑧 0
0 𝑛𝑛𝑦𝑦 𝑛𝑛𝑥𝑥⎠

⎟⎞ (4.11) 

where 𝑛𝑛𝑖𝑖 are the components of the unit vector 𝐧𝐧 normal to the boundary surface in the xyz 
system. 

 Performing the spatial discretization of Eq. (4.5) on the domain Ω by using the FEM, the 
nodal displacements can be approximated as:  

𝑢𝑢 ≅ 𝑢̂𝑢 = � 𝑁𝑁 
(𝑎𝑎) 𝑢𝑢 

(𝑎𝑎)
𝑛𝑛

𝑎𝑎=1
= 𝐍𝐍 

𝑢𝑢 𝐮𝐮 
  (4.12) 

where 𝑢̂𝑢 is the approximate value of the nodal displacement, 𝑢𝑢 
(𝑎𝑎) is the displacement value on 

the node (𝑎𝑎), 𝑁𝑁 
(𝑎𝑎) is the shape function value of the node (𝑎𝑎) and 𝑛𝑛 is the number of nodes of 

the element. 

 Eq. (4.5) represents the strong form of the governing differential equations of the problem 
and Eq. (4.10) the boundary conditions. Replacing the approximation 𝑢̂𝑢 in Eqs. (4.5) and 
(4.10) leads to:  

[𝐋𝐋𝐜𝐜
𝑢𝑢]⊤ 𝛔𝛔� + 𝜌𝜌 𝐠𝐠 = 𝒓𝒓𝛀𝛀       on       Ω (4.13) 

[𝐧𝐧𝛔𝛔
 ]⊤ 𝛔𝛔� − 𝐭𝐭̃ = 𝒓𝒓𝚪𝚪       on       Γq (4.14) 

where 𝒓𝒓𝜴𝜴 and 𝒓𝒓𝜞𝜞  are the residuals from the finite element approximation and 𝛔𝛔� is the 
approximate value of the total stress tensor. For the Dirichlet boundary conditions it is 
assumed that the condition is satisfied on prescribed nodes (𝑢̂𝑢 = 𝑢𝑢). Using the weighted 
residuals method to set 𝒓𝒓𝜴𝜴 and 𝒓𝒓𝜞𝜞  to zero, the following integral expression is obtained: 

� [𝐰𝐰]⊤
 

Ω
𝒓𝒓𝛀𝛀 dΩ + � [𝐰𝐰�����]⊤

 

Γq

𝒓𝒓𝚪𝚪 dΓ = 0 (4.15) 

where 𝐰𝐰 and 𝐰𝐰����� are weight function vectors formed from the scalar weight functions as 
𝐰𝐰 = (𝑤𝑤,𝑤𝑤, 𝑤𝑤) and 𝐰𝐰����� = (𝑤𝑤����, 𝑤𝑤����, 𝑤𝑤����). Substituting Eqs. (4.13) and (4.14) in (4.15), the weak form 
of the problem is obtained: 

� [𝐰𝐰]⊤([𝐋𝐋𝐜𝐜
𝑢𝑢]⊤𝛔𝛔 + 𝜌𝜌 𝐠𝐠)

 

Ω
dΩ + � [𝐰𝐰�����]⊤�[𝐧𝐧𝛔𝛔

 ]⊤ 𝛔𝛔 − 𝐭𝐭�̃
 

Γq

dΓ = 0  (4.16) 

 Considering that the weight function is selected such that 𝐰𝐰����� = −𝐰𝐰, assuming that the 
unknown vector 𝐮𝐮 is approximated by Finite Elements as shown in Eq. (4.12) and applying 
the Galerkin weighting repeatedly for 𝐰𝐰 equal to each of the shape functions 𝑁𝑁(𝑎𝑎), leads to: 
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� [𝐍𝐍𝑢𝑢]⊤([𝐋𝐋𝐜𝐜
𝑢𝑢]⊤𝛔𝛔 + 𝜌𝜌 𝐠𝐠)

 

Ω
dΩ − � [𝐍𝐍𝑢𝑢]⊤�[𝐧𝐧𝛔𝛔

 ]⊤ 𝛔𝛔 − 𝐭𝐭�̃
 

Γq

dΓ = 0  (4.17) 

 And applying the Divergence Theorem described by Eq. (2.33) to the first term of the 
previous results: 

− � [𝐋𝐋𝐜𝐜
𝑢𝑢 𝐍𝐍𝑢𝑢]⊤ 𝛔𝛔

 

Ω
 dΩ + � [𝐍𝐍𝑢𝑢]⊤ 𝜌𝜌 𝐠𝐠

 

Ω
 dΩ + � [𝐍𝐍𝑢𝑢]⊤ 𝐭𝐭̃

 

Γq

 dΓ = 0  (4.18) 

 In order to consider the hydro-mechanical coupling, the efective stresses are written as: 

𝛔𝛔 = 𝛔𝛔′ − 𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑝𝑝 𝐦𝐦𝐜𝐜
   (4.19) 

where 𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 is the Biot's Coefficient, 𝑝𝑝 is the fluid pressure (negative in compression) and 𝐦𝐦𝐜𝐜
  

is the identity matrix in Voigt notation. Following the discretization made for the 
displacement field, the fluid preassure is approximated by: 

𝑝𝑝 ≅ 𝑝𝑝̂ = �𝑁𝑁 
(𝑎𝑎) 𝑝𝑝 

(𝑎𝑎)
𝑛𝑛

𝑎𝑎=1
= 𝐍𝐍𝑝𝑝 𝐩𝐩 

   (4.20) 

where 𝑝𝑝̂ is the approximate value of the nodal pressure, 𝑝𝑝 
(𝑎𝑎) is the pressure value on the 𝑖𝑖 

node and 𝐩𝐩 are the nodal pressures of the element. 

 Substituting Eqs. (4.19) and (4.20) into Eq. (4.18) and defining the deformation matrix 
(𝐁𝐁𝑢𝑢 = 𝐋𝐋𝐜𝐜

𝑢𝑢 𝐍𝐍𝑢𝑢), results: 

� [𝐁𝐁𝑢𝑢]⊤ 𝛔𝛔′
 

Ω
dΩ − � [𝐁𝐁𝑢𝑢]⊤𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

 

Ω
𝐍𝐍𝑝𝑝 𝐩𝐩  [𝐦𝐦𝐜𝐜

 ]⊤ dΩ = � [𝐍𝐍𝑢𝑢]⊤𝜌𝜌 𝐠𝐠 
 

Ω
dΩ + � [𝐍𝐍𝑢𝑢]⊤ 𝐭𝐭̃

 

Γq

 dΓ  (4.21) 

which is the mechanic continuum equation. 

 In order to consider the thermo-mechanical coupling, the strain increment Δ𝛆𝛆 which is 
included in the stress tensor of the above equation has a thermal component and may be 
written as: 

Δ𝛆𝛆 = Δ𝛆𝛆𝑢𝑢 − Δ𝛆𝛆𝑇𝑇   (4.22) 

Δ𝛆𝛆𝑢𝑢 = 𝐁𝐁𝑢𝑢 Δ𝐮𝐮   (4.23) 

Δ𝛆𝛆𝑇𝑇 = 𝐦𝐦𝐜𝐜
  𝛼𝛼𝑠𝑠

𝑇𝑇  Δ𝑇𝑇   (4.24) 

where 𝛼𝛼𝑠𝑠
𝑇𝑇  is the coefficient of thermal expansion of the solid [º𝐶𝐶−1] and Δ𝑇𝑇  is temperature 

increment. Following the FEM discretization made for the displacement and pressure fields, 
the temperature increment is approximated by: 

𝛥𝛥𝛥𝛥 ≅ 𝛥𝛥𝑇𝑇̂ = � 𝑁𝑁 
(𝑎𝑎) Δ𝑇𝑇 

(𝑎𝑎)
𝑛𝑛

𝑎𝑎=1
= 𝐍𝐍𝑇𝑇  Δ𝐓𝐓   (4.25) 
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where 𝛥𝛥𝑇𝑇̂ is the approximate value of the nodal pressure, Δ𝑇𝑇 
(𝑎𝑎) is the pressure value on the 

node (𝑎𝑎) and Δ𝐓𝐓 are the nodal increment temperatures of the element. 

 Considering a linear elastic problem, the effective stress increment of Eq. (4.21) may be 
written as: 

Δ𝛔𝛔′ = 𝐃𝐃𝑡𝑡𝑡𝑡𝑡𝑡Δ𝛆𝛆 = 𝐃𝐃𝑡𝑡𝑡𝑡𝑡𝑡 𝐁𝐁𝑢𝑢 Δ𝐮𝐮 − 𝐃𝐃𝑡𝑡𝑡𝑡𝑡𝑡 𝐦𝐦𝐜𝐜
  𝛼𝛼𝑠𝑠

𝑇𝑇  𝐍𝐍𝑇𝑇 Δ𝐓𝐓    (4.26) 

where 𝐃𝐃𝑡𝑡𝑡𝑡𝑡𝑡 is the tangent constitutive matrix for the considered increment. 

 The last step consists in the time discretization of the mechanical equation (4.21) using 
the FDM. The unknowns (𝑥𝑥) are evaluated at time (𝑛𝑛 + 𝜃𝜃) and the time derivatives are 
transformed into increments (∆𝑥𝑥𝑛𝑛+𝜃𝜃), assuming a linear variation of the unknowns within a 
time increment (∆𝑡𝑡): 

𝑥𝑥𝑛𝑛+𝜃𝜃 = 𝑥𝑥𝑛𝑛 + 𝜃𝜃∆𝑥𝑥𝑛𝑛 

𝑥𝑥𝑛̇𝑛 = ∆𝑥𝑥𝑛𝑛
∆𝑡𝑡𝑛𝑛+1

 

∆𝑥𝑥𝑛𝑛 = 𝑥𝑥𝑛𝑛+𝜃𝜃 − 𝑥𝑥𝑛𝑛 

 (4.27) 

 Introducing the FDM time discretization defined by Eqs. (4.27) into Eq. (4.21) the final 
continuum mechanical equation (4.28) is reached: 
 

Summary 7 - Mechanical continuum equation. 

� [𝐁𝐁𝑢𝑢]⊤ 𝛔𝛔𝑛𝑛+𝜃𝜃
′

 

Ω
 dΩ − 𝜃𝜃 𝐊𝐊𝐮𝐮𝐮𝐮 

∆𝐩𝐩𝑛𝑛+1
 = 𝐟𝐟e,𝑛𝑛+𝜃𝜃

𝑢𝑢 + 𝐊𝐊𝐮𝐮𝐮𝐮 
𝐩𝐩𝑛𝑛

   (4.28) 

where 𝐊𝐊𝐮𝐮𝐮𝐮 is the hydro-mechanical coupling element matrix and 𝐟𝐟e𝐮𝐮 is the element vector of 
external forces: 

𝐊𝐊𝐮𝐮𝐮𝐮 = � [𝐁𝐁𝑢𝑢]⊤ 𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

 

Ω
 [𝐦𝐦𝐜𝐜

 ]⊤ 𝐍𝐍𝑝𝑝 dΩ   (4.29) 

𝐟𝐟e𝑢𝑢 = � [𝐍𝐍𝑢𝑢]⊤𝜌𝜌 𝐠𝐠
 

Ω
 dΩ + � [𝐍𝐍𝑢𝑢]⊤ 𝐭𝐭 ̃

 

Γq

dΓ  (4.30) 

 

 

Hydraulic Formulation for continuum medium 

 The governing equation of the hydraulic problem is the fluid mass balance equation, 
which may be written for the HM coupled problem for porous medium (Garolera, 2017) in the 
following form: 

1
𝑀𝑀𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

𝜕𝜕𝑝𝑝 

𝜕𝜕𝜕𝜕
+ 𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵[𝛁𝛁]⊤𝐯𝐯𝑠𝑠 + [𝛁𝛁]⊤ �𝐤𝐤𝑝𝑝

𝜇𝜇
(−𝛁𝛁𝑝𝑝 + 𝜌𝜌𝑓𝑓 𝐠𝐠)� = 0 (4.31) 
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where 𝑝𝑝 is the fluid pressure, 𝑀𝑀𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 is the Biot's modulus, 𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 is the Biot's coefficient, 𝐤𝐤𝑝𝑝 is 
the hydraulic permeability, 𝜇𝜇 is the dynamic viscosity of the fluid, 𝜌𝜌𝑓𝑓  is the fluid density, 
𝐠𝐠 = [0 0 −9.8]⊤ is the gravity vector, 𝛁𝛁 = � 𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕
𝜕𝜕𝜕𝜕�

⊤
, 𝐯𝐯𝑠𝑠 is the solid velocity given in 

Eq. (4.33), 𝐋𝐋𝐜𝐜
𝑢𝑢 is the differential operator given in Eq. (4.6), 𝐦𝐦𝐜𝐜

  is the identity matrix in 
Voigt notation, 𝐾𝐾𝑠𝑠 is the compressibility modulus of the solid, 𝐾𝐾𝑓𝑓 is the compressibility 
modulus of the fluid and 𝑛𝑛 is the porosity. 

1
𝑀𝑀𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = �𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 − 𝑛𝑛

𝐾𝐾𝑠𝑠 + 𝑛𝑛
𝐾𝐾𝑓𝑓� (4.32) 

[𝛁𝛁]⊤𝐯𝐯𝑠𝑠 = [𝐦𝐦𝐜𝐜
 ]⊤ 𝜕𝜕𝝐𝝐

𝜕𝜕𝜕𝜕
= [𝐦𝐦𝐜𝐜

 ]⊤ 𝐋𝐋𝐜𝐜
𝑢𝑢 𝜕𝜕𝐮𝐮

𝜕𝜕𝜕𝜕
 (4.33) 

 In saturated porous media it is important to consider the volume changes due to the 
effect of thermal expansions, which modify the available space for fluid storage, as explained 
in section 4.1.1. Under free thermal expansion, the volumetric strain increment of the solid 
due to thermal effects is: 

𝜀𝜀𝑣𝑣,𝑠𝑠𝑜𝑜𝑙𝑙𝑙𝑙𝑙𝑙
𝑇𝑇 = 𝛼𝛼𝑣𝑣,𝑠𝑠

𝑇𝑇 Δ𝑇𝑇  (4.34) 

where 𝛼𝛼𝑣𝑣,𝑠𝑠
𝑇𝑇  is the volumetric coefficient of thermal expansion of the solid that, assuming small 

strains, may be obtained from the linear coefficient of thermal expansion as: 

𝛼𝛼𝑣𝑣,𝑠𝑠
𝑇𝑇 ≈ 3𝛼𝛼𝑠𝑠

𝑇𝑇  (4.35) 

From this equation the volumetric strain rate in the solid may be written as: 

𝜕𝜕𝜕𝜕𝑣𝑣,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑇𝑇

𝜕𝜕𝜕𝜕
= 𝛼𝛼𝑣𝑣,𝑠𝑠

𝑇𝑇 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 (4.36) 

 Since the thermal deformation is considered to be homothetic, with equal thermal strains 
for the solid and the pores, it is assumed that the strain rate in the pores is the fraction of the 
corresponding strain rate in the solid according to the porosity: 

𝜕𝜕𝜕𝜕𝑣𝑣,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑇𝑇

𝜕𝜕𝜕𝜕
= 𝑛𝑛

𝜕𝜕𝜕𝜕𝑣𝑣,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑇𝑇

𝜕𝜕𝜕𝜕
= 𝑛𝑛 𝛼𝛼𝑣𝑣,𝑠𝑠

𝑇𝑇 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 (4.37) 

 If there are restrictions to free thermal expansion and the final deformation is equal to 
the result of the combination of thermal free deformations and the deformations due to the 
effective stress changes, the volumetric strain rate of the solid due to such stress changes may 
be expressed as: 

𝜕𝜕𝜕𝜕𝑣𝑣,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑀𝑀

𝜕𝜕𝜕𝜕
= 𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 �[𝛁𝛁]⊤𝐯𝐯𝑠𝑠 − 𝛼𝛼𝑣𝑣,𝑠𝑠

𝑇𝑇 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

� (4.38) 

 The total variation of pore volume due to both simultaneous changes in temperature and 
stresses is the sum of Eqs. (4.37) and (4.38): 
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𝜕𝜕𝜕𝜕𝑣𝑣
𝑇𝑇+𝑀𝑀

𝜕𝜕𝜕𝜕
= 𝑛𝑛 𝛼𝛼𝑣𝑣,𝑠𝑠

𝑇𝑇 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 �[𝛁𝛁]⊤𝐯𝐯𝑠𝑠 − 𝛼𝛼𝑣𝑣,𝑠𝑠
𝑇𝑇 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� (4.39) 

 Additionally, it is important to consider the volume change of the fluid itself due to 
thermal effects. As the fluid is only present in the pores of the material, the volumetric strain 
rate of the fluid is: 

𝜕𝜕𝜕𝜕𝑣𝑣,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑇𝑇

𝜕𝜕𝜕𝜕
= 𝑛𝑛 𝛼𝛼𝑣𝑣,𝑓𝑓

𝑇𝑇 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 (4.40) 

where 𝛼𝛼𝑣𝑣,𝑓𝑓
𝑇𝑇  is the volumetric coefficient of thermal expansion of the fluid filling the pores. 

 Finally, the combination of the volumetric strain rate of the pores, the solid and the fluid, 
defined by Eqs. (4.39) and (4.40), leads to the final volumetric strain rate due to thermal 
effects:  

  𝜕𝜕𝜕𝜕𝑣𝑣
𝑇𝑇+𝑀𝑀

𝜕𝜕𝜕𝜕
+

𝜕𝜕𝜕𝜕𝑣𝑣,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑇𝑇

𝜕𝜕𝜕𝜕
= �(𝑛𝑛 − 𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 )𝛼𝛼𝑣𝑣,𝑠𝑠

𝑇𝑇 + 𝑛𝑛 𝛼𝛼𝑣𝑣,𝑓𝑓
𝑇𝑇 � 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵[𝛁𝛁]⊤𝐯𝐯𝑠𝑠 (4.41) 

where the second term of the right-hand side already existed in the traditional Biot 
formulation, and the new term due to temperature changes is: 

𝜕𝜕𝜕𝜕𝑣𝑣
𝑇𝑇

𝜕𝜕𝜕𝜕
= 𝛼𝛼𝑒𝑒𝑒𝑒

𝑇𝑇 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 (4.42) 

where 𝛼𝛼𝑒𝑒𝑒𝑒
𝑇𝑇  is an equivalent coefficient of thermal expansion for the hydraulic problem: 

𝛼𝛼𝑒𝑒𝑒𝑒
𝑇𝑇 = (𝑛𝑛 − 𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)𝛼𝛼𝑣𝑣,𝑠𝑠

𝑇𝑇 + 𝑛𝑛 𝛼𝛼𝑣𝑣,𝑓𝑓
𝑇𝑇  (4.43) 

 This term has to be added to the fluid mass balance equation (4.31), leading to the new 
fluid mass balance equation for the THM coupled problem in continuum porous medium: 

1
𝑀𝑀𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

𝜕𝜕𝑝𝑝 

𝜕𝜕𝜕𝜕
+ 𝛼𝛼𝑒𝑒𝑒𝑒

𝑇𝑇 𝜕𝜕𝑇𝑇  

𝜕𝜕𝜕𝜕
+ 𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵[𝛁𝛁]⊤𝐯𝐯𝑠𝑠 + [𝛁𝛁]⊤ � 𝐤𝐤𝑝𝑝

𝜇𝜇(𝑇𝑇 )
(−𝛁𝛁𝑝𝑝 + 𝜌𝜌𝑓𝑓 𝐠𝐠)� = 0 (4.44) 

where the dynamic viscosity of the fluid 𝜇𝜇(𝑇𝑇 ) also depends on the temperature and is given in 
Eq. (4.2) for water.  

 Eq. (4.44) is similar to Eq. 2.20 (pp45) of Lewis & Schrefler (1998) but considering 
saturated porous media, a single phase of water and constant fluid density. 

 There are two kinds of boundary conditions applicable to the transient Eq. (4.44). The 
first is the Dirichlet boundary condition, in which the values of pressure 𝑝𝑝̅ are imposed on a 
boundary Γϕ (Eq. (4.45)). The second is the Neumann boundary condition, in which a normal 
prescribed flow 𝑞𝑞𝑁̅𝑁

 𝑝𝑝 is imposed on a boundary Γq (Eq. (4.46)). 

𝑝𝑝 = 𝑝𝑝̅(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡)      on      Γϕ (4.45) 
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[𝐧𝐧]⊤ 𝐤𝐤𝑝𝑝

𝜇𝜇(𝑇𝑇 )
(−𝛁𝛁𝑝𝑝 + 𝜌𝜌𝑓𝑓𝐠𝐠) − 𝑞𝑞𝑁̅𝑁

 𝑝𝑝 = 0        on      Γq  (4.46) 

 Using the weighted residuals method to set 𝑟𝑟𝛺𝛺 and 𝑟𝑟𝛤𝛤  to zero, the following integral 
expression is obtained: 

� 𝑤𝑤
 

Ω
𝑟𝑟𝛺𝛺 dΩ + � 𝑤𝑤����

 

Γq

𝑟𝑟𝛤𝛤  dΓ = 0 (4.47) 

where 𝑤𝑤 and 𝑤𝑤���� are weight functions. Substituting Eqs. (4.45) and (4.46) in (4.47), the weak 
form of the problem is obtained:  

� 𝑤𝑤 � 1
𝑀𝑀𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

�
 

Ω
dΩ + � 𝑤𝑤 �𝛼𝛼𝑒𝑒𝑒𝑒

𝑇𝑇 𝜕𝜕𝑇𝑇  

𝜕𝜕𝜕𝜕
�

 

Ω
dΩ + � 𝑤𝑤 �𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 [𝐦𝐦𝐜𝐜

 ]⊤ 𝐋𝐋𝐜𝐜
𝑢𝑢 𝜕𝜕𝐮𝐮

𝜕𝜕𝜕𝜕
�

 

Ω
dΩ

+ � 𝑤𝑤 �[𝛁𝛁]⊤ � 𝐤𝐤𝑝𝑝

𝜇𝜇(𝑇𝑇 )
(−𝛁𝛁𝑝𝑝 + 𝜌𝜌𝑓𝑓𝐠𝐠)��

 

Ω
dΩ

+ � 𝑤𝑤���� �[𝐧𝐧]⊤ 𝐤𝐤𝑝𝑝

𝜇𝜇(𝑇𝑇 )
(−𝛁𝛁𝑝𝑝 + 𝜌𝜌𝑓𝑓𝐠𝐠) − 𝑞𝑞𝑁̅𝑁

 𝑝𝑝�
 

Γq

dΓ = 0     

 (4.48) 

 Introducing the approximate values of nodal displacements, pressures and temperatures 
given by Eqs. (4.12), (4.20) and (4.25), applying the Divergence Theorem defined by Eq. 
(2.33) to the first term of the equation, applying the Galerkin weighting (𝑤𝑤 =
𝑁𝑁𝑝𝑝 (1),𝑁𝑁𝑝𝑝 (2), …) and considering that 𝑤𝑤 = 0 on Γϕ and 𝑤𝑤���� = −𝑤𝑤 on Γq, the following 
equation is obtained: 

� [𝛁𝛁]⊤𝐍𝐍𝑝𝑝 𝐤𝐤𝑝𝑝

𝜇𝜇(𝑇𝑇 )
𝛁𝛁𝐍𝐍𝑝𝑝

 

Ω
𝐩𝐩 dΩ + � 𝐍𝐍𝑝𝑝𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 [𝐦𝐦𝐜𝐜

 ]⊤ 𝐁𝐁 
𝑢𝑢

 

Ω

𝜕𝜕𝐮𝐮 
 

𝜕𝜕𝜕𝜕
 dΩ

− � [𝛁𝛁]⊤𝐍𝐍𝑝𝑝 𝐤𝐤𝑝𝑝 𝜌𝜌𝑓𝑓

𝜇𝜇 (𝑇𝑇 )
 𝐠𝐠

 

Ω
dΩ + � 𝐍𝐍𝑝𝑝 1

𝑀𝑀𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 [𝐍𝐍𝑝𝑝]⊤  𝜕𝜕𝐩𝐩 
 

𝜕𝜕𝜕𝜕

 

Ω
dΩ

+ � 𝐍𝐍𝑇𝑇 𝛼𝛼𝑒𝑒𝑒𝑒
𝑇𝑇 [𝐍𝐍𝑇𝑇 ]⊤  𝜕𝜕𝐓𝐓 

 

𝜕𝜕𝜕𝜕

 

Ω
dΩ + � 𝐍𝐍𝑝𝑝 𝑞𝑞𝑁̅𝑁

 𝑝𝑝
 

Γq

dΓ = 0 

 (4.49) 

where the fluid dynamic viscosity is approximated by: 

1
𝜇𝜇(𝑇𝑇 )

= 1
𝜇𝜇0(𝑇𝑇 )

 e𝑏𝑏 𝐍𝐍𝑇𝑇 𝐓𝐓 
    (4.50) 

where 𝜇𝜇0 and 𝑏𝑏 are the coefficients defined in Eq. (4.2). 

 The last step consists in the time discretization of the hydraulic equation (4.49) using the 
FDM. Additionally, the linearization of Eq. (4.50) may be developed using the first term of 
the Taylor expansion, obtaining: 
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1
𝜇𝜇(𝑇𝑇 )

= 1
𝜇𝜇0

 e−𝑏𝑏𝐍𝐍𝑇𝑇𝐓𝐓𝑛𝑛
 e𝑏𝑏𝑏𝑏𝐍𝐍𝑇𝑇Δ𝐓𝐓𝑛𝑛+1

 = 1
𝜇𝜇𝑛𝑛

 e𝑏𝑏𝑏𝑏𝐍𝐍𝑇𝑇Δ𝐓𝐓𝑛𝑛+1
  

1
𝜇𝜇(𝑇𝑇 )

≈ 1
𝜇𝜇𝑛𝑛

 (1 + b𝜃𝜃𝐍𝐍𝑇𝑇 Δ𝐓𝐓𝑛𝑛+1
 ) 

 (4.51) 

 Finally, introducing the FDM time discretization defined in Eq. (4.27) into Eq. (4.49) and 
substituting Eq. (4.51) the final continuum hydraulic equation (4.52) is reached: 

 

Summary 8 - Hydraulic continuum equation. 
 

�𝐒𝐒𝐩𝐩 + 𝜃𝜃∆𝑡𝑡𝑛𝑛+1𝐊𝐊𝐩𝐩𝐩𝐩�∆𝐩𝐩𝑛𝑛+1
 + �𝐒𝐒𝐩𝐩𝐩𝐩 + 𝜃𝜃∆𝑡𝑡𝑛𝑛+1𝐊𝐊𝐩𝐩𝐩𝐩�∆𝐓𝐓𝑛𝑛+1

 + �𝐊𝐊𝐩𝐩𝐩𝐩� ⊤∆𝐮𝐮𝑛𝑛+1
 

= ∆𝑡𝑡𝑛𝑛+1𝐟𝐟e𝑝𝑝 − ∆𝑡𝑡𝑛𝑛+1𝐊𝐊𝐩𝐩𝐩𝐩 
𝐩𝐩𝑛𝑛

   (4.52) 

where 𝐊𝐊𝐩𝐩𝐩𝐩 is the element hydraulic diffusion matrix, 𝐒𝐒𝐩𝐩 is the element hydraulic capacity 
matrix, 𝐊𝐊𝐩𝐩𝐩𝐩 is the element hydro-mechanical coupling matrix, 𝐊𝐊𝐩𝐩𝐩𝐩 is the element thermo-
hydraulic coupling matrix and 𝐟𝐟e𝑝𝑝 is the element vector of external forces: 

𝐒𝐒𝐩𝐩 = � 𝐍𝐍𝑝𝑝 1
𝑀𝑀𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 [𝐍𝐍𝑝𝑝]⊤

 

Ω
dΩ  (4.53) 

𝐊𝐊𝐩𝐩𝐩𝐩 = � [𝛁𝛁]⊤𝐍𝐍𝑝𝑝 𝐤𝐤𝑝𝑝

𝜇𝜇𝑛𝑛
 𝛁𝛁𝐍𝐍𝑝𝑝

 

Ω
 dΩ  (4.54) 

𝐒𝐒𝐩𝐩𝐩𝐩 = � 𝐍𝐍𝑝𝑝 𝛼𝛼𝑒𝑒𝑒𝑒
𝑇𝑇 [𝐍𝐍𝑝𝑝]⊤

 

Ω
dΩ (4.55) 

𝐊𝐊𝐩𝐩𝐩𝐩 = 𝑏𝑏 � [𝛁𝛁]⊤𝐍𝐍𝑝𝑝 𝐤𝐤𝑝𝑝

𝜇𝜇𝑛𝑛
 𝛁𝛁𝐍𝐍𝑝𝑝𝐩𝐩𝑛𝑛

  𝐍𝐍𝑇𝑇
 

Ω
dΩ − 𝑏𝑏 � [𝛁𝛁]⊤𝐍𝐍𝑝𝑝 𝐤𝐤𝑝𝑝 𝜌𝜌 

𝑓𝑓

𝜇𝜇𝑛𝑛
 𝐠𝐠 𝐍𝐍𝑇𝑇

 

Ω
dΩ  (4.56) 

𝐊𝐊𝐩𝐩𝐩𝐩 = � [𝐍𝐍𝑝𝑝]⊤𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

 

Ω
[𝐦𝐦𝐜𝐜

 ]⊤ 𝐁𝐁 
𝑢𝑢 dΩ  (4.57) 

𝐟𝐟e𝑝𝑝 = � [𝛁𝛁]⊤𝐍𝐍𝑝𝑝 𝐤𝐤𝑝𝑝 𝜌𝜌 
𝑓𝑓

𝜇𝜇𝑛𝑛
  𝐠𝐠

 

Ω
dΩ − � 𝐍𝐍𝑝𝑝 𝑞𝑞𝑁̅𝑁

 𝑝𝑝
 

Γq

dΓ  (4.58) 

𝜇𝜇𝑛𝑛
 = 𝜇𝜇0

  e−𝑏𝑏 𝐍𝐍𝑇𝑇 𝐓𝐓𝑛𝑛
   (4.59) 
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Thermal Formulation for continuum medium 

 The thermal advective equation developed in Section 2.2.3 (𝛼𝛼-Implicit Characteristic 
Galerkin method) may be written from Eq. (2.156) – leaving out source terms - as follows: 

𝜌𝜌𝜌𝜌 1
∆𝑡𝑡𝑛𝑛+1

(∆𝑇𝑇𝑛𝑛+1)

= −(1 − 𝛼𝛼)𝜌𝜌𝜌𝜌 �𝐪𝐪𝑛𝑛+1/2
𝑝𝑝 �

⊤
𝛁𝛁𝑇𝑇𝑛𝑛

+ (1 − 𝛼𝛼)2

2
𝜌𝜌𝜌𝜌 ∆𝑡𝑡𝑛𝑛+1�𝐪𝐪𝑛𝑛+1/2

𝑝𝑝 �
⊤
𝐪𝐪𝑛𝑛+1/2

𝑝𝑝 𝛁𝛁2𝑇𝑇𝑛𝑛 − 𝛼𝛼𝛼𝛼𝛼𝛼 �𝐪𝐪𝑛𝑛+1/2
𝑝𝑝 �

⊤
𝛁𝛁𝑇𝑇𝑛𝑛+1

− 𝛼𝛼2

2
𝜌𝜌𝜌𝜌∆𝑡𝑡𝑛𝑛+1�[𝛁𝛁]⊤𝐪𝐪𝑛𝑛+1/2

𝑝𝑝 ���𝐪𝐪𝑛𝑛+1/2
𝑝𝑝 �

⊤
𝛁𝛁𝑇𝑇𝑛𝑛+1� + 𝜃𝜃 [𝛁𝛁]⊤(𝐤𝐤𝑇𝑇  𝛁𝛁𝑇𝑇𝑛𝑛+1)

+ (1 − 𝜃𝜃)[𝛁𝛁]⊤(𝐤𝐤𝑇𝑇  𝛁𝛁𝑇𝑇𝑛𝑛) 

(4.60) 

where 𝑇𝑇𝑛𝑛 and 𝑇𝑇𝑛𝑛+1 are the temperature values for times 𝑛𝑛 and 𝑛𝑛 + 1, 𝜌𝜌, 𝑐𝑐 and 𝐤𝐤𝑇𝑇  are the 
density, the specific heat and the thermal conductivity of the medium where the heat transfer 
occurs (which may be defined in the same form as in Eq. (4.9)) and 𝐪𝐪𝑛𝑛+1/2

𝑝𝑝  are the Darcy's 
velocities from the hydraulic problem which may be written from Eq. (2.154) as: 

𝐪𝐪𝑛𝑛+1/2
𝑝𝑝 ≈ 𝐪𝐪̅ = 𝐪𝐪𝑛𝑛

𝑝𝑝 + 1
2

∆𝐪𝐪𝑛𝑛+1
𝑝𝑝  (4.61) 

where 𝐪𝐪𝑛𝑛
𝑝𝑝  is Darcy's velocity of the previous time-step (known) and ∆𝐪𝐪𝑛𝑛+1

𝑝𝑝  may be written 
from Eq. (4.31) as: 

∆𝐪𝐪𝑛𝑛+1
𝑝𝑝 = 𝐤𝐤𝑝𝑝 � 1

𝜇𝜇𝑛𝑛
 (−𝛁𝛁Δ𝑝𝑝𝑛𝑛+1

 ) + 1
Δ𝜇𝜇𝑛𝑛+1

 (−𝛁𝛁Δ𝑝𝑝𝑛𝑛+1
 ) + 1

Δ𝜇𝜇𝑛𝑛+1
 (−𝛁𝛁𝑝𝑝𝑛𝑛

 ) + 1
Δ𝜇𝜇𝑛𝑛+1

 𝐠𝐠� (4.62) 

where Δ𝑝𝑝𝑛𝑛+1
  is the increment of fluid pressure for the current time-step, 𝑝𝑝𝑛𝑛

  is the fluid 
pressure of the previous time-step, 𝐤𝐤𝑝𝑝 is the hydraulic permeability, 𝜇𝜇𝑛𝑛

  is the dynamic 
viscosity at time 𝑛𝑛 defined by Eq. (4.59) and Δ𝜇𝜇𝑛𝑛+1

  is the increment of dynamic viscosity of 
the current time-step defined by Eq. (4.51). 

