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Résumé 3
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Abstract

Computer simulation is acknowledged as the third branch of Science. From the sem-
inal work of Turner et al. (1956) [111] on Finite Elements, impressive improvements
have been made in terms of software and hardware, so that, nowadays, there is no
engineering device (in the broad sense of the word) that is not subjected to any
kind of simulation. However, in the same way as there is a gap between theory
and practice, at an industrial level there are still problems where, at the moment,
numerical simulations are not used and instead, a hand-craft approach is applied.
The mitigation of distortion in large aluminium forgings is one of these problems.

Post-machining distortion is an open problem that affects every single large thick-
walled aluminium forging assembled on an aircraft. The origin of distortion is the
presence of residual stresses (RS) developed along the manufacturing chain, espe-
cially after the heat treatment of quenching. When machining takes places, it causes
a redistribution at an internal level as the previous equilibrium state is broken by
the material removal action. At a theoretical level, if the RS in a part are known
in advance, a proper machining sequence could be planned with the aim to mitigate
or counteract a warped geometry. This strategy is already implemented for parts
machined from rolled plates, where RS can be considered as constant along the lon-
gitudinal direction [38]. However, for forgings, RS are a function of the geometry
and, as a result, a complex three-dimensional stress field is present. Important re-
search efforts are done in order to predict RS numerically for forgings but still, the
deterministic nature of numerical simulations are not able to capture the variable
behaviour of distortions. At the moment, the current research direction looks at the
distortion problem as something to avoid upwards in the manufacturing chain, it
means, focusing the efforts in the steps before or during machining at latest. In the
present thesis, we opted to follow the opposite direction, which means, how to pro-
ceed and handle distortion once it has arisen. To perform this task, the problem was
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Abstract

first studied by conventional Finite Element Method (FEM), and then, by applying
a non-intrusive Model Order Reduction (ROM) technique called Sparse Subspace
Learning (SSL) [14].

The content of this thesis is structured as follows. In chapter 1 we introduce the
distortion problem, followed by the definition and interconnection of the three main
actors: residual stresses, distortion and reshaping. Then, a review of the available
reshaping techniques is provided and finally, the challenges and perspectives for re-
shaping simulation are discussed. Chapter 2 presents two numerical models devoted
to determine the residual stresses after quenching and plastic bending, respectively
as the heat treatment is considered as the main source of residual stresses in alu-
minium forgings and the latter corresponds to the selected reshaping operation to be
studied in this thesis. After its validation, both models are applied in the following
chapters and they provide the reference solution to our problem. In chapter 3, we
introduce the reshaping diagrams as a tool to assist the bending straightening oper-
ation. In addition, the residual stress free hypothesis is presented as an alternative
to study the reshaping problem. This approach uses the distorted geometry as the
main input to simulate the reshaping step by considering the part without residual
stresses. Then, in chapter 4, a multiparametric study of bending straightening is
provided with the aid of the SSL, so that the reshaping diagrams can be general-
ized for a previously defined set of parameters. Finally, as reshaping is an iterative
and sequential procedure, in chapter 5, two consecutive bending straightening oper-
ations are simulated. Different reshaping strategies are studied and a methodology
is provided to tackle in a more systematic way the open problem of reshaping.
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Résumé

La simulation numérique est reconnue comme étant la troisième branche de la sci-
ence. À partir des travaux fondateurs de Turner et al. (1956) [111] sur les éléments
finis, des améliorations impressionnantes ont été apportées en termes de software et
de hardware, de sorte qu’aujourd’hui, il n’existe plus aucun dispositif d’ingénierie
(au sens large du terme) qui ne soit pas transcrit par une quelconque simulation.
Cependant, tout comme il existe un fossé entre théorie et pratique, il existe encore
des problèmes au niveau industriel où, pour le moment, les simulations numériques
n’ont pas encore pris la place des approches artisanales. L’atténuation de la distor-
sion dans les grandes pièces forgées en aluminium est l’un des exemples.

La distorsion post-usinage est un problème ouvert qui affecte chaque grande
pièce forgée en aluminium à paroi épaisse assemblée sur un avion. Cette distor-
sion provient de la présence de contraintes résiduelles (RS) développées tout au long
de la châıne de fabrication, en particulier après traitement thermique par trempe.
Lorsque l’usinage a lieu, il provoque une redistribution à un niveau interne car l’état
d’équilibre précédent est rompu par l’action d’enlèvement de matière. Au niveau
théorique, si les RS d’une pièce sont connues à l’avance, une séquence d’usinage
appropriée pourrait être planifiée dans le but d’atténuer ou de contrecarrer une
géométrie déformée. Cette stratégie est déjà mise en œuvre pour les pièces usinées
à partir de tôles laminées, où la RS peut être considérée comme constante dans
la direction longitudinale [38]. Cependant, pour les pièces forgées, les RS sont
fonction de la géométrie et, par conséquent, un champ de contrainte tridimension-
nel complexe est présent. D’importants efforts de recherche sont réalisés afin de
prédire numériquement les RS pour les pièces forgées, mais la nature déterministe
des simulations numériques ne permet toujours pas de saisir le comportement vari-
able des déformations. Pour l’instant, l’orientation actuelle de la recherche considère
le problème des distorsions comme quelque chose à éviter depuis le début de la châıne
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Résumé

de fabrication, c’est-à-dire en concentrant les efforts dans les étapes précédentes, oú
au plus tard pendant l’usinage. Dans la présente thèse, nous avons choisi de suivre
la direction opposée, c’est-à-dire comment procéder et gérer la distorsion une fois
qu’elle est apparue. Pour réaliser cette tâche, le problème a d’abord été étudié par
la méthode classique des éléments finis (FEM), et par la suite en appliquant une
technique non intrusive de réduction de l’ordre des modèles (ROM) appelée ”Sparse
Subspace Learning” (SSL) [14].

Le contenu de cette thèse est structuré comme suit. Dans le chapitre 1 le
problème de la distorsion sera introduit, suivi de la définition et de l’interconnexion
des trois acteurs principaux : les contraintes résiduelles, la distorsion et le redres-
sage. Les techniques de redressage seront ensuite passées en revue pour finalement
examiner les défis et les perspectives de la simulation du redressage. Le chapitre
2 présente deux modèles numériques consacrés à la détermination des contraintes
résiduelles après la trempe et le pliage plastique, le traitement thermique étant con-
sidéré comme la principale source de contraintes résiduelles dans les pièces forgées en
aluminium. C’est dans ce cadre (origine majoritairement thermique des contraintes
résiduelles) que sera étudiée l’opération de redressage sélectionnée dans cette thèse.
Après leurs validations, les deux modèles sont appliqués dans les chapitres suivants
où ils constitueront la solution de référence du problème. Dans le chapitre 3, les
diagrammes de mise en forme sont présentés comme un outil d’aide à l’opération de
redressement par flexion. En outre, l’hypothèse reste sans contrainte résiduelle est
présentée comme une alternative pour étudier le problème de redressage. Cette ap-
proche utilise la géométrie déformée comme entrée principale permettant de simuler
l’étape de redressage en considérant la pièce sans contraintes résiduelles. Le chapitre
4 montrera une étude multiparamétrique du redressement par flexion à l’aide du SSL.
Les diagrammes de redressage seront généralisés pour un ensemble de paramètres
préalablement définis. Le redressage étant une procédure itérative et séquentielle, le
chapitre 5 explicitera la simulation de deux opérations consécutives de redressement
par flexion. Différentes stratégies de redressage seront étudiées, et une méthodologie
sera fournie pour aborder de manière plus systématique le problème ouvert du re-
dressage.
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Chapter 1

Distortions in Large Aluminum
Forgings: state-of-the-art

Distortions after machining of large aluminum forgings are a recurrent problem for
the aeronautical industry. These deviations from design geometry are caused by the
presence of residual stresses, which are developed along the manufacturing chain.
To solve this problem, a series of post-machining operations called reshaping are
required. Despite reshaping manages to restore the correct geometry, it is highly
manual and time-consuming, therefore, there is a need at an industrial level to use
numerical simulation to study reshaping. The present chapter describes the problem
of distortion, the operations required to mitigate these geometrical defects and the
challenges associated to simulate reshaping.
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Chapter 1. Distortions in Large Aluminum Forgings: state-of-the-art

1.1 Introduction

Large and thick-walled aluminum forgings are widely used in the aeronautical in-
dustry. The key material properties as a great strength-to-weight ratio and good
formability in combination with the manufacturing process allow producing com-
plex shapes in an economical way [53]. Additionally, when compared to other metal
working processes (e.g extensive machining, welding or casting), improved mate-
rial properties as grain size and orientation are obtained [69]. However, aluminum
forgings show important distortions after machining due to the presence of residual
stresses which are a consequence of the non-homogeneous plastic strains developed
along the manufacturing chain, especially after the heat treatment of quenching
[62, 87].

Such distortions are variable in nature, but the industrial process incorporates a
robust post-machining stage called reshaping. Particularly, skilled boilermakers op-
erate a sequence of mechanical loadings on the non-conforming part and re-establish
its nominal geometry while obeying guidelines imposed by stress offices - which
guarantees the produced part has still mechanical characteristics compatible with
its operational role -. An example of the structural parts subjected to reshaping are
the cruciform beams, located at the wing-box in an aircraft and highlighted in red
in Figure 1.1. On the other hand, reshaping is a highly manual and collaborative
process as multiple operators are involved to repair one single part. At the same
time, the process fully depends on the experience of the boilermakers and repairing
each structural part in a tailor-made manner is time-consuming. Therefore, there is
a strong demand from the industry to derive operational assistance from capabilities
offered by numerical simulation tools [102].

When mitigating distortion via reshaping, numerical simulations may offer huge
margins for improvements such as operational assistance to boilermakers and re-
lated gains in time-cycle (optimized reshaping sequence, optimized parameters for
each elementary reshaping operation), improved knowledge of actual part and re-
lated gains in safety (monitoring of actual plastic strains). However, some research
efforts are required in order to migrate from the actual heuristic repairing method
to a simulation-assisted operation, as reshaping simulations present challenges to be
solved as the elevated computational cost of each simulation or the use of static data
of traditional Finite Element Analysis (FEA), to name a few.

This chapter describes the distortions on aluminum forgings, the operations re-
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1.2. Distortion in the aeronautical industry: an open problem

Figure 1.1: Example of aluminium forgings subjected to distortion: cruciform beams
of the Airbus’ A320 wing box, highlighted in red.

quired to solve this problem and the challenges associated with deploying numerical
simulations at workshop level and actually help operators. The document is struc-
tured as follows: section 1.2 provides an overview of distortions as an open problem
for the aeronautical industry. Then, the relation between residual stresses, distor-
tions, and reshaping are explained in section 1.3. Next, the different reshaping
operations are described in detail in section 1.4 and the challenges and perspectives
to simulate reshaping are reviewed in section 1.5. Finally, in section 1.6, the obtained
conclusions are presented.

1.2 Distortion in the aeronautical industry: an open
problem

To the best of our knowledge, the problem of distortions in the aeronautical industry
was first reported during World War II, when some difficulties were experienced
with extrusions used for aircraft spars parts [43]. Then, due to the technology
transfer performed after the war, the use of large forgings for light metals alloys (i.e
magnesium and aluminum) was potentiated with governmental initiatives as the Air
Force Heavy Press Program in the United States, which allowed the construction
of forgings up to 50k tons capacity1 [6]. Thanks to this new range of tools, the

1Nowadays, the biggest forging has a capacity of 80k ton and is located in China [39].
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Figure 1.2: Interaction between Residual Stresses, Distortion and Reshaping.

unitization2 of structural parts was feasible and acted as a driving force for the
development of bigger aircraft with important manufacturing costs savings [8, 105].
On the other hand, as the forgings grew in size and with them their cross sections and
wall thickness, the range of residual stresses developed after quenching experienced
an increment too, so as the research interest to predict the residual stresses and any
future distortion after machining [52, 88].

At an industrial level, different attempts have been made to minimize distor-
tion along the manufacturing chain of heat-treated aluminum alloys components.
In North America, the MAI (Metals Affordability Initiative) program [8, 62] and in
Europe, the COMPACT (A COncurrent approach to Manufacturing induced Part
distortion in Aerospace ComponenTs) project [87, 102, 103], focused on the under-
standing of residual stress and part distortion. However, both initiatives efforts were
concentrated on the upstream manufacturing processes, such as quenching, stress
relief, ageing, and machining, letting reshaping unattended and as a byproduct.
Theoretically, if distortion is controlled or minimized, then reshaping is unnecessary.
Unfortunately, a part with minimized distortions is only achieved in exceptional cases
[67]. Therefore, we can state that distortion is an open problem for the industry
during the last 80 years.

2Action to replace composite structures to single components

8
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Figure 1.3: Principal types of distortion after machining in a simplified version of
the Airbus’ A320 cruciform beam. Adapted from [65].

1.3 Residual Stresses, Distortion and Reshaping

In the distortion mitigation problem, there are three main actors: residual stresses,
distortion, and reshaping. They can be considered as the source, the problem, and
the current solution, respectively. The three phenomena are coupled and mutu-
ally influence each other, as represented in Figure 1.2. In the following section, a
definition for each actor is provided.

Residual stresses refer to any stress distribution, which is present in a solid in
the absence of an external load or thermal gradient [95]. In a material, the residual
stress distribution is a direct consequence of non-homogeneous plastic deformations
arising from transformations endured during the manufacturing process. Based on
its characteristic length scale, residual stresses are classified as type I, II and III,
corresponding to macro stresses, intergranular stresses, and stresses at an atomic
scale, respectively [114]. For distortion generation/mitigation, only residual stresses
of type I are considered as this scale includes the stresses along the cross-section.
This type of stresses can be induced by thermal or mechanical loading (e.g. welding
and/or ultrasonic shoot penning).

Sim [102] defines distortion after machining as the shape deviation respect to the
design geometry once the part is released from the fixture clamps. This problem is
not caused by machining tolerance, over/under machining or dimensional inaccuracy.
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In a general way, distortion can be classified in two categories: in-plane and out-of-
plane. Nevertheless, more complex patterns are present in forgings parts. Marin [65]
documented the principal types of distortions present on a cruciform as shown in
Figure 1.3, where each type of distortion is represented in an isolated way. However,
in a real part, all five types of distortions are combined simultaneously with the
additional challenge that every time a new part is machined, a different magnitude
of distortion is obtained.

Reshaping can be defined as the post-machining operations required to mitigate
distortion. The general idea is to induce distortion on the contrary direction of the
actual warped geometry to counteract the geometrical defect and restore the design
geometry within a given tolerance. To perform this task, the material must be taken
to the plastic regimen with the aim to induce plastic strains in the part. A detailed
description of the reshaping operations is provided in the next section.

Now that the main actors are defined, it is easier to explain the whole picture
of distortion. First, residual stresses appear after quenching. This heat treatment
is the main source of residual stresses as the core of the part and its surface are
subjected to different and strong thermal gradients. As a consequence, once the
part reaches the room temperature, there is a bi-axial compression stress distribu-
tion at the surface which is counterbalanced by a three-dimensional tension state
in the core [87]. However, its internal distribution evolves each time a new opera-
tion is performed in the manufacturing chain. After quenching, the part undergoes
additional manufacturing stages: a stress relief process, followed by a second heat
treatment called ageing, both processes aiming at minimizing residual stresses before
machining. Then, during machining, the material removal breaks the equilibrium
state of the current residual stresses, producing a redistribution of residual stresses.
As a consequence, distortion appears. Next, each time reshaping is applied, new
residual stresses are introduced to the part until the theoretical geometry is restored
within the design’s tolerance.

1.4 Post-machining distortion mitigation techniques

Since distortions are present after machining, it is mandatory to remove the geomet-
rical deviations before proceeding to the assembly stage. In that way, the installation
of the structural part into the corresponding sub-component is easier and the addi-
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Figure 1.4: Reshaping operations used at Airbus: (a) Bending, (b) Torsion, (c)
Roller burnishing and (d) Ultrasonic needle peening.

tion of excessive stresses due to adjustment into the system is avoided. To perform
this task, there are four reshaping operations available: bending straightening, tor-
sion straightening, roller burnishing, and ultrasonic needle peening, as shown in
Figure 1.4.

Bending straightening is an elastic-plastic operation. Depending on the part’s
geometry and dimensions, it can be used to remove globally a longitudinal distortion
or locally the wing’s waving (see Figure 1.3). After unloading, the residual stresses
along the cross-section present the so-called three zero-crossing distribution, as de-
picted in Figure 1.5a. From a material science point of view, bending straightening
and its non-homogeneous deformation produces a rearrangement of existing residual
stresses [41], causes non-homogeneous material properties, anisotropy of strength
and Bauschinger effect [97].

Similar to the previous process, torsion straightening is an elastic-plastic oper-
ation too. For simple cylindrical geometries, after unloading, the residual stresses
present the so-called three zero-crossing distribution, as depicted on Figure 1.5b but
instead of the compression-tension stresses generated during bending, shear stresses
are produced. For more complex geometries as rectangular or I sections, the mem-
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brane analogy can be used [108] and it is reported that the plastic range is obtained
first at the round fillets for I beams [28, 75]. This operation is used to correct
any twisting distortion and as its bending counterpart, suffers from the presence of
springback during unloading which has to be taken into account.

Roller burnishing is a surface finishing method that induces a plastic deformation
under cold working conditions by applying pressure through a cylindrical tool [68].
In the context of reshaping, it is used to modify the distribution of residual stresses
by inducing a local compressive residual stress at the surface and for our specific
case, two rollers are used, as shown in Figure 1.4c. This configuration produces a
symmetric residual stress distribution as depicted in Figure 1.5c. By applying this
method, surface irregularities are removed. As a consequence, a smooth and shiny
surface with better fatigue strength is obtained [3]. The depth of the work-hardening
layer depends on the process parameters and material, but in general, it is small and
varies between 0.2-1 mm [30, 68].

Ultrasonic needle peening is a special case of shot peening. Here, instead of using
the traditional spheres to hit the part and induce compressive residual stresses at the
surface of the component, oscillating cylindrical bars in the ultrasonic range (over
18 kHz) are employed [116]. This operation stretches plastically the area where it is
applied and, in order to counterbalance this effect, it produces an S-shape residual
stress profile starting with a compressive layer followed by a tension zone underneath,
as represented in Figure 1.5d [95]. The method is manual, fast and easy to apply,
as the tool can be easily handled by the operator. On the other hand, the area of
influence of the residual stresses is smaller respect to the cross-section and usually,
it is applied to a single side of the part, giving as a result an asymmetric residual
stress distribution.

