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Abstract

Nowadays, one of the most important problems in urban areas concerns traffic conges-
tion. This, in turn, has an impact on the economy, nature, human health, city archi-
tecture, and many other facets of life. Part of the vehicular traffic in cities is caused
by parking space availability. The drivers of private vehicles usually want to leave their
vehicles as close as possible to their destination. However, the parking slots are limited
and may not be enough to sustain the demand, especially when the destination pertains
to an attractive area. Thus, individuals looking for a place to park their vehicles con-
tribute to increasing traffic flow density on roads where the parking demand cannot be
satisfied.
An Internet of Things (IoT) approach allows us to know the state of the parking system
(availability of the parking slots) in real time through wireless networks of sensor devices.
An intelligent treatment of this data could generate forecasted information that may be
useful in improving management of on-street parking, thus having a notable effect on
urban traffic. Smart parking systems first appeared in 2015, with IoT platforms in
Santander, San Francisco and Melbourne. That is the year when those cities began to
provide on-street real-time parking data in order to offer new services to their citizens.
One of the most interesting services that these kinds of platforms can offer is parking
availability forecasting, for which the first works in this field studied the temporal and
spatial correlations of parking occupancy to support short-term forecasts (no more than
30 minutes). Those short-term forecasts are not useful at all to the end user of this
service; thus, the necessary prediction intervals should be at the order of magnitude of
hours.
In this context, this thesis focuses on using parking and other sources of data to char-
acterize and model different parking systems. The methodology used employs novel
techniques for providing real-time forecasts of parking availability based on data from
sensors with certain inaccuracies due to their mechanical nature. The models are devel-
oped from four different methodologies: ARIMA, multilayer perceptron (MLP), long-
short term memory (LSTM) and gated recurrent unit (GRU). The first has been the
standard approach to forecasting in the ITS literature, while the latter ones have proven
to be the best neural network (NN) architectures for solving a wide set of sequential data
problems, such as those presented in this work. As far as we know, LSTM and GRU
methods (recurrent neural network approaches) have been used recently with good re-
sults in traffic forecasting, but not for parking. In addition, we propose using exogenous
data such as weather conditions and calendar effects, thereby converting the problem
from univariate to multivariate. It is shown here how NN methods naturally handle the
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increased complexity in the problem. The reason for using exogenous variables is that
they can offer relevant information that cannot be inferred from the sensor measure-
ments.
The proposed methods have been intensively compared by creating parking models for
parking sectors in five cities around the world. The results have been analysed in order
to identify and provide exhaustive guidelines and insights into the inner mechanisms
of parking systems while also ascertaining how the idiosyncrasies of each method are
reflected in the model forecasts.
When comparing the results according to their disciplines of origin (ARIMA from statis-
tics and NN methods from machine learning), neither of the proposed methodologies is
clearly better than the other, as both can provide forecasts with low error but by differ-
ent means. ARIMA has shown lower error rates in small-sized sectors where the more
recent status of the parking system is more relevant; while the NN methods are more
capable of providing forecasts for large-sized sectors where patterns are dependent on
long time horizons.
Keywords: parking availability forecast; deep learning; smart cities, recurrent models,
time series.
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Resumen

En la actualidad uno de los mayores problemas de las zonas urbanas tiene origen en
la congestión del tráfico con un alto impacto en la economía, el medio ambiente, la
salud, la arquitectura de la ciudad y otras muchas facetas de la vida urbana. En muchas
ocasiones parte de la congestión del tráficotiene origen en la disponibilidad de las plazas
de aparcamiento debido a que los conductores de vehículos privados suelen querer aparcar
sus vehículos lo más cerca posible de su destino pero las plazas de aparcamiento son
limitadas y pueden no ser suficientes para mantener la demanda, especialmente cuando
el destino corresponde a un área atractiva. Por lo tanto, las personas que buscan un
lugar para aparcar sus vehículos contribuyen a aumentar la densidad del flujo de tráfico
en las vías donde no se puede satisfacer la demanda de estacionamiento.
Un enfoque basado en el Internet of Things (IoT) nos permite en tiempo real conocer la
disponibilidad de plazas de estacionamiento a través de redes inalámbricas de sensores.
Un tratamiento inteligente sobre estos datos puede generar información que ayude a
predecir la futura demanda de estacionamiento en las zonas sensorizadas mejorando
así la gestión del estacionamiento en la calle y teniendo un efecto notable en el tráfico
urbano. Sistemas de aparcamiento inteligentes aparecieron por primera vez en el año
2005, con plataformas de IoT en Santander, San Francisco y Melbourne proporcionando
datos de estacionamiento en la vía pública en tiempo real y ofreciendo nuevos servicios
a sus ciudadanos basados en éstos. Uno de los servicios ofertados más interesante es el
de la predicción de la disponibilidad de estacionamiento en el cuallos primeros trabajos
académicos se centraron en estudiar las correlaciones temporales y espaciales de la ocu-
pación del estacionamiento para proveer pronósticos a corto plazo (predicciones a tiempo
máximo de 30 minutos) y que en muchas ocasiones no son de utilidad ya que para el
usuario final es preferible tener estimaciones de la disponibilidad de estacionamiento en
el order de magnitud de horas.
Con este contexto, esta tesis se centra en el uso de datos de aparcamientos y otras
fuentes de datos para caracterizar y modelizar diferentes sistemas de aparcamiento. La
metodología utilizada emplea técnicas innovadoras para proporcionar predicciones en
tiempo real sobre la disponibilidad de aparcamiento basadas en datos de sensores que
debido a su propia naturaleza presentan ciertas inexactitudes de captación. Los mode-
los se desarrollan a partir de cuatro metodologías diferentes: Autoregressive Integrated
Moving Average (ARIMA), Multilayer Perceptron (MLP), Long-Short Term Memory
(LSTM) y Gated Recurrent Unit (GRU). La primera ha sido el enfoque estándar de
predicción en la literatura sobre Sistemas de Transporte Inteligentes, mientras que las
otras tres han demostrado ser las mejores arquitecturas de redes neuronales para re-
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solver un amplio conjunto de problemas de datos de naturaleza secuencial, como los que
se tratan en este trabajo. Hasta donde sabemos, los métodos LSTM y GRU (enfoques de
redes neuronales recurrentes) se han utilizado recientemente para la predicción de tráfico,
obteniendo buenos resultados, pero no para aparcamiento. Además, proponemos utilizar
datos exógenos como las condiciones meteorológicas y los efectos del calendario, trans-
formando el problema de univariante a multivariante y demostramos como los métodos
de redes neuronales gestionan de forma natural esta mayor complejidad del problema.
El motivo para incluir variables exógenas es el de reducir la incertidumbre dada por las
mediciones de los sensores ya que el uso de los sistemas de aparcamiento está condi-
cionado por procesos no medibles por los sensores.
Los métodos propuestos se han comparado intensamente mediante la creación de modelos
de estacionamiento para sectores de aparcamiento en cinco ciudades del mundo. Los
resultados se han analizado con el fin de identificar y proporcionar pautas exhaustivas
y conocimientos sobre los mecanismos internos de los sistemas de estacionamiento y, al
mismo tiempo, determinar cómo se reflejan las idiosincrasias de cada método y de cada
sector en los pronósticos del modelo.
Al comparar los resultados según sus disciplinas de origen (ARIMA de estadística y
métodos de redes neuronales de aprendizaje automático), ninguna de las metodologías
propuestas es claramente mejor que las otras, ya que ambas pueden proporcionar predic-
ciones con bajo error. ARIMA ha demostrado tener tasas de error más bajas en sec-
tores de aparcamiento de menor dimensión donde el estado más reciente del sistema
de aparcamiento es más relevante; mientras que los métodos de redes neuronales has
demostrado ser mejores capaces de proporcionar mejores predicciones para sectores de
gran tamaño donde los patrones tienen mayores dependencias temporales.
Palabras clave: predicción de disponibilidad de aparcamiento; aprendizaje profundo;
smart cities; modelos recurrentes; series temporales.
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1 Introduction

This chapter describes the context for this thesis , the background of the problem to be
solved, the objectives and an outline of how this document is organized.

1.1 Thesis context

The work was carried out under the program Doctorats Industrials de Catalunya, a
research program that aims to cultivate relationships between research centers and in-
dustry. This thesis is a collaborative project between the Department of Statistics and
Operations Research at the Universitat Politècnica de Catalunya (DEIO-UPC) in coop-
eration with the inLab FIB innovation and research laboratory in the Barcelona School
of Informatics and with the startup company Worldsensing S.L. The goal of this project
is to provide innovative solutions to problems generated by parking in urban areas.

1.1.1 DEIO-UPC

This UPC department works in statistics and operations research. Among its many
areas of focus, it collaborates with teachers in: the School of Industrial Engineering
of Barcelona; the School of Industrial, Aerospace and Audiovisual Engineering of Ter-
rassa; the Barcelona School of Informatics; and the UPC School of Mathematics and
Statistics. The department is largely involved in research activities in the field of in-
dustrial engineering, intelligent interfaces, automatic data processing, optimization and
simulation.

1.1.2 Worldsensing S.L.

This company manufactures their own sensor devices, networks and software in order to
accomplish their mission: provide the tools for making the right operational decisions
based on real-time intelligence. As a company, Worldsensing has achieved recognition as
a global Internet of Things pioneer, with customers from more than 50 countries across
five continents.
They have recently placed their focus on providing services that help cities become
smarter, specifically by assisting city operators in their decision-making processes using

1
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data provided by the city. With that data, they apply statistics and machine learning
techniques to generate the most useful visualizations for taking decisions.
The company considers research and innovation to be crucial in achieving their main
goals. For this reason, they have incorporated PhD and doctoral students into their
Department of Innovation under the leadership of Dr Andrea Bartoli, PhD (UPC),
who is also the industry advisor for this doctoral thesis. In addition, Worldsensing
collaborates intensely with the academic world, in particular with universities such as
the Universitat Oberta de Catalunya and the Università di Padova.

1.2 Background

Urban areas today face an increasing number of problems with one common origin:
traffic congestion due to road transport. Urban traffic affects the quality of life in cities
and metropolitan areas around the world, with consequences for widely different scopes:
the economy, environment, public health, and city landscapes, among others.
According to the yearly statistical book, Energy, transport and environment indica-
tors, published by the statistical office of the European Union, the most used mode of
passenger transportation in 2016 was the car, which accounted for nearly 83% of use
compared to other modes (trains, motor coaches, buses and trolleybuses) (see Figure
1.1). Companies like INRIX and TomTom have made online dashboards available for
sharing information about traffic in capital cities. According to a Forbes article (Mc-
Carthy [2019]) using data from the TomTom traffic index, “Over the past decade, traffic
congestion has continued to increase globally with nearly 75% of the cities in the in-
dex reporting increased or stable congestion levels between 2017 and 2018”. Figure 1.2
shows the ranking of the world’s capital cities that have lost the most time due to traffic
congestion.
Given these facts, it is imperative to develop new strategies and policies for sustainable
urban transport, thus making it equally essential to invest not only in the improvement
of infrastructures, but in their planning and management as well.

1.2.1 The parking problem

Parking in dense urban areas can have a positive feedback effect on traffic congestion,
in other words, by increasing it. Drivers of private vehicles usually want to leave their
transportation mode as close as possible to their destination. However, parking slots are
limited and may not be sufficient for sustaining demand, especially when the destination
pertains to an attractive area. This forces individuals to continue driving in search of
a parking space within their destination’s neighborhood. These vehicles contribute to
increasing traffic density on roads where parking demand cannot be satisfied. In major
areas, like the city of Barcelona, 17% of the traffic density results from vehicles looking
for a parking slot (El Periodico [2012]).
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Figure 1.1: Transportation modes of EU countries: Percentage of total inland transport
by passenger-kilometer. Source: Eurostat [2018].

In recent years, parking has become a strategic issue for economic interests and has
attracted a lot of attention from researchers because it has been identified as one of
the main contributors to urban traffic congestion. The increase in urban traffic con-
gestion has an impact on the environment, health and the economy. Donald Shoup, a
pioneer in studying the economic impact of parking in urban areas, has demonstrated
through several studies that part of the traffic congestion in cities comes from cruising
traffic: vehicles that continue to drive in search of a place to park after arriving at their
destination (Shoup [1997], Shoup [2006] and Shoup [2018]).
The authors of a recent work (Hampshire and Shoup [2018]) present a summary table
of cruising studies in different cities around the world from 1927 to 2015, in which they
show the percentage of traffic caused by cruising and/or the average time spent searching
for a parking slot. This table can be seen in Figure 1.3. Another work conducted in the
city of Bristol found that cruising traffic caused 790 metric tons of CO2 in one year at a
total cost of US$467,000 in wasted fuel (Jones et al. [2018]). In 2006, a study in France
(Gantelet and Lefauconnier [2008]) estimated that 70 million hours are spent every year
searching for parking, with an imputed cost of 700M€. One IBM survey stated that
drivers spend an average of 20 minutes searching for a parking spot in the world’s major
capital cities (IBM [2011]).
Cruising for parking affects not only the city by increasing traffic and resulting in its
derivative effects (congestion, accidents, climate impact, etc.), it also poses a major
problem for urban planning. City planning must strike a balance between on-street and
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Figure 1.2: Ranking of cities in time lost to congestion. Information extracted from
TomTom Traffic Index. Source: Forbes / statista.

off-street parking. When a small number of on-street parking places are available, the
most common solution is to create off-street places: parking facilities like garages and
lots. The increase in off-street places causes more people to take private vehicle to work
instead of using public transportation, leading once again to an increase in urban traffic
flow. Some authors (Shoup [1999]) propose pricing policies for on-street parking instead
of creating off-street facilities, but this needs to be measured meticulously because an
area with higher prices will penalize shops and leisure areas, as people will park in
cheaper zones. On the other hand, if the prices are too low, vehicles will cruise for
parking until a spot becomes available.
In the end, all problems related to parking have a common trigger: when the last free
place is taken in a block. Figure 1.4 represents the cascade of effects when the last
parking spot is occupied. From top to bottom: at the moment that the last free on-
street parking slot on a block is occupied, vehicles arriving with a desire to park in
that area begin cruising in search of a free slot while competing with other vehicles that
have the same objective. This causes an increase in traffic flow for that block and its
surrounding neighborhoods, resulting in wasted time for the vehicle users. During rush
hours, the problems are exacerbated as the increase in traffic flow creates congestion in
the streets as the vehicles cruise for parking together with vehicles that do not. The
congestion imposes a stop-and-go flow of traffic due to competing vehicles being operated
by distracted drivers looking for parking. All of this causes an increase in CO2emissions,
fuel consumption and the possibility of accidents.
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Figure 1.3: Cruising for parking summary table. Source: Hampshire and Shoup [2018].

Different solutions have been proposed for improving parking management. The so-
called smart parking systems are becoming one of the most interesting areas of research
within the context of the smart cities ecosystem. Some proposed solutions are: creating
specific parking zones, depending on the type of vehicle; new on-street parking payment
policies; and promoting park & ride areas.
One of the issues surrounding the topic of smart parkingis managing parking slot avail-
ability. An Internet of Things approach allows knowing the state of the parking system
(availability of parking slots) in real time through wireless networks of sensor devices.
Intelligent treatment of this data can generate useful information for improving the
management of on-street parking blocks, thus having a notable effect on urban traffic.

1.2.2 Company motivation

In 2016, the European Commission’s Horizon 2020 (H2020) program granted Worldsens-
ing funding for their project Fastprk2: Enhanced on-street parking management system.
This project is an initiative for developing next-generation parking detection systems
equipped with Intelligent Transport Services (ITS) for cities and citizens, all merged
into a single mobility software platform. This new generation of sensors will combine
both magnetic and infrared detection technologies while providing highly accurate data
based on their measurements, thus ultimately making it possible to offer parking predic-
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Figure 1.4: The consequences and possibilities of the last on-street space occupied in
a block.

tion services. In order to provide acceptably accurate predictions, these solutions must
be based on state-of-the-art computational intelligence.
As part of the project, the technology developed were deployed in different cities:
Antwerp (Belgium), Barcelona (Spain), Paris (France), Wattens (Austria) and Grudzi-
adz (Poland). Two additional cities out of this project’s scope have been included in the
present work: Los Angeles (USA) and Riyadh (Saudi Arabia). The motivation for this is
that studying parking behaviour in other cities of the world can provide new information
about parking processes.

1.3 Motivations and thesis objectives

The main objective of this thesis is to use parking and other sources of data to charac-
terize and model different parking systems in order to provide accurate short and long
term on street parking occupancy forecasts. The methodology employs novel techniques
for providing real time forecasts of parking availability based on data from sensors that
is accuired in real time and can have certain inaccuracies due to the sensors mechanical
nature. The created models need to fulfill the following requirements: highly accurate
forecasts, predictions in real time and robustness to sensor noise.
In order to correctly execute, validate and evaluate the developed forecasting models,
this thesis develops an integrated software framework, which includes:

• Handling (extraction, transformation, and storage) of data from real sensor devices.
• A core component containing the developed models.
• The appropriate architecture for conducting online training in the use of the de-

veloped forecasting models and for storing the obtained output data.
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• A proper validation methodology for testing the accuracy of the global procedure
and developed models.

• An environment for evaluation that allows treating the obtained results and quan-
titatively comparing different forecasting model proposals in order to select the
most suitable one for each scenario.

This objective is motivated mainly by the need to obtain accurate short/long-term fore-
casts of parking availability in order to improve parking management. Consequently,
this will reduce the urban traffic caused by vehicles searching for free parking slots. In
this context, “long-term forecast” refers to a prediction of more than one hour. It would
also be very interesting to predict parking availability at a minimum of six hours while
maintaining the same levels of accuracy over different time horizons.
At the moment of beginning this thesis, the literature on ITS techniques for forecasting
traffic and parking had started to consider deep learning models as good candidates for
forecasting. We also consider these to be of great interest to this area of research and
thus explore further in this direction.
Another motivation for the research proposed in this thesis is worth mentioning. For
some time now, our research group has addressed other smart city problems through
traffic simulation and optimization techniques. However, approaches based on machine
learning techniques had not been intensively considered. Currently, it is our belief that
the data explosion from increasing Information and Communication Technology (ICT)
penetration can provide a suitable framework for exploiting the potential of these fore-
casting methods.
Finally, as the availability of on-street parking data is scarce, this work opens up the
possibilities for exploring those systems while making them available to other researchers.
Aside from the primary objective, this thesis focuses on the following research questions
that, in the current literature, have not been properly solved as is explained in Chapter
4:

• Forecasting the availability of parking places is not a new problem in the literature.
Over the past 20 years, efforts have been made to provide solutions, although with-
out much progress due to the lack of data. However, because we currently have
real-time parking status made available by advances in IoT and increasing com-
putational capacity, we can train machine learning models that are capable of
learning and identifying complex patterns in the data. Considering these advan-
tages, is it now possible to provide a better solution to the problem of forecasting
parking availability?

• Creating models is affordable using two different but related disciplines: classical
statistical methods and machine learning. Both try to solve the same problems
with different philosophies. Specifically, both provide algorithms that enable mod-
els to forecast time-dependent data. Which approach would be the most suitable
in fulfilling our requirements?
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• Intuition leads us to question whether sensor data is enough for inferring patterns
that govern a parking system. Thus, it is natural to consider other data sources.
What other sources can be exploited to improve parking forecasts and what effect
do they have?

• Models are trained with historical data, but a new installation in a new system
(city) lacks this fundamental prerequisite. In order to use the forecast service for
new installations, the proposed algorithm must provide models with some sort of
transfer learning in order to share knowledge of patterns between models in similar
situations. Is this feasible?

• Which of the current NN methods is more suitable for handling data with temporal
dependencies?

1.4 Thesis Outline

This thesis is organized according to the scheme presented in Figure 1.5.
Chapter 2 introduces the data pipeline from the moment the data is generated up to
the point when it is stored in different data warehouses. It further details the database
structures, the services provided, and the platform developed for delivering the forecasts.
Chapter 3 presents an exploratory analysis of the data with the goal of finding patterns
and relevant information that can help in the decision-making process. It also describes
what kind of data-driven models in the literature are better suited to the problem at
hand. Chapter 4 introduces the reader to the state of the art within the framework of this
thesis: forecasting in the ITS area. This chapter provides an exhaustive literature review
about data-driven models for forecasting traffic and parking. Chapter 5 presents the
theoretical aspects of the methods considered in this work. Chapter 6 is focused in the
characterization and modeling of the parking system through the ARIMA methodology.
Chapter 7 modelizes the different parking systems by exploring and developing deep
learning models. Previous chapters made use only of the endogenous variable, that
is the usage of previous realizations of the same variable to provide its outcomes in
the future, in Chapter 8 exogenous information it is introduced, namely calendar and
weather, and used to create models to forecast parking availability. Finally, Chapter 9
summarizes the major contributions of this thesis and suggests proposals for advancing
the present work further, other interesting lines for future research and some concluding
remarks.

1.5 Methodology outline

The following methodology has been used during the development of this thesis:
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1. Characterization of the studied systems (different parking sites) through a data
analysis of different sources that are endogenous or exogenous to the system. This
corresponds to Chapter 3 and first sections of Chapter 8.

2. Development of different experiments with the objective to answer different ques-
tions related to the modeled process and the methodology/modeling used for each
system that consists in:
a) Identification of a subset of possible models in accordance of the methodology

used.
b) Models creation (fit/training).
c) Models evaluation through goodness of fit and visualizations on unseen data

(validation/testing).
d) Choice of the model that, in accordance to the methodology used and the eval-

uations, provided the best results from the subset of identified models. This
model will be the output of the experiment altogether with the observations
and information collected that will be used to answer the raised questions.

The experiments can be found in chapters 4, 5 and 8.
3. Discussion about the lessons learnt through the development of the experiments,

answering of the raised questions and conclusions about the parking processes, the
methodologies used and the chosen models.
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Figure 1.5: Schematic presentation of the thesis outline.
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2 Problem overview based on data
flow characterization

This chapter introduces the data pipeline, that is, the transfers and processes that the
data undergo from their inception to storage in various data warehouses. The database
structures are also described. Next, we begin with a short description of the different
services provided by the data warehouses, followed by a description of the transforma-
tions needed for ascertaining the occupancy of parking spots. Finally, we present the
structure that loads the models for delivering forecasts in real time. Altogether, this will
serve as a reference for the following chapters.

2.1 Data pipeline

Data flow can be viewed as two sides of the same coin: one requiring physical devices,
and another involving various processes and means for storage.

2.1.1 Physical components

The basic components of the system are individual nodes installed under the ground
of each parking spot, namely parking sensors. Once a parking event is sensed as a
change in the sensor measurements, the nodes wirelessly communicate it to its assigned
gateway, which will forward the information to the cloud. The node box is composed
of the following modules: sensors, micro-controller, communications module and power
stage.
Sensors are composed of two different sensor technologies working in tandem: a triple-
axis magnetic device and an infrared sensor. These are governed by an energy-efficient
detection algorithm that outputs the parking state based on sensor measurements. This
innovative approach allows using these nodes under strong magnetic noise conditions,
whereas this was not possible with the previous generation of nodes (magnetic only).
After installation, the sensors automatically calibrate themselves in order to establish
the magnetic levels for operating.
The micro-controller runs the device drivers and firmware via a real-time operating
system while guaranteeing low power consumption. This is done by a properly integrated
power stage that regulates the power coming from the primary battery. The main
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design objective is to achieve the lowest power consumption during sleep mode. The
communications module has the objective of sending the generated information to the
assigned gateway.
Gateways can be located within a radius of up to 500 m and are reached by the sensor
node in a single hop. The underlying forwarding protocol is LoRa, as it can use extremely
low transmit power levels and fulfill many of the requirements for long battery life. It
is configured via a web tool in order to establish the sensor network. Gateways forward
all data to the data warehouse servers in the cloud.
Figure 2.1 shows a representation of the data traveling through the different components.

Figure 2.1: Physical components of the data pipeline. Once a node detects a
change in their measurements (a car over it), the data is sent to a gateway (the
component in the traffic light) that also sends the data to the cloud. Source
https://www.worldsensing.com/product/fastprk/

2.1.2 Logical components

Raw data from the gateways is stored in MongoDB databases in the cloud, where each
database maintains the sensor measurements as well as other information like sensor
battery, gateway status, network malfunctions, etc. All this together forms a network,
that is, a sensor installation for a city. This data is used by different Extract Transform
Loading (ETL) processes in order to provide different services. The schema in Figure
2.2 shows the different components that form the data pipeline from the gateways to
the different services and data warehouses.
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2.1 Data pipeline Problem overview based on data flow characterization

Figure 2.2: Pipeline from gateways to data warehouses and services.

One of the ETL processes extracts information from the MongoDB instances on a daily
basis and transforms it for storage in relational databases (MySQL), where data is stored
to provide historical aggregated and real-time information through web services. Simi-
larly to the MongoDB, each of the databases stores information for a specific network,
and all of them follow the same schema of tables. The information stored in the tables
results from different data processing on the raw data and on some extra information
needed for different services. Tables related to parking usage are divided according to
different aggregations in the temporal and spatial dimensions. Based on spatial aggre-
gation, there are tables with sensor information and others with sector information. In
the latter, a sector serves as a logical aggregation of sensors communicating with the
same gateway and which are installed in the same zone. Furthermore, sector and sensor
tables are divided according to temporal aggregations, thus forming new tables based
on hourly, daily and weekly aggregations. The information that can be found in these
tables is:

• Sensor_id:The ID of the sensor (only in per-sensor tables)
• Sector_id: The ID of the sector
• Hour_of_day: The hour of the day, from 0 to 24.
• Day_of_year: The day of the year
• Week_of_year: The week of the year.
• Year_for_week: This complements the week_of_year column to unambiguously

identify a week.
• Datetime: The date and time, representing the start of the period covered by the

row (start of the hour, start of the day, start of the week)
• Total_occupancy_events: The number of occupancy events occurring over the

period, i.e., how many times a car parked.
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• Total_free_events: The number of free events occurring over the period, i.e., how
many times a parked car left.

• Total_occupancy_hour: The number of hours that a space has been occupied
during the period. For example, in the sensor per hour table, occ ≤ 1 indicates
that the space was occupied during a fraction occ of the hour (if occ = 0.75, the
space was occupied 45 minutes). In the sensor per week table, occ ≤ 168 indicates
that the space was occupied for occ hours during the week. In the sector per hour
table, the value is the sum of occupied spaces multiplied by the time they were
occupied. If a sector has 3 sensors and each was occupied half an hour, occ = 1.5.

• Total_free_hour: The number of hours that a space has been free during the
period. Complementary to the previous value “total_occupancy_hour”.

• Total_full_hour (sectors only): The number of hours that the sector remains
completely full. Only intervals when the sector and at least one of its sensors are
active count for this metric.

• Total_full_events (sectors only): The number of times that the sector has become
completely full. Only events occurring when the sector and at least one of its
sensors are active count for this metric.

• Total_disconnected_hour: The number of hours that a space has been discon-
nected (inactive). For a sector, it is the number of disabled spaces multiplied
by the time they have been so (equivalent to aggregation of free and occupancy
hours).

• Avg_occupancy_length_min: The average of all the occupancy lengths in this
period, in minutes

• Std_occupancy_length_min: The standard deviation of all the occupancy lengths
in this period, in minutes

• Avg_free_length_min: The average of all the free lengths in this period, in min-
utes

• Std_free_length_min: The standard deviation of all the free lengths in this pe-
riod, in minutes

• Total_occupancy_intervals : The number of occupancy intervals ended during
this period.

• Occupancy_lengths_sum: The sum of occupancy intervals ended during this pe-
riod.

• Free_lengths_sum: The sum of free intervals ended during this period.
• Occupancy_lengths_square_sum: The square sum of occupancy intervals ended

during this period.
• Free_lengths_square_sum: The square sum of free intervals ended during this

period.

14



2.1 Data pipeline Problem overview based on data flow characterization

• Occupancy_length_0_5_min: The number of occupancy lengths that lasted be-
tween 0 and 5 minutes

• Occupancy_length_5_10_min: The number of occupancy lengths that lasted
between 5 and 10 minutes

• Occupancy_length_10_30_min: The number of occupancy lengths that lasted
between 10 and 30 minutes

• Occupancy_length_30_60_min: The number of occupancy lengths that lasted
between 30 and 60 minutes

• Occupancy_length_1_2_hour: The number of occupancy lengths that lasted be-
tween 1 and 2 hours

• Occupancy_length_2_4_hour: The number of occupancy lengths that lasted be-
tween 2 and 4 hours

• Occupancy_length_4_8_hour: The number of occupancy lengths that lasted be-
tween 4 and 8 hours

• Occupancy_length_8_24_hour: The number of occupancy lengths that lasted
between 8 and 24 hours

• Occupancy_length_1_7_day: The number of occupancy lengths that lasted be-
tween 1 and 7 days

• Occupancy_length_weeks: The number of occupancy lengths that lasted more
than a week

• Free_length_0_3_min: The number of free lengths that lasted between 0 and 3
minutes

• Free_length_3_5_min: The number of free lengths that lasted between 3 and 5
minutes

• Free_length_5_10_min: The number of free lengths that lasted between 5 and
10 minutes

• Free_length_10_30_min: The number of free lengths that lasted between 10 and
30 minutes

• Free_length_30_60_min: The number of free lengths that lasted between 30 and
60 minutes

• Free_length_1_2_hour: The number of free lengths that lasted between 1 and 2
hours

• Free_length_2_4_hour: The number of free lengths that lasted between 2 and 4
hours

• Free_length_4_8_hour: The number of free lengths that lasted between 4 and 8
hours
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• Free_length_8_24_hour: The number of free lengths that lasted between 8 and
24 hours

• Free_length_days: The number of free lengths that lasted more than a day.
There are other tables that are self-explanatory, like streets, areas, day of year and hour
of day. Two tables also serve as descriptors of sensors and sectors, where their ID and
localization are stored.
Another ETL extracts the data as is from the MongoDB and stores it in a Data Lake
(PostgreSQL), where data from other sensors is also stored.
Finally, part of the information in the MySQL and MongoDB databases is transferred
by another ETL process to a time series database (InfluxDB). The information is stored
in two databases, one for sensor information and the other for sector information. Each
database has tables identified by a network name. For sectors, the information stored
comes from the MySQL databases and is:

• Occupancy_lengths_square_sum.
• Occupancy_lengths_sum.
• Std_occupancy_length_min.
• Total_disconnected_hour.
• Total_free_events.
• Total_free_hour.
• Total_full_events.
• Total_full_hour.
• Total_occupancy_events.
• Total_occupancy_hour.
• Day.
• DayOfWeek.
• Hour.
• Month.
• Season.
• Year.
• Latitude.
• Longitude.
• Occupancy_length_0_5_min.
• Occupancy_length_10_30_min.
• Occupancy_length_1_2_hour.
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• Occupancy_length_1_7_day.
• Occupancy_length_2_4_hour.
• Occupancy_length_30_60_min.
• Occupancy_length_4_8_hour.
• Occupancy_length_5_10_min.
• Occupancy_length_8_24_hour.
• Occupancy_length_weeks.
• Sector_id.
• Sector_name.
• Sectortype_id.
• Sectortype_name.
• Total_occupancy_intervals.

For the table of sensors, the information comes from the MongoDB and is:
• Amtype: Message type.
• Fpver: Sensor version.
• Id: Sensor ID.
• Lat: Latitude.
• Lon: Longitude
• Network_id: Network ID.
• Sector_id: Sector ID where the sensor belongs.
• Bat: Percentage of battery.
• Rssi: Infrared sensor state. This field is 1 if the infrared detects that the spot is

occupied, 0 otherwise.
• S0x: Magnetic axis X values for magnetic sensor 0.
• S0y: Magnetic axis Y values for magnetic sensor 0.
• S0z: Magnetic axis Z values for magnetic sensor 0.
• S1x: Magnetic axis X values for magnetic sensor 1.
• S1y: Magnetic axis Y values for magnetic sensor 1.
• S1z: Magnetic axis Z values for magnetic sensor 1.
• S2x: Magnetic axis X values for magnetic sensor 2.
• S2y: Magnetic axis Y values for magnetic sensor 2.
• S2z: Magnetic axis Z values for magnetic sensor 2.
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• Seqno: Sequence number of the message of the sensor.
• Signal: Signal value.
• Snr: Signal to noise ratio value.
• Temp: Temperature in celsius.

This is the data warehouse used primarily throughout this work. Its contents are updated
daily.

2.2 Services

The services that use the data stored in the data warehouses are the following:
1. A REST API allows real-time access to the status of the networks, sectors and

sensors. This tool was developed for a mobile app that provides users with the
real-time status of parking spots.

2. Three web pages: Configuration, Monitoring and Information. As their names im-
ply, these configure the sectors, monitor the status of network devices and indicate
the occupancy status of the sensors in real time. They also provide other relevant
statistics.

3. A cloud model service that provides: information about the recent historical data
from the sectors; parking occupancy forecasts for upcoming hours; and a visual-
ization tool. These services and tools were developed as one of the contributions
of this thesis, and detailed information is given in Section 2.4.

2.3 Sector and sensor data

In order to get the occupancy value from the data, it must be manipulated. The way it
is manipulated depends on the data source.

2.3.1 Sector data

When using data from the MySQL data warehouse, the occupancy (occ) is calculated
by Equation 2.1.

occ = total occupancy hour

total occupancy hour + total free hour + total disconnected hour
(2.1)

Because sector data in the time series database comes from the hourly sector table,
each of the rows is indexed by a timestamp that matches the start of the hour period
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for the date where the data was generated. This means that each entry represents the
occupancy of a sector for a specific hour of a day. Thus, it is an aggregation of occupancy
events during a full hour. A value of 1 for a specific hour indicates that the sector was
full the whole hour; analogously, a 0 indicates that the sector was empty for the whole
hour.

2.3.2 Sensor data

When using data that comes from MongoDB databases, the sensor occupancy is inferred
from sensor status, which is calculated according to Table 2.1. Sensor occupancy coin-
cides with the infrared value, except when infrared status has a “not determined” value,
in which case the occupancy is given by the magnetic values.

Sensor status Infrared Magnetic Magnetic threshold proximity Sensor occupancy

0 Free Free Very Far Free

1 Free Free Far Free

2 Free Free Near Free

3 Free Free Bottom Line Free

4 Free Occupied Bottom Line Free

5 Free Occupied Near Free

6 Free Occupied Far Free

7 Free Occupied Very Far Free

8 Occupied Free Very Far Occupied

9 Occupied Free Far Occupied

10 Occupied Free Near Occupied

11 Occupied Free Bottom Line Occupied

12 Occupied Occupied Bottom Line Occupied

13 Occupied Occupied Near Occupied

14 Occupied Occupied Far Occupied

15 Occupied Occupied Very Far Occupied

16 Not determined Free Very Far Free

17 Not determined Free Far Free

18 Not determined Free Near Free

19 Not determined Free Bottom Line Free

20 Not determined Occupied Bottom Line Occupied

21 Not determined Occupied Near Occupied

22 Not determined Occupied Far Occupied

23 Not determined Occupied Very Far Occupied

255 Not determined Not determined Not determined Not determined

Table 2.1: Inferred sensor occupancy.

Sensor data in the time series database comes from the MongoDB data warehouses;
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thus, it is indexed by the time stamp of when the event occurred in the sensor.

2.4 Model serving

In order to provide historical information and forecasts for the different parking sector
occupancies, we developed a cloud-based tool comprising software architecture of “virtual
machines“ using Docker. The architecture proposal is shown in Figure 2.3.

Figure 2.3: Solution architecture. Black arrows represent data flow.

The data server is hosted on theGoogle Cloud Platform and comprises 6 modules (Docker
containers - similar to individual virtual machines), i.e., microservices. Each microservice
has only one function:

• InfluxDBmachine: This stores the data from the ETL process (which itself extracts
and receives data from the data warehouse), the model predictions and the Fastprk
API.

• ETL: This process extracts the last 24 h of data from the data warehouse to use
it for predictions.

• Fastprk API microservice: This module connects to the fastprk API every 10
minutes in order to retrieve the state of parking in real time, and it computes the
mean of occupancy for one hour. This information is then stored in the database.

• Model microservice: This module stores the models, then loads and uses them for
forecasting. The forecasts are stored again in the InfluxDB database.

• Visualization microservice: This delivers a graphic representation of the historic
and forecasted occupancy as a time series. An actual example can be seen in
Figure 2.4.
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• REST API: This module provides external petitions of the historical and prediction
data via a RESTful API.

Finally, forecasting models are created on a dedicated server, namely a computer built
for conducting the experiments and training the models offline. They are generated from
the data in the data warehouses.

Figure 2.4: Visualization microservice.
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3 Data analysis

The last chapter introduced how parking data is generated, transformed and then stored
in different data warehouses. This chapter aims to explore the data throughout the
different stages of the data pipeline, with special focus on the sector data from the
InfluxDB data warehouse (Section 2.1.2). The objective is to find patterns and relevant
information that can help in the decision-making process, specifically regarding which
kind of data-driven models from the literature are best suited to the problem at hand.

3.1 The nature of sensor data

Sensor data realizations differ from other kinds of data, mainly in that their context
must be taken into account. In other words, these data samples have an implicit order
that is orchestrated by time. Because of that, our data constitute mere realizations of
a random variable over time. If the context given by time is subtracted, the samples
become powerless and hardly useful for extracting information or learning patterns in
the source system. The correlations that arise from ordered samples in time violate one
of the main assumptions from classical statistical methods, namely that data realizations
are independent and identically distributed (i.i.d). Thankfully, one area of research has
developed mathematics and statistics tools for learning patterns and gathering informa-
tion from time correlations: this area is known as time series analysis.
The goal of a time series analysis is to identify key properties of the data that provides
useful information about the process that generated it that is useful for interpretation
and/or characterization. Some of the properties studied are linearity (linear or non-
linear relations), stationarity, recurrence (cycles or seasonalities), identification of trends,
outliers or noise.
When facing such kinds of data, the first steps always involve generating different plots
in which the X axis usually indicates the interval of time when the realizations occur and
the Y axis represents the magnitude of the measured effect. Following the data represen-
tations, mathematical and statistical tools are used to analyze and extract information
from the series. At this point, two different types of methods can be used: those with a
time domain approach and those with a frequency domain approach. While the former
focus on correlations between lagged samples, the latter study cycles in the series.
Time series are related to the concept of sequence data, although the former is con-
strained by being ordered in time, the second requires only that the order of the data
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has meaning. Examples of sequence data are text, speech or DNA. The methods devel-
oped for working with sequence data can also be applied to time series.
As explained in Section 2.3.1, the data in the InfluxDB data warehouse consists of
parking occupancy in the different sectors across each hour of the day, with time series
indexed by hour being a natural choice of representation. This does not happen in the
data from MongoDB data warehouse (sensor data), because it consists of parking spot
status based on an external event: a change in the device’s measurements, typically when
a vehicle parks or leaves the sensor’s area of influence. The consequences are that data
is not evenly distributed in time, an assumption that is required for some methodologies
to develop an analysis or a model. Logically, it is possible to transform the sensor data
to the averaged sector occupancy/hour data, but not the other way around.

3.2 Theoretical time series properties

Time series data have a set of mathematical properties that are very useful in order
to interpret, identify and characterize the stochastic process that realized them. With
these properties it is possible to classify the process in one of the following categories:
random walks, Markov processes, Gaussian (or other statistical distribution) processes,
random fields, martingales, Lévy processes, renewal processes and branching processes.
The most common processes behind time series are random walks, Markov processes and
Gaussian processes. When working with time series data the following measurements of
dependence are of great importance:

• Mean value function: It is the expected value for each of the random variables that
forms the stochastic process. By marginalization of the realizations of the random
variables it is possible to find this value. Its expression is shown in equation 3.1. In
time series it is of great importance that this value to be the same for all the time
points (all the random variables) because that is one of the necessary conditions
in order to have regularity in the time series.

µt = E(xt) =
∫ +∞

−∞
xf(x) dx (3.1)

where E is the expectation operator, xt a random variable, x the probability of the
observed realization of xt and f(x) is the marginal density function.

• Autocovariance function: The autocovariance measures the linear relationship be-
tween two random variables. In time series analysis it is a necessary condition that
the autocovariance function have a dependency on the distance (time lags) between
the two random variables considered meaning that the value of the covariance is
reduced as further are the realizations in time. Note that the autocovariance func-
tion of a random variable with itself equals to the variance of the random variable.
Its formula is presented in equation 3.2.

γx(s, t) = cov(xs, xt) = E[(xt − E[xt])(xs − E[xs]) (3.2)

23



3.2 Theoretical time series properties Data analysis

where xs, xt are the random variables at the time points s, t ∈ N.
• Autocorrelation function: It is the scaled autocovariance function. Easier to be

interpreted because its output value belongs to the interval [−1, 1]. The 1 means
direct linear dependency (one point increase in one of the random variables equals
to one point increase in the other) and −1 means inverse linear dependency (one
point increase on one of the random variables equals to one point decrease in the
other). A 0 means no correlation between the random variables but this does not
mean that the random variables do not have another type of realationship (for
example a non linear relation). The expression for the autocorrelation is shown in
equation 3.3.

ρx(s, t) = γx(s, t)√
γx(s, s)γx(t, t)

(3.3)

where xs, xt are the random variables at the time points s, t ∈ N and γ is the
autocovariance function.

Also of great importance are the following properties:
• Linearity (in probabilistic context): A time series is linear if the realizations of

a random variables that generates it is dependent on another random variable
through the expression shown in equation 3.4.

Y = αX + β (3.4)

X, Y are random variables and α, β are constants. In fact, α is used as a measure of
the linear relationship between both random variables (correlation if the random
variables have been standardized) and β is refered as the stochastic term. A
geometrical interpretation of linearity can be understood from the point of view of
a vector space is if considering that the realizations of two random variables form
two different vectors that have been centered then the cosine of the angle between
the two vectors equals to its correlation and so, measures the linear dependence
between the random variables.

• Stationarity : Related to the concept of regularity over time in the behavour of
a time series. A time series is said to be strictly stationary when its probabilistc
behaviour (their joint distribution) of every collection of values is identical to that
of the collection shifted in time (mean and variance to be constant for all time
index value). Because this is hard to accomplish with a real data set, in order to
model a time series it is enough that the series to be weakly stationary (also known
as second-order stationary) meaning that the mean value function is constant and
does not depend on time and that the autocovariance function depends on the time
points t and s only through their difference and so they are independent of time.
In other words, weak stationarity is accomplished when the mean value function
and the autocovariance function are regular. Take note that a strict stationary
time series is also weakly stationary and if the distribution of the time series is
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Gaussian then a weakly stationary series is also a strict stationary series.
Putting all together, one can use the following definitions in order to model a time series:

• Linear process: It is a linear combination (shown in equation 3.5) of white noise
random variables. White noise random variables are defined by wt ∼ wn(0, σ2

w).
A great number of time series are generated by a linear process and they can be
modeled if the process is causal, meaning that the coefficients are 0 when j < 0 or
in other words, that the process is independent of the future.

xt = µ+
∞∑
−∞

ψjwt−j (3.5)

where ψ are the coefficients with ∑∞
j=−∞ |ψ| < ∞, wt are white noise random

variables and µ is the mean value of the process.
• Gaussian process: A process formed by a n-dimensional random vector where

each random variable is indexed by a time index and that all together forms a
multivariate normal density function. A Gaussian process is defined by a vector of
means (one mean for each random variable of the n-dimensional random vector)
and by a covariance matrix which is assumed to be positive definite. Gaussian
process have the following properties:
1. Weakly stationary and strict stationary are equivalent. If a time series is

generated by a Gaussian process then it is enough to know the first and
second moments in order to know its behaviour.

2. By the Wold Decomposition theorem a Gaussian process is a causal linear
process with wt ∼ iidN(0, σ2

w) (iidN stands for independent and identical
distributed normal random variables of mean 0 and variance σ2

w.
All together makes posible to model a time series by using finite sampled points in order
to estimate the mean, the autocovariance and autocorrelation functions because when
the series is weakly stationary then the population mean, autocovariance and autocorre-
lation can be estimated by means of averaging the sampled data. Once the measurements
of dependence (mean and autocovariance) and the nature of the process that generates
the data are known, then it is possible to identify the stationarity of the series and be
able to determine a model. For example, if the process that generates the data is a
Gaussian process, well-known and interpretable linear models are perfect candidates for
the modeling of the series, but if only weak stationarity can be identified/assumed, then
a more general family of models can be used at the cost of increased complexity and
lack of interpretation.
When a time series is weakly stationary, then the sample mean can be estimated using
equation 3.6 with an standard error shown in equation 3.7 that is reduced to the expres-
sion σ2

x/n if the process is white noise (notice that if there is dependence between the
random variables then it is possible that var(x̄) 6= σ2

x/n ). The sample autocovariance
function can be estimated through the equation 3.8. Finally, the sample autocorrelation

25



3.2 Theoretical time series properties Data analysis

can be computed by means of the autocovariance function as expressed in equation 3.9
and permits to identify those lags where the correlation is statistically significant.

x̄ = n−1
n∑
t=1

xt (3.6)

where n is the total number of realizations and xt is a realization at time t ∈ N.

var(x̄) = var(n−1
n∑
t=1

xt) = n−2cov(
n∑
t=1

xt,
n∑
s=1

xs) = n−1
n∑

h=−n
(1− |h|

n
)γx(h, 0) (3.7)

where n is the number of realizations, h the lag or time difference between t and s and
γx is the covariance function.

γ̂(h) = n−1
n−h∑
t=1

(xt+h − x̄)(xt − x̄) (3.8)

where n is the number of realizations, h the lag between two time index t and s, xt a
realization at time index t and x̄ is the sample mean as defined in 3.6.

ρ̂(h) = γ̂(h, 0)
γ̂(0, 0) (3.9)

where γ̂ is the sample autocovariance function as defined in 3.8 and h is the difference
of the time lags t and s.
If xt is white noise, the distribution of the autocorrelation function for a large n is
approximately normally distributed with zero mean and standard deviation σ ˆρx(h,0) = 1√

n

under general conditions (xt is iid with finite fourth moment), this permits to assess that
observed peaks in the autocorrelation function outside the interval ±2σ are significant
(in other words, 95% of the sampled data lies inside the interval).
All of the above (single time series case) is also applicable when dealing with two time
series if the series are jointly stationary (each one of them is weakly stationary) and they
fullfil that their cross-covariance function (presented in equation 3.10) only depends on
the lag h. The cross-correlation function can be computed by using the cross-covariance
function as shown in equation 3.11. When n is large, then the cross-correlation function
is normal with mean zero and standard deviation σρ̂x,y=

1√
n
if at least one of the processes

is independent white noise. Similar to the single time series case, one can estimate the
cross-covariance and cross-correlation by using averages of the time series realizations.
The cross-correlation function provides information about the leading or lagging relation
between two series and its proportion (that is in which lag a peak occurs in the cross-
correlation function), making possible to predict the outcomes of one of the series as a
function of the other and provide interpretations about the processes.

γx,y(h, 0) = E(xt+h − µx, yt − µy) (3.10)
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where x, y are time series and h, t ∈ N are time indexes.

ρx,y(h, 0) = γx,y(h, 0)√
γx(0, 0)γy(0, 0)

(3.11)

3.3 Data preprocessing

Depending on the source of the data, it will need some basic transformations. Specifi-
cally, sector data require some basic preprocessing validations and actions.
First, we must check if there are missing values in the data. Missing values are prone
to happen in fresh installations because of the need to calibrate the sensors or caused
by gateway failures. In this case, the data is examined and pruned until we obtain data
realization for each hour in a continuous fashion, that is, at least one day of realizations
without missing values. In long-established installations, missing data is uncommon but
can still occur. In those cases, a linear interpolation of the data is made.
The second step is to check that the data have no duplicates. Duplicates can usually
happen in new installations, where a sector ID is associated to two different sector names
(human error when creating the sector). The duplicate data is removed while keeping
the realization with the correct sector name.
Further steps of preprocessing may still be necessary if they are required by the proposed
methods. In those cases, the modifications made on the data are further discussed in
the corresponding sections.

3.4 Visualizations, methods and descriptive tools

During the analysis the following visualizations, methods and descriptive tools were
used to find patterns and provide explanations about the data. As far as this author
knows, there are no defined methodologies for analyzing parking time series; I propose
the following methodology as a guideline for other researchers in this field:

• First, describe the sector zones through:
– Tables containing sector information such as name, number of sensors (that

can be considered parking spots) and deployment date.
– Map of the sector locations.

• Generate the first visualization of the data by plotting all the data available for
all sectors up to the year 2020, where the abscissa axis represents time and the
ordinate axis represents occupancy/hour. These visualizations provide information
about possible discontinuities or anomalies in the data.

• Create quantile and descriptive statistics tables for all sectors in order to charac-
terize their statistics and the shape of their density plots.
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• In order to visualize patterns at small scales, generate monthly and weekly data
visualizations by choosing a random month and a random week from that same
month together with the same information under different smoothing methods.
This can help visualize the patterns. The applied smoothing methods are the
moving average (Equation 3.12) and the exponential weighted average (Equation
3.13).

ŷ = 1
k

k−1∑
n=0

yt−n (3.12)

where ŷ is the estimated mean using a window with size k comprised of data
realizations y.:

ŷt = α ∗ yt + (1− α) ∗ ŷt−1 (3.13)

where ŷt is the estimated moving average, α is the decay factor parameter and
ŷt−1is the previous value of the estimated mean, where distant values become less
significant.

• The use of seasonal plots constitute one way to gain an intuitive understanding
of whether or not the seasonal patterns detected in the monthly and weekly visu-
alizations are repeated throughout the entire interval for which data is available.
In these plots, data is averaged at different periods, and this work has averaged
them for day, month, week and year. This indicates how occupancy/hour behaves
on average for each different period being considered, and it further characterizes
the changing patterns within those periods.

• In order to take a closer look at the time component of the data, it is necessary to
use specialized tools and visualizations for the time series:
– Box plots. These visualizations allow detecting a desired property called

stationarity in the time series modeling. In order to model the time series,
the patterns must be regular in time, meaning that at some point in time
the values of the series will be the same as some past values; thus, the only
difference is that the realizations are shifted in time. This does not happen
with real data, so a relaxation of this constraint is assumed. This relaxation
implies that the mean value function µtof the series is constant in time and
that the autocovariance function γ(s, t) depends only on s and t through their
difference | s− t |. .
Stationarity can be detected from a box plot, as this shows the evolution of
the mean and variance over time.

– Decompositional plots. A time series can be decomposed into three compo-
nents: trend, seasonality and noise, which can be combined additively (Equa-
tion 3.14) or multiplicatively. In order to compute the trend component, the
moving average (Equation 3.12) method is most commonly used. Once the
trend is computed, the seasonality component can be easily computed by sub-
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tracting the trend fromthe observed series and then computing the average
for each period. Using yearly data with monthly seasonality as an example,
each month is averaged using the same month as in other years (after detrend-
ing the series). Now, subtracting each component from the observed series,
what is left is the random noise. Decomposition plots help visualize these
components by presenting them one by one in order to distinguish the data
realizations from those in a stochastic process (white noise), which allows us
to identify whether there are patterns based on trends and/or seasonality.
Another functionality of the decomposition plot is that it detects anomalies
in the series, as their residual values will be higher.

xt = mt + st + et (3.14)

where mt is the trend component, st is the seasonal component and et is the
residual component.
It is assumed that the series in this work are result of an additive composition
based from the information learned on the other plots.

– ACF and PACF plots (also known as correlogram). One of the main assump-
tions from some time series methodologies is that the realization at time step t
is directly affected by past realizations (causality) and, as time reaches further
into the past, the influence of past values becomes zero (regularity). When
the relationship between realizations is linear (the plus and stochastic com-
ponents), the underlying process is identified as an autoregressive process.
ACF and PACF plots help identify the number of lags (past time steps) that
have a linear influence on the realizations at time t. These plots constitute
visualizations of the autocorrelation and partial autocorrelation functions.
Recall that the autocorrelation function (Equation 3.3) is defined as a mea-
surement of the linear relationship between the values of a series and that
same series at different time steps. Essentially, it normalizes the autocovari-
ance function to the interval [-1,1] (Equation 3.2).
The partial autocorrelation function (Equation 3.15) allows measuring the
correlation of a time series between two time indexes while removing the in-
fluence (linear effect) of the intermediate values. In order to accomplish this,
the random variables of the correlation are regressed against the random vari-
ables that lie at the intermediate lags between the two random variables. In
other words, the correlation is made on the conditional expectation of the
considered random variables (ρXY = corr(X, Y |Z) where X, Y, Z are random
variables and Z has a linear influence on X and Y ). Partial autocorrelation
assess the direct influence between two random variables removing the chain
of dependences generated by the fact of causality and permits to identify
which are the lags that generate the autoregression in the studied process.

φhh = corr(xt+h − x̂t+h, xt − x̂t) (3.15)
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where x̂ is the series of regressed values in a time series and its lagged values
at different time steps are a consequence of the regression.