 Performing the spatial discretization of Eq. (4.60) using the FEM (Eq. (2.27)), applying 
the Divergence Theorem to the diffusion terms and the standard Galerkin weighting 
(𝑤𝑤 = 𝑁𝑁𝑇𝑇(1), 𝑁𝑁𝑇𝑇(2), …) results in: 

� 1
∆𝑡𝑡𝑛𝑛+1

𝐂𝐂𝐓𝐓 + 𝛼𝛼𝐊𝐊𝐯𝐯 + 𝛼𝛼2

2
𝐊𝐊𝐬𝐬 + 𝜃𝜃𝐊𝐊𝐓𝐓𝐓𝐓−𝐃𝐃� ∆𝐓𝐓𝑛𝑛+1

  

= − �𝐊𝐊𝐓𝐓𝐓𝐓−𝐃𝐃 + 𝐊𝐊𝐯𝐯 + �1
2

− α�𝐊𝐊𝐬𝐬� 𝐓𝐓e,𝑛𝑛
  

(4.63) 

where 𝐊𝐊𝐓𝐓𝐓𝐓−𝐃𝐃 is the element conductivity matrix, 𝐂𝐂𝐓𝐓 is the element thermal capacity 
matrix, 𝐊𝐊𝐯𝐯 is the element advective matrix and 𝐊𝐊𝐬𝐬 is the element stabilization matrix which 
results from the aplication of the 𝛼𝛼-Implicit Characteristic Galerkin method, with 
components: 
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𝐶𝐶𝑇𝑇
(𝑎𝑎,𝑏𝑏) = � 𝜌𝜌𝜌𝜌 𝑁𝑁𝑇𝑇 (𝑎𝑎)𝑁𝑁𝑇𝑇 (𝑏𝑏)

 

Ω
dΩ (4.64) 

𝐾𝐾𝑇𝑇𝑇𝑇−𝐷𝐷
(𝑎𝑎,𝑏𝑏) = � �𝛁𝛁𝑁𝑁𝑇𝑇 (𝑎𝑎)�

⊤
𝐤𝐤𝑇𝑇  𝛁𝛁𝑁𝑁𝑇𝑇 (𝑏𝑏)

 

Ω
dΩ (4.65) 

𝐾𝐾𝑣𝑣
(𝑎𝑎,𝑏𝑏) = � 𝜌𝜌𝜌𝜌 𝑁𝑁𝑇𝑇 (𝑎𝑎)�𝐪𝐪𝑛𝑛+1/2

𝑝𝑝 �
⊤
𝛁𝛁𝑁𝑁𝑇𝑇 (𝑏𝑏)

 

Ω
dΩ (4.66) 

 𝐾𝐾𝑠𝑠
(𝑎𝑎,𝑏𝑏) =  ∆𝑡𝑡𝑛𝑛+1 � 𝜌𝜌𝜌𝜌 ��𝐪𝐪𝑛𝑛+1/2

𝑝𝑝 �
⊤
𝛁𝛁𝑁𝑁𝑇𝑇 (𝑎𝑎)� ��𝐪𝐪𝑛𝑛+1/2

𝑝𝑝 �
⊤
𝛁𝛁𝑁𝑁𝑇𝑇 (𝑏𝑏)�

 

Ω
dΩ (4.67) 

 The spatial and time discretization (using the FEM and the FDM, respectively) must be 
applied to Eq. (4.62), resulting in: 

Δ𝐪𝐪𝑛𝑛+1
𝑝𝑝 = − 𝐤𝐤𝑝𝑝

𝜇𝜇𝑛𝑛
 𝛁𝛁𝑁𝑁𝑝𝑝(𝑐𝑐)Δ𝑝𝑝𝑛𝑛+1

    (𝑐𝑐) − 𝑏𝑏𝑏𝑏 𝐤𝐤𝑝𝑝

𝜇𝜇𝑛𝑛
 𝛁𝛁𝑁𝑁𝑝𝑝(𝑒𝑒)𝑁𝑁𝑇𝑇 (𝑑𝑑)Δ𝑝𝑝𝑛𝑛+1

 (𝑒𝑒) Δ𝑇𝑇𝑛𝑛+1
 (𝑑𝑑)

+ 𝜃𝜃 𝑏𝑏 𝐤𝐤𝑝𝑝

𝜇𝜇𝑛𝑛
 �−𝛁𝛁𝑁𝑁𝑝𝑝(𝑐𝑐)𝑝𝑝𝑛𝑛

 (𝑐𝑐) + 𝜌𝜌 
𝑓𝑓𝐠𝐠�𝑁𝑁𝑇𝑇 (𝑑𝑑)Δ𝑇𝑇𝑛𝑛+1

 (𝑑𝑑)  
(4.68) 

where 𝑏𝑏 is defined in Eq. (4.2) and 𝜇𝜇𝑛𝑛
  is the fluid viscosity at the previous time-step defined 

in Eq. (4.59). Introducing Eqs. (4.61) and (4.68) into Eq. (4.66) and leaving out the second-
order terms Δ𝑝𝑝n+1

 Δ𝑇𝑇n+1
  of Eq. (4.66) results in the following expression for the right-hand 

side of Eq. (4.63): 

𝐾𝐾𝑣𝑣
(𝑎𝑎,𝑏𝑏)𝑇𝑇𝑛𝑛

 (𝑏𝑏) = � 𝜌𝜌𝜌𝜌 𝑁𝑁𝑇𝑇 (𝑎𝑎) �𝐪𝐪𝑛𝑛
𝑝𝑝 + 1

2
∆𝐪𝐪𝑛𝑛+1

𝑝𝑝 �
⊤

𝛁𝛁𝑁𝑁𝑇𝑇 (𝑏𝑏)
 

Ω
dΩ 𝑇𝑇𝑛𝑛

 (𝑏𝑏)

= � 𝜌𝜌𝜌𝜌 𝑁𝑁𝑇𝑇 (𝑎𝑎) [𝐪𝐪𝑛𝑛
𝑝𝑝 ]⊤ 𝛁𝛁𝑁𝑁𝑇𝑇 (𝑏𝑏)

 

Ω
dΩ 𝑇𝑇𝑛𝑛

 (𝑏𝑏)

− 1
2

� 𝜌𝜌𝜌𝜌 𝑁𝑁𝑇𝑇 (𝑎𝑎) �𝛁𝛁𝑁𝑁𝑇𝑇 (𝑏𝑏)𝑇𝑇𝑛𝑛
 (𝑏𝑏)�

⊤ 𝐤𝐤𝑝𝑝

𝜇𝜇𝑛𝑛
 𝛁𝛁𝑁𝑁𝑝𝑝(𝑐𝑐)

 

Ω
dΩ Δ𝑝𝑝𝑛𝑛+1

 (𝑐𝑐)

+ 𝜃𝜃
2

� 𝜌𝜌𝜌𝜌 𝑁𝑁𝑇𝑇 (𝑎𝑎) �𝛁𝛁𝑁𝑁𝑇𝑇 (𝑏𝑏)𝑇𝑇𝑛𝑛
 (𝑏𝑏)�

⊤ 𝐤𝐤𝑝𝑝

𝜇𝜇𝑛𝑛
 

 

Ω
𝑏𝑏�−𝛁𝛁𝑁𝑁𝑝𝑝(𝑐𝑐)𝑝𝑝𝑛𝑛

 (𝑐𝑐)

+ 𝜌𝜌 
𝑓𝑓𝐠𝐠�𝑁𝑁𝑇𝑇 (𝑑𝑑)dΩ Δ𝑇𝑇𝑛𝑛+1

 (𝑑𝑑)  

(4.69) 

and the following expression for the left-hand side of Eq. (4.63): 

𝐾𝐾𝑣𝑣
(𝑎𝑎,𝑏𝑏)∆𝑇𝑇𝑛𝑛+1

 (𝑏𝑏) = � 𝜌𝜌𝜌𝜌 𝑁𝑁𝑇𝑇 (𝑎𝑎) �𝐪𝐪𝑛𝑛
𝑝𝑝 + 1

2
∆𝐪𝐪𝑛𝑛+1

𝑝𝑝 �
⊤

𝛁𝛁𝑁𝑁𝑇𝑇 (𝑏𝑏)
 

Ω
dΩ ∆𝑇𝑇𝑛𝑛+1

 (𝑏𝑏)

= � 𝜌𝜌𝜌𝜌 𝑁𝑁𝑇𝑇 (𝑎𝑎) [𝐪𝐪𝑛𝑛
𝑝𝑝 ]⊤ 𝛁𝛁𝑁𝑁𝑇𝑇 (𝑏𝑏)

 

Ω
dΩ ∆𝑇𝑇𝑛𝑛+1

 (𝑏𝑏)  
(4.70) 

where the second-order terms ∆𝑇𝑇n+1
  Δ𝑝𝑝n+1

  have been left out. 
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 In order to introduce the hydro-thermal coupling into Eq. (4.67) the subsequent 
development must be made: 

𝐪𝐪𝑛𝑛+1/2
𝑝𝑝  �𝐪𝐪𝑛𝑛+1/2

𝑝𝑝 �
⊤

= �𝐪𝐪𝑛𝑛
𝑝𝑝 + 1

2
∆𝐪𝐪𝑛𝑛+1

𝑝𝑝 � �𝐪𝐪𝑛𝑛
𝑝𝑝 + 1

2
∆𝐪𝐪𝑛𝑛+1

𝑝𝑝 �
⊤

= 𝐪𝐪𝑛𝑛
𝑝𝑝 [𝐪𝐪𝑛𝑛

𝑝𝑝 ]⊤ + 1
2
𝐪𝐪𝑛𝑛

𝑝𝑝�∆𝐪𝐪𝑛𝑛+1
𝑝𝑝 �⊤ + 1

2
∆𝐪𝐪𝑛𝑛+1

𝑝𝑝 [𝐪𝐪𝑛𝑛
𝑝𝑝 ]⊤ + 1

4
∆𝐪𝐪𝑛𝑛+1

𝑝𝑝 �∆𝐪𝐪𝑛𝑛+1
𝑝𝑝 �⊤ 

(4.71) 

where the last term of the above expansion is of second-order and can be left out. Introducing 
Eqs. (4.61) and (4.68) into Eq. (4.67) results in the following expression for the right-hand 
side of Eq. (4.63): 

𝐾𝐾s
(𝑎𝑎,𝑏𝑏)𝑇𝑇𝑛𝑛

 (𝑏𝑏) = ∆𝑡𝑡𝑛𝑛+1 � 𝜌𝜌𝑐𝑐 ��𝐪𝐪𝑛𝑛
𝑝𝑝 + 1

2
∆𝐪𝐪𝑛𝑛+1

𝑝𝑝 �
⊤

𝛁𝛁𝑁𝑁𝑇𝑇 (𝑎𝑎)���𝐪𝐪𝑛𝑛
𝑝𝑝

 

Ω

+ 1
2

∆𝐪𝐪𝑛𝑛+1
𝑝𝑝 �

⊤
𝛁𝛁𝑁𝑁𝑇𝑇 (𝑏𝑏)�dΩ 𝑇𝑇𝑛𝑛

 (𝑏𝑏)

= ∆𝑡𝑡𝑛𝑛+1 � 𝜌𝜌𝜌𝜌 �[𝐪𝐪𝑛𝑛
𝑝𝑝]⊤𝛁𝛁𝑁𝑁𝑇𝑇 (𝑎𝑎)� �[𝐪𝐪𝑛𝑛

𝑝𝑝]⊤𝛁𝛁𝑁𝑁𝑇𝑇 (𝑏𝑏)𝑇𝑇𝑛𝑛
 (𝑏𝑏)�

 

Ω
dΩ

− 1
2

∆𝑡𝑡𝑛𝑛+1 � 𝜌𝜌𝜌𝜌 ��𝛁𝛁𝑁𝑁𝑇𝑇 (𝑎𝑎)�
⊤ 𝐤𝐤𝑝𝑝

𝜇𝜇𝑛𝑛
 𝛁𝛁𝑁𝑁𝑝𝑝(𝑐𝑐)� �[𝐪𝐪𝑛𝑛

𝑝𝑝]⊤𝛁𝛁𝑁𝑁𝑇𝑇 (𝑏𝑏)𝑇𝑇𝑛𝑛
 (𝑏𝑏)�

 

Ω
dΩ Δ𝑝𝑝𝑛𝑛+1

 (𝑐𝑐)

+ 𝜃𝜃
2

∆𝑡𝑡𝑛𝑛+1 � 𝜌𝜌𝜌𝜌 ��𝛁𝛁𝑁𝑁𝑇𝑇 (𝑎𝑎)�
⊤ 𝐤𝐤𝑝𝑝

𝜇𝜇𝑛𝑛
 𝑏𝑏�−𝛁𝛁𝑁𝑁𝑝𝑝(𝑐𝑐)𝑝𝑝𝑛𝑛

 (𝑐𝑐)
 

Ω

+ 𝜌𝜌 
𝑓𝑓𝐠𝐠�𝑁𝑁𝑇𝑇 (𝑑𝑑)��[𝐪𝐪𝑛𝑛

𝑝𝑝]⊤𝛁𝛁𝑁𝑁𝑇𝑇 (𝑏𝑏)𝑇𝑇𝑛𝑛
 (𝑏𝑏)� dΩ Δ𝑇𝑇𝑛𝑛+1

 (𝑑𝑑)

− 1
2

∆𝑡𝑡𝑛𝑛+1 � 𝜌𝜌𝜌𝜌 �[𝐪𝐪𝑛𝑛
𝑝𝑝]⊤𝛁𝛁𝑁𝑁𝑇𝑇 (𝑏𝑏)𝑇𝑇𝑛𝑛

 (𝑏𝑏)���𝛁𝛁𝑁𝑁𝑇𝑇 (𝑎𝑎)�
⊤ 𝐤𝐤𝑝𝑝

𝜇𝜇𝑛𝑛
 𝛁𝛁𝑁𝑁𝑝𝑝(𝑐𝑐)�

 

Ω
dΩ Δ𝑝𝑝𝑛𝑛+1

 (𝑐𝑐)

+ 𝜃𝜃
2

∆𝑡𝑡𝑛𝑛+1 � 𝜌𝜌𝜌𝜌 �[𝐪𝐪𝑛𝑛
𝑝𝑝]⊤𝛁𝛁𝑁𝑁𝑇𝑇 (𝑏𝑏)𝑇𝑇𝑛𝑛

 (𝑏𝑏)���𝛁𝛁𝑁𝑁𝑇𝑇 (𝑎𝑎)�
⊤ 𝐤𝐤𝑝𝑝

𝜇𝜇𝑛𝑛
 𝑏𝑏�−𝛁𝛁𝑁𝑁𝑝𝑝(𝑐𝑐)𝑝𝑝𝑛𝑛

 (𝑐𝑐)
 

Ω

+ 𝜌𝜌 
𝑓𝑓𝐠𝐠�𝑁𝑁𝑇𝑇 (𝑑𝑑)�dΩ Δ𝑇𝑇𝑛𝑛+1

 (𝑑𝑑)  

(4.72) 

and the following expression for the left-hand side of Eq. (4.63): 

𝐾𝐾𝑠𝑠
(𝑎𝑎,𝑏𝑏)∆𝑇𝑇𝑛𝑛+1

 (𝑏𝑏) = ∆𝑡𝑡𝑛𝑛+1 � 𝜌𝜌𝜌𝜌 �[𝐪𝐪𝑛𝑛
𝑝𝑝]⊤𝛁𝛁𝑁𝑁𝑇𝑇 (𝑎𝑎)� �[𝐪𝐪𝑛𝑛

𝑝𝑝 ]⊤𝛁𝛁𝑁𝑁𝑇𝑇 (𝑏𝑏)�
 

Ω
dΩ ∆𝑇𝑇𝑛𝑛+1

 (𝑏𝑏)  (4.73) 

where the second-order terms Δ𝑝𝑝𝑛𝑛+1
 ∆𝑇𝑇𝑛𝑛+1

   are left out in the last equation. 

 Finally, substituting Eqs. (4.69)-(4.73) into Eq. (4.63) and leaving out the second-order 
terms Δ𝑝𝑝𝑛𝑛+1

 ∆𝑇𝑇𝑛𝑛+1
  , the final continuum thermal equation (4.74) is reached: 
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Summary 9 - Thermal continuum equation with advection (𝛂𝛂-ICG method). 
 

� 1
∆𝑡𝑡𝑛𝑛+1

𝐂𝐂𝐓𝐓 + 𝛼𝛼𝐊𝐊𝐓𝐓𝐓𝐓−𝐀𝐀 + 𝛼𝛼2

2
𝐊𝐊𝐓𝐓𝐓𝐓−𝐒𝐒 + 𝜃𝜃𝐊𝐊𝐓𝐓𝐓𝐓−𝐃𝐃 + 𝐊𝐊𝐓𝐓𝐓𝐓−𝐀𝐀𝐀𝐀

+ �1
2

− α�𝐊𝐊𝐓𝐓𝐓𝐓−𝐒𝐒𝐒𝐒�∆𝐓𝐓𝑛𝑛+1
 + �𝐊𝐊𝐓𝐓𝐓𝐓−𝐀𝐀 + �1

2
− α�𝐊𝐊𝐓𝐓𝐓𝐓−𝐒𝐒�∆𝐩𝐩𝑛𝑛+1

 

= −�𝐊𝐊𝐓𝐓𝐓𝐓−𝐃𝐃 + 𝐊𝐊𝐓𝐓𝐓𝐓−𝐀𝐀 + �1
2

− α�𝐊𝐊𝐓𝐓𝐓𝐓−𝐒𝐒� 𝐓𝐓𝑛𝑛
  

 (4.74) 

where 𝐊𝐊𝐓𝐓𝐓𝐓−𝐃𝐃 is the thermal conductivity matrix, 𝐂𝐂𝐓𝐓 is the thermal capacity matrix, 
𝐊𝐊𝐓𝐓𝐓𝐓−𝐀𝐀 is the advective matrix, 𝐊𝐊𝐓𝐓𝐓𝐓−𝐒𝐒 is the stabilization matrix (which results from the 
aplication of the 𝛼𝛼-ICG method) and 𝐊𝐊𝐓𝐓𝐓𝐓−𝐀𝐀, 𝐊𝐊𝐓𝐓𝐓𝐓−𝐒𝐒, 𝐊𝐊𝐓𝐓𝐓𝐓−𝐀𝐀𝐀𝐀 and 𝐊𝐊𝐓𝐓𝐓𝐓−𝐒𝐒𝐒𝐒 are the hydro-
thermal coupling matrices, with components: 

𝐶𝐶𝑇𝑇
(𝑎𝑎,𝑏𝑏) = � 𝜌𝜌𝜌𝜌 𝑁𝑁𝑇𝑇 (𝑎𝑎)𝑁𝑁𝑇𝑇 (𝑏𝑏)

 

Ω
dΩ  (4.75) 

𝐾𝐾𝑇𝑇𝑇𝑇−𝐷𝐷
(𝑎𝑎,𝑏𝑏) = � 𝛁𝛁𝑁𝑁𝑇𝑇 (𝑎𝑎) 𝐤𝐤𝑇𝑇  𝛁𝛁𝑁𝑁𝑇𝑇 (𝑏𝑏)

 

Ω
dΩ  (4.76) 

𝐾𝐾𝑇𝑇𝑇𝑇−𝐴𝐴
(𝑎𝑎,𝑏𝑏) = � 𝜌𝜌𝜌𝜌 𝑁𝑁𝑇𝑇 (𝑎𝑎) [𝐪𝐪𝑛𝑛

𝑝𝑝 ]⊤ 𝛁𝛁𝑁𝑁𝑇𝑇 (𝑏𝑏)
 

Ω
dΩ  (4.77) 

𝐾𝐾𝑇𝑇𝑇𝑇−𝑆𝑆
(𝑎𝑎,𝑏𝑏) = ∆𝑡𝑡𝑛𝑛+1 � 𝜌𝜌𝜌𝜌 �[𝐪𝐪𝑛𝑛

𝑝𝑝]⊤𝛁𝛁𝑁𝑁𝑇𝑇 (𝑎𝑎)� �[𝐪𝐪𝑛𝑛
𝑝𝑝 ]⊤𝛁𝛁𝑁𝑁𝑇𝑇 (𝑏𝑏)�

 

Ω
dΩ  (4.78) 

𝐾𝐾𝑇𝑇𝑇𝑇−𝐴𝐴
(𝑎𝑎,𝑐𝑐) = −1

2
� 𝜌𝜌𝜌𝜌 𝑁𝑁𝑇𝑇 (𝑎𝑎) �𝛁𝛁𝑁𝑁𝑇𝑇 (𝑏𝑏)𝑇𝑇𝑛𝑛

 (𝑏𝑏)�
⊤ 𝐤𝐤𝑝𝑝

𝜇𝜇𝑛𝑛
 𝛁𝛁𝑁𝑁𝑝𝑝(𝑐𝑐)

 

Ω
dΩ   (4.79) 

𝐾𝐾𝑇𝑇𝑇𝑇−𝐴𝐴2
(𝑎𝑎,𝑑𝑑) = 𝜃𝜃

2
� 𝜌𝜌𝜌𝜌 𝑁𝑁𝑇𝑇 (𝑎𝑎) �𝛁𝛁𝑁𝑁𝑇𝑇 (𝑏𝑏)𝑇𝑇𝑛𝑛

 (𝑏𝑏)�
⊤ 𝐤𝐤𝑝𝑝

𝜇𝜇𝑛𝑛
 

 

Ω
𝑏𝑏�−𝛁𝛁𝑁𝑁𝑝𝑝(𝑐𝑐)𝑝𝑝𝑛𝑛

 (𝑐𝑐) + 𝜌𝜌 
𝑓𝑓𝐠𝐠�𝑁𝑁𝑇𝑇 (𝑑𝑑)dΩ  (4.80) 

𝐾𝐾𝑇𝑇𝑇𝑇−𝑆𝑆
(𝑎𝑎,𝑐𝑐) = −1

2
∆𝑡𝑡𝑛𝑛+1 �� 𝜌𝜌𝜌𝜌 ��𝛁𝛁𝑁𝑁𝑇𝑇 (𝑎𝑎)�

⊤ 𝐤𝐤𝑝𝑝

𝜇𝜇𝑛𝑛
 𝛁𝛁𝑁𝑁𝑝𝑝(𝑐𝑐)� �[𝐪𝐪𝑛𝑛

𝑝𝑝 ]⊤𝛁𝛁𝑁𝑁𝑇𝑇 (𝑏𝑏)𝑇𝑇𝑛𝑛
 (𝑏𝑏)�

 

Ω
dΩ

+ � 𝜌𝜌𝜌𝜌 �[𝐪𝐪𝑛𝑛
𝑝𝑝]⊤𝛁𝛁𝑁𝑁𝑇𝑇 (𝑏𝑏)𝑇𝑇𝑛𝑛

 (𝑏𝑏)� ��𝛁𝛁𝑁𝑁𝑇𝑇 (𝑎𝑎)�
⊤ 𝐤𝐤𝑝𝑝

𝜇𝜇𝑛𝑛
 𝛁𝛁𝑁𝑁𝑝𝑝(𝑐𝑐)�

 

Ω
dΩ�  

 (4.81) 

𝐾𝐾𝑇𝑇𝑇𝑇−𝑆𝑆2
(𝑎𝑎,𝑑𝑑) = 𝜃𝜃

2
∆𝑡𝑡𝑛𝑛+1 �� 𝜌𝜌𝜌𝜌 ��𝛁𝛁𝑁𝑁𝑇𝑇 (𝑎𝑎)�

⊤ 𝐤𝐤𝑝𝑝

𝜇𝜇𝑛𝑛
 𝑏𝑏�−𝛁𝛁𝑁𝑁𝑝𝑝(𝑐𝑐)𝑝𝑝𝑛𝑛

 (𝑐𝑐)
 

Ω

+ 𝜌𝜌 
𝑓𝑓𝐠𝐠�𝑁𝑁𝑇𝑇 (𝑑𝑑)� �[𝐪𝐪𝑛𝑛

𝑝𝑝 ]⊤𝛁𝛁𝑁𝑁𝑇𝑇 (𝑏𝑏)𝑇𝑇𝑛𝑛
 (𝑏𝑏)� dΩ

+ � 𝜌𝜌𝜌𝜌 �[𝐪𝐪𝑛𝑛
𝑝𝑝]⊤𝛁𝛁𝑁𝑁𝑇𝑇 (𝑏𝑏)𝑇𝑇𝑛𝑛

 (𝑏𝑏)���𝛁𝛁𝑁𝑁𝑇𝑇 (𝑎𝑎)�
⊤ 𝐤𝐤𝑝𝑝

𝜇𝜇𝑛𝑛
 𝑏𝑏�−𝛁𝛁𝑁𝑁𝑝𝑝(𝑐𝑐)𝑝𝑝𝑛𝑛

 (𝑐𝑐)
 

Ω

+ 𝜌𝜌 
𝑓𝑓𝐠𝐠�𝑁𝑁𝑇𝑇 (𝑑𝑑)� dΩ � 

 (4.82) 

𝜇𝜇𝑛𝑛
 = 𝜇𝜇0

  e−𝑏𝑏 𝐍𝐍𝑇𝑇 𝐓𝐓𝑛𝑛
   (4.83) 
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Fully coupled solution for continuum medium 

 The final fully-coupled THM system of equations for continuum medium may be written 
from Eqs. (4.28), (4.52) and (4.74) as follows: 

Summary 10 - Fully-coupled THM system of equations in continuum 
medium. 
 

−� [𝐁𝐁 
𝑢𝑢]⊤𝛔𝛔𝑛𝑛+𝜃𝜃

′
 

Ω
dΩ + 𝜃𝜃 𝐊𝐊𝐮𝐮𝐮𝐮 

∆𝐩𝐩𝑛𝑛+1
 + 𝐟𝐟 e,𝑛𝑛+𝜃𝜃

𝑢𝑢 + 𝐊𝐊𝐮𝐮𝐮𝐮 𝐩𝐩𝑛𝑛
 = 0 

 

�𝐒𝐒𝐩𝐩,𝑛𝑛+𝜃𝜃 + 𝜃𝜃∆𝑡𝑡𝑛𝑛+1𝐊𝐊𝐩𝐩𝐩𝐩,𝑛𝑛+𝜃𝜃�∆𝐩𝐩𝑛𝑛+1
 + �𝐒𝐒𝐩𝐩𝐩𝐩 + 𝜃𝜃∆𝑡𝑡𝑛𝑛+1𝐊𝐊𝐩𝐩𝐩𝐩�∆𝐓𝐓𝑛𝑛+1

  

+�𝐊𝐊𝐩𝐩𝐩𝐩� ⊤ ∆𝐮𝐮𝑛𝑛+1
 − ∆𝑡𝑡𝑛𝑛+1𝐟𝐟e,𝑛𝑛+𝜃𝜃

𝑝𝑝 + ∆𝑡𝑡𝑛𝑛+1𝐊𝐊𝐩𝐩𝐩𝐩,𝑛𝑛+𝜃𝜃 𝐩𝐩𝑛𝑛
 = 0   

� 1
∆𝑡𝑡𝑛𝑛+1

𝐂𝐂𝑛𝑛+𝜃𝜃 + 𝛼𝛼𝐊𝐊𝐓𝐓𝐓𝐓−𝐀𝐀,𝑛𝑛 + 𝛼𝛼2

2
𝐊𝐊𝐓𝐓𝐓𝐓−𝐒𝐒,𝑛𝑛 + 𝜃𝜃𝐊𝐊𝐓𝐓𝐓𝐓−𝐃𝐃,𝑛𝑛+𝜃𝜃 + 𝐊𝐊𝐓𝐓𝐓𝐓−𝐀𝐀𝐀𝐀,𝑛𝑛+𝜃𝜃

+ �1
2

− α�𝐊𝐊𝐓𝐓𝐓𝐓−𝐒𝐒𝐒𝐒,𝑛𝑛+𝜃𝜃�∆𝐓𝐓𝑛𝑛+1
 

+ �𝐊𝐊𝐓𝐓𝐓𝐓−𝐀𝐀,𝑛𝑛+𝜃𝜃 + �1
2

− α�𝐊𝐊𝐓𝐓𝐓𝐓−𝐒𝐒,𝑛𝑛+𝜃𝜃� ∆𝐩𝐩𝑛𝑛+1
 

+ �𝐊𝐊𝐓𝐓𝐓𝐓−𝐃𝐃,𝑛𝑛+𝜃𝜃 + 𝐊𝐊𝐓𝐓𝐓𝐓−𝐀𝐀,𝑛𝑛 + �1
2

− α�𝐊𝐊𝐓𝐓𝐓𝐓−𝐒𝐒,𝑛𝑛�∆𝐓𝐓𝑛𝑛
 = 0 

(4.84) 

      
 

 

 Due to the non-linearity of this system of equations, the Newton-Raphson (NR) iterative 
procedure is proposed in order to solve the THM fully-coupled problem. This method is well 
known and is described in detail in Zienkiewicz & Taylor (2000a, 2000b), or Smith & Griffths 
(2004). Moreover, Segura (2007) describes in detail the NR implementation for the fully-
coupled hydro-mechanical problem. 

 The first step consists in the grouping of the nodal variables (𝐮𝐮, 𝐩𝐩, 𝐓𝐓) in a single vector of 
nodal variables (𝐱𝐱), both knows 𝐱𝐱𝑛𝑛 and unknowns ∆𝐱𝐱𝑛𝑛+1. The system of equations to be 
solved may be represented as the residual in the following form: 

𝚿𝚿𝑛𝑛+𝜃𝜃(𝐱𝐱𝑛𝑛, ∆𝐱𝐱𝑛𝑛+1) =
⎝
⎜⎜
⎛

𝚿𝚿𝑛𝑛+𝜃𝜃
𝑢𝑢

𝚿𝚿𝑛𝑛+𝜃𝜃
𝑝𝑝

𝚿𝚿𝑛𝑛+𝜃𝜃
𝑇𝑇 ⎠

⎟⎟
⎞ (4.85) 

𝐱𝐱𝐧𝐧 = �
𝐮𝐮
𝐩𝐩
𝐓𝐓

�              ∆𝒙𝒙𝑛𝑛+1 = �
∆𝐮𝐮
∆𝐩𝐩
∆𝐓𝐓

� (4.86) 

 This method develops the operator 𝚿𝚿𝑛𝑛+𝜃𝜃, which is the residual defined in Eqs. (4.84), in 
a first order Taylor expansion around an estimate solution ∆𝐱𝐱𝑛𝑛+1 

𝑖𝑖  as follows: 

𝚿𝚿𝑛𝑛+𝜃𝜃(𝐱𝐱𝑛𝑛, ∆𝐱𝐱𝑛𝑛+1 
𝑖𝑖+1 ) ≈ 𝚿𝚿𝑛𝑛+𝜃𝜃(𝐱𝐱𝑛𝑛, ∆𝐱𝐱𝑛𝑛+1 

𝑖𝑖 ) + 𝐉𝐉𝑛𝑛+𝜃𝜃(𝐱𝐱𝑛𝑛, ∆𝐱𝐱𝑛𝑛+1 
𝑖𝑖 ) 𝛿𝛿∆𝐱𝐱𝑛𝑛+1 

𝑖𝑖+1  (4.87) 
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where 

∆𝐱𝐱𝑛𝑛+1 
𝑖𝑖+1 = ∆𝐱𝐱𝑛𝑛+1 

𝑖𝑖 + 𝛿𝛿∆𝐱𝐱𝑛𝑛+1 
𝑖𝑖+1  (4.88) 

and 𝐉𝐉𝑛𝑛+𝜃𝜃 is the Jacobian matrix: 

𝐉𝐉𝑛𝑛+𝜃𝜃(𝐱𝐱𝑛𝑛, ∆𝐱𝐱𝑛𝑛+1 
𝑖𝑖 ) =

𝜕𝜕𝚿𝚿𝑛𝑛+𝜃𝜃
𝜕𝜕∆𝐱𝐱

�
𝐱𝐱𝑛𝑛, ∆𝐱𝐱𝑛𝑛+1 

𝑖𝑖
=

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎛

𝜕𝜕𝚿𝚿𝑛𝑛+𝜃𝜃
𝑢𝑢

𝜕𝜕∆𝐮𝐮
𝜕𝜕𝚿𝚿𝑛𝑛+𝜃𝜃

𝑢𝑢

𝜕𝜕∆𝐩𝐩
𝜕𝜕𝚿𝚿𝑛𝑛+𝜃𝜃

𝑢𝑢

𝜕𝜕∆𝐓𝐓
𝜕𝜕𝚿𝚿𝑛𝑛+𝜃𝜃

𝑝𝑝

𝜕𝜕∆𝐮𝐮
𝜕𝜕𝚿𝚿𝑛𝑛+𝜃𝜃

𝑝𝑝

𝜕𝜕∆𝐩𝐩
𝜕𝜕𝚿𝚿𝑛𝑛+𝜃𝜃

𝑝𝑝

𝜕𝜕∆𝐓𝐓
𝜕𝜕𝚿𝚿𝑛𝑛+𝜃𝜃

𝑇𝑇

𝜕𝜕∆𝐮𝐮
𝜕𝜕𝚿𝚿𝑛𝑛+𝜃𝜃

𝑇𝑇

𝜕𝜕∆𝐩𝐩
𝜕𝜕𝚿𝚿𝑛𝑛+𝜃𝜃

𝑇𝑇

𝜕𝜕∆𝐓𝐓 ⎠
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎞

�
�
�
�
�
�
�

𝐱𝐱𝑛𝑛, ∆𝐱𝐱𝑛𝑛+1 
𝑖𝑖

 (4.89) 

 The objective is to obtain a value of the unknowns so that the residual at the next 
iteration is zero. Consequently, 𝚿𝚿𝑛𝑛+𝜃𝜃(𝐱𝐱𝑛𝑛, ∆𝐱𝐱𝑛𝑛+1 

𝑖𝑖+1 ) = 0 is imposed, obtaining: 
 

𝐉𝐉𝑛𝑛+𝜃𝜃(𝐱𝐱𝑛𝑛, ∆𝐱𝐱𝑛𝑛+1 
𝑖𝑖 ) 𝛿𝛿∆𝐱𝐱𝑛𝑛+1 

𝑖𝑖+1 = −𝚿𝚿𝑛𝑛+𝜃𝜃(𝐱𝐱𝑛𝑛, ∆𝐱𝐱𝑛𝑛+1 
𝑖𝑖 ) (4.90) 

 Therefore, given an initial estimate ∆𝐱𝐱𝑛𝑛+1 
0 , the algorithm solves Eq. (4.90) until a 

certain tolerance is satisfied in 𝛿𝛿∆𝐱𝐱𝑛𝑛+1 
𝑖𝑖+1  or 𝚿𝚿𝑛𝑛+𝜃𝜃(𝐱𝐱𝑛𝑛, ∆𝐱𝐱𝑛𝑛+1 

𝑖𝑖 ), while the residual 𝚿𝚿𝑛𝑛+𝜃𝜃 is 
the solution of Eq. (4.84) at the previous iteration (or the initial estimator at the first 
iteration).  

 It is important to note that the Jacobian matrix is obtained by using the linearized 
residual defined in Eqs. (4.84), while the residual is evaluated by using the non-linearized Eqs. 
(4.28), (4.49) and (4.63). 

 Finally, the components of the Jacobian matrix defined in Eq. (4.89) may be obtained as 
follows: 

a) Partial derivative of the mechanical equation with respect to the displacement increment 

𝐉𝐉𝐮𝐮𝐮𝐮 =
𝜕𝜕𝚿𝚿𝑛𝑛+𝜃𝜃

𝑢𝑢

𝜕𝜕∆𝐮𝐮
= 𝜕𝜕

𝜕𝜕∆𝐮𝐮
�−1

𝜃𝜃
� [𝐁𝐁 

𝑢𝑢]⊤ 𝛔𝛔𝑛𝑛+𝜃𝜃
′

 
𝑖𝑖

 

Ω
 dΩ� (4.91) 

Decomposing the stresses in its incremental form: 

𝛔𝛔𝑛𝑛+𝜃𝜃
′

 
𝑖𝑖 = 𝛔𝛔𝑛𝑛

′ + 𝜃𝜃 𝛔𝛔𝑛𝑛+1
′

 
𝑖𝑖  (4.92) 

and considering the tangent constitutive matrix 𝐃𝐃 𝑖𝑖 𝑛𝑛+1 the stress increment may be 
developed as: 

∆𝛔𝛔𝑛𝑛+1
′

 
𝑖𝑖 = 𝐃𝐃 𝑖𝑖 𝑛𝑛+1 ∆𝛆𝛆 

𝑖𝑖
𝑛𝑛+1 = 𝐃𝐃 𝑖𝑖 𝑛𝑛+1( ∆𝛆𝛆 

𝑖𝑖
𝑛𝑛+1
𝑢𝑢 − ∆𝛆𝛆 

𝑖𝑖
𝑛𝑛+1
𝑇𝑇 ) (4.93) 

∆𝛔𝛔𝑛𝑛+1
′

 
𝑖𝑖 = 𝐃𝐃 𝑖𝑖 𝑛𝑛+1 𝐁𝐁 

𝑢𝑢 ∆𝐮𝐮 
𝑖𝑖

𝑛𝑛+1 − 𝐃𝐃 𝑖𝑖 𝑛𝑛+1𝐦𝐦𝐜𝐜
  𝛼𝛼𝑠𝑠

𝑇𝑇  𝐍𝐍𝑇𝑇  ∆𝐓𝐓 
𝑖𝑖

𝑛𝑛+1 (4.94) 
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Substituting Eqs. (4.92) and (4.93) into Eq. (4.91) the following is obtained: 

𝐉𝐉𝐮𝐮𝐮𝐮 =
𝜕𝜕𝚿𝚿𝑛𝑛+𝜃𝜃

𝑢𝑢

𝜕𝜕∆𝐮𝐮
= 𝜕𝜕

𝜕𝜕∆𝐮𝐮
��−� [𝐁𝐁 

𝑢𝑢]⊤ 𝐃𝐃 𝑖𝑖 𝑛𝑛+1 𝐁𝐁 
𝑢𝑢

 

Ω
dΩ� ∆𝐮𝐮 

𝑖𝑖
𝑛𝑛+1

+ �� [𝐁𝐁 
𝑢𝑢]⊤ 𝐃𝐃 𝑖𝑖 𝑛𝑛+1 𝐦𝐦𝐜𝐜

  𝛼𝛼𝑠𝑠
𝑇𝑇  𝐍𝐍𝑇𝑇

 

Ω
dΩ� ∆𝐓𝐓 

𝑖𝑖
𝑛𝑛+1� = − 𝐊𝐊 𝑖𝑖 𝐮𝐮𝐮𝐮,𝑛𝑛+𝜃𝜃

  
(4.95) 

where 

𝐊𝐊 𝑖𝑖 𝐮𝐮𝐮𝐮,𝑛𝑛+𝜃𝜃
 = � [𝐁𝐁 

𝑢𝑢]⊤ 𝐃𝐃 𝑖𝑖 𝑛𝑛+1 𝐁𝐁 
𝑢𝑢

 

Ω
dΩ (4.96) 

 

b) Partial derivative of the mechanical equation with respect to the fluid pressure increment 

𝐉𝐉𝐮𝐮𝐮𝐮 =
𝜕𝜕𝚿𝚿𝑛𝑛+𝜃𝜃

𝑢𝑢

𝜕𝜕∆𝐩𝐩
= 𝐊𝐊𝐮𝐮𝐮𝐮 

 (4.97) 

 

c) Partial derivative of the mechanical equation with respect to the temperature increment 

𝐉𝐉𝐮𝐮𝐮𝐮 =
𝜕𝜕𝚿𝚿𝑛𝑛+𝜃𝜃

𝑢𝑢

𝜕𝜕∆𝐓𝐓
= 𝐊𝐊𝐮𝐮𝐮𝐮,𝑛𝑛+𝜃𝜃

 
 
𝑖𝑖  (4.98) 

where 

𝐊𝐊𝐮𝐮𝐮𝐮,𝑛𝑛+𝜃𝜃
 

 
𝑖𝑖 = � [𝐁𝐁 

𝑢𝑢]⊤ 𝐃𝐃 𝑖𝑖 𝑛𝑛+1 𝐦𝐦𝐜𝐜
  𝛼𝛼𝑠𝑠

𝑇𝑇  𝐍𝐍𝑇𝑇
 

Ω
dΩ (4.99) 

 

d) Partial derivative of the hydraulic equation with respect to the displacement increment 

𝐉𝐉𝐩𝐩𝐩𝐩 =
𝜕𝜕𝚿𝚿𝑛𝑛+𝜃𝜃

𝑝𝑝

𝜕𝜕∆𝐮𝐮
= �𝐊𝐊𝐩𝐩𝐩𝐩�⊤ (4.100) 

 

e) Partial derivative of the hydraulic equation with respect to the fluid pressure increment 

𝐉𝐉𝐩𝐩𝐩𝐩 =
𝜕𝜕𝚿𝚿𝑛𝑛+𝜃𝜃

𝑝𝑝

𝜕𝜕∆𝐩𝐩
= 𝐒𝐒𝐩𝐩,𝑛𝑛+𝜃𝜃 

𝑖𝑖 + 𝜃𝜃∆𝑡𝑡𝑛𝑛+1 𝐊𝐊𝐩𝐩𝐩𝐩 
𝑖𝑖

𝑛𝑛+𝜃𝜃
 (4.101) 

 

f) Partial derivative of the hydraulic equation with respect to the temperature increment 

𝐉𝐉𝐩𝐩𝐩𝐩 =
𝜕𝜕𝚿𝚿𝑛𝑛+𝜃𝜃

𝑝𝑝

𝜕𝜕∆𝐓𝐓
= 𝐒𝐒 𝑖𝑖 𝐩𝐩𝐩𝐩 + 𝜃𝜃∆𝑡𝑡𝑛𝑛+1 𝐊𝐊𝐩𝐩𝐩𝐩,𝑛𝑛+𝜃𝜃 

𝑖𝑖  (4.102) 

 

g) Partial derivative of the thermal equation with respect to the displacement increment 

𝐉𝐉𝐓𝐓𝐓𝐓 =
𝜕𝜕𝚿𝚿𝑛𝑛+𝜃𝜃

𝑇𝑇

𝜕𝜕∆𝐮𝐮
= 0 (4.103) 
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h) Partial derivative of the thermal equation with respect to the fluid pressure increment 

𝐉𝐉𝐓𝐓𝐓𝐓 =
𝜕𝜕𝚿𝚿𝑛𝑛+𝜃𝜃

𝑇𝑇

𝜕𝜕∆𝐩𝐩
= 𝐊𝐊 𝑖𝑖 𝐓𝐓𝐓𝐓−𝐀𝐀,𝑛𝑛+𝜃𝜃 + �1

2
− α� 𝐊𝐊 𝑖𝑖 𝐓𝐓𝐓𝐓−𝐒𝐒,𝑛𝑛+𝜃𝜃 (4.104) 

 

i) Partial derivative of the thermal equation with respect to the temperature increment 

𝐉𝐉𝐓𝐓𝐓𝐓 =
𝜕𝜕𝚿𝚿𝑛𝑛+𝜃𝜃

𝑇𝑇

𝜕𝜕∆𝐓𝐓
= 𝐂𝐂𝑛𝑛+𝜃𝜃 + 𝛼𝛼 𝐊𝐊 𝑖𝑖 𝐓𝐓𝐓𝐓−𝐀𝐀,𝑛𝑛 + 𝛼𝛼2

2
𝐊𝐊 𝑖𝑖 𝐓𝐓𝐓𝐓−𝐒𝐒,𝑛𝑛 + 𝜃𝜃 𝐊𝐊 𝑖𝑖 𝐓𝐓𝐓𝐓−𝐃𝐃,𝑛𝑛+𝜃𝜃 

+ 𝐊𝐊 𝑖𝑖 𝐓𝐓𝐓𝐓−𝐀𝐀𝐀𝐀,𝑛𝑛+𝜃𝜃 + �1
2

− α� 𝐊𝐊 𝑖𝑖 𝐓𝐓𝐓𝐓−𝐒𝐒𝐒𝐒,𝑛𝑛+𝜃𝜃 
(4.105) 

 

4.3.2. THM formulation for zero-thickness interface elements 

 Next the THM advective fully-coupled formulation for double-nodded zero-thickness 
interface elements is presented in four parts. The first three parts develops the mechanical, 
hydraulic and thermal formulations, respectively. The fourth part presents the solution of the 
non-linear THM fully-coupled system using a Newton-Raphson strategy.  

