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Nearly 40 million individuals are currently living with the human 

immunodeficiency virus type 1 (HIV-1) worldwide and more than 30 million deaths 

can be attributed to HIV-1 since the start of the epidemic. The development of 

combination antiretroviral therapy (cART) was one of the major medical success of 

the 20th century as it effectively suppresses plasma viremia, improves the immune 

system function, reduces mortality and morbidity, and the risk of viral transmission. 

However, cART cannot cure the infection due to the presence of latently infected 

cells.  

The number of latently infected cells present in the body, known as the reservoir, 

varies notably among different HIV-1-infected individuals. Low levels of reservoirs 

are traditionally related to HIV-1 control or good disease prognosis, but the specific 

factors provoking a reduction of this reservoir are still unknown. In this context, the 

aim of this thesis is to characterize the clinical, viral and immunogenetic factors 

associated with the reduction of the HIV-1 reservoir in three different models: [1] a 

natural long-term control of the infection (Exceptional Elite controllers or EEC), [2] a 

natural low HIV-1 reservoir despite regular HIV-1 progression (Low Viral Reservoir 

Treated individuals or LoViReT), and [3] an induced low reservoir after allogeneic 

hematopoietic stem cell transplant (allo-HSCT) in persons living with HIV-1. 

Our results showed that the low-level reservoirs observed in EEC were due to a 

combination of defective non-evolving virus with protective host genetic factors 

together with potent HIV-1 specific immune responses. Altogether, the combination 

of those factors seems important to control HIV-1 replication and reach a 

spontaneous functional cure. On the other hand, LoViReT individuals seem to have 

an impaired HIV-1 reservoir establishment since the low levels of reservoir were 

observed in blood (even before the initiation of treatment) and anatomical 

sanctuaries. This was supported by a skewed distribution of the provirus among the 

different CD4+ T cells subpopulations towards short-live subpopulations. However, 

although LoViReT individuals have a preserved general immune system, they do 

not have HIV-1 specific immune responses and therefore are not able to control 

HIV-1 replication in the absence of cART. Finally, the study of HIV-1-infected 

individuals that received an allo-HSCT showed a remarkably decline of the HIV-1 

reservoir in peripheral blood and anatomical compartments, even in the setting of 
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CCR5 wild-type cells. This was most likely due to a potent graft versus HIV-1 effect 

caused by specific factors of the transplant as a rapid engraftment, an adult donor, 

or a graft versus host disease. Unfortunately, the lack of a potent HIV-1 specific 

immune responses sustained in time would result in viral rebound, as observed in 

one of the studied individuals transplanted with CCR5 wild-type cells.  

Altogether, we showed that factors related to an impaired viral function will be 

important to the reduction of HIV-1 reservoir. A combination with a potent HIV-1 

specific immune response will be necessary to control the HIV-1 replication in the 

absence of cART as happened in EEC. Future clinical trials in individuals with a low 

HIV-1 reservoir, like LoViReT or allo-HSCT individuals, would be of great interest in 

strategies aimed at boosting HIV-1 immune specific responses with the ultimate goal 

of curing HIV-1.
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Casi 40 millones de personas viven actualmente con el virus de la 

inmunodeficiencia humana tipo 1 (VIH-1) en todo el mundo, y más de 30 millones 

de muertes se pueden atribuir al VIH-1 desde el comienzo de la epidemia. El 

desarrollo de la terapia antirretroviral combinada (TARc) es uno de los principales 

éxitos médicos del siglo XX, ya que suprime eficazmente la viremia plasmática, 

mejora la función del sistema inmunológico, reduce la mortalidad y morbilidad, y el 

riesgo de transmisión viral. Sin embargo, la TARc no puede curar la infección debido 

a la presencia de células infectadas de forma latente, lo que se conoce como 

reservorio viral. 

El número de células latentemente infectadas presentes en el cuerpo varía 

notablemente entre diferentes individuos infectados por VIH-1. Bajos niveles de 

reservorios se han relacionado tradicionalmente con un control del VIH-1 o buen 

pronóstico de la enfermedad, pero los factores específicos que provocan esta 

reducción del reservorio aún se desconocen. En este contexto, el objetivo de esta 

tesis es caracterizar los factores clínicos, virales e inmunogenéticos asociados con 

la reducción del reservorio del VIH-1 en tres modelos diferentes: [1] controladores 

naturales de la infección con un largo seguimiento (Controladores de Elite 

Excepcionales o EEC), [2] individuos con un reservorio de VIH-1 espontáneamente 

bajo a pesar de una progresión normal de la infección (LoViReT), y [3] personas 

VIH-1+  en las que se observa una caída del reservorio después de un trasplante 

alogénico de células madre hematopoyéticas (allo-HSCT). 

Nuestros resultados mostraron que los bajos niveles de reservorio observados 

en los EEC se debieron a la combinación de virus defectivos que no evolucionan 

con factores genéticos protectores del huésped junto con respuestas inmunitarias 

potentes específicas del VIH-1. En conjunto, la combinación de estos factores 

parece importante para controlar la replicación del VIH-1 y alcanzar una cura 

funcional espontánea. Por otro lado, los individuos LoViReT parecen tener un 

establecimiento defectivo del reservorio de VIH-1 ya que se observaron bajos 

niveles de reservorio en sangre (incluso antes del inicio del tratamiento) y santuarios 

anatómicos. Esto estaba acompañado por una distribución sesgada de la latencia 

en las diferentes subpoblaciones de células T CD4+ hacia subpoblaciones de vida 

más corta. Sin embargo, aunque los individuos LoViReT mostraron un sistema 
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inmunológico preservado, no se observaron respuestas inmunitarias específicas del 

VIH-1 y, por lo tanto, no se esperaría que controlaran la replicación del VIH-1 en 

ausencia de TARc. Finalmente, el estudio de individuos infectados por VIH-1 que 

recibieron un trasplante alogénico de células madre hematopoyéticas mostró una 

notable disminución del reservorio de VIH-1 en sangre periférica y compartimentos 

anatómicos, incluso en el contexto de células con un CCR5 salvaje. Esto 

probablemente fue debido a un potente efecto de injerto contra VIH-1 causado por 

factores específicos del trasplante como un rápido quimerismo, células procedentes 

de un donante adulto y la presencia de enfermedad del injerto contra huésped. 

Desafortunadamente, la falta de respuestas potentes específicas de VIH-1 

sostenidas en el tiempo resultaría en un rebote viral, como se observó en uno de 

los individuos estudiados que fue trasplantado con células con un CCR5 salvaje. 

En conjunto, demostramos que los factores relacionados con una función viral 

alterada son importantes para la reducción del reservorio de VIH-1. Aun así, para 

controlar la replicación del VIH-1 en ausencia de TARc será necesaria la 

combinación con respuestas inmunes potentes específicas de VIH-1, como sucede 

en los EEC. Futuros ensayos clínicos en personas con un reservorio bajo de VIH-

1, como individuos LoViReT o que hayan recibido un trasplante alogénico de células 

madre, serían de gran interés en estrategias destinadas a estimular las respuestas 

inmunes específicas del VIH-1 con el objetivo final de curar el VIH-1.
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Gairebé 40 milions de persones viuen actualment amb el virus de la 

immunodeficiència humana tipus 1 (VIH-1) a tot el món, i més de 30 milions de 

morts es poden atribuir al VIH-1 des del començament de l'epidèmia. El 

desenvolupament de la teràpia antiretroviral combinada (TARc) és un dels 

principals èxits mèdics del segle XX, ja que suprimeix eficaçment la virèmia 

plasmàtica, millora la funció del sistema immunològic, redueix la mortalitat i la 

morbiditat, i el risc de transmissió viral. No obstant, la TARc no pot curar la infecció 

a causa de la presència de cèl·lules infectades de manera latent, el que es coneix 

com a reservori viral. 

El nombre de cèl·lules infectades latentment presents en el cos varia 

notablement entre diferents individus infectats pel VIH-1. Baixos nivells de 

reservoris s'han relacionat tradicionalment amb un control del VIH-1 o bon pronòstic 

de la malaltia, però els factors específics que provoquen aquesta reducció del 

reservori encara es desconeixen. En aquest context, l'objectiu d'aquesta tesi és 

caracteritzar els factors clínics, virals i immunogenètics associats a la reducció del 

reservori del VIH-1 en tres models diferents: [1] controladors naturals de la infecció 

amb un llarg seguiment (Controladors d'Elit Excepcionals o EEC), [2]  individus amb 

un reservori de VIH-1 espontàniament baix malgrat una progressió normal de la 

infecció (LoViReT), i [3] persones amb VIH en les que s’observa una inducció de la 

caiguda del reservori després d'un trasplantament al·logènic de cèl·lules mare 

hematopoètiques (allo-HSCT). 

Els nostres resultats van mostrar que els baixos nivells de reservori observats 

en els EEC es van deure a la combinació de virus defectius que no evolucionen 

amb factors genètics protectors de l'hoste juntament amb respostes immunitàries 

potents específiques del VIH-1. En conjunt, la combinació d'aquests factors sembla 

important per a controlar la replicació del VIH-1 i aconseguir una cura funcional 

espontània. D'altra banda, els individus LoViReT semblen tenir un establiment 

defectiu del reservori de VIH-1 ja que es van observar baixos nivells de reservori en 

sang (fins i tot abans de l'inici del tractament) i santuaris anatòmics. Això estava 

recolzat per una distribució esbiaixada de la latència en les diferents subpoblacions 

de cèl·lules T CD4+ cap a subpoblacions de vida més curta. No obstant això, encara 

que els individus LoViReT van mostrar un sistema immunològic preservat, no es 
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van observar respostes immunitàries específiques del VIH-1 i, per tant, no 

s’esperaria que poguessin controlar la replicació del VIH-1 en absència de TARc. 

Finalment, l'estudi d'individus infectats per VIH-1 que van rebre un trasplantament 

al·logènic de cèl·lules mare hematopoètiques va mostrar una notable disminució 

del reservori de VIH-1 en sang perifèrica i compartiments anatòmics, fins i tot en el 

context de cèl·lules amb un CCR5 salvatge. Això probablement va ser degut a un 

potent efecte de l’empelt contra VIH-1 causat per factors específics del 

transplantament com el ràpid quimerisme, cèl·lules procedents d’un donant adult i 

la malaltia de l’empelt contra l’hoste. Desafortunadament, la falta de respostes 

immunes potents específiques del VIH-1 sostingudes en el temps resultaria en un 

rebot viral, com es va observar en un dels individus estudiats trasplantat amb 

cèl·lules amb un CCR5 salvatge. 

En conjunt, demostrem que els factors relacionats amb una funció viral alterada 

seran importants per a la reducció del reservori del VIH-1. Tot i així, per controlar la 

replicació del VIH en absència de TARc serà necessària la combinació amb 

respostes immunes potents específiques del VIH-1, com succeeix en els EEC. 

Futurs assajos clínics en persones amb un reservori baix de VIH-1, com els 

individus LoViReT o que hagin rebut un trasplantament al·logènic de cèl·lules mare, 

serien de gran interès en estratègies destinades a estimular les respostes immunes 

específiques del VIH-1 amb l'objectiu final de curar el VIH-1. 
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1.1. Human Immunodeficiency Virus 

1.1.1. HIV History and Origin  

In June 1981, the USA Centers for Disease Control (CDC) reported five cases 

of Pneumocystis carinii (now P.jirovecci) in previously healthy young men in Los 

Angeles1,2. These individuals had no previous record of disease, but all presented 

an impaired immune system with a depletion of CD4+ T lymphocytes, unusual 

infections and/or cancers, such as Kaposi’s sarcoma. This unknown disease was 

called Acquired Immune Deficiency Syndrome (AIDS). In 1983, a group of scientists 

headed by Françoise Barré-Sinoussi and Luc Montagnier isolated a new retrovirus 

from a cultured derived from a lymph node (LN) biopsy from an individual with 

generalized lymphadenopathy. It was named lymphadenopathy-associated virus 

(LAV)3, and Barré-Sinoussi and Montagnier obtained the Nobel Prize in 2008 for this 

achievement. The isolation of a similar virus in individuals with AIDS confirmed the 

discovery of the virus causing AIDS, renamed as human T-lymphotropic virus type 

III (HTLV-III)4. Later, the virus was denominated as Human Immunodeficiency Virus 

(HIV) by the international Committee on the Taxonomy of Viruses5. In 1986, another 

human retrovirus related to HIV-1 was found in West African individuals and was 

named HIV type 2 (HIV-2) to distinguish it from the original type HIV-16.  

Phylogenetic and statistical analyses have estimated that HIV first infected 

humans in the 1920s in Kinshasa7–9 through multiple zoonotic infections, or cross-

species transmissions of simian immunodeficiency virus (SIV), found in African non-

human primates10. Specifically, HIV-1 is phylogenetically related to SIVcpz isolated 

from the West Central African chimpanzees (Pan troglodytes troglodytes)11 whereas 

HIV-2 is highly associated with SIVsm from sooty mangabeys (Cercobecu atys 

atys)12.  

1.1.2 Global spread of HIV  

The HIV/AIDS pandemic is a major global health issue, being one of the most 

devastating infectious diseases ever known. It has been responsible for nearly 76 

million infections and 33 million people have died due to HIV/AIDS related 

complications since the start of the epidemic. In 2019, the Joint United Nations 

Programme on HIV/AIDS (UNAIDS)  estimated that about 38 million people were 
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living with HIV worldwide, 1.7 million were newly infected and more than 690.000 

people died from AIDS-related illnesses13. 

Despite being a worldwide pandemic, the prevalence varies greatly between 

continents and countries, with the biggest epidemic affecting East and Southern 

Africa, where 43% of all new worldwide infections take place. In this region 6.7% of 

the adult population is living with HIV (Fig.1). 

 

 

 

 

 

Figure 1. Adult HIV prevalence worldwide in 2019. Obtained from UNAIDS13. 

 

1.2. HIV Virology 

1.2.1. HIV classification 

HIV belongs to the group VI of reverse transcribing viruses, Retroviridae family, 

Orthoretrovirinae subfamily, Lentivirus genus14. Two types of HIV have been 

characterized, HIV-1 and HIV-2. Despite being similar, both species differ in their 

replicative and pathogenic capacity, virus evolution and target of infection. The most 

prevalent virus is HIV-1, accounting for around 95% of all infections worldwide, while 

HIV-2 is mainly restricted to West Africa. HIV-1 is classified into four groups: M 

(major or main), O (outlier) N (non-M, non-O) and P (putative). Each of these groups 

resulted from an independent cross-species transmission, with group M being the 

first to be discovered and the most common worldwide.  

Phylogenetic studies have shown the existence of 10 subtypes within M group 

(A, B, C, D, E, F, G, H, J, and K), and several circulating recombinant forms15,16.   
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Among group M, the most prevalent is the subtype C. However, in Western 

Europe, America, and Australia the most dominant is subtype B. As a result, the 

great majority of HIV clinical research has been conducted in populations where 

subtype B predominates. 

1.2.2. HIV-1 structure and genome 

HIV-1 virions are spherical particles of about 119-207nm17 in diameter wrapped 

with an envelope  (Fig. 2). This is formed by a lipid bilayer derived from the host cell 

that contains embedded trimers of the envelope glycoproteins (Env; gp160), the only 

virus-encoding determinants on the virus surface. Gp160 consists of a gp120 protein 

anchored to the membrane by the gp41 transmembrane protein18, which are 

responsible for the attachment and fusion to the host cell. Attached to the inside of 

the envelope there is the matrix (MA), which provides the virion with structural and 

mechanical support. The matrix surrounds the conical-shaped capsid core (CA) and 

the nucleocapsid (NC). Within the capsid, there is the viral ribonucleic acid (RNA) 

protected by the closely associated NC. The CA also contains the protease, reverse 

transcriptase and integrase enzymes19. 

 

 

 

 

 

 

 

Figure 2. Schematic structure of the HIV-1 virion. 

The viral genome is composed of two copies of positive single-stranded RNA 

(ssRNA) of approximately 9.8 kb in length20, flanked by a repeated sequence known 

as the long terminal repeats (LTR). The LTR regions contain sites important for viral 
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integration, packaging, and transcription regulation. The HIV-1 genome encodes for 

nine genes: three major genes encoding for structural proteins (gag, pol and env), 

two regulatory genes (tat and rev, and four accessory genes (vif, vpr, vpu and nef) 

(Fig. 3). 

 

 

 

Figure 3. Schematic structure of the HIV-1 genome. Reproduced from Splettstoesser T21. 

− Major structural genes 

o gag (group specific antigen): codifies for the Gag polyprotein, which is 

processed during maturation to generate the structural proteins p17 or 

MA, p24 or CA, p7 or NC, and p6 

o pol (polymerase): codifies for the viral enzymes reverse transcriptase 

(transcribes DNA from RNA), integrase (integrates the double-stranded 

RNA into the host genome) and protease (cleaves the precursor Gag 

polyprotein to produce structural proteins) 

o env: codifies for gp160, the precursor of gp120 and gp41 proteins that are 

embedded into the viral envelope. Enables viral fusion with target cells 

− Regulatory genes 

o tat (trans-activating regulatory protein): codifies for the protein Tat which 

regulates the reverse transcription of viral RNA 

o rev (regulator of expression proteins): regulates the export of non-spliced 

and partially spliced viral mRNA from the nucleus to the cytoplasm 

− Accessory genes  

o vif (virion infectivity factor): encodes the Vif protein that is critical for 

infectious virus production 

o vpr (viral protein R): encodes the Vpr protein that facilitates the nuclear 

import of cDNA, transactivates HIV-1 promoters, halts cellular growth and 

induces cellular differentiation 
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o vpu (viral protein U): encodes the Vpu polypeptide that induces virion 

release from the surface of an infected cell, and is involved in CD4 

degradation 

o nef (negative factor Nef): encodes the Nef protein that has influence on 

HIV-1 replication, enhancement of infectivity, downregulation of CD4 on 

target cells 

1.2.3. HIV-1 replication cycle 

The HIV-1 replication cycle includes several stages and all of them can be 

potentially inhibited by antiretroviral drugs (Fig. 4). 

 

 

 

 

 

 

 

 

 

 

Figure 4. Schematic overview of the HIV-1 replication cycle. The figure illustrates the main steps 
in the HIV-1 life cycle divided in an early and a late phase. The early phase includes: (1) the binding 
of the virus particle to the CD4 receptor and co-receptors CCR5 or CXCR4; (2) the fusion with the 
host cell membrane followed by the uncoating of the viral capsid and the release of the HIV-1 RNA 
genome and proteins into the cytoplasm; (3) the reverse transcription of the viral RNA genome into 
a DNA duplex, the translocation into the nucleus and the (4) integration into the cell genome. After 
the integration, the late phase of the cycle starts, in which: (5) the proviral DNA is transcribed to form 
new viral RNA, which subsequently is (6) translated to form viral proteins; these proteins translocate 
to the cell surface to (7) assemble in the cell membrane and form new viruses. Finally, the new viral 
particles (8) bud off and suffer a process of (9) maturation until becoming mature virions.  
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Binding and fusion 

The viral protein gp120 binds with the cellular receptor CD4, which is present on the 

surface of target cells22. The binding causes a conformational change in gp120 

exposing the co-receptor binding site (or V3 loop) allowing gp120 to interact with the 

co-receptor CCR5 or CXCR423. The co-receptor used for cellular entry determines 

the tropism of the virus, which is termed R5-, X4- or dual-tropic accordingly. 

Individuals lacking the CCR5 co-receptor due to a homozygous Δ32 deletion in the 

CCR5 gene are resistant to infection by R5-tropic strains24,25. The binding of gp120 

to CD4 and the co-receptor causes a conformational change in gp41, leading to the 

fusion between the viral and cellular membrane. Afterward, the viral capsid core is 

internalized, and the RNA released into the cytoplasm26. The entering capsid 

contains two copies of the viral RNA, and various enzymes, including reverse 

transcriptase, integrase and protease27.  

Reverse transcription 

The ss-RNA is retrotranscribed by the reverse transcriptase enzyme into linear 

double-stranded DNA (dsDNA)27. Due to the absence of proofreading mechanism, 

this process introduces high rates of DNA base pair mutations, contributing to the 

high rate of viral evolution28. 

Integration 

Following reverse transcription, the dsDNA is translocated into the cell nucleus 

and integrated into the host cell genome by the viral enzyme integrase in a two-step 

process29. The first step, which occurs in the cytoplasm, is called 3’end processing, 

where the integrase primes the viral DNA by removing two nucleotides from both 

3’ends of the viral DNA. Then, the viral DNA binds to integrase complexes with other 

host cell and viral proteins to form the viral pre-integration complex (PIC). The PIC 

is transported into the nucleus where the viral enzyme integrase catalyzes the 

second step of the viral integration process known as “strand transfer”, which 

consists of the ligation of the processed DNA into the host chromosome. Once the 

virus is integrated into the host genome, the HIV-1 DNA is called provirus and the 

host cell is permanently and irreversibly infected.  
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Since the integration process is not entirely efficient, aborted integration events 

may also be found in the nucleus. The unintegrated DNA can be found as linear or 

circularized DNA. Circularization is performed by host DNA repair enzymes to form 

episomes containing two copies of the LTR (2-LTR circles) or undergo 

recombination to form 1-LTR circles30.  

Transcription and translation 

When the host cell receives a signal to become activated, the provirus 

transcribes to mRNA using the cellular polymerase II.  First, HIV-1 transcripts are 

multi-spliced (ms) to form tat, rev and nef mature mRNA, which are transported into 

the cytoplasm to be translated into viral proteins. Then, Tat and Rev return to the 

nucleus where Tat increases the rate of transcription by promoting elongation. The 

accumulation of Rev in the nucleus leads to the transcription of single and unspliced 

(us) mRNAs of gag, gag-pol, env, vif, vpr and vpu. Then, all these transcripts are 

transported to the cytoplasm, processed and translated into viral proteins31. 

Viral assembly, budding and maturation 

Assembly of new HIV-1 virions occurs at specialized plasma membrane 

microdomains of the host cell, mediated by the Gag and Gag-Pol polyproteins 

precursors, which contain the MA, CA, NC and p6 domains.  The MA domain targets 

Gag to the plasma membrane to promote the incorporation of Env glycoproteins into 

the forming virions. The CA domain mediates protein-protein interactions required 

for immature virion assembly. The NC domain recruits the viral RNA genome into 

the virions and facilitate the assembly, and the p6 domain recruits the host 

endosomal sorting complex required for transport machinery which mediates the 

budding process. After the budding of the immature virion, the viral protease is 

activated and cleaves Gag and Gag-Pol polyproteins into their functional subunits: 

MA, CA, NC, and p6 proteins, converting the immature virion into its mature 

infectious form32. 



CHAPTER 1. Introduction 

 

40 
 

1.3. HIV-1 pathogenesis 

1.3.1. Transmission 

HIV-1 can be transmitted by the exchange of body fluids from infected people 

such as blood, semen, vaginal secretion, and breast milk. Also, it can be transmitted 

by vertical transmission from mother to child during pregnancy or delivery. The risk 

of infection is dependent of different factors such as the route of infection, viral 

concentration in the exposed body fluid, presence of other sexually transmitted 

diseases, and the susceptibility of the recipient. Sexual transmission through the 

lower genital tract and rectal mucosa represents the highest proportion of the new 

infections33.   

In most cases, the infection is established by a single virus, however this may 

vary depending on the infection route34,35. Specifically, during sexual transmission, 

cell-free or cell-associated virions can penetrate the epithelium through 

microabrasions or by transcytosis. Then, the virus rapidly reaches dendritic cells 

(DCs), Langerhans cells, intraepithelial CD4+ T cells and resting CD4+ T cells in the 

lamina propria36,37 . After local viral expansion, the virus disseminates to the draining 

LN, and subsequently arrives to the bloodstream to establish the infection into 

secondary lymphoid organs, with particularly preference for the CD4+ T cells located 

in the gut associated lymphoid tissue (GALT)38. 

1.3.2. Natural course of HIV-1 infection 

HIV-1 infection is characterized by a progressive decline in the number of CD4+ 

T cells, rise in the HIV-1 viral load, chronic immune activation, and exhaustion of the 

immune system. In the absence of treatment, an asymptomatic period of 8 to 10 

years is observed before the progression to AIDS39, which is associated with the 

development of opportunistic infections and cancers that finally leads to death40. 

The natural course of infection commonly includes three different stages (Fig. 5): 

acute phase, chronic phase, and AIDS. 
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Figure 5. Schematic representation of the natural HIV-1 course of infection in the absence of 
antiretroviral therapy. CD4+ T lymphocytes count is shown in blue, HIV-1 RNA copies/ml in red, and 
HIV-1 specific immune responses in green. Adapted from Splettstoesser T21. 

Acute infection 

This phase lasts from 2 to 9 weeks after infection. The end is marked by the 

detection of HIV-1 antibodies in plasma, which is called seroconversion.  

The first days after HIV-1 infection the virus replicates and spreads to different 

tissues and organs, but viremia is still undetectable in plasma and there is no 

immune response or symptoms, generating what is known as the eclipse phase41. 

After this period, still in the acute phase, there is an increase in plasma viremia, 

reaching the zenith around day 21-28 (105-107 HIV-1 RNA copies/ml plasma), with 

a consequent massive depletion of CD4+ T cells. The depletion in immune cells is 

the result of the viral cytopathic effect and host immune response. During this phase, 

HIV-1-infected individuals may develop a virus-like illness (acute retroviral 

syndrome) characterized by fever, pharyngitis, lymphadenopathy, and rash.  

After the peak of plasma viremia, the immune system generates antibodies 

(seroconversion) against HIV-1 viral proteins and CD8+ T cell responses against 

HIV-1 antigens expressed on the surface of infected cells. At the end of acute 
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infection, the immune responses will reduce plasma viremia reaching a virological 

set point (predictor of disease progression) and increase the levels of CD4+ T cells. 

Chronic infection 

Acute HIV-1 infection is followed by a chronic and generally asymptomatic phase 

of the infection that lasts from 8 to 10 years39, and is characterized by a continuous 

and slow decline of peripheral CD4+ T cells and stable viral loads.  In this phase 

there is a constant stimulation of the immune system due to the persistent exposure 

to viral antigens and altered cytokine environment. However, the virus continues 

replicating and disseminates into lymphoid organs.  

AIDS 

This phase is characterized by a drop of CD4+ T cell counts bellow 200 cells/mm3, 

a dramatic increase of viral load, failure in the immune responses, and lymphoid 

architecture is destroyed. Therefore, this enables the onset of AIDS-defining 

illnesses such as opportunistic infections, HIV-1 associated cancers, and kidney 

failure, which eventually results in death.  

1.3.2.1. Alternative HIV-1 progression 

Although the 80-90% of HIV-1-infected individuals present a natural history of 

the infection as it was just described, a fraction is able to remain clinically stable and 

without progression to AIDS in the absence of antiretroviral treatment. These 

individuals represent between 5 to 15% of the total HIV-1-infected population and 

are termed as long-term non progressors (LTNPs), which remain clinically and/or 

immunologically stable for more than 10 years with CD4+ T cell counts over 500 

cells/mm3 42–45 (Fig. 6). Among LTNP, we found elite controllers (EC) which have 

the ability to maintain plasma viremia to undetectable levels (<50 copies/ml) and 

generally maintain elevated CD4+ T cell counts (200 to 1000 cells/mm3) for at least 

1 year , and represent less than 1% of the total HIV-1-infected population46–48. An 

additional progression phenotype is the called viremic controllers (VC), whom 

achieve a less degree of virologic control (<2000 copies/ml) while maintaining 

elevated CD4+ T cell counts (≤500 cells/mm3)49,50. 
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Figure 6. Schematic representation of the variation in HIV-1 disease progression. EC: Elite 
Controllers; LTNP: Long Term Non progressors; VC: viremic controllers; VNP: Viremic non 
progressors; RP: Rapid progressors. Adapted from Telenti A and Johnson WE51 

On the other extreme of disease spectrum, exists a small group of HIV-1-infected 

individuals (<0.5%) with a rapid progression to AIDS within 2-3 years after primary 

infection, the rapid progressors (RP) (Fig. 6). They may present clinically severe 

acute infection, and are defined by a decay of CD4+ T cells below 350 cells/mm3  

within 3 years after seroconversion, with, in most cases, high levels of plasma 

viremia42,52. 