– Power spectra. One approach that provides all the seasonalities in the data
and their importance is plotting the time series in the frequency domain,
where periods are highlighted for their importance. To accomplish this, the
Fourier transformation is used to convert the data from the time domain to
the frequency domain.

• Spatial and temporal correlations can be visualized using the cross-correlation
function (equation 3.10). The cross-correlation function works similarly to the
correlation function, but in this case the inputs are different time series and they
are evaluated by also using lagged values. With this technique, how the occupancy
of one sector affects other sectors can be highlighted.

3.5 Scenarios

Whereas the first chapter explained the Worldsensing’s motivations (see 1.2.2) and pre-
sented the cities where pilot studies were conducted as part of the project, this chapter
presents the different scenarios used in this thesis. These scenarios were chosen due to
their heterogenic nature in order to, on the one hand, provide different characterizations
of parking sectors and, on the other, indicate what must be taken into account when
offering parking occupancy forecast services. The scenarios and motivations for them
are:

• Antwerp. This scenario is characterized by sectors located in different parts of the
city (albeit some are on the same street). Different environments condition their
use, such as being at the city’s main train station or on a street with shops and
restaurants.

• Barcelona. Only one sector is represented in this scenario: a private parking
facility at a Barcelona university, which is used for loading and unloading goods
for different university services. This scenario can provide information about this
kind of parking facility.

• Wattens. The two sectors presented are part of a private parking facility, but this
time they belong to a private company rather than a university. We expect to find
patterns linked to the company’s working hours and provide extra information
about private parking facilities.

• Los Angeles. This scenario provides sectors where parking places are destined
to different types of users. These sectors are characterized by payment, parking
permit, use by disabled people, and use by a carsharing company. Also, these
sectors are next to a metro station and thus add environmental noise to the sensor
measurements, which could affect the results of data-driven models.
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• Riyadh. This scenario is studied because its large number of sensors (more than
one thousand), sectors established next to each other that span all parking spots
in a large zone, and the possibility of detecting patterns and behaviours that are
not found in the Western world.

The Paris and Grudziadz scenarios have not been considered in this work, as they do
not provide any new features compared to the other scenarios, although their sectors
have also been modeled as part of the company’s project.
This section presents an analysis of the studied scenarios, as well as their characteristics,
in order to obtain a better understanding of the underlying processes that govern parking
systems.

3.5.1 Antwerp (Belgium)

Characteristics

The city of Antwerp was one of the first where Worldsensing’s sensors were deployed.
Table 3.1 shows the sectors of the city and the number of sensors in each one, as well
as the installation dates. Notice that the sectors on the streets Pelikaanstraat and Van
Wesenbekestraat were the first to be installed.
The main characteristics of these sectors is that they are located on-street and near
metro railways, making them vulnerable to magnetic noise. The images in Figure 3.1
illustrate the position and number of sensors in the different sectors of the city. At first
sight of the point at which the Pelikaanstraat sector is far away from the other sectors,
without connecting streets, it is natural to think that no spatial correlations exist in this
specific case.
The Pelkaanstraat sensors constitute unique characteristics of the sector in that they are
placed just outside the Antwerp Central Station, the central hub for trains and metro
departures, thus making it a place used mainly by taxis.
The sectors in Van Wesenbekestraat are situated in what the residents of Antwerp com-
monly call Chinatown or Asiantown, a district full of restaurants and shops.
Another sector with a unique characteristic is Van Schoonhovestraat Zone 2, as its
parking spots are intended for loading and unloading freight vehicles.

Analysis of all available data for the entire period

An overview of all historical data can help take a wider view of the data in order to
detect trends and anomalies at a grand scale.
Figure 3.2 shows data realizations for the sector Pelikaanstraat. At first sight, it seems
that in May 2019 an abrupt change occurred in the realizations, leading to an obvious
reduction in the variance. This could be an indication that some of the sensors were
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Sector name Number of sensors Deployment date

Pelikaanstraat 35 01/02/2018

Van Wesenbekestraat Zone 2 12 01/02/2018

Van Wesenbekestraat 10 01/02/2018

Van Schoonhovestraat Zone 3 8 25/02/2019

Van Schoonhovestraat Zone 1 8 25/02/2019

Van Schoonhovestraat Zone 2 3 25/02/2019

Table 3.1: Antwerp sectors ordered by number of sensors.

Figure 3.1: Antwerp map. The image shows sector locations, differentiated by color.
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Figure 3.2: Pelikaanstraat data from 2018 and 2019.

removed, their batteries died, or street works affected them. This makes obvious that it
is imperative to keep an eye on sudden changes in the data realizations.
Both sectors along the street Van Wesenbekestraat (see Figure 3.3) show similar anoma-
lies from mid-2018 until the end of the year. In this case, it is known that the sensors
were shut off for that period of time.
Data realizations known to originate from sensor malfunctions are removed in order to
perform the analysis. For example, in the Pelikaanstraat sector, data realizations after
18 April 2019 are considered invalid and not taken into account. This is also the case
for the Van Wesenbekestraat sectors, where data prior to 12 December 2018 is removed.

Figure 3.4 shows the occupancy for the sectors along the street Van Schoonhovestraat.
In this case, no change in behaviour or anomaly is detected at first sight. Notice that in
sectors with small numbers of parking spaces (Zone 2 has 3 sensors only), it is harder
to detect periodic patterns because the series becomes non-smooth. This suggests that
sectors with large numbers of sensors will have smoothed series in the transition from
full to empty occupancy.

Statistics

The statistics of the Pelikaanstraat sector (Table 3.2) show that it has never been fully
occupied for an hour and that its occupancy levels are usually below 50%. Of the 35
sensors (parking spots), it is rare for more than 28 to be occupied at once within a
one-hour period. The density plots for each month of the year 2018 (Figure 3.5) confirm
the statistics visually and also offer new insight: for some of the months, it is obvious
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Figure 3.3: Data for Van Wesenbekestraat sectors, 2018 and 2019.
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Figure 3.4: Data for Van Schoonhovestraat sectors, 2019.
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Quantile statistics

Minimum 0

5-th percentile 0.057

Q1 0.172

Median 0.314

Q3 0.514

95-th percentile 0.795

Maximum 0.967

Range 0.967

Interquartile range (IQR) 0.342

Descriptive statistics

Standard deviation 0.229

Coefficient of variation 0.641

Kurtosis -0.637

Mean 0.357

Median Absolute Deviation 0.191

Skewness 0.56

Variance 0.052

Table 3.2: Statistics for the Pelikaanstraat sector.

that the distributions have two peaks – one at 0.25 and the other at 0.75. When the
two peaks are not present, the distribution has a positive skew. Another important fact
is that the variance value is higher than for the other sectors.
For the Van Wesenbekestraat sectors (3.3), quantile statistics reveal that there is a
particularity in Zone 1 and that its minimum and maximum values (0.1 and 0.9, re-
spectively) reveal that the sector has never been empty or fully occupied. This could
be an indicator of a possible problem with one of the sensors. Density plots for Zone 1
(Figure 3.6) indicate lower values for the first months of the year, but they maintain a
very symmetric shape resembling a Gaussian curve.
The tables of statistics for Zone 2 (3.3) indicate lower occupancy/hour overall for the
quantile statistics, with a mean value of 0.282. The descriptive statistics are similar to
those from Zone 1, except for the skewness, which is negative in Zone 1 and positive in
Zone 2. This is more notable for the first months of the year, as can be seen in Figure
3.6.
Lastly, we can see in the Van Schoonhovestraat sectors that Zones 1 and 3 behave
similarly, as they are on the same street and have the same number of sensors. Their
more notable difference is that Zone 1 has a leptokurtic shape (positive kurtosis), while
Zone 3 has a platykurtic shape (negative kurtosis). On the other hand, the statistics
for the sector in Zone 3 are very different from the other two, probably because of the
sector’s small number of sensors (3 sensors). The reason these parking spots are treated
in a different sector rather than as being part of a sector in Zone 1 (since they are
contiguous) is because Zone 3 parking places are marked as loading and unloading zones
for truck deliveries.
Lastly, observe that the variance of Zone 2 is greater than that of any other sector in
the city (the second greatest is Zone 2 in Pelikaanstraat). Both sectors coincide in that
they have non-Gaussian shapes (for Pelikaanstraat, this happens over some months),
with more than one peak. This could be indicative of the type of parking places, as both
sectors pertain to places associated with short stays.
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Quantile statistics

Minimum 0.1

5-th percentile 0.139

Q1 0.304

Median 0.440

Q3 0.549

95-th percentile 0.698

Maximum 0.9

Range 0.8

Interquartile range (IQR) 0.244

Descriptive statistics

Standard deviation 0.162

Coefficient of variation 0.374

Kurtosis -0.48

Mean 0.433

Median Absolute Deviation 0.133

Skewness -0.074

Variance 0.026

Quantile statistics

Minimum 0

5-th percentile 0.04

Q1 0.168

Median 0.282

Q3 0.385

95-th percentile 0.519

Maximum 0.758

Range 0.758

Interquartile range (IQR) 0.217

Descriptive statistics

Standard deviation 0.146

Coefficient of variation 0.517

Kurtosis -0.495

Mean 0.282

Median Absolute Deviation 0.12

Skewness 0.106

Variance 0.021

Table 3.3: Statistics for the Van Wesenbekestraat sectors. Top, Zone 1; bottom, Zone
2.
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Quantile statistics

Minimum 0

5-th percentile 0.233

Q1 0.425

mMedian 0.526

Q3 0.625

95-th percentile 0.75

Maximum 1

Range 1

Interquartile range (IQR) 0.2

Descriptive statistics

Standard deviation 0.163

Coefficient of variation 0.315

Kurtosis 0.249

Mean 0.518

Median Absolute Deviation 0.128

Skewness -0.5

Variance 0.027

Quantile statistics

Minimum 0

5-th percentile 0

Q1 0

Median 0.333

Q3 0.345

95-th percentile 0.667

Maximum 1

Range 1

Interquartile range (IQR) 0.345

Descriptive statistics

Standard deviation 0.268

Coefficient of variation 0.97

Kurtosis -0.064

Mean 0.276

Median Absolute Deviation 0.218

Skewness 0.733

Variance 0.072

Quantile statistics

Minimum 0

5-th percentile 0.189

Q1 0.409

Median 0.544

Q3 0.663

95-th percentile 0.835

Maximum 1

Range 1

Interquartile range (IQR) 0.255

Descriptive statistics

Standard deviation 0.192

Coefficient of variation 0.359

Kurtosis -0.067

Mean 0.534

Median Absolute Deviation 0.153

Skewness -0.355

Variance 0.037

Table 3.4: Statistics for the Van Schoonhovestraat sectors. From top to bottom: Zones
1, 2 and 3.
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Figure 3.5: Density plot for the year 2018, Pelikaanstraat sector.

Monthly and weekly data analysis

When representing the data over shorter time intervals (like monthly or weekly), it is
easier to visualize possible patterns. In Figure 3.8, we can see that there is a daily
pattern throughout all February realizations as occupancy increases and decreases in a
similar fashion every day. At 6 a.m., parking occupancy starts to increase until peaking
at midday; and then the levels drop until 6 p.m., where it remains more or less constant
until midnight, when it reaches the lowest occupancy of the series.
In the example of week 2 for February 2018, the early-morning levels of the series drop
lower for Saturday and Sunday, indicating that maybe there are different patterns in the
data realizations for weekdays and weekends.
Daily patterns can be seen more clearly when smoothing the series. Figure 3.9 illustrates
the occupancy series of the second week of February 2018 for the Pelikaanstraat sector,
together with the series after it has been processed by different smoothing algorithms.
The algorithms used are a windowed moving average and an exponential weighted av-
erage (Equations 3.12 and 3.13).
Using a moving average with a window size of twelve hours, we can clearly see the daily
periods of the data and how the levels change for weekends, where occupancy decreases
and seems to stabilize at a value under the mean. This suggests that the data can have
multiple periodicities in which one of them is determined by the hours of a day (period
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Figure 3.6: Density plot for the year 2019, Van Wesenbekestraat sectors.
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Figure 3.7: Density plot of year 2019 for Van Schoonhovestraat sectors.
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Figure 3.8: Antwerp time series from the Pelikaanstraat sector for February 2018 and
the second week of February 2018.
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of 24 hours) and another by the day of the week (period of 168 hours, that is, 7 days).
Figure 3.10 shows the occupancy/hour plotted for each day of the week, month, week
and year, thus giving information about how occupancy behaves on average during the
different time periods.
Overall, occupancy/hour behaves similarly, regardless of the period used for averaging
the data (day, month or year). Its levels are higher during daytime hours and lower at
night. When plotting for the day of the week, notice that occupancy on Saturday and
Sunday has its maximum value at 15 p.m. while this happens at 10 a.m. on weekdays,
thus indicating different behaviours for weekdays and weekends. It is interesting that
Sunday is the day of the week with the greatest occupancy values; this could mean that
parking stays are longer on this day due either to different train schedules or to different
parking policies applied for that day. About the patterns throughout the day, one can
conclude that the sector is not used at night (as the occupancy/hour levels are nearly
0) and its main usage coincides with train schedules (at the moment of writing this
thesis, the train station’s opening hours was Monday to Sunday, from 05:45 to 22:00).
This could be the reason for the two peaks in the distributions of some months. Other
assumptions are that the parking places allow only taxis or that, as the sector is in
the very center of the city’s downtown area, few residents leave their cars in on-street
parking.
In the plot for the months of the year, the lowest occupancy levels correspond to the
months of August, December and January; while the month with the most occupancy
is May.
Interestingly, when plotting the weeks, weeks 1 and 6 behave differently than the other
weeks, which resemble the Saturday and Sunday patterns (this could be an effect of
when holidays occur on the calendar).
Lastly, the pattern is maintained independently of the year, but the occupancy levels in
2019 are lower than those of 2018. The reason for this could be that the data used for
the 2019 yearly average takes into account only the first 5 months.
Seasonal plots for Van Wesenbekestraat’s Zone 1 (Figure 3.11) show very different be-
haviour when compared to the sector on Pelikaanstraat. While the latter’s occupancy
levels follow the train station’s opening hours and it is easy to differentiate between
weekdays and weekends, occupancy in the former throughout the weekdays behaves
similarly to weekends, with occupancy levels peaking at 11 a.m. and slowly declining
until 5 a.m. Focusing more on weekdays and weekends, it is possible to detect a differen-
tial trait between weekdays and weekends (that can possibly be generalized to workdays
vs. holidays), namely that on weekdays the occupancy levels fall until 15 p.m., then
rise again until they fall again at 18 p.m. This may be because they are affected by the
shops’ opening hours and their closing at lunchtime. This pattern does not occur on
weekdays, as the occupancy/hour levels fall from 13 p.m. to 5 a.m., only on Saturday,
with some increase from 20:00 to 23:00, perhaps as a result of people visiting restaurants
for dinner.
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Figure 3.9: Example of smoothed series for the Antwerp sector along Pelikaanstraat
street for February 2018. The figure shows the series layered one on top of the other,
where green lines represent the window moving average series and the yellow ones the
exponential weighted average results. The bottom figure decomposes the top plot and
shows the smoothness of the series under different methods.
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Figure 3.10: Seasonal plots for the Pelikaanstraat sector. Hourly occupancy averaged
at different periods. From top left to bottom right: day, month, week of the month,
and year.
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Figure 3.11: Seasonal plots for VanWesenbekestraat’s Zone 1 sector. Hourly occupancy
averaged at different periods. From top left to bottom right: day, month, week of the
month and year.

Monthly aggregation shows that the occupancy is lower for the first 3 months of the
year.
Weekly patterns (first plot of the second row in Figure 3.11) show similar behaviour to
the daily aggregation throughout the weeks.
Lastly, the occupancy levels for 2018 are lower than those for 2019. In particular,
parking behaviour at 15 p.m. is notably lower in 2018 than in 2019. Remember that
the Van Wesenbekestraat data is mainly from all of 2019, while the 2018 data is from
only December.
The seasonal plots for Van Wesenbekestraat’s Zone 2 sector (Figure 3.12) show similar
behaviour to Zone 1 (as expected, since they are on the same street), but with slightly
lower occupancy levels. The behaviours that distinguished weekdays and weekends no
longer occur. This is because the sector is right next to the restaurants along that
street and therefore the behaviour is more pronounced on Friday and Saturday, when
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Figure 3.12: Seasonal plots for the Van Wesenbekestraat Zone 2 sector. Hourly occu-
pancy averaged at different periods. From top left to bottom right: day, month, week
of the month and year.

the occupancy levels increase from 15 p.m. until 19 p.m. and remain high but decrease
slowly into the night. Wednesday patterns are interesting, as the occupancy/hour levels
increase throughout the day and peak at 16 p.m., which is different from other working
days when levels peak at 10 a.m.
Monthly aggregation shows more or less the same patterns as the daily aggregation, but
behaviour is more like the weekends, when occupancy peaks at around 19 p.m. to 20
p.m.. This happens especially on months with holidays (August and December).
Weekly aggregation shows similar patterns for all weeks when not taking into account
week 6. The behaviour is similar to that seen in the daily aggregation.
Lastly, yearly aggregation shows slightly more occupancy for 2018, especially at 10 a.m.
The Van Schoonhovestraat Zone 1 seasonal plots show that the levels change little
throughout the hours of the day, with a slight decrease at 5 a.m. Focusing on the
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Figure 3.13: Seasonal plots for the Van Schoonhovestraat Zone 1 sector. Hourly occu-
pancy averaged at different periods. From top left to bottom right: day, month, week
of the month and year.

first visualization in Figure 3.13, we can see that all days behave similarly, with slightly
higher occupancy levels on Saturday and Sunday.
The second visualization shows the monthly aggregation in which all months behave
similarly, with only February standing out with its comparatively lower levels.
Similarly to the previous sector, all weeks behave similarly (not taking into account week
6). The similarity between week 6 and the whole year 2019 is surprising.
It is difficult to extract any pattern from the seasonal plots in Figure 3.14 (the Van
Schoonhovestraat Zone 2 sector). The occupancy levels seem to reach their peak usually
between 6 a.m. and 10 a.m., which occurs throughout all the different components of
each visualization.
The seasonal plots for the Van Schoonhovestraat Zone 3 sector (see Figure 3.15) show
similar patterns to the Van Schoonhovestraat Zone 1, with slightly higher occupancy
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Figure 3.14: Seasonal plots for the Van Schoonhovestraat Zone 2 sector. Hourly occu-
pancy averaged at different periods. From top left to bottom right: day, month, week
of the month and year.
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Figure 3.15: Seasonal plots for the Van Schoonhovestraat Zone 3 sector. Hourly occu-
pancy averaged at different periods. From top left to bottom right: day, month, week
of the month and year.

levels. The daily aggregation behaviour is more or less identical throughout the days
with Friday and Saturday with higher occupancy levels at latter hours of the day and
Sunday with higher occupancy levels at daytime when compared to the other days.
Monday indicates lower occupancy levels at 5 a.m. with respect to the other days of the
week.
In the monthly aggregation, all months seem to behave more or less equally, with the
highest occupancy occurring towards the end of the day. This is not the case for February,
as it indicates abrupt changes in occupancy levels throughout the hours.
Weekly patterns are shared throughout the 6 weeks and are similar to the behaviours in
the yearly aggregation.
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Figure 3.16: Box plot for the Pelikaanstraat sector.

Specialized time series plots

The box plot for the Pelikaanstraat sector (Figure 3.16) shows that the occupancy levels
decrease over time, although the variance seems to be constant.
The box plots for Van Wesenbekestraat show similar behaviour for both sectors, where
the variance remains constant through time while the mean oscillates between higher
values in summer and lower values in winter.
Lastly, Van Schoonhovestraat’s Zones 1 and 3 behave similarly, with more or less the
same mean and variance over time. The sector in Zone 3 presents stochastic behaviour,
evidencing that finding patterns is harder for smaller sectors.
The decomposed time series for the Pelikaanstraat sector (Figure 3.19) shows a decreas-
ing trend (already observed in Figure 3.16) when taking into account the whole year of
2018 (using occupancy/day). However, when using occupancy/hour and focusing on a
specific month (April), there is no trend. For occupancy/day, the seasonality is weekly,
with two peaks that represent the start of the week and the weekend. In the occu-
pancy/hour plot, the seasonality clearly follows a daily pattern. Lastly, residuals from
the occupancy/day plot are lower than those of the occupancy/hour plot.
The decomposed components of the series for sectors on the street Van Wesenbekestraat
indicate different trends and seasonal components. Zone 2 is more stable in its seasonality
and trend levels, which is similar to the conclusions extracted from Figure 3.17.
The sectors on Van Schoonhovestraat show that Zone 2 behaves erratically in its trend
values, with large residual values for some realizations. Zone 1’s behaviour can be better
explained by this approach compared to that of Zone 3, as residuals are enclosed in the
[-1,1] interval.
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Figure 3.17: Box plots for sectors on the street Van Wesenbekestraat. From top to
bottom: Zone 1 and Zone 2.
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Figure 3.18: Van Schoonhovestraat box plots. From top to bottom: Zone 1, Zone 2
and Zone 3.
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Figure 3.19: Decomposition of Pelikaanstraat time series. Left: the decomposition of
the daily averaged series for the year 2018. Right: the hourly series for April 2018.

Figure 3.20: Decomposition of sectors on the street Van Wesenbekestraat. Occu-
pancy/day for Zone 1 (left) and Zone 2 (right)..
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Figure 3.21: Decompositional plot for sectors on Van Schoonhovestraat. From top to
bottom: Zone 1, Zone 2 and Zone 3.
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Figure 3.22: ACF and PACF plots for Pelikaanstraat, May 2018.

Figure 3.22 shows the ACF and PACF plot of the Pelikaanstraat sector for May 2018.
The series indicates strong autoregressive behaviour as the autocorrelation function tails
off and the partial autocorrelation cuts off at a significant lag. The most significant lag
is the first one, but the subsequent lags up to lag 25 also have some significance. As the
number of lags increases, the levels of the functions decreases, as expected; but lag 50
becomes significant again. This can be considered indicative of daily seasonality.
The ACF and PACF plots for the Van Wesenbekestraat sectors show that the significant
lags for Zone 1 are 1 and 25, which is similar to the Pelikaanstraat sector. Zone 2, on the
other hand, shows that only the first lag is significant. In both cases, the autocorrelation
function tails off. The processes in both sectors are type AR(1) (autoregressive with 1
significant lag).
Lastly, for the sectors on Van Schoonhovestraat, Zones 1 and 3 show AR(1) behaviour
without seasonality, while the first and second lags in Zone 2 are significant. It is not
clear if there is daily seasonality in Zone 2, as lag 49 is also significant.
A lag plot is a scatter plot for realizations in the time series occurring between time t
and time t − 1. Figure 3.25 shows an example of this visualization for up to 9 lagged
values. The scatter plot has a linear meaning for the first visualization in the figure; but
as the considered lag increases, the linear relationship disappears.
The correlation between the time series and lagged series is shown in Figure 3.26, where
a linear relationship can be seen for all sectors except for Van Schoonhovestraat Zone
2. This is due to the low number of sensors in the sector, which also plays a role in the
high variance of the sector (compared with the other sectors).
Figure 3.27 presents the estimated spectrum of the occupancy/hour time series for the
sector on Pelikaanstraat. The dominant period is 24, thus indicating daily seasonality.
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Figure 3.23: ACF and PACF plots for the Van Wesenbekestraat sectors.
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Figure 3.24: ACF and PACF for sectors on Van Schoonhovestraat.
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Figure 3.25: Lag plots for the Pelikaanstraat sector.
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Figure 3.26: Lag plots for Antwerp sectors. First row from left to right: Pelikaanstraat,
Van Wesenbekestraat Zone 1 and Van Wesenbekestraat Zone 2. Second row from left
to right: Van Schoonhovestraat Zones 1, 2 and 3.

Figure 3.27: Pelikaanstraat occupancy/hour in the frequency domain.

Other interesting period values are 84, 56 and 168. The last one coincides with weekly
seasonality.
The spectrum for sectors on Van Wesenbekestraat is similar to Pelikaanstraat, as the
dominant period is 24. Other periods of interest can be seen in Zone 1, where they are
48 and 168 (weekly seasonality).
For sectors on Van Schoonhovestraat, the spectrum reveals that while Zones 1 and 3
have similar periods, such as 24 and 168, Zone 2 behaves erratically with no dominant
period.

Time-space analysis

Figure 3.30 shows the cross-correlation for the Pelikaanstraat sector having few correla-
tions with other sectors.
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Figure 3.28: Van Wesenbekestraat occupancy/hour in the frequency domain.

The cross-correlation plot for the Van Wesenbekestraat sectors (Figure 3.31) shows high
correlations between them and some correlation with Van Schoonhovestraat’s Zones 1
and 3 sectors.
Lastly, the sectors on Van Schoonhovestraat show correlation (Figure 3.5) with the Van
Wesenbekestraat sectors, especially at closer time lags. But they have no correlations
with the Van Schoonhovestraat Zone 2 sector.

3.5.2 Barcelona (Spain)

Characteristics

Barcelona was the first scenario where Worldsensing installed their sensors, as it was
easier for them to check and control the behaviour due to their being located in the
same city. Table 3.6 shows the city sector and number of sensors. Later, a new sector
was added next to the existing one, but it is not considered in this study, as it consists of
a sector with a single parking spot for handicapped people. The reason for not including
it is because the behaviour of very small sectors is already known (e.g., the Antwerp
Van Schoonhovestraat Zone 2 sector, Figure 3.4).
The main characteristics of this sector is that the parking places belong to one Barcelona
university and it is commonly used for short stays by supply transport.

Analysis of all available data for the entire period

When visualizing the plot for all the historical occupancy/hour data (Figure 3.33), a
mean value of 0.295 is shown, with no irregular/anomalous realizations. Yet, somehow,
it has a constant periodic pattern.
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Figure 3.29: Van Schoonhovestraat occupancy/hour in the frequency domain.
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Figure 3.30: Cross-correlations of the Pelikaanstraat sector.
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Figure 3.31: Cross-correlations of sectors on Van Wesenbekestraat. From top to bot-
tom: Zone 1 and Zone 2.
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Table 3.5: Cross-correlations of Van Schoonhovestraat. From top (left, right) to bot-
tom: Zone 1, Zone 2 and Zone 3.
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Sector name Number of sensors Deployment date

Regular 11 08/01/2018

Table 3.6: The Barcelona sector at the Universitat Politècnica de Catalunya, Campus
Nord.

Figure 3.32: Barcelona map. The city sensors for Barcelona are installed in a private
location.

Figure 3.33: Regular sector occupancy/hour data for 2018 and 2019.
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Quantile statistics

Minimum 0

5-th percentile 0

Q1 0.125

Median 0.273

Q3 0.434

95-th percentile 0.7

Maximum 1

Range 1

Interquartile range (IQR) 0.31

Descriptive statistics

Standard deviation 0.207

Coefficient of variation 0.702

Kurtosis -0.254

Mean 0.295

Median Absolute Deviation 0.17

Skewness 0.657

Variance 0.043

Table 3.7: Statistics for the Pelikaanstraat sector.

Statistics

The statistics for the Barcelona sector are presented in Table 3.7. The mean occupancy
is low and the variance is quite high. Similarly to the Pelikaanstraat sector (Table 3.2), it
has a high positive skewness. These characteristics are a common pattern for short stay
parking places. From the density plots (Figure 3.34), we can observe two peaks similar
to those in the Pelikaanstraat sector, which are indicativeof two different behaviours. In
this case, we suspect that the reason for this is the sector is nearly empty at night and
on weekends and holidays, due to university regulations.

Monthly and weekly data analysis

Shorter time intervals, in the sense of calendar periods like months or weeks, help us
interpret the data better. Figure 3.35 shows a daily pattern in the realizations through-
out May 2018, as occupancy increases and decreases in a similar fashion throughout the
days. We can also clearly see that the occupancy levels on weekends remain low while
the university is closed. From the second week of May plot, we can see a pattern on
some days as occupancy peaks two times: once at 6 a.m. to 7 a.m., and again at nearly
12 p.m.
Daily patterns can be seen more clearly when smoothing the series. Figure 3.36 illus-
trates the occupancy series of the second week of May 2018. A moving average with a
window of 12 hours smooths the series, thus making the daily patterns very clear.
From the seasonal plots in Figure 3.37 it is easy to see, first, that the sector is governed
by daily patterns that behave differently on weekdays and weekends and, second, that
the overall patterns are maintained over time.
The seasonal plot for the average occupancy/hour by day (top left image in Figure 3.37)
shows that weekdays have very similar patterns that differ from weekends, when the
occupancy is much lower.
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Figure 3.34: Density plot for the year 2018, Pelikaanstraat sector.

The top right image represents the average occupancy/hour by month, and all months
behave very similarly.
The bottom left plot shows the average occupancy/hour by week, where we can see that
all weeks are similar in shape.
Lastly, the plot on the bottom right shows that the yearly behaviour is similar for 2018
and 2019, although a slight increase in the occupancy/hour happened in 2019.

Specialized time series plots

Looking at the box plot in Figure 3.38, we see that the mean levels increased a little
in the last part of 2019; but, overall, the mean and variance levels always maintain the
same values over time.
In Figure 3.39 we can see the trend, seasonality and residuals of the data for the years
2018 and 2019, as well as for May in both years. The trend values do not increase
or decrease in 2018, but they increase for the year 2019. Within the monthly period,
independently of the year, trend and seasonality maintain the same values. Seasonal
patterns stay the same for both years.
Figure 3.40 shows the ACF and PACF plots for the Regular sector in Barcelona for May
2018. Similarly to the Antwerp ACF-PACF plots (Figure 3.22), the plots show a strong
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Figure 3.35: Barcelona time series for February 2018 and second week of May 2018.
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Figure 3.36: Smoothed time series for the Barcelona Regular sector for May 2018. The
upper image shows the series layered one on top of the other, where green lines repre-
sent the window moving average series and the yellow ones the exponential weighted
average results. The bottom figure decomposes the top plot and shows the smoothness
of the series under the different methods.
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Figure 3.37: Seasonal plots for the Regular sector in Barcelona. Hourly occupancy
averaged at different periods. From top left to bottom right: day, month, week of the
month and year.
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Figure 3.38: Box plot for the Regular sector in Barcelona.

Figure 3.39: Decomposition of the time series for the Regular sector in Barcelona. Top
images are for the year 2018 and May of that same year. Bottom images are for the
year 2019 and May of that same year. The trend increases between years.
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Figure 3.40: ACF and PACF plots for Barcelona sector, May 2018.

Figure 3.41: Lag plot of Barcelona Regular sector.

autoregressive process. The first two lags are the most significant for this sector, then
every 25 hours there is a significant lag, thus indicating daily seasonality. The lag plot
in Figure 3.41 shows a strong linear correlation in the series between lag t and lag t− 1.
Checking the power spectrum of the Barcelona sector, the predominant periods are
marked at the values 24 and 168, coinciding with daily and weekly seasonality.

Spatial relationships

Because there is only one sector in the Barcelona scenario, it does not make sense to
check for cross-correlations in the series.
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Figure 3.42: Barcelona occupancy/hour in the frequency domain.

Sector name Number of sensors Deployment date

Inside 22 02/03/2018

Outside 18 02/03/2018

Table 3.8: Wattens sectors at Swarco facilities.

3.5.3 Wattens (Austria)

Characteristics The third installation is in the city of Wattens. Table 3.8 shows the
sectors in this scenario and the numbers of sensors in each of them.
Both sectors (see Figure 3.43) are part of the Swarco company’s private parking. As
the names denote, the Inside sector is inside the building area and the Outside sector is
outside.

Figure 3.43: Wattens map. Sectors are located around the private company Swarco.
The red square is the Inside sector and the green square is the Outside sector

74



3.5 Scenarios Data analysis

Quantile statistics

Minimum 0

5-th percentile 0.043

Q1 0.087

Median 0.174

Q3 0.359

95-th percentile 0.668

Maximum 0.858

Range 0.858

Interquartile range (IQR) 0.272

Descriptive statistics

Standard deviation 0.206

Coefficient of variation 0.83

Kurtosis -0.224

Mean 0.249

Median Absolute Deviation 0.170

Skewness 1.060

Variance 0.043

Quantile statistics

Minimum 0

5-th percentile 0

Q1 0.0556

Median 0.111

Q3 0.341

95-th percentile 0.805

Maximum 1

Range 1

Interquartile range (IQR) 0.286

Descriptive statistics

Standard deviation 0.260

Coefficient of variation 1.111

Kurtosis 0.356

Mean 0.234

Median Absolute Deviation 0.210

Skewness 1.282

Variance 0.068

Table 3.9: Statistics for the Wattens sectors Inside (top) and Outside (bottom).

Analysis of all available data for the entire period

The Wattens sectors were removed at the start of June 2019, as can be seen in Fig-
ure 3.44, which shows no more data from June 2019 onwards. Both sectors have low
occupancy overall.

Statistics

Looking at Table 3.9, both sectors present low mean values and high variance (similar
statistics to the Barcelona sector, check Table 3.7 for more information). The density
plots (Figures 3.45 ) show the typical two peaks of the sectors with very different be-
haviour (day time vs. night time or holidays vs. non-holidays). The explanation is that
these sectors are used for workers and are thus used mainly during office hours (from 6
a.m. to 6 p.m.).

Monthly and weekly data analysis

When looking at the occupancy/hour using a shorter time range, it is easier to visualize
clear daily patterns. Both Figures (3.46 and 3.47) show how the occupancy/hour rises at
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Figure 3.44: Wattens sectors. Data for the interval 2018 and 2019.
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Figure 3.45: Density plots for the sectors Inside (top) and Outside (bottom) for the
year 2018.

77



3.5 Scenarios Data analysis

6 a.m. and lowers at 18 p.m. A quick search on Google finds that the Swarco company
office hours are from 8 a.m. to 5 p.m., Monday to Thursday, and from 8 a.m. to 12 p.m.
on Friday, then closed on weekends. This explains these parking occupancy patterns.
Plots of the smoothed series (Figure 3.48) for the Outside sector better reveal the daily
occupancy patterns and the nearly empty occupancy for weekends.
The daily patterns are perfectly characterized in the seasonal plots (Figure 3.49), where
the occupancy/hour perfectly distinguishes the day of the week. Thus, the Friday be-
haviour is due to the office hours, as the office closes at 12 p.m. on that day. For
both Saturday and Sunday, the office is closed and thus the parking sectors are empty.
Workday office hours can be seen clearly: 8 a.m. to 17 p.m.
From the plot of averaged occupancy/hour by months, the lower values for December
can be explained by the holidays, as the office was closed during the last two weeks of
the month.
Lower occupancy/hour values during the first weeks may be explained by the distribution
of holidays throughout the year. Lastly, the average occupancy/hour by year shows very
similar patterns, with values between the two years.
Seasonal plots for the Outside sector (Figure 3.50) behave exactly like the Inside sector,
as both are governed by the office opening hours. The only difference is the slightly
higher occupancy levels.

Specialized time series plots

Box plots for both sectors (Figure 3.51) indicate constant mean and variance values over
time. Curiously, the Outside sector seems to be more affected by the holidays, as its levels
are lower in August and December compared to the Inside sector – especially for the
month of August, which maintains its levels. Another interesting characteristic is that,
in September, the occupancy/hour for the Inside sector is lower while the occupancy
levels in the Outside sector return to being similar to previous months (June or July, for
example). This could indicate that the parking sectors are used by different professional
profiles.
Figure 3.52 shows the decomposition of the time series from Wattens. Observed values,
trend, seasonality and residuals remain after subtracting trend and seasonality from the
observations. One conclusions that can be drawn are that seasonality clearly follows
daily periods in both sectors. Another can be made from the residuals: large values
could indicate holidays during the first week of April, some weeks in May, the third
week of August, and the first week of November. When decomposing occupancy/hour
series for a month (September), both indicate very similar periodic patterns.
The ACF and PACF shown in Figure 3.53 present similar conclusions: an autoregressive
process is evident where significant lags are 1, 2 and 25 (daily seasonality). Both lag plots
(Figure 3.54) provide similar visualizations showing a strong linear correlation between
t and t− 1 values, especially when the occupancy levels become higher.
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Figure 3.46: Inside sector time series for 2018 and third week of October 2018.
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Figure 3.47: Outside sector time series for 2018 and third week of October 2018.
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Figure 3.48: Smoothed time series for Outside sector in Wattens. The upper image
shows the series layered one on top of the other, where green lines represent the window
moving average series and the yellow ones the exponential weighted average results.
The bottom figure decomposes the top plot and shows the smoothness of the series
under different methods.
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Figure 3.49: Seasonal plots for Inside sector in Wattens. Hourly occupancy averaged
at different periods. From top left to bottom right: day, month, week of the month
and year.
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Figure 3.50: Seasonal plots for the Outside sector in Wattens. Hourly occupancy
averaged at different periods. From top left to bottom right: day, month, week of the
month and year.
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Figure 3.51: Box plots of Inside (top) and Outside (bottom) sectors in Wattens.
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Figure 3.52: Decomposition of the time series for Inside (top) and Outside (bottom)
sectors in Wattens. Left images correspond to occupancy/day for year 2018, and the
right images are for occupancy/hour for September 2018.
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Figure 3.53: ACF and PACF plots for Inside (top) and Outside (bottom) sectors in
Wattens, June 2018.
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Figure 3.54: Lag plots of Wattens sectors. Left: Inside sector; right: Outside sector.

Figure 3.55: Wattens occupancy/hour in the frequency domain. Left: Inside sector;
right: Outside sector.

The series in the frequency domain (Figure 3.55 shows the same information as the
previous power spectra plots (Figures 3.27 and 3.42, for example), where 24 and 168 are
the predominant periods for the data.

Time-space analysis

From Figure 3.56, we can determine that a correlation exists between occupancies and
between sectors at closer time steps. Specifically, a linear relationship exists from time
lag 0 to time lag 3, followed by the relationship fading until time lag 24, where the daily
period begins again.
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Figure 3.56: Cross-correlations for Wattens sectors. Inside sector on the top, Outside
sector on the bottom.

Sector name Number of sensors Deployment date

Willow Standard 60 01/04/2018

Willow_Permit 31 01/04/2018

Willow_Disabled 5 01/04/2018

Willow Zipcar 4 01/04/2018

Table 3.10: Los Angeles Willow Street sectors.

3.5.4 Los Angeles (USA)

Characteristics

The Los Angeles scenario on Willow Street began in the spring of 2018 and consists
of four sectors, for a total of 100 sensors in the same parking zone (see Table 3.10).
Figure 3.57 shows that the sectors are next to each other, while the differences lie in
their users: Standard for all types of users; Zipcar for vehicles rented from the Zipcar
company; Permit are places reserved for people with permits to park in these specific
parking lots; and Disabled are parking spots reserved for disabled people. Apart from
the specific characteristics that define each parking sector, another common and special
characteristic is that they are next to the metro station.
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Figure 3.57: Los Angeles Willow Street map. Sectors are located near the metro
station..

Analysis of all available data for the entire period

Collecting data from Los Angeles Willow Street started on the first of April, 2018.
At first sight, we see clear patterns of daily and weekly periods. On 26 January 2019,
infrastructure works on the metro line affected the parking places, with access to some of
the parking spots being closed. Because of this, the occupancy in some sectors dropped
to very low levels. At the end of 2019, some of the sectors started to recover their normal
activity. In the area of outlier detection and intervention analysis for time series, this
is identified as a level shift (LS) outlier, where the mean value of the series abruptly
changes. In the analysis of these sectors, the date range considered is from 01/04/2018
to 24/10/2019, and care has been taken to mention and provide visualizations for those
parts of the analysis that are affected by the level shift outlier. The last date of data
is 24/10/2019, because from that date forward all sectors were equally affected by the
appearance of missing values with unknown sources.

Statistics

In this section, two tables are presented for each sector. The corresponding first one
presents the statistics that consider the level shift outlier event, and the second provides
only the data up to when the level shift occurred.
Tables 3.11 present statistics for the Standard Willow sector. The level shift reduced
the values of the quantile and the descriptive statistics. It is interesting to note that
the kurtosis sign shifted from negative to positive (platykurtic to leptokurtic shape) and
the skewness value increased. Observing the density plots in Figure 3.59, we can see
that even though the distribution shape is maintained (that is, two peaks occur, with
one taller than the other – a characteristic shared by sectors that are used differently
on weekends/weekdays or at daytime/nighttime), the density values have become lower
because fewer parking spots are available. Thus, full occupancy has dropped to lower
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Figure 3.58: Los Angeles Willow Street sectors. Data for the interval 2018 and 2019.
From top left to bottom right: Standard, Permit, Disabled and Zipcar.

than 1. Independently of the lower occupancy levels due to fewer available spots, we
can assume by the distribution having similar shapes that the underlying patterns are
maintained over time.
The tables in 3.12 present statistics for the Willow Permit sector, the sector with the
second most parking spots in the zone. The level shift reduced the values of the quantile
and the descriptive statistics. Here also, the kurtosis sign shifted from negative to
positive (platykurtic to leptokurtic shape), though the skewness value was duplicated.
These observations are shared with the Standard sector(Table 3.11). Observing the
density plots in Figure 3.60, we can see that before the level shift, the sector behaved
similarly to the Standard sector (Figure 3.59); but after the level shift, this sector seems
to have been very much affected by the works as many parking spots become inaccessible.
This explains the great shift to a leptokurtic shape.
Standard and Permit sectors seem to behave very similarly. Their correlation coefficient
is very high, and they can be explained by the same underlying process.
The quantile statistics in Table 3.13 show that the Disabled sector is generally empty,
with the most use before the level shift. Similarly to the Standard and Permit sectors,
the main change in the descriptive statistics due to the level shift results from a shift in
the kurtosis sign and the skewness value being duplicated.
Observing the density plots in Figure 3.61, the shape of the distribution is similar to
the Standard and Permit sectors before the level shift. Once the level shift occurs, the
shape is maintained by the occupancy levels never reaching 1.
Finally, the quantile statistics in Table 3.14 show that the values for the Zipcar sector
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Quantile statistics

Minimum 0

5-th percentile 0

Q1 0.016

Median 0.05

Q3 0.251

95-th percentile 0.907

Maximum 1

Range 1

Interquartile range (IQR) 0.235

Descriptive statistics

Standard deviation 0.278

Coefficient of variation 1.463

Kurtosis 1.445

Mean 0.190

Median Absolute Deviation 0.215

Skewness 1.661

Variance 0.077

Quantile statistics

Minimum 0

5-th percentile 0

Q1 0.03

Median 0.086

Q3 0.586

95-th percentile 0.944

Maximum 1

Range 1

Interquartile range (IQR) 0.556

Descriptive statistics

Standard deviation 0.338

Coefficient of variation 1.194

Kurtosis -0.742

Mean 0.283

Median Absolute Deviation 0.296

Skewness 0.953

Variance 0.115

Table 3.11: Statistics for the Standard sector. The top table considers all available
data while the bottom table considers only data until 26-01-2019
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Figure 3.59: Density plots for the Standard sector on Willow Street.
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Quantile statistics
Minimum 0

5-th percentile 0
Q1 0.004

Median 0.042
Q3 0.123

95-th percentile 0.601
Maximum 0.865
Range 0.865

Interquartile range (IQR) 0.119

Descriptive statistics
Standard deviation 0.190

Coefficient of variation 1.5
Kurtosis 2.048
Mean 0.127

Median Absolute Deviation 0.139
Skewness 1.818
Variance 0.036

Quantile statistics
Minimum 0

5-th percentile 0.043
Q1 0.019

Median 0.077
Q3 0.410

95-th percentile 0.652
Maximum 0.865
Range 0.865

Interquartile range (IQR) 0.390

Descriptive statistics
Standard deviation 0.234

Coefficient of variation 1.153
Kurtosis -0.661
Mean 0.203

Median Absolute Deviation 0.204
Skewness 0.930
Variance 0.054

Table 3.12: Statistics for the Permit sector. The top table considers all available data;
the bottom table considers only data until 26-01-2019
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Figure 3.60: Density plots for the Permit sector on Willow Street.

94



3.5 Scenarios Data analysis

Quantile statistics
Minimum 0

5-th percentile 0
Q1 0

Median 0
Q3 0.2

95-th percentile 0.9
Maximum 1
Range 1

Interquartile range (IQR) 0.2

Descriptive statistics
Standard deviation 0.288

Coefficient of variation 1.805
Kurtosis 2.046
Mean 0.16

Median Absolute Deviation 0.215
Skewness 1.823
Variance 0.083

Quantile statistics
Minimum 0

5-th percentile 0
Q1 0

Median 0.081
Q3 0.573

95-th percentile 1
Maximum 1
Range 1

Interquartile range (IQR) 0.573

Descriptive statistics
Standard deviation 0.35

Coefficient of variation 1.256
Kurtosis -0.626
Mean 0.278

Median Absolute Deviation 0.301
Skewness 0.936
Variance 0.122

Table 3.13: Statistics for the Disabled sector. The top table considers all available
data; the bottom table considers only data until 26-01-2019
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Figure 3.61: Density plots for the Disabled sector on Willow Street.
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Quantile statistics
Minimum 0

5-th percentile 0
Q1 0

Median 0.17
Q3 0.25

95-th percentile 0.5
Maximum 0.825
Range 0.825

Interquartile range (IQR) 0.25

Descriptive statistics
Standard deviation 0.172

Coefficient of variation 1.056
Kurtosis -0.374
Mean 0.16

Median Absolute Deviation 0.151
Skewness 0.706
Variance 0.03

Quantile statistics
Minimum 0

5-th percentile 0
Q1 0

Median 0.017
Q3 0.25

95-th percentile 0.5
Maximum 0.825
Range 0.825

Interquartile range (IQR) 0.25

Descriptive statistics
Standard deviation 0.17

Coefficient of variation 1.183
Kurtosis 0.134
Mean 0.144

Median Absolute Deviation 0.15
Skewness 0.92
Variance 0.029

Table 3.14: Statistics for the Zipcar sector. Top table considers all available data while
bottom table only considers data until 26-01-2019

have remained the same independently of the level shift. Unlike the Standard and
Permit sectors, the kurtosis statistic changed from positive to negative and the skewness
decreased a little. The variance has remained more or less the same value. One reason
for the low changes in the statistical values could be that these parking places were
unaffected by the works in this zone.
The density plots in Figure 3.62 show that the parking places were empty for all of
December 2018, but the distributions were unaffected overall by the level shift.

Monthly and weekly data analysis

Figures 3.63 show the behaviour of the Standard sector for October 2018 and 2019
(before and after the level shift). We can see that, while the occupancy/hour levels have
decreased due to the parking spots being closed, the patterns persist. Thus, we can easily
identify a daily pattern that distinguishes weekdays from weekends. This distinction
could explain the two peaks in the distribution. At this point, we can assume that the
level shift did not change the patterns in the sectors, only their levels of occupancy/hour.
Notice that the occupancy/hour levels of the daily pattern started to rise at 10 a.m. and
then decrease at 23 p.m.
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Figure 3.62: Density plots for the ZipCar sector on Willow Street.
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Figure 3.63: Top: October 2018 and October 2019 time series for the Standard sector.
Bottom: the third week of October for the years 2018 and 2019, Standard sector.

The Permit sector was very affected by the infrastructure works in the zone, as evidenced
by the plots in Figure 3.64. This could be because this sector is right at the entrance of
the metro station. Daily patterns still exist after the works began, but it is difficult to
distinguish weekdays from weekends.
The occupancy/hour time series for the Disabled sector on Willow Street in Figure 3.65
shows that the sector reaches full occupancy and emptiness at the same times every
day throughout the work week. In a similar fashion to the other sectors, weekends and
weekdays have different occupancy levels. Some of the parking spots were affected by
the level shift in January 2019, but recovered their normal state in November.
The plots in Figure 3.66 show that the sector has not been affected by the infrastructure
works in the zone. Moreover, the mean and the occupancy levels have remained more
or less at the same values. Daily patterns are not guaranteed, as can be seen in the
October 2019 plot, where the occupancy levels remained the same from 17 October until
the end of the month.
The visualizations of the smoothed time series for the Standard sector reveals (Figure
3.67) that the occupancy clearly follows a daily pattern and that the occupancy is very
marginal in the zone on weekends. Occupancy/hour levels increase at 6 a.m. and
decrease at 18 p.m. every day from Monday to Friday, and the pattern is repeated
throughout the year 2019, with lower occupancy levels due to the works in the zone.
From the seasonal plots for the Standard sector in Figure 3.68, and independently of
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Figure 3.64: Top: October 2018 and October 2019 time series for the Permit sector.
Bottom: the third week of October for the years 2018 and 2019, Permit sector.

Figure 3.65: Top: October 2018 and October 2019 time series for the Disabled sector.
Bottom: the third week of October for the years 2018 and 2019, Disabled sector.
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Figure 3.66: Top: October 2018 and October 2019 time series for Zipcar sector. Bot-
tom: the third week of October for years 2018 and 2019 for Zipcar sector.

the level of aggregation (day, month, week or year), we can see that the occupancy
pattern is always the same: it increases at 6 a.m. and starts to decrease at 16 p.m. The
months with less occupancy are July, February and March (the last two because their
data correspond only to 2019 and are affected by the infrastructure works in the zone).
Similarly to other sectors (e.g., Figure 3.49), the first week of the month is the week with
less occupancy, maybe due to holidays coinciding with that week. The decomposition
by year makes the level shift evident, but the patterns still remain.
Similarly to the seasonal plots of the Standard sector (Figure 3.68), the seasonal plots
from the Permit sector (see Figure 3.69) indicate daily patterns with a very discrimi-
native visualization between weekdays and weekends. From the monthly aggregation,
February and March indicate very low occupancy levels because their data is from 2019.
Weekly occupancy/hour behaves similarly to the Standard sector, with less occupancy
in first week of the month. Lastly, the yearly aggregation presents the effects on the
occupancy/hour from the works in the zone.
The Disabled sector patterns (see Figure 3.70) behave similarly to the previous sectors
(Standard, Figure 3.68 and Permit, Figure 3.69). The daily patterns distinguish week-
days from weekends and, while the levels of occupancy/hour follow the same pattern,
we can see how February, March or 2019 data have lower values due to the works in the
zone affecting access to the parking spots.
From monthly and weekly visualizations as well as the statistics tables (Figure 3.66 and
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Figure 3.67: Smoothed time series for the Standard sector in Los Angeles. The upper
image shows the series layered one on top of the other, where green lines represent the
window moving average series and the yellow ones the exponential weighted average
results. The bottom figure decomposes the top plot and shows the smoothness of the
series under different methods.
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Figure 3.68: Occupancy/hour by days seasonal plots for Standard sector on Willow
Street.
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Figure 3.69: Occupancy/hour by days seasonal plots for Permit sector onWillow Street.
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Figure 3.70: Occupancy/hour by days, seasonal plots for the Disabled sector on Willow
Street.
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Figure 3.71: Occupancy/hour by days, seasonal plots for the Zipcar sector on Willow
Street.

Table 3.14), it is known that the infrastructure works in the zone did not affect the
behaviour of this sector. Because of the small number of parking places and, possibly,
these spaces being purposed for rental car vehicles, the pattern seems to be chaotic: it
increases at 5 a.m. and decreases at 18 p.m. It is not possible to distinguish weekdays
from weekends like in the other sectors. Monthly, weekly and yearly aggregations do not
present discriminative differences.

