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Abstract

Texture of analysis for Robust Reading Systems

Angelos Nikolaou

This thesis focuses into the use of texture analysis for Robust Reading Systems. In this

thesis the use of texture analysis for text-image is explored. An in depth analysis of the

established Local Binary Pattern descriptor is presented. The LBP descriptors are used

in word-spotting and achieves top performance among learning-free methods. A custom

variant called Sparse Radial Sampling LBP is developed to exploit the unique properties of

text and is used to achive state-of-the-art performance in writer identification. The same

feature descriptors are used in conjunction with deep Neural Networks in order address

successfully the problem of script and language identification in multiple modalities.
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Chapter 1

Introduction

1.1 Forward

In this thesis we propose the use of texture analysis as a general framework for extracting

usefull information about text in images. This thesis has been realised in large span of

time and in the midst of the deep learning evolution, it therefore is important to read this

work in the context of dynamic and evolving field and contextualise the material in the

time it was presented to the public.

The structure of this thesis is as follows:

• Chapter 1: In this chapter, we discuss the nature of text and our motivation in using

texture analysis for it.

• Chapter 2: In this chapter, we dive into texturea analysis and more specifically to

the specifics of LBP.

• Chapter 3: In this chapter, we investigate word spotting in general and propose an

LBP method for word spotting.

• Chapter 4: In this chapter, we address writer identification and propose a general

texture descriptor specialised for text.

• Chapter 5: In this chapter, we employ our texture analysis in script identification

with use of deep MLP

• Chapter 6: In this chapter we conclude and sumarize our findings.

1.2 The nature of text

With respect to most other objects that are analysed by Computer Vision, text stands

out as the principal example of an object that has evolved over milenia with visibillity,
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recognition, and saliency as some of the principal goals. Writing has evolved from drawing.

Phonetic alphabets evolved from the notion of drawing homonym’s initially, then gradually

associating symbols with with sylables and finaly phonems[44]. The medium of writing

had a profound effect on the evolution of text. With the exception of egyptian hieroglyphs,

color does not have any specific meaning for a writing system and does not affect text

transliteration.

1.2.1 The Visual Archetype

I propose the notion of the visual archetype a means of thinking about text in abstract

and it’s form.

The visual archetype is the ideal, intended, immaterial form of the document. Depend-

ing on the modality, handwritten, typeface printing, desktop publishing, etc., the visual

archetype is different things. In all cases, the visual archetype, is the most mature, the last

form the document takes in the production process before it goes on to the materialization

stage. In the desktop publishing case, the visual archetype would be the vector form of

the document; the raster version of the document, if such is rendered, we consider part of

the material stages of production in the sense that discretization is strongly influenced by

the computational resources available etc. In the typeface printing modality we consider

the visual archetype to be the result of the typesetting process, what is codified on the

compositing stick. In the handwriting modality, the visual archetype is harder to identify.

The reason for the handwriting complication is that when one writes, he gets immediate

feedback on how his text is rendered on paper. We could hypothesize that the feedback

is taken into account and if what was written diverged from the visual archetype, the

visual archetype is adapted to incorporate what was written. A scientific testing of such

a hypothesis goes beyond the scope of this paper and might be unimportant, since our

hypothesis was introduced to describe a concept and not a phenomenon. Even though there

is probably no specific visual archetype for handwriting in the scope of a full document or

a page, the concept can make sense on a smaller scale such as a stroke, a letter, or a word.

We could maybe state that each grapheme is produced in the context of a specific visual

archetype. I suggest that declination from the visual archetype happens because of a lack

of skill or external derogation such as ink drops, crumbled paper, etc.. Skill is required for

visualizing a feasible archetype, for anticipating how graphemes will be rendered on paper,

but also for executing the visual archetype with precision. Taking the above assumptions,

one could conclude that the more skilled a writer is, the more consistent during the writing

of the document the visual archetype will be. As an abstract concept, we associate the

visual archetype with the document creator’s intention and define it as the most precise

form a document creator’s intentions take. The visual archetype’s definition allows

to consider any deviation from it as a kind of imperfection, error, or, noise. Note that
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Figure 1.1: The Visual Archetype

visual archetypes should be put into reference with the work on cognitive models and

prototype theory, i.e. they can be defined by idealized conceptual models, such as the

typeface printing modality and the desktop printing modality, but are not limited to them.

Furthermore, the visual archetypes could be a kind of idealized visual model, i.e. the idea

of the visual appearance in mind which should be put on paper. This can be put into

relation with the idealized conceptual model (ICM) of Lakoff [53], however a detailed

analysis of this idea is beyond the scope of this work.

The visual archetype can to a certain extent, be considered when dealing with non-

document text such as scene-text but a major limitation arises from the fact the creation

of the text might not have control or even not be aware of the context in which the image

is placed.

1.2.2 Two Tone Assumption

If we address the question of how colors are modelled in visual archetypes an interesting

dichotomy arises. The visual archetypes for some document element types define colors

in continuous ranges, while in other document element types as selections from a finite

palette which in some cases contains only tones. The authors of this paper postulate that

the visual archetypes of text and drawings1 traditionally have discrete colors and in the

overwhelming majority only two tones. In support of our postulation we can only provide

some relevant remarks. In[11] Bringhurst, in reference to the engraving the printing process

produces on the surface of the paper, states that although early renaissance typographers

were excited by the depth and the sense of touch they could achieve by the printing process,

following neoclassical typographers such as Baskerville, would go as a far as to apply a

process similar to ironing clothes on the printed document to produce perfectly flat surfaces.

1A picture, image, etc., that is made by making lines on a surface with a pencil, pen, marker, chalk,
etc., but usually not with paint. source: http://www.merriam-webster.com/dictionary/drawing , accessed:
2014-02-28
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We suggest that text, even in the case that it wasn’t, evolved to be bi-tonal because

of the used media. Liquid ink on paper, which dominated writing for centuries, makes

the color tones practically uncontrollable to the layman. When using a soft pen/plume,

pressure variations result in line thickness variations. This way handwriting can transmit

non transcribable meanings in the spatial domain. The bold and italic fonts could be

described as descendants of the meanings that were associated with spatial information.

Contemporary font systems such as TTF contain a purely spatial description of the

fonts; tone related modifications, such as anti-aliasing, are automatically inferred during

rendering. How could a gray-level document be transcribed without modern technology?

What kind of document is untranscriptable?

1.3 Texture Analysis

1.3.1 General Texture Analysis

Defining what is texture analysis in CV is quite subjective, Shapiro and Stockman define it

as An image texture is a set of metrics calculated in image processing designed to quantify

the perceived texture of an image. Image texture gives us information about the spatial

arrangement of color or intensities in an image or selected region of an image [85]. The

above definition, clear as it may be, delegates to human perseption what texture is. One

can intuitevely feel that the essence of texture is associated with repetition of small objects.

As best exemplified by CNNs, image descriptions start by encoding at the local structure

of pixels and their imediate neighborhood and than combine these to form higher level

descriptions of structured elements in an image. Information can be combined either

through spatial relationship preserving mechanisms eg. convolutional filters or can be

pooled disregarding spatial relationships as eg. BoVW or pooling layers do.
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Chapter 2

Local Binary Patterns

The LBP descriptor has a vast set of variants in the literature. In order to be as inclucive

as possible, I define single Local Binary Pattern as the The bitstring constructed by

concatenating the binary relationship of a central pixel and a sequence of points sampled

around the central pixel. Initially LBP where defined as the binary encoding of a 3× 3

regionaround each pixel [73]. In later work, the 3×3 region was modified to a circle around

each pixel[74]. In the inital case and most of the derived variants, the binary relationship

d is simply the sign of the diference beetween the center pixel and the pixels sampled from

the periphery as defined in 2.1.

d(x) =

{
1 : x ≥ 0

0 : x < 0
, (2.1)

Bit-strings can be seen as integers and that is where the power of the LBP descriptor

family lies, each pattern can be described as a single integer. So when patterns are pooled

over a region the representation is a simple histogram. Both memory and computational

complexity of methods using LBP depends mostly on the size of the histogram and

therefore on the number of distinct patterns available. The actual set of distinct patterns

can also be called a vocabulary of the LBP representation. The LBP are by nature robust

against any global illumination variation since the sign of the difference beetween two pixels

is preserved in almost all ilumination changes. In [10] an in depth analysis of the prior

probabillities of LBP in presented. The analysis provides insights into the effectiveness of

LBP but also prooves that the consistency the frequencies of patterns demonstrate are not

a property natural texture images demonstrate but rather a property of the mathematical

structure of the LBP operation it’s self.
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(a) Original LBP3×3 (b) [LBP1,8,LBP2,16]

Figure 2.1: Popular LBP sampling patterns

6362616059585756

5554535251504948

4746454443424140

3938373635343332
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2322212019181716

15141312111098

76543210

Figure 2.2: All LBP 1,6 patterns, their uniformity is marked as blue [0-6], and their
rotational equivalence counts [0-6]
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2.1 Compression Tecniques

If there are n points sampled on the periphery, the vocabury’s size is 2n. In [74] two

tecniques were introduced to compress the vocabularies of LBP patterns, rotation invariance

and uniformity. Compression can also be achieved by compressing the histograms after

they are populated but has no computational benefits of any kind in the actual LBP

transform.

2.1.1 Uniform Compression

Uniform compression is defining a set of patterns which will be ignored from the represen-

tation and in essence treated as noise. Uniformity is a measurement of smoothness of the

local gradient. Specifically the uniformity is defined as number of transitions beetween

ones and zeros as the bitstring is traversed in a clockwise maner. A small ambiguity can

arise depending on whether only transitions from one to zero are counted or whether both

one to zero and zeros to one are measured; for the remaining of this work whenever I refer

to uniformity, I count both transitions so uniformity has to always be a even number. It is

evident that in an LBP vocabulary of n points, the greatest uniformity is 2bn
2
c. In Fig. 2.2

all possible patterns of 6 points can be seen, while typically LBP are sampling multiples of

8 points, 6 points are shown in order to show all patterns. In the specific case of LBP 1,6

it can be seen that the number of patterns having a uniformity count of zero is always

two, the all-zero pattern and the all-ones pattern this holds for any nuber of points. It

can also be seen that only two patterns have 6, the highest uniformity possible, this is

also true for any LBP lexicon with an even number of points but for an even number of

n points the number of the highest uniformity patterns is 2n. The way uformity is used

to compress the vocabulary is to discard all patterns with a uniformity of more than 2;

this in essence filters out patterns that lie on sadle points. Filtering the patterns with a

Uniformity 2 constrain reduces the vocabualry size from 2n to 2 + (n− 2)n. In the case of

6 points, this reduction is from 64 to 26 but in 8 points it is from 256 to 50 which in most

cases means saving computational resources by 80%. The implicit assumption behind

uniformity 2 filetring is that sadle points at the pixel level are usually occuring because of

noise. Uniform patterns were also demonstrated to be more probable regardless of the

nature of the input images [10].

2.1.2 Rotation Invariance

Rotation invariance is compressing the pattern vocabularies by mapping patterns that can

be converted from one to another by rotation to a single entry in the vocabulary. Other

than sampling issues and aliasing when a single LBP is sampled for every point, this
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reduction makes the histogram representation rotation invariant which is highly desired in

cases where nothing can be assumed about the orientation of the image. The number of

rotationally equivalent patterns varies for every pattern. Rotation uniqueness of a pattern

is the inverse of cardinality of the set of patterns that are equivalent to it by rotation. In

Fig. 2.2 the rotational uniqueness of every pattern can be seen as the red bars. It can be

seen that the uniqness varies quite a bit, this squees the histogram significantly. While

uniformity compression has a simple formula for the vocabulary size, compression achieved

on the vocabularies with respect to the number of points, in the case of rotation invariance

it is not so simple. The formula given by [103] is given in 2.2 as N(n, a) where n is the

number of points and a is the number of distict colors a ”bead” can have in the LBP case

always 2, v(n) is the number of divisors n has and φ is eulers totien function.

N(n, a) =
1

n

v(n)∑
i=1

φ(di)a
n/di (2.2)

A major drawback of rotation invariance bining is that it discards information about

the relative frequencies each rotationally equivalent pattern has to each-other. This can

be easilly understood if one thinks of a pattern of rectangles, rotation invariance bins

patterns on horizontaland vertical edges together making all rectangles that have the same

circumference produce exactly the same histogram regarless of their width and heigh. In

2009 a histogram-level rotation invariance was proposed [2] while this doesn’t economise

computational resources as the orinal rotation invariance compression does, it provides

roation invariance while preserving the information of the relative frequencies between

rotationally equivalent patterns.

2.1.3 Multiple Radii

Multiple radii can encapsulate structure occuring at different scales

2.1.4 LBP Cardinalities

In their typical use LBP occurences are encoded as histograms contining their freequencies.