 

Mechanical Formulation for interfaces 

 As described for continuum media, the stress form of the mechanical problem follows the 
effective stress principle of Terzaghi as follows: 

𝛔𝛔𝐽𝐽
′ = 𝝈𝝈𝐽𝐽 + 𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐦𝐦𝐽𝐽 𝑝𝑝 ̅ (4.106) 

where 𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 is the Biot's coefficient, 𝑝𝑝̅ is the average fluid pressure at the mid-plane (negative 
in compression) and 𝛔𝛔𝐽𝐽 is the stress tensor at the mid-plane of the interfaces in the local 
orthogonal system {𝑛𝑛, 𝑙𝑙1, 𝑙𝑙2}, which contains the normal and tangential components: 

𝛔𝛔𝐽𝐽 = (𝜎𝜎𝑁𝑁, 𝜏𝜏𝑙𝑙1, 𝜏𝜏𝑙𝑙2)⊤ (4.107) 

 It is important to note that, in interfaces, as the fluid pressure only affects the volumetric 
component, only the normal term of the stress tensor is affected. Thus, the identity matrix in 
Voigt notation 𝐦𝐦𝐽𝐽  can be written as: 

𝐦𝐦𝐽𝐽 = (1   0   0)⊤ (4.108) 

 Moreover, the average fluid pressure at the mid-plane, considering the spatial 
discretization described in Eq. (3.11) may be written as: 

𝑝𝑝̅ = 𝐍𝐍𝐽𝐽
𝑝𝑝  𝕋𝕋�L

 𝑝𝑝
𝐩𝐩e (4.109) 
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where 𝐍𝐍𝐽𝐽
𝑝𝑝  are the mid-plane shape functions of the interface element and 𝕋𝕋�L

 𝑝𝑝 is the in-plane 
transference matrix, which assumes that the pressure at the mid-plane is the average of the 
pressure at the corresponding nodes of the element and may be written as: 

𝕋𝕋�L
 𝑝𝑝 =

1
2 [𝐈𝐈𝑚𝑚  𝐈𝐈𝑚𝑚] (4.110) 

where 𝑚𝑚 is the number of mid-plane nodes of the interface element and 𝐈𝐈𝑚𝑚 is the 𝑚𝑚 × 𝑚𝑚 
identity matrix. 

 In the interface elements used, the effective stress 𝛔𝛔𝐽𝐽
′  and the relative displacements 

𝐫𝐫 = (𝑟𝑟𝑁𝑁, 𝑟𝑟𝑙𝑙1, 𝑟𝑟𝑙𝑙2)⊤ are related with the mechanical constitutive law and in consequence, with 
the mechanical stiffness matrix 𝐃𝐃𝐽𝐽

𝑢𝑢. Due to the non-linear constitutive law used for the 
interface elements (Section 4.4), this relationship is written in incremental form: 

𝑑𝑑𝛔𝛔𝐽𝐽
′ =  𝐃𝐃𝐽𝐽

𝑢𝑢 𝑑𝑑𝐫𝐫 (4.111) 

where the increment of relative displacements 𝑑𝑑𝐫𝐫 can be written as: 

𝑑𝑑𝐫𝐫 = 𝐑𝐑𝐽𝐽 𝐍𝐍𝐽𝐽
𝑢𝑢 𝕋𝕋�

 𝑢𝑢
 𝑑𝑑𝐮𝐮e = 𝐁𝐁𝐽𝐽 𝑑𝑑𝐮𝐮e (4.112) 

where 𝑑𝑑𝐮𝐮e is the variation of nodal displacements of the interface element, 𝐍𝐍𝐽𝐽
𝑢𝑢 are the mid-

plane shape functions of the interface element, 𝕋𝕋�  𝑢𝑢 is the transference matrix which converts 
the nodal displacements into jumps at the mid-plane nodes of the interface element, 𝐑𝐑𝐽𝐽 is the 
rotation matrix that relates the 𝑥𝑥𝑥𝑥𝑥𝑥 system with the local orthogonal system 𝑛𝑛𝑙𝑙1𝑙𝑙2 and 𝐁𝐁𝐽𝐽  is 
the matrix that relates the relative displacements with the nodal displacements of the 
interface.  

𝐍𝐍𝐽𝐽
𝑢𝑢 = �𝑁𝑁𝑚𝑚𝑚𝑚

 (1)  𝑁𝑁𝑚𝑚𝑚𝑚
 (2)  … 𝑁𝑁𝑚𝑚𝑚𝑚

 (𝑚𝑚)� ⊗ 𝐈𝐈𝑑𝑑 (4.113) 

 𝕋𝕋�
 𝑢𝑢

= [−𝐈𝐈𝑚𝑚  𝐈𝐈𝑚𝑚] ⊗ 𝐈𝐈𝑚𝑚 (4.114) 

where 𝐈𝐈𝑑𝑑 is the 𝑑𝑑 × 𝑑𝑑 identity matrix with 𝑑𝑑 = 2 for 2-D problems and 𝑑𝑑 = 3 for 3-D 
problems. 

 In order to perform the spatial discretization the PVW is applied. Considering that the 
work of the external forces with the virtual nodal displacements 𝛿𝛿𝐮𝐮e is equivalent to the 
internal work of the internal forces with the relative displacements 𝛿𝛿𝐫𝐫 over the mid-plane of 
the interface the following expression may be used: 

𝛿𝛿𝐮𝐮e 𝐟𝐟e𝑢𝑢 = � [𝛿𝛿𝐫𝐫]⊤
 

Ω𝐽𝐽

𝛔𝛔𝐽𝐽 dΩ𝐽𝐽 (4.115) 

 Since the equation has to be satisfied for any value of the virtual displacements (𝛿𝛿𝐮𝐮e) the 
following is obtained: 
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𝐟𝐟e𝑢𝑢 = �𝕋𝕋�
 𝑢𝑢 

�
⊤

� [𝐍𝐍𝐽𝐽
𝑢𝑢]⊤

 

Ω𝐽𝐽

[𝐑𝐑𝐽𝐽
 ]⊤ 𝛔𝛔𝐽𝐽 dΩ𝐽𝐽 (4.116) 

 Substituting the effective stress principle from Eq. (4.106) into Eq. (4.116) and adding 
the fluid average pressure from Eq. (4.109): 

𝐟𝐟e𝑢𝑢 = �𝕋𝕋�
 𝑢𝑢 

�
⊤

� [𝐍𝐍𝐽𝐽
𝑢𝑢]⊤

 

Ω𝐽𝐽

[𝐑𝐑𝐽𝐽
 ]⊤ 𝛔𝛔𝐽𝐽

′   dΩ𝑗𝑗

− �𝕋𝕋�
 𝑢𝑢 

�
⊤

�� [𝐍𝐍𝐽𝐽
𝑢𝑢]⊤

 

Ω𝐽𝐽

[𝐑𝐑𝐽𝐽
 ]⊤𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐦𝐦𝐽𝐽 [𝐍𝐍𝐽𝐽

𝑝𝑝 ]⊤ dΩ𝑗𝑗�𝕋𝕋�L
 𝑝𝑝
𝐩𝐩e 

(4.117) 

 

Summary 11 - Mechanical zero-thickness interface equation. 

� [𝐁𝐁𝐽𝐽
𝑢𝑢]⊤ 𝛔𝛔𝐽𝐽,𝑛𝑛+𝜃𝜃

′
 

Ω𝐽𝐽

dΩ𝐽𝐽 − 𝐊𝐊𝐮𝐮𝐮𝐮 𝐩𝐩e,𝑛𝑛+𝜃𝜃
 = 0  (4.118) 

where 𝐊𝐊𝐮𝐮𝐮𝐮 is the hydro-mechanical coupling matrix: 

𝐊𝐊𝐮𝐮𝐮𝐮 = �𝕋𝕋�
 𝑢𝑢 

�
⊤

�� [𝐍𝐍𝐽𝐽
𝑢𝑢]⊤

 

Ω𝐽𝐽

[𝐑𝐑𝐽𝐽
 ]⊤ 𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐦𝐦𝐽𝐽 [𝐍𝐍𝐽𝐽

𝑝𝑝 ]⊤ dΩ𝐽𝐽�𝕋𝕋�L
 𝑝𝑝
   (4.119) 

 

 

Hydraulic Formulation for interfaces 

 According to Segura & Carol (2004) and Garolera (2017), the flow in the interfaces is 
composed of two terms: longitudinal (or in-plane) along the interface and transversal across it.  

 A set of equations describing both longitudinal and in-plane heat flow is developed in this 
section, assuming three-dimensional interface elements with a local orthogonal coordinate 
system {𝑛𝑛, 𝑙𝑙1, 𝑙𝑙2}, where 𝑙𝑙1 and 𝑙𝑙2 are the local directions of the interface along the mid-plane. 

 It is also assumed that the discontinuity is surrounded by a continuum medium and, as 
described by Segura (2007), the hydraulic flow can leak from the discontinuity to the 
continuum medium and vice-versa. 

 The in-plane hydraulic problem is studied along the mid-plane of the interface. The first 
fundamental equation is derived from Darcy's Law, from which the average in-plane flow 
vector across the discontinuity 𝐪𝐪L

𝑝𝑝  may be written as: 

𝐪𝐪L
𝑝𝑝 = −

𝐤𝐤L
𝑝𝑝 𝛾𝛾𝑓𝑓

𝜇𝜇
 𝛁𝛁𝐽𝐽  � 𝑝𝑝̅

𝛾𝛾𝑓𝑓 + 𝑧𝑧� (4.120) 

where 𝐤𝐤L
𝑝𝑝  is the longitudinal hydraulic permeability; 𝑝𝑝̅ is the average pressure at the mid-

plane, 𝛾𝛾𝑓𝑓  and 𝜇𝜇 are the specific weight and the dynamic viscosity of the fluid filling the 
discontinuity, respectively, and 𝛁𝛁𝐽𝐽 = � 𝜕𝜕

𝜕𝜕𝑙𝑙1
  𝜕𝜕

𝜕𝜕𝑙𝑙2
�

⊤
is the partial differential operator for the 

local in-plane axis. 
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 Then, by imposing mass conservation in the longitudinal direction of a differential 
interface element, the fluid mass balance equation for the HM coupled problem may be 
written as: 

[𝛁𝛁𝐽𝐽
  ]⊤ 𝐐𝐐L

𝑝𝑝 + 1
𝑀𝑀 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
𝜕𝜕𝑝𝑝̅
𝜕𝜕𝜕𝜕

+ 𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
𝜕𝜕𝑟𝑟𝑁𝑁
𝜕𝜕𝜕𝜕

= 0 (4.121) 

where 𝑀𝑀 
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 is the Biot's modulus, 𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 is the Biot's coefficient, 𝑟𝑟𝑁𝑁  is the opening of the 

interface (normal relative displacement) and 𝐐𝐐L
𝑝𝑝  is the discharge per unit width defined by: 

𝐐𝐐L
𝑝𝑝 = 𝑟𝑟𝑁𝑁𝐪𝐪L

𝑝𝑝 = −𝐊𝐊L
𝑝𝑝  𝛁𝛁𝐽𝐽 � 𝑝𝑝̅

𝛾𝛾𝑓𝑓 + 𝑧𝑧� (4.122) 

where 𝐊𝐊L
𝑝𝑝  is the longitudinal transmissivity, which may be defined in terms of the local mid-

plane axis as: 

𝐊𝐊L
𝑝𝑝 = 𝑟𝑟𝑁𝑁

𝐤𝐤L
𝑝𝑝 𝛾𝛾𝑓𝑓

𝜇𝜇
= �

𝐾𝐾𝐿𝐿1,1
𝐾𝐾𝐿𝐿1,2

𝐾𝐾𝐿𝐿2,1
𝐾𝐾𝐿𝐿2,2

� (4.123) 

 Eq. (4.123) defines the general expression of the transmissivity. However, it is assumed 
here that there is no preferential flow direction along the mid-plane and in consequence the 
terms of the diagonal are equal. Additionally, the cross-terms are left out and Eq. (4.123) can 
be transformed into: 

𝐊𝐊L
𝑝𝑝 = 𝐾𝐾𝐿𝐿

𝑝𝑝 �1 0
0 1� (4.124) 

 Moreover, as described by Segura (2007) and Garolera (2017), the value of 𝐾𝐾𝐿𝐿
𝑝𝑝  may be 

defined by means of a cubic law (Poiseuille Law), which considers a non-linear relation of the 
transmissivity depending on the opening of the interface element (𝑟𝑟𝑁𝑁). This cubic law, defined 
in Witherspoon, et al. (1980) and Oron & Berkowitz (1998) may be written as: 

𝐾𝐾𝐿𝐿
𝑝𝑝 =  𝛾𝛾𝑓𝑓

12𝜇𝜇
𝑟𝑟𝑁𝑁
3  (4.125) 

It must to be noted that, in the thermal coupling context of this thesis, the value of 𝜇𝜇 
depends on the value of the temperature. 

 Additionally, it is important to consider the volume change of the fluid due to thermal 
effects. As the fluid is fills the discontinuity, the volumetric strain rate of the fluid is defined 
as: 

𝜕𝜕𝜕𝜕𝑣𝑣,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑇𝑇

𝜕𝜕𝜕𝜕
= 𝑟𝑟𝑁𝑁 𝛼𝛼𝑣𝑣,𝑓𝑓

𝑇𝑇 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 (4.126) 

where 𝛼𝛼𝑣𝑣,𝑓𝑓
𝑇𝑇  is the volumetric coefficient of thermal expansion of the fluid. 

 Substituting Eqs. (4.122) and (4.126) into (4.121) the governing equation of the in-plane 
flow is obtained: 
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[𝛁𝛁𝐽𝐽
  ]⊤ �−𝐊𝐊L

𝑝𝑝  𝛁𝛁𝐽𝐽 � 𝑝𝑝̅
𝛾𝛾𝑓𝑓 + 𝑧𝑧�� + 1

𝑀𝑀 
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

𝜕𝜕𝑝𝑝̅
𝜕𝜕𝜕𝜕

+ 𝑟𝑟𝑁𝑁 𝛼𝛼𝑣𝑣,𝑓𝑓
𝑇𝑇 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

𝜕𝜕𝑟𝑟𝑁𝑁
𝜕𝜕𝜕𝜕

= 0 (4.127) 

where the rate of the normal displacements can be related to the rate of relative displacement 
in xyz coordinates as follows: 

𝜕𝜕𝑟𝑟𝑁𝑁
𝜕𝜕𝜕𝜕

= [𝐦𝐦𝐽𝐽
 ]⊤  𝜕𝜕𝐫𝐫

𝜕𝜕𝜕𝜕
 (4.128) 

 There are two kinds of boundary conditions applicable to the transient Eq. (4.127). The 
first is the Dirichlet boundary condition, in which the pressure 𝑝𝑝 values are imposed on a 
boundary Γϕ (Eq. (4.129)). The second is the Neumann boundary condition, in which a 
normal prescribed flow 𝑄𝑄����𝑁𝑁

 𝑝𝑝  is imposed on a boundary Γq (Eq. (4.130)). 

𝑝𝑝 = 𝑝𝑝̅(𝑥𝑥, 𝑦𝑦, 𝑥𝑥, 𝑡𝑡)      on      Γϕ (4.129) 

− [𝐧𝐧]⊤ 𝐊𝐊L
𝑝𝑝  𝛁𝛁𝐽𝐽 � 𝑝𝑝̅

𝛾𝛾𝑓𝑓 + 𝑧𝑧� − 𝑄𝑄����𝑁𝑁
 𝑝𝑝 = 0        on      Γq  (4.130) 

 Using the weighted residuals method defined by equation (4.47) the follow integral form 
is obtained: 

𝐐𝐐Lmp

𝑝𝑝 = � 𝑤𝑤
 

Ω𝐽𝐽

�[𝛁𝛁𝐽𝐽
  ]⊤ �−𝐊𝐊L

𝑝𝑝  𝛁𝛁𝐽𝐽 � 𝑝𝑝̅
𝛾𝛾𝑓𝑓 + 𝑧𝑧�� + 1

𝑀𝑀 
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

𝜕𝜕𝑝𝑝̅
𝜕𝜕𝜕𝜕

+ 𝑟𝑟𝑁𝑁𝛼𝛼𝑣𝑣,𝑓𝑓
𝑇𝑇 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

+ 𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
𝜕𝜕𝑟𝑟𝑁𝑁
𝜕𝜕𝜕𝜕

�dΩ𝐽𝐽 + � 𝑤𝑤����
 

Γq
𝑝𝑝

�−[𝐧𝐧]⊤𝐊𝐊L
𝑝𝑝  𝛁𝛁𝐽𝐽 � 𝑝𝑝̅

𝛾𝛾𝑓𝑓 + 𝑧𝑧� − 𝑄𝑄����𝑁𝑁
 𝑝𝑝� dΓ𝑝𝑝 = 0 

(4.131) 

 Applying the Galerkin weighting �𝑤𝑤 = 𝑁𝑁𝐽𝐽
𝑝𝑝 (1), 𝑁𝑁𝐽𝐽

𝑝𝑝 (2),… �, assuming 𝑤𝑤���� = 𝑤𝑤, applying the 
Divergence Theorem to the first term of the above equation and performing the spatial 
discretization of Eq. (4.131) on the domain Ω𝐽𝐽  by using the FEM and approximating the 
nodal displacements, pressures and temperatures by Eqs. (4.12), (4.20) and (4.25), the 
following is obtained: 

𝐐𝐐Lmp

𝑝𝑝 = −� [𝛁𝛁𝐽𝐽]⊤𝐍𝐍𝐽𝐽
𝑝𝑝  

𝐊𝐊L
𝑝𝑝(𝑇𝑇 )
𝛾𝛾𝑓𝑓  𝛁𝛁𝐽𝐽𝐍𝐍𝐽𝐽

𝑝𝑝
 

Ω𝐽𝐽

dΩ𝐽𝐽 𝐩𝐩mp
 + � 𝛁𝛁𝐽𝐽[𝐍𝐍𝐽𝐽

𝑝𝑝 ]⊤𝐊𝐊L
𝑝𝑝 (𝑇𝑇 ) 𝜌𝜌𝑓𝑓𝛁𝛁𝐽𝐽𝑧𝑧

 

Ω𝐽𝐽

dΩ𝐽𝐽

+ � [𝐍𝐍𝐽𝐽
𝑝𝑝 ]⊤ 1

𝑀𝑀 
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐍𝐍𝐽𝐽

𝑝𝑝
 

Ω𝐽𝐽

dΩ𝐽𝐽  
𝜕𝜕𝐩𝐩mp

 

𝜕𝜕𝜕𝜕
+ � [𝐍𝐍𝐽𝐽

𝑇𝑇 ]⊤ 𝑟𝑟𝑁𝑁𝛼𝛼𝑣𝑣,𝑓𝑓
𝑇𝑇  𝐍𝐍𝐽𝐽

𝑇𝑇
 

Ω𝐽𝐽

dΩ𝐽𝐽  
𝜕𝜕𝐓𝐓mp

 

𝜕𝜕𝜕𝜕

+ � [𝐍𝐍𝐽𝐽
𝑝𝑝 ]⊤ 𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 [𝐦𝐦𝐽𝐽

 ]⊤ 𝐑𝐑𝐽𝐽 𝐍𝐍𝐽𝐽
𝑢𝑢

 

Ω𝐽𝐽

dΩ𝐽𝐽  𝜕𝜕𝐫𝐫
𝜕𝜕𝜕𝜕

− � [𝐍𝐍𝐽𝐽
𝑝𝑝 ]⊤

 

Γq
𝑝𝑝

𝑄𝑄����𝑁𝑁
 𝑝𝑝  dΓ𝑝𝑝 = 0 

(4.132) 

where 𝐊𝐊L
𝑝𝑝 , according to Eq. (4.50), depends on the temperature, leading to: 
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𝐾𝐾𝐿𝐿
𝑝𝑝(𝑇𝑇 ) = 𝛾𝛾𝑓𝑓

12 𝜇𝜇(𝑇𝑇 )
𝑟𝑟𝑁𝑁
3 =  𝛾𝛾𝑓𝑓

12 𝜇𝜇0
 𝑟𝑟𝑁𝑁

3  e𝑏𝑏 𝐍𝐍𝐽𝐽
𝑇𝑇 𝐓𝐓mp (4.133) 

where 𝜇𝜇0
  and 𝑏𝑏 are coefficients defined in Eq. (4.2). 

 In addition, the term 𝛁𝛁𝐽𝐽𝑧𝑧 of Eq. (4.132) is the gravity vector in local system 𝑛𝑛𝑙𝑙1𝑙𝑙2 of the 
interface, given by: 

𝛁𝛁𝐽𝐽𝑧𝑧 = 𝐠𝐠𝑛𝑛𝑙𝑙1𝑙𝑙2 =  𝐠𝐠 𝐑𝐑𝐽𝐽 (4.134) 

where 𝐑𝐑𝐽𝐽 is the rotation matrix that relates the 𝑥𝑥𝑥𝑥𝑥𝑥 system with the local orthogonal system 
𝑛𝑛𝑙𝑙1𝑙𝑙2 and 𝐠𝐠 is the gravity vector in the xyz system defined by Eq. (4.8). 

 Moreover, the average fluid pressure at the mid-plane, considering the spatial 
discretization described in Eq. (3.11), may be written as: 

𝐩𝐩mp
 = 𝕋𝕋�L

 𝑝𝑝
 𝐩𝐩e

  (4.135) 

where 𝕋𝕋�L
 𝑝𝑝 is the transference matrix, in which it is assumed that the pressure at the mid-

plane is the average of the pressure at the corresponding nodes of the element, Eq. (4.110). 
Now the PVW is applied leading to: 

𝛿𝛿𝐩𝐩e
 𝐐𝐐Le

𝑝𝑝 = � 𝛿𝛿𝐩𝐩mp
 

 

Ω𝐽𝐽

𝐐𝐐Lmp

𝑝𝑝  dΩ𝐽𝐽 (4.136) 

 Since the equation has to be satisfied for any value of the virtual pressures (𝛿𝛿𝐩𝐩e
 ) the 

following equation is reached: 

𝐐𝐐Le

𝑝𝑝 = �𝕋𝕋�L
 𝑝𝑝 

�
⊤

𝐐𝐐Lmp

𝑝𝑝  (4.137) 

 Substituting Eqs. (4.135) and (4.137) into Eqs. (4.132) and (4.133), the in-plane hydraulic 
equation related to the nodes of the interface element is obtained as follows: 
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𝐐𝐐Le

𝑝𝑝 = −�𝕋𝕋�L
 𝑝𝑝 

�
⊤

� [𝛁𝛁𝐽𝐽]⊤𝐍𝐍𝐽𝐽
𝑝𝑝  

𝐊𝐊L
𝑝𝑝 (𝑇𝑇 )
𝛾𝛾𝑓𝑓  𝛁𝛁𝐽𝐽𝐍𝐍𝐽𝐽

𝑝𝑝
 

Ω𝐽𝐽

 𝕋𝕋�L
 𝑝𝑝
𝐩𝐩e

  dΩ𝐽𝐽

+ �𝕋𝕋�L
 𝑝𝑝 

�
⊤

� [𝛁𝛁𝐽𝐽]⊤𝐍𝐍𝐽𝐽
𝑝𝑝  𝐊𝐊L

𝑝𝑝(𝑇𝑇 ) 𝜌𝜌𝑓𝑓𝐠𝐠𝑛𝑛𝑙𝑙1𝑙𝑙2

 

Ω𝐽𝐽

 dΩ𝐽𝐽

+ �𝕋𝕋�L
 𝑝𝑝 

�
⊤

� [𝐍𝐍𝐽𝐽
𝑝𝑝 ]⊤ 1

𝑀𝑀𝐽𝐽
𝑓𝑓 𝐍𝐍𝐽𝐽

𝑝𝑝
 

Ω𝐽𝐽

𝕋𝕋�L
 𝑝𝑝

 𝜕𝜕𝐩𝐩e
 

𝜕𝜕𝜕𝜕
 dΩ𝐽𝐽

+ �𝕋𝕋�L
 𝑝𝑝 

�
⊤

� [𝐍𝐍𝐽𝐽
𝑇𝑇 ]⊤ 𝑟𝑟𝑁𝑁𝛼𝛼𝑣𝑣,𝑓𝑓

𝑇𝑇  𝐍𝐍𝐽𝐽
𝑇𝑇

 

Ω𝐽𝐽

𝕋𝕋�L
 𝑇𝑇

 𝜕𝜕𝐓𝐓e
 

𝜕𝜕𝜕𝜕
 dΩ𝐽𝐽

+ �𝕋𝕋�L
 𝑝𝑝 

�
⊤

� [𝐍𝐍𝐽𝐽
𝑝𝑝 ]⊤ 𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 [𝐦𝐦𝐽𝐽

 ]⊤ 𝐁𝐁𝐽𝐽
𝑢𝑢  𝜕𝜕𝐮𝐮e

𝜕𝜕𝜕𝜕

 

Ω𝐽𝐽

 dΩ𝐽𝐽

− �𝕋𝕋�L
 𝑝𝑝 

�
⊤

� [𝐍𝐍𝐽𝐽
𝑝𝑝 ]⊤

 

Γq
𝑝𝑝

𝑄𝑄����𝑁𝑁
 𝑝𝑝 dΓ𝑝𝑝 = 0 

(4.138) 

where 𝐁𝐁𝐽𝐽
𝑢𝑢 is defined by Eq. (4.112). Performing the spatial discretization of the transmissivity 

given in Eq. (4.133), this equation is further transformed into: 

𝐾𝐾𝐿𝐿
𝑝𝑝(𝑇𝑇 ) = 𝛾𝛾𝑓𝑓

12 𝜇𝜇(𝑇𝑇 )
𝑟𝑟𝑁𝑁
3 = 𝛾𝛾𝑓𝑓

12 𝜇𝜇0
 𝑟𝑟𝑁𝑁

3  e𝑏𝑏 𝐍𝐍𝐽𝐽
𝑇𝑇 𝕋𝕋�L

𝑇𝑇
𝐓𝐓e

  (4.139) 

 Additional to the in-plane flow, the existence of a discontinuity may also represent a 
resistance to the hydraulic flow in the transversal direction, which would result in a localized 
pressure drop across the interface. As defined for temperatures (section 3.2), the transversal 
flow may be defined as: 

𝑞𝑞𝑁𝑁
 𝑝𝑝 = 𝐾̌𝐾𝑁𝑁

𝑝𝑝  𝑝𝑝̌ (4.140) 

where 𝐾̌𝐾𝑁𝑁
𝑝𝑝  is the transverse hydraulic coefficient and relates the transverse fluid flow 𝑞𝑞𝑁𝑁

 𝑝𝑝 with 
the transversal pressure drop 𝑝𝑝̌. Using the PVW in a discrete form, 

[𝛿𝛿𝑝𝑝̌e ]⊤ 𝐐𝐐Ne

𝑝𝑝  = �𝛿𝛿𝑝𝑝m̌p
 �⊤ 𝐐𝐐Nmp

𝑝𝑝  (4.141) 

𝐐𝐐Ne

𝑝𝑝 = �𝕋𝕋�N
𝑝𝑝 

�
⊤
𝐐𝐐Nmp

𝑝𝑝  (4.142) 

where 𝕋𝕋�N
𝑝𝑝
 is the transference transversal matrix defined in Eqs. (3.34) and (3.35). Finally, 

performing the spatial discretization of Eq. (4.140) using the FEM and using Eqs. (4.135) and 
(4.142) the following equation is reached: 

𝐐𝐐Ne

𝑝𝑝 = �𝕋𝕋�N
𝑝𝑝
�
⊤

� [𝐍𝐍𝐽𝐽
𝑝𝑝 ]⊤𝐾̌𝐾𝑁𝑁

𝑝𝑝  𝐍𝐍𝐽𝐽
𝑝𝑝  

 

Ω𝐽𝐽

𝕋𝕋�N
𝑝𝑝
 𝐩𝐩e dΩ𝐽𝐽  (4.143) 

 To obtain an integrated conductivity matrix it is necessary to combine the longitudinal 
and the transversal flow as a sum of both: 
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𝐐𝐐e
𝑝𝑝 = 𝐐𝐐Le

𝑝𝑝 + 𝐐𝐐Ne

𝑝𝑝  (4.144) 

Substituting Eqs. (4.138) and (4.143) into Eq. (4.144) the following expression is obtained: 

𝐐𝐐e
𝑝𝑝 = − �𝕋𝕋�L

 𝑝𝑝 
�
⊤

�� [𝛁𝛁𝐽𝐽]⊤𝐍𝐍𝐽𝐽
𝑝𝑝 𝐊𝐊L

𝑝𝑝 (𝑇𝑇 )
𝛾𝛾𝑓𝑓  𝛁𝛁𝐽𝐽𝐍𝐍𝐽𝐽

𝑝𝑝
 

Ω𝐽𝐽

dΩ𝐽𝐽�𝕋𝕋�L
 𝑝𝑝

 𝐩𝐩e

+ �𝕋𝕋�N
 𝑝𝑝 

�
⊤

�� [𝐍𝐍𝐽𝐽
𝑝𝑝 ]⊤𝐾̌𝐾𝑁𝑁

𝑝𝑝  𝐍𝐍𝐽𝐽
𝑝𝑝  

 

Ω𝐽𝐽

dΩ𝐽𝐽�𝕋𝕋�N
 𝑝𝑝

 𝐩𝐩e

+ �𝕋𝕋�L
 𝑝𝑝 

�
⊤

�� [𝛁𝛁𝐽𝐽]⊤𝐍𝐍𝐽𝐽
𝑝𝑝  𝐊𝐊L

𝑝𝑝(𝑇𝑇 ) 𝜌𝜌𝑓𝑓𝐠𝐠𝑛𝑛𝑙𝑙1𝑙𝑙2

 

Ω𝐽𝐽

 dΩ𝐽𝐽�

+ �𝕋𝕋�L
 𝑝𝑝 

�
⊤

�� [𝐍𝐍𝐽𝐽
𝑝𝑝 ]⊤ 1

𝑀𝑀 
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐍𝐍𝐽𝐽

𝑝𝑝
 

Ω𝐽𝐽

dΩ𝐽𝐽�𝕋𝕋�L
 𝑝𝑝

 𝜕𝜕𝐩𝐩e
𝜕𝜕𝜕𝜕

 

+ �𝕋𝕋�L
 𝑝𝑝 

�
⊤

�� [𝐍𝐍𝐽𝐽
𝑇𝑇 ]⊤ 𝑟𝑟𝑁𝑁𝛼𝛼𝑣𝑣,𝑓𝑓

𝑇𝑇  𝐍𝐍𝐽𝐽
𝑇𝑇

 

Ω𝐽𝐽

dΩ𝐽𝐽�𝕋𝕋�L
 𝑇𝑇

 𝜕𝜕𝐓𝐓e
𝜕𝜕𝜕𝜕

 

+ �𝕋𝕋�L
 𝑝𝑝 

�
⊤

�� [𝐍𝐍𝐽𝐽
𝑝𝑝 ]⊤ 𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 [𝐦𝐦𝐽𝐽

 ]⊤ 𝐑𝐑𝐽𝐽 𝐍𝐍𝐽𝐽
𝑢𝑢

 

Ω𝐽𝐽

dΩ𝐽𝐽�𝕋𝕋�
 𝑢𝑢

 
𝜕𝜕𝐮𝐮e
𝜕𝜕𝜕𝜕

− �𝕋𝕋�L
 𝑝𝑝 

�
⊤

� [𝐍𝐍𝐽𝐽
𝑝𝑝 ]⊤

 

Γq
𝑝𝑝

𝑄𝑄����𝑁𝑁
 𝑝𝑝 dΓ𝑝𝑝 = 0 

(4.145) 

 The last step consists in the time discretization of the hydraulic equation (4.145) using 
the FDM. Additionally, the linearization of Eq. (4.139) may be developed using the first term 
of the Taylor expansion, obtaining: 

1
𝜇𝜇(𝑇𝑇 )

= 1

𝜇𝜇0
  e−𝑏𝑏 𝐍𝐍𝐽𝐽

𝑇𝑇 𝕋𝕋�L
 𝑇𝑇
𝐓𝐓e,𝑛𝑛

 
e𝑏𝑏𝑏𝑏𝐍𝐍𝐽𝐽

𝑇𝑇 𝕋𝕋�L
 𝑇𝑇
Δ𝐓𝐓e,𝑛𝑛+1

 = 1
𝜇𝜇𝑛𝑛

  
e𝑏𝑏𝑏𝑏𝐍𝐍𝐽𝐽

𝑇𝑇  𝕋𝕋�L
 𝑇𝑇
Δ𝐓𝐓e,𝑛𝑛+1

  

1
𝜇𝜇(𝑇𝑇 )

≈ 1
𝜇𝜇𝑛𝑛

 �1 + 𝑏𝑏𝑏𝑏𝐍𝐍𝐽𝐽
𝑇𝑇  𝕋𝕋�L

 𝑇𝑇
Δ𝐓𝐓e,𝑛𝑛+1

 � 

 (4.146) 

 Finally, introducing the FDM time discretization defined in Eq. (4.27) into Eq. (4.145) 
and substituting Eq. (4.146) the final hydraulic equation  for zero-thickness interface elements 
(4.147) is reached. 
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Summary 12 - Hydraulic zero-thickness interface equation. 
 

�𝐒𝐒𝐩𝐩 + 𝜃𝜃∆𝑡𝑡𝑛𝑛+1𝐊𝐊𝐩𝐩𝐩𝐩�∆𝐩𝐩e,𝑛𝑛+1
 + �𝐒𝐒𝐩𝐩𝐩𝐩 + 𝜃𝜃∆𝑡𝑡𝑛𝑛+1𝐊𝐊𝐩𝐩𝐩𝐩�∆𝐓𝐓e,𝑛𝑛+1

 + �𝐊𝐊𝐩𝐩𝐩𝐩
 �⊤∆𝐮𝐮e,𝑛𝑛+1

 

= ∆𝑡𝑡𝑛𝑛+1𝐟𝐟e𝑝𝑝 − ∆𝑡𝑡𝑛𝑛+1𝐊𝐊𝐩𝐩𝐩𝐩 𝐩𝐩e,𝑛𝑛
   (4.147) 

where 𝐊𝐊𝐩𝐩𝐩𝐩 is the element hydraulic diffusion matrix, 𝐒𝐒𝐩𝐩 is the element hydraulic capacity 
matrix, 𝐊𝐊𝐩𝐩𝐩𝐩𝐩𝐩 is the element hydro-mechanical coupling matrix, 𝐊𝐊𝐩𝐩𝐩𝐩 is the element thermo-
hydraulic coupling matrices and 𝐟𝐟e𝑝𝑝 is the element vector of external forces: 

𝐒𝐒𝐩𝐩 = �𝕋𝕋�L
 𝑝𝑝 

�
⊤

�� [𝐍𝐍𝐽𝐽
𝑝𝑝 ]⊤ 1

𝑀𝑀 
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐍𝐍𝐽𝐽

𝑝𝑝
 

Ω𝐽𝐽

dΩ𝐽𝐽�𝕋𝕋�L
 𝑝𝑝
  (4.148) 

𝐊𝐊𝐩𝐩𝐩𝐩 = �𝕋𝕋�L
 𝑝𝑝 

�
⊤

�� [𝛁𝛁𝐽𝐽]⊤𝐍𝐍𝐽𝐽
𝑝𝑝  

𝐊𝐊L
𝑝𝑝 (𝑇𝑇𝑛𝑛)
𝛾𝛾𝑓𝑓 𝛁𝛁𝐽𝐽𝐍𝐍𝐽𝐽

𝑝𝑝
 

Ω𝐽𝐽

dΩ𝐽𝐽�𝕋𝕋�L
 𝑝𝑝

+ 𝕋𝕋�N
𝑝𝑝 ⊤

�� [𝐍𝐍𝐽𝐽
𝑝𝑝 ]⊤𝐾̌𝐾𝑁𝑁

𝑝𝑝  𝐍𝐍𝐽𝐽
𝑝𝑝  

 

Ω𝐽𝐽

dΩ𝐽𝐽�𝕋𝕋�N
 𝑝𝑝

 
 (4.149) 

𝐒𝐒𝐩𝐩𝐩𝐩 = �𝕋𝕋�L
 𝑝𝑝 

�
⊤

�� [𝐍𝐍𝐽𝐽
𝑇𝑇 ]⊤ 𝑟𝑟𝑁𝑁𝛼𝛼𝑓𝑓

𝑇𝑇  𝐍𝐍𝐽𝐽
𝑇𝑇

 

Ω𝐽𝐽

dΩ𝐽𝐽�𝕋𝕋�L
 𝑇𝑇
  (4.150) 

𝐊𝐊𝐩𝐩𝐩𝐩 = �𝕋𝕋�L
 𝑝𝑝 

�
⊤

�𝑏𝑏 � [𝛁𝛁𝐽𝐽]⊤𝐍𝐍𝐽𝐽
𝑝𝑝  

𝐊𝐊L
𝑝𝑝 (𝑇𝑇𝑛𝑛)
𝛾𝛾𝑓𝑓  𝛁𝛁𝐽𝐽𝐍𝐍𝐽𝐽

𝑝𝑝𝕋𝕋�L
 𝑝𝑝
𝐩𝐩e,𝑛𝑛 𝐍𝐍𝐽𝐽

𝑇𝑇
 

Ω𝐽𝐽

dΩ𝐽𝐽�𝕋𝕋�L
 𝑇𝑇

− �𝕋𝕋�L
 𝑝𝑝 

�
⊤

�𝑏𝑏 � [𝛁𝛁𝐽𝐽]⊤𝐍𝐍𝐽𝐽
𝑝𝑝  𝐊𝐊L

𝑝𝑝 (𝑇𝑇𝑛𝑛) 𝐍𝐍𝐽𝐽
𝑇𝑇  𝜌𝜌 

𝑓𝑓𝐠𝐠𝑛𝑛𝑙𝑙1𝑙𝑙2

 

Ω𝐽𝐽

 dΩ𝐽𝐽�𝕋𝕋�L
 𝑇𝑇
  

 (4.151) 

𝐊𝐊𝐩𝐩𝐩𝐩
 = �𝕋𝕋�L

 𝑝𝑝 
�
⊤

�� [𝐍𝐍𝐽𝐽
𝑝𝑝 ]⊤ 𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 [𝐦𝐦𝐽𝐽

 ]⊤ 𝐑𝐑𝐽𝐽 𝐍𝐍𝐽𝐽
𝑢𝑢

 

Ω𝐽𝐽

dΩ𝐽𝐽�𝕋𝕋� 
 𝑢𝑢
  (4.152) 

𝐟𝐟e𝑝𝑝 = �𝕋𝕋�L
 𝑝𝑝 

�
⊤

�−� [𝛁𝛁𝐽𝐽]⊤𝐍𝐍𝐽𝐽
𝑝𝑝  𝐊𝐊L

𝑝𝑝 (𝑇𝑇𝑛𝑛) 𝜌𝜌 
𝑓𝑓𝐠𝐠𝑛𝑛𝑙𝑙1𝑙𝑙2

 

Ω𝐽𝐽

 dΩ𝐽𝐽 + � [𝐍𝐍𝐽𝐽
𝑝𝑝 ]⊤

 

Γq
𝑝𝑝

𝑄𝑄����𝑁𝑁
 𝑝𝑝 dΓ𝑝𝑝�  (4.153) 

𝐾𝐾𝐿𝐿
𝑝𝑝(𝑇𝑇𝑛𝑛) = 𝛾𝛾𝑓𝑓

12𝜇𝜇𝑛𝑛
 𝑟𝑟𝑁𝑁

3   (4.154) 

𝜇𝜇𝑛𝑛
 = 𝜇𝜇0

  e−𝑏𝑏 𝐍𝐍𝐽𝐽
𝑇𝑇 𝕋𝕋�L

𝑇𝑇
𝐓𝐓e,𝑛𝑛

   (4.155) 

        
 

 

Thermal Formulation for interfaces 

 The thermal advective equation for zero-thickness interface elements at the mid-plane 
developed in Section 2.2.3 (𝛼𝛼-Implicit Characteristic Galerkin method) may be written from 
Eq. (3.69) as follows: 
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QLmp
𝑇𝑇 = 𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌 1

∆𝑡𝑡𝑛𝑛+1
�∆𝑇𝑇mp,𝑛𝑛+1

 �

= −(1 − 𝛼𝛼)𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌 �𝐪𝐪L,𝑛𝑛+1/2
𝑝𝑝 �

⊤
𝛁𝛁𝐽𝐽𝑇𝑇mp,𝑛𝑛

 

+ (1 − 𝛼𝛼)2

2
𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌∆𝑡𝑡𝑛𝑛+1�[𝛁𝛁𝐽𝐽

 ]⊤ 𝐪𝐪L,𝑛𝑛+1/2
𝑝𝑝 ���𝐪𝐪L,𝑛𝑛+1/2

𝑝𝑝 �
⊤
 𝛁𝛁𝐽𝐽𝑇𝑇mp,𝑛𝑛

 �

− 𝛼𝛼𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌 �𝐪𝐪L,𝑛𝑛+1/2
𝑝𝑝 �

⊤
𝛁𝛁𝐽𝐽𝑇𝑇mp,𝑛𝑛+1

 

