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ABSTRACT (English) 

 

Appropriate regulation of gene expression is necessary for 

correct development and homeostasis of organisms. 

Epigenetic mechanisms represent an additional layer of 

information, besides the genetic sequence, crucial for the 

correct functioning of each cell. Histone modifications, which 

modulate and are associated to transcriptional activation or 

repression, are a major epigenetic feature. Thanks to 

predictive modelling, we have studied which histone 

modifications relate better to enhancer or promoter function in 

mouse embryonic stem cells, during differentiation and in 

animal development. We have found that different histone 

modifications relate better to enhancers or promoters, 

respectively. We have studied the role of poised enhancers 

during differentiation and development. We have seen that 

poised enhancer activation is not exclusive of the neural 

lineage, but a general mechanism implicated in differentiation 

of every cell type. We have characterized the epigenetic 

landscape of Cushing’s syndrome. We have found persistent 

epigenetic and transcriptional alterations after long-term 

remission of the disease, related to a deep alteration of the 

circadian rhythm. These findings promise to be relevant for 

future therapeutic advances.  
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RESUM (Català) 

 

Una regulació apropiada de l’expressió gènica és necessària 

per a un correcte desenvolupament i homeòstasi dels 

organismes. Els mecanismes epigenètics representen una 

informació addicional, a més de la seqüència genètica, crucial 

per al correcte funcionament de cada cèl·lula. Les 

modificacions d’histones, que modulen i s’associen a activació 

o repressió transcripcionals, són una característica 

epigenètica important. Gràcies al modelatge predictiu, hem 

estudiat quines modificacions d’histones es relacionen millor 

amb la funció dels enhancers o promotors en cèl·lules mare 

embrionàries de ratolí, durant la diferenciació i en el 

desenvolupament animal. Hem trobat que modificacions 

d’histones diferents es relacionen millor amb enhancers o 

promotors, respectivament. Hem estudiat el rol dels poised 

enhancers durant la diferenciació i el desenvolupament. Hem 

vist que l’activació dels poised enhancers no és exclusiva del 

llinatge neural, sinó un mecanisme implicat en la diferenciació 

de tot tipus cel·lular. Hem caracteritzat el paisatge epigenètic 

de la síndrome de Cushing. Hem trobat alteracions 

epigenètiques i transcripcionals després d’una remissió de la 

malaltia a llarg termini, relacionades amb una profunda 

alteració del ritme circadiari. Aquestes troballes prometen ser 

rellevants per a futurs avenços terapèutics. 
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If the present arrangements of society 

will not admit of woman’s free 

development, then society must be 

remodelled. 

 

Elizabeth Blackwell (1821-1910)
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1. Chromatin and gene regulation 

 

1.1 The basic structure of chromatin 

 

Chromatin is the structure in which the genome is packed 

inside of the nucleus of a eukaryotic cell. It is a complex made 

of proteins and DNA. Nucleosomes, the basic repetitive units 

of the chromatin, consist of around 200 bp of DNA and five 

types of histone proteins [1-4]. The nucleosome core is formed 

by 147 bp of DNA wrapped around a histone octamer, which is 

constituted by two copies of the four core histones: H2A, H2B, 

H3 and H4. The linker histone H1 binds the linker DNA that 

connects the nucleosome cores.  

 

According to its level of compaction, chromatin can be divided 

into euchromatin and heterochromatin. While euchromatin is 

open and highly transcribed, heterochromatin has a high level 

of compaction and gene expression inside is limited [5]. 

Chromatin is indeed a dynamic structure involved in several 

processes such as gene regulation [6], DNA repair [7] and DNA 

replication [8]. 
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1.2 The concept of Epigenetics 

 

The term epigenetics was originally defined in 1942 as the 

study of the causal mechanisms that produce the phenotype 

from the genotype in a developmental context [9]. Nowadays, 

it is widely accepted that this term refers to the inheritance of 

different chromatin states without affecting the DNA sequence 

[10]. Therefore, epigenetics corresponds to an additional layer 

of information, besides the genetic sequence, important for the 

correct functioning of each cell. Examples of epigenetic 

mechanisms are DNA methylation [11], histone post-

translational modifications [12] and non-coding RNAs 

(ncRNAs) [13]. DNA methylation, the addition of methyl groups 

to the DNA molecule, is generally associated with gene 

silencing and usually occurs at CpG islands. ncRNAs usually 

modify chromatin and target gene expression through 

pathways of RNA interference, and can also act as recruiters 

of chromatin modifying enzymes. 

 

 

1.2.1 Histone post-translational modifications 

 

Histones can be chemically modified at the N-terminal tail by 

specific enzymes. Several types of post-translational 

modifications have been identified so far, including 

methylation, acetylation, phosphorylation and ubiquitylation 

[12]. These modifications –also called histone marks– affect 
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inter-nucleosomal interactions that ultimately alter the 

chromatin structure, and also facilitate or prevent the binding 

of several factors and protein complexes [12]. Certain 

modifications have been associated to an active transcriptional 

state of the chromatin, such as trimethylation of histone H3 at 

lysine 4 (H3K4me3) [14-16], acetylation of histone H3 at lysine 

27 (H3K27ac) [17] and trimethylation of histone H3 at lysine 36 

(H3K36me3) [18, 19]. Other histone marks have been 

associated to gene repression instead: trimethylation of 

histone H3 at lysine 27 (H3K27me3) [20] and trimethylation of 

histone H3 at lysine 9 (H3K9me3) [21]. Moreover, during the 

last decade, several studies have shown that gene expression 

and histone modification signals are quantitatively related [22-

32].  

 

 

1.2.2 ChIP-seq and chromatin segmentation 

 

Chromatin immunoprecipitation (ChIP) is the principal tool to 

assess protein–DNA binding in vivo [33, 34]. In here, 

antibodies recognizing specific proteins –or even chemical 

modifications of them, such as histone modifications– are 

employed to enrich for DNA fragments that are precisely bound 

to these proteins. ChIP followed by massive sequencing (ChIP-

seq) allows the genome–wide identification of these 

sequences [35-38]. Thus, ChIP-seq is the main technique to 

profile DNA-binding proteins, histone modifications, etc., and it 
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therefore becomes a fundamental tool to understand gene 

regulation and epigenetic mechanisms [39, 40]. 

 

The computational analysis of ChIP-seq experiments is divided 

into two different steps: mapping and peak calling. The 

mapping tool is in charge of processing the raw data to identify 

the exact position of each read in a chromosome of the 

genome. Specific software has been developed to perform this 

step, such as BOWTIE [41], BWA [42, 43] or GEM [44]. Peak 

calling, instead, consists in the detection of genomic regions 

presenting a statistically significant high enrichment of reads in 

a certain experiment (named peaks) that are not observed in a 

second sample of control. A high variety of peak callers are 

available, such as MACS [45], SICER [46] and HOMER [47]. 

Next, differential peak analysis between ChIP-seq experiments 

on two different conditions can be used to identify specific 

peaks of any of them. DiffBind [48] is an R package widely used 

to perform differential analysis of ChIP-seq peaks. Once the 

location of the ChIP-seq peaks of one or more experiments is 

uncovered, further bioinformatic analysis is necessary to be 

performed: genome distribution of peaks, putative target 

genes, functional analysis, motif enrichment, occupancy meta-

plots, heat maps, etc. 

 

Finally, chromatin segmentation methods are useful to infer 

novel knowledge from the combination of multiple ChIP-seq 

experiments. Briefly, chromatin segmentation takes as input 
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multiple sources of ChIP-seq data and generate a division of 

the genome into segments that are assigned to a specific 

chromatin state. The signature of a chromatin state is defined 

by the particular configuration of ChIP-seq features that are 

present in this class of segment. The most widely used 

software for chromatin segmentation is ChromHMM [49]. This 

software is based on a multivariate Hidden Markov Model 

(HMM) that explicitly models the presence or absence of each 

chromatin feature. In ChromHMM, state emissions are defined 

by probability to find a specific feature in the regions which 

belong to that particular state. 

 

 

1.3 3D organization of the chromatin 

 

Another important aspect of chromatin is its 3D distribution 

inside of the nucleus, which is thought to influence gene 

regulation by bringing together distant regions of the genome 

[50]. Remarkably, physical interactions tend to occur between 

regions with same chromatin features [51, 52].  

 

The genome can be classified into two compartments 

according to the pattern of physical interactions [53]. The A 

compartment, which is associated to transcriptional activation 

of genes and resembles to euchromatin; and the B 

compartment, which is associated to gene silencing and 

resembles to heterochromatin. Moreover, the genome can 
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further be divided into topologically associating domains 

(TADs), which are megabase-sized domains that preferentially 

interact within themselves and are generally maintained across 

cell types and species [54]. TAD boundaries serve as 

insulators to prevent inter-TAD interactions [55, 56].  

 
 

1.4 Regulatory regions 

 

A correct regulation of gene expression is necessary to 

establish the appropriate developmental programs and 

homeostasis of organisms. Thus, the genome contains 

thousands of functional non-coding DNA sequences that 

regulate gene transcription, such as promoters, enhancers, 

silencers and insulators [57]. Promoters are elements that 

initiate transcription and are located in the surroundings of a 

transcription start site (TSS) of a gene. Enhancers are DNA 

sequences that substantially amplify the expression of genes 

and can be located in distal areas up to approximately 1 Mb 

from their target gene. Silencers act similarly to enhancers but 

instead of amplifying gene expression, they diminish it. Finally, 

insulators are boundary elements that prevent enhancers and 

silencers from modulating gene expression from genes in the 

other side of the boundary. Moreover, regulatory regions are 

susceptible of undergoing epigenetic changes such as histone 

modifications that will make them more or less accessible to 
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transcription factors (TFs), which will decisively influence gene 

expression [58].  

 

 

1.4.1 Enhancers 

 

The term “enhancer” first appeared in 1981 [59], although by 

that time it was already known that regions of open chromatin 

far from promoters existed [60]. Originally, the term referred to 

non-coding regions that could enhance transcription in a 

reporter assay at any orientation in many positions, even 

downstream of the TSS [59, 61]. However, nowadays multiple 

genomic characteristics have been identified to be common to 

most enhancers and serve as markers to identify enhancer 

candidates in silico [57, 62]. Some of these features are (Figure 

I1): (i) open regions free of nucleosomes [63]; (ii) 

monomethylation of histone H3 at lysine 4 (H3K4me1) [64]; (iii) 

H3K27ac, which distinguishes active from inactive enhancers 

[65]; (iv) a high density of TF binding and presence of TF motifs 

[66]; and (v) enhancer transcription [67]. Therefore, the results 

of next generation sequencing techniques such as DHS-seq, 

ATAC-seq, ChIP-seq, GRO-seq, etc. that capture these 

common features can be used to identify putative enhancers 

genome-wide. Next, the enhancer activity of the most 

interesting candidates can be validated by reporter assays or 

CRISPR-Cas9 genome engineering [57, 62].  
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Figure I1: Schematic representation of an enhancer. Enhancers are 
regions of open chromatin, free of nucleosomes, covered by H3K4me1 and 
H3K27ac, contain TF motifs, are bound by TFs and have eRNA expression.  

 

The most accepted model for enhancer-gene communication 

is through 3D proximity between the enhancer and the 

promoter of the gene [68-70]. Therefore, genome conformation 

techniques capturing 3D proximity between genomic regions 

(such as ChIA-PET and 3C technologies) can be used to 

assign putative target genes to an enhancer. However, when 

3D proximity data is not available, other strategies can be used 

to assign putative target genes, such as the closest gene or 

those genes closer to a certain distance in the linear genome. 

Several bioinformatic tools combine different types of NGS 

data to predict enhancers and their target genes by correlating 

epigenetic information and gene expression across cell types, 

tissues, etc. [71-73]. 

 

The contacts between enhancers and promoters are restricted 

inside of the same TAD [74]. Indeed, when rearranging TADs, 

motif
TF

motif

TF

eRNA H3K4me1 H3K27ac
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a promoter-enhancer rewiring that may cause pathogenic 

phenotypes is produced [75, 76]. Importantly, enhancer-

promoter communication does not seem a one to one 

relationship. Rather than that, hubs of several enhancers and 

promoters might influence each other and serve as traps for 

complexes needed for gene expression [69]. Moreover, certain 

promoters are controlled by multiple enhancers, each of them 

driving gene expression in a different place and/or a different 

time [68]. However, in most cases there are also multiple 

redundant enhancers, which confer resistance to genetic 

variation so that the expression of the gene is ensured [70]. 

The presence of redundant enhancers may allow the 

accumulation of mutations, which is important for evolution 

[77]. 

 

Enhancers permanently contribute to regulate gene 

expression programs in specific cell types at particular stages 

of development [68-70]. Interestingly, enhancer-promoter 

contacts are established in different ways during development. 

While some are pre-established before gene activation, the 

majority of contacts appears concomitantly with the activation 

of the gene [68, 70]. The specific activation of enhancers 

during development is given by their DNA sequence, not only 

through the presence or absence of a TF binding site, but also 

through the order, orientation and spacing of the TF motifs 

inside of the enhancer sequence [78-80].  
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1.5 Gene expression prediction with epigenetic 

features 

 

There is an intense effort in the field of epigenetics to 

understand the relationship between gene expression and 

chromatin features. In this regard, several works have 

constructed predictive models of gene expression using as 

predictive variables the ChIP-seq levels of certain epigenetic 

features in multiple cellular contexts (Figure I2). Their main 

goal is to identify which epigenetic features in particular 

correlate better with gene expression. These studies generally 

measure ChIP-seq signal in the genomic region that comprises 

the gene body and the promoter, and model it with gene 

expression using different predictive methods (Table I1). Most 

of these studies use RNA-seq to measure gene expression. 

 

 
Figure I2: Performance of predictive models. Performance is 
represented as Pearson’s correlation (r) between predicted expression and 
measured expression. Example of the first predictive model of gene 
expression using ChIP-seq of TF in mESCs, adapted from [81] (left). 
Example of the first predictive model of gene expression using ChIP-seq of  
histone modifications in CD4+ cells, adapted from [22] (right). 
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Table I1: List of gene expression prediction publications 

Publication Features Predictive model 
Ouyang et al. [81] TFs ChIP-seq PC-regression 
Karlic et al. [22] Histone modifications ChIP-seq Linear regression 

Cheng et al. [23] Histone modifications and TFs 
ChIP-seq 

Support vector machine 
(SVM) and support vector 
regression (SVR) 

Cheng et al. [24] Histone modifications and TFs 
ChIP-seq SVR 

Wang et al. [25] Histone modifications ChIP-seq Linear regression 
Tippmann et al. 

[26] 
Histone modifications and TF 
ChIP-seq Linear regression 

Dong et al. [27] 
Histone modifications ChIP-seq, 
open chromatin DNase-seq, CpG 
islands 

Random forests 
classification and linear 
regression 

Zhou et al. [28] Histone modification and TF ChIP-
seq 

Bayesian variable selection 
regression 

Budden et al. [29] 
Histone modifications and TFs 
ChIP-seq, open chromatin DNase-
seq and predicted TF binding 

Linear regression and SVR 

Budden et al. [30] Histone modifications ChIP-seq 

Linear regression with least-
squares fitting and 
regularised least squares 
regression 

Singh et al. [31] Histone modification ChIP-seq Convolution neural network 
(CNN) 

Read et al. [32] 

Nucleosome positioning MNase-
seq, distance inferred by Hi-C (to 
telomeres, centromeres and 
center), histone modifications 
ChIP-seq, GC content and TF 
motifs 

Logistic regression with 
elastic net regularization, 
tree model with gradient 
boosting, multi-layer 
perceptron model 

Type of data used to predict gene expression and the predictive method 
are reported for each publication. 
 

Recently, predictive models combining enhancer and promoter 

information have shown good performance (Table I2). These 

studies suggest that chromatin features such as chromatin 

accessibility and TF binding at enhancers might have also a 

quantitative relationship with gene expression. Moreover, other 

epigenetic features such as histone modifications, could be 

introduced in the modelling. 
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Table I2: List of gene expression prediction publications introducing 
enhancer information 

Publication Features Predictive model 

Duren et al. [82] DNase-seq and predicted 
TF binding Linear regression 

Schmidt et al. [83] DNase-seq and predicted 
TF binding Linear regression 

Type of data used to predict gene expression and the predictive method 
are reported for each publication. 
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2. Mouse embryonic stem cells and bivalency 

 

2.1 Mouse embryonic stem cells and development 

 

Mouse embryonic stem cells (mESCs) were first isolated in 

1981 [84, 85]. They have two main characteristics: pluripotency 

and self-renewal (Figure I3). Pluripotency refers to the capacity 

of differentiating into any type of cell in the developing and 

adult organism, whereas self-renewal refers to the ability to 

proliferate indefinitely while maintaining the undifferentiated 

state. The mESC gene expression program is controlled by 

TFs, cofactors, chromatin regulators and ncRNAs which 

altogether ensure pluripotency and self-renewal [86]. mESCs 

are derived from the inner cell mass (ICM) of the blastocyst 

embryo (Figure I3).  

 

 
Figure I3: Origin of mESC and properties. mESCs are obtained from the 
blastocyst embryo (left), and their main characteristics are self-renewal and 
pluripotency (right). 

 

PLURIPOTENCY

SELF-RENEWAL
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Embryo development starts with the fertilization of the oocyte 

by a sperm cell, which forms the zygote. Then, the zygote 

(Figure I4) starts several rounds of division with subsequent 

cell compaction, and reaches the morula stage (4-16 cells). At 

E3.0 stage (3 days after fertilization, around 16 cells) cavitation 

starts. Cavitation consists in the formation of the blastocel, 

which is a cavity filled with fluid. After that (E3.5 stage), the 

embryo is in blastocyst stage (32 cells). Two different 

structures can be found in the blastocyst: the ICM and the outer 

layer. The cells in the outer layer will give rise to the 

trophoectoderm (TE). The division between ICM and TE is the 

first cell fate decision. The second cell fate decision occurs 

right after, when ICM cells become either epiblast (EPI) cells 

or primitive endoderm (PrE) cells. TE and PrE cells will give 

rise to the extra-embryonic tissues, whereas EPI cells will 

develop into all the cell types in the future embryo. Indeed, 

mESCs are derived from the EPI cells [87]. The embryo is 

implanted in the uterus around E4.5 stage, and gastrulation 

starts at E6.5 stage. During gastrulation, cells start to 

differentiate into the cells of the three germ layers: endoderm, 

mesoderm and ectoderm. These cells will finally give rise to all 

cell types of the organism.  
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Figure I4: Early mouse development. Initial stages of mouse 
development, from zygote to blastocyst. 

 

 

2.2 Bivalent domains 

 

Bivalent domains are defined by the presence of H3K4me3 

and H3K27me3 at the same region, and were first described in 

mESCs in 2006 [88, 89]. The “bivalency” term was coined for 

this colocalization of two opposing marks, an active one 

(H3K4me3) and a repressive one (H3K27me3) [88]. Moreover, 

in the initial studies, bivalent domains were proposed to silence 

developmental genes in mESCs and prepare them for future 

activation during differentiation [88, 89]. Indeed, it was shown 

that the bivalent state is resolved upon mESC differentiation 

when genes losing H3K27me3 were activated and genes 

losing H3K4me3 remained repressed [88] (Figure I5). In 2007 

these observations were confirmed genome-wide with the 

application of the technology of ChIP-seq [38]. That same year, 

bivalent domains were identified also in human embryonic 

stem cells (hESCs) genome-wide [90, 91]. Importantly, in 

Totipotent Inner Cell MassTrophoectoderm Epiblast Primitive Endoderm

Zygote Morula Early blastocyst Mid blastocyst Late blastocystTwo cell embryo



 18 

2012, colocalization of H3K4me3 and H3K27me3 in the same 

nucleosome was confirmed [92]. 

 

 
Figure I5: Resolution of bivalency in mESC differentiation. After 
differentiation, bivalent promoters of developmental genes resolve their 
bivalent state toward a silent one where H3K27me3 is conserved but 
H3K4me3 is lost, or an active one in which H3K4me3 is still present but 
H3K27me3 is lost. When the bivalent promoter becomes active, the gene 
is transcribed.   

 

Further characterization of bivalent domains revealed that they 

are rich in CpG islands [93]. Moreover, they are usually found 

in the surrounding region of a TSS (bivalent promoters), and 

their genes are generally larger and have larger introns than 

active genes [94]. Bivalent promoters are occupied by paused 

RNA polymerase II, whose function is also poising genes for 

future activation [95]. Interestingly, although bivalent domains 

are associated to gene repression, they are found in regions of 

open chromatin that associate with the active compartment 

[51, 96]. Bivalent promoters mainly present two types of 3D 

contacts: intragene interactions, preferentially towards the 

DIFFERENTIATED CELL

TSS
OFF

Bivalent promoter

Developmental genes
ESC

TSS

Silent promoter

OFF

TSS

Active promoter

ON

H3K27me3 H3K4me3
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transcription termination site (TTS); and intra-TAD interactions, 

mainly between TSS of different genes [97]. Therefore, it has 

been proposed that bivalency provides an open chromatin 

architecture that allows the proper modulation of 

developmental gene expression programs [97]. 

 

Despite bivalency has been mostly studied in embryonic stem 

cells (ESCs), it has also been identified in other cellular 

contexts. Indeed, bivalent domains have been described also 

in neural precursors (NPCs) and mouse embryonic fibroblasts 

[38]. There are also bivalent genes in primary human CD4+ 

central memory T cells [36, 98, 99]. Moreover, during 

differentiation from mESCs into NPCs, a pattern of gain and 

loss of bivalent domains was observed [100]. Bivalent domains 

where also found in mouse adult tissues such as brain, kidney, 

liver and lung [101], and in purified neural cells from mice [102]. 

Finally, bivalent domains have also been identified in adult 

stem cells such as hematopoietic stem cells, where their 

progression was monitored during differentiation into 

erythrocyte precursors [103]. Therefore, bivalency is a 

mechanism used by several types of cells to tightly regulate 

lineage-specific genes expression [94]. 

 

The protein complexes in charge of depositing H3K4me3 and 

H3K27me3 are Trithorax group (TrxG) and Polycomb group 

(PcG), respectively [104]. TrxG is composed by the SWI/SNF 

complex and the COMPASS family. The MLL1/MLL2 
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COMPASS-like complex is responsible of depositing 

H3K4me3 at bivalent domains, especially MLL2 [105]. 

Interestingly, loss of MLL2 in mESCs does not affect 

distribution of A/B compartments and TAD borders; 

nonetheless, it leads to increased PcG occupancy, 

redistribution of long-range interactions, and failure to 

differentiate [97].  

 

 

2.3 Polycomb group proteins 

 

Polycomb (Pc), the first PcG gene, was discovered in 

Drosophila melanogaster in 1947 [106]. In 1978, it was shown 

the importance of Pc in repressing Homeotic (Hox) genes 

[107]. Later, other genes with similar roles as Pc were found, 

which led to the definition of the PcG proteins [104]. Finally, 

many more PcG ortholog genes were found in mammals, most 

probably as a result of duplication events during metazoan 

evolution [108]. 

 

PcG proteins are associated in two main complexes: Polycomb 

repressive complex 1 (PRC1) and Polycomb repressive 

complex 2 (PRC2). At the same time, PRC1 in mammals is 

subdivided into canonical PRC1 (cPRC1) and non-canonical 

PRC1 (ncPRC1) [109]. The core components of PRC1 are one 

of the RING1A/B and one of the Polycomb group ring-finger 

domain proteins (PCGF1-PCGF6) [104]. RING1A/B have E3 
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ubiquitin ligase activity which mediates the ubiquitylation of 

histone H2A on lysine 119 (H2AK119ub), a mark that is 

important for gene silencing [110]. On the one hand, cPRC1 

contain PCGF2/4, a chromobox protein (CBX2/4/6/7/8) and a 

Polyhomeotic (Ph) homologous protein (PHC1-PHC3) [104]. 

On the other hand, ncPRC1 contain the zinc-finger domain and 

YY1-binding protein (RYBP) or its paralog YAF2, and 

PCGF1/3/5/6 [104]. The different set of subunits specific to 

each complex modulates DNA-binding affinities and regulatory 

functions [104]. 