Specialized time series plots

The box plot visualizations (see Figure 3.72) reveal that the Standard, Permit and
Disabled sectors have been governed by the same process, as they share similar mean and
variance levels for the different months until 2019. Zipcar behaviour is more chaotic, with
the mean changing from month to month while more or less maintaining the variance.
From the decomposition of the time series for the Standard sector in Figure 3.73, we can
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Figure 3.72: Box plot visualizations for the Willow Street sectors. From top left to
bottom right: Standard, Permit, Disabled and Zipcar.
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Figure 3.73: Decomposition of the time series for the Standard sector on Willow Street.
Top corresponds to occupancy/day for years 2018 and 2019. Bottom corresponds to
occupancy/hour for June 2018 and June 2019

see that the trend is maintained over time and, while the levels change after January
2019, the trend level continues with the same lower value over time. July, August and
September of 2019 have a lower trend than expected. From the decompositions for June
2018, the trend clearly distinguishes occupancy levels between weekdays and weekends,
and a daily seasonal pattern can be observed. A similar trend can be seen in June
2019, but in the last half of the month the occupancy dropped to nearly 0. This could
be an effect from the works in the zone. Trend + seasonality cannot capture patterns
in the data at all, as the residuals reach values of ±0.25. In other words, there is a
1/4 difference between prediction and observation. This means that, working from 60
parking places, one prediction could be wrong for 15 parking spots.
The decomposition of the time series for the Permit sector (plots in Figure 3.74) show
similar patterns to those revealed by the Standard sector, with the same outlier values in
May, July, September and November of 2018. The trend value is maintained throughout
the years, even in 2019 after the level shift. Daily seasonality is always present. When
looking at the occupancy levels for June, the trend has a seasonal pattern (weekly) that
is similar to the Standard sector. Seasonality plus trend has large residuals that are

108



3.5 Scenarios Data analysis

Figure 3.74: Decomposition of the time series for the Permit sector on Willow Street.
Top corresponds to occupancy/day for years 2018 and 2019. Bottom corresponds to
occupancy/hour for June 2018 and June 2019

similar to those of the Standard sector for weekends. For 2019, the patterns become
hard to detect, as the occupancy levels are nearly 0.
Similarly to the previous sectors, the decomposition of the time series for the Disabled
sector (see Figure 3.75) shows daily seasonality and a weak weekly pattern in the trend
for occupancy/hour in June. Outliers in 2018 are the same as in previous sectors. Trend
plus seasonality is not enough to capture the occupancy/hour patterns, and the residuals
are large on weekends in the June 2018 plot. In the 2019 plots, we can see that the trend
levels are maintained after the level shift while the daily seasonality is also maintained.
The 2019 plot shows that the expected value for the time series lies in the 0 value; thus,
when some occupancy occurs, its residual value is large.
Lastly, the decomposed time series for the Zipcar sector (Figure 3.76) shows erratic
behaviour in the trend, independently of the year. What is more, the daily seasonality
is more clear in occupancy/day than in occupancy/hour.
The ACF and PACF plots in Figure 3.77 show the autocorrelation and partial autocor-
relation functions for the Willow Street sectors for May 2018. All plots show a strong

109



3.5 Scenarios Data analysis

Figure 3.75: Decomposition of the time series for the Disabled sector on Willow Street.
Top corresponds to occupancy/day for years 2018 and 2019. Bottom corresponds to
occupancy/hour for June 2018 and June 2019
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Figure 3.76: Decomposition of the time series for the Disabled sector on Willow Street.
Top corresponds to occupancy/day for years 2018 and 2019. Bottom corresponds to
occupancy/hour for June 2018 and June 2019
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Figure 3.77: ACF and PACF plots for Standard (top left), Permit (top right), Disabled
(bottom left) and Zipcar (bottom right) sectors on Willow Street for the year 2018.

autocorrelation process, where the first two lags are significant. The Standard, Permit
and Disabled sectors additionally have an important lag, namely lag 25, which indicates
daily seasonality.
Regarding the ACF and PACF plots for the year 2019 (Figure 3.78), the Standard
and Permit sectors show a strong autoregressive pattern, with lags 1, 2 and 25 (daily
seasonality) being important, while the behaviour of Disabled and Zipcar is a mixture
of autoregressive and moving average. The PACF of the Disabled sector shows that lags
1, 2 and 25 have autoregressive patterns that can be combined with a moving average,
as the ACF plot shows lags 1, 2 and 3 to be significant. The case is similar in the Zipcar
sector, with lags 1 and 2 being significant in the PACF plot while lags 1, 2, 3, 4 and 5
are significant in the ACF plot.
Figure 3.79 shows the lag plots for the Willow Street sectors, indicating a strong linear
correlation in the Standard and Permit sectors.
In the frequency domain, the periodic patterns emerge in the time series. Figure 3.80
shows the predominant periods for the Willow Street sectors. Similarly to the other
sectors (see Figures 3.27 and 3.55 as examples), the predominant period is at value 24,
and the second one is at value 168.
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Figure 3.78: ACF and PACF plots for the Standard (top left), Permit (top right),
Disabled (bottom left) and Zipcar (bottom right) sectors on Willow Street for the
year 2019.
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Figure 3.79: Lag plots for the Willow Street sectors. From top left to bottom right:
Standard, Permit, Disabled and Zipcar
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Figure 3.80: Willow Street occupancy/hour in the frequency domain.
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Figure 3.81: Cross-correlations for the Willow Street sectors. Top left for Standard
sector, top right for Permit sector, bottom left for Disabled sector and bottom right
for Zipcar sector.

Time-space analysis

From Figure 3.81, we can determine that a high correlation exists between occupancies
among sectors at closer time steps. Specifically, a strong linear relationship exists from
time lag 0 to time lag 6 between the Standard, Permit and Disabled sectors. The Zipcar
sector is less correlated with the other sectors through lags 0 to 3.

3.5.5 Riyadh (UAE)

Characteristics

The last scenario considered in this data analysis is for the sectors in the city of Riyadh.
This scenario has over 1000 sensors distributed across 10 sectors in the downtown area
of the city, next to the Kingdom Tower skyscraper. For the specific number of sensors,
check Table 3.15.
The main characteristic of this area is the huge amount of sensors that cover the entire
district and provide information about parking behaviours at a large scale. Figure 3.82
shows the distribution of the sectors and sensors.
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Sector name Number of sensors Deployment date

Sector 1 132 01/09/2018

Sector 2 115 01/09/2018

Sector 3 143 01/09/2018

Sector 4 81 01/09/2018

Sector 5 94 01/09/2018

Sector 6 94 01/09/2018

Sector 7 111 01/09/2018

Sector 8 74 01/09/2018

Sector 9 84 01/09/2018

Sector 10 79 01/09/2018

Table 3.15: Riyadh sectors..

Figure 3.82: Map of the Riyadh sectors.

Individually, each sector has its own characteristics that can affect its behaviour. Sectors
1, 2, 3 and 4 are situated in front of the Kingdom Tower skyscraper, an area that consists
of offices and restaurants for workers in the zone. Sector 5 is surrounded by luxurious
hotels. Sectors 6 to 10 are part of the zone surrounding a medical complex: the maternity
hospital, emergencies, etc. Also, sectors 6, 7 and 8 are next to one of the biggest malls
in the area.
In this scenario, sectors are not classified by parking spot uses, like in the Los Angeles
scenario (see Section 3.5.4 for detailed information). Thus, in this case, all spots pertain
to the general definition of a parking place on a city street: free and without restrictions
based on the type of user.
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Figure 3.83: Riyadh data from the time interval 2018 to 2019. From top left to bottom
right: sector 1 to sector 6.

Analysis of all available data for the entire period

Observing all the data available from the first six sectors in Riyadh (see Figure 3.83),
they behave very similar, with means at the 0.5 value. It seems that anomalies (June
2019 or August 2019) equally affected all the sectors. Sector 5 is the only one that seems
a bit different than the rest, with a lower mean value.
The time series plots for the rest of the sectors (from 7 to 10) show similar behaviour
to the other sectors in the zone, with mean values near 0.5 and affected by the same
anomalies. Sector 7 has higher occupancy compared to the others, possibly because it
is nearest to the hospitals.

Statistics

The sectors in Riyadh present different characteristics than those of the previous sce-
narios, although they all behave more or less equally. Quantile and descriptive statistics
for the first six sectors are presented in Table 3.16. None of the sectors reaches 0 or 1,
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Figure 3.84: Riyadh data from the time interval 2018 and 2019. From top left to
bottom right: sector 7 to sector 10.

indicating that enough vehicles find a parking spot and that there are enough places to
satisfy this demand. The means and medians are more or less situated at the 0.5 value,
and all sectors present negative kurtosis and positive skewness. The sectors with the
most sensors (sector 1 and sector 3) are those with higher variance values.
Density plots (Figure 3.85) present the common shape of two peaks, similarly to other
scenarios. This could be indicative of a distinction between weekdays and weekends or
between daytime and nighttime. All sectors indicate lower occupancy levels in December.
Sectors 7, 8, 9 and 10 resemble the previous sectors: negative kurtosis (flat shape), means
and medians slightly over 0.5, shapes with two peaks and low variability in general. For
July, sectors 8 and 10 have three peaks instead of the common two, while for December,
all of the sectors behave differently from sectors 1 to 6. For detailed information, check
Table 3.17 and Figure 3.86.

Monthly and weekly data analysis

Figure 3.87 shows all sector time series for March 2019. Daily patterns can be seen easily
with slight differences between weekdays and weekends. Sector 2 presents a lower range
of values compared to the others. Sector 4 has less occupancy on Saturdays compared to
other days (note that Friday and Saturday are the official days of rest in Saudi Arabia).
Occupancy levels start to increase at 6 a.m. every day and start to decrease at 18 p.m.
All sectors in Riyadh seem to follow the same pattern on weekdays: occupancy/hour
rises at 6 a.m. and drops at 18 p.m., but on weekends the sectors behave differently
(see Figure 3.88). The day with major differences from the others is Friday: occupancy
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Quantile statistics Sector 1 Sector 2

Minimum 0.046 0.133

5-th percentile 0.105 0.226

Q1 0.119 0.304

Median 0.549 0.489

Q3 0.832 0.678

95-th percentile 0.935 0.812

Maximum 0.976 0.865

Range 0.930 0.732

Interquartile range (IQR) 0.653 0.374

Descriptive statistics Sector 1 Sector 2

Standard deviation 0.316 0.2

Coefficient of variation 0.608 0.401

Kurtosis -1.650 -1.338

Mean 0.519 0.499

Median Absolute Deviation 0.293 0.177

Skewness -0.036 0.16

Variance 0.1 0.04

Quantile statistics Sector 3 Sector 4

Minimum 0.091 0.123

5-th percentile 0.149 0.212

Q1 0.202 0.323

Median 0.414 0.482

Q3 0.738 0.790

95-th percentile 0.922 0.937

Maximum 0.984 0.975

Range 0.893 0.852

Interquartile range (IQR) 0.535 0.468

Descriptive statistics Sector 3 Sector 4

Standard deviation 0.28 0.253

Coefficient of variation 0.589 0.463

Kurtosis -1.447 -1.417

Mean 0.475 0.547

Median Absolute Deviation 0.255 0.229

Skewness 0.309 0.225

Variance 0.078 0.064

Quantile statistics Sector 5 Sector 6

Minimum 0.117 0.120

5-th percentile 0.203 0.213

Q1 0.278 0.288

Median 0.395 0.517

Q3 0.599 0.792

95-th percentile 0.757 0.872

Maximum 0.798 0.918

Range 0.680 0.798

Interquartile range (IQR) 0.321 0.504

Descriptive statistics Sector 5 Sector 6

Standard deviation 0.186 0.244

Coefficient of variation 0.421 0.457

Kurtosis -1.161 -1.578

Mean 0.441 0.534

Median Absolute Deviation 0.162 0.223

Skewness 0.404 0.072

Variance 0.034 0.06

Table 3.16: Statistics for Riyadh sectors 1 to 6.
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Figure 3.85: Density plots for the first 6 sectors in Riyadh.
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Quantile statistics Sector 7 Sector 8

Minimum 0.206 0.082

5-th percentile 0.296 0..178

Q1 0.39 0.290

Median 0.6 0.604

Q3 0.755 0.829

95-th percentile 0.869 0.905

Maximum 0.935 0.971

Range 0.73 0.889

Interquartile range (IQR) 0.364 0.539

Descriptive statistics Sector 7 Sector 8

Standard deviation 0.196 0.267

Coefficient of variation 0.337 0.473

Kurtosis -1.37 -1.563

Mean 0.581 0.565

Median Absolute Deviation 0.174 0.245

Skewness -0.03 -0.146

Variance 0.038 0.071

Quantile statistics Sector 9 Sector 10

Minimum 0.083 0.060

5-th percentile 0.145 0.152

Q1 0.225 0.251

Median 0.545 0.668

Q3 0.856 0.85

95-th percentile 0.937 0.907

Maximum 0.985 0.956

Range 0.902 0.895

Interquartile range (IQR) 0.631 0.599

Descriptive statistics Sector 9 Sector 10

Standard deviation 0.3 0.286

Coefficient of variation 0.556 0.497

Kurtosis -1.644 -1.562

Mean 0.540 0.574

Median Absolute Deviation 0.278 0.263

Skewness 0.011 -0.302

Variance 0.090 0.082

Table 3.17: Statistics for Riyadh sectors 7 to 10.
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Figure 3.86: Density plots for sectors 7, 8, 9 and 10 in Riyadh..
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Figure 3.87: Time series for Riyadh sectors in March 2019. From top left to top right:
sector 1 to sector 10.
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levels are lower and usually rise between 10 a.m. and 12 a.m. (depending on the sector),
then decrease at night (12 a.m.).
The smoothed time series for sector 1 can be seen in Figure 3.89. Similarly to other
scenarios (e.g., Figure 3.48), the moving average with a window size of 12 perfectly shows
the daily pattern and the differences between weekdays and weekends.
Figure 3.90 shows the behaviour of parking occupancy/hour at different levels of ag-
gregation (day, month, week and year) for sector 1. The daily aggregation shows how
different the behaviour is on weekdays compared to weekends: in the former, occupancy
levels rise at 6 a.m.; while in the latter they rise slowly from 10 a.m. onward.
The monthly aggregation shows that all months behave similarly, except that May has a
strange decrease in occupancy at 18 p.m. The occupancy for June, July and August are
lower than the other months. December occupancy behaves like Saturday in the daily
seasonal plot, possibly indicating holidays and that the area is used for leisure at night.
Weeks behave similarly to each other, which also happens with the yearly plot.
Figure 3.91 shows similar patterns to the sector 2 seasonal plots. The daily patterns
show that weekends in the area are used for leisure (perhaps because of restaurants in
the area).
Monthly patterns show that December and August are the months with the lowest
occupancy.
Figure 3.92 shows the seasonal plot for sector 3. Daily aggregation shows how closely
related Thursday and Friday are at night, possibly indicating that people use this area
for leisure at night on the weekends. Monthly aggregation shows that December has
lower levels of occupancy/hour. The occupancy levels for year 2019 are lower than those
for 2018.
Figure 3.93 shows the sector 4 seasonal plots, which are not very different from the other
sectors already mentioned.
The plots in Figure 3.94 show the seasonal patterns for sector 5. The daily aggregation
differs from the previously mentioned sectors in the sense that Saturday behaves more
like the other days of the week, while Friday levels do not rise very much during the day.
The monthly seasonal plot shows less occupancy in August, and the decrease in May at
18 p.m. is the same as that of sector 2.
Seasonal plots for sector 6 (Figure 3.95) show exactly how sector occupancy behaves
Monday to Wednesday. On Thursday, occupancy starts to decrease earlier than the
previous days, and Friday has its own behaviour. Saturday behaves between Friday and
the first days of the week.
The monthly aggregation (second plot in Figure 3.95) shows patterns that are similar
to the previous sectors: a decrease in May starting at 15 p.m., and less occupancy in
December and August. The rest of the months behave more or less equally.
No distinctions can be made in the weekly and yearly seasonal plots, as they offer no
new information compared to the other sectors.
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Figure 3.88: Time series for the Riyadh sectors in March 2019, week 2. From top left
to top right: sector 1 to sector 10.
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Figure 3.89: Smoothed time series for sector 1 in Riyadh. Methods used for smoothing
the series are moving average and exponential smoothing. The top visualization shows
all time series in the same plot, where green lines correspond to moving averages with
window sizes of 6 and 12 hours; yellow lines pertain to the exponential smoothing
average, with alpha values of 0.75 and 0.25. The visualization at the bottom shows
the time series separately.
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Figure 3.90: Occupancy/hour seasonal plots for sector 1 in Riyadh.
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Figure 3.91: Occupancy/hour seasonal plots for sector 2 in Riyadh.
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Figure 3.92: Occupancy/hour seasonal plots for sector 3 in Riyadh.
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Figure 3.93: Occupancy/hour seasonal plots for sector 3 in Riyadh.
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Figure 3.94: Seasonal plots for sector 5 in Riyadh at different levels of aggregation
(daily, monthly, weekly and yearly)
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Figure 3.95: Visualizations of seasonal plots at different periodic aggregations for sec-
tor 6 in Riyadh. From top left to bottom right: daily, monthly, weekly and yearly
aggregations.
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Figure 3.96: Riyadh sector 7 seasonal plots at different periodic aggregations: daily,
monthly, weekly and yearly.

For sector 7, the daily patterns in the first seasonal plot of Figure 3.96 show that Friday
is the only day that the occupancy/hour pattern is different from the other days. This
time, Saturday behaves more like the earlier days of the week.
In the monthly seasonal plot, August is the one that presents less occupancy/hour levels.
It may be that a strange pattern persists.
The weekly and yearly plots do not offer any relevant information that has not been
previously mentioned.
For sector 8, the daily seasonal plots (first plot in Figure 3.97) show how Friday peaks
at night. This could be explained by the presence of some restaurant in the sector.
In the monthly data, May’s behaviour is also indicated here (as with the other sectors),
and the month with the least occupancy is December (as in sector 7).
The weekly and yearly seasonal plots do not offer any new information.
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Figure 3.97: Seasonal plots for sector 8 in Riyadh.
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Figure 3.98: From top left to bottom right: seasonal plots of daily, monthly, weekly
and yearly aggregations for sector 9 in Riyadh.

Sector 9 behaves similarly to sector 8 in the seasonal plots (see Figure 3.98). This could
be explained by the same fact as above: both sectors are surrounded by restaurants,
while sector 9 is additionally surrounded by shops.
The last sector, sector 10, presents slightly different behaviour than sector 8 and sector
9. The daily plot (first plot in Figure 3.99) shows different behaviour on Friday, with
occupancy/levels starting to rise at 12 a.m. One explanation for this different behaviour
could be that sector 10 is positioned on a major street (Musa Ibn Nusair street), whereas
the other sectors are not.
Monthly data indicates less occupancy for June, July and August while maintaining the
strange pattern of May.
Weekly and yearly data adds no new information.
Some last words on seasonal plots: it may be that the patterns for May in all sectors
indicate that people in the zone are working part-time during that month and returning
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Figure 3.99: Occupancy/hour seasonal plots at different period aggregations for sector
10 in Riyadh. The periods considered are day, month, week and year.
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Figure 3.100: Sector 1: May (left) vs. March (right) occupancy/hour behaviour.

home earlier, while at night the area is visited by other people for leisure. Figure 3.100
shows a comparison of the occupancy/hour levels between May and March, where we
can clearly see how different the working day is. This change in behaviour could be due
to the fact that 5 May 2019 to June 3 2019 was the Ramadan period.

Specialized time series plots

Box plot visualizations for sectors 1 to 4 in Figure 3.101 show how similarly sectors
behave until May. In August, the occupancy levels decrease (clearly an effect of the
holidays). The change in behaviour between December 2018 and December 2019 is
surprising. It may be that parking is affected by some infrastructure works in the zone.
Clearly, December 2019 is an anomaly.
Box plots for sectors 5, 6, 7 and 8 (Figure 3.102) show slightly different patterns when
compared to previous sectors (Figure 3.101). From July 2019 onwards, there is less
occupancy, but December 2019 is not affected in the same way as previous sectors. In
fact, sector 8 behaves more or less the same as December 2018.
Box plots for sectors 9 and 10 (Figure 3.103) show that these sectors behave similarly to
sector 8 (see the fourth plot in Figure 3.102). This could be an indication that sectors 1 to
6 (north zone) are affected by some work in the zone that is not affecting the southern
sectors. Overall, the only months with less occupancy are from May (Ramadan) to
August, indicative of summer time.
After decomposing the series on trend and seasonality, some new patterns arise and
we can also confirm some assumptions from previous plots. Figure 3.104 presents the
decomposition of sectors 1, 2 and 3. The top row indicates the data for the year 2019,
in which the trend is similar for all three sectors: they remain constant except May
(Ramadan) and August (summer holidays). All three sectors have very low occupancy
at the start of December 2019 and throughout the whole month. Checking the residuals,
they are low, except for the first week of June (end of Ramadan holidays), August
(holidays), September (some national days) and December. So, we can assume that
holidays have great influence on the behaviour of parking occupancy. This could possibly
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Figure 3.101: Box plots for sectors 1 (top left), 2 (top right), 3 (bottom left) and 4
(bottom right) in Riyadh.
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Figure 3.102: Box plots for sectors 5 (top left), 6 (top right), 7 (bottom left) and 8
(bottom right).

Figure 3.103: Box plots for sectors 9 (left) and 10 (right) in Riyadh.
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Figure 3.104: Decomposition of the Riyadh time series for sectors 1 (left), 2 (middle),
and 3 (right). At top are the series from 2019, at bottom the series for March 2019.

explain the two peaks in the distributions, as the area is an office/leisure part of the city
with very different behaviours, depending on the day (holiday vs. working day).
When focusing on the daily patterns and looking at the second row of Figure 3.104,
where the time range is limited to March 2019, we can observe that the trend has a
constant pattern like a square wave, with the top values corresponding to weekdays and
the lowest values to the weekends. Residuals are notable on weekends (2 days), as the
daily seasonality is lost.
Decomposition for sectors 4, 5, and 6 show patterns (Figure 3.105) that are similar to
those above. We can easily spot changes in the patterns for June, mid-August and the
end of September. These sectors also suffer from the December anomaly, but to a lesser
extent compared to the aforementioned sectors. Also, sector 5 and sector 6 present an
anomaly in July, which does not coincide with any known holiday.
The March decomposition for sector 4 (at the left of the bottom row in Figure 3.105)
indicates an increasing trend throughout the week that declines on weekends. The other
two sectors do not present the slowly increasing trend, but their occupancy/hour values
also decline quickly on weekends. As with the preceding sectors, the residuals are larger
for weekends, as seasonality is not followed on these days.
Sectors 8 and 9 present a trend throughout the year, which is constant and affected only
by the festivities (Figure 3.106). They also have the same anomaly in July as sectors 5
and 6. It may be that the July anomaly is due to some works in this area. The trend
levels become constant after August and decline a little at the end of December.
When focusing on the time range of March 2019, the trend continues to be similar to
that of the preceding sectors, presenting a square wave form and large residual values
on weekends.
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Figure 3.105: Decomposition of the Riyadh time series for sectors 4 (left), 5 (middle),
and 6 (right). At top are the series for 2019, at bottom the series for March 2019.

Figure 3.106: Decomposition of the Riyadh time series for sectors 7 (left) and 8 (right).
At top are the series from 2019, at bottom the series for March 2019.
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Figure 3.107: Decomposition of the Riyadh time series for sectors 9 (left) and 10
(right). At top are the series from 2019, at bottom the series for March 2019.

Finally, the trend levels for sectors 9 and 10 are the most constant of all the Riyadh
sectors (see Figure 3.107). Both sectors present very similar behaviours, with large
residuals on the holidays and in July. In contrast to the northern sectors, sectors 9 and
10 have no change in behaviour in December 2019.
Focusing on March 2019 (bottom row of Figure 3.107), the patterns are similar to the
other sectors: high occupancy levels for 5 days then 1 or 2 days of low occupancy levels in
which the residuals are large because trend + seasonality cannot capture this behaviour.
The ACF and PACF plots in Figure 3.108 show the autocorrelation and partial autocor-
relation functions for Riyadh sectors 1 to 6. Similarly to other scenarios (e.g., Figures
3.77 and 3.53), there is a strong autoregressive pattern as the autocorrelation functions
slowly tail off and the partial autocorrelation functions cut off at lag 2. Thus, the pro-
cesses for all sectors seem to be AR, with important lags 1, 2 and 24 (or 25), where the
last one indicating seasonality.
The ACF and PACF plots for sectors 7, 8, 9 and 10 (see Figure 3.109) have the same
behaviour as the previous sectors.
Lag plots of the Riyadh sectors (see Figure FALTA) show a strong linear correlation in
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Figure 3.108: ACF and PACF plots for Riyadh sectors 1 to 6, February 2019. From
top left to bottom right: sectors 1, 2, 3, 4, 5 and 6.
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Figure 3.109: ACF and PACF plots for Riyadh sectors 7 to 10, February 2019. From
top left to bottom right: sectors 7, 8, 9 and 10.
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the first lag for all sectors.
All sectors show similar patterns in the frequency domain (see Figure 3.111). The
predominant periods in the data are 24, 12, 84 and 168 (generally in that order). 24
and 168 denote the daily and weekly periods. The 12-hour period can be explained as
the time between when occupancy/hour increases in the morning and decreases in the
afternoon / at night. 84 is three and a half days, which constitute half of a week.

Time-space analysis

Taking a random week from the data, we can observe that all sectors behave similarly
throughout the week (see Figure 3.112). It is only on weekends (days 01 and 02, that
is, Friday and Saturday) that the sectors behave somewhat differently.
Cross-correlation visualizations confirm that all sectors have a strong linear dependency
on all the other sectors for lags 0 to 5. The linear relationship fades as the sectors become
farther away from each other. This can be observed in Figure 3.113, where sector 1 is
more correlated in time with sector 2 and sector 3, and less correlated with sector 9 and
sector 10. This points to a spatial correlation between the sectors and could be exploited
to obtain better predictions.

3.6 Conclusions

At this point, it is necessary to summarize the different findings in the data.
In general, the larger the parking sector, the easier it is to detect patterns that repeat
in time. We have seen that all parking sectors have a daily and/or weekly pattern in an
autoregressive form (e.g., Figure 3.10). This information is of great value for creating a
predictive model. Regrettably, sectors with low numbers of parking places have patterns
that are harder to detect or their behaviour is chaotic (e.g., the Zipcar sector in Section
3.5.4).
It is interesting that most sectors have two behaviours, which are detected in a distri-
bution with two peaks. These two behaviours usually occur as a result of different uses
of the sectors throughout the days and weeks. One of the clearest examples is the city
of Riyadh, where the sectors have totally different uses, depending on whether it is a
holiday/weekend or workday/weekday (see Section 3.5.5 for detailed information).
Also, it is notable that sectors near to each other follow similar patterns, indicating they
are slightly affected by their surroundings, and their occupancy levels are correlated in
time (see Figure 3.113).
The analysis has identified some sectors with anomalies, which change the sector be-
haviours (e.g., the Willow Street sectors in 2019, check Section 3.5.4). Through simple
modeling, such as trend + seasonality, these kinds of anomalies cannot be overcome.
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Figure 3.110: Lag plots for all Riyadh sectors. Top left to bottom right: sectors 1 to
10.
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Figure 3.111: Riyadh occupancy/hour in the frequency domain. From top left to
bottom right: sectors 1 to 10
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Figure 3.112: Riyadh sector realizations for the first week of March 2019, with the first
day being Friday and the last Thursday.

Thus, it would be of great interest to develop models that can overcome these types of
handicaps.
In closing, I provide here summaries of the important characteristics of each scenario.

3.6.1 Antwerp summary

The Pelikaanstraat sector has short stays because this sector is next to the train station
and is used by taxis. Because at night the use of the sector changes, its distribution
presents two differentiated peaks and large variance.
Zones 1 and 2 on Van Wesenbekestraat present correlations in their lags and similar
behaviours. Zones 1 and 3 in the Van Schoonhovestraat sector also present correlations
and similar patterns. Zone 2 exhibits chaotic behaviour.

3.6.2 Barcelona summary

The only sector that is in Barcelona scenario has short stays and high variance, but with
a very defined pattern throughout the days, weekdays being different from weekends.
Its distributions also present two different peaks.

149



3.6 Conclusions Data analysis

Figure 3.113: Cross-correlations for Riyadh sectors. Only sectors 1 and 10 are shown,
as all of them are identical. 150
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3.6.3 Wattens summary

The two sectors in Wattens (Inside and Outside) have similar patterns and behaviours,
with two peaks in their distributions. Their behaviours are linked to their being a
company’s private parking facility and, thus, they follow patterns similar to office hours.

3.6.4 Los Angeles summary

The sectors in the Los Angeles scenario present two peaks in their distributions, as their
behaviour in time is very different between weekdays and weekends. The Standard,
Permit and Disabled sectors present correlations in time, but the Zipcar sector is chaotic
in its behaviour.
The Los Angeles sectors present an anomaly that affects the occupancy levels during all
of 2019, especially in the Permit sector.

3.6.5 Riyadh summary

The ten sectors in the Riyadh scenario have very similar patterns that fade as the
distance between sectors increases. In addition, the sectors have two different behaviours:
holidays vs. workdays.
Because the scenario covers a wide area, interesting patterns arise:

• Seasonal plots have detected behaviour changes for all sectors during May, indi-
cating that people in the zone are working part-time that month and returning
home earlier, while others are visiting the area at night for leisure. One possible
explanation for this is that May coincides with the Ramadan holiday.

• An anomaly has been detected for some sectors in December 2019, for which no
explanation has been found.
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This chapter presents the research related to the main topics in this thesis and the state
of the art during its development. Due to the lack of technology, the literature did not
consider the modeling of parking behaviour until the emergence of Internet of Things
(IoT) platforms. This technology made it possible to use approaches similar to those
for traffic modeling, for which forecasting has been actively researched for years. This
chapter first introduces the research into and evolution of Smart Parking, then presents
the literature on time series forecasting models for traffic and parking from two different
approaches: classical statistics and machine learning methods.

4.1 Smart parking

The area of Intelligent Transportation Systems (ITS) focuses on improving modes of
transport and traffic management through innovation. In the case of parking, it provides
systems like Parking Guidance Information (PGI), which delivers dynamic information
about the state of parking zones and facilities to drivers using Virtual Message Signs
(VMS) on the roads or via Internet (UK Government [2003]). Polak et al. [1990] demon-
strated that PGI systems contribute to reducing overall traffic congestion by helping
drivers find free parking spaces.
The classical methods for PGI consist of using four components: a parking monitor-
ing mechanism, parking space information, telecommunications networks, and a control
center. Figure 4.1 shows from left to right the relationship between the components:
parking space information (usually VMS), the control center, and a parking state moni-
toring mechanism. All of them exchange information via a telecommunications network,
usually Ethernet. The problem with these systems was that they could only be used for
off-street parking systems; yet, even in this case, it was difficult to keep an exact count
of the number of available parking spaces, as explained in the review by Kotb et al.
[2017].
As a response to these problems, a new area called smart parking came into development,
with a focus on the use of emerging technologies for providing services that improve
management of off-street parking facilities and helping users find a parking spot.
The smart parking literature has been divided in regard to the nature of parking. For
off-street parking, researchers concentrate on parking reservation and the efficient use of
the parking facility infrastructures; while on-street parking studies focus on occupancy
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Figure 4.1: Parts that compose a PGI system.

prediction and estimating traffic caused by parking (Weinberger and Hampshire [2017]).
A small part of the literature has explored the possibility of converting on-street parking
in urban zones to fee-based parking, thus motivating the use of some off-street parking
solutions for on-street parking, specifically monetary solutions. Different approaches
have been explored for computing flexible prices for on-street parking slots, some of
which are: taking into account the number of free spots available in a zone (Teodorovic
and Lucic [2006]); the hour of the day (Shoup [2011]); the size of the vehicle (Nandekar
et al. [2015]); and discounts based on the CO2 emissions of the vehicle (Shoup [2016]).
Lin et al. [2017] provides an overview of the smart parking field from the year 2000
to 2016. First, it describes how the technology evolved from a need to capture and
deliver to users two flows of information: traffic and parking (called “Information” in
the mentioned study). Traffic information concerns pathways taken to find parking,
parking availability, and riding to the desired slot. The parking information flow begins
at the moment the parking slot status changes and the information is then delivered
to the drivers. Bad management of these flows results in competition, which increases
parking conflicts when demand for a spot is huge. Lin classifies the literature for smart
parking under three themes:

1. The management and collection of the information. This includes information
sensing, sensor connectivity, parking meters, crowdsensing and shared parking. In
particular, it focuses on different existing sensing techniques to identify parking
space status.

2. System deployment. This exploits and conducts a statistical analysis of the col-
lected data. The system is composed of E-Parking (virtualization of the sensors
and networks), reservation, guidance and monitoring of the information.

3. Service dissemination. This analyses the relationship between information and
social features. It focuses on how to disseminate the information (where to publish
and how) and how parking competition is caused by individual behavior (when
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more than two drivers contend for the same parking spot).
The key pieces in current smart parking solutions are found in system deployment:
software systems that collect, store and use the information; large-scale deployment
(sensors and telecommunications at the city-scale); and prediction services.
Prediction services are related to characterizing system processes in order to obtain mod-
els. The aim of modelization is to recreate real world system processes as mathematical
functions for creating simulation tools and predicting the outcomes of these systems in
concrete situations. Modeling can be done with different approaches, one of them being
the use of data that originates from the system under study. This approach is known
in the literature as a data-driven approach, and its techniques are categorized into two
groups: classical statistical methods and machine learning methods. Historically, model-
ing for traffic predictions appeared long before that of parking. Some of the earlier works
are: Ahmed [1979] for free flow prediction; M. Hamed et al. [1995] for urban traffic; and
Okutani and Stephanedes [1984] and Laetz [1990] for predictions in congested situations.
The reason could be that traffic problems are more costly, related to safety and legal
penalties (Kawashima et al. [1995]). In addition, technology plays an important role in
obtaining measurements. In the words of Donald Shoup:

“Parking has been the most stagnant technology industry for years. Two
main technologies can transform the parking paradigm: occupancy sensors
and variable price parking meters.” (Shoup [2018]).

Prediction for parking analytics has always been a driving force behind predictive analyt-
ics for traffic, which has been an active area of research for many years. This in turn has
motivated efforts to adapt promising traffic prediction methods to parking prediction.

4.2 Predictive modeling

Predictive modeling for parking and traffic became stronger with the emergence of IoT
networks (Khanna and Anand [2016]), computational capabilities and data-driven ap-
plications (Royal Society [2017]). In the case of parking, the literature is recent but has
learnt a lot from the traffic literature as can be observed in the evolution of the traffic
research area: traffic and parking forecasting models are currently based on time series
but some time ago prediction for traffic considered a broad domain of models. Both areas
got an increasing number of publications thanks to technology advancements, for traffic
began around the year 2000, and for parking around 2010. The massive deployment
of parking sensor networks motivated the appearance of city-scale projects for parking
(Atzori et al. [2010]), like SFPark in San Francisco (SFPark [2014]), LA Express park
Los Angeles Times [2010], Melbourne and SmartSantander (Santander) (Lanza et al.
[2016]). This led the way to time series forecasting modeling for parking.
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4.2.1 Predictive modeling for traffic

The reviews of the short-term traffic prediction models found in Lint et al. [2007] and
Vlahogianni et al. [2004] can be taken as the first efforts in the literature to classify
the modeling approaches used for traffic prediction. These works compares the different
approaches of the literature on the basis of: method; time horizon; scale (fixed location,
route and network); environment (urban and freeway); and computational effort and
accuracy (usually root mean square error (RMSE) and mean absolute percentage error
(MAPE)). They also describes the most important variables predicted for a time interval:
flow and intensity (vehicles/hour); density (vehicles/km); occupancy (percent of time a
detector is occupied by vehicles); travel time (minutes); and mean speed (km/h). The
proposed taxonomy, shown in Figure 4.2, classifies the prediction methods into:

• Naïve methods. These are models without any model assumptions. The prediction
forecast could be the value of the instant measurement, an average of past values,
or the result from clustering similar traffic patterns and averaging the most similar
cluster and applying it to the current value.

• Parametric methods. These models find the parameters using data, and their
structure is predetermined. They are traffic simulation models (macroscopic, mi-
croscopic, mesoscopic and three-phase traffic theory) and time series (linear regres-
sion, ARIMA family, Kalman filtering, ATHENA, SETAR and Gaussian Maximum
Likelihood).

• Non-parametric methods. These are models whose number of parameters are not
fixed in advance and neither is their structure. Instead, both are learned from
data. They are k-nearest neighbor, local weighted regression, fuzzy logic, Bayesian
networks, neural networks (NN), and rarely used methods like decision trees and
support vector regression.

Vlahogianni and Karlaftis [2013] conducts a concise study and comparison between
ARIMA methods and the NN family of models, demonstrating that in most cases they
provide equivalent results. In addition, it presents statistical methods for NN that
provide unbiased predictions, reporting that NN approaches in the literature focus only
on accuracy. The study by Vlahogianni et al. [2014] is also interesting, as it gathers
the previous literature on traffic predictions and presents key issues for future research,
like the development of statistics for better machine learning models (detecting bias
and comparing different models). It also recommends the use of emerging technologies
like cloud computing, vehicle-to-vehicle communication and exogenous data like social
network information.
This work treats the traffic and parking literature on data-driven models for prediction
using the classification presented in Figure 4.3.
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Figure 4.2: Taxonomy of prediction models. Source: Lint et al. [2007]

Classical statistical methods

The Box-Jenkins methodology (Box et al. [1976]) for the analysis and forecasting of time
series is one of the first approaches to traffic forecasting. The resulting models, called
ARIMA, assume that the underlying data process is linear and stationary. In Ahmed
[1979], the Box-Jenkins methodology is used for predicting freeway traffic volume and
occupancy. The result is that the best ARIMA model is a moving average of order 3, but
it is not capable of dealing with changes in the variability of the traffic process, which
is necessary for updating the model parameters online. In Nicholson and Swann [1974],
spectral analysis is used to predict traffic flow volume with decent accuracy. The main
disadvantage of the method is its inability to rapidly account for unforeseen changes
that are not reflected in the previous data. A contemporaneous study used a Kalman
filter to estimate traffic variables like number of vehicles and velocity for a single link
using traffic flow Ghosh and Knapp [1978]. The data used in those studies was always
from a single link (usually a tunnel) and an intersection, with a prediction time interval
of 5 minutes.
Okutani and Stephanedes [1984] resumes the work by Ahmed [1979], without any solu-
tion that is more accurate than a simple moving average, and by Nicholson and Swann
[1974], obtaining decent results but with problems in the model’s adaptability to unseen
changes. Their work presents an alternative method for predicting 15 minutes of traffic
volume using more than one link with Kalman filters. This is the first work that uses
seasonal data as input for the model: the data from the day before and from the same
day of the week before. They achieved good accuracy but had some computational
issues. This work demonstrated that traffic is a non-linear problem that cannot be re-
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Figure 4.3: Prediction models classification.

solved with classical ARIMA methods. After this work, the Kalman filter was widely
used for the estimation of traffic variables. One example is the estimation of traffic flow
using origin-destination (OD) matrices, as shown in Antoniou et al. [2010] and Anto-
niou et al. [2016]. New solutions were provided using derivations and combinations of
existing methods from the original ARIMA, like SARIMA used in Williams and Hoel
[2003] and the combination of Kohonen self-organizing maps and ARIMA used in Van
Der Voort et al. [1996]. Modern solutions use GPS data and STARMA models that
exploit correlations between space and time (Safikhani et al. [2017]). A similar devel-
opment occurred with the Kalman filter in Stathopoulos and Karlaftis [2003], where a
multivariate formulation provided a solution for estimating traffic volume, travel speed
and traffic density, thanks to data coming from loop detectors on the streets. Other
solutions based on an unscented Kalman filter are used for freeway traffic estimation in
Mihaylova et al. [2006], and a particle filter for travel time predictions in real-time is
proposed in Chen and Rakha [2014].
The work by Vlahogianni et al. [2006] provides tools for detecting non-linearity and
non-stationarity in univariate short-term time series while also characterizing the traffic
data. In Lan and Kuo [2005], traffic time series are identified as chaotic (time series
that could be interpreted as stochastic due to their behavior but that generated by a
deterministic system), and tools are provided for identifying these types of time series.
The partial least squares method is suggested in Dauwels et al. [2014] for multiple
forecasts of traffic variables, multiple links and multiple time horizons. Instead of using
predictions for each link, they use a model for the whole network and also provide
different forecasting horizons. They use a novel form of organizing the data as tensors
instead of the usual matrix from cross-tabular data. This allows parallel computing
to estimate the model, although they report scalability problems and that the model
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cannot be computed for large networks.
Other solutions are based on Bayesian networks for computing the traffic flow of a link
based on parent nodes, as seen in Sun et al. [2006], Osvaldo Anacleto and Albers [2013]
and Castillo et al. [2008], where all proposed methods are based on OD matrix estima-
tion. In 2017, Worldsensing adopted the solution provided by Scalabrin et al. [2017]
for traffic speed prediction, while also providing anomaly detection using a Gaussian
Mixture Model (GMM) for clustering the different link behaviors.

Machine learning methods

The first work that gave relevant results using NN for traffic problems can be found in
Yu and Chen [1993]. They proposed a multi-layer perceptron (MLP) as a new approach
to time series traffic data, because ARIMA only works under the assumption that the
modeled process is stationary and linear, a requirement that is not satisfied by the
traffic process. In fact, they proposed using a chaotic function to simulate the process
that generates traffic patterns. They showed NN’s capability of approximating complex
continuous functions, as demonstrated in Hornik et al. [1989], but emphasized that not
just any methodology can be followed for obtaining the best NN model architecture.
Similarly, in Zhang et al. [1997], an NN was presented for traffic flow predictions. The
data was generated from a macroscopic traffic model (higher-order continuum traffic
model), and the results showed that the NN is capable of learning the generation process.
Baher Abdulhai et al. [1998] presented a new type of NN called time delay neural network
(TDNN), the structure of which is optimized using a genetic algorithm (GA). It is
capable of predicting the flow and occupancy of freeways with simulated and real data.
The traffic flow data comes from target links upstream and downstream, which ensures
the possibility of learning patterns affected by flow changes and shockwaves. TDNN
architecture has a memory in each neuron that permits remembering previous layer
outputs for N periods of time. Also, an in-depth study was conducted on how to treat
traffic variables by examining the look-back interval, the prediction horizon, the spatial
contribution, the input data resolution, and how these all affect prediction accuracy.
The results showed that the prediction errors varied inversely with the extent of the
spatial contribution. Longer prediction horizons had a mean regression effect, and they
demonstrated that the aggregation level of the data has a direct effect on prediction
horizon accuracy. Finally, they obtained acceptable results, which were compared with
Zhang et al. [1997].
Different types of recurrent NN (Elman [1990]) are used in Ishak et al. [2003] for traffic
flow prediction using data coming from target links upstream and downstream. These
types of NN adjust their parameters by learning from data and from time sequences, but
they are computationally costly to train while their structure is also difficult to optimize.
The results were compared with non-linear regressions and showed that these types of
NN achieved better performance.
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The works by Baher Abdulhai et al. [1998], Ishak et al. [2003] and van Lint et al. [2005]
focus on using recurrent NN for data with missing values caused by sensor failures. The
recurrent NN used is called a state-space neural network (SSNN) (Zamarreño and Vega
[1998]), and the data is imputed using exponential forecasts and spatial interpolation.
They also use Bayesian regularization MacKay [1992] to train the NN.
In the work by Vlahogianni et al. [2005], an MLP approach is presented using a GA for
meta-optimization (or hyper-parameter tuning) with the objective of providing short-
term forecasting of traffic variables such as flow and occupancy. This solution is based
on previous literature finding NN to be one of the best alternatives for modeling and
predicting traffic parameters with time series. It also provides a methodology for opti-
mizing the NN architecture. At the same time, Medeiros et al. [2006] present a work
that they call AR-NN, where an NN is modeled using a statistical approach similar to
those used in time series.
In order to improve traffic predictions, a methodology for identifying traffic patterns
is developed in Vlahogianni et al. [2008]. It allows identifying traffic patterns in a
network, the conditions by which these patterns occur, and their temporal evolution.
The method uses Kohonen self-organizing maps (KSOM) to identify the clusters formed
by these patterns.
Jin [2007] presents what is called a neuro-fuzzy decision tree (Neuro-FDT) that converts
information from traffic into human-readable decisions using a fuzzy logic methodology.
A support-vector machine (SVM) is used in AiLing et al. [2002] to treat traffic flow
prediction based on time series data for problems where traditional statistical methods
like ARIMA fail. They emphasize that statistical learning theory (Vapnik [1999]) should
be the way forward when traditional methods fail. In Wang and Shi [2013], SVM is used
with a wavelet kernel to treat the traffic data with chaos time series theory.
The most recent literature focuses on using deep NN models (MLP, convolutional and
recurrent networks with large numbers of hidden layers), which gained popularity due
to the emergence of libraries that permit using GPUs for the training process. These
are very well suited to the Big Data framework. “Deep” means that these models stack
more than one hidden layer and thus enhance the NN’s pattern recognition capabilities,
but the NNs also increase the complexity of these models, making them more difficult
to understand. Some related works are: Yanjie Duan et al. [2016], where long short-
term memory NN (recurrent NN (Hochreiter and Urgen Schmidhuber [1997])) is used to
train 66 models (1 per link) for travel flow prediction; Fu et al. [2017], where ARIMA,
LSTM and GRU (gated recurrent unit NN (Cho et al. [2014]), an evolution of LSTM)
are compared for traffic flow forecasts; and Polson and Sokolov [2017], where a deep NN
is used for traffic flow prediction. Some authors believe that data-driven traffic modeling
needs to use spatial and temporal information together. From this point of view, the
following works in the literature focus on capturing spatial-temporal relationships using
a combination of convolutional NN and recurrent NN Yu et al. [2017], Cui et al. [2018],
Cheng et al. [2018]. More recently, traffic forecasting has focused on graph convolution
NN (GCNN) models (Bruna et al. [2013], Henaff et al. [2015]) and proposing various
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improvements to this method (Defferrard et al. [2016], Kipf and Welling [2016]). The
general idea of GCNN for traffic consists of capturing spatial-temporal patterns using a
graph G= (V, E) based on the road network, where the vertices V are usually the nodes
containing the traffic information (feature matrix Xt that evolves over time) and E is
a set of edges that connects the nodes. The adjacency matrix A is used to represent
the connection between roads, where a 0 value represents no link between roads and a
1 represents the existence of a link between the roads. The A matrix is used to obtain
the Laplacian matrix L, where the eigenvalues and eigenvectors are extracted. At this
point, it is possible to use convolutions in order to learn spatial patterns from the node
information, and recurrent layers to learn temporal dependencies. This approach is used
in Li et al. [2017], Yu et al. [2019a,b], Wang et al. [2018].

4.2.2 Time series forecast for parking

As mentioned before, the area of time series forecasting models for parking analytics has
always been a driving force behind the same area related to traffic, which has been an
active area of research for many years.
The usual methods for obtaining parking data are: sensors, VANET (vehicular ad-hoc
network) and GPS for detecting the number of vehicles generating cruising traffic in a
zone. The variables of interest are availability, reservation (Caicedo et al. [2012]) and
occupancy (usually in the form of parking occupancy rate (OCCR)) (Vlahogianni et al.
[2016]).

Classical statistical methods

The first works in this area focused on off-street parking (usually lots in malls and air-
ports) to provide strategies for parking reservation and generate revenue from parking
spots. In Teodorovic and Lucic [2006], a reservation system is optimized using fuzzy
logic to take into account available space and provide different costs for the parking
spaces. Another approach exploits the use of VANET by obtaining data from the com-
munications between vehicles and sensors in lots. This is similar to Caliskan et al. [2007]
and Klappenecker et al. [2010], who propose a Markov chain model that tells users the
probability of an available parking space upon arrival.
An intelligent parking assistant is presented in Rajabioun et al. [2013]. This system finds
the most suitable parking space based on user preferences and learned behavior, taking
into account parameters like parking duration, arrival time, cost preference, driving
time, lot parking rules and prices. They use data from on-street parking meters, off-
street parking garages and free parking spaces. The needed infrastructures are: a device
capable of connecting to the Internet with access to the vehicle’s GPS; and a centralized
server that orchestrates the information provided to users. They propose a prediction
algorithm that fits the available historical parking data to a chi-square distribution,
then delivers the prediction based on the value of real-time data. Another parking
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recommendation system is presented in Wu et al. [2014], which uses VANET and a
statistical distribution to model parking availability in different parking lots The system
offers a guidance system for finding lots with available space.
In the work by Caicedo et al. [2012], a methodology for predicting real-time parking space
availability is developed by simulating parking requests, estimating departures and pre-
dicting parking availability. The proposed algorithm uses historical data to characterize
the parking requests (Poisson distribution), the parking duration time (gamma distribu-
tion), and the driver’s decision on which lot to go to, then provides a parking availability
prediction for the different lots in the area.
In Hampshire et al. [2011], an ordinary partial least squares model is presented for
10-minute forecasts of parking availability using sensor data.
A vector autoregressive model (multivariate ARIMA) is used in Rajabioun and Ioannou
[2015] to predict the availability of parking at arrival time, taking into account temporal
and spatial correlations. This is one of the first works to use large-scale sensor network
data and it also provides an online update of the model parameters based on a recurrent
algorithm using maximum likelihood estimation.

Machine learning methods

A fuzzy logic model is proposed in Chen et al. [2013] to handle the uncertainty of finding
available parking in a desired zone at a desired time while taking into account departure
time and possible uses of park and ride. It also computes the shortest travel path.
Smartphone data combined with an app is used in Koster et al. [2014], which employs
parking maneuver recognition by means of the smartphone sensors (detecting when the
car is leaving or entering the parking spot). With this information, plus the historical
parking data contextualized according to geographic region, calendar effects, weather,
real-time traffic information and special events, the authors propose building a model
that can predict free parking spaces and consumption rates. The solution has two parts:
recognition of parking maneuvers and calculation of parking availability. In the first part,
the data from the smartphone is used to create a model based on k-medoids clustering
(because finding the centroid in a time series is a difficult problem), with a dynamic time
warping (DTW) metric that permits recognition of the car maneuvers (label data). The
labeled data is then used to create a conditional random field (CRF) model to classify
new series of sensor readings. In the second part, when the app requests information
from the server about the availability of parking in a zone, the server performs two
computations: it uses historical data and a Bayesian approach to compute the distance
around a point for which the probability of finding a parking spot at the given time is
sufficiently high. Then, it uses a hidden Markov model based on last reported status
to calculate the probability of the currently known free spaces (within the calculated
distance) being free at arrival time.
Zheng et al. [2014] is one of the first proposals that conducted a data analysis for a large-
scale sensor network: the SFPark platform. They analyzed the data using clustering
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based on the following algorithms: farthest first (FF), expectation maximization (EM)
and support vector data description (SVDD). This allows finding interesting behaviors
and detecting anomalies. Their results identify parking places that are overused or
underused and sensors reporting apparently faulty data. Another work that utilized
SFPark data is Richter et al. [2014], who had the objective of handling the coarse
granularity of data with minimal effect on the accuracy of parking availability predictions
while using the minimum number of models. They used a hierarchical clustering method
with DTW (because data is time series) as the distance metric, and propose studying
the accuracy in the following scenarios: one model per road segment (a road segment
consists of more than one on-street parking space); one model per link for each day of
the week; one model for weekdays; Saturday and Sunday; and, lastly, predictions using
the results of spatial clustering and of temporal clustering. The results find that one
model per day and link gives the best accuracy (80%), while the clustering scenarios
give the worst (approximately 70% in both cases). However, the storage used for the
models in the clustering scenario is 99% less than that of the one model per day and link
scenario. The prediction is taken as the centroid of the cluster where the road segment
is assigned.
In Zheng et al. [2015], data from SFPark and Melbourne’s large-scale parking sensor net-
works are used to provide models for predicting parking OCCR ( number of slot currenly occupied

number slots currently operational
)

by means of three different feature sets. The algorithms used are regression tree (RT),
NN and SVR. The feature sets are: occupancy (0 or 1) based on day of the week and
time of day as a float; occupancy based on past occupancies; and, lastly, a combination
of the two feature sets. The results indicate that the RT achieved higher accuracy with
the combined set of features.
One of the most cited studies in the recent literature on parking prediction is Vlahogianni
et al. [2016], which used data from the SmartSantander project. They divided the sensor
network into 4 different regions and proposed, for each region, a hazard-based model for
predicting the occupancy time of a parking slot and an NN model (MLP) for predicting
parking availability. The data is organized as 1-minute data and can provide up to 30
minutes of forecasts with different time horizons (1/5/15/30 minutes). The work focuses
on the following research: parking prediction based on data from an IoT network sensor;
the prediction accuracy of such models in terms of the forecasting horizon; the statistical
properties of parking space duration; and the probability of having free space in a certain
area. They also studied the average duration of a parking space being available for a
given time period and occupancy as a percentage of parking slots occupied during a
time period. The model inputs are the past values of the studied features (so the
NN can predict occupancy) and exogenous variables like the day of the week. The
methodology first uses the NN to predict parking occupancy, and then uses the output
as an input to the hazard-based model (in combination with the time of day, time period
(peak or off-peak) and weekday). In this way, it predicts the probability and number
of spaces available in the desired zone. For the hazard-based model, a Weibull survival
function is used, because the historical data indicates that the duration of a free parking
space follows a Weibull distribution. The conclusions are that better NN structures

162



4.2 Predictive modeling Related work

must consider more seasonality and take into account the traffic variables obtained from
parking zones.
Blythe et al. [2015] proposes transforming the time series of parking space availability
in order to reconstruct them in phase space, and then use the transformed data to train
a wavelet NN (WNN) model. The continuous wavelet function of WNN serves as an
activation function in the nodes of the hidden layer. The study reports good accuracy
using survey data.
The work by Piovesan et al. [2016] provides analytics for parking data using an au-
tomated classification algorithm. This algorithm delivers information on the anomaly
behavior of parking sensors and provides a clustering method using spatio-temporal pat-
terns. As a result, it indicates that parking patterns can be detected by jointly using
multiple metrics like parking event state duration (free or occupied) and the frequency
of parking events. It also differentiates day of the week and hour of the day. They use
different statistics and machine learning algorithms like expectation maximization (EM),
Kohonen self-organizing maps (KSOM), k-means and density-based spatial clustering of
applications with noise (DBSCAN).
Naïve Bayes and a decision tree are used in Hsueh et al. [2018] for predicting parking
occupancy as a categorical variable (level: low, mid, high) at arrival time. The study
is relevant because it uses three sets of different types of features: temporal (day of the
week, time of the day (Tod) and occupancy rate); spatial (nearest parking streets zones,
similar parking streets zones based on RMSE, similar parking streets based on RMSE
with different ToD); and others (block id and hourly precipitation).
Another approach to the parking prediction problem is based on detecting traffic that
results from cruising. Jones et al. [2018] uses data from smartphones (GPS, accelerome-
ter, magnetometer, and gyroscope) in order to detect vehicles cruising for parking. The
detection of cruising can be useful for updating probabilistic parking availability in the
desired zone. Using GPS data, map matching is carried out via a hidden Markov model
to localize the zones where the vehicle is located. Cruising is detected as a significant
local minimum in the GPS trace relative to the distance to the destination. Data from
the other sensors are used for training ML algorithms. The ML algorithms that ascer-
tain whether or not the user is cruising are decision tree, K-NN, and SVM. One of the
problems with this proposal is that accuracy depends on the number of users in the
zone.
Ionita et al. [2018] takes a different approach as a parking recommendation system.
Their objective is to model the whole city (San Francisco) by creating parking demand
profiles. The profiles are based on parking occupancy, traffic, weather, events, parking
revenue, fuel prices, distance to points of interest (POI) and amenity time in these places.
For those areas without data, they create demand profiles using similarity functions for
areas where data is available, then apply a clustering algorithm (K-means). Different
machine learning models are tested on the clustered scenario and compared to the whole
city scenario. Those models are decision trees, support vector machines, random forest,
multilayer perceptron and gradient boosted trees. The one with the lowest RMSE in
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the clustered scenario is gradient boosted trees.
Recent works have begun to use and compare deep learning approaches. Fedchenkov
et al. [2018] uses data from sensors in private parking lots with a time-window interval
of 10 minutes to create an LSTM model that will be used in vehicle navigation systems,
specifically to recommend where to park based on the distance to POIs. Another inter-
esting work is Badii et al. [2018], where different machine learning models are used to
model the data from off-street parking, which is updated every 15 minutes (thus, they
use this as a time step). They offer predictions of between 30 and 60 minutes. The
exogenous data that they consider is day, month, day of the week, weekend, previous
observation difference, observation difference of the week before, temperature, humidity,
rainfall, hourly mean speed in nearby zones, vehicle flow in nearby zones, vehicle travel
time and traffic density in nearby zones. The models used are support vector machines,
ARIMA, NN with Bayesian regularization and RNN. Based on error metrics (MAPE,
MSE, MASE), the model with the lowest error is the NN with Bayesian regularization.
In Shao et al. [2018], a similar approach to Vlahogianni et al. [2016] is used to forecast
parking OCCR. Historical data from 3,000 on-street sensors in the city of Melbourne are
used to forecast parking availability and parking duration. A clustering approach is used
to group the parking spot behavior by means of a K-means algorithm, with K=30. Then,
for each cluster, an LSTM model is created. For the parking time duration, a nonlinear
regression model is used. The exogenous variables are day of the week, time, occupancy
rate, arrival time, departure time, duration time, longitude and latitude of the parking
spot. A 10-minute time window is used for the inputs, and the forecasts cover a time
interval of between 1 to 30 minutes. They perform two experiments: the first contrasts
the cluster vs. non-cluster approach; the second compares LSTM with MLP. Based on
error metrics (MAE, RMSE, MAPE, RRSE), the LSTM clustering approach has the
least error.
Yang et al. [2019] is the first work for parking prediction that takes the graph approach
in a similar way that recent works in traffic literature do. It combines graph CNN and
LSTM in order to forecast parking OCCR in the city of Pittsburgh. The strategy is
based on exploiting spatial and temporal relationships at the parking zone-level. The
roadway network topology is extracted from the Google MAP API, and the proposed
method is compared with LSTM, LASSO and historical mean. In order to accomplish
the objective, it uses different sources of data: road network topology, traffic speed in
parking zones blocks, parking occupancy computed from parking meter transactions
and, finally, weather data. Time series are interpolated for a temporal resolution of 10
minutes. After comparing the proposed method with other models like LSTM, LASSO,
historical average and latest observation, it outperforms them all in forecasts of 30
minutes into the future.
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5 Theoretical aspects of time series
algorithms

Given the problem of predicting parking occupancy presented in 1, the data analysis in
3, and the literature review presented in 4, we decided to use time series algorithms to
provide forecasting values for parking occupancy.
The algorithms used (marked in red in Figure 5.1) are those based on ARIMA, as it is a
popular algorithm in the literature with strong theoretical foundations. The weaknesses
of this method are well known and, for that reason, this work also proposes using artificial
neural network methods, which the traffic literature has begun using but have not yet
been applied in parking prediction. The chosen methods belong to two different cultures
of the data modeling research area as stated in Breiman [2001] and this will permit to
explore a comparisson between the two approaches. With this in mind, this chapter
aims to present the theoretical issues of both methods.