− 𝛼𝛼2

2
𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌∆𝑡𝑡𝑛𝑛+1�[𝛁𝛁𝐽𝐽

 ]⊤ 𝐪𝐪L,𝑛𝑛+1/2
𝑝𝑝 � ��𝐪𝐪L,𝑛𝑛+1/2

𝑝𝑝 �
⊤
 𝛁𝛁𝐽𝐽𝑇𝑇mp,𝑛𝑛+1

 �

+ 𝜃𝜃[𝛁𝛁𝐽𝐽
 ]⊤�𝑟𝑟𝑁𝑁 𝐤𝐤L

𝑇𝑇  𝛁𝛁𝐽𝐽𝑇𝑇mp,𝑛𝑛+1
 � + (1 − 𝜃𝜃)[𝛁𝛁𝐽𝐽

 ]⊤�𝑟𝑟𝑁𝑁 𝐤𝐤L
𝑇𝑇  𝛁𝛁𝐽𝐽𝑇𝑇mp,𝑛𝑛

 � 

(4.156) 

where 𝑇𝑇mp,𝑛𝑛
  and 𝑇𝑇mp,𝑛𝑛+1

  are the values of temperature at the mid-plane for times 𝑛𝑛 and 
𝑛𝑛 + 1, 𝜌𝜌, 𝑐𝑐 and 𝐤𝐤L

𝑇𝑇  are the density, the specific heat and the thermal conductivity of the 
medium where the heat transfer occurs (e.g. fluid), 𝑟𝑟𝑁𝑁  is the normal interface opening and 
𝐪𝐪L,𝑛𝑛+1/2

𝑝𝑝  are the average Darcy's velocities across the discontinuity aperture from the 
hydraulic problem, which may be written from Eq. (2.154) as: 

𝐪𝐪L,𝑛𝑛+1/2
𝑝𝑝 ≈ 𝐪𝐪L̅

𝑝𝑝 = 𝐪𝐪L,𝑛𝑛
𝑝𝑝 + 1

2
∆𝐪𝐪L,𝑛𝑛+1

𝑝𝑝  (4.157) 

where 𝐪𝐪L,𝑛𝑛
𝑝𝑝  is the Darcy's velocity of the previous time-step (known) and ∆𝐪𝐪L,𝑛𝑛+1

𝑝𝑝  may be 
written from Eq. (4.120) as: 

∆𝐪𝐪L,𝑛𝑛+1
𝑝𝑝 = 𝐤𝐤L

𝑝𝑝 � 1
𝜇𝜇𝑛𝑛

 (−𝛁𝛁𝐽𝐽
 Δ𝑝𝑝𝑛̅𝑛+1

 ) + 1
Δ𝜇𝜇𝑛𝑛+1

 (−𝛁𝛁𝐽𝐽
 𝑝𝑝𝑛̅𝑛

 ) + 1
Δ𝜇𝜇𝑛𝑛+1

 𝜌𝜌 
𝑓𝑓𝐠𝐠𝑛𝑛𝑙𝑙1𝑙𝑙2� (4.158) 

where Δ𝑝𝑝𝑛̅𝑛+1
  is the increment of fluid pressure at the mid-plane for the current time-step, 𝑝𝑝𝑛̅𝑛

  
is the fluid pressure at the mid-plane for the previous time-step, 𝐤𝐤L

𝑝𝑝  is the in-plane hydraulic 
permeability, 𝜇𝜇𝑛𝑛

  is the dynamic viscosity at time 𝑛𝑛 defined in Eq. (4.155) and Δ𝜇𝜇𝑛𝑛+1
  is the 

increment of dynamic viscosity of the current time-step defined by Eq. (4.146). In order to 
avoid second-order products Δ𝑝𝑝𝑛̅𝑛+1

 ∆𝑇𝑇𝑛̅𝑛+1
  , the term 𝐤𝐤L

𝑝𝑝

Δ𝜇𝜇𝑛𝑛+1
 (−𝛁𝛁Δ𝑝𝑝𝑛̅𝑛+1

 ) has been left out in 

Eq.  (4.158). Additionally, considering a cubic law for the interfaces, the components of the 
hydraulic permeability matrix may be written as: 

𝑘𝑘L
𝑝𝑝 = 𝑟𝑟𝑁𝑁

2

12
 (4.159) 

 Performing the spatial discretization of Eq. (4.156) using the FEM (Eq. (2.27)), applying 
the Divergence Theorem to the diffusion terms, considering 𝐰𝐰����� = 𝐰𝐰 on Γq, and applying the 
standard Galerkin weighting (𝐰𝐰 = 𝐍𝐍𝐽𝐽

𝑇𝑇 ) results in the following system of equations at the 
mid-plane of the interface: 
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� 1
∆𝑡𝑡𝑛𝑛+1

𝐂𝐂 + 𝛼𝛼𝐊𝐊𝐯𝐯+𝛼𝛼2

2
𝐊𝐊𝐬𝐬 + 𝜃𝜃𝐊𝐊𝐓𝐓𝐓𝐓−𝐃𝐃�∆𝐓𝐓mp,𝑛𝑛+1

  

= − �𝐊𝐊𝐓𝐓𝐓𝐓−𝐃𝐃 + 𝐊𝐊𝐯𝐯 + �1
2

− α�𝐊𝐊𝐬𝐬� 𝐓𝐓mp,𝑛𝑛
   

(4.160) 

where 𝐊𝐊𝐓𝐓𝐓𝐓−𝐃𝐃 is the element conductivity matrix, 𝐂𝐂 is the element capacity matrix, 𝐊𝐊𝐯𝐯 is 
the element advective matrix and 𝐊𝐊𝐬𝐬 is the element stabilization matrix which results from 
the aplication of the 𝛼𝛼-Implicit Characteristic Galerkin method, with components: 

C(𝑎𝑎,𝑏𝑏) = � 𝑟𝑟𝑁𝑁,𝑛𝑛+1 𝜌𝜌𝜌𝜌 𝑁𝑁𝐽𝐽
𝑇𝑇 (𝑎𝑎)𝑁𝑁𝐽𝐽

𝑇𝑇 (𝑏𝑏)
 

Ω𝐽𝐽

dΩ𝐽𝐽 (4.161) 

KTT−D
(𝑎𝑎,𝑏𝑏) = � 𝑟𝑟𝑁𝑁,𝑛𝑛+1 �𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽

𝑇𝑇 (𝑎𝑎)�
⊤

𝐤𝐤L
𝑇𝑇  𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽

𝑇𝑇 (𝑏𝑏)
 

Ω𝐽𝐽

dΩ𝐽𝐽 (4.162) 

Kv
(𝑎𝑎,𝑏𝑏) = � 𝑟𝑟𝑁𝑁,𝑛𝑛+1 𝜌𝜌𝜌𝜌 𝑁𝑁𝐽𝐽

𝑇𝑇 (𝑎𝑎)�𝐪𝐪L,𝑛𝑛+1/2
𝑝𝑝 �

⊤
𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽

𝑇𝑇 (𝑏𝑏)
 

Ω𝐽𝐽

dΩ𝐽𝐽 (4.163) 

 Ks
(𝑎𝑎,𝑏𝑏) = ∆𝑡𝑡𝑛𝑛+1 � 𝑟𝑟𝑁𝑁,𝑛𝑛+1 𝜌𝜌𝜌𝜌 ��𝐪𝐪L,𝑛𝑛+1/2

𝑝𝑝 �
⊤
𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽

𝑇𝑇 (𝑎𝑎)� ��𝐪𝐪L,𝑛𝑛+1/2
𝑝𝑝 �

⊤
𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽

𝑇𝑇 (𝑏𝑏)�
 

Ω𝐽𝐽

dΩ𝐽𝐽 (4.164) 

 The spatial and time discretization (using the FEM and the FDM, respectively) must be 
applied to Eq. (4.158), obtaining: 

∆𝐪𝐪L,𝑛𝑛+1
𝑝𝑝 = −

𝐤𝐤L
𝑝𝑝

𝜇𝜇𝑛𝑛
 𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽

𝑝𝑝(𝑐𝑐)Δ𝑝𝑝mp,𝑛𝑛+1
 (𝑐𝑐)

+ 𝜃𝜃 
𝐤𝐤L

𝑝𝑝

𝜇𝜇𝑛𝑛
 𝑏𝑏 �−𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽

𝑝𝑝(𝑐𝑐)𝑝𝑝mp,𝑛𝑛
 (𝑐𝑐) + 𝜌𝜌 

𝑓𝑓𝐠𝐠𝑛𝑛𝑙𝑙1𝑙𝑙2�𝑁𝑁𝐽𝐽
𝑇𝑇 (𝑑𝑑)Δ𝑇𝑇mp,𝑛𝑛+1

 (𝑑𝑑)  
(4.165) 

where 𝑏𝑏 is defined in Eq. (4.2) and 𝜇𝜇𝑛𝑛
  is the fluid viscosity at the previous time-step defined 

in Eq. (4.155). Introducing Eq. (4.165) into Eq. (4.163) results in the following expression for 
the right-hand side of Eq. (4.160): 

Kv
(𝑎𝑎,𝑏𝑏)𝑇𝑇mp,𝑛𝑛

 (𝑏𝑏) = � 𝑟𝑟𝑁𝑁,𝑛𝑛+1 𝜌𝜌𝜌𝜌 𝑁𝑁𝐽𝐽
𝑇𝑇 (𝑎𝑎) �𝐪𝐪L,𝑛𝑛

𝑝𝑝 + 1
2

∆𝐪𝐪L,𝑛𝑛+1
𝑝𝑝 �

⊤
𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽

𝑇𝑇 (𝑏𝑏)
 

Ω𝐽𝐽

dΩ𝐽𝐽 𝑇𝑇mp,𝑛𝑛
 (𝑏𝑏)

= � 𝑟𝑟𝑁𝑁,𝑛𝑛+1 𝜌𝜌𝜌𝜌 𝑁𝑁𝐽𝐽
𝑇𝑇 (𝑎𝑎) �𝐪𝐪L,𝑛𝑛

𝑝𝑝 �⊤ 𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽
𝑇𝑇 (𝑏𝑏)

 

Ω𝐽𝐽

dΩ𝐽𝐽 𝑇𝑇mp,𝑛𝑛
 (𝑏𝑏)

− 1
2

� 𝜌𝜌𝜌𝜌 𝑁𝑁𝐽𝐽
𝑇𝑇 (𝑎𝑎) �𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽

𝑇𝑇 (𝑏𝑏)𝑇𝑇mp,𝑛𝑛
 (𝑏𝑏) �

⊤
𝑟𝑟𝑁𝑁,𝑛𝑛+1

𝐤𝐤L
𝑝𝑝

𝜇𝜇𝑛𝑛
 𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽

𝑝𝑝(𝑐𝑐)
 

Ω𝐽𝐽

dΩ𝐽𝐽 Δ𝑝𝑝mp,𝑛𝑛+1
 (𝑐𝑐)

+ 𝜃𝜃
2

� 𝜌𝜌𝜌𝜌 𝑁𝑁𝐽𝐽
𝑇𝑇 (𝑎𝑎) �𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽

𝑇𝑇 (𝑏𝑏)𝑇𝑇mp,𝑛𝑛
 (𝑏𝑏) �

⊤
𝑟𝑟𝑁𝑁,𝑛𝑛+1

𝐤𝐤L
𝑝𝑝

𝜇𝜇𝑛𝑛
 

 

Ω𝐽𝐽

𝑏𝑏 �−𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽
𝑝𝑝(𝑐𝑐)𝑝𝑝mp,𝑛𝑛

 (𝑐𝑐)

+ 𝜌𝜌 
𝑓𝑓𝐠𝐠𝑛𝑛𝑙𝑙1𝑙𝑙2�𝑁𝑁𝐽𝐽

𝑇𝑇 (𝑑𝑑)dΩ𝐽𝐽 Δ𝑇𝑇mp,𝑛𝑛+1
 (𝑑𝑑)  

(4.166) 

and the following expression for the left-hand side of Eq. (4.160): 
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Kv
(𝑎𝑎,𝑏𝑏)∆𝑇𝑇mp,𝑛𝑛+1

 (𝑏𝑏) = � 𝑟𝑟𝑁𝑁,𝑛𝑛+1 𝜌𝜌𝜌𝜌 𝑁𝑁𝐽𝐽
𝑇𝑇 (𝑎𝑎) �𝐪𝐪L,𝑛𝑛

𝑝𝑝 + 1
2

∆𝐪𝐪L,𝑛𝑛+1
𝑝𝑝 �

⊤
𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽

𝑇𝑇 (𝑏𝑏)
 

Ω𝐽𝐽

dΩ𝐽𝐽 ∆𝑇𝑇mp,𝑛𝑛+1
 (𝑏𝑏)

= � 𝑟𝑟𝑁𝑁,𝑛𝑛+1 𝜌𝜌𝜌𝜌 𝑁𝑁𝐽𝐽
𝑇𝑇 (𝑎𝑎) �𝐪𝐪L,𝑛𝑛

𝑝𝑝 �⊤ 𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽
𝑇𝑇 (𝑏𝑏)

 

Ω𝐽𝐽

dΩ𝐽𝐽 ∆𝑇𝑇mp,𝑛𝑛+1
 (𝑏𝑏)  

(4.167) 

where the second-order terms Δ𝑝𝑝𝑛𝑛+1
 ∆𝑇𝑇𝑛𝑛+1

   are left out in the last equation and 𝑟𝑟𝑁𝑁
𝐤𝐤L

𝑝𝑝

𝜇𝜇𝑛𝑛
  can be 

replaced by the hydraulic transmissivity divided by the fluid specific weight of the previous 
time-step, and using the cubic law defined in Eq. (4.159), leads to: 

𝐊𝐊L,𝑛𝑛
𝑝𝑝

𝛾𝛾 
𝑓𝑓 = 𝑟𝑟𝑁𝑁

𝐤𝐤L
𝑝𝑝

𝜇𝜇𝑛𝑛
  (4.168) 

where 𝐊𝐊L,𝑛𝑛
𝑝𝑝  is the longitudinal transmissivity defined by: 

𝐊𝐊L,𝑛𝑛
𝑝𝑝 = 𝐾𝐾𝐿𝐿,𝑛𝑛

𝑝𝑝 �1 0
0 1� (4.169) 

whit components: 

𝐾𝐾𝐿𝐿,𝑛𝑛
𝑝𝑝 = 𝛾𝛾 

𝑓𝑓

12𝜇𝜇𝑛𝑛
𝑟𝑟𝑁𝑁,𝑛𝑛
3  (4.170) 

 In order to introduce the hydro-thermal coupling into Eq. (4.164) the subsequent 
development must be made: 

𝐪𝐪L,𝑛𝑛+1/2
𝑝𝑝  �𝐪𝐪L,𝑛𝑛+1/2

𝑝𝑝 �
⊤

= �𝐪𝐪L,𝑛𝑛
𝑝𝑝 + 1

2
∆𝐪𝐪L,𝑛𝑛+1

𝑝𝑝 � �𝐪𝐪L,𝑛𝑛
𝑝𝑝 + 1

2
∆𝐪𝐪L,𝑛𝑛+1

𝑝𝑝 �
⊤

= 𝐪𝐪L,𝑛𝑛
𝑝𝑝  �𝐪𝐪L,𝑛𝑛

𝑝𝑝 �⊤ + 1
2

𝐪𝐪L,𝑛𝑛
𝑝𝑝 �∆𝐪𝐪L,𝑛𝑛+1

𝑝𝑝 �⊤ + 1
2

∆𝐪𝐪L,𝑛𝑛+1
𝑝𝑝 �𝐪𝐪L,𝑛𝑛

𝑝𝑝 �⊤

+ 1
4

∆𝐪𝐪L,𝑛𝑛+1
𝑝𝑝 �∆𝐪𝐪L,𝑛𝑛+1

𝑝𝑝 �⊤ 

(4.171) 

where the last term of the above expansion is second-order and can be left out. Introducing 
Eq. (4.165) into Eq. (4.164) results in the following expression for the right-hand side of Eq. 
(4.160): 
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Ks
(𝑎𝑎,𝑏𝑏)𝑇𝑇mp,𝑛𝑛

 (𝑏𝑏)

= ∆𝑡𝑡𝑛𝑛+1 � 𝑟𝑟𝑁𝑁,𝑛𝑛+1 𝜌𝜌𝜌𝜌 ��𝐪𝐪L,𝑛𝑛
𝑝𝑝 + 1

2
∆𝐪𝐪L,𝑛𝑛+1

𝑝𝑝 �
⊤

𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽
𝑇𝑇 (𝑎𝑎)���𝐪𝐪L,𝑛𝑛

𝑝𝑝
 

Ω𝐽𝐽

+ 1
2
∆𝐪𝐪L,𝑛𝑛+1

𝑝𝑝 �
⊤

𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽
𝑇𝑇 (𝑏𝑏)�dΩ𝐽𝐽 𝑇𝑇mp,𝑛𝑛

 (𝑏𝑏)

= ∆𝑡𝑡𝑛𝑛+1 � 𝑟𝑟𝑁𝑁,𝑛𝑛+1 𝜌𝜌𝜌𝜌 ��𝐪𝐪L,𝑛𝑛
𝑝𝑝 �⊤𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽

𝑇𝑇 (𝑎𝑎)� ��𝐪𝐪L,𝑛𝑛
𝑝𝑝 �⊤𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽

𝑇𝑇 (𝑏𝑏) 𝑇𝑇mp,𝑛𝑛
 (𝑏𝑏) �

 

Ω𝐽𝐽

dΩ𝐽𝐽

− 1
2
∆𝑡𝑡𝑛𝑛+1 � 𝜌𝜌𝜌𝜌 ��𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽

𝑇𝑇 (𝑎𝑎)�
⊤

𝑟𝑟𝑁𝑁,𝑛𝑛+1
𝐤𝐤L

𝑝𝑝

𝜇𝜇𝑛𝑛
 𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽

𝑝𝑝(𝑐𝑐)� ��𝐪𝐪L,𝑛𝑛
𝑝𝑝 �⊤𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽

𝑇𝑇 (𝑏𝑏)𝑇𝑇mp,𝑛𝑛
 (𝑏𝑏) �

 

Ω𝐽𝐽

dΩ𝐽𝐽Δ𝑝𝑝mp,𝑛𝑛+1
 (𝑐𝑐)

+ 𝜃𝜃
2
∆𝑡𝑡𝑛𝑛+1 � 𝜌𝜌𝜌𝜌 ��𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽

𝑇𝑇 (𝑎𝑎)�
⊤

𝑟𝑟𝑁𝑁,𝑛𝑛+1
𝐤𝐤L

𝑝𝑝

𝜇𝜇𝑛𝑛
 𝑏𝑏�−𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽

𝑝𝑝(𝑐𝑐)𝑝𝑝mp,𝑛𝑛
 (𝑐𝑐)

 

Ω𝐽𝐽

+ 𝜌𝜌 
𝑓𝑓𝐠𝐠𝑛𝑛𝑙𝑙1𝑙𝑙2�𝑁𝑁𝐽𝐽

𝑇𝑇 (𝑑𝑑)���𝐪𝐪L,𝑛𝑛
𝑝𝑝 �⊤𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽

𝑇𝑇 (𝑏𝑏)𝑇𝑇mp,𝑛𝑛
 (𝑏𝑏) � dΩ𝐽𝐽 Δ𝑇𝑇mp,𝑛𝑛+1

 (𝑑𝑑)

− 1
2
∆𝑡𝑡𝑛𝑛+1 � 𝜌𝜌𝜌𝜌 ��𝐪𝐪L,𝑛𝑛

𝑝𝑝 �⊤𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽
𝑇𝑇 (𝑏𝑏)𝑇𝑇mp,𝑛𝑛

 (𝑏𝑏) ���𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽
𝑇𝑇 (𝑎𝑎)�

⊤
𝑟𝑟𝑁𝑁,𝑛𝑛+1

𝐤𝐤L
𝑝𝑝

𝜇𝜇𝑛𝑛
 𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽

𝑝𝑝(𝑐𝑐)�
 

Ω𝐽𝐽

dΩ𝐽𝐽Δ𝑝𝑝mp,𝑛𝑛+1
 (𝑐𝑐)

+ 𝜃𝜃
2
∆𝑡𝑡𝑛𝑛+1 � 𝜌𝜌𝜌𝜌 ��𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽

𝑇𝑇 (𝑎𝑎)�
⊤

𝑟𝑟𝑁𝑁,𝑛𝑛+1
𝐤𝐤L

𝑝𝑝

𝜇𝜇𝑛𝑛
 𝑏𝑏�−𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽

𝑝𝑝(𝑐𝑐)𝑝𝑝mp,𝑛𝑛
 (𝑐𝑐)

 

Ω𝐽𝐽

+ 𝜌𝜌 
𝑓𝑓𝐠𝐠𝑛𝑛𝑙𝑙1𝑙𝑙2�𝑁𝑁𝐽𝐽

𝑇𝑇 (𝑑𝑑)���𝐪𝐪L,𝑛𝑛
𝑝𝑝 �⊤𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽

𝑇𝑇 (𝑏𝑏)𝑇𝑇mp,𝑛𝑛
 (𝑏𝑏) � dΩ𝐽𝐽 Δ𝑇𝑇mp,𝑛𝑛+1

 (𝑑𝑑)  

(4.172) 

and the following expression for the left-hand side of Eq. (4.164): 

Ks
(𝑎𝑎,𝑏𝑏)∆𝑇𝑇mp,𝑛𝑛+1

 (𝑏𝑏)

= ∆𝑡𝑡𝑛𝑛+1 � 𝑟𝑟𝑁𝑁,𝑛𝑛+1 𝜌𝜌𝜌𝜌 ��𝐪𝐪L,𝑛𝑛
𝑝𝑝 �⊤𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽

𝑇𝑇 (𝑎𝑎)� ��𝐪𝐪L,𝑛𝑛
𝑝𝑝 �⊤𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽

𝑇𝑇 (𝑏𝑏)�
 

Ω𝐽𝐽

dΩ𝐽𝐽 ∆𝑇𝑇mp,𝑛𝑛+1
 (𝑏𝑏)  (4.173) 

where the second-order terms Δ𝑝𝑝𝑛𝑛+1
 ∆𝑇𝑇𝑛𝑛+1

   are left out in the last equation and 𝑟𝑟𝑁𝑁
𝐤𝐤L

𝑝𝑝

𝜇𝜇𝑛𝑛
  can be 

replaced by the hydraulic transmissivity divided by the fluid specific weight of the previous 
time-step, as defined in Eqs. (4.168)-(4.170). 

 Similar to Eq. (4.135) for the hydraulic problem, the temperature values at the mid-plane 
have to be referred to the nodes of the element. Moreover, the same consideration has to be 
made in account to the flows, as described in Eq. (4.137). From these equations the following 
is obtained: 

𝐓𝐓mp = 𝕋𝕋�L
 𝑇𝑇

 𝐓𝐓e (4.174) 

𝐐𝐐Le
𝑇𝑇 = �𝕋𝕋�L

 𝑇𝑇 
�

⊤
𝐐𝐐Lmp

𝑇𝑇  (4.175) 
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 Additional to the longitudinal flow, the existence of a discontinuity may also represent a 
resistance to the thermal flow in the transversal direction, which would result in a localized 
temperature drop across the interface. As defined for the hydraulic problem, the transversal 
flow may be defined as: 

𝑞𝑞𝑁𝑁
𝑇𝑇 = 𝐾̌𝐾𝑁𝑁

𝑇𝑇  𝑇𝑇𝐽̌𝐽
  (4.176) 

where 𝐾̌𝐾𝑁𝑁
𝑇𝑇  is the transverse thermal coefficient and relates the transverse flow 𝑞𝑞𝑁𝑁

𝑇𝑇  to the 
transversal temperature drop 𝑇𝑇̌. Using the PVW in a discrete form, 

�𝛿𝛿𝑇𝑇ě�
⊤
 𝐐𝐐Ne

𝑇𝑇  = �𝛿𝛿𝑇𝑇m̌p�
⊤
  𝐐𝐐Nmp

𝑇𝑇  (4.177) 

𝐐𝐐Ne
𝑇𝑇 = �𝕋𝕋�N

𝑇𝑇
�

⊤
𝐐𝐐Nmp

𝑇𝑇  (4.178) 

where 𝕋𝕋�N
𝑇𝑇
 transference transversal matrix defined in Eqs. (3.34) and (3.35). Finally, 

performing the spatial discretization of Eq. (4.176) using the FEM and considering Eqs. 
(4.174) and (4.178) the following equation is reached: 

𝐐𝐐Ne
𝑇𝑇 = �𝕋𝕋�N

𝑇𝑇
�

⊤
� [𝐍𝐍𝐽𝐽

𝑇𝑇 ]⊤𝐾̌𝐾𝑁𝑁
𝑇𝑇  𝐍𝐍𝐽𝐽

𝑇𝑇
 

Ω𝐽𝐽

𝐓𝐓e dΩ𝐽𝐽 𝕋𝕋�N
𝑇𝑇
  (4.179) 

 To obtain an integrated conductivity matrix it is necessary to combine the in-plane and 
the transversal flow as a sum of both: 

𝐐𝐐e
𝑇𝑇 = 𝐐𝐐Le

𝑇𝑇 + 𝐐𝐐Ne
𝑇𝑇  (4.180) 

 Substituting Eqs. (4.166), (4.167), (4.172) and (4.173) into Eq. (4.160), considering the 
Eqs. (4.174) and (4.175) to obtain the equations referred to the nodes of the element and 
considering the transversal flow defined in Eq. (4.179), the final thermal equation  for zero-
thickness interface elements (4.181) is reached. 

Summary 13 - Thermal zero-thickness interface equation with advection (𝛂𝛂-
ICG method). 
 

� 1
∆𝑡𝑡𝑛𝑛+1

𝐂𝐂 + 𝛼𝛼𝐊𝐊𝐓𝐓𝐓𝐓−𝐀𝐀 + 𝛼𝛼2

2
𝐊𝐊𝐓𝐓𝐓𝐓−𝐒𝐒 + 𝜃𝜃𝐊𝐊𝐓𝐓𝐓𝐓−𝐃𝐃 + 𝐊𝐊𝐓𝐓𝐓𝐓−𝐀𝐀𝐀𝐀

+ �1
2

− α�𝐊𝐊𝐓𝐓𝐓𝐓−𝐒𝐒𝐒𝐒� ∆𝐓𝐓e,𝑛𝑛+1
 + �𝐊𝐊𝐓𝐓𝐓𝐓−𝐀𝐀 + �1

2
− α�𝐊𝐊𝐓𝐓𝐓𝐓−𝐒𝐒� ∆𝐩𝐩e,𝑛𝑛+1

 

= −�𝐊𝐊𝐓𝐓𝐓𝐓−𝐃𝐃 + 𝐊𝐊𝐓𝐓𝐓𝐓−𝐀𝐀 + �1
2

− α�𝐊𝐊𝐓𝐓𝐓𝐓−𝐒𝐒�𝐓𝐓e,𝑛𝑛
  

 (4.181) 

where 𝐊𝐊𝐓𝐓𝐓𝐓−𝐃𝐃 is the element thermal conductivity matrix, 𝐂𝐂 is the element thermal 
capacity matrix, 𝐊𝐊𝐓𝐓𝐓𝐓−𝐀𝐀 is the element advective matrix with the velocities of the previous 
time-step, 𝐊𝐊𝐓𝐓𝐓𝐓−𝐒𝐒 is the element stabilization matrix with the velocities of the previous time-
step (which results from the aplication of the 𝛼𝛼-ICG method) and 𝐊𝐊𝐓𝐓𝐓𝐓−𝐀𝐀, 𝐊𝐊𝐓𝐓𝐓𝐓−𝐒𝐒, 𝐊𝐊𝐓𝐓𝐓𝐓−𝐀𝐀𝐀𝐀 
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and 𝐊𝐊𝐓𝐓𝐓𝐓−𝐒𝐒𝐒𝐒 are the hydro-thermal coupling matrices, with components: 

C(𝑎𝑎,𝑏𝑏) = �𝕋𝕋�L
 𝑇𝑇 

�
⊤

�� 𝑟𝑟𝑁𝑁,𝑛𝑛+1 𝜌𝜌𝜌𝜌 𝑁𝑁𝐽𝐽
𝑇𝑇 (𝑎𝑎)𝑁𝑁𝐽𝐽

𝑇𝑇 (𝑏𝑏)
 

Ω𝐽𝐽

dΩ𝐽𝐽�𝕋𝕋�L
 𝑇𝑇 

  (4.182) 

KTT−D
(𝑎𝑎,𝑏𝑏) = �𝕋𝕋�L

 𝑇𝑇 
�

⊤
�� 𝑟𝑟𝑁𝑁,𝑛𝑛+1 �𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽

𝑇𝑇 (𝑎𝑎)�
⊤

𝐤𝐤L
𝑇𝑇  𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽

𝑇𝑇 (𝑏𝑏)
 

Ω𝐽𝐽

dΩ𝐽𝐽�𝕋𝕋�L
 𝑇𝑇 

+ �𝕋𝕋�N
 𝑇𝑇 

�
⊤

�� 𝑁𝑁𝐽𝐽
𝑇𝑇 (𝑎𝑎)𝐾̌𝐾𝑁𝑁

𝑇𝑇  𝑁𝑁𝐽𝐽
𝑇𝑇 (𝑏𝑏)

 

Ω𝐽𝐽

dΩ𝐽𝐽�𝕋𝕋�N
 𝑇𝑇 

 
 (4.183) 

KTT−A
(𝑎𝑎,𝑏𝑏) = �𝕋𝕋�L

 𝑇𝑇 
�

⊤
�� 𝑟𝑟𝑁𝑁,𝑛𝑛+1 𝜌𝜌𝜌𝜌 𝑁𝑁𝐽𝐽

𝑇𝑇 (𝑎𝑎)�𝐪𝐪L,𝑛𝑛
𝑝𝑝 �⊤𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽

𝑇𝑇 (𝑏𝑏)
 

Ω𝐽𝐽

dΩ𝐽𝐽�𝕋𝕋�L
 𝑇𝑇 

  (4.184) 

KTT−S
(𝑎𝑎,𝑏𝑏) = ∆𝑡𝑡𝑛𝑛+1 �𝕋𝕋�L

 𝑇𝑇 
�

⊤
�� 𝑟𝑟𝑁𝑁,𝑛𝑛+1 𝜌𝜌𝜌𝜌 ��𝐪𝐪L,𝑛𝑛

𝑝𝑝 �⊤𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽
𝑇𝑇 (𝑎𝑎)� ��𝐪𝐪L,𝑛𝑛

𝑝𝑝 �⊤𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽
𝑇𝑇 (𝑏𝑏)�

 

Ω𝐽𝐽

dΩ𝐽𝐽�𝕋𝕋�L
 𝑇𝑇 

  (4.185) 

KTp−A
(𝑎𝑎,𝑐𝑐) = �𝕋𝕋�L

 𝑇𝑇 
�

⊤
�−1

2� 𝜌𝜌𝜌𝜌 𝑁𝑁𝐽𝐽
𝑇𝑇 (𝑎𝑎) �𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽

𝑇𝑇 (𝑏𝑏)𝕋𝕋�L
 𝑇𝑇
𝑇𝑇e,𝑛𝑛

 (𝑏𝑏)�
⊤ 𝐊𝐊L.𝑛𝑛

𝑝𝑝

𝛾𝛾 
𝑓𝑓 𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽

𝑝𝑝(𝑐𝑐)
 

Ω𝐽𝐽

dΩ𝐽𝐽�𝕋𝕋�L
 𝑝𝑝 

  (4.186) 

KTp−S
(𝑎𝑎,𝑏𝑏)

= −1
2 ∆𝑡𝑡𝑛𝑛+1 �𝕋𝕋�L

 𝑇𝑇 
�

⊤
� � 𝜌𝜌𝜌𝜌 ��𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽

𝑇𝑇 (𝑎𝑎)�
⊤ 𝐊𝐊L,𝑛𝑛

𝑝𝑝

𝛾𝛾 
𝑓𝑓 𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽

𝑝𝑝(𝑐𝑐)���𝐪𝐪L,𝑛𝑛
𝑝𝑝 �⊤𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽

𝑇𝑇 (𝑏𝑏)𝕋𝕋�L
 𝑇𝑇
𝑇𝑇e,𝑛𝑛

 (𝑏𝑏)�
 

Ω𝐽𝐽

dΩ𝐽𝐽

+ � 𝜌𝜌𝜌𝜌 ��𝐪𝐪L,𝑛𝑛
𝑝𝑝 �⊤𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽

𝑇𝑇 (𝑏𝑏)𝕋𝕋�L
 𝑇𝑇
𝑇𝑇e,𝑛𝑛

 (𝑏𝑏)���𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽
𝑇𝑇 (𝑎𝑎)�

⊤ 𝐊𝐊L,𝑛𝑛
𝑝𝑝

𝛾𝛾 
𝑓𝑓 𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽

𝑝𝑝(𝑐𝑐)�
 

Ω𝐽𝐽

dΩ𝐽𝐽�𝕋𝕋�L
 𝑃𝑃 

 

 (4.187) 

KTT−A2
(𝑎𝑎,𝑏𝑏) = �𝕋𝕋�L

 𝑇𝑇 
�

⊤
�𝜃𝜃

2� 𝜌𝜌𝜌𝜌 𝑁𝑁𝐽𝐽
𝑇𝑇 (𝑑𝑑) �𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽

𝑇𝑇 (𝑎𝑎)𝕋𝕋�L
 𝑇𝑇
𝑇𝑇e,𝑛𝑛

 (𝑑𝑑)�
⊤ 𝐊𝐊L,𝑛𝑛

𝑝𝑝

𝛾𝛾 
𝑓𝑓

 

Ω𝐽𝐽

𝑏𝑏 �−𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽
𝑝𝑝(𝑐𝑐)𝕋𝕋�L

 𝑝𝑝
𝑝𝑝e,𝑛𝑛

 (𝑐𝑐)

+ 𝜌𝜌 
𝑓𝑓𝐠𝐠𝑛𝑛𝑙𝑙1𝑙𝑙2

�𝑁𝑁𝐽𝐽
𝑇𝑇 (𝑏𝑏)dΩ𝐽𝐽�𝕋𝕋�L

 𝑇𝑇 
 

 (4.188) 

KTT−S2
(𝑎𝑎,𝑏𝑏) = 𝜃𝜃

2∆𝑡𝑡𝑛𝑛+1 �𝕋𝕋�L
 𝑇𝑇 

�
⊤

�� 𝜌𝜌𝜌𝜌 ��𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽
𝑇𝑇 (𝑎𝑎)�

⊤ 𝐊𝐊L,𝑛𝑛
𝑝𝑝

𝛾𝛾 
𝑓𝑓 𝑏𝑏 �−𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽

𝑝𝑝(𝑐𝑐)𝕋𝕋�L
 𝑝𝑝
𝑝𝑝e,𝑛𝑛

 (𝑐𝑐)
 

Ω𝐽𝐽

+ 𝜌𝜌 
𝑓𝑓𝐠𝐠𝑛𝑛𝑙𝑙1𝑙𝑙2

�𝑁𝑁𝐽𝐽
𝑇𝑇 (𝑑𝑑)���𝐪𝐪L,𝑛𝑛

𝑝𝑝 �⊤𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽
𝑇𝑇 (𝑏𝑏)𝕋𝕋�L

 𝑇𝑇
𝑇𝑇e,𝑛𝑛

 (𝑏𝑏)� dΩ𝐽𝐽

+ � 𝜌𝜌𝜌𝜌 ��𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽
𝑇𝑇 (𝑎𝑎)�

⊤ 𝐊𝐊L,𝑛𝑛
𝑝𝑝

𝛾𝛾 
𝑓𝑓 𝑏𝑏 �−𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽

𝑝𝑝(𝑐𝑐)𝕋𝕋�L
 𝑝𝑝
𝑝𝑝e,𝑛𝑛

 (𝑐𝑐)
 

Ω𝐽𝐽

+ 𝜌𝜌 
𝑓𝑓𝐠𝐠𝑛𝑛𝑙𝑙1𝑙𝑙2

�𝑁𝑁𝐽𝐽
𝑇𝑇 (𝑑𝑑)���𝐪𝐪L,𝑛𝑛

𝑝𝑝 �⊤𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽
𝑇𝑇 (𝑏𝑏)𝕋𝕋�L

 𝑇𝑇
𝑇𝑇e,𝑛𝑛

 (𝑏𝑏)� dΩ𝐽𝐽�𝕋𝕋�L
 𝑇𝑇 

 

 (4.189) 

𝐾𝐾𝐿𝐿.𝑛𝑛
𝑝𝑝 = 𝛾𝛾 

𝑓𝑓

12𝜇𝜇𝑛𝑛
 𝑟𝑟𝑁𝑁,𝑛𝑛

3   (4.190) 

  𝜇𝜇𝑛𝑛
 = 𝜇𝜇0

  e−𝑏𝑏 𝐍𝐍𝐽𝐽
𝑇𝑇 𝕋𝕋�L

𝑇𝑇
𝐓𝐓e,𝑛𝑛

   (4.191) 
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Fully coupled solution for zero-thickness interface elements 

 The final fully-coupled THM system of equations for zero-thickness interface elements 
may be written from Eqs. (4.118), (4.147) and (4.181) as follows: 

Summary 14 - Fully-coupled THM system of equations for zero-thickness 
interface elements. 
 