2.1.5 Evolution and applications of the LBP descriptor

In [106] the LBP was extened from images to volumes where the new dimension is time

and thus they encode change of a pattern at a specific image location over time. LBP

characterize local image patches using binary codes that encode the relationship between a

central pixel and its neighbors [74]. LBP feature extraction usually consists of computing

LBP descriptors at each pixel of an image to create an image of integer valued codes,
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Figure 2.3: LBP patterns computed on a surface defined by a quadratic curve sampled at
varius resolutions

followed by pooling of these codes into a histogram [74]. LBP have been successfully

applied to many of the major computer vision problems such as face recognition [1], facial

expression recognition [84], and human detection [69].

LBPs have also been applied to document image analysis in tasks other than writer

identification. In DIA, LBP have been used for text detection of text in television

streams [5], for printed script detection [29], and in [102] LBP were compared to other

features in a feature selection process for historical document layout analysis and were

selected as best across all datasets. The authors used an earlier proponent of the method

presented in this paper for Arabic font recognition [71]. and were shown to dominate a

feature selection process for use in historic page layout analysis [102]

2.1.6 Cardinalities

One of the reasons the LBP is so successfull is that a single pattern is represented as a

bit-string of fixed width. In most cases a single pattern can be represented as an integer

and therefore when pooling the memory complexity for storing the pooled patterns is

O(log n×m). Where n represents the number of patterns and m represents the number

of points the LBP descriptor.
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Chapter 3

Word Spotting

3.1 Introduction

In recent years, many important and valuable documents have become accessible as digital

images. A large amount of documents which were previously on paper, are also being

digitized as images. These documents are quite precious and important for humanity,

which need to be preserved permanently. These images contain printed or more often

handwritten text. Most of these documents have been degraded to a great extent due to

reading and ageing processes. These documents should be provided for users to access

and retrieve including searching keywords throughout the documents. Word spotting has

become a central tool in large scale document interpretation. Several document processing

scenarios use word spotting as core technology for classification, annotation or to make

them searchable. Word spotting has been proposed as an alternative to OCR, as a form

of content-based retrieval procedure, which results in a ranked list of word images that are

similar to the query word. The query can be either an example image Query by Example

(QBE)[82] or a string containing the word to be searched Query by String (QBS)[3]. The

basic idea of word spotting using query by example is that a template image is selected

from a set of predefined keywords, i.e. words of interest and then search is initiated to find

out its other instances in the target set of the digitized documents. This factoid makes the

approach more flexible and suitable for indexing and retrieval of degraded and historical

documents written in multiple languages. The principle of word spotting using query by

string is that queries are typed. Textual and image features are jointly embedded and

correlated into a n-dimensional space. In this space, textual and image features can be

projected from one to the other.

In a typical word spotting pipeline, pre-processed patches/imperfectly segmented or

cropped words are first obtained. This segmentation step is not always straightforward

and might be prone to many errors. In fact, although word and text line segmentation is

a highly cultured research topic, it is far from being a solved problem.
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In the literature, word spotting evolves under two distinct sections: the segmentation-

free approach and the segmentation-based approach. Any method classifying or retrieving

words which are segmented beforehand from a given full page image are grouped under

the category of segmentation-based method.

Most of the segmentation free word spotting methods use a separate segmentation

technique ad-joint to the word spotting method. Segmentation based becomes segmentation-

free given a word segmenter[4]. Depending on the amount of information localized, the

performance of the word spotting method differs a lot. In a realistic scenario getting a

perfectly segmented word from the database is a very rare phenomenon. On the other hand,

the performance of the good state-of-art (SotA) methods degrades significantly if words

are improperly segmented. In this chapter we will be confining ourselves to segmentation

based approaches for better understanding the importance of a word segmenter or localiser.

The main motivation of this work is to provide an exhaustive analysis of different

SotA methods in a practical scenario. This allows one to define a taxonomy on the

convenience of each methods to the possibility of proper segmentation in target documents.

Thus, a ”difficult” document would require a spotting method that is robust. This

analysis can bridge the gap between both the segmentation based and segmentation free

word spotting methods. Segmentation errors have a cumulative effect on subsequent

word representations and matching steps. This dependence on good word segmentation

motivated the researchers from the keyword-spotting domain to recently move towards

complete segmentation-free methods[82]. But most of these end to end word spotting

methods comprise a segmenter whose quality of segmentation is not always perfect. In

this chapter we analyze the robustness of different state of the art method to improper

segmentation. We provide mean average precision measures of different levels of cropping.

Additionally we provide some other measures like cross dataset performance by different

methods too. We also present the orthogonality/independence of different methods with

an intuition for the potential of optimal fusion. The final goal of the provided evaluation

is to have a recommendation survey not only on the robustness of the methods in terms

of quality segmentation, but on their complementary in fusion techniques. The principal

focus of this chapter is not to introduce a new method neither for segmentation nor for

word spotting but rather to provide insights on the evaluation and experimental procedure

for word segmentation and word spotting methods. The key contributions of this work

are:

• Demonstrating the limitations of using perfectly segmented input to evaluate word-

spotting performance.

• Implementing an experimental pipeline that allows to compare learning-free, super-

vised learning, and unsupervised learning methods in a homogeneous manner.
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• Performing experiments with many state-of-the art methods under the exact same

conditions and pipeline.

• Demonstrating that the best word-spotting method depends on the quality of the

segmentation.

• Demonstrating that Intersection over Union (IoU) is a valid quality metric for word

segmentation methods.

3.2 State of the art

Word spotting can be broadly classified under two distinct sections: the segmentation-

free approach and the segmentation-based approach. In the latter approach, there is a

tremendous effort towards solving the word segmentation problem[76] [7][52] [9]. One of

the main challenges of keyword spotting methods, either learning-free or learning-based, is

that they usually need to segment the document images into words [45] [80][76] [55] or text

lines [34] [95] using a layout analysis step. In critical scenarios dealing with handwritten

text and highly degraded documents [56][58] segmentation is highly challenging. The

work of Rusinyol et al.[81] avoids segmentation by representing regions with a fixed-length

descriptor based on the well-known bag of visual words (BoVW) framework [21]. In this

case, comparison of regions is much faster with the use of a dot product or Euclidean

distance. Recent pieces of works on word spotting have proposed methods where a precise

word segmentation is not required, or, in some cases, no segmentation at all. The recent

works of Rodriguez et.al. [78] propose methods that relax the segmentation problem by

requiring only segmentation at the text line level. In [37], Gatos and Pratikakis perform a

fast and very coarse segmentation of the page to detect salient text regions. Rothacker et.al.

[79] propose to generate hypotheses with text detectors based on SIFT contrast scores,

CNNregion classification scores and attribute activation maps. In [40], Ghosh inspired by

the success of bounding box proposal algorithms in object recognition, proposed a scheme

to generate a set of word-independent text box proposal. They also propose to use [39] the

whole input image and a set of word candidate bounding boxes and embeds all bounding

boxes into an embedding space, where word spotting can be casted as a simple nearest

neighbour search between the query representation and each of the candidate bounding

boxes.

The most common approach relies in using a patch-based framework in which a window

slides over the whole document. In such a framework expected segmentations may not

be perfect and elements from surrounding words will appear within a patch. Automatic

word segmentation, as presented in [92], is based on taking several features on either side

of a potential segmentation point and then using a neural network for deciding whether
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or not the segmentation is between two distinct words. The segmentation free method

attempts to perform spotting and segmentation concurrently. An entire line image acts

as input in place of a candidate word image. The line is split into segments based on an

algorithm similar to the ligature-based segmentation algorithm used in [50]. The text

detection algorithms can be broadly classified into two categories: connected component

based approach and sliding window-based approaches[54][101]. The sliding window based

methods, approach to localize individual characters[101] or whole words [54] drawing

inspiration from other object detection methods where this approach has been successfully

applied [22] [100]. Strengths of such methods include robustness to noise and blur, because

they exploit features aggregated over the whole region of interest. The main drawback is

that the number of rectangles that it needs to be assessed grows rapidly when text with

different scale, aspect, rotation and other variations are taken into consideration. Due to

the variance of sliding window parameters is much lower, this kind of effect does not occur

in general object detection tasks.

In the same spirit with the aforementioned approaches, this chapter concerns a study

on the performance of word spotting methods, for recreating the accuracy achieved with

different pipeline in the case of segmented words. The evaluation conducted in this work

compares several state of the art methods of word spotting belonging to the segmentation

based category. We will analyze their sensitivity to different levels of proper segmentation,

i.e. how robust are they to incorrect segmentation in previous steps.

3.2.1 Almazan et al. [4] (FisherCCA)

The use of exemplar SVM’s has created one of the best segmentation free methods in

the literature in terms of accuracy and mean average precision. This supervised method

represents the documents with a grid of Histogram of Gradients (HOG) descriptors. An

exemplar SVM framework is used to produce a better representation of the query. They

also use a more discriminative representation based on Fisher Vector to re-rank the best

regions retrieved, which in turn is used to expand the Exemplar SVM training set and

improve the query representation. Ultimately the document descriptor is pre-calculated

and compressed with the Product Quantization.

3.2.2 Rusiñol et al. [82] (BoVW)

In the paradigm of segmentation free, query by example handwritten word spotting, this

method has outperformed the recent state of the art keyword spotting approaches. In the

experiments of this chapter, for the sake of comparison in the proposed framework, we

have used a segmentation based variant. This method uses a patch based framework where

local patches which are specified by bag of visual words (BoVW) model powered by SIFT
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descriptors. These descriptors are then projected to topic space with the Latent Semantic

Analysis technique and then compressing of these descriptors is done with the Product

Quantization method. This statistical approach in turn enables an efficient indexation of

document information both in terms of memory and time.

3.2.3 Rath et al. [77] (DTW)

It can be considered as the baseline algorithm for matching handwritten words in noisy

historical documents. The segmented word images are pre-processed to create sets of

1-dimensional features, which are then compared using Dynamic Time Warping (DTW).

3.2.4 Method based on Quad Tree (Quad Tree)

This method relies on an adaptive feature extraction technique [99] based on recursive

subdivisions of the word images so that the resulting sub images at each iteration have

balanced (approximately equal) numbers of foreground pixels, for two levels. This adap-

tive hierarchical decomposition technique which determines the pyramidal grid which is

recursively updated through the calculation of image geometric centroids [91].

3.2.5 Dey et al. [25](LBP)

In this method the adaptive hierarchical decomposition technique employs the pooling of

the Local Binary Patterns in the adaptive regions, that are determined by a pyramidal

grid that is recursively updated through the calculation of image geometric centroids to

calculate the feature vector for matching.

3.2.6 Method based on Histogram of Gradients (HOG)

Similar to the previous method, the feature vector is created by pooling the gradients

in the similar pyramidal grid. Therefore, the feature vector describes the frequency of

gradients and considering that the images contain hand written text, the HOG descriptor

can roughly be associated to the characteristics of stroke fragments (curvature, smoothness,

etc.).

3.2.7 Sudholt et al.[94] (PHOCNET)

In this method a deep CNN architecture is designed for word spotting. It is able to

process input images of arbitrary size and predict the corresponding Pyramidal Histogram

of Characters(PHOC). The authors show empirically that their architecture is able to

outperform state of the art results for various word spotting benchmarks. They also
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showed that simple data augmentation and common regularization techniques can be used

on small datasets to train CNN’s from scratch.

3.2.8 Fusion

In this work, in addition to the robustness of each method to improperly segmented words,

we also study how complementary are the methods. To assess how two methods are

complementary and how the combination of them can overcome the lack of individual

performance, a naive late fusion between methods is also proposed. Due to the fact that

many of the methods analyzed in this chapter are learning-free, a learning-free late fusion

was preferred. More specifically, the fundamental assumption is that any method that

does retrieval, can provide a vector with all distances between the query sample and all

samples in the retrieval database. The fusion method we propose is a weighted sum of such

vectors that two or more methods provide. In the taxonomy of fusion methods described

in [6], it would be described as a weighted linear fusion at the level of decision. One of

the main benefits of this method is that it can be applied to feature representations of a

variable size or even methods that don’t have a feature representation such as DTW.

3.3 Experimental Analysis

The experiments performed had as a principal goal to obtain an in-depth analysis of the

reliance each method has to high quality segmentation. The principal experiment consists

of comparing retrieval of all methods under different levels of distortion on the retrieval

database. A major constraint of designing the experimental procedure was making a

fair and informative comparison between supervised learning, unsupervised learning, and

learning free methods.

3.3.1 Datasets

In this work we have mainly focused in historical manuscripts due to the difficulties

they convey. Nowadays it is a typical and well established scenario for the evaluation of

word spotting. Two well established publicly available datasets were used: The George

Washington (GW) dataset [31], a single-writer dataset, and the ground-truthed part of the

Barcelona Historical Handwritten Marriages Database (BCN)[28] which is a multi-writer

dataset. Both datasets were partitioned at the page-level having the first 75% of the pages

as train-set and the last 25% of pages were designated as a test-set. The words occurring

a single time are stemmed when calculating retrieval metrics. In Table 3.1 the specific

word counts for the employed datasets can be seen. By default, when the dataset is not

specified for a measurement, it is performed on GW. In every dataset any short word
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with a transcription of less than three characters was discarded. In the case of retrieval of

test-set words from the train-set, all words not represented in both were discarded. The

distribution of the word lengths also showed that words with less than three character even

though had a lot more effect over the metrics during retrieval, it had a very less chance of

getting queried in real scenarios. Trimming the dataset based on the distribution of the

word lengths made the dataset less skewed.