Figure 5.1: Time series modeling path and a subset of methods.
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5.1 ARIMA

The autoregressive integrated moving average (ARIMA) model was popularized by Box
and Jenkins Box et al. [1976]. It is a statistical tool for creating time series models
that facilitate better understanding and future values of the data. ARIMA methods are
comprised of three parts:

• Autoregression (AR). This defines the current time series value xt as a function
of its own past realizations up to time p, xt−1, xt−2, ..., xt−p. It is assumed that
this function is a linear function of the past values, an example of which can be
observed in the lagged plots from Chapter 3. AR(p) defines an autoregressive
model of order p, where p is the number of significant lags considered in the
model (Equation 5.1). One of the requirements of AR(p) models is that the time
series xt must be stationary, a property explained in 3.2. It is assumed that the
noise component is wt ∼ wn(0, σ2

w), that is, white noise (wn) with zero mean and
standard deviation σ2

w. For simplicity, theoretical AR models are assumed to have
a mean value of 0.

xt = φ1xt−1 + φ2xt−2 + ...+ φpxt−p + wt (5.1)

where x are the observations, wt denotes white noise and the φ terms are the AR
coefficients.

• Moving average (MA). The moving average part of the model assumes that the
observed data at time t is a linear combination of the current and past white
noise wt. In other words, an MA model considers wt to be the result of a linear
combination of past regression errors. It is not necessary that this part of the model
be stationary, due to the properties of wt (wt ∼ wn(0, σ2

w)). In order to decide on
the number of significant q elements of an MA(q) model (Equation 5.2), one could
extract this information from the ACF plot (examples of these visualizations can
be found in Chapter 3, where the concept was introduced).

xt = wt + θ1wt−1 + θ2wt−2 + ...+ θqwt−q (5.2)

where xt denotes the value at instant t, wt denotes white noise terms and θt are
the MA coefficients.

• Integration (I). The purpose of this part of the ARIMA model is to achieve sta-
tionarity in a time series by differencing the series. Through differentiation, it
is possible to eliminate trends (de-trending) and seasonality in the series. The
operation consists of differencing each realization of the series from its last past
observation, thus converting them into a series of differentiated values. For sea-
sonality differencing, the operation consists of computing the difference between
the values in a season and the values in the previous season. For example, when
using seasonal difference in a monthly time series of yearly seasonality, then the
first value of the series consists of st = xt − xt−12.
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The differencing operation is done d times (with d being a parameter of the model)
until the levels of µ become constant and independent of the time at which the data
is observed. Notice that, in each differencing operation, the last time lag of the se-
ries is lost because of the operation. Another way to know if the series is stationary
and needs to be differentiated is through the ACF plot. An ACF plot that decays
slowly is an indication of non-stationarity in the series. Statistical tests exist for
detecting whether a time series has stationarity or not, such as the augmented
Dickey-Fuller test for unit roots and the Kwiatkowski-Phillips-Schmidt-Shin test
for stationarity.

In order to know the value of p and q in ARMA(p,q) models, one method to accomplish
this is through ACF and PACF plots. When an ACF visualization presents a sudden
cut-off in the number of significant lags, this is an identity signature of MA(q) models.
Moreover, the last significant lag is considered to be the value of the parameter q.
Something similar happens with the PACF plot, where a cut-off in the visualization
indicates the value of the parameter p of an AR(p) model.
Above, it is explained how to accomplish a constant mean. However, in order to achieve
stationarity, it is also necessary to ensure that the variance is not dependent on time. One
way to satisfy this requirement is by using logarithms. The benefits of using logarithms
in a time series are twofold: they convert the exponential growth of the series into linear
growth; and they transform the heteroscedasticity of the data into a constant. The
former is due to the product rule of the logarithms; and the latter is because logarithms
make larger values small while still maintaining the small ones, thus making the variance
constant through time. A more general rule for data transformations for modeling can
be found in Box and Cox [1982]
Modeling with the Box and Jenkins method consists of:

1. Making the mean and variance independent of t through transformations of the
series, such as by differencing (order of I) and/or using the log transformation to
stabilize the variance.

2. Visualizing ACF and PACF plots to determine the number for p and/or q.
3. Fitting the model and validating it by analyzing the residuals.

Estimating the parameters of an ARIMA model is usually done through the maximum
likelihood function, but it can also be done by means of the least squares function and
the method of moments. Detailed explanations about these methods can be found in
Shumway and Stoffer [2017].
ARIMA can be extended for taking into account seasonality. In that case, extra pa-
rameters for seasonality are considered in the model, namely P, D and Q (in order to
differentiate from the p, d and q parameters of ARIMA). Those are the terms for the
seasonal AR, I and MA parts of the model, and they are called SARIMA, with the
parameters (p,d,q) and (P,D,Q) (SARIMA(p,d,q)(P,D,Q)).
The limitations of ARIMA models come mainly from their assumptions and require-
ments. First of all, we have the assumption that the observations are a linear combina-
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tion of past realizations, and their residuals do not always hold; thus, the model does not
detect nonlinear patterns. Another weakness is the need for stationarity in the data. If
the data presents trends or heteroscedasticity, it is necessary to transform it in order to
remove those components; but this does not always achieve stationarity. Another weak
point of ARIMA models is the difficulty in using exogenous variables. Two extensions
exist, namely the autoregressive integrated moving average with exogenous (ARIMAX)
variables model and the vector autoregressive moving average (VARMA) model, both of
which try to manage this. While the former consists of adding the exogenous variables
as new terms to the regression equation of an ARIMA model, the latter is applied when
a set of time series are used as regressors towards a dependent variable and, thus, it
extends ARIMA models to multivariate regression. Another important point is that is
difficult to work with multiple seasons in ARIMA models, so one way to accomplish
this is by means of a SARIMAX model using Fourier terms as exogenous variables, as
in the work by Ludlow and Enders [2000]. Another way is to use an algorithm called
TBATS, whose objective is to model data with complex seasonalities (multiple period-
icities, not integer periods and/or long periods). Detailed information on this approach
can be found in de Livera et al. [2011]. In 3, the data analysis revealed multiple sea-
sonalities: daily and weekly. Thus, ARIMA methods may not be sufficient at providing
good models for parking.

5.2 Artificial neural network

Artificial neural network (ANN), multi-layer perceptron (MLP) and shallow neural net-
work are the names used in the literature to identify the same class of supervised models
based on neural networks (NN). The standard form of these models follows a directed
acyclic graph structure that emulates the biological connection between brain neurons
through axons. The basic unit of the NN model is the neuron, also known as a per-
ceptron. It appeared for the first time in Rosenblatt [1957] and has been evolving since
then into networks of perceptrons.
In this work, the term ANN will be used when mentioning any form of algorithm based on
a neural network. Shallow NN will be used when talking about the now classical neural
network model that consists of one input layer, one hidden layer and an output layer.
These were the starting blocks of modern neural network models when they consisted
only of the feed-forward past computations (the name feed-forward comes from the fact
that each layer’s outputs are used as inputs for the next layer, and never the other way
around). The parameters are tuned manually. Lastly, this work uses the term MLP when
talking about shallow NN with one or more hidden layers. This enhances the model’s
ability to learn from complex feature spaces, as each layer’s inputs are based on the
previous layer’s outputs. The key element that enabled the possibility of having stacks
of hidden layers is an optimization algorithm that computes the model parameters. The
optimization model is usually nonlinear, as MLP models achieve nonlinearity by using
nonlinear functions that are applied to the computation of each of the neurons. Because
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of its simplicity and computation speed with large sets of data, the standard method in
use is gradient descent (or any optimizer derived from it, more information in Section
5.2.2.4).
ANN models can be trained in different frameworks:

• Supervised: The output of the model is compared with the real output (ground
truth or dependent variable) by using a loss function. The discrepancy (loss) is
used to tune the parameters in order to minimize the loss function value.

• Unsupervised. No ground truth is used to train the model. While this framework
is used for clustering in machine learning models, unsupervised training is used in
ANN for:
– Autoencoders (proposed in the work by Kramer [1991]). The model input

is used as the output, with the main idea being that the model learns to
reconstruct the output.

– Generative models (such as GAN Goodfellow et al. [2014]). A model is created
from random noise that is able to generate synthetic data in such a way that
a discriminator model cannot distinguish true data from synthetic data. In
this case, the true data is used to train the discriminator and to compute the
loss for the generator, but no ground truth is needed.

• Self-supervised. Little ground truth data is available and, because of this, creative
ways of generating new data from the available data are used, i.e., data augmen-
tation techniques such as modifying images by means of rotation, flipping them,
or changing the direction of time in videos (i.e., playing the video backwards).

• Reinforcement learning. An agent (model) learns by interacting with an environ-
ment. From states and actions, rewards are computed and accumulated such that
the agent develops a good policy towards an objective. The training of the model
occurs through the enacted policy, and thus the agent maximizes the policy that
grants it the maximum reward, i.e., the model inputs are the current state and
actions, and it computes a function that approximates the policy that will provide
the maximum reward.

5.2.1 ANN structure

The classical neural network model consists of an input layer, one hidden layer and
one output layer (see Figure 5.2). This is known in the literature as a shallow neural
network. The model is organized in layers that form an acyclic directed graph in which
all nodes from preceding layers are connected to a node in the next layer. The input
layer has an equal number of nodes serving as features in the data, with each node
connected to all the nodes in the next layer (the hidden layer). The same organization is
followed between the hidden layer and the output layer, where all the nodes in the hidden
layer are connected to each of the nodes in the output layer. The number of neurons
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in the hidden layer is a hyperparameter of the model (the width of the layer), but a
reduced number of neurons in the hidden layer (a smaller number of neurons than in the
preceding layer) forces the model to learn summarized features of the data, which can
be interpreted as latent features. The output layer’s number of neurons is constrained
by the problem/data at hand; e.g., when facing a regression or a binary classification
problem with a scalar dependent variable, only one node in the output layer is needed,
as its output will consist of a scalar value. On the other hand, when the dependent
variable is a vector like in a multiclass classification problem, then one node is needed
for each of the classes.

Figure 5.2: Shallow NN structure. Blue denotes the input layer, yellow the hidden
units of the hidden layer, and red is the output layer.

MLP extends shallow neural network models, as they have multiple hidden layers (Figure
5.3) that constitute the model’s depth. This enables the model to learn, in each hidden
layer, new features based on the preceding layer’s outputs, thus enhancing the model’s
capabilities as it learns complex features. This allows creating models that work as an
end-to-end solution. This approach is not possible when using other machine learning
methods, because these require manually creating new features to use as inputs, a process
called “feature engineering”. One of the main concerns about neural network procedures
is that the features learned and how they are combined becomes obfuscated behind a
large number of parameters and computations (and a lack of theory), thus causing them
to be tagged as black boxes.

Figure 5.3: Multilayer perceptron structure. Blue denotes the input layer, yellow the
hidden units of the hidden layer, and red is the output layer.
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While only one input and output layer exist in the model and their numbers of nodes
are somehow constrained by the data, the number of hidden layers is considered a hy-
perparameter of the model (the same happens with the number of neurons in each of
the hidden layers), and its value cannot be known beforehand. Different approaches
exist for finding the optimal value of the hyperparameters of a neural network model.
Detailed information on these can be found in Section 5.2.2.7.

5.2.2 MLP

5.2.2.1 Computations

The computations for each node are shown in Equation 5.3. Each node in the hidden
layer and output layer computes a weighted sum of their inputs (x), so the model
parameters are the weights (w) and the bias (b) of this operation. Then, the result
of the weighted sum is used as an argument of a nonlinear function called the activation
function (σ). The ouput of the activation function (a) is the output of the neuron.
Section 5.2.2.5 provides more information about the types of activation functions and
their properties. The operations are schematized in Figure 5.4.

a = σ(
n∑
i=1

xi ∗ wi + b) (5.3)

Figure 5.4: Computations at node level.

Zooming out and considering the operations between layers, the computed formula is
shown in Equation 5.4 as a matrix formulation. Inputs are transformed by a linear
operation using the weight matrix W , then translated by the bias vector b and, finally,
a point wise transformation is applied (activation function a), thus giving nonlinearity
to the operation. Here, it is made explicit that the computations for a hidden layer are
projecting the features of the preceding layer into a new feature space, and the activation
function plays a key role in this operation.
The goal is that the model learns to transform the input data through linear operations
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and nonlinear transformation, so that the features at the output layer become linear.

a = σ(W ∗ x+ b) (5.4)

At the output layer, some considerations need to be taken into account, as the output
of our model depends on the problem at hand. These considerations are:

• In a regression task, no activation function is needed, as the output layer is equiv-
alent to a linear regression. The number of neurons must match the number of
dimensions of the dependent variable.

• In a binary classification problem, a sigmoid activation function is the one to use, as
it bounds the output to the interval [0,1]. This is equivalent to a logistic regression.
The number of neurons must be one.

• In a multiclassification problem, the activation function to use is softmax, together
with as many nodes as there are classes in the data, as this activation function
maps the output from k nodes in such a way that the one with the higher value is
close to 1 and the other values are closer to 0.

Also, one could instead consider using an output layer in order to directly use the outputs
of the last hidden layer as input to any machine learning method such as support vector
machine (SVM), k-nearest neighbors (KNN), etc.
Another point of consideration is the initial values of the parameters. The parameters
of an ANN model can be initialized in a stochastic way by using either a normal or
uniform distribution. However, it is necessary to take into account some considerations
to achieve better results from the model and avoid problems such as exploding/vanishing
gradients that usually appear when using either a large number of hidden layers or
advanced architectures like recurrent neural networks (detailed information about this
phenomenon is given in Section 5.2.2.9). In order to avoid such problems, it is necessary
that the model’s weights in each layer have a mean of 0 and a standard deviation of
1. With this in mind, there exist functions named initializers that provide a good
initialization of the model’s parameters, where the mean and the variance of the weights
are constrained to each layer in the form of W ∼ N (0, 1). They are:

• Glorot initialization (from Glorot and Bengio [2010]). The weights are initialized
from a normal distribution such as w ∼ N (0,

√
1

fan_in), where w is the vector of
weights for a model’s neuron and fan_in is the number of inputs for the layer
pertaining to the neuron. The bias parameters are initialized as b = 0. This
type of initialization has been empirically demonstrated to work well with classical
activation functions such as the sigmoid and hyperbolic tangent (more information
in Section 5.2.2.5).

• He initialization (from He et al. [2015]). The weights of the model are initialized
from a normal distribution such as w ∼ N (0,

√
2

fan_in), where w is any weight
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of the model and fan_in is the number of inputs to the current layer. The bias
parameters are initialized as b = 0. This initialization was designed with rectifier
activation functions in mind. See Section 5.2.2.5 for detailed information.

Because the parameters of each node are randomly initialized, each one learns a different
characteristic from the data at the end of the training.

5.2.2.2 Creating a model

The methodology for creating a model comprises three different stages, each of which
uses a different part of the data. Data is split into three parts, where: the major part
(usually 60%) is used for training; part of the remainder (30%) is used as the validation
set; and what is left is used for testing the model by simulating new fresh data. Each
stage of the model’s creation consists of:

• Training. During this phase, the model parameters are adjusted according to the
samples of the training data until achieving the minimum error possible.

• Validation. This data is used together with the training regime to tune the model
hyperparameters.

• Testing. The last phase consists of evaluating the model goodness of fit to unseen
data.

Some requirements in the data-splitting process are:
• All divisions of the data must be distributed similarly.
• Test data must be used as few times as possible. The optimal number of uses is

one.
• A balanced number of samples is desirable for each category (if using categorical

data) in the training set.
The reason for the data splitting is due to the nature of creating models in machine
learning (and, hence, deep learning), as it consists of minimizing the value of a function
(loss function) using a finite set of realizations from a process that generates infinite
realizations. The goal is to use finite realizations in creating a model that can give
accurate predictions based on modeled realizations that are not used in creating the
model. This model process is known as generalizing the training data. The generalization
of a model is constrained mainly by the quality of the data and by the model’s complexity.
If the data used to train the model is not representative enough, then we can expect the
model’s predictions to be biased in comparison with the expected value of the model’s
underlying process. This can be overcome by collecting more data from the underlying
process. On the other hand, when dealing with complex models like neural networks
with a large number of parameters and nonlinear transformations, the model parameters
may be influenced by variance in the training data; and though it can give very accurate
predictions about the training data, at the same time it will have a high error rate
in the data that is not used for training. At the end, it is necessary to control the
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degree to which the model parameters are fitted to the training data in order to control
its generalization capabilities. In the case of neural networks, model complexity can
be constrained using regularization techniques like dropout Srivastava et al. [2014] and
early stop (more about regularization techniques in Section 5.2.2.8). Models with simple
complexity (e.g., linear regression) tend to have high bias and low variance, while models
with large complexity (e.g., neural networks) usually have low bias and high variance.
This is known as the bias-variance trade-off, and detailed information is offered in Bishop
[2006]. Thus, in order to assess the generalization capabilities of the model and detect
overfitting in the training data, a test data set is used. Moreover, because of the large
number of hyperparameters in a neural network, those are adjusted to the test set and
become another way of overfitting the parameters to the data (this time to the training
and test set). In order to prevent this, the model is evaluated after training and the
hyperparameters are adjusted by means of the training and validation sets, thus limiting
the test to evaluating the model based on unseen data.

5.2.2.3 Training

The training (or fitting) of the parameters takes place in two steps: forward propagation
and backward propagation. The former carries the necessary computations from the
inputs to the outputs, while the latter performs the computations needed for optimizing
the model parameters. The backward propagation part (also called backprop) is driven
by the backpropagation algorithm Rumelhart et al. [1986], Linnainmaa [1976].
In the forward propagation, the computations explained in Section 5.2.2.1 are applied
through the model. Then, the output from the output layer is compared to the ground
truth (supervised training, as mentioned in Section 5.2) through a loss function (further
explanations on loss functions in Section 5.2.2.6). The objective of the model is to
minimize the loss function, and the only way to accomplish this is through changes in
the parameters (weights and bias) of the model.
The loss value uses the backprop algorithm as the starting point for the back propagation
phase. The idea is to change the parameter values in such a way that the loss is mini-
mized. In order to do so, it is necessary to compute the gradient of the loss function with
respect to all the model parameters. Because all the computations on the feed-forward
pass are continuous (including the activation functions), this can be accomplished using
the chain rule of derivatives. Once the gradient is computed (Equation 5.5), the model
parameters are updated using the gradient descent updating rule shown in Equation 5.6:

g = 1
n
∇θ

n∑
i=1

l(fθ(xi;θ), yi) (5.5)

where ∇θ is the gradient of the loss function l with respect to the parameters θ of the
model. The arguments of l are the output of the model fθ, with input xi and the ground
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truth yi. The output g is the mean value of the gradient for the n data samples:

θ = θ − αg (5.6)

where α is the learning rate (hyperparameter of the model, which usually uses a default
value of 0.01), θ is the model parameters and g is the gradient computed using the
previous Equation 5.5.
In practice, using the whole data set is not computationally feasible due to modern
datasets being composed of possibly millions of data samples. In order to alleviate this,
data is divided into mini-batches of sizem = 2n that can fit into CPU and GPU memory.
This characteristic of dividing the data set trains the data in three different ways:

• Batch gradient descent. All data samples are used simultaneously to compute the
gradient and update the values of the model parameters. It is computationally
costly, but the gradient estimation is less affected by noise.

• Stochastic gradient descent. For each data sample, the gradient is computed and
the parameters are updated. It is fast, but the computed gradient at each step is
subject to data noise.

• Mini-batch gradient descent. This is a trade-off between both of the previously
explained methods, where “mini” batches of data with size 2n are used to estimate
the gradient and update the model parameters.

Regardless of the chosen strategy for computing the gradient and updating the param-
eters, the whole data set is used to train the model more than once. Each time that
all the data samples are digested by the model during training is known as an epoch.
Through the training of the model, an arbitrary number of epochs are needed to reach
convergence into a minimum of the loss function. The number of epochs is conditioned
by the data and the problem to solve is a hyperparameter of the model. A common
strategy is to set a large number of epochs and define a gap between the training and
the validation error, with the purpose of reaching an equilibrium between overfitting and
generalization. Details about this technique are given in Section 5.2.2.8.
After a sufficient number of epochs, the loss function will achieve a minimal value. In
fact, this minimal value is a local minima of the loss function due to the nonlinearities
introduced by the function estimated by the model. However, research (Choromanska
et al. [2015], Li et al. [2018]) shows that local minima in highly dimensional spaces can
be considered good enough in the sense that their values do not differ too much between
each other and, by generalization, nor do they differ from the global optimal value.
After each epoch, the model is evaluated on the basis of the validation set in order to
assess and control its overfitting in the training data. Once the model is created, its
goodness of fit is evaluated with unseen data from the test data set.
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5.2.2.4 Optimizers

As mentioned in the previous section, the model parameters are fitted with the backprop-
agation algorithm, which, at its core, uses the gradient descent algorithm. In modern
deep learning methods, it is common to use an evolution of the gradient descent, namely
optimizers. This provides different strategies for improving aspects of the original gra-
dient descent, like speed, avoiding saddle points and convergence of the loss function
towards better local minima. In order to introduce the reader to the topic, this section
provides short summaries of the relevant aspects of the most common optimizers in the
literature. Detailed explanations about these evolutions are given in Ruder [2016].
Taking as Equation 5.5 as a starting point, the following methods have been proposed
in the literature:

• Momentum. Its objective is to speed up convergence towards the minimum and
avoid saddle points. In order to accomplish this, we use a velocity v (a matrix
for the weights and a vector for the bias), whose values are updated using an
exponential weighted moving average of past gradients. At each back propagation
step, the velocity gets updated using Equation 5.7 and thus serves as a trade-off
between the past and current values of the gradient vector. When the direction
of the gradients in consecutive steps is the same, the velocity values get higher as
past gradients are accumulated. Then, the parameters are updated with a larger
value in the update step (Equations 5.6 and 5.8):

vt = λ ∗ vt−1 − α ∗ g (5.7)

where vt is the velocity vector at the current step t, vt−1 is the previous step
velocity vector, λ is the momentum hyperparameter or weight decay (by default,
its value is 0.9) and g is the gradient vector.

θt = θt−1 + vt (5.8)

where α is the learning rate, θt−1 is the previous values of the parameters and vt
is the current values of the velocity vector.

• Nesterov Accelerated Gradient. This is a modification of the momentum method, in
which the velocity in the last step is used to compute a prediction of the parameter
values (Equation 5.9). Then, the gradient is computed using these new parameters
(Equation 5.10). The gradient will then be used to update the velocity (Equation
5.11), and from it the current values of the parameters are computed (Equation
5.12). The effect of these operations is a compromise between velocity and current
gradient directions.

θ̃t = θt−1 + λvt−1 (5.9)

where θ̃tis the prediction of the parameter values based on their previous values
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θt−1 and the past velocity vector vt−1.

g = 1
m
∇θ̃

m∑
i=1

l(f(xi; θ̃), yi) (5.10)

where g is the gradient vector, m is the number of elements in the current mini-
batch, f is the model with input xi and parameters θ̃, l is the loss function and
yi is the ground truth output for the input xi.

vt = λ ∗ vt−1 − α ∗ g (5.11)

θt = θt−1 + vt (5.12)

Another aspect that has been the subject of research into improving it is the learning
rate. While in previous methods the learning rate maintained a constant value and this
value was commonly reduced as the gradient descent algorithm moves further along in
the iterations, modern optimizers use adaptive learning rates based on the magnitude
of change in the gradient directions. Furthermore, instead of representing the learning
rate as a scalar value, it is represented as a vector of learning rates for each dimension
of the gradient (i.e., for each parameter of the model). The methods that use adaptive
learning rates are:

• Adaptive Gradient Descent (Adagrad). This consists of accumulating the squared
values of the gradient and using them to compute learning rates that will provide a
great decrease in large gradient values and little decrease in the smaller ones. The
effect is a trade-off between smaller and larger gradients. First, the current gradient
step is computed following Equation 5.5, the squared gradient is accumulated using
Equation 5.13 and then the update for the gradients is computed with Equation
5.14. Lastly, the values of the parameters are updated by using Equation 5.15. One
of the major drawbacks of the Adagrad method is that the accumulated gradient
gets bigger and bigger at each step, making the learning rates very small before
arriving at a minimum of the loss function.

rt = rt−1 + g � g (5.13)

where the term r is the accumulated squared gradient at the current step t, and
g is the current gradient.

∆θ = − α
√
rt + δ � g (5.14)

where α is the learning rate, δ is a constant to avoid numerical issues and rtis the
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accumulated squared gradient at the current step.

θt = θt−1 + ∆θ (5.15)

where θt−1 are the previous values of the parameters and ∆θ is the parameter
update.

• Root Mean Square Propagation (RMSprop): This method overcomes the com-
mented drawback of Adagrad using an exponential moving average of the previous
squared gradients. With this approach, far away gradients at the current step
have less influence when computing the learning rates solving the problem of not
arriving at a minimum due to very small learning rates. The RMSprop method
starts from the computed gradient using Equation 5.5, then, the accumulated gra-
dient is computed using Equation 5.16. The change of the parameters is computed
using Equation 5.17 and then applied to the current parameters values in order to
compute the new values using Equation 5.19. Gradients can be computed using
the NAG method, where they are computed using Equation 5.10, in this case,
Equation 5.17 is replaced by Equation 5.18 and Equation 5.19, by Equation 5.20.

rt = ρ ∗ rt−1 + (1− ρ)gt � gt (5.16)

where rt is the accumulated exponential moving average of the squared gradient
at the current step t, ρ is the decay rate (hyperparameter of the model, usually
with a default value of 0.9), and gt is the gradient computed at the current step.

∆θ = − α
√
rt+δ

� gt (5.17)

where α is the learning rate, δ is a constant to avoid numerical issues, rtis the
accumulated squared gradient at the current step and gt is the current gradient
step.

vt = λ ∗ vt−1 −
α

√
rt + δ � gt (5.18)

where vt is the velocity at the current step t, λ is the decay parameter for the past
velocity values, α is the learning rate, δ is a constant to avoid numerical issues,
rtis the accumulated squared gradient at the current step and gt is the current
gradient step.

θt = θt−1 + ∆θ (5.19)

where θt−1 are the previous values of the parameters and ∆θ is the parameter
update.

θt = θt−1 + vt (5.20)
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where θt−1 are the previous values of the parameters and vt is the parameter
update through the current step velocity values.

• Adaptive Moment Estimation (Adam). This method defines momentum and the
accumulated squared gradient as first- and second-order moments (hence the name
adaptive moment estimation), and it further gives a solution to the biased esti-
mate in the first steps of their estimation. The method begins with the gradient
computed from a mini-batch of m examples using Equation 5.21. Then, the biased
first-order moment and biased second-order moment are computed using, respec-
tively, Equations 5.22 and 5.23. Then, both moments are bias-corrected using
Equations 5.24 and 5.25. The parameter change is computed through Equation
5.26 and is then applied in order to update the parameter values using Equation
5.27.

g = 1
m
∇θ

m∑
i=1

l(f(xi;θ), yi) (5.21)

where g is the gradient vector, m is the number of elements in the current mini-
batch, f is the model with input xi and parameters θ, l is the loss function and
yi is the ground truth output for the input xi.

st = ρ1 ∗ st−1 + (1− ρ1)g (5.22)

where st is the biased first-order moment, ρ1 is the decay hyperparameter for past
first-order moments and g is the gradient at the current step.

rt = ρ2 ∗ rt−1 + (1− ρ2) ∗ (g � g) (5.23)

where rt is the biased second-order moment at the current step t, ρ2 is the decay
hyperparameter for past second-order moments and g is the gradient at the current
step.

ŝt = st
1− ρt1

(5.24)

where ŝt is the unbiased first-order moment, st is the biased first-order moment,
ρ1 is the decay hyperparameter for past first-order moments and t is the current
step.

r̂t = rt
1− ρt2

(5.25)

where r̂t is the unbiased second-order moment, rt is the biased second-order mo-
ment, ρ2 is the decay hyperparameter for past first-order moments and t is the
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current step.

∆θ = −α ŝt√
r̂t + δ

(5.26)

where ∆θ is the update for the parameters, α is the vector of learning rates, ŝt is
the unbiased first-order moment, r̂t is the unbiased second-order moment and δ is
a small constant used for numerical stability.

θt = θt−1 + ∆θ (5.27)

where θt is the new values for the parameters at the current step t and ∆θ is the
update for the parameters.

Nowadays, deep learning practitioners usually make use of RMSProp and Adam opti-
mizers as the default go-to algorithm for training their models.

5.2.2.5 Activation functions

Activation functions are the components that enable NN models to learn nonlinear pat-
terns in the data by applying element-by-element nonlinear mapping to the outputs of
the nodes. Traditionally, these functions have been monotonic, continuously differen-
tiable and smooth with a monotonic derivative, but recent proposals like the rectifier
family of activation functions do not fulfill some of these requirements, although they
are able to provide properties that make their use desirable.
The most common activation functions are: the logistic sigmoid function defined in
Equation 5.28, whose derivative is presented in Equation 5.29; the hyperbolic tangent
function (tanh) shown in Equation 5.30, whose derivative is Equation 5.31; and the
rectified linear unit (ReLU), whose formulation is presented in Equation 5.32 and its
derivative is presented in Equation 5.33. Figures 5.5, 5.6 and 5.7 show the visualization
of the common activation functions and their derivatives.

g(z) = 1
(1 + e(−z)) (5.28)

g′(z) = g(z) ∗ (1− (g(z)) (5.29)

g(z) = (e(z) − e(−z))
(e(z) + e(−z)) (5.30)
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g′(z) = 1− g(z)2 (5.31)

g(z) = max(0, z) (5.32)

g′(z) =

1 if z >= 0
0 otherwise

(5.33)

Figure 5.5: Logistic sigmoid function and its derivative.

Figure 5.6: Hyperbolic tangent function and its derivative.

Problems when using functions like the logistic sigmoid and the hyperbolic tangent were
detected and analyses in Hochreiter [1991], and these had an effect on the capacity of
NN models to learn. The cause of the problems was detected in the derivatives of the
activation functions used, as when the output of a node is very small or large, the logistic
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Figure 5.7: Rectified linear unit function and its derivative.

sigmoid (and, to a lesser extent, the tanh function also) gradients become saturated as
their values grow very small or reach 0. This makes the training of the model very slow
or even halts it. Because of this, it is preferable to use piecewise linear units like the
rectified family of functions, to which the ReLU function belongs. ReLU was proposed in
Glorot et al. [2011] to overcome the problem of oversaturated nodes and also to introduce
sparsity into the models, as nodes that do not play a role (their output is 0) become
inactive because their gradient will also be 0 (a phenomenon called dying ReLU); but
for active nodes, the gradient will be 1, allowing the models to be trained faster. When
using ReLU, it is recommended to use an initial value of 0.1 for the bias, as this avoids
starting with inactive nodes. Notice that the ReLU derivative is not continuous at
z = 0, which can be solved by assigning 0 or 1 to the output (depending on the software
implementation).
Another common activation function that is not usually used in the hidden layers is
the softmax activation function. Softmax nodes represent a probability distribution (as
the sum of its outputs is 1) over a categorical variable of k categories; and, thus, it is
commonly used at the output layer in conjunction with the cross-entropy loss function.
It is also commonly used for multiclass classification and serves as a generalization of
logistic regression models (based on the logistic sigmoid function). When softmax is
used in an NN context, it is considered as a special layer called the softmax layer. A
schema of the softmax layer can be seen in Figure 5.8.
The softmax function (Equations 5.34 and 5.35) maps an input vector to another vector,
where its original values are squashed towards 0 – with the exception of the higher value,
which is squashed towards 1. Also, the sum of the elements at the output equals 1 (as a
probability distribution). This effect is a form of pointing to the higher element of the
input vector and, as such, becomes something of an argmax function. Because of this,
the softmax is considered a soft version of the argmax function, but with the possibility
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Figure 5.8: Softmax layer.

of letting the gradients flow because it has a continuous and smooth derivative.

softmax(ai) = eai∑N
j=1 e

aj
(5.34)

where ai is an element of the vector a and N is the number of vector elements.

∂softmax(ai)
∂aj

= softmax(ai) ∗ (δij − softmax(aj)) (5.35)

where δij is the Kronecker delta.

δij =

1 if i = j

0 otherwise

5.2.2.6 Loss functions

The goal of a loss function is to compute the deviation between the model output (given
a specific input) and the real (or expected) output. Because the parameters of an NN
are initialized randomly (see Section 5.2.2.1), the initial outputs of an NN start to
become very different from the expected outputs, resulting in a large value from the loss
function. As the training proceeds, the parameters are adjusted in order to minimize
the loss function outputs.
Similar to activation functions, loss functions for NN must have the following properties:

• Their output is 0 when the model and expected outputs are equal.
• Their values are greater as the model outputs deviate more from the expected

outputs.
• Smooth changes in the outputs when there are small changes in the inputs.
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Loss functions are constrained by the objective of the problem, and thus they are different
if the context is, for example regression, classification or metric learning.
In a regression context, common loss functions used are the L1 distance, whose formula-
tion is presented in Equation 5.36, and the L2 distance, whose formulation is presented
in Equation 5.37:

L(xi, yi) =| yi − fθ(xi) | (5.36)

where yi is the expected output and fθ(xi) is the model output when the input is xi.

L(xi, yi) = (yi − fθ(xi))2 (5.37)

where yi is the expected output and fθ(xi) is the model output when the input is xi.
In a classification context, the most commonly used loss function is cross-entropy loss
(when used together with a softmax activation at the output layer; if not, its name
becomes negative log-likelihood loss). It originates from information theory, and it com-
bines the entropy of the true distribution (defined in Equation 5.38) with the Kullback
Liebler divergence (Equation 5.39), and the true distribution with an approximated dis-
tribution. In the NN context, the true distribution is fixed and represented through
one-hot encoding of the expected category (or label), given an input. The approximated
distribution is the model output with the same input. Remember that, by fitting the
parameters, the second distribution changes in order to behave more like the true dis-
tribution, which remains fixed. While the entropy provides the expected number of
information units to communicate the distribution p, the cross-entropy (Equation 5.40)
provides the number of information units needed to communicate the distribution p by
using the distribution q. Thus, the closer they are, the smaller the number of informa-
tion units needed. Because these distributions in the NN context are seen as one-hot
encoders for realizations of categorical variables, cross-entropy loss can be simplified, as
shown in Equation 5.41. From p, only one entry has a value of 1 (the one representing
the category) and the other entries have a value of 0.

H(p) = −
n∑
i=1

p(xi) ∗ log(p(xi)) (5.38)

where p is a probability distribution, xi is a realization of a random variable X and n is
the number of samples.

DKL(p ‖ q) =
n∑
i=0

p(xi) ∗ log(p(xi)
q(xi)

) (5.39)

where p and q are probability distributions, xi is a realization of a random variable X
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and n is the number of samples.

H(p, q) = H(p) +DKL(p ‖ q) = −
n∑
i=0

p(xi) ∗ log(q(xi)) (5.40)

where p and q are probability distributions, xi is a realization of a random variable X
and n is the number of samples.

H(p, q) = −log(q(xi)) (5.41)

where p and q are probability distributions, xi is a realization of a random variable X
and n is the number of samples.

5.2.2.7 Hyperparameter optimization

NN models are known for their large numbers of hyperparameters defining the models.
These cannot be learnt from data , and thus it is necessary to use meta-learning ap-
proaches or heuristics. Examples of hyperparameters are the number of hidden layers,
number of neurons per layer, type of activation function, which optimizer to use, and
optimizer parameters, among others. Because the hyperparameter defines the architec-
ture of the model, the term neural architecture search has been coined as the research
area into methods of finding the best NN architecture for a given problem. Common
strategies proposed in the literature are:

• Random search. Proposed in the work by Bergstra and Bengio [2012], this consists
of randomly trying different combinations of the hyperparameters for a number of n
iterations and comparing the model results in the validation set for each iteration.
In 60 iterations, there is a 95% probability that a good model arises from this
approach.

• Neural architecture search by reinforcement learning. Proposed in the work by
Zoph et al. [2016], this consists of letting a model learn through reinforcement
learning how to create other models by combining the different parts of an NN
model. As a result, the model learns to create NN models with high accuracy.

• Neural architecture search by evolution. Presented in the work by Real et al. [2017],
the idea here is to use evolutionary algorithms to discover network architectures
that work best for a given problem.

5.2.2.8 Regularization

As mentioned in Section 5.2.2.2, regularization techniques are needed for fitting the pa-
rameters when dealing with NN models, as their great capabilities for adaptation can
prevent the model from generalizing due to the training data being overfitted. Regular-
ization was first proposed to overcome ill-posed problems, which arise in statistics when
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the matrix of regressors present collinearity (linear dependence on their vectors). More
recently, regularization is used in any technique that increases a model’s capabilities of
completing a task based on unseen data. Different approaches are used in NN to prevent
overfitting:

• Parameter norm penalties. Controlling the magnitude of the parameters by adding
a term to the loss function. This term is also called the regularization term. One
of the more common regularization techniques used in regression is the Tikhonov
regularization (L2 norm), which consists of adding the term λ(wTw), where w
is the vector of the parameters. The idea is to control the norm of the weights
through the regularizer hyperparameter λ.

• Data augmentation. When dealing with inputs such as images, it is possible to
increase the input data by manipulating it. This acts as a regularization technique,
as more available data makes the model able to learn from more examples , and
thus it becomes better at working with unseen data. This is one of the main
methods used in self-supervised learning.

• Dropout. Proposed in Srivastava et al. [2014], this consists of randomly deactivat-
ing neurons (multiplying their output by zero) in each layer during their training
in order to make the NN model become a bagged ensemble of an exponentially
greater number of neural networks (a technique proposed in Breiman [1994]). Thus,
instead of a large NN model, a model of submodels is obtained.

• Early stop. This consists of stopping the iterative procedure of model fitting and
is based on the increase in error between training and the validation set used
during training, as this is the most common sign of overfitting in the training
data. Detailed explanations on its effect as a regularization technique is explained
in Bishop [2006].

5.2.2.9 The vanishing gradient problem

One problem that arises in very deep NN models and some specialized architectures
like the recurrent neural networks (RNN, Section 5.2.3) is the problem of vanishing
and exploding gradients. As the number of matrix operations (multiplications) become
larger in the forward pass, it is possible that the gradient in the backward pass suffers
from one of the following issues:

• Vanishing gradient. The recurrent matrix multiplications cause the gradients to
become very small; thus, the update of the weights at each iteration also becomes
very small and therefore leads to the training procedure becoming very slow or
impossible.

• Exploding gradient. The recurrent matrix multiplications cause the gradients to
become very large; thus, the update of the weights at each iteration also becomes
very large and therefore leads to the model being unable to learn.
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This effect happens because the largest eigenvalue in the matrix of weights becomes
very small or very large when the optimal is to maintain a value near one at each of the
successive multiplications. Overcoming this requires using aforementioned techniques
like weight initialization, rectified linear unit activation functions, optimizers, etc. Also,
in the case of the exploding gradient, techniques like clipping gradient are used, where
the magnitude of the gradient is limited to a certain value in order to prevent it from
exponentially increasing (usually dividing the gradient by its magnitude if a threshold
is exceeded). The work by Hochreiter [1991] presents a deep analysis of the problem.

5.2.3 Recurrent NN: Long short-term memory and gated recurrent
unit

When modeling sequence data using NN methods, MLP falls short because it is not
capable of dealing naturally with some of the characteristics of this kind of data. The
main features that characterize sequence data are:

• Elements of a sequence have a meaning based on order, causing an element’s value
to be determined by the elements that precede and/or succeed it.

• Sequence data is not of fixed length, as what happens in the case of natural lan-
guage processing.

One possible way to model such data with MLP is to use a sliding window. Problems
arise when applying such methods, as it is difficult to know the optimal window size.
Also, a window of fixed size constrains the model to detecting only patterns that occur
within the window span. Thus, one could consider using a very large window, let us
suppose of size n, for which each neuron in the first hidden layer would need n param-
eters, thus making the problem computationally unfeasible. Moreover, if the sequences
are of variable length, then there will be problems with the endings of the sequences, as
some special value will be needed to fulfill the sequence length.
Recurrent neural networks (RNN) are NN models whose goal is to model sequence data
and provide natural fixtures that deal with the characteristics of this type of data. RNNs
are characterized by sharing their weight parameters across time. This is accomplished
by connecting the neurons to themselves, thus forming cycles in their graph. This enables
the model to capture time dependencies, as neurons receive new input and the previous
neuron’s output at each time step, then use these to provide the current output. Figure
5.9 shows a folded RNN unit (with a cycle) and the RNN unit unfolded in time.
The loop formed by connecting the RNN units to themselves enables the model to
have some sort of memory, which is called “state” or “hidden state”. The sequential
information is preserved in the RNN’s hidden states, and the new samples that are
processed have a cascade effect. This cascade allows the RNNs to determine relationships
between contiguous and non-contiguous events in the sequence. The hidden state is used
by the RNN units as a summary of the relevant aspects of the past sequences up to the
current step t. Figure 5.10 shows an RNN model with one input layer, one hidden layer
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Figure 5.9: RNN unit.

and one output layer. Each element of the input layer is considered a sequence. Because
of this, the expected input of recurrent models are tensors of three dimensions, where
their components are defined by the number of samples (batch of data), the sequence
length, and the number of different types of sequences that are considered (features).

Figure 5.10: RNN structure.

One of the advantages of using a parameterized hidden state is that it is a random
variable, which allows RNN models to provide an efficient parameterization of the joint
distribution of observations. On the other hand, it must be taken into account that this
leads to the assumption that the same parameters can be used for different time steps.
Thus, the conditional probability distribution of the input variables at time t+ 1, given
variables at time t, is stationary (stationarity has been introduced in 3.2).

5.2.3.1 RNN computations

RNN computations differ slightly from those presented in Section 5.2.2.1. Although
there exist different procedures for using RNN models, this section focuses on presenting
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a possible approach to time series data.
At each time step, a row of data that represents the previous value sequence until the
current step (included) is submitted to the RNN. Then, the output is compared (using
the loss function) with the next value in the sequence in order to adjust the parameters.
The weight of each arc that connects the neurons to themselves preserves the information
from the past sequences , and thus the output at the current step will take into account
the previous information. At the initial step, the hidden state of all RNN units has a
value of 0. Then, at each step, their value is updated based on the previous states and
the current inputs. The computations in an RNN unit are shown in Equations 5.42 and
5.43, where the former shows how the hidden state is computed at the current time step,
and the latter is the computation made for obtaining the output of the RNN unit based
on the current hidden state.

ht = σ(W ∗ ht−1 + U ∗ xt + b) (5.42)

where ht is the current hidden state, W is the matrix of weights for the last hidden state
that is represented as ht−1, U is the matrix of weights for the inputs at the current time
step that is represented as xt, b is the bias parameters and σ any activation function
(usually, tanh is used).

ŷt = V ∗ ht + c (5.43)

where ŷt is the output of the RNN unit at the current step t, ht is the current hidden
state, V is the weights of the output layer and c is a bias parameter.

5.2.3.2 Training in RNN

The training procedure of an RNN model is the same as the one presented for MLP
models (Section 5.2.2.3), with a slight modification to the computations because RNN
requires taking into account the hidden-to-hidden recurrent connections. The modifi-
cation is needed for the computations because the current output in RNN depends not
only on the current input, but also on past hidden states. Therefore, the gradient also
flows in time as it computes the contribution to the loss at each time step. Because it
travels through time, the name of the algorithm is recoined as backpropagation through
time (BPTT).
One of the major problems with BPTT is that longer sequences can result in the gra-
dient vanishing or exploding easily, similarly to what happens in very deep MLP. This
effect is explained in the previous Section 5.2.2.9. In order to overcome the problem
of vanishing/exploding gradients, the literature proposes other methods based on RNN,
of which the most used are long short-term memory (LSTM) and gated recurrent unit
(GRU).
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5.2.3.3 LSTM

LSTM NN is one of the first popular proposals for solving the problem with long-term
dependencies. It was introduced in Hochreiter and Urgen Schmidhuber [1997], where
the vanishing problem is presented in detail, as well as how to overcome it using gates
that control the hidden state of the model units. GRU NN (proposed in Cho et al.
[2014]) is an evolution of LSTM in which the structure is fine-tuned in order to create
less complex models with faster computations.
In the LSTM proposal, the cells (the name given to the units due to the greater com-
plexity of the computations compared to those of traditional RNN units) are composed
of a mechanism of gates (operations) that control the flow of information in the hidden
state. The cells also incorporate another flow of information known as the cell state.
The cell state is used to maintain the flow of the most useful information up to the
current step. The use of the cell state and the hidden state is why the model is named
long short-term memory, as the former acts as the long-term memory and the latter as
the short-term memory. The full schema of an LSTM cell can be seen in Figure 5.11.

Figure 5.11: LSTM cell.

The inner computations of an LSTM cell are designed to control the cell state through a
gating system. This system uses linear interactions to modulate the flow of information
inside the cell based on the condition of the hidden state and the current sample. Gates
consist of computations between the hidden state and the current input, followed by
a sigmoid activation function. This guarantees that the outputs behave similarly to a
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step function, as their value will be between 0 and 1. In an LSTM cell, there are three
different gates, each with a specific goal:

• The forget gate. This computes which parts of the last cell state need to be
forgotten, based on the current input and previous hidden state.

f t = σ(U f ∗ xt +W f ∗ ht−1 + bf ) (5.44)

where U f is the matrix of weights of the forget gate for the current input xt, W f

is the matrix of weights of the forget gate for the previous hidden state ht−1, and
bf is the bias vector of the forget gate. σ denotes the sigmoid activation function.

• The input gate. This decides which parts of the current input and previous hidden
state are relevant in order to update the current cell state.

it = σ(U i ∗ xt +W i ∗ ht−1 + bi) (5.45)

where U i is the matrix of weights of the input gate for the current input xt, W i is
the matrix of weights of the input gate for the previous hidden state ht−1, and bi
is the bias vector of the output gate. σ denotes the sigmoid activation function.

• The output gate. This filters the parts from the current cell state that are going
to be used as current hidden state/output based on the values of the current input
and previous hidden state.

ot = σ(U o ∗ xt +W o ∗ ht−1 + bo) (5.46)

where U o is the matrix of weights of the output gate for the current input xt, W o

is the matrix of weights of the output gate for the previous hidden state ht−1, and
bo is the bias vector of the output gate. σ denotes the sigmoid activation function.

At each time step, the forget gate uses Equation 5.44 to compute which information is
no longer useful in the cell state, specifically by using the previous hidden state and the
current input. At the same time, candidates for new information are computed using
Equation 5.47, and their relevant parts are selected by means of the input gate, whose
Equation is 5.45. At this point, the cell state is updated, as described in Equation 5.48.
Once the cell state is updated, part of its information is filtered using the output gate
(Equation 5.46). This information will be used as the cell’s output and as its new hidden
state. Equation 5.49 describes the process of computing the new hidden state/output.

c̃t = tanh(U c ∗ xt +W c ∗ ht−1 + bc) (5.47)

where c̃t is the candidate cell state, tanh is the tanh activation function, U c is the matrix
of weights of the candidate cell state for the current input xt,W c is the matrix of weights
of the candidate cell state for the previous hidden state ht−1, and bc is the bias vector
of the candidate cell state.

ct = f t × ct−1 + it × c̃t (5.48)
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where ct is the current cell state, f t is the output of the forget gate at the current time
step, ct−1 is the previous cell state, it is the output of the input gate, and c̃t is the
candidate cell state computed using Equation 5.47.

ht = tanh(ct)× ot (5.49)

where ct is the current step cell state, tanh is the tanh activation function, and ot is the
output from the output gate.

5.2.3.4 GRU

Cho et al. [2014] proposed GRU as a modification of LSTM. The objective was to
reduce the complexity of the cells and increase the speed of the computations. In order
to accomplish this, the cell state is merged into the hidden state. In addition, the forget
gate and the input gate are merged into a new gate called the update gate. Lastly, a
reset gate is used, the function of which is the same as that of the output gate of the
LSTM cell. The schema of the GRU cell can be seen in Figure 5.12.

Figure 5.12: GRU cell.