−�𝕋𝕋�L
 𝑢𝑢 

�
⊤ 1

𝜃𝜃
� [𝐁𝐁𝐽𝐽

𝑢𝑢]⊤ 𝛔𝛔𝐽𝐽,𝑛𝑛+𝜃𝜃
′

 

Ω𝐽𝐽

dΩ𝐽𝐽 + 𝐊𝐊𝐮𝐮𝐮𝐮 𝐩𝐩e,𝑛𝑛
 + 𝐊𝐊𝐮𝐮𝐮𝐮 ∆𝐩𝐩e,𝑛𝑛+1

 = 0 
 

�𝐒𝐒𝐩𝐩,𝑛𝑛+𝜃𝜃 + 𝜃𝜃∆𝑡𝑡𝑛𝑛+1𝐊𝐊𝐩𝐩𝐩𝐩,𝑛𝑛+𝜃𝜃�∆𝐩𝐩e,𝑛𝑛+1
 + �𝐒𝐒𝐩𝐩𝐩𝐩,𝑛𝑛+𝜃𝜃 + 𝜃𝜃∆𝑡𝑡𝑛𝑛+1𝐊𝐊𝐩𝐩𝐩𝐩,𝑛𝑛+𝜃𝜃�∆𝐓𝐓e,𝑛𝑛+1

 

+ �𝐊𝐊𝐩𝐩𝐩𝐩
 �⊤ ∆𝐮𝐮e,𝑛𝑛+1

 − ∆𝑡𝑡𝑛𝑛+1𝐟𝐟e,𝑛𝑛+𝜃𝜃
𝐩𝐩 + ∆𝑡𝑡𝑛𝑛+1𝐊𝐊𝐩𝐩𝐩𝐩,𝑛𝑛+𝜃𝜃 𝐩𝐩e,𝑛𝑛

 = 0 
  

� 1
∆𝑡𝑡𝑛𝑛+1

𝐂𝐂𝑛𝑛+𝜃𝜃 + 𝛼𝛼𝐊𝐊𝐓𝐓𝐓𝐓−𝐀𝐀,𝑛𝑛 + 𝛼𝛼2

2
𝐊𝐊𝐓𝐓𝐓𝐓−𝐒𝐒,𝑛𝑛 + 𝜃𝜃𝐊𝐊𝐓𝐓𝐓𝐓−𝐃𝐃,𝑛𝑛+𝜃𝜃 + 𝐊𝐊𝐓𝐓𝐓𝐓−𝐀𝐀𝐀𝐀,𝑛𝑛+𝜃𝜃

+ �1
2

− α�𝐊𝐊𝐓𝐓𝐓𝐓−𝐒𝐒𝐒𝐒,𝑛𝑛+𝜃𝜃�∆𝐓𝐓e,𝑛𝑛+1
 

+ �𝐊𝐊𝐓𝐓𝐓𝐓−𝐀𝐀,𝑛𝑛+𝜃𝜃 + �1
2

− α�𝐊𝐊𝐓𝐓𝐓𝐓−𝐒𝐒,𝑛𝑛+𝜃𝜃�∆𝐩𝐩e,𝑛𝑛+1
 

+ �𝐊𝐊𝐓𝐓𝐓𝐓−𝐃𝐃,𝑛𝑛+𝜃𝜃 + 𝐊𝐊𝐓𝐓𝐓𝐓−𝐀𝐀,𝑛𝑛 + �1
2

− α�𝐊𝐊𝐓𝐓𝐓𝐓−𝐒𝐒,𝑛𝑛�𝐓𝐓e,𝑛𝑛
 = 0 

(4.192) 

      
 

 

 Similar to the fully-coupled solution of the continuum problem and due to the non-
linearity of the system of equations (4.192), the solution of the fully-coupled problem is 
carried out by using the Newton-Raphson (NR) iterative procedure. As described, the system 
to be solved is: 

𝐉𝐉𝑛𝑛+𝜃𝜃(𝐱𝐱𝑛𝑛, ∆𝐱𝐱𝑛𝑛+1 
𝑖𝑖 ) =

𝜕𝜕𝚿𝚿𝑛𝑛+𝜃𝜃
𝜕𝜕∆𝐱𝐱

�
𝐱𝐱𝑛𝑛, ∆𝐱𝐱𝑛𝑛+1 

𝑖𝑖
=

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎛

𝜕𝜕𝚿𝚿𝑛𝑛+𝜃𝜃
𝑢𝑢

𝜕𝜕∆𝐮𝐮
𝜕𝜕𝚿𝚿𝑛𝑛+𝜃𝜃

𝑢𝑢

𝜕𝜕∆𝐩𝐩
𝜕𝜕𝚿𝚿𝑛𝑛+𝜃𝜃

𝑢𝑢

𝜕𝜕∆𝐓𝐓
𝜕𝜕𝚿𝚿𝑛𝑛+𝜃𝜃

𝑝𝑝

𝜕𝜕∆𝐮𝐮
𝜕𝜕𝚿𝚿𝑛𝑛+𝜃𝜃

𝑝𝑝

𝜕𝜕∆𝐩𝐩
𝜕𝜕𝚿𝚿𝑛𝑛+𝜃𝜃

𝑝𝑝

𝜕𝜕∆𝐓𝐓
𝜕𝜕𝚿𝚿𝑛𝑛+𝜃𝜃

𝑇𝑇

𝜕𝜕∆𝐮𝐮
𝜕𝜕𝚿𝚿𝑛𝑛+𝜃𝜃

𝑇𝑇

𝜕𝜕∆𝐩𝐩
𝜕𝜕𝚿𝚿𝑛𝑛+𝜃𝜃

𝑇𝑇

𝜕𝜕∆𝐓𝐓 ⎠
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎞

�
�
�
�
�
�
�

𝐱𝐱𝑛𝑛, ∆𝐱𝐱𝑛𝑛+1 
𝑖𝑖

 (4.193) 

 As explained for the fully-coupled resolution of the continuum problem and due to the 
non-linearity of the above system of equations, the resolution of the fully-coupled problem is 
carried out by using the Newton-Raphson (NR) iterative procedure. As described, the system 
to be solved is: 

𝐉𝐉𝑛𝑛+𝜃𝜃(𝐱𝐱𝑛𝑛, ∆𝐱𝐱𝑛𝑛+1 
𝑖𝑖 ) 𝛿𝛿∆𝐱𝐱𝑛𝑛+1 

𝑖𝑖+1 = −𝚿𝚿𝑛𝑛+𝜃𝜃(𝐱𝐱𝑛𝑛, ∆𝐱𝐱𝑛𝑛+1 
𝑖𝑖 ) (4.194) 

where 𝐉𝐉𝑛𝑛+𝜃𝜃 is the Jacobian matrix defined as: 
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𝐉𝐉𝑛𝑛+𝜃𝜃(𝐱𝐱𝑛𝑛, ∆𝐱𝐱𝑛𝑛+1 
𝑖𝑖 ) =

𝜕𝜕𝚿𝚿𝑛𝑛+𝜃𝜃
𝜕𝜕∆𝐱𝐱

�
𝐱𝐱𝑛𝑛, ∆𝐱𝐱𝑛𝑛+1 

𝑖𝑖
=

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎛

𝜕𝜕𝚿𝚿𝑛𝑛+𝜃𝜃
𝑢𝑢

𝜕𝜕∆𝐮𝐮
𝜕𝜕𝚿𝚿𝑛𝑛+𝜃𝜃

𝑢𝑢

𝜕𝜕∆𝐩𝐩
𝜕𝜕𝚿𝚿𝑛𝑛+𝜃𝜃

𝑢𝑢

𝜕𝜕∆𝐓𝐓
𝜕𝜕𝚿𝚿𝑛𝑛+𝜃𝜃

𝑝𝑝

𝜕𝜕∆𝐮𝐮
𝜕𝜕𝚿𝚿𝑛𝑛+𝜃𝜃

𝑝𝑝

𝜕𝜕∆𝐩𝐩
𝜕𝜕𝚿𝚿𝑛𝑛+𝜃𝜃

𝑝𝑝

𝜕𝜕∆𝐓𝐓
𝜕𝜕𝚿𝚿𝑛𝑛+𝜃𝜃

𝑇𝑇

𝜕𝜕∆𝐮𝐮
𝜕𝜕𝚿𝚿𝑛𝑛+𝜃𝜃

𝑇𝑇

𝜕𝜕∆𝐩𝐩
𝜕𝜕𝚿𝚿𝑛𝑛+𝜃𝜃

𝑇𝑇

𝜕𝜕∆𝐓𝐓 ⎠
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎞

�
�
�
�
�
�
�

𝐱𝐱𝑛𝑛, ∆𝐱𝐱𝑛𝑛+1 
𝑖𝑖

 (4.195) 

where 𝚿𝚿𝑛𝑛+𝜃𝜃 is the linearized residual defined by Eqs. (4.192). However, the residual is 
evaluated using the non-linearized Eqs. (4.118), (4.145) and (4.160). Finally, the components 
of 𝐉𝐉𝑛𝑛+𝜃𝜃 may be obtained as follows: 

 

a) Partial derivative of the mechanical equation with respect to the displacement increment 

𝐉𝐉𝐮𝐮𝐮𝐮 =
𝜕𝜕𝚿𝚿𝑛𝑛+𝜃𝜃

𝑢𝑢

𝜕𝜕∆𝐮𝐮
= 𝜕𝜕

𝜕𝜕∆𝐮𝐮
�−�𝕋𝕋�L

 𝑢𝑢 
�
⊤ 1

𝜃𝜃
� [𝐁𝐁𝐽𝐽

𝑢𝑢]⊤ 𝛔𝛔𝐽𝐽,𝑛𝑛+𝜃𝜃
′

 

Ω𝐽𝐽

dΩ𝐽𝐽� (4.196) 

Decomposing the stresses in its incremental form: 

𝛔𝛔𝐽𝐽,𝑛𝑛+𝜃𝜃
′

 
𝑖𝑖 = 𝛔𝛔𝐽𝐽,𝑛𝑛

′ + 𝜃𝜃 ∆𝛔𝛔𝐽𝐽,𝑛𝑛+𝜃𝜃
′

 
𝑖𝑖  (4.197) 

and considering the tangent constitutive matrix 𝐃𝐃 𝑖𝑖 𝑛𝑛+1 the stress increment may be 
developed as: 

∆ 𝑖𝑖 𝛔𝛔𝐽𝐽,𝑛𝑛+1
′ = 𝐃𝐃 𝑖𝑖 𝑛𝑛+1 ∆𝛆𝛆 

𝑖𝑖
𝑛𝑛+1 = 𝐃𝐃 𝑖𝑖 𝑛𝑛+1𝐁𝐁𝐽𝐽

𝑢𝑢 ∆𝐮𝐮 
𝑖𝑖

mp,𝑛𝑛+1 (4.198) 

Substituting Eqs. (4.92) and (4.93) into Eq. (4.91) the following is obtained: 

𝐉𝐉𝐮𝐮𝐮𝐮 =
𝜕𝜕𝚿𝚿𝑛𝑛+𝜃𝜃

𝑢𝑢

𝜕𝜕∆𝐮𝐮
= 𝜕𝜕

𝜕𝜕∆𝐮𝐮
��𝕋𝕋�L

 𝑢𝑢 
�
⊤

�−� [𝐁𝐁𝐽𝐽
𝑢𝑢]⊤ 𝐃𝐃 𝑖𝑖 𝑛𝑛+1𝐁𝐁𝐽𝐽

𝑢𝑢
 

Ω𝐽𝐽

dΩ𝐽𝐽�𝕋𝕋�L
 𝑢𝑢

 ∆𝐮𝐮 
𝑖𝑖

e,𝑛𝑛+1�

= − 𝐊𝐊 𝑖𝑖 𝐮𝐮𝐮𝐮,𝑛𝑛+𝜃𝜃
 ∆𝐮𝐮 

𝑖𝑖
e,𝑛𝑛+1 

(4.199) 

 

b) Partial derivative of the mechanical equation with respect to the fluid pressure increment 

𝐉𝐉𝐮𝐮𝐮𝐮 =
𝜕𝜕𝚿𝚿𝑛𝑛+𝜃𝜃

𝑢𝑢

𝜕𝜕∆𝐩𝐩
= 𝐊𝐊𝐮𝐮𝐮𝐮 (4.200) 

 

c) Partial derivative of the mechanical equation with respect to the temperature increment 

𝐉𝐉𝐮𝐮𝐮𝐮 =
𝜕𝜕𝚿𝚿𝑛𝑛+𝜃𝜃

𝑢𝑢

𝜕𝜕∆𝐓𝐓
= 0 (4.201) 
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d) Partial derivative of the hydraulic equation with respect to the displacement increment 

𝐉𝐉𝐩𝐩𝐩𝐩 =
𝜕𝜕𝚿𝚿𝑛𝑛+𝜃𝜃

𝑝𝑝

𝜕𝜕∆𝐮𝐮
= ∆𝑡𝑡𝑛𝑛+1

𝜕𝜕𝐊𝐊𝐩𝐩𝐩𝐩,𝑛𝑛+𝜃𝜃

𝜕𝜕∆𝐮𝐮
𝐩𝐩e,𝑛𝑛+𝜃𝜃

 + �𝐊𝐊𝐩𝐩𝐩𝐩
 �⊤

= ∆𝑡𝑡𝑛𝑛+1
𝜕𝜕

𝜕𝜕∆𝐮𝐮
�𝐊𝐊𝐩𝐩𝐩𝐩,𝑛𝑛+𝜃𝜃�𝐩𝐩e,𝑛𝑛+𝜃𝜃

 + �𝐊𝐊𝐩𝐩𝐩𝐩
 �⊤

= ∆𝑡𝑡𝑛𝑛+1 ��𝕋𝕋�L
 𝑝𝑝 

�
⊤

�� [𝛁𝛁𝐽𝐽𝐍𝐍𝐽𝐽
𝑝𝑝 ]⊤ 1

𝛾𝛾𝑓𝑓  
𝜕𝜕𝐊𝐊L

𝑝𝑝 (𝑇𝑇𝑛𝑛)
𝜕𝜕∆𝐮𝐮

 𝛁𝛁𝐽𝐽𝐍𝐍𝐽𝐽
𝑝𝑝

 

Ω𝐽𝐽

dΩ𝐽𝐽�𝕋𝕋�L
 𝑝𝑝
�𝐩𝐩e,𝑛𝑛+𝜃𝜃

 + �𝐊𝐊𝐩𝐩𝐩𝐩
 �⊤ 

(4.202) 

where 

𝜕𝜕𝐊𝐊L
𝑝𝑝(𝑇𝑇𝑛𝑛)

𝜕𝜕∆𝐮𝐮
= 𝜕𝜕

𝜕𝜕∆𝐮𝐮
� 𝛾𝛾𝑓𝑓

12𝜇𝜇𝑛𝑛
 𝑟𝑟𝑁𝑁,𝑛𝑛+1

3 � = 𝜕𝜕
𝜕𝜕∆𝐮𝐮

� 𝛾𝛾𝑓𝑓

12𝜇𝜇𝑛𝑛
 �[𝐦𝐦𝐽𝐽

 ]⊤𝐁𝐁𝐽𝐽
𝑢𝑢𝐮𝐮mp,𝑛𝑛+1

 �3�

= 𝛾𝛾𝑓𝑓

4𝜇𝜇𝑛𝑛
 �[𝐦𝐦𝐽𝐽

 ]⊤𝐁𝐁𝐽𝐽
𝑢𝑢𝐮𝐮mp,𝑛𝑛+1

 �2[𝐦𝐦𝐽𝐽
 ]⊤𝐁𝐁𝐽𝐽

𝑢𝑢 = 𝛾𝛾𝑓𝑓

4𝜇𝜇𝑛𝑛
 𝑟𝑟𝑁𝑁,𝑛𝑛+1

2 [𝐦𝐦𝐽𝐽
 ]⊤𝐁𝐁𝐽𝐽

𝑢𝑢 
(4.203) 

And substituting Eq. (4.203) in Eq. (4.202) leads to: 

𝐉𝐉𝐩𝐩𝐩𝐩 = ∆𝑡𝑡𝑛𝑛+1 ��𝕋𝕋�L
 𝑝𝑝 

�
⊤

�� [𝛁𝛁𝐽𝐽𝐍𝐍𝐽𝐽
𝑝𝑝 ]⊤ [𝐦𝐦𝐽𝐽

 ]⊤𝐁𝐁𝐽𝐽
𝑢𝑢 𝑟𝑟𝑁𝑁,𝑛𝑛+1

2

4𝜇𝜇𝑛𝑛
  𝛁𝛁𝐽𝐽𝐍𝐍𝐽𝐽

𝑝𝑝
 

Ω𝐽𝐽

dΩ𝐽𝐽�𝕋𝕋�L
 𝑝𝑝
� 𝐩𝐩e,𝑛𝑛+𝜃𝜃

  

+ �𝐊𝐊𝐩𝐩𝐩𝐩
 �⊤ 

(4.204) 

The same development is carried out for 𝐟𝐟e𝑝𝑝 term of the hydraulic equation where 𝐊𝐊L
𝑝𝑝 (𝑇𝑇𝑛𝑛) 

appears. 

 

e) Partial derivative of the hydraulic equation with respect to the fluid pressure increment 

𝐉𝐉𝐩𝐩𝐩𝐩 =
𝜕𝜕𝚿𝚿𝑛𝑛+𝜃𝜃

𝑝𝑝

𝜕𝜕∆𝐩𝐩
= 𝐒𝐒𝐩𝐩,𝑛𝑛+𝜃𝜃 

𝑖𝑖 + 𝜃𝜃∆𝑡𝑡𝑛𝑛+1 𝐊𝐊𝐩𝐩𝐩𝐩,𝑛𝑛+𝜃𝜃 
𝑖𝑖  (4.205) 

 

f) Partial derivative of the hydraulic equation with respect to the temperature increment 

𝐉𝐉𝐩𝐩𝐩𝐩 =
𝜕𝜕𝚿𝚿𝑛𝑛+𝜃𝜃

𝑝𝑝

𝜕𝜕∆𝐓𝐓
= 𝐒𝐒 𝑖𝑖 𝐩𝐩𝐩𝐩,𝑛𝑛+𝜃𝜃 + 𝜃𝜃∆𝑡𝑡𝑛𝑛+1 𝐊𝐊𝐩𝐩𝐩𝐩,𝑛𝑛+𝜃𝜃 

𝑖𝑖  (4.206) 
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g) Partial derivative of the thermal equation with respect to the displacement increment 

𝐉𝐉𝐓𝐓𝐓𝐓 =
𝜕𝜕𝚿𝚿𝑛𝑛+𝜃𝜃

𝑇𝑇

𝜕𝜕∆𝐮𝐮
=

𝜕𝜕��𝐊𝐊𝐓𝐓𝐓𝐓−𝐃𝐃,𝑛𝑛+𝜃𝜃 + 𝐊𝐊𝐓𝐓𝐓𝐓−𝐀𝐀,𝑛𝑛 + (1
2 − α)𝐊𝐊𝐓𝐓𝐓𝐓−𝐒𝐒,𝑛𝑛��

𝜕𝜕∆𝐮𝐮
𝐓𝐓e,𝑛𝑛

 

= �𝕋𝕋�L
 𝑇𝑇 

�
⊤

��  [𝐦𝐦𝐽𝐽
 ]⊤𝐵𝐵𝐽𝐽

𝑢𝑢 (𝑎𝑎) �𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽
𝑇𝑇 (𝑐𝑐)�

⊤
𝐤𝐤L

𝑇𝑇  𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽
𝑇𝑇 (𝑏𝑏)

 

Ω𝐽𝐽

dΩ𝐽𝐽

+ � 𝜌𝜌𝜌𝜌 [𝐦𝐦𝐽𝐽
 ]⊤ 𝐵𝐵𝐽𝐽

𝑢𝑢 (𝑎𝑎)𝑁𝑁𝐽𝐽
𝑇𝑇 (𝑐𝑐)�𝐪𝐪L,𝑛𝑛

𝑝𝑝 �⊤𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽
𝑇𝑇 (𝑏𝑏)

 

Ω𝐽𝐽

dΩ𝐽𝐽

+ � 𝜌𝜌𝜌𝜌 [𝐦𝐦𝐽𝐽
 ]⊤𝐵𝐵𝐽𝐽

𝑢𝑢 (𝑎𝑎) ��𝐪𝐪L,𝑛𝑛
𝑝𝑝 �⊤𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽

𝑇𝑇 (𝑐𝑐)� ��𝐪𝐪L,𝑛𝑛
𝑝𝑝 �⊤𝛁𝛁𝐽𝐽𝑁𝑁𝐽𝐽

𝑇𝑇 (𝑏𝑏)�
 

Ω𝐽𝐽

dΩ𝐽𝐽�𝕋𝕋�L
 𝑇𝑇
𝑇𝑇e,𝑛𝑛

 (𝑏𝑏) 

(4.207) 

 

h) Partial derivative of the thermal equation with respect to the fluid pressure increment 

𝐉𝐉𝐓𝐓𝐓𝐓 =
𝜕𝜕𝚿𝚿𝑛𝑛+𝜃𝜃

𝑇𝑇

𝜕𝜕∆𝐩𝐩
= 𝐊𝐊 𝑖𝑖 𝐓𝐓𝐓𝐓−𝐀𝐀,𝑛𝑛+𝜃𝜃 + �1

2
− α� 𝐊𝐊 𝑖𝑖 𝐓𝐓𝐓𝐓−𝐒𝐒,𝑛𝑛+𝜃𝜃 (4.208) 

 

i) Partial derivative of the thermal equation with respect to the temperature increment 

𝐉𝐉𝐓𝐓𝐓𝐓 =
𝜕𝜕𝚿𝚿𝑛𝑛+𝜃𝜃

𝑇𝑇

𝜕𝜕∆𝐓𝐓
= 1

∆𝑡𝑡𝑛𝑛+1
𝐂𝐂𝑛𝑛+𝜃𝜃 + 𝛼𝛼 𝐊𝐊 𝑖𝑖 𝐓𝐓𝐓𝐓−𝐀𝐀,𝑛𝑛 + 𝛼𝛼2

2
𝐊𝐊 𝑖𝑖 𝐓𝐓𝐓𝐓−𝐒𝐒,𝑛𝑛 + 𝜃𝜃 𝐊𝐊 𝑖𝑖 𝐓𝐓𝐓𝐓−𝐃𝐃,𝑛𝑛+𝜃𝜃

+ 𝐊𝐊 𝑖𝑖 𝐓𝐓𝐓𝐓−𝐀𝐀𝐀𝐀,𝑛𝑛+𝜃𝜃 + �1
2

− α� 𝐊𝐊 𝑖𝑖 𝐓𝐓𝐓𝐓−𝐒𝐒𝐒𝐒,𝑛𝑛+𝜃𝜃 
(4.209) 

 

4.4. Mechanical constitutive law for interfaces 

 The mechanical constitutive law for interfaces used in this work is presented in this 
section.  

4.4.1. Constitutive model definition 

 The mechanical constitutive law for interfaces used in this thesis is an elasto-plastic law 
based in fracture mechanics, which was originally proposed by Carol & Prat (1990, 1995) and 
subsequently modified by Carol, et al. (1997, 2001), and López (1999) for 2D analysis and 
extended to 3D by Caballero, et al. (2008). This model has been successfully applied to 2D 
(Carol et al. 2001, Garolera et al. 2005, López 1999, Roa et al. 2002, Segura 2007,  Idiart et 
al. 2011) and 3D analysis (Caballero, et al., 2008. Pérez 2013 and Riera 2016), 

 The constitutive law establishes the relation between deformations and stresses, and, in 
the particular case of the double-nodded zero-thickness interface elements described in Section 
3.1, the constitutive law is formulated in terms of the normal and the two tangential 
components of stress (𝛔𝛔𝐽𝐽) and the corresponding relative displacements (𝐫𝐫) at the mid-plane 
of the interface using a local orthogonal reference system (Figure 4.3). 
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𝛔𝛔𝐽𝐽 = (𝜎𝜎 𝜏𝜏1 𝜏𝜏2) (4.210) 

𝐫𝐫 = (𝑟𝑟1 𝑟𝑟𝑙𝑙1 𝑟𝑟𝑙𝑙2) (4.211) 

 In continuum model formulations the displacements could be usually obtained by 
integrating the strain over length (𝑢𝑢 = ∫ 𝜖𝜖 𝑑𝑑𝑑𝑑). However, by definition, the interface elements 
have no thickness, and therefore 𝑑𝑑𝑑𝑑 = 0. To avoid this inconsistency, the constitutive model is 
formulated in terms of stresses and relative displacements. 

 

 
Figure 4.3: Definition of stress variables and conjugate strain variables (relative displacements) for the interface 

(Caballero, 2005). 

 
4.4.2. Cracking surface 

 As the constitutive model is based in the theory of the plasticity, the material behaviour 
is controlled by a yield surface that in this case is a fracture surface. 𝐹𝐹 , which is defined by: 

𝐹𝐹 = 𝐹𝐹(𝛔𝛔, 𝜅𝜅) (4.212) 

where 𝛔𝛔 is the stress field and 𝜅𝜅 is a generic variable which contains the necessary parameters 
to define 𝐹𝐹 . As for the classic theory of plasticity, this fracture surface delimits the state of 
any current stress situation, which can be divided in: (a) when 𝐹𝐹 =  0 the stress 𝛔𝛔 is on 𝐹𝐹  
and (b) when 𝐹𝐹 <  0 the stress 𝛔𝛔 is inside 𝐹𝐹 . The situation 𝐹𝐹 >  0 is not admissible. 
Cracking begins when the mid-plane stresses of the interface reaches the condition 𝐹𝐹 =  0, 
while the behaviour is linear elastic for 𝐹𝐹 <  0.  

 The cracking surface of this model is defined by the following three-parameter 
hyperboloid proposed by Carol & Prat (1990): 

𝐹𝐹�𝛔𝛔,𝐩𝐩(𝑊𝑊𝑐𝑐𝑐𝑐)� = |𝜏𝜏|2 − (𝑐𝑐 − 𝜎𝜎 tan𝜙𝜙)2 + (𝑐𝑐 − 𝜒𝜒 tan𝜙𝜙)2 (4.213) 

This hyperbola was modified by Caballero, et al. (2008) in order to avoid numerical problems 
caused by double solution inherent to hyperbola's equation, obtaining finally: 

𝐹𝐹�𝛔𝛔,𝐩𝐩(𝑊𝑊𝑐𝑐𝑐𝑐)� = 𝜎𝜎 tan𝜙𝜙 + �𝜏𝜏2 + (𝑐𝑐 − 𝜒𝜒 tan𝜙𝜙)2 − 𝑐𝑐 (4.214) 



4.3. Thermo-Hydro-Mechanical fully coupled formulation 

141 

 

where 𝜏𝜏  is the modulus of the shear stresses �𝜏𝜏 = ‖𝝉𝝉‖ = �𝜏𝜏1
2 + 𝜏𝜏2

2�, 𝜎𝜎 is the normal stress, 𝜒𝜒 
is the vertex of the hyperbola representing the tensile strength, 𝑐𝑐 is the apparent cohesion 
(intersection point between 𝜏𝜏  and the asymptote) and tan𝜙𝜙 is the slope of the asymptote, 
which physically represents an asymptotic friction angle (Figure 4.4). 
 

 

Figure 4.4: Graphic representation of the hyperbolic yield surface (F) and plastic potential (Q). (Caballero, 2005) 
 

4.4.3. Plastic potential (dilatancy) 

 The classical theory of the plasticity assumes that the total strain may be decomposed in 
the sum of elastic and plastic (or non-recoverable) strains. However, as the cracking surface, 
the model must be expressed in terms of the relative displacements of the interface elements. 
Thus, the total relative displacements (𝐫𝐫) contains an elastic part (𝑑𝑑𝐫𝐫𝑒𝑒) and a plastic or 
fracture component (𝑑𝑑𝐫𝐫𝑐𝑐𝑐𝑐): 

𝑑𝑑𝐫𝐫 = 𝑑𝑑𝐫𝐫𝑒𝑒 + 𝑑𝑑𝐫𝐫𝑐𝑐𝑐𝑐 (4.215) 

with: 

𝑑𝑑𝐫𝐫𝑐𝑐𝑐𝑐 = 𝑑𝑑𝑑𝑑 𝜕𝜕𝜕𝜕
𝜕𝜕𝛔𝛔𝐉𝐉

= 𝑑𝑑𝑑𝑑 𝒎𝒎𝑄𝑄 (4.216) 

where 𝑄𝑄 is the plastic potential (or fracture potential), 𝑑𝑑𝑑𝑑 is the fracture multiplier and 𝒎𝒎𝑄𝑄 
is the gradient of 𝑄𝑄. 

 The history variable is the work spent during the fracture process, which can be written 
in its incremental form as follows:  

𝑑𝑑𝑊𝑊𝑐𝑐𝑐𝑐 = �
𝛔𝛔𝐽𝐽 · 𝑑𝑑𝐫𝐫𝑐𝑐𝑐𝑐 = 𝑑𝑑𝑑𝑑 𝛔𝛔𝐽𝐽 · 𝒎𝒎𝑄𝑄         if 𝜎𝜎 ≥ 0   (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 
(|𝜏𝜏 | + 𝜎𝜎 tan𝜙𝜙)|𝑑𝑑𝐫𝐫𝑙𝑙

𝑐𝑐𝑐𝑐|         if 𝜎𝜎 < 0   (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 
 (4.217) 
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where 𝑑𝑑𝐫𝐫𝑙𝑙
𝑐𝑐𝑐𝑐 is the increment of relative crack opening displacements in the tangential direction 

defined by: 

𝑑𝑑𝐫𝐫𝑙𝑙
𝑐𝑐𝑐𝑐 = �𝑑𝑑𝐫𝐫𝑙𝑙1

𝑐𝑐𝑐𝑐2 + 𝑑𝑑𝐫𝐫𝑙𝑙2
𝑐𝑐𝑐𝑐2 (4.218) 

 From the preceding equations it may be deduced that, in tension, all plastic work 
dissipated is used for the formation of the crack, while for compression, the work dissipated 
also includes a significant contribution of frictional processes (heat) that does not contribute 
to 𝑊𝑊𝑐𝑐𝑐𝑐 (Caballero, 2005). 

 In heterogeneous materials, such as rocks or concrete, the cracking paths exhibit some 
roughness due to their tendency to propagate along the weakest areas of the material (e.g. 
particle-matrix contacts). Thus, under a constant normal stress level, the shear phenomena 
will in general produce shear strains and also normal crack opening of the interfaces 
(dilatancy). Using the theory of the plasticity, the direction of dilatancy (direction of the 
fracture deformation vector at each point) is perpendicular to the cracking potential 𝑄𝑄 (flow 
rule) and the dilatancy angle can be interpreted as the angle between the gradient of 𝑄𝑄 and 
the shear axis 𝜏𝜏 . Consequently, a direction parallel to the shear axis indicates no dilatancy, 
while a direction parallel to the normal stress axis indicates a fracture opening without 
tangential displacement (e.g. pure tension test). Some experimental results for quasi-brittle 
materials, such as rocks or concrete, show that dilatancy diminishes as the compression stress 
increases and finally disappears for levels of compressive stress larger than a certain value 
(Amadei, et al., 1989). In addition, as observed by Pande, et al. (1990), the joint dilatancy 
decreases with its degradation. 

 In order to reproduce the dilatancy phenomenon the constitutive model must be non-
associated (𝑄𝑄 ≠ 𝐹𝐹 ), and the fracture potential 𝑄𝑄 (Figure 4.4) can be defined depending on 
the fracture surface by using the following expressions: 

𝒎𝒎𝑄𝑄 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝛔𝛔𝐽𝐽

= 𝐀𝐀 𝐧𝐧 (4.219) 

𝒏𝒏 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝛔𝛔𝐽𝐽

=

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎛

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜏𝜏1
𝜕𝜕𝜕𝜕
𝜕𝜕𝜏𝜏2⎠

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎞

=

⎝
⎜⎜
⎜⎜
⎜⎜
⎛

tan𝜙𝜙
𝜏𝜏1

�|𝜏𝜏|2 + (𝑐𝑐 + 𝜒𝜒 tan𝜙𝜙)2

𝜏𝜏2

�|𝜏𝜏|2 + (𝑐𝑐 + 𝜒𝜒 tan𝜙𝜙)2⎠
⎟⎟
⎟⎟
⎟⎟
⎞

 (4.220) 

𝐀𝐀 = �
𝑓𝑓𝑐𝑐

𝑑𝑑𝑑𝑑𝑑𝑑𝑓𝑓𝜎𝜎
𝑑𝑑𝑑𝑑𝑑𝑑 0 0

0 1 0
0 0 1

� (4.221) 

where 𝑓𝑓𝑐𝑐
𝑑𝑑𝑑𝑑𝑑𝑑 and 𝑓𝑓𝜎𝜎

𝑑𝑑𝑑𝑑𝑑𝑑 are defined in the following section. It must be noticed that if 𝐀𝐀 is equal 
to the identity tensor, then the constitutive model becomes associated (𝑄𝑄 = 𝐹𝐹 ). 
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4.4.4. Evolution Law 

 The evolution of the fracture surface and the fracture potential is defined by the 
reduction of the parameters that defines the fracture surface (Eq. (4.214)): tensile strength 
(𝜒𝜒), cohesion (𝑐𝑐) and friction angle (tan𝜙𝜙), in function of the work spent (𝑊𝑊 𝑐𝑐𝑐𝑐) during the 
fracture process (Eq.(4.217)).  

 Starting from an initial fracture surface (Figure 4.4), the final configuration will depend 
on the mode of fracture taking place. For pure tension (Mode I) a completed developed crack 
requires the total separation of the two sides of the interface, obtaining a final fracture surface 
defined by a hyperbola with vertex at the origin (curve 2 in Figure 4.5). For a situation under 
shear and very high compression with no dilatancy (Mode IIa), the final fracture surface is 
defined by a pair of straight lines representing pure frictional behaviour (curve 4 of Figure 
4.6). The evolution of the fracture surface results in its shrinkage, as shown in Figure 4.5 and 
Figure 4.6. The parameters that control the two fracture modes are the classical fracture 
energy in Mode I (𝐺𝐺𝐹𝐹

𝐼𝐼 , pure tension), and the Mode IIa energy (𝐺𝐺𝐹𝐹
𝐼𝐼𝐼𝐼𝐼𝐼, shear under high 

compression). 

 The mentioned parameters of the hyperbola decrease from their initial values depending 
on the work spent during the fracture process (𝑊𝑊𝑐𝑐𝑐𝑐), following a scale function 𝑆𝑆 defined by 
Carol & Prat (1990): 

𝑆𝑆(ξ, α) = 𝑒𝑒−αξ
1 + (𝑒𝑒−α − 1)ξ

 (4.222) 

where ξ is the generic property to be scaled and α is the scaling factor. The evolution of the 
parameters 𝜒𝜒, 𝑐𝑐 and tan𝜙𝜙 are defined by the following paragraphs.  
 

 

Evolution of 𝝌𝝌 

 The tensile strength decreases from its initial value (𝜒𝜒0) as 𝑊𝑊𝑐𝑐𝑐𝑐 increases, becoming zero 
when 𝑊𝑊𝑐𝑐𝑐𝑐 = 𝐺𝐺𝐼𝐼

𝐹𝐹 . The scaling function 𝑆𝑆(𝜉𝜉𝜒𝜒, α𝜒𝜒) defined in Eq. (4.222) is applied taking 
𝜉𝜉𝜒𝜒 = 𝑊𝑊𝑐𝑐𝑐𝑐/𝐺𝐺𝐼𝐼

𝐹𝐹  and α = α𝜒𝜒 (Figure 4.8). The evolution is given by the following expression: 

𝜒𝜒 = �
𝜒𝜒0 �1 − 𝑆𝑆�𝜉𝜉𝜒𝜒, α𝜒𝜒��   if 𝑊𝑊𝑐𝑐𝑐𝑐 < 𝐺𝐺𝐼𝐼

𝐹𝐹

0   if 𝑊𝑊𝑐𝑐𝑐𝑐 ≥ 𝐺𝐺𝐼𝐼
𝐹𝐹
 (4.223) 
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Figure 4.5: Evolution of the fracture surface from the initial state (1) to the final state (2) after exhausting the pure 

tensile strength of the material (fracture Mode I). (Caballero, 2005) 

 

    
Figure 4.6: Evolution of the fracture surface from the initial state (1) to the final state after exhausting the pure tensile 
strength of the material (curve 2) and after applying the load in Mode IIa, resulting in a final state with residual pure 

shear (4). (Caballero, 2005) 

 

Evolution of 𝒄𝒄 

 The reduction of the cohesion can be calculated by using 𝜒𝜒, tan𝜙𝜙 and a new parameter 
"a" representing the horizontal distance between the vertex of the hyperbola and its 
asymptotes: 

𝑐𝑐 = (𝜒𝜒 + 𝑎𝑎)tan𝜙𝜙 (4.224) 

Then, assuming that the parameter "a" changes from its initial value (obtained from Eq. 
(4.224) by using the initial values of 𝑐𝑐, 𝜒𝜒 and tan𝜙𝜙) to zero when 𝑊𝑊 𝑐𝑐𝑐𝑐 = 𝐺𝐺𝐼𝐼𝐼𝐼𝐼𝐼

𝐹𝐹 , the parameters 
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of the scaling function 𝑆𝑆(𝜉𝜉𝑎𝑎, α𝑎𝑎) are  𝜉𝜉𝑎𝑎 = 𝑊𝑊𝑐𝑐𝑐𝑐/𝐺𝐺𝐼𝐼𝐼𝐼𝐼𝐼
𝐹𝐹  and α = α𝑎𝑎 (Figure 4.8). The evolution 

is given by the following expression: 

𝜒𝜒 =
⎩�
⎨
�⎧𝑐𝑐0 �1 − 𝑆𝑆(𝜉𝜉𝑎𝑎, α𝑎𝑎) − 𝜒𝜒0

𝑐𝑐0
tan𝜙𝜙(𝑆𝑆�𝜉𝜉𝜒𝜒, α𝜒𝜒� − 𝑆𝑆(𝜉𝜉𝑎𝑎, α𝑎𝑎))�   if 𝑊𝑊𝑐𝑐𝑐𝑐 < 𝐺𝐺𝐼𝐼𝐼𝐼𝐼𝐼

𝐹𝐹

0   if 𝑊𝑊𝑐𝑐𝑐𝑐 ≥ 𝐺𝐺𝐼𝐼𝐼𝐼𝐼𝐼
𝐹𝐹

 (4.225) 

 

Evolution of 𝐭𝐭𝐭𝐭𝐭𝐭𝝓𝝓 

 The friction angle decreases from its initial value tan𝜙𝜙0) as 𝑊𝑊𝑐𝑐𝑐𝑐 increases, becoming the 
residual friction angle tan𝜙𝜙𝑟𝑟𝑟𝑟𝑟𝑟 when 𝑊𝑊𝑐𝑐𝑐𝑐 = 𝐺𝐺𝐼𝐼𝐼𝐼𝐼𝐼

𝐹𝐹 . The scaling function 𝑆𝑆(𝜉𝜉𝜙𝜙, α𝜙𝜙) defined in 
Eq. (4.222) is applied taking 𝜉𝜉𝜙𝜙 = 𝑊𝑊𝑐𝑐𝑐𝑐/𝐺𝐺𝐼𝐼𝐼𝐼𝑎𝑎

𝐹𝐹  and α = α𝜙𝜙 (Figure 4.8). The evolution is given 
by the following expression: 

tan𝜙𝜙 = �
tan𝜙𝜙0 − (tan𝜙𝜙0 − tan𝜙𝜙𝑟𝑟𝑟𝑟𝑟𝑟)𝑆𝑆�𝜉𝜉𝜙𝜙, α𝜙𝜙�   if 𝑊𝑊𝑐𝑐𝑐𝑐 < 𝐺𝐺𝐼𝐼𝐼𝐼𝐼𝐼

𝐹𝐹

tan𝜙𝜙𝑟𝑟𝑟𝑟𝑟𝑟   if 𝑊𝑊𝑐𝑐𝑐𝑐 ≥ 𝐺𝐺𝐼𝐼𝐼𝐼𝐼𝐼
𝐹𝐹  (4.226) 

 

 
Figure 4.7: Evolution law (Garolera, 2017). 

 

 

         
Figure 4.8: Evolution of the tensile strength (𝜒𝜒), the cohesion (𝑐𝑐) and the friction angle (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) with the work spent by 

the fracture process 𝑊𝑊𝑐𝑐𝑐𝑐 (López, 1999). 
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Evolution of 𝒇𝒇𝒄𝒄
𝒅𝒅𝒅𝒅𝒅𝒅 and 𝒇𝒇𝝈𝝈

𝒅𝒅𝒅𝒅𝒅𝒅 

 As discussed in Section 4.4.3, the effects of dilatancy are introduced by reducing the 
normal component of matrix 𝐀𝐀 using the parameters 𝑓𝑓𝑐𝑐

𝑑𝑑𝑑𝑑𝑑𝑑 and 𝑓𝑓𝜎𝜎
𝑑𝑑𝑑𝑑𝑑𝑑. Both parameters vary 

depending on the different parameters involved in the fracture process. 

 First, dilatancy varies with the intensity of the compressive stress, and it is cancelled 
when the compression reaches the pre-defined value 𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑, that is the value of the normal 
compression stress for which the dilatancy is zero. The function decreases from 1 to 0 (Figure 
4.9) following the expression: 

𝑓𝑓𝜎𝜎
𝑑𝑑𝑑𝑑𝑑𝑑 = 1 − 𝑆𝑆 � 𝜎𝜎

𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑
, α𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑

� (4.227) 

 Finally, dilatancy decreases as the interface suffers degradation, and it is cancelled when 
the surface 𝐹𝐹  reaches its state of residual friction (curve 4 in Figure 4.6): 

𝑓𝑓𝑐𝑐
𝑑𝑑𝑑𝑑𝑑𝑑 = 1 − 𝑆𝑆 �𝑊𝑊𝑐𝑐𝑐𝑐

𝐺𝐺𝐼𝐼𝐼𝐼𝐼𝐼
𝐹𝐹 , α𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑

� (4.228) 

 

 
Figure 4.9: Graphic representation of the hyperbolic yield surface (F) and plastic potential (Q) (López, 1999). 