Finally, there are individuals termed as viremic non-progressors (VNP) 

characterized by having high levels of HIV-1 replication during the chronic phase of 

infection despite remaining asymptomatic, and maintain high CD4+ T cell counts for 

long periods of time in the absence of antiretroviral treatment53 (Fig. 6). 

1.4. Antiretroviral treatment of HIV-1 infection 

The development of antiretroviral treatment has modified the natural course of 

the HIV-1 infection achieving one of the most significant advances in the HIV-1 field. 

AZidoThymidine (AZT) was the first antiretroviral approved in 1987. It was the first 

of a family of nucleoside reverse transcriptase inhibitor (NRTI) that interferes with 

HIV-1 replication by blocking the reverse transcriptase54. During several years, NRTI 
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and a parallel group of non-nucleoside reverse transcriptase inhibitors (NNRTI) were 

administered as mono or dual therapy, leading to the development of drug 

resistances due to a failure of a completely suppression of viral replication. In 1996, 

long-term suppression of HIV-1 was achieved by the administration of triple-drug 

therapy, called highly active antiretroviral therapy (HAART) or combined 

antiretroviral therapy (cART)55,56. 

To date, more than 40 drugs have been approved by the US Food and Drug 

Administration (FDA) and European Medicines Agency (EMA) for the treatment of 

HIV-157. These drugs are classified by the mode of action in six categories: 

1. Nucleoside/nucleotide-analog reverse transcriptase inhibitors (NRTIs): 

inhibition of the viral DNA transcription by incorporation of a defective 

nucleotide. 

2. Non-nucleoside reverse transcriptase inhibitors (NNRTIs): inhibition of 

reverse transcriptase by binding to its active site 

3. Integrase inhibitors (INIs): prevents integration of viral DNA into the host 

genome 

4. Protease inhibitors (PIs): inhibition of protease enzyme resulting in non-

mature virions 

5. Fusion inhibitors: interfere with binding, fusion, and entry of HIV-1 to the host 

cell  

6. Entry inhibitors: blocks binding of HIV-1 to the co-receptor CCR5 or CD4 

receptor 

Typically, a standard cART consists of a combination of 2 NRTI and one drug 

from any of the other categories. cART suppresses viremia below the clinical 

detection limit, restores CD4+ T cell counts, reduces the risk of comorbidities, and 

increases the life expectancy of HIV-1-infected individuals near the general 

population58. Also, it has been shown that if a highly adherence to daily therapy 

exists, the risk of viral transmission is reduced to negligible levels59.  

Nowadays it is recommended to start cART immediately upon diagnosis of HIV-

1, regardless of CD4+ T counts or viral load, since it has been associated with an 

improved prognosis55. Furthermore, several studies indicate that starting cART 
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during acute or early HIV-1 infection compared to during chronic infection have 

additional benefits such as lower progression, preserved CD4+ T cell counts, 

reduced viral set point, and less destruction of the lymphoid tissue60. 

1.5. HIV-1 persistence during suppressive antiretroviral therapy 

cART is effective and reduces HIV-1 RNA levels below the limit of detection 

(LOD), reconstitutes the immune system, decreases the morbidity, mortality, and 

viral transmission58,59 but it is not able to cure the infection. If treatment is interrupted, 

in most cases, HIV-1 viral load rebounds in a median of 2 to 8 weeks61 with a 

decrease in the CD4+ T cell count. In 1995, it was demonstrated for the first time 

that the reason why HIV-1 cannot be cured was that resting CD4+ T cells from HIV-

1-infected individuals contained integrated HIV-1 DNA62. That phenomenon was 

known as latent infection. 

 Latent infection is a reversibly non-productive state of HIV-1 infection, which is 

characterized by the presence of infected cells that are transcriptionally silent but 

capable of being induced to produce replication-competent virus. Alternatively, a 

reservoir is defined as a cell type or anatomical site in which virus accumulates and 

persist63.  

The reservoir levels fluctuate and evolve during the natural and therapeutic 

course of HIV-1 infection. Thus, reservoirs can be detected very early after infection 

with median total blood HIV-1 DNA load of 3.3 log10 copies/106 PBMC after a median 

of 47 days after infection64. Once cART is started, the reservoir in blood is reduced, 

being variable among different individuals65–68. Specifically, individuals who naturally 

control HIV-1 infection present a very low and stable total HIV-1 DNA levels in the 

absence of cART48,69–71. Reduced latency is also observed in the called post-

treatment controllers (PTC), in whom treatment was initiated early during the primary 

infection, but long-term viral control after treatment interruption was maintained72. 

On the other hand, individuals who do not control HIV-1 replication or are 

symptomatic have significantly higher HIV-1 DNA levels73. However, the mechanism 

by how the reservoir is stablished and how varies among individuals is still unknown.  
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1.5.1. Cellular and anatomical HIV-1 reservoirs  

Since the first description of resting CD4+ T cells as a reservoir for HIV-162, 

different cell types and tissue compartments have been described as reservoirs. 

Consequently, HIV-1 reservoirs are diverse and can be conceptualized as either 

cellular or anatomical reservoirs (Fig. 7). 

 

 

 

 

 

 

 

 

 

 

Figure 7. Schematic representation of tissues and specific tissue-cells contributing to the 
persistence of HIV-1 during effective cART. Reproduced from Barton K. et al74.  

1.5.1.1. Cellular reservoirs 

HIV-1 primarily infects CD4+ T cells due to the need of specific interaction of 

gp120 with the CD4 receptor to the virus entry. In particular, memory CD4+ T cells 

are the largest contributor to the HIV-1 reservoir and the most widely characterized 

population75. There are different types of memory CD4+ T cells, based on their 

memory and functional status (Fig. 8). Several studies have shown that CD4+ T cell 

subsets harbor different amounts of latent HIV-1 and the mechanisms by which 

support viral persistence might be different. T central memory (TCM), T transitional 

memory (TTM), and T effector memory (TEM) CD4+ T cells contain HIV-1 DNA at 
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higher frequencies than the more differentiated subsets, such as T terminally 

differentiated (TTD) cells75. A subset with stem cell like properties, the T stem cell 

memory (TSCM) cells have been shown to significantly contribute to the HIV-1 

reservoir due to their increase proliferative capacity and self-renewal, although their 

levels of total HIV-1 DNA and their proportion in peripheral blood are lower than 

other memory CD4+ T cell subsets76. Naïve CD4+ T cells (TN) also contain HIV-1 

DNA, but at lower frequency than the other mentioned T cell subpopulations75 

 

 

   

 

 

 

Figure 8. Contribution of CD4+ T cell subsets to the HIV-1 reservoir during cART. CD4+ T cell 
subsets can be classified according to their differentiation and memory status77.  

Other CD4+ T cell subtypes, such as T follicular helper (TFH)78–80, T regulatory 

(Treg)81,82
 , tissue resident memory (TRM)83,84 and T migratory memory (TTM) (Fig. 7)  

cells also contribute to the long-lived HIV-1 reservoir.  

Additionally, other cell types in the myeloid lineage such as monocytes, 

macrophages and DCs have been proposed to be permissive for HIV-1 infection. 

The expression of the CD4 receptor on these cells is much lower than on CD4+ T 

lymphocytes, and their ability to get infected remains controversial.  Monocytes are 

derived from myeloid progenitors in the bone marrow and they are the precursors of 

macrophages and DCs. HIV-1 has been rarely detected in circulating monocytes of 

HIV-1-infected individuals85,86. Moreover, given their short half-life of a few days 

before their differentiation into macrophages and their high turnover suggest that 

they do not represent a stable reservoir, but could represent an important viral 

reservoir for their ability to disseminate into different tissues and differentiate in 

macrophages. In fact, in macrophages from different organs (microglial cells, 

alveolar macrophages, intestinal macrophages…) have also been detected HIV-1 
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DNA87–89. However, it was not until 2019 the demonstration that macrophages 

harvested from urethral tissue of individuals under cART harbor replication-

competent HIV-190. On the other hand, in DCs low levels of proviral DNA has been 

observed in vivo, however the most important contribution of DCs to the HIV-1 

reservoir seems to be the ability to retain HIV-1 virions and transfer it to CD4+ T 

cells91,92.   

1.5.1.1. Anatomical reservoirs 

HIV-1 reservoirs have been widely analyzed in peripheral blood, but only 2% of 

the total amount of lymphocytes are found in there93. Therefore, a different scenario 

could be happening in tissues, making important the study of the HIV-1 reservoir in 

different anatomic compartments.  

The cells previously described that contain HIV-1 DNA can be found in different 

tissues or anatomic compartments such as lymphoid tissues, brain, kidneys, lung, 

liver, adipose tissue, gastrointestinal tract, genitourinary system, and bone marrow 

(BM) (Fig. 7)94,95. The lymphoid tissues, which comprises the spleen, thymus, LN 

and GALT, are the most important sites of viral replication during active infection 

and HIV-1 DNA is still detected after years of cART95. In many cases, these 

anatomical reservoirs have a less efficient drug penetration and/or poorer immune 

surveillance by the effector cells of the immune system96. Thus, viral replication and 

viral reseeding may occur.  

GALT is the largest lymphoid tissue in the body and comprises the largest 

population of T cells and macrophages93. It is thought to be the main primary site of 

initial HIV-1 replication and an important contributor to the overall pool of latently 

infected CD4+ T cells during treated HIV-1 infection. Several studies have shown 

that it contain much higher levels of HIV-1 DNA than in peripheral blood among HIV-

1-infected individuals under cART97,98. One study by Yukl et al estimated that the 

gut contains 1.2x109 infected CD4+ T cells, which would represent the 83-95% of all 

HIV-1-infected cells in the body99.  

Other secondary lymphoid tissues such as LNs or spleen represent an important 

HIV-1 reservoir. They are the primary site for viral replication and contain high 

numbers of infected cells and free virions100. Although cART can decrease in 3 logs 
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the HIV-1 RNA in LNs, HIV-1 DNA and -RNA can still be detected in individuals after 

long periods of cART101–103. In fact, several studies have shown a higher 

concentration of HIV-1 DNA and -RNA in LNs and spleen compared to peripheral 

blood104. In LNs, rather than being the TCM and TTM subsets the largest proportion 

of the infected cells as in peripheral blood, the memory subset TFH (characterized by 

the expression of C-X-C chemokine receptor type 5 (CXCR5) and Programmed cell 

death protein 1 (PD-1)) is the most enriched subpopulation for replication competent 

virus and viral RNA78.  

1.5.2. Reservoir establishment and maintenance 

The HIV-1 reservoir is established in the first days of infection68. Therefore, the 

treatment during acute HIV-1 infection does not prevent from the establishment of a 

pool of latently infected CD4+ T cells, even in the Fiebig I stage68.   

The in vivo mechanisms responsible of the establishment of the HIV-1 reservoir 

are not completely clear yet. Two main models of latency have been described by 

which HIV-1 establishes a pool of latently HIV-1 infected cells: through the infection 

of activated CD4+ T cells that survive and revert to a memory phenotype, or via 

direct infection and integration into the genome of resting memory CD4+ T cells. In 

vitro models have shown that activated CD4+ T cells that are transitioning to a resting 

state are more permissive to HIV-1 infection, hence escaping the rapid destruction 

of the infected T cells105. Therefore, latent HIV-1 infection can be established in 

resting and activated cells, but the probability of establishing latency could be higher 

in resting CD4+ T cells while productive infection is more likely in activated CD4+ T 

cells106.  

Once the reservoir is established by either of these ways, the pool of latently 

infected cells is extremely stable, with a medium half-life of 3.7 years in HIV-1-

infected individuals on cART107,108, estimating that it would take more than 60 years 

of cART to eradicate the infection. Hence, the maintenance of this remarkable stable 

reservoir might be the result of normal homeostatic mechanisms among other 

factors, as showed in Fig. 9. The first explanation to the maintenance of the reservoir 

is the fact that the latent reservoir is composed by long survival cells, which are able 

to maintain the size of the latent reservoir for long periods of time. Also, it can be 
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maintained by proliferation of latently infected cells by clonal expansion of cells with 

an HIV-1 provirus integrated in genes associated with cell cycle passing identical 

proviral copies from dividing cells to daughter cells109–111, by homeostatic 

proliferation (driven by cytokines such as IL-775 or IL-15112) or by some degree of 

antigen-driven proliferation, which may induce proliferation of T cells without 

activation of viral gene expression. Finally, it can be maintained by the low levels of 

residual viral replication that are present in some HIV-1-infected individuals113 

despite being under cART. This low level replication might be due to the insufficient 

drug penetration in some tissues, such as LNs114, or cell-to-cell spread.   

 

 

  

 

 

 

 

 

 

 

 

 

Figure 9. Different mechanisms by which the HIV-1 reservoir is maintained. Each cell color 
represents a different HIV-1 clone, where HIV-1 is integrated in a different part of the human genome.  

1.5.3. Measuring the HIV-1 reservoir 

In HIV-1-infected individuals, approximately 1 in 104-107 CD4+ T cells are latently 

infected115, with a rate of infection depending on the moment when cART was 

initiated after infection and the HIV-1 viral load set point116. Given these low 
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frequencies, the assays to measure the HIV-1 reservoirs need to be sensitive 

enough to detect small number of cells in a background of a large number of cells, 

specific to detect that a rare event is true, able to distinguish between replication-

competent and no replication-competent proviruses, and precise to detect a 

reduction in the HIV-1 reservoir when assessing an eradication strategy. 

To date, there has been developed several assays for measuring HIV-1 

persistence. The different assays can measure free virus, cell-associated HIV-1 

DNA (integrated or unintegrated, total or intact), the transcription-competent 

reservoir, the translation-competent reservoir or the replication-competent reservoir. 

These assays are basically based on polymerase chain reaction (PCR), flow 

cytometry, microscopy, and cell culture (Fig. 10). The use of each assay depends 

on the aim of the study, the type and quantity of sample available with the 

consequent advantages and disadvantages in each one (Table 1).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Assays to measure the HIV-1 reservoir.  
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1.5.3.1. Cell-free virus  

Although cell-free viruses are not considered as part of the latent HIV-1 reservoir, 

are a good marker of residual virus production. HIV-1 RNA from cell-free virus can 

be detected in body fluids (cerebrospinal fluids (CSF) and plasma) in individuals 

under cART, reflecting that residual viral replication exists117.  

Clinical assays can detect viremia down to 20 copies/ml, which is useful for 

clinical follow-up, but do not have the sensitivity to measure low-level persistent 

viremia (<20 copies/ml). For that reason, it was developed an assay that can detect 

down to one copy/ml called single-copy assay (SCA)118. This assay consists of the 

ultracentrifugation of up to 9ml of plasma or CSF, followed by manually RNA 

extraction and reverse transcription quantitative PCR (RT-qPCR) assay with a 

standard control. Modifications of this assay have been done to be less time 

consuming and more automated. The main differences with SCA are an automated 

RNA extraction, followed by RT-qPCR using the Abbott Real-Time HIV-1 assay 

(Abbott assay) or the RocheCOBAS® AmpliPrep/COBAS® TaqMan® HIV-1 test, v. 

2.0 (TaqMan® test v2.0) 119–123 marked by an adjusted standard curve119. 

All these assays have in common the large volume of body fluid required, the 

use of primers located in conserved regions of the viral genome, and a LOD of 1 

copy of HIV-1 RNA/ml (or lower depending of the input volume).  

Alternatively, the free virus can be extracted and sequenced, and  provide an 

indication of the source of the viremia124. Moreover, if the sequence is on single-

genome it can provide genetic composition and diversity of the virions present in the 

individual124–126. 

1.5.3.2. Cell-associated HIV-1 DNA 

In the HIV-1 replication cycle, there are different forms of cell-associated HIV-1 

DNA that can be targeted individually or totally to estimate the size of the latent 

reservoir in HIV-1-infected individuals. These include: 

− Integrated: HIV-1 is integrated into the host genome, preferentially into 

transcriptionally active open chromatin. There is a strong preference for 

integration of HIV-1 into, or close to Alu elements127. The Alu elements are the 
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most numerous repetitive elements in the human DNA and are randomly 

distributed 

− Unintegrated:  

o Linear: the most abundant form of non-integrated DNA. It is the direct 

product of reverse transcribed viral RNA 

o Circular: 

▪ 1-long terminal repeat (1-LTR): formed through homologous 

recombination of linear DNA at the LTR, resulting in a circular 

DNA bearing one copy of the viral LTR 

▪ 2-long terminal repeat (2-LTR): product of non-homologous end 

joining DNA repair events that are mediated in the nucleus as a 

protective host response to the presence of ds-DNA  

PCR-based assays are the most sensitive, quick, easy, and cost-effective to 

measure the levels of each form of cell-associated HIV-1 DNA.  

The most widely used method to quantify total HIV-1 DNA is by quantitative PCR 

(qPCR), which includes both integrated and unintegrated forms. qPCR is performed 

on DNA extracts from peripheral blood mononuclear cells (PBMCs) or CD4+ T 

lymphocytes, using primers/probe sets that amplify conserved regions of the HIV-1 

genome, usually from gag, LTR or pol regions128,129. However, traditionally qPCR 

requires a standard curve to estimate the total HIV-1 DNA copies to normalize the 

total cell number by using a cellular gene. Moreover, its accuracy at low copy 

numbers is limited by the exponential amplification of noise. For that reason, droplet 

digital PCR (ddPCR) is used as an alternative to qPCR, which have greater 

precision, an improved accuracy, direct quantification, and greater tolerance for 

primer/probe mismatches130,131. ddPCR is based on the fractioning of the sample, 

in this case DNA, into 20.000 droplets where the PCR amplification occurs in each 

individual droplet and is then analyzed (Fig. 11). The only weakness of ddPCR is 

the presence of false positive signal in levels close to the limit of detection. However, 

the quantification of total HIV-1 DNA, by both qPCR and ddPCR, overestimates the 

frequency of replication-competent reservoir128 and do not provide information about 

their inducibility or intactness (Table 1).  
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Figure 11. Schematic representation of droplet digital polymerase chain reaction (ddPCR).  

Total HIV-1 DNA is based in the amplification of only one highly conserved 

proviral region to detect HIV-1 genomes, but it has been proved that 88.3% of the 

proviruses are defective or mutated132. Therefore, it has been recently developed 

an assay to detect intact proviruses, called Intact Proviral DNA Assay (IPDA). This 

technique is developed in the fact that there are different conserved regions of the 

HIV-1 genome that need to mute at the same time, or are always missing in a 

defective virus133. IPDA is based on a ddPCR multiplex technology, which measures 

the presence of an intact packaging signal (PS) and the Rev-responsive element 

(RRE) within env. It is estimated that of the proviruses amplified by IPDA, 60-70% 

are intact133. However, with the current primers described for this assay, for some 

individuals no amplification occurs for PS and env probes, which is attributed to 

sequence polymorphisms in proviral genomes. Additionally, it has been developed 

an assay called Q4PCR that also has the aim to distinguish intact provirus. In this 

case, Q4PCR is based on a quantitative PCR covering four regions of the genome 

followed by sequence verification of positive reactions, which provides information 

on proviral integrity by viral sequences134.  

Alternatively, specific assays have been developed to quantify integrated HIV-

1 DNA. The assay most used for measuring it is the Alu PCR that consists of a 

primer targeting Alu elements in the human genome while the other primer targets 

gag or LTR, followed by a nested PCR for the HIV-1 LTR region to enhance 

sensitivity135,136. However, this assay has the drawbacks that requires a standard 

curve, has variable efficiency depending on the proximity of human Alu sequence 
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and the HIV-1 genome, and is labor intensive (high number of replicates for accurate 

frequency estimation) (Table 1). Other methods to quantify integrated HIV-1 DNA 

includes gel-fractionation137, inverse PCR138 and linker ligation PCR139.  

On the other hand, unintegrated forms of DNA (1-LTR and 2-LTR circles) can 

be detected in infected cells as a result of a failed integration. Although they are not 

considered a part of the latent reservoir, they have been used as a surrogate marker 

of recent infection events during cART due to their short-lived nature65,140. It can be 

measured by using primers flanking the 2-LTR circle junction, by qPCR and 

ddPCR128,140–142.  

1.5.3.3. Transcription-competent reservoir 

Cell-associated HIV-1 RNA (caHIV-1 RNA) is an indicative of which cells are 

actively transcribing virus, and therefore can be used as a biomarker of latency 

reversal, but not as an indicative of the size of the reservoir.  

Proviruses that are transcriptionally-competent are more likely to be replication-

competent, but there are also defective viruses than can express RNA143. The RNA 

measured can be either un-spliced (us) or multi-spliced (ms), where us-RNA 

corresponds to the first HIV-1 mRNA transcribed and msRNA the HIV-1 mRNA 

processed for being translated. 

Different assays exist to measure the different forms of caHIV-1 RNA, with all of 

them having in common the detection of the viral RNA but by different methods 

including amplification by PCR, RNA staining and detection by flow cytometry or 

microscopy. Moreover, caHIV-1 RNA can be measured on unstimulated cells or 

cells stimulated with T cell activating agents (inducible reservoir). 

HIV-1 RNA detection by PCR 

caHIV-1 RNA can be measured from RNA extracts of different cell types, usually 

CD4+ T lymphocytes, by RT-qPCR or RT-ddPCR. Targets of caHIV-1 RNA include 

primer/probe for us-RNA (against gag, pol, and LTR) 144–146, multiple spliced (ms-

RNA; against a region containing tat/rev or tat/nef exon-exon junction)144,145,147, 

polyadenylated transcripts148,149, TAR RNAs150, and the chimeric host-HIV read-

through transcripts149,151.   
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Other RNA PCR approach named tat/rev Induced Limiting Dilution Assay 

(TILDA) was developed to measure the frequency of peripheral CD4+ T cells 

expressing caHIV-1 RNA (Fig. 12). In this assay, CD4+ T cells are maximally 

stimulated with PMA/ionomycin to induce provirus expression for 12 hours and 

serially diluted to measure msRNA transcripts by RT-qPCR152. TILDA measures 

tat/rev transcripts that are required, but not enough, to produce viral particles. Also, 

as tat/rev transcripts are generated after splicing, it reduces the detection of 

defective proviruses. 

 

 

 

 
Figure 12. Schematic representation of TILDA. PBMCs are isolated from 10-20 ml of blood and 

enriched in CD4+ T cells by magnetic negative selection. CD4+ T cells are stimulated for 12 hours 
with PMA/ionomycin or resting. Then tat/rev transcripts are measured by a nested RT-PCR, and the 
frequency of inducible msRNA is determined using maximum likelihood method. Reproduced from 
Procopio FA. et al152 . 

HIV-1 RNA staining  

Alternative methods have been developed to measure the transcription-

competent reservoir able to produce RNA. These techniques combine fluorescence 

in situ hybridization (FISH) technique and branched double stranded DNA signal 

amplification, which is normally coupled with concurrent antibody staining for 

phenotypic markers. These assays allow the detection of single HIV-1 RNA positive 

cells and can be visualize by microcopy or flow cytometry, which have the main 

advantage that can localize what type of cells are producing virus.  

The microscope technique, known as RNAscope (Fig. 13)153,154, is based on a 

series of DNA probes with two sections, one recognizes the mRNA and the other 

forms part of a conserved tail sequence. Pairs of probes which recognizes adjacent 

regions of the target mRNA contain one half of the conserved tail, and when 

combined can be recognized by a DNA pre-amplifier which is in turn recognized by 

a secondary amplifier. This amplified structure is then labeled with a fluorescent 

probe, an alkaline phosphatase or horseradish peroxidase molecule that can be 
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visualized by a microscope. The benefit of this technique is that it preserves the 

tissue structure, facilitating to understand the types of cells and anatomic structures 

in which the virus is produced and how it is stored. Moreover, a novel multiplex 

microscopy ISH approach has been recently developed to simultaneously visualize 

vRNA, vDNA and protein in the same tissue section and therefore identify 

transcriptionally latent infected cells.   

 

 

 

 

 

 
 
Figure 13. Schematic representation of the RNAscope assay procedure. First, cells or tissues 

are fixed and permeabilized to allow for target probe access. Then, target mRNA-specific probes (Z) 
are hybridized in pairs (ZZ) to multiple RNA targets. Multiple signal amplification molecules are 
hybridized, each recognizing a specific target probe, and each unique label probe is conjugated to a 
different fluorophore or enzyme. Finally, signals are detected using a microscope. Reproduced from 
Wang F. et al155. 

Regarding the flow cytometry techniques, different assays have been developed 

including a commercial assay named PrimeFlowTM  or the RNA FISH-Flow156–158. 

These assays are basically based on the reactivation of cells with 

phytohemagglutinin (PHA) and ionomycin, and then stained by FISH using probes 

targeting the HIV-1 RNA gag-pol regions (Fig. 14). These techniques apart from the 

single cell phenotyping, have the advantage that are high throughput. However, are 

labor intensive and required a high number of starting cell input (Table 1).   
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Figure 14. Schematic representation of the RNA FISH-Flow assay. PBMCs are use directly or 
after reactivation. Then, HIV-1 RNA and Gag protein as well as surface markers, are analyzed by 
flow cytometry. Reproduced from Prasad VR. et al159. 

1.5.3.4. Translation-competent reservoir 

The previous assays described measure the transcription-competent reservoirs 

expressing HIV-1 RNA, but these are not necessarily able to produce infectious 

virions or even HIV-1 proteins. Therefore, assays able to quantify baseline or 

inducible expression of viral proteins have been of great interest to identify the 

translation-competent cellular reservoir. Provirus capable of translating HIV-1 

proteins are more likely to be replication-competent, since they are less likely to 

have major defects160. However, it has also been described that some defective 

proviruses are still capable of producing HIV-1 proteins161.  

The PrimeFlowTM or the RNA FISH-Flow assays previously described can be 

combined with the use of antibodies against the p24 capsid protein in whole cells in 

order to assess at the same time HIV-1 transcription and translation information 

within a single cell156–158,162 (Fig. 15). Generally, they are limited by a false positive 

rate from non-specific antibody binding, which might be overcome by the using of 

two p24 antibodies162. 

 

 

 
 
 
 
Figure 15. Single-cell strategy combining the detection of HIV-1 RNA and p24 production for the 

identification of the transcription and translation-competent reservoir by flow cytometry. Reproduced 
from Baxter AE. et al163. 



CHAPTER 1. Introduction 

 

60 
 

Other assay to measure viral proteins use the digital enzyme-linked 

immunosorbent assay (ELISA) technology164 to quantify levels of p24 produced 

from cells after stimulation or in basal conditions. This technique is based on the 

capture of p24 molecules in solution by antibody loaded magnetic beads on an 

antibody immobilized solid phase. First, the p24 protein is captured by magnetic 

beads that have been coupled to an antibody to the target protein. Then, the 

captured p24 protein is labeled with a detection biotinylated antibody which is 

recognized by streptavidin-β-galactosidase. Finally, the beads are suspended in a 

solution containing a fluorogenic substrate to the streptavidin-β-galactosidase and 

loaded in femtoliters-size wells, termed as single-molecule arrays (SIMOA), 

returning a digital signal for analysis (Fig. 16). This technology can be applied to cell 

lysate or culture supernatants, being able to detect sub-femtomolar levels of p24. 

 

 

 

 

 

 

Figure 16. Schematic representation of the Digital ELISA. Reproduced from Lei C. et al165. 

1.5.4.5. Replication-competent provirus 

Finally, replication-competent proviruses are those capable to transcribe, 

translate and produce new mature virions. The assay able to quantify them is the 

quantitative viral outgrowth assay (qVOA), which measures the functional reservoir 

and has been considered the gold standard for determining the frequency of CD4+ 

T cells harboring replication competent-proviruses since its development in the 

1990s166. However, this assay underestimates the size of the reservoir due to 

suboptimal induction and/or inadequate propagation of all replication-competent 

viruses in vitro (Table 1)132. 
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The qVOA consists of a limiting dilution of CD4+ T cells, either total or resting, 

that are maximally stimulated with a T-cell-activating mitogen (usually PHA) in the 

presence of irradiated allogeneic PBMCs, to initiate HIV-1 transcription and 

replication. To expand the number of virions, the cells are co-cultured with CD4+ T 

cells from an HIV-negative donor, a reporter cell line or CD8-depleted PBMCs from 

three HIV-negative donors activated with three different stimulus (dubbed 3×3 cells) 

or MOLT-4/CCR5 cells. After 14 days, viral outgrowth is assessed by an ELISA for 

the presence of p24Gag in the culture supernatant. Poisson statistics are applied to 

estimate the frequency of replication-competent provirus that is reported as 

infectious units per million cells (IUPM) (Fig. 17).  