The inner mechanism in a GRU cell starts with the computations at the reset gate
(Equation 5.50), whose output will be used to filter the previous hidden state information
in order to compute the new hidden state candidate. At the same time, the update gate
is computed using the current input and the previous hidden state by means of Equation
5.51. The new candidate hidden state is computed by using the current input and an

192



5.2 Artificial neural network Theoretical aspects of time series algorithms

element-wise multiplication between the reset gate output and the previous hidden state
(this element-wise multiplication selects the elements of the previous hidden state and
which values will be reset), as stated in Equation 5.49. Once the candidate hidden state
for the current step is computed, the output of the update gate is used to decide which
information to keep from the previous hidden state and which information to include in
the new hidden state, as shown in Equation 5.53.

rt = σ(U r ∗ xt +W r ∗ ht−1 + br) (5.50)

where rt is the output of the reset gate, U r is the matrix of weights of the reset gate
for the current input xt, W r is the matrix of weights of the reset gate for the previous
hidden state ht−1, and br is the bias vector of the reset gate. σ stands for the sigmoid
activation function.

ut = σ(Uu ∗ xt +W u ∗ ht−1 + bu) (5.51)

where ut is the output of the update gate, Uu is the matrix of weights of the update
gate for the current input xt, W u is the matrix of weights of the update gate for the
previous hidden state ht−1, and bu is the bias vector of the update gate. σ stands for
the sigmoid activation function.

h̃t = tanh(Uh ∗ xt +W h ∗ (rt × ht−1) + bh (5.52)

where h̃t is the candidate hidden state, Uh is the matrix of weights of the candidate
hidden state for the current input xt, W h is the matrix of weights of the candidate
hidden state for the previous hidden state ht−1, rt is the output of the reset gate, and
bh is the bias vector of the update gate. σ stands for the sigmoid activation function.

ht = (1− ut)× ht−1 + ut × h̃t (5.53)
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6 Computational experiments –
ARIMA

This chapter characterizes the parking sectors that were presented in Chapter 3. Specif-
ically, the characterization presented was conducted using the ARIMA method, of which
the theoretical issues have been discussed in Chapter 5. The objective of this modeling
is to provide hourly forecasts of parking sector occupancy using their past occupancy
values. The technique of using the same variable to provide forecast values is known in
the time series literature as endogenous forecasting. In addition, the error is quantified
at different forecasting horizons with a two-fold objective: first, in order to study how
the forecasts decay as the forecasting horizon becomes longer; and second, to compare
the ARIMA models with other models created by using other methodologies.
The chapter is organized in the following manner. First, it presents the design of experi-
ments in order to provide structure and context about the modeling. Then, it introduces
the goodness-of-fit metrics used to compare the candidate models and evaluate the errors
in the chosen model. Next, it is explained the ARIMA modeling process. Following, it
explains the step-by-step modeling process for each sector of each city. Lastly, the chap-
ter closes with a summary and conclusions about the important facts and observations
uncovered through the modeling.

6.1 Design of experiments

An experiment is considered to be the modeling process for each sector in each city.
The outcome of an experiment is: the model that is proposed from a set of considered
candidate models, in accordance with the methodology used; the error of its forecasts
at different time horizons; and any relevant observation during the process. Models are
compared using the goodness-of-fit metrics described in the following section. Table 6.1
provides a summary of the experiments considered and comments on how the idiosyn-
crasy of the data can have an effect on the modeling process, usually in the form of a
question that would be desirable to take into account.
Questions that arise from the comments on the experiments are:

• How different are the models of the sectors based on their idiosyncrasies?
• Is it possible for an ARIMA model to handle multiple seasonalities?
• Do nearby sectors share the same model?
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City Sector Experiment name Comments

Antwerp

Pelikaanstraat ARIMA_antwerp_pelikaanstraat

Sectors present different sizes, usage and locations.

Van Wesenbekestraat ARIMA_antwerp_vanwesenbekestraat

Van Wesenbekestraat Zone 2 ARIMA_antwerp_vanwesenbekestraat2

Van Schoonhovestraat Zone 1 ARIMA_antwerp_vanschoonhovestraat1

Van Schoonhovestraat Zone 2 ARIMA_antwerp_vanschoonhovestraat2

Van Schoonhovestraat Zone 3 ARIMA_antwerp_vanschoonhovestraat3

Barcelona Regular ARIMA_barcelona_regular At least two seasonalities: eight hours and daily.

Wattens
Inside ARIMA_wattens_inside

Both sectors belong to the same zone and have the same usage.
Outside ARIMA_wattens_outside

Los Angeles

Standard ARIMA_LA_standard

2018 and 2019 have different occupancy values because of street works.
Permit ARIMA_LA_permit

Disabled ARIMA_LA_disabled

ZipCar ARIMA_LA_zipcar

Riyadh
Sector-1 ARIMA_riyadh_sector1

All sectors are interconnected and present high cross-correlation values.
Sector-10 ARIMA_riyadh_sector10

Table 6.1: Table of experiments for ARIMA.

• Is it possible to overcome temporal changes?
• Is a model really necessary for each sector?
• How can sectors be characterized by their time series?

6.2 Goodness-of-fit metrics

When dealing with time series forecasting (regression) in this work, the metric used to
compare the models and validate its results is the root mean square error (RMSE). The
equation for this is presented in Equation 6.1. When using RMSE, the model with the
lowest value is the best of the set. For ARIMA models, the RMSE is used to quantify
the forecast errors when compared with the out-of-sample data, which is the data not
used to estimate the model parameters.

RMSE =
√√√√ 1
n

n∑
i=1

(yi − ŷi)2 (6.1)

where n is the number of samples, y is the ground truth and ŷ is the forecast of the
model for the sample i.
In order to compare different ARIMA models fitted to the same data, the most common
metrics are the Akaike Information Criterion (AIC) (Equation 6.2) and the Bayesian
Information Criterion (BIC) (Equation 6.3), as they indicate the relative quality of the
models for a given set of data. Both metrics are similar, but BIC penalizes more of
those models with a larger number of parameters. AIC models can be compared using
the formula exp(AIC1−AIC2

2 ), whose result is interpreted as how much more probable it is
that the model with AIC2 will minimize the information loss when compared with the
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AIC1 model. When using these criteria, the model with the lowest value is preferred;
but if the difference between the values is very small, the simplest model is chosen in
accordance with the principle of parsimony.

AIC = lnσ̂2
k + n+ 2k

n
(6.2)

where σ̂2
k stands as the value of the variance estimated by maximum likelihood, k is the

number of parameters of the model and n the number of observations used to fit the
model.

BIC = lnσ̂2
k + k ∗ ln(n)

n
(6.3)

where σ̂2
k stands as the value of the variance estimated by maximum likelihood, k is the

number of parameters of the model and n the number of observations used to fit the
model.
Another interesting metric is the value of the likelihood function. The likelihood func-
tion is used to estimate the parameters of the ARIMA models through the maximum
likelihood estimation (MLE) method. Equation 6.4 shows the calculation of this value.

l̂ = −n2 ln(2π)−
n∑
t=2

[12 ln(σ2
t ) + (Xt − µt)2

2σ2
t

]− 1
2 ln(σ2

z)−
X2

1
2σ2

z

(6.4)

where l̂ stands as the maximum loglikelihood value for an ARIMA model. The logarithm
is used when dealing with probabilities, because it is easier to perform the operations
and is less computationally costly due to the large number of decimals involved when
using the ARIMA methodology

6.3 ARIMA modeling methodology

In order to develop the ARIMA models, the Box-Jenkins methodology has been used.
This approach has well-differentiated stages that guide the researcher through creating
an ARIMA model. A schema of the methodology stages is shown in Figure 6.1.
The first step in the Box-Jenkins methodology involves identifying the time series as
stationary. One of the required assumptions of ARIMA models (and in fact, of any
time series model) is the need for stationarity, which means that the mean and variance
of our observations do not change as time goes on. In other words, their values are
constant over time. Stationarity can be identified through visualization tools, such
as box plots for observing the evolution of mean and variance over time or by using
statistical tests that exploit the fact that a non-stationary process presents a unit root
in its characteristic equation. One example of the latter is the Dickey-Fuller test. The
cause of a non-stationary time series could lie in the mean or the variance. When the
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Figure 6.1: Box-Jenkins methodology schema.

mean is not constant over time, the time series values will increase or decrease as time
goes on (trend), and this can be solved by using the difference operation. The difference
operation is identified in an ARIMA model as the integrated order of the model, or I(·).
If the variance is the cause of non-stationarity, the Cox-Box transformations Box and
Cox [1982] can be used to transform the series to stationary.
Once the time series are stationary, the next step is to identify the autoregressive AR(·)
and moving average MA(·) orders of the model. This step can be done through the
graphic visualization of the ACF and PACF. The significant lags in the ACF indicates
the order of the moving average part, while the significant lags in the PACF indicates the
order of the autoregressive part. It is possible that the visualizations show a pattern of
high correlations at equally spaced lags, thus indicating seasonality in the observations,
and this is modeled by incorporating seasonal coefficients into the model. When seasonal
coefficients are used, then we use the the Seasonal ARIMA (SARIMA) model, for which
the parameters are identified as SAR(·), SI(·) and SMA(·). At this step, more than
one model can be identified.
The next step is to fit the parameters and compute the AIC, BIC and parameter sig-
nificance through a t-test. As mentioned in the previous section, AIC and BIC values
are used to relatively compare different models that have been identified in the previous
step. The t-test for parameter significance helps identify coefficients that are not needed
in the model, as they do not have an effect on the amount of information captured by
the model. One rule of thumb for identifying whether a parameter is significant is to
divide the parameter value by its standard deviation; if the ratio is larger than two, then
the parameter is significant.
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The last step involves analyzing the residuals of the previously selected model in order
to test their normality. If the model is able to capture the relevant information in the
observations, the distribution of the residuals is a Gaussian distribution. The normality
of the residuals can be studied through different plots such as: the Q-Q plot; the ACF
and PACF residual plots of the residuals; the density plot; and the homoscedasticity plot
over time. Another way of testing whether the residuals fulfill the normality condition
is through statistical tests like the Ljung-Box Q test, in which the null hypothesis H0
is that there are no correlations in the residuals while the alternative hypothesis is
that the residuals are correlated and, thus, normality has not been established. With
the information from the residual plots, it is possible to rethink the number of model
parameters and try new combinations in order to normalize the residuals. A model
without normality in its residuals does not imply that the model forecasts are useless,
just that it will not be able to always give accurate forecasts and that, if it is used, one
must provide explanations about the underlying process that generates the data.
As mentioned above, some of the Box-Jenkins stages can be approached through visu-
alizations like checking the stationarity and identifying the model parameters. Part of
this work has been presented previously in Chapter 3.

6.4 Antwerp ARIMA models

6.4.1 Pelikaanstraat sector

This section includes the experiment corresponding to the Pelikaanstraat sector of
Antwerp, namely ARIMA_ antwerp_pelikaanstraat.
Daily box plots for the Antwerp sector of Pelikaanstraat (see Figure 6.2) present the
behaviors of the mean and variance through the first two weeks of March 2019 after ap-
plying various differentiations to the data: non-differentiated; one regular; one seasonal
(daily); and one regular plus one seasonal differentiation together. It can be observed
that the mean has different levels for weekdays and weekends, meaning that perhaps
the series are non-stationary. This behavior was already observed in the seasonal plots
presented in Chapter 3.5.1. When applying one regular differentiation to the series, the
mean and variance seem to become stationary. With one seasonal differentiation, the
results are similar to the non-differentiated series. For the one regular plus one seasonal
differentiation, the results are similar to the one regular differentiated series. The non-
differentiated series must also be considered, since the long-term plots in Section 3.5.1
indicate that the mean is constant over the years.
One thing that must be taken into account when using differentiation in time series is
that, for each order of differentiation, the mean and variance change and there exists the
probability of over-differentiating the series, thus adding noise to the series. As a general
rule of thumb, differentiation is performed until the ACF decays rapidly towards zero.
Another rule is that the optimal order of differencing is the one with the lowest standard
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Figure 6.2: Box plots of the Antwerp Pelikaanstraat sector for the first two weeks of
March 2019. Top left shows the non-differentiated series, top right the differentiated
one, bottom left presents the seasonal differentiation (24 lags) and bottom right is the
series with one regular differentiation and one seasonal differentiation together.
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Difference order Mean Variance

No differentiation 0.3570 0.0524

One regular 0 0.0140

Two regular 0 0.0288

One seasonal -0.0008 0.0507

Two seasonal 0.0002 0.1492

Regular plus seasonal 0 0.0236

Two regular, one seasonal 0 0.0538

One regular, two seasonal 0 0.0701

Two regular, two seasonal 0 0.0706

Table 6.2: Pelikaanstraat sector mean and variance when using different orders of
differentiation.

Model Log likelihood AIC BIC

ARIMA(1, 0, 0) 7949.008 -15892.016 -15870.215

SARIMA(0, 1, 2)(0, 1, 1)24 8304.040 -16600.081 -16571.022

SARIMA(0, 1, 0)(0, 1, 1)24 8121.553 -16239.106 -16224.577

Table 6.3: Comparison of the Antwerp Pelikaanstraat sector ARIMA model scores.

deviation or variance. Table 6.2 shows the mean and variance of the Pelikaanstraat
sector under different orders of differentiation. The Pelikaanstraat sector shows the
minimum variance when using one regular differentiation and, in the case of seasonal
differentiation, also when using one regular plus one seasonal.
The order of the coefficients of an ARIMA model can be determined by the visualizations
of the ACF and PACF functions for the whole series. Figure 6.3 shows the Pelikaanstraat
ACF and PACF of the data with different transformations. From the plots, the follow-
ing models can be considered: AR(1) and constant mean with the non-differentiated
series; AR(2) and/or MA(2); and SAR(1) and/or SMA(1) for the one regular plus one
seasonal differentiated series. Because it is not clear at all, the MA(2),SMA(1) is the one
considered because it seems to have a sharp cut-off in the autocorrelation plot. Lastly,
we consider a third model with the form of SMA(1) for the one regular plus one sea-
sonal differentiated series. Modeling the data this way means that the observations are
realizations based on the occupancy of the day before at the same hour, plus a random
value coming from white noise.
Notice that some of the series present higher autocorrelation values at the lags that
coincide with a one-week period, that is, 168 hours.
Table 6.3 shows a summary of the results of the fitted models for the Pelikaanstraat
sector. From the models considered, SARIMA(0, 1, 2)(0, 1, 1)24 is the one with the best
AIC and BIC scores (the lower, the better) and higher likelihood.
All the parameters are significant, with their significance being obtained by computing
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Figure 6.3: Pelikaanstraat ACF and PACF plots for the non-differentiated, one dif-
ferentiated, seasonal differentiated, and one regular plus one seasonal differentiated
series.
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RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6

0.1033 0.1360 0.1562 0.1737 0.1881 0.1994

Table 6.4: Antwerp Pelikaanstraat ARIMA RMSE.

the t-value of each parameter (ratio of the parameter by its standard error). This is
then used to obtain the p-value for testing the null hypothesis H0 : βi = 0 for i = 1, ..., n
where n is the number of observations and β is the parameter value. The mathematical
description of the model is presented in equation 6.5. Notice that, despite the simplicity
of ARIMA(1, 0, 0), the model scores are not far from the proposed one.

x̂t = −0.1587(0.008)wt−1 − 0.1341(0.009)wt−2 − 0.9509(0.003)wt−24 + wt, (6.5)

with σ2 = 0.0121. The lower values in parenthesis denote the corresponding estimation
of the standard errors for each parameter. wt−n represents the white noise values for a
number of n lags considered.
The residuals are analyzed by means of the visualizations presented in Figure 6.4. The
visualizations show that not all information is captured by the data, as there are cor-
relations in the residuals. The density plot of the residuals does not follow a normal
distribution, a fact that is also confirmed by the visualizations of the Q-Q plot and the
Ljung-Box p-values plot. The ACF and PACF plots show that there is correlated infor-
mation in the residuals between the first 24 lags. The conclusions are that the forecasts
of the proposed model need to be viewed with caution, as not all the assumptions have
been fulfilled.
The parameters of the model have been estimated using data from February 2019 until
January 2019. February, March and April data is used for testing the model forecasting
for out-of-sample data. The model forecast has been evaluated with different forecasting
horizons, as one of the research questions of this work is to study how the accuracy of
the models decays as the forecasting horizon becomes longer. Specifically, Table 6.4
presents the RMSE of the model at each of the considered forecasting hours, from one
to six. In the case of the ARIMA models, it is necessary to use a multi-step strategy in
order to obtain forecasts for consecutive time steps, that is, the forecast of the first time
step (next hour) is used as input for the model in order to obtain the forecast for the
next time step (forecast for two hours from the current step). This has an effect on the
accuracy, as the uncertainty increases at each step.
Figure 6.5 shows the one-step forecasts for the ARIMA model proposed for the Pe-
likaanstraat sector of Antwerp. The top one presents the forecasts for the entire time
interval of the test data. The bottom shows 48 hours of forecasts. Notice that the
forecasts sometimes seem to fall behind the real observations.
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Figure 6.4: Antwerp Pelikaanstraat residual analysis of the proposed model. From top
left to bottom right: residual plot, density plot, homoscedasticity plot, Q-Q plot, ACF
and PACF plots and Q-statistic p-values plot.
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Figure 6.5: Antwerp Pelikaanstraat ARIMA forecasts. Blue denotes the observed
occupancy, red the occupancy forecasted by the model, and green is the confidence
interval.
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Figure 6.6: Daily box plots of the first two weeks of March for the sectors Van Wesen-
bekestraat Zone 1 (top) and Van Wesenbekestraat Zone 2 (bottom).

6.4.2 Van Wesenbekestraat sectors

This section includes the experiments corresponding to the two sectors of Antwerp lo-
cated on Van Wesenbekestraat Street. The corresponding experiments are: ARIMA_
antwerp_vanwesenbekestraat and ARIMA_ antwerp_vanwesenbekestraat2.
The Van Wesenbekestraat sectors daily box plots are presented in Figure 6.6. Zone 1
presents a cyclical weekly behavior through the first two weeks of March 2019. Occu-
pancy levels hit bottom on Thursdays, and the maximum values are on Saturdays and
Sundays. After a regular differentiation, the series presents a constant mean of value
zero with a more or less constant variance for each of the days. Zone 2 presents a similar
pattern to the one from Zone 1, especially in the second week of March. The data with
one regular differentiation presents patterns similar to Zone 1.
Figure 6.7 shows the ACF and PACF of the series for Van Wesenbekestraat Zone 1
and Zone 2 when non-differentiated and after a one regular plus one seasonal (daily)
differentiation. Both sectors present very similar plots and, because of this, the can-
didate models are the same for each of them. Possible models are: AR(1) for the
non-differentiated series, with a constant trend (mean); and AR(2), MA(2) and SMA(1)
for the one regular plus one seasonal differentiated series. As the plots are similar to
those of the Pelikaanstraat sector, no further differentiation order is considered.
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Figure 6.7: Van Wesenbekestraat Zone 1 (top) and Zone 2 (bottom) ACF and PACF
plots for the non-differentiated series (left) and the regular plus seasonal differentiated
series (right).

Table 6.5 presents the values of the mean and variance under different orders of dif-
ferentiation for the regular plus seasonal parts. The series achieve the lowest mean
and variance with one regular differentiation and with one regular plus one seasonal
differentiation.
Table 6.6 shows a summary of the results of the fitted models for the sectors in Van We-
senbekestraat Zones 1 and 2. From the models considered, the SARIMA(2, 1, 2)(0, 1, 1)24
is the one with better AIC and BIC scores (the lower, the better) and higher likelihood.
Notice that the model ARIMA(1, 0, 0) with a constant trend also has a good score.
From Equation 6.6, we can see that some of the parameters are not significant. Specifi-
cally, all parameters of the regular part are non-significant, as their standard deviations
are higher than their values and, thus, the null hypothesis H0 : βi = 0 for i = 1, ..., n
cannot be rejected. Something similar happens with the candidate model for the sector
in Van Wesenbekestraat Zone 2, as can be seen in Equation 6.7. The second parameter
of the MA(2) part is non-significant.

x̂t = −0.1560(2.492)xt−1 + 0.6698(1.857)xt−2 − 0.0967(2.489)wt−1 (6.6)
− 0.8949(2.482)wt−2 − 0.9655(0.003)wt−24 + wt,

with σ2 = 0.007. The lower values in parenthesis denote the corresponding estimate of
the standard errors for each parameter. wt−n represents the white noise and xt−n the
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Difference order Van Wes. Zone 1 - Mean Van Wes. Zone 1 - Variance Van Wes. Zone 2 - Mean Van Wes. Zone 2 - Variance

No differentiation 0.4333 0.0263 0.2822 0.0212

One regular 0 0.0089 0 0.0085

Two regular 0 0.0181 0 0.018

One seasonal 0.0002 0.0296 0.001 0.0282

Two seasonal -0.0004 0.0878 -0.0003 0.0838

Regular plus seasonal 0 0.0151 0 0.0157

Two regular, one seasonal 0 0.0333 0 0.0356

One regular, two seasonal 0 0.0451 -0.0001 0.0476

Two regular, two seasonal 0 0.0988 0 0.1089

Table 6.5: Table of mean and variance values for the sectors on Van Wesenbekestraat
Street under different orders of differentiation for the regular and seasonal parts.

Sector Model Log likelihood AIC BIC

Van Wesenbekestraat Zone 1 ARIMA(1, 0, 0) 9045.552 -18085.103 -18063.725

Van Wesenbekestraat Zone 1 SARIMA(2, 1, 2)(0, 1, 1)24 9714.117 -19416.235 -19373.494

Van Wesenbekestraat Zone 2 ARIMA(1, 0, 0) 9351.470 -18696.941 -18675.562

Van Wesenbekestraat Zone 2 SARIMA(2, 1, 2)(0, 1, 1)24 9740.899 -19469.798 -19427.057

Table 6.6: Model scores for the Antwerp sectors in Van Wesenbekestraat Zone 1 and
Van Wesenbekestraat Zone 2.

past realizations of the series. n indicates the number of lags for each parameter.

x̂t = −0.1625(0.054)xt−1 + 0.6465(0.042)xt−2 − 0.0861(0.051)wt−1 (6.7)
− 0.9001(0.050)wt−2 − 0.9739(0.003)wt−24 + wt,

with σ2 = 0.0069
The mathematical expression for the model ARIMA(1, 0, 0) with trend is presented in
Equations 6.8 and 6.9 for Zones 1 and 2, respectively. Both estimated parameters (mean
and one autoregressive coefficient) are significant.

x̂t = 0.8297(0.006)xt−1 + 0.0737(0.003) + wt, (6.8)

with σ2 = 0.0082.

x̂t = 0.8(0.007)xt−1 + 0.0565(0.002) + wt, (6.9)

with σ2 = 0.0077
Considering the results obtained from both models, we propose a third one that tries to
combine the best parts of the previous models. The third model is a
SARIMA(1, 0, 0)(0, 0, 1)24 with no trend. The equation of the third model is presented
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Sector Model Log likelihood AIC BIC

Van Wesenbekestraat Zone 1 SARIMA(1, 0, 0)(0, 1, 1)24 9705.391 -19404.783 -19383.412

Van Wesenbekestraat Zone 2 SARIMA(1, 0, 0)(0, 1, 1)24 9707.417 -19408.833 -19387.463

Table 6.7: Scores of the proposed third model for the Antwerp sectors of Van Wesen-
bekestraat Zone 1 and Van Wesenbekestraat Zone 2.

in 6.10 for Zone 1 and in 6.11 for Zone 2. Both models present very similar values for
their parameters, and all of them are significant. With the obtained results, the same
model can be proposed for both sectors.

x̂t = 0.7530(0.007)xt−1 − 0.9578(0.003)wt−1 + wt, (6.10)

with σ2 = 0.007.

x̂t = 0.7530(0.007)xt−1 − 0.9604(0.003)wt−1 + wt, (6.11)

with σ2 = 0.007.
Table 6.7 presents the scores of the proposed model, which are very close to the model
SARIMA(2, 1, 2)(0, 1, 1)24.
Figure 6.8 presents the residual analysis of the model SARIMA(1, 0, 0)(0, 1, 1)24, which
is chosen for the sector in Van Wesenbekestraat Zone 1. The residual analysis shows that
the model fails to capture some of the patterns from the first lags. While the density
plot of the residuals seems to follow a normal distribution, the Q-Q plot shows that in
fact the distribution has “heavy tails”, meaning that extreme values are not captured.
The Q-statistic confirms that the residuals do not follow a normal distribution.
Figure 6.9 presents the residual analysis of the model SARIMA(1, 0, 0)(0, 1, 1)24, which
is chosen for the sector in Van Wesenbekestraat Zone 2. Similarly to Zone 1, the residual
analysis shows that the model is not able to capture all the patterns that exist in the
data. From the ACF and PACF visualizations, we can see that correlations remain in
the first twenty-four lags. The Q-Q statistic confirms that the residuals do not follow a
normal distribution.
The models have been fitted using data from December 2018 until the end of October
2019. November and December 2019 data have been used to evaluate the model with
out-of-sample data. Table 6.8 presents the RMSE of the model at different steps up to
six, using a multi-step approach. It can be seen that the accuracy of the model decays
as the forecasting steps increase.
Figure 6.10 presents the out-of-sample predictions with one-step forecasts vs. Figure
6.11, which presents the real occupancy. For Van Wesenbekestraat Zone 1, the model
provides forecasts that are more conservative, as their values fall short when forecasting
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Figure 6.8: Antwerp Van Wesenbekestraat Zone 1 residual analysis of the proposed
model. From top left to bottom right: residual plot, density plot, homoscedasticity
plot, Q-Q plot, ACF and PACF plots, and Q-statistic p-values plot.

Sector RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6

Van Wes. Zone 1 0.0778 0.0997 0.1073 0.1110 0.1130 0.1146

Van Wes. Zone 2 0.0824 0.1039 0.1130 0.1190 0.1221 0.1233

Table 6.8: Antwerp VanWesenbekestraat Zone 1 and Zone 2 ARIMA RMSE at different
forecasting horizons.
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Figure 6.9: Antwerp Van Wesenbekestraat Zone 2 residual analysis of the proposed
model. From top left to bottom right: residual plot, density plot, homoscedasticity
plot, Q-Q plot, ACF and PACF plots, and Q-statistic p-values plot.
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for low- or high-occupancy levels. For Van Wesenbekestraat Zone 2, the model seems to
be repeating the most recent input.

6.4.3 Van Schoonhovestraat sectors

This section includes the experiments corresponding to the three sectors of Antwerp
located on Van Schoonhovestraat Street. The corresponding experiments are: ARIMA_
antwerp_vanschoonhovestraat1, ARIMA_ antwerp_vanschoonhovestraat2 andARIMA_
antwerp_vanschoonhovestraat3.
Figure 6.12 presents the daily box plots of the sectors on Van Schoonhovestraat Street
for the first two weeks of March 2019. Remember from Chapter 3.5.1 that the Van
Schoonhovestraat sectors of Zones 1 and 3 behave very similarly and have a similar
number of parking places, while the sector in Zone 2 behaves erratically because of the
low number of parking places and their use. The levels of parking occupancy for Van
Schoonhovestraat Zones 1 and 3 are higher for weekends than for weekdays, similarly to
what has been observed in previous parking sectors; while for the series with one regular
differentiation, the mean becomes zero and the variance is reduced. For Zone 2, it is
difficult to identify any pattern because of the limited number of places, which is three
in total. The differentiated series pushes the mean towards zero.
In order to estimate the number of parameters of a SARIMA model, we use visualiza-
tions of the ACF and PACF functions. Figure 6.13 shows the ACF and PACF of the
data for the Van Schoonhovestraat sectors with no transformation and with one reg-
ular differentiation plus one seasonal (daily) differentiation. Similarly to the previous
parking sectors, the non-differentiated series presents an AR(1) model with trend. It
is possible to also consider the AR(2), MA(2) and SMA(1) models for the one regular
differentiation plus one seasonal differentiation model. Notice that the sectors of Zones
1 and 3 present higher autocorrelation values at the lags that coincide with a one-week
period, that is, 168 hours. Lastly, the model SARIMA(1, 0, 0)(0, 1, 1)24 is considered to
be a merge of the two models proposed and is similar to what was done with the Van
Wesenbekestraat models. The Van Schoonhovestraat Zone 2 sector presents the typical
random walk signature that consists of a long tail for the ACF and an abrupt cut-off at
the first lag of the PACF. The mathematical form of a random walk is xt = xt−1 + wt,
where xt is the actual value of the time series, xt−1 is the previous value and wt is
white noise, i.e., the stochastic component of the series. Such a process represents an
ARIMA(0, 1, 0) model. A random walk model is a special case of the ARIMA(1, 0, 0),
in which the parameter has value 1.
Table 6.9 presents the mean and variance values for the time series of the Van Schoonhoves-
traat sectors under different orders of differentiation for the one regular plus one seasonal
part. Similarly to those sectors on Van Wesenbekestraat, the minimum values of the
time series’ mean and variance are achieved with the one regular differentiation and the
one regular plus one seasonal differentiation for all three sectors.
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Figure 6.10: Antwerp Van Wesenbekestraat Zone 1 ARIMA forecasts. Blue denotes
the observed occupancy, red the occupancy forecasted by the model and green is
the confidence interval. Top presents the entire out-of-sample interval of data while
bottom presents out-of-sample predictions for two days.
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Figure 6.11: Antwerp Van Wesenbekestraat Zone 2 ARIMA forecasts. Blue denotes
the observed occupancy, red the occupancy forecasted by the model and green is
the confidence interval. Top presents the entire out-of-sample interval of data while
bottom presents out-of-sample predictions for two days.
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Figure 6.12: Box plots of the Antwerp Van Schoonhovestraat sectors. First row for
Zone 1, second row for Zone 2 and the last row for Zone 3. For each sector, the first
column shows the non-differentiated time series and the second column shows the time
series with one regular differentiation.
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Figure 6.13: Van Schoonhovestraat ACF and PACF plot for the non-differentiated
series and the one regular plus one seasonal differentiated series. From top to bottom,
the plots represent Zones 1, 2 and 3.

Difference order Van Sc. Z1 - Mean Van Sc. Z1 - Variance Van Sc. Z2 - Mean Van Sc. Z2 - Variance Van Sc. Z3 - Mean Van Sh. Z3 - Variance

No differentiation 0.5183 0.0266 0.2763 0.0717 0.5337 0.0368

One regular 0 0.0133 0.0001 0.0139 0 0.0201

Two regular 0 0.0303 0 0.0282 0 0.0465

One seasonal -0.0003 0.0428 0.0013 0.0932 0.0002 0.0627

Two seasonal -0.0007 0.1281 0.0003 0.2737 0 0.1825

Regular plus seasonal -0.0001 0.0255 0 0.0273 0 0.0378

Two regular, one seasonal 0 0.0594 0 0.055 0 0.0888

One regular, two seasonal 0 0.0763 0 0.0816 0.0002 0.1132

Two regular, two seasonal 0 0.1771 0 0.1638 0 0.2668

Table 6.9: Table of mean and variance values for the sectors on Van Schoonhovestraat
Street under different orders of differentiation for the regular and seasonal parts.
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Sector Model Log likelihood AIC BIC

Van Schoonhovestraat Zone 1 ARIMA(1, 0, 0) 5990.677 -11975.354 -11954.619

Van Schoonhovestraat Zone 1 SARIMA(2, 1, 2)(0, 1, 1)24 6051.533 -12091.067 -12049.617

Van Schoonhovestraat Zone 1 SARIMA(1, 0, 0)(0, 1, 1)24 6045.303 -12084.605 -12063.880

Van Schoonhovestraat Zone 2 ARIMA(1, 0, 0) 5519.204 -11032.408 -11011.673

Van Schoonhovestraat Zone 2 SARIMA(2, 1, 2)(0, 1, 1)24 5519.894 -11027.789 -10986.339

Van Schoonhovestraat Zone 2 SARIMA(1, 0, 0)(0, 1, 1)24 5485.387 -10964.773 -10944.048

Van Schoonhovestraat Zone 2 ARIMA(0, 1, 0) 4525 -9049 -9042

Van Schoonhovestraat Zone 3 ARIMA(1, 0, 0) 4511.671 -9017.343 -8996.608

Van Schoonhovestraat Zone 3 SARIMA(2, 1, 2)(0, 1, 1)24 4540.294 -9068.587 -9027.138

Van Schoonhovestraat Zone 3 SARIMA(1, 0, 0)(0, 1, 1)24 4544.193 -9082.387 -9061.662

Table 6.10: Score comparison of the ARIMA models for the Antwerp Van Schoonhoves-
traat Street sectors.

Table 6.10 shows a summary of the results of the fitted models for the sectors on Van
Schoonhovestraat Street. All the models considered have similar scores. Because of this
and, in following the principle of parsimony, the model with less complexity is the one
proposed, which in this case is ARIMA(1, 0, 0).
The equations of the proposed models are 6.12, 6.13 and 6.14. The Van Schoonhovestraat
Zones 1 and 3 models are very similar to the VanWesenbekestraat models, which perhaps
reflects the high cross-correlation between the time series of both models, as shown in
Chapter 3.5.1. This indicates that it is possible to use a single model for both sectors.
Notice that the random walk model scored close to the other models considered for the
sector in Zone 2.

x̂t = 0.75(0.007)xt−1 + 0.1295(0.004) + wt (6.12)

with σ2 = 0.0116. The lower values in parenthesis denote the corresponding estimates
of the standard errors of each parameter. xt−n represents the previous lags values for a
number of n lags considered.

x̂t = 0.9032(0.007)xt−1 + 0.0268(0.003) + wt (6.13)

with σ2 = 0.0132

x̂t = 0.7269(0.008)xt−1 + 0.1457(0.004) + wt (6.14)

with σ2 = 0.0173
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Sector RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6

Van Sch. Zone 1 0.1042 0.1259 0.1367 0.1423 0.1459 0.1489

Van Sch. Zone 2 0.1310 0.1727 0.1975 0.2109 0.2207 0.2271

Van Sch. Zone 3 0.1307 0.1540 0.1642 0.1710 0.1731 0.1738

Table 6.11: Antwerp Van Schoonhovestraat Zone 1, Zone 2 and Zone 3 ARIMA RMSE
at different forecasting horizons.

The residual analysis of the sector in Van Schoonhovestraat Zone 1 is presented in Figure
6.14. The residuals clearly do not follow a normal distribution, as can be seen in the Q-Q
plot. Some significant patterns are also not captured, as seen in the ACF and PACF
residual plots. The Q-statistic confirms the lack of normality for residuals at different
lags.
Figure 6.15 presents the residual analysis of the sector in Van Schoonhovestraat Zone
2. The sector’s erratic behavior and lack of patterns are once more noticeable in the
residual plots, where we can see that the residuals have high levels of correlations and
do not follow a normal distribution.
From the visualizations in Figure 6.16, it is possible to see that the model proposed
for the sector in Van Schoonhovestraat Zone 3 does a better job than the previously
considered modelsbecause the residuals are close to following a normal distribution, as
stated in the density plot, the homoscedasticity plot and the Q-Q plot. However, the
ACF and PACF of the residuals show that some seasonal correlations are not captured
well. The Ljung–Box test statistic shows that normality in the residuals is accomplished
by a larger number of lags when compared to previous Antwerp models.
The data interval for estimating the parameters of the models is from February 2019 to
October 2019; while data from November until the end of December was used for testing
the models’ goodness of fit to unseen data. 6.11 presents the RMSE of the models for
each sector at different steps up to six, using a multi-step approach. It can be seen that
the accuracy of the model decays as the forecasting steps increase.
Figures 6.17,6.18 and 6.19 presents the out-of-sample predictions with one-step forecasts
vs. the real occupancy. It is possible to see that the forecasts fall short for the highest
and lowestoccupancy values. What is more, the models’ forecasts simply replicate the
most recent observations.

6.5 Barcelona ARIMA models

6.5.1 Regular sector

This section includes the experiment that corresponds to the Regular sector of Barcelona,
namely ARIMA_ barcelona_regular.
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Figure 6.14: Antwerp Van Schoonhovestraat Zone 1 residual analysis of the proposed
model. From top left to bottom right: residual plot, density plot, homoscedasticity
plot, Q-Q plot, ACF and PACF plots, and Q-statistic p-values plot using the Ljung–
Box statistical test.
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Figure 6.15: Antwerp Van Schoonhovestraat Zone 2 residual analysis of the proposed
model. From top left to bottom right: residual plot, density plot, homoscedasticity
plot, Q-Q plot, ACF and PACF plots and Q-statistic p-values plot using the Ljung–
Box statistical test.
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Figure 6.16: Antwerp Van Schoonhovestraat Zone 3 residual analysis of the proposed
model. From top left to bottom right: residual plot, density plot, homoscedasticity
plot, Q-Q plot, ACF and PACF plots and Q-statistic p-values plot using the Ljung–
Box statistical test.
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Figure 6.17: Antwerp Van Schoonhovestraat Zone 1 ARIMA forecasts. Blue denotes
the observed occupancy, red the occupancy forecasted by the model, and green is the
confidence interval. Top shows the entire out-of-sample interval of data while bottom
shows out-of-sample predictions for two days.
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Figure 6.18: Antwerp Van Schoonhovestraat Zone 2 ARIMA forecasts. Blue denotes
the observed occupancy, red the occupancy forecasted by the model, and green is the
confidence interval. Top shows the entire out-of-sample interval of data while bottom
shows out-of-sample predictions for two days.
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Figure 6.19: Antwerp Van Schoonhovestraat Zone 3 (bottom) ARIMA forecasts. Blue
denotes the observed occupancy, red the occupancy forecasted by the model, and
green is the confidence interval. Top shows the entire out-of-sample interval of data
while bottom shows out-of-sample predictions for two days.
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Figure 6.20: Box plots of the Barcelona Regular sector for the first two weeks of March
2019. Top left shows the non-differentiated series, top right the differentiated one,
bottom left presents the seasonal differentiated (daily) and bottom right is the series
with one regular differentiation plus one seasonal differentiation.

Daily box plots for the Barcelona sector Regular (see Figure 6.20) present the behavior
of the mean and variance through the first two weeks of March 2019 and under various
differences applied to the data: non-differentiated, one regular differentiation, one sea-
sonal (daily) differentiation and one regular plus one seasonal differentiation. It can be
observed that the mean has different levels for weekdays and weekends, meaning that
perhaps the series are non-stationary. In the seasonal plots presented in Chapter 3.5.1,
this behavior was already observed. When applying one regular differentiation to the
series, the mean and variance seem to become stationary. With one seasonal differentia-
tion, the results are similar to the non-differentiated series. For the one regular plus one
seasonal differentiation, the results are similar to the one regular differentiated series.
The non-differentiated series must also be considered, as the long-term plots in Section
3.5.1 indicate that the mean is constant over the years.
Table 6.12 shows the mean and variance of the Barcelona sector under different orders
of differentiation. The minimum variance is presented when using one regular differ-
entiation and, in the case of seasonal differentiation, when using one regular plus one
seasonal.
The ACF and the PACF visualizations of the Barcelona sector presented in Figure
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Difference order Mean Variance

No differentiation 0.2954 0.0430

One regular 0 0.0063

Two regular 0 0.0092

One seasonal 0.0006 0.0283

Two seasonal -0.0002 0.0699

Regular plus seasonal 0 0.0078

Two regular, one seasonal 0 0.0150

One regular, two seasonal 0 0.0223

Two regular, two seasonal 0 0.0225

Table 6.12: Barcelona sector mean and variance when using different orders of differ-
entiation.

Model Log likelihood AIC BIC

ARIMA(2, 0, 0) 14376.726 -28745.452 -28715.979

SARIMA(2, 1, 2)(0, 1, 1)24 15682.740 -31353.480 -31309.283

Table 6.13: Barcelona regular sector ARIMA models scores comparison.

6.21 are somehow similar to those of Antwerp. The candidate models to consider are
the AR(2) for the non-differentiated series and AR(2), MA(2) and SMA(1) for the one
regular plus one seasonal differentiated series. For the other series presented, they present
a large amount of correlations that would require fitting a high number of parameters.
Because of this, they are not considered. On the one hand, the series presents multiple
seasonalities, as can be seen in the weekly seasonality at lag 168; on the other hand, lag
8 shows high value, meaning that occupancy levels change suddenly every eight hours.
Table 6.13 presents the scores of the candidate models. Of the models considered,
SARIMA(2, 1, 2)(0, 1, 1)24 is the one with the best AIC and BIC scores (the lower, the
better) and higher likelihood.
From Equation 6.15, it can be seen that all parameters are significant.

x̂t = 0.7258(0.049)xt−1 + 0.1132(0.045)xt−2 − 0.6973(0.048)wt−1 (6.15)
− 0.2872(0.047)wt−2 − 0.9523(0.002)wt−24 + wt,

with σ2 = 0.0040. Lower values in parenthesis correspond to the estimates of the
standard errors for each parameter. wt−n and xt−n represent, respectively, the white
noise values and the past series values for a number of n lags considered.
The visualizations in Figure 6.22 describe the residuals of the proposed model
SARIMA(2, 1, 2)(0, 1, 1)24. The residuals do not follow a normal distribution because
some lags have significant correlations, as seen in the ACF and PACF plots. The fact
that there are correlations in the residuals at specific lags indicates that the model is
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Figure 6.21: Barcelona ACF and PACF plots for the non-differentiated series, the
one differentiated, the seasonal differentiated and the one regular plus one seasonal
differentiated.
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RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6

0.0656 0.0929 0.1079 0.1157 0.1218 0.1277

Table 6.14: Barcelona sector regular ARIMA RMSE at different forecast steps.

unable to capture multiple seasonalities like those that arise every eight hours or the
daily ones.
The time interval of the training data is from January 2018 until the end of October
2019. The time interval for the test data is from November 2019 to the end of December
2019. A multi-step strategy is used to study the effect of the forecasts at different
time horizons. Table 6.14 presents the RMSE of the model at each of the considered
forecasting hours, from one to six.
One-step forecasts of the model proposed for Barcelona are shown in Figure 6.23. The
first visualization presents forecasts for the entire interval of the out-of-sample data.
The second visualization shows the first 48 elements of the same date interval. The
visualizations indicate that the model fails to capture the patterns on weekends, as it
predicts higher occupancy levels. In the 48-hour plot, we can see more clearly that the
forecast values are higher than the real occupancy.

6.6 Wattens ARIMA models

6.6.1 Swarco sectors

This section includes the experiments corresponding to the two sectors of Wattens:
Inside and Outside. The corresponding experiments are: ARIMA_ wattens_inside and
ARIMA_ wattens_outside.
Daily box plots for the Wattens sectors Inside and Outside are presented in Figure 6.24.
The non-differentiated series show the behavior of the parking levels throughout the
week. Here, we can distinguish normal day patterns (Monday to Thursday), Friday as
a special day with fewer working hours (check Chapter 3.5.3 for more information on
this) and, lastly, the days with minimum levels of occupancy that correspond to the
weekends. Once a regular differentiation is made on the series, the mean and variance
become lower and stationary.
Table 6.15 presents the evolution of the mean and variance under different orders of
differentiation for the time series of the Inside and Outside sectors. Both sectors coincide
in the sense that one differentiation yields lower mean and variance values for the regular
part. When considering seasonal differentiation, the mean and variance are the lowest
in the one regular plus one seasonal differentiation for both sectors.
The ACF and PACF plots of Wattens are presented in Figure 6.25. The non-differentiated
series could be modeled with an AR(2) in both sectors. For the one regular plus one sea-
sonal differentiation series, the AR(2), MA(2) and SMA(1) model is proposed for both
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Figure 6.22: Barcelona regular sector visualizations and residual tests of the proposed
model. From top left to bottom right: residual plot, density plot, homoscedasticity
plot, Q-Q plot, ACF and PACF plots and Q-statistic p-values plot.
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Figure 6.23: Barcelona ARIMA forecasts for the entire out-of-sample interval (top)
and for the first two days of the same interval (bottom). Blue denotes the observed
occupancy, red the occupancy forecasted by the model, and green is the confidence
interval of the predictions.
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Figure 6.24: Daily box plots for sectors Inside (top) and Outside (bottom) of Wattens.
The first column visualizations are for non-differentiated series and those in the second
column are from the one regular differentiation

Difference order Inside - Mean Inside - Variance Outside - Mean Outside - Variance

No differentiation 0.2490 0.0427 0.2342 0.0677

One regular 0 0.0056 0 0.0089

Two regular 0 0.0056 0 0.0089

One seasonal -0.0008 0.033 0.001 0.0467

Two seasonal 0.0005 0.0746 0.0002 0.1006

Regular plus seasonal 0 0.0049 0 0.0074

Two regular, one seasonal 0 0.0062 0 0.0099

One regular, two seasonal 0 0.0127 0 0.0192

Two regular, two seasonal 0 0.0127 0 0.0194

Table 6.15: Wattens sectors mean and variance values when using different orders of
differentiation.
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Figure 6.25: Wattens ACF and PACF plots for the sectors Inside (top) and Outside
(bottom). Left is the non-differentiated series and right is the one regular plus one
seasonal differentiated.

sectors. Similarly to what happened in other sectors, strong clues exist for multiple
seasonality, at least daily and weekly.
Table 6.16 presents the scores of the two candidate models for both sectors. Clearly, the
model SARIMA(2, 1, 2)(0, 1, 1)24 is the one with the best scores. Because of this, it is
the model proposed for the Wattens sectors.
Equation 6.16 and Equation 6.17 present the mathematical forms of the propose model
SARIMA(2, 1, 2)(0, 1, 1)24 for the Inside and Outside sectors, respectively. All the pa-
rameters are significant under the t-test. Notice that the first AR parameter of the
models is greater than one, which forces the second AR parameter to become negative
in order to preserve stationarity, as the sum of the AR parameters must be less than

Sector Model Log likelihood AIC BIC

Inside ARIMA(2, 0, 0) 12895.923 -25783.847 -25755.219

Inside SARIMA(2, 1, 2)(0, 1, 1)24 14679.551 -29347.103 -29304.177

Outside ARIMA(2, 0, 0) 10685.168 -21362.337 -21333.710

Outside SARIMA(2, 1, 2)(0, 1, 1)24 12435.992 -24859.985 -24817.060

Table 6.16: Wattens scores for the Inside and Outside sectors for the ARIMA models
considered.
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Sector RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6

Inside 0.0501 0.0825 0.1060 0.1244 0.1368 0.1465

Outside 0.0587 0.0989 0.1248 0.1436 0.1561 0.1665

Table 6.17: Wattens Inside and Outside ARIMA RMSE.

one.

x̂t = 1.2662(0.024)xt−1 − 0.3865(0.023)xt−2 − 0.9264(0.025)wt−1 (6.16)
− 0.0326(0.026)wt−2 − 0.9402(0.002)wt−24 + wt,

with σ2 = 0.0027. The lower values in parenthesis correspond to the estimates of the
standard errors for each parameter. wt−n and xt−n represent, respectively, the white
noise values and the past series values for a number of n lags considered.

x̂t = 1.2706(0.023) − 0.3694(0.022)xt−2 − 0.9020(0.024)wt−1 (6.17)
− 0.0859(0.024)wt−2 − 0.9214(0.002)wt−24 + wt,

with σ2 = 0.0042
Figure 6.26 presents visualizations for the Inside sector and determines whether the
residuals from the model have a normal distribution. The proposed model is able to
capture most of the information, as seen in the residual plot, but it fails with extreme
values. The density plot shows that the residuals do not follow a normal distribution
and, in fact, the Q-Q plot indicates that there are heavy tails in their distribution. The
ACF and the PACF show that significant correlations still exist in the data that the
model is not able to capture. Finally, the visualization of the Ljung-Box test confirms
that residuals do not follow a normal distribution, as none of the lags has a p-value over
0.05.
The plots of the residuals for the Outside sector are presented in Figure 6.27. Similarly
to what happens in the Inside sector, the model fails to capture all the patterns and,
thus, the residuals do not follow a normal distribution. Specifically, the model residuals
show correlations at lags greater than two and at seasonal lags like 24, 48, etc.
The time interval of the training data is from March 2018 until the end of March 2019.
The time interval for the test data is from April 2019 to the end of May 2019. A multi-
step strategy is used to study the effect of the forecasts at different time horizons. Table
6.17 presents the RMSE of the model at each of the considered forecasting hours, from
one to six.
Figures 6.28 and 6.29 show the one-step forecasts for the ARIMA models proposed for
the Wattens sectors. It can be observed that the models fail especially on weekends,
where no changes in the occupancy are expected but the model forecasts change. In the
two-day plot, it is possible to see that the model gives forecasts slightly below zero.
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Figure 6.26: Wattens Inside sector visualizations and residual tests of the proposed
model. From top left to bottom right: residual plot, density plot, homoscedasticity
plot, Q-Q plot, ACF and PACF plots and Q-statistic p-values plot.
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Figure 6.27: Wattens Outside sector visualizations and residual tests of the proposed
model. From top left to bottom right: residual plot, density plot, homoscedasticity
plot, Q-Q plot, ACF and PACF plots and Q-statistic p-values plot.
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Figure 6.28: Wattens ARIMA forecasts for the Inside sectors. The top presents fore-
casts for the entire out-of-sample interval while the bottom shows the first two days
of the same time interval. Blue denotes the observed occupancy, red the occupancy
forecasted by the model, and green is the confidence interval.
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Figure 6.29: Wattens ARIMA forecasts for the Outside (bottom) sectors. The top
presents forecasts for the entire out-of-sample interval while the bottom shows the
first two days of the same time interval. Blue denotes the observed occupancy, red
the occupancy forecasted by the model, and green is the confidence interval.
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6.7 Los Angeles ARIMA models

6.7.1 Standard sector

This section includes the experiment corresponding to the Standard sector in Los An-
geles, namely ARIMA_ LA_standard.
Chapter 3.5.4 shows that the Willow zone, where the sectors are located, underwent
street works in early 2019. Because of this, this section provides a comparison of the
situation prior to 2019, the situation in 2019 and the situation with all the data used
(2018 and 2019) in order to detect how an external change to the occupancy process
affects the modeling. This implies that, for some of the Los Angeles Willow sectors, the
information is presented from three different intervals of dates.
Daily box plots for the Standard sector (Figure 6.30) for the first two weeks of November
2018 show that the untransformed time series has two different patterns in which it
is easy to distinguish weekdays and weekends. Once the series is transformed using
differentiation operations, the mean seems to have a value of 0 and the variance is
reduced in the case of one regular differentiation and one regular plus one seasonal
differentiation. In the one daily differentiation (bottom left), Mondays and Saturdays
present very high variance than the other days.
Figure 6.31 presents the daily box plots for the first two weeks of July 2019. Because
there were fewer parking spots available, the occupancy levels dropped to very low values.
This has an effect on the variance, which has been greatly reduced.
Fortunately, as the works end in the zone, the levels of parking occupancy slowly return
to what they were previously. Figure 6.32 shows how the occupancy patterns at the
end of 2019 are similar to those for the year 2018. Because the levels of occupancy and
patterns are slowly returning to those prior to the works in the zone, the proposed model
is trained with all the available data; but we test the last two months of data with the
expectation that the models become adapted to changes in occupancy patterns. We do
the same for the other sectors in the zone, as some of them are affected by the works
and others are not.
Table 6.18 presents the mean and variance for each of the years and the entire interval
of data under different differentiation orders. As expected, the values of the mean and
variance are lower in 2019 than those in 2018; and, when taking into account the entire
interval of data available, the values are more or less in between. The lower levels of
variance are achieved with two regular differentiations. When using seasonal differen-
tiation, the lowest levels of variance are achieved with two regular plus one seasonal
differentiation.
The column in Figure 6.33 shows the ACF and PACF plots for the Los Angeles Standard
sector of the non-differentiated series for the years 2018, 2019 and when using all the
available data. The visualizations show nearly identical patterns, with slightly lower
values in 2019. This indicates that a model trained with all the available data will have
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Figure 6.30: Daily box plots of the Los Angeles Standard sector from the first two weeks
of November 2018 under different numbers of differentiations: no differentiation (top
left), one regular differentiation (top right), one seasonal differentiation (bottom left)
and one regular plus one seasonal differentiation (bottom right).