 

The core components of PRC2 are one enhancer of zeste 

(EZH1/2), embryonic ectoderm development (EED), 

suppressor of zeste (SUZ12) and one retinoblastoma-binding 

protein (RBBP4/7) [111]. Ezh1/2 contains a SET domain and 

is the catalytic subunit of the complex in charge of depositing 

H3K27me3 [112, 113]. At the same time, PRC2 can be 

classified into two variants: PRC2.1 and PRC2.2, according to 

the presence or absence of certain accessory proteins. The 

emergence of these accessory proteins is correlated with the 

increase in cell and tissue complexity of metazoans, which 

suggests that regulation of PRC2 by different accessory 

subunits is important for cell fate and cell identity [104]. On the 

one hand, PRC2.1 is composed by one of the Polycomb-like 

proteins (PCL1/2/3, also named PHF1, MTF2 and PHF19, 

respectively), Elongin BC and Polycomb repressive complex 

2-associated protein (EPOP) or PRC2-associated LCOR 
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isoform 1 (PALI1/2) [111]. On the other hand, PRC2.2 contains 

Jumonji and AT-rich interaction domain 2 (JARID2) and 

adipocyte enhancer-binding protein 2 (AEBP2) [111]. 

 

Loss of both, PRC1 and PRC2 subunits in mESC showed an 

important role of PcG in maintaining a pluripotent state and 

also for proper differentiation [114-119].  

 

 

2.4 Bivalency, PcG and chromatin architecture 

 

As for MLL2, loss of PcG subunits in mESC does not lead to 

changes in A/B compartment distribution or TAD borders, and 

instead, it also causes changes in interactions between 

bivalent regions. For example, deletion of several PRC1 

subunits reduced the number of intrachromosomal contacts 

with consequent derepression of target genes [51, 120-122]. 

 

When bivalent genes activate during mESC differentiation, 

there is a displacement of PcG and a consequent reduction of 

interactions between PcG-bound sites [120, 122, 123]. On the 

contrary, mESC-specific genes and bivalent genes that 

become further repressed gain PcG occupancy and even 

increase their contacts with PcG-bound regions [122]. 

Therefore, PcG occupancy is associated to the establishment 

of a repressive chromatin architecture [94].  
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Despite most interactions between enhancers and their target 

gens appear concomitantly with gene activation and are 

disrupted when genes are repressed, some pre-set chromatin 

interactions prior transcriptional activation occur at 

developmental genes [52, 123]. Indeed, loops facilitated by 

PRC2 between bivalent promoters and poised enhancers (PE) 

are pre-established in mESC and maintained throughout 

differentiation [124]. 

 

 

2.5 Poised enhancers 

 

PEs were originally described in mESC in 2010, and were 

defined as enhancers that are primed for future activation 

during development [65]. In this study, the authors 

distinguished active enhancers from poised ones by presence 

or absence of H3K27ac in H3K4me1 sites, respectively. In 

2011, the colocalization of H3K4me1 and H3K27me3 at 

enhancers was demonstrated in hESC and mESC, as well as 

their role in poising for future gene activation [125, 126]. Since 

then, the term PE usually refers to enhancers marked by 

H3K4me1 and H3K27me3, in absence of H3K27ac. In 

consequence, a third type of enhancers marked only by 

H3K4me1, called intermediate enhancers, arose [126]. In the 

literature, intermediate enhancers have also been called 

primed enhancers [124]. In this PhD thesis, we will refer to 

enhancers marked by H3K4me1 in absence of H3K27ac and 
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H3K27me3 as intermediate, enhancers marked by H3K4me1 

and H3K27me3 in absence of H3K27ac as poised, and finally, 

enhancers marked by H3K4me1 and H3K27ac in absence of 

H3K27me3 as active (Figure I6). 

 

 
Figure I6: Types of enhancers in mESC. There are three types of 
enhancers in mESC that can be distinguished by their combination of 
histone modifications: poised (presence of H3K4me1 and H3K27me3 and 
absence of H3K27ac), intermediate (presence of H3K4me1 and absence 
of H3K27me3 and H3K27ac) and active (presence of H3K4me1 and 
H3K27ac and absence of H3K27me3) 

 

Several PcG subunits have been found in PEs [124-126], as 

well as other factors associated to gene activation. For 

example, chromatin remodelers and histone modifiers involved 

in active transcription such as p300 [124-126], CHD7 [126], 

and BRG1 [125] have been found in PEs.  

 

Similar to bivalent promoters, PEs also resolve their poised 

state during differentiation towards neural lineage (Figure I7): 

either they become active by losing H3K27me3 and gaining 

H3K27ac, or they remain inactive by retaining H3K27me3 and 

diminishing p300 [124-127]. Interestingly, recent evidence 

H3K27me3 H3K4me1 H3K27ac

Poised enhancer Intermediate enhancer Active enhancer
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suggests that this mechanism of PE activation is not exclusive 

of the neural lineage [128]. 

 

 
Figure I7: Coordinated activation of a bivalent promoter and its poised 
enhancer in differentiation. During differentiation from mESC, there is a 
coordinated activation of the bivalent promoters and their poised 
enhancers. 

 

PEs have also been identified in other cellular contexts 

different from ESC. Indeed, PEs becoming active during 

differentiation towards effector/memory T cells were identified 

in mouse naïve CD8+ T cells [129]. Moreover, a group of PEs 

was found in neural crest cells [127]. However, true 

colocalization of H3K27me3 and H3K4me1 in the same 

chromatin fragment has only been confirmed in ESC [94]. 

Finally, their function in cell types different from ESC is still 

controversial as they could play either a repressive or a poised 

role [94, 130, 131]. 
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3. Epigenetics and disease  

 

3.1 Epigenetic alterations and therapies in 

disease 

 

Changes in DNA methylation, histone modifications and 

ncRNA are common in disease [10]. Indeed, several mutations 

that affect chromatin factors such as chromatin remodelers, 

histone modifiers and even histone variants have been 

identified in diseases such as cancer [132]. Therefore, 

chromatin proteins and modifications can be targeted for 

therapy [133]. Indeed, histone deacetylase (HDAC) inhibitors 

have already been approved by the Food and Drug 

Administration (FDA) to treat diseases such as breast cancer, 

lymphomas and multiple myeloma [134]. Moreover, other 

HDAC inhibitors, histone methyltransferase (HMT) inhibitors, 

etc. are in clinical trials [134]. 

 

 

3.2 Cushing’s syndrome 

 

Endogenous Cushing’s syndrome (CS) is a rare disease that 

produces hypercortisolism and is caused by a pituitary or an 

adrenal tumour [135]. Hypercortisolism, which refers to 

overexposure to glucocorticoids (GCs), is the cause of several 

adverse cardiometabolic effects such as truncal obesity, 
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insulin resistance, altered glucose homeostasis, dyslipidaemia 

and increased cardiovascular morbidity and mortality [136, 

137]. Moreover, around 1-2% of the population receives long-

term GC treatment against a broad spectrum of inflammatory 

and autoimmune diseases, with similar side effects as 

hypercortisolism caused by CS [138, 139]. Strikingly, even 

after long-term CS remission, persistent cardiometabolic 

effects have been described [140-144]. 

 
Figure I8: Epigenetic memory. Even in absence of the stimuli that 
originated it, the epigenetic change (depicted with stars) is maintained. In 
Cushing’s syndrome, the stimuli would correspond to high levels of 
glucocorticoids. 

 

Chromatin carries epigenetic information that can propagate 

active and repressed states during cell division, even in 

absence of the original signal that established them [10] 

(Figure I8). Therefore, epigenetic changes could explain why 

there is not a complete clinical remission after the resolution of 

hypercortisolism. Indeed, it has been shown that chronic 

hypercortisolism reshapes the epigenetic landscape by 

inducing lasting changes in DNA methylation in whole blood 

human samples [145, 146] or by regulating histone modifying 

enzymes in a rat model of CS [147, 148].

Stimuli
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1. Deciphering which histone modifications 

correlate better with enhancer function 

 

Modelling gene expression from enhancer epigenetic 

information might help to understand how the contribution to 

gene expression differs between promoters and enhancers 

and, more broadly, how enhancers function. However, 

predictive models using only information at enhancers have not 

been obtained yet. Thus, we set out to explore the quantitative 

relationship between histone modifications and gene 

expression, focusing on enhancer regions. In particular, our 

main goal is to decipher which histone modifications correlate 

better with enhancer function. To do so, we ask the following 

questions:  

 

- Are histone modifications at enhancers predictive of 

gene expression?  

- Which histone modifications are more predictive in the 

enhancer models? 

- Are the same histone modifications also important for 

the promoter predictive models? 

- Is an enhancer predictive model learned in a specific 

cell type useful to predict gene expression in another 

one?  
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2. Understanding the biological role of poised 

enhancers during differentiation and 

development 

 

Much effort has been invested into understanding the role of 

bivalent promoters throughout differentiation from mESCs. 

However, little attention has been brought to poised 

enhancers. To overcome this limitation, we aim to explore the 

biological role of poised enhancers during differentiation and 

development. Thus, we focus on the following issues: 

 

- Characterization in terms of epigenetic landscape, 

chromatin accessibility, conservation and overlap with 

CpG islands, of poised enhancers in mESCs 

- Tracking the fate of poised enhancers that become 

active during differentiation along different lineages, 

both in vitro and in vivo 

- Studying the implication of poised enhancer resolution 

in differentiation 
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3. Identification of a persistent epigenetic 

fingerprint of Cushing’s syndrome  

 

To address this issue, we established a collaboration with 

researchers and medical doctors from IDIBAPS and Hospital 

Clínic in Barcelona. We merged their expertise in the 

physiology of Cushing’s syndrome (CS) and a mouse model of 

the disease, with our expertise in epigenetics, gene regulation 

and Next Generation Sequencing (NGS) data analysis. All 

together we aim to identify an epigenetic fingerprint in CS that 

could explain the persistent effects after remission of the 

disease. To address this issue, we focus on the following 

objectives: 

 

- Construction of a pipeline to obtain statistically 

significant consensus peaks across several replicates 

- Integration and comparison of expression and 

epigenomic data retrieved in different species, and 

during active CS and after remission 

- Identification of the epigenetic fingerprint that could 

explain the persistent effects after remission 
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Nothing was given to minorities or 

women. It took some fighting to get 

that equal opportunity and we're still 

fighting today. 

 

Annie Easley (1933-2011)





  
 

CHAPTER 1 
 

 

The results shown in this chapter correspond to 

objective number 1 of this thesis. 

 

 

González-Ramírez M., Ballaré C., Mugianesi F., Beringer M., 

Santanach A., Blanco E. and Di Croce L. Differential 

contribution to gene expression prediction of histone 

modifications at enhancers or promoters. In revision at Nucleic 

Acids Res. 
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1.1 Computational design 

 

We developed a novel computational approach based on the 

combination of chromatin segmentation and linear regression 

to infer gene expression using ChIP-seq data from histone 

modifications at enhancers and promoters (Figure R1.1). To 

construct proper predictive models, the full spectrum of active 

and repressed regions is needed. Therefore, we took 

advantage of mESCs for which active and repressed 

regulatory regions can be identified. mESCs contain active 

enhancers (AEs) and poised (repressed) enhancers (PEs), 

which respectively coordinate with active promoters (APs) and 

bivalent (repressed) promoters (BPs) to regulate gene 

expression [94].  
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Figure R1.1: Schematic diagram of the modelling pipeline to predict 
gene expression in mESC. Chromatin segmentation was used to identify 
active (red) and repressed (dark grey) regions. Next, these regions were 
classified into PE, AE, BP and AP. Enhancers were associated to their 
target promoters and genes using Hi-C interactions. Finally, the set of 
enhancers was divided into training and test sets. The training set was used 
to learn the predictive model and the test set to evaluate it. Yi is the log2 
expression of gene i plus a pseudocount of 0.1. b0 to bn are the coefficients 
to be inferred. Xi1 to Xin are the log2 of the ChIP-seq signal strength plus a 
pseudocount of 0.1. e is the error. r is the Pearson’s correlation coefficient 
between the predicted expression and the measured one. 
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1.2 Construction of a chromatin segmentation 

map 

 

First of all, ChIP-seq experiments of H3K4me3, H3K27me3, 

H3K27ac, and H3K4me1 in mESC were performed by Cecilia 

Ballaré (our lab) to identify the different types of regulatory 

regions. This set of histone modifications has been previously 

used to distinguish between AEs, PEs, APs, and BPs in mESC 

[124, 126]. We next generated a 9-state chromatin 

segmentation model of mESCs with the ChromHMM software 

[49] (Figure R1.2). As expected, active states mark 

transcriptionally active regions, while repressed states denote 

transcriptionally repressed regions (Figure R1.2B; see also our 

previously published RNA-seq data [118]). 
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Figure R1.2: Chromatin segmentation model for mESC. (A) State 
definition of the chromatin segmentation model in mESCs. The values 
represent the probability (from 0 to 1) of finding each histone modification 
(vertical) in genomic segments of states 1 to 9 (horizontal). Red: states with 
histone modifications associated to activation (active, 1–4); dark yellow, 
H3K4me1-only state (Intermediate, 5); grey, states in which H3K27me3 
was present (repressed, 6–8); dark grey, poised states, in which 
H3K27me3 colocalized with H3K4me3 and/or H3K4me1 (states 6 and 7); 
light grey, H3K27me3-only regions (state 8); and white, unmarked state (9). 
(B) Example of a genomic region containing two expressed genes (Skap2 
and Halr1), which are covered by active states (in red), and a cluster of 
repressed genes (HoxA), which are covered by repressed states (in grey). 
Active chromatin segments integrate the signal of H3K27ac, H3K4me3, and 
H3K4me1 and lack H3K27me3. Repressed chromatin segments integrate 
the signal of H3K27me3, H3K4me3, and H3K4me1 and lack H3K27ac. 
Expression of Skap2 and Halr1, and silencing of HoxA genes, were 
confirmed by the RNA-seq profiles [118]. 

 

To understand the resulting map of states, we designed a 

Python script that calculates the matrix of transition 

enrichments between all states in the model. The transition 

value between two different states, x and y, is defined as the 

number of times that a segment of state y is found after a 

segment of state x, as measured from left to right in the linear 

genome. The enrichment score is defined as the ratio between 

the observed number of transitions and the expected number 

of transitions by chance.  
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Figure R1.3: State transitions. Enrichment of state transitions (number of 
observed transitions divided by the number of expected transitions by 
chance) from the segments of one state (vertical) towards the segments of 
another state (horizontal) in the linear chromatin. 

 

Two groups of states (active, 1–4, and repressed, 6–8) clearly 

emerged from the global picture (Figure R1.3), as well as state 

5 (most likely representing intermediate enhancers). The high 

enrichment of transitions between states belonging to the 

same category suggests that they might mark the same 

functional regulatory regions, rather than be caused by 

different functional regions separated by the unmarked state. 

Indeed, visual inspection confirmed that states 1 to 4 marked 

the same active regulatory regions, revealing that differences 

in the state definition are due to differences in the shape of the 

ChIP-seq peaks (Figure R1.4A). We also observed that the 

repressed states 6 and 7 decorated poised or bivalent 

regulatory regions (e.g., marked with H3K27me3, in 

combination with H3K4me3 and/or H3K4me1), whereas state 

8 was generated by the tail-end of broad peaks of H3K27me3 

(Figure R1.4B). Similarly, state 5 was associated with the tail-
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end of broad peaks of H3K4me1 in active regions, but it also 

associated with single peaks of H3K4me1 near active regions, 

which might correspond to intermediate enhancers (Figure 

R1.4A). 

 

 
Figure R1.4: Functional regions are covered by more than one class 
of state. (A) Segments of active states 1–4 cover the same functional 
regions delimited by peaks of H3K4me3, H3K27ac and H3K4me1. 
Differences in the definition of active states are due to the shape of the 
peaks over the same functional elements. Segments of state 5 denote 
broad peaks of H3K4me1 in active regions, or single peaks of H3K4me1. 
(B) Segments of repressed states 6 and 7 denote the sharp peaks of 
H3K4me3 and H3K4me1 found inside broad regions covered by 
H3K27me3. State 8 corresponds to the fraction of H3K27me3 peaks that 
does not overlap with the other two marks. Differences in the definition of 
repressed states 6 and 7 are due to the shape of the peaks over the same 
functional elements.  
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Based on these results, we decided to merge the contiguous 

segments of states 1 to 4 in a single unit to constitute the list of 

potential active regulatory regions, and the segments of states 

6 and 7 in a single unit to constitute the list of potential poised 

or bivalent regulatory regions. 

 

 

1.3 Identification of poised enhancers, active 

enhancers, bivalent promoters and active 

promoters 

 

We reasoned that functional regions should have a minimum 

length of 600 bp and thus discarded shorter regions, which we 

considered as artefacts. We also discarded those cases in 

which an active region and a poised region were contiguous, 

as this was ambiguous. Promoters were defined as those 

regions that overlapped by at least 1 bp to a region ± 500 bp 

around a TSS according to RefSeq [149]. Enhancers were 

defined as regions that were not classified as promoters and 

overlapped by at least 1 bp with a peak of the enhancer mark 

p300 [124]. As H3K4me3 can be present in enhancers [36, 

129, 150, 151], we did not discard enhancers containing 

H3K4me3, although this histone modification has been 

traditionally only associated with promoters. In total, we found 

9,421 APs, 3,344 BPs, 16,904 AEs, and 2,699 PEs in mESCs. 

 

 



 46 

1.4 Association of enhancers to promoters and 

target genes 

 

Next, we matched our sets of promoters and enhancers to their 

potential target genes. Using RNA-seq data [118], we 

confirmed that genes associated with APs are expressed in 

mESC, while genes associated with BPs are silenced (Figure 

R1.5A). Gene ontology (GO) term enrichment analysis 

performed with Enrichr [152] confirmed that genes with APs 

are involved in housekeeping roles, while genes with BPs are 

mostly related to development and differentiation (Figure 

R1.5B), as is expected in mESCs.  

 

 
Figure R1.5: Target genes of APs and BPs. (A) Expression of genes 
associated to active promoters (AP; 10,786 genes) or bivalent promoters 
(BP; 3,459 genes). The dotted line represents 1 FPKM. (B) Top GO 
biological process (2018 categories) for each list of genes in A. 
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We also used available high-throughput chromosome 

conformation capture (3C) data, of Hi-C [123], to link AEs and 

PEs with target genes. Francesca Mugianesi (our lab) 

analyzed Hi-C data and provided the list of significant 

interactions (total of 43,892,155 significant Hi-C interactions). 

As interacting enhancers and promoters have been shown to 

match their chromatin state [52], we developed a Python script 

that associates an enhancer with the target gene of a promoter 

when both enhancer and promoter are in the same category 

(e.g., both active, or both repressed) and each one overlaps 

with one of the two sides of the same Hi-C significant 

interaction. We confirmed that PEs were significantly enriched 

in interactions with BPs over APs (p < 2.2e-16, Exact Binomial 

Test), whereas AEs were significantly enriched in interactions 

with APs over BPs (p < 2.2e-16, Exact Binomial Test). In total, 

we found 10,786 genes associated to APs, 3,459 genes to 

BPs, 10,206 genes to AEs, and 2,526 genes to PEs. Likewise, 

15,841 AEs and 2,466 PEs were associated to at least one 

gene, and 8,931 APs and 2,443 BPs, to at least one enhancer. 

 

 

1.5 Models using all the interactions to associate 

enhancers to promoters (Hi-C–all) 

 

After identifying the set of enhancers and promoters in mESCs, 

we assessed several gene expression predictive models. We 

first performed additional ChIP-seq experiments for other 
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histone modifications, in order to have additional variables to 

predict gene expression. Specifically, we performed ChIP-seq 

experiments for trimethylation of histone H3 at lysine 36 

(H3K36me3), ubiquitination of histone H2B (H2Bub), 

monomethylation of histone H3 at lysine 27 (H3K27me1), 

dimethylation of histone H3 at lysine 27 (H3K27me2), 

trimethylation of histone H4 at lysine 20 (H4K20me3), and 

dimethylation of histone H3 at lysine 79 (H3K79me2). This new 

set of experiments was performed by Malte Beringer and 

Alexandra Santanach (former members of our lab). The input 

of our predictive models consisted of the ChIP-seq data of 

these six histone marks as well as the four histone marks 

previously used to define promoters and enhancers 

(H3K4me3, H3K4me1, H3K27ac and H3K27me3), together 

with our previously-published RNA-seq expression data [118]. 

A total of 11,387 mouse protein–coding genes previously 

associated to a promoter (active or bivalent) and at least one 

enhancer (active or poised) entered the modelling. We divided 

the set of genes into two subsets: training and test. The 

Pearson’s correlation coefficient (r) between the measured 

expression in the test subset and the predicted one was used 

to assess the performance of a predictive model.  

 

We first generated a predictive model for the promoters 

identified using our approach (named Hi-C–all promoter 

model) to confirm that histone modifications at these elements 

are predictive of gene expression, as has been previously 
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shown in several cell types from different model organisms, 

including mESCs [22-32]. As a control, we repeated the 

predictive model learning in a training subset in which 

expression values were randomized. We obtained an r-value 

of 0.81 for the promoter model, and an r-value of –0.07 for the 

random promoter model (Figure R1.6A). The low performance 

of the random promoter model strongly indicated that the high 

predictive power of the Hi-C–all promoter model was not due 

to random structures in the data. Importantly, the performance 

of our promoter model was comparable to previously described 

predictive models [22-32]. Coefficients and p-values of the 

predictors for all the predictive models generated in this study 

can be found in the Appendix of this thesis. 
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Figure R1.6: Performance of the Hi-C–all models in mESC. Predicted 
expression of the test subset of genes calculated by the models versus their 
measured expression by RNA-seq. Model performances are represented 
by the Pearson’s correlation (r) between predicted and measured 
expression values. (A) Left, the model trained on the promoter regions 
associated to at least one enhancer using all significant interactions of Hi-
C (Hi-C–all promoter model). Right, the performance of the same model 
after randomizing the expression of the training subset of genes. (B) Left, 
the model trained on the enhancer regions associated to at least one 
promoter using all the significant interactions of Hi-C (Hi-C–all enhancer 
model). Right, the performance of the same model after randomizing the 
expression of the training subset of genes. 
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relatively modest, this is the first time to our knowledge that 

enhancers have been shown to be predictors of gene 

expression through their histone modification levels. Critically, 

when the expression data for learning the model were 

randomized, the performance was poor (r = –0.15, Figure 

R1.6B). 

 

 

1.6 Models using the best interactions to 

associate enhancers to promoters (Hi-C–top) 

 

We hypothesized that the modest performance of the Hi-C–all 

enhancer model could be due to some enhancer–promoter 

associations that were simply regions in close 3D proximity but 

not functionally linked. To enrich the set of interactions for 

functional promoter–enhancer loops, we applied a more 

restrictive threshold on the Hi-C significant interactions (FDR = 

0 and ln(p-value) ≤ –100). We obtained a total of 5,555,844 

interactions (8% of the total interactions). We then recalculated 

the enhancer-promoter-gene associations and obtained 1,846 

PEs associated to 1,382 BPs and to 1,434 target genes, and 

11,777 AEs associated to 7,211 APs and to 8,254 target 

genes. We selected the protein-coding genes included in the 

new associations (a total of 8,639 genes) to recalculate the 

predictive models (hereon in termed Hi-C–top models) and 

random models for promoters (Figure R1.7A) and enhancers 

(Figure R1.7B). While the Hi-C–top promoter model performed 
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similarly to the previous model (r = 0.79 vs. r = 0.81, 

respectively), the outcome of the Hi-C–top enhancer model 

was significantly improved (r = 0.49 vs. r = 0.38). This result 

further confirmed that enhancers, as well as promoters, 

possess a quantitative relationship with gene expression.   

 

 
Figure R1.7: Performance of the Hi-C–top models in mESC. Predicted 
expression of the test subset of genes calculated by the models versus their 
measured expression by RNA-seq. Model performances are represented 
by the Pearson’s correlation (r) between predicted and measured 
expression values. (A) Left, the model trained on the promoter regions 
associated to at least one enhancer using the top significant interactions of 
Hi-C (Hi-C–top promoter model). Right, the performance of the same model 
after randomizing the expression of the training subset of genes. (B) Left, 
the model trained on the enhancer regions associated to at least one 
promoter using the top significant interactions of Hi-C (Hi-C–top enhancer 
model). Right, the performance of the same model after randomizing the 
expression of the training subset of genes. 
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Finally, from the Hi-C–top interactions we selected those 

involving a distal enhancer (> 5 Kb from a TSS, a total of 

14,861 AEs and 2,287 PEs) to confirm that the predictive 

capacity was not exclusive of proximal enhancers. We 

generated a new distal enhancer model (Hi-C–top_distal; 

7,925 protein-coding genes) that properly predicted gene 

expression with a r = 0.41 (Figure R1.8). 