 

 

 

 

 

 

 

 

Figure 17. Schematic representation of the steps of the viral outgrowth assay (qVOA). 
Reproduced from Laird GM. et al167. 

A modification of the qVOA is the murine Viral Outgrowth Assay (mVOA)168. In 

this assay, CD4+ T cells or PBMCs from HIV-1-infected individuals are injected into 

humanized immunocompromised mice (NSG mouse). The human cells will become 

activated in the mouse, releasing virus into circulation. The virus released is 

monitored in murine plasma by HIV-1 specific RT-qPCR. mVOA is not quantitative 

but gives a more physiological vision of what could happen if therapy is interrupted. 

Therefore, this method may have utility when ex vivo assays cannot detect latent 

infection (Fig. 18). 
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Figure 18. Schematic representation of the mice viral outgrowth assay (mVOA). Modified from 
Kelly A. et al169. 

1.6. The search of a cure 

As previously stated, cART is not able to eradicate HIV-1 due to the presence of 

latently infected cells. The need of life-long treatment is associated with adverse 

effects, social stigma, persistent inflammation, and a constant threat of resistance 

emergement170. Therefore, a cure for HIV-1 infection is a major goal of research.  

There are two major concepts for HIV-1 cure, a sterilizing and a functional cure. A 

sterilizing cure would be achieved by a complete elimination of the HIV-1 virus from 

the body while a functional cure seeks to use the immune system to keep the virus 

at an undetectable level without the need of antiretroviral therapy.  

 1.6.1. HIV-1 cure strategies 

Several approaches are being pursued including treatment optimization, latency 

reversal, latency silencing, immunotherapy, HIV-1 specific immune enhancement, 

and gene or cell therapy. 

1.6.1.1. Treatment optimization 

One of the proposed strategies to cure HIV-1 is based on treatment optimization 

with either intensification of treatment or early treatment initiation. 

The intensification of treatment is based on the presence of low-level viral 

replication during cART, which may be due to a partial suppression or suboptimal 

drug concentrations in some tissues. Therefore, treatment intensification aims at 
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targeting the source of residual replication by adding additional drugs to accelerate 

the decay of the latent reservoir, leading in some individuals eventually to a cure. 

Several studies have been performed with compounds such as raltegravir141, 

maraviroc171, or darunavir/ritonavir172 but with limited evidence on reducing the 

latent reservoir or residual plasma viremia. Nonetheless, a recent study with 

ABX464 has shown promising results showing a reduction in the viral reservoir and 

transcription initiation in suppressed individuals173. 

On the other hand, treatment on early infection has been shown that leads to 

a lower viral reservoir in peripheral blood and tissues, less immune activation, better 

immune reconstitution, and lower risk of serious AIDS-related events174–176. 

Moreover, different studies have shown that the small proportion of the individuals 

that are able to control viremia when therapy is interrupted, known as post-treatment 

controllers, started cART early after infection72,177. Also, this effect is shown in 

pediatric HIV-1 cases, including the “Mississippi baby”178. This newborn was 

infected intra-utero and treated 30 hours after birth, continuing the treatment until 18 

months of age when therapy was interrupted. The baby remained undetectable for 

27 months, when unfortunately the virus rebounded and the treatment had to be 

reinitiated.  

1.6.1.2. Latency reversal 

One of the most studied eradication approaches is the named as “shock and 

kill”. This aims to combine an effect at reversing the transcriptional silencing of the 

integrated provirus through latency reversal agents (LRA) (shock) with the 

elimination of the new virions through the combined effects of cART and/or HIV-1 

specific immune responses (kill) (Fig. 19).  

 
 
 
 
 
 
 
 
 
 
 
Figure 19. Schematic representation of the shock and kill strategy to eliminate HIV-1 latently 

infected cells. Reproduced from Cohen J. et al179 
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Multiple classes of LRA have been identified that successfully induced RNA 

production, but only some drugs induced the production of proteins and viral 

particles. These include histone deacetylase and histone methyltransferases 

inhibitors that upregulate the transcription by reversing epigenetic silencing180–182; 

protein kinase C agonists183,184  and CCR5 agonists185,186  that stimulate latent HIV-

1 by activating NF-κb. 

However, none of these interventions were capable of reducing the viral 

reservoirs, probably due to the limited ability of the compounds to reverse the 

latency and/or because the immune system needed to be primed to clear antigen-

expressing cells187. 

A second generation of LRA seem to have promising results in pre-clinical 

studies such as the small-molecule inhibitor of apoptosis antagonists known as 

SMAC mimetic compounds (Second mitochondria-derived activator of caspases), 

that have demonstrated potent activity in different animal models by reversing HIV-

1 latency188. Similarly, a study demonstrated that the FDA-approved retinoic acid 

derivative, known as acitretin, reactivate latent HIV-1 and induced preferential 

apoptosis of HIV-1 latently infected cells in vitro189. Also, toll-like receptors (TLR) 

agonists have shown latency reversing activity in non-human primates190–192. 

Finally, to do the “kill”, it has been proposed the use of immunotherapies or 

therapeutic vaccinations, which will be explained in the following sections. In fact, a 

recent study in non-human primates has shown that the combination of a TLR-7 

agonist with broadly neutralizing antibodies induced a state of remission193.  

1.6.1.3. Latency silencing 

Since the shock and kill strategy has not been proven successful yet, an opposite 

approach has been proposed, termed as block and lock. This strategy aims to 

permanently silence the provirus, even in the absence of cART, with the use of 

latency-promoting agents (LPA). These drugs target HIV-1 transcription related viral 

and cellular factors to silence HIV-1 transcription in latent HIV-1 infected cells.  

To date, the most advanced study involves the use of didehydro-cortistatin A 

(dCA), an inhibitor of the viral transcriptional activator Tat. In vivo, dCA has shown 

to block HIV-1 transcription and prevent viral reactivation. In humanized mice, dCA 
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administration during cART has shown a modest delayed and reduced viral rebound 

upon treatment interruption194. This approach, still pending to be confirmed in 

humans, is a proof of concept of functional cure. 

Other promising candidates for LPA include the use of the integration inhibitor 

LEDGINs, mTOR inhibitors, kinase inhibitors, and Jak-STAT inhibitors, among 

others (reviewed in 195). Nevertheless, these strategies are in early stages of 

development. 

1.6.1.4. Immunotherapy 

Constant antigenic stimulation during HIV-1 infection leads to chronic immune 

activation, inflammation, and immune exhaustion. In this context, HIV-1 specific cells 

diminish or become dysfunctional, losing their antiviral and proliferative capacity to 

eliminate productively infected cells. Therefore, immunotherapy strategies are 

aimed at reversing the immune exhaustion to enhance anti-HIV-1 immune 

responses, principally by using immune checkpoint blockers. 

Immune checkpoint blockers are antibodies against immune checkpoint 

molecules such as PD-1 or CTLA-4. It has been shown an enrichment for HIV-1 

provirus in CD4+ T cells expressing immune checkpoint molecules, and also a high 

expression of these molecules on HIV-1 specific CD8+ T cells. Therefore, these 

antibodies have the potential to boost T-cell function and to act as an LRA. Ex vivo, 

antibodies against immune checkpoint molecules have demonstrated an 

enhancement on HIV-1 specific CD8+ T cell responses196,197 and viral production by 

CD4+ T cells198,199. Different studies have suggested that immune checkpoint 

blockers are safe and efficacious in HIV-1-infected individuals with advanced stage 

cancers200–204. However, the effectiveness of immune checkpoint blockers to boost 

the immune system or eliminate the viral reservoir in HIV-1-infected individuals is 

still controversial. Results from studies using different immune checkpoint blockers 

range from showing no changes in HIV-1 specific-CD8+ T-cell responses or HIV-1 

reservoir205, transient enhancement of HIV-1 specific-CD8+ T cells with no variation 

in viral persistence206,207, transient increase in viral production without changes in 

viral reservoirs208,209, or cases of depletion of the HIV-1 reservoir199,210. Moreover, it 

has been recently published that in non-human primates the combination of PD-

1/CTLA-4 blockade induces a robust latency reversal and reduction of integrated 
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virus but insufficient to achieve viral control211. Altogether, it seems that immune 

check point blockade is unlikely to induce HIV-1 remission in the absence of 

additional interventions. 

1.6.1.5. HIV-1 specific immune enhancement 

To enhance HIV-1 specific immunity, it is being developed the use therapeutic 

vaccination, broadly neutralizing antibodies (bNAbs) and chimeric antigen receptor 

T cells. These strategies are aimed at eliminating or significantly reduce viral 

rebound when therapy is interrupted by enhancing the host immune response to 

HIV-1, thus achieving a functional cure. 

Therapeutic vaccination aims to boost the magnitude, breath of antigen-

specificities and functionality of anti-HIV-1 T-cell responses to eliminate or control 

HIV-1 infected cells in the absence of cART. In therapeutic vaccine trials, the 

vaccine is administered during cART, followed by a period of cART interruption to 

assess efficacy by time to viral rebound, size of the reservoir and host immune 

responses. Different vaccine strategies have been tried including live attenuated 

virus, death whole virus, replicating viral vectors, replication-deficient viral vectors, 

viral-like particles, soluble proteins, peptides and naked DNA, having different 

immunogenicity and safety212. Some of these vaccine strategies have shown an 

improvement of autologous HIV-1 specific T-cell responses but with limited success 

on viral control213,214.  

Recently, several studies have assessed the combination of an LRA with a 

therapeutic vaccine. For instance, the use of a vaccine and the LRA romidepsin led 

to a reduction in total HIV-1 DNA in one study215, and viremic control after cART 

cessation in some participants from another study216. A recent report has shown a 

progressive decrease in the reservoir and recovery of the immune function after a 

Tat based immunization217. Moreover, in non-human primates other vectors that 

stimulate HIV-1 specific T cells look promising, including cytomegalovirus and the 

combination of an adenovirus vector with a TLR-7 agonist218. 

bNAbs can neutralize a wide range of viral strains, enhance CD8+ T-cell 

function, and mediate different effector functions such as ADCC (antibody-

dependent cellular toxicity), ADCP (antibody-dependent cellular phagocytosis), 
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ADCDC (antibody-dependent complement-dependent cytotoxicity) or ADCT 

(antibody-dependent trogocytosis). In non-human primates, the use of the 

monoclonal antibody PGT121 resulted in a decline of plasma viremia and reduced 

proviral DNA in peripheral blood, gastrointestinal mucosa and lymph nodes219. 

Furthermore, the early administration of VRC07-523 and PGT121 to 1 month-old 

non-human primates resulted in complete clearance of SHIV-infected cells220. In 

clinical trials with HIV-1-infected individuals, the combination of 3BNC177 and 10-

1074 showed an effective suppression of viral rebound for a median of 21 weeks221, 

with the prevention of viral replication in some individuals when cART is interrupted 

and boost of the CD8 cytotoxic activity222. Alternatively, the use of synthetic 

molecules that mimic antibodies such as eCD4-Ig, which mimic both CD4 and CCR5 

receptors,  have demonstrated to protect from SIV and SHIV infection in non-human 

primates223,224.  

Chimeric antigen receptors T cells (CAR-T) are autologous T cells genetically 

engineered that comprise an extracellular domain (derived from the CD4 receptor 

or anti-HIV-1 antibodies) that recognizes an HIV-1 epitope linked to an intracellular 

T cell receptor domain that induces a cytotoxic T lymphocyte response upon antigen 

binding. Thus, when re-administered to the individual can direct the cytotoxic 

response to cells expressing the disease epitope. In vitro studies have demonstrated 

virus-clearing using anti-HIV-1 CAR-T cells225–227. Also, CAR-T cells targeting 

multiple sites named as duoCAR have shown in humanized mice a potent antiviral 

activity and elimination of HIV-1 infected cells228.  

1.6.1.6. Gene and cell therapy 

Finally, gene and cell therapy strategies aim to replace HIV-1 infected cells with 

a new virus-resistant hematopoietic stem or progenitor cells, and, therefore, 

generating an HIV-resistant immune system. The virus-resistant cells can be either 

derived from a natural resistant donor, by allogeneic hematopoietic stem cell 

transplantation (allo-HSCT), or by genome editing HIV-1 infected cells from the 

individual. Usually, these strategies are focused on mimicking the 32-bp deletion in 

the CCR5 gene that confers natural resistance to the R5 viral strains present in 

some individuals.  
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Allo-HSCT, is the only eradication strategy that has achieved the HIV-1 

remission or cure. In 2007, the “Berlin patient” who suffered from acute myeloid 

leukemia, received a myeloablative conditioning, two sessions of total body 

irradiation and two allogeneic stem cell transplants from a donor who was 

homozygous for the CCR5 Δ32 mutation229. The individual stopped cART at the time 

of the transplant and remain undetectable for HIV-1 for more than 10 years, until 

September 2020 when he died of leukemia relapse. Also, no HIV-1 RNA or HIV-1 

DNA were detectable in peripheral blood, BM or GALT, and thus it is considered 

that achieved a sterilizing cure230. This case encouraged investigators to replicate 

the strategy in other individuals such as the “Boston patients”231 using a CCR5 wild-

type donor, achieving a delayed viral rebound when therapy was interrupted but not 

a sterilizing cure. Additionally, the consortium named IciStem has been extensively 

following HIV-1-infected individuals who undergo allo-HSCT for medical reasons. 

As part of IciStem, two more cases of persistent HIV-1 remission after an allo-HSCT 

with CCR5 Δ32 cells have been achieved, which are known as the London232,233 and 

Düsseldorf234 patients.    

On the other hand, gene therapy aims at directly modify a specific sequence of 

DNA by genome-editing techniques such as zinc fingers nucleases (ZFNs), 

transcription activator-like effector nucleases (TALENs) or clustered regularly 

interspaced short palindromic repeats/CRISP-associated protein nuclease-9 

(CRISP/Cas9). The approach would involve the disruption of the CCR5 gene in 

autologous CD4+ T cells or hematopoietic stem cells followed by the reinfusion of 

the modified cells, with the aim of mimic the natural CCR5 Δ32 mutation to make 

the cells resistant to new infections. In 2014, a clinical trial using ZFNs showed that 

the modification of the CCR5 gene was safe but it did not prevent from viral rebound 

once therapy was interrupted in all the participants235. New gene strategies are 

under current investigation involving the modification of stem cells, different 

conditioning regimens or using other genome-editing tools such as CRISPR/Cas9. 

Alternatively, gene editing may be used to knockout or attenuate the HIV-1 provirus 

by targeting the LTR or gag genes to disrupt viral gene expression or cleave it out 

entirely from the cell genome236,237. 
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1.7. Thesis rational 

As previously stated in this introduction, it exits different individuals with a natural 

control of the HIV-1 infection as EC238 and PTC72, which are characterized for having 

a small size HIV-1 reservoir. On the other hand, the wide variety of eradication 

strategies under research are seeking to reduce the HIV-1 reservoirs to prove their 

effectiveness. Thus, having or achieving low levels of HIV-1 reservoir seems to be 

key for any HIV-1 cure strategy and the final goal is to eradicate the infection. 

However, there are many unresolved questions such as the clinical, viral, and 

immunogenetic factors associated with the reduction of the HIV-1 reservoir and its 

implication for achieving a functional or sterilizing cure. Those questions will be 

approached in this thesis in three different groups of HIV-1-infected individuals. 

First, it will be evaluated a group of exceptional EC (EEC) that have maintained 

a sustained control of HIV-1 replication and low HIV-1 reservoirs for more than 25 

years in the absence of antiretroviral treatment. These individuals may represent 

cases of spontaneous functional cure, what would prove the importance of limiting 

the reservoir burden for long time. The factors associated to this extremely long 

control are unknown and have been addressed in the chapter 3a of this thesis, and 

published as: “Permanent control of HIV-1 pathogenesis in exceptional elite 

controllers: a model of spontaneous cure (Scientific Reports, 2020)”. 

However, low levels of HIV-1 reservoir are not only associated to the exceptional 

cases of HIV-1 control. There are individuals that also harbor low levels of HIV-1 

reservoir but are not able to control the viral replication by themselves in the absence 

of cART239–242. It is known that individuals who start cART in the early stages of 

infection, especially in Fiebig I, have a limited reservoir68. Nonetheless, it seems that 

early initiation of cART would not be the only factor associated with having a low 

reservoir since it has been described individuals starting cART on the chronic phase 

of the infection with similar characteristics239,243,244. Knowing the kinetics of the 

reservoir establishment, as well as the immunological and virological factors in 

periphery and anatomic sanctuaries associated with the spontaneous reduction of 

the HIV-1 reservoir, without eradication interventions, in those individuals is key to 

later design more effective eradication strategies. This has been addressed in 
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chapters 3b and 3c of this thesis and published as: “Extremely Low Viral Reservoir 

in chronically treated HIV-1-infected individuals (EbioMedicine, 2020)”. 

After the characterization of two different models of spontaneous reductions of 

the HIV-1 reservoirs, it is important to contrast the results with an intervention that 

can achieve the same outcome. So far, the only cure strategy capable of attain this 

objective is the hematopoietic stem cell transplant (HSCT), as previously mentioned.  

This strategy not only was able to reduce the viral reservoir but also to achieve a 

persistent HIV-1 remission when cART was interrupted in specific cases of 

transplantation with a CCR5 Δ32 donor. However, the intrinsic factors related to the 

transplant that help to reduce the viral reservoir are still unknown and might be of 

high importance to try to develop less invasive strategies to apply to a broader 

population of HIV-1-infected individuals. This was addressed in chapter 3d of the 

thesis and published as: “Mechanisms That Contribute to a Profound Reduction of 

the HIV-1 Reservoir After Allogeneic Stem Cell Transplant (Annals of Internal 

Medicine, 2019)”. 

Altogether, this work will be a proof of concept of the ability of different 

approaches to reduce the HIV-1 reservoirs, obtaining key information to design 

better tools for a future HIV-1 cure. 
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We hypothesize that exist different mechanisms that lead to a reduction in the 

HIV-1 reservoir to extremely low or undetectable levels, and those vary when we 

observe a spontaneous decrease or when using eradication strategies. This 

reservoir decrease would be the first step required to achieve an HIV-1 cure, 

although it might be necessary the interaction with additional strategies to reach to 

a sterilizing cure.  

The global aim is to characterize the clinical, viral and immunogenetic factors 

associated with the reduction of the HIV-1 reservoir in three different models: natural 

control of the infection (Exceptional Elite Controllers), a natural low HIV-1 reservoir 

despite regular HIV-1 progression and being under cART (LoViReT), and after an 

aggressive intervention that reduce the HIV-1 reservoirs (allo-HSCT). The factors 

analyzed will be related to their putative role in the HIV-1 eradication. 

Objective 1: To deeply characterize clinical, virological, and immunological 

factors associated with natural HIV-1 control for more than 25 years in the absence 

of cART. This objective will be addressed in Chapter 3a, entitled “Permanent control 

of HIV-1 pathogenesis in exceptional elite controllers: a model of spontaneous cure”. 

Objective 2: To determine the clinical, virological, and immunological factors 

related to a reduction of the HIV-1 reservoir in a cohort of LoViReT (Low Viral 

Reservoir treated) individuals whom harbor an unusual extremely low viral reservoir, 

but without control of HIV-1 in the absence of cART. Those factors will be related to 

the longitudinal dynamics of the HIV-1 reservoir and the immune cells before and 

after initiation of cART between chronic treated LoViReT and controls. This objective 

will be addressed in Chapter 3b, entitled “Extremely Low Viral Reservoir in 

chronically treated HIV-1-infected individuals”. 

Objective 3: To deeply characterize the host immunogenetic and viral factors 

associated with the LoViReT cohort, including the replication-competence of the 

virus, and distribution among anatomical and cellular compartments. This objective 

will be addressed in Chapter 3c, entitled “LoViReT individuals show altered HIV-1 

latency distribution”. 
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Objective 4: To evaluate the factors associated with the reduction of the viral 

reservoirs after an allogeneic hematopoietic stem cell transplant, specially using 

CCR5 wild-type donors. This objective will be addressed in Chapter 3d, entitled 

“Mechanisms that contribute to a profound reduction of the HIV-1 reservoir after 

allogeneic stem cell transplant”.
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Chapter 3a. Permanent control of HIV-1 pathogenesis in exceptional elite 

controllers: a model of spontaneous cure 
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3a.0. PRESENTATION 

The first chapter of this thesis includes the comprehensively study of three HIV-

1-infected individuals, whom in the absence of antiretroviral treatment have been 

able to control HIV-1 replication for more than 25 years. These individuals represent 

cases of spontaneous functional cure, and therefore are of highly interest to study 

host and viral factors associated with their viral control.   
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3a.1. INTRODUCTION 

Functional cure is defined as the permanent suppression of HIV-1 viral 

replication in the absence of cART even if full viral eradication is not achieved245. 

Elite controllers represent a small proportion of HIV-1-infected individuals with a 

spontaneous control of HIV-1 replication at undetectable levels. However, they are 

heterogeneous in terms of long-term clinical, virological and immunological 

progression. Among them, there is a subgroup of individuals who have an 

asymptomatic HIV-1 infection and prolonged control of clinical progression without 

cART. The closest cases of spontaneous functional HIV-1 cure are potentially 

represented by this clinical phenotype of slow or no disease progression246. The 

underlying mechanisms contributing to this control include host and viral 

factors247,248. Previous works have stablished differences in EC with long-term non-

progression compared to EC that ultimately lost control249. Other reports have 

described several selected cases of durable control over HIV-1 replication without 

cART71,250; however, the cases described herein are Exceptional Elite Controllers 

(EEC) with no disease progression for more than 25 years. The question whether 

these individuals can be considered cured remains unresolved. Also, there is a need 

for differential markers that can characterize these unique cases of potential HIV-1 

remission. 

In this study, we characterized three EEC diagnosed for 25, 28 and 29 years with 

an extensive follow-up, permanent control of viral replication, and no sign of disease 

progression. We investigated these individuals to determine if they can be 

considered spontaneous cases of HIV-1 functional cure. Multiple host genetic, 

immunological, and virological factors were examined to distinguish this 

extraordinary phenotype and to identify potential diagnostic markers. 
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3a.2. METHODS 

3a.2.1. Individuals, samples, and clinical characteristics 

The study individuals were selected from a previous long-term EC cohort248. 

These individuals have been followed in the Centro Sanitario Sandoval (a primary 

sexual clinic without antiretroviral prescription belonging to the Hospital Clínico San 

Carlos. IdISSC, Madrid) for more than 20 years. All individuals were diagnosed with 

a second-generation ELISA (Abbott) and confirmed by Western-Blot (BioRad) after 

5 to 6 years of the estimated infection. Participants gave informed consent for 

molecular and genetic studies. In March 2017, 500 ml of peripheral blood was drawn 

to perform a comprehensive analysis of multiple immunological and virological 

markers. All clinical investigations were conducted according to the principles 

expressed in the Declaration of Helsinki. The study was approved by the Research 

Ethics and Animal Welfare Committee of the Instituto de Salud Carlos III (CEI PI 

05_2010-v3) and by the Ethics and Clinical Research Committee of the Hospital 

Clínico San Carlos in Madrid (Number C.I. 16/490-E). 

3a.2.2. PBMCs isolation and preservation 

Peripheral blood samples were processed to separate plasma from cell fraction. 

Plasma samples were stored at -80ºC and PBMCs were isolated by a standard 

Ficoll-Hypaque (Lymphoprep, Axis Shield Poc As™) density gradient centrifugation 

(390xg, 30 min.). Part of the PBMCs were used for fresh experiments and the rest 

aliquoted in cryovials (10-15 million PBMCs per vial), placed in a CoolCell® freezing 

container (Corning) at -80ºC overnight, and stored in liquid nitrogen until use. 

3a.2.3. CD4+ T-cell purification 

CD4+ T cells were isolated from fresh or thawed PBMCs by negative 

immunomagnetic selection (CD4+ T cell isolation kit-human; Miltenyi Biotec) which 

is based on negative selection by cell labeling with biotinylated antibodies and 

subsequent incubation with magnetic microparticles coated with anti-biotin 

antibodies using the autoMACS® Pro Separator (Miltenyi Biotec), following the 

manufacturer’s instructions. Briefly, for each 106 PBMCs, cells were resuspended in 

4 μl of washing buffer (phosphate-buffered saline (PBS; Gibco, Invitrogen), 2 mM 

UltraPure® ethylenediaminetetraacetic acid (EDTA; Invitrogen, Life Technologies) 
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and 1% fetal bovine serum (FBS; Gibco, Invitrogen)) and 1 μl of CD4+ T cell biotin-

antibody cocktail (α-CD8, α-CD14, α-CD15, α-CD16, α-CD19, α-CD36, α-CD56, α-

CD123, α-TCRγ/δ, and α-CD235a); incubated at 4ºC for 5 minutes. Then, it was 

resuspended in 3 μl of washing buffer and 1 μl of CD4+ T cell microbead cocktail 

(microbeads conjugated to monoclonal antibodies against biotin and CD61), 

incubated at 4ºC for 10 minutes, and resuspended in 1 ml of washing buffer.  After 

negative immunomagnetic selection, CD4+ T cells were counted with perfect-count 

microspheres™ (Cytognos), following the manufacturer’s instructions, using the 

cytometer BD FACSCalibur™ (Becton Dickinson Biosciences).  

3a.2.4. Viral persistence 

3a.2.4.1. Total proviral HIV-1 DNA 

Total proviral reservoir was quantified in two samples, one from 2017 and 

another 11 to 13 years before, by ddPCR251. Purified peripheral CD4+ T cells were 

resuspended in lysis buffer at a concentration of 5x104 cells/μl, which consisted of 

UltraPure® DNAse-RNAse–free water (Gibco, Invitrogen) containing 10 mM Tris-

HCl (pH=9.0), 0.1% Triton x-100 (Sigma), and 400 μg/ml Proteinase K (Ambion). 

Cell extracts were incubated for 12-16 hours at 55ºC, then proteinase K was 

inactivated at 95ºC for 5 min. Lysed CD4+ T cells extracts were used to measure 

cell-associated total HIV-1 DNA, using two primer sets in the viral 5′ long terminal 

repeat (5’-LTR) and gag regions to circumvent sequence mismatches in viral 

sequences (Table 2). The Ribonuclease P/MRP Subunit P30 (RPP30) 

housekeeping gene (Table 2) was quantified in parallel to normalize sample input. 

Briefly, 10 µl of 2x ddPCR supermix for Residual DNA Quantification for gag/LTR 

primers and 2x ddPCR supermix for Probes (no Deoxyuridine-5'-triphosphate 

(dUTP)) (Bio-Rad) for RPP30 was mixed with 1µl of 20x primers/probe mix (18 µM 

primers and 5 µM probe labelled in FAM or HEX (Integrated DNA Technologies), 

and 2 µl of lysed CD4+ T cells extract in a total volume of 20 µl. For RPP30 

quantification, the lysed CD4+ T cells extract was diluted 1:50 to avoid saturation of 

the signal. The mix reaction was loaded into a Bio-Rad droplet generator cartridge 

and 70 μl of droplet generation oil. The cartridge was placed in the droplet generator 

QX100™ device (Bio-Rad) where droplets were generated and transferred to a 96-

well PCR plate, which was then sealed using PX1™ PCR plate sealer (Bio-Rad). 
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DNA was amplified using the C1000 Touch™ Thermal Cycler (Bio-Rad) (initial 

denaturation at 95ºC for 10 min; 40 cycles: 94ºC for 30 s and 57ºC for 60 s; final 

extension: 98ºC for 10 min; hold: 4ºC).  After that, droplets were analyzed using a 

QX100™ droplet reader (Bio-Rad). Analysis of copies/μl of target DNA was 

performed using the QuantaSoft v.1.6 software (Bio-Rad, Hercules, CA, USA). 

We analyzed 1.5–1.8 million cells in several replicates, with a LOD of 1–3 

copies/106 CD4+ T cells. PBMCs from HIV-negative donors were used as negative 

controls and assayed in each plate to set the positive/negative threshold. The 

number of those negative control wells was the same as that of the replicates for 

each sample.  