Difference order 2018 - Mean 2018 - Variance 2019 - Mean 2019 - Variance All - Mean All - Variance

No differentiation 0.2856 0.1145 0.1013 0.0265 0.1899 0.0773

One regular 0 0.0098 0 0.0029 0 0.0063

Two regular 0 0.0053 0 0.0027 0 0.0039

One seasonal 0.0003 0.0648 0.0003 0.0136 0.0002 0.0382

Two seasonal -0.0008 0.1276 -0.001 0.0271 -0.0005 0.0756

Regular plus seasonal 0 0.0046 0 0.0018 0 0.0032

Two regular, one seasonal 0 0.0038 0 0.0024 0 0.0031

One regular, two seasonal 0 0.0101 0 0.0044 0 0.0072

Two regular, two seasonal 0 0.0095 0 0.0064 0 0.0079

Table 6.18: Los Angeles Willow Standard sector mean and variance values when using
different orders of differentiation for the years 2018, 2019 and the whole period of
data.
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Figure 6.31: Daily box plots of the Los Angeles Standard sector from the first two
weeks of July 2019 under different numbers of differentiations: no differentiation (top
left), one regular differentiation (top right), one seasonal differentiation (bottom left)
and one regular plus one seasonal differentiation (bottom right).
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Figure 6.32: Daily box plots of the Los Angeles Standard sector from the first two
weeks of October 2019 under different numbers of differentiations: no differentiation
(top left), one regular differentiation (top right), one seasonal differentiation (bottom
left) and one regular plus one seasonal differentiation (bottom right).
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the same order as the one trained with only the 2018 data or only the 2019 data. The
second column shows the same information for the one regular differentiation series.
The visualization for the year 2019 presents discrepancies with the one for 2018, but the
visualization of both years together presents patterns similar to those of 2018. From the
non-differentiated series, it is possible to consider an AR(2) or an AR(2) with a seasonal
AR(1). However, for simplicity, the AR(2) alone is considered. Similar conclusions can
be extracted from the plot of the one regular differentiation. Notice that the one regular
differentiation presents high correlations at higher lags, which can be understood as
multiple seasonalities in the data. There is a seasonality around lag eleven. The reason
for this is given in Chapter 3.5.4 and it is namely because, on the daily basis (weekdays),
the occupancy of this sector rises at 6 am from minimum levels to maximum levels; and
then, at 18 pm, the occupancy drops from very high levels to very low levels. It is also
possible to see daily and weekly seasonality. For this series, an AR(10) can be considered
for the regular part and SAR(1) for the seasonal part.
Visualizations of the one seasonal and one regular plus one seasonal time series are pre-
sented in Figure 6.34 for the three date intervals considered. The patterns presented
in each column are more or less shared across the different time intervals. The visual-
izations of the one seasonal differentiation suggests using an AR(2), MA(10), but it is
difficult to specify the order for the seasonal part, as multiple seasonalities arise. The
one regular plus one seasonal differentiated series suggests an AR(1) and MA(2) for the
regular part, and an SMA(2) for the seasonal part.
The minimum values for the variance were achieved at two regular differentiations. Fig-
ure 6.35 presents the ACF and PACF for such series. Again, the patterns are similar for
the different time intervals considered. The series for two regular differentiations present
very high correlations in a huge number of lags, perhaps because of over-differentiation.
The two regular plus one seasonal differentiation suggests MA(2) and SMA(2) models.
After analyzing the different ACF and PACF plots, it can be concluded that using both
2018 and 2019 data to estimate the candidate models is adequate, as the patterns persist
throughout the changes in the sector during 2019. This is also assumed for the other
sectors in Los Angeles. More specifically, the data used for training the models are from
April 2018 to August 2019, and the out-of-sample data are from September 2019 until
the end of October 2019.
Table 6.19 presents the scores of the candidate models for the Los Angeles Standard
sector. The proposed model is SARIMA(1, 1, 2)(0, 1, 2)24 because it achieves the highest
scores, although the SARIMA(0, 2, 2)(0, 1, 2)24 is also a good candidate.
Equation 6.18 present the mathematical form of the proposed model
SARIMA(1, 1, 2)(0, 1, 2)24. Using the t-test, the second MA parameter is nearly not
significant, as its t-value is 2.159; thus, it is possible to simplify the model by removing
it.

x̂t = 0.4487(0.034)xt−1 + 0.1936(0.034)wt−1 − 0.0482(0.022)wt−2 (6.18)
− 0.6259(0.005)wt−24 − 0.3135(0.005)wt−48 + wt,
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Figure 6.33: Los Angeles Willow Standard sector ACF and PACF plots for the non-
differentiated (left) and one regular differentiated series (right). Top is for year 2018,
middle for year 2019 and bottom is computed using all the available data.

Model Log likelihood AIC BIC

ARIMA(2, 0, 0) 20495.470 -40982.941 -40952.832

SARIMA(10, 1, 0)(1, 0, 0)24 21735.692 -43447.384 -43358.249

SARIMA(2, 1, 10)(0, 1, 0)24 20689.075 -41352.151 -41255.613

SARIMA(1, 1, 2)(0, 1, 2)24 22758.626 -45505.251 -45460.695

SARIMA(0, 2, 2)(0, 1, 2)24 22473.901 -44937.803 -44900.673

Table 6.19: Scores from the candidate ARIMA models for the Standard sector. The
higher the log likelihood and lower the AIC/BIC, the better.
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Figure 6.34: Los Angeles Willow Standard sector ACF and PACF plots for the seasonal
differentiated (left) and one regular plus one seasonal differentiated series (right). Top
is for year 2018, middle for year 2019 and bottom is computed using all the available
data.
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Figure 6.35: ACF and PACF plots of the Los Angeles Willow Standard sector occu-
pancy time series under two regular differentiations (left) and two regular plus one
seasonal differentiation (right). From top to bottom, the visualizations use data from
different time intervals: 2018, 2019 and both.
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with σ2 = 0.0015. Lower values in parenthesis correspond to the estimates of the
standard errors for each parameter. wt−n and xt−n represent, respectively, the white
noise values and the past series values for a number of n lags considered.
The simplified version of the model is presented in Equation 6.19 and achieves -45502.861
AIC and -45465.731 BIC, slightly better than the previous model.

x̂t = 0.3812(0.008)xt−1 + 0.2634(0.009)wt−1− 0.6271(0.005)wt−24− 0.3124(0.005)wt−48 +wt,

(6.19)

with σ2 = 0.0015.
Figure 6.36 presents visualizations of the residuals for the proposed model. Similarly to
previous cities and sectors, the visualizations show that the model is not able to capture
all the patterns in the data due to complex seasonalities that violate the assumptions of
the ARIMA models. The density plot of the residuals presents a skewed and leptokurtic
distribution with a large amount of values in the left tail. This fact, which is also
noticeable in the Q-Q plot, is caused by the change in the occupancy levels throughout
the year 2019, when street works started in the zone. However, the occupancy patterns
behaved the same after the street works ended, so the same ARIMA model is still useful.
The Ljung-Box test and the ACF-PACF plot show that the model captures patterns for
the first lags but is not capable of dealing with the multiple seasonalities of the data.
In the ARIMA literature, there exist techniques to correct temporal changes in the levels
of a time series, namely outlier detection and intervention analysis. This area of research
is focused on detecting, classifying and modeling different outliers with ARIMA, which
can have a negative effect on the model. Outliers are classified as:

• Additive outlier: Represents an isolated spike (event).
• Level shift: Represents an abrupt change in the mean level of the series, which can

be seasonal (seasonal level shift).
• Transient change: Represents a spike (event) that fades slowly in time.

In the case of the Los Angeles sectors, it can be considered that the effects of the street
works on the occupancy levels of the sectors comes from a level shift outlier, as the
patterns remain at lower values. Another way to overcome this problem is through the
use of exogenous variables (SARIMAX model). A dummy variable that indicates street
works could mitigate their effects on the model. This is out of the scope of this study,
and the treatment of outliers in ARIMA modeling should be further investigated.
The model has been tested under three different scenarios characterized by different
training intervals.

1. The proposed model is trained with data from April 2018 until October 2018 and
tested on November and December 2018 data.
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Figure 6.36: Los Angeles Willow Standard sector visualizations and residual tests
of the proposed model. From top left to bottom right: residual plot, density plot,
homoscedasticity plot, Q-Q plot, ACF and PACF plots and Q-statistic p-values plot.
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Train date interval RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6

2018 0.0447 0.0878 0.1252 0.1581 0.1873 0.2131

2019 0.0382 0.0642 0.0808 0.0928 0.1020 0.1099

All 0.0396 0.0672 0.0849 0.0971 0.1064 0.1140

Table 6.20: Los Angeles Standard sector ARIMA RMSE.

2. The proposed model is trained with data from January 2019 until August 2019
and tested on data from September 2019 until the end of October 2019.

3. The proposed model is trained with data that comprises the time interval from
April 2018 to August 2019. The time interval for the test data is from September
2019 to the end of October 2019.

A multi-step strategy is used to study the effect of the forecasts at different time horizons.
Table 6.20 presents the RMSE of the model at each of the considered forecasting hours
for each scenario, from one to six.
Figure 6.37 shows the one-step forecasts of the ARIMAmodels proposed for the Standard
sector at the different time intervals considered. The visualizations for the 2018 scenario
indicate that the one-step forecasts are accurate and coincide with the values of the real
occupancy, but they fail at the weekends because the model is not able to adapt to the
change in pattern. In the 2019 scenario, the model achieves lower RMSE than when
trained and tested with 2018 data, and it is slightly lower than that of the model trained
with all the data, although there is not a huge difference. In the all-data scenario,
the effects of the occupancy level changes between 2018 and 2019 are visible, as the
forecasts of the models are way higher or lower than the true occupancy. This is because
the parameters are estimated by taking into account the 2018 and 2019 occupancy levels.
Despite using data with changes in the mean and variance, the model provides low RMSE
values. This indicates that, if the changes in the mean and variance are expected to be
temporary, training the model with changing patterns in the mean and variance levels is
a viable strategy when compared to training the model with only the most recent data.

6.7.2 Permit sector

This section includes the experiment corresponding to the Permit sector in Los Angeles,
namely ARIMA_ LA_permit.
Daily box plots for the Permit sector in Los Angeles for the first two weeks of 2018 are
presented in Figure 6.38. The non-differentiated series presents two distinct behaviours,
one for the weekdays and another for the weekends. With one regular differentiation, the
series becomes more uniform with less variance and a mean of zero, similarly to other
studied sectors. One seasonal differentiation does not achieve constant mean or constant
variance. The series after one regular plus one seasonal differentiation performs similarly
to the series with only one regular differentiation, but with some more variance.
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Figure 6.37: ARIMA forecasts from the model proposed for the Standard sector in Los
Angeles. Top visualizations belong to the 2018 scenario, middle visualizations to the
2019 scenario and the bottom visualizations to the all-data scenario. Left presents
forecasts for the entire out-of-sample interval while right is the first two days of the
same interval of time. Blue denotes the observed occupancy, red that forecasted by
the model and green is the confidence interval.
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Figure 6.38: Daily box plots of the Los Angeles Permit sector from the first two weeks
of October 2018 under different numbers of differentiations: no differentiation (top
left), one regular differentiation (top right), one seasonal differentiation (bottom left)
and one regular plus one seasonal differentiation (bottom right).
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Figure 6.39: Daily box plots of the Los Angeles Permit sector from the first two weeks
of October 2019 under different numbers of differentiations: no differentiation (top
left), one regular differentiation (top right), one seasonal differentiation (bottom left)
and one regular plus one seasonal differentiation (bottom right).

Similarly to what happened in the Standard sector in the year 2019 (see Figure 6.31),
street works in the zone affected the levels of occupancy of the sector. Daily box plots for
the first two weeks of October 2019 are presented in Figure 6.39. In the non-differentiated
series, the levels of occupancy are pushed down, thus presenting changes in their values.
It is not clear at all if the patterns from 2018 are still present.The one regular differen-
tiated series and the one regular plus one seasonal seem to have constant mean and low
levels of variance. The seasonal differentiated series shows no constant mean.
From the conclusions extracted in the Standard sector, all the available data are taken
into account in order to establish the orders of the ARIMA models, with the expectation
that the patterns for the year 2018 continue to be valid when the street works end.
Table 6.21 presents the mean and variance for the entire interval of data available for
the Permit sector. Similarly to the Standard sector, the lowest levels of variance are
accomplished when using one regular plus one seasonal differentiation and with two
regular differentiations.
Assuming, after the street works of 2019 are completed, that the parking occupancy levels
are the same as those of the year 2018, Figure 6.40 presents the ACF and PACF plots
when using the entire interval of data available. The non-differentiated series suggests
AR(2) and SAR(1) models. The one regular differentiation series presents a large number
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Difference order Mean Variance

No differentiation 0.1271 0.0364

One regular 0 0.0028

Two regular 0 0.0021

One seasonal 0 0.0163

Two seasonal -0.0005 0.0322

Regular plus seasonal 0 0.0018

Two regular, one seasonal 0 0.0025

One regular, two seasonal 0 0.0045

Two regular, two seasonal 0 0.0072

Table 6.21: Los Angeles Willow Permit sector mean and variance values when using
different orders of differentiation.

Model Log likelihood AIC BIC

SARIMA(2, 0, 0)(1, 0, 0)24 23726.514 -47443.028 -47405.888

SARIMA(1, 1, 2)(1, 0, 0)24 23341.401 -46672.802 -46635.662

SARIMA(1, 1, 1)(0, 1, 1)24 24570.411 -49132.822 -49103.118

Table 6.22: Scores from the candidate ARIMA models for the Permit sector. The
higher the log likelihood and lower the AIC/BIC, the better.

of significant correlations, which are perhaps caused by complex seasonalities; but AR(1),
MA(2) and SAR(1) can be considered. In the one seasonal differentiation series, it is
harder to suggest the order of an ARIMA model, as there are a large number of very
significant correlations. The one regular plus one seasonal differentiation suggests AR(1),
MA(1) and SMA(1). Finally, the two regular differentiation series present a large number
of significant correlations for multiple seasonalities.
Table 6.22 presents the scores of the candidate models for the Los Angeles Permit sector.
The proposed model is the SARIMA(1, 1, 1)(0, 1, 1)24, because it achieves the highest
scores.
Equation 6.20 presents the mathematical form of the model proposed
SARIMA(1, 1, 1)(0, 1, 1)24. Using the t-test, the MA parameter is not significant, so it
is possible to simplify the model by removing it.

x̂t = 0.4559(0.018)xt−1 − 0.0336(0.020)wt−1 − 0.94820.002wt−24 + wt, (6.20)

with σ2 = 0.0011. The lower values in parenthesis correspond to the estimates of the
standard errors for each parameter. wt−n and xt−n represent, respectively, the white
noise values and the past series values for a number of n lags considered.
The model without the MA parameter in the regular part is shown in Equation 6.21.
The model achieves an AIC of -49132.498 and a BIC value of -49110.220, which is similar
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Figure 6.40: Los Angeles Willow Permit sector ACF and PACF plots for all the
available data under different differentiation orders. From top left to bottom: non-
differentiated, one regular differentiation, one seasonal differentiation, one regular plus
one seasonal differentiation and two regular differentiations.
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RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6

0.0179 0.0259 0.0294 0.0322 0.0334 0.0344

Table 6.23: Los Angeles Permit sector ARIMA RMSE

to the previous model.

x̂t = 0.4285(0.005)xt−1 − 0.9481(0.002)wt−24 + wt, (6.21)

with σ2 = 0.0011.
Figure 6.41 presents visualizations of the residuals from the model proposed for the
Permit sector of Los Angeles. The model is not able to capture extreme values of the
series, especially for 2018, but it is more capable of doing so with more recent data.
Similarly to previous models, the model cannot handle multiple seasonalities, as can be
seen clearly in the ACF/PACF plot, in which the residuals present correlations around
lags eleven and twenty-four.
The training data comprises the time interval from April 2018 to August 2019. The
time interval for the test data is from September 2019 to the end of October 2019. A
multi-step strategy is used to study the effect of the forecasts at different time horizons.
Table 6.23 presents the RMSE of the model at each of the considered forecasting hours,
from one up to six. Although the models present very low error rate , it must be taken
into account that the out-of-sample data has very low variability due to the effects of
the street works on the parking occupancy.
Figure 6.42 shows the one-step forecasts for the proposed ARIMA model. In all the
out-of-sample visualizations, forecast values are slightly over and under the true values
of occupancy. In the two-day plot, it is possible to see that the model over-estimates
the peaks in the series by giving higher or lower values of occupancy in regard to the
changes. Lastly, note that the model forecasts are falling behind, as their values are a
replication of the most recent input.

6.7.3 Disabled sector

This section includes the experiment corresponding to the Disabled sector in Los Angeles,
namely ARIMA_ LA_disabled.
In Chapter 3.5.4, Section 3.65 showed that the Disabled sector has similar patterns to
the previous sectors in 2018, but in 2019 it was affected by the street works in the zone,
which greatly reduced the occupancy values. Figure 6.43 presents the daily box plots
of the Disabled sector in Los Angeles for the first two weeks of October 2018 under
different numbers of differentiations. The first thing to notice is how the occupancy
levels are different between weekdays and the weekend. The one regular differentiated
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Figure 6.41: Los Angeles Willow Permit sector visualizations and residual tests of
the proposed model. From top left to bottom right: residual plot, density plot, ho-
moscedasticity plot, Q-Q plot, ACF and PACF plots and Q-statistic p-values plot.
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Figure 6.42: ARIMA forecasts from the proposed model for sector Permit from Los
Angeles. Left presents forecasts for all the out-of-sample interval while right the first
two days of the same interval of time. Blue denotes the observed occupancy, red the
forecasted by the model and green is the confidence interval.
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Figure 6.43: Daily box plots of the Los Angeles Disabled sector from the first two
weeks of October 2018 under different numbers of differentiations: no differentiation
(top left), one regular differentiation (top right), one seasonal differentiation (bottom
left) and one regular plus one seasonal differentiation (bottom right).

series presents a constant mean around zero and a reduced variance. The series with
one seasonal differentiation has no constant variance and no constant mean. Lastly, the
series with one regular plus one seasonal differentiation presents constant mean and a
more or less constant variance.
Figure 6.44 presents daily box plots for the occupancy levels of the Disabled sector in
October 2019. The patterns presented are similar to those of the year 2018 but the
levels of occupancy have been reduced drastically. It can be assumed that, similarly to
the Standard sector (Figure 6.32), the levels of occupancy are similar to those of 2018,
as can be seen in the plot for the entire time interval in Figure 3.58.
Table 6.24 presents the mean and variance for the years 2018, 2019 and the entire interval
of data available for the Disabled sector. As shown in the daily box plots, the levels of
the mean and variance are lower in 2019 compared to 2018. When considering the entire
time interval, the mean and variance levels are between 2018 and 2019 values. When
considering the entire interval of data, the series with lower variance is the one with one
regular differentiation and the one with one regular plus one seasonal differentiation.
From the visualizations on the Standard sector (see Figure 6.33) and the time plot with
all the data (Figure 3.58), it is assumed that the patterns of occupancy are similar
to those of 2018 once the street works end. Because of this, the ACF and PACF are
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Figure 6.44: Daily box plots of the Los Angeles Disabled sector from the first two weeks
of October 2019 under different numbers of differentiation operations: no differenti-
ation (top left), one regular differentiation (top right), one seasonal differentiation
(bottom left) and one regular plus one seasonal differentiation (bottom right).

Difference order 2018-Mean 2018-Variance 2019-Mean 2019-Variance All-Mean All-Variance

No differentiation 0.2804 0.1229 0.0473 0.0196 0.1594 0.0828

One regular 0 0.0149 0 0.0023 0 0.0083

Two regular 0 0.0167 0 0.0033 0 0.0097

One seasonal 0.0003 0.0868 -0.0001 0.013 0.0001 0.0484

Two seasonal -0.001 0.2065 0.0002 0.0312 -0.0005 0.1152

Regular plus seasonal 0 0.0149 0 0.0029 0 0.0086

Two regular, one seasonal 0 0.0246 0 0.0052 0 0.0145

One regular, two seasonal 0 0.0412 0 0.0081 0 0.024

Two regular, two seasonal 0 0.0712 0 0.015 0 0.042

Table 6.24: Los Angeles Willow Disabled sector mean and variance values when using
different orders of differentiation for years 2018, 2019 and for the entire interval of
data available.
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Figure 6.45: Los Angeles Willow Disabled sector ACF and PACF plots for all the
available data under different differentiation orders. From top left to bottom right:
non-differentiated, one regular differentiation, one seasonal differentiation and one
regular plus one seasonal differentiation.

Model Log likelihood AIC BIC

ARIMA(2, 0, 0) 13225.682 -26443.365 -26413.652

SARIMA(0, 1, 1)(0, 1, 1)24 14877.417 -29748.834 -29726.556

Table 6.25: Scores from the candidate ARIMA models for the Disabled sector in Los
Angeles. The higher the log likelihood and lower the AIC/BIC, the better.

computed using the entire interval of data available in order to suggests ARIMA models
for the time series.
From the ACF and PACF plots in Figure 6.45, it is possible to suggest the following
ARIMA models. The non-differentiated series suggests an AR(2). The one regular differ-
entiation and the one seasonal differentiation series present a large number of correlated
lags, so it is difficult to suggest any model. Finally, the one regular plus one seasonal
differentiation suggests MA(1) and SMA(1).
Table 6.25 presents the scores of the candidate models for the Los Angeles Disabled
sector. Clearly SARIMA(0, 1, 1)(0, 1, 1)24 has higher values and is the model chosen to
be proposed for the series.
Equation 6.22 presents the mathematical form of the proposed model
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Model RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6

SARIMA(0, 1, 1)(0, 1, 1)24 0.0387 0.0594 0.0734 0.0827 0.0893 0.0929

Table 6.26: Los Angeles Disabled sector ARIMA RMSE

SARIMA(0, 1, 1)(0, 1, 1)24. All parameters are significant under the t-test hypothesis.

x̂t = 0.2173(0.006)wt−1 − 0.9518(0.002)wt−24 + wt, (6.22)

with σ2 = 0.0053. Lower values in parenthesis correspond to the estimates of the
standard errors for each parameter. wt−n represents the white noise values for a number
of n lags considered.
From different visualizations of the residuals (Figure 6.46), it can be seen clearly that
the residuals do not follow a normal distribution. Furthermore, the distribution has
a leptokurtic shape (heavy tails), caused in part by the change in levels of occupancy
due to external factors. Another fact that affects the model is that it is not capable of
handling multiple seasonalities, as can be seen in the ACF and PACF plots of residuals.
After the residual analysis, it is tempting to try a high order model like
SARIMA(12, 1, 12)(3, 1, 1)24. However, such a model provides an AIC of -30980.603 and
a BIC of -30765.248, which is little improvement at the cost of adding a high number of
parameters.
Figure 6.47presents the residuals for the experimental model SARIMA(12, 1, 12)(3, 1, 1)24.
Despite the AIC and BIC scores, the model is able to capture patterns at the first lags
that the previous model could not. This could indicate that methods which naturally in-
volve a high number of parameters (like Neural Networks) could easily manage multiple
seasonalities.
Table 6.26 presents the RMSE of the proposed model SARIMA(0, 1, 1)(0, 1, 1)24. As in
the other Los Angeles sectors, the training data comprises the time interval from April
2018 to August 2019. The time interval for the out-of-sample data is from September
2019 until the end of October 2019. A multi-step strategy is used to study the effect of
the forecasts at different time horizons.
Figure 6.48 shows the one-step forecasts for the ARIMA models proposed for the Dis-
abled sector in the Los Angeles Willow sector. Although the model provides acceptable
one-step-ahead forecasts, the plots show that the forecasts appear to replicate the most
recent input. Also notice that sometimes the plot provides forecasts with negative values.

6.7.4 ZipCar sector

This section includes the experiment corresponding to the ZipCar sector in Los Angeles,
namely ARIMA_ LA_zipcar.
In Chapter 3.5.4, Section 3.66 showed that the ZipCar sector was not affected by the
street works of 2019. Figure 6.49 presents the daily box plots of the ZipCar sector in
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Figure 6.46: Los Angeles Willow Disabled sector visualizations and residual tests of
the proposed model. From top left to bottom right: residual plot, density plot, ho-
moscedasticity plot, Q-Q plot, ACF and PACF plots and Q-statistic p-values plot.
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Figure 6.47: Los Angeles Willow Disabled sector visualizations and residual tests of
the experimental model with a large number of parameters. From top left to bottom
right: residual plot, density plot, homoscedasticity plot, Q-Q plot, ACF and PACF
plots and Q-statistic p-values plot.
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Figure 6.48: ARIMA forecasts from the model proposed for the Disabled sector in Los
Angeles. Top presents forecasts for the entire out-of-sample interval while bottom is
the first two days of the same interval of time. Blue denotes the observed occupancy,
red the occupancy forecasted by the model and green is the confidence interval.
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Figure 6.49: Daily box plots of the Los Angeles ZipCar sector from the first two weeks
of October 2019 under different numbers of differentiations: no differentiation (top
left), one regular differentiation (top right), one seasonal differentiation (bottom left)
and one regular plus one seasonal differentiation (bottom right).

Los Angeles under different numbers of differentiations. Similarly to other sectors with
a low number of sensors, the non-differentiated series shows chaotic behaviour. When
the series are differentiated, the mean becomes zero and constant, and the variance is
reduced and seemingly constant. When only applying a seasonal differentiation, the
mean does not become constant and the same happens with the variance. In the time
series with a regular plus seasonal differentiation, the mean seems to be constant with
a value of zero, but the variance is not.
Table 6.27 presents the mean and variance for the entire interval of data available for the
ZipCar sector. The lowest levels of variance are achieved with one regular differentiation
and one regular plus one seasonal differentiation.
Figure 6.50 presents the ACF and PACF plots when using all the available data. The
non-differentiated series suggests and AR(1). The one regular differentiation series
presents a large number of correlated lags, so, it is difficult to suggest any model. In the
case of one seasonal differentiation, similar to the one regular differentiation series, it is
difficult to suggest any model. Finally, the one regular plus one seasonal differentiation
series suggest an SMA(1).
Table 6.28 presents the scores of the candidate models for the Los Angeles ZipCar sector.
Both candidate models have similar scores, but SARIMA(0, 1, 0)(0, 1, 1)24 has slightly
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Difference order Mean Variance

No differentiation 0.1627 0.0295

One regular 0 0.005

Two regular 0 0.0091

One seasonal 0.0004 0.026

Two seasonal 0 0.0729

Regular plus seasonal 0 0.0088

Two regular, one seasonal 0 0.017

One regular, two seasonal 0 0.0265

Two regular, two seasonal 0 0.0517

Table 6.27: Los Angeles Willow ZipCar sector mean and variance values when using
different orders of differentiation.

Figure 6.50: Los Angeles Willow ZipCar sector ACF and PACF plots for all the
available data under different differentiation orders. From top left to bottom: non-
differentiated, one regular differentiation, one seasonal differentiation and one regular
plus one seasonal differentiation.
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Model Log likelihood AIC BIC

ARIMA(1, 0, 0) 15485.150 -30964.301 -30942.016

SARIMA(0, 1, 0)(0, 1, 1)24 15626.366 -31248.731 -31233.879

Table 6.28: Scores from the candidate ARIMA models for the ZipCar sector in Los
Angeles. The higher the log likelihood and lower the AIC/BIC, the better.

RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6

0.0643 0.0913 0.1056 0.1139 0.1212 0.1261

Table 6.29: Los Angeles ZipCar sector ARIMA RMSE

higher values and is the model chosen to be proposed.
Equation 6.23 is the mathematical form of the proposed model SARIMA(0, 1, 0)(0, 1, 1)24.
All parameters are significant under the t-test hypothesis.

x̂t = −0.9494(0.002)wt−1 + wt, (6.23)

with σ2 = 0.0047. Lower values in parenthesis correspond to the estimates of the
standard errors for each parameter. wt−n represents the white noise values for a number
of n lags considered.
From different visualizations of the residuals (Figure 6.51), it can be seen clearly how
residuals inherit the chaotic behaviour of the time series. This is represented by heavy
tails in the distribution, no homoscedasticity in time and a high number of significant
correlations in the ACF and PACF plots.
As in the other Los Angeles sectors, the training data comprises the time interval from
April 2018 to August 2019. The time interval for the out-of-sample data is from Septem-
ber 2019 to the end of October 2019. A multi-step strategy is used to study the effect
of the forecasts at different time horizons. Table 6.29 presents the RMSE of the model
at each of the considered forecasting hours, from one up to six. Observe how the RMSE
increases faster in the first forecasting steps than in the later ones.
Figure 6.52 shows the one-step forecasts for the ARIMA model proposed for the ZipCar
sector in Los Angeles Willow. The model fails clearly when there are no changes in the
occupancy for an interval of time, and the predictions give the sensation of displacement
or that they are replications of the most recent input.

6.8 Riyadh ARIMA models

From the analysis of data in Section 3.5.5, it was concluded that sectors in the Riyadh
city fulfill the following statements:
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Figure 6.51: Los Angeles Willow ZipCar sector visualizations and residual tests of
the proposed model. From top left to bottom right: residual plot, density plot, ho-
moscedasticity plot, Q-Q plot, ACF and PACF plots and Q-statistic p-values plot.
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Figure 6.52: ARIMA forecasts from the model proposed for the ZipCar sector in Los
Angeles. Top presents forecasts for the entire out-of-sample interval while bottom is
the first two days of the same interval of time. Blue denotes the observed occupancy,
red the occupancy forecasted by the model and green is the confidence interval.
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Figure 6.53: ACF and PACF plots of the non-differentiated series from Riyadh. From
top left to bottom right: Sector-1 to Sector-6.

• In the nearly two years of data, there have not been any major changes in the
occupancy patterns or levels.

• Nearby sectors present highly correlated data.
Moreover, close sectors behave nearly identically in terms of patterns and occupancy
level. In order to avoid repetition of explanations, this section will focus on those sectors
that differ in their ACF and PACF plots of the non-differentiated series. Figures 6.53
and 6.54 present visualizations of the ACF and PACF for all Riyadh sectors. To the
naked eye, they are very similar.
In order to evaluate the similarity between the time series realizations of the sectors, the
following methods have been used:

• Clustering of the ACF and PACF values using different algorithms: k-means and
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Figure 6.54: ACF and PACF plots for the non-differentiated series from Riyadh. From
top left to bottom right: Sector-7 to Sector-10.

hierarchical clustering (single linkage). The optimal number of clusters is measured
by the Calinski-Harabasz score.

• Clustering of the time series by computing their distance through Dynamic Time
Warping and then using different cluster algorithms: k-means and hierarchical
clustering (single linkage).

In-depth information about the clustering algorithms can be found in Bishop [2006].
Dynamic Time Warping is a dynamic programming algorithm that provides the distance
between sequences and time series, and this distance is invariant to the size and alignment
of the compared elements. In-depth information can be found in Keogh et al. [2005],
Warren Liao [2005].
Tables 6.30 show the results of the different cluster techniques when considering the
different distance/similarity matrices. The majority of the results indicate that there
are 2 different clusters that can be interpreted as being the north and the south sectors.
It is for this reason that this section focuses on presenting the ARIMA modeling for
Sector-1 and Sector-10, as those are the northernmost and southernmost sectors.

6.8.1 Northernmost and southernmost sectors

This section includes the experiment corresponding to Sector-1 and Sector-10 in Riyadh,
namely ARIMA_ riyadh_sector1 and ARIMA_ riyadh_sector10.
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Algorithm Sector-1 Sector-2 Sector-3 Sector-4 Sector-5 Sector-6 Sector-7 Sector-8 Sector-9 Sector-10 Calinski-Harabasz score

K-means clusters 1 1 1 0 0 0 0 0 0 0 13.811

Hierarchical clustering 1 1 1 0 0 0 0 0 0 0 13.811

Algorithm Sector-1 Sector-2 Sector-3 Sector-4 Sector-5 Sector-6 Sector-7 Sector-8 Sector-9 Sector-10 Calinski-Harabasz score

K-means clusters 1 1 1 0 0 0 0 0 0 0 2.135

Hierarchical clustering 1 0 1 1 0 0 0 0 0 0 2.442

Algorithm Sector-1 Sector-2 Sector-3 Sector-4 Sector-5 Sector-6 Sector-7 Sector-8 Sector-9 Sector-10 Calinski-Harabasz score

K-means clusters 1 1 1 1 1 1 0 0 0 0 2.135

Hierarchical clustering 0 0 0 0 0 1 0 0 0 0 2.442

Table 6.30: Clustering results: label assignment and scores. From top to bottom: ACF,
PACF and by distance from DTW.

Difference order Sector-1 Mean Sector-1 Variance Sector-10 Mean Sector-10 Variance

No differentiation 0.5306 0.1005 0.5727 0.085

One regular 0 0.0144 0 0.0111

Two regular 0 0.0118 0 0.0082

One seasonal 0.0005 0.0463 0.0002 0.0244

Two seasonal -0.0004 0.0996 -0.0001 0.0641

Regular plus seasonal 0 0.0063 0 0.005

Two regular, one seasonal 0 0.0071 0 0.0068

One regular, two seasonal 0 0.0149 0 0.0135

Two regular, two seasonal 0 0.0177 0 0.0191

Table 6.31: Means and variances of Riyadh sectors under different numbers of differ-
entiation operations.

Daily box plots of the first and second weeks of March 2019 for Riyadh Sector-1 are
presented in Figure 6.55 under different numbers of differentiation operations. It can
be seen that the one non-differentiated series presents two behaviours during the week,
separating weekdays and weekends. Using regular differentiation, the mean becomes
constant with value zero and the same happens for the one regular plus one seasonal
differentiation. The one seasonal differentiation suggests that the series has different
means and different variances, which depend on the days of the week.
Daily box plots of the first and second weeks of March 2019 for Riyadh Sector-10 are
presented in Figure 6.56 under different numbers of differentiation operations. It can be
seen that the one non-differentiated series presents two behaviours during the week, sep-
arating weekdays and weekends, although the levels of occupancy are higher than those
of the previously presented Sector-1. Using regular differentiation, the mean becomes
constant with value zero and the same happens for the one regular plus one seasonal
differentiation. The one seasonal differentiation suggests that the series has different
means and different variances, which depend on the days of the week.
Table 6.31 presents the variance and the mean of Sector-1 and Sector-10. For both
sectors, the variance hits minimum at one regular plus one seasonal differentiation.
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Figure 6.55: Daily box plots for Sector-1 in Riyadh. From top left to bottom right:
non-differentiation, one regular differentiation, one seasonal differentiation and one
regular plus one seasonal differentiation.
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Figure 6.56: Daily box plots for Sector-10 in Riyadh. From top left to bottom right:
non-differentiation, one regular differentiation, one seasonal differentiation and one
regular plus one seasonal differentiation.
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Figure 6.57: ACF and PACF visualizations for Riyadh Sector-1 under different numbers
of differentiations.

From the information gathered in the above visualizations and tables, together with the
ACF and PACF plots presented in Figures 6.57 and 6.58, the following ARIMA models
can be suggested:

• SARIMA(2, 0, 0)(1, 0, 0)24 for both non-differentiated series.
• SARIMA(1, 1, 1)(0, 1, 2)24 for Sector-1 with one regular plus one seasonal differ-

entiated series.
• SARIMA(1, 1, 1)(1, 1, 1)8 for Sector-1 with the one regular plus one seasonal dif-

ferentiation series. The idea of this model is to capture multiple seasonalities that
arise around eight and, if doing this, to also check whether it captures the daily
seasonality, as twenty-four is multiple of eight.

• SARIMA(1, 1, 1)(1, 1, 1)24 for Sector-10 with one regular plus one seasonal differ-
entiated series.

• SARIMA(12, 1, 12)(0, 1, 1)24 for Sector-10 with the one regular plus one seasonal
differentiated series. The idea behind this proposal is to capture all those first
lags that are significant in the correlations and compare them with a more simple
model.

Table 6.32 presents the results from the candidate models for both sectors. For Sector-1,
the best model is SARIMA(1, 1, 1)(0, 1, 2)24. The score for the candidate model with
eight seasonalities falls far behind the other two candidate models; thus, it is not a good
candidate. For Sector-10, the model with the highest score is SARIMA(12, 1, 12)(0, 1, 1)24,
but it has a high number of parameters that are non-significant under the t-test. More-
over, its score is not greater than the more simple model SARIMA(1, 1, 1)(1, 1, 1)24.
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Figure 6.58: ACF and PACF visualizations for Riyadh Sector-10 under different num-
bers of differentiations.

Given these facts, and following the principle of parsimony, the simpler model is chosen
to be proposed.
Equation 6.24 is for the model SARIMA(1, 1, 1)(0, 1, 2)24 and Equation 6.25 is for the
model SARIMA(1, 1, 1)(1, 1, 1)24.

x̂t = 0.1422(0.019)xt−1− 0.3747(0.020)wt−1− 0.5278(0.007)wt−24− 0.3379(0.008)wt−48 +wt,

(6.24)

with σ2 = 0.0036. Lower values in parenthesis correspond to the estimates of the
standard errors for each parameter. wt−n and xt−n represent, respectively, the white
noise values and the past series values for a number of n lags considered.

x̂t = 0.0564(0.029)xt−1−0.3337(0.029)wt−1−0.1792(0.009)xt−24−0.9022(0.004)wt−24+wt, (6.25)

with σ2 = 0.0029.
Because the first lag of the proposed Sector-10 model is non-significant under the t-test,
the proposed model becomes SARIMA(0, 1, 1)(1, 1, 1)24, with the equation presented
in Equation 6.26. This model has an AIC of -26128.366 and a BIC score of -26100.066,
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Model Log likelihood AIC BIC

SARIMA(2, 0, 0)(1, 0, 0)24 11654.363 -23298.725 -23263.336

SARIMA(1, 1, 1)(0, 1, 2)24 12221.376 -24432.752 -24397.376

SARIMA(1, 1, 1)(1, 1, 1)8 8747.727 -17485.454 -17450.070

Model Log likelihood AIC BIC

SARIMA(2, 0, 0)(1, 0, 0)24 12382.249 -24754.497 -24719.108

SARIMA(1, 1, 1)(1, 1, 1)24 13070.469 -26130.938 -26095.563

SARIMA(12, 1, 12)(0, 1, 1)24 13530.561 -27009.121 -26825.169

Table 6.32: ARIMA candidate models for Sector-1 and Sector-10 Riyadh. Top table is
Sector-1 and bottom is Sector-10.

RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6

0.05216 0.0955 0.1289 0.1564 0.1793 0.1999

Table 6.33: Riyadh Sector-1 ARIMA RMSE

which are slightly better than the previous model.

x̂t = 0.3808(0.009)wt−1 + 0.1801(0.009)xt−24 − 0.9027(0.004)wt−24 + wt, (6.26)

with σ2 = 0.0029.
In order to test the hypothesis of the ARIMA models, visualizations of the residuals for
the model proposed for Sector-1 are presented in Figure 6.59. Similarly to models from
other sectors, the model captures part of the patterns in the data but not all of them.
Specifically, it cannot deal with those patterns linked to seasonalities that have not been
explicitly modeled, such as those that occur around lag nine.
In order to compare the model proposed for Sector-1 with the discarded model
SARIMA(1, 1, 1)(1, 1, 1)8, Figure 6.60 presents the residuals of the model. The most
noticeable difference is that, although this model more or less handles the first lags, it
fails with the daily seasonalities.
The training data for creating the proposed model SARIMA(1, 1, 1)(0, 1, 2)24 comprises
the interval from September 2018 until August 2019. Out-of-sample data for testing
purposes comprises the interval from September 2019 until the end of October 2019.
Table 6.33 presents the RMSE of the model at each of the considered forecasting hours,
from one up to six.
Figure 6.61 shows the one-step forecasts for the ARIMA model proposed for Sector-1 in
Riyadh. The model accurately follows the changes in occupancy throughout the days
but sometimes over-estimates and under-estimates the peaks.
Visualizations of the residuals for the candidate model SARIMA(0, 1, 1)(1, 1, 1)24 for
Sector-10 are presented in Figure 6.62. The model captures the patterns for the first
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Figure 6.59: Riyadh Sector-1 visualizations and residual tests of the proposed model.
From top left to bottom right: residual plot, density plot, homoscedasticity plot, Q-Q
plot, ACF and PACF plots and Q-statistic p-values plot.
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Figure 6.60: Riyadh Sector-1 visualizations and residual tests of the discarded model
with seasonality eight. From top left to bottom right: residual plot, density plot,
homoscedasticity plot, Q-Q plot, ACF and PACF plots and Q-statistic p-values plot.
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Figure 6.61: ARIMA forecasts from the model proposed for Sector-1 from Riyadh.
Top presents forecasts for the entire out-of-sample interval while bottom is the first
two days of the same interval of time. Blue denotes the observed occupancy, red the
occupancy forecasted by the model and green is the confidence interval.
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RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6

0.05 0.0851 0.1117 0.1318 0.1458 0.1553

Table 6.34: Riyadh Sector-10 ARIMA RMSE

lags and the daily seasonality, but it is not capable of dealing with those seasonalities
that have not been taken into account explicitly, such as the one that arises every five
lags. In order to deal with such issues, it is possible to use intervention analysis methods
and exogenous variables. Another way could be to use models that have less constraints
on using a high number of parameters.
The training data for creating the models comprises the interval from September 2018
until August 2019. Out-of-sample data for testing purposes comprises the interval from
September 2019 until the end of October 2019. Table 6.34 presents the RMSE of the
model at each of the considered forecasting hours, from one up to six.
Visualizations in Figure 6.63 present the forecasts of the model for Sector-10 in Riyadh.
Similarly to the forecast visualizations of Sector-1, the forecast values are as expected,
although they fall at the peaks due to their overestimating or underestimating the ex-
pected values.

6.9 Summary of the results and conclusions

By means of the different experiments presented throughout this chapter, the following
has been observed:

• All sectors present a general pattern in which the most influential past observations
are the recent ones and the one that coincides with daily seasonality.

• One seasonal plus one regular differentiation is the transformation that most sec-
tors need in order to reduce the constant mean to zero and obtain the minimal
variance value.

• The majority of the sectors presents a common modeling pattern for the season-
ality, that is, SARIMA(·, 1, ·)(0, 1, 1)24. One common regular pattern is
ARIMA(2, 1, 2), but it depends completely on the sector characteristics.

• The model ARIMA(1, 0, 0) with trend offers good results in most of the sectors.
• When sectors are close in terms of physical distance and have high cross-correlation

values, as in the cases of ARIMA_ antwerp_vanwesenbekestraat and ARIMA_
antwerp_vanwesenbekestraat2, a single model could be used because the patterns
are nearly identically, as well as the occupation values.

• Most of the sectors present multiple seasonalities that cannot be modeled using
ARIMA, as only one seasonal component can be considered.

279



6.9 Summary of the results and conclusions Computational experiments – ARIMA

Figure 6.62: Riyadh Sector-10 visualizations and residual tests of the proposed model.
From top left to bottom right: residual plot, density plot, homoscedasticity plot, Q-Q
plot, ACF and PACF plots and Q-statistic p-values plot.
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Figure 6.63: ARIMA forecasts from the model proposed for Sector-10 from Riyadh.
Top presents forecasts for the entire out-of-sample interval while bottom is the first
two days of the same interval of time. Blue denotes the observed occupancy, red the
occupancy forecasted by the model and green is the confidence interval.
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• High order models suggested by ACF and PACF plots do not have higher scores
than simpler models.

• Any of the proposed models do not achieve a normal distribution in their residuals.
The reasons for this are specific to each sector, but the most common one is that
multiple-seasonalities are present in the data.

• Although the normality conditions are not satisfied, the models provide accurate
one-step forecasts when using out-of-sample data.

• Temporary changes in the mean and variance have an important negative effect on
the forecasts and the models need to be retrained with new data. If the patterns
continue to be the same, fitting the models with all the available data has the effect
of making it adaptable to the old and new occupancy values. This has the benefit
of not needing to retrain the models when the temporary changes have stopped.

• Sectors with a high number of sensors that are interconnected in the same area
present very similar patterns and values, as in the case of the Riyadh scenario. For
scenarios such as this, it is useful to cluster the sectors and propose a model for
each cluster, and this will be used for all the sectors belonging to that cluster.

Moreover, specific observations for some of the experiments are:
• ARIMA_ antwerp_vanwesenbekestraat andARIMA_ antwerp_vanwesenbekestraat2

presented models with very similar values in their estimated parameters. This in-
dicates that it is possible to use a single model. The same happened with the mod-
els from the experiments ARIMA_ antwerp_vanschoonhovestraat1 and ARIMA_
antwerp_vanschoonhovestraat3 and ARIMA_ wattens_inside and ARIMA_ wat-
tens_outside.

• Random walks are identified in those sectors with low numbers of parking spots, as
observed in the experiments ARIMA_ antwerp_vanschoonhovestraat2 andARIMA_
LA_zipcar.

• The experiment ARIMA_ barcelona_regular highlighted that SARIMA models
cannot handle multiple seasonalities like those that arise in parking sectors.

• Temporal changes in the mean and variance can be overcome if the model is
trained with all the available data, as in the case of the experiments ARIMA_
LA_standard, ARIMA_ LA_permit and ARIMA_ LA_disabled.

• When sectors are interconnected with each other and have a high number of
parking spots, it is possible to group them in clusters and use models for one
of the sectors in each cluster, as has been observed in the experiment ARIMA_
riyadh_sector1.

Table 6.35 presents a summary of the results obtained from each of the experiments.
The order is provided for the proposed ARIMA model, as well as the RMSE obtained
in the test data with different forecasting horizons.
Conclusions that can be extracted from the modeling process with ARIMA are:
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Experiment name ARIMA model RMSE (1 to 6 hours)

ARIMA_antwerp_pelikaanstraat SARIMA(0, 1, 2)(0, 1, 1)24 0.1033 0.1360 0.1562 0.1737 0.1881 0.1994

ARIMA_antwerp_vanwesenbekestraat SARIMA(1, 0, 0)(0, 1, 1)24 0.0778 0.0997 0.1073 0.1110 0.1130 0.1146

ARIMA_antwerp_vanwesenbekestraat2 SARIMA(1, 0, 0)(0, 1, 1)24 0.0824 0.1039 0.1130 0.1190 0.1221 0.1233

ARIMA_antwerp_vanschoonhovestraat1 ARIMA(1, 0, 0) 0.1042 0.1259 0.1367 0.1423 0.1459 0.1489

ARIMA_antwerp_vanschoonhovestraat2 ARIMA(1, 0, 0) 0.1310 0.1727 0.1975 0.2109 0.2207 0.2271

ARIMA_antwerp_vanschoonhovestraat3 ARIMA(1, 0, 0) 0.1307 0.1540 0.1642 0.1710 0.1731 0.1738

ARIMA_barcelona_regular SARIMA(2, 1, 2)(0, 1, 1)24 0.0656 0.0929 0.1079 0.1157 0.1218 0.1277

ARIMA_wattens_inside SARIMA(2, 1, 2)(0, 1, 1)24 0.0501 0.0825 0.1060 0.1244 0.1368 0.1465

ARIMA_wattents_outside SARIMA(2, 1, 2)(0, 1, 1)24 0.0587 0.0989 0.1248 0.1436 0.1561 0.1665

ARIMA_LA_standard SARIMA(1, 1, 2)(0, 1, 2)24 0.0396 0.0672 0.0849 0.0971 0.1064 0.1140

ARIMA_LA_permit SARIMA(1, 1, 1)(0, 1, 1)24 0.0179 0.0259 0.0294 0.0322 0.0334 0.0344

ARIMA_LA_disabled SARIMA(0, 1, 1)(0, 1, 1)24 0.0387 0.0594 0.0734 0.0827 0.0893 0.0929

ARIMA_LA_zipcar SARIMA(0, 1, 0)(0, 1, 1)24 0.0643 0.0913 0.1056 0.1139 0.1212 0.1261

ARIMA_riyadh_sector1 SARIMA(1, 1, 1)(0, 1, 2)24 0.05216 0.0955 0.1289 0.1564 0.1793 0.1999

ARIMA_riyadh_sector10 SARIMA(0, 1, 1)(1, 1, 1)24 0.05 0.0851 0.1117 0.1318 0.1458 0.1553

Table 6.35: Experiments results for ARIMA.

• A daily weighted moving average is present in nearly all the sectors, so parking
occupancy values are in part affected by the most recent occupation realizations
and the daily mean occupancy. This has a negative effect when the time series real-
izations have two very different patterns, such as weekdays and weekends, because
the daily seasonality stops having an effect on the forecasts for the weekends.

• Sectors that are close in physical distance and with high cross-correlation values
can be modeled with a single model because the patterns are nearly identically,
as well as the occupation values. It would be of interest to further investigate the
conditions under which this observation is valid, as sector distance and place (type
and quantity) clearly play a role in this.

• Techniques like outlier detection and intervention analysis can further enhance the
capabilities of the models. What is more, the use of exogenous variables could be
of great interest, especially in the case of the Los Angeles scenario.

• Multiple seasonalities and a high number of correlations are not treated well with
the ARIMA approach, but other methods like NN can provide natural ways to
deal with these issues when facing these types of characteristics in the data.

• It is preferable to train models with all the available data rather than with only
the most recent data.

• Although their residual distributions are not Gaussian, one-step forecasts are ac-
curate.

• It is possible that the large sample size (8064 observations for a year of data) has
a negative effect on the models, which is reflected in their residuals. This could be
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investigated by using adaptive models.
• Sectors with low numbers of parking spots present a random walk signature. It

would be of interest to investigate the conditions that cause the sectors to change
from random walk to a more complex process.
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7 Computational experiments - Neural
Networks

This chapter presents the characterization of the sectors presented in Chapter 3, on
which we used Neural Network (NN) methods. Similarly to Chapter 6, the goal is to
provide hourly forecasts of the parking occupancy of the different sectors using past
occupancy values. Similarly also to the previous chapter, a study of the accuracy at
different forecasting horizons is made between the obtained results from each of the NN
methods considered.
The organization of the chapter is as follows. First, in order to provide structure and
context, we present the experimental design used and the characteristics of each of the
scenarios. Next, we introduce the validation framework used to obtain and compare
the models. Following this, we present the structure applied to the data for making it
appropriate for the NN methodologies. After, we present a set of experiments performed
with the goal of finding the level of signifance of the hyperparameters, quantify its ef-
fects when training different NN models with the data of our problem and reduce the
computational load when performing the hyperparameters tuning. Then, the charac-
terization of each of the sectors using different NN methods is presented together with
their results at different forecasting horizons. Finally, a summary of the important facts
and observations that emerged during the experiments are commented as the concluding
remarks for the chapter.

7.1 Design of experiments

An experiment is considered to be the modeling process for each sector in each city using
a specific NN method. The NN methods considered are:

• Multilayer perceptron (MLP).
• The recurrent neural networks LSTM and GRU.

For each experiment, the outcome will be the best model from each methodology within
the validation framework, with comments about facts that emerged during the execution
and the RMSE values of the best models throughout the different forecasting steps. Table
7.1 shows the experiments with their names and comments about the scenarios (cities
and sectors).
Questions that arise from the comments on the experiments are:
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City Sector Experiment name Comments

Antwerp

Pelikaanstraat

MLP_endogenous_antwerp_pelikaanstraat

Sectors present different sizes, usage and locations.

LSTM_endogenous_antwerp_pelikaanstraat

GRU_endogenous_antwerp_pelikaanstraat

Van Wesenbekestraat

MLP_endogenous_antwerp_vanwesenbekestraat

LSTM_endogenous_antwerp_vanwesenbekestraat

GRU_endogenous_antwerp_vanwesenbekestraat

Van Wesenbekestraat Zone 2

MLP_endogenous_antwerp_vanwesenbekestraat2

LSTM_endogenous_antwerp_vanwesenbekestraat2

GRU_endogenous_antwerp_vanwesenbekestraat2

Van Schoonhovestraat Zone 1

MLP_endogenous_antwerp_vanchoonhovestraat1

LSTM_endogenous_antwerp_vanchoonhovestraat1

GRU_endogenous_antwerp_vanchoonhovestraat1

Van Schoonhovestraat Zone 2

MLP_endogenous_antwerp_vanchoonhovestraat2

LSTM_endogenous_antwerp_vanchoonhovestraat2

GRU_endogenous_antwerp_vanchoonhovestraat3

Van Schoonhovestraat Zone 3

MLP_endogenous_antwerp_vanchoonhovestraat3

LSTM_endogenous_antwerp_vanchoonhovestraat3

GRU_endogenous_antwerp_vanchoonhovestraat3

Barcelona Regular

MLP_endogenous_barcelona_regular

At least two seasonalities: eight hours and daily.LSTM_endogenous_barcelona_regular

GRU_endogenous_barcelona_regular

Wattens

Inside

MLP_endogenous_wattens_inside

Both sectors belong to the same zone and have the same usage.

LSTM_endogenous_wattens_inside

GRU_endogenous_wattens_inside

Outside

MLP_endogenous_wattens_outside

LSTM_endogenous_wattens_outside

GRU_endogenous_wattens_outside

Los Angeles

Standard

MLP_endogenous_LA_standard

2018 and 2019 have different occupancy values because of street works.

LSTM_endogenous_LA_standard

GRU_endogenous_LA_standard

Permit

MLP_endogenous_LA_permit

LSTM_endogenous_LA_permit

GRU_endogenous_LA_permit

Disabled

MLP_endogenous_LA_disabled

LSTM_endogenous_LA_disabled

GRU_endogenous_LA_disabled

ZipCar

MLP_endogenous_LA_zipcar

LSTM_endogenous_LA_zipcar

GRU_endogenous_LA_zipcar

Riyadh

Sector-1

MLP_endogenous_riyadh_sector1

All sectors are interconnected and present high cross correlation values.