 

 
Figure R1.8: Performance of the Hi-C–top_distal enhancer model in 
mESC. Predicted expression of the test subset of genes calculated by the 
models versus their measured expression by RNA-seq. Model 
performances are represented by the Pearson’s correlation (r) between 
predicted and measured expression values. Left, the model trained on the 
distal enhancer regions associated to at least one promoter using the top 
significant interactions of Hi-C (Hi-C–top enhancer model). Right, the 
performance of the same model after randomizing the expression of the 
training subset of genes. 
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in neighboring domains [74]. Moreover, TADs have an average 

size of around 1 Mb. Therefore, the assignment of genes to 

enhancers located in a distance lower than 1 Mb seems 

appropriate. Thus, we developed a Python script that 

associates enhancers to promoters of the same chromatin 

state that are closer than 1 Mb. Indeed, when evaluating a new 

mESC predictive model with this new set of enhancer–gene 

associations (1 Mb model; 11,986 protein-coding genes), we 

achieved a performance of r = 0.34 (Figure R1.9). 

Nonetheless, that performance is lower than the mESC models 

based on Hi-C data that we have built previously (r = 0.38 and 

r = 0.49 for Hi-C–all and Hi-C–top enhancer models, 

respectively). This suggests that matching genes to regulatory 

elements by 1 Mb distance leads to some false–positive 

associations, yet maintaining its predictive capacity. 

 

 
Figure R1.9: Performance of the 1 Mb enhancer model in mESC. 
Predicted expression of the test subset of genes calculated by the models 
versus their measured expression by RNA-seq. Model performances are 
represented by the Pearson’s correlation (r) between predicted and 
measured expression values. Left, the model trained on the distal enhancer 
regions associated to at least one promoter using 1 Mb distance (1 Mb 
enhancer model). Right, the performance of the same model after 
randomizing the expression of the training subset of genes. 
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1.8 H3K27me3 is the most informative mark for 

predicting gene expression in mESC 

 

Enhancers and promoters exhibit similar histone modification 

patterns. We therefore wondered whether the histone 

modifications mostly contributing to the prediction of 

expression are the same ones as well, or there are differences 

in the contributions between the enhancer and the promoter 

predictive models. To address this issue, we assessed variable 

importance in the Hi-C–top model for promoters and 

enhancers. Variable importance refers to the contribution of 

each variable in the linear regression predictive model and 

corresponds to the absolute value of the t-statistic for each 

model parameter. Notably, H3K27me3—a histone modification 

associated with transcriptional gene repression―was the 

prevalent mark in both classes of regulatory elements (Figure 

R1.10). In contrast to promoters, in which H3K27me3 has a 

relatively similar importance as other marks (e.g., H2Bub, 

H3K4me3, and H3K36me3, Figure R1.10A), H3K27me3 in 

enhancers represented up to 55% of the total importance 

(Figure R1.10B). Interestingly, H3K27ac―considered the 

canonical marker of enhancer activation―had little importance 

in the enhancer model. Therefore, even though promoters and 

enhancers contribute to predict gene expression mostly 

through H3K27me3, this contribution seems to be uniquely 

driven by H3K27me3 in the enhancer predictive model while it 
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is shared by other histone marks in the promoter predictive 

model.  

 
Figure R1.10: Variable importance of each histone modification in the 
Hi-C–top predictive models. (A) Importance of each histone modification 
used to train the Hi-C–top promoter predictive model. (B) Importance of 
each histone modification used to train the Hi-C–top enhancer predictive 
model. In both A and B, importance is defined as the contribution of each 
variable in the linear regression predictive model and corresponds to the 
absolute value of the t-statistic for each model parameter. 
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1.9 LOESS normalization of ChIP-seq and RNA-

seq data from heterogeneous sources 

 

We next aimed to determine whether enhancers are predictive 

of gene expression in other cellular contexts besides mESCs, 

and whether a predictive model learned in one cell type could 

predict gene expression in another. As true colocalization of 

H3K27me3 with H3K4me1 or p300 in the same DNA fragment 

has been only studied in mESCs, it is still not clear whether 

PEs exist in other developmental scenarios [94]. To address 

this issue, we took advantage of the capacity of PEs and BPs 

to switch into an active state for certain cell types, in a lineage-

specific manner during differentiation from mESCs, while 

remaining inactive in others [94]. We hypothesized that 

differentiation data could be used to obtain predictive models 

exclusively from PEs and BPs. We focused on several time 

points for two cell differentiation mouse models (Figure R1.11): 

i) cardiac lineage: mesoderm (MES), cardio precursors (CPs), 

and cardiomyocytes (CMs) [153]; and ii) neural lineage: neural 

precursors (NPCs) and cortical neurons (CNs) [123]. 

 



 
Figure R1.1: Differentiation from mESC towards cardiac lineage and 
neural lineage. (A) Schematic representation of the differentiation stages 
from mESC towards: i) cardiac lineage: mesoderm (MES), cardio 
precursors (CPs), and cardiomyocytes (CMs); and ii) neural lineage: neural 
precursors (NPCs) and cortical neurons (CNs). (B) Principal component 
analysis (PCA) on the expression data of the differentiation stages in A. The 
PCA plot was generated by our SeqCode webserver 
(http://ldicrocelab.crg.eu/02_DataDist/PCAplotter/index.php).  
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that the intensities of the two samples should be equal, 

therefore M = 0. Finally, corrections based on a LOESS are 

applied to obtain a MA plot in where the regression line 

approximates M = 0. 

 

 
Figure R1.12: Performance of LOESS normalization in RNA-seq data. 
(A) MA plot before (left) and after (right) normalization of expression data 
at MES against mESCs. M represents the log2 ratio of the intensities of the 
two samples and A is the log2 of the average intensity. Intensity is 
determined in FPKMs. After normalization, the regression line tends to M = 
0. (B) Boxplot of expression of 15,065 protein-coding genes before and 
after LOESS normalization. CM, cardiomyocytes; CN, cortical neurons; CP, 
cardio precursors; MES, mesoderm; NPC, neural precursors. 
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MA plots of MES against mESCs before and after LOESS 

normalization is shown in Figure R1.12A). As LOESS 

normalization assumes that expression is equal in all samples, 

a general balance in global expression distribution of all time 

points is expected (R1.12B).  

 

 
Figure R1.13: RNA-seq data before and after LOESS normalization. (A) 
Raw and normalized expression of 3,277 housekeeping genes along 
cardiac and neural differentiation from mESCs. (B) Raw and normalized 
expression of 3,459 bivalent genes along the same time points as A. 
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increase their expression globally during differentiation (as 

some of them are activated). For this, we extracted a list of 

mouse housekeeping genes across 14 mouse tissues from the 

literature [156] to check their expression. We also evaluated 

the normalization on our list of bivalent genes (e.g., those 

associated to BPs). Indeed, after LOESS normalization, the 

expression of housekeeping genes was correctly balanced 

(Figure R1.13A), whereas the expression of bivalent genes 

maintained the characteristic pattern of increased expression 

across time (Figure R1.13B). 

 

 
Figure R1.14: Performance of LOESS normalization in the ChIP-seq 
data. MA plots before and after normalization of MES against mESCs. M 
represents the log2 ratio of the intensities of the two samples, and A is the 
log2 of the average intensity. Intensity corresponds to normalized count of 
reads by total number of reads of the ChIP-seq samples of (A) H3K27me3, 
and (B) H3K4me3. 

A

B

H3K27me3 MA plot before normalization H3K27me3 MA plot after normalization

H3K4me3 MA plot before normalization H3K4me3 MA plot after normalization

MES

í��� í��� í��� ��� ���
í�

�

2

4

M

A

MES

í� í� í� �
í�

í�

�

�

2

M

A

MES

í��� í��� í��� ��� ��� ���
í�

í�

�

2

M

A

MES

í� í� í� �

í�

í�

�

�

2

M

A



 62 

Once the validness of our approach was evaluated on 

expression data, we then ran the same normalization method 

on the ChIP-seq samples for H3K27me3, H3K4me3, 

H3K4me1, and H3K36me3 at the same time points. Examples 

of MA plots of MES against mESC before and after LOESS 

normalization over the full set of bins of 2 Kb at chromosome 

19 are shown in Figure R1.14A for H3K27me3, and in Figure 

R1.14B for H3K4me3.  

 

Similar to expression data, we evaluated our normalization 

method for the H3K4me3 and H3K27me3 ChIP-seq levels 

across differentiation on two different sets of genomic regions: 

the whole collection of bins of 2 Kb in which the genome is 

segmented, and the coordinates of our collection of BPs. We 

hypothesized that global ChIP-seq levels of the whole genome 

would become balanced irrespectively of the particular histone 

modification analyzed, while BPs should present a different 

pattern for H3K4me3 and H3K27me3 (e.g., increase and 

decrease of signal along differentiation time points, 

respectively, as a subset of the bivalent genes becomes 

activated during time). Indeed, after LOESS normalization, the 

levels of H3K4me3 along the whole genome were balanced 

(Figure R1.15A), whereas the same histone mark at BPs 

presented a clear pattern of increase during differentiation 

(Figure R1.15B). Notably, for H3K27me3, we observed the 

same balance in the levels along the whole genome after 

LOESS normalization (Figure R1.15C), while BPs exhibited a 
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pattern of decreased signal across differentiation, in contrast 

to that observed for H3K4me3 (Figure R1.15D). In all cases, 

therefore, there is a substantial improvement after applying this 

novel normalization approach. This suggests that the analysis 

solely based on data before normalization would be in many 

cases misleading. 
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Figure R1.15: ChIP-seq data before and after LOESS normalization. (A) 
Raw and normalized H3K4me3 ChIP-seq signal levels at all 2-Kb bins of 
the genome. (B) Raw and normalized H3K4me3 ChIP-seq signal levels at 
3,344 BPs. (C, D), same as A and B, respectively, but for H3K27me3. CM, 
cardiomyocytes; CN, cortical neurons; CP, cardio precursors; MES, 
mesoderm; NPC, neural precursors. 
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1.10 Poised enhancers and bivalent promoters are 

good predictors of gene expression during 

differentiation 

 

After normalizing the data on expression and histone 

modifications across differentiation, we next generated 

predictive models using PEs and BPs for each differentiation 

time point. We used the Hi-C–top interactions involving PEs, 

BPs, and target genes in ESCs (1,846 PEs and 1,382 BPs 

associated with 1,434 target genes). From this dataset, a total 

of 1,063 protein-coding genes were used in the analysis. As 

the number of genes is smaller than in the previous gene sets, 

we decided to build the models at each cell type from the full 

set of genes to be evaluated in the rest of the differentiation 

time points. This approach has the advantage of allowing us to 

check whether the relationship between gene expression and 

histone marks in PEs is universal. This would be true if a model 

trained in a specific cellular context has a good performance in 

predicting gene expression in another one. We hypothesized 

that, as shown previously for promoters and gene bodies [22-

24, 27], there is a universal relationship between gene 

expression and histone modifications at PEs.  
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Figure R1.16: PE and BP models trained in differentiation time points. 
(A) Performance of each differentiation PE model on the rest of the 
differentiation time points as compared to performance over random 
models. Performance is represented as Pearson’s correlation (r) between 
predicted expression and measured expression. Significance was 
assessed using a paired Student’s t-test between the performance of the 
models and the performance of the random models paired by the 
differentiation test set (****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05). 
CM, cardiomyocytes; CN, cortical neurons; CP, cardio precursors; MES, 
mesoderm; NPC, neural precursors. (B) Same as in A, but for BP. 
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As a control, we randomized expression data and calculated 

predictive models for each time point. Next, we evaluated the 

performance of the randomized models on each differentiation 

dataset. We observed that predictive models for PEs and BPs 

obtained a significantly higher performance than randomized 

controls (Figure R1.16A, and R1.16B). Surprisingly, all PE 

models achieved the best performance in cardiomyocytes 

(Table R1.1), suggesting that cardiomyocyte expression is 

easier to predict than the expression set of other time points. 

Moreover, all PE models had similar performances at each 

time point (Table R1.1). These observations are also true for 

the BP models (Table R1.2). Taken together, our results 

indicate that there is a universal quantitative relationship 

between gene expression and histone modifications at PEs 

and BPs across cardiac and neural differentiation. 

 
Table R1.1: Performance of each PE differentiation model at every 
differentiation time point 

 MES CP CM NPC CN 

MES model - 0.34 0.42 0.32 0.29 

CP model 0.3 - 0.42 0.32 0.29 

CM model 0.3 0.34 - 0.31 0.28 

NPC model 0.3 0.33 0.39 - 0.29 

CN model 0.3 0.32 0.39 0.32 - 
For each time point of cardiac (MES/CP/CM) and neural (NPC/CN) PE 
models (rows), the performance of the PE predictive models is shown for 
each cell type (columns). The performance values are represented as 
Pearson’s correlation (r) between the measured expression and the 
predicted one. CM, cardiomyocytes; CN, cortical neurons; CP, cardio 
precursors; MES, mesoderm; NPC, neural precursors. 
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Table R1.2: Performance of each BP differentiation model at every 
differentiation time point 

 MES CP CM NPC CN 

MES model - 0.78 0.77 0.66 0.77 

CP model 0.74 - 0.79 0.67 0.72 

CM model 0.72 0.78 - 0.65 0.71 

NPC model 0.71 0.77 0.77 - 0.72 

CN model 0.73 0.77 0.78 0.69 - 
For each time point of cardiac (MES/CP/CM) and neural (NPC/CN) BP 
models (rows), the performance of the BP predictive models is shown for 
each cell type (columns). The performance values are represented as 
Pearson’s correlation (r) between the measured expression and the 
predicted one. CM, cardiomyocytes; CN, cortical neurons; CP, cardio 
precursors; MES, mesoderm; NPC, neural precursors. 
 

In order to confirm the predictive capacity of distal PEs (>5 Kb 

from a TSS, a total of 2,287 PEs), we elaborated new distal PE 

models (Figure R1.17). Indeed, distal PEs maintained the 

predictive capacity of the original model. In this case, 486 

protein-coding genes were included in the modelling. 

 



 69 

 
Figure R1.17: distal PE models trained using differentiation time 
points. Performance of each differentiation BP model on the rest of the 
differentiation time points as compared to the performance over the random 
models. Performance is represented as Pearson’s correlation (r) between 
predicted expression and measured expression. Significance was 
assessed using a paired Student’s t-test of the performance of the models 
or of the random models paired by a differentiation test set (****p < 0.0001, 
***p < 0.001, **p < 0.01, *p < 0.05). CM, cardiomyocytes; CN, cortical 
neurons; CP, cardio precursors; MES, mesoderm; NPC, neural precursors. 
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enhancer regions rather than in contributing to its function. 

H3K4me3, which was vastly associated with promoter activity, 

is accordingly the less informative mark for the prediction of 

gene expression using PEs, suggesting that H3K4me3 is not 

associated to enhancer activity.  

 

The analysis of the variable importance in the BP models 

showed that H3K27me3, H3K27ac and, importantly, 

H3K4me3, were the most informative variables (Figure 

R1.18B). Our results suggested that the quantitative 

relationship between histone modifications and gene 

expression varies according to their location in PEs or BPs. 

Critically, even though there is a universal quantitative 

relationship between histone modifications and gene 

expression, this relationship can vary depending on the cellular 

context. 
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Figure R1.18: Variable importance of the PE and BP differentiation 
models. (A) Importance of histone modifications for each differentiation PE 
model. Importance is defined as the contribution of each variable in the 
linear regression predictive model and corresponds to the absolute value 
of the t-statistics for each model parameter. CM, cardiomyocytes; CN, 
cortical neurons; CP, cardio precursors; MES, mesoderm; NPC, neural 
precursors. (B) Same as in A, but for BP. 
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1.11 H3K27me3 is important to predict gene 

expression from both, intragenic and intergenic 

poised enhancers 

 

The importance of H3K36me3 in the PE differentiation models 

might be explained by the fact that almost 60% of the PEs that 

entered the modelling are located within gene bodies. As 

H3K36me3 is located in the gene body of active genes [18, 19], 

intragenic enhancers also become marked when the genes 

start to be expressed during differentiation. To explore this 

scenario, we divided PEs into two groups, intragenic or 

intergenic, and built new PE predictive models. Both, intragenic 

and intergenic models were capable of predicting gene 

expression under similar parameters of performance (Figure 

R1.19).  
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Figure R1.19: Intragenic and intergenic PE models trained using 
differentiation time points. (A) Performance of each differentiation 
intragenic model on the rest of the differentiation time points as compared 
to the performance over the random models. Performance is represented 
as Pearson’s correlation (r) between predicted expression and measured 
expression. Significance was assessed using a paired Student’s t-test of 
the performance of the models or of the random models paired by a 
differentiation test set (****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05). 
CM, cardiomyocytes; CN, cortical neurons; CP, cardio precursors; MES, 
mesoderm; NPC, neural precursors. (B) Same as in A, but for intergenic 
PE. 
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When assessing for variable importance, we observed that, as 

expected, H3K36me3 maintained its high contribution in the 

intragenic predictive models (Figure R1.20A). However, 

H3K36me3 importance was reduced in the intergenic 

predictive models (Figure R1.20B). On the contrary, 

H3K27me3 maintained its importance in both, intergenic and 

intragenic models (Figure R1.20). Thus, H3K27me3, and not 

H3K36me3, behaves as a truly universal predictor of PE 

activity. 
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Figure R1.20: Variable importance of the intragenic and intergenic PE 
differentiation models. (A) Importance of histone modifications for each 
differentiation intragenic model. Importance is defined as the contribution 
of each variable in the linear regression predictive model and corresponds 
to the absolute value of the t-statistics for each model parameter. CM, 
cardiomyocytes; CN, cortical neurons; CP, cardio precursors; MES, 
mesoderm; NPC, neural precursors. (B) Same as in A, but for intergenic 
PEs. 
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1.12 Poised enhancers and bivalent promoters are 

good predictors of gene expression in mouse 

embryonic tissues 

 

In order to extend our findings from in vitro differentiation to in 

vivo, we learnt predictive PE and BP models from mouse 

developmental stages at different tissues. We downloaded 

from ENCODE [157] ChIP-seq data of H3K27me3, H3K27ac, 

H3K36me3, H3K4me3 and H3K4me1 and RNA-seq on mouse 

embryos: heart tissue from 10.5 embryonic day (Heart10.5), 

liver tissue from 11.5 embryonic day (Liver11.5), neural tube 

tissue from 12.5 embryonic day (NeuralTube12.5), kidney 

tissue from 14.5 embryonic day (Kidney14.5), and lung tissue 

from 15.5 embryonic day (Lung15.5). We first normalized the 

ChIP-seq and expression data following the LOESS approach. 

In here, a total of 1,087 protein-coding genes entered the 

analysis. We observed that PEs were also predicting gene 

expression during mouse embryo development (Figure 

R1.21A). Again, when assessing for variable importance, we 

found that H3K27me3 was contributing the most, followed by 

H3K27ac and H3K36me3 (Figure R1.21B).  
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Figure R1.21: PE models trained using developmental stages. (A) 
Performance of each differentiation PE model on the rest of the 
developmental stages as compared to the performance over the random 
models. Performance is represented as Pearson’s correlation (r) between 
predicted expression and measured expression. Significance was 
assessed using a paired Student’s t-test of the performance of the models 
or of the random models paired by a differentiation test set (****p < 0.0001, 
***p < 0.001, **p < 0.01, *p < 0.05). (B) Importance of histone modifications 
for each development PE model. Importance is defined as the contribution 
of each variable in the linear regression predictive model and corresponds 
to the absolute value of the t-statistics for each model parameter. 
Heart10.5, heart tissue from 10.5 embryonic day; Kidney14.5, kidney tissue 
from 14.5 embryonic day; Liver11.5, liver tissue from 11.5 embryonic day; 
Lung15.5, lung tissue from 15.5 embryonic day; NeuralTube12.5, neural 
tube tissue from 12.5 embryonic day. 
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Next, we confirmed that BPs were also predicting gene 

expression during mouse embryo development (Figure 

R1.22A). In this case, the most predictive variable was 

H3K27ac followed by H3K27me3 and H3K4me3 (Figure 

R1.22B). Therefore, we further confirmed that differences in 

variable importance between PE models and BP models exist, 

which suggests that different histone modifications relate 

better to PE and BP function, respectively. 
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Figure R1.22: BP models trained using developmental stages. (A) 
Performance of each differentiation BP model on the rest of the 
developmental stages as compared to the performance over the random 
models. Performance is represented as Pearson’s correlation (r) between 
predicted expression and measured expression. Significance was 
assessed using a paired Student’s t-test of the performance of the models 
or of the random models paired by a differentiation test set (****p < 0.0001, 
***p < 0.001, **p < 0.01, *p < 0.05). (B) Importance of histone modifications 
for each development BP model. Importance is defined as the contribution 
of each variable in the linear regression predictive model and corresponds 
to the absolute value of the t-statistics for each model parameter. 
Heart10.5, heart tissue from 10.5 embryonic day; Kidney14.5, kidney tissue 
from 14.5 embryonic day; Liver11.5, liver tissue from 11.5 embryonic day; 
Lung15.5, lung tissue from 15.5 embryonic day; NeuralTube12.5, neural 
tube tissue from 12.5 embryonic day. 
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CHAPTER 2 
 

 

The results shown in this chapter correspond to 

objective number 2 of this thesis. 
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2.1 Definition of the collection of regulatory 

regions of study 

 

In Chapter 1, we have used our pipeline of chromatin 

segmentation to identify a total of 3,344 BPs and 9,421 APs in 

mESCs. Moreover, we have found a total of 1,846 PEs, all of 

them associated to at least one BP by a Hi-C–top interaction. 

At the same time, 11,777 AEs have been associated to at least 

one AP by a Hi-C–top interaction. However, there is a third type 

of enhancers, called intermediate enhancers (IEs), solely 

marked by H3K4me1 in absence of H3K27ac and H3K27me3. 

As historically IEs were grouped in the same category as PEs 

[65], we decided to characterize separately both types of 

regions and also in comparison to AEs, APs and BPs. Thus, 

from our chromatin segmentation model in mESC (Figure 

R1.2), we considered the intermediate state (state 5) in order 

to identify IEs. We selected as IEs those segments of state 5 

that were surrounded by the unmarked state (state 9), to 

discard broad peaks of H3K4me1 surrounding active states 

(Figure R1.4A). Similarly to the identification of PEs and AEs, 

we also required a minimum length of 600 bp, an overlap with 

a peak of p300 [124] in at least 1 bp, and that IEs did not 

overlap with a region ± 500 bp around an existing TSS 

according to RefSeq [149]. As target genes of IEs have not 

been unambiguously identified yet, we did not require a Hi-C–

top interaction with any type of promoter. In sum, under our 

pipeline, we found 12,608 IEs in mESCs. 
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2.2 Histone modification enrichment over all types 

of regulatory regions 

 

Next, we set out to characterize our collection of regulatory 

regions to gain insight into the role of each class of enhancers. 

First of all, we studied the epigenetic landscape of PEs, BPs, 

AEs, APs and IEs in terms of enrichment for ten different 

histone modifications: H2Bub, H3K27ac, H3K27me1, 

H3K27me2, H3K27me3, H3K36me3, H3K4me1, H3K4me3, 

H3K79me2 and H4K20me3 (Figure R2.1). We observed that 

H2Bub is mainly enriched in APs compared to the rest of 

regulatory regions and to the whole genome. As expected, 

H3K27ac is mainly enriched in both types of active regions 

(APs and AEs), whereas H3K27me3 is enriched in the poised 

ones (BPs and PEs). Moreover, H3K27me1 and H3K27me2 

are clearly depleted in PEs and BPs. H3K36me3 and 

H4K20me3, in average, do not show enrichment in any of the 

regulatory regions. H3K4me1 is enriched in all types of 

regulatory regions. H3K4me3 is mainly enriched in both types 

of promoters, nevertheless some enrichment is observed also 

at PEs and AEs. Finally, H3K79me2 is clearly depleted in PEs 

and BPs, while enriched in active regions, mainly APs.  
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Figure R2.1: Histone modification enrichment at regulatory regions in 
mESCs. The ratio between the ChIP-seq signal strength of each histone 
modification over the intensity of the control at each class of regulatory 
region is shown. ChIP-seq of H3 was used as a control for H3 modifications 
and the input for H2Bub and H4K20me3. ChIP-seq levels correspond to 
number of reads normalized by total number of reads. WG (whole genome), 
enrichment at whole genome divided in bins of 2 Kb (which corresponds to 
average size of the regulatory regions). 
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2.3 Polycomb occupies poised enhancers 

 

 
Figure R2.2: PcG component enrichment at regulatory regions in 
mESCs. The ratio between the ChIP-seq signal strength of distinct PcG 
components over the intensity of the control (input) at each class of 
regulatory region is shown. ChIP-seq levels correspond to number of reads 
normalized by total number of reads. WG (whole genome), enrichment at 
whole genome divided in bins of 2 Kb (which corresponds to average size 
of the regulatory regions). 
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All PRC1 and PRC2 subunits are known to bind BPs. 