Table 2. Primer and probe sequences 

Name Sequence (5’-3’) Strand Target Ref 

LTR-U5 integrated GTTCGGGCGCCACTGCTAG Forward   
LTR-R integrated TTAAGCCTCAATAAAGCTTGCC Reverse 5’-LTR 136 
New integrated-2 Probe CCAGAGTCACACAACAGACGGGCA Probe   

HIV_F (SCA) CATGTTTTCAGCATTATCAGAAGGA Forward   
HIV_R (SCA) TGCTTGATGTCCCCCCACT Reverse gag 118 
HIV Probe (SCA) CCACCCCACAAGATTTAAACACCATGCTAA Probe   

RPP30-F GATTTGGACCTGCGAGCG Forward   
RPP30-R GCGGCTGTCTCCACAAGT Reverse RPP30 252 
RPP30-Probe CTGACCTGAAGGCTCT Probe   

TBP-S TTCGGAGAGTTCTGGGATTGTA Forward   
TBP-AS TGGACTGTTCTTCACTC Reverse TBP 253 
TBP-Probe TTGGCCCGTGGTTCGTGGCTCTCTTATCCTCA Probe   

 

3a.2.4.2. Quantitative Viral Outgrowth Assay (qVOA) 

The replication-competent reservoir was measured on fresh CD4+ T cells from 

each individual in 28–63 × 106 CD4+ T cells in a limiting dilution cell culture assay, 

as previously described with minor modifications62. Briefly, CD4+ T cells from the 

individuals were cultured in serial dilutions ranging from 25×106 to 32 cells per well. 

CD4+ T cells were co-cultured with irradiated allogeneic HIV-negative PBMCs in the 

presence of 2 µg/ml PHA (Sigma), interleukin-2 (IL-2, Novartis), and T-cell growth 

factors (TCGF). After 24 hours, PHA was removed, and CD8-depleted donor 

PBMCs previously activated under 3 different conditions (OKT3, 5 μg/ml of PHA and 

0.5 μg/ml of PHA),  known as 33 cells, were added to the co-culture as targets for 

viral infection254,255. Cell culture medium (Rowell Park Memorial Institute (RPMI)-
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1640 (Gibco, Invitrogen) + 1% Penicillin/Streptomycin (Gibco, Invitrogen) + 10% 

FBS + 100 U/ml IL-2 + 2% TCGF) was changed at days 5 and 8, and freshly 

prepared 33 cells were added to the co-culture at day 8. Supernatants from day 14 

were quantified with p24Gag ELISA (Perkin-Elmer, USA) to identify positive wells. 

Infectious Units Per Million (IUPM) CD4+ T cells were determined using IUPMStats 

v.1 (https://silicianolab.johnshopkins.edu/) based on the maximum likelihood 

method. 

3a.2.4.3. Plasma viral load and residual viremia 

Viral load was determined with the Quantiplex HIV-1 RNA 2.0, 3.0 and the 

Versant NA (Siemens, Germany) with different limits of detection. Residual viremia 

(HIV-1 RNA) was measured by ultracentrifugation in 9 ml of plasma at 170,000g at 

4°C for 30 min, followed by viral RNA extraction using the m2000sp Abbott RealTime 

HIV-1 Assay device and laboratory-defined applications software from the 

instrument. HIV-1 RNA copies in the low range were determined by an in-house 

calibration curve set (range, 10–103 absolute copies)119, which had previously been 

validated using a standard HIV-1 DNA control from the World Health Organization 

(WHO) in the range of 128–0.5 copies per ml. The LOD was 0.5 copies/ml in all the 

individuals. 

3a.2.4.4. Cell-associated HIV-1 RNA 

Viral transcription was evaluated by quantification of cell-associated HIV-1 RNA 

in purified CD4+ T cells that were preserved in RNAlater solution (Ambion) until RNA 

extraction. RNA was extracted using RNeasy mini kit (Qiagen), following the 

manufacturer’s instructions, and RNA concentration and quality were determined by 

NanoDrop spectrophotometer (ND-1000; Thermo Fisher Scientific). Purified RNA 

extracts were amplified by one-step reverse-transcription ddPCR (Bio-Rad) with 

primers and probe in the viral 5’-LTR and gag gene. The expression of the 

housekeeping gene TATA-binding protein (TBP) was quantified in parallel to 

normalize RNA input253 (Table 2). Briefly, 5 µl of 2x One-Step RT-ddPCR Mastermix 

(Bio-Rad) was mixed with 300nM of Dithiothreitol (DTT), 1 µl of 20x primers/probe 

mix (18 µM primers and 5 µM probe (Integrated DNA Technologies)), 2 µl of reverse 

transcriptase enzyme and 8 µl of RNA sample in a total volume of 20 µl. The mix 

reaction was loaded into a Bio-Rad droplet generator cartridge and the droplets were 

https://silicianolab.johnshopkins.edu/
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generated, as previously described. RNA was retro-transcribed and amplified using 

the C1000 Touch™ Thermal Cycler (Bio-Rad) (retro-transcription: 60ºC for 30 min; 

enzyme activation: 95ºC for 5 min; 40 cycles: 94ºC for 30s and 60ºC for 60s; final 

extension: 98ºC for 10 min; hold: 4ºC), and, after cycling, droplets were analyzed 

immediately using a QX100™ droplet reader (Bio-Rad). Analysis of copies/μl of 

target RNA was performed using the QuantaSoft v.1.6 software (Bio-Rad) and 

normalized using the copies/μl of TBP mRNA. 

Samples were analyzed on several replicates with 3–5 million of CD4+ T cells for 

each subject, with a variable LOD between 0.03 and 0.05 (ratio HIV/TBP). 

3a.2.5. Genetic studies 

3a.2.5.1. Nucleotide sequence and phylogenetic analysis in env gene 

Sequences were obtained by limiting dilution in a 614 base pair (bp) C2–V5 

fragment in env gene256. All sequences with gaps and hypermutation (only two in 

one sample from EEC-3) were excluded of analysis. Near full-length genome 

analysis was performed with overlapping limiting dilution PCR132.  

All nucleotide sequences generated in this study were submitted to GenBank 

under accession numbers: AY501160–AY501179, AY501254–AY501269, 

KC595083–KC595089, KC595099–KC595105, KC595118–KC595119, EU644051, 

EU644056–EU644060, MH595843, MH595844, MH595846, MN068093–

MN068211 and MN055643. 

3a.2.5.2. Quasispecies diversity analysis 

We selected sequences from individual quasispecies in the HIV-1 database 

(http://hiv.lanl.gov/) from the same region analyzed in the study. We included 

infected individuals with undetectable viral load under prolonged cART (range [2–

15 years])257,258, LTNPs with more than 10 years of infection and transient EC249 

defined as individuals that lost spontaneous viral control during the follow-up, for 

comparison with the study individuals. We estimated the average diversity over 

sequence pairs for each time point in every individual and calculated the average 

number of base differences per site (p-distance) with 500 bootstrap replicates using 

MEGA6. All positions containing gaps and missing data were eliminated. 
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Differences in the average p-distance per individual between groups were tested 

for significance using pairwise Wilcoxon Rank-Sum Test in R v3.5.0, applying the 

Benjamini-Hochberg procedure for multiple comparisons correction (cut off for 

significance False Discovery Rate 0.05). 

3a.2.6. Immune responses 

PBMCs were thawed, washed and in vitro stimulated with overlapped HIV-1 

(Gag)-specific peptide pool (NIH AIDS Research and Referenced Reagent 

Program) as previously described249,259.  

Stimulated PBMCs were stained with surface and intracellular marker antibodies 

(Fig. 20)259. PBMCs were analyzed in a LSR Fortessa Cell Analyzer (BD 

Biosciences, Spain). 

  

 

 
 
 
 
 
Figure 20. Schematic diagram of the flow cytometry gating strategy for (Gag-specific CD4+ and CD8+ T-

cell. Representative plots show the functional cytokine response to Gag peptides.  

3a.2.7. Susceptibility and viral inhibition assay 

CD4+ T cells alone or in combination with autologous CD8+ T cells from each 

individual were infected by spinoculation with 40 nanograms of p24Gag of the 

laboratory viral strain HIV-1NFN-SX (CCR5 tropic), and HIV-1NL4–3 (CXCR4 tropic). 

CD4+ T cells were activated for 3 days with PHA and IL-2 before infection. 

Supernatants were sampled at day 7 and quantified with HIV-1 p24Gag ELISA 

(Perkin-Elmer life Sciences). 

3a.2.8. Assay of soluble biomarkers 

Plasma samples were collected in EDTA-lined tubes, and aliquoted and stored 

at −20°C. The levels of high sensitivity C-reactive protein (hsCRP) and β2-

microglobulin (β2M), D-dimer, IL-6 and sCD163 were performed as previously 

described260. Specific HIV-1 antibodies were measured in plasma samples using a 

low-sensitive (LS) version of the VITROS anti-HIV-1 assay (Ortho-Clinical 

Diagnostics) and a limiting antigen avidity assay (Lag-Avidity) (Sedia), as previously 
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described261. Briefly, in the LS-VITROS four recombinant antigens (HIV-1 Env 13, 

HIV-1 Env 10, HIV-1 p24, and HIV-2 Env AL) derived from HIV-1 core, HIV-1 Env, 

and HIV-2 Env proteins were quantified using one part in 400 parts dilution of the 

plasma. The avidity assay measures the capacity of guanidine to elute low-avidity 

and low-affinity antibodies after antigen-antibody bonds have formed. The results 

are reported as an avidity index, calculated as the ratio of the signal to cut-off (S/CO) 

of the sample incubated in guanidine to the S/CO of the sample incubated in PBS. 

3a.2.9. Statistical analysis 

Changes over time in total HIV-1 DNA were evaluated using the Wilcoxon signed 

rank test. Gag-specific T-cell response poly-functionality was quantified with the 

poly-functionality index algorithm (pINDEX)262 employing 0.1.2 beta version of the 

“FunkyCells Boolean Dataminer” software (www.FunkyCells.com) provided by Dr. 

Martin Larson (INSERM U1135). Analyses were performed with Prism 7 (GraphPad) 

and the statistical significance was set at 5% for all tests. 
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3a.3. RESULTS 

3a.3.1. Clinical characteristics of the individuals 

The three individuals of the study (EEC-3, EEC-9, and EEC- 56) maintained 

undetectable viral loads (except two early blips in EEC-9) and stable CD4+ and CD8+ 

T-cell counts in absence of cART for more than 25 years of infection (Fig. 21 a–c 

and Table 3). Hepatitis C Virus (HCV) infection was diagnosed in the three 

individuals because of intravenous drug use (IVDU) and all reported viral clearance, 

either spontaneously or after treatment (Table 3). The individuals reported no further 

exposure to HIV-1 since their diagnosis. The two females of the study gave birth 

uninfected children in absence of any cART. All individuals were classified as clinical 

status A, with no symptoms of HIV-1 clinical progression or AIDS defining events.  

 

 

 

 

 

Figure 21. Clinical characteristics. (a–c) Plasma RNA viral load, absolute CD4+ and CD4+ T cell 
percentage over time in the individuals studied. Open symbols for viral load indicate values below 
the detection limit 

Table 3. Clinical, epidemiological, and host-genetic characteristics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 aNo further expositions after HIV-1 diagnosis; b"1" indicates the most frequent allele and "2" the mutant. 
IVDU= intravenous drug user; RBV= ribavirin; IFNα= interferon α, DAA= direct acting antivirals. 

 EEC-3 EEC-9 EEC-56 

Year of birth 1956 1957 1957 

Sex Male Female Female 

Race Caucasian Caucasian Caucasian 

Year of HIV-1 diagnosis 1988 1992 1989 

Age at diagnosis 32 35 32 

Transmission routea IVDU IVDU IVDU 

Remarks – HIV-1 negative child HIV-1 negative child 

HCV coinfection 1996 1992 1993 
Treatment RBV/IFNα   

(2008) 
Spontaneous   

clearance 
DAA (2017) 

Genetic markers 
     CCR5 ∆32 rs333b 11 11 11 
     CCR2 V64I rs1799864b 11 11 11 
     HLA C rs9264942b 22 22 22 
     HLA A 02:01, 02:05 02:01, 31:01 01:01, 02:01 
     HLA B 27:05, 58:01 39:01, 57:01 14:02, 57:01 
     Genetic Score 4 3 4 
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All individuals displayed three to four host protective haplotypes and a high 

genetic score (Table 3)248,263. Those included protective human leukocyte antigen 

as (HLA)-B*57:01, HLA-B*58:01, HLA-B*27:05 or HLA-B*14:02248,263, as well as the 

T>C mutation in the HLA-C polymorphism (rs9264942) in homozygosis, associated 

with lower plasma viremia and increased levels of HLA-C expression263.  

3a.3.2. Viral persistence 

To evaluate the extent of viral persistence in the EEC, we used the most sensitive 

assays available and compared the values obtained with samples from individuals 

on cART264. The quantification of total HIV-1 DNA in infected CD4+ T cells, which 

are believed to constitute most of the latent reservoir in peripheral blood, showed 

detectable, albeit extremely low (median of 10.4 and interquartile  range [IQR; 9.1–

23.0] copies/106 CD4+ T cells) total HIV-1 DNA in all individuals (Fig. 22a). Similar 

numbers of provirus-containing cells were detected in frozen samples obtained 11 

to 13 years earlier (median of 12.5 [2.5–31.3] copies/106 CD4+ T cells) suggesting 

the stability of the viral reservoir for long periods of time (Fig. 23). 

 

 

 

 
Figure 22. HIV-1 reservoir quantification. (a) Total HIV-1 DNA, (b) Infectious Units per million 

cells (IUPM) in a qVOA assay, (c) ultrasensitive plasma viral load and (d) cell associated HIV-1 RNA 
(caHIV-1 RNA). Open symbols indicate undetectable values. Light grey bands are the interquartile 
range from standard HIV-1-infected individuals under treatment264.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 23. Total HIV-1 DNA evolution. Values represented are from the sample from 2017 and 

a sample 11-13 years before (2004-2006). 
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As total HIV-1 DNA indistinctly measures both defective and replication-

competent forms, we quantified the frequency of IUPM in CD4+ T cells in a co-

cultured qVOA. We did not detect any replication competent virus in a large amount 

(28–63 million cells) of highly activated CD4+ T cells from the individuals, indicating 

values of IUPM below 0.025 (Fig. 22b). 

The ultrasensitive viral load assay (usVL) only detected 2 copies of HIV-1 RNA 

per ml of plasma in EEC-9 and in the other two individuals it was undetectable in 9 

ml of plasma (Fig. 22c). Quantification of cell-associated HIV-1 RNA (caHIV-1 RNA) 

showed absence of viral transcription in peripheral CD4+ T cells in the three 

individuals in more than three million tested cells (Fig. 22d). 

3a.3.3. Sequence analysis, genetic variability, and evolutionary dynamics of 

viral populations 

HIV-1 viral replication is inevitably linked with viral diversity and evolution265. 

Therefore, we retrospectively explored genetic evolution in HIV-1 DNA samples from 

the EEC from the last 15 years. Multiple env sequences were obtained from different 

time points in EEC-3 and EEC-56, but only two sequences in EEC-9 from a single 

time point were obtained. Of all the recovered sequences, only the two sequences 

from EEC-3 were hypermutated, compared to greater numbers found in other HIV-

1-infected subjects or individuals on cART266,267 which support the very low viral 

replication level in these EEC. In addition, we intended to obtain near full-length 

genome sequences from proviral DNA. Only one complete genome was recovered 

in EEC-3 (GeneBank MN055643). The remaining sequences (92%) showed 

important deletions throughout the genome mostly in pol to env genes. These data 

supported the notion that most provirus in these individuals were defective.  

The phylogenetic trees showed very short branches with the major presence of 

viral sequences with no distance to the most common recent ancestor (Fig. 24a). 

This pattern was already evident in the first sample and it was maintained in different 

samples over the years. There were isolated small clusters of sequences showing 

longer branches in EEC-3 and EEC-56, which were not hypermutated. However, 

these viral populations were evolutionary dead ends and did not appear in further 

samples. 
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Moreover, the genetic variability of the viral quasispecies showed a very 

restricted genetic diversity, estimated to be around 0.010 ± 0.003 substitutions per 

nucleotide (s/n) throughout the entire follow-up (Fig. 24b). The degree of env-based 

heterogeneity was up to eight times lower in EEC than in other HIV-1-infected 

groups with controlled viral replication, including individuals on cART, viremic LTNP 

or transient EC one year before the loss of control (FDR<0.05) (Fig. 24b). Altogether, 

the practically null viral genetic evolution and extremely low complexity of the viral 

populations support the absence of viral replication in our EEC group over 25 years. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 24. Genetic variability and evolutionary dynamics of viral populations. (a) Phylogenetic 

trees with env gene sequences of the individuals during follow-up. The evolutionary history was 
inferred in trees by using the Maximum Likelihood method based on the General Time Reversible 
model. The percentage of trees in which the associated taxa clustered together with values over 70% 
is shown next to the branches. Initial tree for the heuristic search was obtained by applying the 

a 

b 
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Neighbor-Joining method to a matrix of pairwise distances estimated using the Maximum Composite 
Likelihood approach. A discrete Gamma distribution was used to model evolutionary rate differences 
among sites (4 categories). The tree is drawn to scale, with branch lengths measured in the number 
of substitutions per site. Evolutionary analyses were conducted in MEGA6. Different colors were 
used to indicate the sampling time. (b) Genetic variability analysis of samples from different groups 
of HIV-1-infected individuals with a controlled infection. 

3a.3.4. Evolution of immune responses 

3a.3.4.1. HIV-1 specific T-cell responses and poly-functionality 

The magnitude of Gag-specific T-cell response was calculated as the percentage of 

Gag-specific CD8+ T-cells producing at least one intracellular cytokine (Tumor 

necrosis factor (TNF), IL-2 and/or IFNγ). EEC presented higher levels of Gag-

specific total CD8+ T-cells when compared with HIV-1-infected individuals on 

suppressive cART (Fig. 25a). Simultaneous release of the three intracellular 

cytokines was determined using the poly-functionality index (pINDEX). The pINDEX 

in Gag-specific total CD8+ T-cells in EEC was higher (p=0.017) when compared with 

individuals on suppressive cART (Fig. 25b).  

 

 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
Figure 25. Cellular Immune responses. (a) Total CD8+ T-cell Gag-specific response from EEC 

and HIV-1-infected individuals on suppressive cART. (b) INDEX of polyfunctionality (pINDEX) of 
Gag-specific total CD8+ T cells from EEC and HIV-1-infected individuals on suppressive cART based 
on the proportions of cells producing intracellular combinations of IFN-γ, TNF, and IL-2. (c,d) Viral 
inhibition assay. Assay of the ex vivo ability of CD8+ T cells to inhibit superinfected autologous CD4+ 
T cells of the three individuals. The figure shows day 7 of an infection with a laboratory viral strain 
(c) HIV-1NFN-SX (CRR5-tropic) and (d) HIV-1NL4-3 (CXCR4-tropic). Percentage of inhibition of CD4+ T 
cells vs CD4+:CD8+ T cells is indicated in each individual. (a,b) Differences between groups were 
determined by Mann-Whitney U test. 
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3a.3.4.2. CD4+ susceptibility and CD8+ viral inhibition 

To analyze the susceptibility of the target cells to HIV-1 infection, we pulsed 

autologous CD4+ T cells from each individual with laboratory-adapted R5- and X4-

tropic viral strains for 7 days (Fig. 25 c,d). This assay shows that CD4+ T cells from 

the individuals were susceptible to HIV-1 infection. 

When we added autologous CD8+ T cells to these co-cultures, we observed a 

reduction of viral replication from 11 to 74% with the X4-tropic virus and up to 63% 

with the R5 tropic virus (Fig. 25 c,d). Thus, host CD4+ T cells are not intrinsically 

refractory to HIV-1 infection with R5 or X4-tropic viruses, and host CD8+ T cells are 

effective in suppressing viral replication ex vivo. 

3a.3.4.3. Inflammation biomarkers 

EEC had lower levels of hsCRP, β2-microglobulin and D-dimer levels than 

individuals on cART, but comparable to HD (Fig. 26a–e). IL-6 and sCD163 were 

similar between EEC and cART groups, despite the levels of IL-6 and sCD163 were 

higher than in HD, probably due to previous history of HCV and residual expression 

of HIV-1 antigens. 

 

 

 

 

 

 

 

 
Figure 26. Inflammation biomarkers. Different inflammatory markers were analyzed including (a) 

hsCPR, (b) β2-microglobulin, (c) D-dimer, (d) IL-6 and (e) sCD163. EEC individuals were compared 
with HIV-1-infected individuals on cART and non-HIV-1-infected healthy donors (HD).  
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3a.3.4.4. HIV-1 specific antibody levels 

All EEC included in this study had detectable HIV-1 specific antibodies measured 

by a detuned ELISA with no differences in comparison with individuals on cART 

(Fig. 27a). Similarly, the quality of their antibodies measured by the Lag Avidity 

assay showed no differences with individuals on cART (Fig. 27b)  

 

  

  

 

  

 

Figure 27. Measurement of HIV-1 specific antibodies. (a) Levels of HIV-1 specific antibodies 
measured by a detuned low-sensitivity and (b) and limiting antigen avidity assay. EEC individuals 
were compared with HIV-1-infected individuals on cART and non-HIV-1-infected healthy donors 
(HD).  
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3a.4. DISCUSSION 

Herein we characterize three EEC who spontaneously controlled HIV-1 

replication and its associated clinical pathogenesis for more than 25 years. 

According to our observations, the almost total absence of viral diversity and 

evolution analyzed during at least 15 years, probably due to a replication-impaired 

viral reservoir, adds to previously described protective host genetic factors and 

effective immune responses. 

All three EEC individuals included in this study showed a consistently low viral 

DNA reservoir in peripheral CD4+ T cells that was 50 times lower than in individuals 

on cART using the most sensitive techniques264. Total HIV-1 DNA, caHIV-1 RNA, 

residual plasma viremia, and IUPM were also lower than other values independently 

reported for EC268,269. Moreover, HIV-1 env sequences had nearly null viral genetic 

evolution, extremely low complex populations supporting the absence of viral 

replication over 25 years. 

This replication impairment is further supported by the variation in only two 

nucleotides between the only complete genomic sequence of EEC-3 and another 

one obtained 12 years earlier256. The lack of sequence heterogeneity despite a long-

term untreated infection might reflect a combination of a slow-evolving virus and the 

clonal expansion of infected immune cells111 as suggested by the presence of 

identical viral clusters in the phylogenetic trees. Finally, the low levels of proviral 

DNA seemed to be largely defective (>92%), since they had no capacity to generate 

viral mRNA, viral particles or replication competent virions, implying limited viral 

persistence in these EECs. The lack of viral replication, as shown by different 

markers and low hypermutation, despite detectable HIV-1 DNA has been mainly 

associated with the presence of proviral defective genomes and the stability of the 

viral reservoir132,160,256. 

Low population size and viral diversity are associated with low replication and 

low viral fitness270. These viral characteristics favors important fitness losses, 

because of the irreversible accumulation of deleterious mutations, known as the 

Muller´s ratchet effect as observed in vitro271. The combination of these factors is 

able to prevent viral fitness recovery, and even if some remaining virus are present 
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in the body, it will not generate replication competent viruses because viral 

populations do not have enough variability to recover fitness272. The low diversity 

and population size could have contributed to the maintenance of the control of viral 

replication in the participants during the follow-up. All study individuals showed the 

lowest viral diversity values among comparative groups of individuals on cART or 

LTNP with viral load control. In addition, a previous study showed that low diversity 

and lack of viral evolution was highly correlated with permanent viral control in 

persistent EC249. On the contrary, transient EC who lost control during the follow-up 

showed higher levels of genetic diversity249. Thus, extremely low viral diversity could 

be a convenient prognostic marker for the identification of these EEC. 

The functional characterization of viruses from EEC has been limited by the 

impossibility of complete virus recovery. In a previous study, EEC-56 showed the 

major presence of 228 nucleotide deletions in the 5′ LTR–gag region; in EEC-3 a 

247 nucleotide deletion was positioned in pol gene up to the vif orf256. These deleted 

genomes became dominant during follow-up256. In other studies, cloned env 

sequences from EEC-3 in recombinant viruses showed that displayed a very limited 

and retarded replication capacity273,274, similarly to what has been observed in env 

recombinant viruses from some EC275.  

According to the data reported in this work, viral antigens and/or truncated viral 

proteins could be generated in these individuals from defective genomes or from 

new alternative spliced HIV-1 RNA variants with translationally competent ORFs as 

reported in HIV-1-infected individuals on cART143. The apparent limited amount of 

peripheral viral antigen might be associated with the detectable levels of HIV-1 

specific antibodies. Likewise, both frequency and poly-functionality of Gag-specific 

CD8+ T-cell responses were higher in EEC when compared with HIV-1-infected 

individuals on cART and similar or above the median of a group of persistent EC 

(with more than 18 years of controlled infection), and higher than those of transient 

EC249. The CTL responses supported the capacity of the immune system to mount 

effective adaptive immune responses as confirmed by the ex vivo viral inhibition 

assay. 
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Inhibition from autologous CD8+ T cells was similar to previous described EC 

and higher than comparisons with non-HIV infected donors276. Innate immune 

responses seem to be relatively normalized as for the quantification of plasma 

inflammation biomarkers when compared to HD individuals. Only IL-6 and sCD163 

were slightly superior if compared HD to HIV-1-infected individuals on cART. The 

obtained values were in the range of those found in independent cohorts of EC277,278. 

This could be due to the previous long-term story of HCV infection, and in fact, 

sCD163 has been proposed as a marker of liver fibrosis279. This is a substantial 

difference with previously published EC profiles where despite the viral control, 

inflammation levels were maintained over time274,280. Whether this could be a 

distinctive marker easy to assay for EEC needs to be examined in extended 

populations, but previous works with persistent EC suggested this idea249,281. The 

interplay of T cells with the preserved number and functions of innate cells might 

have been a critical factor for the maintenance of the high HIV-1 specific T-cell 

responses in these individuals282. Although there is slight decline in CD4+ T-cell 

levels in EEC-9, this decrease can be considered physiological with aging, during 

the 20 years of follow-up and with the fact that the studied individuals are now over 

60 years old, and moreover this diminution is comparable with European uninfected 

individuals283. 

We can only speculate how these HIV-1-infected individuals have resulted in this 

EEC phenotype of potential functional viral suppression. Thus, primary infection 

might have occurred with a low fitness viral founder strain, or alternatively, initial 

innate immune responses might have shaped the selection of an unfit virus. Host 

genetic factors, including those related with the HLA function, and cellular-adaptive 

immune responses might have further contributed to this clinically unusual non-

progressive profile. Although these are naturally occurring cases, and not the result 

of a clinical intervention, they provide knowledge on how to achieve a functional cure 

for HIV-1 infection. Based on all these evidences we believe that these individuals 

do not require any cART. Perhaps other individuals, most probably within the 

persistent EC, LTNP-EC, and EEC groups with similar host genetics factors (at least 

three to four protective alleles), immune responses (with a pINDEX>0.50) and viral 
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factors (with stable viral diversity (below 0.010 ± 0.003 (s/n) throughout the entire 

follow-up) could also have spontaneously achieved a HIV-1 functional cure284. 

Four previous cases of durable control over HIV-1 replication without cART have 

been reported71. While those cases also had extraordinarily low HIV-1 burdens, they 

differed from ours in their shorter follow-up (median of 9 years since HIV-1 

diagnosis) and their weak reactive Western blots. A more recent study in HIV-1 

Controllers (HIC) followed-up for a median of 21 years has shown a similar small 

HIV-1 blood reservoir in the presence of weak T-cell activation levels250. Our study 

adds three new additional characteristics to this EEC phenotype: (i) even more time 

since HIV-1 diagnosis without cART, (ii) low viral diversity and lack of viral evolution 

over the years, and (iii) inflammatory markers in peripheral blood similar to those in 

healthy donors. 

In conclusion, we have defined a new subset of HIV-1-infected individuals 

termed as Exceptional Elite Controller who are able to control HIV-1 replication for 

longer than 25 years. The incidental accumulation of protective host factors, unfit 

and/or defective viruses that precluded viral evolution and diversification, low non-

inducible reservoir, and effective adaptive immune responses, might have taken 

place simultaneously to achieve a spontaneous HIV-1 functional cure. This model 

of control suggests that new curative strategies would be successful combining 

approaches that achieve a reduction of the HIV-1 latent reservoirs, maintain 

extremely low viral diversity, an impaired viral fitness, and enhanced HIV-1 specific 

immune responses. 