LSTM_endogenous_riyadh_sector1

GRU_endogenous_riyadh_sector1

Sector-10

MLP_endogenous_riyadh_sector10

LSTM_endogenous_riyadh_sector10

GRU_endogenous_riyadh_sector10

Table 7.1: Table of experiments for NN.
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• How different are the sector models based on their idiosyncrasies?
• How different are the sector models based on the NN methods’ idiosyncrasies?
• Is there a configuration of hyperparameters that provides better results for the

parking occupancy time series?
• Is it possible for an NN model to handle multiple seasonalities?
• Do nearby sectors share the same model?
• Can NN models overcome temporal changes?
• Is a model really necessary for each sector?
• Which of the NN methods achieved better results overall?

7.2 Validation framework

7.2.1 Data subsets

In order to validate the models, data is split into three subsets called the training,
validation and test sets. A common procedure is to use 80% of the data for training, the
next 10% of the data for validation and the rest for testing, as presented in Figure 7.1.
Because the data consists of time series while the data indices give the context of time
to the order of the data, a more natural split has been used, namely by making sure that
the end and start of a subset coincides with the end and start of consecutive days. So, if
the training set ends at 11/09/2019 23:00, then the first data point of the validation set
is the one corresponding to 12/09/2019 00:00. The objective of this partition is, first,
to use the training and validation subsets by employing the training fold for computing
the parameters of the model and, second, to validate the computed model with the
validation fold. Because a large number of models will be created with each one having
different hyperparameter values, it is possible that the values of the hyperparameters
are influenced by the validation dataset. In order to detect if the candidate model has
been specialized towards a good score in the validation set, it is then used with the test
set, where it is expected to provide a good score – assuming that the data distributions
are the same for the three subsets. The score of the candidate model in the test set is
the one used to evaluate and compare it with other models.

7.2.2 Hyperparameter values

For the creation of those models where a high number of hyperparameters are involved
(such as with NN methods), one common practice in the literature is to use a random
search strategy, as proposed in the work by Bergstra and Bengio [2012].
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Figure 7.1: Data partition used in this work in order to create and evaluate the models
using NN methods.

A random search consists of randomly taking values for the different hyperparameters
for N iterations. In the long-run term (N approaching infinity), the best possible com-
bination of the hyperparameters will be found. Luckily, it is not necessary to wait for
infinity because, with N = 60, there is a 95% probability of finding a good combination
of the hyperparameters. In fact, it falls within 5% of the optimal solutions. This can
be explained with the following reasoning. If we have an interval of 5%, each random
draw has a 5% chance of being within our interval; thus, the probability of missing from
n draws is (1 − 0.05)n. So, in order to fall within the interval, the operation becomes
(1−(1−0.05)n. Now, to figure out the number of draws needed to have a 95% probability
of success, we need to solve the inequation 7.1, whose solution is n ≥ 60.

1− (1− 0.05)n > 0.95 (7.1)

where n is the number of random draws needed.
What this means is that, for each of the considered experiments, there will be at least n
models trained for each of the NN methodologies using random hyperparameter values.
The best model in the validation test is the one chosen to be the candidate model. For
those methods with a small number of hyperparameters (or none), we consider a grid
search that consists of trying different values for one of the hyperparameters while fixing
the values of the others. The possible range of values of each hyperparameter is defined
individually for each of the NN methods, because of their idiosyncrasies.
This research proposes a pseudo-random search strategy. Thus, the values considered
for each hyperparameter are guided by other research works, common sense and a series
of individual experiments that provided intuition about the best value for a considered
hyperparameter for parking occupancy data. These individual experiments are presented
in Section 7.4, and they consider the following hyperparameters to be calibrated:

• The optimizers SGD with momentum, RMSProp and Adam, all at different learn-
ing rates.

• The model capacity: number of layers and number of neurons per layer.
• The normalization in RNN.
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For all these experiments, we have considered the same framework, which consists of
fixing the values of the other hyperparameters and changing only the hyperparameters
that are being calibrated. The data that is used comes from those sectors with the largest
number of parking places for each of the cities (for example, the Standard sector is the
one considered in the Los Angeles scenario). The intuition gathered from the outcomes
of these experiments will allow fixing the values for some of the hyperparameters and
reducing the search space for the random search.
Then, for the random search, the hyperparameters considered are constrained to the
NN method. The reasons for this are, one, because some of the hyperparameters are
exclusive to the method considered (for example, recurrent neural networks can make
use of a dropout technique named “recurrent dropout”, which is applied to their hidden
state) and, two, because the considered range of values for a hyperparameter can be
different from one method to another.
Unless otherwise specified, the considered values for the hyperparameters are:

• A power of two value for the number of neurons in the hidden layers that are
constrained by the range provided in the calibration procedure.

• A maximum number of hidden layers in order to avoid exploding/vanishing gradi-
ent problems, which are also constrained by the range provided in the calibration
procedure.

• Linear, sigmoid and ReLu as possible activation functions.
• Different batch sizes have been considered because, first, each one depends on the

problem at hand and, second, it is hard to provide reasons for why smaller batch
sizes for some data delivers better results than larger batch sizes, and vice versa.
Those sizes are 32, 64, 128, 256 and 672.

• For those other hyperparameters that are not mentioned (for example, the initial
bias value), the default value of the programming library is used because those are
set as the most commonly used values in the literature.

7.2.3 Model choice

Once we have obtained a combination of hyperparameters that result in good candidate
models, all data from the training and validation sets are used to train the candidate
model and then they are tested with the test set. This will be done at least M times,
and the scores obtained will be averaged for each of the times the model has been
recreated. This is done in order to overcome the stochasticity presented in the methods
considered, as the final results can be affected by some of their inner mechanisms (random
initialization of the weights, use of first-order methods for optimization that converge to
local optima, etc.).
The loss function used to train the models is the mean squared error (MSE) that is
presented in Equation 7.2 (notice that is the same as the L2 distance of Euclidean
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spaces and presented at 5.37). The root mean squared error (6.1) function has been
used as the models’ goodness-of-fit metric to the unseen data, and it also allows us to
compare each model’s errors with either other models built from the same methodology
or from another methodology (for example ARIMA).

MSE(y, ŷ) = n−1
n∑
i=1

(yi − ŷi)2 (7.2)

where n ∈ N is the number of samples in the current batch, yi is the outcome of the
sample i and ŷi is the predicted outcome of the model when using xi as input.
The number of trained models in the random search strategy is 100, and the number of
test trials is M = 20. The number of epochs is 400, and an early stop strategy has been
used to save computation and time for those models that diverge in the early steps of
the training.

7.3 Data structure

All the data available from the sectors of each of the scenarios have been organized in
a tensor X of dimensions (batchSize, 24, 1), where batch size is a hyperparameter of the
model. The decision to create sequences of 24 consecutive elements comes from the
ACF/PACF and the visualization of the frequency domain (see Chapter 3 for detailed
information). The last dimension (features) is one, because only the endogenous variable
is considered. This tensor is used as the set of independent variables or predictors. Then,
we create a matrix Y of dimensions (batchSize, n) in which each of the rows (sequences)
represents the real values of the following occupancies/hour for each of the sequences in
the tensor X. These sequences are used to train the model in a supervised framework
and to evaluate the validation and test sets. An example of the organization of the data
set can be seen in Table 7.2
The decision to organize the ground truth as a matrix of dimensions (batchSize, n) is
because NN outputs can be vectors. Each element of the output vector of the model is

Predictors Response
occupancy
hour t−6

occupancy
hour t−5

occupancy
hour t−4

occupancy
hour t−3

occupancy
hour t−2

occupancy
hour t−1

occupancy
hour t

occupancy
hour t+1

occupancy
hour t+2

occupancy
hour t+3

occupancy
hour t+4

0.1 0.2 0.4 0.3 0 0.3 0.5 0.7 0.8 0.7 0.9

0.2 0.4 0.3 0 0.3 0.5 0.7 0.8 0.7 0.9 0.8

0.4 0.3 0 0.3 0.5 0.7 0.8 0.7 0.9 0.8 0.8

0.3 0 0.3 0.5 0.7 0.8 0.7 0.9 0.8 0.8 1

0 0.3 0.5 0.7 0.8 0.7 0.9 0.8 0.8 1 1

Table 7.2: Data set organization example. In this example, the dimensions of the tensor
X are (5, 7, 1). On the other hand, the matrix Y has dimensions (5, 4). Notice that
consecutive rows represents moving the values to the left (taking out the first value
from X and moving the first element of Y towards the last element of its corresponding
X), as a representation of the flow of time.
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linked to a neuron in the output layer, so all the NN methods used have an output layer
of six neurons. What is intended with this strategy is to make the models learn the
patterns so that they can output the next six forecasting steps and provide them all at
once. This technique is not possible in other models like ARIMA, in which a multi-step
strategy is needed in order to obtain predictions for consecutive time steps.
Because of this strategy, the RMSE of the NN models can be computed for the whole
matrix Y , although the RMSE for each step is also provided for the candidate model in
order to be able to compare it with models from ARIMA.

7.3.1 A note on overlapping windows

The major point that differentiates the MLP method compared to recurrent ones is that
MLP requires a fixed length for the time window while recurrent ones do not, as they
are iteratively exposed to data at each time step. Moreover, recurrent methods make
use of the hidden state and, theoretically, this is the key element that allows decoupling
the model whose length of a time window includes past realizations, as the hidden state
is responsible for learning the patterns of the series. Despite this, if the dependencies
between two realizations of a time series are far apart, in practice the model would not
learn them. In order to overcome this, it is possible to use a stateful recurrent model.
In a stateful RNN model, the hidden state is preserved across batches of data, meaning
that the hidden state of the last step of the last batch is used as the starting hidden state
for the first element of the next batch. Although this sounds good, it must be taken into
account that backpropagation over time does not allow backpropagating the gradients
further from the current batch; thus, if the batch does not contain useful information,
the hidden state will reflect this and the model will act in the same way as a stateless
one.
In the stateful context, the strategy of modeling the data as sequences using an overlap-
ping window is no longer needed because the last sample from a batch must be continued
by the first sample of the next batch. This reduces the amount of data available when
compared with the strategy of overlapping windows because, for time series of size T
with a window of size w, this provides T − 1 individual sequences while the strategy
needed for the stateful model provides T/w sequences. This becomes a handicap when
modeling time series with coarse granularity in time, as the number of samples becomes
scarce and would not be enough to train an NN model. Another issue is that time series
data from real world processes are subject to changes in time, which, when added to the
scarcity, also discourages the use of a stateful model. Both reasons mentioned here also
occur in the problem studied in this work, as one or two years of hourly parking occu-
pancy data (depending on the sector) become between 8760 to 17520 samples. In the
case of two years of data using an overlapping window of size 24, we get 17519 samples;
while for a stateful model we get 730 samples. Moreover, if after the first year of data
the distribution parameters (mean and standard deviation) change like they do in Los
Angeles scenario, the risk of not being able to successfully train an NN model increases.
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7.4 Hyperparameter calibration

This section presents the experiments conducted to constrain the values of some of the
hyperparameters used in the random search. Unless otherwise specified, the baseline
configuration used is:

• 512 neurons.
• One hidden layer.
• No dropout.
• ReLu activation function.
• 256 as batch size.
• The He normal as weight initializer.

7.4.1 Optimizers

The goal of this experiment is to compare the behaviour of the optimizers SGD with
momentum, Adam and RMSProp for each proposed method. Specifically, it is of interest
to observe the evolution of the loss (mean squared error) and the RMSE for the validation
dataset at different learning rates for each of the optimizers.

7.4.1.1 MLP

Figure 7.2 presents the RMSE curve of the validation set for the Antwerp Pelikaanstraat
scenario. It can be observed that, at low learning rate values, the RMSE of the trained
models are unstable and provide high error values. At around 10−4, the RMSE becomes
stable for the Adam and RMSProp models. For learning rates of around 10−1, the SGD
models start to diverge (no representation in the visualization, as the RMSE becomes
positive infinity due to exploding gradients); the RMSE of the Adam models becomes
unstable; and the RMSE from the RMSProp models starts to increase. The fact that
similar learning rate values offer similar RMSE values can be interpreted as the achieve-
ment of the same local optima by the optimizer, thus indicating its stability. Clearly,
RMSProp seems to be the most stable of the three optimizers while offering competitive
RMSE values.
Figure 7.3 shows the evolution of the loss throughout the training epochs for the Antwerp
scenario. The RMSProp optimizer shows that the training loss and the validation loss
achieve minimum values with a wider range of learning rate values when compared to
SGD and Adam. The learning rates between 10−4 and 10−2 are the ones that provide
lower validation loss and faster convergence.
Notice that, as training progresses, the curves of the validation loss start to increase
after the achievement of a minimum. This effect is less noticeable at greater learning
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Figure 7.2: Antwerp validation RMSE at different learning rates for the optimizers
SGD with momentum (top left), Adam (top right), and RMSProp (bottom).
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Table 7.3: Evolution of the loss throughout the training epochs for the Antwerp sce-
nario. Top left is the SGD with momentum optimizer, top right Adam, and bottom
RMSProp.
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SGD Adam RMSProp

RMSE LR RMSE LR RMSE LR

0.1464 0.051 0.1453 0.0138 0.1462 0.0031

0.1564 0.061 0.1486 0.0031 0.1530 0.0038

0.1608 0.042 0.1560 0.0045 0.1554 0.0890

0.1662 0.038 0.1584 0.0095 0.1585 0.00009

0.1674 0.089 0.1595 0.0115 0.1593 0.0509

Table 7.4: Antwerp sorted validation RMSE values and learning rates by optimizer.

rates. This happens in the first epochs because training loss is computed before updating
the weights, and validation loss is computed at the same epoch but after updating the
weights. Another fact to take into account is that, with the appropriate learning rate,
less than fifteen epochs are enough to obtain model convergence.
As the training goes further, training loss and validation loss becomes closer, meaning
that the models are not overfitting the training data. Greater learning rates offer tighter
proximity between training and validation losses.
Table 7.4 presents the validation RMSE and learning rate values for each optimizer. SGD
is the most stable one, as similar learning rates provide similar RMSE values. Adam
and RMSProp provide similar validation RMSE with different learning rate values.
For the Barcelona scenario (Figure 7.3), Adam and RMSProp offer a wider range of
learning rates and lower values are achieved when compared to SGD with momentum.
In this case, the Adam optimizer presents more stable validation RMSE values than
RMSProp at higher learning rate values (learning rate over 10−1).
When comparing the behaviour of the loss as training progresses (Figure 7.5), Adam and
RMSProp converge faster with large learning rates and also have tighter gaps between
training and validation losses.
The table of sorted RMSE values (Table 7.6) for the Barcelona scenario shows that the
RMSProp optimizer is the one with fewer errors at similar learning rates.
Figure 7.4 presents the validation RMSE for the different learning rates of the Wattens
scenario (Inside sector) for the optimizers SGD with momentum, Adam and RMSProp.
Like the Antwerp and Barcelona scenarios, Adam and RMSProp present wider ranges of
learning rates that achieve minimum validation RMSE values. Similarly to the Barcelona
scenario, RMSProp presents greater instability at higher learning rate values.
The loss behaviours throughout the training epochs are presented in Figure 7.7. Adam
and RMSProp offer similar behaviours with lower validation loss values at learning rates
of between 10−4 and 10−2, and this coincides with the observations from the previous
scenarios.
The table of sorted RMSE values (Table 7.8) for the Inside Wattens scenario presents
lower values from the optimizers Adam and RMSProp. Between them, RMSProp pro-
vides more scores with similar error values at similar learning rates.
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Figure 7.3: Barcelona validation RMSE at different learning rates for the optimizers
SGD with momentum (top left), Adam (top right), and RMSProp (bottom).
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Table 7.5: Training loss and validation loss evolution throughout training epochs for
the Barcelona scenario. Top left is the SGD with momentum optimizer, top right
Adam, and bottom RMSProp.

SGD Adam RMSProp

RMSE LR RMSE LR RMSE LR

0.1054 0.089 0.1034 0.0022 0.0972 0.0038

0.1055 0.0614 0.1046 0.0018 0.1015 0.0022

0.1057 0.1072 0.105 0.0002 0.104 0.0031

0.1066 0.0095 0.1052 0.0001 0.104 0.0001

0.1073 0.0739 0.1058 0.0003 0.1048 0.0015

Table 7.6: Barcelona sorted validation RMSE values and learning rates by optimizer.
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Figure 7.4: Wattens validation RMSE at different learning rates for the optimizers
SGD with momentum (top left), Adam (top right), and RMSProp (bottom).

298



7.4 Hyperparameter calibration Computational experiments - Neural Networks

Table 7.7: Wattens training loss and validation loss evolution throughout training
epochs. Top left is the SGD with momentum optimizer, top right Adam, and bottom
RMSProp.

SGD Adam RMSProp

RMSE LR RMSE LR RMSE LR

0.0928 0.0201 0.0895 0.0115 0.0892 0.0038

0.0995 0.1072 0.0921 0.0066 0.0893 0.0022

0.1004 0.0509 0.0923 0.0079 0.0908 0.0018

0.1025 0.0739 0.0928 0.0055 0.0935 0.0095

0.1032 0.0079 0.0937 0.0045 0.0939 0.0031

Table 7.8: Wattens sorted validation RMSE values and learning rates by optimizer.
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Figure 7.5: Los Angeles Standard sector validation RMSE at different learning rates
for the optimizers SGD with momentum (top left), Adam (top right), and RMSProp
(bottom).

The visualizations in Figure 7.5 present the validation RMSE values at different learning
rates for the optimizers SGD with momentum, Adam and RMSProp for the Standard
sector in Los Angeles. Similarly to previous scenarios, higher learning rates provide
unstable values, especially for SGD and RMSProp. The Adam optimizer appears to be
the most stable one.
Figure 7.9 presents the evolution of the losses as training progresses. In this case,
validation loss is lower than training loss because the validation data include the period
with works in the parking zone. This could indicate an adaptation of the model to
changes in the parking behaviour caused by external factors. Similarly to previous
scenarios, learning rates in the range of 10−4 to 10−2 converge fast and with the lowest
validation loss values.
Table 7.10 presents the validation RMSE and the learning rate used to obtain it for each
of the optimizers. Adam and RMSProp provide similar RMSE, which are lower than
those from SGD with momentum. The values of the learning rates from Adam are closer
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Table 7.9: Los Angeles training loss and validation loss evolution throughout training
epochs. Top left is the SGD with momentum optimizer, top right Adam, and bottom
RMSProp.
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SGD Adam RMSProp

RMSE LR RMSE LR RMSE LR

0.0389 0.1072 0.0324 0.0614 0.0339 0.0095

0.0427 0.0739 0.0353 0.0201 0.0355 0.0055

0.044 0.089 0.0357 0.0739 0.0364 0.1556

0.0503 0.0509 0.0375 0.0351 0.0368 0.0038

0.054 0.0242 0.0383 0.0423 0.0371 0.0292

Table 7.10: Los Angeles sorted validation RMSE values and learning rates by optimizer.

than those from RMSProp, indicating better stability from Adam.
For the Riyadh scenario, the parking data of sector-3 have been used. Figure 7.6 again
shows that Adam and RMSProp present more learning rate values with lower RMSE
when compared to SGD with momentum. Also, similarly to previous scenarios, Adam
seems to be more stable at higher learning rates when compared with the other two
optimizers.
Loss curves throughout the training epochs are presented in Figure 7.11 for the Riyadh
scenario. Again, models with learning rates in the range of 10−4 to 10−2 converge faster
and achieve lower validation loss. In the RMSProp case, ten epochs are enough to reach
convergence.
Table 7.12 presents the validation RMSE and the learning rate used to obtain it for
each of the optimizers. In this scenario, RMSProp offers lower RMSE values at similar
learning rates when compared to SGD and Adam.
In conclusion, after comparing SGD, Adam and RMSProp, Adam and RMSProp prove to
be good candidates for training forecasting models with parking occupancy data using an
MLP method. Although both provide very close results in the RMSE for the validation
set, RMSProp is more stable than Adam when not taking into account high values for
the learning rate. What is more, it provides equal or lower RMSE values than Adam in
nearly all scenarios. In light of this evidence, this work uses the RMSProp optimizer in
order to train the different MLP models with a learning rate value of between 10−4 and
10−2.

7.4.1.2 Recurrent Neural Network methods: LSTM and GRU

Figure 7.7 presents the RMSE validation values at different learning rates for the Antwerp
Pelikaanstraat scenario when using SGD with momentum, Adam and RMSProp opti-
mizers for the LSTM and GRU models. At low values of the learning rate parameter, all
optimizers present high and unstable RMSE values. At a learning rate of 10−6, Adam
and RMSProp achieve low values of RMSE that are reached by SGD at a learning rate
of 10−4. With a learning rate of 10−2, RMSProp provides high RMSE values while SGD
and Adam similarly achieve the lowest RMSE values. Both methodologies present very
similar behaviours at the same values for the learning rates.
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Figure 7.6: Riyadh sector-3 validation RMSE at different learning rates for the opti-
mizers SGD with momentum (top left), Adam (top right), and RMSProp (bottom).

Figure 7.7: Antwerp validation RMSE at different learning rates for the optimizers
SGD with momentum, Adam and RMSProp. Left corresponds to the LSTM models
and right to the GRU models.
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Table 7.11: Evolution of the training and validation losses throughout training epochs
for the Riyadh scenario. Top left is the SGD with momentum optimizer, top right
Adam, and bottom RMSProp.

SGD Adam RMSProp

RMSE LR RMSE LR RMSE LR

0.1083 0.0351 0.1049 0.0201 0.0999 0.0079

0.1096 0.0292 0.1057 0.0115 0.1007 0.0022

0.1105 0.0614 0.1064 0.0614 0.1039 0.0055

0.1133 0.1292 0.1066 0.0351 0.1044 0.0242

0.114 0.1072 0.1074 0.0018 0.105 0.0292

Table 7.12: Riyadh sorted validation RMSE values and learning rates by optimizer.
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SGD Adam RMSProp

LSTM GRU LSTM GRU LSTM GRU

RMSE LR RMSE LR RMSE LR RMSE LR RMSE LR RMSE LR

0.1651 0.0588 0.1611 0.1512 0.1804 0.0367 0.169 0.0089 0.18 0.0367 0.1736 0.0035

0.1679 0.0089 0.1722 0.0943 0.1811 0.2424 0.1714 0.0022 0.1807 0.0588 0.1805 0.0943

0.1706 0.0367 0.1822 0.0035 0.1818 0.0588 0.1752 0.0367 0.1816 0.0943 0.1811 0.0588

0.1708 0.0229 0.1839 0.2424 0.186 0.6236 0.1781 0.0013 0.1856 0.1512 0.1818 0.0002

0.1825 0.0943 0.1840 0.3888 0.1867 0.0943 0.1787 0.0229 0.1944 0.0001 0.1834 0.1512

Table 7.13: Antwerp sorted validation RMSE values and learning rates by optimizer.

About the evolution of the loss curves during training, it is of interest to find at which
learning rates the training and validation loss curves overlap throughout the epochs. A
signal of overfitting occurs when the training loss is flat and the validation loss increases
as the epochs grow. As the training continues, it is also of interest to observe the
smoothness of the losses as well as the ups and downs, as this can be used to gain
intuition about the local optima achieved by the model.
Figures 7.9 and 7.8 show the evolution of the loss throughout the training epochs for,
respectively, the LSTM and GRU models that were trained with different learning rates
for the Antwerp scenario. At first glance, one could believe that both methods are
behaving equally, but the results show that LSTM obtains lower validation values with
a wider range of learning rate values. More specifically, for the SGD with momentum in
LTSM, it can be seen that learning rates in the range of 10−5 to 10−1 provide lower and
more stable loss values, while for GRU, the lowest validation losses are achieved when
using learning rates between 10−6 to 10−2 , but the validation loss became unstable when
losses above 10−3 are used. For the Adam optimizer, the best range of values for LSTM
is between 10−6 to 10−4, with instability occurring at around 10−4 to 10−2. For GRU,
the lowest validation loss values are between 10−6 to 10−3, with instability happening
in the range of 10−3 to 10−2. Lastly, for the RMSProp optimizer, LSTM shows the best
validation loss values in the range between 10−6 to 10−1, with instability occurring at
around 10−3 to 10−2, while for GRU the behaviour is similar but more stable than LSTM
at 10−3 .
Table 7.13 presents the validation RMSE and their associated learning rate values for
each optimizer used in the LSTM and GRU models, ordered from the lowest to the
highest RMSE (only the top five are presented). Clearly, the SGD with momentum
provides better RMSE values than the other two optimizers at very close learning rate
values, this being an indication of its stability.
Figure 7.10 presents the validation RMSE values for the Barcelona scenario when using
SGD with momentum, Adam and RMSProp optimizers at different learning rates for
the LSTM and GRU models. Similarly to the Antwerp scenario, low learning rates
provide high errors and are not stable. RMSE values reach the minimum values at 10−6

to 10−3 for the Adam and RMSProp optimizers, while SGD with momentum reaches
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Figure 7.8: Evolution of the loss throughout the training epochs for the Antwerp sce-
nario corresponding to the LSTM model. Top left is the SGD with momentum opti-
mizer, top right Adam, and bottom RMSProp.
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Figure 7.9: Evolution of the loss throughout the training epochs for the Antwerp sce-
nario corresponding to the GRU models. Top left is the SGD with momentum opti-
mizer, top right Adam, and bottom RMSProp.
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Figure 7.10: Barcelona scenario validation RMSE at different learning rates for the
optimizers SGD with momentum, Adam and RMSProp. Left corresponds to LSTM
and right to GRU.

the minimum RMSE values at learning rate values of between 10−4 to 10−1. Both
methods perform similarly, although Adam and RMSProp show more stable values in
GRU around a learning rate value of 10−2.
Training and validation loss curves are presented in Figures 7.11 and 7.12. For the LSTM,
SGD with momentum presents lower and overlapping losses in the range between 10−6

to 10−2 and presents instability at higher learning rates. For GRU, the behaviour is
similar but less unstable at higher learning rates. Both LSTM and GRU with Adam
reach the lowest loss values, with learning rate values between 10−6 to 10−1, and they
present instability at around 10−2. The RMSProp optimizer presents lower values with
losses in the range between 10−6 to 10−4 for the LSTM method. On the other hand, the
GRU method presents more stability at higher learning rates.
Table 7.14 shows the lowest five RMSE values obtained with each optimizer and the
learning rates used to accomplish them for the LSTM and GRU methods. SGD with
momentum seems to be the most adequate of the three, as it provides lower RMSE
values at similar learning rates.
Figure 7.13 presents the validation RMSE for the LSTM and GRU models that were
trained for the Wattens Inside sector with the optimizers SGD with momentum, Adam
and RMSProp. In both methods, the optimizers behave in a similar fashion. The
optimizers Adam and RMSProp reach lower validation RMSE values at learning rate
values that are near 10−6, while SGD with momentum reaches the lowest RMSE values
past the 10−4 learning rate values. The most notable difference is that, at higher RMSE
values (around 10−2), the RMSE values for the RMSProp optimizer greatly increases for
LSTM in comparison with GRU.
Loss curves from training and validation are presented in Figures 7.14 and 7.15. For
both methods using the SGD with momentum optimizer, losses reach their lowest levels
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Figure 7.11: Evolution of the loss corresponding to the LSTM method throughout
the training epochs for the Barcelona scenario. Top left is the SGD with momentum
optimizer, top right Adam, and bottom RMSProp.

SGD Adam RMSProp

LSTM GRU LSTM GRU LSTM GRU

RMSE LR RMSE LR RMSE LR RMSE LR RMSE LR RMSE LR

0.1008039 0.0088862 0.10188 0.00215 0.10657 0.00003 0.1056 0.00002 0.107654 0.00001 0.10313 0.01425

0.101714 0.0034551 0.10456 0.00134 0.106781 0.00001 0.1085 0.00001 0.108910 0.000002 0.10608 0.00001

0.1022197 0.005541 0.10505 0.09427 0.107445 0.000012 0.1089 0.00346 0.110213 0.000007 0.10749 0.00003

0.1054118 0.014251 0.10616 0.00084 0.107666 0.000007 0.1091 0.00001 0.111487 0.000003 0.1084 0.00346

0.1063732 0.0005223 0.10825 0.00052 0.110158 0.000003 0.1098 0.00215 0.112470 0.000005 0.10884 0.00001

Table 7.14: Barcelona top five validation RMSE values with corresponding learning
rates for each optimizer.
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Figure 7.12: Evolution of the loss corresponding to the GRU method throughout the
training epochs for the Barcelona scenario. Top left is the SGD with momentum
optimizer, top right Adam, and bottom RMSProp. Top corresponds to the LSTM
method and bottom to GRU.
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Figure 7.13: Validation RMSE for the Wattens scenario at different learning rates for
the optimizers SGD with momentum, Adam and RMSProp. Left corresponds to the
LSTM method and right to GRU.

SGD Adam RMSProp

LSTM GRU LSTM GRU LSTM GRU

RMSE LR RMSE LR RMSE LR RMSE LR RMSE LR RMSE LR

0.0953 0.0089 0.10002 0.00554 0.1083 0.000019 0.10404 0.0002 0.1009 0.000012 0.09098 0.00215

0.0988 0.0055 0.10193 0.01425 0.1095 0.000007 0.1055 0.00346 0.1053 0.000031 0.09614 0.00346

0.0988 0.0035 0.10211 0.00889 0.1099 0.000012 0.10611 0.00554 0.1058 0.000007 0.10063 0.00134

0.1006 0.0143 0.1028 0.00346 0.1115 0.000005 0.10746 0.00001 0.1068 0.000049 0.10796 0.00002

0.1013 0.0022 0.10289 0.03665 0.1128 0.000079 0.11088 0.00008 0.1072 0.000005 0.10849 0.00001

Table 7.15: Wattens top five validation RMSE values with corresponding learning rates
for each optimizer.

when using learning rates in the range between 10−5 to 10−3; and learning becomes
unstable when using a loss near 10−1. For the Adam optimizer, both methods perform
similarly with good results at the learning rate range between 19−6 to 10−3, and unstable
validation loss values occur at learning rates with values of around 10−3. Lastly, for the
RMSProp optimizer, learning rates in the range between 10−6 to 10−4 are the ones that
work best for both optimizers, but they present instability at learning rates of around
10−2.
Table 7.15 shows the lower five RMSE values obtained with each optimizer and the
learning rates used for the LSTM and GRU methods. For LSTM, SGD with momen-
tum seems to be the most adequate of the optimizers considered, as it provides lower
RMSE values at similar learning rates. On the other hand, the optimizer that presents
better results for GRU is the RMSProp, as it presents 0.01 less validation RMSE when
compared to SGD and Adam. Also, its validation RMSE values are accomplished with
learning rates of similar value.
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Figure 7.14: Evolution of the loss corresponding to the LSTM models throughout the
training epochs for the Wattens scenario. From top (left and right) to bottom, the
optimizers are: SGD with momentum, Adam and RMSProp.

312



7.4 Hyperparameter calibration Computational experiments - Neural Networks

Figure 7.15: Evolution of the loss corresponding to the GRU models throughout the
training epochs for the Wattens scenario. From top (left and right) to bottom, the
optimizers are: SGD with momentum, Adam and RMSProp.
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Figure 7.16: Los Angeles scenario validation RMSE at different learning rates for the
optimizers SGD with momentum, Adam and RMSProp. Left corresponds to the
LSTM method and right to GRU.

Figure 7.16 shows the validation RMSE for the optimizers SGD with momentum, Adam
and RMSProp for the Los Angeles Standard sector with the LSTM and GRU methods.
Similarly to the other scenarios, both methods presents similar RMSE behaviours across
the different learning rates. Adam and RMSProp provide lower and stable validation
RMSE values at the range between 10−6 to 10−3 while SGD with momentum accomplish
the lowest and stable RMSE values at the range between 10−5 to 10−1. Both methods
present high RMSE values of around 10−2 and at the highest values of the learning rates
considered.
Loss curves from training and validation are presented in Figures 7.17 and 7.18. SGD
with momentum for the LSTM method presents smooth curves, where the best learning
rates are located in the range of values between 10−6 to 10−1. GRU presents a similar
behaviour, but at around 10−2 it presents signals of instability. For the Adam optimizer,
LSTM’s best range of values is between 10−6 to 10−1, with instabilities when using a
learning rate of around 10−2 for the first 30 epochs. The GRU models present a similar
behaviour as LSTM, but the instabilities at 10−2 are more noticeable. Lastly, for the
RMSProp optimizer, models from both methods behave similarly, with the best learning
rates in the range of 10−6 to 10−3. Also, both methods present unstable learning when
using a learning rate of around 10−2.
Table 7.16 shows the lower five RMSE values obtained with each optimizer and the
learning rates used. For LSTM, the best optimizer (lower validation RMSE) is the Adam
optimizer. For GRU, it is possible to consider Adam as the best one, but RMSProp
provides a very similar performance. Notice that LSTM and GRU provide very close
RMSE values at the same learning rates for the RMSProp optimizer.
The last scenario corresponds to Sector-1 in Riyadh. Figure 7.19 shows the validation
RMSE for models from the the LSTM and GRU methods when using the optimizers
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Figure 7.17: Evolution of the loss throughout the training epochs for the Los Ange-
les sector Standard for the LSTM methods. Top left is the SGD with momentum
optimizer, top right Adam, and bottom RMSProp.

SGD Adam RMSProp

LSTM GRU LSTM GRU LSTM GRU

RMSE LR RMSE LR RMSE LR RMSE LR RMSE LR RMSE LR

0.0387 0.1512 0.0446 0.1512 0.0386 0.0367 0.0386 0.6236 0.0379 0.0943 0.0385 0.0943

0.0395 0.2424 0.0539 0.0055 0.0387 0.0588 0.04 0.3888 0.0417 0.2424 0.0405 0.2424

0.0569 0.0003 0.0557 0.0022 0.039 1. 0.0415 1. 0.0419 0.0367 0.04090 0.0588

0.0621 0.0035 0.0596 0.0089 0.0392 0.0943 0.0421 0.0143 0.0428 0.0588 0.041 0.0367

0.0648 0.0001 0.0613 0.0002 0.0394 0.6236 0.043 0.2424 0.0573 0.1512 0.0507 0.0022

Table 7.16: Top five validation RMSE values for the Los Angeles scenario, with their
corresponding learning rates for each optimizer.
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Figure 7.18: Evolution of the loss throughout the training epochs for the Los Angeles
sector Standard for the GRU methods. Top left is the SGD with momentum optimizer,
top right Adam, and bottom RMSProp.
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Figure 7.19: Riyadh Sector-1 validation RMSE at different learning rates for the opti-
mizers SGD with momentum, Adam and RMSProp for the methods LSTM (left) and
GRU (right).

SGD with momentum, Adam and RMSProp at forty different learning rates that are
equally spaced between 10−8 to 100. For both methods, all three optimizers behave
similarly in providing high RMSE values at learning rates below 10−6 and above 10−1.
All three optimizers similarly reach the lowest RMSE values, but Adam and RMSProp
accomplish this in the range between 10−5 to 10−3 while SGD does so at learning rates
between 10−3 to 10−1. In both methods, RMSProp presents a high validation RMSE
value at learning rates of around 10−2. Lastly, SGD with momentum diverges when the
learning rate is closer to 1.
Loss curves from training and validation losses are presented in Figures 7.20 and 7.21.
The optimizer SGD with momentum shows smooth curves when using the LSTMmodels,
with the best learning rates in the range between 10−5 to 10−1. In the case of GRU
models, SGD with momentum works better at the learning rate range between 10−5

to 10−2. In the case of the Adam optimizer, the lowest validation RMSE values are
found in the range between 10−6 to 103 for both methods. Lastly, for the RMSProp
optimizer, GRU is more stable than LSTM at high learning rates (10−3 or higher), and
both methods show that, at around at 10−2, the training diverges. The best range of
values for the learning rates is between 10−5 to 10−3.
Table 7.17 shows the lowest five RMSE values obtained with each optimizer and the
learning rates used for the LSTM and GRU methods. For the LSTM method, the best
suited optimizer for the data of Riyadh is SGD with momentum, as it provides the lowest
validation RMSE values at similar learning rates while Adam is the one that performs
the worst. On the other hand, the lowest validation RMSE values for the GRU method
come from the RMSProp optimizer at learning rates of similar value. Notice that the
top RMSE values for both methods have learning rate values in common; for example,
LSTM and GRU achieve the lowest RMSE with RMSProp when using a learning rate
value of 0.00215.
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Figure 7.20: Training and validation loss curves corresponding to the LSTM models at
different learning rates for the optimizers SGD with momentum optimizer (top left),
Adam (top right), and RMSProp (bottom).

SGD Adam RMSProp

LSTM GRU LSTM GRU LSTM GRU

RMSE LR RMSE LR RMSE LR RMSE LR RMSE LR RMSE LR

0.12133 0.05878 0.11738 0.09427 0.1334 0.0002 0.11173 0.00052 0.12047 0.00215 0.10608 0.00215

0.1229 0.02285 0.12718 0.00346 0.13446 0.00346 0.11545 0.00215 0.13171 0.00008 0.10832 0.00134

0.13223 0.01425 0.13322 0.05878 0.13689 0.00005 0.11551 0.00084 0.13338 0.0002 0.10977 0.00346

0.1351 0.00346 0.13592 0.00134 0.13765 0.00033 0.11636 0.00134 0.13561 0.00003 0.11717 0.0002

0.1373 0.03665 0.1394 0.00889 0.13906 0.00084 0.11826 0.00346 0.13696 0.00013 0.12397 0.00554

Table 7.17: Top five validation RMSE values for Sector-1 in Riyadh for the LSTM
and GRU methods. For each RMSE value, the learning rate for obtaining it is also
provided.
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Figure 7.21: Training and validation loss curves corresponding to the GRU models at
different learning rates for the optimizers SGD with momentum optimizer (top left),
Adam (top right), and RMSProp (bottom).
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In conclusion, for the the LSTM method, the SGD with momentum is the optimizer that
provides the lowest RMSE values when compared to Adam and RMSProp. Furthermore,
the best range of values for the learning rates is between 10−3 to 10−1. For the GRU
method, RMSProp slightly outperforms the results of SGD with momentum. In general,
the best range for learning rates has been found to be between 10−5 to 10−2.

7.4.2 Model capacity

The aim of this experiment is to obtain the effect of the model capacity (number of
layers and number of neurons at each hidden layer) on the validation RMSE and study
the loss curves.
For this experiment, the optimizers and learning rates used are the ones that provided
the best score in the optimizer experiments (Section 7.4.1). The other hyperparameters
remain the same as they are explained at the start of Section 7.4. The number of hidden
layers used varies from one to six and the number of neurons from one to 128, using
powers of two between them. For each number of layers considered, each of the neurons
considered is used, thus obtaining a total of forty-eight different models.

7.4.2.1 MLP

Figure 7.22 presents the validation RMSE for the Pelikaanstraat sector in Antwerp for
different combinations of hidden layers and neurons considered. Clearly, a low model
capacity (one hidden layer or less than eight neurons) presents a higher number of errors.
As the number of neurons increases, the RMSE is maintained or improved only by those
models with higher numbers of hidden layers. This can be seen in the one-layer models,
which present an increasing validation RMSE value when the number of neurons is higher
than 32.
The behaviour of the losses (Figure 7.23) shows how the model capacity increasing leads
to the risk of overfitting also increasing, as the gap between training and validation
losses becomes larger (taking into account that the goal of regularization techniques
is to prevent this effect). Loss curves show that a high number of neurons with a
small number of layers presents unstable behaviour for the validation loss; while, on
the other hand, a small number of layers and a small number of neurons offer stability
and convergence to nearly the same loss values. As the number of layers increases,
models with lower numbers of neurons start to have unstable losses and models with a
high number of neurons become stable. Models in between present stability around all
considered numbers of hidden layers.
In order to more closely observe the model capacities, Table 7.18 presents the top five
obtained validation RMSE values and the number of neurons used to obtain them for the
different numbers of hidden layers considered. Thirty two seems to be the predominant
number of neurons at a low number of hidden layers; but as the number of hidden layers
increases, 128 offers the best RMSE values.
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Figure 7.22: Antwerp validation RMSE comparison of models with different numbers
of layers and neurons.

One hidden layer Two hidden layers Three hidden layers Four hidden layers Five hidden layers Six hidden layers

RMSE Neurons RMSE Neurons RMSE Neurons RMSE Neurons RMSE Neurons RMSE Neurons

0.1593 32 0.159 8 0.1576 32 0.1511 1024 0.1564 1024 0.1612 1024

0.1621 128 0.1614 64 0.1596 256 0.1529 32 0.1576 16 0.1618 32

0.1623 64 0.1618 32 0.1628 512 0.161 8 0.1611 128 0.1632 128

0.1626 16 0.1633 512 0.164 64 0.1613 512 0.1647 8 0.1648 16

0.1649 1 0.1636 128 0.1674 1024 0.1634 64 0.166 64 0.1656 256

Table 7.18: Antwerp top validation RMSE values for different numbers of layers.
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Figure 7.23: Antwerp losses as the number of hidden layers increases.
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Figure 7.24: Barcelona validation RMSE comparison of models with different numbers
of layers and neurons.

One hidden layer Two hidden layers Three hidden layers Four hidden layers Five hidden layers Six hidden layers

RMSE Neurons RMSE Neurons RMSE Neurons RMSE Neurons RMSE Neurons RMSE Neurons

0.10334 128 0.09440 1024 0.0958 1024 0.0962 1024 0.0958 512 0.0964 512

0.10449 512 0.0965 512 0.0973 256 0.0989 64 0.0978 1024 0.0982 12

0.1058 64 0.1015 128 0.9834 512 0.1000 512 0.0993 256 0.0987 256

0.10628 256 0.102 32 0.1004 8 0.1003 32 0.1005 32 0.0993 16

0.10704 1024 0.1033 64 0.1009 64 0.1018 256 0.1014 64 0.1013 8

Table 7.19: Barcelona top validation RMSE values for different numbers of layers.

Figure 7.24 presents the validation RMSE for the Barcelona scenario when considering
different numbers of hidden layers and neurons. The models with a high number of
layers but a low number of neurons are the ones that present higher error rates; but as
the number of neurons grows, the error is reduced. The visualization shows that as the
number of neurons increases, the validation RMSE is reduced.
Figure 7.25 shows the loss curves for the models with one to six hidden layers. Observe
that models with higher capacity overfit the training data and that as the number of
hidden layers increases, the validation loss curves of the models become more unstable.
The behaviour of the one-neuron models is interesting, namely in that as the number of
layers increases, the validation loss becomes more and more unstable until at one point
(five hidden layers) it converges at the same value for that point and any subsequent
numbers of hidden layers.
Table 7.19 presents the top five obtained validation RMSE values and the number of
neurons used to obtain them for the different numbers of hidden layers considered. The
number of neurons that presents the lowest RMSE values is 1024, followed by 512.
For the Wattens scenario (Inside sector), Figure 7.26 shows a similar behaviour of the
validation RMSE for different hidden layers and neurons combinations but the decrease
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Figure 7.25: Barcelona losses as the number of hidden layers increases.
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Figure 7.26: Wattens validation RMSE comparison of models with different numbers
of layers and neurons.

One hidden layer Two hidden layers Three hidden layers Four hidden layers Five hidden layers Six hidden layers

RMSE Neurons RMSE Neurons RMSE Neurons RMSE Neurons RMSE Neurons RMSE Neurons

0.0805 128 0.0711 512 0.0707 1024 0.0704 256 0.0726 256 0.0710 512

0.0817 256 0.07400 1024 0.0733 128 0.0741 1024 0.0730 512 0.0717 128

0.0826 512 0.0763 256 0.0734 256 0.0743 512 0.0736 128 0.0719 256

0.08330 1024 0.0770 128 0.0778 512 0.0760 128 0.0737 64 0.0720 1024

0.0834 64 0.079 64 0.0789 32 0.0775 64 0.0747 1024 0.0759 64

Table 7.20: Wattens top validation RMSE values for different numbers of layers.

or increase in the RMSE stops independently of the number of layers when the number
of neurons is higher than 64.
Figure 7.27 shows the loss curves for the models with one to six hidden layers. Similar
observations to those extracted from the Barcelona scenario can be concluded in this
case. The only noticeable difference is that the gap between training and loss curves
increases very slightly as model capacity grows when compared to previous scenarios.
Table 7.20 presents the top five obtained validation RMSE values and the number of
neurons used to obtain them for the different numbers of hidden layers considered. As
observed in the validation RMSE visualization, similar RMSE (the lowest) values are
obtained with different numbers of neurons: 256, 512 and 1024.
Figure 7.28 shows the validation RMSE values for the Standard sector from Los Angeles
at different combinations of hidden layers and neurons. For eight neurons, all models
offer the same RMSE value and, at that point, the models with higher numbers of
neurons obtain lower RMSE and those with low numbers of neurons present higher
RMSE.
Figure 7.29 shows the loss curves for the models with one to six hidden layers. Observe
that validation losses are much lower than training losses, and the cause of this is because
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3
Figure 7.27: Wattens losses as the number of hidden layers increases.
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Figure 7.28: Los Angeles validation RMSE comparison of models with different num-
bers of layers and neurons.

One hidden layer Two hidden layers Three hidden layers Four hidden layers Five hidden layers Six hidden layers

RMSE Neurons RMSE Neurons RMSE Neurons RMSE Neurons RMSE Neurons RMSE Neurons

0.0367 8 0.0326 512 0.0316 256 0.02910 1024 0.0289 512 0.02840 1024

0.0369 1 0.0350 1024 0.0331 512 0.02970 256 0.0293 256 0.0304 64

0.0390 1024 0.0358 8 0.0351 128 0.0300 128 0.03010 1024 0.0307 512

0.0391 16 0.0369 1 0.0353 32 0.0301 64 0.0305 32 0.0314 16

0.0396 512 0.0380 128 0.0356 8 0.0322 512 0.0313 128 0.0315 256

Table 7.21: Los Angeles top validation RMSE values for different numbers of layers.

validation data corresponds to the period of works in the sector (2019). All models with
more than 32 neurons converge towards very similar validation loss values. Similarly
to other scenarios, as the number of hidden layers increases, those models with lower
numbers of neurons become more unstable.
Table 7.21 presents the top five obtained validation RMSE values and the number of
neurons used to obtain them for the different numbers of hidden layers considered.
There is no huge difference in the RMSE for the different numbers of neurons, but as
the number of hidden layers increases, the ones achieving the lowest validation RMSE
are 512 and 128. Also, the effect of having more hidden layers is reflected as a direct
decrease in the validation RMSE value.
The last scenario considered pertains to Sector-1 in Riyadh. The validation RMSE values
with different combinations of hidden layers and neurons at each layer is presented in
visualization 7.30. Similarly to the Barcelona scenario, the increasing number of hidden
layers and neurons provides lower values for the validation RMSE; but at a certain point
(64 neurons), the reduction in the RMSE value becomes lower.
Figure 7.31 shows the loss curves for the models with one to six hidden layers. The be-
haviour of the validation and training losses is similar to those presented in the Barcelona
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Figure 7.29: Los Angeles losses as the number of hidden layers increases.
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Figure 7.30: Riyadh validation RMSE comparison of models with different numbers of
layers and neurons.

One hidden layer Two hidden layers Three hidden layers Four hidden layers Five hidden layers Six hidden layers

RMSE Neurons RMSE Neurons RMSE Neurons RMSE Neurons RMSE Neurons RMSE Neurons

0.09540 1024 0.0811 512 0.0793 512 0.07970 1024 0.0801 64 0.07530 1024

0.1009 512 0.08700 1024 0.0812 256 0.0819 256 0.0816 512 0.0825 512

0.1075 256 0.0926 256 0.0822 1024 0.0873 128 0.08690 1024 0.0854 256

0.1213 32 0.0977 128 0.0903 128 0.0875 512 0.0879 128 0.0909 64

0.1271 8 0.101 64 0.0918 64 0.0941 64 0.09 256 0.0945 128

Table 7.22: Riyadh top validation RMSE values for different numbers of layers.

scenario. Notice that as the number of hidden layers becomes higher, the validation loss
curve becomes more unstable, independently of the number of neurons. Models with
64 neurons seem to have the more stable behaviour across the increasing number of
layers. Lastly, at a high number of hidden layers, models with greater than or equal to
64 neurons converge towards the same value.
Table 7.22 presents the top five obtained validation RMSE values and the number of
neurons used to obtain them for the different numbers of hidden layers considered.
Clearly, 128 and 512 neurons provide the best validation RMSE values.
In conclusion, the MLP models with between two and five hidden layers and 512 and
128 neurons provide the lowest RMSE values across the considered scenarios.

7.4.2.2 Recurrent methods

For recurrent NN, namely LSTM and GRU, the number of considered hidden layers has
been reduced to between one and three, while the number of neurons considered is the
same as in the MLP experiment.
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Figure 7.31: Riyadh losses as the number of hidden layers increases.
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Figure 7.32: Antwerp validation RMSE comparison of models with different numbers
of layers and neurons. Left corresponds to the LSTM models and right to GRU.

One hidden layer Two hidden layers Three hidden layers

RMSE Neurons RMSE Neurons RMSE Neurons

0.1549 128 0.1569 512 0.1722 16

0.16018 256 0.1663 1024 0.1767 32

0.1697 1024 0.1721 64 0.1796 512

0.1719 8 0.1749 8 0.1859 64

0.1843 32 0.1829 32 0.1871 128

(a) LSTM

One hidden layer Two hidden layers Three hidden layers

RMSE Neurons RMSE Neurons RMSE Neurons

0.174080 64 0.174568 16 0.168244 512

0.176952 8 0.177921 512 0.168244 64

0.180112 1024 0.184268 32 0.174470 128

0.1808441 512 0.185047 128 0.175433 1024

0.1842004 128 0.185050 64 0.1766165 16

(b) GRU

Table 7.23: Antwerp top validation RMSE values for different numbers of layers.

Figure 7.32 presents the validation RMSE for the Pelikaanstraat sector in Antwerp for
different combinations of hidden layers and neurons considered. The visualization shows
that, independently of the number of layers, there is no clear pattern among the number
of neurons.
The behaviour of the losses (Figure 7.33 for LSTM and Figure 7.34 for GRU) offers
detailed information about the model training. As observed in the validation RMSE
visualization, the models have more stable behaviour as the number of hidden layers
increases. Notice that, independently of the number of hidden layers, the models with
32, 64, 128 and 256 neurons present a more stable validation loss.
The top validation RMSE values for different model capacities are presented in Table
7.23. As seen previously in the visualizations, there is no clear pattern for distinguishing
the effect of different numbers of neurons. Models with one and two hidden layers
present similar validation RMSE values, which are lower than those presented by the
models with three hidden layers.
Figure 7.35 presents the LSTM and GRU validation RMSE for the Barcelona scenario
when considering different numbers of hidden layers and neurons. Contrary to the
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Figure 7.33: Antwerp losses as the number of hidden layers increases for LSTM.
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Figure 7.34: Antwerp losses as the number of hidden layers increases for GRU.
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Figure 7.35: Barcelona validation RMSE comparison of the LSTM and GRU models
with different numbers of layers and neurons.

results from the Antwerp scenario, this scenario clearly presents the effect of increasing
the number of layers and neurons. The visualizations show that low and high numbers
of neurons have a negative effect on the models and that the lowest validation RMSE
values can be achieved at different but nearly the same numbers of neurons.
Figure 7.36 shows the loss curves for the different numbers of layers considered. The
LSTM models with one hidden layer have a more unstable validation loss curve, but as
the number of layers increases, more models with different numbers of neurons converge
towards near validation loss values. Also, models with 124 neurons have unstable losses
for the three cases.
Figure 7.37 presents the validation losses for the GRU models. Unlike LSTM, the val-
idation losses present stable values, independently of the number of neurons/hidden
layers.
Table 7.24 presents the top five obtained validation RMSE values and the number of
neurons used to obtain them for the different numbers of hidden layers considered for
recurrent models. Observe that as the number of hidden layers increases, the validation
RMSE becomes lower. The best scores for two and three hidden layers are achieved with
512 neurons, while 64 neurons achieve the lowest validation RMSE in the case of one
hidden layer.
Figure 7.38 presents the RMSE validation values for the Inside sector in Wattens un-
der different combinations of hidden layers and numbers of neurons. Similarly to the
Barcelona scenario, the number of hidden layers has an effect on the validation RMSE,
as two and three hidden layers offer lower RMSE values than the models with one hidden
layer. Furthermore, a too low or too high number of neurons also worsens the RMSE
values, which is more noticeable in LSTM than in GRU.
The Wattens scenario training and validation losses from the LSTMmodels are presented
in Figure 7.39 for different combinations of hidden layers and neurons. Loss curves show
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Figure 7.36: Barcelona LSTM losses as the number of hidden layers increases.