Table 3.1: Employed Datasets
Dataset Partition Page# Word# Unique

Word#
Stemmed
word#

GW[31]
Train 15 3696 967 265
Test 5 1164 431 563

BCN[28]
Train 30 9879 1387 779
Test 10 3051 607 367

3.3.2 Performance Evaluation and Metrics

Table 3.2: Analysed method performance
Method Learning mAP(GW) mAP(BCN) Cross Dataset Retrieval sec. Train time

Quad-Tree Standardization 15.5 30.14 15.32 44.41 0
BoVW [81] Unsupervised 68.26 - - - 1 hr.

FisherCCAQBE [4] Supervised 93.11 95.40 72.42 137.63 2 hrs.
FisherCCAQBS [4] Supervised 96.29 95.71 15.17 75.33 2 hrs.

PHOCNETQBE [94] Deep Learning 95.56 97.01 60.93 140.45 3 hrs.
PHOCNETQBS [94] Deep Learning 95.04 93.68 - - 3 hrs.

DTW [77] No 20.94 - - 78095.89 0
HOG pooled Quad-Tree No 48.22 66.66 66.66 45.34 0

LBP [25] No 54.44 70.84 70.84 43.17 0

3.3.2.1 Performance Evaluation

The experimental pipeline was designed to perform consistent measurement of different

methods under a variety of conditions. The used pipeline is equally well suited for

comparing learning-free, unsupervised, or supervised learning methods. Each method is

modeled as a feature extraction process which takes a word image as input and provides a

feature vector as output. Any transformation of the feature space such as metric learning,

normalization, standardization etc. is applied on the feature vectors. These vectors are

used to generate a distance matrix using the cosine distance. A train-set is made available

to all methods that need to learn the representation they produce. Each row in this

matrix represents a sample from the test-set and each column represents a sample from the

train-set. From the distance matrices a precision matrix is computed where each row refers

to a query sample (test-set) and the nth column refers to the precision of the retrieval for

the n first samples. The precision matrices are computed considering only the exact same
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Figure 3.1: Experimental procedure for estimating P (Correct|IoU) for a single word-
spotting method. (Best viewed in electronic format.)

case-insensitive transcription between query and retrieved sample as a correct match. All

word-spotting/retrieval performance metrics employed in this paper are computed based

on these distance matrices.

Precision at any given index is defined as the percentage of correct retrievals for all

samples at lesser or equal index. mAP and rPrecision metrics demonstrated remarkable

correlation between them. Although rPrecision appears less saturated, mAP was preferred

because it is more broadly used.
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Figure 3.2: All metrics of Fisher CCA [4] on distorted segmentations. Best viewed in pdf.

3.3.2.2 Performance Metrics

All performance metrics are estimated on each query-sample and then averaged for all

queries. The metrics that are used for the analysis are:

• Accuracy: The percentage of queries who’s nearest retrieval contains the same

transcription, it can be described as precision at index 1.

• rPrecision: The precision each query gets at the retrieval position where a perfect

recall and precision scores are possible. Given a query, we label the set of relevant

objects with regard to the query as rel and the set of retrieved elements from the

database as ret. rPrecision is the precision at rank rel

• Precision @ 10: The precision each query gets for the 10 most relevant samples. The

precision is defined in terms of ret and rel in Eq. 3.1.

Precision(P ) =
| ret ∩ rel |
| ret |

(3.1)

• mAP: The average of precision each query gets at each correct retrieval as shown
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in Eq. 3.2, where P@n is the precision till the n-th place of retrieval for a given

query, and r(n) is a binary function on the relevance of the n-th item returned in

the ranked list.

mAP =

|ret|∑
n=1

(P@n× r(n))

| rel |
(3.2)

• Self-classification Accuracy: It is obtained by allowing a query sample to retrieve

itself as well. This metric makes sense when the test-set is a distorted version

of the train-set. When there is no distortion, all samples by definition obtain a

self-classification rate of 100%; it is therefore well suited as a metric that ignores

performance allowing a comparison of methods with different performances such as

learning-free and supervised learning. Other variants of this metric based on mAP

or rPrecision can also be employed, but were not investigated as reporting on them

would not be as informative.

In Fig. 3.2 the quality of segmentation plot can be seen using all the above metrics. The

Query to DB IoUs is the retrieval of the actual query image from the dataset of different

Intersection over Unions with respect to its groundtruth box. All the words in the database

are distorted in accordance to the distortion model proposed in this paper to quantify

the results of different segmenter. What stands out from that plot is that accuracy is

quite unstable given that the x-axis is a quantification of the hardness of the dataset. The

instability of accuracy also appears in self-classification accuracy. What also stands out

is how non-informative precision at 10 is, this can be attributed to the fact that many

samples have less than 10 examples per class.

3.3.3 State-of-the-art comparison

The methods analyzed are the state-of-the-art in segmentation based word spotting, or

interesting baseline methods. Hence most types of word spotting methods are represented.

Performance was measured on both the GW and the BCN datasets. In order to allow

for a comparison between learning-free, unsupervised, and supervised learning methods,

a cross-dataset experiment consists in also presented in Table 3.2. The cross-dataset

experiment is retrieving the BCN test-set from the BCN train-set, but any training of

the methods was performed on the GW trainset. The cross-dataset measurement is an

indicator of how a method performs on unseen data.

In Table 3.3 the principal characteristics of all methods can be seen. PHOCNET

performs better both in GW and BCN datasets and FisherCCA is a close second. It

can be observed that supervised methods perform better by a large margin and BoVW

which is an unsupervised learning method performs far better than any simpler and
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learning free methods. Although PHOCNET is the uncontested state-of-the-art, its cross-

dataset performance is lower than learning free methods. FisherCCA on the other hand

demonstrates tolerance to unseen data.

Concerning time, the training of the models was a highly heterogeneous process and a

valid measurement was not possible. Retrieval of a single version of the GW test-set from

the GW train-set was measured on a Intel Xeon E5-1620 system with an NVIDIA GeForce

1070 GPU. The column titled Retrieval contains the time cost of retrieving each sample

in the test-set of GW from a database with all samples in the test-set of GW as queries.

It is apparent that DTW is remarkably slow, while texture based learning free methods

are the fastest. It should be pointed out that the PHOCNET employ GPU computing

while all other methods were computed on a single CPU thread.

3.3.4 Quality of Segmentation (QOS)

In the literature word spotting methods, unless they are mentioned as segmentation free,

report experiments where performance is measured on perfectly segmented words obtained

from the groundtruth[94]. Word segmentation depends on totally different factors like

irregularity in writing styles, skew, quality of degradation and etc. Historical documents can

be challenging to evaluate the influence of these factors. In order to estimate experimentally

the effect of improper segmentation might have on the state-of-the-art word spotting

methods an experiment using synthetically generated improper word segmentation was

performed. The following assumptions were made when designing the experiment.

• Intersection over Union (IoU) of two rectangles containing the same word is a valid

quantification of the quality of segmentation as shown in Fig. 3.3.

• Modeling segmentation errors as over and under-segmentation’s along several direc-

tions is realistic enough to allow to draw conclusions.

• Distorting all samples in a dataset by a fixed quantity should produce datasets that

are equivalent to real-world poorly segmented datsets.

The quality of word segmentation is quantified as the Intersection over Union (IoU) of the

two-point bounding boxes of the proposed word and the word in the groundtruth. The

definition of IoU for bounding boxes is given in Eq 3.3.

wI = min(R1, R2)−max(L1, L2)

hI = min(B1, B2)−max(T1, T2)

IoU =
wI × hI

w1 × h1 + w2 × h2 − wI × hI

(3.3)
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Where R1(Right), L1(Left), B1(Bottom), T1(Top) are the sides of the bounding box for the

undistorted object, w1, h1 is its width and height. The dotted boundary is the undistorted

word where as dark line is the distorted word which is an estimation of the segmented

word that can be expected from a method.

Word WordGroundtruth Distortion Distortion Axis

Word Word Word Word X

Figure 3.3: Visual depiction of degradation generated for a specific IoU on the top-left
corner.

10% IoU 20% IoU 30% IoU 40% IoU 50% IoU

60% IoU 70% IoU 80% IoU 90% IoU 100% IoU

Figure 3.4: Different IoU of a specific sample.

3.3.4.1 Distortion Model

In Fig. 3.3 a visual representation of the distortion generator can be seen. The generator

takes the groundtruth rectangles, the document page, and the desired IoU and provides

improperly cropped word images. Given a direction and a specific IoU, four degradations

were modeled, centered and uncentered, over and under segmentation. The degradation

can happen on eight possible directions, which models errors on text-line segmentation,

errors on word segmentation given correct text-lines, or errors on both. Given that centered

distortions of opposing directions result in same rectangles, for a given IoU a rectangle can

be distorted in 28 different ways. Since the precision is measured using the cosine distance

which is symmetric, performance on retrieving distorted samples from an undistorted

database, is identical to the performance of retrieving undistorted samples from a distorted

database. In order to avoid training models for every degraded version of the datasets,

degradation was only applied on the retrieval samples and the query databases were left

undistorted. In order to avoid training models for every degraded version of the datasets,

degradation was only applied on the query samples (test-sets) and the retrieval databases
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Figure 3.5: Effect of improper segmentation on mAP for GW.

(train-sets) were left undistorted. For every sample in the test-sets 100 different versions

were cropped having IoU between 1% and 100% with groundtruth, selected from the 2800

variants possible. In Fig. 3.4 the same sample can be observed at different distortions,

100% IoU means no distortion. As the bounding boxes in the groundtruth are not tight,

it can happen that samples with a non-zero IoU share no foreground pixels with the

groundtruth rectangle. This is well demonstrated on the 10% sample of Fig. 3.4.

3.3.4.2 Quality of Segmentation Experimental Results

In Fig. 3.5 and Fig. 3.6 the effect of segmentation on the mAP of each method on GW

and BCN can be seen. As for the undistorted measurements presented in Table 3.2

supervised methods demonstrate superior performance to other methods and unsupervised

method (BoVW) follows and the texture learning-free methods follow. As distortions grow,

supervised methods diverge from the rest, increasing the gap in performance with other

methods. In the case of BCN, FischerCCA outperforms the PHOCNET for segmentation

with an IoU less than 70%. In Fig. 3.7 self-classification accuracy on the GW dataset can

be shown. Self-classification as a measurement quantifies robustness against distortion
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Figure 3.6: Effect of improper segmentation on mAP for BHHWD.

regardless of the performance each method demonstrates. What stands out is that BoVW

seems to be more sensitive than other methods which it outperforms on small distortions.

A qualitative example of a randomly selected query can be seen by all methods in Fig. 3.8.

The numbers seen in the green boxes are the unique sample ids.

3.3.4.3 Query By String (QBS)

FicherCCA and PHOCNET methods both operate by embedding the visual features of a

sample to a subspace common with a string embedding called the PHOC. This allows one

to use the exact same models in either modality, QBE or QBS. A comparison between the

accuracy achieved by both modalities for both FischerCCA and PHOCNET can be seen

in Fig. 3.9. It is worth noticing that for FischerCCA QBS performs consistently better

than QBE while for PHOCNET, QBS performs quite worst than QBE. Overall, on good

segmentation, the best accuracy is achieved by the QBS modality of FischerCCA.
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Figure 3.7: Effect of improper segmentation on self-retrieval for GW.

3.3.5 Available Segmentation

The use of a word segmentation method, allows for an estimate on the end-to-end perfor-

mance a pipeline using segmented word spotting can demonstrate. An end-to-end system

consists of text spotter, which jointly with extracted features detects and recognizes words

in historical images. In order to put the QOS plots into perspective, an assessment of how

an established method for historical document word-segmentation method performs on the

datasets is also presented. A recent overview on state-of-the-art of word segmentation, can

be inferred from the 2013 ICDAR competition [93], although the comparison is done on

well binarized contemporary documents which are very different in nature from historical

documents.

In the literature there are many segmentation algorithm such as [35] which have very

close performance to the one we chose.

An established binarization-free method for automatic segmentation was used [66]

and executed on the GW dataset (without tuning it for our dataset); a broader range of

segmentation methods and a comparative analysis, would go beyond the scope of this paper.

In Manmatha et. al. [66] the method was tuned with the GW dataset in mind. In order to
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in superscript (green). Best viewed in pdf.
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Figure 3.9: Accuracy of QBE for GW.

measure the IoU of the proposed words and the actual words, a sparse matrix is created

where each row refers to a groundtruth word-box and each column refers to a proposed
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Figure 3.10: Distribution of the IoU obtained by application of [66] on GW dataset

word-box. Several measurements can be obtained from this matrix, the most informative

with respect to the QOS curves are the column-wise maximum and the row-wise maximum

which are related to the Detection Rate and Recognition Accuracy as defined in [37] the

only difference being that there is no threshold at 90% and the actual IoU is used as a

soft measurement. In Fig. 3.10 the statistics of IoU can be seen.