Interestingly, several PRC2 components have already been 

shown to occupy PEs, such as SUZ12, EZH1, EZH2, JARID2, 

and PHF19, and also RING1B from PRC1 [124-126]. Indeed, 

we confirmed PRC2 occupancy and remarkably showed that, 

besides RING1B, other PRC1 components such as CBX7, 

MEL18, PHC1 and RYBP are also located at PEs (Figure R2.2) 

[115, 117, 118, 158]. As expected, PcG subunits are generally 

depleted from AEs and APs. Interestingly, IEs, which were 

historically associated to poised states of regulation, are 

depleted in PcG components too. 

 

Previous work from our lab showed that upon Phf19 knock-

down, there is a decrease in H3K27me3 signal in BPs from 

mESCs [115]. Here, we confirmed that this decrease happens 

also in PEs (Figure R2.3A). Moreover, this decrease is 

significant with a p < 2.2e-16 (Wilcoxon Test) in both types of 

regions. Interestingly, our lab also documented in another 

publication that upon Epop knock-down, there is an increase 

in H3K27me3 signal in BPs from mESCs [118]. We again 

confirmed that this increase happens in both, PEs and BPs 

(Figure R2.3B). Again, this increase is significant with a p < 

2.2e-16 (Wilcoxon Test) in both types of regions. 
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Figure R2.3: Effect of Phf19 and Epop knock-downs over H3K27me3 
in mESCs at PEs and BPs. ChIP-seq heatmaps showing H3K27me3 
signal on PEs and BPs (centered on the summit) ± 5 Kb. The signal is 
normalized by the total number of reads. (A) Knock-down of Phf19 
(shPhf19) and its control (shCTR). (B) Knock-down of Epop (shEpop) and 
its control (shCTR). 
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2.4 Poised enhancers are enriched in epigenetic 

factors associated to transcriptional activation 

 

As p300 is a factor associated to transcriptional activation used 

also to identify PEs and IEs by us and others [124], we next 

studied the enrichment in our collection of regulatory elements 

of several chromatin remodelers involved in transcriptional 

activation such as CHD2, CHD7, CHD8 and p400 [159, 160]. 

Moreover, we also studied the enrichment of architectural 

proteins such as CTCF –which is involved in the establishment 

of genome 3D interactions [123, 161]– and YY1 –which is 

involved in regulating active enhancer-promoter loops [162]– 

(Figure R2.4). We found that CHD2 is mainly enriched in active 

regions, whereas CHD7 is also enriched in PEs, BPs and IEs. 

Interestingly, CHD8 and p400 are mainly enriched in PEs, BPs, 

AEs and APs, whereas the enrichment in IEs is limited. CTCF 

is not enriched in any of the regulatory regions. Interestingly, 

YY1 seems to have certain degree of enrichment in PEs and 

BPs, besides the expected enrichment in AEs and APs. Thus, 

PEs seem to be more enriched in epigenetic factors associated 

to transcriptional activation than IEs. 
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Figure R2.4: Epigenetic factor enrichment at regulatory regions in 
mESCs. The ratio between the ChIP-seq signal strength of distinct 
epigenetic factors over the intensity of the control (input) at each class of 
regulatory region is shown. ChIP-seq levels correspond to number of reads 
normalized by total number of reads. WG (whole genome), enrichment at 
whole genome divided in bins of 2 Kb (which corresponds to average size 
of the regulatory regions). 
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regulatory regions (Figure R2.5) [163]. Interestingly, we found 

that POL2 S5P is not only enriched in APs and BPs, but also 

in PEs and AEs. Thus, IEs can be distinguished from the rest 

of regulatory elements by the absence of POL2 S5P. POL2 

S2P was depleted in PEs and BPs, consistent with the 

repressed state of these regulatory regions.  

 

 
Figure R2.5: POL2 enrichment at regulatory regions in mESCs. The 
ratio between the ChIP-seq signal strength of POL2 modifications over the 
intensity of the control (input) at each class of regulatory region is shown. 
ChIP-seq levels correspond to number of reads normalized by total number 
of reads. WG (whole genome), enrichment at whole genome divided in bins 
of 2 Kb (which corresponds to average size of the regulatory regions). 
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observations, together with our previous observations, suggest 

that PEs are more primed for activation than IEs. 

 

 
Figure R2.6: ATAC-seq signal at regulatory regions in mESCs. ATAC-
seq signal corresponds to number of reads normalized by total number of 
reads. WG (whole genome), enrichment at whole genome divided in bins 
of 2 Kb (which corresponds to average size of the regulatory regions). 
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intragenic PEs separately, and confirmed that even intergenic 

PEs are one of the most conserved regions (Figure R2.7B). 

Interestingly, intergenic PEs have an average conservation 

similar to APs. These findings suggest that PEs, as BPs, have 

a key role in development. 

 

 
Figure R2.7: Average conservation at regulatory regions. (A) Average 
conservation at PEs, BPs, AEs, APs, IEs and whole genome (WG) divided 
in 2 Kb bins (which corresponds to average size of the regulatory regions). 
(B) Same as in A, but PEs are divided into two groups: intergenic (PE inter) 
and intragenic (PE intra). Conservation levels were determined using the 
PhastCons track of the UCSC genome browser [165]. 

 

 

2.8 Poised enhancers colocalize with CpG islands 

 

Recently, it has been shown that CpG islands (CGIs) play a 

key role in PE function [166]. Thus, we calculated the 

percentage of each type of regulatory region overlapping with 

a CGI (Figure R2.8). Our results for PEs are comparable to 

those previously described [166]. In addition, we found that 

PEs are the enhancer type that colocalizes most frequently 

with a CGI. 
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Figure R2.8: Colocalization between regulatory regions and CGIs. 
Percentage of regions (PEs, BPs, AEs, APs and IEs) overlapping with a 
CGI by at least 1 bp. 

 

 

2.9 Identification of poised enhancers becoming 

active in differentiation 

 

PE activation has generally been related to differentiation 

towards neural lineage [124-127]. However, recent evidence 
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Thus, we aimed to identify PEs switching towards an active 

state during differentiation towards neural but also cardiac 

lineages.  
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Figure R2.9: Chromatin segmentation models for cardiac and neural 
lineages. (A) State definition of the chromatin segmentation model of MES. 
The values represent the probability (from 0 to 1) of finding each histone 
modification (vertical) in genomic segments of the states (horizontal). The 
red rectangle denotes states with more than 0.5 probability to have 
H3K27ac used to identify PEs and BPs becoming active. (B) As in A, but 
for CPs. (C) As in A, but for CMs. (D) As in A, but for NPCs. (E) As in A, but 
for CNs. 

 

First of all, we generated chromatin segmentation models of 

MES, CPs, CMs, NPCs and CNs with the ChromHMM software 

[49], using ChIP-seq data of H3K27ac, H3K4me1 and 

H3K4me3 (Figure R2.9). We did not introduce H3K27me3 into 

the models as we observed colocalization of H3K27me3 and 

H3K27ac (Figure R2.10), probably caused by population 

heterogeneity. Therefore, we reasoned this colocalization 

could mask the gain of H3K27ac in the resulting chromatin 

segmentation models.  
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Figure R2.10: Example region of colocalization between H3K27me3 
and H3K27ac in CP. The region contains the CP marker gene Nkx2-5, 
which has peaks of H3K27ac and is expressed, although the region seems 
to be covered by H3K27me3 at the same time. 

 

Next, we selected those states with more than 0.5 probability 

to have H3K27ac as active states (Figure R2.9). We did not 

use states enriched in H3K4me3 without H3K27ac as they 

could be considered to be bivalent. We identified BPs and PEs 

becoming active during differentiation when they overlap in at 

least 600 bp with regions of genome covered by active states. 

The total number of BPs switching towards and active state at 

each differentiation time point are in Table R2.1, as well as 

their associated PEs that also become active.  

 
Table R2.1: Number of BPs and associated PEs becoming active 
during differentiation and their target genes. 

 MES CP CM NPC CN 

BP to AP 2,229 1,369 1,796 1,106 2,465 
Target genes 

(BP to AP) 2,248 1,450 1,888 1,179 2,598 

PE to AE 561 278 354 160 587 
Target genes 

(PE to AE) 538 244 341 144 590 

Number of BPs, associated PEs becoming active at each differentiation 
time point: MES, CPs, CMs, NPCs and CNs; and number of target genes. 
 

H3K27ac_CP

H3K27me3_CP

RNA-seq_CP
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Finally, we confirmed that BPs (Figure R2.11A) and PEs 

(Figure R2.11B) becoming active decrease their H3K27me3 

levels with respect to mESCs (denoted by the negative fold 

change). Likewise, BPs and PEs that are not switching towards 

an active state (inactive BPs and PEs) present similar 

H3K27me3 levels (denoted by a fold change close to 0). 

Moreover, the differences in H3K27me3 fold change between 

active and inactive regions are significant (Figure R2.11). 

Therefore, inactivated PEs retain H3K27me3, whereas the 

active ones lose it. 
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Figure R2.11: H3K27me3 at PEs and BPs during differentiation. (A) 
Fold change of H3K27me3 between each differentiation time point and 
mESC at activated BPs (red) and inactive BPs (white). Activated BPs are 
those that switch towards an active state in each differentiation time point. 
(B) As for A, but in the PEs. 
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2.10 Poised enhancer activation is more cell type-

specific than bivalent promoter activation 

 

We performed a GO term enrichment analysis on the target 

genes of activated BPs and PEs at each differentiation time 

point. As expected, among the most significant categories we 

found terms related to development and differentiation (Figure 

R2.12). Interestingly, for the cardiac lineage, the top GO 

categories related to differentiation and development where 

strongly associated to cardiac differentiation in the target 

genes of the activated PEs than in those of the activated BPs 

(Figure R2.12A-C). This finding suggests that PE activation is 

more cell type-specific than BP activation. 
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Figure R2.12: Functional analysis of the target genes of the BPs and 
PEs becoming active during differentiation. (A) Top GO biological 
process 2018 categories enriched in target genes of activated BPs in MES 
(left) and activated PEs in MES (right). (B) As for A, but in CP. (C) As for A, 
but in CM. (D) As for A, but in NPC. (E) As for A, but in CN. 
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Surprisingly, we found that an important subset of genes 

activated their BPs at all differentiation time points (Figure 

R2.13A), while this shared subset of genes was relatively less 

abundant for PEs (Figure R2.13B). Moreover, we confirmed 

this observation not only at gene level but also when 

comparing the activation of the regulatory regions (Figure 

R2.13C-D). Among the genes activating their BPs in several 

differentiation time points, we found Isl1, whose associated BP 

is activated at both CMs and CNs, but whose PEs are only 

activated in CMs (Figure R2.13E). Interestingly, Isl1 is 

expressed not only at CMs (11.63 FPKMs), but also at CNs 

(1.75 FPKMs). Although lower than at CMs –which is 

expected– Isl1 expression at CNs is higher than at mESCs 

(0.51 FPKMs). This observation goes in line with the activation 

of the BP alone in CNs. Altogether, these results further 

suggest that PE activation is more cell type-specific than BP 

activation.  
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Figure R2.13: PE activation is more cell type-specific than BP 
activation. (A) Upset plot comparing overlap between the target genes of 
the activated BPs at each differentiation time point. (B) As for A, but in PEs. 
(C) Upset plot comparing the overlap between activated BPs at each 
differentiation time point. (D) As for A, but in PEs. (E) Example of a gene, 
Isl1, whose associated BP is activated in both CMs and CNs, but whose 
PEs are only activated in CMs. The PEs are highlighted in light blue. 

 

 

705

416

367

313

199
154

125124106
8670706957

35292320201812107 5 3 3 2 1 1
0

200

400

600

800

In
te

rs
ec

tio
n 

S
iz

e

     CN

    MES

     CM

     CP

    NPC

010002000

Set Size

A
Genes with an active BP 189

121

95

61
5147433935

252525
171513 9 8 8 7 7 7 5 4 4 3 3 2 1

0

50

100

150

200

In
te

rs
ec

tio
n 

S
iz

e

     CN

    MES

     CM

     CP

    NPC

0200400600

Set Size

B
Genes with an active PE

652

392
360

299

193

142125117107
8872696756

32292120201912116 5 3 3 2 1 1
0

200

400

600

In
te

rs
ec

tio
n 

S
iz

e

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

ƔƔ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

ƔƔ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

ƔƔ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

     CN

    MES

     CM

     CP

    NPC

050015002500

Set Size

C
216

133

109

63
5752

434141

2524232222201716
9 8 6 4 4 4 3 3 3 2 2 2 1

0

50

100

150

200

In
te

rs
ec

tio
n 

S
iz

e

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

ƔƔ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

Ɣ

     CN

    MES

     CM

     CP

    NPC

0200400600

Set Size

D
Active BPs Active PEs

H3K27ac_CM
4.5 _

0 _

H3K27ac_mESC
4.5 _

0 _

H3K27ac_CN
4.5 _

0 _

Isl1

E



 103 

2.11 The increase in expression of poised 

enhancer target genes is cell type-specific 

 

In order to confirm that what we observed for Isl1 gene was a 

general trend, we compared the increase in gene expression 

at each differentiation time point with respect to mESCs, 

between those genes for which we reported the activation of 

only their BP or their BP plus their PE. We confirmed that those 

genes whose PE (in addition to its BP) was activated have a 

higher increase in gene expression than those that only have 

their BP in an active state (Figure R2.14). 

 

 
Figure R2.14: Genes activating their PE besides their BP have a higher 
increase in gene expression with respect to mESCs. Gene expression 
fold-change between each differentiation time point and mESCs at genes 
activating their BP alone (white), or both, their BP and their PE (red). 
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we calculated the gene expression increase, of the target 

genes of one of the differentiation time points in the rest 

(Figures R2.15-19). We observed that such differences in the 

fold change are generally not significant in the rest of the time 

points, and mostly, they are not significant across the other 

lineage. Thus, we concluded that gene expression increase by 

PE activation is specific of the cell type. Interestingly, the 

activated BP target genes without an activated PE in CNs have 

a significantly higher increase in expression with respect to 

mESCs in CMs than those genes that also have an activated 

PE in CNs (Figure R2.19). This observation goes in line with 

gene expression increase by PE activation being specific of the 

cell type. 

 

 
Figure R2.15: The higher gene expression increase observed at MES 
in its activated PE target genes is not observed in the rest of the 
differentiation time points. Gene expression fold-change between each 
differentiation time point and mESCs at MES target genes. Genes 
activating their BP alone (white), or both, their BP and their PE (red), in 
MES. 
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Figure R2.16: The higher gene expression increase observed at CP in 
its activated PE target genes is not observed in the rest of the 
differentiation time points. Gene expression fold-change between each 
differentiation time point and mESCs at CP target genes. Genes activating 
their BP alone (white), or both, their BP and their PE (red), in CPs. 

 

 
Figure R2.17: The higher gene expression increase observed at CM in 
its activated PE target genes is not observed in the neural lineage. 
Gene expression fold-change between each differentiation time point and 
mESCs at CM target genes. Genes activating their BP alone (white), or 
both, their BP and their PE (red), in CMs. 
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Figure R2.18: The higher gene expression increase observed at NPC 
in its activated PE target genes is not observed in the rest of the 
differentiation time points. Gene expression fold-change between each 
differentiation time point and mESCs at NPC target genes. Genes activating 
their BP alone (white), or both, their BP and their PE (red), in NPCs. 

 

 
Figure R2.19: The higher gene expression increase observed at CN in 
its activated PE target genes is not observed in the rest of the 
differentiation time points. Gene expression fold change between each 
differentiation time point and mESCs at CN target genes. Genes activating 
their BP alone (white), or both, their BP and their PE (red), in CNs. 
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2.12 Commonly activated bivalent genes in 

differentiation have the same activated poised 

enhancer at all differentiation time points 

 

Enhancers are generally cell type-specific, and even the 

expression of the same gene can be governed by different 

enhancers in different cell types [68]. Therefore, we wondered 

whether the expression of commonly activated bivalent genes 

(those associated to a BP) is driven by the same PE or by 

different ones. Surprisingly, we found that common genes with 

an activated PE generally share the same enhancers (Figure 

R2.20A). Among the common genes activating the same PE at 

all differentiation time points we found Cbx4 (Figure R2.20B), 

which accordingly, is expressed in MES (1.28 FPKMs), CPs 

(3.55 FPKMs), CMs (7.10 FPKMs), NPCs (1.51 FPKMs) and 

CNs (5.20 FPKMs) but not in mESCs (0.1 FPKMs). 
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Figure R2.20: Common genes activated at all differentiation time point 
share the activation of the same PE. (A) Upset plot comparing the overlap 
between activated PEs at each differentiation time point that govern 
common genes. (B) Example of a gene, Cbx4, which activates the same 
PE in all the differentiation time points. The PE is highlighted in light blue. 

 

 

2.13 Identification of poised enhancers becoming 

active at mouse embryonic tissues 
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embryonic tissues at different embryonic days (Heart10.5, 

Liver11.5, NeuralTube12.5, Kidney14.5 and Lung15.5) [157]  

with the ChromHMM software [49], using ChIP-seq data of 

H3K27ac, H3K4me1 and H3K4me3 (Figure R2.21). 

 

 
Figure R2.21: Chromatin segmentation models for embryonic tissues. 
(A) State definition of the chromatin segmentation model of Heart10.5. The 
values represent the probability (from 0 to 1) of finding each histone 
modification (vertical) in genomic segments of the states (horizontal). The 
red rectangle denotes states with more than 0.5 probability to have 
H3K27ac used to identify PEs and BPs becoming active. (B) As in A, but 
for Liver11.5. (C) As in A, but for NeuralTube12.5. (D) As in A, but for 
Kidney14.5. (E) As in A, but for Lung15.5. 

 

Next, we selected those states with more than 0.5 probability 

to have H3K27ac as active states (Figure R2.21). As before, 

we identified BPs and PEs becoming active in embryonic 

tissues when they overlap in at least 600 bp with regions of 

genome covered by active states. The total number of BPs 
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become active. 
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Table R2.2: Number of BPs and associated PEs becoming active in 
embryonic tissues and their target genes. 

 Heart10.5 Liver11.5 NeuralTube12.5 Kidney14.5 Lung15.5 

BP to AP 2,143 632 828 962 1,006 

Target 
genes (BP 

to AP) 
2,348 692 892 1,028 1,075 

PE to AE 561 89 233 213 194 

Target 
genes (PE 

to AE) 
518 87 188 191 171 

Number of BPs, associated PEs becoming active at each embryonic tissue: 
Heart10.5, Liver11.5, NeuralTube12.5, Kidney14.5 and Lung15.5; and 
number of target genes. 
 

Finally, we confirmed that BPs (Figure R2.22A) and PEs 

(Figure R2.22B) becoming active presented significantly lower 

H3K27me3 signal than those that do not. Therefore, as in 

differentiation, inactive PEs retain H3K27me3, whereas the 

active ones lose it. 
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Figure R2.22: H3K27me3 at PEs and BPs in embryonic tissues. (A) 
Enrichment of H3K27me3 over control (input) in each embryonic tissue at 
activated BPs (red) and inactive BPs (white). Activated BPs are those that 
switch towards an active state in each embryonic tissue. (B) As for A, but 
in the PEs. 
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2.14 Poised enhancer activation is more tissue- 

specific than bivalent promoter activation 

 

We performed a GO term enrichment analysis on the target 

genes of activated BPs and PEs in each embryonic tissue. As 

expected, among the most significant categories we found 

terms related to development and differentiation (Figure 

R2.23). As in differentiation, for some of the tissues such as 

Heart10.5 and Lung15.5, the top GO categories related to 

differentiation and development where more related to the 

specific tissue of study in the target genes of the activated PEs 

than in those of the activated BPs (Figure R2.23A and E). This 

finding reinforces again the model of gene regulation in which 

PE activation is more tissue-specific than BP activation. 
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Figure R2.23: Functional analysis of the target genes of the BPs and 
PEs becoming active during differentiation. (A) Top GO biological 
process 2018 categories enriched in target genes of activated BPs in 
Heart10.5 (left) and activated PEs in MES (right). (B) As for A, but in 
Liver11.5. (C) As for A, but in NeuralTube12.5. (D) As for A, but in 
Kidney14.5. (E) As for A, but in Lung15.5. 
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As in differentiation, we observed that an important subset of 

genes activated their BPs at all embryonic tissues (Figure 

R2.24A), while this shared subset of genes is relatively less 

abundant for PEs (Figure R2.24B). Moreover, we confirmed 

this observation not only at gene level but also when 

comparing the activation of the regulatory regions (Figure 

R2.24C-D). These results further indicate that PE mechanisms 

of activation are more tissue-specific than in the case of BP 

activation.  

 

 
Figure R2.24: Overlap between target genes of activated BPs and PEs 
at each embryonic tissue. (A) Upset plot comparing overlap between the 
target genes of the activated BPs at each embryonic tissue. (B) As for A, 
but in PEs. 
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2.15 Expression of poised enhancer target genes 

is tissue-specific 

 

We next compared gene expression between those genes in 

which only the BP or the BP plus the PE are activated. We 

found that those genes whose associated PE is activated have 

higher gene expression than those that only have an activated 

BP (Figure R2.25). 

 

 
Figure R2.25: Genes activating their PE besides their BP have a higher 
gene expression. Gene expression in each embryonic tissue at genes 
activating their BP alone (white), or both, their BP and their PE (red). 
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We observed again that such differences in expression are 

generally not significant in other tissues. Thus, we concluded 

that the higher gene expression induced by PE activation is 

specific of the tissue. 

 

 
Figure R2.26: The higher gene expression observed at Heart10.5 in its 
activated PE target genes is not observed in the rest of the embryonic 
tissues. Gene expression in each embryonic tissue at Heart10.5 target 
genes. Genes activating their BP alone (white), or both, their BP and their 
PE (red), in Heart10.5. 
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Figure R2.27: The higher gene expression observed at Liver11.5 in its 
activated PE target genes is not observed in the rest of the embryonic 
tissues. Gene expression in each embryonic tissue at Liver11.5 target 
genes. Genes activating their BP alone (white), or both, their BP and their 
PE (red), in Liver11.5. 

 

 
Figure R2.28: The higher gene expression observed at 
NeuralTube12.5 in its activated PE target genes is not observed in the 
rest of the embryonic tissues. Gene expression in each embryonic tissue 
at NeuralTube12.5 target genes. Genes activating their BP alone (white), 
or both, their BP and their PE (red), in NeuralTube12.5. 
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Figure R2.29: The higher gene expression observed at Kidney14.5 in 
its activated PE target genes is not observed in the rest of the 
embryonic tissues. Gene expression in each embryonic tissue at 
Kidney14.5 target genes. Genes activating their BP alone (white), or both, 
their BP and their PE (red), in Kidney14.5. 

 

 
Figure R2.30: The higher gene expression observed at Lung15.5 in its 
activated PE target genes is not observed in the rest of the embryonic 
tissues. Gene expression in each embryonic tissue at Lung15.5 target 
genes. Genes activating their BP alone (white), or both, their BP and their 
PE (red), in Lung15.5. 
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2.16 Commonly activated bivalent genes in 

development share the activation of the same 

poised enhancer at all embryonic tissues 

 

Similar to our previous results during differentiation, we 

wondered whether the expression of common genes is driven 

by the same PE or by different ones. Again, we found that 

common genes with an activated PE generally share the same 

enhancers (Figure R2.31). 

 

 
Figure 2.31: Overlap between activated PEs in development 
associated to common genes. Upset plot comparing the overlap between 
activated PEs at each embryonic tissue that govern common genes. 
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CHAPTER 3 
 

 

 

The results shown in this chapter correspond to 

objective number 3 of this thesis. 

 

 
García-Eguren G.*, González-Ramírez M.*, Vizán P., Giró O., 

Vega-Beyhart A., Boswell L., Mora M., Halperin I., Carmona F., 

Gracia M., Squarcia M., Enseñat J., Vidal O., Di Croce L. and 

Hanzu F. A. Glucocorticoid-induced fingerprints on visceral 

adipose tissue transcriptome and epigenome. Submitted to JCI 

Insight. 