 

 

 

  



 

 
 

 

 

 

 

 

 

 

 

 

 

 

Chapter 3b. Extremely low viral reservoir in chronically treated HIV-1-

infected individuals 
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3b.0. PRESENTATION 

The study of the three EEC in chapter 3a showed that very low HIV-1 reservoir 

seems to be associated to low evolution and enhanced immune responses. 

However, it has been challenging to mimic this kind of functional cure for the great 

majority of HIV-1-infected individuals. Alternative factors associated with a reduced 

HIV-1 reservoir needs to be discovered. Therefore, a screening of HIV-1 DNA was 

done in a large cohort of HIV-1-infected individuals under cART with the aim of 

finding individuals with a very low reservoir like EEC, and stablish the Low Viral 

Reservoir Treated cohort (LoViReT). With LoViReT individuals, new factors 

associated with a reduced HIV-1 reservoir will be investigated.  
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3b.1. INTRODUCTION 

The main goal of the eradication strategies is reducing the latent viral reservoir 

to undetectable levels285. Therefore, factors related to the size, distribution, and 

stability of the viral reservoir are continuously being investigated. It has been 

postulated that the amount of HIV-1 DNA is a predictor of disease progression in 

primary infection286 and during the natural course of HIV-1 infection287.  

Various studies suggest that early initiation of cART is an important factor in 

reducing the size of the viral reservoir65,288, especially if initiated at Fiebig I stage242. 

Unfortunately, individuals are rarely treated during the acute phase, since most new 

diagnoses of HIV-1 infection are made at the chronic stage, when the reservoirs are 

more stable289. Eradication strategies need to be effective in the vast majority of 

treated chronically HIV-1-infected individuals. Several studies have described 

treated chronically infected individuals with low or even undetectable levels of total 

HIV-1 DNA239,243,244. However, no retrospective data have been reported on the joint 

proportion of individuals who achieve a low reservoir after initiation of treatment in 

both the acute and the chronic phases. Furthermore, the factors involved in 

achieving these low latency levels have not been investigated in depth.  

In this study, we screened the total HIV-1 DNA reservoir in 451 treated HIV-1-

infected individuals with suppressed plasma viremia for at least three years and 

stored cryopreserved PBMCs to establish the Low Viral Reservoir Treated cohort 

(LoViReT). We aimed to study the kinetics of these decreased reservoirs and to 

analyze associated clinical and immunological factors. To do so, we focused on a 

subset of LoViReT individuals who initiated treatment in the chronic phase of the 

infection (cp-LoViReT) in order to identify strategies that could be applied in the vast 

majority of treated HIV-1-infected individuals. 
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3b.2. METHODS 

3b.2.1. Study participants 

We retrospectively screened 451 HIV-1-infected individuals undergoing regular 

follow-up at Hospital Germans Trias i Pujol (n=319) and Hospital Clinic (n=132) in 

Barcelona. We included individuals under suppressive cART with undetectable 

viremia (HIV-1 RNA <50 copies/ml) for at least three years and with available 

cryopreserved PBMCs. Demographic and clinical data were collected from the 

clinical database. The characteristics of the study participants were similar to those 

of previously reported cohorts of individuals with low HIV-1 reservoirs in terms of 

sex, age, and time with infection239,243,244. Treated chronically infected participants 

were defined as individuals with more than six months between acquisition of HIV-

1 and initiation of treatment.  

All individuals provided their signed informed consent to participate in the study. 

The study was approved by the Ethics Committee at both recruiting hospitals 

(reference #: PI-014-083). 

3b.2.2. Quantification of proviral HIV-1 DNA 

The size of the proviral reservoir was measured in PBMCs for screening and in 

purified CD4+ peripheral T cells for the longitudinal analysis (Miltenyi Biotech) by 

ddPCR, as previously described in chapter 3A. 

3b.2.3. Viral tropism 

Viral co-receptor tropism was determined on proviral DNA by sequencing of HIV-

1 GP120 hypervariable region 3 (V3). Tropism was predicted using the Geno2Pheno 

algorithm (GENAFOR, Bonn, Germany), with a false-positive rate (FPR) of 10% 

(non–R5-tropism: FPR ≤10%)290. 

3b.2.4. Immunophenotyping, activation and exhaustion markers in peripheral 

CD4+ and CD8+ T cells  

For T-cell immunophenotyping, cells were incubated with Fixable Viability Stain 

780 (APC H7), CD3 (SK7), CD4 (RPA-T4), and CD8 (SK1) monoclonal antibodies. 

T-cell maturation was based on the expression of CD45RA (HI100), and 

CD197/CCR7 (G043H7) was analyzed in cryopreserved PBMCs in order to define 
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T naïve (CD45RA+CCR7+; TN ), T central memory (CD45RA–CCR7+; TCM), T effector 

cells (CD45RA–CCR7–; TEF), and T Effector Memory RA+ (CD45RA+CCR7-; TEMRA). 

CD27 (O323) was used to differentiate effector cells into T effector memory (CD27–

CD4+ or CD27+CD8+; TEM), and T terminally differentiated (CD27+CD4+ or CD27–

CD8+; TTM). CD4 and CD8 T cells were also analyzed for expression of HLA-DR 

(L243) and CD38 (HIT2) to define activated cells (HLA-DR+CD38+); expression of 

CD279/PD-1 (EG12.2H7) was analyzed to measure exhausted cells (CD279+). The 

gating strategy is shown in Fig. 28. 

Samples were acquired in a BD LSR Fortessa and analyzed using FlowJo 

software (Tree Star). T cells were analyzed with automated detection of marker 

cutoffs based on fluorescence-minus-one controls (OurFlow platform using R 

packages). 

 

 

 

 

 

 

 

 

 

 

 

Figure 28. Gating strategy for T-cell analysis. PBMCs were acquired and gated according to (1) 
time to ensure homogeneous acquisition, (2) FSC-A and FSC-H to select singlets, (3) SSC-A and 
FSC-A to determine cell morphology, and (4) CD3 and viability staining to select living T cells. CD8 
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and CD4 cells were identified from this previous gate. For CD8 and CD4 T cells, maturation, 
activation, and exhaustion were defined as previously described.  

 3b.2.5. Viral inhibition by CD8+ T and NK cells 

PBMCs were thawed and cultured overnight in RPMI 1640 containing GlutaMAX, 

20% FCS, penicillin (10 IU/ml), and streptomycin (10 μg/ml). Analyses were 

performed as previously described291. Briefly, CD4+ T cells were purified by positive 

selection with antibody-coated magnetic beads (EasySep Human CD4 Positive 

Selection, StemCell Technologies). The elution containing CD4-depleted PBMCs 

was split and used for purification of CD8+ T-cells and NK cells by negative selection 

(EasySep Human CD8+ Cell Enrichment, EasySep Human NK Enrichment, 

StemCell Tecnhologies). Cells were separated using a RoboSep instrument 

(Stemcell Technologies). 

CD4+ T cells were activated for 3 days in the presence of 4 μg/ml PHA-L (Roche) 

and 100 IU/ml IL-2 (Human IL-2 IS, premium grade, Miltenyi Biotech). During this 

period, NK cells were cultured in the presence of IL-15 at 0.1 ng/ml and CD8+ T cells 

in the absence of cytokines. After 3 days of culture, living activated CD4+ T cells 

were seeded in a 96-U-well plate (106 cells/ml in triplicate) alone or in the presence 

of CD8+ T cells or NK cells (1:1 ratio) and then exposed to HIV-1BaL (CCR5 tropic 

strain) (10 ng p24/ml). After spinoculation (1200 x g for 1 h at room temperature), 

cells were cultured for 1 h at 37ºC and washed before culture in the presence of IL-

2 (100 IU/ml). Culture supernatants were removed, and the media culture was 

replenished at day 3. Levels of p24 in culture supernatants were analyzed at day 3 

after infection for co-culture with NK cells and at day 7 after infection for co-cultures 

with CD8+ T-cells using an ELISA p24 assay (HIV-1 p24 ELISA kit, XpressBio). 

3b.2.6. Quantification of inflammation biomarkers 

Concentrations of the pro-inflammatory or homeostatic cytokines IL-2, IL-6, IL-7, 

IL-10, IL-27, and Interferon gamma-induced protein 10 (IP10), as well as the 

coagulation biomarker D-dimer, were quantified in plasma using a bead-based 

multiplex immunoassay (ProcartaPlex, eBioscience) according to the 

manufacturer’s recommendations. Measurements were performed using a Luminex 
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200 instrument (Luminex Corp.) and analyzed using a standard curve for each 

cytokine. 

3b.2.7. HIV-1 antibodies quantification 

Specific HIV-1 antibodies were measured in plasma samples with a low sensitive 

(LS) version of the VITROS anti-HIV-1 assay, and a limiting antigen avidity assay 

(Lag-Avidity) (Sedia), as previously described in Chapter 3a. 

3b.2.8. Statistical analysis 

The clinical characteristics of the study population were presented as 

percentages for categorical variables and as median and IQR for continuous 

variables. The association between clinical parameters with low levels of cell-

associated total HIV-1 DNA were analyzed using univariate and multivariate logistic 

regression models; the odds ratio, p-value, and C-index are reported. Variables 

associated with the LoViReT status (p<0.1) were considered candidates for the final 

model. The multivariate model was built using a stepwise procedure and by 

selecting the variables associated with LoViReT. The parameters assessed include 

gender, age at diagnosis, mode of infection, AIDS events, maximum viral load 

reported, CD4 nadir, time since HIV-1 diagnosis, viral blips (<500 copies/ml), 

detectable plasma viral load (pVL; any value above LOD), time with detectable pVL, 

tropism, and the accumulated pVL score calculated as the area of the positive pVL 

plot over time and normalized (divided) by the follow-up time. The model was 

validated internally using a 10‐fold cross‐validation, and predictive ability was 

assessed using the C-index (equivalent to the AUC under the ROC curve). 

In the longitudinal analysis, clinical differences between groups were assessed 

using the Mann-Whitney test in the case of continuous variables and the Fisher 

exact test in the case of categorical variables. Clinical variables were matched 

between LoViReT individuals and controls using the random forest algorithm in 

order to avoid confounding factors associated with low HIV-1 DNA levels. Random 

forest292 is a popular machine learning algorithm based on ensembles of 

Classification and Regression Trees (CART) algorithm (regression and 

classification trees), which provide good predictive performance and low overfitting. 

In addition to the prediction model, the algorithm provides a proximity measure 
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matrix between observations that can be used in matching293. In order to produce 

balanced treatment and control groups in terms of all relevant clinical factors, we 

selected a set of controls based on the RF proximity measure. Differences within 

groups were assessed using the Wilcoxon signed-rank test.  

The analyses were performed with R (v3.4) and GraphPad (v5.01).  
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3b.3. RESULTS 

3b.3.1. Characteristics of the screening population 

We analyzed samples from 451 individuals with more than three years under 

suppressive cART. Their characteristics are summarized in Table 4.  

Table 4. Clinical characteristics of the individuals included in the study. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Log10 proviral HIV-1 DNA in PBMCs was normally distributed (Fig. 29a). Median 

HIV-1 DNA was 158.5 copies/106 PBMCs [IQR, 79-313]. A total of 42 individuals 

were under the 10th percentile (<50 HIV-1 DNA copies/106 PBMC) (9.3%), including 

four (0.9%) who had levels below the LOD for the two sets of primers used. They 

were all included in the “LoViReT” (Low Viral Reservoir Treated) cohort. The 

distribution of total HIV-1 DNA and proportion of LoViReT individuals were similar 

between the two recruiting centers (Fig. 29b).  

 

Characteristic N (%) Median [IQR] 

Male sex   377 (83.6)  
Region of origin   

Spain 236 (81)  
Europe 17 (6)  
America 34 (12)  
Africa 4 (1)  

Age at diagnosis  31 [27-37] 
Mode of infection    

MSM 252 (58)  
Heterosexual 87 (20)  
Intravenous drug use 55 (13)  
Other 40 (9)  

AIDS events   
Yes  46 (10)  
No  405 (90)  

Zenith viral load (log10 copies/ml plasma)  4.9 [4.3-5.3] 
CD4 nadir (cells/µl)  273 [159-358] 
Time since HIV-1 diagnosis (years)  13 [7-19] 
Viral blips   0 [0-1] 
Virological failures  0 [0-2] 
   
Tropism   

R5-tropic 329 (73)  
Non-R5 or dual 93 (21)  

Viral subtype  
B 403 (96) 
Non-B 19(4) 

Total HIV-1 DNA (copies/106 PBMCs)  158.5 [78.7-313.4] 
At the time of HIV-1 DNA measurements   

Age  46 [41-51] 
Time suppressed (years)  5.6 [4-8] 
CD4 T cells (cells/µl)  676 [495-891] 
CD8 T cells (cells/µl)  766 [567-1022] 
CD4/CD8 ratio  0.9 [0.6-1.2] 
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Figure 29. Total HIV-1 DNA. (a) Total HIV-1 DNA of 451 individuals after screening with ddPCR. 

Individuals with <50 copies/106 PBMCs are shown in light blue. (b) Comparative distribution of total 
HIV-1 DNA between the 2 recruiting centers LoViReT individuals are shown in red for site 1, and in 
blue for site 2. 

The clinical histories of LoViReT individuals confirmed that 28 individuals were 

treated in the chronic phase (>six months since HIV-1 acquisition) and were defined 

as chronic phase LoViReT individuals (cp-LoViReT) (Fig. 30). Out of the remaining 

LoViReT individuals, six were treated in the acute stage, and eight lacked proven 

information of their time with infection at initiation of cART.  

 

 

 

 

 

 

 

 

 

Figure 30. Study design flow-chart. 
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3b.3.2. Factors related to the LoViReT status 

Clinical, immunological, and virological data were collected to search for factors 

predicting whether the subject would belong to the LoViReT cohort (Table 5). In the 

univariate analysis, being in the LoViReT cohort was associated with different 

parameters related to a lower pVL, and higher CD4+ T cells (Table 5). In the 

multivariate regression model, only a lower maximal reported pVL, fewer detectable 

pVLs during cART and higher CD4+ nadir, remained significantly associated with 

LoViReT status (Table 5). Using the c-index method to evaluate the predictive 

capacity of the multivariate model, we observed a goodness of fit of 0.72 after cross-

validation. This is considered a moderate predictive capacity. 

Thus, LoViReT individuals seemed to have lower peaks of pVL with a higher 

CD4+ T-cell nadir in the pre cART period followed by fewer detectable pVLs during 

their clinical follow-up. However, this multivariate model had limited predictive 

capacity. 

Table 5. Clinical associations with low levels of total HIV-1 DNA (LoViReT status). 

*p-values based on likelihood ratio test; & Calculated as area under de curve                 

3b.3.3. Longitudinal analysis of HIV-1 DNA reservoirs 

For further analyses, we focused on the cp-LoViReT population. Thus, we aimed 

to unravel whether the cp-LoViReT reservoir decreased as a consequence of cART 

or whether these individuals had lower reservoirs before initiation of cART. 

Clinical variables 
Univariate  Multivariate 

OR [95% CI] p-value*  OR [95% CI] p-value* 

Gender (Male)  0.981    

Age at diagnosis  0.642    

Mode of infection  0.782    

AIDS events  0.749    

Maximum viral load reported log10 0.67 [0.51-0.89] 0.007  0.66 [0.49-0.89] 0.0069 

CD4 nadir (multiples of 100) 1.47 [1.20-1.81] <0.001  1.46 [1.19-1.81] 0.0003 

Time since HIV-1 diagnosis  0.177    

Viral blips (<500 copies/ml) 0.64 [0.34-1.05] 0.083    

Detectable pVL (>50 copies/ml) 0.72 [0.55-0.90] 0.002  0.79 [0.60-0.98] 0.0286 

Time with detectable pVL (years) 0.76 [0.58-0.94] 0.008    

Tropism  0.394    

Accumulated viral load score& 0.78 [0.62-0.95] 0.013    

At the time of HIV-1 DNA measurements      

Age   0.531    

Time suppressed (years)  0.902    

CD4 T cells (multiples of 100)  0.648    

CD8 T cells (multiples of 100)  0.246    

% CD4 T cells  0.344    

% CD8 T cells  0.262    

CD4/CD8 ratio   0.217    
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According to sample availability, we selected a subgroup of 12 cp-LoViReT and 

compared them with 13 treated chronically infected matched controls (>50 HIV-1 

DNA copies/106 PBMCs) to perform a retrospective longitudinal reservoir analysis 

in purified CD4+ T cells. We previously ensured that there were no differences in 

clinical parameters between cp-LoViReT and controls (Table 6).  

 Table 6. Clinical characteristics of the individuals included in the longitudinal study.         

ap-value between groups: Mann-Withney. bp-value between groups: Fisher Exact Test.  

 
Total HIV-1 DNA was measured before cART and in several samples after 

initiation of cART (median: 4 [IQR: 4-5] samples per individual. Fig. 31a shows the 

dynamics of total HIV-1 DNA in all the samples analyzed. All participants had 

detectable HIV-1 DNA before therapy, thus discarding technical primer-mismatch 

hybridization issues. We observed a phase of faster decay during the first 18 months 

on cART, followed by a slower decay. When we analyzed the time points separately, 

we observed that before initiation of cART, cp-LoViReT already harbored 

significantly lower levels of HIV-1 DNA (p=0.002) (Fig. 31b). The differences 

observed before cART were independent from pVL, since no statistically significant 

differences were observed between the groups (Table 6).   

After 18 months of treatment, a pronounced decline in HIV-1 DNA was observed 

in all those studied, although median values were lower in cp-LoViReT than in 

controls (p<0.001). Finally, after five years on cART, samples from both groups 

 LoViReT group 
(n=12) 

Control group 
(n=13) 

p-value 

Age at diagnosis (years), median [IQR]a 33 [28-35] 33 [31-37] 0.35 
Females, n (%)b 1 (8.3) 0 (0) 0.48 
Mode of infection MSM, n (%)b 10 (83.3) 13 (100) 0.22 
Time since diagnosis (years), median [IQR]a 5.6 [5.1-7.6] 6.6 [5.5-7.0] 0.46 
Time of viral load suppression (years), median [IQR]a 4.8 [3.9-6.8] 4.9 [3.9-5.7] 0.77 
Viral load    
      Zenith (log copies/ml plasma), median [IQR]a 5.0 [4.8-5.3] 4.9 [4.6-5.3] 0.76 
      Viral load sample pre cART (log10 copies/ml plasma),   
      median [IQR]a 

4.1 [4.9-5.2] 4.9 [4.1-5.2] 0.99 

CD4 T cell count    
     Nadir (cells/µl), median [IQR]a 422 [330-488] 409 [351-612] 0.81 
     Absolut (cells/µl) pre-cART, median [IQR]a 622 [384-774] 477 [385-630] 0.25 
     Absolut (cells/µl) 5 years on cART, median [IQR]a 802 [703-938] 808 [660-1069] 0.94 
Antiretroviral treatment    
    Number of different regimens, median [IQR]a 3 [1-5] 2 [1.5-3] 0.34 

    Number of different families, median [IQR]a 2.5 [2-3] 2 [2-3] 0.57 

    Nucleoside reverse transcriptase inhibitors, n (%)b 12 (100) 13 (100) 0.99 

    Non-nucleoside reverse transcriptase inhibitors, n (%)b 9 (75) 10 (77) 0.99 
    Protease inhibitors, n (%)b 6 (50) 6 (46) 0.99 
    Integrase inhibitors, n (%)b 4 (33) 2 (15) 0.38 
    Entry inhibitors, n (%)b 2 (17) 1 (8) 0.6 
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showed the greatest differences within the study (p<0.001). cp-LoViReT reached a 

median of 54 HIV-1 DNA copies/106 CD4+ T cells, which is comparable to the values 

we observed in the initial PBMC screening.  

When we compared the decay in the HIV-1 reservoir before and after five years 

on cART, we observed a significantly greater decrease in cp-LoViReT individuals 

than in controls (16- vs. 5-fold respectively, p<0.001) (Fig. 31c). In addition, a 

significant positive correlation was observed between these two time points 

(rho=0.76, p<0.001) (Fig. 31d).  

Altogether, we observed that cp-LoViReT individuals had low viral reservoirs 

before initiation of cART, as well as enhanced decay during treatment. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31. Longitudinal measure of total HIV-1 DNA in CD4+ T cells by ddPCR. (a) Decay in total 
HIV-1 DNA before and after initiation of cART. The light grey box indicates the period under cART. 
(b) Box plot of total HIV-1 DNA at three different time points: pre-cART, 18 months after initiation of 
cART, and 5 years after initiation of cART. (c) Fold change decay in the sample before initiation of 



 CHAPTER 3b. Results (LoViReT I) 

  

113 
 

treatment and after 5 years of cART. (d) Spearman correlation for total HIV-1 DNA pre-cART and 
after 5 years of cART. 

3b.3.4. Characterization of T-cell subsets, activation, and exhaustion 

Immunophenotyping of T cells was performed in the samples used for the 

longitudinal reservoir analysis. As expected, we found a significant increase in the 

frequency of CD4+ T cells and a significant decrease in the frequency of CD8+ T 

cells after initiation of cART, thus leading to a significant recovery of the CD4/CD8 

T-cell ratio.  

Analysis of maturation subsets in CD8+ T cells revealed the expected significant 

increase in the frequency of TN cells after initiation of therapy in both groups, with 

similar rates of increase; however, the frequency was higher at month 18 in cp-

LoViReT than in controls (p=0.043) (Fig. 32a-b). Although we did not observe 

significant differences between the groups in the frequency of TCM (Fig. 32c), we did 

detect a lower frequency of TTM and TEMRA cells in before initiation of cART in cp-

LoViReT than in controls (p=0.011 for TTM and p=0.016 for TEMRA). This association 

disappeared when cART was introduced (Fig. 32d-f).  

Activated (CD38+HLA-DR+) and PD-1+ CD8+ T cells decreased significantly over 

time in both groups (Fig. 32g-h). However, no significant differences between groups 

were observed.  

In CD4+ T cells, we did not observe any significant difference between cp-

LoViReT and controls over time in any T-cell maturation subset (Fig. 33a-f). 

Activation, defined as co-expression of CD38+HLA-DR+, and PD-1 expression levels 

decreased overtime in both groups with no intergroup differences (Fig. 33g-h).  
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Figure 32. Analysis of maturation subsets, activation, exhaustion, and surrogate markers in the 

reservoir in CD8+ T cells. (a) Median CD8+ T-cell values for the frequency of the maturation subsets 
(naïve, central memory, effector memory, transitional memory, and effector memory RA+) in controls 
and cp-LoViReT at three different time points: pre-cART, 18 months after initiation of cART, and 5 
years after initiation of cART. Maturation stages were defined based on the combination of CD45RA, 
CD197 (CCR7), and CD27. (b) CD45RA+CD197+ (Naive), (c) CD45RA–CD197+ (central memory), 
(d) CD45RA–CD197–CD27– (transitional memory), (e) CD45RA–CD197–CD27+ (effector memory), 
and (f) CD45RA+CD197– (effector memory RA+). (g) CD8 activation levels (HLA-DR+CD38+) in both 
study groups over time. (h) CD8+ T-cell exhaustion marker PD-1 (CD279). The cp-LoViReT group is 
depicted in blue and the control group in grey.  
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Figure 33. Analysis of maturation subsets, activation, exhaustion, and surrogate markers in the 
reservoir in CD4+ T cells. (a) Median CD4+ T-cell values for the frequency of the maturation subsets 
(naïve, central memory, effector memory, transitional memory, and effector memory RA+) in the 
control and cp-LoViReT groups at three different time points: pre-cART, 18 months after initiation of 
cART, and 5 years after initiation of cART. Maturation stages were defined based on the combination 
of CD45RA, CD197 (CCR7), and CD27. (b) CD45RA+CD197+ (naive), (c) CD45RA–CD197+ (central 
memory), (d) CD45RA–CD197–CD27– (transitional memory), (e) CD45RA–CD197–CD27+ (effector 
memory), and (f) CD45RA+CD197– (effector memory RA+). (g) CD4 activation levels (HLA-
DR+CD38+) in both study groups over time. (h) CD4+ T-cell exhaustion marker PD-1 (CD279). The 
cp-LoViReT group is depicted in blue and the control group in grey.  
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In summary, we observed changes in CD8+ T-cell maturation in cp-LoViReT with 

higher levels of TN in combination with lower TTM and TEMRA CD8+ T cells before 

initiation of cART. This observation was not associated with changes in activation or 

exhaustion of CD8+ T cells in this group.  

3b.3.5. CD4+ susceptibility and viral inhibition by CD8+ and NK cells 

To evaluate the functionality of the T cells in both groups of individuals, we 

analyzed the susceptibility of the target cells to HIV-1 infection and viral inhibition by 

CD8+ and NK cells in the same samples as those used for NK immunophenotyping. 

Thus, we selected 11 cp-LoViReT and 11 controls with available samples before 

initiation of cART and after 5 years on cART. We pulsed autologous CD4+ T cells 

from each individual with a laboratory-adapted R5- viral strain for 7 days (Fig. 34a). 

We observed that CD4+ T cells from cp-LoViReT and cp-controls were susceptible 

to HIV-1 infection and that there were no significant differences between groups 

before initiation of cART or after 5 years on cART. 

Autologous CD8+ T cells were also tested to analyze the suppression of viral 

replication (Fig. 34b), no significant differences between cp-LoViReT and controls 

were observed. High variability in the inhibition percentage was recorded in all the 

samples assayed, this could be explained by the limitation arising from the use of 

frozen cells in this assay. 

Similarly, we did not find significant differences in the percentage of inhibition by 

autologous NK cells between groups before initiation of treatment or after 5 years 

on cART (Fig. 34c). 

In conclusion, CD4+ T cells from cp-LoViReT were perfectly susceptible to HIV-

1 infection, with no signs of distinct CD8 and NK cytotoxic activities compared with 

control individuals. 
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Figure 34. CD4+ T cell susceptibility to HIV-1 and viral inhibition by CD8+ T cells and NK cells. 

(a) PBMC samples before initiation of cART and after 5 years of cART were used to analyze the 
susceptibility of CD4+ T cells to HIV-1BaL (CCR5 tropic strain) (10 ng p24/ml). We also measured the 
ex vivo ability of (b)  CD8+ T cells and (c) NK cells to inhibit superinfected autologous CD4+ T cells 
at a 1:1 ratio. The cp-LoViReT group is depicted in blue and the control group in grey. 

3b.3.6. Inflammatory marker levels in cp-LoViReT individuals 

We measured soluble plasma pro-inflammatory or homeostatic cytokines (IL-2, 

IL-6, IL-7, IL-10, IL-27, IP10) and the coagulation factor D-dimer in plasma samples 

from eight cp-LoViReT and nine controls before cART and after five years on cART 

(selected according to sample availability). We did not find statistically significant 

differences either over time or between groups (Table 7). 
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3b.3.7. HIV-1 specific antibodies 

To determine whether low reservoirs could be associated with humoral 

responses to HIV-1, we analyzed HIV-1 specific antibodies in plasma samples 

before initiation of cART and after five years on cART in eight cp-LoViReT and nine 

controls for whom plasma samples were available. We observed a decrease in HIV-

1 specific antibody levels in both groups after initiation of cART (Fig. 35a). This 

decay was greater in cp-LoViReT than in controls (Fig. 35a). 

We also measured the avidity of antibodies using a limiting antigen avidity assay. 

We observed a trend toward a more pronounced reduction in antibody avidity in cp-

LoViReT when cART was initiated, with most individual levels falling below the cut 

off seen in acute HIV-1-infected individuals (Fig. 35b).  

Therefore, HIV-1 antibody quantity and quality were more markedly diminished 

upon initiation of cART in cp-LoViReT. 

 

 

 

 

 

 

 

 

 Figure 35. Measurement of HIV-1 specific antibodies. Plasma samples before initiation of 
cART and after 5 years of cART were tested for HIV-1 specific antibody levels using a (a) detuned 
version of the HIV-1 VITROS assay and a (b) limiting antigen avidity assay. The dotted line 
represents the HIV-1 antibody assay diagnostic cut-off level used to classify individuals as HIV-1-
positive or -negative. The p-values between groups were assessed using the Mann-Whitney test. 
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3b.4. DISCUSSION 

Latency in CD4+ T cells is established very early after infection and is the major 

obstacle to curing HIV-1 infection294. A low HIV-1 DNA reservoir has been 

associated with early treatment65, and better clinical outcome295. Nevertheless, the 

size of the HIV-1 DNA reservoir is not necessarily associated with time to viral 

rebound in individuals treated early after infection and who discontinued their 

cART242,295. The global frequency of HIV-1-infected individuals harboring low levels 

of HIV-1 DNA and the determinants of these levels remain unknown.  