3.3.6 End-to-end performance

Table 3.3: Projected End-to-end performance
Naive Extrapolation Conditional Extrapolation Experimental Measurement

Method Precision Recall FM Precision Recall FM Precision Recall FM
LBP [25] 12.45 32.48 18.01 9.89 28.31 14.66 9.45 27.06 14.01
HOG 15.24 31.14 15.24 9.61 27.52 14.25 8.78 25.13 13.01
Qaud Tree 7.23 22.13 10.90 6.8 19.54 10.11 - - -
Random 1.38 1.33 1.44 0.53 1.53 0.79 0.46 1.32 0.68
PHOCNET [94] 71.52 85.09 77.72 24.78 70.94 36.73 - - -
FischerCCA [4] 52.05 75.86 61.74 21.44 61.37 31.78 19.37 55.44 28.71
DTW [77] 12.56 21.91 15.97 6.75 19.34 10.01 - - -

Given a word segmentation method, segmentation-based word-spotting can be used

in an end-to-end scenario. Experiments were conducted using an established word seg-

mentation method[66]. Following the protocols defined in [49], end-to-end performance

is measured by the F-Measure (harmonic mean) of the detection rate (DR) and the

recognition accuracy (RA). A correct match is one that has the exact same transcription

as the groundtruth and at the same time, the rectangle in which the word was detected

and the rectangle of the groundtruth have an IoU of at least 50%. The extrapolation of

end-to-end performance can happen under the assumption that the accuracy each method
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Figure 3.11: Accuracy for improper segmentation on GW dataset.

demonstrates at a given IoU distortion is also the probability of a correct retrieval given

that IoU (see Equation 3.4).

∀x ∈ [0, 1], P (CR|IoU = x) = Accmethod(x) (3.4)

where CR is having correct retrieval and Accmethod(x) is the accuracy a method demon-

strated for a specific x. In Table 3.3 the DR, RA, and F-Measure of end-to-end performance

obtained by using each word-spotting method are presented for the GW dataset. The

measurements are organized in three groups.

The first group of measurements is called naive extrapolation. The DR is approximated

by taking the mean IoU of the best match that all groundtruth rectangles obtained and

measuring the accuracy each method demonstrated for the given IoU. Respectively, the

RA of the naive extrapolation for a method is the accuracy of the method for an IoU

equal to the mean of the best IoU each detected sample obtained against all groundtruth

samples. The F-Measure based on the naive extrapolation is the harmonic mean of the

naive DR and the naive RA. With the use of (3.4), the naive extrapolated DR and RA
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are computed with (3.5) and (3.6) respectively.

DRnaive = Accmethod(

∫ 1

0

fDR(x)dx) (3.5)

RAnaive = Accmethod(

∫ 1

0

fRA(x)dx) (3.6)

The naive extrapolation assumes a perfect co-variance between the IoU of the segmen-

tation each sample has and the probability of that sample being correctly retrieved. The

above assumption is the same as assuming that all accuracy plots unlike that of Fig.3.11

are straight lines. The actual plot Fig.3.11 do demonstrates how weak this assumptions

is.

A more elaborate extrapolation can be obtained by estimating the conditional proba-

bility of a correct retrieval given a Probability Density Function (PDF). Given a matrix

M where rows represent grountruth rectangles, columns represent detected rectangles,

and each cell contains the IoU of those rectangles. The PDF of IoU for every detected

sample fRA(IoU) can be estimated as the distribution of the maximum elements in every

column. Respectively the PDF of IoU for every sample in the groundtruth fDR(IoU) can

be estimated as the distribution of the maximum elements in every row. In connection

with ( 3.4) the extrapolated DRcond and RAcond can be estimated by Equations 3.7 and

3.8.

DRcond =

∫ 1

0

P (CR|fDR(x))dx (3.7)

RAcond =

∫ 1

0

P (CR|fRA(x))dx (3.8)

The third group of measurements, called the experimental measurement, consists of the

empirical measurement. To obtain these measurements, the word segmentation method

was used as the first stage and each segmentation-based method was plugged in as the

second stage of a two level end-to-end pipeline. The resulting detected words and bounding

boxes are passed to the evaluation protocol.

As can be seen, conditional extrapolation predicts quite well the empirical observation.

The naive extrapolation, on the other hand, is a bad predictor of the empirical measurement.

The fact that the conditional extrapolation has been demonstrated to be a good predictor

of the empirical end-to-end performance indicates that IoU is enough to predict the quality

of the segmentation.

It should be pointed out that in a broad experimental setup, containing several

segmentation methods and several word-spotting methods, the conditional extrapolation

and the empirical measurement have different computational costs. Computing the best

end-to-end system for n segmentation methods and m word-spotting methods would
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require m× n executions of the word spotting methods. On the other hand, conditional

extrapolation can obtain the best end-to-end performance with 100×m regardless of how

many segmentation methods there are. As conditional extrapolation demonstrated to be

a good predictor, it can be used whenever we want to select among many segmentation

variants.

In Table 3.3 the DR, RA, and F-Measure of each word-spotting method employed in

an end-to-end scenario is presented for the GW dataset. Both experimental and estimates

of end-to-end performance are presented. As can be seen in the table, the conditional

extrapolation predicts performance that is quite similar to the empirical measurements,

while the predictions from the naive extrapolation are consistently much worse. It is

worth noticing that both extrapolation methods, when compared to empirical evidence,

demonstrate a bias, predicting higher performance than actually achieved. The conditional

extrapolation prediction uses the IoU between a segmented word and the best matching

ground-truth box as the sole factor that determines the end-to-end performance. The

extent to which the conditional extrapolation prediction is correlated with the empirical

end-to-end measurements, indicates the validity of the assumption that IoU is a valid

quantification of the quality of segmentation for the given methods, data, and evaluation

protocol employed.

3.3.7 Method Independence

In this section we analyze the independence of the methods. First, we study the indepen-

dence in terms of retrieval, i.e. how two methods are complementary. Second, we apply

such complementarity in a late fusion scheme.

3.3.7.1 Independence Measurement

An other part of the experimental analysis of the methods is about gaining insights on

the independence of the proposed methods. The motivation for such an analysis is that

it can provide an intuition for the potential that the optimal fusion of methods could

provide. Two measurements are provided as indicators of the independence of the examined

methods. The first is Spearman’s footrule [26] measured between the retrievals of two

methods. In Fig. 3.12 Spearman’s footrule applied on all pairs of methods for the GW

test-set can be seen. Spearman’s footrule quantifies the similarity between rankings of

samples for every query and therefore it is directly influenced by a methods performance.

The lower the value the more similar it is and vice-versa. The diagonal in the matrix for

this reason has

Spearman’s footrule does not account for the performance two methods demonstrate.

In order to provide a measurement of how similarly do two methods perform a second
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Figure 3.12: Normalised Spearman’s footrule between methods. Higher values mean more
disagreement in ranking the samples from easy to hard.(The figure is best viewed in color
and with PDF magnification)

quantification of the independence of analyzed methods is introduced, which compensates

differences in the methods performance. For every method, the average precision is

calculated for every query. The query samples are then labelled as 0 if their average

precision is lower than the median and as 1 if their average precision is greater than

the median average precision. As an estimate of the dependence, Pearson’s correlation

is measured on the query-samples labellings. This measurement in effect quantifies the

agreement of two methods on which are the easy samples to retrieve and which the hard.

In Fig. 3.13 the correlations on the labelling of the GW test-set can be seen. In both

figures, a random retrieval is added to provide context and scale.
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3.3.7.2 Method Fusion

Although early fusion with a supervised learning framework would better use the method

independence, development of such a method would go beyond the scope of this assay. A

naive late fusion of all methods is presented as an indication of the potential in method

fusion. In (3.9) the fusion of a pair of methods M1, M2 can be seen.

max∀n ∈ [1..100]R(
n ∗m1 + (100− n) ∗m2

100
) (3.9)
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where m1 and m2 are the distance matrices of each method and R() is the mAP obtained

given a distance matrix. The fusion reported is the best weighted sum of distance matrices

for every pair of methods. In Fig.3.14 the results of all fusions can be seen. Each cell in the

table contains the mAP of the best fusion as well as the improvement the fusion introduces

over the best of the two methods. In Fig. 3.15 the optimal coefficients for each method

M1 can be seen. The high performing methods see negligible improvement through fusion

with other methods. The most significant improvement achieved by the employed late

fusion is between LBP and HOG. We were quite surprise to see the fusion result between

FisherCCA and PHOCNET, which could be nice to investigate further in details in future.

3.4 Conclusions and Discussion

3.4.1 Conclusions

Several conclusions can be drawn from the experiments presented above.

The most important property of methods is the level of learning they employ. The

methods using advanced machine learning techniques PHOCNET and FischerCCA stand

out in performance. PHOCNET demonstrates superior performance but FischerCCA

appears to be more robust both on unseen data as well as on significant distortions on

the BCN segmentation. Other than using supervised learning, both these methods also

share the PHOC representation to which high performance should also be attributed. It is

uncontested that if enough groundtruth and computational resources are available, one of

these two methods should be used.

BoVW is the sole method analyzed employing unsupervised learning. Its performance

is high and it might be the optimal solution in cases such as groundtruth for data not

being available.

LBP and HOG features performed well given that they are pure feature extraction

methods. More than that, their speed as well as their out-of-the-box applicability of

heterogeneous data is well demonstrated in the cross-dataset experiment. At the same time

LBP proved to be the fastest method and HOG a close second. The high improvement

the fusion of these methods provides is also an interesting find.

DTW method compared to other methods performs poorly both in mAP as well as

execution time. It is the only method that has a quadratic complexity with respect to the

word image width and is intractable for any dataset of a significant size.

In what concerns performance measurement, the two metrics that demonstrated

better behavior are mAP and rPrecision. These two metrics demonstrated remarkable

correlation between them and although rPrecision appears less saturated, mAP was

preferred because it is more broadly used. The end-to-end performance extrapolation
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Figure 3.14: mAp increase by weighted linear fusion of methods. The final mAP achieved
is marked as a percentage along with the increment in performance due to the fusion.
(The figure is best viewed in color and with PDF magnification)
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Figure 3.15: Coefficients of the optimal fusion for every pair of methods.

measurements demonstrate that the actual curves of IoU to performance need to be

computed as the assumption they are correlated brings unpredictable errors. The method

independence analysis provided insights into how different methods are between them.

The following naive late fusion could not harvest the variability of independent methods,

in opposite, very similar methods such as LBP and HOG demonstrated the greatest

improvement by naive late fusion. As for the future work we will try to increase the

document types as well as the number of samples.

3.4.2 Discussion

The experimental work presented in this chapter revolves around the fundamental hypoth-

esis that IoU is a valid quantification of the quality of segmentation. The hypothesis is

validated by the fact that the conditional extrapolation of end-to-end pipeline performance

predicts well the empirical measurements. The validation of the IoU hypothesis, indicates

that the distortion engine used, although not perfect, is realistic enough to generate good

estimates.

When thinking of real world applications in the near future, representative groundtruth

for a digital library of substantial size should be considered unfeasible. Methods that rely
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heavily on vast quantities of annotated data, are probably inapplicable. The cross-dataset

experiment models this scenario better. In the cross-dataset experiment, LBP is a close

second to FischerCCA mAP while being three times faster. This makes LBP as good if

not better for such cases.

Top performing networks, achieve almost perfect performance and although both

GW and BCN datasets could be considered ”solved”, our experiments suggest that the

evaluation protocol using only perfect segmentation is probably too lenient.

If one looks at each of the publications in which the compared methods are described,

he will observe some differences between the performances reported there and the per-

formances reported in this study. These differences happen because of deviations in the

experimental procedures followed in each work, but in some cases are greater than differ-

ence in performance methods demonstrate between them. A fundamental contribution of

this work, was applying the exact same evaluation protocol on all methods. More than

this, the evaluation protocol was designed even before selecting the methods to compare.

The principal design goal was modularity and to maximize the number of methods that

can be compared.
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Chapter 4

Writer Identification

4.1 Introduction

4.1.1 Problem Description

Writer identification is the problem of identifying the authorship oftext samples based on an

index of examples of text written byknown authors [13]. It has a long tradition in forensics

where it has been accepted by the court as evidence for more than a century. From a pattern

recognition perspective, three variations of the problem of writer identity are defined: writer

identification, writer verification, and writer retrieval. Writer identification is the most

popular of these, and in most cases a method can be modified from solving one to solving

another with little effort. From a Document Image Analysis (DIA) perspective there are

other applications such as scribe identification for historical documents . Handwriting has

been considered as a behavioral biometric [42, 8, 13], although experiments on disguised

handwriting have proved to confuse both graphonomists, and automatic systems [64].

Despite the attention writer identification has received from DIA researchers in recent

years, it remains a difficult problem due to variations in writing style and conditions, and

the myriad problems arising from variations in image quality due to document degradation

and other incidental factors.