 

4.4.5. Constitutive integration 

 The integration of the constitutive model is performed using an implicit integration 
algorithm (backward Euler) with substepping (López, 1999), where the system is solved 
taking into account the stresses (𝛔𝛔𝐽𝐽), the history variable (𝑊𝑊𝑐𝑐𝑐𝑐) and the plastic multiplier 
(𝜆𝜆), as it is explained in detail by Caballero (2005), based on the previous work of Pérez-
Foguet, et al. (2001). 

 In addition, a more accurately description of the interface constitutive law can be found 
in Carol, et al. (1997, 2001) or López (1999), and details of its numerical implementation in 
Caballero, et al. (2008). 
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5. d 
 

Chapter 5 

THM model verification and practical 
applications 
 

 In the preceding chapter a THM fully-coupled model with large advection for porous 
medium and zero-thickness interface elements has been developed. This chapter presents the 
verification of the numerical model and a practical application. The first section deals with 
the numerical verification of the THM model by means of several academic examples. The 
second section focuses in the numerical solution of hydraulic fracture problems using the THM 
model, its comparison with results from a HM numerical analysis and a performance 
parallelization analysis. 

 

5.1. THM model verification examples 

 This section presents verification examples of the THM fully-coupled model with large 
advection developed in Chapter 4 for the continuum medium and for zero-thickness interface 
elements. 

 

5.1.1. THM model verification examples for continuum medium 

 Six verification examples of the THM fully-coupled model with large advection developed 
in Chapter 4 for the continuum medium are discussed in the following paragraphs. 
Summarizing, the main verifications focus on: 

1) the mechanical effects due to thermal expansions (thermo-mechanical coupling), 
2) the advective heat transport with the hydraulic flow using the 𝛼𝛼-Implicit Characteristic 

Galerkin Method (hydro-thermal coupling) and, 
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3) the influence of thermal variations in a porous medium, in particular the influence of the 
solid and fluid expansions, the pressure and stress-strain variations and the generated 
fluxes (thermo-hydro-mechanical coupling). 

 

Verification example 1: Thermo-Mechanical coupling in continuum medium 

 The objective of this example is to verify the thermo-mechanical coupling of the model 
(thermal expansion), comparing the numerical and analytical solutions.  

 The geometry consists of a domain of 20×5m (Figure 5.1), discretized with 100 
quadrilateral continuum elements, where a temperature is applied at the left-hand side of the 
domain –as a Dirichlet condition– and with no mechanical restriction preventing the free 
thermal expansion of the material. The boundary conditions and the material parameters of 
the numerical analysis are shown in Figure 5.1. 

 

 

𝐸𝐸 = 3000 kPa 

𝜈𝜈 = 0.30 
𝛼𝛼𝑠𝑠

𝑇𝑇 = 1 · 10−3 ℃−1 
𝑐𝑐 = 700 J/(kg · ℃) 

𝜌𝜌 = 1 Tn/m3 
𝑘𝑘𝑥𝑥

𝑇𝑇 = 𝑘𝑘𝑦𝑦
𝑇𝑇 = 

= 1.0 J/(m · ℃ · s)  

Figure 5.1: Mesh, boundary conditions and material properties of the TM verification example. 

 

 The transient analysis takes place under plane stress conditions with a linear elastic 
material and the effect of the gravity is omitted. Additionally, since there is no coupling with 
the hydraulic problem, the heat transfer mode is pure conduction. 

 Figure 5.2 shows the advance of temperature with time in a deformed mesh until reaching 
steady-state conditions, when the temperature of the full domain is the same as the imposed 
at the left-hand side. At this point, the maximum displacements obtained with the analysis 
are: ∆𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚,𝑥𝑥 = 1.00 m and ∆𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚,𝑦𝑦 = 0.25 m. 

 On the other hand, the analytical solution of the problem, considering that the material 
can expand freely during the analysis, gives the following results: 

Δ𝛆𝛆𝑇𝑇 = 𝛼𝛼𝑠𝑠
𝑇𝑇  Δ𝑇𝑇 = 0.05 (5.1) 

∆𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚,𝑥𝑥 = Δ𝛆𝛆𝑇𝑇  𝐿𝐿𝑥𝑥 = 0.05 × 20 m = 1.00 m (5.2) 

∆𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚,𝑦𝑦 = 𝛥𝛥𝜺𝜺𝑇𝑇  𝐿𝐿𝑦𝑦 = 0.05 × 5 m = 0.25 m (5.3) 
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 These results show that the numerical and the analytical solutions match successfully. 
Additionally, the stress field remains constant and equal to zero during the analysis as 
expected for a free thermal expansion problem.  

 

 
 (a) t = 17 min. 

 
 (b) t = 1017 min. 

 
 (c) t = 2017 min. 

 
 (d) t = 3017 min. 

 
 (d) t = 4017 min. 

     
 (d) 𝑡𝑡 → ∞ (Steady-state)  

Figure 5.2: Temperature distribution (℃) for different times and deformed mesh (×4). 

 

 The numerical analysis has been computed under plane strain conditions, obtaining a 
final displacement (t → ∞) of ∆𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚,𝑥𝑥 = 1.25 and ∆𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚,𝑦𝑦 = 0.3125, that corresponds with 
a strain of Δ𝛆𝛆𝑇𝑇 = 0.0625, and an out-of-plane stresses equal to Δ𝜎𝜎𝑧𝑧 = −150 kPa, that 
matches the values obtained analytically: 



Chapter 5 - Model verification and practical applications 

150 

 

Δ𝛆𝛆𝑇𝑇 = (1 + 𝜈𝜈)𝛼𝛼𝑠𝑠
𝑇𝑇  Δ𝑇𝑇 = 0.0625 (5.4) 

Δ𝜎𝜎𝑧𝑧 = −𝐸𝐸′𝛼𝛼𝑠𝑠
𝑇𝑇 Δ𝑇𝑇 = −3000 kPa · 0.001℃−1 · 50℃ = −150 kPa (5.5) 

 Moreover, the plane stress analysis has been carried out considering that the 
displacements are prescribed at the four boundaries of the domain (𝑢𝑢𝑥𝑥 = 𝑢𝑢𝑦𝑦 = 0), so that it 
cannot expand due to the thermal changes, and subsequently leads to thermal stresses that 
may be calculated analytically (assuming plane stress conditions) as: 

Δ𝜎𝜎𝑇𝑇 = − 𝐸𝐸
1 − 𝜈𝜈2 Δ𝛆𝛆𝑇𝑇 (1 + 𝜈𝜈) (5.6) 

Considering the steady-state distribution of temperatures (𝑡𝑡 → ∞) and the induced thermal 
strains from Eq. (5.1), the following stress increment due to the prevented thermal expansion 
is obtained: 

Δ𝜎𝜎𝑇𝑇 = − 3000 kPa
1 − 0.252 0.05(1 + 0.25) = −200 kPa (5.7) 

that matches the result obtained in the numerical analysis. Therefore, it can be concluded 
that the TM model leads to correct solutions. 

 

Verification example 2: Hydro-Thermal coupling in continuum medium 
without fluid thermal expansion and constant fluid viscosity 

 The objective of this example is to verify the hydro-thermal coupling of the model, in 
particular the stability of the advection phenomenon that occurs due to the existence of the 
fluid flow and its correct velocity transport. For simplicity, the following assumptions are 
made: pure advection, constant fluid viscosity, no volume change of the fluid due to thermal 
effects (𝛼𝛼𝑓𝑓

𝑇𝑇 = 0) and gravity omitted for the hydraulic problem. 

 The geometry consists of a domain of 450×10m, discretized with 180 quadrilateral 
continuum elements, as shown in Figure 5.3 with the material parameters of the numerical 
analysis. 

 

 

𝐾𝐾𝑓𝑓 =  3 · 1012 kPa 
𝛾𝛾𝑓𝑓 = 10 kN/m3 

𝜇𝜇𝑓𝑓 = 1 · 10−11kPa · s  

𝛼𝛼𝑓𝑓
𝑇𝑇 = 0℃−1 

𝑐𝑐 = 700 J/(kg · ℃) 
𝜌𝜌 = 2000 kg/m3 

𝑘𝑘𝑥𝑥
𝑇𝑇 = 𝑘𝑘𝑦𝑦

𝑇𝑇 = 0 J/(m · ℃ · s) 

𝑘𝑘𝑥𝑥
𝑝𝑝 = 𝑘𝑘𝑦𝑦

𝑝𝑝 = 9 · 10−13 m2  

𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼
 = 0.25 

Figure 5.3: Mesh and material properties of the HT verification example. 
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  In a first step the temperature of the domain is equal to zero and the steady-state 
hydraulic problem is solved considering the boundary conditions shown in Figure 5.4. The 
results of this step are shown in Figure 5.5 (lineal distribution of pressures). The Darcy 
velocity obtained from the numerical analysis is 0.006 m/s (from the left to the right), which 
matches the analytical solution: 

𝑞𝑞𝑥𝑥
𝑝𝑝 = − 𝑘𝑘𝑥𝑥

𝑝𝑝

𝜇𝜇𝑓𝑓 �Δ𝑝𝑝
𝐿𝐿

� = − 9 · 10−13 m2

1 · 10−11 kPa/s
�20 − 50 kPa

450 m
� = 0.006 m/s (5.8) 

 

 

 
Figure 5.4: Boundary conditions for the first step of the HT verification example. 

 

 
Figure 5.5: Fluid pressure distribution for the first step of the HT verification example. 

 

 In a second step, a Gaussian distribution of temperatures is applied as a Dirichlet 
condition (Figure 5.6) while the fluid flow remains constant (Figure 5.7).  

 

 
Figure 5.6: Initial distribution of temperatures for the second step of the HT verification example. 
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Figure 5.7: Boundary conditions for the second step of the HT verification example (Legend in Figure 5.6). 

 

 The thermal conductivity is assumed equal to zero and therefore the Péclet number tends 
to infinite (pure advection thermal problem). The analysis of the transient problem is carried 
out with time increments ∆𝑡𝑡 = 350 s.The Courant number in all the elements of the mesh is 
less than 1 (𝐶𝐶 = 0.84), which is a necessary condition to obtain a non-oscillatory result using 
the method of characteristics. 

 As the time passes, the initial temperature distribution has to move from left to right 
with the correct velocity (0.006 m/s) while keeping the initial temperature distribution 
profile. The result of the analysis is shown in Figure 5.8 and Figure 5.9 for different times. 
These figures show that the method maintains the initial distribution of temperatures with 
small oscillations of ±0.10℃ at the top of the "bell". 

 The last verification consists in checking whether the velocities applied to the thermal 
distribution corresponds with the Darcy velocity of the fluid. For example, for ∆𝑡𝑡 =  31150 s 
and knowing that the Darcy velocity of the fluid is 𝑞𝑞𝑥𝑥

𝑝𝑝 = 0.006 m/s, the top of the “bell” of 
the initial distribution has moved to the right ∆𝑥𝑥 = 𝑞𝑞𝑥𝑥

𝑝𝑝 ∆𝑡𝑡 = 186.9 m, which matches the 
displacement of the initial temperature distribution, as shown in Figure 5.8. 
 

 
Figure 5.8: Distribution of temperatures using the 𝛼𝛼-ICG Method for different times using 𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼 = 1/4. 
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(a) t = 0 s. 

 
(b) t = 31150 s.  

 
(c) t = 62300 s. 

Figure 5.9: Distribution of temperatures using the 𝛼𝛼-ICG Method for different times using 𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼 = 1/4 (Legend in 
Figure 5.6). 

 

 Additionally, during the transient analysis the pressures and Darcy velocity remain 
constant as expected with the hypothesis of the problem (constant viscosity of the fluid and 
no volume change of the fluid due to its thermal expansion). 

 

Verification example 3: Hydro-mechanical coupling in continuum medium. 

In order to verify the hydro-mechanical coupling of the model, the analysis of a one-
dimensional consolidation problem of a saturated porous medium has been carried out. This 
example is based in a verification example of the HM model that appears in Segura (2007). 

 The geometry consists of a domain of 1×1m, discretized with 100 quadrilateral continuum 
elements. The geometry, the initial and boundary conditions and the material parameters are 
shown in Figure 5.10. The problem has an initial geostatic fluid pressure distribution, with an 
applied load of 15 kPa. Consolidation starts after this load is applied. For the analysis, 
gravity is omitted and linear elasticity is assumed under plane strain conditions. 

       

  

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

𝐸𝐸′ = 1200 kPa 

𝜈𝜈′ = 0.25 

𝐾𝐾𝑠𝑠 =  1 · 1010 kPa 
𝐾𝐾𝑓𝑓 =  3 · 1012 kPa 

𝛾𝛾𝑓𝑓 = 10 kN/m3 
𝜇𝜇 = 1 · 10−11 kPa · d 
𝑘𝑘 

𝑝𝑝 = 1.5 · 10−13 m2 
𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 1.0 

Figure 5.10: Mesh, initial and boundary conditions and material parameters for the HM verification problem. 

 



Chapter 5 - Model verification and practical applications 

154 

 

 Figure 5.11 shows the evolution of the fluid pressures with time on a deformed mesh. The 
figure shows the dissipation of the excess fluid pressure with time, and its proportionality to 
the settlement, as expected from a HM-coupling analysis. 

 

   
t = 0.001 d                     t = 0.005 d                     t = 0.010 d 

 

 
   

t = 0.020 d                     t = 0.040 d                     t = 0.080 d 

Figure 5.11: Fluid pressure evolution on the deformed mesh (factor ×30). 

 

The final settlement can be obtained analytically as: 

𝑠𝑠𝑡𝑡 = 1
𝐸𝐸𝑚𝑚

𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (5.9) 

where 𝐸𝐸𝑚𝑚 is the oedometric modulus that may be obtained as: 

𝐸𝐸𝑚𝑚 = 𝐸𝐸′ � 1 − 𝜈𝜈′

1 − 𝜈𝜈′ − 2𝜈𝜈′2
� = 1500 kPa � 1 − 0.25

1 − 0.25 − 2 · 0.252� = 1440 kPa (5.10) 

Then the final settlement is: 

𝑠𝑠𝑡𝑡 = 1
1440 kPa

15 kPa · m = 1.04 cm (5.11) 

that matches the final settlement obtained with the numerical analysis. 

 Figure 5.12 and Figure 5.13 shows the fluid pressure evolution with depth and the 
settlement evolution computed with the FEM code. These solutions can also be calculated 
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analytically combining the fluid mass balance equation and Darcy's law, obtaining the 
following expressions (Segura, 2007): 

𝑝𝑝 = � 2𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖
𝑀𝑀

𝑚𝑚=∞

𝑚𝑚=0
sin(𝑀𝑀Y) · 𝑒𝑒−𝑀𝑀2𝑇𝑇  (5.12) 

𝑈𝑈𝑌𝑌 (%) = 1 − � 2
𝑀𝑀

𝑚𝑚=∞

𝑚𝑚=0
sin(𝑀𝑀𝑀𝑀 ) · 𝑒𝑒−𝑀𝑀2𝑇𝑇  (5.13) 

where 𝑀𝑀 = 𝜋𝜋
2 (2𝑚𝑚 + 1)  with  𝑚𝑚 = 0,1, 2, … and 𝐶𝐶𝑣𝑣 is the consolidation coefficient defined as: 

𝐶𝐶𝑣𝑣 = 𝑘𝑘 
𝑝𝑝

𝜇𝜇
𝐸𝐸𝑚𝑚 = 21.6 m2/d (5.14) 

and the dimensionless variables: 

𝑌𝑌 = 𝑦𝑦
𝐻𝐻

 (5.15) 

𝑇𝑇 = 𝐶𝐶𝑣𝑣𝑡𝑡
𝐻𝐻2  (5.16) 

 

 
Figure 5.12: Fluid pressure distributions in depth for different instants of time. 

 

Figure 5.12 and Figure 5.13 show that the analytical and the numerical solutions are 
practically identical. 
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Figure 5.13: Settlement evolution with time. 

 

Verification example 4: Thermo-hydro-mechanical coupling in continuum 
medium. 

 The objective of this example is to verify the thermo-hydro-mechanical coupling of the 
model, specifically the hydraulic and mechanical behaviour when a temperature increment is 
applied in the porous medium and the solid and the fluid tend to change their volume due to 
thermal expansions. 

 For simplicity, the geometry consists of a domain of 1×1m discretized with a single 
quadrilateral continuum element. This verification example proposes different small 
verification cases in terms of the value of the coefficients of thermal expansion of the solid 
(𝛼𝛼𝑠𝑠

𝑇𝑇 ) and the fluid (𝛼𝛼𝑓𝑓
𝑇𝑇 ): 

• 𝛼𝛼𝑠𝑠
𝑇𝑇 ≠ 0 and 𝛼𝛼𝑓𝑓

𝑇𝑇 = 0 (𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
 = 0.1 and 𝑛𝑛 =  0.10) 

• 𝛼𝛼𝑠𝑠
𝑇𝑇 = 0 and 𝛼𝛼𝑓𝑓

𝑇𝑇 ≠ 0 (𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
 = 0.1 and 𝑛𝑛 =  0.10) 

• 𝛼𝛼𝑠𝑠
𝑇𝑇 = 𝛼𝛼𝑓𝑓

𝑇𝑇 ≠ 0 (𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
 = 0.1 and 𝑛𝑛 =  0.10) 

• 𝛼𝛼𝑓𝑓
𝑇𝑇 = 10𝛼𝛼𝑠𝑠

𝑇𝑇 ≠ 0 (𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
 = 0.1 and 𝑛𝑛 =  0.10) 

• 𝛼𝛼𝑠𝑠
𝑇𝑇 = 0 and 𝛼𝛼𝑓𝑓

𝑇𝑇 ≠ 0  (𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
 = 𝑛𝑛 = 0.20) 

Each case is computed with two different boundary conditions (drained and undrained 
analysis), that are shown in Figure 5.14.  

 For the numerical analysis linear elasticity is assumed under conditions of plane strain 
with material parameters 𝐸𝐸′ = 10000 kPa and, for simplicity, 𝜈𝜈′ = 0. Additionally, the effect 
of the gravity is omitted for both mechanical and hydraulic problems. The temperature 
increment applied is the same in all cases and equal to 40℃. 
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(a) Boundary conditions for the undrained analysis. (b) Boundary conditions for the drained analysis. 

Figure 5.14: Mesh and boundary conditions for the THM verification example. 

 

 For the undrained analysis it is assumed that the flow is restricted at the boundaries 
(hydraulic flow equal to zero) and therefore the fluid cannot enter or leave the domain. For 
the drained analysis, the fluid flow is allowed at the boundaries (pressure equal to zero 
imposed at the four nodes of the element) and therefore the fluid can enter or leave the 
domain. 

 

a) Undrained analysis with 𝜶𝜶𝒔𝒔
𝑻𝑻 ≠ 𝟎𝟎, 𝜶𝜶𝒇𝒇

𝑻𝑻 = 𝟎𝟎, 𝜶𝜶𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩
 = 𝟏𝟏. 𝟎𝟎 and 𝒏𝒏 = 𝟎𝟎. 𝟏𝟏𝟏𝟏 

 For this case 𝛼𝛼𝑠𝑠
𝑇𝑇 = 0.001℃−1 and 𝛼𝛼𝑓𝑓

𝑇𝑇 = 0℃−1. Table 5.1 shows the numerical results at 
the four nodes of the element. Additionally, the computed in-plane effective stresses at the 
Gauss points (𝜎𝜎𝑥𝑥,𝑦𝑦

′ ) are equal to the fluid pressures but with the opposite sign. 
 

Table 5.1: Numerical results for the undrained analysis with 𝛼𝛼𝑠𝑠
𝑇𝑇 ≠ 0 and 𝛼𝛼𝑓𝑓

𝑇𝑇 = 0℃−1. Compressive pressures and 
outgoing hydraulic flow are positive. 𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

 = 1.0 and 𝑛𝑛 = 0.10. 

Node DISPL-X (m) DISPL-Y (m) PRESSURE (kPa) H-FLOW (m3) 
1 0.00000E+00 0.00000E+00 1.40000E+02 0.00000E+00 
2 5.40000E-02 0.00000E+00 1.40000E+02 0.00000E+00 
3 5.40000E-02 5.40000E-02 1.40000E+02 0.00000E+00 
4 0.00000E+00 5.40000E-02 1.40000E+02 0.00000E+00 

 

 The same values can be obtained analytically. Since the fluid thermal expansion is null 
(𝛼𝛼𝑓𝑓

𝑇𝑇 = 0), the fluid is incompressible and it cannot enter or leave the domain, the pore volume 
change (Eq 4.40) has to be zero, i.e:  

𝑛𝑛 𝛼𝛼𝑣𝑣,𝑠𝑠
𝑇𝑇 ∆𝑇𝑇 + 𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵�∆𝜀𝜀𝑣𝑣 − 𝛼𝛼𝑣𝑣,𝑠𝑠

𝑇𝑇 ∆𝑇𝑇� = 0 (5.17) 
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∆𝜀𝜀𝑣𝑣 = −
(𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

 − 𝑛𝑛)𝛼𝛼𝑣𝑣,𝑠𝑠
𝑇𝑇 ∆𝑇𝑇

𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
= 0.108 (5.18) 

And the final displacements, considering 𝑢𝑢𝑧𝑧 = 0 , are: 

𝑢𝑢𝑥𝑥,𝑦𝑦 = 𝑢𝑢0 + ∆𝜀𝜀𝑣𝑣
2

𝐿𝐿 = 0 + 0.108
2

× 1m = 0.054 m (5.19) 

that matches the numerical result. Additionally, the stresses in the continuum (and excess 
fluid pressure) may be obtained as the difference between the free thermal mechanical 
expansion and the real expansion: 

∆𝑝𝑝 = ∆𝜎𝜎′ = (0.054 − 0.04)𝐸𝐸′ = 140 kPa (5.20) 

that matches the value obtained in the numerical analysis. 

 

 

b) Drained analysis with 𝜶𝜶𝒔𝒔
𝑻𝑻 ≠ 𝟎𝟎, 𝜶𝜶𝒇𝒇

𝑻𝑻 = 𝟎𝟎, 𝜶𝜶𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩
 = 𝟏𝟏. 𝟎𝟎 and 𝒏𝒏 = 𝟎𝟎. 𝟏𝟏𝟏𝟏 

 In this case 𝛼𝛼𝑠𝑠
𝑇𝑇 = 0.001℃−1 and 𝛼𝛼𝑓𝑓

𝑇𝑇 = 0℃−1. Table 5.2 shows the numerical results at 
the four nodes of the element. Additionally, the computed in-plane effective stresses at Gauss 
points 𝜎𝜎𝑥𝑥,𝑦𝑦

′  are equal to zero. 
 

Table 5.2: Numerical results for the drained analysis with 𝛼𝛼𝑠𝑠
𝑇𝑇 ≠ 0 and 𝛼𝛼𝑓𝑓

𝑇𝑇 = 0℃−1. Compressive pressures and outgoing 
hydraulic flows are positive. 𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

 = 1.0 and  𝑛𝑛 = 0.10. 

Node DISPL-X (m) DISPL-Y (m) PRESSURE (kPa) H-FLOW (m3) 
1 0.00000E+00 0.00000E+00 0.00000E+00 7.00000E-03 
2 4.00000E-02 0.00000E+00 0.00000E+00 7.00000E-03 
3 4.00000E-02 4.00000E-02 0.00000E+00 7.00000E-03 
4 0.00000E+00 4.00000E-02 0.00000E+00 7.00000E-03 

 

 The same values can be obtained analytically. Since the problem is drained and fluid can 
enter or leave the domain, a free thermal expansion will occur and the strain increment may 
be calculated as: 

∆𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚ℎ = 𝛼𝛼𝑠𝑠
𝑇𝑇 ∆𝑇𝑇 = 0.04 (5.21) 

And the final displacements: 

𝑢𝑢𝑥𝑥,𝑦𝑦 = 𝑢𝑢0 + ∆𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝐿𝐿 = 0 + 0.04 × 1m = 0.04 m (5.22) 

that match those obtained numerically. Additionally, since the fluid can enter or leave the 
domain, the excess fluid pressure will be null. To obtain the outgoing fluid volume, the 
volumetric strain increment of the pores may be calculated as: 
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∆𝜀𝜀𝑣𝑣,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = (𝑛𝑛 − 𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵) 𝛼𝛼𝑣𝑣,𝑠𝑠
𝑇𝑇 ∆𝑇𝑇 + 𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵∆𝜀𝜀𝑣𝑣,𝑚𝑚𝑚𝑚𝑚𝑚ℎ = −0.028 (5.23) 

And the available volume for the fluid is obtained as: 

𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∆𝑉𝑉𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − ∆𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = −∆𝜀𝜀𝑣𝑣,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐿𝐿3 = 0.028 m3 (5.24) 

that equals the sum of the outgoing flow at the four nodes of the domain obtained in the 
numerical analysis.  

 

 

c) Undrained analysis with 𝜶𝜶𝒔𝒔
𝑻𝑻 = 𝟎𝟎, 𝜶𝜶𝒇𝒇

𝑻𝑻 ≠ 𝟎𝟎, 𝜶𝜶𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩
 = 𝟏𝟏. 𝟎𝟎 and 𝒏𝒏 = 𝟎𝟎. 𝟏𝟏𝟏𝟏 

 In this case 𝛼𝛼𝑠𝑠
𝑇𝑇 = 0℃−1 and 𝛼𝛼𝑓𝑓

𝑇𝑇 = 0.001℃−1. Table 5.3 shows the numerical results at 
the four nodes of the element. Additionally, the computed in-plane effective stresses at the 
Gauss points (𝜎𝜎𝑥𝑥,𝑦𝑦

′ ) are equal to the fluid pressures but with the opposite sign. 
 

Table 5.3: Numerical results for the undrained analysis with 𝛼𝛼𝑠𝑠
𝑇𝑇 = 0℃−1 and 𝛼𝛼𝑓𝑓

𝑇𝑇 ≠ 0. Compressive pressures and 
outgoing hydraulic flows are positive. 𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

 = 1.0 and 𝑛𝑛 = 0.10. 

Node DISPL-X (m) DISPL-Y (m) PRESSURE (kPa) H-FLOW (m3) 
1 0.00000E+00 0.00000E+00 6.00000E+01 0.00000E-00 
2 6.00000E-03 0.00000E+00 6.00000E+01 0.00000E-00 
3 6.00000E-03 6.00000E-03 6.00000E+01 0.00000E-00 
4 0.00000E+00 6.00000E-03 6.00000E+01 0.00000E-00 

 

 It is possible to obtain the same values analytically. In this case, since the thermal 
expansion of the solid is null (𝛼𝛼𝑠𝑠

𝑇𝑇 = 0), and the fluid cannot enter or leave the domain 
(undrained analysis), the thermal expansion of the fluid will lead to a strain increment of the 
domain: 

∆𝜀𝜀𝑣𝑣,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑛𝑛 𝛼𝛼𝑣𝑣,𝑓𝑓
𝑇𝑇 ∆𝑇𝑇 = 0.012 (5.25) 

And the final displacements, considering 𝑢𝑢𝑧𝑧 = 0, are: 

𝑢𝑢𝑥𝑥,𝑦𝑦 = 𝑢𝑢0 +
∆𝜀𝜀𝑣𝑣,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

2
𝐿𝐿 = 0 + 0.012

2
× 1m = 0.006 m (5.26) 

In addition, the excess fluid pressure due to the inability of the fluid to leave the domain may 
be calculated as: 

∆𝑝𝑝 = 𝐸𝐸′ ∆𝜀𝜀𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 60 kPa (5.27) 

that matches the value obtained in the numerical analysis. 
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d) Drained analysis with 𝜶𝜶𝒔𝒔
𝑻𝑻 = 𝟎𝟎, 𝜶𝜶𝒇𝒇

𝑻𝑻 ≠ 𝟎𝟎, 𝜶𝜶𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩
 = 𝟏𝟏. 𝟎𝟎 and 𝒏𝒏 = 𝟎𝟎. 𝟏𝟏𝟏𝟏 

 In this case 𝛼𝛼𝑠𝑠
𝑇𝑇 = 0℃−1 and 𝛼𝛼𝑓𝑓

𝑇𝑇 = 0.001℃−1. Table 5.4 shows the numerical results at 
the four nodes of the element. Additionally, the computed in-plane effective stresses at the 
Gauss points (𝜎𝜎𝑥𝑥,𝑦𝑦

′ ) are equal to zero. 
 

Table 5.4: Numerical results for the drained analysis with 𝛼𝛼𝑠𝑠
𝑇𝑇 = 0℃−1 and 𝛼𝛼𝑓𝑓

𝑇𝑇 ≠ 0. Compressive pressures and outgoing 
hydraulic flows are positive. 𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

 = 1.0 and 𝑛𝑛 = 0.10. 

Node DISPL-X (m) DISPL-Y (m) PRESSURE (kPa) H-FLOW (m3) 
1 0.00000E+00 0.00000E+00 0.00000E+00 3.00000E-03 
2 0.00000E+00 0.00000E+00 0.00000E+00 3.00000E-03 
3 0.00000E+00 0.00000E+00 0.00000E+00 3.00000E-03 
4 0.00000E+00 0.00000E+00 0.00000E+00 3.00000E-03 

 

 It is possible to obtain the same values analytically. In this case, since the thermal 
expansion of the solid is null (𝛼𝛼𝑠𝑠

𝑇𝑇 = 0℃−1), and the fluid can enter/leave the domain, the 
strains, fluid pressures and stresses increments are null. However, due to the thermal 
expansion of the fluid, there is a flow leaving the domain, with a volume calculated as:  

𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∆𝜀𝜀𝑣𝑣,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐿𝐿3 = �𝑛𝑛 3𝛼𝛼𝑓𝑓
𝑇𝑇 ∆𝑇𝑇�𝐿𝐿3 = 0.012 m3 (5.28) 

that equals the sum of the outgoing flow at the four nodes of the domain obtained in the 
numerical analysis.  

 

e) Undrained analysis with 𝜶𝜶𝒔𝒔
𝑻𝑻 = 𝜶𝜶𝒇𝒇

𝑻𝑻 ≠ 𝟎𝟎, 𝜶𝜶𝑩𝑩𝑩𝑩𝑩𝑩𝒕𝒕
 = 𝟏𝟏. 𝟎𝟎 and 𝒏𝒏 = 𝟎𝟎. 𝟏𝟏𝟏𝟏 

 In this case  𝛼𝛼𝑠𝑠
𝑇𝑇 = 𝛼𝛼𝑓𝑓

𝑇𝑇 = 0.001℃−1. Table 5.5 shows the numerical results at the four 
nodes of the element. Additionally, the computed in-plane effective stresses (𝜎𝜎𝑥𝑥,𝑦𝑦

′ ) at the 
Gauss points are equal to the fluid pressures but with the opposite sign.  
 

Table 5.5: Numerical results for the undrained analysis with 𝛼𝛼𝑠𝑠
𝑇𝑇 = 𝛼𝛼𝑓𝑓

𝑇𝑇 = 0.001℃−1. Compressive pressures and outgoing 
hydraulic flow are positive. 𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

 = 1.0 and 𝑛𝑛 = 0.10. 

Node DISPL-X (m) DISPL-Y (m) PRESSURE (kPa) H-FLOW (m3) 
1 0.00000E+00 0.00000E+00 2.00000E+02 0.00000E+00 
2 6.00000E-02 0.00000E+00 2.00000E+02 0.00000E+00 
3 6.00000E-02 6.00000E-02 2.00000E+02 0.00000E+00 
4 0.00000E+00 6.00000E-02 2.00000E+02 0.00000E+00 

 

 The same values can be obtained analytically. Since the fluid cannot enter or leave the 
domain (undrained analysis), the thermal expansion of the solid and the fluid will lead to a 
strain increment of the domain: 
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∆𝜀𝜀𝑣𝑣 = 𝑛𝑛𝛼𝛼𝑣𝑣,𝑓𝑓
𝑇𝑇 ∆𝑇𝑇 + (1 − 𝑛𝑛)𝛼𝛼𝑣𝑣,𝑠𝑠

𝑇𝑇 ∆𝑇𝑇 = 0.12 (5.29) 

And considering 𝑢𝑢𝑧𝑧 = 0, the final displacements are: 

𝑢𝑢𝑥𝑥,𝑦𝑦 = 𝑢𝑢0 + ∆𝜀𝜀𝑣𝑣
2

𝐿𝐿 = 0 + 0.12
2

× 1m = 0.06 m (5.30) 

Additionally, the stresses in the continuum (and excess fluid pressure) may be obtained as the 
difference between the free thermal mechanical expansion and the real thermal expansion: 

∆𝑝𝑝 = ∆𝜎𝜎𝑥𝑥
′ = ∆𝜎𝜎𝑦𝑦

′ = (0.06 − 0.04)𝐸𝐸′ = 200 kPa (5.31) 

that matches the value obtained in the numerical analysis. 

 

f) Drained analysis with 𝜶𝜶𝒔𝒔
𝑻𝑻 = 𝜶𝜶𝒇𝒇

𝑻𝑻 ≠ 𝟎𝟎, 𝜶𝜶𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩
 = 𝟏𝟏. 𝟎𝟎 and 𝒏𝒏 = 𝟎𝟎. 𝟏𝟏𝟏𝟏 

 In this case 𝛼𝛼𝑠𝑠
𝑇𝑇 = 𝛼𝛼𝑓𝑓

𝑇𝑇 = 0.001℃−1. Table 5.6 shows the numerical results at the four 
nodes of the element. Additionally, the computed in-plane effective stresses at the Gauss 
points (𝜎𝜎𝑥𝑥,𝑦𝑦

′ ) are equal to zero. 

 

Table 5.6: Numerical results for the drained analysis with 𝛼𝛼𝑠𝑠
𝑇𝑇 = 𝛼𝛼𝑓𝑓

𝑇𝑇 = 0.001℃−1. Compressive pressures and outgoing 
hydraulic flow are positive. 𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

 = 1.0 and 𝑛𝑛 = 0.10. 

Node DISPL-X (m) DISPL-Y (m) PRESSURE (kPa) H-FLOW (m3) 
1 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E-02 
2 4.00000E-02 0.00000E+00 0.00000E+00 1.00000E-02 
3 4.00000E-02 4.00000E-02 0.00000E+00 1.00000E-02 
4 0.00000E+00 4.00000E-02 0.00000E+00 1.00000E-02 

 

 The same values can be obtained analytically. Since the problem is drained and fluid can 
enter/leave the domain, a free thermal expansion will occur and the mechanical strain 
increment may be calculated as: 

∆𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚ℎ = 𝛼𝛼𝑠𝑠
𝑇𝑇 ∆𝑇𝑇 = 0.04 (5.32) 

And the final displacements are: 

𝑢𝑢𝑥𝑥,𝑦𝑦 = 𝑢𝑢0 + ∆𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝐿𝐿 = 0.04 × 1m = 0.04 m (5.33) 

which match those obtained numerically. Additionally, since the fluid can enter/leave the 
domain, the excess fluid pressure will be null. 

To obtain the outgoing fluid volume, the volumetric stain increment of the pores may be 
obtained as: 

∆𝜀𝜀𝑣𝑣 = (𝑛𝑛 − 𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵) 𝛼𝛼𝑣𝑣,𝑠𝑠
𝑇𝑇 ∆𝑇𝑇 + 𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵∆𝜀𝜀𝑣𝑣,𝑚𝑚𝑚𝑚𝑚𝑚ℎ = −0.028 (5.34) 
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And the available volume for the fluid is: 

∆𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = ∆𝜀𝜀𝑣𝑣𝐿𝐿3 = −0.028 m3 (5.35) 

In addition, the fluid increment volume is calculated as: 

∆𝑉𝑉𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = ∆𝜀𝜀𝑣𝑣,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐿𝐿3 = �𝑛𝑛 𝛼𝛼𝑣𝑣,𝑠𝑠
𝑇𝑇 ∆𝑇𝑇�𝐿𝐿3 = 0.012 m3 (5.36) 

The difference between the fluid volume increment and the available volume increment for the 
fluid results in the total incoming/outgoing fluid: 

𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∆𝑉𝑉𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − ∆𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 0.04 m3 (5.37) 

that matches the result obtained in the numerical analysis.  

 

g) Undrained analysis with 𝜶𝜶𝒇𝒇
𝑻𝑻 = 𝟏𝟏𝟏𝟏𝜶𝜶𝒔𝒔

𝑻𝑻 ≠ 𝟎𝟎, 𝜶𝜶𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩
 = 𝟏𝟏. 𝟎𝟎 and 𝒏𝒏 = 𝟎𝟎. 𝟏𝟏𝟏𝟏 

 In this case 𝛼𝛼𝑠𝑠
𝑇𝑇 = 0.001℃−1 and 𝛼𝛼𝑓𝑓

𝑇𝑇 = 10𝛼𝛼𝑠𝑠
𝑇𝑇 . Table 5.7 shows the numerical results at 

the four nodes of the element. Additionally, the computed in-plane effective stresses at the 
Gauss points (𝜎𝜎𝑥𝑥,𝑦𝑦

′ ) are equal to the pressures but with the opposite sign. 

 
Table 5.7: Numerical results for the undrained analysis with 𝛼𝛼𝑓𝑓

𝑇𝑇 = 10𝛼𝛼𝑠𝑠
𝑇𝑇 ≠ 0. Compressive pressures and outgoing 

hydraulic flow are positive. 𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
 = 1.0 and 𝑛𝑛 = 0.10. 

Node DISPL-X (m) DISPL-Y (m) PRESSURE (kPa) H-FLOW (m3) 
1 0.00000E+00 0.00000E+00 7.40000E+02 0.00000E+00 
2 1.14000E-01 0.00000E+00 7.40000E+02 0.00000E+00 
3 1.14000E-01 1.14000E-01 7.40000E+02 0.00000E+00 
4 0.00000E+00 1.14000E-01 7.40000E+02 0.00000E+00 

 

 The same values can be obtained analytically. Since the fluid thermal expansion is null 
(𝛼𝛼𝑓𝑓

𝑇𝑇 = 0) and the fluid cannot enter or leave the domain, the pore volume change (Eq 4.40) 
has to be zero, i.e: 

𝑛𝑛 𝛼𝛼𝑣𝑣,𝑠𝑠
𝑇𝑇 ∆𝑇𝑇 + 𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵�∆𝜀𝜀𝑣𝑣 − 𝛼𝛼𝑣𝑣,𝑠𝑠

𝑇𝑇 ∆𝑇𝑇� + 𝑛𝑛 𝛼𝛼𝑣𝑣,𝑓𝑓
𝑇𝑇 ∆𝑇𝑇 = 0 (5.38) 

∆𝜀𝜀𝑣𝑣 = −
(𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

 − 𝑛𝑛)𝛼𝛼𝑣𝑣,𝑠𝑠
𝑇𝑇 ∆𝑇𝑇 + 𝑛𝑛 𝛼𝛼𝑣𝑣,𝑓𝑓

𝑇𝑇 ∆𝑇𝑇
𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

= 0.228 (5.39) 

And considering 𝑢𝑢𝑧𝑧 = 0, the final displacements are: 

𝑢𝑢𝑥𝑥,𝑦𝑦 = 𝑢𝑢0 + ∆𝜀𝜀𝑣𝑣
2

𝐿𝐿 = 0 + 0.228
2

× 1m = 0.114 m (5.40) 
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that match those obtained numerically. Additionally, the in-plane effective stresses in the 
continuum (and excess fluid pressure) may be obtained as the difference between the free 
thermal mechanical expansion and the real thermal expansion: 

∆𝑝𝑝 = ∆𝜎𝜎𝑥𝑥,𝑦𝑦
′ = (0.114 − 0.04)𝐸𝐸′ = 740 kPa (5.41) 

that matches the value obtained in the numerical analysis. 

 

 

h) Drained analysis with 𝜶𝜶𝒇𝒇
𝑻𝑻 = 𝟏𝟏𝟏𝟏𝜶𝜶𝒔𝒔

𝑻𝑻 ≠ 𝟎𝟎, 𝜶𝜶𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩
 = 𝟏𝟏. 𝟎𝟎 and 𝒏𝒏 = 𝟎𝟎. 𝟏𝟏𝟏𝟏 

 In this case 𝛼𝛼𝑠𝑠
𝑇𝑇 = 0.001℃−1 and 𝛼𝛼𝑓𝑓

𝑇𝑇 = 10𝛼𝛼𝑠𝑠
𝑇𝑇 , which is a realistic relation for geomaterials. 