 
 

 





 123 

3.1 Mouse model of Cushing’s syndrome 

 

Glucocorticoids (GCs) play important roles on the metabolism 

and transcription of many tissues including the adipose tissue 

through the binding of the GC receptor (GR) [167, 168]. 

Importantly, the alterations caused by GC overexposure are 

very critical in the visceral adipose tissue (VAT), as it contains 

higher GR levels and is considered more metabolically active 

than subcutaneous adipose tissue [169, 170]. However, the 

availability of VAT biopsies from Cushing’s Syndrome (CS) 

patients, even more after long-term remission, has difficulted 

the study of GCs in VAT. Thus, we benefited from a well-

established mouse model of reversible hypercortisolism [171, 

172] to overcome this limitation (Figure R3.1). Briefly, mice 

were treated with corticosterone during 5 weeks (CORT_5w 

group) in their drinking water to induce the systemic effects of 

active CS. Control mice were treated only with the vehicle 

(ethanol) in their drinking water also during 5 weeks (VEH_5w 

group). To mimic long-term remission of CS, treated mice were 

recovered during 10 more weeks (CORT_15w group) without 

corticosterone in their drinking water to reduce their 

corticosterone levels. As a control, ethanol treatment was also 

stopped during 10 weeks in control mice (VEH_15w group). 

Mice procedures were performed by Guillermo García-Eguren 

(Endocrine disorders lab, IDIBAPS, Barcelona). 
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Figure R3.1: Experimental design. Mice treated with corticosterone 
(CORT) during 5 weeks in their drinking water constitute our animal model 
of active Cushing syndrome. Treated mice let to recover during 10 weeks 
without treatment constitute our animal model of Cushing syndrome 
remission. 

 

In order to study the epigenetic landscape of CS during the 

active state of the disease and after remission, RNA-seq and 

ChIP-seq experiments were performed on VAT from all four 

mice groups. All experiments were performed by Guillermo 

García-Eguren (Endocrine disorders lab, IDIBAPS, Barcelona) 

and Pedro Vizán (our lab).  
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positive and negative correlations with gene expression, 

respectively, we classified all genes in each condition into four 

categories depending on their expression (measured in 

FPKMs): from 0 to 1, from 1 to 5, from 5 to 50, and more than 

50. As expected, we observed that H3K4me3 and H3K27ac 

ChIP-seq signals were lower in the least expressed category 

and higher in the most expressed one, while the opposite trend 

was reported for H3K27me3 ChIP-seq signal (Figure R3.2). 

These results confirm the validness of our panel of high-

throughput experiments in the mouse model of CS. Therefore, 

we set out to explore the putative epigenetic fingerprint after 

CS remission. 
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Figure R3.2: Correlation between ChIP-seq and RNA-seq in mice. 
ChIP-seq signal in genes stratified by expression measured in FPKMs for 
active CS mice (CORT_5w), control mice of active CS (VEH_15w), CS 
remission mice (CORT_15w) and control mice of CS remission (VEH_15w). 
ChIP-seq signal is measured in the region ± 2 Kb around a TSS from 
RefSeq [149], and calculated as the number of read counts averaged by 
the length of the region and normalized by the total number of Drosophila 
melanogaster reads, plus a pseudo-count of 0.1. FPKM and ChIP-seq 
signal values are averaged across all the replicates. For H3K27ac in 
CORT_15w, only replicate 2 was used. 
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3.3 Pipeline to obtain consensus peaks for each 

condition 

 

As we performed two replicates for each ChIP-seq experiment, 

we were interested in obtaining a list of consensus peaks for 

each condition. Usually, one uses the overlap between both 

replicates as the final list of peaks, however, this leads to the 

loss of true peaks not called by the peak caller in one of the 

replicates. To circumvent this issue, we decided to design a 

novel approach. First of all, we constructed a Python script to 

merge the lists of peaks of both replicates and unify the 

coordinates. After unifying the coordinates, we performed a 

differential test with DiffBind [48], between the ChIP-seq 

replicates and their input, to select those peaks that presented 

a significant increase of ChIP-seq signal over input (Figure 

R3.3). We used a log2(fold change) > 0, p-value < 0.05 and 

false discovery rate (FDR) < 0.1 as threshold. The total number 

of consensus peaks are in Table R3.1. In the case of H3K27ac 

ChIP-seq of CORT_15w, we selected as consensus peaks the 

list of peaks of the second replicate (29,342), as the first 

replicate has a high background and only reported 1,811 

peaks. 
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Figure R3.3: Significant peaks over input in mice. Volcano plots, each 
point represents a ChIP-seq peak; significant peaks are colored in pink, 
whereas non-significant ones are in blue. FDR, false discovery rate.  
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Table R3.1: Consensus peaks in mice. 

Replicate Number of peaks Consensus peaks 

H3K4me3_CORT_1_5w 29,375 
22,351 

H3K4me3_CORT_2_5w 20,985 
H3K27ac_CORT_1_5w 41,591 

26,782 
H3K27ac_CORT_2_5w 22,166 

H3K27me3_CORT_1_5w 11,091 
6,452 

H3K27me3_CORT_2_5w 4,431 
H3K4me3_CORT_1_15w 38,729 

29,048 
H3K4me3_CORT_2_15w 28,813 
H3K27ac_CORT_1_15w 1,811 

- 
H3K27ac_CORT_2_15w 29,342 

H3K27me3_CORT_1_15w 4,600 
5,557 

H3K27me3_CORT_2_15w 9,109 
H3K4me3_VEH_1_5w 19,008 

18,246 
H3K4me3_ VEH _2_5w 18,125 
H3K27ac_ VEH _1_5w 40,228 

38,617 
H3K27ac_ VEH _2_5w 36,285 

H3K27me3_ VEH _1_5w 8,632 
6,476 

H3K27me3_ VEH _2_5w 5,915 
H3K4me3_VEH_1_15w 22,997 

24,129 
H3K4me3_ VEH _2_15w 29,123 
H3K27ac_ VEH _1_15w 20,645 

15,356 
H3K27ac_ VEH _2_15w 52,109 

H3K27me3_ VEH _1_15w 2,256 
4,066 

H3K27me3_ VEH _2_15w 8,285 
For each histone modification and condition, the total number of peaks per 
replicate and the total number of consensus peaks between replicates. 
  

With this approach we were able to overcome some of the 

limitations of working with ChIP-seq replicates. Indeed, we 

were able to retain interesting peaks that the peak caller did 

not call in one of the replicates (Figure R3.4A). Moreover, we 

discarded peaks that are only present in one of the replicates 
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(Figure R3.4B), meaning that the peaks are not specific of the 

treatment but to the individuals from which the chromatin was 

pulled. Finally, we discarded a significant number of false 

positives (Figure R3.4C). 

 

 
Figure R3.4: Examples of the performance of the pipeline to obtain 
consensus peaks. (A) Region of mm10 with a peak not called in one of 
the replicates (chr2-25,445,158-25,527,467). (B) Region of mm10 with 
specific peaks of one replicate (chr7-152,263,211-152,320,300). (C) 
Region of mm10 with a peak that is not real but has been called by the peak 
caller (chr7-149,523,628-149,606,953). 
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3.4 Chronic hypercortisolism increases histone 

modification signal genome-wide in mice 

 

After differential peak analysis, CORT_5w mice showed a 

genome-wide increase in the levels of all three histone 

modifications (Figure R3.5A). Thus, up to 57% of H3K4me3 

peaks had a significant increase in ChIP-seq signal (13,336 

peaks out of 23,236 merged peaks of H3K4me3 in CORT_5w 

and VEH_5w), whereas only four peaks had a significant 

decrease of signal. Moreover, 35% of H3K27ac peaks had a 

significant increase in ChIP-seq signal (13,964 peaks out of 

39,581 merged peaks of H3K27ac in CORT_5w and VEH_5w), 

whereas only 177 peaks had a significant decrease of signal. 

Finally, 28% of H3K27me3 peaks had a significant increase in 

ChIP-seq signal (2,168 peaks out of 7,792 merged peaks of 

H3K27me3 in CORT_5w and VEH_5w), whereas none of the 

peaks had a significant decrease. 

Interestingly, CORT_15w mice showed the same tendency 

(Figure R3.5B). Thus, 51% of H3K4me3 peaks had a 

significant increase in ChIP-seq signal (15,984 peaks out of 

31,037 merged peaks of H3K4me3 in CORT_15w and 

VEH_15w), whereas only one peak had a significant decrease 

of signal. Furthermore, 34% of H3K27ac peaks had a 

significant increase in ChIP-seq signal (9,602 peaks out of 

28,322 merged peaks of H3K27ac in CORT_15w and 

VEH_15w), whereas only five peaks had a significant decrease 

of signal. Finally, 31% of H3K27me3 peaks had a significant 
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increase in ChIP-seq signal (1,864 peaks out of 5,992 merged 

peaks of H3K27me3 in CORT_15w and VEH_15w), whereas 

none of the peaks had a significant decrease.  

 
Figure R3.5: Effect on histone modifications of GC overexposure in 
mice. Volcano plots, each point represents a ChIP-seq peak; significant 
peaks are colored in pink, whereas non-significant ones are in blue. (A) 
Changes in H3K4me3, H3K27ac and H3K27me3 in GC-treated mice 
(CORT_5w) compared to control mice (VEH_5w). (B) Same as in A, but for 
recovered mice (CORT_15w) compared to control mice (VEH_15w). 

 

Visual inspection of ChIP-seq profiles also showed a signal 

increase of GC-treated mice compared to their controls at both 

time points (Figure R3.6). Therefore, our observations suggest 

that chronic hypercortisolism induces changes in histone 

marks. 
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Figure R3.6: Examples of regions increasing histone modifications 
signal after GC-treatment. ChIP-seq profiles of H3K4me3, H3K27ac and 
H3K27me3 in GC-treated mice (CORT_5w), after recovery (CORT_15w) 
and their controls (VEH_5w and VEH_15w, respectively). 

H3K4me3_CORT_1_5w

H3K4me3_CORT_2_5w

H3K4me3_VEH_1_5w

H3K4me3_VEH_2_5w

90 _

0 _
90 _

0 _
90 _

0 _
90 _

0 _

Mrpl54 Apba3 Tjp3 Pip5k1c

H3K4me3_CORT_1_15w

H3K4me3_CORT_2_15w

H3K4me3_VEH_1_15w

H3K4me3_VEH_2_15w

170 _

0 _
170 _

0 _
170 _

0 _
170 _

0 _

Mrpl54 Apba3 Tjp3
Pip5k1c

H3K27ac_CORT_1_5w

H3K27ac_CORT_2_5w

H3K27ac_VEH_1_5w

H3K27ac_VEH_2_5w

750 _

0 _
750 _

0 _
750 _

0 _
750 _

0 _

Sp1

H3K27ac_CORT_1_15w

H3K27ac_CORT_2_15w

H3K27ac_VEH_1_15w

H3K27ac_VEH_2_15w

690 _

0 _
690 _

0 _
690 _

0 _
690 _

0 _
Sp1

H3K27me3_CORT_1_15w

H3K27me3_CORT_2_15w

H3K27me3_VEH_1_15w

H3K27me3_VEH_2_15w

21 _

0 _
21 _

0 _
21 _

0 _
21 _

0 _

Hoxd cluster of genes

H3K27me3_CORT_1_5w

H3K27me3_CORT_2_5w

H3K27me3_VEH_1_5w

H3K27me3_VEH_2_5w

27 _

0 _
27 _

0 _
27 _

0 _
27 _

0 _

Hoxd cluster of genes



 134 

However, to confirm that spike-in normalization was working 

properly and our results were not a consequence of technical 

issues, we performed the same differential analysis comparing 

mice controls. As they were not treated, they should have the 

same epigenetic landscape. Accordingly, there were no 

significant differences between VEH_5w and VEH_15w mice 

for any of the histone modifications (Figure R3.7).  

 

 
Figure R3.7: There are not significant differences in histone 
modifications signal between controls. Volcano plots, each point 
represents a ChIP-seq peak; significant peaks are colored in pink, whereas 
non-significant ones are in blue. 
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also been reported in active enhancers [36, 129, 150, 151]. 

Accordingly, genome distribution of the differential peaks of all 

three histone modifications showed that the signal increase 

occurred not only in promoters but also in intergenic and 

intragenic regions (Figure R3.8). Therefore, these intergenic 

and intragenic peaks could be marking the location of putative 

enhancers. 

 

 
Figure R3.8: Increase of histone modification signals occur not only 
at promoters but also at intergenic and intragenic regions. Genome 
distribution of H3K4me3, H3K27ac and H3K27me3 differential peaks in 
CORT_5w vs. VEH_5w (top) and CORT_15w vs. VEH_15w (bottom). 
Promoter is considered as the region ± 2 Kb around a TSS from RefSeq 
catalogue [149]. 
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3.6 The histone modification signal increase 

occurs at the same regions in active CS and after 

long-term remission 

 

To confirm that the increase occurred in the same regions in 

both conditions, we calculated the overlap between the 

significantly up peaks of each histone modification (Figure 

R3.9A). Accordingly, all three overlaps were significant with a 

p-value < 2.2e-16 (Fisher’s Exact Test). Moreover, at gene 

level (Figure R3.9B), the overlap was also significant with a p-

value < 2.2e-16 (Fisher’s Exact Test), which confirms that the 

increase affects the same target genes. Therefore, there is a 

persistent epigenetic fingerprint after resolution of 

hypercortisolism. 

 

 
Figure R3.9: Overlaps of significantly up peaks and its target genes 
between CORT_5w and CORT_15w. (A) Venn diagrams of the overlaps 
between CORT_5w and CORT_15w significantly up peaks of H3K4me3, 
H3K27ac and H3K27me3. (B) Same as in A, but for target genes of the 
significantly up peaks. 
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We next performed GO term enrichment analysis on the 

common target genes of the peaks that significantly increased 

the signal of any of the three histone modifications (Figure 

R3.10). GO terms of common genes overlapping peaks 

increasing in H3K4me3 were related to house-keeping 

categories, which is consistent with the genome-wide increase 

of the mark that we observe. Among the most significant GO 

terms in common genes overlapping peaks increasing in 

H3K27me3, we found categories related to development, as 

expected for the target genes of this mark. Therefore, in 

agreement with a generalized increase of H3K27me3 at its 

target sites. Interestingly, we found that neutrophil activation 

involved in immune response category was enriched in 

common target genes overlapping peaks increasing in 

H3K27ac, which agrees with previous findings that show that 

GC overexposure causes alterations in inflammatory and 

immune response [173-175]. 
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Figure R3.10: Functional analysis of genes with an increased histone 
modification signal in CS and after remission. Gene ontology biological 
process (2018 categories) enrichment analysis of the common genes 
increased in H3K4me3 signal (top), H3K27ac signal (middle) and 
H3K27me3 signal (bottom) in CORT_5w versus VEH_5w and CORT_15w 
versus VEH_15w. 
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3.7 Persistent changes of chronic 

hypercortisolism in gene expression correlate 

with persistent changes in histone modifications 

in mice 

 

Differential analysis of gene expression revealed 4,454 up-

regulated genes and 4,154 down-regulated genes in active CS 

compared to controls, and 1,402 up-regulated genes and 

1,679 down-regulated genes after CS remission compared to 

controls. Among them, 830 up-regulated genes and 961 down-

regulated genes were common at both time points. GO term 

enrichment analysis showed several categories altered by GC 

treatment (Figure R3.11). Remarkably, we found that 

neutrophil activation involved in immune response was the top 

category in the common up-regulated genes, in line with our 

previous observation for genes increasing H3K27ac at both 

time points. Thus, there is a persistent transcriptomic signature 

caused by GC overexposure.  
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Figure R3.11: Functional analysis of common differential genes in 
active CS and after remission. Gene ontology biological process (2018 
categories) enrichment analysis of the common up-regulated genes (top) 
and down-regulated genes (bottom) in CORT_5w versus VEH_5w and 
CORT_15w versus VEH_15w.  
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associated with activation were significantly higher in the up-

regulated genes than in the down-regulated genes (Figure 

R3.12), consistent with the differences in gene expression. On 

the contrary, the difference was not significant in the case of 

H3K27me3. These results indicate that persistent changes in 

expression after GC overexposure can be explained by 

persistent changes in H3K4me3 and H3K27ac. 

 

 
Figure R3.12: Differences in histone modifications between common 
up-regulated and down-regulated genes in both time points of GC 
treatment versus controls. Fold change of ChIP-seq signal between 
active CS versus control mice (top) and CS remission versus control mice 
(bottom) in common up-regulated genes and common down-regulated 
genes in CORT_5w versus VEH_5w and CORT_15w versus VEH_15w. 
ChIP-seq signal is averaged across the replicates, measured in the region 
± 2 Kb around a TSS from RefSeq [149], and calculated as the number of 
read counts averaged by the length of the region and normalized by the 
total number of drosophila reads, plus a pseudo-count of 0.1. Significance 
was assessed using a Wilcoxon test (****p-value < 0.0001, ***p-value < 
0.001, **p-value < 0.01, *p-value < 0.05, ·p-value < 0.1, ns non-significant). 
For H3K27ac in CORT_15w, only replicate 2 was used. 
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3.8 Correlation between histone modifications 

and gene expression in human patients 

 
Next, we explored whether our observations in the mouse 

model of CS were also true for human patients. Therefore, we 

performed RNA-seq and ChIP-seq of H3K4me3, H3K27ac and 

H3K27me3 for human CS patients and pair-matched controls. 

In here, ChIP-seq experiments included Drosophila 

melanogaster spike-in, as in mice. All experiments were 

performed by Guillermo García-Eguren (Endocrine disorders 

lab, IDIBAPS, Barcelona) and Pedro Vizán (our lab).  

 

As in mice, we observed that all three histone modifications 

had the expected correlation with gene expression in each 

human patient. Examples of this correlation can be found in 

Figure R3.13. These results confirm the validness of our set of 

data from human patients. 
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Figure R3.13: Correlation between ChIP-seq and RNA-seq in human 
patients. ChIP-seq signal in genes stratified by expression measured in 
FPKMs for active CS patient H507 (top) and control patient H465 (bottom). 
ChIP-seq signal is measured in the region ± 2 Kb around a TSS from 
RefSeq [149], and calculated as the number of read counts averaged by 
the length of the region and normalized by the total number of Drosophila 
melanogaster reads, plus a pseudo-count of 0.1. 
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same time selects only peaks that are at least present in two 

of the samples. We used a log2(fold change) > 0, p-value < 

0.05 and false discovery rate (FDR) < 0.1 as threshold. The 

total numbers of consensus peaks are reported in Table R3.2. 

 

 
Figure R3.14: Significant peaks over input in human patients. Volcano 
plots, each point represents a ChIP-seq peak; significant peaks are colored 
in pink, whereas non-significant ones are in blue. FDR, false discovery rate. 
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Table R3.2: Consensus peaks in human. 

Replicate Number of peaks Consensus peaks 
H3K4me3_CS_H507 19,942 

20,403 
H3K4me3_CS_VC02 23,128 
H3K4me3_CS_VC04 35,140 
H3K4me3_CS_VC06 18,649 
H3K27ac_CS_H507 30,722 

22,964 
H3K27ac_CS_VC02 20,492 
H3K27ac_CS_VC04 19,690 
H3K27ac_CS_VC06 32,927 

H3K27me3_CS_H507 4,227 

962 
H3K27me3_CS_VC02 2,178 
H3K27me3_CS_VC04 1,499 
H3K27me3_CS_VC06 4,006 
H3K4me3_CTL_H425 19,413 

25,782 
H3K4me3_CTL_H465 36,098 

H3K4me3_CTL_HCTR10 33,426 
H3K4me3_CTL_HCTR13 29,550 

H3K27ac_CTL_H425 35,627 

32,410 
H3K27ac_CTL_H465 25,060 

H3K27ac_CTL_HCTR10 40,106 
H3K27ac_CTL_HCTR13 49,022 
H3K27me3_CTL_H425 2,006 

3,897 
H3K27me3_CTL_H465 3,400 

H3K27me3_CTL_HCTR10 10,303 
H3K27me3_CTL_HCTR13 2,347 

For each histone modification and condition, the total number of peaks per 
replicate and the total number of consensus peaks between replicates. 
 

Surprisingly, after differential peak analysis between CS 

patients and controls, we observed the opposite pattern than 

in mice. Instead of a genome-wide increase of ChIP-seq signal, 

we observed a genome-wide decrease in CS patients 

compared to controls (Figure R3.15). Thus, 51% of H3K4me3 
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peaks had a significant decrease in ChIP-seq signal (13,503 

peaks out of 26,467 merged peaks of H3K4me3 in CS and 

CTL), whereas only one peak had a significant increase of 

signal. Moreover, 80% of H3K27ac peaks had a significant 

decrease in ChIP-seq signal (26,671 peaks out of 33,526 

merged peaks of H3K27ac in CS and CTL), whereas only one 

peak had a significant increase of signal. Finally, 83% of 

H3K27me3 peaks had a significant decrease in ChIP-seq 

signal (3,291 peaks out of 3,985 merged peaks of H3K27me3 

in CS and CTL), whereas only one peak had a significant 

increase. 

 

 
Figure R3.15 Effect on histone modifications of CS in human patients. 
Volcano plots, each point represents a ChIP-seq peak; significant peaks 
are colored in pink, whereas non-significant ones are in blue. Changes in 
H3K4me3, H3K27ac and H3K27me3 in CS patients compared to control 
patients. 
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Figure R3.16: Examples of regions decreasing histone modifications 
signal in CS patients compared to controls. ChIP-seq profiles of 
H3K4me3, H3K27ac and H3K27me3 in CS patients and their pair-matched 
controls. 
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3.10 The histone modification signal decrease in 

human patients occurs both at promoters and at 

putative enhancers 

 

We wondered whether this generalized decrease in histone 

modifications marking was occurring at promoters and also at 

putative enhancers. Genome distribution of the peaks showing 

a significant decrease in their signal strength in CS patients 

compared to controls showed that an important fraction of them 

was located outside promoters, within intergenic and intragenic 

regions (Figure R3.17). Therefore, these intergenic and 

intragenic peaks could be delimiting putative enhancers. 

 

 
Figure R3.17: Decrease of histone modification signal in human CS 
patients occurs not only at promoters but also at intergenic and 
intragenic regions. Genome distribution of H3K4me3, H3K27ac and 
H3K27me3 differential peaks in human CS patients. Promoter is 
considered as the region ± 2 Kb around a TSS from RefSeq catalogue 
[149]. 
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decreased in H3K27me3 signal. GO terms of genes 

overlapping peaks decreasing in H3K4me3 or H3K27ac were 

related to house-keeping categories, which is consistent with 

the observed genome-wide decrease of both marks. Among 

the most significant GO terms in genes overlapping a peak 

decreasing in H3K27me3, we found categories related to 

development, as expected for the target genes of this mark. 

Again, this result is consistent with a generalized decrease of 

H3K27me3 at its target sites.  

 
Figure R3.18: Functional analysis of genes with decreased histone 
modification signal in CS. Gene ontology biological process (2018 
categories) enrichment analysis of the genes decreased in H3K4me3 signal 
(top), H3K27ac signal (middle) and H3K27me3 signal (bottom) in CS 
patients compared to controls. 
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3.11 Changes in gene expression correlate with 

changes in histone modifications in CS patients 

 

We performed differential analysis of gene expression and 

identified 87 up-regulated genes and 97 down-regulated genes 

in CS patients compared to human controls. GO enrichment 

analysis (Figure R3.19) showed that previously reported CS-

related categories were enriched [176, 177], such as 

glucocorticoid biosynthetic process in the up-regulated genes 

and protein kinase B signaling in the down-regulated genes. 

 

 
Figure R3.19: Functional analysis of differential genes in CS patients. 
Gene ontology biological process (2018 categories) enrichment analysis of 
the up-regulated genes (top) and down-regulated genes (bottom) in CS 
patients versus control patients. 
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Opposite to mice, human CS patients showed a generalized 

decrease in ChIP-seq signal for all three histone modifications. 

As observed in mice, we hypothesized that the decrease in 

activation-related histone marks was significantly different 

between the up-regulated and down-regulated genes in CS 

patients compared to controls. Certainly, we observed that the 

fold changes of the histone modifications associated with 

activation were significantly smaller in the up-regulated genes 

than in the down-regulated genes, i.e. the decrease in signal is 

more pronounced in the down-regulated ones (Figure R3.20). 