4.1.2 Use cases

4.1.2.1 Historical Documents

The most important dichotomy of writer identification systems is between historical and

conteporay writer identification. Historical writer identification is principally done to help

researchers in the humanities to trace the origins and history of documents and assist in

general paleographers. In recent years new datasets used in historical writer identification

retrieval competitions, have raised the number of of identitities to several thousants. A
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(a)ICDAR 2013 Writer Identifciation Competition [62]

(b)IAM[67] (c)IRHHD[18] (d)IRHHF[83]

(e)CVL[51] (f)KHATT[63]

Figure 4.1: Samples from Writer Identification datasets
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mojor problem in historical datasets is that the background texture, the pygment color,

material degradations, and varius other factors, can be suspected to be responcible for

the performace measured on datasets. To put it simply, the question is: ”are the systems

finding similar writers or similar pages”?. Recent competitions [18, 83] have addressed

this issue by having single document and multidocument modalities. Along with writer

identification there are also related tasks such as dating as classifying the script style as in

the CLaMM [20] dataset and the 2017 ICDAR competition.

4.1.2.2 Contemporary Handwriting Writer Identification

Contemporary writer identification is mostly applied to graphonomics and other biometric

applications. Contemporary handwritting datasets are usually curated under controlled

and homogenious conditions. In Fig. 4.1 (a), (b), (e), and (f) samples from contemporary

datasets can be seen. These datasets are usually aquired in controlled conditions beeing

consistent in the writing medium, the aquisition resolution, and even the text beeing

writen. This consistency in the sample aquisition process, allows us to infer that whatever

performance is the actual handwriting style as there no obvious other confounding factors.

These datasets allow for a more profound understanding of the actual nature of handwriting

and the detectabillity. In what concerns the biometric nature of handwriting, according

to [24] ”Any human physiological or behavioral trait can serve as a biometric characteristic

as long as it satisfies the following requirements: 1) Universality. Everyone should have

it; 2) Distinctiveness. No two should be the same; 3) Permanence. It should be invariant

over a given period of time; 4) Collectability”. While we can assume universality in most

social contexts and writer identification systems have prooven distinctive with quite high

accuracy, to our knowledge there are no datasets containing handwriting samples aquired

over different points in time, and therefore there is no proof of the permanence of the

handwriting style over time or eg in diferent hours of the day, under different stress levels

etc. In what concerns collectabillity, in most scenarios, aquiring a sample can always be

done as long as the subject concents, which acts like an ethical safeguard whith respect to

the use of biometrics.

4.1.3 Image Retrieval vs. Image Classifcation

Depending on the exact aplication in mind, writer identification can be framed in many

diferent ways and optimal methods might differ from case to case. The most strainght-

forward aporach is to model this problem as a supervised-learning classification problem

as training image claassifiers is quite simple and performs well. Unfortunately framing

writer identification as a classification problem has several failings:

• Every time the database changes even slightly, the hole model has to be retrained
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• The ouputs of the model are not interpretable

• Several samples per identity are required

• Discriminative classifiers don’t scale well to the extremely large class numbers require

In most cases writer identification is framed like an image retrieval problem: rank a a

database of images containing writing samples of known identities by a similarity metric

with respect an handwriting sample query image. A retrieval method can always be

perceived as a classification method if the database is labeled by a KNN classifier and

therefore retrieval systems are also classification systems. In the retrieval setting, it is

assumed that the data on which the system will be employed or, in the case of experiments

the test-set, identities are not known in any away when the method is tuned. Datasets

curated for the retrieval optionaly provide a train-set with different identities from the

train-set so that methods can be trained if they need to. When dealing with very large

sets of identities, whether it is historical or contemporary, it is very important that there

are no duplicate identities labeled as diferent ones; this sets a limit into the process with

which databases can be agregated.

4.1.4 LBP for writer identification

LBP are dense local texture descriptors that can be used to describe the local structure of

images [74]. They have been successfully applied to many of the major computer vision

problems, as well also been applied to specific problems in Document Image Analysis,

including optical font recognition and writer identification. LBP were originally designed

for graylevel images, and despite their widespread application to bilevel document images,

it remains unclear how LBP should be computed on such images in order to remain

discriminative and robust to noise.

In this work we introduce Sparse Radial Sampling LBP (SRS-LBP), a variant of

LBP that is better suited for thetask of writer identification and text-as-oriented-texture

classification in bilevel images in general. Our main contribution is the introduction of

sparse radial sampling of the circular patterns used for LBP construction. This allows

sampling of patterns up to very large radii for each pixel at low computational cost, and

also avoiding vocabulary compression techniques such as rotation invariant or uniform

patterns commonly applied to standard LBP representations. We show that using a single

local descriptor, our SRS-LBP variant densely extracted and pooled over the entire image,

results in a low-dimensional feature representation that yields SotA performance at a

fraction of the cost of other techniques. Our representation is compact and extremely

efficient to compute.

52



4.1.5 State of the Art Evolution

Automatic writer identification has been researched for many decades. While at some

point methods were qualifying offline as oposed to online writer identification [13], in

recent years, writer identification unless qualified, refers to refers to offline. Recent online

methods have been published using CNNs [105] but this study focuses on offline data.

Due to the fast pace of innovation, heterogenious evaluation protocols, and differently

framed use-cases, the state of the art can not be defined in an absolute sence but it is rather

nuanced. Methods and their performance vary in performance, computational resources,

the tradeoff between performance for the first match and the last match. Methods in the

literature have been evolving and could be perceived as belonging to families of methods

although this organisation.

4.1.5.1 Hinge based

In 2007 Schomaker et al. propose allographic features for writer identification their

features were based on radial PDF which were encoding texture features. For an overview

of previous to this work on writer identification, we refer to their excellent survey [13]. This

method would extract the contours of every connected component and actually would even

segment multiletter of cursive script into letter sized segements. Their best performing

custom-made features were called contour-hinge which were encoding two angles for every

point on the contours and therefore an aspect of local curvature as well as the local

slant. Another variant of this family of methods [36] was proposed in a segmentation-free

setting by sampling This family of methods has been further developed recently [43] and

participated in the 2019 writer identifcation competition but I can no longer be considered

SotA.

4.1.5.2 Codebook based

These methods operate by building a codebook of shapes which are clusters of graphemes

or similar sized shapes, features are than extracted from these codebooks. The idea of a

codebook of shapes aproximating letters was previously in the similar task of language

detection [? ]. The first of these methods was presented ny Jain and Doermann [46]. In

[47] proposed pseudo letters ,jain2014 which was the SotA until 2015. In [30] Fiel compiled

codebooks using SIFT features instead of pseudo words.

4.1.5.3 Texture generation

The principal aproach of these methods is to generate texture images from a sample and

than perform texture analysis on them. This aproach was poroposed in [32, 33] where

GSCM and gabor features were used to analyse texture images. Bertolini et al. [8] used
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the same aproach employing LBP in a comparative study with Local Phase Quantization

and concluded that LPQ are performing better. While the specific method was applied

successfully in music scores, for generic writer identification SotA performance has not

been demonstrated.

4.1.6 CNN based versions

CNN can not be directly employed for writer identification as the retrieval scenario makes

the use of discrimitave CNNs unusable. In [16] Christlein employes CNN features trained

discriminately on the classes of the train-set and than encodes them with the use of GMM

supervectors in order to retrive identities in test-set. In [17] clustering on document images

is used to create surogate classes on which ResNets [41] are trained discriminatevely and

than their penultimate layer is used with a VLAD encoding. In [14] ResNets are used

in pipelines with exemplar SVM [65] and achieve SotA over contemporary data. In [19]

mdodified generalised max pooling [70] and employed as a differentiable neural network

layer; the network was than used in end-to-end training for handwrtting style classification.

4.2 Sparse Radial Sampling LBP

4.2.1 My contribution with respect to the State-Of-The-Art

Our adaptation of the LBP consists of replacing the sign operator with a threshold

statistically derived from each image, the use of sparse radial sampling at each radius, and

the use of very large radii when computing LBP. Though we concatenate LBP histograms

extracted at many radii, sparse radial sampling ensures that the final LBP features are

compact.

We apply my SRS-LBP to writer identification using a standard LBP pipeline. SRS-

LBP are computed at each location in an image, and these features are pooled over the

entire page image. Our approach requires no character segmentation and is based on a

single, compact feature that is extremely efficient to extract. In this sense it stands out

with respect to SotA approaches based on complex character segmentation, clustering,

and extraction of multiple feature descriptors [48].

LBP feature extraction consists of two principal steps: the LBP transform, and the

pooling of LBP into a histogram representation of an image. The LBP transform maps

each pixel to an integer code representing the relationship between the center pixel and the

pixels of its neighbourhood. It encapsulates the local geometry at each pixel by encoding
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(a) LBP4,8 (b) [LBP1,8, ...,LBP12,8]

Figure 4.2: Proposed LBP transform sampling patterns used in in conjunction.

binarized differences with pixels of its local neighbourhood:

LBPP,R,t =
P−1∑
p=0

st(gp − gc) ∗ 2p, (4.1)

where gc is the central pixel being encoded, gp are P symmetrically and uniformly sampled

points on the periphery of a circular area of radius R around gc, and st is a binarization

function parametrized by t. The sampling of gp is performed with bilinear interpolation.

The use of local differences in (4.3) endows LBP with a degree of illumination invariance.

In our LBP definition, s is a simple threshold:

st(x) =

{
1 : x ≥ t

0 : x < t
, (4.2)

where t, which in the standard definition is considered zero, is a parameter that determines

when local differences are considered ”big enough” for consideration.

LBPP,R,t can be seen as a transform from the graylevel domain to a domain of discrete

labels encoded over a vocabulary of 2P integers.

In this section we describe our approach to LBP extraction based on sparse radial

sampling. We follow the development and notation of [74].

4.2.2 The LBP transform

LBP feature extraction consists of two principal steps: the LBP transform, and the pooling

of LBP into a histogram representation of an image. The LBP transform maps each pixel

to an integer code representing the relationship between the center pixel and the pixels of
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its neighbourhood. It encapsulates the local geometry at each pixel by encoding binarized

differences with pixels of its local neighbourhood:

LBPP,R,t =
P−1∑
p=0

st(gp − gc) ∗ 2p, (4.3)

where gc is the central pixel being encoded, gp are P symmetrically and uniformly sampled

points on the periphery of a circular area of radius R around gc, and st is a binarization

function parametrized by t. The sampling of gp is performed with bilinear interpolation.

The use of local differences in (4.3) endows LBP with a degree of illumination invariance.

In our LBP definition, s is a simple threshold:

st(x) =

{
1 : x ≥ t

0 : x < t
, (4.4)

where t, which in the standard definition is considered zero, is a parameter that determines

when local differences are considered ”big enough” for consideration.

LBPP,R,t can be seen as a transform from the graylevel domain to a domain of discrete

labels encoded over a vocabulary of 2P integers. In Fig. ?? sampling patterns of popular

and proposed LBP can be seen where gc is marked as a black dot and gp are marked as

blue dots.

4.2.3 Sparse sampling LBP on bilevel images

The original LBP was designed for graylevel images. Though text images are often

fundamentally bilevel by nature, the bilinear interpolation used to extract neighbouring

pixel values gp renders pixels non-binary and standard LBP is (at least mathematically)

applicable. However, images of a bilevel nature such as text even when they are acquired on

the graylevel domain do not benefit much from illumination invariance. Another problem

is that large gc− gp differences are more rare than small ones and so treating both of them

the same introduces noise.

Rather than use arbitrary or empirically derived threshold t to re-binarize differences in

the computation of LBP in (4.3), we propose to apply Otsu’s method to estimate optimal

threshold t̂ from the statistics of image differences themselves:

t̂ = arg minω(d1,t)σ
2(d1,t) + ω(dt,P )σ2(dt,P ) (4.5)

where d1,t is the set of |gc − gp| less than threshold t̂, dt,P is the set of |gc − gp| greater

than the threshold, ω is the probability of d... and σ2 its variance. The use of t̂ yields a

unified solution to both of these problems. The Otsu threshold of the differences effectively
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separates the significant differences from insignificant ones. Note that this formulation

works for bilevel and graylevel source imagery.

Sparse radial sampling is integrated into our descriptor by holding constant the number

of points sampled at each radius:

SRS-LBPR = LBP8,R,t̂. (4.6)

Keeping P = 8 constant (i.e. sparse radial sampling) allows us to sample more radii while

maintaining a compact code.

4.2.4 Processing pipeline

Our complete processing pipeline is comprised of the following steps:

1. SRS-LBP transformation: each image pixel is transformed to several SRS-LBP

according to (4.3) and (4.6). This encodes the input image as several 8-bit images

(one for each radius).

2. SRS-LBP pooling: a histogram of SRS-LBP codes is computed for each radius.

We discard the zero pattern which corresponds to foreground- and background-only

patterns, and then L1 normalize and concatenate all histograms. The result is a

block-normalized descriptor of size 256× |R|, where |R| is the number of radii.

3. PCA projection: the block-normalized descriptor is projected onto the first N

principal components computed through Principal Component Analysis (PCA).

4. Normalization: the Hellinger kernel is applied to the projected descriptor, followed

L2 normalization. This combination has been shown to improve performance of a

variety of image recognition techniques and specifically on writer identification [15].

Note that we use none of the standard vocabulary compression techniques such as

rotation invariance or uniformity used in [74] to make possible the usage of larger radii.