Table 5.8 shows the numerical results at the four nodes of the element. Additionally, the 
computed in-plane effective stresses at the Gauss points (𝜎𝜎𝑥𝑥,𝑦𝑦

′ ) are equal to zero. 

 
Table 5.8: Numerical results for the drained analysis with 𝛼𝛼𝑓𝑓

𝑇𝑇 = 10𝛼𝛼𝑠𝑠
𝑇𝑇 ≠ 0. Compressive pressures and outgoing 

hydraulic flow are positive. 𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
 = 1.0 and 𝑛𝑛 = 0.10. 

Node DISPL-X (m) DISPL-Y (m) PRESSURE (kPa) H-FLOW (m3) 
1 0.00000E+00 0.00000E+00 0.00000E+00 3.70000E-02 
2 4.00000E-02 0.00000E+00 0.00000E+00 3.70000E-02 
3 4.00000E-02 4.00000E-02 0.00000E+00 3.70000E-02 
4 0.00000E+00 4.00000E-02 0.00000E+00 3.70000E-02 

 

 The same values can be obtained analytically. Since the problem is drained and fluid can 
enter/leave the domain, a free thermal expansion will occur and the mechanical strain 
increment and the final displacements are the same obtained by Eqs. (5.32) and (5.33), that 
match those obtained numerically. Additionally, since the fluid can leave the domain, the 
excess fluid pressure will be null.  

The pore volume increment is the same as calculated in Eqs. (5.34) and (5.35). In addition, 
the fluid volume increment is: 

∆𝑉𝑉𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = ∆𝜀𝜀𝑣𝑣,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐿𝐿3 = �𝑛𝑛 𝛼𝛼𝑣𝑣,𝑓𝑓
𝑇𝑇 ∆𝑇𝑇�𝐿𝐿3 = 0.12 m3 (5.42) 

The difference between the fluid volume expansion and the pore volume expansion results in 
the total entering/outgoing fluid: 

𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∆𝑉𝑉𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − ∆𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 0.148 m3 (5.43) 

that matches the result obtained in the numerical analysis.  
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i) Undrained analysis with 𝜶𝜶𝒇𝒇
𝑻𝑻 ≠ 𝟎𝟎, 𝜶𝜶𝒔𝒔

𝑻𝑻 = 𝟎𝟎 and 𝜶𝜶𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩
 = 𝒏𝒏 = 𝟎𝟎. 𝟐𝟐𝟐𝟐 

 In this case 𝛼𝛼𝑠𝑠
𝑇𝑇 = 0℃−1 and 𝛼𝛼𝑓𝑓

𝑇𝑇 = 0.001℃−1. Table 5.9 shows the numerical results at 
the four nodes of the element. Additionally, the computed in-plane effective stresses at the 
Gauss points are 𝜎𝜎𝑥𝑥,𝑦𝑦

′ = 600 kPa. 
 

Table 5.9: Numerical results for the undrained analysis with 𝛼𝛼𝑠𝑠
𝑇𝑇 = 0℃−1 and 𝛼𝛼𝑓𝑓

𝑇𝑇 = 0.001℃−1. Compressive pressures 
and outgoing hydraulic flow are positive. 𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

 = 𝑛𝑛 = 0.20. 

Node DISPL-X (m) DISPL-Y (m) PRESSURE (kPa) H-FLOW (m3) 
1 0.00000E+00 0.00000E+00 3.00000E+03 0.00000E+00 
2 6.000000E-02 0.00000E+00 3.00000E+03 0.00000E+00 
3 6.000000E-02 6.000000E-01 3.00000E+03 0.00000E+00 
4 0.00000E+00 6.000000E-01 3.00000E+03 0.00000E+00 

 

 The same values can be obtained analytically. Since the coefficient of thermal expansion 
for the solids is equal to zero (𝛼𝛼𝑠𝑠

𝑇𝑇 = 0℃−1), the total strain increment comes from the fluid 
thermal expansion and may be calculated as: 

∆𝜀𝜀𝑣𝑣,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝛼𝛼𝑣𝑣,𝑓𝑓
𝑇𝑇 ∆𝑇𝑇 = 0.06 (5.44) 

And the final displacements: 

𝑢𝑢𝑥𝑥,𝑦𝑦 = 𝑢𝑢0 + ∆𝜀𝜀𝑣𝑣,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐿𝐿 = 0 + 0.06 × 1m = 0.06 m (5.45) 

that match those obtained numerically. Additionally, the in-plane effective stress increment 
may be calculated as: 

∆𝜎𝜎𝑥𝑥,𝑦𝑦
′ = ∆𝜀𝜀𝑣𝑣,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐸𝐸′ = 600 kPa (5.46) 

that also match the effective stress increment obtained from the numerical analysis. Finally, 
the pressure increment may be obtained as: 

𝜎𝜎𝑥𝑥,𝑦𝑦
′ = 𝜎𝜎𝑥𝑥,𝑦𝑦

 + 𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑝𝑝 →  Δ𝑝𝑝 =
∆𝜎𝜎𝑥𝑥,𝑦𝑦

′

𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 
= 600 kPa

0.20
= 3000 kPa (5.47) 

 

 

j) Drained analysis with 𝜶𝜶𝒇𝒇
𝑻𝑻 ≠ 𝟎𝟎, 𝜶𝜶𝒔𝒔

𝑻𝑻 = 𝟎𝟎 and 𝜶𝜶𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩
 = 𝒏𝒏 = 𝟎𝟎. 𝟐𝟐𝟐𝟐 

 In this case 𝛼𝛼𝑠𝑠
𝑇𝑇 = 0℃−1 and 𝛼𝛼𝑓𝑓

𝑇𝑇 = 0.001℃−1, which is a realistic relation for 
geomaterials. Table 5.10 shows the numerical results at the four nodes of the element. 
Additionally, the computed in-plane effective stresses at the Gauss points (𝜎𝜎𝑥𝑥,𝑦𝑦

′ ) are equal to 
zero. 
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Table 5.10: Numerical results for the drained analysis with 𝛼𝛼𝑠𝑠
𝑇𝑇 = 0℃−1 and 𝛼𝛼𝑓𝑓

𝑇𝑇 = 0.001℃−1. Compressive pressures 
and outgoing hydraulic flow are positive. 𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

 = 𝑛𝑛 = 0.20. 

Node DISPL-X (m) DISPL-Y (m) PRESSURE (kPa) H-FLOW (m3) 
1 0.00000E+00 0.00000E+00 0.00000E+00 6.00000E-03 
2 0.00000E+00 0.00000E+00 0.00000E+00 6.00000E-03 
3 0.00000E+00 0.00000E+00 0.00000E+00 6.00000E-03 
4 0.00000E+00 0.00000E+00 0.00000E+00 6.00000E-03 

 

 The same values can be obtained analytically. Since the problem is drained and fluid can 
enter/leave the domain, a free thermal expansion will occur and the mechanical strain 
increment may be calculated as: 

∆𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚ℎ = 𝛼𝛼𝑠𝑠
𝑇𝑇 ∆𝑇𝑇 = 0.00 (5.48) 

And the final displacements will be null, matching the numerical result. Additionally, since 
the fluid can enter/leave the domain, the excess fluid pressure will be null. 

To obtain the incoming fluid volume, considering that 𝛼𝛼𝑠𝑠
𝑇𝑇 = 0 and that the pore volume 

remains constant (∆𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 0), the volumetric strain increment of the fluid is calculated as: 

∆𝜀𝜀𝑣𝑣,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 3𝛼𝛼𝑓𝑓
𝑇𝑇 ∆𝑇𝑇 = 0.12  (5.49) 

and the volume expansion increment of the fluid: 

∆𝑉𝑉𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑛𝑛 ∆𝜀𝜀𝑣𝑣,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐿𝐿3 = 0.024 m3 (5.50) 

The difference between the fluid volume expansion and the pore volume expansion results in 
the total incoming/outcoming fluid volume from the domain: 

𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∆𝑉𝑉𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − ∆𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 0.024 m3 (5.51) 

that is the fluid leaving the domain matching the sum of the outgoing flow at the four nodes 
of the domain obtained in the numerical analysis.  

 

Verification example 5: Thermo-hydro-mechanical coupling in continuum 
medium. 

 This verification example has been carried out in order to verify the transient thermo-
hydro-mechanical coupling of the model in a porous continuum medium. The geometry 
consists of a domain of 1×1m, discretized with 100 quadrilateral continuum elements.  

 The analysis is divided in two steps. The first step consists in the application of a 
temperature increment of 40℃ to the whole domain while the flow is prescribed at the 
boundaries (undrained analysis). In the second step, flow is allowed at the boundaries 
(drained analysis) and a transient analysis is performed until reaching steady-state conditions. 
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The geometry, the initial and boundary conditions for both steps and the material parameters 
used in the numerical analysis are presented in Figure 5.15. In addition, the effect of the 
gravity is omitted and linear elasticity is assumed under plane strain conditions.  

 

 
(a) step 1  

 
(b) step 2 

𝐸𝐸′ = 10 MPa     
 𝜈𝜈′ = 0.0 
𝐾𝐾𝑓𝑓 = 𝐾𝐾𝑠𝑠 = 3 · 1012kPa 
𝛾𝛾𝑓𝑓 = 10 kN/m3 
𝜇𝜇 = 1 · 10−11 kPa · d 
𝑘𝑘 

𝑝𝑝 = 1.5 · 10−13 m2 
𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 1.0 
𝛼𝛼𝑠𝑠

𝑇𝑇 = 0.0℃−1 

𝛼𝛼𝑓𝑓
𝑇𝑇 = 0.001℃−1 

𝑐𝑐 = 1 · 10−3 J/(kg · ℃) 
𝜌𝜌 = 1 Tn/m3 
𝑘𝑘 

𝑇𝑇 = 1.5 J/(m · ℃ · s) 

Figure 5.15: Mesh, initial and boundary conditions and material parameters for the THM verification problem. 

 

 In a first step a temperature increment of 40℃ is applied to the whole domain 
considering undrained conditions (Figure 5.15.a). The numerical results of this step are: 

∆𝑢𝑢𝑥𝑥,𝑚𝑚𝑚𝑚𝑚𝑚 = 0.006 m       ∆𝑢𝑢𝑦𝑦,𝑚𝑚𝑚𝑚𝑚𝑚 = 0.006 m       ∆𝑝𝑝 = 60 kPa       𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0 m3 

 It is also possible to obtain these values analytically. In this case, since the thermal 
expansion of the solid is null (𝛼𝛼𝑠𝑠

𝑇𝑇 = 0℃−1), and the fluid cannot leave the domain (undrained 
analysis), the thermal expansion of the fluid will lead to a strain increment of the domain: 

∆𝜀𝜀𝑣𝑣 = 𝑛𝑛 𝛼𝛼𝑣𝑣,𝑓𝑓
𝑇𝑇 ∆𝑇𝑇 = 0.012 (5.52) 

and considering 𝑢𝑢𝑧𝑧 = 0, the final displacements are: 

𝑢𝑢(𝑥𝑥,𝑦𝑦),𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑢𝑢0 + ∆𝜀𝜀𝑣𝑣
2

𝐿𝐿 = 0 + 0.012
2

× 1m = 0.006 m (5.53) 

that match those obtained in the numerical analysis. In addition, the excess fluid pressure due 
to the inability of the fluid to leave the domain may be calculated as: 

∆𝑝𝑝 = 𝐸𝐸′ ∆𝜀𝜀𝑣𝑣 = 60 kPa (5.54) 

that matches the value obtained in the numerical analysis. 

 In the second step the flow is allowed at the boundaries (Figure 5.15.b) and the transient 
analysis is performed until reaching steady-state conditions (drained analysis). The thermal 
strain increment and the excess fluid pressure generated during the first step will decrease 
until reaching the initial configuration of pressures and displacements, as shown in Figure 
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5.16. This process will lead to an outgoing flow from the domain as in a consolidation 
analysis.  

 The total fluid volume that leaves the domain at the end of the second step (steady-
state) is proportional to the increment of thermal expansion of the fluid during the first step, 
and may be calculated analytically as: 

∆𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∆𝜀𝜀𝑣𝑣𝐿𝐿3 = 𝑛𝑛 𝛼𝛼𝑣𝑣,𝑓𝑓
𝑇𝑇 ∆𝑇𝑇𝐿𝐿3 = 0.012 m3 (5.55) 

that matches the volume obtained from the numerical analysis.  

 

     
(a) t = 0 days                      (b) t = 0.25 days                      (c)  t = 0.25 days 

 

           
         (d) t = 0.45 days                       (e) t = 0.85 days                         (f)  t → ∞ 

Figure 5.16: Fluid pressure evolution in deformed mesh during the second step (factor x50). 

 

Verification example 6: 3-D thermo-hydro-mechanical coupling in continuum 
medium. 

The objective of this example is to verify the thermo-hydro-mechanical coupling of the model 
in 3-D, specifically the hydraulic and mechanical behaviour when a temperature increment is 
applied in the porous medium and the solid and fluid tend to change their volume due to 
thermal expansions. 

 For simplicity, the geometry consists of a domain of 1×1×1m discretized with a single 
cubic continuum element. This verification example includes four cases in terms of the fluid 
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restrictions (drained and undrained analysis) and the mechanical restrictions (free expansion 
and with restricted expansion in the vertical direction).  

• Undrained analysis under free thermal expansion conditions (Figure 5.17.a) 
• Drained analysis under free thermal expansion conditions (Figure 5.17.b) 
• Undrained analysis with restricted thermal vertical expansion (Figure 5.17.c) 
• Drained analysis with restricted thermal vertical expansion (Figure 5.17.d) 

 For the numerical analysis linear elasticity is assumed under conditions of plane strain 
with material parameters 𝐸𝐸′ = 10000 kPa, 𝜈𝜈′ = 0.0, 𝛼𝛼𝑠𝑠

𝑇𝑇 = 𝛼𝛼𝑓𝑓
𝑇𝑇 = 0.001℃−1, 𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

 = 1.0  and 
𝑛𝑛 = 0.1. Additionally, the effect of the gravity is omitted for both mechanical and hydraulic 
problems. The temperature increment applied is the same in all cases and equal to 40℃. 

 

  
(a) Boundary conditions for the undrained analysis and 

free thermal expansion 
(b) Boundary conditions for the drained analysis and free 

thermal expansion 
 
 

  
(c) Boundary conditions for the undrained analysis with 

restricted thermal expansion in Z. 
(d) Boundary conditions for the drained analysis with 

restricted thermal expansion in Z. 

Figure 5.17: Mesh and boundary conditions for the 3-D THM verification example. 
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For the undrained analysis it is assumed that the flow is restricted at the boundaries 
(hydraulic flow equal to zero) and therefore the fluid cannot enter or leave the domain. For 
the drained analysis, the fluid flow is allowed at the boundaries (fluid pressure equal to zero 
imposed at the four nodes of the element) and therefore the fluid can enter or leave the 
domain. 

 

a) Undrained analysis and free thermal expansion 

 Table 5.11 shows the numerical results at the eight nodes of the element with the 
boundary conditions shown in Figure 5.17.a. Additionally, the computed effective stresses at 
Gauss points are equal to zero. 

 
Table 5.11: Numerical results for the 3-D undrained analysis with free thermal expansion and 𝛼𝛼𝑠𝑠

𝑇𝑇 = 𝛼𝛼𝑓𝑓
𝑇𝑇 = 0. 001℃−1. 

Compressive pressures and outgoing hydraulic flow are positive. 𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
 = 1.0 and 𝑛𝑛 = 0.10. 

Node DISPL-X (m) DISPL-Y (m) DISPL-Z (m) PRESSURE (kPa) H-FLOW (m3) 
1 0.00000E+00 4.00000E-02 4.00000E-02 0.00000E+00 0.00000E+00 
2 0.00000E+00 0.00000E+00 4.00000E-02 0.00000E+00 0.00000E+00 
3 0.00000E+00 4.00000E-02 0.00000E+00 0.00000E+00 0.00000E+00 
4 4.00000E-02 4.00000E-02 4.00000E-02 0.00000E+00 0.00000E+00 
5 4.00000E-02 0.00000E+00 4.00000E-02 0.00000E+00 0.00000E+00 
6 4.00000E-02 4.00000E-02 0.00000E+00 0.00000E+00 0.00000E+00 
7 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 
8 4.00000E-02 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 

 

 The same values can be obtained analytically. Since the fluid cannot enter or leave the 
domain (undrained analysis), the thermal expansion of the fluid will lead to a strain 
increment of the domain: 

∆𝜀𝜀𝑣𝑣 = 𝛼𝛼𝑣𝑣,𝑓𝑓
𝑇𝑇 ∆𝑇𝑇 = 0.12 (5.56) 

And the final displacements are: 

𝑢𝑢𝑥𝑥,𝑦𝑦,𝑧𝑧 = 𝑢𝑢0 + ∆𝜀𝜀𝑣𝑣
3

𝐿𝐿 = 0 + 0.12
3

× 1m = 0.04 m (5.57) 

Additionally, stresses in the continuum (and excess fluid pressure) may be obtained as the 
difference between the free thermal mechanical expansion and the real expansion: 

∆𝑝𝑝 = ∆𝜎𝜎′ = (0.04 − 0.04)𝐸𝐸′ = 0 kPa (5.58) 

that matches the value obtained in the numerical analysis. 
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b) Drained analysis and free thermal expansion 

 Table 5.12 shows the numerical results at the eight nodes of the element with the 
boundary conditions shown in Figure 5.17.b. Additionally, the computed effective stresses at 
Gauss points are equal to zero. 

 

Table 5.12: Numerical results for the 3-D drained analysis with free thermal expansion and 𝛼𝛼𝑠𝑠
𝑇𝑇 = 𝛼𝛼𝑓𝑓

𝑇𝑇 = 0. 001℃−1. 
Compressive pressures and outgoing hydraulic flow are positive. 𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

 = 1.0 and 𝑛𝑛 = 0.10. 

Node DISPL-X (m) DISPL-Y (m) DISPL-Z (m) PRESSURE (kPa) H-FLOW (m3) 
1 0.00000E+00 4.00000E-02 4.00000E-02 0.00000E+00 0.00000E+00 
2 0.00000E+00 0.00000E+00 4.00000E-02 0.00000E+00 0.00000E+00 
3 0.00000E+00 4.00000E-02 0.00000E+00 0.00000E+00 0.00000E+00 
4 4.00000E-02 4.00000E-02 4.00000E-02 0.00000E+00 0.00000E+00 
5 4.00000E-02 0.00000E+00 4.00000E-02 0.00000E+00 0.00000E+00 
6 4.00000E-02 4.00000E-02 0.00000E+00 0.00000E+00 0.00000E+00 
7 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 
8 4.00000E-02 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 

 

 The same values can be obtained analytically. Since the problem is drained and fluid can 
enter/leave the domain, a free thermal expansion will occur and the mechanical strain 
increment may be calculated as: 

∆𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚ℎ = 𝛼𝛼𝑠𝑠
𝑇𝑇 ∆𝑇𝑇 = 0.04 (5.59) 

Then the final displacements are: 

𝑢𝑢𝑥𝑥,𝑦𝑦 = 𝑢𝑢0 + ∆𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝐿𝐿 = 0.04 × 1m = 0.04 m (5.60) 

which match those obtained numerically. Additionally, since the fluid can enter/leave the 
domain, the excess fluid pressure will be null. To obtain the incoming/outgoing fluid volume, 
the volumetric stain increment of the pores may be obtained as: 

∆𝜀𝜀𝑣𝑣,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = (𝑛𝑛 − 𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵) 𝛼𝛼𝑣𝑣,𝑠𝑠
𝑇𝑇 ∆𝑇𝑇 + 𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵∆𝜀𝜀𝑣𝑣,𝑚𝑚𝑚𝑚𝑚𝑚ℎ = 0.012 (5.61) 

And the available volume for the fluid is obtained as: 

∆𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = ∆𝜀𝜀𝑣𝑣,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐿𝐿3 = 0.012 m3 (5.62) 

In addition, the volume increment of the fluid is calculated as: 

∆𝑉𝑉𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = ∆𝜀𝜀𝑣𝑣,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐿𝐿3 = �𝑛𝑛 𝛼𝛼𝑣𝑣,𝑠𝑠
𝑇𝑇 ∆𝑇𝑇�𝐿𝐿3 = 0.012 m3 (5.63) 

The difference between the volume expansion increment of the fluid and the available volume 
increment for the fluid results in the total incoming/outgoing fluid: 
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𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∆𝑉𝑉𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − ∆𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 0.0 m3 (5.64) 

that matches the result obtained in the numerical analysis.  

 

c) Undrained analysis with restricted in the vertical direction 

 Table 5.13 shows the numerical results at the eight nodes of the element with the 
boundary conditions shown in Figure 5.17.c. Additionally, the computed effective stresses at 
Gauss points are 𝜎𝜎𝑥𝑥

′ = 𝜎𝜎𝑦𝑦
′ = 200 kPa and 𝜎𝜎𝑧𝑧

′ = −400 kPa. 
 

Table 5.13: Numerical results for the 3-D undrained analysis with restricted expansion in Z and 𝛼𝛼𝑠𝑠
𝑇𝑇 = 𝛼𝛼𝑓𝑓

𝑇𝑇 = 0. 001℃−1. 
Compressive pressures and outgoing hydraulic flow are positive. 𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

 = 1.0 and 𝑛𝑛 = 0.10. 

Node DISPL-X (m) DISPL-Y (m) DISPL-Z (m) PRESSURE (kPa) H-FLOW (m3) 
1 0.00000E+00 6.00000E-02 0.00000E+00 2.00000E+02 0.00000E+00 
2 0.00000E+00 0.00000E+00 0.00000E+00 2.00000E+02 0.00000E+00 
3 0.00000E+00 6.00000E-02 0.00000E+00 2.00000E+02 0.00000E+00 
4 6.00000E-02 6.00000E-02 0.00000E+00 2.00000E+02 0.00000E+00 
5 6.00000E-02 0.00000E+00 0.00000E+00 2.00000E+02 0.00000E+00 
6 6.00000E-02 6.00000E-02 0.00000E+00 2.00000E+02 0.00000E+00 
7 0.00000E+00 0.00000E+00 0.00000E+00 2.00000E+02 0.00000E+00 
8 6.00000E-02 0.00000E+00 0.00000E+00 2.00000E+02 0.00000E+00 

 

 The same values can be obtained analytically. Since the fluid cannot enter or leave the 
domain (undrained analysis), the thermal expansion of the fluid will lead to a strain 
increment of the domain: 

∆𝜀𝜀𝑣𝑣 = 𝛼𝛼𝑣𝑣,𝑓𝑓
𝑇𝑇 ∆𝑇𝑇 = 0.12 (5.65) 

And considering that 𝑢𝑢𝑧𝑧 = 0, the final displacements are: 

𝑢𝑢𝑥𝑥,𝑦𝑦 = 𝑢𝑢0 + ∆𝜀𝜀𝑣𝑣
2

𝐿𝐿 = 0 + 0.12
2

× 1m = 0.06 m (5.66) 

Additionally, the in-plane continuum effective stresses 𝜎𝜎𝑧𝑧,𝑦𝑦
′  (and excess fluid pressure) may be 

obtained as the difference between the free thermal mechanical expansion and the real 
expansion: 

∆𝑝𝑝 = ∆𝜎𝜎𝑥𝑥,𝑦𝑦
′ = (0.06 − 0.04)𝐸𝐸′ = 200 kPa (5.67) 

that matches the value obtained in the numerical analysis. The out-of-plane effective 𝜎𝜎𝑧𝑧
′  may 

be computed in the same way: 

∆𝜎𝜎𝑧𝑧
′ = (0.00 − 0.04)𝐸𝐸′ = −400 kPa (5.68) 

that also matches the value obtained in the numerical analysis. 
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 It is important to note that this example is equivalent to the 2-D analysis presented in 
Verification example 4 e) (Table 5.5), computed under plane strain conditions, and leads to 
the same results. 

 

d) Drained analysis with restricted in the vertical direction 

 Table 5.14 shows the numerical results at the eight nodes of the element with the 
boundary conditions shown in Figure 5.17.d. Additionally, the computed effective stresses at 
Gauss points are 𝜎𝜎𝑥𝑥

′ = 𝜎𝜎𝑦𝑦
′ = 0 kPa and 𝜎𝜎𝑧𝑧

′ = −400 kPa. 

 

Table 5.14: Numerical results for the 3-D drained analysis with restricted expansion in Z and 𝛼𝛼𝑠𝑠
𝑇𝑇 = 𝛼𝛼𝑓𝑓

𝑇𝑇 = 0. 001℃−1. 
Compressive pressures and outgoing hydraulic flow are positive. 𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

 = 1.0 and 𝑛𝑛 = 0.10. 

Node DISPL-X (m) DISPL-Y (m) DISPL-Z (m) PRESSURE (kPa) H-FLOW (m3) 
1 0.00000E+00 4.00000E-02 0.00000E+00 0.00000E+00 5.00000E-03 
2 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 5.00000E-03 
3 0.00000E+00 4.00000E-02 0.00000E+00 0.00000E+00 5.00000E-03 
4 4.00000E-02 4.00000E-02 0.00000E+00 0.00000E+00 5.00000E-03 
5 4.00000E-02 0.00000E+00 0.00000E+00 0.00000E+00 5.00000E-03 
6 4.00000E-02 4.00000E-02 0.00000E+00 0.00000E+00 5.00000E-03 
7 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 5.00000E-03 
8 4.00000E-02 0.00000E+00 0.00000E+00 0.00000E+00 5.00000E-03 

 

 The same values can be obtained analytically. Since the problem is drained and fluid can 
enter or leave the domain, a free thermal expansion will occur and the mechanical strain 
increment may be calculated as: 

∆𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚ℎ = 𝛼𝛼𝑠𝑠
𝑇𝑇 ∆𝑇𝑇 = 0.04 (5.69) 

Then the final displacements are: 

𝑢𝑢𝑥𝑥,𝑦𝑦 = 𝑢𝑢0 + ∆𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝐿𝐿 = 0.04 × 1m = 0.04 m (5.70) 

which match those obtained numerically. Additionally, since the fluid can enter/leave the 
domain, the excess fluid pressure will be null. To obtain the entering/outgoing fluid volume, 
the volumetric strain increment of the pores may be obtained as: 

∆𝜀𝜀𝑣𝑣,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = (𝑛𝑛 − 𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵) 𝛼𝛼𝑣𝑣,𝑠𝑠
𝑇𝑇 ∆𝑇𝑇 + 𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵∆𝜀𝜀𝑣𝑣,𝑚𝑚𝑚𝑚𝑚𝑚ℎ = −0.028 (5.71) 

And the available volume for the fluid is obtained as: 

∆𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = ∆𝜀𝜀𝑣𝑣,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐿𝐿3 = −0.028 m3 (5.72) 

In addition, the volume increment of the fluid is calculated as: 
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∆𝑉𝑉𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = ∆𝜀𝜀𝑣𝑣,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐿𝐿3 = �𝑛𝑛 𝛼𝛼𝑣𝑣,𝑓𝑓
𝑇𝑇 ∆𝑇𝑇�𝐿𝐿3 = 0.012 m3 (5.73) 

The difference between the volume expansion increment of the fluid and the available volume 
increment for the fluid results in the total entering/outgoing fluid: 

𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∆𝑉𝑉𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − ∆𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 0.04 m3 (5.74) 

Additionally, the out-of-plane effective stresses 𝜎𝜎𝑧𝑧
′  may be calculated as the difference between 

the free thermal mechanical expansion and the real expansion: 

∆𝜎𝜎𝑧𝑧
′ = (0.00 − 0.04)𝐸𝐸′ = −400 kPa (5.75) 

that matches the value obtained in the numerical analysis. 

 It is important to note that this example is equivalent to the 2-D analysis presented in 
Verification example 4 f) (Table 5.6), computed under plane strain conditions, and leads to 
the same results. 

 

5.1.2. THM model verification examples in interfaces 

This section presents three verification examples of the THM fully-coupled model with large 
advection developed in Chapter 4 for the zero-thickness interface elements. Summarizing, the 
main verifications are focused on: 

1) the advective heat transport with the hydraulic flow using the 𝛼𝛼-Implicit Characteristic 
Galerkin Method (hydro-thermal coupling) and, 

2) the influence of thermal fluid expansion, specifically in the pressure and stress-strain 
variations and the generated flow (thermo-hydro-mechanical coupling). 

 

Verification example 7: Hydro-Thermal coupling in interfaces without fluid 
thermal expansion and constant fluid viscosity 

 The objective of this example is to verify the hydro-thermal coupling of the model in 
zero-thickness interface elements, specifically the stability of the advection phenomenon that 
occurs due to the existence of the fluid flow and its correct velocity transport. For simplicity, 
the following assumptions are made: pure advection, constant fluid viscosity, no volume 
change of the fluid due to thermal effects (𝛼𝛼𝑓𝑓

𝑇𝑇 = 0℃−1) and gravity omitted for the hydraulic 
problem. 

 The geometry consists of a domain of 450m, discretized with 180 zero-thickness interface 
elements, as shown in Figure 5.18 with the material parameters of the numerical analysis. 
Constant hydraulic conductivity is assumed. 
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𝐾𝐾𝑓𝑓 =  3 · 1012 kPa 
𝛾𝛾𝑓𝑓 = 10 kN/m3 

𝜇𝜇 = 1 · 10−11kPa · s  
𝛼𝛼𝑓𝑓

𝑇𝑇 = 0℃−1 

𝑐𝑐 = 700 J/(kg · ℃) 
𝜌𝜌 = 1000 kg/m3 

𝑘𝑘L
𝑇𝑇 = 0 J/(m · ℃ · s) 
𝑘𝑘L

𝑝𝑝 = 9 · 10−12 m2 

𝑘𝑘T
𝑇𝑇 = 0 J/(m2 · ℃ · s) 
𝑘𝑘T

𝑝𝑝 = 1 · 10−5 s−1  

𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼
 = 0.25 

𝑟𝑟𝑁𝑁
 = 0.1 m 

Figure 5.18: Mesh and material properties of the HT verification example. 

 

 In a first step the temperature of the domain is equal to zero and the steady-state 
hydraulic problem is solved considering the boundary conditions shown in Figure 5.19. The 
results of this step are shown in Figure 5.20 (lineal distribution of fluid pressures), with Darcy 
velocity equal to 0.006 m/s (from the left to the right). This value can also be obtained 
analytically as: 

𝑞𝑞𝐿𝐿
𝑝𝑝 = −𝑟𝑟𝑁𝑁

 𝑘𝑘L
𝑝𝑝

𝜇𝜇𝑓𝑓 �Δ𝑝𝑝
𝐿𝐿

� = −0.1 m 9 · 10−12 m2

1 · 10−11 kPa · s
�20 − 50 kPa

450 m
� = 0.006 m/s (5.76) 

that matches the value obtained in the numerical analysis. 

 

 
Figure 5.19: Boundary conditions for the first step of the HT verification example. 

 

   
Figure 5.20: Fluid pressure distribution for the first step of the HT verification example. 

 

 In a second step, a Gaussian distribution of temperatures (with a maximum value of 
40℃) is applied as a Dirichlet condition while the fluid flow remains constant (Figure 5.21).  
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Figure 5.21: Boundary conditions for the second step of the HT verification example (Legend in Figure 5.23). 

 

 The thermal conductivity is assumed equal to zero and therefore the Péclet number tends 
to infinite (pure advection thermal problem). The transient problem is carried out with time 
increments ∆𝑡𝑡 = 350 s. The Courant number in all the elements of the mesh is less than 1 
(𝐶𝐶 = 0.84), which is a necessary condition to obtain a non-oscillatory result using the method 
of characteristics. 

 As the time passes, the initial temperature distribution has to move from left to right 
with the correct velocity (0.006 m/s) and keeping the initial temperature distribution profile. 
The result of the analysis is shown in Figure 5.22 and Figure 5.23 for different times. These 
figures show that the method maintains the initial distribution of temperatures with small 
oscillations of ±0.10℃ at the top of the “bell”. 
 

 

(a) t = 0 s. 

 

(b) t = 20650 s. 

 

(c) t = 41300 s. 

 

(d) t = 63700 s. 

Figure 5.22: Distribution of temperatures using the 𝛼𝛼-ICG Method for different times using 𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼 = 1/4. 

 

 The last verification consists in checking whether the velocity applied to the thermal 
distribution matches the Darcy velocity of the fluid. For example, for ∆𝑡𝑡 =  41300 s and 
knowing that the Darcy velocity of the fluid is 𝑞𝑞L

𝑝𝑝 = 0.006 m/s, the top of the “bell” of the 
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initial distribution has moved to the right ∆𝐿𝐿 = 𝑞𝑞L
𝑝𝑝 ∆𝑡𝑡 = 247.80 m, which matches the 

displacement of the initial temperature distribution, as shown in Figure 5.22. 

 

 

(a) t = 0 s. 

 

(b) t = 20650 s. 

 

(c) t = 41300 s. 

 

(d) t = 63700 s. 
 

Figure 5.23: Distribution of temperatures using the 𝛼𝛼-ICG Method for different times using 𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼 = 1/4. 

 

 Additionally, during the transient analysis the pressure and Darcy velocity remain 
constant as expected with the hypothesis of the problem (constant viscosity of the fluid and 
no volume change of the fluid due to its thermal expansion). 

 
Verification example 8: Hydro-mechanical coupling in interface elements 

 In order to verify the hydro-mechanical coupling of the model, a one-dimensional 
consolidation problem of a discontinuity has been carried out. This example is based on a 
verification example of the HM model that appears in (Segura, 2007). 

 The geometry consists of a domain of 1m, discretized with 10 zero-thickness interfaces. 
The geometry, the initial and boundary conditions and the material parameters are shown in 
Figure 5.24. The initial fluid pressure is null and the interface is loaded with 15 kPa. 
Consolidation begins immediately after application of the load. Linear elasticity and constant 
longitudinal hydraulic conductivity are assumed. 

 

         
𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

𝐾𝐾𝑛𝑛 = 20000 kPa/m 

𝐾𝐾𝑓𝑓 =  3 · 1012 kPa 

𝛾𝛾𝑓𝑓 = 10 kN/m3 
𝜇𝜇 = 1 · 10−11 kPa · d 
𝑘𝑘L

𝑝𝑝 = 1.08 · 10−12 m2 

𝑟𝑟𝑁𝑁 = 0.01 m 
𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 1.0 

𝑀𝑀𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 1 · 1010 

Figure 5.24: Mesh, initial and boundary conditions and material parameters for the HM verification problem. 
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  The fluid pressure evolution with time can be calculated analytically combining the 
fluid mass balance equation and Darcy’s law, obtaining the following expression, analogous to 
the one obtained for the continuum media (Segura, 2007): 

𝑝𝑝 = � 2𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖
𝑀𝑀

𝑚𝑚=∞

𝑚𝑚=0
sin(𝑀𝑀X) · 𝑒𝑒−𝑀𝑀2𝑇𝑇  (5.77) 

where 𝑀𝑀 = 𝜋𝜋
2 (2𝑚𝑚 + 1)  with  𝑚𝑚 = 0,1, 2, … and 𝐶𝐶𝑣𝑣 is the consolidation coefficient defined as: 

𝐶𝐶𝑣𝑣 = 𝐾𝐾𝑛𝑛𝑟𝑟𝑁𝑁
𝑘𝑘L

𝑝𝑝

𝜇𝜇
 (5.78) 

and the dimensionless variables X and T are:: 

𝑋𝑋 = 𝑥𝑥
𝐿𝐿

 (5.79) 

𝑇𝑇 = 𝐶𝐶𝑣𝑣𝑡𝑡
𝐿𝐿2  (5.80) 

 In order to obtain the same fluid pressure distribution than in the continuum medium 
consolidation example, the same value of the consolidation coefficient must be used for both 
cases. Assuming a constant interface aperture of 𝑟𝑟𝑁𝑁 = 0.01 m, the longitudinal permeability 
for the interface must be: 

𝑘𝑘 
𝑝𝑝

𝜇𝜇
𝐸𝐸𝑚𝑚 = 𝐾𝐾𝑛𝑛𝑟𝑟𝑁𝑁

𝑘𝑘L
𝑝𝑝

𝜇𝜇
  ⇒  𝑘𝑘L

𝑝𝑝 = 1.08 · 10−12 m2 (5.81) 

 

 
Figure 5.25: Fluid pressure distributions with depth at different times. 
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 Figure 5.25 shows the fluid pressure distribution for different times, in which the 
analytical and the numerical solutions are practically identical and equal to those obtained for 
the consolidation example in continuum medium (Figure 5.12). 

 

Verification example 9: Thermo-hydro-mechanical coupling in zero-thickness 
interface elements 

  The objective of this example is to verify the thermo-hydro-mechanical coupling of the 
model, specifically the hydraulic and mechanical behaviour when a temperature increment is 
applied to an interface and the fluid tends to change its volume due to thermal expansions. 

 For simplicity, the geometry consists of a domain of 1m discretized with a single zero-
thickness interface element. This verification example includes two cases in terms of the 
boundary conditions (drained and undrained analysis), that are shown in Figure 5.26. 

 For the numerical analysis, linear elasticity is assumed under conditions of plane strain 
with material parameter 𝐾𝐾𝑛𝑛 = 200000 kPa/m. Additionally, the effect of the gravity is 
omitted. The temperature increment applied is the same for both cases and equal to 40℃. 

 

           

(a) Boundary conditions for the undrained analysis. (b) Boundary conditions for the drained analysis. 

Figure 5.26: Mesh and boundary conditions for the THM verification example. 

 

a) Drained analysis  

 In this case 𝛼𝛼𝑓𝑓
𝑇𝑇 = 0.001℃−1 and 𝑟𝑟𝑁𝑁 = 0.01 m. Table 5.15 shows the numerical results at 

the four nodes of the element. Additionally, the computed effective stresses at the Gauss 
points are equal to zero. 

 
Table 5.15: Numerical results for the drained analysis with 𝛼𝛼𝑓𝑓

𝑇𝑇 = 0.001℃−1 and 𝑟𝑟𝑁𝑁 = 0.01 𝑚𝑚. Compressive pressures 
and outgoing hydraulic flow are positive. 

Node DISPL-X (m) DISPL-Y (m) PRESSURE (kPa) H-FLOW (m3) 
1 0.00000E+00 0.00000E+00 0.00000E+00 3.00000E-04 
2 0.00000E+00 0.00000E+00 0.00000E+00 3.00000E-04 
3 0.00000E+00 0.00000E+00 0.00000E+00 3.00000E-04 
4 0.00000E+00 0.00000E+00 0.00000E+00 3.00000E-04 
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 The same values can be obtained analytically. The fluid thermal expansion may be 
obtained as: 

∆𝜀𝜀𝑣𝑣,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝛼𝛼𝑣𝑣,𝑓𝑓
𝑇𝑇 ∆𝑇𝑇 = 3𝛼𝛼𝑓𝑓

𝑇𝑇 ∆𝑇𝑇 = 0.12 (5.82) 

and the fluid volume increment as: 

∆𝑉𝑉𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = ∆𝜀𝜀𝑣𝑣,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝐿𝐿 × rN × 1m) = 0.0012 m3 (5.83) 

which is the fluid leaving the domain and matches the sum of the outgoing flow at the four 
nodes of the domain obtained in the numerical analysis. Additionally, since the fluid leaves 
the domain without restrictions, the pressures and stresses will be null. 

 
b) Undrained analysis  

 In this case 𝛼𝛼𝑓𝑓
𝑇𝑇 = 0.001℃−1 and 𝑟𝑟𝑁𝑁 = 0.01 m. Table 5.16 shows the numerical results at 

the four nodes of the element. Additionally, the computed effective stresses at the Gauss 
points are equal to the fluid pressures but with the opposite sign. 

 
Table 5.16: Numerical results for the undrained analysis with 𝛼𝛼𝑓𝑓

𝑇𝑇 = 0.001℃−1 and 𝑟𝑟𝑁𝑁 = 0.01 𝑚𝑚. Compressive pressures 
and outgoing hydraulic flow are positive. 