The corrective stage of reshaping is an iterative operation and its work-flow dia-
gram is represented in Figure 1.6. Starting from the initial geometry, a measurement
and control step is performed in order to determine the level of distortion. Based
on the result, one of the four reshaping operations described before is selected. To
perform one single plastic deformation step, the selected reshaping operation needs
to be configured, it means, the technological parameters µi (e.g position, imposed
displacement, length of the application) need to be defined. This process is repeated
until the part is repaired and fits into the design tolerance.
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Figure 1.5: Residual stress process signature after unloading: (a) Bending, (b) Tor-
sion, (c) Roller burnishing and (d) Ultrasonic needle peening. Adapted from [3, 43]

1.5 Reshaping simulation: challenges and perspectives

As stated before, nowadays, reshaping relies on the experience of a group of well-
trained operators, the boilermakers. When introducing simulation in the process, the
goal is to assist the operators and provide support during the decision-making step
in order to reduce the number of operations needed to repair a part. However, from
a technical point of view, reshaping simulation presents the following challenges:

• the initial distortion after machining δ0 is unknown and, with the available
state-of-the-art simulation techniques, there is a mismatch between the nu-
merical prediction and the real distortion.

• distortions vary from one part to other (non-reproducibility), that is why re-
shaping cannot be standardized.

• simple 2D calculations are not able to represent properly neither the parts
geometry nor the distortion phenomenon, and as a consequence, 3D simulations
are required.
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Figure 1.6: Reshaping simulation workflow diagram

• each time a new reshaping operation is performed, distortion changes and with
it, the next reshaping operation and its technological parameters.

• to implement the numerical assistance in an industrial context, a real-time
response is required.

The first challenge is related to an accurate prediction of residual stresses along
the manufacturing chain. Theoretically, if the residual stress in a forged part is
known before the machining step, it would be possible to determine the best location
for the final geometry inside the blank, which minimizes any possible distortion. This
approach works well for parts made from rolled plates [20, 23] due to the residual
stress field is easier to determine compared to forged parts [102]. For the latter,
important deviations from the numerical prediction respect to the real distortion
where reported by Cerutti [19], as shown in Figure 1.7. As a consequence, any
mismatch between the numerical and real initial distortion can invalidate any further
reshaping simulation step.

The second limitation is due to the deterministic nature of numerical simulations.
Once the solution has converged, if the algorithm is executed again, it is expected
to obtain the same result (e.g. δ0) while in reality, every time a new forged part
is machined, although all the process parameters were not modified, a different
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Figure 1.7: Example of distortion in a cruciform. (a) Geometry before and after
machining. (b) Simulation vs measurements results. Adapted from [19].

value for δ0 is obtained. This pattern is observed between parts of the same class
and among symmetric parts (e.g left and right cruciform). Therefore, reshaping
simulation needs to provide multiple possible initial distortion scenarios.

The use of 3D simulations to represent properly the distorted geometry implies
the generation of numerical models with large degrees of freedom. It is a common
practice to take advantage of any symmetry plane in order to simulate only one
portion of the total part. Maybe the symmetry trick can be exploited during the
first reshaping step. However, as the problem evolves and distortion gets more
localized, the way each reshaping operation is applied obliges to simulate the whole
structure.

About the fourth challenge, for each reshaping step i=1,2,3,..., the goal is to
define the parameters associated with the operation µi that minimize the remaining
distortion δi. It means that, for each reshaping step, it is required to run a multi-
parametric analysis. The problem’s complexity grows as previous and subsequent
operations influence each other. Therefore, any error generated during a defined
reshaping step will be forward propagated and can invalidate the simulation results.

In order to implement this numerical assistance tool in an industrial environment,
it is required to access the simulation outputs in real-time, as the goal is to evaluate
beforehand different scenarios for the reshaping step i and only then, to launch the
real operation with the optimum configuration defined in advance.

Under the described scenarios, the requirement of multiple reshaping simulations
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together with adaptive modelling and a real-time response suggests launching a
multi-parametric analysis under a Model Order Reduction (MOR) framework. The
idea for this approach is to produce a low-dimensional but accurate model in a
cost-effective way which allows exploring beforehand the input space to construct a
solution dictionary, known as computational vademecum [27].

1.6 Conclusions

Distortion of large aluminum forgings is an open problem for the aeronautical in-
dustry. Continuous research efforts are done in order to predict the residual stresses
that generate this problem. However, it is important from an operational standpoint
to study how to handle distortion once it has appeared. In this chapter, the required
post-machining operations to mitigate distortion has been reviewed together with
their associated simulation challenges. At the moment, reshaping is solved based
on the empirical experience acquired for a group of well-trained operators. Now,
the goal is to find a way to use advanced numerical simulations tools (e.g adaptive
modelling, model order reduction) to study reshaping in a virtual environment and
evaluate possible scenarios before launching the real operation. The long-term goal
is to optimize the process in order to minimize the total number of reshaping oper-
ations and avoid introducing unnecessary residual stresses to the structural part.
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Chapter 2

Residual stresses: selected
numerical models

Residual stresses are the main cause of the post-machining distortion of large and
thick-walled aluminium forgings. In the present chapter, the available numerical
models for determining the residual stresses after quenching and plastic bending are
introduced and validated for the case of rolled plates, taking advantage of its simple
residual stress state and geometry. Both models will be used along the thesis to per-
form different analysis regarding bending straightening and they will be considered
as the reference solution.
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2.1 Introduction

Aluminium forgings undergo a multiple-step manufacturing process to produce the
final aeronautical component. We describe here a typical manufacturing sequence,
although others are of course possible. First, forged blanks are typically produced
on hydraulic presses with hot closed-dies [40]. The process continues with a solution
heat treatment (SHT) followed by quenching, which is required to improve the me-
chanical properties of the material. As a counterpart, the quenching step is the main
responsible for the creation of residual stresses due to the strong thermal gradients
between the surface and the core of the part. Bi-axial compression stress state de-
velops at the surface, counterbalanced by a three-dimensional tension state in the
core [87]. After quenching, the components usually undergo a stress relief process
(e.g. compression), followed by an ageing treatment, to reach the peak yield stress.
Then, machining is used to obtain the final geometry from the blank. During this
step, material removal breaks the stress equilibrium, producing a redistribution of
residual stresses (RS) and, consequently, shape distortions [62, 89].

For the available reshaping operations discussed in chapter 1, in this thesis, we
focus on the bending straightening operation only, which essentially consists in ap-
plying a load in the opposite direction to observed distortions. Bending straightening
is an iterative loading-unloading process, where, for a given initial distortion, the
operator has to guess: i) where to place the supports; ii) where to apply the bending
load; and iii) how much loading needs to be applied to minimize distortion.

Diverse authors have proposed to use numerical simulation as a means to antici-
pate the resulting shape after a correction step. The idea is that, from the knowledge
of the full residual state field prior to reshaping, it should be possible to simulate
the correction steps. As residual stresses cannot be systematically measured in an
industrial context, lots of efforts have been devoted to derive numerical models that
are able to estimate them [52, 87]. These models require simulating, either wholly
or in part, the multi-step manufacturing process. We shall refer to this approach
throughout the thesis as the sequential approach, as depicted in Figure 2.1. Although
the sequential approach can provide insightful results when good knowledge on both
process conditions and material behaviour are available, most often, significant mis-
match between numerical predictions and experimental observations is reported,
e.g. [19]. Assessing how uncertainties propagate through the different manufactur-
ing steps (i.e. from quenching to machining) is key to keep a high confidence level
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T = f(x, t) σ0 = f(x, t, T ) σ0 = f(CC,CF ) σy = f(t, T ) δ0 = f(σ0,Mo) δ = f(δ0, µi)

(Thermal Step) (Mechanical Step)

Stress Relief* Ageing** Machining ReshapingQuenching

Sequential approach

Figure 2.1: Residual stresses simulation by using the sequential approach (*not
included and **included but not simulated).

on the predictions from sequential models [62, 118].
The chapter is organized as follows. In section 2.2, we present numerical models

for residual stress prediction and bending straightening simulation, and validate
them against available data in the literature. Then, some conclusions are provided
in section 2.3.

2.2 Numerical models description and validation

In this section we present and validate numerical models for residual stress prediction
and bending straightening. While aluminium forgings present a complex three-
dimensional residual stress state [87, 102, 119], the residual stresses are well known
for rolled plates and dominated by the longitudinal stresses within the thickness [19,
52, 78]. Experimental data on forged parts is scarce, given the difficulty of measuring
complex 3D residual stress fields. Therefore, the numerical models presented in this
section are validated against data for rolled plates, and then used in subsequent
sections as a means to produce reference results in forged parts.

For the implementation, we rely on a well-known and extensively-used software
package, Abaqus [106], based on the finite element method. We therefore provide
a synthetic description of the models, making use of summarizing tables, and put
more emphasis on the validation part.

2.2.1 Quenching simulation for residual stress prediction

The residual stresses generated after the heat treatment of quenching can be sim-
ulated as a sequentially coupled thermo-plasticity problem [52, 104]. The problem
is divided into two computational steps: the heat transfer step and the mechani-
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cal step. For the heat transfer step, the heat conduction equation is solved first.
Once the temperature evolution in time is known, it is used as an input for the
mechanical problem, which is affected via thermal expansion and the temperature-
dependent constitutive model. By solving the mechanical step, the residual stress
state is computed.

2.2.1.1 Thermo-plasticity modelling

The thermo-plasticity model used for quenching simulation is synthetically presented
in Table 2.1. To this end, we consider a body that occupies an open bounded
domain Ω ⊂ Rd≤3. Its boundary is denoted by ∂Ω. We suppose that the part is at
temperature T0 (temperature of the solution heat treatment) at an initial time t = 0,
when it is submerged into a liquid at a predefined temperature T∞ � T0 for a fast
cooling during a time interval of interest t ∈ [0, Tfinal]. Heat transfer from the part to
the surrounding liquid through the part’s boundary ∂Ω is modelled as a convective
boundary condition with a heat transfer coefficient denoted by h. By T := T (x, t),
we denote the temperature evolution at a point x ∈ Ω and time t ∈ [0, Tfinal].

Once the heat transfer step is solved, the resulting temperature field is introduced
in the mechanical step as a predefined field. As a consequence, volumetric strains
are generated by the effect of thermal expansion. The strain tensor ε decomposed
as the sum of an elastic component εe, a plastic component εp and a thermal com-
ponent εth. Classical J2 plasticity with Ramberg-Osgood [83] isotropic hardening is
implemented.

2.2.1.2 Application to a rolled plate

In order to validate the model for residual stress prediction, we simulate a case from
the literature for which residual stresses are available, see [78]. Specifically, we apply
the model described in section 2.2.1.1 to a rolled plate data of 760×760×77.9 mm.
The plate is oriented such that the x, y and z axis are parallel to the longitudinal
(L), longitudinal-transverse (LT) and short transverse (ST) directions, respectively.
Based on the symmetry present in all directions, only 1/8 of the geometry is simu-
lated.

The quenching process conditions are summarized in Table 2.2. The rest of the
modelling parameters given in Table 2.1 (i.e. ρ, Cp, κ, h, α, E, ν, σy0, k and n)
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Table 2.1: Thermo-plasticity model for quenching simulation.

Thermal step modelling

Energy balance: ρCp ∂T∂t + ∇· q = 0, together with Fourier’s law for the heat flux q =
−κ∇T , in Ω× (0, Tfinal].

Initial condition: T = T0 at Ω× {0}.

Surrounding’s predefined temperature: T∞.

Convective boundary condition: −κ∇T ·n = h(T − T∞) on ∂Ω× (0, Tfinal].

ρ, Cp, κ are the material’s mass density, specific heat capacity and thermal conductivity,
respectively. h is the heat transfer coefficient. These are taken as a function of the
temperature.

n is the outward unit normal to ∂Ω.

Mechanical step modelling

Momentum balance equation: ∇ ·σ = 0 in Ω× (0, Tfinal].

Strain decomposition: ε = εe + εp + εth.

Hooke’s law: εe = 1
2µ

(
I− ν

1+ν I ⊗ I
)

: σ with µ = E
2(1+ν) , where I denotes the sym-

metric part of the fourth order identity tensor and I is the second order identity tensor.

Thermal strain increment: ∆εthij = αδij∆T , where δij is the Kronecker delta.

Yield surface: f (σ) = σ̄ (σ)−σy, where σ̄ (σ) =
√

3 J2, J2 = 1
2s : s and s = σ− 1

3 tr (σ) I.
On the other hand, σy is the yield stress.

Ramberg-Osgood isotropic hardening: σy = σy0 +k (ε̄p)n, with the effective plastic strain
as ε̄p =

∫ t
0

√
2
3 ε̇
p : ε̇p dt.

Flow rule: ε̇p = γ̇ ∂f∂σ = γ̇N with N =
√

3
2
s
‖s‖ .

E and ν are the Young’s modulus and the Poisson’s coefficient, respectively. α is the ther-
mal expansion coefficient and σy0 , k and n are the Ramberg-Osgood model parameters.
These are taken as a function of the temperature.

were taken from [52]. As most of them are temperature-dependent, we do not report
them here for the sake of brevity.

Concerning the numerical model, the plate was meshed with 64, 000 8-node linear
hexahedron elements, with 40 elements in the through-thickness (ST) direction.
The total number of nodes was 68, 921. Abaqus element types are DC3D8 for the
heat transfer analysis and C3D8R for the mechanical step. Figure 2.2 depicts the
geometry, boundary conditions and mesh of the numerical model.

21



Chapter 2. Residual stresses: selected numerical models

Table 2.2: Quenching model validation. Quenching process conditions from [52].

Parameters
Initial temperature T0 467 ◦C

Quenching temperature (cold water) T∞ 20 ◦C

Quenching time Tfinal 500 s




Figure 2.2: Left: plate geometry with indication of the modelled portion. Center:
in red, boundaries to which a mixed-type boundary condition is applied (adiabatic
conditions applied on the symmetry planes). Right: detail of the mesh.

2.2.1.3 Validation of the residual stress prediction

With the aim to validate the model, the longitudinal residual stresses σ11 at the
center of the plate (x = L/2, y = LT/2) are compared against experimental mea-
sures. As explained in section 2.2.1.1, the temperature evolution as a function of
time is the first outcome before obtaining the residual stresses during quenching.
The strong thermal gradient between the core and the surface of the part is de-
picted in Figure 2.3a for the initial 30 seconds of simulation. This is the source for
the non-homogeneous plastic strains which produce residual stresses. Once thermal
equilibrium is obtained, Figure 2.3b shows σ11 along the thickness (z axis). We see
that numerical predictions are in good agreement with experimental results, partic-
ularly in the internal area, whereas some border effect is observed near the surface.
As a limitation, it should be noted that the model is not able to capture the local
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Figure 2.3: Quenching simulation results at the center of the plate (x = L/2, y =
LT/2): (a) Temperature evolution as a function of time; (b) Longitudinal residual
stresses σ11 along the thickness (short transverse direction) and validated against
results from [78].

minima observed in the center of the plate, which is caused by an inhomogeneity of
mechanical properties through-thickness [34, 110] and produces in the 7XXX rolled
plates the so called W-shape pattern of longitudinal yield strength through the ST
direction [22].

For further assessment, Figure 2.4 shows a view on the 3D residual stress field.
The RS pattern depends on the part’s geometry and the thermal gradients generated
during quenching [87]. As the model works under an isotropic material hypothesis,
the stress components σ11 and σ22 are equal as they have the same dimension. In
addition, they can be assumed as constant if the edge effects are neglected, which
goes in line with the plane strain hypothesis used in some 2D models found in the
literature [52, 78]. However, with a 2D model we would not be able to study forged
geometries and their complex stress states.
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Chapter 2. Residual stresses: selected numerical models

Figure 2.4: Simulation results: 3D residual stress field in a rolled plate after quench-
ing.

2.2.2 Bending straightening simulation

In this section, we consider a part with an internal residual stress field, coming
either from the literature (in simple hot rolled parts mainly), from the quenching
simulation model presented in section 2.2.1.1, or from any subsequent operation,
such as stress relief or machining. In general, it is convenient to assume that at the
outset of the simulation the part is stressed by some initial residual stresses, σ0.
Considering that mechanical state, the objective is to develop a numerical model for
bending straightening simulation.

2.2.2.1 Elasto-plasticity modelling

Bending straightening is an iterative procedure where the loading-unloading pattern
can be considered as a cyclic behaviour. Therefore, it is crucial to take kinematic
hardening into account for the accuracy of the results. To this end, we use the
Chaboche model [21, 76], which is synthetically presented in Table 2.3 together with
the momentum balance equation, which has to be satisfied at each loading step.

Remark 2.1 (On the material modelling). A temperature-dependent version of the

Chaboche model could have been used in section 2.2.1.1 for residual stress prediction

after quenching. However, this kind of model is far more complex to characterize than

the Ramberg-Osgood model, which in addition, proved to be accurate enough to capture

the main mechanisms in residual stress creation.
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2.2. Numerical models description and validation

Table 2.3: Elasto-plastic model with kinematic hardening for bending straightening
simulation

Momentum balance equation: ∇ · (σ − σ0) = 0 in Ω, where σ0 is the initial residual
stress field.

Strain decomposition: ε = εe + εp.

Hooke’s law: εe = 1
2µ

(
I− ν

1+ν I ⊗ I
)

: σ with µ = E
2(1+ν) , where I denotes the sym-

metric part of the fourth order identity tensor and I is the second order identity tensor.

Yield surface: f (σ,X, R) = σ̄ (σ −X) − R − σy0, where σ̄ =
√

3J2, J2 = 1
2 (s−X) :

(s−X) and s = σ − 1
3 tr (σ) I.

Kinematic hardening rule: X =
∑m
i=1Xi where dXi = 2

3Cidε
p − γiXidε̄

p, with the
effective plastic strain as ε̄p =

∫ t
0

√
2
3 ε̇
p : ε̇p dt.

Isotropic hardening rule: dR = b (Q−R) dε̄p.

Flow rule: ε̇p = γ̇ ∂f∂σ = γ̇N with N = 3
2
s−X
σ̄ .

E and ν are the Young’s modulus and the Poisson’s coefficient, respectively. σy0 is the
initial yield stress and b, Q, Ci and γi material parameters of the Chaboche model [21].