On the contrary, the difference was not significant in the case 

of H3K27me3. As in mice, these observations show that 

differences in expression can be explained by changes in 

H3K4me3 and H3K27ac. 

 

 
Figure R3.20: Differences in histone modifications between up-
regulated and down-regulated genes in CS patients versus controls. 
Fold change of ChIP-seq signal between active CS versus control in up-
regulated genes and down-regulated genes in CS versus controls. ChIP-
seq signal is averaged across the individuals, measured in the region ± 2 
Kb around a TSS from RefSeq [149], and calculated as the number of read 
counts averaged by the length of the region and normalized by the total 
number of drosophila reads, plus a pseudo-count of 0.1. Significance was 
assessed using a Wilcoxon test (****p-value < 0.0001, ***p-value < 0.001, 
**p-value < 0.01, *p-value < 0.05, ·p-value < 0.1, ns non-significant). 
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3.12 Transcriptomic signatures driven by 

hypercortisolism in human and mice 

 

In order to validate the persistent transcriptomic alterations 

induced by hypercortisolism in mice also in human, we 

performed Gene Set Enrichment Analysis (GSEA) on RNA-seq 

data from human patients using the common orthologous up-

regulated genes during active and after CS remission in mice 

as gene set list (Figure R3.21A). Indeed, the mice signature 

had also a positive trend in human patients compared to 

controls. Next, we performed a GO term enrichment analysis 

on the genes that contributed to this trend (Figure R3.21B). 

Accordingly, the top categories were related to immune 

response and to extracellular matrix organization. Thus, these 

results suggest that, as in the mouse model, immune response 

and extracellular organization could also be potentially altered 

in VAT from CS patients after remission. 
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Figure R3.21: Common alterations after GC overexposure in mice and 
humans. (A) GSEA between active CS humans and their controls using as 
gene set list the common up-regulated genes in CORT_5w versus VEH_5w 
and CORT_15w versus VEH_15w. (B) GO term enrichment analysis of the 
genes that follow a significant tendency in A. (C) GSEA between active CS 
humans and their controls using as gene set list the common down-
regulated genes in CORT_5w versus VEH_5w and CORT_15w versus 
VEH_15w. (D) GO term enrichment analysis of the genes that follow a 
significant tendency in C. 
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identified several core circadian genes (such as ARNTL, 

NPAS2 and CLOCK).  

 

Circadian genes regulate many physiological processes, 

including metabolism and behavior, through the generation of 

24h circadian oscillations in gene expression [178]. As mice 

and humans are nocturnal and diurnal species, respectively, 

we speculated that the opposite patterns of expression for 

these circadian genes could be due to the opposite circadian 

rhythm between both species. Therefore, mice at night might 

have the same GC-induced alterations as humans during the 

day. To assess this, Guillermo Garcia-Eguren (Endocrine 

disorders lab, IDIBAPS, Barcelona) repeated the experiments 

in mice but, in this case, VAT samples were obtained at the 

beginning of the dark phase and the gene expression profile of 

the main core circadian genes was assessed by qPCR. 

Interestingly, we observed that chronic hypercortisolism 

induces a differential gene expression pattern of core circadian 

genes in humans and mice compared to their controls (Figure 

R3.22A). In both species, during the active phase, chronic 

hypercortisolism causes a similar overexpression of circadian 

activators (ARNTL, CLOCK and NPAS2, naturally enhanced 

during the active phase) and a more stressed downregulation 

of the PER2 repressor (naturally repressed during the active 

phase), compared to controls. During the rest phase, circadian 

activators and circadian repressors physiologically switch their 

expression pattern (from enhanced to repressed and from 
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repressed to enhanced, respectively). Notably, GC treatment 

induces an exacerbated repression of circadian activators 

(ARNTL, CLOCK and NPAS2) during the rest phase. All these 

results suggest that chronic hypercortisolism induces a larger 

amplitude oscillation pattern of the core circadian genes in VAT 

in both species.  

 

Most of these alterations are maintained, to a lesser degree, 

after CS remission in mice (Figure R3.22B). Importantly, we 

also observed the long-term down-regulation of PER1 at both, 

active and rest phases. This suggests that PER1 could be the 

most severely affected by hypercortisolism as we found a loss 

in its intrinsic oscillation pattern between phases. These 

observations reveal that hypercortisolism markedly influences 

circadian gene expression in VAT, not only during active CS, 

but also after long-term recovery.  

 

 
Figure R3.22: Persistent alteration of core circadian genes due to 
hypercortisolism in mice and human. Active CS (A) or CS-remission (B) 
differential gene expression analysis of core circadian genes, presented as 
fold change, during active and rest phase in humans and mice. In the active 
phase, fold change was calculated using FPKMs from each RNA-seq 
dataset between active CS patients, CORT_5w and CORT_15w versus 
their respective controls. In the rest phase, fold change was calculated from 
qPCR results (n= 4-5 mice/group/time). Data are means ± s.e.m., 
significance was assessed using a Student’s t-test (***p-value < 0.001, **p-
value < 0.01, *p-value < 0.05, ·p-value < 0.1). 
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This idea that science needs women is 

really right on target. The ability to 

solve complex problems is greatly 

enriched by having different 

viewpoints. 

 

Elizabeth Blackburn (1948)
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1. mESCs as a biological model to study active 

and repressed regulatory regions 

 

To construct proper predictive models, we adopted mESCs as 

our model system, as the full spectrum of active and repressed 

enhancers can be identified. However, we decided to focus 

only in AEs and PEs to obtain predictive models, as IEs remain 

poorly understood, and their target promoters have not been 

unambiguously identified. In the near future, IEs could be 

introduced into the modelling to explore their impact on the 

performance of the predictions and to discover new 

relationships between histone modifications at enhancers and 

gene expression. However, this is not a limitation for our 

differentiation predictive models. Here, enhancers and 

promoters are required to be in either a poised or a bivalent 

state in mESCs, but many will transition towards an active, or 

even intermediate state, along cardiac and neural in vitro 

differentiation, and along in vivo embryo development. 

Therefore, in the subset of PEs during differentiation, we have 

assessed the dynamics of a complete spectrum of enhancers 

in cardiac (MES/CPs/CMs) and neural (NPCs/CNs) cells, and 

throughout developmental tissues (heart, liver, neural tube, 

kidney and lung).  

 

One could speculate that the mESC enhancer model 

performance is an artefact of matching the chromatin state of 

promoters and enhancers (both active or both repressed). 
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However, as no expression information is introduced in this 

step, further conclusions are not affected by this matching 

procedure. Moreover, we have confirmed the predictive 

capacity of PEs in the differentiation PE models, in which we 

do not require a coordinated activation of PEs and BPs. 

 

 

2. Differences in predictive model performance 

 

At the promoter level, the performances of mESCs and 

differentiation predictive models were very similar (r = 0.79 vs. 

r ≈ 0.75). The fact that we are limited to exploit a small number 

of histone modifications in the differentiation models (an issue 

that will be easily overcome when more ChIP-seq datasets are 

available) could be the reason for the minimal difference in the 

promoter models’ performance. Indeed, at the enhancer level, 

the difference in performance between mESCs and the 

differentiation models was higher (r = 0.49 vs. r > 0.3). Other 

factors besides the number of ChIP-seq datasets could explain 

such a difference: (i) as mentioned before, enhancers and 

promoters in the mESC model were required to match their 

chromatin state, which could lead to overrating the 

performance of the mESC enhancer model; (ii) the enhancer-

promoter Hi-C interactions were retrieved from data published 

on mESCs. Nevertheless, we predicted gene expression in 

cellular contexts distinct from mESCs; (iii) some genes might 

be specific for a cell lineage, and their interactions with 
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enhancers might be lost in the other cell lineages. In these 

cases, the enhancer and the gene would no longer be related; 

(iv) enhancer–promoter interactions relevant for early stages 

of differentiation might be lost once they have served their 

function. This would imply that the enhancer and its target gene 

are no longer coordinated. In fact, it has been shown that 

intensive rearrangement of promoter–enhancer interactions 

occurs during differentiation, and that these loops become 

disrupted when their target genes are repressed [52, 123].  

 

 

3. Association between enhancers and target 

genes 

 

How to assign enhancers to target genes is still under debate. 

In this study, we used Hi-C and matched chromatin states to 

link enhancers to genes and promoters. A recent study 

evaluated distinct ways of linking genes to enhancers by 

modelling gene expression and DNase-seq data [83]. The 

authors showed that expression predictive models using 

chromatin conformation data, such as Hi-C, performed better 

than those using other traditional ways of assigning target 

genes, such as the closest-gene method or by distance. The 

closest-gene method consists of assigning each enhancer to 

the nearest TSS. This prevents enhancers from being 

assigned to two or more genes but does not take into account 

that one enhancer can regulate the expression of more than 
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one gene [179, 180]. The distance method consists of 

assigning an enhancer to all the genes that are closer than a 

pre-set number of base pairs. We achieved a performance of r 

= 0.34 by using 1 Mb distance to assign enhancers to 

promoters. Although this predictive model had lower 

performance than the models based on Hi-C data (r = 0.38 and 

r = 0.49 for Hi-C–all and Hi-C–top enhancer models, 

respectively), it maintained the predictive capacity. This 

suggests that in absence of Hi-C data, using 1 Mb distance to 

assign target genes to enhancers performs well. 

 

Recently, two novel computational methods have been 

developed to properly predict enhancer–gene associations 

using chromatin capture data (such as Hi-C and Hi-ChIP) and 

enhancer activity data (such as H3K27ac ChIP-seq and DHS-

seq) [72, 73]. For instance, the so-called FOCS inference 

method provides a map of active enhancer–promoter 

associations consistent across several cellular contexts, 

although no cell type-specific associations could be detected 

[72]. Further, the activity-by-contact method identified cell type-

specific associations of active enhancers and genes [73]. 

However, such a methodology cannot be applied to PEs due 

to the lack of enhancer activity. Indeed, the capacity of PEs to 

dynamically predict variable gene expression during 

differentiation suggests that our approach of assigning target 

genes to PEs is the most appropriate in this regulatory context.  
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4. Differences in contribution to gene expression 

prediction 

 

We have reported differences in the histone modification 

contribution to the expression predictive models depending on 

their location in enhancers or promoters. The different 

contribution of each histone modification suggests that the 

epigenetic landscape is different in enhancers and promoters. 

For example, although H3K4me3 has been previously shown 

to be located in enhancers in particular scenarios [36, 129, 

150, 151], our results suggest that its presence in enhancers 

has little association to gene expression. Therefore, H3K4me3 

does not seem to be a good indicator of enhancer activity. In 

contrast, H3K4me3 proved to be key in predicting gene 

expression from the differentiation BP models, confirming its 

relevance in establishing promoter activity. Moreover, whereas 

H3K36me3 —mostly in intragenic PEs— proved to be 

important for the differentiation PE models, it showed little 

contribution to the BP ones.  

 

Even though there is a universal relationship between histone 

modifications and gene expression, we observed that 

H3K36me3 is more informative in the cardiac PE models than 

in the neural PE models. We reached this conclusion thanks to 

our LOESS normalization approach, which allowed us to 

reduce biases when comparing heterogeneous datasets 

(RNA-seq and ChIP-seq), such that our results were not 
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influenced by the different origin of data. Without such a 

normalization, the conclusions reached would be wrong. 

However, it is worth mentioning that we assume constancy of 

ChIP-seq signal and expression, although they might change 

in their abundance during differentiation. This problem will be 

solved in the future with spike-in normalization.  

 

Strikingly, H3K27me3 was found to be the most important 

histone modification in the majority of predictive models for 

enhancers and promoters. This suggests that H3K27me3 

plays a key role in gene regulation, as it is important for both 

types of regulatory regions. Our results show that mainly 

H3K27me3, and also in combination with H3K36me3 and 

H3K27ac, are sufficient to predict future gene expression from 

PEs. In any case, the predictive power of our models will 

benefit in the future from the introduction of other histone 

modifications into the modelling, which can be extremely useful 

for identifying unknown quantitative relationships between 

histone modifications at enhancers and gene expression.  

 

 

5. Other types of data could be introduced as 

variables in the predictive models 

 

Other types of information could also be introduced in the 

modelling in the future. In fact, previous work has modelled 

gene expression using accessibility data (e.g. DHS-seq) [27, 
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82, 83], and other types of ChIP-seq samples (e.g. TFs or RNA 

polymerase II) [23, 24, 26, 81]. It would be also interesting to 

take advantage of enhancer RNA (eRNA) data to predict gene 

expression of target genes. Promising results have been 

obtained in predicting eRNA transcription by modelling GRO-

seq and histone modification ChIP-seq at enhancers [181]. All 

this information at enhancers could be integrated into the 

modelling to improve the power and, most importantly, to 

discover new quantitative relationships between gene 

expression and multiple epigenetic features. 

 

 

6. Differences between poised and intermediate 

enhancers  

 

We have observed that the epigenetic landscape of PEs and 

IEs is different, which could indicate that they have different 

roles in mESC. Indeed, we have observed that PEs are 

enriched in factors associated to repression such as PcG, and 

also in factors associated to activation such as CHD8 and 

p400. On the contrary, IEs showed little enrichment in all these 

factors. Importantly, we have found that PEs, and not IEs, are 

enriched in paused RNA polymerase, and are more accessible 

than IEs. These findings go in line with previous observations 

from our lab in which we found that BPs favor an open 

chromatin architecture in mESCs which allows the proper 

modulation of developmental gene expression [97]. Thus, PEs 
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might also participate in this mechanism. All these findings 

suggest that PEs are indeed primed for future activation, 

whereas IEs might have a different role. Therefore, we believe 

that the alternative name for IEs, which is primed enhancers, 

might be misleading.   

 

We and others have found that PEs colocalize with CGIs [124, 

166], which is consistent with PcG recruitment [182] and 

therefore goes in line with H3K27me3 deposition at these 

regions. In fact, depletion of the CGIs in PEs reduces 

H3K27me3 significantly [124]. In line with this PcG recruitment 

at PEs, we have demonstrated that depletion of PcG subunits 

in mESCs has the same effect on H3K27me3 at PEs than what 

was previously described for BPs [115, 118]. One might think 

that IEs could constitute a primed state prior to PE state. 

However, IEs do not overlap with CGIs, and therefore further 

confirms that IEs cannot be primed for future activation by PcG. 

Thus, it seems that either it exists an alternative regulation to 

prime IEs for future activation, or IEs have a different role in 

mESCs. 

 

 

7. Poised enhancer activation is not exclusive of 

the neural lineage 

 

Historically, PE activation in ESCs was associated to 

differentiation towards neural lineage [124-127]. However, 
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recent evidence suggested that this mechanism of PE 

activation might be general to other lineages [128]. Indeed, we 

have been able to identify activated PEs throughout not only 

neural lineage but also cardiac lineage, and in several 

embryonic tissues. Thus, we believe that this mechanism is 

general for all differentiation processes from mESCs and in 

development. However, further experiments should be 

performed in order to validate what we observed genome-wide. 

For example, knock-out of activated PEs in cardiac lineage 

should be performed in order to study the implications in target 

gene expression during differentiation from mESCs towards 

CMs. Another interesting approach would be to activate a 

specific PE in mESCs and see whether its target gene starts to 

be expressed. Both validations would benefit from CRISPR-

Cas9 genome engineering [57]. Moreover, the interaction 

between the PE and its BP should be validated by 3C and/or 

4C. 

 

 

8. Model for poised enhancer activation during 

differentiation 

 

Interestingly, we have found that the mechanisms of PE 

activation are more specific than those of BP activation. 

Indeed, we observed a relatively basal activation of BPs at all 

differentiation time points and at all embryonic tissues. 

Therefore, we hypothesize a model for PE activation to tightly 
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control developmental gene expression (Figure D1) in which 

an important subset of genes has their BPs in an activated 

state throughout differentiation, but only those truly lineage-

specific genes would also have the appropriate PE also 

activated. Therefore, those genes in which the corresponding 

PE was triggered would be more expressed than those that 

were only activated through the activation of the BP. In this 

regard, we exemplified the case of the Isl1 gene, which is 

highly expressed in CMs and accordingly, a clear activation of 

its PEs is observed, whereas in CNs, it is expressed at lower 

levels as it only activates its BP. In line with this, Isl1 has a key 

role in cardiomyocyte cell fate [183, 184] and its loss of function 

produces congenital heart defects [185]. Moreover, it seems to 

be temporally required for sympathetic nervous system 

development [186]. Therefore, the proper regulation of BP and 

PE activation might establish different levels of target gene 

expression specific of different cellular lineages.  
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Figure D1: Model for PE activation during differentiation from mESCs. 
In mESC developmental gene A and B are not expressed. During 
differentiation, both genes will have their respective BPs in an activated 
state and the gene will start to be expressed. However, in Cell A, the PE of 
developmental gene A will become active and therefore its expression will 
be higher than those of gene B. On the contrary, in Cell B, it will be 
developmental gene B the one that becomes active, and therefore 
developmental gene B will be more expressed than developmental gene A.  

 

Interestingly, we have also found that there are some genes 

that have the same activated PE at all differentiation time 

points and at all embryonic tissues. It is known that the 

expression of the same gene can be governed by different 

enhancers in different cell types [68]. Thus, it seems that this 

mechanism does not apply to PEs, and it might be specific of 

TSS OFF

Poised enhancer

Bivalent promoter

Developmental
gene A

TSS OFF

Poised enhancer

Bivalent promoter

Developmental
gene B

mESC

TSS ON

Active enhancer

Active promoter

Developmental
gene A

Inactive enhancer

Active promoter

Developmental
gene B

TSS ON

Cell A

TSS ON

Active enhancer

Active promoter

Developmental
gene B

TSS ON

Inactive enhancer

Active promoter

Developmental
gene A

Cell B

H3K27me3 H3K4me3 H3K27ac H3K4me1



 170 

enhancers established de novo during development. Indeed, 

most of the enhancers seem to appear concomitantly with the 

activation of the gene during development [68, 70]. Therefore, 

PEs might constitute the less abundant common basic 

regulatory network needed to establish any differentiation 

process. On the contrary, de novo enhancers might be a 

second layer of regulation that further supports the specific 

regulatory program that needs to be activated.   

 

 

9. Pipeline to obtain consensus peaks among 

replicates 

 

We have developed a novel pipeline to obtain significant 

consensus sets of peaks across ChIP-seq replicates. This 

statistical approach, based on the application of software for 

the identification of differential peaks, allows us to recover 

interesting peaks not called in one of the replicates, to discard 

peaks present only in one replicate and discard false positives. 

Here, we have tested its performance in broad peaks such as 

H3K27me3 and sharp peaks such as H3K4me3. Indeed, this 

novel approach has proved to be useful also in other biological 

scenarios [187, 188]. Interestingly, in these two publications we 

have assessed our pipeline not only over histone modifications 

but also on PcG subunits. Therefore, we believe this approach 

can become extremely useful for consistently dealing with 
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replicates of any type of ChIP-seq experiment in a short-term 

future. 

 

 

10. Persistent epigenetic and transcriptional 

signatures after Cushing’s syndrome long-term 

remission 

 

In this thesis we have been able to identify for the first time, 

transcriptional and epigenetic signatures during GC 

overexposure common at both, humans and mice. Moreover, 

these signatures were maintained after resolution of the GC 

treatment in mice. Notably, the most commonly up-regulated 

genes during GC overexposure and after resolution were 

associated to immune response and extracellular matrix 

organization, both categories previously related with obesity 

and insulin resistance [189, 190]. In turn, obesity and insulin 

resistance have previously been linked to GC overexposure 

[136, 137]. Indeed, these observations confirm the relevance 

of macrophage infiltration and low-grade pro-inflammatory 

status in GC-induced VAT dysfunction previously described 

[141, 174, 175]. Interestingly, the immune response category 

was not previously described in the unique published RNA-seq 

dataset from subcutaneous adipose tissue in CS patients 

[176], which remarks the novelty of our findings.  
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Importantly, alterations in the levels of both H3K4me3 and 

H3K27ac seem to explain the differences observed in gene 

expression in active CS and after remission. These results 

indicate that chronic hypercortisolism induces an altered 

epigenetic fingerprint in VAT maintained through time, which 

could explain the persistent changes in gene expression after 

remission. Indeed, we have observed that genes related with 

immune response are among the genes with higher levels of 

H3K27ac in mice during and after GC overexposure. Thus, 

these findings open the window to epigenetic therapies for the 

treatment of the persistent comorbidities and reinforce the 

importance of a lifelong follow-up of these patients. 

 

 

11. Alteration of the circadian rhythm by GC 

overexposure 

 

Surprisingly, most of the commonly down-regulated genes 

during active and after CS remission in mice followed an 

opposite tendency in CS patient’s transcriptome.  Among these 

genes with an opposite trend, we identified several circadian 

clock genes, such as ARNTL, NPAS2 and CLOCK. As mice 

and humans are nocturnal and diurnal species, respectively, 

we speculated that the opposite tendencies of these circadian 

genes could be explained by the opposite circadian rhythm 

between both. Confirming this hypothesis, we observed a 

similar gene expression pattern during the active phase of both 
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species, which suggested a larger amplitude oscillation of 

these circadian genes.  

 

Interestingly, we observed a long-term down-regulation of 

PER1 in both, active and rest phase. Therefore, PER1 seems 

to lose its intrinsic oscillation pattern between phases and may 

be the trigger of the dysregulation of the circadian feedback 

loop induced by GCs. Consistent with this hypothesis, a 

previous report revealed a GC receptor element (GRE) on the 

Per1 gene [191], indicating a direct modulation of Per1 through 

GC receptor (GR) binding. In line with this, we observed a 

reduction in the expression of the GR gene (NR3C1) due to 

chronic hypercortisolism. Thus, we postulate that GC 

overexposure induces GR reduction levels in VAT which 

impairs the proper circadian induction of PER1 through GR. 

Moreover, as PER1, KLF15 is also down regulated in both 

species and is a target of GR [192, 193]. Interestingly, Klf15 

regulates circadian genes expression in the heart of mice, and 

in its absence, several non-cycling genes show circadian 

oscillations [194].  

 

Core clock genes control the expression levels of almost 25% 

of all the genes in the adipose tissue [195], which could explain 

why we observe opposite tendencies in gene expression 

between mouse and human. Interestingly, circadian rhythm 

impairment has been related with obesity, diabetes, 

cardiovascular risk, poor sleep and depression [178], and most 
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of this symptomatology is present in CS patients even after 

long-term remission [137, 177]. 

 

 
Figure D2: Model of circadian alteration by GCs. GC overexposure 
down regulates the GR gene (NRC1), which in turn down regulates PER1 
and KLF15 genes. This leads to an exacerbation of the circadian oscillation 
of the core clock genes (in dashed blue the normal oscillation, in green the 
altered oscillation by GCs), which causes a circadian oscillation of some 
histone modifications.  

 

Besides the alteration of the circadian genes, we also observed 

that the epigenetic landscape is altered in an opposite pattern 

between mice and CS patients. As human and mouse samples 

were both taken during the morning (active phase in human 

and rest phase in mouse), it seems that the opposite epigenetic 

pattern could be caused by a reverse and exacerbate circadian 

cycle. In line with this, it is known that the circadian cycle 

reshapes chromatin in many levels [196, 197], and importantly, 

oscillations of H3K4me3 and H3K27ac signals have been 

observed at some genes in the mouse liver [198]. Moreover, 

GR and core clock proteins are known to interact with 

chromatin and chromatin-modifying complexes [148, 196], and 

CLOCK has a histone acetyltransferase (HAT) activity [199]. 

Therefore, we hypothesize a model (Figure D2) in which GC 

overexposure causes a down regulation of PER1 and KLF15 

through the down regulation of the GR, which in turn alters 
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clock circadian genes by exacerbating their oscillation, which 

finally causes a genome-wide oscillation at least in some 

histone modifications. However, in order to confirm the 

circadian oscillation of the histone modification signals, ChIP-

seq experiments of mice during its active phase (at night) 

would be needed.  





 

  

CONCLUSIONS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The first thing about empowerment is 

to understand that you have the right 

to be involved. The second one is that 

you have something important to 

contribute. And the third piece is that 

you have to take the risk to contribute 

it. 

 

Mae Jemison (1956)
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From the results presented on this thesis we can conclude the 

following: 

 

1. Enhancers, as well as promoters, are good predictors of 

gene expression. 

 

2. Associating enhancers to target genes by Hi-C ensures 

better results than by 1 Mb distance, although results with 

the latest are still acceptable. 