Avoiding these techniques is one of the main motivations for SRS-LBP because, in the case

of textual images specifically, there is important information in the discarded patterns.

4.3 Experimental results

In this section we report on a series of writer identification experiments we performed to

evaluate the potential of SRS-LBP and to compare its performance with the SotA.

4.3.1 Datasets

We use a range of publicly available benchmark datasets for our experimental evaluation.
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4.3.1.1 ICDAR 2013:

The dataset from the ICDAR 2013 competition consists of 1,000 samples from 250 persons

who each contributed two samples in English and two in Greek [61].

4.3.1.2 CVL:

The CVL [51] dataset consists of 1,550 samples from 310 persons who contributed four

samples in English and one in German. The samples were acquired in color with different

pens. Although 27 of the writers contributed two more texts in English, it is common

practice to remove them from consideration.

4.3.1.3 ICHFR 2012:

The ICHFR 2012 dataset consists of 400 samples from 100 subjects contributing two

samples in English and two samples in Greek [60]. We use this dataset for baseline

performance analysis.

4.3.2 Evaluation protocols

Our approach uses a nearest neighbor classifier, and evaluation is based on leave-one-out

cross validation. For each sample represented in feature space, we rank all remaining

samples by their distance to that sample. Two important performance measures are the

top-n soft criterion, which means having any image of the same class as the query sample

in the first n most ranked results, and the top-n hard criterion which means having only

images of the same class as the query sample in first n samples [61, 60].

Comparison with the SotA is complicated by the wide variety of evaluation protocols

for writer identification used by international benchmarks and contests. Just indicatively

on the three most recent competitions in writer identification, methods had to be, a

similarity measurement [60], a trainable classifier [64], and a feature extraction method

accompanied by a metric [61].

These protocols were designed not only with performance analysis in mind, but also

to accommodate the black-box scenarios in which these contests were performed. In our

evaluation we employ two evaluation protocols.

One we refer to as metric and is a protocol totally compatible with measurements

in [60, 61] (e.g. we only consider pairs of samples, never the entire dataset as a whole).

The other we call l1out and is the average performance of a leave-one-out cross-

validation in a trainable classifier sense which is compatible with [64]. In practice, the

difference between l1out and metric is that l1out allows access to all the samples in the

evaluation dataset while metric restricts access to each sample alone.
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Figure 4.3: Comparison of SRS-LBP with baseline LBP.

For our approach, the difference between the two amounts to whether PCA analysis

was done on the evaluation dataset (and thus learning from it) or an independent dataset.

In all experiments other than comparison with the SotA, the evaluation protocol used

is l1out. Since metric is a stricter protocol than l1out, all SotA performance numbers

derived from a protocol that explicitly adheres to metric are marked with an asterisk (*).

4.3.3 Baseline performance analysis

Here we report on a number of baseline experiments we performed to quantify the

performance of our approach and to estimate key parameters of our SRS-LBP. All

experiments in this section were performed on the ICHFR 2012 dataset.

4.3.3.1 Comparison of SRS-LBP and standard LBP

We consider four standard LBP variants in these experiments: LBP3×3 [96], LBP8,1 [74],

LBP16,2 [74], and a concatenation of LBP [LBP8,1,LBP16,2] [74]. For SRS-LBP we consider

two variations: a single radius SRS-LBP8,4 and a multi-radius [SRS-LBP8,1, ..., SRS-LBP8,12].

In Fig. 4.3 we report the error rates of top-1 accuracy leave-one-cross-validation

for standard LBP and proposed SRS-LBP. In addition to the full LBP vocabulary, we

also show results for each LBP variant with combinations of vocabulary compression

commonly employed for standard LBP. From this figure, we see that SRS-LBP outperform

standard LBP in all compression modalities. Note also that SRS-LBP are less sensitive to
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Table 4.1: Comparison with the SOA on ICDAR 2013
Method Top 1 Top 2 Top 5 Top 10 Hard 2 Hard 3

Tebessa-C* [27] 93.4 96.1 97.8 98.0 62.6 37.8
CS-UMD-a* [47] 95.1 97.7 98.6 99.1 19.6 7.1
Super Vector [15] 97.1 NA NA NA 42.8 23.8

SRS-LBP8,4 l1out 97.2 98.2 98.9 99.2 52.9 29.2
SRS-LBP metric* 96.9 98.5 99.0 99.5 54.5 32.9
SRS-LBP l1out 98.5 99.1 99.5 99.6 63.8 38.3

Table 4.2: State-of-the-art on ICDAR 2013 Greek
Method Top 1 Top 2 Top 5 Top 10

Tebessa-C* [27] 93.1 97.0 99.5 99.5
Delta-n Hinge [42] 93.4 NA NA 98.4
CS-UMD-a* [47] 95.1 97.7 98.6 99.1
Multi Feature* [48] 99.2 99.6 99.8 99.8

SRS-LBP8,4 l1out 96.6 98.0 99.6 99.8
SRS-LBP metric* 96.6 97.8 98.8 99.4
SRS-LBP l1out 98.4 99.2 99.4 99.8

compression than standard LBP. Compression is usually applied to standard LBP in order

to render vocabulary sizes tractable. Due to their sparse nature, SRS-LBP are already a

compact and tractable without resorting to compression.

4.3.4 Comparison with the State-Of-The-Art

In recent years the topic of writer identification has seen a lot of activity. Contests,

datasets, as well as several top performing methods have been published. In this section

we compare SRS-LBP with the SotA in writer identification.

Table 4.3: State-of-the-art on ICDAR 2013 English
Method Top 1 Top 2 Top 5 Top 10

Tebessa-C* [27] 91.5 95.5 97.5 98.0
Delta-n Hinge [42] 93.4 NA NA 97.8
CS-UMD-a* [47] 95.2 98.2 98.8 99.2
Multi Feature* [48] 97.4 97.8 98.6 98.8

SRS-LBP8,4 l1out 95.2 96.4 98.0 98.4
SRS-LBP metric* 95.6 96.8 98.4 99.0
SRS-LBP l1out 97.2 97.4 98.2 99.0
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Table 4.4: State-of-the-art on CVL using only 4+1 samples per writer
Method Soft Top 1 Soft Top 2 Soft Top 5 Soft Top 10 Hard Top 2 Hard Top 3 Hard Top 4

Tebessa-C* [27] 97.6 97.9 98.3 98.5 96.1 94.2 90.0
Multi-feature* [48] 99.4 99.5 99.6 99.7 98.3 94.8 82.9
Super Vector [15] 99.2 NA NA NA 98.1 95.8 88.7

SRS-LBP8,4 l1out 99.0 99.2 99.4 99.5 97.7 95.2 86.0
SRS-LBP metric* 98.6 98.8 98.9 99.1 97.8 94.6 85.3
SRS-LBP l1out 99.4 99.4 99.5 99.6 98.6 97.0 90.1

Table 4.5: State-of-the-art on IAM with 301 ∗ 2 samples
Method Top 1 Top 2 Top 5 Top 10

CS-UMD-a* [47] 96.5 97.2 NA 97.3

Delta-n Hinge[42]1 93.2 NA NA 97.2
Multi Feature[48] 94.7 95.9 98.1 98.7
SRS-LBP8,4 l1out 93.2 93.9 95.2 95.2
SRS-LBP metric* 94.7 95.2 96.0 96.3
SRS-LBP l1out 94.9 95.2 95.8 96.3

4.3.4.1 Performance on ICDAR 2013

In table 4.1 we compare the performance of SRS-LBP with the SotA on the ICDAR 2013

contest dataset. In Table 4.2 and Table 4.3 we compare our performance with the SotA

on the Greek and English portions of the ICDAR 2013 dataset. As of this writing, the

Multi Feature method represents the SotA in writer identification [48]. This technique is

based on character segmentation and clustering (which is one reason they do not report

results on the mixed-language dataset) and multiple features extracted from characters. It

is interesting that our approach, which is based on dense extraction of a single feature,

performs comparably to this more complicated technique.

4.3.4.2 Performance on IAM

In Table 4.5 we compare the performance of SRS-LBP with the state-of-the-art on the

IAM dataset. In contrast to other datasets, SRS-LBPs do not outperform [47] on IAM. A

possible reason might be the fact that samples vary between writers and that there are

only two samples per class and thus there is only exactly one relevant result per query.

4.3.4.3 Performance on CVL

Finally, in Table 4.4 we compare the performance on SRS-LBP with the SotA on the CVL

dataset. On this dataset we have the most complete comparison with SotA approaches

for both hard and soft criteria. Our approach performs equivalently to the Multi Feature

technique of [48] for top-1 evaluation criterion, and we outperform all others approaches

for the hard recognition evaluation criterion across all ranks which is associated with writer

retrieval.
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Figure 4.4: Individual and cumulative contribution of each radius to the top-1 accuracy.

4.3.5 Ablation Studies

The proposed SRS-LBP demonstrates to be a powerfull method but in order to get better

insights for the performance of the method, several ablation studies were caried out.

4.3.5.1 Radii Contribution

To better understand the contribution of each radius and principal component to the

robustness of our descriptor, we decomposed performance as a function of each. In

Fig. 4.4 we show the accuracy of each radius independently and cumulatively (i.e. by

concatenation). From this, we see that even large radii continue to contribute to improved

recognition performance. Note also how, as radii grow beyond 3, the performance of the

uniform-compressed features (in blue), drops quite sharply compared to the non-compressed

features (in black). This hints that uniformity compression doesn’t scale to large radii.

Since performance continues increasing until about twelve sparsely sampled radii, we use

this configuration of SRS-LBP = [LBP8,1, . . . ,LBP8,12] for all subsequent experiments.
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Figure 4.5: The cumulative contribution principal components have in top-1 accuracy.

4.3.5.2 Contribution of principal components

PCA in the pipeline pipeline improves recognition accuracy in all cases. In Fig. 4.5 we

plot of top-1 writer identification accuracy as a function of increasing PCs. Although

performance quickly begins to saturate, it improves steadily until around 200 principal

components. For all subsequent experiments we use 200 principal components, resulting

in a very compact image descriptor of only 200 dimensions.

Another way to get some intuitions about the effect of PCA compression on historams

of LBP can be seen in Fig. 4.6. What is specificly show is for the 8 components with the

highest variance (C1-C8) an image is shown where the columns represent the participation

of each specific pattern (0-255) and and the rows represent the the radii. The pattern

numbers are each pattern’s representation as a bitstring and therefore two consecutive

patterns can be quite different. Due to the nature of the PCA and because retrieval

happens using PCA, the signs of the weights should not be interpreted to be associated

with impact of the pattern frequency, the impact of each pattern at a specific radius can

be infered by the absolute value of the component coefficients. What stands out in Fig. 4.6

are the vertical stripes which indicate that a specific pattern is treated consistently across

a range of radii. It can be seen that in most cases there are two main radii clusters, small

radii between 1 and 4 pixels, and large radii between 4 and 12 pixels. It can be suggested
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Figure 4.6: Pattern and Radii contribution for 8 most important componets in icdar2013
dataset.

that this dichotomy of the radii is associated with the stroke width.

4.3.5.3 Rotation sensitivity

Tolerance to small rotations can be important for text documents, and in the case of

handwritten text the exact orientation of text is probably unknown. To measure sensitivity

to rotation, the ICHFR 2012 data-set was rotated from angles −20◦ to 20◦. For each

rotation, all samples in the non-rotated dataset were used as queries against the rotated

dataset. In Fig. 4.7 we show the sensitivity to rotation of the proposed SRS-LBP pipeline.

An interesting observation in Fig. 4.7 is that while the single radius SRS-LBP performs

nearly equivalently to the multi-radius one, it is more sensitive to rotations.

4.3.5.4 Analysis of the results

It is uncontested that the Multi-Feature method at the moment of writing this paper

is the top performing method on most relevant datasets. While the proposed SRS-LBP

under l1out did achieve to match to the decimal digit, its performance and in the case

of the hard criteria even exceed its performance it should be pointed out that metric

is probably a fairer comparison. Other than the Multi-Feature, SRS-LBP consistently

performs better than state-of-the-art methods in all cases other than the IAM dataset.

The authors speculate that proposed SRS-LBP features being generic texture descriptors

are more sensitive to the the high variation of the stroke width. An other interesting

observation is that there appears to be consistency between the ranking some methods get

in the soft and hard criteria. Looking at tables 4.4 and 4.1, it can be seen that SRS-LBP

and Tebessa-C are consistently the best and second best methods in the hard criteria

while methods such as Multi-Features, CS-UMD-a, and Tsinghua, consistently rank better

in the soft criteria. We speculate that this happens because methods that perform better
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Figure 4.7: Tolerance of SRS-LBP to rotations of the image.

on the hard criteria, have denser clusters for each class.