Another important aspect that needs to be included in the numerical model is
the interaction between the actuator that applies the load and the part, as well as
the interaction between the part and the supports. The exact geometry of both
the actuator and the supports depends on the experimental setup, and therefore a
more precise description will be given in section 2.2.2.2. These are included in the
model as rigid (undeformable) bodies. A Coulomb’s frictional contact is considered
between the actuator or the supports and the part. A penalty formulation is used
for the numerical solution of the model. [106].

2.2.2.2 Application to a four-point bending setup

In order to validate the model presented in section 2.2.2.1, a four-point bending
experiment was carried out. The geometry of the tested sample (machined from a
hot rolled plate) as well as the experimental setup are shown in Figure 2.5.

The beam was plastically deformed by applying three cycles of loading and un-
loading. The amplitude of the cycles is ±9.5 mm, imposed by the hydraulic press,
as a controlled displacement. Strain is recorded by two gauges placed at the top
and bottom faces, labelled as J1 and J2, respectively. The sensors are located at
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Chapter 2. Residual stresses: selected numerical models

(a) Geometry of the sample (b) Experimental setup

Figure 2.5: Four-point bending experiment for the validation of the bending straight-
ening model

Table 2.4: Chaboche’s material model parameters for AA7010 [36]. All units are in
MPa except for ν, b and γi which are dimensionless.

E σy ν Q b C1

73000 390 0.3 -145.7 239.4 38973.6

C2 C3 γ1 γ2 γ3

195910 3298.1 275.5 3134.6 23.4

the intersection of both longitudinal and transverse symmetry planes of the beam.
In addition, displacements are recorded at two locations: at the mid-span of the
beam and at the location where the force is applied. The force data acquisition is
done by the hydraulic press head. In order to ensure repeatability, the experiment
is performed in two samples, labelled as L1 and L2.

Concerning the numerical model, the plate was meshed with 56000 eight-node
linear hexahedron elements (type C3D8R) and 64539 nodes. A Coulomb’s friction
coefficient µ = 0.05 was considered between the tool and the sample [55]. The
material is an aluminium alloy AA7010, previously characterized by Airbus Central
Research and Technology [36]. Material parameters are summarized in Table 2.4.
The backstress tensor X in the Chaboche’s model is described with three terms, i.e.
m = 3, see Table 2.3.

Finally, as discussed above, it is essential to have good knowledge on the residual
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stress field. As the tested sample is a rolled plate in a temper designation Txx51,
meaning stress relief by stretching, it is expected to have a well-known residual stress
profile, in the range of ±30 MPa [88, 102]. The residual stress profile reported in
[78] was considered in the simulation.

2.2.2.3 Validation of the bending straightening model

As a means to validate the simulation model, we use force versus strain measures
generated during reshaping. Figure 2.6a presents a comparison of the experimental
measures at gauge J1, for both specimens L1 and L2, against the numerical pre-
diction. Figure 2.6b presents essentially the same results but at gauge J2. We first
observe a very good repeatability between specimens L1 and L2, whose results match
almost perfectly. Most importantly, a good agreement between the numerical results
and experimental measures is observed in all cases.

2.3 Conclusions

From a numerical point of view, when it comes to determine the residual stresses
between a rolled plate and a forge after quenching, the only difference at an input
level is its geometry. In this chapter, we took advantage of this abstraction to present
a numerical model to estimate the residual stresses after quenching for a rolled plate.
The model was validated with a case available in the literature. Following the same
line, a Chaboche material model was tested experimentally for plastic bending. By
combining both models, we have the required tools to generate numerically a post-
machining distortion in a forge and simulate the reshaping operation of bending
straightening.
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Figure 2.6: Validation of the bending straightening simulation model via strain
versus force measures: comparison of the simulation results (dashed line) and the
experimental measures (solid line) for two specimens labelled L1 and L2. (a) Com-
parison for strain gauge J1 (located at top) and (b) Comparison for strain gauge J2
(located at bottom).
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Chapter 3

Reshaping diagrams for bending
straightening

In this chapter, we are concerned with the development of efficient computer sim-
ulation tools to assist operators in bending straightening, which is one of the most
common reshaping operations. Our approach is based on the computation of reshap-
ing diagrams, a tool that allows selecting a nearly optimal bending load to be applied
in order to minimize distortion. Most importantly, we show that the reshaping di-
agram needs not to account for the residual stress field, as its only effect is to shift
of the reshaping diagram by some offset. That is, the overall behaviour including
a realistic 3D residual stress field in a forged part can be retrieved by shifting the
residual stress free reshaping diagram by the appropriate offset. Finally, we propose
a strategy in order to identify the offset on-the-fly during the reshaping operation
using simple force-displacement measures.
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3.1. Introduction

3.1 Introduction

In this chapter, we deviate from the sequential approach and propose an alternative
route to simulate bending straightening of forged components. We first introduce
a simple tool, the reshaping diagram, which provides the remaining distortion (i.e.
after unloading) as a function of the applied bending load (for fixed rollers position
and residual stress field). Note that the reshaping diagram is a very convenient tool
to assist the operator: once it is made available, the reshaping operation reduces
to select the optimal bending load that minimizes the remaining distortion. Un-
fortunately, computing the reshaping diagram requires a precise knowledge on the
residual stress field, which as discussed above, is not a trivial task. To overcome
this issue, we propose a workaround that uses distortion (which is measurable) as
the main input, instead of residual stresses. The underlying idea is that to mini-
mize distortion we may not need a precise knowledge of the residual stress field, but
only its influence on the reshaping diagram. Therefore, we compute the reshaping
diagram of a distorted part without residual stresses, that is, we keep the distorted
geometry after machining but suppress the residual stress field. We shall refer to this
reshaping diagram throughout the entire paper as the residual stress free (RSF) ap-
proach (see Figure 3.1). Then, we show that the effect of the RSF hypothesis results
only in a shift of the reshaping diagram. That is, the overall behaviour including
a realistic 3D residual stress field in a forged part can be retrieved by shifting the
original reshaping diagram by the appropriate offset. Finally, we propose a strategy
in order to identify the offset on-the-fly during the reshaping operation using sim-
ple force-displacement measures. One of the main advantages of the RSF approach
is that it does not require any prior knowledge on the residual stress field; it only
requires information on the distorted shape, which unlike the residual stresses, can
be systematically measured in an industrial environment.

This chapter is organized as follows: in section 3.2, by using the validated models
previously presented in chapter 2, we create realistic 3D stress states for forged parts
and compute the reference reshaping diagram by simulating the bending straighten-
ing process. The influence of various process parameters is also analysed. In section
3.3, we repeat the operation with the residual stress free hypothesis and observe
that the obtained RSF reshaping diagram differs only by some offset from the refer-
ence one. In addition, we derive a simple approach to calibrate the offset on-the-fly
during the reshaping operation using simple force-displacement measures. Finally,
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Quenching Stress Relief∗ Ageing∗∗ Machining Reshaping

Sequential approach

Proposed approach

Figure 3.1: Reshaping simulation: sequential vs proposed approach (*not included
and **included but not simulated).

in section 3.4, we draw some conclusions and perspectives for future work.

3.2 Numerical study of forged parts

In this section, the numerical model presented and validated in section 2.2 is applied
to the study of forged parts. As a reference geometry, we consider a beam with
T-shaped cross-section, a simplified version of the cruciform, but still representative
in terms of the thickness or the radius of the fillets.

Figure 3.2a shows the cross section of both the T-shaped beam and the bulk
from which it is machined, with their geometric dimensioning. The final geometry
is obtained through milling by removing 73 % of the bulk material. As this step is
done numerically, no information is provided regarding the finishing condition and
cutting parameters.

An important parameter for the machining process is the so-called machining
offset (Mo), depicted also in Figure 3.2a, which controls the positioning of the beam
in the bulk. We shall analyse the strong influence of the machining offset on the
resulting post-machining residual stress field, and by consequence, on the distortion.
Figure 3.2b shows a parametrized four-point bending configuration, where several
configurations are considered in terms of the distance between the supports and the
distance between the loading points.

The simulation parameters are the same used in section 2.2, except for the ge-
ometry.
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(a) Geometry definition of both the bulk and
the machined part, as a function of the ma-
chining offset Mo

(b) Bending straightening setup and
parametrization of the positioning of both
top and bottom rollers

Figure 3.2: Reference geometry for the simulation of bending straightening of forged
parts: a beam with T-shaped cross section

3.2.1 Residual stress after quenching

The thermo-plasticity model presented in section 2.2.1.1 is now applied to the T-
shaped beam (bulk, i.e. before machining). Whereas the plate geometry in section
2.2.1.2 exhibited a nearly unidirectional (through thickness) heat conduction, the
temperature field in the T-shaped beam is somewhat more complex to explain. To
describe it in a simple manner, we consider control points in three main areas of
the beam: the wing, the rib and the fillet. To each of these points, located on
the surface, we associate an interior pairing point, with the objective of quantifying
the temperature difference between the surface and the core. Figure 3.3 shows the
positioning of the control points and compares the temperature evolution. Interior
points are located following the normal to the outer boundary.

Temperature profiles are significantly different from one region to another, see
Figure 3.3. The maximum temperature difference between internal and external
control points takes place in the fillet. The curved zone is the last one to reach
the thermal equilibrium, maximizing the development of non-homogeneous strains.
Therefore, we can expect to have the maximum residual stresses in that region.

Figure 3.4a shows the residual stress field for the quenched bulk when the room
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Figure 3.3: Temperature evolution in the T-shaped beam (bulk) during the first
10 seconds of simulation at the (1) wing, (2) rib and (3) fillet. The cross section
corresponds to the symmetry plane z = 0 and the subscripts s and i refer to the
surface and internal points.

temperature has been reached. As expected, the surface is subjected to compression
stresses, which are equilibrated by tension stresses in the core. As the structural
part is under a three-axial stress state, to know where plasticity has occurred, we
use the von Mises yield criterion. As the yield stress σy in the as-quenched state is
162 MPa, it can be appreciated on the bottom section of Figure 3.4a, how all the
elements coloured in red have plastified and how its distribution is not homogeneous
across the geometry.

3.2.2 Residual stresses after machining

After quenching, machining takes place to extract the T-shaped beam from the
bulk. Material removal breaks the stress equilibrium producing a redistribution of
residual stresses and, consequently, shape distortions. One of the main parameters
of the machining step is the machining offset (Mo), defined in the introduction of
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Figure 3.4: Residual stress distribution in the T-shaped beam: (a) after quenching
(bulk), (b) after machining with Mo = 10 mm (case A) and (c) after machining with
Mo = 5 mm (case B). All the snapshots are taken in the symmetry plane z = 0 and
presented in the undeformed configuration.

section 3.2, which controls the positioning of the T-shaped beam inside the bulk.
We should therefore expect different post-machining distortion levels depending on
the choice of Mo ∈ [1, 12] mm.

In order to provide an overall look on all possible shapes prior to reshaping, we
carry out a parametric study on the effect of the machining offset.

Machining is modeled using the death-birth method [62], in which the material
removal is simulated by deactivating the elements outside the machined geometry.
The method requires to define the machined geometry as a subset in the mesh of
the bulk.

Residual stresses introduced by machining have an impact in a superficial layer
with a depth range of 250-300 µm [38, 59], therefore, they must be included in the
distortion simulation for parts with thin wall thickness t < 4 mm [103]. For this
class of parts, the no inclusion of machining-RS can lead to a different pattern of
distortion respect to the numerical prediction [63]. As we focus on forgings where
the machined components are considered as thick walled, machining RS are not
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included, following the procedure described in [60]. As a consequence, the effects of
clamping, cutting force and heat are not considered in the model.

As machining takes places after ageing, σy evolves from 162 MPa to 390 MPa
(see remark 3.1). Therefore, the redistribution of bulk RS, which are the main cause
of distortion [47, 102], are inside of the elastic region and it is possible to perform
the machining operation in one single (deactivation) step. However, before arriving
to that conclusion, the authors have considered different machining configurations,
including a sequential deactivation by zones previous to obtain the final geometry
and the results in terms of distortions were the same.

Remark 3.1 (On stress relief and ageing). Other manufacturing steps may take place

after quenching and prior to the machining step, including stress relief and ageing. For

simple geometries such as rolled plates and sheets, stress relief by stretching is usually

carried out, whereas cold compression is preferred for forged parts [88, 91]. However,

stress relief is often not possible for complex geometries [90]. Stress relief is not included

in this study, as the main idea is to maximize the initial distortion caused by residual

stress to place ourselves in the most adverse scenario. After the stress relief operation,

the yield stress σy is increased via a second heat treatment called precipitation hardening

or ageing. This change of material properties is caused by a blockage of dislocations or

defects in the crystal lattice [99]. It is reported that ageing does not affect the residual

stresses [90]. Ageing is taken into account via material modelling with an increased yield

stress (σy = 390MPa)(Chaboche kinematic hardening).

By varying the machining offset, two types of distortion are observed: bending
along the longitudinal direction, also referred to as distortion type 1, and wings
closure, also referred to as distortion type 2.

Figure 3.5 shows distortion after machining, both type 1 and type 2, as a function
of the machining offset. It can be seen that for lower offset values bending distortion
takes predominance over wings closure, whereas the opposite is observed for higher
values of the machining offset. In general, both distortions tend to become negative
as machining offset increases, meaning that bending inverts and wings open instead
of closing. To illustrate the behaviour, we select two specific values of the machining
offset parameter, labelled as configuration A and B, which correspond to Mo = 10
mm and Mo = 5 mm, respectively. Figures 3.4b and 3.4c show the stress components
for the machining cases A and B, respectively. Note that significantly different stress
distributions are obtained by modifying Mo only.
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Figure 3.5: T shaped beam model. (a) Distortion after machining as a function of
machining offset Mo. (b) Distorted shape for case A (Mo = 10 mm) and case B
(Mo = 5 mm).

3.2.3 Reshaping diagrams for bending straightening

We shall now concentrate on distortion of type 1, the only one that bending straight-
ening can deal with. We measure distortion relative to the longitudinal axis of the
part. Let z and znom be the coordinates of longitudinal axis of the distorted and
the nominal (undistorted) part, respectively. It is implicit that z is measured in the
deformed state. Let n be the unit normal in the bending plane to the longitudinal
axis at znom. Distortion of type 1 is using a peak-to-peak amplitude measure:

δ = max (d)−min (d) with d = (z− znom) · n. (3.1)

In the case of the T-shaped beam, the longitudinal axis of the undistorted part can
be made coincident with znom ≡ 0. The bending plane is the plane z = 0, and
therefore the normal is n = (0,±1, 0), the sign being arbitrary.

Assume a fixed machining offset, leading to an initial distortion δ0, which is

37



Chapter 3. Reshaping diagrams for bending straightening

0.0              yopt
s

Stroke ys (mm)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Re
m

ai
ni

ng
 d

ist
or

tio
n 

 (m
m

)

Zones
A. No reshaping is performed 0                  Optimum configuration  = min
B. Reshaping takes place       < 0               C. Distortion increment     > 0°

°

A B C
0

1A

0.1

0.0

0.1

Ve
rti

ca
l d

isp
la

ce
m

en
t u

2 (
m

m
)

B

0 0.5L
Beam Length L (mm)

1

0

C

(a)

0.0              yopt
s

Stroke ys (mm)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Re
m

ai
ni

ng
 d

ist
or

tio
n 

 (m
m

)

Zones
A. No reshaping is performed 0                  Optimum configuration  = min
B. Reshaping takes place       < 0               C. Distortion increment     > 0°

°

A B C
0

1A

0.1

0.0

0.1

Ve
rti

ca
l d

isp
la

ce
m

en
t u

2 (
m

m
)

B

0 0.5L
Beam Length L (mm)

1

0

C

(b)

Figure 3.6: Reshaping diagram (scheme). (a) The three characteristic regions of the
reshaping diagram: elastic area of no repair (A), repairing area (B) and inversion
area (C). (b) Shape after reshaping for values of the stroke in each reshaping region.

assumed known as it can be measured. For a given reshaping configuration (i.e.
rollers positioning), the bending straightening operation consists in guessing the
stroke ys (equivalently, bending load) that should be imposed to minimize distortion
after unloading. Note the parametric dependence of distortion as a function of
stroke, ys 7→ δ(ys). To assist operators to make their decision, we may rely on the
simulation model developed in section 3.2.2. By sweeping over the range of stroke
values, and carrying out a loading-unloading cycle simulation for each stroke, we
obtain the reshaping diagram shown in Figure 3.6.

Three distinct areas can be identified. For low values of stroke (zone A), the
part remains inside of the elastic domain and consequently distortion remains at
its initial value, δ ≈ δ0. A reduction of the initial distortion is only possible when
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3.2. Numerical study of forged parts

plasticity takes place. Here, the new residual stresses generated during the reshaping
operation counteract the previous stress state. We labelled this region as zone B in
Figure 3.6, where δ < δ0. Inside this zone, there is an optimum configuration, where
distortion is minimized, (i.e. yopts 7→ δopt). Finally, zone C comes after reaching the
minimum, it is characterized by increasing distortions for higher stroke.

Figure 3.6b shows the deformed shape (longitudinal axis only) for three different
values of stroke, one for each of the identified region. Specifically, the optimum is
shown for zone B. The location of the bottom roller is the reference line. Green and
red areas correspond to the points above and below the reference line, respectively
(also, these correspond to the sign of d as defined in Eq.(3.1)).

Note that the reshaping diagram is a very convenient tool to assist the operator:
once it is made available, the reshaping operation reduces to select the optimal
bending load that minimizes the remaining distortion. Unfortunately, computing
the reshaping diagram requires a precise knowledge on the residual stress field, which
is not a trivial task. We shall discuss in section 3.3 an alternative approach based
on the idea that, to minimize the distortion, we may not need a precise knowledge
of the residual stress field, but only its influence on the reshaping diagram.

3.2.4 Parametric study of the reshaping diagram

The reshaping diagram in Figure 3.6 was computed for a fixed machining offset and
rollers positioning. To provide further insight, in this section we consider six possible
configurations by combining two values of the machining offset parameter and three
rollers positioning. Each configuration is labelled as P1 to P6. The specific values
for each of these is given in Figure 3.2b. Note that rollers positioning is inverted in
configurations P4 to P6, compared to P1 to P3, because the deformed shape is also
inverted.

Figure 3.7 shows the reshaping diagrams obtained for each of the six configu-
rations. The same three areas described above can be distinguished. Figure 3.7a
shows configurations P1 to P3, which correspond to a machining offset of Mo = 10
mm. Figure 3.7b shows configurations P4 to P6, which correspond to a machining
offset of Mo = 5 mm.