In our study, we found that 9.3% of the individuals screened had HIV-1 DNA 

levels below 50 copies/106 PBMCs (LoViReT individuals). The proportion of 

LoViReT individuals was similar in the two recruiting centers, indicating that our data 

might be extrapolated to other clinical sites with similar subject populations and viral 

subtypes. Previous studies in treated chronically infected individuals found that 28% 

and 19% of individuals had HIV-1 DNA levels below 150 copies/106 PBMCs and 66 

copies/106 PBMCs, respectively243,244. While both studies revealed greater amounts 

of individuals with low HIV-1 DNA levels, the differences observed with our results 

could be explained by their higher cut-off for defining low HIV-1 DNA. Reanalysis of 

our dataset after applying their cut-offs revealed that 33% and 19% of individuals, 

respectively, had a “low reservoir”, thus confirming this hypothesis. We maintained 

our cut-off of 50 copies/106 PBMCs because it represents the 10th percentile of the 

screened population. 

Various clinical parameters were associated with LoViReT status, including a 

higher CD4 nadir, lower maximum pVL, and fewer detectable pVLs during cART. 

Nevertheless, the model was not strong enough to identify LoViReT individuals, 

suggesting that other viral or immunological factors might be involved. The same 

three factors have been found to be closely associated with harboring low levels of 

HIV-1 reservoir243,244,296,297, probably because a higher CD4+ T-cell nadir could 

prevent repopulation of the immune system with expanded latently infected 

lymphocytes. Moreover, a lower pVL peak might have prevented massive seeding 

of CD4+ T cells by HIV-1. Similarly, fewer detectable pVLs during the course of the 

treated infection might have prevented replenishment of the reservoir. 
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Previous studies, have reported the association between early treatment and low 

viral reservoirs298,299. However, only individuals treated in Fiebig I-IV (between one 

week and one month after infection) were capable of achieving low levels of total 

HIV-1 DNA after more than three years on treatment65,288. Surprisingly, if early 

treatment is excluded as the main cause of a remarkably low reservoir, 66% of the 

LoViReT individuals were treated more than six months after acquisition of HIV-1 

(cp-LoViReT). Since eradication strategies need to be effective in the vast majority 

of treated chronically infected individuals, it would be of considerable interest to 

know the mechanism responsible for the low reservoir detected in this group of 

individuals. 

Data on the kinetics of HIV-1 reservoirs have been reported in treated chronically 

infected individuals108,300,301 harboring standard levels of total HIV-1 DNA or treated 

during primary infection116,288. However, to our knowledge, this is the first study to 

address the kinetics of reservoirs in chronically HIV-1-infected individuals harboring 

low levels of total HIV-1 DNA, including the pre-cART period. Our results provide 

the first evidence that cp-LoViReT have intrinsically lower levels of total HIV-1 DNA 

before starting treatment, despite having the same levels of plasma viremia as 

controls. Besides, once cART is introduced, their reservoir seems to be more cART-

sensitive, since decay of total HIV-1 DNA is faster in cp-LoViReT. We also proved 

that their CD4+ T cells were susceptible to infection; therefore, the low reservoir 

observed is probably due to factors that do not severely impact the viral replication 

cycle in the cells. Hence, we cannot exclude the possibility that cp-LoViReT might 

have more linear unintegrated DNA, which decays faster than integrated DNA in the 

presence of cART137,302. Additionally, and consistent with other authors, we found a 

positive correlation between pre-treatment levels of total HIV-1 DNA and levels after 

five years on cART, thus demonstrating the importance of certain features before 

initiation of cART, such as host factors and/or the immune system, in determining 

subsequent reservoir size67,289. 

A naturally low level of cell-associated HIV-1 DNA could result in a more 

preserved immune system. cp-LoViReT had fewer CD8+ TTM and TEMRA in the 

absence of cART, with frequencies similar to those of HIV-1-negative individuals, 

suggesting a less impaired CD8+ T-cell compartment. HIV-1 infection disrupts T-cell 
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subset homeostasis, with a dramatic decrease in the frequency of CD8+ TN cells and 

massive expansion of CD8+ TTM cells in infected individuals treated during both the 

acute and the chronic phase303. Furthermore, after 18 months on therapy, the 

differences in CD8+ TN cells between cp-LoViReT and controls become statistically 

significant, with the result that CD8+ TN cells were more numerous than in controls. 

The higher proportion of CD8+ TN, also observed in ECs, may suggest shared 

preservation of thymic function70. However, in LoViReT individuals, the preserved  

CD8+ T-cell compartment does not seem to be associated with an enhanced 

cytotoxic capacity of their CD8+ T cells or NK cells, in contrast to HIV-1 controllers 

for CD8+ T cells304 and post-treatment controllers for NK cells305. Further exploration 

with fresh cells, more participants, and assessment of the frequency of HIV-1 

specific cells will be needed to fully elucidate this point. 

Finally, consistent with the kinetics of total HIV-1 DNA, the marked decline in the 

quantity and avidity of HIV-1 specific antibodies in cp-LoViReT during cART 

indicates a lower amount of circulating HIV-1 antigen. Our findings are in line with 

results in treated chronically infected individuals from Keating et al306 who reported 

an association between declining antibody levels during cART and lower levels of 

antigen production, better viral control, and lower systemic viral burdens. 

cp-LoViReT represent a new phenotype of individuals characterized by low 

intrinsic total HIV-1 DNA, better immune preservation, and low circulating HIV-1 

antigens despite being treated in the chronic phase of the infection. Levels of proviral 

DNA while on cART in some individuals of the well-characterized post-treatment and 

EC cohorts were as low as those of LoViReT individuals, with median levels of 1.7 

and 1.5 log10 copies per million PBMCs, respectively307; however, we can rule out 

an overlap between cohorts. LoViReT had high viral loads during chronic infection 

before initiation of treatment. This finding differs from the main factors associated 

with elite and post-treatment controller cohorts. In addition, various studies suggest 

that having low amounts of HIV-1 DNA does not prevent early and consistent viral 

rebound if therapy is interrupted in infected individuals receiving long-term 

treatment239–241. Therefore, a very low reservoir is not necessarily associated with 

spontaneous control of viral replication, as might be the case in ECs or post-

treatment controllers. However, when attempting to identify combined approaches 
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toward finding a cure for HIV-1 infection, cp-LoViReT appear to be excellent 

research participants, since they have better preserved immune cell populations and 

start from a smaller reservoir, which might be an advantage over individuals with a 

larger reservoir. 

In conclusion, we found that 9% of the HIV-1-infected individuals have low levels 

of total HIV-1 DNA (LoViReT individuals) and that most were treated in the chronic 

phase of the infection. Moreover, they are characterized by a viral reservoir that is 

intrinsically reduced before initiation of cART and enhanced decay after initiation of 

treatment, suggesting an impaired HIV-1 reservoir establishment. Also, they have a 

less compromised CD8+ T-cell compartment and lower HIV-1 specific antibody 

levels, probably as a result of lower amounts of circulating antigens. Additional 

studies will be necessary to unravel why these individuals have not reached an HIV-

1 control as well as the nature of their reservoir.

 

  



 

 
 

  



 

 
 

 

 

 

 

 

 

 

 

 

 

 

Chapter 3c. LoViReT individuals show altered HIV-1 latency distribution 
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3c.0. PRESENTATION 

The study in chapter 3b led us to stablish the cohort of LoViReT individuals, 

which showed that a 9.3% of the HIV-1-infected individuals harbor low levels of HIV-

1 DNA. However, the study was only done in blood due to their retrospective design, 

and it was unknown if such a low reservoir could also be found in anatomic 

sanctuaries including rectum or lymph node, or if these proviruses were replicative. 

Moreover, it was not clear why these individuals did not control the virus similarly to 

EEC. A hypothesis was that HIV-1 specific immune responses were not as efficient 

as in EEC. Therefore, a prospective observational study was performed with a 

subgroup of the LoViReT individuals characterized in chapter 3b, regardless of when 

they started cART, and compared to HIV-1-infected individuals with a standard 

reservoir size. 
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3c.1. INTRODUCTION 

The viral reservoirs have a high interindividual variability in the number of latently 

HIV-1 infected cells, despite having suppressed viremia. However, a small 

proportion of HIV-1-infected individuals harbor low reservoirs such as EC238, EEC308 

(seen in Chapter 3a) and PTC72 who are able to naturally control viral replication in 

the absence of cART. These phenotypes are mainly associated with viral and host 

factors. We have previously observed that in EEC (and also in EC) there is an 

enrichment in protective HLA alleles, potent cytotoxic CD8+ T-cell activity, and lack 

of viral evolution probably by the presence of defective provirus263,308–310. In contrast, 

PTC individuals are associated with early treatment, enrichment in risk HLA alleles, 

weak HIV-1 specific cytotoxic activity, and unusual HIV-1 latency distribution among 

CD4+ T cell subpopulations72. 

We and others had previously described a new phenotype of individuals, dubbed 

LoViReT, which harbor low level of total HIV-1 DNA under cART311. They accounted 

for 9% of all HIV-1-infected individuals and were mainly treated during the chronic 

phase of infection. This new phenotype is mainly characterized by a naturally 

reduced and more cART-sensitive viral reservoir, less impaired CD8+ T-cell 

compartment before cART, and low circulating HIV-1 specific antibodies. However, 

it is still not clear the underlying functionality of this low levels of provirus and 

whether this can also be observed in anatomical compartments, where the reservoir 

is usually higher. 

In this study, we have comprehensively analyzed a subgroup of 22 LoViReT 

individuals in comparison with individuals with standard viral reservoir size, all under 

cART. Since here we have prioritized to include a larger number of individuals, both 

acute and chronically treated individuals are considered for this study. We have 

analyzed host factors, functional integrity of their provirus, levels of reservoirs in 

secondary immune tissues, and the distribution of provirus among different CD4+ T 

cell subpopulations.  
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3c.2. METHODS 

3c.2.1. Participants and study design 

From the 42 LoViReT individuals defined in Chapter 3b311, we selected 22 

LoViReT (both acute and chronically treated) which still met the inclusion criteria 

and the willingness to participate in the study. Also, we selected 22 controls. 

Participants were selected from Hospital Germans Trias i Pujol and Hospital Clinic 

of Barcelona (Spain). The inclusion criteria for both groups were to be under 

suppressive cART with undetectable viremia (HIV-1 RNA <50 copies/ml) for at least 

three years, and have <100 DNA copies/106 CD4+ T cells for LoViReT and >100 

HIV-1 DNA copies/106 CD4+ T cells for controls. Groups were matched by clinical 

characteristics using random forest. Treated chronically infected participants were 

defined as individuals with more than six months between acquisition of HIV-1 and 

initiation of treatment.  

In a second phase of the study, a subgroup of 14 individuals underwent a 

leukapheresis to obtain high numbers of cells to perform a qVOA and measure the 

viral distribution among CD4+ T cell subpopulations. Then, those with an IUPM 

smaller than 0.1, and the willingness to participate, underwent rectum and lymph 

node biopsies. For ethical reasons, in control individuals we did not perform this 

second phase of the study (Fig. 36).  

All individuals provided their signed informed consent to participate in the study. 

The study was approved by the Ethics Committee at both recruiting hospitals 

(reference #: PI-17-043). 

 

 

  

 

 
 
Figure 36. Study design flow-chart. usVL= ultrasensitive viral load; qVOA= quantitative viral 

outgrowth assay; IUPM= Infectious Units per Million; FNB= fine needle biopsy. 
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3c.2.2. Quantification of HIV-1 reservoir in blood 

To evaluate the size of the viral reservoir, lysed extracts from CD4+ T cells were 

used to measure total HIV-1 DNA, as previously described in chapter 3a. 

Viral transcription was evaluated by quantification of caHIV-1 RNA in purified 

CD4+ T cells, using one-step reverse-transcription ddPCR. The 5’-LTR or gag genes 

and the housekeeping gene TBP were measured in parallel. The residual viremia 

(<50 HIV-1 RNA copies/ml plasma) was measured by the usVL assay from 9 ml of 

plasma with a LOD of 0.56 copies/ml, as previously described in chapter 3a.  

3c.2.3. HLA typing 

High-resolution HLA class I typing for B alleles was performed by sequence-

based typing methods. B*27 and B*57 alleles were considered protective, and B*35 

and B*07 as risk alleles263.  

3c.2.4. CCR5 genotyping 

A portion of the CCR5 gene was amplified by PCR with primers that flanked the 

32-bp deletion312. Wild-type and deleted fragments of 185 bp and 153 bp, 

respectively, were generated and visualized in 2% agarose gels. Heterozygosity 

(CCR5 wt/Δ32) was indicated by the presence of both fragments. 

3c.2.5. Quantitative viral outgrowth assay 

Leukaphereses were obtained from 14 LoViReT to quantify the size of the 

replication-competent reservoir. We performed a limiting dilution cell culture assay 

with 38 million of CD4+ T cells with the detection limit set at 0.0185 IUPM, as 

previously described in chapter 3a.  

3c.2.6. Quantification of HIV-1 reservoir in anatomical compartments 

Total HIV-1 DNA was measured in anatomical compartments from secondary 

immune tissues, including rectal biopsies and LN in LoViReTs with an IUPM lower 

than 0.1. For rectal biopsies, four to eight endoscopic biopsies per individual were 

collected from rectum using 2.5 mm forceps, which were immediately placed in 

complete medium (RPMI 1640 with 10% FBS (both from Gibco), supplemented with 

antibiotics (500 µg/ml piperacillin/tazobactam, Fresenius Kabi) and 1.25 µg/ml 

amphotericin B (Fungizone, Gibco)). Samples were processed immediately after 
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collection in order to minimize loss of lamina propria leukocytes (LPL) and/or 

bacterial contamination. Biopsies were incubated in HBSS (without Ca2+/Mg2+, 

Gibco) containing 1 mM DTT (Sigma) and 1 mM EDTA (Gibco) for 25 min, at RT 

with constant shaking, to remove the epithelial layer. Then, biopsies were 

transferred to complete media and cultured overnight in 6-well low-binding plates 

(Costar). Culture supernatants were collected to recover the released cells, and the 

remaining tissue was disrupted by gentle pipetting. Finally, cell suspensions were 

cleared from tissue debris using a 40 μm nylon mesh (Falcon). CD45+ cells from the 

LPL were sorted in a BD FACSAria II Flow cytometer using the following antibodies: 

CD45 (FITC), CD3 (APC) and CD8 (PercP).  

Regarding LN biopsies, a non-invasive technique scanner-guided Fine Needle 

Biopsy (FNB) was used, to aspirate cells from punctures of two inguinal LNs. Cells 

were placed in RPMI 1640 containing 1% Penicillin/Streptomycin and 10% FBS. 

Memory CD4+ T cells defined as CD3+CD4+CD45RA- were sorted in a BD FACSAria 

II Flow cytometer using the following antibodies: CD3 (APC), CD8 (APC H7), 

CD45RA (FITC). 

In both cases, isolated cells were lysed, and total HIV-1 DNA was quantified by 

ddPCR as previously described. 

3c.2.7. Cell sorting of CD4+ subpopulations 

CD4+ T cell subpopulations were isolated by cell sorted from leukaphereses 

obtained from 14 LoViReTs, starting from 175-450 million of PBMCs.  PBMCs were 

incubated with live/dead (APC-Cy7), CD3 (BV510), and CD4 (AF700) monoclonal 

antibodies. T-cell maturation was based on the expression of the surface markers 

CD45RA (APC), CCR7 (PE Dazzle) and CD27 (FITC) in order to define TN 

(CD45RA+CCR7+CD27+), TCM (CD45RA-CCR7+ CD27+), TTM (CD45RA-CCR7-

CD27+), TEM (CD45RA-CCR7-CD27-), and TTD (CD45RA+CCR7-CD27-). 

Subpopulations were sorted in BD FACSAria II Flow cytometer, and cells were lysed 

to measure total HIV-1 DNA by ddPCR. 
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3c.2.8. Statistical analysis 

The clinical characteristics of the study population were presented as 

percentages for categorical variables and as median and IQR for continuous 

variables. Differences between LoViReT controls or standard individuals were 

assessed using the Mann-Whitney test in the case of continuous variables and the 

Fisher exact test in the case of categorical variables. The analyses were performed 

with GraphPad (v8.02). 
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3c.3. RESULTS 

3c.3.1. Participant characteristics  

We selected 22 LoViReT and 22 controls with more than three years under cART 

and fulfilling inclusion criteria. Their clinical characteristics are summarized in Table 

8. No statistically significant differences were observed between LoViReTs and 

controls. The clinical histories of LoViReT individuals confirmed that 14 LoViReT 

were treated in the chronic phase of the infection (>six months since acquisition). 

Out of the remaining LoViReT individuals, five were early treated, and three lacked 

proven information of the time being infected at initiation of cART. Therefore, the 

proportion of LoViReT treated in the chronic phase of infection are comparable to 

what we observed in our previous study (Chapter 3b).  

 Table 8. Clinical characteristics of the individuals included in the study 

IQR= interquartile range; MSM= men who have sex with men; IVDU= intravenous drug users; VL= 
viral load. 

3c.3.2. LoViReT individuals lacked host protective factors 

In order to determine if the low levels of total HIV-1 DNA could be associated 

with host genetic factors, we first measured the HLA class I alleles to determine if 

LoViReT individuals have a different pattern of protective/risk alleles than controls 

with standard HIV-1 DNA. Six LoViReTs had protective alleles (two HLA-B*57 and 

four HLA-B*27) while only two controls had protective alleles, but the differences 

were not statistically significant compared to controls (p=0.27). However, although 

we did observe a lower frequency of risk alleles (HLA-B*07 and B*35) in the LoViReT 

 LoViReT 
group (n=22) 

Control  
group (n=22) 

p-
value 

Age at diagnosis (years), median [IQR]a 34 [28-39] 33 [30-37] 0.7 
Sex (females), n (%)b 5 (23) 2 (9) 0.22 
Mode of infection 
      MSM, n (%)b 
      Heterosexual, n (%)b 
      IVDU, n (%)b 

 
10 (45) 
7 (32) 
3 (14) 

 
12 (55) 
5 (23) 
3 (14) 

 
 

0.52 

Time since diagnosis (years), median [IQR]a 17 [10-23] 20 [12-27] 0.52 
Time in cART (years), median [IQR]a 13 [9-18] 17 [11-25] 0.12 
Time with supressed VL (years), median [IQR]a   12 [9-16] 13 [11-16] 0.34 
Zenith (log10 copies/ml plasma), median [IQR]a 4 [3.5-4.9] 4.6 [3.6-5.1] 0.46 
CD4+ T cells    
     Nadir (cells/µl), median [IQR]a 300 [235-439] 297 [219-420] 0.58 
     Actual CD4 count (cells/µl), median [IQR]a 859 [527-984] 787 [573-1025] 0.86 
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group than in controls, the differences were not statistically significant between 

groups (p=0.07) (Fig. 37a).  

 

  

 

 

Figure 37. HLA class I profile and CCR5 wt/Δ32 frequency. (a) The frequencies of the protective 
alleles HLA-B*27 and B*57, the risk alleles HLA-B*07:02 and B*35 and the frequency of the genotype 
CCR5 wt/Δ32 in LoViReT and controls. (b) Frequency of individuals with the CCR5 Δ32 mutation in 
heterozygosis. 

We also evaluated the frequencies of the CCR5 Δ32 mutation among the cohort. 

We found that 27.3% of LoViReT individuals had a CCR5 wt/Δ32 genotype while 

controls 21.4%, but this difference was not statistically significant (p>0.99) (Fig. 

37b). 

Thus, the low reservoirs observed in LoViReT does not seem to be associated 

with an increase in protective or risk host factors.  

3c.3.3. LoViReT individuals have a lower HIV-1 DNA and HIV-1 RNA expression 

Levels of total HIV-1 DNA were measured in CD4+ T cells and compared with 22 

controls with standard HIV-1 DNA, matched by clinical factors to confirm previous 

results from Chapter 3b in a more recent sample. As expected by experimental 

design, we observed statistically significant differences between groups (p<0.0001) 

(Fig. 38a).  

Moreover, in order to determine if the low levels of total HIV-1 DNA were 

associated with a low HIV-1 expression, we analyze the levels of intracellular and 

extracellular forms of HIV-1 RNA by measuring caHIV-1 RNA and usVL in plasma, 

respectively, and compared with controls. LoViReT had lower levels of caHIV-1 RNA 

(p<0.0001) despite of all individuals were detectable for HIV-1 expression (Fig. 38b).  
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Figure 38. Measurements of total HIV-1 DNA and HIV-1 expression. (a) Levels of total HIV-1 
DNA, (b) cell associated HIV-1 RNA and (c) ultrasensitive viral load in plasma. Open symbols 
represent values under the limit of detection, in those cases the limit of detection varied based on 
sample/volume input. usVL= ultrasensitive viral load. 

Residual plasma viremia was detected in 59% of the individuals assessed. 

Interestingly, we observed a higher percentage of individuals under the LOD (0.56 

copies/ml) in the LoViReT group (81%) than in controls (36%), and these differences 

were statistically significant (p=0.0039) (Fig. 38c).  

Thus, the LoViReT phenotype is not only determined by a low HIV-1 DNA but 

also by a low expression of intracellular and extracellular HIV-1 RNA under cART.  

3c.3.4. No differences in HIV-1 persistence in LoViReTs treated in the chronic 

or early phase of infection 

In order to decipher if HIV-1 persistence in LoViReT is different depending on 

the time of treatment initiation, we analyzed the reservoir levels and HIV-1 

expression by the moment of initiation of treatment in 19 LoViReT individuals of 

which we had confirmed clinical history of the time of treatment initiation. We had 

two groups including chronic treated LoViReT (>6 months since HIV-1 acquisition 

and initiation of cART) and acute treated LoViReT (<6 months since HIV-1 

acquisition and initiation of cART). We did not find statistically significant differences 

in peripheral blood reservoirs, including total HIV-1 DNA (p=0.98), caHIV-1 RNA 

(p=0.81), and usVL (p=0.53) (Fig. 39a-c).  
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Figure 39. Measurements of total HIV-1 DNA and HIV-1 expression in LoViReT individuals 
treated in the chronic or early phase of HIV-1 infection. (a) Levels of total HIV-1 DNA, (b) cell 
associated HIV-1 RNA and (c) ultrasensitive viral load in plasma. Open symbols represent values 
under the limit of detection, in those cases the limit of detection varied based on sample/volume 
input. usVL= ultrasensitive viral load. 

Since no differences were observed between LoViReTs treated in the chronic or 

early phase of the HIV-1 infection, the following analysis involving more invasive 

techniques were performed with both groups indistinctively.  

3c.3.5. Low rate of replication competent virus in peripheral blood in LoViReT 

To determine whether the low levels of provirus present in LoViReT individuals 

were replication competent, we performed a leukapheresis in a subgroup of 14 

LoViReTs to obtain a large amount of CD4+ T cells to perform a qVOA assay with a 

low limit of detection. We observed very low levels of replication competent virus, 

with 71% of the individuals having an IUPM under the LOD (0.0185), despite the 

high sensitivity of the assay. The four LoViReT with detectable qVOA had values 

ranging from 0.244 to 0.65 IUPM. 

If we compare the IUPM values from LoViReT individuals with values from 

historical standard individuals under cART264, we observed that LoViReT had lower 

statistically significant IUPM (p<0.0001) (Fig. 40a). 

Moreover, we also did not observe differences in the proportion of LoViReT 

individuals with detectable IUPM if they were chronic or early treated, with 16.7% 

and 40%, respectively (p=0.55).  
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3c.3.6. Low viral reservoirs in secondary immune tissues in LoViReTs 

We measured total HIV-1 DNA in rectum and LN biopsies in a subset of 8 

LoViReT that had an IUPM below <0.1.  In rectum, we detected levels of total HIV-

1 DNA in 6/8 individuals with a median of 56.9 HIV-1 DNA copies/106 CD45+ T cells 

[37.4-113.7], which is nearly 10-fold lower in comparison with historical values from 

standard individuals under cART (p=0.0004) (unpublished data from Bernal-

Santateresa et al) (Fig. 40b). 

Besides, in LN only 3 out of 8 individuals had detectable HIV-1 DNA with a 

median of 262.6 HIV-1 DNA copies/106 CD45RA– T-cells [36.3-2112]. In this case, 

the median value of HIV-1 DNA of LoViReT individuals did not differ much from 

historical standard individuals under cART80. However, this could be due by the fact 

that 63% of them were under the LOD, probably by the low number of cells we were 

able to obtain (Fig. 40c).  

We also analyzed if there were differences in the reservoir in anatomical 

compartments between the LoViReTs treated in the chronic or early phase of the 

infection. No statistically differences were observed in the median levels of total HIV-

1 DNA in rectum (p=0.19) or lymph node (p=0.23) between both groups.  

Therefore, LoViReT individuals seem to have a lower or even undetectable 

reservoir compared to standard individuals under cART not only in peripheral blood 

but also in anatomical compartments such as rectum and LN, regardless when they 

started cART.  

 

  

 

 

 
Figure 40. Measurements of the viral reservoir in peripheral blood and anatomical 

compartments. The figure shows data on each LoViReT individual for (a) viral outgrowth, (b) rectal 
and (c) LN biopsies compared with HIV-1-infected individuals with standard HIV-1 reservoirs. 
LoViReTs treated in the chronic phase of infection are represented by a circle, LoViReT treated in 
the early phase of infection are represented with a square and the ones with no available information 
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of their status when they initiated cART are represented with a triangle. HIV-1 DNA in rectal CD45+ 
and LN CD45RA- were only assessed in LoViReTs with an IUPM <0.1. The values from standards 
individuals are from Morón-López et al264  for the viral outgrowth, and from Bernal-Santateresa et al 
(unpublished data) for rectal biopsies. Median values are indicated by a horizontal black line. Open 
symbols represent values under the limit of detection, in those cases the limit of detection varied 
based on cell input. qVOA= viral outgrowth assay. 

3c.3.7. High contribution of the short-lived CD4+ T cells subpopulations to the 

HIV-1 reservoir in LoViReTs 

To determine if the low level proviruses observed in LoViReT individuals could 

be attributed to the HIV-1 persistence in a specific CD4+ T cell subpopulation, we 

sorted five CD4+ T cell subpopulations from 14 LoViReTs (TN, TCM, TTM, TEM and 

TTD) and quantified total HIV-1 DNA in each population. The median levels of total 

HIV-1 DNA were 15, 51, 77, 79, and 165 copies/106 cells in the TN, TCM, TTM, TEM 

and TTD, respectively (Fig. 41a). Interestingly, TN and TTD had a high frequency of 

undetectable values, being 86% and 64% of the tested samples under the LOD, 

respectively.   

To calculate each subset contribution to the HIV-1 reservoir, we evaluated the 

frequency of each subpopulation among CD4+ T cells. The contribution of each 

subset to the reservoir showed that the major contributors to the total HIV-1 reservoir 

were TTM and TEM, with median contributions of 47% and 29% respectively. 

Nevertheless, TN and TTD presented a very limited contribution to the HIV-1 reservoir 

with a neglectable contribution in both cases (Fig. 41b).  

 

 

 

 

 

 

Figure 41. HIV-1 latency distribution in T-cell subsets in LoViReT individuals. (a) Total HIV-1 
DNA measured by ddPCR and (b) contribution of each subset to the HIV-1 reservoir. LoViReTs 
treated in the chronic phase are represented by a circle, LoViReT treated in the early phase are 
represented with a square and the ones with no available information of their status when they 
initiated cART are represented with a triangle. Open symbols represent undetectable values, where 
the limit of detection is represented. 
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3c.4. DISCUSSION  

We and others have previously described a new phenotype of HIV-1-infected 

individuals that harbor low levels of HIV-1 DNA in peripheral blood239,241,243,311, which 

we called the LoViReT cohort. More than half of them were treated in the chronic 

phase of the infection and seem to have a better preserved CD8+ T-cell 

compartment. Here, we studied 22 LoViReT, regardless when they started cART, 

with a very low viral reservoir in peripheral blood, to explore the nature of the small 

HIV-1 latency level. Host factors, viral expression, defects in the viral replication-

competence, latency in anatomical compartments and distribution among different 

peripheral cell subpopulations were studied.  