4.4 In depth analysis of the SRS-LBP

While it has been proven experimanetally that SRS-LBP performs better than generic

LBP, in text image classification tasks the reasons of the superior performance might

still be ellusive. In order to get a better understanding of the SRS-LBP and why it is

representation better suited for text one can look at several perspectives. In the following

visualisations, each pattern is represented by a distinct color and thus the relationship

between each pattern and the shape of the image can be seen. The 0 pattern (”Not grater

than any neighbor”) is marked as black and the 255 pattern (”Grater than all neighbors”)

is marked as white. The key features of the SRS-LBP with respect to the standard LBP

are:

• No vocabulary compression via uniformity or roation invariance

• Otsu thresholding istead of positive-negative

• Sample multiple radii independently

• Employ very large radii (> 4 pixels) in adition to small-ones
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Input Image 160x160 Radius 1 T=0 R=1 T=Otsu R=8 T=Otsu

Input Image 210x210 Radius 1 T=0 R=1 T=Otsu R=8 T=Otsu

Figure 4.8: SRS-LBP patterns on both printed and handwritten text images.

SRS-LBP8,1 SRS-LBPri
8,1 SRS-LBP8,1 SRS-LBPri

8,1

Figure 4.9: Effect of rotation invariance in SRS-LBP patterns
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Input Image 50x50 Radius 1 T=0 R=1 T=Otsu R=8 T=Otsu

Figure 4.10: Orientation and radius affecting SRS-LBP patterns

Input Image 500x500 Radius 1 T=0 R=1 T=Otsu R=8 T=Otsu

Figure 4.11: Moire patterns in very smooth gradients
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Input Image 50x50 Radius 1 T=0 R=1 T=Otsu R=8 T=Otsu

Input Image 50x50 Radius 1 T=0 R=1 T=Otsu R=8 T=Otsu

Figure 4.12: Tolerance of SRS-LBP to high frequency noise.
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Input Image 50x50 Radius 1 T=0 R=1 T=Otsu R=8 T=Otsu

Figure 4.13: Steep vs. mild gradient representation in an image

4.4.1 No Rotation Invariance Compression

In Fig. 4.9 the effect of rotation invariance compression in to the representation can be seen.

In effect the orientation of the pattern is the most informative part when the stroke-width

of the text is larger than the LBP radius. The detrimental effect the compression has on

the descriptive power of the represantion can be seen in its most extreme form in synthetic

images but the effect is dominating real-world samples as well. In Fig. 4.10 and Fig. 4.11

the way the angle of the local image gradient produces specific patterns can be seen. It

should be pointed out that almost all non-zero patterns occuring are uniform patterns.

4.4.2 The absence of patterns

The LBP descriptors are a bit counter-intutive with respect to the steepness of significant

gradients. As can be seen Fig. 4.13 all gradients above the significance threshold produce

a uniform pattern regardless of their magnitude. Due to the converse of the gradient

theorem[104], along any direction the sum of the gradient must be zero. If along a

direction there is a disparity between the slope of ascending and the slope of descending

gradients, the smoother direction of the gradient will occupy more pixels and therefore

will be overrepresented in gradient. This allows for histogram vlues of uniform patterns to

encapsulate information similar to the HOG image descriptor[23]. Otsu thresholding of

the LBP in conjuction with large radii will supress regions of very smooth gradients and

cast the to the 0-pattern.
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Chapter 5

Script Identification

5.1 Introduction

As document analysis systems are evolving, their multi-lingual capabilities are becoming

more important. Script identification is a key element in multilingual system pipelines.

Other than performance in detecting the script and the language of text in such pipelines,

the position this step occupies in the pipeline dictates whether it will assist or be assisted

by other steps in the pipeline.

The earlier in the pipeline script and language identification occurs the better. On

several modalities of text identification prior knowledge is typically employed in the form of

a language model. Even in the most generic case the alphabet from which the text consists

must be known or assumed. While assuming that the language is a given, a reasonably

condition in controlled conditions, automatic systems associated with automatic and

unconstrained acquisition can not make such assumptions. Script detection as a problem

is increasing in importance, as well as the attention it gets from researchers.

In this work we address the problem of script or language identification in several

modalities such as video-text, scene-text, or handwritten text, and introduce a method

consisting of hand-crafted features and a fully connected deep neural network. We

demonstrate that k-NN classification over the features obtained from the first layer of the

deep neural network equals or outperforms the deep network classification. The principal

contributions of this work are: the introduction of a method that uses a deep neural

network on top of hand-crafted features for script identification, a method to perform a

purely visual identification of language, even for languages sharing the same script, and

the use of the activations of the employed neural network as a learned metric in order to

generate more adaptable classifiers.
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5.2 Script IdentitificationSotA

Script detection has been an open problem for several decades. For the contents of this

chapter, script identification refers to identifying the system of writing, the alphabet used

in a sample, while language identification refers to identifying the language given a text

sample. The above definition produces ambiguities on some cases, yet those two notions

from a pattern recognition perspective are very different. Script identification implies

focussing on detecting symbols, while language identification implies detecting some specific

auxiliary symbols, such as diacritics, and an underlying language model. Several variations

of the problem exist depending on aspects such as the granularity of the data samples, the

number of scripts out of which the systems classify, and the modality of the textual data,

i.e. whether its printed text, handwritten text, scene text etc. For a detailed overview of

script identification before 2009, we refer to [38], which provides a thorough taxonomy of

methods available up to that time. In 2009 Unnikrishnan and Smith [98] demonstrated

that for simple cases of binarized printed text, the problem can be considered solved by a

method developed for the Tessaract OCR engine. Zhu et al. [107] have used codebooks

generated from printed and handwritten data in order to perform handwritten language

identification. Ferrer et al. [29] used the simple LBP3×3 pooled horizontally to perform

script identification. More recently Long Short Term Memory (LSTM) networks have been

used by Ulhasan et al. [97] for separating characters in multilingual text with a granularity

of characters. Mioulet et al [68] also used a bidirectional variant of LSTM networks with a

cascade of script detection, OCR and language models, in order to infer the language even

when two languages share the same script. The ICDAR2015 Competition on Video Script

Identification (CVSI) [87] posed the problem of script identification over superimposed

text in videos ; the four best participant methods were all using Convolutional Neural

Networks (CNN). Shi et al. [90] have also used a deep CNN to address the problem of

script detection in the wild. The CNN approach has the drawback of the need for vast

computational resources as well as large amounts of annotated data. Depending on the

granularity of samples, i.e. character based, word based, text-line based, and paragraph

based, as well as the modality of text, whether it be scene-text, printed documents, or

handwritten texts, script identification can be seen as many problems rather than one.

From this perspective, the problem addressed in this paper, script identification of a word

level granularity on scene-text, is a challenging one that is starting to gain momentum.

5.3 Method

The proposed method consists of a preprocessing step, followed by LBP feature extraction,

and training an Artificial Neural Network (ANN) on these features. The intermediary
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Figure 5.1: Preprocessing and SRS-LBP transform for radius of 3. Data taken from
SIW-10 dataset [88]. 1) Original image, 2)Preprocessed image, 3)SRS-LBP8,3 of input
images and 4)SRS-LBP8,3 of preprocessed images.

layers of the ANN are then used as a generative model to perform classification.

5.3.1 Preprocessing

Before passing images to the LBP transform, each image is preprocessed independently.

Since the LBP transform is applied on a single channel image, instead of luminance, the

principal component of all pixel colors was chosen in order to enhance the perceptual

differences that are not attributed to luminance. In order to have a consistent LBP

encoding between images with a light foreground on a dark background and images with

a dark foreground on a light background, whenever the central band is darker than the

image average, the image is flipped. The assumption is that more foreground pixels will

exist in the central band between 25% and 75% of the image width. In fig. 5.1 rows 1) and

2) demonstrate some examples of the preprocessing. When global pooling and using local

structure features such as the LBP or Histogram of Oriented Gradients (HOG), inverting

the image has an effect equivalent to flipping it across both axes. This means that making

all samples have light background on dark foreground is as important as enforcing all

samples to be properly oriented. In Column (b) of Fig. 5.1 the effect the flipping has on

the LBP transform can be seen.

5.3.2 Local Binary Patterns

For feature extraction the SRS-LBP variant of LBP histogram features is employed. Briefly,

the SRS-LBP embeds a clustering of the center-neighbourhood differences using Otsu’s [75]

method; it also uses a dis-joined approach to obtain a multi-radius feature representation

with linear complexity. LBP have several advantages for script identification: they exploit

the bi-level nature textual images have, they are very fast to compute, and they are pooled

over regions which makes them segmentation-free and an inherently global descriptor of an

image region. In [29] Ferrer et al. extracted LBP features from text-lines by concatenating
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Figure 5.2: Architecture of the Proposed Neural Network

histograms of 4 horizontal stripes. In [88] Shi et al. used a deep convolutional network that

employs horizontal pooling to discard spatial information along the horizontal direction.

In the same respect, and assuming images are either cropped words or cropped lines,

the SRS-LBP were extracted for 3 regions in the images: the upper half of the image,

the central half of the image, and the lower half of the image. The dimensionality of

the extracted features-set is the product of the histogram size, the different radii and

the pooling zones: 28 × 12 × 3 = 9216. In Fig. 5.1, in column (d) a rare example

where the SRS-LBP is fooled can be seen; this happens because the SRS-LBP assumes

that the most significant contrast in an image with text will be the contrast related to

foreground-background transitions.

5.3.3 Classification

The remaining pipeline of the SRS-LBP is an unsupervised learning approach, aimed at

totally different class and samples per class cardinalities. A deep Multi Layer Perceptron

(MLP) is used as a classifier of the feature representation to a given and limited set of

languages. The network consists of 3 fully connected layers plus the input layer. The first

layer maps the 9,216 features to a dimensionality of 1,024, the second layer maps the data

from 1,024 to 512 dimensions and the third layer maps the data to as many neurons as the

number of classes. The output layer can be interpreted as the probability of the presented

data belonging to each class. The activations for the layers are respectively tanh, tanh,

and the logistic function. In Fig. 5.1 a visual representation of the architecture can be seen.

It should be pointed out that the number of parameters of the network varies depending

on the feature vectors dimensionality as well as the number of classes in each dataset used.

In the case of classifying word images to 10 classes, the model has 9,968,138 parameters.

74



5.3.4 MLP as Metric Learning

While the discriminative deep MLP performs well, it is quite restricted by the need of

computational resources for training. More than that, deep networks require datasets of

substantial size and with all classes represented in a balanced way. The other alternative is

to use metric learning techniques, which can have some drawbacks. Metric learning methods

tend to have quadratic and even cubical complexities with respect to feature dimensionality,

therefore an intermediary dimensionality reduction technique must also be used. The idea

of using neural networks dedicated to metric learning is best exemplified by the Siamese

network architecture [12]. While Siamese networks have all the benefits of metric learning

in typical classification tasks, such as digit image classification, the results are lower than

the state-of-the-art classifiers [57]. On the other hand, intermediary activations of CNN

are being used as generic feature extractors which are then classified with off the shelf

classifiers such as Support Vector Machines (SVM) [86]. The work presented in this paper

is greatly influenced by the principal idea in [86] of using intermediary activations of deep

CNN as generic features for standard classifiers in tasks other than what the original

CNN was trained for. Established CNN architectures do not directly preserve the aspect

ratio of samples. In the case of word samples, this means that the same letters could

have a different representation if they appeared in words of different size. There is no

straight forward solution to this problem, i.e. the winning method of the CVSI competition

addressed this problem by performing a sliding window of a fixed aspect ratio in each

word and selecting the window with highest activation [87]. The drawback in such an

approach is that all information outside the maximal activation window is ignored. The

authors propose the use of hand-crafted features that can address the aspect ratio problem.

Specifically the authors use the SRS-LBP histograms as inputs to a deep MLP since the

pooling mechanism of the LBP histograms preserves perfectly the aspect ratio. Instead of

using specialised architectures CNN obtained features, the authors of this paper propose

to use the activations of the early layers in the proposed MLP as learned metrics on the

hand-crafted SRS-LBP features. Building on the idea of [86] the activations of the early

layers in the MLP are used as input to a Nearest Neighbour classifier. Depending on the

dataset, lower levels of the proposed MLP can reach in performance and even exceed its

output layer. At the same time, networks used with this strategy are not limited to classes

available during training. In Fig. 5.3 the error rates of all layers during training of the

proposed MLP on the CVSI2015 dataset can be seen.

5.4 Experiments

In the experimental section we present experiments on script identification and language

identification that demonstrate the potential of the proposed approach.
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Figure 5.3: Training of the MLP.