One of the main conclusions that can be drawn from Figure 3.7 is that the
position of the rollers has significant impact on the reshaping diagram. For instance,
let us consider configurations P1 and P3. For both configurations, the internal rollers
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Figure 3.7: Parametric study of the reshaping diagrams for six combinations of
machining offset and the rollers positioning (values given in Figure 3.2b): (a) Mo =
10 mm (case A) and three rollers positioning. (b) Mo = 5 mm (case B) and three
rollers positioning.

(loading) are positioned at 300 mm, whereas the external rollers (supports) are at 900
mm and 600 mm, respectively. Both configurations reach a similar value of optimal
distortion, but the stroke to be applied is P1 almost doubles that of P3. This is
to be expected, as configuration P1 is less rigid respect to P31. As a consequence,
P1 requires more deflection to reach plasticity. Another important effect that can
be noticed is related to the sensitivity of the optimum. By sensitivity we mean

1For a beam, the force-displacement diagram can be used to calculate the stiffness of the struc-
ture, which is defined by the Equivalent Young’s Modulus E0 and corresponds to the slope of the
curve. In a four point bending configuration, E0 is defined as E0 = 24EI/

[(
3L2 − 4a2) a], where

E, I, L and a correspond to the Young’s Modulus, the inertia of the cross section, the span between
external supports and the distance between one single external and internal roller, respectively. For
example, if we express L and a in terms of the span of P1 (900 mm), both pair of parameters are
(L,L/3) for P1 and (2L/3, L/6) for P3, respectively. By replacing both sets of values in the previous
expression, we found that E0(P 1) = 11/46E0(P 3).
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3.3. Residual stress free diagrams for simulation-assisted reshaping

the change in distortion as the optimal stroke is affected by some perturbation, i.e.
yopt
s + ε 7→ δopt + ∆δ. Clearly, the configuration P1 is less sensitive to perturbations

in the stroke and therefore, in practice it should be easier to achieve. This effect
becomes even clearer if the comparison is made between P4 and P5.

3.3 Residual stress free diagrams for simulation-assisted
reshaping

As discussed in section 3.2.3, reshaping diagrams can be very helpful, provided that
the residual stress field is known. However, at least two drawbacks can be outlined:

• Residual stress computation requires running sequential simulation models
that account for all manufacturing steps prior to reshaping. Therefore, one
needs to keep track of all process conditions and part history to run accu-
rate predictions. Moreover, this process can be computationally intensive and
time-consuming.

• Uncertainties linked to modelling and process conditions are likely to have a
significant impact. To compute a trustworthy residual stress field, one would
need to assess carefully how uncertainties propagate through the simulation
chain.

To overcome these issues, we propose an alternative approach. The underlying
idea is that to minimize the distortion we may not need a precise prediction of the
residual stress field, but only its influence on the reshaping diagram. Let us consider
the parametric study already presented in section 3.2. For each of the configurations
P1 to P6, we compute the reshaping diagram of a distorted part but neglecting the
residual stress field. That is, we keep the distorted geometry after machining but
suppress the residual stress field. The results are shown in Figure 3.8.

From Figure 3.8 we can conclude that neglecting the residual stresses results only
in a shift of the reshaping diagram: δ(ys) ≈ δRSF(yRSF

s + ∆ys). In other words, the
overall behaviour including a realistic 3D residual stress field can be retrieved from
the residual stress free diagram, provided that we are able to devise a strategy to
identify the appropriate offset ∆ys.

The reshaping offset can be negative, as in Figure 3.8a, or positive, as in Figure
3.8b. To explain this behaviour, let us study the P5 configuration. Here, as the
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Figure 3.8: Residual stress free reshaping diagrams (dashed line) against true re-
shaping diagrams that account for full 3D residual stress field (solid line), for six
different reshaping configurations.

initial distortion has a U shape, bending is applied upwards and therefore, tension is
induced along the rib. However, the rib is initially in compression due to the residual
stresses (see σ33 in Figure 3.4c). As consequence of this inversion of stresses, more
stroke needs to be applied in order to reach the yield surface, compared to the
residual stress free case. As a general rule, if the stresses generated during reshaping
oppose the initial residual stresses, the offset will be positive; otherwise, it will be
negative.

The residual stress free approach has many advantages:

• It uses as the main input the initial distortion after machining, which unlike
stresses, can be measured on a systematic basis.

• The underlying numerical model is rather simple, as it only needs to account for
the bending straightening step. The computational cost is drastically reduced.
See Figure 3.1 for comparison.
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3.3. Residual stress free diagrams for simulation-assisted reshaping

• Modelling involves less parameters and, therefore, limited uncertainty. Fur-
thermore, we can deal with uncertainties via the reshaping offset, to be iden-
tified experimentally.

3.3.1 Linear unloading path in the force-displacement diagram

In this section, we introduce the linear unloading path hypothesis, which is key
for offset calibration. Our goal is to calibrate the offset without actually having
to perform loading-unloading cycles, which would be very impractical. The linear
unloading is a simplification hypothesis to anticipate springback without actually
unloading the part. The idea is to approximate the unloading path in the force-
displacement diagram (which is generally non-linear) with a linear behaviour2. The
slope for such linear unloading (sometimes referred to as the equivalent Young’s mod-
ulus) is computed in the linear part of the force-displacement diagram as ∆F/∆u,
during loading and before yielding. This is a common engineering practice already
well-documented in the literature [43, 54, 117].

To assess the validity of the linear unloading simplification, let us consider the
rolled plate studied in section 2.2.2.2. The linear unloading hypothesis is tested at
two locations: at the mid-span of the plate and at the section where the loading
is applied, with an imposed stroke is ys = ± 9.5 mm. Both force-displacement
diagrams are represented in Figure 3.9.

A linear unloading path is represented at the final position of each cycle. Al-
though it can be seen that the experimental unloading path follows a non-linear
trajectory, for reshaping we are only interested in two points: where to stop the
loading curve and the final distortion value in the part. Therefore, by using the
linear approximation of the unloading path, both points can be tracked easily.

Further insight on the linear unloading hypothesis can be found in literature
[117], where the authors state that when a complete unloading is performed af-
ter applying a bending moment M to a beam, if unloading does not cause reverse
yielding, then the unloading process is equivalent to the elastic effect caused by ap-
plying −M to the beam. Therefore, the key is to not produce reverse yielding. This
phenomenon is present in metal sheet forming [9], very common in the automotive
industry for instance. However, large structural elements in the aircraft industry can

2Not to be confused with the stress-strain diagram, where unloading is linear with slope equal
to the Young’s modulus.
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Figure 3.9: Testing the linear unloading hypothesis. Force versus displacement
diagram for the rectangular rolled plate (specimen L2). Experimental curves (solid
lines) vs linear unloading path (dashed lines). (a) At midspan L = 100 mm and (b)
At the section where the load is applied L = 70 mm (see Figure 2.5a).

be considered as thick walled, and the levels of strain under reshaping are less likely
to develop reverse yielding. Therefore, the unloading path can be approximated to
a linear behaviour.

Table 3.1: Final displacement for a given stroke ys during reshaping configurations
P1 and P5: comparison between the non-linear (FEM) and linear unloading path
(LU).

Parameter / Configuration P1 P5
Stroke ys 12 14 16 15 17.015 20 mm
Displacement FEM -1.280 -2.182 -3.268 3.171 5.376 8.758 mm
Displacement LU -1.177 -2.051 -3.107 3.095 5.051 8.631 mm
Relative Error Erel 8.1 6.0 4.9 2.4 6.0 1.5 %
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Figure 3.10: T shaped beam. Force vs displacement diagram: numerical curves (solid
lines) vs linear unloading path (grey dashed lines). (a) Reshaping configuration P1
(RS) and (b) Reshaping configuration P5 (RS).

To further assess the validity of the linear unloading simplification, we consider
now the T-shaped beam. The force-displacement diagram is generated for reshap-
ing configurations P1 and P5. These are represented in Figures 3.10a and 3.10b,
respectively. Linear unloading is represented for different stroke values.

As it can be seen, the linear unloading path approximation is valid for both
reshaping configurations. While P1 configuration follows naturally a linear path,
P5 unloading is clearly non-linear. However, both the linear and the non-linear
unloading path end nearly at same point. This is crucial, as the end point can be
used to determine the distorted value after unloading.

In terms of relative error Erel, the linear unloading hypothesis causes an error
of less than 10% for the final displacement respect to the FEM result, which proves
to be a good approximation for industrial applications. The corresponding values
for configuration P1 and P5 are summarized in Table 3.1. Finally, if both configu-
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Chapter 3. Reshaping diagrams for bending straightening

rations are considered as the extreme values for the interval Mo ∈ [5, 10] mm in the
initial distortion diagram (see Figure 3.5a), it is expected that the linear unloading
hypothesis remains valid for intermediate values as well.

3.3.2 Reshaping offset calibration

In this section, we propose a strategy, based on the linear unloading simplification,
in order to calibrate the reshaping offset from experimental force-displacement mea-
sures.

Figure 3.11 summarizes the process for configurations P1 and P5. Since we
do not have experimental measures, we shall assume the reshaping diagram (with
residual stresses) as the ground truth for comparison.

First, we compute the reshaping diagram under a residual stress free state. This
is defined as the off-line stage for our problem, where all the numerical simulations
are performed. Now we start loading the part by increasing the stroke (controlled
displacement). We also record the applied force by the press head. By applying the
linear unloading simplification, we obtain an approximation of the distortion after
unloading. This is depicted in green in Figure 3.11.

The actual reshaping diagram is a priori unknown, in principle, it can only be
obtained by performing loading (apply stroke) then unloading (measure distortion)
cycles. This trial and error procedure describes the industrial practice today and it
is undesired.

Instead, we propose to use force-displacement measures, which are rather stan-
dard in bending operations, in combination with a linear unloading path hypothesis,
to derive an approximation of the experimental reshaping diagram. This second step
is referred as the on-line stage.

Once we enter the zone B of the reshaping diagram, we can start noticing the
difference in response between the residual stress free diagram and the experimental
approximation. As soon as the difference becomes steady, the offset can be deter-
mined. From the knowledge of the offset, the optimal stroke can be approximated
as: yopt

s = yopt,RSF
s + ∆ys.

Following with configurations P1 and P5, ∆ys is presented in Table 3.2.As a
result, the applied stroke yopts differs to the actual optimum value yopt,RSs in less than
6%. This gap is caused by the use of the linear unloading hypothesis to determine
the offset. On the other hand, thanks to this hypothesis, the operator can retrieve
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Figure 3.11: T shaped beam. Remaining distortion vs Stroke diagram: Offset cal-
culation. (a) Reshaping configuration P1 and (b) Reshaping configuration P5.

Table 3.2: Calculation of the offset ∆ys and error estimation for the applied stroke
yopts .

Parameter / Configuration P1 P5
Optimum stroke (RS) yopt,RSs 12 17.015 mm
Optimum stroke (RSF) yopt,RSFs 15.920 15.725 mm
Offset ∆ys -3.498 2.158 mm
Applied stroke yopts 12.422 17.883 mm
Relative Error Erel -3.5 -5.1 %

nearly the optimal stroke in a single guess (no unloading).
The updated RSF curve after adding the offset ∆ys is depicted in Figure 3.12 (in

dashed lines). While yopts is determined in the synthetic reshaping diagram, when
used in the real system (with residual stresses), the obtained remaining distortion
δ
(
yopts

)
differs respect to the optimal value δ

(
yopt,RSs

)
, as shown in the detailed
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Chapter 3. Reshaping diagrams for bending straightening

window for each Figure. To quantify the mismatch, the relative error Erel respect
to the distortion reduction is used. Thus, the distortion reduction is defined as the
repair rate done after applying a selected value of stroke δ(ys) respect to initial
distortion in the current step δ|ys=0, see Eq.(3.2). Therefore, Erel is obtained by
normalizing the difference between the optimal and the obtained distortion reduction
respect to the optimal distortion reduction, as described in Eq.(3.3). Note that the
optimal distortion reduction corresponds to the maximum reparation rate achievable
in the current reshaping step. As result, an error in the range of 10-15% is obtained
at the end of the process for configurations P1 and P5, respectively. All the values
of the reshaping operation are summarized in Table 3.3.

distortion reduction =
(

1− δ (ys)
δ|ys=0

)
× 100

(
%
)

(3.2)

Erel =
(

1− Obtained distortion reduction
Optimal distortion reduction

)
× 100

(
%
)

(3.3)

To sum up, the advantage of using the proposed approach is that we can overcome
the uncertainties related to the residual stresses present on the part, reduce the
computational cost by neglecting the previous manufacturing steps and focus our
efforts on the simulation of reshaping under the RSF hypothesis. Then, by using
the LU path, it is not required to interrupt the repairing operation any more by
performing any unnecessary unloading steps in order to calibrate the difference in
response respect to the simulations obtained before. Now, only by tracking the force
and displacement evolution during the process, it is possible to estimate an upper
boundary of the remaining distortion δ as a function of the given stroke ys. In other
words, it is possible to reproduce an approximation of the reshaping diagrams with
residual stresses obtained previously in Figure 3.7 to assist the operator in the task
of repairing a part.

3.4 Conclusions

In this chapter, we have presented the reshaping diagrams as a tool for simulation
assisted bending straightening. With this tool, it is possible to select in advance the
stroke to apply in order to minimize distortion. Diagrams are generated in a two step
procedure: i) off-line stage (numerical) and ii) on-line stage (experimental). The off-
line stage performs the reshaping simulation by considering a distorted part free of
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Figure 3.12: T shaped beam. Reshaping diagram: optimal final distortion δ(yopt,RSs )
vs obtained final distortion δ(yopts ). (a) Reshaping configuration P1 and (b) Reshap-
ing configuration P5.

Table 3.3: Distortion reduction and error estimation after reshaping.

Parameter / Configuration P1 P5
Initial distortion δ0 1.457 6.165 mm
Optimal final distortion (RS) δ(yopt,RSs ) 0.202 0.527 mm
Obtained final distortion (RS) δ(yopts ) 0.321 1.332 mm
Optimal distortion reduction (RS) 86.1 91.5 %
Obtained distortion reduction (RS) 78.0 78.4 %
Relative Error Erel 9.5 14.3 %

residual stresses and obtains the RSF-diagram. This simplification is able to describe
the distortion evolution of the structure compared to the residual stress case with
an offset. The on-line stage uses a linear unloading path to estimate the offset. This
task is done by tracking the force and displacement while the reshaping operation in
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the real part is performed. Once the offset is known, the RSF-diagram is updated
and an approximation to the optimum parameters is found. The relative error
expected by using the reshaping diagram is around 10%. From the computational
point of view, the generation of the RSF-diagram is a very simple and inexpensive
calculation that allows focusing on reshaping simulations only instead of the whole
manufacturing chain, saving time from modelling and simulation. Regarding the
linear unloading path to determine the offset, it avoids interrupting the loading
process during reshaping. Additionally, force and displacement are quantities that
can be easily obtained in a daily industrial environment. As a limitation, it should
be used only for thick-walled components.

The proposed approach reduces the gap between the theoretical outputs of nu-
merical simulations and the practical needs at industrial level. The obtained results
also opens the door to study reshaping under a Reduced Order Model (ROM) frame-
work, because it is known how to parametrize shape [58], i.e the initial distorted
geometry can be introduced as an extra parameter, while the task to parametrize
RS is an open field yet. The next chapter focuses on the development of a ROM for
the reshaping problem with the aim to explore in a virtual environment the influence
of different parameters involved during the operation.
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Chapter 4

Bending straightening: a
multiparametric ROM study

There is a need at an industrial level to solve the problem of post-machining distor-
tion mitigation with the support of numerical simulation tools. Following this line,
the reshaping diagram acts as a bridge between the simulations performed by the
stress engineers and the operators at the shop floor, which are the responsible to
repair a part. However, to fully deploy the capabilities of the reshaping diagrams in
an industrial environment, it is required to explore beforehand the input parameter
space to construct a solution dictionary of a reshaping diagrams family so that, the
operator can obtain a real-time response based on the tailor repair’s needs. Both
requirements oblige to launch a multi-parametric analysis under a Model Order Re-
duction (MOR) framework. Although a complete reshaping process consists of a
sequence of elementary operations, the present chapter focuses on bending straight-
ening in one single reshaping step. Different process parameters are simulated by
applying the Sparse Subspace Learning method (SSL). By using the MOR approach,
new insights for the distortion mitigation via plastic bending can be explored that
will help to understand the open problem of reshaping.
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4.2. Introduction

4.1 Introduction

In chapter 3, the influence of residual stresses for reshaping was analysed. Thanks
to that, the Residual Stress Free (RSF) hypothesis was proposed, which allowed us
to put aside for a moment the unknown Residual Stresses (RS) developed during
the manufacturing process and invest the simulation resources on the resolution of
the bending straightening operation. As a result, the the reshaping diagram was
obtained and presented as a tool to assist the operator in the decision-making to
select the optimum parameters to mitigate distortion. However, the construction of
the reshaping diagram still suffers form two main drawbacks: i) the initial distortion
δ0 is a priori unknown and it needs to be provided as the main input. Consequently,
without that information, the reshaping diagram can not be calculated. ii) The
strategy followed to obtain the reshaping diagram was a manual procedure, so that
multiple points were chosen in a unstructured manner in order to construct the curve.
Therefore, there is a need to use a more systematic way such that the reshaping
diagram generation can be scalable and automatized.

Given the described limitations, the requirement of running multiple reshaping
simulations together with a real-time response suggests to launch a multiparametric
analysis under a Model Order Reduction (MOR) framework [27]. A quick and a
reliable simulation response are key ingredients to fulfill in order to improve the
applicability of the reshaping diagrams in a shop-floor level.