Node DISPL-X (m) DISPL-Y (m) PRESSURE (kPa) H-FLOW (m3) 
1 0.00000E+00 0.00000E+00 2.40000E+02 0.00000E+00 
2 0.00000E+00 0.00000E+00 2.40000E+02 0.00000E+00 
3 0.00000E+00 1.20000E-03 2.40000E+02 0.00000E+00 
4 0.00000E+00 1.20000E-03 2.40000E+02 0.00000E+00 

 

 The same values can be obtained analytically. Since the fluid cannot leave the domain 
(undrained analysis), the opening of the interface is proportional to the fluid thermal 
expansion: 

𝑢𝑢𝑦𝑦 = ∆𝑟𝑟𝑁𝑁 = 𝑟𝑟𝑁𝑁 ∆𝜀𝜀𝑣𝑣,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 0.0012 m (5.84) 

And the excess fluid pressure may be obtained as: 

∆𝑝𝑝 = 𝐾𝐾𝑛𝑛∆𝑟𝑟𝑁𝑁 = 240 kPa (5.85) 

matching the values obtained in the numerical analysis.  
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5.2. Practical Application: Hydraulic Fracture 

 This section describes the application of the THM advective model with zero-thickness 
interface elements to hydraulic fracture modelling. A brief introduction to hydraulic fracture 
is presented, followed by the numerical modelling of a hydraulic fracture problem in 2-D, 
taking special attention on the effect of the temperatures, and comparing the obtained results 
with those obtained with the HM model. Additionally, a performance parallelization analysis 
of the FEM code is presented. 
 

5.2.1. Introduction to Hydraulic Fracture 

 Hydraulic fracturing is a common technique used in Petroleum Engineering, which aims 
to induce the fracturing of the rock mass by pumping a highly pressurized fluid at a certain 
rate into the geological formation (Figure 5.27). 

 The initiation and propagation of induced fractures in a reservoir from a wellbore increase 
its hydraulic conductivity and therefore may improve the oil recovery. Thus, this method is 
used to improve the hydrocarbons production, especially in low permeability reservoirs. 
Additionally, when the pumping stops and the fluid pressure decreases, the fractures would 
tend to close. To avoid the fracture closing two solutions may be applied: to fill the created 
paths with solid elements (proppant) or the acid attack in the fracture surface to avoid a 
perfect closing. 

 The temperature of a reservoir located at high depth could be very high (60-70℃ or 
more), while the injected fluid temperature is lower (5-20℃). Thus, when the fluid is injected 
to the reservoir, the heat transport along the discontinuities (advection) may produce thermal 
expansion of the porous medium and of the fluid filling the discontinuities and may also 
modify the fluid properties (density and viscosity). 
 

 

Figure 5.27: Scheme of a hydraulic fracture procedure in an oil or gas reservoir. 
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 One of the most important aspects of this technique is the fluid injection efficiency, which 
is the ratio between the fluid remaining in the fractures at the end of the fracture process and 
the fluid injected at the beginning. It gives knowledge of the amount of injected fluid that is 
lost across the discontinuity to the matrix (leak-off), which reduces the efficiency of the 
process. This is usually corrected creating a thin layer, known as filter cake, on the fracture 
faces with the aid of some additives in the fluid during the injection process. 

 Hydraulic fracture techniques are also used in other engineering activities, such as in the 
creation of impermeable barriers for contaminant containment, in the injection of slurry 
wastes or in the measurement of in-situ stresses in rock masses, and it may also appear 
naturally (i.e. dike intrusion into a geologic formation or magma driven fractures). 

 Despite the fact that hydraulic fracture is a technique that has been extensively used 
since the 1960’s, its modelling is still under development. It is a complex non-linear 
mathematical problem that involves the mechanical interaction of the propagating fracture 
with the fluid dynamics of the injected fluid and with the thermal effects due to the 
temperature difference between the reservoir and the injected fluid and the heat transport of 
the fluid along the discontinuities. The strong coupling between several mechanisms makes 
necessary to involve different disciplines in order to study the hydraulic fracture problem, 
such as fluid mechanics, fracture mechanics and thermal mechanics.  

 At the beginning of hydraulic fracturing any model was used to study the fracture 
processes. However, due to the increasing complexity of the exploited reservoirs, some 
analytical formulation and numerical tools began to be developed. The first analytical models 
were the so-called planar2D models such as the Perkins Kern Nordgren, or PKN model 
(Perkins & Kern, 1961) and its latter modification to include the effects of fluid leak-off 
(Nordgren, 1972); or the Geertsma De-Klerk Khristianovich, or GDK model (Geertsma & De 
Klerk, 1969). Later, the pseudo3D models appeared as an extension of the previous ones. At 
the same time, the planar3D models appeared, which have been used in the industry up to 
the present. More information about these models can be found in Yew (1997) and (Adachi, 
et al. (2007). Nowadays, the new methods are based in a real 3D analysis carried out with the 
FEM or DEM, where the meshes are three-dimensional and the equations are solved in three 
dimensions in a fully-coupled scheme. The mechanical behavior is usually modeled with the 
FEM (Li et al. 2012, Secchi & Schrefler 2012), sometimes combined with the FDM for the 
fluid. These models have the advantage of being the most realistic, but are still under 
development and involve a large number of parameters and an important computational cost. 

 An extension about the state of the art of hydraulic fracture can be found in Garolera 
(2017). 
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5.2.2. Single fracture modelling in 2-D 

 The aim of this example is to develop the numerical modelling of hydraulic fracturing 
using zero-thickness interface elements considering thermal effects. This example follows the 
works of Segura (2007), Segura & Carol (2008b) and Garolera (2017), where the fully-coupled 
hydro-mechanical formulation with interfaces was used to simulate the same practical 
example for a single fracture in 2D. Although the analysis carried out by Segura assumed a 
linear elastic behaviour of the interfaces with very low modulus, the analysis performed by 
Garolera (2017) has considered the elasto-plastic constitutive law for interfaces described in 
section 4.2, and has shown a good agreement with the analytical models (GDK and PKN) and 
with the numerical solution given by Boone & Ingraffea (1990) in 2D. 

  While these previous works have only considered the HM coupling in the numerical 
analysis, in this thesis the analysis is carried using the THM model with advection developed 
in Chapter 4, but considering constant fluid viscosity. While the reservoir is usually located at 
great depth and it is subjected to high temperatures, the injected fluid is at ambient 
temperature. Thus, the objective of this analysis is to understand the thermal mechanisms 
that occur in hydraulic fracture problems and its effect on the mechanical and hydraulic 
fields, in order to achieve more realistic results of hydraulic fracture analysis. The results of 
the analysis are compared to previous analytical and numerical results obtained from a 
simpler HM-only coupling. 

 Thus, the fundamental objective of this example is to explore the capabilities of zero-
thickness interface elements equipped with realistic non-linear constitutive law and using the 
THM model with advection for the hydraulic fracturing modelling. 

 The original geometry of the problem is taken from Boone & Ingraffea (1990) and 
consists of a semicircular domain of radius 80 meters representing a transversal cross-section 
of the borehole (Figure 5.28), where the fracture path is inserted along the abscissa axis and 
which is discretized with a FEM mesh made of 2262 linear triangular elements and 160 zero-
thickness interface elements (Figure 5.29a). 

 

 
Figure 5.28: Scheme of the hydraulic fracture test (Garolera, 2017). 
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 In this case, although the HM analysis parameters and the length of the zero-thickness 
interface elements (0.50 m) are the same as those used in Garolera (2017) and Segura (2007), 
the maximum time-step is given by the Courant condition -Eq. (2.117)-, which is related to 
the thermal advective problem and results in a maximum time-step of ∆𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 = 0.25s. 
Additionally, the minimum time-step for the transient thermal analysis – which affects the 
continuum medium transversal to the interfaces – is given by Thomas & Zhou (1997): 

∆𝑡𝑡 ≥ 𝜌𝜌𝜌𝜌 ℎ𝑇𝑇
2

6𝑘𝑘𝑇𝑇  (5.86) 

where ℎ𝑇𝑇
2  is the transversal dimension of the continuum elements transversal to the interfaces 

and 𝑘𝑘𝑇𝑇  is the thermal conductivity for continuum medium. In this case, since the time-step is 
given by the Courant condition (∆𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 = 0.25𝑠𝑠), the time-step condition for the transient 
analysis in the continuum medium becomes a maximum size condition of the elements 
transversal to the interfaces equal to: 

ℎ𝑇𝑇
 ≤ �6𝑘𝑘𝑇𝑇∆𝑡𝑡

𝜌𝜌𝜌𝜌
= 0.020m   (5.87) 

Thus, for this example, a rectangular domain meshed with hexagonal elements (Figure 5.29.b) 
has been used, where the transversal length of the elements close to the interface is equal to 
ℎ𝑇𝑇

 = 0.020m, growing gradually away from the interface. This mesh if formed by 3748 
continuum elements and 160 interface elements with a total of 3975 nodes and 15900 degrees 
of freedom. It is important to note that with the old mesh (Figure 5.29.a), significant 
temperature oscillations appear in the continuum medium parallel to the fracture. This fact 
results in incorrect strains and stresses when the temperatures are coupled with the 
mechanical field in the thermo-mechanical analysis, which may be orders of magnitude bigger 
than the correct strains and stresses and may lead to meaningless solutions.  

 The analysis is divided in two steps. The initial and boundary conditions for each one 
(Figure 5.30) are described as follows: 

1. Initialization (previous to the injection): a distributed load of 1.0 MPa is applied 
on the outer boundary in order to simulate the in situ initial stress. Initial pore 
pressures are assumed to be zero in the entire domain and the initial temperatures are 
assumed to be equal to 60℃ in the entire domain. 

2. Injection: a fluid is injected at the fracture mouth with a constant rate of Q = 0.0001 
m3/s for the impervious case and Q = 0.0005 m3/s for the pervious case. The 
horizontal and vertical movement are restricted on the outer boundary and the initial 
pressure is assumed to be zero in the entire domain. For the thermal problem a 
convective-type boundary condition has been adopted to impose the thermal flow at 
the fracture mouth, considering a fluid temperature of 10℃. The analysis is carried out 
under transient conditions with increasing time steps with a total duration of 25 s. 
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(a)                                                                       (b) 

Figure 5.29: FEM mesh for the single fracture analysis (a) original mesh (b) mesh used in this thesis.  
 

 Linear elasticity is assumed for the continuum porous medium, with parameters extracted 
from Boone & Ingraffea (1990), which are the same used by Segura (2007), Segura & Carol 
(2008b) and Garolera (2017). The energy-based constitutive law described in section 4.4 is 
used for the interfaces, with high values of normal shear stiffness in order to avoid elastic 
deformations, so that the deformations can be assumed inelastic. Additionally, in order to 
compare with analytical methods, fictitious strength parameters (with low values) are used. 
Specifically, cohesion (𝑐𝑐0) and tensile strength (𝜒𝜒0) have very small values and, to avoid 
numerical instabilities due to the low confinement, a low friction angle (tan 𝜙𝜙) is selected. The 
values of fracture energies 𝐺𝐺𝑓𝑓

𝐼𝐼  and 𝐺𝐺𝑓𝑓
𝐼𝐼𝐼𝐼𝐼𝐼 are not relevant due to the use of residual strength 

parameters. The analysis is carried out under plain strain conditions and the parameters used 
for the analysis are shown in Table 5.18. 

 For the hydraulic problem an initial hydraulic longitudinal permeability equal to zero is 
assumed, and during the analysis its value is controlled by the cubic law, which is function of 
the opening of the interface. The injected fluid is assumed to be water and the Biot modulus 
(𝑀𝑀𝐽𝐽) has a very high value to avoid compressibility effects. The value of the hydraulic 
transversal conductivity of the interfaces (𝐾𝐾T

𝑝𝑝 ) is irrelevant because the symmetry of the 
problem prevents the hydraulic flow to cross the interface transversally. The hydraulic 
parameters used for the analysis are shown in Table 5.19. 

Interface elements 
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Table 5.17: Material properties of continuum porous medium. 

Parameter Value Units 

𝑬𝑬 (Young modulus) 14400 MPa 
𝝂𝝂 (Poisson ratio)  0.2  
𝒏𝒏𝟎𝟎 (initial porosity) 0.19  
𝑲𝑲𝒔𝒔 (skeleton compressibility) 36000 MPa 
𝑲𝑲𝒇𝒇 (fluid compressibility) 1010 MPa 
𝝆𝝆𝒇𝒇  (fluid density) 10-3 kT/m3 
𝝁𝝁 (water viscosity at 20ºC) 10-9 MPa · s 
𝒌𝒌𝑻𝑻  (thermal conductivity) 1.50 J/(m · ℃ · s) 
𝜶𝜶𝒔𝒔

𝑻𝑻 (linear solid thermal exp.) 1.2·10-5 ℃−1 
𝒄𝒄 (heat capacity)  840 J/(kg · ℃) 
𝜶𝜶𝒇𝒇

𝑻𝑻  (linear water thermal exp.) 6.9·10-5 ℃−1 
𝜶𝜶𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩(Biot coefficient) 0.0  
 Impervious Pervious  
𝒌𝒌𝒑𝒑 (hydraulic permeability) 10-22 10-14 m2 

 

 

Table 5.18: Mechanical properties for interfaces. 

Parameter Value Units 
𝑲𝑲𝒏𝒏 106 MPa/m 
𝑲𝑲𝒕𝒕 106 MPa/m 
𝐭𝐭𝐭𝐭𝐭𝐭𝝓𝝓 (friction angle) 0.20  
𝝌𝝌𝟎𝟎 (tensile strength) 0.002 MPa 
𝒄𝒄𝟎𝟎 (cohesion) 0.01 MPa 

 

 

Table 5.19: Hydraulic properties for interfaces. 

Parameter Value Units 

𝒌𝒌𝑳𝑳
𝒑𝒑  (initial longitudinal conductivity) 0.0 m2 

𝑲𝑲𝐓𝐓
𝒑𝒑   (transversal conductivity) 1.0 s−1 

𝑴𝑴𝑱𝑱  (Biot Modulus) 1010  
𝜶𝜶𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 (Biot coefficient) 1.0  
𝝆𝝆𝒇𝒇  (fluid density) 10-3 kT/m3 
𝝁𝝁 (water viscosity at 20ºC) 10-9 MPa · s 
𝒓𝒓𝑵𝑵  (initial aperture) 0.00 m 

 

 

Table 5.20: Thermal properties for interfaces. 

Parameter Value Units 

𝒌𝒌𝑳𝑳
𝑻𝑻  (water longitudinal thermal conductivity) 0.591 J/(m · ℃ · s) 

𝑲𝑲𝐓𝐓
𝑻𝑻  (transversal thermal conductivity) 0.1 J/(m2 · ℃ · s) 

𝒄𝒄𝒇𝒇  (water heat capacity)  4180 J/(kg · ℃) 
𝜶𝜶𝒇𝒇

𝑻𝑻  (linear water thermal exp) 6.9·10-5 ℃−1 
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Mechanical boundary conditions 

Initialization Injection 

     
a) b) 

  

Hydraulic boundary conditions 

Initialization Injection 

  
c) d) 

  

Thermal boundary conditions 

Initialization Injection 

  
e) f) 

Figure 5.30: Boundary conditions for the initialization and injection steps. 
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 For the thermal analysis it is assumed that the fluid (water) fills the interfaces, and 
subsequently the water longitudinal thermal conductivity, water heat capacity and water 
density are assumed for interfaces. The value of the thermal transversal conductivity of the 
interfaces (𝐾𝐾T

𝑇𝑇 ), as for the hydraulic problem, is irrelevant because the symmetry of the 
problem prevents the thermal flow to cross the interface transversally. The thermal 
parameters used for the analysis are shown in Table 5.20. Additionally, for the thermal 
advective analysis using the current THM model and the Implicit Characteristic Galerkin 
Method, 𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼

 = 0.0. 

 The analysis is carried out considering two hypotheses for the hydraulic analysis. In the 
first one the fracture is assumed to be embedded in an impervious medium and leak-off 
cannot occur, while in the second one the fracture is in a pervious continuum medium and 
leak-off is permitted. The parameters for both analyses are the same except for the hydraulic 
conductivity, shown in Table 5.18, and the hydraulic flow rate which is Q = 0.0001 m3/s for 
the impervious case and Q = 0.0005 m3/s for the pervious one. 
 
 
Results: propagation without leak-off (impervious case) 

 In this case it is assumed that the permeability of the continuum medium is low enough 
(Table 5.17) to consider that the injected fluid cannot leak to the rock mass.  

 Figure 5.31 and Figure 5.32 show the temperature distribution in a deformed mesh at the 
end of the analysis, and Figure 5.33 shows the temperature profile evolution along the mid-
plane fracture at different times. The first conclusion obtained from these figures is that the 
THM model with advection is capable to reproduce the transport of temperatures along the 
fracture without oscillations when the advection dominates the problem. The advection occurs 
at the interface elements (not in the continuum medium) and Péclet numbers tends to infinite 
(1.33E+10), so it can be considered to be a pure advection problem. Additionally, the 
Courant condition is satisfied in all interface elements, with a maximum value of 0.85. 
Finally, it is also observed that the injected cold fluid fractures the rock mass and heat 
interchange occurs between them, where the thermal flow is spent in cooling the injected fluid 
and the rock mass and the rock mass heats the injected fluid. Figure 5.34 shows the 
temperature mouth crack evolution during the analysis. 

 Figure 5.35 shows the numerical solutions for the crack mouth opening displacement 
(CMOD) evolution during the injection, both for the HM and THM analysis. The figure 
shows that, when the temperature is considered in the analysis, the CMOD is larger (11% at 
the end of the injection) than in the HM analysis. The main mechanisms that produce this 
extra opening are: 

1. Contraction of the rock mass due to the temperature difference between the injected fluid 
(10℃) and the rock mass (60℃). 

2. Expansion of the fluid that fills the fracture. The fluid is injected at 10℃ and it is heated 
by the rock mass (60℃). 
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Figure 5.31: Temperature distribution in a deformed mesh (factor ×10000) at the end of the analysis without leak-off. 

 
 

    

Figure 5.32: Temperature distribution at the interfaces in a deformed mesh (factor ×10000) at the end of the analysis 
without leak-off. 

 
 The analysis shows that the pressures that develop during the fluid injection are similar 
for both HM and THM analysis, as shown in Figure 5.37 (crack mouth pressure evolution) 
and in Figure 5.38 (pressure profile evolution along the mid-plane fracture at the end of the 
analysis). In both analyses, the “fluid lag” phenomenon described by Garolera, et al. (2014), 
which consists in the existence of negative pressures near the crack due to the delay between 
opening the crack and filling the fluid, does not appear. A possible explanation may be the 
use of a more refined mesh in this thesis. Additionally, the crack length slightly decreases 
(around 4% shorter -0.5m-) when the temperature is considered in the analysis, as shown in 
Figure 5.36. 
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Figure 5.33: Temperature profile evolution along the mid-plane fracture in the case without leak-off. 

 
 
 
 

 
Figure 5.34: Crack mouth temperature evolution in the case without leak-off. 
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Figure 5.35: Crack mouth opening displacement evolution in the case without leak-off. Comparison between the HM 

analysis and the THM analysis with advection. 

 
 
 

 

Figure 5.36: Crack length evolution in the case without leak-off. Comparison between the HM analysis and the THM 
analysis with advection. 

 
 
 
 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 5 10 15 20 25

C
M

O
D

 (
m

m
) 

time (s) 

DRAC4 - THM

DRAC4 - HM

0

2

4

6

8

10

12

14

0 5 10 15 20 25

C
ra

ck
 le

ng
th

 (
m

) 

time (s) 

DRAC4 - THM

DRAC4 - HM



5.2. Practical Application: Hydraulic Fracture 

191 

 

 
 

 
Figure 5.37: Crack mouth pressure evolution in the case without leak-off. Comparison between the HM analysis and the 

THM analysis with advection. 

 
 
 
 

 

Figure 5.38: Pressure profile evolution along the mid-plane fracture in the case without leak-off at the end of the 
analysis (t = 25 s). Comparison between the HM analysis and the THM analysis with advection. 
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 In conclusion, the main difference between the HM and THM analyses for the impervious 
case is that, when temperature is considered, there is an extra-opening of the fracture 
(approximately 11% at the mouth crack) and that the crack length slightly decreases during 
the fluid injection. 

 Finally, Figure 5.39 and Figure 5.40 show the temperature distribution in a deformed 
mesh and along the mid-plane fracture, respectively, at the end of the analysis when the 
standard Galerkin weighting is used for the thermal advective FEM analysis. The figures 
show that the temperature field oscillates strongly along the fracture and its crack opening is 
clearly wrong.   

 

    

Figure 5.39: Temperature distribution in a deformed mesh (factor ×10000) at the end of the analysis without leak-off 
using the standard Galerkin weighting for the thermal advective FEM analysis. 

 

 

Figure 5.40: Temperature profile distribution along the mid-plane fracture without leak-off using the standard Galerkin 
weighting for the thermal advective FEM analysis (t = 25 s). 
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Results: propagation with leak-off (pervious case) 

 In this case it is assumed that the permeability of the continuum medium is high enough 
(Table 5.17) to consider that the injected fluid can leak to the rock mass.  

 As for the impervious case, Figure 5.41 and Figure 5.42 show the temperature 
distribution in a deformed mesh at the end of the analysis, and Figure 5.43 shows the 
temperature profile evolution along the mid-plane fracture at different times. The first 
conclusion obtained from these figures is that the THM model with advection is capable of 
reproducing the transport of temperatures along the fracture, but in contrast to the 
impervious case, in which temperature profile was smooth, in this case it exhibits a “wave” 
oscillation moving with the temperature front and the crack tip. This oscillation was not 
observed in the case without leak-off. Whether it is caused by numerical effects or is a 
physical phenomenon remains to be clarified more precisely. However, the fact that its wave 
length includes several elements and also that it moves smoothly and consistently with the 
temperature and crack fronts may be indications of a physical origin.  

 

     

Figure 5.41: Temperature distribution in a deformed mesh (factor ×10000) at the end of the analysis with leak-off. 

 
 Also, the advection occurs at the interface elements with high Péclet numbers (1.33E+10) 
and the Courant condition is satisfied at all interface elements, with a maximum value of 
0.85. Finally, it is also observed that the injected cold fluid fractures the rock mass and heat 
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interchange occurs between them, where the thermal flow is spent in cooling the injected fluid 
and the rock mass and the rock mass heats the injected fluid. Figure 5.44 shows the 
temperature mouth crack evolution during the analysis. 

 
 

     

Figure 5.42: Temperature distribution at the interfaces in a deformed mesh (factor ×10000) at the end of the analysis 
with leak-off. 

 
 

 Figure 5.45 shows the numerical solutions for the crack mouth opening displacement 
(CMOD) evolution during the injection, both for the HM and THM analysis. The figure 
shows that, when the temperature is considered in the analysis, the CMOD is larger (10.6% at 
the end of the injection) than in the HM analysis. 

 As for the impervious case, the analysis shows that the pressures that develop during the 
fluid injection are similar for both HM and THM cases, as shown in Figure 5.47 (crack mouth 
pressure evolution) and in Figure 5.48 (pressure profile evolution along the mid-plane fracture 
at the end of the analysis). Similar to the impervious case, the “fluid lag” phenomenon 
described by Garolera, et al. (2014), does not appear. However, unlike what happens in the 
impervious case, the crack length is similar when the temperature is considered in the 
analysis, as shown in Figure 5.46. 

 The conclusion is that the main difference between the HM and THM analyses for the 
pervious case is that, when temperature is considered, there is an extra-opening of the fracture 
(approximately 10% at the mouth crack) and that the crack length is similar during the fluid 
injection. Additionally, unlike what happens in the impervious case, a temperature oscillation 
appears close to the crack tip. 

 Finally, Figure 5.49 and Figure 5.50 show the temperature distribution in a deformed 
mesh and along the mid-plane of fracture, respectively, at the end of the analysis when the 
standard Galerkin weighting is used for the thermal advective FEM analysis. The figures 
show that the temperature field oscillate strongly along the fracture and its opening is clearly 
wrong.  
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Figure 5.43: Temperature profile evolution along the mid-plane fracture in the case with leak-off. 

 
 
 
 

 
Figure 5.44: Crack mouth temperature evolution in the case with leak-off. 
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Figure 5.45: Crack mouth opening displacement evolution in the case with leak-off. Comparison between the HM 

analysis and the THM analysis with advection. 

 

 
 
 

 
Figure 5.46: Crack length evolution in the case with leak-off. Comparison between the HM analysis and the THM 

analysis with advection. 
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Figure 5.47: Crack mouth pressure evolution in the case with leak-off. Comparison between the HM analysis and the 

THM analysis with advection. 

 

 
 
 

 

Figure 5.48: Pressure profile evolution along the mid-plane fracture in the case without leak-off at the end of the 
analysis (t = 25 s). Comparison between the HM analysis and the THM analysis with advection. 
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Figure 5.49: Temperature distribution in a deformed mesh (factor ×10000) at the end of the analysis with leak-off using 
the standard Galerkin weighting for the thermal advective FEM analysis. 

 
 
 

 
Figure 5.50: Temperature profile distribution along the mid-plane fracture with leak-off using the standard Galerkin 

weighting for the thermal advective FEM analysis (t = 25 s). 

 

 

Parallelization performance analysis 
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implementation of the THM model in the FEM code DRAC and its parallelization. For the 
parallelization the changes have focused on the modification of the code structure, the optimal 
partitioning of the FEM mesh using the library METIS (METIS_WebPage, 2013), the 
implementation of the parallel library PETSc (PETSc_Software, 2018) –which provides 
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operations using the library HDF5 (The_HDF_Group, 2018), the adaptation of the HDF5 
outputs to the format visualization of Paraview (Paraview_WebPage, 2018), the minimization 
of RAM use and the optimal distribution of tasks between processors. In a first phase, in 
collaboration with other members of the group (Garolera, 2017), the parallelization of the HM 
code has been done. Then, the parallelization has been extended to the THM code. 

 The numerical analysis performed in the previous sections for single-fracture HF problems 
have been carried out with the parallel code using 24 processors. For this purpose, the high 
performance computer cluster TITANI (Civil Engineering School, UPC) has been used. This 
cluster is composed by 5 computer nodes Dell PowerEdge R630 and each node is composed by 
2 processors of 12 cores Intel Xeon E5-2650L (1.8GHz), cache 30MB and 256GB of RAM. 

 Additionally, in order to verify the degree of parallelization achieved with the numerical 
parallelization of the FEM code DRAC, a scalability test has been performed for the HF 
pervious case. The simulations have been performed using the GMRES iterative solver and 
the ASM preconditioner provided by PETSc.  

 Figure 5.51 shows the evolution of the total time calculation as a function of the number 
of processors used. The figure shows that calculation times are high for the size of the mesh 
used. This may be due to the THM coupling (displacements, pressures and temperatures with 
different order of magnitude values), the element composition of the mesh (continuum and 
zero-thickness interfaces) and the shape of some continuum elements (some elongated 
elements), that lead to a bad conditioning of the global matrix. 

 

 
Figure 5.51: Required total time for the calculation with respect to the number of processors for the pervious HF case. 

 

 Figure 5.52 shows the speed-up curve of the calculations, where the horizontal axis shows 
the number of processors used, and the vertical axis the time of calculation normalized with 
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the speed-up test). This figure shows a good degree of scalability of the parallelization. 
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Figure 5.52: Speed-up for the calculation for the pervious HF case. 

 

 Finally, Figure 5.53 shows the subdomains resulting from the mesh partitioning done with 
METIS, using 4 and 24 processors.  

 

            
Figure 5.53: Resulting subdomains of the mesh partitioning done with METIS for 4 and 24 processors. 
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6. d 
 

Chapter 6 

Summary, conclusions and future research 
 

 The general objective of this thesis is the study, formulation, numerical implementation 
and verification (with simple application examples) of a coupled numerical model able to 
reproduce the thermo-hydro-mechanical advective behaviour that occur in discontinuities or 
fractures in which heat is transported by the fluid at high speed. The numerical approach is 
carried out in the geomechanical context of a fractured porous medium, using the FEM with 
zero-thickness interface elements to represent the discontinuities or fractures, and assuming 
saturated conditions, a single incompressible fluid (with constant density) and small strains. It 
is also assumed that all the non-linear behaviour occurs at the interface elements by means of 
an elasto-plastic constitutive law based on fracture mechanics, while poro-elasticity is used for 
the porous continuum medium. 

 Due to the high hydraulic velocities developed in discontinuities, the main thermal 
transport may occur through them and the advection may be the dominant heat transfer 
mode. The solution of the heat problem with large advection becomes unstable when solving 
the problem with the classic Galerkin weighting in FEM. Thus, one of the main objectives of 
this thesis, previous to the THM coupled formulation, is the study and numerical formulation 
of the heat equation with a methodology able to reproduce numerically the large advective 
heat transport problem. 

 Finally, the THM model with large advection is applied to an important case of interest 
that can be found in Petroleum Engineering: hydraulic fracture (HF) processes where the 
temperature of the injected fluid may lead to the generation of important temperature 
gradients that modifies the fluid properties (such as viscosity or density) and the stress field 
by means of induced thermal deformations. These modifications may affect the fracture 
process, with opening or closing of the fractures and, for instance, the production of the 
reservoir. In these cases, the hydraulic fracture area is situated at great depth, where the 
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temperatures are high, while the injected fluid is located on the surface at ambient 
temperature. Thus, the injection of the fluid may produce important temperature gradients 
that could lead to significant variations of the mechanical behaviour of these fractures and the 
oil and gas production of the reservoir. 

 In the following sections the summary and conclusions of the main topics of this thesis 
are presented, about the numerical solution of large advection problem using the FEM, the 
formulation, numerical implementation and verification of the THM coupling model with 
large advection in continuum medium and zero-thickness interface elements and the 
application example to hydraulic fracture with temperatures. The last section deals with some 
possible future developments.  

 

6.1. Summary and conclusions: numerical solution of large 
advection problems using the FEM 

 One of the main objectives of this thesis is the study and numerical formulation of a 
methodology to solve large advection problems using the FEM, in particular heat transport 
with a fluid. The standard Galerkin method leads to unstable solutions when the advection 
dominates the problem (𝑃𝑃𝑃𝑃 >  1) and a different method is necessary to reach a stable 
solution. Thus, chapters 2 and 3 present a review of different methodologies to solve the large 
advection problem for steady- and transient-states.  

 For the steady-state, the selected method is known as SUPG, a well-known method that 
leads to stable solutions when 𝑃𝑃𝑃𝑃 >  1. However, since this method cannot be used to solve 
the transient problem, several methodologies are described in order to solve it, paying especial 
attention to the Characteristic-based methods. These methods carry the study of the 
transport phenomena in a Lagrangian manner, following the particle (or heat) with the fluid 
movement, by setting a moving coordinate system that depends on the fluid velocity and its 
position in time.  

 In this context, this thesis starts with the study of the existing explicit Characteristic 
Galerkin Method developing, as a first step, its implicit form. Additionally, this thesis 
proposes a new variation of this method adding an 𝛼𝛼 parameter that allows to determine 
different temporal derivative positions of the advective volume, leading to the 𝛼𝛼-Implicit 
Characteristic Galerkin Method. With this new method, the large advective transient solution 
becomes stable if the Courant condition is fulfilled.  

 Chapters 2 and 3 are dedicated to the development of the formulation of this method and 
its numerical implementation, both for continuum medium and zero-thickness interface 
elements. The method has been tested with different values of 𝛼𝛼, concluding that the best 
value to reach stable solutions is 𝛼𝛼 = 0.25 and becomes unstable when 𝛼𝛼 ≥ 0.50 or 𝛼𝛼 < 0. 
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6.2. Summary and conclusions: THM coupling with large 
advection 

 One of the most important tasks of this thesis, and which has entailed the main effort, 
has been the formulation and numerical implementation in the FEM code DRAC of the 
thermo-hydro-mechanical coupling with large advection, for continuum medium and zero-
thickness interface elements.  

 First, the THM coupling has been implemented following a staggered scheme, solving the 
HM coupling with the existing code DRAC and the thermal problem with a new code, T-
DRAC where the thermal advective problem has been implemented. Later, the formulation 
and numerical implementation has been extended to a fully-coupled scheme on DRAC, 
solving the problem with a Newton-Raphson iterative strategy. The staggered scheme has 
been developed in the early stages of the thesis and has been used to verify the correct 
performance of the fully-coupled implementation by comparing results of simple academic 
examples. Then, the fully-coupled scheme has been used to solve the verification and practical 
application examples. 

 The interactions considered in this thesis between the thermal, hydraulic and thermal 
fields, for a saturated and fractured porous medium, may be summarized as: 

• Thermal expansion: the first phenomenon is the thermal expansion of the solid 
material phase due to the temperature increment and its coefficient of thermal expansion, 
which only affects to continuum porous medium and not the interfaces. This thermal 
expansion produces the variation of the total volume (thermal strains) and, consequently, 
of the total pore volume, modifying the available space for the fluid in the porous 
medium. Additionally, the temperature variation affects the fluid that fills the pores or 
discontinuities, leading to volume changes of the fluid that are proportional to its 
coefficient of thermal expansion. These changes of the pores and fluid volume modify the 
pressure distribution in the hydraulic problem, and subsequently the effective stresses in 
the mechanical problem. 

• Advection: fluid velocities (Darcy velocities) from the hydraulic problem generate heat 
transport and modify the thermal field. This affects mainly the interface elements, which 
conform preferential paths where fluid may flow at high speed. 

• Longitudinal and transversal heat transmissivity in interfaces: the opening of the 
discontinuities may change the quantity of fluid that fills them (considering saturated 
medium), leading to a variation on the in-plane heat transmissivity, since the heat 
storage capacity depends on the quantity of fluid filling the discontinuities. Moreover, the 
transversal heat transmissivity may be also modified with the opening of the interfaces in 
the transversal direction that the heat flow has to cross. 

• Fluid density and dynamic viscosity variations: as shown in Figure 4.1., density 
and dynamic viscosity of water varies with temperature. The variation of the dynamic 
viscosity of the fluid leads to a variation of the hydraulic conductivity and the fluid 
velocity field, which produces heat transport with the fluid and a variation of the 
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distribution of temperatures obtained from the thermal analysis. However, the variation 
of water density in the temperature range from 10 to 60℃, which is the range of 
temperature variation in the applications of interest in this thesis, is around 1.5%. For 
this reason, the variation of density of the fluid is omitted in the THM formulation of this 
thesis. Although the density is assumed constant, its thermal expansion is considered as 
explained in the previous section “thermal expansion”. 

• Effective stresses: fluid pressures from the hydraulic problem modify the effective 
stresses of the mechanical problem by means of the effective stress principle (assuming 
saturated conditions). 

• Longitudinal hydraulic transmissivity in interfaces: from a hydraulic point of 
view, the interface opening modifies its hydraulic storage capacity and longitudinal 
conductivity, which depends on the aperture. 

 

6.3. Summary and conclusions: application to hydraulic fracture 
and parallel performance 

 Finally, this thesis presents an application example to hydraulic fracture, considering a 
single fracture problem in 2-D. The fundamental objective of this example is to understand 
the thermal mechanisms that occur in hydraulic fracture problems and how they affect the 
mechanical and hydraulic fields. The results have been compared with those obtained using a 
HM model developed by Segura (2007) and Garolera (2017), which does not consider thermal 
effects.  

 The results of the analysis, where a cold fluid (10℃) is injected into a warm rock mass 
(60℃) show that the THM model is able to reproduce the large advection thermal problem 
without oscillations in the impervious HF example. However, a single “wave” oscillation 
moving with the temperature front and the crack tip appears in the pervious one. Whether it 
is caused by numerical effects or is a physical phenomenon remains to be clarified more 
precisely. For both pervious and impervious analysis, the crack mouth opening is larger when 
the thermal field is considered (around 10%), mainly due to heat interchange between the 
rock mass and the fluid, which produces the contraction of the rock mass and the expansion 
of the injected fluid. Additionally, the crack length tends to be slightly smaller for the 
impervious HF case and similar for the pervious one. 

 Without this model, the heat transfer would only occur by conduction with a heat 
advance of a few centimetres from the mouth of the crack, and consequently the hydraulic 
fracture analysis with temperature would not have been possible. Additionally, it has been 
shown that the solution of the problem using the standard Galerkin weighting leads to 
unstable numerical solutions, while the Implicit Characteristic Galerkin Method stabilizes the 
solution.  

 Additionally, in order to improve the efficiency of the calculations, the parallelization of 
code DRAC has been performed in collaboration with other members of the research group 
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(Garolera, 2017); first for the HM code and later extended for the THM with advection code. 
The changes have focused on the modification of the code structure, the optimal partitioning 
of the FEM mesh using the library METIS, the implementation of the parallel library PETSc 
–which provides several parallel solvers–, the implementation of the parallel reading and 
writing (input/output) operations using the library HDF5, the adaptation of the HDF5 
outputs to the format visualization of Paraview, the minimization of RAM use and the 
optimal distribution of tasks between processors. As shown in section 5.2.2 the results 
obtained from the parallel performance analysis have shown a good degree of scalability of the 
parallel code. 

 

6.4. Future research 

 The research work developed and the results obtained in this doctoral thesis have allowed 
to envisage some possible enhancements that would extend the applicability of the developed 
THM model with large advection and would make more efficient the numerical calculations. 
Some of the possible future developments are listed below: 

• Perform the analysis of multi-stage hydraulic fracture problems and its extension to 3D. 
• Multiphase fluid flow: thermal effects can induce phase transitions of the injected fluids 

from liquid to gas. Additionally, the reservoirs composition are a mixture of oil, water 
and gas. Thus, it will be optimal to simulate the hydraulic fracture problems with the 
real composition of the fluids and its phase transitions in the numerical models. These 
enhancements are conditioned to the formulation of the problem for variable density 
and compressible fluids. 

• Consider a second node temperature variable in order to distinguish between the 
temperature of the solid and the temperature of the fluid, and the coupling between 
them in a convective manner. 

• Consider a new advective field of proppant concentration and its coupling with the 
actual THM coupled model, in order to consider the transport of proppant with the 
fluid in hydraulic fracture problems. 

• Apply the current THM model with large advection to CO2 injection problems. 
• The current parallelization of the FEM code DRAC does not consider that the non-

linear behaviour may be concentrated in a few subdomains (or processors), and the 
speed of the entire calculation may be penalized by the speed of these subdomains. The 
so-called load-balancing algorithms may avoid this trouble performing the mesh 
partitioning by distributing the elements considering the computation effort of each 
subdomain, and not only considering the number of elements of each subdomain and the 
minimization of border elements between them, as it is done now. 

• To develop a fracture energy-based constitutive law for zero-thickness interface elements 
with partial closure effect. Current constitutive models consider either full closure when 
unloading or no closure at all. An elasto-plastic model with damage could model partial 
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closure in order to reproduce more realistic effects for hydraulic fracture problems using 
proppant. 

• In the current code the interface elements are pre-inserted and fractures can only 
propagate along them. By pre-inserting a sufficient number of interfaces, the fracture 
can develop with relative freedom, but with an expensive computational effort. To 
improve this methodology and avoid having to pre-insert a high number of interfaces in 
the mesh, allowing the fracture to develop in the whole domain, two options may be 
considered: the use of zero-thickness interface elements with node relocation or use a 
hybrid zero-thickness/XFEM formulation. 
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Appendix A 

Acronyms 
 

FEM - Finite Element Method 

DFM - Difference Finite Method 

THM - Thermo-Hydro-Mechanical 

TH - Thermo-Hydraulic 

HM - Hydro-Mechanic 

TM - Thermo-Mechanic 

PVW - Principle of Virtual Works 

SUPG - Streamline Upwind Petrov-Galerkin 

GLS - Galerkin Least Squares 

FIC - Finite Increment Calculus 

ICG - Implicit Characteristic Galerkin 

HF - Hydraulic Fracture 

CMOD - Crack Mouth Opening Displacement 

CMP - Crack Mouth Pressure 
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