We showed that the low amount of provirus present in LoViReT individuals were 

less transcriptional active in comparison with individuals with standard total HIV-1 

DNA. And the low transcription lead to a less production of new viral proteins to form 

new virions, as we observed by the higher undetectability in residual viremia. This 

is in line with data from individuals with low levels of HIV-1 DNA such as ECs238, 

EECs308 and PTCs72 where significant lower caHIV-1 RNA and residual viremia are 

observed. 

Moreover, the low levels of HIV-1 expression found in peripheral blood were not 

able to effectively replicate in new cells since we observed that upon ex vivo 

stimulation of a high number of peripheral CD4+ T cells, a 71% of LoViReT did not 

show replication competent provirus. This result was also observed in a recent study 

where low replication-competent provirus were found in individuals with limited 

reservoir, however in that case all participants had low but detectable IUPM241. This 

may suggest that the low levels of proviruses found in peripheral blood detected by 

total HIV-1 DNA could be highly defective viral sequences since they had limited 

capacity to transcribe viral mRNA, generate viral particles or replication competent 

virions in peripheral blood under cART.  

Alternatively, it has been widely described that HIV-1 reservoirs are 5-12 times 

larger in tissue compartments such as GALT98,99 and LN104 than in peripheral blood. 

To our knowledge, this is the first study to address the levels of HIV-1 DNA in rectum 

and LN in this kind of individuals with very low levels of reservoir in peripheral blood. 



 CHAPTER 3b. Results (LoViReT II)  

 
  

140  
 

Our results showed that LoViReT individuals had limited provirus in rectum and LN, 

being in some cases even under the limit of detection. Therefore, this demonstrates 

that in these individuals, the cells with HIV-1 provirus are not preferentially residing 

in rectum or LN as happen with standard HIV-1-infected individuals.  

Interestingly, we found that the time of initiation of treatment does not affect the 

levels of provirus, neither in peripheral blood nor in anatomical compartments. This 

is the opposite of what have been described in standard HIV-1-individuals where the 

earlier the treatment is started the lower is the reservoir65,288. Moreover, as we had 

previously shown LoViReT individuals already have special characteristics before 

initiation of treatment such as lower reservoir and better immune preservation311. 

Thus, the LoViReT phenotype seems to be defined by other factors, independent of 

treatment initiation.  

One factor that might explain the total HIV-1 DNA dynamics observed in chapter 

3b is the distribution of the provirus in the CD4+ T cell subpopulations. LoViReT had 

a high contribution of the short-live TTM and TEM cells in the total HIV-1 reservoir, 

which are mainly composed of unstable viral forms and are easier to be eliminated 

through cART313. This might explain the more rapid decay of total HIV-1 DNA in 

LoViReT when they started cART311. In contrast, in the general HIV-1-infected 

population the latent reservoir is predominantly found in the long-lived cells such as 

TCM
75, while in LoViReT individuals long-lived CD4+ T cells, including TN and TCM, 

provided only 24% to the contribution to the total HIV-1 reservoir. This limited 

contribution of TCM is also found in the classical sooty-mangabey model of 

attenuated SIV infection related to low CCR5 co-receptor expression314, in HIV-2 

infection where the virus is less pathogenic and replicative315, in PTC72 ,and also in 

LTNP associated with protective HLA-B*27 or B*57 alleles316.  

Since the overrepresentation of protective HLA-class I alleles in LTNPs316, 

ECs263,309,310 and EECs308 and risk alleles in PTC72 is associated with an atypical 

reservoir contribution and HIV-1 control, we checked this host factor in our cohort. 

We found that LoViReT had slightly higher frequency of protective alleles but without 

statistically significant differences. In contrast, other studies with similar individuals 

than LoViReT showed an enrichment in HLA protective alleles. However the 
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protective alleles in combination with a low reservoir was not enough to control 

viremia after treatment interruption239. Therefore, alternative factors at the 

transcriptome or protein level among others, might be involved in the protection of 

TCM infection which in turn might have helped to attain some degree of control in the 

HIV-1 latency establishment. 

Altogether, LoViReT share some characteristics with HIV-1 phenotypes of 

control such as EEC, EC and PTC but, as reported by other studies with similar 

phenotypes, are not able to control HIV-1 replication if cART is interrupted239–241. 

Nevertheless, their low reservoir stablished in subpopulations with a shorter half-

life, which have an extremely low proliferative capacity317, are less replication-

competent318, and have higher reactivation capacity upon treatment with some 

LRA319 might be an important advantage when trying new eradicating strategies 

aimed at eliminating the viral reservoirs.    

In conclusion, we found that the factors associated to the LoViReT status are 

related to an impaired reservoir establishment among different compartments with 

an altered proviral distribution in CD4+ T-cell subpopulations, which might generate 

a limited replicative capacity due to the protection of CD4+ T cell subpopulations with 

a long life span. The fact that LoViReT are not enriched in protective immunogenetic 

host factors seems to jeopardize the possibility of control HIV-1 replication in the 

absence of cART. However, their low reservoirs might be an advantageous 

characteristic for being candidates to HIV-1 eradication strategies. Those strategies 

might be oriented to mimic a strong immune system that can effectively eliminate 

the low amount of HIV-1 reservoir present in these individuals.  

 

  



 

  
 

 

  



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 3d. Mechanisms that contribute to a profound reduction of the HIV-1 

reservoir after allogeneic stem cell transplant 
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3d.0. PRESENTATION 

The previous chapters analyzed the different factors that can be associated to 

HIV-1 reservoirs that are naturally low. This chapter evaluates alternative factors 

associated to the diminution of HIV-1 reservoirs by therapeutic interventions. 

Specifically, we have studied the intrinsic effect of allogeneic hematopoietic stem 

cell transplant to reduce latency, since this approach has been the only one so far 

to prove a dramatic reduction of the HIV-1 reservoirs.  

 

  



 CHAPTER 3d. Results (allo-HSCT)  

 
  

146  
 

3d.1. INTRODUCTION 

Allogeneic hematopoietic stem cell transplant (allo-HSCT) has contributed to the 

only known case of complete HIV-1 eradication (the “Berlin patient”). The underlying 

biological mechanisms are not fully understood, although the use of a donor with a 

homozygous mutation in the HIV-1 co-receptor CCR5 seemed to be key to 

preventing HIV-1 infection of the graft229,320. Other contributing factors may have 

been the conditioning regimen, which destroyed some or all reservoir T cells; an 

immunologic milieu favoring T-cell activation and reactivation of latent HIV-1; greater 

effectiveness at blocking reactivated virus spread by CCR5-mutated donor cells 

compared with suppressive cART; and alloreactivity that could have eliminated 

infected cells in the recipient321.  

However, transplant using CCR5 wild-type donors also leads to a greater 

reduction in the latent reservoir than is obtained with any other clinical 

intervention231,322–324. For example, despite the delayed viral rebound after 

interruption of cART that was observed in two HIV-1-infected individuals undergoing 

allo-HSCT from CCR5 wild-type donors (the “Boston patients”)325, these cases 

showed that allo-HSCT by itself was able to achieve large reductions in the viral 

reservoir. Transplant-associated mechanisms that reduce HIV-1 latency and thus 

may play a role in eliminating the virus need to be understood to allow development 

of less invasive strategies to eradicate HIV-1 infection that may be applicable to the 

broader population of HIV-1-infected individuals without hematologic disorders 

requiring stem cell transplant. 

However, the scant experience with allo-HSCT in HIV-1-infected individuals 

prevents definitive conclusions326. To address that, the IciStem Consortium 

(www.icistem.org) has assembled the largest and most exhaustive observational 

cohort for the study of HIV-1 reservoir dynamics in HIV-1-infected individuals with 

hematologic disease and have undergone an allo-HSCT. The main objective is to 

evaluate the mechanisms responsible for the dramatic reduction in HIV-1 reservoirs 

associated with allo-HSCT. 

In this study, we first evaluate the effect of the transplant to eradicate the 

infection analyzing the HIV-1-infected individuals included in the IciStem cohort that 

http://www.icistem.org/
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have undergone an allo-HSCT. Then, we extensively studied six individuals from 

the cohort with the longest survival and follow-up (>2 years after allo-HSCT) who 

underwent allo-HSCT from CCR5 wild-type donors. We analyzed the factors 

associated with allo-HSCT that are associated to the reduction of HIV-1 latency and 

viral-specific humoral responses. All this, in the absence of confounding HIV-1 

resistance factors, such as CCR5 Δ32 mutation. 
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3d.2. METHODS 

3d.2.1. Study participants 

To date, the IciStem Cohort includes 40 individuals, where 30 had an exhaustive 

follow-up with a longitudinal sample collection. The patients were included in eight 

different countries: Spain, Netherlands, Germany, Switzerland, Belgium, Canada, 

UK, and Italy.  

From the 30 individuals, twelve died within 2 years after transplant. From the 

remaining 18 individuals, 13 individuals survived more than 2 years after transplant, 

including three with CCR5 Δ32 donor. Therefore, in the extensive study with 

individuals with a follow-up >2 years after allo-HSCT with a CCR5 wild-type donor 

we selected six participants (IciS-01327, IciS-03, IciS-06, IciS-17, IciS-27, and IciS-

28). These individuals maintained the use of cART and achieved remission of their 

hematologic disease.  

All participants provided informed consent. The observational protocol (IciStem 

study) was approved by the institutional ethical review boards in each country.  

3d.2.2. Chimerism analysis 

In four participants (IciS-01, IciS-03, IciS-06, and IciS-17), analyses were 

performed in whole BM, peripheral blood, or both. In three participants (IciS-01, IciS-

03, and IciS-06), T cells and myeloid cells were purified from peripheral blood by 

immunomagnetic means (autoMACS, Miltenyi Biotec) using antibodies against 

CD3+ and CD13/CD33+, respectively. The minimum purity of isolated leukocyte 

subsets was 95%. In the other two participants (IciS-27 and IciS-28), mononuclear 

lymphocytes and monocytes were isolated, and the minimum purity was also 95%. 

In all participants, conventional chimerism analysis was performed with PCR of short 

tandem repeats (STR-PCR). In IciS-01, IciS-03, and IciS-06, when conventional 

chimerism analysis (with a sensitivity of 1%) was complete, ultrasensitive chimerism 

analysis in whole peripheral blood was also performed (Mentype DIPscreen and 

Mentype DIPquant, Biotype), with a sensitivity of 0.01% to 0.001%, depending on 

the quality and quantity of purified DNA. Complete chimerism was defined as the 
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absence of recipient-specific allelic patterns detectable by STR-PCR, with the level 

of sensitivity mentioned earlier. 

3d.2.3. Quantification of HIV-1 reservoir in blood 

HIV-1 DNA in PBMCs or bulk CD4+ T cells was repeatedly measured after allo-

HSCT in each participant, as previously described in chapter 3a. Residual viremia 

(HIV-1 RNA) was also measured from 9 ml of plasma as previously described in 

chapter 3a. Leukaphereses were obtained from all participants in order to measure 

the number of infectious units in a large number of CD4+ T cells (range, 11 to 137 × 

106 CD4+ T cells) as previously described in chapter 3a with the detection limit set 

at 0.005 IUPM. 

3d.2.4. Quantification of HIV-1 reservoir in anatomical compartments 

Per protocol, HIV-1 was measured in tissue biopsy specimens only in 

participants who had undetectable viral reservoirs in peripheral blood. Target cells 

for HIV-1 infection were isolated from different tissues to increase sensitivity for viral 

detection. CD45+ cells were isolated and processed from ileal biopsy specimens 

using the lamina propria leukocytes viral DNA assay, as previously described in 

chapter 3c97. TFH CD4+ memory T cells, defined as CD3+CD4+CD45RA-PD-

1+CXCR5+, were sorted by flow cytometry from LN biopsy specimens obtained using 

fine-needle aspiration, as previously described in chapter 3c. Magnetic cell isolation 

of CD3+ or CD4+ T-cell populations was performed in BM. In all cases, isolated cells 

were lysed, and viral DNA was quantified by ddPCR with two different sets of 

primers (table 2).  

Lumbar puncture was performed to obtain 2 to 5 ml of CSF, and residual viremia 

was quantified320. 

3d.2.5. Quantification of HIV-1 antibodies 

Specific HIV-1 antibodies in longitudinal plasma samples were measured using 

a qualitative Western blot assay (New LAV Blot I, Bio-Rad) and the quantitative 

standard and low-sensitivity versions of the VITROS anti-HIV-1 assay (Ortho 

Clinical Diagnostics)261, as previously described in chapter 3a. 
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3d.2.6. Humanized mouse Viral Outgrowth Assay 

As an in vivo measure of residual replication competent reservoir cells in blood, 

we used a humanized mouse model modified to transfer CD4+ T cells instead of total 

peripheral blood mononuclear cells168. All procedures were performed according to 

protocol 8927, which was reviewed by the Animal Experimentation Ethics 

Committee of the University Hospital Germans Trias i Pujol (registered as 

B9900005) and approved by the Català government according to current national 

and European Union legislation on the protection of experimental animals. Mice 

were supervised daily according to a strict protocol to ensure their welfare and were 

euthanized, if required, with isoflurane (inhalation excess). Briefly, 50 to 250 million 

purified CD4+ T cells were infused in 5 mice (10 to 50 million per mouse). Whole 

blood samples were collected every 2 weeks until week 12, when possible. Plasma 

was used for quantification of HIV-1 RNA using the m2000 Abbott platform. Whole 

blood was stained to define human T-cell engraftment as the proportion of human 

CD45+ cells in the total lymphocyte gate and activated CD4+ T cells 

(hCD45+CD3+CD8-HLADR+CD69+CD25+) (Fig. 42). We also lysed blood cells and 

quantified HIV-1 DNA as previously described in chapter 3a. Spleen samples were 

collected at the last time point and were mechanically disaggregated and used to 

quantify HIV-1 DNA with droplet digital PCR after lysis of erythrocytes. 

 

 

 

 

 

 

 

Figure 42. Gating strategy to quantify engraftment of human cells (proportion of human CD45+ 
cells), CD4 (defined as CD3+CD8-) cell activation, and the event of any CD8 or NK contamination. 
NK= Natural Killer. 
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3d.3. RESULTS 

3d.3.1. Clinical characteristics of the IciStem cohort individuals 

 Thirty individuals were transplanted and studied within the IciStem Cohort. 

10/30 were transplanted with a CCR5 mutated donor in homozygosis, 1/10 with a 

heterozygous CCR5 donor and the others with a CCR5 wt donor. The hematological 

diseases in the cohort were Acute Myeloid Leukemia (9), Hodgkin lymphoma (4), 

Diffuse large B-cell lymphoma (DLBCL) (4), Burkitt NHL (2), Myelodysplastic 

Syndrome (2), Plasmablastic lymphoma (2), and others in low proportion (7: Chronic 

Myeloid Leukemia, Hemophagocytic lymphohistiocytosis, Myelofibrosis, Myeloid 

Sarcoma, NK-NHL, Non Hodgkin lymphoma and osteomyelofibrosis). 14/30 

individuals died after allo-HSCT, 71% of them during first 4 months.  

3d.3.2. HIV-1 reservoir decay after allo-HSCT 

A reservoir analysis, including total HIV-1 DNA in PBMCs, qVOA and usVL was 

performed in the 30 individuals that compose the IciStem cohort. It included more 

than 100 blood samples from different time points before and after allo-HSCT. We 

observed that the reservoir measured by the three techniques was regularly 

detectable in baseline samples, but after the allo-HSCT a drastic reduction occurred 

in the first 1-6 months (Fig. 43a-c). After 6 months, only two individuals remained 

detectable for usVL (IciS-01 and IciS-20). 

Moreover, we did not observe a faster decay in the HIV-1 reservoirs in the 

individuals that received CCR5 Δ32/Δ32 cells such as IciS-19, IciS-33, or IciS-36. 

Therefore, we confirmed that the allo-HSCT by itself can reduce the viral reservoir 

regardless of the CCR5 genotype of the donor. Thus, in the following sections we 

decided to focus in six individuals that received an allo-HSCT with a CCR5 wild-type 

donor to study the specific mechanisms that contributed to the decline in viral 

reservoirs despite not having received CCR5 Δ32/Δ32 cells that is already known to 

be a key factor to impede HIV-1 infection. 
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Figure 43.  HIV-1 reservoirs measured in blood in the IciStem cohort. (a) Total HIV-1 DNA 

measured in PBMCs by ddPCR, (b) ultrasensitive viral load in plasma and (c) quantitative viral 
outgrowth assay measured in CD4+ T cells. 
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3d.3.3. Clinical characteristics of the long-term transplanted IciStem 

individuals 

We selected six individuals that survived more than two years after transplant 

with CCR5 wild-type donor cells, all of them showed complete remission of their 

hematologic disease, no longer had immunosuppression, and maintained cART 

during and after transplant; only participant IciS-06 interrupted cART from days 5 to 

24 due to severe mucositis, with no evidence of viral rebound. Hematologic and 

virological characteristics of the individuals are shown in table 9.  

Different transplant strategies were used according to the decisions of the 

participants' hematologists. IciS-01 received a myeloablative single cord blood 

transplant supported with third-party HLA-mismatched CD34+ cells (haplo-cord 

HSCT)327,328. IciS-03, IciS-17, and IciS-27 underwent reduced-intensity, conditioned 

allo-HSCT from HLA-matched related donors. IciS-06 received a reduced-intensity, 

conditioned, nonmanipulated transplant from an HLA-haploidentical donor, with 

posttransplant cyclophosphamide for graft-versus host disease (GvHD) 

prophylaxis329. Finally, IciS-28 received a reduced-intensity, conditioned, HLA-

matched transplant from an unrelated donor.  

Table 9. Clinical, Hematologic, and Virological Characteristics of the 6 individuals 

Characteristic IciS-01 IciS-03 IciS-06 IciS-17 IciS-27 IciS-28 

Clinical 
characteristics 

      

  Sex Male Male Male Male Male Male 

  Age, y 34 51 40 46 47 44 

  Country of origin Spain Spain Spain Italy Spain Spain 

Hematologic 
characteristics 

      

  Diagnosis Burkitt NHL 
(stage IV) 

NK-NHL 
(stage IV) 

HL  
(stage IV) 

NHL (DLBCL) NHL  
(stage III) 

HL  
(stage III) 

  Year of allo-HSCT 2012 2013 2014 2010 2013 2009 

  Status at transplant CR2 CR1 CR1 CR2 CR1 CR3 

  Donor type/graft  
  source 

Cord blood 
7/8 
(mismatch in 
DRB1) + 
mismatched 
related 
PBPC† 

HLA-identical 
sibling/PBPC 

HLA-
haploidentical 
sibling/PBPC 

HLA-
identical 
sibling/ 
PBPC 

HLA-identical 
sibling/PBPC 

HLA-identical 
unrelated/ 
PBPC 

  Donor CCR5 type CCR5 wt/wt CCR5 wt/wt CCR5 wt/wt CCR5 wt/wt CCR5 wt/wt CCR5 wt/wt 

  Recipient HLA A*02/02 
B*44/51 
Cw02/05 
DRB1*04/07 
DQB1*03/03 

A*25/01 
B*18/15 
Cw12/03 
DRB1*13/03 
DBQ1*06/02 

A*02/03 
B*44/51 
Cw05/07 
DRB1*07/04 
DQB1*02/03 

A*03/24 
B*18/51 
Cw12/14 
DRB1*07/11 
DQB1*02/03 

A*01/34 
B*08/18  
C*07/12 
DRB1*01/11 
DQB1*03/05 

A*26/29  
B*44/49 
C*07/16 
DRB1*01/07 
DQB1*02/05 

  Donor–recipient     
  HLA match 

5/6 (DRB1)‡ 10/10 6/8 (B*44/57 
and DRB1-
07/07) 

10/10 10/10 10/10 
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Table 9. Continued 

Characteristic Icis-01 Icis-03 Icis-06 Icis-17 Icis-27 Icis-28 

  Conditioning MAC: FLU, 
CY, busulfan, 
and ATG 

RIC: FLU 
and 
melphalan 

RIC: FLU, 
CY, and 
busulfan 

RIC: 
Thiotepa, 
FLU, and CY 

RIC: FLU 
and CY 

RIC: FLU and 
melphalan 

  Transplant- 
  associated  
  infections 

Escherichia 
coli, BK virus 
hemorrhagic 
cystitis 

None Clostridium 
difficile 
CMV 
reactivation 

EBV 
reactivation 
(treated with 
rituximab) 

None CMV 
reactivation 

  GvHD prophylaxis CsA + 
steroids 

CsA + Mtx Post-
transplant 
CY+CsA+ 
MMF 

CsA + Mtx CsA + Mtx Tacrolimus + 
sirolimus 

  GvHD No Chronic: 
Mild (by 
month 8), 
affecting 
skin 

Acute: 
Severe (by 
month 3), 
affecting 
skin and 
intestines 

No Chronic: Mild 
(by month 4) 

Acute (by day 
12, grade II): 
affecting skin 
and intestines 
Chronic: 
moderate 

  Day of neutrophil  
  engraftment 

15 18 22 15 11 11 

  Day of platelet  
  engraftment 

31 9 25 16 11 21 

  Time to complete  
  chimerism, mo§ 

      

       Peripheral blood   2 1 3 1 ND ND 

     T lymphocytes 18 1 3 ND 5.5 1 

     Bone marrow 12 6.5 6 ND ND ND 

 Immunosuppression    
  at last follow-up 

No No No No No No 

  Status at last follow    
   up 

Alive with CR Alive with  
CR 

Alive with 
CR 

Alive with  
CR 

Alive with  
CR 

Alive with  

CR 

Virological 
characteristics 

      

   Time from HIV-1  
   diagnosis to   
   allo-HSCT, y 

1 27 2 16 8 11 

   Time from HIV-1  
   diagnosis to   
   allo-HSCT, y 

1 27 2 16 8 11 

   Time from start of    
   cART to allo-    
   HSCT, y 

1 19 2 13 8 11 

  HIV-1 tropism R5 Dual R5/X4 Dual R5/X4 ND ND ND 

  Posttransplant HIV-  
  1 cART 

ABC+3TC+ 
RAL, 
maraviroc 

TDF, FTC, 
RAL 

TDF, FTC, 
RAL 

TDF-
FTC+DRV/r 
+RAL 

1.FTC+TDF  
   + EFV 
2.ABC+3TC 
  + EFV 
3.ABC+3TC 
  + rilpivirine 

1.FTC+TDF+  
   RAL 
2.ABC+3TC+  
   RAL 
3.ABC+3TC+  
   DTV 

  Plasma VL before    
  allo-HSCT, HIV-1  
  RNA copies/ml 

65 <50 <50 <40 <1 <1 

  CD4 T-cell count   
  before allo-HSCT,  
  × 109 cells/l 

0.720 0.800 0.151 0.155 0.747 0.891 

  CD4 cell count 3  
  mo after allo- 
  HSCT, × 109 cells/l 

0.410 0.558 0.324 0.320 0.160 0.390 

  Maximum CD4 T    
  cell  count after allo-  
  HSCT, × 109 cells/l 

0.891 0.660 0.759 0.773 0.815 2.550 

  Detectable plasma   
  VL after allo-HSCT 

Yesǁ No No No No No 

3TC=lamivudine; ABC=abacavir; allo-HSCT=allogeneic hematopoietic stem cell transplant; ART=antiretroviral 
therapy; ATG=antithymocyte globulin; CMV=cytomegalovirus; CR=complete remission; CsA=cyclosporine A; 
CY=cyclophosphamide; DLBCL=diffuse large B-cell lymphoma; DRV/r=darunavir + ritonavir; DTV=dolutegravir; 
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EBV=Epstein–Barr virus; EFV=efavirenz; FLU=fludarabine; FTC =emtricitabine; GvHD=graft-versus-host 
disease; HL=Hodgkin lymphoma; MAC=myeloablative conditioning; MMF=mycophenolate mofetil; 
Mtx=methotrexate; ND=no data; NHL=non-Hodgkin lymphoma; NK=natural killer; PBPC=peripheral blood 
progenitor cell; RAL=raltegravir; RIC=reduced-intensity conditioning; TDF=tenofovir disoproxil fumarate; 
VL=viral load; wt=wild-type.   † Single cord blood transplant supported with third-party HLA-mismatched CD34+ 
cells (haplo-cord transplant); ‡ 3/10 with a third-party donor; §Conventional chimerism (polymerase chain 
reaction of short tandem repeats); ǁ Ultrasensitive VL with limit of detection of 0.5 copy/ml. 

All participants achieved complete standard chimerism in peripheral blood and 

BM in the first 12 months after allo-HSCT (Table 9). IciS-01 showed delayed 

achievement of complete T-lymphocyte chimerism (18 months) compared with 

individuals with available data. Data on ultrasensitive chimerism in peripheral blood 

were available for IciS-01, IciS-03, and IciS-06; only IciS-01 showed mixed 

chimerism at the last follow-up. Four individuals had posttransplant GvHD; three of 

them had acute GvHD, and two had chronic GvHD that was treated with 

immunosuppression (Table 9). 

3d.3.4. HIV-1 reservoir characterization of the long-term transplanted IciStem 

individuals 

   Comprehensive virological studies were performed in blood and tissue 

samples from the six participants (Fig. 44 and Table 10). The blood HIV-1 reservoir 

(proviral HIV-1 DNA analysis and qVOA in blood cells and HIV-1 RNA analysis in 

plasma) was undetectable in 5 of 6 participants at the last follow-up. Of note, cell 

input for both HIV-1 DNA analysis and qVOA was similar to that in previous reports 

of allo-HSCT and substantially higher than in other studies230,231. Conversely, low 

virus levels were consistently detected in blood samples from IciS-01 (453 HIV-1 

DNA copies/106 CD4+ T cells, 3 HIV-1 RNA copies/ml of plasma, and 0.13 IUPM). 

HIV-1 was also undetectable in CSF and cells from BM, LN, and ileal biopsy 

specimens in all participants, in line with previous observations in blood (Fig. 44 and 

Table 10).  
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Figure 44. HIV-1 Reservoirs measured in blood and tissues after transplant. Data are from the 
last collected sample for each individual. Open symbols represent undetectable values (only IciS-01 
had detectable values). In those cases, the limit of detection for the samples varied based on 
cell/volume input, and that value is represented. BM= Bone marrow; CSF= cerebrospinal fluid; 
qVOA= quantitative viral outgrowth assay; LN= Lymph node; usVL= ultrasensitive Viral Load; TFH= 
T-follicular helper cells. 

3d.3.5. Longitudinal correlation of hematologic and HIV-1 reservoir 

parameters 

Five of six participants had undetectable HIV-1 reservoirs (Fig. 45). All five had 

peripheral blood progenitor cells as the graft source; for developed GvHD; and all 

five achieved complete chimerism in peripheral blood, BM, or T lymphocytes within 

the first year after transplant. Conversely, the only participant with a detectable HIV-

1 reservoir (IciS-01) received a cord blood transplant with a conditioning regimen 

that contained antithymocyte globulin (ATG). This participant did not develop GvHD 

and had mixed chimera in T cells up to posttransplant month 18, as measured by 

standard methods. 

 

 

 

 

 

Figure 45. Relationship between latency parameters measured in each participant and clinical  
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conditions of each allogeneic stem cell transplant. ND=not determined; PBPC= peripheral blood 
progenitors. *Full donor chimera within a month. 

Longitudinal follow-up of IciS-06 is shown in Fig. 46. This participant showed 

mixed chimerism in peripheral blood in the first few weeks after transplant, with 

concomitant detection of persistent reservoirs. By month 3, the individual developed 

acute grade III GvHD after withdrawal of immunosuppression coinciding with 

achievement of full donor chimerism. Coincidentally, residual viremia became 

undetectable in plasma. Cell associated HIV-1 DNA was also undetectable at that 

point, showing a 2-fold reduction in just 4 months. Clinical data suggest that similar 

phenomena may have occurred in the other four individuals given that all had full 

chimerism within 6 months after allo-HSCT and/or GvHD (Table 9). 

 

 

 

 

 

 

 

Figure 46 Peripheral blood standard donor chimerism, proviral HIV-1 DNA, and plasma HIV-1 
RNA evolution after transplant in IciS-06. Open diamonds and circles indicate undetectable HIV-1 
RNA (ultrasensitive viral load) and proviral HIV-1 DNA, respectively, and represent the limit of 
detection of each technique, which is based on cell/plasma input. For chimerism expressed as 
percentage of donors, open squares indicate full donor chimera. GvHD= graft-versus-host disease. 