Although the corrective stage of reshaping is an iterative operation, this chapter
deals only with bending straightening done as a single step. This abstraction allows
us to isolate the problem with the aim to understand the influence of different
parameters on the reshaping operation as an essential step for ensuring a reliable
repairing process. The rest of this chapter is organized as follows: in section 4.2, a
brief review of the state of the art in the field of MOR is given. Here, the motivation
and the fundamentals of reduced models together with five representative techniques
are introduced. Special interest is given to the application of MOR to manufacturing
processes and, based on the non-intrusiveness and the ability to handle the non-
linearities present during reshaping, the Sparse Subspace Learning method is chosen
to develop the multi-parametric study. Then, in section 4.3, the SSL formulation
applied to reshaping is explained together with the problem set-up used for a T
shaped beam geometry. Next, the results of the multi-parametric ROM study are
analysed in section 4.4 and finally, the obtained conclusions are addressed.
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4.2 A brief state-of-the-art on model order reduction

4.2.1 The need of model order reduction

Traditional mesh based discretization techniques (e.g. Finite Elements, Finite Dif-
ferences, Finite Volume and Spectral Methods) have experienced an important de-
velopment in the last decades in parallel to the increment on the computer resources
availability and the research efforts of the numerical and scientific computing com-
munity [96]. Thanks to its applicability and broad use, Full-Order Models (FOM),
also referred as High-fidelity models (HFM), are essential to design safer structures,
study complex fluid phenomena and develop any type of device based on physical
laws. However, in spite of the current developments, traditional techniques present
the following limitations:

• Multi-parametric analysis: as soon as the model incorporates multiple param-
eters, FOM are the favourite victim of the so-called curse of dimensionality, a
term introduced by Bellman [12], that relates an increment of number of pa-
rameters (dimensions), with an exponential growth of the computational cost
required to solve the problem. Therefore, the use of brute force as a strategy
to tackle this type of problems is not a feasible option.

• Multi-scale problems: when a model combines multiple scales, for example,
the different scales available in a turbulent flow [33], the smallest length scale
leads to a mesh refinement with its associated computational cost increment.
A strategy to handle the macro-micro lengths is to use homogenization tech-
niques, however, they become inefficient with the presence of time-dependency,
non-linearities and multiple-parameters [1].

• Uncertainty Quantification: statistical treatment for parameter estimation via
Monte Carlo Sampling (MCS) and its variants, requires an important amount
of repetitive executions. An elevated number of simulations K are needed to
obtain accurate predictions. In addition, the method presents a slow con-
vergence rate of 1/

√
K. When the model is expensive to evaluate, MCS

applicability is limited [115]. A similar problematic is experienced for vari-
ational/sequential data assimilation or Bayesian inverse problems [64].

• Many-query problems: in design, control or optimization, repeated evaluations
of the problem are required for different parameters values [57]. Under this
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context, the use of a FOM means massive computer resources in terms of
amount of CPU time and data storage, leading to an unaffordable scenario.

• (Quasi) real-time solution: depending on the application, different feedback
rates are required. For example, for augmented reality, 25 Hz ensure the
visual continuity of an image in movement, while for haptic controllers, 0.5-1
KHz are needed to provide a response in terms of force to the device [31]. In
both cases, the mentioned rates represent a challenge because it means that
one single simulation should be achieved in the range of milliseconds.

After describing the dimensionality problem, Bellman encourages us to seek for
more advanced techniques to overcome this issue [12]. Here is when Model Order
Reduction (MOR) comes into scene, as an alternative to deal efficiently with the
open challenges in science and engineering [4].

4.2.2 Fundamentals of model order reduction

The underlying idea behind MOR is that, to properly describe a model, from all
the available information only a little amount is relevant1 [26]. Keeping this hint
in mind, we can define MOR as the group of numerical techniques that alleviates
the computational cost respect to high-fidelity methods by solving the problem in
a lower dimensional space. As a result, a similar response in terms of input/output
behaviour is obtained. The reduced model should meet three main requirements: i)
to capture the principal features of the FOM, ii) to satisfy the accuracy in terms of
error estimation and iii) to preserve the basic properties of the original system as
consistency, stability and convergence [94]. For an historical review of the develop-
ment of MOR techniques, the interested reader is referred to Schilders et. al, 2008
[96].

FOM are based on Partial Differential Equations (PDEs). They are the mathe-
matical basis behind any physical model used in Computational Mechanics and we
want to apply MOR methods to them. In a general context, we define an open
bounded domain Ω ⊂ Rd≤3 and a parameter domain P ∈ Rp. In this setting, the
physical space variable is denoted as x ∈ Ω and normally, the problem is solved for
a fixed set of p parameters µ = [µ1, . . . , µp]T ∈ P. When each parameter µi varies

1This notion goes in line with the Pareto principle, which states that for many events, roughly
80% of the effects come from 20% of the causes.
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inside of a given interval µi ∈ [µimin , µimax ], and we want to find the solution of the
problem for all parameters, we refer to a parametric PDEs [29]. Therefore, we can
describe a parametric PDE of the form:

Lu (x;µ) +N
(
u (x;µ)

)
= g (4.1)

To obtain the weak form, we multiply Equation (4.1) by a smooth test func-
tion v ∈ V and after integrating over Ω, the result leads to the following problem
formulation: given f ∈ V , find u(x;µ) ∈ V such that:∫

Ω
v
(
Lu (x;µ) +N

(
u (x;µ)

))
dΩ =

∫
Ω
vgdΩ, ∀v ∈ V

〈v,Lu (x;µ)〉+ 〈v,N
(
u (x;µ)

)
〉 = 〈v, g〉

a (v, u;µ) = l (v)

(4.2)

where u(x;µ) corresponds to the solution Equation (4.1) and V is its associated
space. L : V ×W → X and N : V ×W → X are linear and non-linear partial differ-
ential operators, respectively, where (V,W,X) is a triple of Banach space. 〈· , · 〉
denotes the inner product in L2(Ω). Bilinear and linear operator are defined as
a( · , · ) : V ×V → R and l( · ) : V → R, respectively. The parametric dependence
of the solution u is expressed by the semicolon through the formulation. Although
no formally written, it is assumed that suitable boundary conditions to Equation
(4.1) are prescribed.

After performing a spatial discretization, Equation (4.2) leads to a system of
Ordinary Differential Equations (ODEs):

Au (x;µ) + f
(
u (x;µ) ;µ

)
= 0 (4.3)

where the discrete state variable u(x;µ) = [u1(x;µ), . . . , un(x;µ)]T is referred
as the solution vector. The matrixA ∈ Rn×n comes from the linear term Lu whereas
f
(
u (x;µ) ;µ

)
∈ Rn is the result of combining the non-linear term N (u) with the

source term g and the prescribed boundary conditions. Please note that f( · ; · )
is non-linear too.

The resulting dimension of the full order problem for u(x;µ) is n (i.e. dim(u) =
n). In MOR, by exploiting the properties of anisotropy and holomorphy, we seek
for an approximation of the solution u(x;µ) ≈ ur that allows the separation of the
physical space x and parametric space µ, giving as a result the form:

u (x;µ) ≈ ur =
r∑

k=1
vk (x)ψk (µ) (4.4)
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where {v1, · · · , vr} are functions of x living in the solution space V and {ψ1, · · · , ψr}
are functions of µ with values in R or C. As a consequence, the following dimension-
ality reduction is obtained dim(ur) = r � n. For a deeper description of parametric
PDEs and the mathematical properties used to obtain the reduced approximation,
the interested reader is referred to Cohen and DeVore 2015 [29].

Thanks to the reduction in dimensionality, important savings in terms of compu-
tation cost are achieved by using the so called off-line/on-line strategy [2]. Within
this approach, the workload is divided in two marked steps. The off-line stage
corresponds to an exploration of the solution space by solving the full order prob-
lem in some previously defined points. We refer to these precomputed solutions
as snapshots. The off-line stage is only performed once, it comes at an accepted
computational cost and here is where the approximation basis are calculated. Then,
depending on the selected MOR technique (see section 4.2.3), the solution can be
reconstructed in advance, leaving to the on-line stage as a post-processing operation
where the solution is available for any value of parameters µ, otherwise, a small
system of equations must be solved each time in order to have access to the reduced
model. A graphical comparison between the involved computational cost for the full
and reduced order model is shown in Figure 4.1. By assuming a linear behaviour
for a single computation of the parametric solution, the investment done during the
off-line stage is fully recovered when the number of outputs required for the ROM
is bigger than the break-even point k∗ [49].

4.2.2.1 Classification of MOR

In a general way, MOR techniques can be classified attending the following criteria:

• Based on the manner the reduced problem is constructed, we can define MOR
methods as two big groups:a priori and a posteriori. We refer to a posteriori
methods when the reduced model is built only after a relatively low number
of snapshots are performed and explored. On the other hand, the a priori
methods refer to the construction of the reduced problem in a progressive
manner (i.e. during the solution of the problem).

• When the reduced model is obtained by projecting the full-order problem into
a subspace, we define the so-called projection-based methods. Alternatively, if
the reduction is generated by interpolation, we classify them as interpolation-
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Figure 4.1: Computational cost comparison between FOM and ROM. Adapted from
[49, 92]

based method. Projection-based MOR preserves the structure of the full-order
problem and this property allows deriving theoretic error bounds and error
estimates [13]. On the other hand, interpolation methods play an important
roll as a strategy to solve efficiently non-linearities [25].

• Intrusiveness is referred to the coding strategy used to implement the MOR
technique. A method is considered as intrusive when it is required to re-write
the discretization of PDE’s in a tailor-made manner to solve the problem.
On the other hand, we talk about a non-intrusive method when there is no
manipulation of the solver to compute the solution, i.e. a commercial FE
software is used as a black-box to produce the snapshots that will be used to
construct the reduced problem.

• A method can be considered adaptive when, while the construction of the basis
functions is performed, adds a function n which depends on the n−1 previously
obtained. The enrichment of the basis is typically performed with a greedy
strategy. On the contrary, a non-adaptive method is one that, for a given n,
selects the basis of functions of Equation (4.4), based on some knowledge of the
solution. As a general rule, better results can be expected from an adaptive
technique [17].
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4.2.3 Selected MOR techniques

Down below, five selected MOR techniques are described. They are representative
attending at the previously provided classification. For each method, a brief refer-
ence at when it was introduced is provided and emphasis is given to the way the
reduction is obtained. Then, an overview of MOR applied to manufacturing process
is provided and by analysing the range of applicability and limitations for each tech-
nique, a decision is made to chose the most suitable candidate to solve the problem
of reshaping.

4.2.3.1 Proper Orthogonal Decomposition

The Proper Orthogonal Decomposition (POD) is an a posteriori model order reduc-
tion technique. It was first introduced by Lumley in 1967 [61] with the aim to find
coherent structures on a turbulent flow. In statistics, POD is known as Principal
Component Analysis (PCA) [113]. The main idea of the method is to perform the
following decomposition:

u (x;µ) ≈ ur =
r∑

k=1
αk (µ) Φk (x) = Φrα (4.5)

where Φk(x) and αk(µ) correspond to the POD basis, normally referred as spatial
modes, and the parameters coefficients, respectively.

The method starts with the sampling of the parametric space. This task is done
by taking m snapshots of the full-order problem. If each snapshot is stored as a
column vector of size 1× n and grouped side by side, the snapshot matrix S of size
m×n is obtained. In order to normalize the data, it is a common practice to update
each column of S by removing the mean value of that column [24].

The second step consists on the basis generation. It is calculated after per-
forming a Singular Value Decomposition (SVD) over the snapshot matrix, so that
S = LΣRT . The resulting POD basis corresponds to a low-rank approximation of
Σ and it is formed by the orthonormal set Φr = {Φ1 · · ·Φr} (with r ≤ m � n),
which is composed by the squared of the most energetic eigenvalues of Σ placed in
decreasing order (i.e Φi = σ2

i ).
With the obtained basis, a POD subspace is generated, which is defined as

SPOD := span{Φ1≤i≤r} ⊂ V , and its dimension is dim (SPOD) = r � dim (V ).
Finally, the parameters coefficients αk(µ) are calculated by performing a Galerkin

59



Chapter 4. Bending straightening: a multiparametric ROM study

projection of the full-order problem into SPOD. In that way, the reduced model is
fully defined.

r∑
k=1

a
(
Φj ,Φk;µ

)
αk (µ) = l

(
Φj
)
, ∀Φj ∈ SPOD (4.6)

POD is a popular method in the MOR community. It has been successfully
applied to viscoelastic fluids [48], structural mechanics [16], design of magneto res-
onance imaging scanners [98] and control problems [10, 84]. However, the method
presents three main drawbacks: i) to explore the parametric space, POD does not
define any strategy, therefore, this step relies on the experience of the person who
is performing the study. ii) the POD basis can only capture the behaviour present
in the snapshots. If there is a lack of information during the sampling step, the
basis generated will not be accurate enough to provide a good approximation of the
problem. iii) Although POD is the standard method to handle non-linear problems,
as all MOR projection-based techniques, the computational savings that could be
gained with an equivalent linear problem, in terms of size reduction, are lost. In
order to explain this drawback, lets apply the Galerkin projection of the POD basis
Φr to Equation (4.3) and replace the field of interest by the POD approximation of
Equation (4.5). As a result, the following linear and non-linear terms are obtained:

ΦT
rAΦrα︸ ︷︷ ︸
linear

+ ΦT
r f (Φrα)︸ ︷︷ ︸
non-linear

= 0 (4.7)

While a fully reduction of the linear term is possible by pre-computing Ar =
ΦT
rAΦr only (as represented in Figure 4.2a), for the non-linear term, the high

dimensionality remains inside of the reduced model. This problem is caused by the
evaluation of the non-linear term in the low dimensional embedded space. In other
words, each time the parameters coefficient αk(µ) is updated, a re-evaluation of the
non-linear term f(Φrα) and the inner product with ΦT

r is required too, as shown in
Figure 4.2b.

4.2.3.2 Reduced Basis

The Reduced Basis (RB) Method is a adaptive projection-based MOR technique for
parametric problems. The current framework was formally developed by Prud’homme
et al., 2002 [79]. The method tackles the sampling limitation of POD by proposing
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u̇a) = A u

n×1 n×n n×1

u̇r = Ar ur

by projecting the matrix A into a reduced
basis Φr, the reduced matrix Ar is obtained
as Ar = ΦT

r AΦ

r×1 r×r r×1

u̇b) = f(u)

n×1 n×1

u̇r = ΦT
r

f(Φrur)

the high dimensionality remains
inside of the reduced model

Full Order Model Reduced Order Model

r×1 r×n

n×1

Figure 4.2: Projection based Model Order Reduction applied to linear (a) and non-
linear (b) problems. Adapted from [13]

an iterative strategy based on a posteriori error estimator [81]. In that way, instead
of evaluating ns snapshots to extract only N modes and construct the projection
base, such that N ≤ ns, RB selects exactly N sampling points with the aim to
compute its snapshots and build the projection subspace efficiently.

The main assumption of the method is that the parametric solution manifold
M, defined as the set of solutions generated when the input parameters µ are varied
along the whole parameter domain P, M = {u(x;µ)|µ ∈ P}, can be approximated
by a Petrov-Galerkin projection into a low N -dimensional space VN , the so called
Reduced Basis space.

In a glance, the method is done in the following form: during the off-line stage,
the greedy sampling strategy and the construction of the RB are performed itera-
tively. Then, the reduced model is obtained by calculating an algebraic system in
the on-line stage allowing a fast evaluation of any parameter value µ ∈ P.

The problem separability, referred as affine, is based on the parameter depen-
dence and it is expressed for the bilinear form a( · , · ) and the linear form l( · ) of
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Equation (4.2) as:

a (u, v;µ) =
Q∑
q=1

σq (µ) aq (u, v) , ∀u, v ∈ V, µ ∈ P (4.8)

l (v;µ) =
Q∑
q=1

σq (µ) lq (v) , ∀v ∈ V, µ ∈ P (4.9)

where σq : P → R and q = 1, . . . , Q are parameter-dependent functions and
aq : V × V → R and lq : V → R are parameter-independent forms.

The (weak) greddy algorithm is applied over a prescribed parameters training set
Strain ⊂ P to construct iteratively the projection subspace. For example, in a generic
iteration n i.e. 1 ≤ n ≤ N − 1 with a given sample set Sn = {µ1, . . . ,µn}, and its
associated Lagrangian reduced basis ζn = {ζ1, . . . , ζn}, that generates the subspace
Vn = span{ζ1≤i≤n}, a new basis is added by fulfilling an optimally criterion based
on the a-posteriori error estimator ∆n(µ). This feature is used to approximate the
error ‖u(µ)− un(µ)‖ and it allows choosing carefully the next sampling point µn+1
by solving:

µn+1 = arg max
µ∈Strain

∆n (µ) (4.10)

In other words, the retained snapshot at each step corresponds to the worst ap-
proximation performed by the current RB solution obtained at Vn. As a consequence,
the generated basis is hierarchical (i.e. ζn ⊂ ζm, for n ≤ m). The evaluation of the
a posteriori error estimator is considered cheap in terms of computational cost. In
addition, the greedy procedure is relatively fast as only N high-dimensional snapshot
are calculated, instead of the pre-computing the whole parametric sampling set, as
done by POD.

Once the N -dimensional reduced basis is obtained, the solution approximation
uN (x;µ) ∈ VN is computed as the following linear combination:

uN (x;µ) =
N∑
i=1

uNi (x;µ) ζi (4.11)

where uN (x;µ) = [uN1(x;µ), . . . , uNN
(x;µ)] ∈ RN corresponds to the RB coeffi-

cients. These coefficients are unknown and they are calculated by solving the N
equations after imposing N independent conditions. In that way, the ROM is fully
defined.
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Regarding the parameter training set Strain, it should be noticed that its selec-
tion is non-trivial. On one hand, the subset should be small enough so that the
greedy algorithm remains effective. On the other hand, the sample should be large
enough to represent properly the parametric domain in order to avoid missing rele-
vant information. In practice, a Monte Carlo sampling is chosen so that Strain can
fulfil a trade-off between both conditions [81].

The RB formulation is well suited for parametric linear, coercive and affinely de-
composed cases (e.g. elliptic and parabolic problems) [73]. In the presence of simple
non-linearities, as nonlinear advection or nonlinear diffusion problems, is needed to
rewrite the equations as a multi-linear form. However, in the presence of general
non-linearities, the Empirical Interpolation Method (EIM) or its discrete version,
the Discrete Empirical Interpolation Method (DEIM) are required to circumvent the
problem by using interpolation. The DEIM method is explained below in section
4.2.3.4. For a more detailed discussion about the limitations and further directions
of the RB method, the interested reader is referred to Haasdonk 2016 [49].