 

3. H3K27me3 is the most important mark for predicting gene 

expression from enhancers in mESCs. 

 

4. H3K27me3 is the most important mark for predicting gene 

expression from promoters in mESCs, although other 

marks are similarly important. 

 

5. LOESS normalization performs well in RNA-seq and ChIP-

seq data from a variety of sources. 

 

6. Poised enhancers and bivalent promoters are good 

predictors of gene expression at differentiation time points 

and in mouse embryonic tissues. 

 

7. H3K27me3 is the most universal variable to predict gene 

expression from intergenic and intragenic poised 

enhancers. 
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8. H3K4me1 and H3K4me3 show little importance to predict 

gene expression from poised enhancers, whereas 

H3K4me3 is one of the most predictive variables to predict 

gene expression from bivalent promoters. 

 

9. Different histone modifications relate better to enhancer 

and promoter function, respectively. 

 

10. Poised enhancers are primed for future activation whereas 

intermediate enhancers might have a different role in 

mESCs. 

 

11. Poised enhancers are the most evolutionary conserved 

type of enhancers in mESCs, and often overlap with CpG 

islands. 

 

12. Poised enhancer activation is not an exclusive mechanism 

of neural lineage development. 

 

13. Poised enhancer activation is more cell type-specific than 

bivalent promoter activation.  

 

14. Target genes of activated poised enhancers are more 

expressed than those that only have an activated bivalent 

promoter. 
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15. Commonly activated bivalent genes at several lineages 

have the same activated poised enhancer. 

 
16. We have designed a successful pipeline to obtain 

consensus peaks across ChIP-seq replicates. 

 
17. There is a genome-wide increase of H3K4me3, H3K27ac 

and H3K27me3 signals caused by chronic hypercortisolism 

in mice maintained even after long-term resolution. 

 
18. There is a genome-wide decrease of H3K4me3, H3K27ac 

and H3K27me3 signals caused by chronic hypercortisolism 

in human CS patients. 

 
19. Genes related to immune response and extracellular matrix 

organization are up-regulated in both, human CS patients 

and the mouse model. 

 
20. H3K4me3 and H3K27ac explain the observed 

transcriptional changes in both, human CS patients and the 

mouse model. 

 
21. The circadian rhythm is deeply altered during and after 

chromic hypercortisolism. 

 
22. The circadian rhythm could explain the opposite epigenetic 

pattern observed between the mice model and human CS 

patients.  
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Estando igual de preparadas, si a la 

vez vemos que hay menos mujeres 

arriba, claramente estamos ante una 

situación de discriminación, no es un 

problema de competitividad, de que no 

haya mujeres suficientemente buenas. 

Claro que las hay. El problema es 

otro. Los cupos simplemente sirven 

para asegurar que quien sea que tome 

la decisión, que normalmente son en 

su mayoría hombres, considere a las 

mujeres. 

 

María Blasco Marhuenda (1965)
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Cell culture 

 

E14Tg2A mESCs were cultured feeder-free on 15-cm plates 

coated with 0.1% gelatin. Plates were coated with gelatin for 

15 min at 37°C, and then non-bound gelatin was removed. 

mESCs were cultured with Glasgow minimum essential 

medium (Sigma) supplemented with β-mercaptoethanol, 

sodium pyruvate, penicillin–streptomycin, non-essential amino 

acids, GlutaMAX, 20% fetal bovine serum (Hyclone), and 

leukemia inhibitory factor (LIF). 

 

By Cecilia Ballaré (our lab), Malte Beringer (former member of 

the lab), Alexandra Santanach (former member of the lab), and 

Lluís Morey (former member of the lab).  

 

 

Animal treatment and design 

 

Six-week-old C57BL/6J male mice were group-housed in a 

facility with 12-h light-darkness cycle (Light cycle 08:00h to 

20:00h). After one week of acclimation, two different groups 

were established for 5 weeks of treatment. The CORT group 

was fed ad libitum on a chow rodent maintenance diet (Envigo, 

Huntingdon, UK) and a stable administration in drinking water 

of 500 µg of free corticosterone (Sigma-Aldrich, Madrid, Spain) 

per mouse and day dissolved in 100% ethanol (EtOH), as 

vehicle, up to a final EtOH concentration of 0.66%. Water 
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consumption was measured twice a week, and, if necessary, 

solutions were replaced with the proper amount of 

corticosterone needed to maintain a daily exposure of 

approximately 500 µg of corticosterone as described 

previously [172]. The vehicle (VEH) group was fed ad libitum 

on the same chow diet and to control for the effects of dietary 

EtOH in adiposity, mice were also given regular drinking water 

with a final EtOH concentration of 0.66%. After 5 weeks of 

treatment, CORT mice switched to VEH for an additional 10 

weeks to assess recovery from the corticosterone treatment. 

The CORT group underwent a 1-week washout period of 

corticosterone dose tapering (75–50% to 25–0% of treatment 

dose), in order to avoid adrenal insufficiency. Body weight, 

food intake and water intake were measured weekly. At the 

beginning of the light cycle (9:00 a.m.), epididymal fat pads 

were removed under fasting conditions at the end of the 5 

weeks of treatment and after 10 weeks of recovery. All animal 

procedures were approved by and conducted in accordance 

with the Animal Research Committee of the University of 

Barcelona. 

 

By Guillermo García-Eguren (Endocrine Disorders lab, 

IDIBAPS, Barcelona). 
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Patient recruitment 

 

A cross sectional study was performed in patients with active 

adrenal endogenous CS referred to the Endocrinology 

Department of Hospital Clínic from Barcelona, between 2015 

to 2018 (n = 6). Diagnosis criteria of CS followed the European 

Society of Endocrinology and the Endocrine Society guidelines 

[200] through repeated elevated levels of urinary free cortisol, 

loss of circadian rhythm (elevated free night salivary cortisol) 

and lack of suppression of cortisol secretion after 

dexamethasone administration. Localization of the cortisol-

secreting tumour was determined by ACTH level and imaging 

tests. None of the patients had been on steroidogenesis 

inhibitors treatment. Patients with genetic forms of CS due to 

adrenal macro/micronodular hyperplasia were excluded. The 

number of cases during the enrolment period determined the 

sample size of CS patients. Eligible controls (n = 12) were 

identified from subjects undergoing elective procedures of 

abdominal surgery to correct benign conditions in the surgery 

departments of the Hospital Clínic, Barcelona.  

 

Exclusion criteria in both groups were age above 70 or below 

18 years old; acute illness other than CS; pregnancy and 

previous history of abdominal surgery. Control subjects with 

history of adrenal incidentaloma, severe chronic diseases 

other than those related to metabolic syndrome, recent or 

active malignancy, previous recent use of exogenous GC or 
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other drugs that could interfere with the hypothalamic-pituitary-

adrenal axis were excluded. The study was approved by the 

Hospital's Ethics Committee and written informed consent was 

obtained from all participants. Main biochemical parameters of 

all participants were measured in serum of the patients and 

controls after overnight fasting employing standard laboratory 

methods as previously described [201]. Free night salivary 

cortisol was measured to discard CS in controls. Participants 

were matched for age, BMI, sex and cardiometabolic 

phenotype: type 2 diabetes, hypertension (HTN) and 

dyslipidemia (DLP). Overview of clinical characteristics of 

participants is displayed in Table M1. 

 
Table M1: Patient characteristics 

 Cushing Syndrome 
(n=6) 

Controls 
(n=12) P value 

Sex (male/female) 2/4 2/10 0.569 
Age (years) 48.8 ± 11.1 49.4 ± 9.0 0.456 
BMI (kg/m2) 27.6 ± 3.8 27.0 ± 2.3 0.602 

HTN (%) 5 (83) 11 (91) 0.985 
DLP (%) 3 (50) 6 (50) 1.000 

TC (mmol/L) 5.3  ± 0.6 5.2 ± 0.5 0.868 
Triglycerides (mmol/L) 1.5 ± 0.6 1.4 ± 0.4 0.650 

T2D (%) 2 (33%) 4 (33%) 1.000 
Fasting glucose (mmol/L) 6.2 ± 0.7 6.3 ± 0.9 0.861 

HOMA-IR 3.8 ± 2.0 2.7 ± 1.4 0.040* 
MSC (µg/dL) 23.6 ± 8.4 17.8 ± 3.5 0.001* 

UFC (µg /24h) 452 (201-880) - - 
LNFSC (µg/dL) 6.41 ± 2.3 1.01 ± 0.4 0.001* 

BMI: body mass index. HTN: hypertension. DLP: dyslipidemia. TC: total 
cholesterol, LDL-c: low-density lipoprotein-, HDL-C: high-density 
lipoprotein-cholesterol. T2D: diabetes mellitus type 2. HOMA-IR: HOMA-IR: 
[Insulin mUI/L x Glycemia: (mmol/L)/22.5. 24h-UFC: 24h urinary free 
cortisol, MSC: morning serum cortisol; LNSC: late night free salivary 
cortisol. Significance was assessed using Student’s t-test for continuous 
data and Fisher’s exact test for categorical data (*p-value < 0.05). Data are 
presented as mean ± S.D. 
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By Felicia Hanzu (Hospital Clínic and Endocrine Disorders 

lab, IDIBAPS, Barcelona). 

 
 

Visceral fat biopsy 

 

Visceral (omental) adipose tissue biopsies from CS patients 

and matched controls were isolated after overnight fasting, at 

the beginning of the laparoscopic surgery, between 8:30-10:00 

a.m. and immediately transported to the laboratory for analysis. 

All subsequent procedures were carried out under laminar 

airflow and sterile conditions. VAT adipose tissue samples 

were immediately carefully cleaned and approximately 500-

1000 mg of this fat graft was snap frozen in liquid nitrogen and 

stored at -80º C until further processed as described below. All 

human VAT biopsies were used for RNA-seq experiments (n = 

6 for CS patients; n = 12 for control patients). Eight VAT 

samples from CS patients and matched controls (n = 4/group) 

were used for ChIP-seq experiments. 

 

By Felicia Hanzu (Hospital Clínic and Endocrine Disorders lab, 

IDIBAPS, Barcelona). 
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Chromatin immunoprecipitation 

 

mESC 

 
Cells were grown in 15-cm plates until 70% confluency and 

crosslinked in 1% formaldehyde in growth medium for 10 min 

at room temperature in a shaker. To stop fixation, glycine was 

added to a final concentration of 0.125 M and incubated for 5 

min at room temperature. Cells were then washed twice with 

ice-cold PBS and harvested by gently scrapping plates (on ice) 

in PBS plus protease inhibitors. Cells from two 15-cm plates 

were pooled together and centrifuged at 3,400 ´ g at 4°C for 5 

min. Cell pellets were frozen at –80°C until use. 

 

Chromatin was prepared by resuspending the crosslinked 

pellet in 1.3 ml ice cold ChIP buffer [1´ volume SDS buffer (100 

mM NaCl, 50 mM Tris-HCl pH 8.1, 5 mM EDTA pH 8.0, and 

0.5 % SDS) and 0.5 ´ volume Triton dilution buffer (100 mM 

NaCl, 100 mM Tris-HCl pH 8.6, 5 mM EDTA pH 8.0, and 5% 

Triton X-100)] plus proteinase inhibitors. Samples were 

sonicated 40 cycles (30 seconds on / 30 seconds off) in a 

Bioruptor Pico (Diagenode) and centrifuged at 16,000 ´ g at 

4°C for 20 min to remove the cell debris. To check chromatin 

size, a 25-μl aliquot was mixed with 175 μl of PBS plus 5 µl of 

20 mg/ml proteinase K, and de-crosslinked for 5 h at 65°C. 

DNA was purified using the QIAquick PCR purification kit 
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(Qiagen), quantified in Nanodrop, and checked by 

electrophoresis on a 1.2% agarose gel. 

 

ChIP experiments were performed using 30 μg of chromatin 

(DNA) and 5 μg of antibody in a final volume of 500 μl ChIP 

buffer. Aliquots of 5 μl were removed as input material (1%). 

ChIP samples were incubated overnight at 4°C on rotation, and 

then Protein A agarose beads (Diagenode) (42 μl per ChIP) 

were blocked 30 min with 0.05% BSA, washed, and added to 

the ChIP reaction. Samples were incubated for 2 h at 4°C with 

rotation. After incubation, beads were washed three times with 

1 ml of low-salt buffer (140 mM NaCl, 50 mM HEPES pH 7.5, 

and 1% Triton X-100) and once with 1 ml high-salt buffer (500 

mM NaCl, 50 mM HEPES pH 7.5, and 1% Triton X-100). 

ChIPed material was eluted from the beads in 200 µl freshly 

prepared elution buffer (1% SDS, 100 mM NaHCO3) at 65°C 

in a shaker (1000 rpm) for 1 h. Input samples were also brought 

to 200 µl with elution buffer. After addition of 8 µl of 5 M NaCl 

to the eluted chromatin and input samples, samples were de-

crosslinked overnight at 65°C. The next day, samples were 

treated with proteinase K [1 µl of 20 mg/ml Proteinase K, plus 

4 µl 0.5 M EDTA, and 8 µl Tris-HCl pH 6.5] for 1 h at 45°C. 

ChIPed DNA and inputs were purified using the QIAquick PCR 

purification kit (Qiagen) and eluted in 60 µl. The following 

antibodies were used in the ChIP experiments: H3K27me3 

(Millipore, #07-449); H3K4me3 (Diagenode, C15410003); 

H3K4me1 (Abcam, ab8895); H3K27Ac (Millipore, #07-360); 
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H3 (Abcam, Ab1791); H3K36me3 (Abcam, ab9050); 

H3K27me1 (Active Motif, #61015); H3K27me2 (Cell Signaling, 

#9728); H3K79me2 (Abcam, ab3594); H2Bub (Cell Signaling, 

#5546); H4K20me3 (Abcam, ab9053); and PHC1 (Active Motif, 

#39723).  

 

By Cecilia Ballaré (our lab), Malte Beringer (former member of 

the lab), Alexandra Santanach (former member of the lab), and 

Lluís Morey (former member of the lab). 

 

 

Visceral adipose tissue 

 
Freshly pooled epididymal fat depots from mouse (n = 2-4 

mice/pool, 2 pools/group/time point) or frozen individual 

visceral fat biopsies from patients (n = 4 samples/group) were 

chopped into small pieces of about 3 mm (McIlwain Tissue 

Chopper, Redding, CA, USA) and crosslinked in fixing solution 

(PBS + formaldehyde 0.5%) for 5 minutes in rotation at room 

temperature as previously described [202]. Briefly, to stop the 

fixation, glycine was added to a final concentration of 0.125 M 

and incubated for 5 min at room temperature and under 

rotation. The tissue was washed twice in cold PBS plus 

proteinase inhibitor cocktail (PIC) (Thermofisher, MA, USA), 

centrifuged and the liquid phase discarded with a glass pipette. 

Then, the tissue was homogenized with Ultra-Turrax (IKA, 

Staufen, Germany), and centrifuged at 2870xg for 2 mins in 
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order to precipitate and store the nuclei fraction at -80ºC until 

use. Nuclei were lysed in immunoprecipitation (IP) buffer (1% 

SDS, 10 mM EDTA, 50 mM Tris-HCl pH 8.1 + 

Protease/phosphatase inhibitors) and sonicated (40 cycles of 

30 seconds on/30 seconds off) in a Bioruptor (Diagenode, NJ, 

USA). ChIP was performed using 30 µg chromatin/ChIP and 5 

µg/ChIP of the following antibodies: H3K27me3 (Millipore #07–

449), H3K27ac (Millipore #07-360), H3K4me3 (Diagenode # 

C15410003-50) and control IgG (Abcam #ab172730). ChIP 

experiments were performed with spike-in control as 

previously reported [187]. For this, an equal amount of 

Drosophila melanogaster S2 cell chromatin was added to each 

ChIP reaction (2.5% of the chromatin for all the ChIPs), 

together with 1 µg of an antibody against a Drosophila 

melanogaster specific histone variant, H2Av (Active Motif, 

catalog no. 61686).  

 

By Guillermo García-Eguren (Endocrine Disorders lab, 

IDIBAPS, Barcelona) and Pedro Vizán (our lab). 

 

 

RNA extraction 

 

Total RNA was extracted from mouse epididymal fat pad or 

human visceral fat biopsies stored at -80ºC using the RNeasy 

Lipid Tissue Mini Kit (Qiagen, Madrid, Spain). 
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By Guillermo García-Eguren (Endocrine Disorders lab, 

IDIBAPS, Barcelona). 

 

 

Quantitative real-time PCR 

 

1 µg of mouse RNA was reverse-transcribed into cDNA with a 

SuperScript™ III Reverse Transcriptase (Thermo Fisher 

Scientific, Barcelona, Spain), according to the manufacturer’s 

instructions. Quantitative real-time PCR was performed using 

SYBR Green reagents on a 7900HT real-time PCR system 

(Applied Biosystems, Foster City, CA, USA). Primers are listed 

in Table M2. mRNA expression levels were normalized to Tbp 

as the internal control, using the cycle threshold (2−ΔΔCt) 

method. 

 

By Guillermo García-Eguren (Endocrine Disorders lab, 

IDIBAPS, Barcelona). 

 
Table M2: Primer sequences for quantitative real-time PCR. 

Mouse Forward Reverse 
Arntl CCAGGGTTTGAAGTTAGAGTCC TGAAGTCGCTGATGGTTGAG 

Npas2 ATGTTCGAGTGGAAAGGAGAC CAAGTGCATTAAAGGGCTGTG 
Clock TCTCAAGGAAGCACTGGAAAG CAGTAGGGATCTTTGTCGGTG 
Per1 CATGTCTACTTACACCCTGGAG TGCCTGCTCCGAAATATAGAC 
Per2 AGCAGGTTGAGGGCATTAC TTACAGTGAAAGATGGAGGCC 
Tbp ACCCTTCACCAATGACTCCTATG ATGATGACTGCAGCAAATCGC 
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Library preparation and sequencing 

 
Library preparation for ChIP-seq experiments was performed 

at the UPF/CRG Genomics Unit. Libraries were sequenced 

using Illumina HiSeq2500 sequencer. Libraries for RNA-seq 

were prepared from total RNA at the CRG Genomics Unit and 

sequenced using the Illumina HiSeq2500 sequencer (2x50, v4, 

HiSeq high output mode). 

 

 

Input datasets 

 

Raw data of multiple samples from the literature was 

downloaded and reanalyzed to be included in this PhD thesis. 

RNA-seq data and ChIP-seq data of SUZ12, EPOP and 

JARID2 in mESCs; and ChIP-seq of H3K27me3 in knock-down 

of Epop and its knock-down control in mESCs were extracted 

from a previous publication from our lab (GEO accession 

number: GSE79606) [118]. ChIP-seq data of RING1B, CBX7 

and RYBP in mESCs were obtained from another previous 

publication from our lab (GEO accession number: GSE42466) 

[158]. ChIP-seq data of MEL18 in mESCs was extracted from 

another previous publication from our lab (GEO accession 

number: GSE67868) [117]. ChIP-seq data of PHF19 in mESCs 

and ChIP-seq of H3K27me3 in knock-down of Phf19 and its 

knock-down control in mESCs were obtained from a previous 

publication from our lab (GEO accession number: GSE41589) 
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[115]. ChIP-seq data of p300 in mESCs was obtained via GEO 

(GEO accession number: GSE89211) [124]. ChIP-seq data of 

CHD7 in mESC was retrieved from GEO (GEO accession 

number: GSE22341) [159]. ChIP-seq data of CHD8 and p400 

in mESC was extracted from GEO (GEO accession number: 

GSE64825) [160]. ChIP-seq data of YY1 in mESC was 

obtained via GEO (GEO accession number: GSE92412) [162]. 

ChIP-seq data of POL2 S5P and POL2 S2P was extracted via 

GEO (GEO accession number: GSE34518) [163]. ATAC-seq 

data of mESC was retrieved from GEO (GEO accession 

number: GSE85505) [134]. ChIP-seq data of H3K27me3, 

H3K4me3, H3K27ac, H3K4me1, and H3K36me3, and RNA-

seq data of cardiac differentiation (MES, CPs and CMs), were 

obtained from https://b2b.hci.utah.edu/gnomex/ (accession 

numbers: 44R and 7R2) [153]. ChIP-seq data of H3K27me3, 

H3K4me3, H3K27ac, H3K4me1, and H3K36me3, RNA-seq 

data of neural differentiation (NPCs and CNs), ChIP-seq data 

of CTCF and Hi-C data of mESCs were retrieved from GEO 

(GEO accession number: GSE96107) [123]. ChIP-seq data of 

H3K27me3, H3K4me3, H3K27ac, H3K4me1, and H3K36me3, 

and RNA-seq of mouse developmental tissues (Heart10.5, 

Liver11.5, NeuralTube12.5, Kidney14.5, Lung15.5) and ChIP-

seq of CHD2 in mESC were obtained from ENCODE project 

[157]. The list of ENCODE accession numbers can be found in 

Table M3. When replicates were available, pooling was done 

except for the ChIP-seq samples of H3K4me3 of NPCs 
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(replicate 1 was used) and H3K27ac of NPCs (replicate 2 was 

used).  

 
Table M3: List of ENCODE accession numbers 

Developmental stage Experiment Experiment accession 

Heart10.5 H3K27me3 ChIP-seq ENCSR266JQW 
Heart10.5 H3K4me3 ChIP-seq ENCSR782DEA 
Heart10.5 H3K27ac ChIP-seq ENCSR582SPN 
Heart10.5 H3K4me1 ChIP-seq ENCSR782DGO 
Heart10.5 H3K36me3 ChIP-seq ENCSR328WMV 
Heart10.5 RNA-seq ENCSR049UJU 
Liver11.5 H3K27me3 ChIP-seq ENCSR244KCW 
Liver11.5 H3K4me3 ChIP-seq ENCSR447DOF 
Liver11.5 H3K27ac ChIP-seq ENCSR058DOA 
Liver11.5 H3K4me1 ChIP-seq ENCSR419MSI 
Liver11.5 H3K36me3 ChIP-seq ENCSR932BNP 
Liver11.5 RNA-seq ENCSR284AMY 

NeuralTube12.5 H3K27me3 ChIP-seq ENCSR375RUA 
NeuralTube12.5 H3K4me3 ChIP-seq ENCSR538SRO 
NeuralTube12.5 H3K27ac ChIP-seq ENCSR891SAW 
NeuralTube12.5 H3K4me1 ChIP-seq ENCSR263CKR 
NeuralTube12.5 H3K36me3 ChIP-seq ENCSR094QZC 
NeuralTube12.5 RNA-seq ENCSR508GWZ 

Kidney14.5 H3K27me3 ChIP-seq ENCSR399UVI 
Kidney14.5 H3K4me3 ChIP-seq ENCSR669AQL 
Kidney14.5 H3K27ac ChIP-seq ENCSR057SHA 
Kidney14.5 H3K4me1 ChIP-seq ENCSR196ENU 
Kidney14.5 H3K36me3 ChIP-seq ENCSR425FLT 
Kidney14.5 RNA-seq ENCSR504GEG 
Lung15.5 H3K27me3 ChIP-seq ENCSR861MUP 
Lung15.5 H3K4me3 ChIP-seq ENCSR305GII 
Lung15.5 H3K27ac ChIP-seq ENCSR895BMP 
Lung15.5 H3K4me1 ChIP-seq ENCSR858AUB 
Lung15.5 H3K36me3 ChIP-seq ENCSR776RJR 
Lung15.5 RNA-seq ENCSR457RRW 

mESC CHD2 ChIP-seq ENCSR531HWD 

Accession numbers of the ENCODE data used in this PhD thesis. 
Heart10.5, heart tissue from 10.5 embryonic day; Kidney14.5, kidney tissue 
from 14.5 embryonic day; Liver11.5, liver tissue from 11.5 embryonic day; 
Lung15.5, lung tissue from 15.5 embryonic day; NeuralTube12.5, neural 
tube tissue from 12.5 embryonic day. 
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ChIP-seq analysis 

 

mESCs, cardiac differentiation, neural differentiation 

and mouse embryonic tissues 

 
The sequence reads of ChIP-seq data from mESCs, MES, 

CPs, CMs, NPCs, CNs, Heart10.5, Liver11.5, NeuralTube12.5, 

Kidney14.5 and Lung15.5 were mapped to the mm10 version 

of the mouse genome with the BOWTIE software [41], setting 

the option –m 1, which eliminates multilocus reads that align in 

more than one region. The ChIP-seq profiles were obtained 

using the function buildChIPprofile from SeqCode [203]. 