3d.3.6. HIV-1 specific humoral response 

We explored HIV-1 humoral response dynamics in plasma samples after allo-

HSCT (Fig. 47). All participants lost the p18 band. We observed no other missing 

bands in IciS-01; however, IciS-03 and IciS-06 showed decreasing p31 antibody 

levels, and IciS-06 and IciS-17 lacked p55 and p24 bands. More important, we did 

not detect any viral antibodies in IciS-28 by month 88, suggesting that this individual 

experienced seroreversion. Overall, a longer interval after allo-HSCT seemed to be 
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associated with greater antibody clearance among individuals receiving cART. 

These data were confirmed with the low sensitivity VITROS analysis, which showed 

decreased levels of HIV-1 antibodies and a progressive loss over time after allo-

HSCT (Fig. 48). IciS-28 also showed antibody levels close to those of the HIV-

negative donors. Overall, the data suggest limited de novo humoral responses that 

could sustain the HIV-1 specific immunoglobulin levels in the plasma of these 

individuals. 

 

 

 

 

 

 

 

 

Figure 47. Western blot analysis from the six analyzed individuals. Grey arrows indicate bands 
left or reduced intensity in each case.  

 

 

 

 

 

 

 

 

 

 

Figure 48. HIV-1 specific antibody determination using the VITROS enzyme immunoassay. (a) 
Absolute antibody quantification in the last sample from each transplant recipient compared with 
viremic and treated HIV-1 positive individuals and HIV-negative donors. (b) Detuned low-sensitivity 
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antibody quantification in the last sample from each transplant recipient compared with viremic and 
treated HIV-1 positive individuals and HIV-negative donors. (c) Absolute antibody quantification in 
longitudinal plasma samples from all included individuals. (d) Detuned low-sensitivity antibody 
quantification in all included individuals 

3d.3.7. Humanized mouse VOA 

We transferred large numbers of CD4+ T cells purified from the individuals' 

peripheral blood to immunosuppressed mice to detect any replication-competent 

blood cell reservoir (Fig. 49a). As a control, we also transferred cells from an HIV-

1-infected individual who had not undergone transplant, was receiving long-term 

cART, and had a standard HIV-1 reservoir size (1.6 IUPM)166. 

 

 

 

 

 

 

 

Figure 49. In vivo mouse viral rebound model. (a) Model and sample approach. (b) Quantification 
of viremia in mouse plasma. (c) Proviral infection in mouse blood cells. (d) Proviral infection in mouse 
spleen cells isolated after euthanasia. All six individuals had undetectable values. Open symbols 
represent undetectable values. Limit of detection relative to plasma volume input is shown. Error bars 
represent medians and interquartile ranges of the values from the five mice used for each individual. 
allo-HSCT = allogeneic hematopoietic stem cell transplant; cART= combination antiretroviral therapy; 
ddPCR= droplet digital polymerase chain reaction; wt= wild-type. 

We detected high levels of HIV-1 RNA in the plasma of humanized mice infused 

with control CD4+ T cells (Fig. 49b). Cell-associated HIV-1 DNA was also detected 

in blood and spleen cells from the same infected mice (Fig. 49c-d). Conversely, none 

of the mice infused with cells from the six allo-HSCT recipients had detectable virus 

in plasma or cell-associated HIV-1 DNA in the blood or spleen after 4 to 13 weeks 

of follow-up. Of note, median survival of the mice was 6 weeks [IQR: 5 to 12 weeks]. 

Also, the median of maximum engraftment of human lymphocytes in the mice was 

34% [15% to 45%]. Among engrafted human CD4+ T cells, activation levels reached 
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a median of 95% [80% to 97%], suggesting optimal conditions for eventual HIV-1 

reactivation. 

Because IciS-01 did not show reactivation, we also tested cells from an HIV-1-

infected individual who did not undergo transplant, was receiving cART, and had a 

similarly small HIV-1 reservoir (0.13 IUPM). HIV-1 DNA (1000 copies/106 cells) was 

detected in the spleen and blood of mice with human cells transferred from this 

person, proving the robustness of the technique. This model suggested that 

immediate viral rebound was not likely after discontinuation of cART in the six long-

term transplanted recipients. Moreover, the virus in IciS-01 might have low 

inducibility under in vivo physiologic conditions. 

3d.3.8. Viral rebound after cART interruption in one individual 

IciS-28, after suffering a psychiatric condition, decided voluntarily to interrupt 

cART in September 2018, without medical supervision. In January 2019, 4 months 

after, IciS-28 reported symptoms compatible to an acute HIV-1 syndrome, and a 

viral load of 100,000 copies/ml was detected (Fig. 50). The individual reported no 

risk of superinfection during the period without cART. Sequence comparison was 

not possible since no virus could be amplified before treatment interruption. In 

February 2019 (month +113 posttransplant) the participant resumed cART.  

 

 

 

 

 

 

 
 
Figure 50. Clinical course of IciS-28 before and after allo-HSCT. CD4 counts, plasma viral load 

total HIV-1 DNA and infectious units per million are shown over time. Grey shaded areas indicate 
periods without cART. Open symbols represent undetectable values, where the limit of detection is 
represented based on cell/volume input. WB= western blot. 
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An analysis of their viral reservoir was performed before cART interruption 

(m+88), at viral load rebound (m+113) and after 1 year of cART resumption 

(m+125). As previously shown, at m+88 Icis-28 had a viral reservoir below 0.005 

IUPM. However, once cART was interrupted, we were able to detect replication 

competent cells with an IUPM of 8.066. Unfortunately, although the resumption of 

cART decreased the levels of replication-competent cells, it did not reach the 

undetectable levels present before the interruption of cART. The same occurred with 

the levels of total HIV-1 DNA.  

Moreover, the negative western blot observed at m+88 became positive once 

the viral load rebounded at m+113 (Fig. 51)  

 

 

 

 

 

 

 

 

 

Figure 51. Western blot analysis from the Icis-28 before (m+88) and after treatment interruption 
(m+113). Grey arrows indicate bands left or reduced intensity in each case.  

This is a proof of concept that even with an extreme reduction of the HIV-1 

reservoir, as observed in this individual, an additional reactivation inhibition 

mechanism (e.g.CCR5 mutation, immune response, etc) seems to be necessary to 

achieve an HIV-1 cure.    
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3d.4. DISCUSSION 

Previous studies have shown that allo-HSCT can result in a significant reduction 

in the latent HIV-1 reservoir231,322–324 and, in unique cases linked to transplant of 

CCR5-mutated cells, even eradication of the virus229,230,233,234, making HIV-1 cure a 

feasible target. However, the specific mechanisms that contributed to the decline in 

viral reservoirs in these individuals are not fully understood, in part due to scant 

experience with allo-HSCT in HIV-1-infected individuals. The IciStem consortium 

provides an opportunity to exhaustively study HIV-1 remission in multiple HIV-1-

infected individuals who have undergone allo-HSCT, including the six long-term 

survivors described in detailed in this article. Not only have we confirmed the 

reduction of the HIV-1 reservoir in blood and plasma in 30 individuals from the 

IciStem cohort231,322, but five of six participants eliminated any measurable HIV-1 

reservoir, as determined by highly sensitive techniques (10 to 100 times more 

sensitive than those used in previous studies167) in LNs, ilea, BM, and CSF. 

The only individual who had a detectable reservoir underwent cord blood allo-

HSCT with an ATG containing conditioning regimen, did not develop GvHD, and 

had longer persistence of recipient cells in the T cell compartment. All the other 

participants, who did not have a detectable reservoir, reached full donor chimerism 

within a year, and four of them developed GvHD, although we cannot confirm that 

those events converged in time for all of them. Exhaustive follow-up of one of the 

participants with complete viral clearance showed that HIV-1 became undetectable 

coincidentally with achievement of complete donor chimerism and development of 

GvHD.  

These results are in line with those of previous reports, where episodes of GvHD 

and achievement of complete chimerism also coincided with substantial reductions 

in the viral reservoir229,231,322,324. In contrast to the Boston patients, the IciStem 

participants included in our study were all free of immunosuppression at the last 

follow-up with T-cell immune reconstitution and had longer posttransplant survival. 

HIV-1 specific seroreversion at 8 years after transplant in IciS-28 suggests that 

longer time to remission might contribute to HIV-1 clearance. 



 CHAPTER 3d. Results (allo-HSCT)  

 
  

164  
 

We postulate that replacement of recipient hematopoietic cells with donor cells 

(that is, achievement of complete chimerism in all compartments, with subsequent 

exertion of alloreactivity by the healthy donor immune system) might be a major 

factor in HIV-1 remission after wild-type donor transplantation, as previously 

suggested231. After allo-HSCT, graft-versus-host immune responses against allelic 

variants of major and minor histocompatibility complex molecules contribute to a 

graft-versus-leukemia effect that is the basis of the therapeutic effect of allo-HSCT 

on hematologic disease330. Similarly, this potent alloreactive immune effect may 

contribute to the reduction of latently HIV-1-infected recipient cells through a “graft-

versus-HIV-reservoir” effect.  

Specific transplant-associated characteristics may explain why HIV-1 persisted 

in IciS-01. For example, the immunosuppressive effect of ATG combined with use 

of a less mature graft source (cord blood cells) may have moderated the potential 

graft-versus-HIV-reservoir effect. Delayed immune T-cell reconstitution is the 

primary drawback of cord blood transplants because of the immature nature of the 

engrafted cells. In vivo profound T-cell depletion resulting from ATG-containing 

regimens further intensifies long-lasting impairment of immune reconstitution. Better 

T-cell recovery with lower incidence of virus reactivation and death from viral 

infection has been reported in cord blood transplant recipients not receiving ATG331. 

On the other hand, whether the absence of clinically significant GvHD in this 

setting also played a role is difficult to determine with certainty. Clinically evident 

GvHD is one of the manifestations of alloreactivity when graft-versus-host immune 

responses target recipient tissues other than hematopoietic cells, and it occurs 

frequently after allo-HSCT. Of note, the ability of cord blood cells to exert potent 

antitumor activity has also been observed with low rates of GvHD332. However, the 

long-term persistence of recipient cells in the T-cell compartment in IciS-01 clearly 

contrasts with the achievement of complete chimerism in the other participants. 

Evaluation of additional persons without GvHD is needed to better understand the 

role of GvHD among the other potential factors associated with allogeneic transplant 

in the eradication of HIV-1. 
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Finally, the specific posttransplant immunosuppressive regimen may also play a 

role in this setting. After infusion of donor hematopoietic cells, posttransplant 

immunosuppression exerts its inhibitory effects mainly in donor immune cells to 

prevent severe GvHD. This could have a dual effect in the setting of HIV-1 infection 

depending on the mechanism of action, dose, and timing. On one hand, it could 

prevent or modulate alloreactivity against the residual HIV-1 reservoir; on the other 

hand, it could also limit uninfected T-cell permissiveness for HIV-1 replication, thus 

maximizing reservoir reduction. Posttransplant high-dose cyclophosphamide 

(participant IciS-06), which is commonly used for GvHD transplantation, eliminates 

rapidly proliferating alloreactive T cells of both donor and recipient origin and 

preserves resting memory T cells, which results in effective prevention of GvHD; 

this represents a potent graft-versus-leukemia effect together with relatively rapid 

immune reconstitution333. Whether this strategy or other classic approaches could 

also enhance reservoir reduction deserves further investigation. Our series prevents 

definitive conclusions given the limited number of individuals and their differing 

GvHD prophylaxis schemes. However, the fact that all participants had discontinued 

immunosuppressive therapy and five had an undetectable HIV-1 reservoir at their 

last assessment suggests a positive effect of immunosuppression withdrawal in 

preserving alloreactivity against both the underlying hematologic disease and the 

HIV-1 reservoir. The independent contribution of these factors is difficult to evaluate 

in the present study, but the results suggest a multifactorial interaction that promotes 

HIV-1 remission. 

We used an in vivo humanized mouse model that has proved highly sensitive in 

detecting replication competent reservoir in HIV-1 ECs168. Infusion of CD4+ T cells 

from an HIV-1-infected control individual who had not undergone transplant led to 

virus reactivation in the plasma within 2 weeks, similar to what has been described 

elsewhere334. In contrast, virus reactivation was not observed in mice infused with 

cells from participants who underwent allo-HSCT. This included IciS-01, who had 

shown low but detectable levels of replication-competent virus when the 

ultrasensitive qVOA technique was used. The unusually high numbers of CD4+ T 

cells included in our qVOA168,335 with strong phytohemagglutinin-mediated 

stimulation enhanced virus reactivation in these cultures over physiologic conditions 
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in mice. It seems reasonable that in the absence of cART, IciS-01 would have a 

longer HIV-1 reactivation period than expected because this participant harbored a 

small replication-competent reservoir. However, we cannot rule out later HIV-1 

rebound after interruption of cART for any of the participants with undetectable 

reservoir levels, as happened in previous reported cases231,322–324.  

In fact, after a voluntarily treatment interruption IciS-28 suffered from an abrupt 

viral rebound, indicating that undetectable viral reservoirs and HIV-1 seroreversion 

would not prevent from a viral rebound if the allo-HSCT is performed with a CCR5 

wild-type donor. Therefore, to achieve the HIV-1 remission in the setting of CCR5 

wild-type donor allo-HSCT, it would be required an additional strategy that boost the 

HIV-1 specific immune responses, such as the use of HIV-1 neutralizing 

antibodies222 or immune check point inhibitors206,207,209,210. The combination of the 

profound viral reservoir decay by the allo-HSCT with the boost of the immune 

system seems to be key to achieve an HIV-1 cure.  

Allo-HSCT is indicated for only a small subset of HIV-1-infected persons with 

underlying hematologic disease because of the high morbidity and mortality 

associated with the procedure. In those who survive in the long term, exhaustive 

consecutive studies using highly sensitive techniques could provide important 

information for better design of efficient, less toxic HIV-1 cure strategies that could 

apply to the broader HIV-1-infected population. 

In conclusion, our study shows that allo-HSCT yielded a profound long-term 

reduction in the HIV-1 reservoir and HIV-1 specific antibodies in the first 6 months 

after the transplant, even in the CCR5 wild-type donor setting. Transplant-

associated factors such as the graft vs host disease, an adult donor cell transplant 

or the time of engraftment have contributed to achieve this reduction. However, the 

treatment interruption in one individual with a CCR5 wild-type donor resulted in viral 

rebound, suggesting that a potent and sustained HIV-1 specific response would be 

needed in combination to achieve an HIV-1 cure. 
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HIV-1 has caused the death of millions of people since its discovery in the 80’s. 

The development of combination antiretroviral therapy (cART) was one of the major 

medical success of the 20th century as it effectively suppress plasma viremia to 

undetectable levels, restores the immune system, reduces mortality and morbidity, 

and the risk of viral transmission56,58,336–338. However, cART is not able to eliminate 

latently infected cells; therefore, in most individuals when cART is interrupted the 

latently infected cells can reactivate and establish systemic viral rebound within 2-8 

weeks61. 

It is known that the number of latently infected cells is a predictor of disease 

progression in primary infection286 and during the natural course of HIV-1 

infection287, and it also predicts time to viral rebound upon cART interruption295,339. 

Therefore, a great variety of strategies are currently focused on eliminating or 

reducing the latent reservoir to achieve a sterilizing or functional cure with limited 

success yet285, besides the allo-HSCT with CCR5Δ32 donor cells229,232–234. 

However, some HIV-1-infected individuals can control HIV-1 replication for a certain 

period of time in the absence of cART without the need of any clinical intervention. 

These individuals include elite controllers246 and post-treatment controllers72, which 

are characterized by harboring very low levels of latently infected cells, 

demonstrating the importance of this factor for achieving an HIV-1 cure.  

This thesis aimed at improving our understanding of the clinical, immunogenetic 

and virological factors associated to reductions of the HIV-1 reservoir in three 

models of HIV-1-infected individuals with extremely low levels of HIV-1 reservoir in 

order to know the importance of reducing the reservoirs to achieve an HIV-1 cure.  

First, in chapter 3a we characterized three individuals with an extreme phenotype 

of elite controller who were able to control HIV-1 replication for more than 25 years 

in the absence of cART and whom we called Exceptional Elite Controllers (EEC). 

Our results showed that EEC were enriched in protective host genetic factors with 

also highly effective HIV-1 specific immune responses. Both factors were 

interrelated since the presence of protective HLA alleles seems to be related to 

better and more potent HIV-1 specific immune responses340,341. These two factors, 

have been previously seen in other studies involving regular elite controllers247,248. 
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Moreover, we described for the first time an almost absence of viral diversity and 

evolution of the EEC’s provirus, which was probably due to their replicative-impaired 

and highly defective genomes. Altogether, EEC might be considered as 

spontaneous cases of HIV-1 functional cure which was probably attained by the 

combination of defective non-evolving virus with a potent HIV-1 specific 

immune system (Fig. 52). 

 

 

  

 

 

 

 

 
Figure 52. Virological and immunological factors present in the three models of HIV-1-infected 

individuals that might be necessary to achieve the HIV-1 cure. In green are represented beneficial 
factors and in red the detrimental ones.   

On the other hand, it is known that exist individuals with a very low viral reservoir 

but that are not able to control HIV-1 replication in the absence of cART241,242. 

Therefore, in chapter 3b we characterize a cohort of LoViReT (Low Viral Reservoir 

Treated) individuals that have a very low viral reservoir (<50 copies/106 PBMCs) 

and had been under cART for at least three years to control HIV-1 replication. We 

found that LoViReT accounted for the 9% of all the HIV-1-infected population, with 

two thirds of them treated in the chronic phase of the infection. The clinical factors 

associated with being LoViReT were a high CD4 T cell count and lower viral loads 

before initiation of cART, and a better control of HIV-1 replication under cART. Also, 

they were characterized by a naturally reduced and more cART-sensitive reservoir, 

which might indicate a defective reservoir establishment. Although they had a 

better preservation of the general CD8+ T cell compartment, their immune cells 
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seemed to not being able of control the virus since they had low circulating HIV-1 

specific antibodies and their CD8 and NK cells were not able to control the virus in 

vitro, suggesting the absence of potent HIV-1 specific responses (Fig. 52).  

Furthermore, in chapter 3c we analyzed immunogenetic factors associated with 

LoViReT and found that they did not have an overrepresentation of protective HLA 

alleles as happened in EEC, which aligned with the mild HIV-1 specific immune 

responses observed. When we comprehensively analyzed viral factors, we barely 

detected replication-competent virus in peripheral blood and found limited provirus 

in anatomical compartments. Interestingly, we found that the factor that might have 

contributed to the low non-inducible reservoir and their pronounced decays once 

they started cART was a skewed distribution of the HIV-1 DNA among the different 

CD4+ T cells subpopulations. The distribution was shifted towards shorter live cell 

subpopulations as TTM and TEM that are easier to be eliminated through cART due 

to their higher composition of unstable viral forms313, which is in line with what was 

observed in  PTC72. Unfortunately, despite their low reservoir levels they are not 

able to control the virus in the absence of cART probably due to their lack of HIV-1 

specific immune responses.  Thus, the low reservoir found in LoViReT might be the 

result of a combination of a defective reservoir establishment before cART, with a 

faster decay after treatment by the skewed distribution of provirus among the 

different CD4+ T cells subpopulations. 

Finally, in chapter 3d we evaluated the factors associated to the reservoir decay 

after an allogeneic hematopoietic stem cell transplant (allo-HSCT), which by now is 

the only cure strategy that have succeeded in this aim229,232–234. We confirmed that 

the allo-HSCT resulted in a profound long-term reduction of the HIV-1 reservoirs, 

which occurred mainly in the first 6 months after the transplant. An extensive 

analysis of six long-term followed HIV-1-infected individuals who received an allo-

HSCT from CCR5 wild-type donors, showed that the HIV-1 reduction resulted also 

in an extremely reduction of the virus in anatomical compartments with a decline of 

HIV-1 specific antibodies. The factors associated to this reduction included the type 

of stem cell donor, the time to full donor chimera and graft vs host disease. Those 

factors generate a “graft-versus-HIV effect” which eliminates the latently infected 

cells from the body that are replaced by the donor non-infected cells (Fig. 52). Also, 
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no viral rebound was observed when individual’s CD4+ T cells were injected into 

NOD mice, analyzed by the mVOA assay. Unfortunately, after a voluntarily 

treatment interruption of one of the individuals an abrupt viral load rebound was 

observed despite a previous complete seroreversion. This is in line with previous 

reports with individuals receiving an allo-HSCT with CCR5 wild-type cells325. 

Overall, these three types of cohorts have in common the extremely low reservoir 

in peripheral blood and anatomical compartments (analyzed in LoViReT and allo-

HSCT individuals) achieved either spontaneously or after an intervention. However, 

as demonstrated with LoViReT and transplanted individuals, a low reservoir by itself 

was not sufficient to control the viral replication. One of the different factors that 

distinguished EEC from LoViReT/allo-HSCT individuals is the potent HIV-1 immune 

responses they have. In the case of LoViReT, although we observed a preserved 

general immune system, they have weak HIV-1 specific immune responses. 

Similarly, allo-HSCT individuals had a strong unspecific response of the immune 

system mediated by the graft-vs-HIV effect but the HIV-1 specific responses after 

the allo-HSCT were weak and with low amplitude, as it was recently published by 

Eberhard et al342. 

Thus, the potent HIV-1 specific immune (or alternatively an HIV-1 restriction 

factor as CCR5 Δ32 mutation) seems to be key to control HIV-1 replication. 

However, as has been previously shown by different therapeutic interventions, 

boosting only the HIV-1 specific immune responses is not enough to achieve the 

HIV-1 cure213,214. Therefore, the combination of a low HIV-1 reservoir with potent 

HIV-1 specific immune responses seems to be crucial to achieve a sustained viral 

control, as observed in EEC (Fig. 52). In the context of a low reservoir the potent 

HIV-1 specific immune responses would prevent from viral replication once cART is 

interrupted.   

To overcome the lack of low HIV-1 specific immune responses present in 

LoViReTs and allo-HSCT individuals, some clinical interventions might be applied. 

One available approach might be the use of immunotherapies like HIV-1 neutralizing 

antibodies such as the 3BNC117 (a potent human CD4 binding site antibody) and 

10-1074 (targets the V3 glycan supersite on the HIV-1 envelope)221 which have been 
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recently demonstrated that boosted the CD8 cytotoxic activity, and in some 

individuals prevent viral replication when cART is interrupted222. Another possibility 

is the use of monoclonal antibodies against immune check point inhibitors such as 

PD-1 or PD-L1206,207,209,210, which have also demonstrated to enhance HIV-1 specific 

immune responses. Alternatively, gene therapy could be performed to disrupt the 

CCR5 gene in autologous CD4+ T cells or hematopoietic stem cells to mimic the 

natural CCR5 Δ32 mutation and make the cells resistant to the infection. The use of 

one of these approaches in combination with the low or even non-detectable 

reservoirs observed in LoViReT and allo-HSCT may help to achieve a functional or 

eradication cure.  

Additionally, it would be necessary a deeper characterization of the cohort of 

LoViReT individuals to increase the understanding of the underlying mechanisms 

and the interplay between host and viral factors that might explain their defects in 

the reservoir establishment, as well as the skewed distribution among CD4+ T-cell 

subpopulations. This may include the transcriptomic and genome-wide methylation 

profile, as well as the genetic and functional integrity of the provirus sequences. The 

information obtained might help to design new strategies focused on achieving the 

low reservoir factor necessary to control the HIV-1 replication. Also, it would be 

interesting to expand the cohort to have a higher number of individuals in which try 

therapeutic strategies aimed at improving the immune system factor necessary to 

control the HIV-1 replication.  

In summary, attaining a low reservoir seems to be a key factor to achieve a 

potential HIV-1 cure, but not the only one. Thus, individuals with an already 

diminished reservoir, naturally or after an intervention, would be closer to achieve 

an HIV-1 cure. These individuals would be of great interest for trying eradicating 

strategies aimed at boosting HIV-1 immune specific responses. 
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Objective 1: To deeply characterize clinical, virological and immunological 

factors associated with natural HIV-1 control for more than 25 years in the absence 

of cART.  

1.1. Exceptional Elite Controllers were defined as a subset of HIV-1-infected 

individuals able to control HIV-1 replication for more than 25 years in the 

absence of antiretroviral treatment. These individuals can be considered as 

cases of spontaneous cure. 

1.2. Exceptional Elite Controllers harbored an extremely low non-inducible 

reservoir in blood despite that their CD4+ T cells were susceptible to the 

infection. 

1.3. The main virological factor defining Exceptional Elite Controllers was the 

presence of highly defective viruses that are non-genetically evolving or 

diversifying. 

1.4. Exceptional Elite Controllers were enriched in protective host factors and 

had strong cellular HIV-1 immune responses, as previously observed in regular 

elite controllers. 

Objective 2: To determine the clinical, virological and immunological factors 

related to a reduction of the HIV-1 reservoir in a cohort of LoViReT (Low Viral 

Reservoir treated) individuals whom harbor an unusual extremely low viral reservoir, 

but without control of HIV-1 in the absence of cART. Those factors will be related to 

the longitudinal dynamics of the HIV-1 reservoir and the immune cells before and 

after initiation of cART between chronic treated LoViReT and controls.  

2.1. A total of 9% of the HIV-1-infected individuals under treatment harbored 

less than 50 HIV-1 DNA copies/106 PBMCs, constituting the LoViReT cohort. 

From them, 66% were treated in the chronic phase of the infection.  

2.2. Clinical factors associated to LoViReT were higher CD4 nadir, lower viral 

loads in the absence of cART, and a better sustained HIV-1 suppression under 

antiretroviral therapy.  
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2.3. Intrinsically reduced total HIV-1 DNA and an enhanced decay of reservoirs 

after initiation of treatment were observed in the cp-LoViReT individuals, 

suggesting an impaired HIV-1 reservoir establishment. 

2.4. A preserved CD8+ T-cell compartment was observed in cp-LoViReT before 

treatment initiation, but HIV-1 specific responses did not differ from controls.  

2.5. Lower HIV-1 specific antibodies on cART were more frequent in cp-

LoViReT individuals. 

Objective 3: To deeply characterize the host immunogenetic and viral factors 

associated with the LoViReT cohort, including the replication-competence of the 

virus, and distribution among anatomical and cellular compartments. 

3.1. The LoViReT phenotype were not associated with protective host factors 

such as an overrepresentation of HLA B-57 or B-27 alleles or CCR5 Δ32 gene 

mutation in heterozygosis. 

3.2. In 71% of LoViReT individuals we did not found replication-competent virus 

in peripheral blood and found limited provirus in anatomical compartments. 

3.3. Low reservoirs are traditionally associated with early start of treatment, but 

we demonstrated that similar low reservoirs are found in early and chronic 

treated individuals. 

3.4. LoViReT individuals presented a skewed distribution of the provirus among 

memory CD4+ T cell subpopulations, with a high contribution of the short-live 

TTM and TEM cells in the total HIV-1 reservoir. 

3.5. Despite an impaired reservoir establishment causing their low reservoirs, 

the absence of strong HIV-1 specific immune responses seems to jeopardize 

the control of HIV-1 replication in LoViReT individuals. 

Objective 4: To evaluate the factors associated with the reduction of the viral 

reservoirs after an allogeneic hematopoietic stem cell transplant, specially using 

CCR5 wild-type donors.  
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4.1. Allogeneic hematopoietic stem cell transplantation (HSCT) resulted by itself 

in a profound long-term reduction in the HIV-1 reservoir in the first 6 months 

after the transplant, including the cases using CCR5 wild-type donors. 

4.2. Three main transplant-associated factors may have contributed to the HIV-

1 reduction, including the type of the stem cell donor, the time to full donor 

chimera, and the graft vs host disease. Altogether, it generates a “graft-versus-

HIV effect” that seemed to be key to reduce the viral reservoir.  

4.3. Declining HIV-1 specific antibodies were observed after the transplant in 

different grades, observing a case of seroreversion. 

4.4. A non-controlled treatment interruption in an HIV-1-infected and 

transplanted individual result in an abrupt HIV-1 viral load rebound, with 

replenishment of the latent reservoir and a new seroconversion. 

4.5. Allogeneic stem cell transplant caused a punctual and generalized potent 

immune response that extremely reduced the HIV-1 reservoirs by cell exchange 

done by the transplant itself. The absence of specific and sustained HIV-1 

immune responses limited the possibility to control the HIV-1 rebound after 

treatment interruption. 
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