4.2.3.3 Proper Generalized Decomposition

The Proper Generalized Decomposition (PGD) is an a priori model order reduction
technique, due to the construction of the reduced basis is done progressively and
without previous knowldege of the solution, in contrast to the POD snapshopts.
The seminal work was presented by Ammar et al., in 2006 [4] when trying to solve
the high-dimensional modelling of non-Newtonian fluids. The method is based on
two main ideas: i) the separated representation of variables, i.e. parameters, loads,
geometry, even boundary conditions can be treated as separated and independent
extra coordinates of the problem and ii) the separated problem formulation. Both
ideas can be considered as a generalization of the time-space separation of the LATIN
(LArge Time INcrement) method proposed by Ladevèze in 1985 [56]. As a conse-
quence, the method approximates the field of interest as a finite sum of the product
of the coordinates as:

u (x;µ) ≈ ur =
r∑
i=1

F ix (x) ·F iµ1 (µ1) · . . . ·F iµp

(
µp
)

(4.12)

where the functions F ij , referred as the parameters modes, are unknown. The pa-
rameter modes can be considered as global shape functions that are not a priori
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Figure 4.3: The Proper Generalized Decomposition: (a) Original problem, (b) Sep-
arated representation and (c) Fixed-point algorithm scheme.

given. Therefore, the goal of PGD is to calculate them. As a direct consequence of
considering parameters as extra coordinates, the computational domain increases its
dimensionality, so that, the new problem to solve is non-linear. Therefore, an algo-
rithm such us the fixed point iteration is used to compute and construct iteratively
the reduced order model.

Traditionally, the PGD formulation is explained through an example by using
the Poisson’s Equation (see Chinesta et al., 2014 [26] for a detailed description).
However, we adopt the notation of Aguado 2015 [2] due to be generic and more
didactic to explain the method. In addition, a graphical representation of the main
ingredients of PGD is represented in Figure 4.3. For the sake of simplicity, let us
consider a scalar version of Equation (4.12), where the field of interest u can be
approximated as ur by the product of two functions (F rx , F rµ) ∈ Vx × Vµ. Each
function F ij is previously defined by two functional spaces, Vx and Vµ, that describe
the physical and the parametric space, respectively and satisfy the requirements
described in Equation (4.2), including the boundary conditions. Therefore, the
solution of our problem, written in the separated format, is expressed as:

u (x;µ) ≈ ur =
r∑
i=1

F ix (x)F iµ (µ) (4.13)

To calculate the unknown function pair (F rx , F rµ), the following finite dimensional
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approximation spaces are considered:

Vx := span

{
vix = F ix

||F ix||

}
and Vµ := span

{
viµ =

F iµ
||F iµ||

}
for 1 ≤ i ≤ r (4.14)

where ||· || := 〈· , · 〉 1
2 refers to the L2 norm and vij corresponds to the normal-

ized version of F ij . The tensor product of both functional spaces defines the space
V := Vx ⊗ Vµ. From V , the following subset Sr, named as the approximation space,
is determined:

Sr =

v ∈ V : v =
r∑
i=1

urvixv
i
µ, with vix ∈ Vx, viµ ∈ Vµ and ur ∈ R

 (4.15)

In PGD, Sr is generated in a progressive manner, following the relation Sr =
Sr−1 + S1 for r ≥ 2. As a consequence, the successive approximated spaces are
nested, i.e. Sr−1 ⊂ Sr.

Under the assumption that Sr has been previously built, so that ur is known.
Then, the PGD algorithm aims to compute the pair (Fx, Fµ) ∈ Vx × Vµ that fulfils
for every v ∈ V :

a
(
FxFµ, v

)
= l (v)− a (ur, v) (4.16)

The right-hand-side of Equation (4.16) defines the residual of PGD while com-
puting the pair (Fx, Fµ) involves solving a non-linear problem. For this later task,
the fixed point algorithm is applied in the following form:

1. Under the assumption of Fµ is known, Fx is updated.

2. Now that Fx is computed, Fµ is updated.

3. Return to point 1 until:

• the maximum number of iteration is reached, i = imax .

• the convergence criterion is less than the user specified tolerance ε1.

||
(
vxvµ

)
i −

(
vxvµ

)
i−1 || < ε1 (4.17)

Due to the iterative nature of PGD, the solution accuracy is incremented when
more parametric modes are included in the solution. In this sense, we can classify
PGD as an adaptive method and in the case of r →∞, then ur → u.
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When compared to a FOM, for a problem with d dimensions (parameters) and n
nodes in each dimension, the computational cost is proportional to the total number
of degrees of freedom nd. In contrast, by using the separated representation, PGD
is able to reduce the computational complexity during the off-line phase to r×d×n
computations, where r is the number of unknown modes to be determined. Then,
during the on-line phase, the solution for any choice of parameters is particularized
on-the-fly without solving any additional algebraic system [2, 94]

Regarding the PGD applicability, by considering the parameters as extra coor-
dinates, new possibilities were opened in different fields, such as resolution of high-
dimensional stochastic problems [72], simulation of haptic devices [71], real-time
control of thermal processes [2], design of metamaterials [100], coupled magneto-
mechanical analysis [11], just to name a few. For a more detailed analysis, the
interested reader is referred to Chinesta et al, 2013 [27] and the references therein.

As a drawback, it should be point out that PGD is an intrusive method. There-
fore, it is required to rewrite the problem in terms of the product decomposition
of functions F ji . This detail acts as a barrier of entry for using the method in a
daily basis of an industrial environment as implementing PGD in general, implies
an important coding effort [32]. Another important issue is regarding the efficient
treatment of non-linear problems, where the non-linear term (either a coefficient or
a differential operator) must be written in the separated representation format and
then, evaluated at each step. During this iterative procedure, due to the projective
nature of PGD, all the computational savings of the method are lost [2].

4.2.3.4 Discrete Empirical Interpolation Method

The Discrete Empirical Interpolation Method (DEIM), is a posteriori and interpolation-
based model order reduction technique, developed by Chaturantabut and Sorensen
[25]. This technique aims to overcome the drawbacks related to the approximation
of non-linear problems when POD is used. The two main ideas of DEIM are: i) an
interpolating basis is computed from a collection of snapshots of the non-linear term
and ii) a set of indices defines the non-linear components to be simulated [93].

In order to explain the DEIM formulation, we designate a non-linear function
f : Rn → Rn, (e.g. the non-linear term in Equation 4.3). Then, after providing
a collection of ns snapshot samples of f( · ), the snapshot matrix F is built as
F = [f1 (µ) , · · · , fns (µ)], where fi(µ) = f(ui(x;µ);µ)).
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Then, the DEIM basis U ∈ Rn×m is computed by performing a low-rank approx-
imation of F. This step is done by calculating first a SVD and then retaining only
the m left singular values (i.e. the top m singular values).

From U, m different rows are selected in order to define the selection operator
P = [ep1 · · · epm ] ∈ Rn×m, where epi refers to the pi-th column of the n× n identity
matrix I and are defined by a greedy algorithm [25].

Then, the DEIM projector is defined as:

P = U
(
P TU

)−1
P T (4.18)

In that way, the DEIM approximation of f( · ) is

f̂ ( · ) = Pf ( · ) (4.19)

Once U and P has been determined, the reduced model is obtained by replacing
f( · ) by f̂( · ), where the DEIM approximation of the non-linear function is evalu-
ated in the form u( · ) = Φrur( · ). Then, the result is projected into the reduced
base Φr ∈ Rn×r (see section 4.2.3.1).

fr
(
u (x;µ) ;µ

)
= ΦT

r f̂
(
Φrur (x;µ) ;µ

)
= ΦT

r U
(
P TU

)−1
P T f

(
Φrur (x;µ) ;µ

)
= ΦT

r U
(
P TU

)−1

︸ ︷︷ ︸
precomputed:r×m

f
(
P TΦrur (x;µ) ;µ

)
︸ ︷︷ ︸

m×1

(4.20)

During the off-line stage the matrices (ΦT
r U) and the factorization PTU are pre-

computed. Then, in the on-line stage, instead of evaluating the non-linear function,
only m ≤ n selected number of terms will be evaluated at the indices that determine
the columns of the selection operator P.

DEIM leads to a non-linear ROM that can be evaluated efficiently. The method
has been successfully applied to shape optimization [5], reservoir modeling [44] and
viscoplasticity [45]. However, when the number of snapshot required to construct
the basis U is important (ns → n) or the terms needed to define P are increased
(m→ n), the computational gains are lost [93].

4.2.3.5 Sparse Subspace Learning (SSL)

Sparse Subspace Learning (SSL) is a non-intrusive model order reduction technique,
suitable for multi-parametric studies and non-linear analysis. The method was pro-
posed by Borzaacchiello and Aguado [14] and exploits the sparsity of the solution

67



Chapter 4. Bending straightening: a multiparametric ROM study

with respect to the parameters in order to build a parametric solution from the
computation of only few wisely chosen snapshots.

Given a field of interest u(x) for a defined set of parameters µ, by using the
separated variable representation under the SSL formulation, it can be written as:

u (x;µ) ≈ ur =
k∑
i=0

αi (x)ψi (µ) (4.21)

where α(x) and ψ(µ) are defined as the surpluses and parametric functions,
respectively. The parametric functions ψ(µ) act as the shape function. They are
known, define the hierarchical basis and correspond to the Lagrangian polynomials,
while the surpluses functions α(x) need to be determined. They are calculated as a
linear combination of sampling or measurements evaluated at the collocation points
Pn = {µ0, µ1, ...., µn}.

For a unidimensional parametric problem, the collocation points are the extreme
of the n-th Chebyshev polynomials of the first kind, Tn(µ) and are referred as Gauss-
Chebyshev-Lobatto points (GCL) too. To obtain them, it is required to solve the
following equation:

Tn (µ) = cos

(
πi

n

)
i = 0, ..., n (4.22)

In order to handle a multidimensional parametric problem, first, each param-
eter is treated as the unidimensional case described before and then, the Smolyak
rule is introduced with the aim of constructing the sparse grid to be used during
sampling. To put into perspective the advantage of the sparse sampling respect to
the full sampling based on the tensor product, for a 2 parameters problem and a
selected hierarchy level k = 5, the full sampling requires 332 = 1089 points, while
the sparse sampling only needs 177 points, providing a reduction of 83.7% in terms
of computational cost.

Once the sampling points are defined, the simulations are launched in a com-
mercial FE software (e.g Abaqus, Ansys). The field of interest u (x;µ) is known
at each collocation point and for our case, it is considered as the reference solution.
With this available information, the corresponding surplus functions are determined
as the difference between the exact and the approximated solution at the hierarchy
level (k − 1), as expressed in the following expression:

αi (x) = u (x;µi)− uk−1 (x;µi) (4.23)
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4.2.4 MOR applied to manufacturing problems

In this section, a brief collection of MOR problems applied to manufacturing is
presented. Before proceeding, let us introduce the specific challenges that must face
the simulation of this kind of problems:

• Geometric complexity: complex and evolving geometries are produced.

• Multi-physics problem: several physics involved on the same domain with non-
linear material laws and coupled models.

• Pronounced localization of deformation.

• Transfer of data: if multiple simulation packages are used.

• Real-time solving capability: if simulation wants to be implemented at the
shop-floor level.

At the moment, standard simulation techniques as Finite Element Methods
(FEM), are used by the industry but they can be considered as rigid due to the
use of static data. However, to overcome the limitations described before, MOR is
presented as a proven useful alternative, based on the following examples presented
below.

With the aim to study the plasticity, as the one experienced in any forming pro-
cesses, Nasri et al. [70] proposed a separated representation of the elastic-plastic
problem by applying POD at each incremental step to the force vector in the gen-
eral problem Ku = F , where each term corresponds to the stiffness matrix, the
displacement and force vector, respectively. This is an example of how the presence
of non-linearities obliges to reconstruct the original approximation space to evaluate
the non-linear term, as depicted on Figure 4.2b.

On the field of distortion after machining, Poulhaon et al. [77] studied the
problem in two steps by using POD. First, an off-line reduced basis of admissible
geometrical changes is generated numerically and complemented via experiments.
Then, an on-line prediction of distortion during machining is performed. This anal-
ysis can help to modify in advance the tool path during machining and to plan future
post-machining operations to mitigate distortion. However, this work is focused to
parts machined from aluminium rolled plates, where the residual stress field can be
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considered as constant along the part, in contrast to the complex three dimensional
residual state present in forged parts.

Distortion is not an exclusive phenomenon of forgings. It is a recurrent problem
in welding and additive manufacturing too. For both cases, the dimensional inaccu-
racies are a consequence of the rapid heating and cooling of the deposited material,
which experiences a non-uniform local shrinkage, giving place to the development of
residual stresses. In the framework of MOR, Sikstrom et al. [101] used a reduced
model to control the process of tungsten arc welding while Canales et al. [18] devel-
oped a mixed formulation of MOR with GFEM to study friction-stir welding. On
the other hand, Quaranta et al. [80] proposed a simplified parametric model based
on PGD to compensate distortion in additive manufacturing. In the cited works, all
the efforts are focused on predicting distortions before they are produced. However,
to the best of our knowledge, no previous attempt has been made to apply MOR
techniques to study the post-machining operations required to mitigate distortions
once the geometrical mismatches were arising.

During bending straightening, the springback phenomenon is present. There-
fore, the concept of shape manifold, introduced by Raghavan et al. [82], has some
potential. The idea refers to generate all possible post-springback admissible shapes
by building a reduced-order shape-space. The MOR is done through a combina-
tion of POD and Diffuse Approximation with the aim to find the optimum design
point. Although the presented case study was applied to a 2D sheet problem, a
furhter development is required to use the concept in 3D geometries as for the case
of forgings.

Contact is another main issue to consider, as it is present in any manufactur-
ing process (e.g. stress relief and reshaping). Giacoma [46] presented an iterative
SVD algorithm, which provides a quasi-optimal bases to solve a contact problem
with LATIN-PGD. The algorithm was applied to a 2D quasi-static contact problem
with an isotropic hardening model, and as a consequence, Bauschinger effect is not
included.

Despite MOR has reached a maturity level for linear problems and well-established
projection-based techniques are available, PCA, RB and PGD can not be used them
to study reshaping, as the problem involves strong non-linear phenomena (e.g geo-
metrical non-linearity and plasticity). In case they are applied, all the computational
savings are lost as the tangent stiffness matrix of the full-order problem is required
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to be reconstructed [32].
On the other hand, to tackle the non-linearities, it is a standard practice to

combine POD with DEIM [13]. However, in order to apply DEIM, it is required to
have snapshots of the non-linear function. When plasticity is present, the snapshots
must be taken from the internal forces, which involves to have a base in terms of
stresses with the form σ(χi) = ∑

k ψk(χi)αk, where χi are the interpolation points,
ψk is the DEIM base and αk are the coefficients to find. In addition, another
potential drawbacks for DEIM are: i) The tangent (Jacobian) matrix does not have
to be symmetric, and from the algorithmic point of view, this detail represents a
problem; ii) It is an intrusive method ; iii) The problem we want to solve does not
have only plasticity, it has also large deformations and contact. At the moment,
there is no available intrusive method that allows to deal with all these complexities
simultaneously in a robust way.

Regarding the SSL, its non-intrusiveness is a key factor for any industrial ap-
plication as it allows to use the current FE commercial software available in the
company without any extra investment in terms of money or code development. In
addition, the method has been successfully applied to sheet metal forming, allowing
to study the friction relation between the tool and the part in a virtual environment
[15].

In this work, we want to explore the use of novel MOR techniques to study the
non-linear problem of reshaping. Therefore, the SSL is the selected method to study
bending straightening thanks its non-intrusiveness and the capability to handle the
non-linearities present during the process.

4.3 Multi-parametric bending straightening

The interest to develop a ROM of bending straightening is twofold. First, the model
can provide a detailed information of the process to the manufacturing team in a
cost-effective way and second, to reduce the gap between the theory and practical
approach used at the shop-floor level. It is expected that, by using the ROM, both
teams can be able to explore in an early stage the repairing process and select optimal
process configuration.

Once the MOR method was chosen, the next step is to define the different pa-
rameters involved to model bending straightening and select the most representative.
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Then, the model is described by using the SSL formulation. Finally, the problem
setup is defined before launching the battery of simulations required to solve the
multi-parametric analysis.

4.3.1 Process model and parameters

The mechanics behind bending straightening for simple geometries can be described
by plastic bending theory. Early attempts to outline the behaviour of a beam above
its yield point for a rectangular cross section were done by Timoshenko [109], where
the typical residual stress after unloading, known as the three-cross-zero profile, is
explained. However, plastic bending involves more complex phenomena and effects,
as initial imperfections, previous residual stresses and strain-hardening. Following
this line, Iványi [51] studied the effect of strain hardening in the plastic behaviour of
beams by using moment-deflection curves and shown an accuracy increment respect
to a perfect plastic material model. On the other hand, an analytical solution
to the plastic bending problem was proposed by S̆tock and Halilovic̆ [107] for the
simplified case of a rectangular cross section with no strain hardening. The previous
results show that plastic bending for complex geometries, as is the case for bending
straightening, must be treated numerically.

Following the strategy proposed by Hardt et al [50], the modelling of bending
straightening is divided in two stages. First, plastic bending is represented by a
process model, where the goal is to simulate as close as possible the process with its
respective inputs, parameters and outputs, as represented in Figure 4.4a. Here is
where the ROM is constructed. However, the model is only able to provide the final
displacements after unloading, therefore, the second stage, called process simulation
is needed to go from displacements to distortion. This stage includes a measurement
program to define distortion and a control algorithm to cope the design specifications,
as shown in Figure 4.4b. In our case, the second step is performed as a postprocess
of the ROM.

Focusing on the process model, bending straightening is strongly related to the
constitutive material material model and must include the considered geometry to
repair along with the effects of the machine. Therefore, three main groups of pa-
rameters can be defined: i) the material properties, ii) the part geometry and iii)
the machine conditions. A summary of all possible parameters, inputs and outputs
for the process model is provided in Table 4.1. Here it can be seen that, although
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Figure 4.4: Bending straightening. a) Process model and b) process simulation.
Adapted from [50].

Table 4.1: Bending straightening process model: inputs, parameters and outputs.
Adapted from [50, 112]

Parameters Inputs Outputs
Material properties For each bending step Displacements (after unloading) ui
- Young’s Modulus E - Internal roller ri Current residual stresses σ0i

- Poisson’s ratio ν - External roller re
- Yield stress σy - Stroke ys
- Initial residual stress σ0

- Strain hardening
Part geometry
- Cross-section
- Initial distortion δ0

Machine conditions
- Punch geometry radius
- Friction coefficient µ
- Machine stiffness

the mechanics behind plastic bending is simple, the quantity of involved parameters
explains the complexity of the process and the challenge, from the numerical point
of view, to run a multi-parametric simulation.