For the p300 ChIP-seq, peak calling against input was 

performed using MACS [45] with the option --shiftsize 100, 

which shifts tags to their midpoint. 

 

Visceral adipose tissue 

 
The sequenced reads of ChIP-seq data from mice were 

mapped to a synthetic genome constituted by the mouse and 

the Drosophila melanogaster chromosomes (mm9 + dm3), and 

the ones from human were mapped to a synthetic genome 

constituted by the human and the fruit fly chromosomes (hg19 

+ dm3). The mapping was performed with the BOWTIE 

software [41], setting the option -m 1, which eliminates those 

multilocus-reads which align in more than one region. The 
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ChIP-seq profiles normalized by the total number of fruit fly 

spike-in reads [204] were obtained using the function 

buildChIPprofile from SeqCode [203]. ChIP-seq signal 

represents the count of reads normalized by total number of 

fruit fly spike-in reads and averaged by the length of the 

genomic coordinates, and was calculated with 

recoverChIPlevels function from SeqCode [203]. Peak 

calling of each replicate against its corresponding input was 

performed using MACS [45] with the option –shift size 100, 

which shifts tags to their midpoint. 

 

 

Chromatin segmentation 

 

ChromHMM [49] was used to obtain a chromatin segmentation 

model for mESCs, MES, CPs, CMs, NPCs, CNs, Heart10.5, 

Liver11.5, NeuralTube12.5, Kidney14.5 and Lung15.5 using 

the default parameters. The input data for ChromHMM 

consisted of ChIP-seq experiments of H3K4me3, H3K27ac, 

and H3K4me1 in all cell types, plus H3K27me3 in the case of 

mESCs. When available, ChIP-seq of H3 was used as control, 

otherwise, Input was used. First, the function BinarizeBam 

was used to binarize the input mapped data. Next, the 

LearnModel function was ran to learn different chromatin 

segmentation models of each cell type or tissue separately, 

using from 4 to 8 states for all the cases except for mESCs 

were we used from 4 to 16 states; the models were selected 
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when they showed the higher number of states with no 

redundancy. 

 

 

Unification of ChIP-seq peaks 

 

To obtain a unified list of peaks across replicates of the same 

experiment, DiffBind [48] was run against input. First, in the 

case of mice VAT (where two replicates of each ChIP-seq 

experiment are available), both lists of peaks reported by 

MACS were pooled and overlapping peaks in at least 1 bp 

were merged taking the lowest and the highest coordinate. A 

Python script was developed to perform this first step. In the 

case of human VAT (where four replicates of each ChIP-seq 

are available), only peaks which overlap in at least 1 bp with 

another peak from another replicate were selected, and 

overlapping peaks in at least 1 bp were merged taking the 

lowest and the highest coordinate to define a merged peak. 

This first step in human was done with DiffBind [48] Next, 

peaks with a significant enrichment of ChIP-seq signal over 

input with a p-value < 0.05 and an FDR < 0.1, were selected to 

obtain a unified list of peaks across replicates for the same 

experiment in each condition (CORT_5w, VEH_5w, 

CORT_15w, VEH_15w, CS and CTL). In the case of H3K27ac 

in CORT_15w, all the peaks of the replicate 2 were selected 

as unified peaks and the peaks of replicate 1 were discarded. 
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Differential ChIP-seq analysis 

 

To obtain the lists of differential peaks from each comparison 

(CORT_5w vs. VEH_5w, CORT_15w, vs VEH_15w and CS vs. 

CTL) we run DiffBind [48], using the total number of Drosophila 

melanogaster reads for each replicate as spike-in 

normalization factors, and setting the threshold at p-value < 

0.05 and a FDR < 0.2. Replicate 1 of H3K27ac in CORT_15w 

was discarded for the differential analysis. The lists of genes 

overlapping with differential peaks were obtained using 

matchpeaksgenes function from SeqCode [203], using the 

option –u 2500, which selects genes that overlap with a peak 

within +2,500 upstream the transcription start site and the 

transcription end site from the RefSeq catalogue [149]. 

 

 

RNA-seq analysis 

 

mESC, cardiac differentiation, neural differentiation 

and mouse embryonic tissues 

 
The pair-end sequence reads of RNA-seq data mESCs, MES, 

CPs, CMs, NPCs, CNs, Heart10.5, Liver11.5, NeuralTube12.5, 

Kidney14.5 and Lung15.5 were mapped to the mm10 version 

of the mouse genome with TopHat [205], setting the options --

mate-inner-dist 100, which is the expected mean distance 
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between mate pairs, and -g 1, which eliminates those 

multilocus reads which align in more than one region. The 

RNA-seq profiles were obtained using the function 

buildChIPprofile from SeqCode [203]. The FPKMs 

(fragments per kilobase of transcript per million mapped reads) 

of each gene in the RefSeq catalogue [149] of the mouse 

genome were calculated using Cufflinks [206], setting the 

option --max-bundle-frags 5,000,000, which specifies the 

maximum genomic length for the bundles. 

 

Visceral adipose tissue 

 
The pair-end sequence reads of RNA-seq data from mice were 

mapped to the mm9 version of the mouse genome, and the 

ones from human were mapped to the hg19 version of the 

human genome with TopHat [205] setting the options --mate-

inner-dist 100, which is the expected mean distance between 

mate pairs, and -g 1, which eliminates those multilocus reads 

which align in more than one region. The RNA-seq profiles 

were obtained using the function buildChIPprofile from 

SeqCode [203]. The FPKMs of each gene in the RefSeq 

catalogue [149] of the mouse genome were calculated using 

DESeq2 [207]. 
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Differential analysis of gene expression 

 

DESeq2 [207] was used to identify differentially expressed 

genes in all the comparisons (CORT_5w vs. VEH_5w, 

CORT_15w vs. VEH_15w and CS vs. CTL). The threshold was 

set at p-adjusted < 0.1. 

 

 

Gene set enrichment analysis 

 

Gene set enrichment analysis (GSEA) of the pre-ranked lists 

of genes by DESeq2 stat value was performed with the GSEA 

software [208]. 

 

 

Hi-C analysis 

 

Hi-C data from mESCs were processed with TADbit [209]. 

Briefly, sequencing reads were mapped to the reference 

genome (mm10) by applying a fragment-based strategy, which 

is dependent on the GEM mapper [44]. Mapped reads were 

filtered to remove those resulting from unspecified ligations, 

errors, or experimental artefacts. Specifically, seven different 

filters were applied using the default parameters in TADbit: 

self-circles, dangling ends, errors, extra dangling-ends, over-

represented, duplicated, and random breaks [209]. After 
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pooling replicates, Hi-C data were normalized with OneD 

correction [210] at 5 kb of resolution to remove known biases. 

Significant Hi-C interactions were called with the analyzeHiC 

function of HOMER software suit [47], binned at 5 kb of 

resolution, and with the default p-value threshold of 0.001. 

 

By Francesca Mugianesi (our lab). 

 

 

ATAC-seq analysis 

 

The sequence reads of ATAC-seq data from mESCs were 

mapped to the mm10 version of the mouse genome with the 

BOWTIE software [41], setting the option –m 1, which 

eliminates multilocus reads that align in more than one region, 

and the option -X 2000, which defines the maximum insert size 

for paired-end alignment. Mitochondrial reads were removed 

from the resulting map. 

 

 

Gene expression predictive model 

 

The regression linear models were built to predict gene 

expression by adjusting the following formula: 

 

!! 	~	$" +	$#	&!# +⋯+	$$	&!$ + 	(, 
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where yi is the log2 of the FPKMs of gene i, with a pseudo count 

of 0.1. xi1 to xin are the log2-normalized count of reads of each 

ChIP-seq signal at the defined promoters or enhancers 

averaged by the length of the region calculated by 

recoverChIPlevels from SeqCode [203], plus a pseudo 

count of 0.1. b0 to bn are the coefficients that we would like to 

calculate and e is the error. The predictive models were trained 

on protein-coding genes. The set of data was randomly divided 

into two subsets, a training subset with the 80% of entries, and 

a test subset with the remaining 20% of entries. In the case of 

differentiation, each of the time points was used as training 

subsets and then the predictive models were evaluated in the 

rest. A 10-fold cross-validation was repeated three times to 

verify that the quantitative relationship between expression 

and histone modifications was not specific for a subset of the 

data. The following functions were used: trainControl to 

perform the  10-fold cross-validation, train to train the models, 

and varImp to calculate the variable importance, from the R 

package caret [211]. For models trained on enhancers, 

genes were introduced into the dataset as many times as the 

number of associated enhancers they had.  

 

 

LOESS normalization 

 

The FPKMs of all protein-coding genes and ChIP-seq levels of 

PEs and BPs were normalized for mESCs, MES, CPs, CMs, 
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NPCs and CNs; and also, for Heart10.5, Liver11.5, 

NeuralTube12.5, Kidney14.5, and Lung15.5. To normalize the 

ChIP-seq levels of H3K27me3, H3K4me3, H3K27ac, 

H3K4me1, and H3K36me3 on the PEs and BPs, the genome 

was first divided into 2 Kb bins (note that bin size reflects the 

average size of PEs and BPs). Next, the count of reads, 

normalized by total number of reads and averaged by the 

length, was calculated with recoverChIPlevels function 

from SeqCode [203]. Finally, the normalization parameters 

were calculated in those bins and applied to the count of reads 

normalized by the total number of reads and averaged by the 

length of PEs and BPs. The normalize.loess function of 

the R package affy [212] was used to normalize ChIP-seq 

data and expression data. Genes and bins with a 0 in any 

columns were discarded, as it was not possible to determine 

whether it was due to a sequencing error or a real absence of 

signal.  

 

 

Conservation 

 

Average conservation ranging between 0 and 1 was calculated 

with the UCSC genome browser application 

bigWigAverageOverBed [165]. As input we used 

phastCons60way, which measures the evolutionary block 

conservation among 59 vertebrates, in bigWig format 
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downloaded from UCSC genome browser [165]. We used 

mean0 as values of average conservation. 

 

 

Overlap with CpG islands 

 

The percentage of regions overlapping in at least 1 bp with a 

CpG island was calculated by matchpeaks function from 

SeqCode [203]. The coordinates for CpG islands were 

obtained from UCSC genome browser [165]. 

 

 

Statistical tests 

 

Statistical tests (Exact Binomial Test; Student’s t-test; Fisher’s 

Exact Test; and Wilcoxon Test) were performed with R [213].  

 

 

Plots 

 

Plots (Violin plots, Boxplots, Scatterplots, etc.) were obtained 

with R package ggplot2 [214]. Color palettes are from R 

package viridis [215]. P-values were automatically plotted with 

R package ggpubr [216]. UpSetPlots were obtained with R 

package UpSetR [217]. Pie charts of genome distribution and 
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Venn Diagrams were obtained with SeqCode [203]. Genome 

screen shots were taken from UCSC genome browser [165].  

 

 

Scripts 

 

All the scripts have been written in Python and/or R, and run in 

an operative system MAC OS X Mojave, processor 2,8 GHz 

Intel Core i5, and 16 GB of RAM. Scripts to model gene 

expression and histone modification signals, and for LOESS 

normalization were fully written in R [213]. Scripts to bin the 

genome, to associate enhancers to promoters and genes by 

Hi-C interactions, to associate enhancers to promoters and 

genes by distance in the linear genome, and to unify peak 

coordinates were fully written in Python. The script to calculate 

state transitions was written in Python and internally calls R to 

plot the heatmap. 

 

 

PCA webserver 

 

The PCA webserver is part of the SeqCode web site 

(http://ldicrocelab.crg.eu/). It has been implemented in PHP, 

and uses R package factoextra [218] to plot the PCA. The 

output is provided in PNG and PDF formats.  

Collaboration with Enrique Blanco (our lab). 
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Data availability 

 

ChIP-seq data on histone modifications in mESCs can be 

found in GEO with the accession code GSE150633. RNA-seq 

data and ChIP-seq data on histone modifications in mouse 

VAT is available in GEO under the accession code 

GSE153934. RNA-seq data and ChIP-seq data on histone 

modifications in human VAT is available in GEO with the 

accession code GSE140126.
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Model Predictors Coeficients P-value 

Enhanc
er-Hi-
C-all 

Intercept;H4K20me3;H2Bub;H3K79
me2;H3K36me3;H3K27me2;H3K27
me1;H3K4me3;H3K4me1;H3K27me
3;H3K27ac 

1.769662;0.036313;-
0.022462;0.034875;0.150573;0.82
0294;-
0.154638;0.113001;0.192828;-
1.626130;0.081335 

<2e-
16;0.0606;0.3041;0.2219;<2e-
16;<2e-16;9.33e-09;<2e-
16;<2e-16;<2e-16;2.22e-05 

Promot
er-Hi-
C-all 

Intercept;H4K20me3;H2Bub;H3K79
me2;H3K36me3;H3K27me2;H3K27
me1;H3K4me3;H3K4me1;H3K27me
3;H3K27ac 

3.42981;-
0.35635;1.38463;0.36739;0.71092
;-0.35287;0.08980;0.34151;-
0.25338;-1.04633;0.30528 

<2e-16;1.32e-06;<2e-16;2.91e-
05;<2e-
16;0.000271;0.368440;<2e-
16;0.002894;<2e-16;5.90e-06 

Enhanc
er-Hi-
C-top 

Intercept;H4K20me3;H2Bub;H3K79
me2;H3K36me3;H3K27me2;H3K27
me1;H3K4me3;H3K4me1;H3K27me
3;H3K27ac 

1.34375;0.02848;0.16148;-
0.05578;0.07362;0.75660;-
0.16639;0.08160;0.11158;-
1.75951;0.20185 

5.41e-
08;0.509958;0.000496;0.35433
5;0.042874;<2e-
16;0.003625;2.36e-
08;0.015662;<2e-16;7.68e-07 

Promot
er-Hi-
C-top 

Intercept;H4K20me3;H2Bub;H3K79
me2;H3K36me3;H3K27me2;H3K27
me1;H3K4me3;H3K4me1;H3K27me
3;H3K27ac 

2.53925;-
0.35923;1.16504;0.46248;0.74821
;-0.61529;0.03518;0.34958;-
0.09401;-1.11801;0.29481 

1.26e-07;4.11e-05;<2e-
16;3.52e-06;<2e-16;2.54e-
08;0.756338;<2e-
16;0.344272;<2e-16;0.000122 

Enhanc
er-1Mb 

Intercept;H4K20me3;H2Bub;H3K79
me2;H3K36me3;H3K27me2;H3K27
me1;H3K4me3;H3K4me1;H3K27me
3;H3K27ac 

1.777184;0.038401;-
0.086740;0.045368;0.142935;0.80
1215;-
0.097764;0.129381;0.199824;-
1.527967;0.009363 

3.73e-09;0.481741;3.66e-
07;0.000407;3.68e-08;<2e-16 

Enhanc
er-Hi-
C-
top_dist
al 

Intercept;H4K20me3;H2Bub;H3K79
me2;H3K36me3;H3K27me2;H3K27
me1;H3K4me3;H3K4me1;H3K27me
3;H3K27ac 

1.37103;0.05715;0.1420;0.02684;
0.11059;0.6968;-
0.17495;0.09613;0.11919;-
1.79132;0.16231 

1.99e-
06;0.246782;0.008710;0.70969
3;0.011708;<2e-
16;0.009309;4.10e-
08;0.025154;<2e-16;0.000622 

PE-
MES 

Intercept;H3K4me1;H3K4me3;H3K3
6me3;H3K27me3;H3K27ac 

2.87548;0.32947;-
0.10706;0.77341;-
0.42950;0.65131 

<2e-16;0.0021;0.2954;<2e-
16;8.59e-12;4.28e-07 

PE-CP 
Intercept;H3K4me1;H3K4me3;H3K3
6me3;H3K27me3;H3K27ac 

4.49789;0.41363;-
0.14266;1.05564;-
0.41013;0.79118 

<2e-16;0.00043;0.07172;<2e-
16;1.70e-06;1.37e-09 

PE-CM 
Intercept;H3K4me1;H3K4me3;H3K3
6me3;H3K27me3;H3K27ac 

4.20736;0.54595;-
0.19799;1.16195;-
0.77449;0.68414 

<2e-16;1.59e-05;0.00837;<2e-
16;<2e-16;5.66e-06 

PE-
NPC 

Intercept;H3K4me1;H3K4me3;H3K3
6me3;H3K27me3;H3K27ac 

2.11781;0.14783;0.06880;0.44423
;-0.25199;0.55242 

4.19e-13;0.0187;0.1436;4.10e-
07;1.68e-12;2.32e-10 

PE-CN 
Intercept;H3K4me1;H3K4me3;H3K3
6me3;H3K27me3;H3K27ac 

2.92670;0.45550;0.12358;0.65623
;-0.36589;0.24901 

<2e-16;6.38e-09;0.00888;9.79e-
12;2.84e-16;0.00685 

PE_dist
al-MES 

Intercept;H3K4me1;H3K4me3;H3K3
6me3;H3K27me3;H3K27ac 

2.8547;0.5077;-0.4345;0.3344;-
0.3675;1.3149 

5.92e-
08;0.00613;0.01588;0.05648;0.0
0151;1.68e-08 

PE_dist
al-CP 

Intercept;H3K4me1;H3K4me3;H3K3
6me3;H3K27me3;H3K27ac 

3.59968;0.52860;-
0.06379;0.80747;-
0.69685;0.72327 

4.64e-
06;0.02133;0.65513;4.39e-
05;2.59e-05;0.00458 

PE_dist
al-CM 

Intercept;H3K4me1;H3K4me3;H3K3
6me3;H3K27me3;H3K27ac 

3.0441;0.41129;-
0.01988;0.99875;-
0.99453;0.45472 

0.000429;0.082664;0.880602;1.
49e-07;8.17e-09;0.106193 

PE_dist
al-NPC 

Intercept;H3K4me1;H3K4me3;H3K3
6me3;H3K27me3;H3K27ac 

1.32232;-
0.01954;0.01013;0.04849;-
0.16286;0.68722 

0.0136;0.8752;0.9063;0.7657;0.
0332;2.94e-05 

PE_dist
al-CN 

Intercept;H3K4me1;H3K4me3;H3K3
6me3;H3K27me3;H3K27ac 

2.55576;0.29260;0.01389;0.37789
;-0.12767;0.35556 

9.34e-
06;0.0727;0.8726;0.0266;0.1745
;0.0502 

BP-
MES 

Intercept;H3K4me1;H3K4me3;H3K3
6me3;H3K27me3;H3K27ac 

6.18926;-
0.27152;1.23363;1.63188;-
0.74628;1.25739 

<2e-16;0.0424;<2e-16;<2e-
16;<2e-16;<2e-16 

BP-CP 
Intercept;H3K4me1;H3K4me3;H3K3
6me3;H3K27me3;H3K27ac 

5.96830;0.07251;0.87269;1.35756
;-0.89645;1.30821 

<2e-16;0.627;<2e-16;2.36e-
09;<2e-16;<2e-16 

BP-CM 
Intercept;H3K4me1;H3K4me3;H3K3
6me3;H3K27me3;H3K27ac 

5.87637;0.45771;0.49104;1.17969
;-1.21084;1.47382 

4.39e-12;0.00313;2.31e-
07;4.79e-06;<2e-16;<2e-16 

BP-
NPC 

Intercept;H3K4me1;H3K4me3;H3K3
6me3;H3K27me3;H3K27ac 

3.46702;0.19662;0.29683;0.34182
;-0.17981;1.37008 

5.51e-12;0.0199;7.76e-
10;0.0455;8.39e-05;<2e-16 

BP-CN 
Intercept;H3K4me1;H3K4me3;H3K3
6me3;H3K27me3;H3K27ac 

3.82808;0.07358;0.24210;0.74514
;-0.30879;1.32765 

3.73e-09;0.481741;3.66e-
07;0.000407;3.68e-08;<2e-16 

PE_intr
agenic-
MES 

Intercept;H3K4me1;H3K4me3;H3K3
6me3;H3K27me3;H3K27ac 

2.50151;0.27126;-
0.02209;1.01565;-
0.30737;0.14076 

2.84e-15;0.0388;0.8624;<2e-
16;4.86e-05;0.4070 

PE_intr
agenic-
CP 

Intercept;H3K4me1;H3K4me3;H3K3
6me3;H3K27me3;H3K27ac 

4.36975;0.21512;-
0.09455;1.1933;-0.27606;0.66160 

<2e-16;0.151912;0.350868;<2e-
16;0.011987;0.000544 

PE_intr
agenic-
CM 

Intercept;H3K4me1;H3K4me3;H3K3
6me3;H3K27me3;H3K27ac 

4.88009;0.46912;-
0.22694;1.24425;-0.5939;0.87209 

<2e-16;0.0042;0.0204;<2e-
16;1.12e-07;2.86e-05 
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PE_intr
agenic-
NPC 

Intercept;H3K4me1;H3K4me3;H3K3
6me3;H3K27me3;H3K27ac 

1.73654;0.22209;0.04564;0.50081
;-0.26970;0.31045 

8.77e-
07;0.00741;0.46726;6.51e-
07;1.37e-08;0.00782 

PE_intr
agenic-
CN 

Intercept;H3K4me1;H3K4me3;H3K3
6me3;H3K27me3;H3K27ac 

2.70760;0.37268;0.15745;0.66610
;-0.37609;0.19218 

1.34e-
11;0.000253;0.015041;3.27e-
09;4.63e-10;0.118102 

PE_inte
rgenic-
MES 

Intercept;H3K4me1;H3K4me3;H3K3
6me3;H3K27me3;H3K27ac 

4.1239;0.4780;-0.2287;0.9326;-
0.5689;1.0571 

1.52e-
06;0.01085;0.17213;0.00499;1.9
4e-07;3.17e-07 

PE_inte
rgenic-
CP 

Intercept;H3K4me1;H3K4me3;H3K3
6me3;H3K27me3;H3K27ac 

6.2644;0.7649;-0.2105;1.6297;-
0.5718;0.7494 

1.09e-
07;0.000108;0.096130;7.11e-
05;3.82e-05;6.22e-05 

PE_inte
rgenic-
CM 

Intercept;H3K4me1;H3K4me3;H3K3
6me3;H3K27me3;H3K27ac 

3.4950;0.5722;-0.1439;1.1886;-
1.0423;0.4047 

0.00292;0.00534;0.22221;0.001
81;1.07e-13;0.07041 

PE_inte
rgenic-
NPC 

Intercept;H3K4me1;H3K4me3;H3K3
6me3;H3K27me3;H3K27ac 

1.91952;0.07552;0.06692;0.16711
;-0.21193;0.82063 

0.004122;0.445558;0.351736;0.
463575;0.000117;4.9e-10 

PE_inte
rgenic-
CN 

Intercept;H3K4me1;H3K4me3;H3K3
6me3;H3K27me3;H3K27ac 

2.49007;0.56773;0.08360;0.40700
;-0.33775;0.30427 

0.00466;4.91e-
06;0.22802;0.16672;6.98e-
07;0.02903 

PE-
Heart1
0.5 

Intercept;H3K4me1;H3K4me3;H3K3
6me3;H3K27me3;H3K27ac 

3.18597;0.23328;-
0.32014;0.80373;-
0.80904;1.08654 

8.90e-16;0.16;1.84e-05;6.22e-
12;3.98e-15;4.21e-11 

PE-
Liver11
.5 

Intercept;H3K4me1;H3K4me3;H3K3
6me3;H3K27me3;H3K27ac 

3.10344;0.57590;-
0.09486;0.57254;-
0.36270;0.48339 

<2e-16;2.72e-05;0.197;2.57e-
06;5.53e-08;1.02e-06 

PE-
Neural
Tube12
.5 

Intercept;H3K4me1;H3K4me3;H3K3
6me3;H3K27me3;H3K27ac 

2.43303;0.09565;-0.05656;-
0.01470;-0.24669;0.62079 

3.07e-
15;0.340000;0.312097;0.88043
1;0.000461;<2e-16 

PE-
Kidney
14.5 

Intercept;H3K4me1;H3K4me3;H3K3
6me3;H3K27me3;H3K27ac 

3.60808;0.28586;-
0.09900;0.58582;-
0.26159;0.72405 

<2e-
16;0.016351;0.058716;2.06e-
05;0.000836;<2e-16 

PE-
Lung15
.5 

Intercept;H3K4me1;H3K4me3;H3K3
6me3;H3K27me3;H3K27ac 

3.43695;0.11042;-
0.18592;0.45259;0.13052;0.67831 

4.87e-
15;0.406519;0.000664;0.00063
6;0.059553;2.18e-14 

 



 

  

 