Table 5.1: Accuracy % on the CVSI Video-text Dataset
Language C-DAC HUST CVC Google CUK Layer 1, 1NN Layer 2, 1NN Layer 3
Arabic 97.69 100.0 99.67 100.0 89.44 98.7 98.4 98.4
Bengali 91.61 95.81 92.58 99.35 68.71 99.6 99.3 99.6
English 68.33 93.55 88.86 97.95 65.69 98.7 98.4 97.2
Gujrathi 88.99 97.55 98.17 98.17 73.39 98.8 95.3 97.2
Hindi 71.47 96.31 96.01 99.08 61.66 100.0 99.6 99.6
Kannada 68.47 92.68 97.13 97.77 71.66 91.0 87.5 90.4
Oriya 88.04 98.47 98.16 98.47 79.14 99.6 99.6 99.6
Punjabi 90.51 97.15 96.52 99.38 82.55 98.1 97.8 97.8
Tamil 91.90 97.82 99.69 99.37 82.55 98.4 98.1 98.1
Telugu 91.33 97.83 93.80 99.69 57.89 98.4 98.1 100.0
Average 84.66 96.69 96.00 98.91 74.06 98.18 97.26 97.9

5.4.1 Video-text Script Identification

The principal experiment to demonstrate near state-of-the-art performance is by comparing

to the methods participating in the CVSI 2015 Video Script Identification [87]. The dataset

contains of 10 languages used commonly in India: Arabic, Bengali, English, Gujrathi,

Hindi, Kannada, Oriya, Punjabi, Tamil, Telugu. The dataset consists of cropped images

containing a single word each. Most words appear to come from overlayed text, but there

are also images that appear to be scene-text. The dataset comes partitioned to a train-set,

a test-set, a validation set, and a small sample-set. For the experiments the test-set

was isolated and used only for testing, the remaining data were mixed and partitioned

randomly for training during the tuning of the proposed deep MLP architecture. While the

competition defines four tasks that are related to different use cases specific to India, such
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Figure 5.4: Confusion matrices for the CVSI dataset. Accuracy of the Nearest Neighbor
for the activations of the first layer (a) and the third layer (b)

Table 5.2: Cross-domain use of deep MLP layers
MLP Train Retrieval k-NN on k-NN on

Dataset Dataset layer 1 layer 2
SIW-10 CVSI 94.8% 76.1%
CVSI CVSI 98.2% 97.3%
CVSI SIW-10 66.4% 47.7%

SIW-10 SIW-10 84.5% 84.6%

as discriminating between languages occurring on the same regions, in our experiments we

only address Task-4, classifying all 10 scripts, as it is the most generic task. In table 5.1

the performance per script of every participant to the competition can be seen along

with the accuracy achieved by each layer. All layers of the proposed deep MLP rank on

average second to the method submitted by Google. While the method of Google, the

state-of-the-art, obtains 98.9% using a CNN, k-NN on the first layer of the deep MLP

obtains 98.2% while layer 2 obtains 97.3% and the output layer obtains 97.9%. In Fig. 5.4

the confusion-matrices between languages for k-NN on the first layer, as well as the output

layer can be seen. What stands out is the non-symmetric misclassification of 7% English

samples as Kannada; all other confusions could be considered negligible. It can also be

observed that layer 1 and layer 2 demonstrate some consistency.

5.4.2 Scene-text Script Identification

While the method was developed for video-text script identification, experiments on how it

would perform on script detection in the wild were performed. We used the SIW dataset.

Two variants of the dataset are publicly available. The SIW-10 [88] contains cropped
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word images in Arabic, Chinese, English, Greek, Hebrew, Japanese, Korean, Russian,

Thai, and Tibetan. The SIW-13 [89] adds Cambodian, Kannada, and Mongolian to the

languages of SIW. SIW-10 is partitioned in a train-set of 8,045 samples and test-set of

5,000 images while SIW-13 9,791 and 6,500 respectively. Brief experimentation suggested

that the partition of SIW-13 is not compatible with SIW-10, as test samples from SIW-13

appear to be in the SIW-10 train-set. At the time of writing this paper the state-of-the

art performance on the particular dataset is 94.6% and is achieved by the Multi-stage

Spatially-sensitive Pooling Network (MSPN) method introduced in [88]. Briefly, MSPN

is a CNN developed specifically for script identification which introduces among other

things a horizontal pooling layer. In Fig. 5.5 a comparison of the proposed deep MLP

with state-of-the-art methods for script detection in the wild can be seen. The proposed

method achieved an error rate of 13.4% in classification accuracy which is significantly

worst than the state-of-the-art 5.6%. Yet, this experiment allows an analysis in to the

workings of the proposed deep MLP and the benefits of using k-NN on the intermediary

activations. The initial SIW-10 dataset was augmented by the three new languages of

SIW-13. An MLP trained on the SIW-10 was used to perform k-NN on the augmented

dataset.

In Fig. 5.6 a confusion matrix of employing the first layer of the MLP with k-NN on

the SIW-10 dataset augmented by the 3 languages of SIW-13. The overall accuracy is

83.7%, while for the initial 10 scripts it is 84.5%. While the second layer performed better

than the first on the dataset for which the model was trained, 84.6%, it proved to be less

generic than the first layer and got 77.3% when applied on all 13 classes.
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Figure 5.6: Confusion matrix of k-NN on 13 scripts form the SIW datasets using the first
layer of a deep MLP trained on 10 of them.

The fact that the classes used to train the model have an average accuracy of 82.9% and

the unseen classes have an average accuracy of 85.1% demonstrates the overall genericness

of the first layer. As opposed to the CVSI experiments, when training on SIW data,

consistently the second layer seemed to outperform the first layer after some epochs.

In Fig. 5.7 the training of the deep MLP can be seen and we can observe that the

second layer converges towards the output layer while the first layer appears to be more

independent. The extent to which layer 2 is domain specific while layer 1 is much more

domain independent can be seen in table 5.2, where layer 1 increases error rates when

changing domains by 2.2 and 2.8 times, while layer 2 increases error rates by 3.4 and 8.9

times respectively.
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Figure 5.7: Training of the proposed deep MLP on the SIW-10 data.

Table 5.3: Visual Language Identification Accuracy
Method Accuracy
Random Classifier 25.0%
SRS-LBP learning free pipeline 50.96%
SVM + SRS-LBP features 91.18%
Deep MLP + SRS-LBP features 92.78%

(a) (b) (c) (d)

Figure 5.8: Samples from handwritten language identification. Samples of the same text
and writer in Greek (a), English (b), French (c), and German (d).
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Figure 5.9: Confusion Matrix on Visual Language Detection with an ANN 26-fold cross-
validation

5.4.3 Visual Identification of Handwritten Language

The boundary between script and language identification is hard to define, as can be

best exemplified in Latin derived languages. Visual language identification could also

be perceived as fine-grained script classification. Yet distinguishing between such scripts

before identification is required if one is to use language models for identification. In the

case of handwriting identification, it becomes even more important, since identification

frequently relies in word-spotting, which by definition needs a lexicon. In order to address

this problem the ICDAR 2011 writer identification dataset was used[59] to estimate the

language classification. This dataset consists of two paragraph-long texts translated to four

languages: Greek, English, French, and German. In Fig. ?? the same text written by the

same writer in all four languages can be seen. Twenty six writers wrote all these samples

which were then digitized and binarized. State-of-the-art methods report performances

of over 95% accuracy in writer identification. As the dataset has never been used in the

language identification context and visual handwritten-text language identification is a

new problem to the authors knowledge, there is no state-of-the-art method. In order to

make writer identification irrelevant, a 26-fold cross validation scheme was employed. All

8 samples contributed from every writer were used as testing samples, while all other

samples were used for training.

In table 5.3 the performance of the proposed deep MLP along with baselines is presented.

The dataset is totally balanced and has 4 classes, so an unbiased random classifier would

be performing with 25%. The SRS-LBP unsupervised learning from [72] performs poorly,

although significantly better than the random classifier. The same pipeline when applied

on the same dataset for writer identification obtains 98.1%. This could be interpreted

81



as an indication of how harder the Handwritten Visual Language Identification problem

is compared to writer identification, at least for LBP features. The proposed method

Deep MLP is exactly the same as the one described and used for CVSI, but instead of

three pooling zones only global pooling is employed as the image has more than one

text-line. Deep MLP achieves top performance 92.78%, although an SVM applied on the

same features performs nearly as well. In Fig. 5.9 the confusion matrix of visual language

classification can be seen. As one would expect, Greek is separated from the other three

perfectly while English, French, and German have some confusions. It should be pointed

out the dataset was acquired in Greece and all subjects would have Greek as their primary

language and this might be helping distinguish it from the other three languages.

82



Chapter 6

Conclusion

In the course of this thesis we hypothecised that texture analysis can lead to an under-

standing of textual images. The methods presented demonstrate the versatillity of the

aproach. The coherence of the methods employed in the braod scope of analysis hints that

this aproach encapsulates an underlying common aspect of text.
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[96] Mäenpää Topi, Ojala Timo, Pietikäinen Matti, and Soriano Maricor. Robust texture

classification by subsets of local binary patterns. In Pattern Recognition, 2000.

Proceedings. 15th International Conference on, volume 3, pages 935–938. IEEE,

2000.

[97] Adnan Ul-Hasan, Muhammad Zeshan Afzal, Faisal Shafait, Marcus Liwicki, and

Thomas M Breuel. A sequence learning approach for multiple script identification. In

2015 13th International Conference on Document Analysis and Recognition (ICDAR),

pages 1046–1050. IEEE, 2015.

[98] Ranjith Unnikrishnan and Ray Smith. Combined script and page orientation

estimation using the tesseract ocr engine. In Proceedings of the international workshop

on multilingual OCR, pages 1–7, 2009.

[99] Georgios Vamvakas, Basilis Gatos, and Stavros J Perantonis. Handwritten character

recognition through two-stage foreground sub-sampling. Pattern Recognition, 43(8):

2807–2816, 2010.

[100] Paul Viola and Michael J Jones. Robust real-time face detection. International

journal of computer vision, 57(2):137–154, 2004.

[101] Kai Wang, Boris Babenko, and Serge Belongie. End-to-end scene text recognition. In

Computer Vision (ICCV), 2011 IEEE International Conference on, pages 1457–1464.

IEEE, 2011.

[102] Hao Wei, Kai Chen, Anguelos Nicolaou, Marcus Liwicki, and Rolf Ingold. Investiga-

tion of feature selection for historical document layout analysis. In Image Processing

Theory, Tools and Applications (IPTA), 2014 4th International Conference on, pages

1–6. IEEE, 2014.

[103] Eric W. Weisstein.

[104] Richard E Williamson and Hale F Trotter. Multivariable mathematics: Linear

algebra, calculus. Differential Equations, 2(4), 2004.

94



[105] Weixin Yang, Lianwen Jin, and Manfei Liu. Deepwriterid: An end-to-end online

text-independent writer identification system. IEEE Intelligent Systems, 31(2):45–53,

2016.

[106] Guoying Zhao and Matti Pietikainen. Dynamic texture recognition using local binary

patterns with an application to facial expressions. IEEE transactions on pattern

analysis and machine intelligence, 29(6):915–928, 2007.

[107] Guangyu Zhu, Xiaodong Yu, Yi Li, and David Doermann. Language identification

for handwritten document images using a shape codebook. pattern recognition, 42

(12):3184–3191, 2009.

95



96


	Introduction
	Forward
	The nature of text
	The Visual Archetype
	Two Tone Assumption

	Texture Analysis
	General Texture Analysis


	Local Binary Patterns
	Compression Tecniques
	Uniform Compression
	Rotation Invariance
	Multiple Radii
	LBP Cardinalities
	Evolution and applications of the lbp descriptor
	Cardinalities


	Word Spotting
	Introduction
	State of the art
	Almazan et al. 6751236 (FisherCCA)
	Rusiñol et al. rusinol2015efficient (bovw)
	Rath et al. rath2003word (dtw)
	Method based on Quad Tree (Quad Tree)
	Dey et al. Dey2016Local(lbp)
	Method based on Histogram of Gradients (hog)
	Sudholt et al.sudholt2016phocnet (phocNET)
	Fusion

	Experimental Analysis
	Datasets
	Performance Evaluation and Metrics
	Performance Evaluation
	Performance Metrics

	State-of-the-art comparison
	Quality of Segmentation (qos)
	Distortion Model
	Quality of Segmentation Experimental Results
	Query By String (QBS)

	Available Segmentation
	End-to-end performance
	Method Independence
	Independence Measurement
	Method Fusion


	Conclusions and Discussion
	Conclusions
	Discussion


	Writer Identification
	Introduction
	Problem Description
	Use cases
	Historical Documents
	Contemporary Handwriting Writer Identification

	Image Retrieval vs. Image Classifcation
	LBP for writer identification
	State of the Art Evolution
	Hinge based
	Codebook based
	Texture generation

	CNN based versions

	Sparse Radial Sampling lbp
	My contribution with respect to the State-Of-The-Art
	The LBP transform
	Sparse sampling LBP on bilevel images
	Processing pipeline

	Experimental results
	Datasets
	ICDAR 2013:
	CVL:
	ICHFR 2012:

	Evaluation protocols
	Baseline performance analysis
	Comparison of SRS-LBP and standard LBP

	Comparison with the State-Of-The-Art
	Performance on ICDAR 2013
	Performance on IAM
	Performance on CVL

	Ablation Studies
	Radii Contribution
	Contribution of principal components
	Rotation sensitivity
	Analysis of the results


	In depth analysis of the SRS-LBP
	No Rotation Invariance Compression
	The absence of patterns


	Script Identification
	Introduction
	Script Identitificationsoa
	Method
	Preprocessing
	Local Binary Patterns
	Classification
	MLP as Metric Learning

	Experiments
	Video-text Script Identification
	Scene-text Script Identification
	Visual Identification of Handwritten Language


	Conclusion
	Bibliography

	Títol de la tesi: Texture of analysis for Robust
Reading Systems
	Nom autor/a: Angelos Nikolaou