In this study, we are mainly concerned with the effect of the initial distortion
δ0 in reshaping, therefore, from all the possible process model parameters, only δ0

is selected. In addition, the stroke ys and the external roller re, that corresponds
to the inputs of the process model, complete the set of variables to perform the
multi-parametric analysis. Note that, while in chapter 3 we explored the four points
bending configuration to solve the reshaping problem, from now on, we switch to
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the three points bending arrangement, which can bee seen as a particularization of
the former setup. This decision has been taken to limit the process input from three
(stroke ys, internal and external rollers positions, ri and re, respectively) to the
pair (ys, re) only as ri is already fixed at the beam’s mid span. As a consequence,
the T beam cross section after machining and the machine conditions are fixed
too. In addition, it is assumed that the material properties of the forge are constant.
Regarding the latter assumption, two possible further candidates to explore its effects
in the post-machining distortion are the yield stress σy and the Young’s Modulus E,
following the findings reported about the variability of the mechanical properties of
aluminum [37, 86].

4.3.2 Reshaping under the SSL formulation

For bending straightening, we are interested in determining the final shape of a part
after performing a cycle of loading and unloading. Therefore, the displacement field
u(x) for a given set of parameters µ is our field of interest u (x;µ).

For the three-point bending straightening operation, the set of parameters µ is
composed by the initial distortion δ0, the position of the external roller re and the
imposed vertical displacement ys. For our problem, each parameter is considered as
a dimension.

µ = (δ0, re, ys) (4.24)

When the solution u(x;µ) is reconstructed for all the parametric domain, the
remaining distortion δ can be found as a post-processing operation and it is defined
as:

δ (µ) = max
x

[
u (x;µ)

]
−min

x

[
u (x;µ)

]
(4.25)

However, for all the possible reshaping configurations, we are mainly interested
to know the optimum stroke yopts that, for a fixed set of parameters (δ0, re) will
minimize the remaining distortion δ in the structural part.

yopts = arg min
ys

[
δ (δ0, re, ys)

]
(4.26)

4.3.3 Problem setup

To study the three-point bending operation, the T shaped beam previously defined
in chapter 3 is used, as shown in Figure 4.5. Regarding the material definition
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Figure 4.5: T shaped beam. a) Geometry definition and b) Parameters representa-
tion for three-point bending straightening.

Table 4.2: Parameters values for the three-point bending operation

Parameter ID Description µmin µmax

1 Initial distortion δ0 -15 0 mm
2 External roller position re 100 485 mm
3 Imposed vertical displacement ys 5 30 mm

and model, the configuration is the same used as in chapter 2. For the following
study, the parameters to be explored are available in Table 4.2 with is minimum and
maximum values µmin and µmax, respectively.

Based on the results obtained in chapter 3, it was observed that the main dis-
tortion experienced by the forged part was in its longitudinal direction (referred as
distortion type 1). Respect to the wings closure (distortion type 2), no repair ef-
fects were experienced after applying bending straightening. Therefore, the selected
strategy to include δ0 as an extra parameter was to consider the beam subjected
to pure bending, working under a fictitious moment M in both extremes so that,
the amplitude of the vertical displacements in the section x = 1

2L is given by the
elastic response of the structure δ0 = −ML2

8EI , where L,E and I correspond to the
beam’s span length, the Young’s Modulus and the inertia of the cross section, respec-
tively. This strategy is graphically represented in Figure 4.6 and its implementation
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Figure 4.6: Parametrization of initial distortion δ0 as a function of fictitious moment
M .

is described in a pseudo-code style in Algorithm 1.
Of course other strategies of shape parametrization are possible. For exam-

ple, if experimental measurements are available, the initial warped geometry can be
parametrized by statistical means. Lauzeral et. al, [58] combined statistical shape
analysis (SSA) with PCA to automatically generate shape-parametric models of tis-
sues and organs from medical images. This work opens the door to update the
theoretical CAD geometry with real data that is available at the shop floor. Addi-
tionally, this strategy could be a way to explore and tackle the nature variability of
post-machining distortion.

Finally, a Python script was developed in order to run the 123 Abaqus simula-
tions. This is the quantity of snapshoots required to explore the parametric input
space under the SSL method for a hierarchy level k = 3. A summary of the work-flow
is given by Algorithm 2.

4.4 Results and discussion

Before proceeding to present the results, a graphical comparison between the full
sampling strategy and the performed sparse sampling is shown in Figure 4.7. Here, it
can be seen how prohibitive that can be the task to explore a parametric space if the
full sampling is selected. Hereafter, the first 8 snapshots of the parametric bending
straightening are represented in Figure 4.8. They corresponds to the extreme values
of each parameter, located at each corner of the parametric space (see Figure 4.7b).
They are the solution for a hierarchy level k = 0 and are used to reconstruct the
displacement field u(x;µ).

The reshaping diagram, from a multi-parametric point of view, is the result of a
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Algorithm 1 Initial distortion generation
1: procedure InitialDistortion.py
2: problem setup← geometry, material properties and BC
3: load← initial distortion δ0

4: input file← job generation
5: output database← job execution from input file:
6: x0 ← undistorted geometry
7: from output database:
8: u0 ← displacement
9: write distorted input file (RSF):

10: x← x0 + u.
11: end procedure

Algorithm 2 Reshaping simulation SSL
1: procedure Reshaping3D.py
2: pre-processing:
3: µ← parameters interval
4: k← hierarchy level
5: pn ← collocation points
6: µsim ← Smolyak Rule
7: snapshoots:
8: for i ≤ len(µsim) do
9: Initial distortion generation

10: Reshaping simulation
11: end for
12: post-processing:
13: u(x;µ)← displacement field reconstruction
14: δ(µ)← reshaping diagram generation.
15: yopts ← optimum parameters.
16: end procedure
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Figure 4.7: Exploration of the parametric space for a hierarchy level k = 3. a) Full
sampling (93 = 729 points) vs b) Sparse sampling (123 points).

particularized solution where the pair (δ0, re) is previously defined and ys is set free.
In order to generalize the problem, the next step is to set free a pair of parameters
(e.g δ0 and ys ), giving, as a result, a response surface. With the aim to explore
the obtained multi-parametric solution, instead of using a 3D representation, a 2D
plot together with level curves are used to describe if the remaining distortion δ will
decrease or increase for a fixed external roller position re, as can be appreciated in
Figure 4.9.

Effect of the initial distortion δ0: In the previous chapter, it has been proved
that reshaping can be studied by using as a main input δ0 under a Residual Stress
Free hypothesis (RSF). This approach was used in order to generate numerically the
warped geometry. By including δ0 as a parameter, the problem of not knowing its
magnitude beforehand is overcome. In that way, the reshaping problem is solved
numerically for all the interval of initial distortions and once the part is machined,
the operator only needs to access to the solution dictionary and select a distorted
geometry closer to the experimental result.

Effect of the external roller position re: Once the initial distortion δ0 is
known, the next step is to select the reshaping operation. For the three-point bending
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Figure 4.8: First 8 shapshots of the displacement field u(x;µ). From left to right
δ0 = [−15, 0]. From top to bottom the pair (ys, re) are (5, 100), (5, 485), (30, 100)
and (30, 485), respectively.

operation, the internal roller (top) is fixed and located at the middle of the beam
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while the external rollers (bottom) need to be placed. The position of the external
roller is defined by the parameter re and it defines the slope of the response surface
that relates the remaining distortion δ with δ0 and ys.

A value of re closer to the top roller produces a difficult reshaping operation to
control, as it is expected to have a quick change of the remaining distortion δ during
bending. On the other hand, a value of re away from the top roller generates the
opposite behavior with a progressive variation of δ. In the performed parametric
study, the selected value of re particularizes a page of the solution dictionary.

Effect of the imposed vertical displacement ys: For a fixed initial distortion
and a selected bottom roller position, the three-point bending operation is completed
when a vertical displacement ys is imposed at the internal roller. The magnitude of
ys needs to be defined in order to minimize the remaining distortion δ. The response
surface obtained for a fixed re shows that reshaping is more difficult to be performed
for smaller values of δ0 as the required stroke ys only to induce plasticity in the cross
section is bigger than δ0. On the other hand, for a bigger magnitude of δ0, it is
expected to have more margin to find the stroke that minimizes δ.

Visualization of results: The multi-parametric analysis produces data in a di-
mensional space of size n = 3. In order to visualize the results, an user graphical
interface (GUI) was developed so that, the evaluation of the parameters associated
to the reshaping operation can be done in almost real-time. A GUI’s screenshot is
shown in Figure 4.10. The environment is divided in 5 parts where the user can
explore the influence of each parameter in a virtual environment.

4.5 Conclusions

The industry is willing to have new tools to solve problems that nowadays are treated
in an empirical way. Reshaping of large thick structural parts is an example of how
MOR can be applied to an open problem, especially the SSL, allows to perform
a multi-parametric study to test different what-if scenarios in a cost-effective way
and, thanks to its non-intrusiveness, acts as a bridge to join MOR with the available
third-party FEM solutions.

For the case of bending straightening, the initial distortion δ0 is the starting point
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Figure 4.9: Response surface: Remaining distortion δ. Solution selection as a func-
tion of re. a) re = 200(mm) and b) re = 485(mm).

for reshaping and it determines the setup for the technological parameters re and
ys. Additionally, the problem of not knowing beforehand the value of δ0 is overcome
by including it as a parameter. Then, thanks to the SSL, this reshaping operation
can be studied in a virtual environment before launching the real process.

In the next chapter, we will analyse how to chain multiple reshaping operations.
However, future work is needed to include material properties as extra parameters.
As expected, the computational cost for the numerical analysis will increase. Again,
here it resides the importance of studying reshaping with MOR techniques.
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I × I

1

2 3 4

5

Figure 4.10: GUI for results’ visualization: 1) Parameters selection, 2) Beam’s ge-
ometry after unloading, 3) Reshaping diagram generation, 4) Page selection of the
solution dictionary, 5) Reset button
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Chapter 5

Evaluation of multiple reshaping
operations via MOR

Reshaping is an iterative process where at each step, it is intended to reduce distor-
tion until the resulting geometry fits inside the design tolerance. However, as the
process evolves, the warped geometry changes, and with it, the process parameters
need to be adjusted accordingly. From the simulation point of view, this contin-
ued evolution in the process represents a challenge as the boundary conditions are
different and the associated technical parameters (e.g. roller positions and stroke)
need to be recalculated. In this chapter, two consecutive bending straightening steps
are simulated within a Model Order Reduction framework. The goal is to evaluate
different strategies for successive reshaping operations and to find the best available
sequence of operations to repair the part. Finally, a methodology is proposed to
simulate consecutive reshaping steps.
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5.2. Introduction

5.1 Introduction

Reshaping is an iterative process where at each step, it is intended to reduce distor-
tion until the resulting geometry fits inside the design tolerance. However, as the
process evolves, the warped geometry changes, and with it, the process parameters
need to be adjusted accordingly. From the simulation point of view, this continued
evolution in the process represents a challenge as the boundary conditions are differ-
ent and the associated technical parameters (e.g. roller positions and stroke) need
to be recalculated.

The approach followed in chapters 3 and 4 was to consider the reshaping opera-
tion of bending straightening for one single step only. This idealization allowed us to
study the influence of residual stresses and their technological parameters indepen-
dently. Now that the process is well known, in this chapter, two consecutive bending
straightening steps are simulated within a Model Order Reduction framework. The
goal is to determine the best available sequence of operations to repair the part.

The chapter is organized as follows: in section 5.2, the problem setup for run-
ning two consecutive reshaping operations is presented. To perform this task, the
distortion definition is rewritten in terms of local distortion, which provides more
flexibility to define when to stop the process. Then, in section 5.3, the problem is
first solved for bending straightening with RS. The obtained results are used as a
reference solution to validate the RSF hypothesis applied to consecutive operations.
To this end, in section 5.4, the comparison is done again by using the reshaping
diagrams. Then, in section 5.5, the reshaping problem is presented as a root-finding
problem. This new criteria is used to provide an error estimation of the MOR solu-
tion. Next, in section 5.6, the idea of process signature is introduced as a qualitative
criterion to evaluate multiple reshaping operations, before launching the simulation
of the selected configuration. As exemplification, two complete reshaping cycles are
performed. Finally, the obtained conclusions are drawn.

5.2 Multiple bending straightening operations

5.2.1 Problem setup

The initial distortion δ0 is generated numerically, following the procedure described
in chapter 3. In order to obtain the warped geometry, a machining offset Mo = 5
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Chapter 5. Evaluation of multiple reshaping operations via MOR

Figure 5.1: T shaped beam. a) Cross section geometry and b) Reshaping set-up

mm is used, which generates a convex shape with an initial distortion δ0 = -6.165
mm. This configuration was chosen as it provides an initial distortion three times
bigger that the structural criteria of L

500 , where L corresponds to the beam’s length
[42]. As in previous chapters, a T-shaped beam is used as a simplified version of the
cruciform beam. Its geometry is represented in Figure 5.1.

For the present study, the parameter to explore is the stroke ys and its interval is
provided in Table 5.1. As the distortion will evolve along the process, it is required
to scale the interval of ys. In order to perform this task, a coefficient ζ is included
and it depends on the portion of the beam that is under repair as:

ζ =

1.0 if the entire beam is repaired

0.25 if one half of the beam is repaired

Regarding the location of the external and internal rollers, re and ri, respectively,
they are not included as parameters, as they are calculated as functions of the
remaining distortion δi. The values used for each reshaping steps are given in Table
5.2.

In order to analyse the evolution of distortion for multiple bending operations, it
is required to update the definition of the remaining distortion, so that it is feasible
to track its evolution in a local manner. This requirement has arisen due to the
fact that the following reshaping operations can be applied to different portions of
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Table 5.1: Reshaping simulation set-up

Description Parameter Comments
Machining offset Mo 5 (mm) Used to generate distortion
Imposed vertical stroke ys (0-40)*ζ (mm) Parameter to explore
Friction coefficient µ 0.05 ( - ) Rollers are rigid surfaces
Rollers position variable See values in Table 5.2

Table 5.2: Rollers positions during multiple reshaping steps

Step ri re1 re2 Units
1 0 -485 485 mm
2-Symmetric 0 -268.35 268.35 mm
2-Non-symmetric -268.35 -485 0 mm

the beam. To solve this problem, the remaining distortion δ is defined locally by
considering just the length of the part that remains inside the external rollers re1
and re2. This definition is expressed as:

δlocal (µ) = max
x

[
u (x;µ)

]
−min

x

[
u (x;µ)

]
for x ∈ [re1, re2] (5.1)

5.3 Reference solution: RS for multiple operations

In order to chain multiple bending straightening operations, we start by repeating
the first reshaping simulation as the longitudinal symmetry condition might not be
applied to the second reshaping step. Following the strategy developed in chapter 3,
the obtained solution with residual stresses is used as the reference solution of our
problem. Then, the result of the first reshaping operation is used as an input to run
a second step where two possible strategies are evaluated.

5.3.1 First step

After performing the so called sequential approach, we start the reshaping analysis
with a warped concave geometry. Then, by using the SSL developed in chapter 4
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but addapted for one single parameter, the optimum stroke yopts is found, giving a
repaired geometry with a W shape as depicted in Figure 5.2a (left).

A comparison between the local and global definitions for the remaining dis-
tortion is depicted in Figure 5.2a (right). Here, it can be seen that before the
optimum configuration, δglobal > δlocal. This is due to the fact that δglobal contains
the total length of the beam, while δlocal depends on the location of the external
rollers. As a consequence, for each definition, there is an optimum configuration and
yopts |δglobal

> yopts |δlocal
. However, once the optimum configuration is reached for the

global case, there is no difference between both definitions.

5.3.2 Second step

Once the first bending straightening step is performed, the initial convex geometry
has evolved into a wavy W shape. Here two possible scenarios are available to
perform the next reshaping step:

• to use the position of the maximum and minimum remaining distortion along
the part to locate the internal and external rollers, respectively.

• to follow the waves pattern and subdivide the problem in two sections: left
wave and right wave.

By choosing the first option, the longitudinal symmetry is conserved. However, the
pattern of the convex wave (available during the first step) now has changed to a
concave one, which means that the reshaping operation is performed in the opposite
direction respect to the previous step. Although the location of the max/min along
the distorted geometry provides a visual guide to locate the rollers and perform
the step, it is counter-productive to bend the part in the opposite direction respect
to the first step, as the repair work performed previously is being removed. This
behaviour is represented in Figure 5.3a (left).

The reshaping diagram represented in Figure 5.3a (right) evidences the impor-
tance of using the local criterion to track the evolution of distortion during the
repairing operation. While δlocal is able to track the evolution of distortion, δglobal
indicates that there is not a valid operation to repair the part, which is not true.

For the second option, the following reshaping step is performed at the left half
of the beam. The first detail to notice is that the selected waves portion remains
convex (so as the initial distortion), therefore, we can mimic the strategy followed
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5.4. Proposed approach: RSF hypothesis for multiple operations

during the first step with the external rollers located at the ribs while the internal
roller continues at the wings. This feature can be used as a criteria to select this
configuration respect to the symmetric set-up. As a drawback, it should be noticed
that longitudinal symmetry is not available anymore. Here lies the importance of
including the whole length of the part from the beginning of the simulation process.
As a consequence, there is an unavoidable incremental increase in the computational
cost.

After performing the SSL simulation for this non-symmetric configuration, it was
noticed that while distortion is reduced inside the left zone, the right half is subjected
to important rotations as solid rigid, as depicted in Figure 5.4a (left). This is due
to the fact that we are acting locally during reshaping but the new configuration
after unloading affects the part globally. This behaviour was already reported by the
boilermakers and it constitutes a great challenge for them because they can measure
locally the zone that is subjected to reparation, but they need to keep track of the
modifications at a global level after each intervention [66]. In other words, there is
a portion of the part subjected to reshaping while the other half although no plastic
strains are generated, it results affected. We can describe this behaviour as repair
locally, affect globally.

5.4 Proposed approach: RSF hypothesis for multiple
operations

In chapter 3, the RSF hypothesis was introduced and its validity was tested for
one single step only. This simplification allowed us to set distortion as an extra
parameter for our problem in order to launch the MOR analysis developed in chapter
4. Now, with the aim to generalize its applicability, we test its effects when this
simplification hypothesis is applied consecutively. Under this scenario, every time a
reshaping operation is done, the material is considered without RS. Again, the effects
of bending straightening with RS are used as the reference solution, therefore, the
analysis performed in section 5.3 is repeated, giving as a result Figures 5.2b, 5.3b
and 5.4b, respectively. The results are placed below their counterpart to simplify
their comparison and we will focus on the obtained reshaping diagrams to study the
response between them.
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5.4.1 First step

For the first bending straightening operation, the resulting reshaping diagram is
depicted in Figure 5.5a. It can be seen that the RSF curve is on the left from the RS
curve and the offset value between both curves is 2.46 mm, which falls in line with
the results of chapter 3 (e.g. for configuration P5 the offset is 2.16 mm, as reported
on Table 3.2 ) 1. The initial offset is used as reference for the next steps.

5.4.2 Second step

For the symmetric set-up, the reshaping diagram shows an inversion in the offset
respect to the first step so that now the RSF curve is located to the right respect
to the RS case, as shown in Figure 5.5b. The resulting offset has a value of -4.39
mm, so the current offset has doubled respect to the first step (in module). This
behaviour is caused by the change of orientation between the first and the second
reshaping step, as described before.

Another feature to remark for the symmetric configuration is the absence of
elastic behaviour (zone A) in the reshaping diagram for the RS case. It means that
plastic deformations take place immediately after loading the part. This is caused
as the current compression experienced during the second bending step is added to
the previous compression state developed in the first step. Therefore it is easier to
reach the yield surface when bending is applied two consecutive times in the central
zone of the beam. While the RSF diagram can not capture this specific behaviour
by definition, it is still able to represent the global shifted evolution of distortion.

Regarding the non-symmetric configuration, as the reshaping operation is applied
in a sector where plasticity was not generated before (left portion of the beam), the
offset keeps the same location respect to the first step as can be seen in the resulting
reshaping diagram depicted in Figure 5.5c. However, it can be noticed that both
diagrams come close to each other, giving as a result a reduced offset value of 0.61
mm. Taking into account that bending straightening is done manually, the task of
determining an offset of this magnitude is not practical, so that, the RSF diagram
can be used directly for the second reshaping step. This advantage provides another
criteria to select this set-up when compared to the symmetric option.

1As a remark, it should be highlighted that each bending straightening operation has its own
optimal configuration and therefore, its own associated offset. This is reason behind the difference
of 0.3 mm between both tests.
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(b) RSF case

Figure 5.2: Multiple bending straightening operations: first step. Left) Reconstruc-
tion of the displacement field u2. Right) Reshaping diagram for different criteria.
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(b) RSF case

Figure 5.3: Multiple bending straightening operations: second step (symmetric con-
figuration). Left) Reconstruction of the displacement field u2. Right) Reshaping
diagram for different criteria.
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(b) RSF case

Figure 5.4: Multiple bending straightening operations: second step (non-symmetric
configuration). Left) Reconstruction of the displacement field u2. Right) Reshaping
diagram for different criteria.
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(b) Step 2: symmetric configuration
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(c) Step 2: non-symmetric configuration

Figure 5.5: Reshaping diagram for consecutive reshaping steps: comparison between
the curves with RS and under the RSF hypothesis.
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5.5 Reshaping as a root-finding problem

Thanks to the local definition of δ introduced in section 5.2, it is possible to consider
reshaping as a root-finding problem. Now, the configuration where distortion is
minimized is the equivalent of finding the location where the distance d, measured
from the location of where the load is applied ul respect to the location of the support
rollers us, is zero, as expressed in the following formula:

d = ul − us (5.2)

As the region where the support rollers are located acts as a locus, where the
beam pivots and provides a constant reference, us is zero. Now, as the absolute
value hidden in the definition of Equation 5.1 is no longer available, the sign of d
provides information regarding the repaired geometry and when to stop the process
by considering the following cases:

d→


< 0 distortion is convex ∪

= 0 distortion is minimized ∼

> 0 distortion is concave ∩
The advantage of this new criteria is that the optimum stroke is not located

anymore in a kink region, providing a smooth solution, as can be seen depicted with
orange dashed lines in Figures 5.2 to 5.4 (right). Additionally, from the numerical
point of view, the optimum configuration can be found by applying an alternative
method (e.g, the secant method) and used to compare the solution to the one pro-
vided by the SSL. By using the root-finding problem as a reference, the error of
the ROM solution can be estimated, as explained in the following paragraph. As a
drawback, we can state that this criterion has no physical meaning as the amplitude
of the remaining wave is not considered anymore.

Once the distance criteria is defined, the Secant Method [74] is selected to solve
again the reshaping problem and is used as a benchmark. A tolerance of 10−3 is
chosen as a stop criteria, consistently with Abaqus solver tolerance for non-linear
problems [106]. Then the SSL is performed for different hierarchy levels k and the
optimum stroke yopts is calculated for each case. Finally, the relative error εrel is
obtained by using the following expression:

εrel = yopts |ref − yopts |SSL
yopts |ref

(5.3)
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Algorithm 3 Secant method applied to reshaping
1: procedure reshapingSecantMethod.py
2: problem setup← x0, x1, y0 = f(x0), y1 = f(x1) and tol
3: n := 0← initialize the problem
4: repeat:
5: n := n+ 1
6: xn+1 := xn − xn−xn−1

yn−yn−1
yn ← find the next point

7: yn+1 := f(xn+1)← evaluate the next point
8: until:
9: |yn+1| ≤ tol

10: end procedure

With the aim to keep the standard notation for the secant method described in
algorithm 3, the stroke ys corresponds to the abscissas so that the extremes of the
interval to explore ymins and ymaxs are x0 and x1, respectively. On the other hand,
the evaluation of function y = f(x) corresponds to Equation 5.2 that is found as a
post-process of the associated .ODB file2 after the reshaping operation is done.

As a remark, the following error estimation analysis were performed only for the
RS case, as they were used as a source to provide the geometry input for the RSF
analysis presented previously.

5.5.1 First step: Error estimation

The evolution of the relative error against the hierarchy level during the first reshap-
ing step is depicted in Figure 5.6a. Here, it can be seen that for a level k = 3, the
error is stabilized. This hierarchy level is selected for the calculations performed. As
a trade-off solution, the relative error of 10−2 is validated for the answer provided
by the ROM.

5.5.2 Second step: Error estimation

After comparing both configurations for the second reshaping step, the non-symmetric
set-up is chosen and used to run the error estimation. The analysis is performed
in the following manner: as a reference solution, starting with the optimum set-up
provided by the Secant Method, the SSL is launched to find the new stroke for the

2Abaqus result file, Abaqus Output Data Base
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Table 5.3: Error estimation set-up for the second reshaping step

Description First step Second step
Reference solution Secant Method SSL
ROM solution SSL SSL

second reshaping step. Then, the same analysis is done but using as a starting point
the configuration provided previously by the SSL. A summary of the used set-up is
presented in Table 5.3. The idea is to compare the effect of an initial error in the
distorted shape and how it affect the solution provided by the ROM.

The error estimation results for the second reshaping step are depicted in Figure
5.6b, where it can be seen that a hierarchy level k = 2 is able to reach a similar error
level compared to the first step (see Figure 5.6a). Therefore, a hierarchy level k = 3
continues to be a good choice for the performed simulations.

(a) Step 1 (b) Step 2 (non-symmetric)

Figure 5.6: Multiple bending straightening operations: error estimation.
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5.6 Process signature

After running the simulation of the first two steps and evaluate different reshaping
strategies during the second operation, we can formulate reshaping as the summation
of displacement fields done after machining ureshaping whose goal is to compensate
the initial displacement field caused by the residual stresses udistortion, as following:

udistortion +
n∑
i=1

ureshaping ≤ tol (5.4)

In an ideal scenario, if udistortion could be mimic perfectly, one single operation
would be sufficient to repair the part. However, when analyzing the displacement
field generated in a three-point bending configuration, it can be seen that the process
is only able to produce an imposed vertical displacement with a triangular shape
that is driven by the rotation of the plastic hinge, located in the zone where the load
is applied, as depicted in Figure 5.7. Here, it can be appreciated how the amplitude
of the wave can be reached while the zones outside the triangular pattern correspond
to the remaining distortion for the successive reshaping steps.

This characteristic shape of the displacement field is referred to as the process
signature and can be used to model in a qualitative way the evolution of distortion
for consecutive reshaping operations. An example of the application of this idea is
represented in Figure 5.8. Here, it can be appreciated how the remaining distortion
evolves along the reshaping process (Figure 5.8a) and the different displacement
fields imposed at each step (Figure 5.8b). The first reshaping step is done in one
single operation while to complete the second reshaping step, three operations are
required. The full sequence for the second reshaping step can be described as:

• Step 2.1: The left portion of the wave is repaired. The reduction of distortion
in the treated zone generates the rotation of the right half of the beam, as
explained in section 5.3.2.

• Step 2.2: The right portion of the wave is repaired. Now the left half ex-
periences the rigid solid rotation. As a consequence, a symmetric distortion
pattern is obtained. At an operational level, the part needs to be repositioned
as a consequence of the rotation experienced in Step 2.1.

• Step 2.3: The whole beam is repaired. If we compare the initial shape with
the temp3 geometry (see Figure 5.8a), it can be noticed that the form is closer
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Figure 5.7: Process signature’s scheme for bending straightening: comparison be-
tween a generic distorted geometry against the available imposed displacement.

to a triangular shape instead of the starting parabolic curve, therefore, it is
expected to repair the part in a major degree.

The complexity of reshaping increases while the process goes along. As the
remaining distortion decreases, it is more difficult to repair the part as the zone
involved gets smaller too and more operations are required to migrate from a wavy
shape to a triangular pattern. By analysing the sequence of reshaping operations,
it is found that for each repaired wave n, 2n smaller waves are generated by manip-
ulating the part with 2n − 1 operations. A summary for all the processes up until
the third bending straightening step is provided in Table 5.4.

Thanks to the process signature approach, it is possible to know the right se-
quence of operations in advance. Then, to validate the previous result, the reshaping
simulations were done by applying the SSL in a sequential way. This means that,
for each operation and a fixed level of hierarchy k = 3, 9 simulations were required
before finding yopts . Once the optimum stroke is known, an extra simulation with
the optimum parameters is needed to start the next iteration. The result is shown
in Figure 5.9 and a good agreement is found with respect to the qualitative model
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Table 5.4: Required operations as a function of waves number n

Step 1 2 3 ... i

Waves number 1 2 4 ... n

Required operations 1 3 7 ... 2n− 1

represented in Figure 5.8.
The described approach takes as the main input the remaining distortion δi at

step i and provides the estimation for the next reshaping step i + 1, giving as an
output δi+1, as shown in Figure 5.10a. This strategy presents the drawback that the
next reshaping step cannot be launched before the new distorted geometry is known,
which limits the application of the model to a few steps. As a future development,
it would be interesting to explore the possibility to generate a more generic MOR
that uses the idea of the process signature. By knowing in advance the shape and
amplitude of the displacement field, a feedback loop can be included such that the
generated remaining distortion δi+1 is plugged in directly for the next iteration, as
represented in Figure 5.10b.

5.7 Conclusions

In the present chapter, the evolution of distortion for two consecutive bending
straightening operations was studied. This task was done as a direct application
of the ideas presented in chapter 3 in combination with the ROM developed in 4.

With the aim to generalize the RSF hypothesis, it was tested and validated
for different consecutive configurations. During the process, it was found that the
complexity of the reshaping problem is incremented as the operation advances in
time. Then, when the part is repaired locally, the global effects must be taken into
account too.

Thanks to the Model Order Reduction approach in combination with the RSF
hypothesis and the process signature idea, it was possible to isolate the effects of
each reshaping step. In that way, a methodology to perform a series of bending
straightening operations was proposed, where the non-symmetric configuration was
chosen over the symmetric setup for the second step.
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(a) (b)

Figure 5.8: Theoretical process signature for bending straightening applied to two
complete reshaping steps. (a) Normalized remaining distortion δi. (b) Normalized
imposed vertical displacement u2.

Finally, based on the wavy pattern developed after each reshaping step, the
possibility to model distortion as a sinusoidal function with n periods needs to be
explored as future work. This parametrization could be useful to develop the idea of
a MOR with feedback to overcome the current limitation of the presented sequential
MOR.
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(a) (b)

Figure 5.9: Distortion evolution during reshaping (simulation results). (a) Remain-
ing distortion δi. (b) Imposed vertical displacement u2 for each reshaping step.

Figure 5.10: Model Order Reduction strategies for reshaping. a) Sequential model
(implemented) and b) Feedback model (future work).
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Scientific contributions

This thesis was devoted to the numerical study of the bending straightening oper-
ation to mitigate the post-machining distortion of large aluminium forgings. The
contributions of this work can be summarized by the answers given to the following
research questions:

• What is the influence of residual stresses during reshaping?

• Which is the most important parameter for bending straightening?

• Which is the best reshaping strategy for multiple bending straightening oper-
ations?

To tackle the first question, in chapter 3, we introduced the reshaping diagrams.
This tool allowed us to compare the behaviour of the real forge with and without
residual stresses. It was found that, by neglecting the internal residual stresses
(under the residual stress free hypothesis), a similar behaviour was obtained in terms
of distortion mitigation with an offset. Then, to retrieve the original curve, only
force-displacement measurements are required. Although reshaping is mainly driven
by plastic phenomena, a history-dependent material problem [35] in nature, this
simplification hypothesis allows to focus the simulation resources on the reshaping
step only, instead of solving the whole manufacturing history. Up to this point,
traditional Finite Element Analysis tools were used.

Regarding the multi-parametric analysis of a single bending straightening oper-
ation, discussed in chapter 4, it was shown that the initial distortion δ0 is the main
parameter for the problem, since the required stroke ys to be applied can be fully
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determined, for any previously defined roller position re. In addition, the gener-
alization of the reshaping diagram in the form of a response surface allowed us to
explain a paradoxal behaviour: it is more difficult to repair a smaller distortion re-
spect to a bigger one. This behaviour, already reported by boilermakers [66], can be
interpreted now as follows: when distortions are small, the required stroke to repair
the part gets closer to the minimum stroke to produce plasticity, and its accurate
prediction becomes sensitive to uncertainties. On the contrary, it is easier to find
the optimum distortion away from the critical area, in the domain of higher strokes.
The multi-parametric analysis was possible thanks to the use of the Sparse Sub-
space Learning Method, which proved itself as a powerful Model Order Reduction
technique to be used in an industrial environment. As a remark, with the aim to
enhance these results, future work is needed as all the simulations were done under
the assumption of constant material properties. This analysis could provide some
hints about the distortion variability.

For the different consecutive bending straightening operations, compared in chap-
ter 5, the non-symmetric option provides more flexibility with respect to the sym-
metric counterpart. While the latter takes advantage of the longitudinal symmetry
by keeping track of the crests and valleys developed during the first reshaping step
and uses them as a criteria to place the rollers to perform the next operation, the
former strategy is more practical as it follows a pattern each time a reshaping oper-
ation is done that can be summarized as divide and conquer. Then, in combination
with the proposed process signature for bending straightening, it is possible to de-
termine in advance the required sequence to repair a part. However, one limitation
to this approach is that it was developed for a single initial distortion δ0, therefore,
more work is required to generalize this analysis for multiple parameters.

Future works

Although the problem of reshaping remains still open, after finishing this project,
besides the previous suggested improvements, different scenarios for future works
are discussed bellow.

In this thesis, from the four available reshaping operations described in chapter
1, only bending straightening was analysed, therefore, the next logical step is to test
the reshaping diagrams and the residual stress free hypothesis in the other remaining
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operations. Plastic torsion is a strong candidate to consider as this technique presents
some similarities respect to bending straightening, e.g. the development of plastic
zones in the external fibres and the important presence of spring-back phenomenon.

Another work to be done in the short-term is the generalization of the remaining
distortion criteria. The rule presented in here was developed for straight geome-
tries, however, some cruciform beams present a curvature along its longitudinal
axis. Maybe the local definition of distortion discussed in chapter 5 could be used as
a guide to obtain a repaired curved part as the sum of repaired straight segments.

When it comes to a possible application for this research, training of boilermakers
is one option to explore in the mid-term. Currently, it takes 2 years to teach a
technician how to properly repair a part. This constitutes an access barrier to
any person interested to work in the field and an important cost as normally an
experienced boilermaker supervises the learning process. In addition, while the
iterative nature of reshaping acts as the drawback during the learning period, this
represents an advantage when the process is virtually analysed as it is possible to
track, study, and isolate the effects of one single reshaping operation. The work
performed by Badias et al, [7] mixing augmented reality with Model Order Reduction
techniques can be used as a guideline for this purpose.

Finally, in a long-term scenario, it must be noticed that numerical simulation
is only one of the multiple ingredients needed to tackle the reshaping problem effi-
ciently. In the daily industrial environment of Airbus, new techniques to measure
the evolution of distortion in real-time are required, in order to track the repairing
process from the beginning to the end. Then, this information could be used to
update/enrich a reshaping simulation, following the philosophy of data assimilation
techniques which are successfully applied in weather forecasting [85].

Final remarks

As a closing remark, maybe at first sight the action to repair something could be
considered unappealing for the research community, as it can be seen as a non-added
value work or the lack of interest/literature might be caused by the current notion
that it is cheaper to replace something instead of investing time and effort to fix it.
However, in the same way as reshaping poses a serious problem for the aeronautical
industry, not only in economical terms, there is space for improvements in different
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research fields, e.g. at a numerical level there is a need to study the distortion
problem in a probabilistic framework with the aid of an efficient algorithm, or the
demand at experimental level to develop a non-destructive technique to measure
residual stresses in an industrial context. Although no final solution to the reshaping
problem was proposed, it is the hope of the author to bring back interest in this field,
where this work could provide a first step towards this direction.
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[71] Niroomandi, S., González, D., Alfaro, I., Bordeu, F., Leygue, A., Cueto, E., and
Chinesta, F. (2013). Real-time simulation of biological soft tissues: a PGD ap-
proach. International Journal for Numerical Methods in Biomedical Engineering,
29(5):586–600. cited on page 66

[72] Nouy, A. (2010). Proper Generalized Decompositions and Separated Rep-
resentations for the Numerical Solution of High Dimensional Stochastic Prob-
lems. Archives of Computational Methods in Engineering, 17(4):403–434.

cited on page 66

[73] Ohlberger, M. and Rave, S. (2016). Reduced basis methods: success, limitations
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