One hidden layer Two hidden layers Three hidden layers

RMSE Neurons RMSE Neurons RMSE Neurons

0.1071 64 0.1003 512 0.0992 512

0.1078 32 0.1013 32 0.10 128

0.1141 256 0.1015 256 0.1014 256

0.1169 128 0.1017 64 0.1016 16

0.1214 8 0.1025 128 0.1040 64

(a) LSTM

One hidden layer Two hidden layers Three hidden layers

RMSE Neurons RMSE Neurons RMSE Neurons

0.0998 32 0.0988 64 0.101 64

0.1044 64 0.099 32 0.1012 256

0.1068 512 0.1002 128 0.1015 32

0.11 8 0.1009 256 0.1023 128

0.1123 16 0.1018 16 0.103 16

(b) GRU

Table 7.24: Top validation RMSE values for the Barcelona scenario at different com-
binations of hidden layers and neurons.
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Figure 7.37: Barcelona GRU losses as the number of hidden layers increases.

Figure 7.38: Wattens validation RMSE comparison of models with different numbers
of layers and neurons. Left corresponds to the LSTM models and right to GRU.
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Figure 7.39: Wattens LSTM losses as the number of hidden layers increases.

that, at the three levels of hidden layers considered, those models with 128 neurons are
not able to converge on the validation loss (overfit on the training data). What is more, a
similar effect can be seen for one hidden layer and 512 neurons. Notice that the number
of neurons has an effect towards the convergence value of the validation loss for one and
three hidden layers, but at two hidden layers this effect is diminished.
GRU visualizations are presented in Figure 7.40. The behaviours of the validation losses
are like the previous scenarios in which models converge towards similar validation RMSE
values, independently of the numbers of neurons and hidden layers.
Table 7.25 presents the top five obtained validation RMSE values, the numbers of neu-
rons used to obtain them, and the different numbers of hidden layers. The number of
hidden layers has an effect on the validation RMSE, as two and three hidden layers offer
less RMSE than the models with one hidden layer. The number of neurons seems not
to be very critical as long as it is not too low or too high.
Figure 7.41 shows the validation RMSE values for the Standard sector from Los Angeles
at different combinations of hidden layers and neurons. Those combinations with two
and three hidden layers offer lower RMSE values than those with one hidden layer at
nearly all the combinations considered. For the LSTM models, the lowest validation
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Figure 7.40: Wattens GRU losses as the number of hidden layers increases.

One hidden layer Two hidden layers Three hidden layers

RMSE Neurons RMSE Neurons RMSE Neurons

0.095 64 0.0863 256 0.0846 32

0.0964 32 0.0872 64 0.0883 128

0.1049 256 0.0878 128 0.0888 64

0.1141 128 0.0901 512 0.0898 256

0.1212 8 0.0918 32 0.0901 512

(a) LSTM

One hidden layer Two hidden layers Three hidden layers

RMSE Neurons RMSE Neurons RMSE Neurons

0.0968 256 0.0871 256 0.0816 64

0.1005 512 0.0873 512 0.085 32

0.1027 64 0.0877 128 0.0854 256

0.1029 16 0.0880 1024 0.0876 512

0.1083 32 0.0901 64 0.0883 128

(b) GRU

Table 7.25: Wattens top validation RMSE values for different numbers of layers.
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Figure 7.41: Los Angeles validation RMSE comparison of models with different number
of layers and neurons. Left corresponds to LSTM and right to GRU.

RMSE values are obtained with three hidden layers when considering different numbers
of neurons. GRU presents similar results, but the worsening of validation RMSE values
caused by having a high number of neurons is less noticeable.
Training loss and validation loss visualizations for different combinations of hidden layers
and neurons are presented in Figure 7.42. At one hidden layer, models are unable to
generalize validation data, but as the number of hidden layers increases, the range of
models that offer low RMSE values increases. Similarly to other scenarios, a low or high
number of neurons can be decisive towards the generalization of the model. Remember
that, for this scenario, it is of prime importance that the models generalize because the
distribution of the data changes as time goes on.
Figure 7.43 presents the validation losses from the GRU models. In this scenario, the
GRU models present unstable validation losses at one hidden layer when a low or high
number of neurons is considered. As the number of hidden layers increases, loss curves
become more stable and nearly all models converge towards similar values.
Table 7.26 presents the top five obtained validation RMSE values and the number of
neurons used to obtain them for the different numbers of hidden layers considered.
There is no huge difference in the RMSE for the different numbers of neurons, but there
is a difference as the number of hidden layers increases. Having more hidden layers is
reflected as a direct decrease in the validation RMSE value.
Figure 7.44 shows the behaviour of the validation RMSE as the numbers of hidden layers
and neurons increase. Similarly to other sectors, a low number of neurons has a negative
effect on the RMSE values. Moreover, with the adequate number of neurons, similar
validation RMSE values are obtained independently of the number of hidden layers.
LSTM presents an increase in the RMSE when the number of neurons is greater than
512, an effect that is not noticeable in the GRU models.
Figure 7.45 shows the loss curves for the LSTM models with one to three hidden layers.
Similarly to other scenarios, as the number of hidden layers increases, the validation
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Figure 7.42: Los Angeles LSTM losses as the number of hidden layers increases.

One hidden layer Two hidden layers Three hidden layers

RMSE Neurons RMSE Neurons RMSE Neurons

0.0473 8 0.0343 8 0.0326 16

0.0487 32 0.0351 32 0.0370 128

0.0487 128 0.0413 512 0.0371 512

0.0519 64 0.0464 256 0.0372 256

0.0611 1 0.0468 16 0.0382 8

(a) LSTM

One hidden layer Two hidden layers Three hidden layers

RMSE Neurons RMSE Neurons RMSE Neurons

0.0473 16 0.0362 512 0.0315 16

0.0486 32 0.0373 1024 0.0328 512

0.0560 256 0.0394 8 0.0363 8

0.0568 1024 0.0416 32 0.0385 256

0.0582 8 0.0463 16 0.0393 1024

(b) GRU

Table 7.26: Los Angeles top validation RMSE values for different numbers of layers.
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Figure 7.43: Los Angeles GRU losses as the number of hidden layers increases.

Figure 7.44: Riyadh validation RMSE comparison of models with different numbers of
layers and neurons. Left corresponds to LSTM and right to GRU.
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Figure 7.45: Riyadh LSTM losses as the number of hidden layers increases.

loss becomes more stable for the models with a high number of neurons. Clearly, model
capacity plays a role, as models with only one neuron have higher loss values than the
others.
Figure 7.46 presents the losses for the GRU models. As observed in previous scenarios,
GRU presents validation losses that are more stable than GRU at one hidden layer, and
the stability also increases as the number of hidden layers increases. With three hidden
layers, all models (except the one with one neuron) converge towards similar values.
Table 7.27 presents the top five obtained validation RMSE values and the number of
neurons used to obtain them for one, two and three hidden layers for recurrent models
LSTM and GRU. For LSTM, 256 neurons offer the lowest validation RMSE values for
each of the number of hidden layers considered. Moreover, one and two hidden layers
coincide in the number of neurons in the validation RMSE order. GRU also presents
the best results at two hidden layers with 256 neurons.
In conclusion, for the scenarios considered, the LSTM and GRU models show lower
RMSE values when working in the range of 8 to 256 neurons. Although more hidden
layers have the effect of making models with higher numbers of neurons converge, the
results are not better than those models with a lower number of layers and neurons,
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Figure 7.46: Riyadh GRU losses as the number of hidden layers increases.

One hidden layer Two hidden layers Three hidden layers

RMSE Neurons RMSE Neurons RMSE Neurons

0.1025 256 0.1009 256 0.0968 256

0.1026 128 0.1034 128 0.1044 512

0.1042 32 0.1071 32 0.1046 128

0.1096 512 0.1123 512 0.1134 16

0.1188 64 0.1131 64 0.1165 32

(a) LSTM

One hidden layer Two hidden layers Three hidden layers

RMSE Neurons RMSE Neurons RMSE Neurons

0.111 64 0.0988 256 0.1022 64

0.1131 128 0.0995 1024 0.1023 256

0.1141 542 0.102 128 0.1037 512

0.1274 1024 0.103 512 0.1047 128

0.1321 256 0.108 32 0.1065 1024

(b) GRU

Table 7.27: Riyadh top validation RMSE values for different numbers of layers.
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meaning that the model scores do not improve with model complexity.

7.4.3 Normalization in RNN

There exist different techniques for normalizing the data throughout their use between
hidden layers. This is because their distribution can change due to the nature of NN
methods as they are initialized by random weights that change in time. Normaliza-
tion of the data helps the models by giving them faster convergence and robustness to
hyperparameter values, and it also provides some sort of regularization effect.
Batch normalization (proposed in Ioffe and Szegedy [2015]) is a technique used to nor-
malize the data (mean zero and unit standard deviation) between hidden layers, as those
can change (covariate shift) due to the random initialization of the weights, and it is
believed to make learning harder for the model. It is called batch normalization because
it is applied to each minibatch of data by computing the mean and standard deviation
after the activation function of a previous layer, and then these are normalized with
the input for the next layer. In addition, two parameters that are learnt by the model
are used while training, and these allow reverting the effect of the normalization if the
model learns that a non-normalized representation of the data between hidden layers is
better. Although batch normalization has been used with success in CNN, it is not clear
if it helps in the case of RNN, as they maintain a hidden state based on the time di-
mension of the data and therefore controlling the statistics over each time step can hurt
the model’s learning. Another drawback in batch normalization is that the estimates of
the statistics become noisy as the number of samples in the mini batch grows smaller.
Furthermore, it is not possible to use this technique with a batch of size one.
Another strategy that can be used to normalize the data between layers is layer normal-
ization (proposed in Ba et al. [2016]). The idea is the same as in batch normalization,
but instead of normalizing by the batch dimension of the data (using the same mean and
standard deviation for all samples in the mini batch), a mean and a standard deviation
is computed for each feature in a sample and used to normalize it. This strategy does
not allow using a parameterization like in batch normalization, in which the effect of
the normalization is reverted. The authors proposed this technique especially for RNN,
as there is no need to compute new parameters at each time step, which is what would
happen in a batch normalization for recurrent NN. In addition, as the normalization acts
on the level of each sample, there is no problem with the size of the batch, as happens
in batch normalization.
The sectors where this experiment has been performed are Antwerp Pelikaanstraat,
Barcelona Regular, Wattens Inside, Los Angeles Standard (before street works) and
Riyadh Sector-1. We want to gain intuition about how RNN models are affected by
the normalization techniques, and this is independent of the data used. The developed
models have the same architecture and the same initial weights, so they only differ in
the normalization technique used: batch normalization, layer normalization or none.
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Antwerp Pelikaanstraat Barcelona Wattens Inside Los Angeles Standard Riyadh Sector-1

Batch normalization 0.1463 0.1054 0.0928 0.1059 0.0791

Layer normalization 0.1402 0.0992 0.0902 0.0974 0.0807

No normalization 0.1321 0.0987 0.0945 0.1028 0.0934

Table 7.28: Normalization technique RMSE values.

Hyperparameter Range

Number of neurons 2i where i = [6, 10]

Number of layers 2 to 5

Dropout % [0, 0.25, 0.5]

Weights initializer He normal and Glorot normal

Activation functions Linear, sigmoid and ReLu

Batch sizes [32, 64, 128, 256, 672]

Optimizer RMSProp

Learning rates [0.0001, 0.01] divided by number of iterations.

Table 7.29: MLP hyperparameter ranges of the random search strategy.

The training losses can be seen in 7.47 and show that, of the three techniques considered,
layer normalization is the one that offers smoother training and equal or lower RMSE
values in the validation set.
The obtained RMSE values in the validation set are shown in Table 7.28. Although all
methods scored similar RMSE values in the validation set, layer normalization is the
technique that obtained lower scores in nearly all sectors considered. In addition to the
smoothness of the loss while training, this makes it a proper normalization technique to
use in RNN methods.

7.4.4 Hyperparameter calibration conclusions

The results from the individual experiments that were performed provide a starting point
and intuition about how to process the data and the effect of the different techniques
that can be used in NN methods. This reduces the number of possible values to consider
in the random search strategy by lowering the computations needed in order to obtain
an NN model for each sector with a low error rate on unseen data.
The considered range of values for the hyperparameters of the MLP method are presented
in Table 7.29.
Table 7.30 presents the hyperparameter value ranges considered for the LSTM and GRU
methods. Because of how these methods work, the numbers of layers and neurons consid-
ered are less than those considered for the MLP. Also, the table includes hyperparameters
that are exclusive to these methodologies, such as the recurrent dropout, which is the
percentage of dropout used for the hidden state. Another hyperparameter that is used
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Figure 7.47: Normalization experiment losses. From top to bottom, the losses corre-
spond to Antwerp, Los Angeles and Riyadh.
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Hyperparameter Range

Number of neurons 2i where i = [3, 9]

Number of layers 1 to 3

Dropout % [0, 0.25, 0.5]

Recurrent dropout % [0, 0.25, 0.5]

Weights initializer He normal and Glorot normal.

Activation functions Linear, sigmoid and ReLu

Batch sizes [32, 64, 128, 256, 672]

Optimizer SGD with momentum

Learning rates [0.001, 1] divided by number of iterations.

Clipping norm 0.1 to 1 at steps of 0.1

(a) LSTM

Hyperparameter Range

Number of neurons 2i where i = [3, 9]

Number of layers 1 to 3

Dropout % [0, 0.25, 0.5]

Recurrent dropout % [0, 0.25, 0.5]

Weights initializer He normal and Glorot normal.

Activation functions Linear, sigmoid and ReLu

Batch sizes [32, 64, 128, 256, 672]

Optimizer RMSProp

Learning rates [0.00001, 0.01] divided by number of iterations.

Clipping norm 0.1 to 1 at steps of 0.1

(b) GRU

Table 7.30: Hyperparameter ranges of the random search strategy for recurrent NN
methods.

only in the RNN methods (although it is available for all methods, as it is part of the
optimizer tool) is the value used for clipping the gradient norm in case of exceedings on
it (remember that this technique is used to prevent the exploding gradient phenomenon
explained in Section 5.2.2.9).

7.5 NN experiments - Antwerp

Table 7.31 presents the dates of the data considered for the training, validation and test
sets for each of the experiments on the Antwerp sectors. The aim of the experiments in
this section is to detect the behaviour of the different NN models when training them
with time series data from parking occupancy.

Sector Training Validation Test

Pelikaanstraat 2018-02-01, 2019-01-19 2019-01-20, 2019-03-04 2019-03-05, 2019-04-17

Van Wesenbekestraat Zone 1 2018-12-13, 2019-10-16 2019-10-17, 2019-11-23 2019-11-24, 2019-12-31

Van Wesenbekestraat Zone 2 2018-12-13, 2019-10-16 2019-10-17, 2019-11-23 2019-11-24, 2019-12-31

Van Schoonhovestraat Zone 1 2019-02-24, 2019-10-30 2019-10-31, 2019-11-30 2019-12-01, 2019-12-31

Van Schoonhovestraat Zone 2 2019-02-24, 2019-10-30 2019-10-31, 2019-11-30 2019-12-01, 2019-12-31

Van Schoonhovestraat Zone 3 2019-02-24, 2019-10-30 2019-10-31, 2019-11-30 2019-12-01, 2019-12-31

Table 7.31: Antwerp sector intervals of dates used for the training, validation and test
sets.
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Experiment name Number of neurons Number of layers Dropout % Weights initializer Activation function Batch size Optimizer Learning rate

MLP_endogenous_antwerp_pelikaanstraat 64 3 0.25 He normal ReLu 672 RMSProp 0.00028786

MLP_endogenous_antwerp_vanwesenbekestraat 512 4 0.25 Glorot normal Linear 64 RMSProp 0.00436647

MLP_endogenous_antwerp_vanwesenbekestraat2 128 3 0.25 Glorot normal ReLu 128 RMSProp 0.00265265

MLP_endogenous_antwerp_vanSchoonhovestraat1 64 3 0 He normal ReLu 256 RMSProp 0.00363

MLP_endogenous_antwerp_vanSchoonhovestraat2 64 4 0.25 Glorot normal Linear 64 RMSProp 0.000418

MLP_endogenous_antwerp_vanSchoonhovestraat3 64 5 0.5 He normal Linear 64 RMSProp 0.0002242

Table 7.32: Antwerp MLP candidate model characteristics.

Experiment name RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6 Mean RMSE

MLP_endogenous_antwerp_pelikaanstraat 0.110130 0.133542 0.150384 0.162346 0.172676 0.179238 0.153562

MLP_endogenous_antwerp_vanwesenbekestraat 0.095566 0.116724 0.125885 0.131969 0.133297 0.133658 0.124019

MLP_endogenous_antwerp_vanwesenbekestraat2 0.101069 0.124634 0.135584 0.143275 0.146959 0.148462 0.134506

MLP_endogenous_antwerp_vanSchoonhovestraat1 0.123471 0.139036 0.148395 0.154933 0.158351 0.161390 0.149402

MLP_endogenous_antwerp_vanSchoonhovestraat2 0.157954 0.204540 0.235772 0.255512 0.268585 0.280565 0.237706

MLP_endogenous_antwerp_vanSchoonhovestraat3 0.13 0.156846 0.166445 0.173264 0.176913 0.177004 0.164277

Table 7.33: Antwerp MLP candidate model RMSE values in the test set.

7.5.1 MLP

Hyperparameter values obtained by the random search strategy in order to obtain can-
didate MLP models for the Antwerp scenario are presented in Table7.32. The most
common values are 64 neurons in each hidden layer, 3 hidden layers, and unbounded
activation functions (ReLu and linear ones).
Table 7.33 presents the RMSE scores for the MLP experiments in Antwerp based on fore-
casting hours one to six and their mean. The error rate obtained for the first forecasting
hours is higher than those from ARIMA models, but it becomes less as the forecasting
steps go further. Similarly to ARIMA, the sectors with more regular patterns present
fewer errors than those that are more chaotic, especially for those with a low number of
parking places. In particular, the model for the sector Van Schoonhovestraat 2 obtained
very high error rates at forecasts for six hours in advance, due to the uncertainty that
is inherent to the sector.
Figure 7.48 presents the visualizations of the different forecasting horizon steps one to six
for the experiment MLP_endogenous_antwerp_pelikaanstraat. The visualizations give
the impression that the model has learnt the different patterns of the parking occupancy
for days and weeks . It can be seen that the values of the forecasts are a bit lower when
compared to those of the true values. It is also noticeable that, as the forecasting steps
go further, the forecasted values become closer to the mean value of the time series. This
effect is the model’s response to the uncertainty about the future.
From now on, the visualizations will focus only on the first forecasting steps for all
the sectors in order to compare them with those from the ARIMA models. Figure
7.49 presents the visualizations for the first forecasting steps for all Antwerp sectors.
The visualization of the Pelikaanstraat candidate model is well adjusted to the changes
in patterns due to multiple seasonalities in the data, and thus it provides lower or
higher values, depending on the day of the week and after making distinctions between
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Figure 7.48: Antwerp Pelikaanstraat MLP forecast visualizations. From top left to
bottom right are steps one to six
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Experiment name Number of neurons Number of layers Dropout % Recurrent dropout % Weights initializer Activation function Batch size Optimizer Learning rate Clipping norm value

LSTM_endogenous_antwerp_pelikaanstraat 8 1 0.25 0.25 Glorot normal Sigmoid 64 SGD 0.02151 0.8

LSTM_endogenous_antwerp_vanwesenbekestraat 64 3 0.25 0.25 He normal Linear 64 SGD 0.55276 0.4

LSTM_endogenous_antwerp_vanwesenbekestraat2 128 2 0.25 0 He normal Linear 128 SGD 0.01078 0.6

LSTM_endogenous_antwerp_vanSchoonhovestraat1 8 3 0 0.25 He normal Linear 128 SGD 0.0299967 0.6

LSTM_endogenous_antwerp_vanSchoonhovestraat2 256 3 0.5 0 Glorot normal Linear 672 SGD 001710 0.9

LSTM_endogenous_antwerp_vanSchoonhovestraat3 32 3 0.25 0 He normal Linear 672 SGD 0.0279009 0.6

Table 7.34: Antwerp LSTM candidate model characteristics.

Experiment name RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6 Mean RMSE

LSTM_endogenous_antwerp_pelikaanstraat 0.110668 0.137267 0.153259 0.165521 0.174594 0.181250 0.155625

LSTM_endogenous_antwerp_vanwesenbekestraat 0.103780 0.126287 0.137642 0.141567 0.142330 0.144293 0.133610

LSTM_endogenous_antwerp_vanwesenbekestraat2 0.093660 0.121632 0.137392 0.148286 0.154991 0.159997 0.137875

LSTM_endogenous_antwerp_vanSchoonhovestraat1 0.113743 0.132188 0.144037 0.145389 0.153726 0.155251 0.141533

LSTM_endogenous_antwerp_vanSchoonhovestraat2 0.177184 0.214003 0.231087 0.237052 0.254416 0.258750 0.233800

LSTM_endogenous_antwerp_vanSchoonhovestraat3 0.138450 0.157465 0.166710 0.171605 0.175181 0.175716 0.164694

Table 7.35: Antwerp LSTM candidate model RMSE values in the test set.

weekdays and weekends. Similar behaviour can be seen in the other candidate model
forecasts. One thing to notice is that, in general, the forecasted values are lower than
those of the real occupancy, which is noticeable for those sectors where days have sudden
high values for short intervals of time. The only sector in which the visualizations
present notable discrepancies between the forecast values and the real occupancy is the
sector Van Schoonhovestraat Zone 2. As mentioned in other sections, this sector has a
low number of parking places and its behaviour was identified as a random walk after
performing the ARIMA analysis.

7.5.2 LSTM

Table 7.34 presents the hyperparameter values of the candidate models from the LSTM
methodology in the city of Antwerp. It is of interest that the linear activation function
is the most common one, meaning that non-linearities offered by NN methods do not
play a role when the LSTM models are applied to this data.
Table 7.35 presents the error scores for the MLP experiments in Antwerp. Similar
results have been obtained for all the models with mean RMSE values of around 0.14.
The Van Schoonhovestraat 2 model is the one with the highest error rate, but this is
not unexpected because it is already known that it behaves like a random walk.
The visualizations for the different horizon steps one to six are presented in Figure 7.50
for the sector Pelikaanstraat in order to observe the behaviour of the forecasts as the
forecasting steps increase. Similarly to MLP (see Figure 7.48), the LSTM forecasts the
mean as the prediction goes further in time.
Figure 7.51 presents the visualizations for the first forecasting steps from the Antwerp
models. The visualizations show that models learn the patterns throughout the days and
give accurate forecasts for those sectors with uniform patterns. It is noticeable that for
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Figure 7.49: Antwerp MLP candidate model first step forecast plots. The first row are
the sectors Pelikaanstraat and Van Wesenbekestraat Zone 1. Second row are sectors
Van Wesenbekestraat Zone 2 and Van Schoonhovestraat Zone 1. The third row are
the sectors Van Schoonhovestraat Zone 2 and Van Schoonhovestraat Zone 3.
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Figure 7.50: Antwerp Pelikaanstraat LSTM forecast visualizations. From top left to
bottom right are steps one to six
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Experiment name Number of neurons Number of layers Dropout % Recurrent dropout Weights initializer Activation function Batch size Optimizer Learning rate Clipping norm value

GRU_endogenous_antwerp_pelikaanstraat 32 1 0.25 0 He normal Sigmoid 672 RMSProp 0.00001 0.2

GRU_endogenous_antwerp_vanwesenbekestraat 16 2 0.25 0 He normal Linear 256 RMSProp 0.0001271 0.9

GRU_endogenous_antwerp_vanwesenbekestraat2 256 3 0.25 0 He normal Sigmoid 672 RMSProp 0.00100 0.2

GRU_endogenous_antwerp_vanschoonhovestraat1 128 3 0.25 0 He normal ReLu 128 RMSProp 0.00028981 0.5

GRU_endogenous_antwerp_vanschoonhovestraat2 32 1 0.25 0 Glorot normal Sigmoid 128 RMSProp 0.0000609171 0.4

GRU_endogenous_antwerp_vanschoonhovestraat3 8 1 0 0.25 Glorot normal Linear 32 RMSProp 0.00176222 0.7

Table 7.36: Antwerp GRU candidate model characteristics.

Experiment name RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6 Mean RMSE

GRU_endogenous_antwerp_pelikaanstraat 0.113561 0.135125 0.151318 0.165038 0.173547 0.182441 0.157462

GRU_endogenous_antwerp_vanwesenbekestraat 0.103207 0.124504 0.131194 0.137746 0.142796 0.132778 0.129447

GRU_endogenous_antwerp_vanwesenbekestraat2 0.099607 0.120591 0.128654 0.138555 0.139059 0.141712 0.129501

GRU_endogenous_antwerp_vanschoonhovestraat1 0.119425 0.134792 0.141594 0.144979 0.146056 0.148689 0.139435

GRU_endogenous_antwerp_vanschoonhovestraat2 0.163100 0.201986 0.229196 0.245610 0.258182 0.265528 0.229798

GRU_endogenous_antwerp_vanschoonhovestraat3 0.1280 0.15256 0.162955 0.167865 0.169857 0.171224 0.15943

Table 7.37: Antwerp GRU candidate model RMSE values in the test set.

sectors with more variability, the models cannot predict peaks of high/low occupancy,
which can be seen clearly in the Pelikaanstraat visualization.

7.5.3 GRU

Table 7.36 presents the hyperparameter values of the candidate models for the GRU
methodology in the city of Antwerp. The most common hyperparameter values are the
non-usage of recurrent dropout for nearly all models while using a 25% dropout for the
units in the hidden layers. Unlike LSTM, the GRU models for Antwerp make use of
non-linear activation functions.
Table 7.37 presents the RMSE for the GRU experiments in Antwerp, from one to six
forecast steps and their mean. Notice that, compared to models from previous method-
ologies, the error increases slowly as the forecasting steps increase. Errors are a bit
higher than those from LSTM for the first forecasting steps. Also, similar to the other
methods, the model from Van Schoonhovestraat Zone 2 shows the highest errors.
The visualizations for forecasts at the different horizon steps one to six are presented in
Figure 7.52 for the Pelikaanstraat GRU model. At first hand, the behaviour is similar
to those of the MLP and LSTM models, with decay towards the mean as the forecasting
horizon increases. However, GRU shows slower decay when compared to the other
methods.
Figure 7.53 presents the visualizations for the first forecasting steps of all GRU models
for the sectors in Antwerp . The visualizations are surprising, because the forecasts
for some sectors like Pelikaanstraat are very accurate, while the model for others (Van
Schoonhovestraat Zone 1) seems to perform exponential smoothing. It is interesting
how the model has captured the level changes in the sector Van Schoonhovestraat Zone
2 while maintaining the same occupancy value for successive hours, which is something
that did not happen with the MLP and LSTM models for that sector. Forecasts from the
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Figure 7.51: Antwerp LSTM candidate model first forecasting step plots. The first
row are the sectors Pelikaanstraat and Van Wesenbekestraat Zone 1. Second row are
sectors Van Wesenbekestraat Zone 2 and Van Schoonhovestraat Zone 1. The third
row are the sectors Van Schoonhovestraat Zone 2 and Van Schoonhovestraat Zone 3.
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Figure 7.52: Antwerp Pelikaanstraat GRU forecast visualizations. From top left to
bottom right are steps one to six
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model for the sector Van Schoonhovestraat Zone 3 replicate the most recent occupancy,
but with a lower value. Thus, it acts like a naive forecast (the next forecast will be the
same as the actual value) but with lower “power”, as it does not achieve the same level
of peaks and valleys.

7.6 NN experiments - Barcelona

Table 7.38 presents the date range for the training, validation and test sets for each of
the experiments on the sectors in the city of Barcelona. With the experiments presented
in this section, the goal is to study how well NN models can capture time series data
that consists of two well-defined distributions in which one corresponds to the weekdays
and the other to the weekends.

7.6.1 MLP

Table 7.39 presents the hyperparameter values for the candidate model for the Regular
sector in Barcelona, and Table 7.40 shows the RMSE achieved by the model at forecasts
one to six.
The visualizations of the forecasts of the candidate MLP model for the Barcelona sector
(Figure 7.54) show that the model has learnt the patterns of the occupancy for the
different horizon steps, although it fails at the occupancy values for the weekend and
offers lower peak levels at the sixth forecasting step.

7.6.2 LSTM

The Barcelona LSTM candidate model hyperparameter values are presented in Table
7.41. Compared to the MLP values, the model has fewer neurons while using recurrent
dropout and the ReLu activation function.
RMSE values for the LSTM model for the Regular sector in Barcelona are shown in
Table 7.42. At each forecasting step, the error seems to increase more or less linearly.
The visualizations of the forecasts at different horizon steps one to six are presented in
Figure 7.55 for the model trained with the data from the Regular sector in Barcelona.
Forecasts show that the model is able to capture the common patterns and gives lower

Sector Training Validation Test

Regular 2018-01-08, 2019-08-09 2019-08-10, 2019-10-20 2019-10-21, 2019-12-31

Table 7.38: Barcelona sector intervals of dates used for the training, validation and
test sets.
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Figure 7.53: Antwerp GRU candidate model first forecasting step plots. The first row
are the sectors Pelikaanstraat and Van Wesenbekestraat Zone 1. Second row are the
sectors Van Wesenbekestraat Zone 2 and Van Schoonhovestraat Zone 1. The third
row are the sectors Van Schoonhovestraat Zone 2 and Van Schoonhovestraat Zone 3.

Experiment name Number of neurons Number of layers Dropout % Weights initializer Activation function Batch size Optimizer Learning rate

MLP_endogenous_barcelona_regular 256 4 0.5 He normal Linear 672 RMSProp 0.00282544

Table 7.39: Barcelona MLP candidate model characteristics.

Experiment name RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6 Mean RMSE

MLP_endogenous_barcelona_regular 0.092727 0.109607 0.119814 0.125462 0.130421 0.135289 0.119841

Table 7.40: Barcelona MLP candidate model RMSE values in the test set.
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Figure 7.54: Barcelona Regular sector MLP model forecast visualizations. From top
left to bottom right are steps one to six

Experiment name Number of neurons Number of layers Dropout % Recurrent dropout % Weights initializer Activation function Batch size Optimizer Learning rate Clipping norm value

LSTM_endogenous_barcelona_regular 16 2 0 0.5 He normal ReLu 256 SGD 0.0542547 0.4

Table 7.41: Barcelona LSTM candidate model characteristics for Regular sector.

Experiment name RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6 Mean RMSE

LSTM_endogenous_barcelona_regular 0.100250 0.113873 0.128788 0.146382 0.164747 0.175187 0.141719

Table 7.42: Barcelona LSTM candidate model RMSE values in the test set.
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Experiment name Number of neurons Number of layers Dropout % Recurrent dropout Weights initializer Activation function Batch size Optimizer Learning rate Clipping norm value

GRU_endogenous_barcelona_regular 256 2 0.25 0 Glorot normal Sigmoid 64 RMSProp 0.00001291478 0.9

Table 7.43: Barcelona GRU candidate model characteristics.

Experiment name RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6 Mean RMSE

GRU_endogenous_barcelona_regular 0.096280 0.114129 0.130481 0.142458 0.148959 0.158079 0.133832

Table 7.44: Barcelona GRU candidate model RMSE values in the test set.

occupancy levels for weekends, but at one forecasting step it overestimates the occupancy
levels. As the forecasting steps increase, the occupancy levels become the mean value of
the series.

7.6.3 GRU

Table 7.43 presents the hyperparameter values for the GRU experiment in the Regular
sector of Barcelona. It has the same number of hidden layers as the LSTM model and
the same number of neurons as the MLP. Unlike LSTM, it has dropout on the input
neurons and uses the sigmoid activation function.
The RMSE values presented in Table 7.44 show that the GRU candidate model scores
in between the MLP and LSTM candidate models, as the former has lower values and
the latter has higher ones.
The Barcelona GRU model visualizations at the different horizon steps one to six are
presented in Figure 7.56. Unlike LSTM, GRU captures the levels of the series better,
but it overestimates the occupancy at the weekends. As the prediction goes further, the
GRU model offers a smoothed version of the real time series.

7.7 NN experiments - Wattens

Table 7.45 presents the date range for the training, validation and test sets for each
of the experiments presented for the sectors in the city of Wattens. The goal of this
scenario is to ascertain the difference between the models of two sectors in the same
zone with the same usage but that differ in the number of places and (possibly) in their
users.

7.7.1 MLP

The characteristics of the MLP candidate models obtained by random search for the
Wattens sectors are presented in Table 7.46. Although the time series from both sectors
are similar (as shown in 3.5.3), the obtained models are quite different.
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Figure 7.55: Barcelona Regular LSTM forecast visualizations. From top left to bottom
right are steps one to six.

Sector Training Validation Test

Inside 2018-03-01, 2019-02-23 2019-02-24, 2019-04-09 2019-04-10, 2019-05-23

Outside 2018-03-01, 2019-02-23 2019-02-24, 2019-04-09 2019-04-10, 2019-05-23

Table 7.45: Wattens sector intervals of dates used for the training, validation and test
sets.
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Figure 7.56: Barcelona experiment forecast visualizations. From top left to bottom
right are steps one to six

Experiment name Number of neurons Number of layers Dropout % Weights initializer Activation function Batch size Optimizer Learning rate

MLP_endogenous_wattens_inside 128 1 0.25 He normal ReLu 256 RMSProp 0.00386

MLP_endogenous_wattens_outside 256 5 0.5 He normal Sigmoid 256 RMSProp 0.004920.00400

Table 7.46: Wattens MLP candidate model characteristics.
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Experiment name RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6 Mean RMSE

MLP_endogenous_wattens_inside 0.056937 0.081595 0.101219 0.116856 0.127939 0.138484 0.107350

MLP_endogenous_wattens_outside 0.167275 0.168808 0.160449 0.161442 0.173651 0.192762 0.173874

Table 7.47: Wattens MLP candidate model RMSE values in the test set.

Experiment name Number of neurons Number of layers Dropout % Recurrent dropout % Weights initializer Activation function Batch size Optimizer Learning rate Clipping norm value

LSTM_endogenous_wattens_inside 16 2 0.25 0 He normal Linear 256 SGD 0.00483981 0.8

LSTM_endogenous_wattens_outside 32 2 0 0 He normal Sigmoid 64 SGD 0.39419 0.2

Table 7.48: Wattens LSTM candidate model hyperparameter values.

Table 7.47 presents the scores for the MLP experiments in Wattens. It is surprising how
the model for the Outside sector achieved a higher error rate than the candidate model
for the Inside sector, although both sectors presented similar time series. It would be
interesting to find out if this is repeated in the results from recurrent methods.
Figure 7.57 offers visualizations of the MLP candidate model for the Inside sector in
Wattens at different forecasting horizons (one to six). The model is able to capture
the different patterns in the data, like weekday and weekend occupancies, although
its forecast overestimates the actual weekend occupancy. Unlike some other previous
models, the forecast values do not become the mean as the forecasting steps go further,
thus indicating that the model is able to output accurate forecasts for the parking
occupancy six hours in advance.
Figure 7.58 presents the visualizations for the Outside sector in Wattens for different
time horizons (one to six). Similarly to the Inside sector, the visualizations show that
the model is able to reproduce the patterns that occur throughout the day and the
differences between weekdays and weekends. The visualizations do not provide any clue
that explains why the RMSE is far higher in the Outside model when compared to the
RMSE obtained from the Inside model.

7.7.2 LSTM

Table 7.48 presents the hyperparameter values for the LSTM candidate models for the
Wattens experiments. Both models are based on a low number of neurons and share the
same number of layers.
Table 7.49 presents the RMSE values for the LSTM candidate models for the experiments
in the Wattens scenario. It can be observed that, as the forecasting steps increase, the
differences become smaller. In other words, the difference between the first and second
steps of the Inside sector is nearly 0.035, but between the fifth and sixth forecasting
steps it is 0.014. The Outside sector presents a huge increase in the error between steps
one, two and three.
The visualizations in Figure 7.59 present the forecasts of the LSTM candidate model
for the experiment LSTM_endogenous_wattens_inside. It can be observed that the
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Figure 7.57: Wattens Inside sector MLP candidate model forecast visualizations. From
top left to bottom right are steps one to six

Experiment name RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6 Mean RMSE

LSTM_endogenous_wattens_inside 0.063618 0.098741 0.126547 0.149175 0.162757 0.176160 0.134990

LSTM_endogenous_wattens_outside 0.095564 0.132638 0.162885 0.186857 0.191105 0.220024 0.169323

Table 7.49: Wattens LSTM candidate model RMSE values in the test set.
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Figure 7.58: Wattens MLP candidate model for the Outside sector forecasts from one
to six.
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Experiment name Number of neurons Number of layers Dropout % Recurrent dropout % Weights initializer Activation function Batch size Optimizer Learning rate Clipping norm value

GRU_endogenous_wattens_inside 32 2 0.25 0 He normal Sigmoid 672 RMSProp 0.000373002 0.6

GRU_endogenous_wattens_outside 64 2 0.25 0 He normal Sigmoid 128 RMSProp 0.00370607 0.8

Table 7.50: Wattens GRU candidate model hyperparameter values.

Experiment name RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6 Mean RMSE

GRU_endogenous_wattens_inside 0.056622 0.079935 0.100578 0.116191 0.127633 0.139902 0.107230

GRU_endogenous_wattens_outside 0.083591 0.116279 0.139536 0.156237 0.165543 0.174135 0.142176

Table 7.51: Wattens GRU candidate model RMSE values in the test set.

model provides good forecasts, especially in the first steps; but at higher horizon steps
the model overestimates the parking occupancy at the weekends, giving the impression
(at the sixth forecasting step) that it outputs occupancy for another day of the weekday
instead of for a weekend day.
Figure 7.60 presents the visualizations for the considered time horizons (one to six) for
the LSTM candidate model trained on the data from the Outside sector in Wattens. The
visualizations for the first forecasting step from the Outside sector show that the model
has been able to learn the patterns across the weeks, but it fails by underestimating the
occupancy, as it forecasts occupancies below 0. As the forecasting steps increase, the
effect of having occupancies below zero continues to happen, with the exception of time
step five.

7.7.3 GRU

The GRU candidate model hyperparameter values are presented in Table 7.50 for the
Wattens experiments. Both models are similar in that they use a small number of
neurons, two layers and the same activation function.
Table 7.51 shows the candidate model RMSE values for the sectors in Wattens. Similarly
to the LSTM candidate models, the candidate model for the Outside sector presents a
higher increase in the RMSE values between the first and later forecasting steps. At
later prediction steps, the error does not increase as much as in the LSTM candidate
model.
The visualizations of the forecasts at different horizon steps one to six are presented
in Figure 7.61 for the Inside sector. The visualizations show that the candidate model
offers accurate forecasts for nearly all the forecasting steps. Similarly to LSTM, weekend
occupancies are overestimated, but to a lower degree when compared to LSTM – and it
is only notable for forecasts at the sixth step.
Figure 7.62 contains the visualizations at different forecasting steps of the occupancy
values provided by the GRU candidate model for the Outside sector in Wattens. Pre-
dictions are quite similar between the visualizations but noticeable differences can be
observed on the weekends, where the model predicts a higher occupancy.
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Figure 7.59: Wattens Inside LSTM forecast visualizations. From top left to bottom
right are forecasting steps one to six.
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Figure 7.60: Wattens Outside LSTM forecast visualizations. From top left to bottom
right are forecasting steps one to six.
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Figure 7.61: Wattens Inside GRU forecast visualizations. From top left to bottom
right are forecasting steps one to six.
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Figure 7.62: Wattens Outside GRU forecast visualizations. From top left to bottom
right are forecasting steps one to six.
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Sector Training Validation Test

Standard 2018-04-01, 2019-07-01 2019-07-02, 2019-08-27 2019-08-28, 2019-10-23

Permit 2018-04-01, 2019-07-01 2019-07-02, 2019-08-27 2019-08-28, 2019-10-23

ZipCar 2018-04-01, 2019-07-01 2019-07-02, 2019-08-27 2019-08-28, 2019-10-23

Disabled 2018-04-01, 2019-07-01 2019-07-02, 2019-08-27 2019-08-28, 2019-10-23

Table 7.52: Los Angeles sector intervals of dates used for the training, validation and
test sets.

Experiment name Number of neurons Number of layers Dropout % Weights initializer Activation function Batch size Optimizer Learning rate

MLP_endogenous_LA_Standard 1024 4 0.5 He normal ReLu 128 RMSProp 0.00279

MLP_endogenous_LA_Permit 64 4 0.25 Glorot normal Linear 672 RMSProp 0.00725562

MLP_endogenous_LA_ZipCar 64 2 0.25 Glorot normal Sigmoid 672 RMSProp 0.00137

MLP_endogenous_LA_Disabled 256 5 0.5 Glorot normal ReLu 256 RMSProp 0.00277038

Table 7.53: Los Angeles MLP candidate model hyperparameter values.

7.8 NN experiments - Los Angeles

Table 7.52 presents the date range for the training, validation and test sets for each of the
experiments presented for the sectors in the city of Los Angeles. The main concerns being
investigated in this scenario are: whether the models are able to overcome a change in
distribution in the realizations of the time series, as happens in the Standard and Permit
sectors; how the models overcome sector idiosyncrasies that are characterized by their
users (in other words, how different is the Permit sector model of reserved parking spots
from that of the Disabled sector for people with disabilities?); and how the proximity of
the sectors is presented in the models.

7.8.1 MLP

Table 7.53 shows the values of the hyperparameters obtained by random search from
the MLP experiments in the city of Los Angeles. There are no common patterns in the
values of the hyperparameters that can be linked to their usage or proximity.
Table 7.54 presents the RMSE values from the MLP candidate models for Los Angeles.
The low error levels achieved by some of them are due to the fact that the test data
included some parking places that were closed and thus the occupancy levels became
low, especially in the Permit sector. Despite the low occupancy levels, the patterns
across the hours of the days remain, and not all the sectors were affected by the effect
of works in the zone.
Figure 7.63 shows the forecasts for six different forecasting steps from the candidate
model of the Standard sector. The model outputs different occupancy levels for weekdays
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Experiment name RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6 Mean RMSE

MLP_endogenous_LA_Standard 0.083213 0.091379 0.096799 0.102012 0.105445 0.112373 0.099285

MLP_endogenous_LA_Permit 0.026132 0.027593 0.028446 0.029413 0.030845 0.032627 0.029377

MLP_endogenous_LA_ZipCar 0.065272 0.088367 0.099961 0.106587 0.111648 0.115079 0.099335

MLP_endogenous_LA_Disabled 0.068539 0.070388 0.073355 0.076586 0.078879 0.079243 0.074189

Table 7.54: Los Angeles MLP candidate model RMSE values in the test set, by hour
and on average.

Experiment name Number of neurons Number of layers Dropout % Recurrent dropout % Weights initializer Activation function Batch size Optimizer Learning rate Clipping norm value

LSTM_endogenous_LA_Standard 128 2 0.5 0 He normal ReLu 128 SGD 0.0285305 0.9

LSTM_endogenous_LA_Permit 512 1 0 0.25 Glorot normal Linear 32 SGD 0.77142755 0.6

LSTM_endogenous_LA_ZipCar 512 1 0.5 0 Glorot normal Linear 672 SGD 0.0022204800 0.8

LSTM_endogenous_LA_Disabled 128 1 0.25 0.5 He normal Linear 672 SGD 0.0028594766 0.8

Table 7.55: Los Angeles LSTM candidate model hyperparameter values.

and weekends, although the minimum level is a bit above zero. Unlike observations from
other experiments, the levels of the predictions do not shrink as the forecasting steps go
further.
The first forecasting steps presented in Figure 7.64 show that the models are able to
overcome the change in distribution of the test set. Furthermore, we can see that they
provide adequate forecasts of the occupancy levels, which have become much lower than
the levels for the training data. One can observe that, although the model responses
seem adequate, their occupancy peaks are always a bit lower.

7.8.2 LSTM

LSTM hyperparameter values are presented in Table 7.55 for each of the candidate
models from the Los Angeles sectors. The values of the models do not change a lot, as
they have either 128 or 512 neurons and linear or ReLu activation functions (unbounded
activation functions, like in Antwerp). Only the candidate model for the Standard sector
has two hidden layers.
Table 7.56 shows that the LSTM candidate model for the Standard sector has a far
greater error than the MLP candidate model, indicating that recurrent NN struggles
with the distribution changes in the time series and are not able to adapt to them.
Despite that, the scores in the other sectors are similar to those from the corresponding
MLP ones. Although the Permit sector also has a distribution change, it surprisingly
has a similar RMSE score as the MLP candidate model.
The visualizations of forecasts at different forecasting horizons (one to six hours) are
presented in Figure 7.65. They show that, although the model provides occupancies
below zero, the forecasted occupancies follow the shape of the time series with adequate
levels throughout the days and weeks.
Figure 7.66 presents the visualizations for the first forecasting steps for the Los Angeles
sectors. They show accurate forecasts at the first forecasting step, but it decaysas further
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Figure 7.63: Los Angeles Standard MLP forecast visualizations from the candidate
model. From top left to bottom right are steps one to six

Experiment name RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6 Mean RMSE

LSTM_endogenous_LA_Standard 0.157765 0.170322 0.187332 0.202759 0.221877 0.232236 0.198609

LSTM_endogenous_LA_Permit 0.023564 0.026408 0.028256 0.030966 0.0344788 0.029721 0.030148

LSTM_endogenous_LA_ZipCar 0.065059 0.088938 0.101202 0.108231 0.1166095 0.119523 0.101638

LSTM_endogenous_LA_Disabled 0.055212 0.079277 0.087534 0.119898 0.143644 0.192689 0.126183

Table 7.56: Los Angeles LSTM candidate model RMSE values in the test set.

372



7.8 NN experiments - Los Angeles Computational experiments - Neural Networks

Figure 7.64: Los Angeles MLP candidate model first forecasting step plots. The first
row are the Standard and Permit sectors. The sectors in the second row are ZipCar
and Disabled.
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Figure 7.65: Standard sector from the Los Angeles LSTM forecast visualizations. From
top left to bottom right are forecasting steps one to six.
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Figure 7.66: Los Angeles LSTM candidate model step one forecasts. The first row
corresponds to the sectors Standard and Permit. The visualizations in the bottom
row are from the ZipCar and Disabled sectors.

Experiment name Number of neurons Number of layers Dropout % Recurrent dropout % Weights initializer Activation function Batch size Optimizer Learning rate Clipping norm value

GRU_endogenous_LA_Standard 64 2 0.25 0.5 Glorot normal Linear 256 RMSProp 0.0001738 0.5

GRU_endogenous_LA_Permit 8 2 0.25 0 He normal Linear 32 RMSProp 0.008523 0.3

GRU_endogenous_LA_ZipCar 64 2 0.5 0 Glorot normal Sigmoid 32 RMSProp 0.00002339 0.2

GRU_endogenous_LA_Disabled 16 3 0 0.25 Glorot normal ReLu 672 RMSProp 0.00193683 0.2

Table 7.57: Los Angeles GRU candidate model hyperparameter values.

are the step from the current time. Forecasts from ZipCar and Disabled sectors present
an small offset with respect to the flat level of the series.

7.8.3 GRU

The hyperparameter values obtained for the GRU candidate models for the Los Angeles
sectors are presented in 7.57. In contrast to LSTM, the candidate GRU models make
use of a higher number of hidden layers (two and three). However, on the other hand,
they also make use of unbounded activation functions (except the ZipCar sector).
Table 7.58 presents the scores for the GRU experiments in the city of Los Angeles.
Notice that the different candidate models present very similar RMSE values across the
different forecasting horizons. The reason for this behaviour is explained later.
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Experiment name RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6 Mean RMSE

GRU_endogenous_LA_Standard 0.145115 0.144743 0.144704 0.143890 0.144326 0.142233 0.143721

GRU_endogenous_LA_Permit 0.032748 0.029283 0.031485 0.033495 0.034186 0.037622 0.032948

GRU_endogenous_LA_ZipCar 0.119933 0.130471 0.136913 0.140708 0.145512 0.145386 0.137795

GRU_endogenous_LA_Disabled 0.081012 0.086450 0.085712 0.092816 0.084150 0.079378 0.092937

Table 7.58: Los Angeles GRU candidate model RMSE values in the test set.

Figure 7.67 shows that the GRU model has converged towards the mean of the series
and is not able to learn the time patterns in the Standard scenario, thus presenting a
flat shape. Possible explanations for these results are: the regularization is too high in
the model; it is not able to generalize data that is not used in training; or the model is
incapable of facing a change in the distribution of data realizations.
The first task was to relax the recurrent regularization value in order to check if the model
is able to learn the daily patterns. Figure 7.68 presents the realizations of the candidate
model with no recurrent dropout. This time, the model has learnt the daily patterns of
the sector but has signs of suffering from changes in the distribution, as it is not able
to adapt to the lower values of the series and also provides negative parking occupancy
values. It is interesting to note that the model forecasts low parking occupancy for the
three-day weekend at the end of August. The most likely explanation for this is that
the model predicts low values if the previous hours had low occupancy values (which is
the case, because the previous day was Sunday). As the forecasting steps increase, the
predictions at the weekends is slightly higher than the ones expected.
Another point that is worth exploring is the behaviour of the model with the data before
street works happened in the sector. The visualizations in Figure 7.69 present the model
trained with data mainly from 2018. Note that the model has been able to learn the
patterns because they are more stable, despite the recurrent dropout value used (0.25).
This shows that a high dropout value can make a model unable to learn the recurrent
patterns, especially if the distribution of the data changes during the training set –
something that is prone to happen in time series.Also, the practioner needs to be aware
that, if the changes of distribution are not in the training set data used for the random
search, a model with high error rates (as in our case) can result from using the same
hyperparameters in the training and validation sets to train a model and in the test set
to evaluate it.
Figure 7.70 presents the visualizations for the first forecasting steps for all sectors in Los
Angeles. For the Permit sector, there was no need to tune the recurrent dropout, as the
random search selected a model with no recurrent dropout and the visualization shows
that the model has been able to adapt to the change in distribution. What is more,
it predicts low occupancy levels that are in concordance with the available number of
parking places in the sector during the street works. The candidate models obtained
with random search for the sectors ZipCar and Disable offer forecast values that coincide
with the mean, and this indicates that the models are subject to the same issue that
occurred in the Standard sector. An individual exploration of the hyperparameters is
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Figure 7.67: The Los Angeles Standard sector GRU forecast visualizations at different
horizon steps . From top left to bottom right are forecasting steps one to six.
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Figure 7.68: Los Angeles Standard sector GRU forecast visualizations at different
horizon steps using the candidate model with a less recurrent dropout value. From
top left to bottom right are forecasting steps one to six.
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Figure 7.69: Los Angeles Standard sector GRU forecast visualizations at different
horizon steps with data before the street works in the sector. From top left to bottom
right are forecasting steps one to six.

379



7.8 NN experiments - Los Angeles Computational experiments - Neural Networks

Figure 7.70: Los Angeles GRU candidate model step one forecasts. The first row
corresponds to the sectors Standard and Permit. The visualizations in the bottom
row are from the ZipCar and Disabled sectors.

offered next, in order to obtain better candidate models.
As the candidate model for the ZipCar sector forecasts the mean and the recurrent
dropout is already 0, the next step would be to reduce the dropout to 0 and check if
the model is able to learn recurrent patterns. The visualization on the left in Figure
7.71 shows the first forecasting step for the ZipCar candidate model without dropout
regularization. The results continue to be the same as those from the previous version
of the model (although it started to “jiggle”), so the next step was to reduce the model
complexity by using one hidden layer instead of two. As can be seen in the visualization
at the right, the model forecasts are more aligned with the ground truth values. This
could indicate that random walk processes can be modeled using an RNN with one
hidden layer and no regularization (or a high number of hidden units with dropout, like
in the LSTM candidate model for ZipCar).
For the Disabled sector, the first step was to reduce the recurrent dropout. This did
not improve the visualizations, so the next step was to reduce the model complexity by
reducing the number of hidden layers to two. With this, the forecasts began to become
more like the ground truth. The next step was to increase the number of units in the
hidden layers in order to increase model capacity. This last change made the model able
to provide good enough forecasts, but a close-up visualization indicates that, in fact, the
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Figure 7.71: Los Angeles GRU candidate model for the ZipCar sector with no regular-
ization. Left is the model with two hidden layers and right the model with only one.

Figure 7.72: The visualizations from the outputs of Los Angeles GRU modified candi-
date model for the ZipCar sector.
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Figure 7.73: Los Angeles GRU candidate model for the Disabled sector. The first
visualization corresponds to the model with no dropout, the second is the model with
two hidden layers, and the third is the model with 64 units in the hidden layers.

Experiment name Number of neurons Number of layers Dropout % Recurrent dropout % Weights initializer Activation function Batch size Optimizer Learning rate Clipping norm value

GRU_endogenous_LA_Standard 64 2 0.25 0. Glorot normal Linear 256 RMSProp 0.0001738 0.5

GRU_endogenous_LA_Permit 8 2 0.25 0 He normal Linear 32 RMSProp 0.008523 0.3

GRU_endogenous_LA_ZipCar 64 1 0.5 0 Glorot normal Sigmoid 32 RMSProp 0.00002339 0.2

GRU_endogenous_LA_Disabled 64 2 0 0. Glorot normal ReLu 672 RMSProp 0.00193683 0.2

Table 7.59: Los Angeles GRU candidate model hyperparameter values.

model is repeating the last occupancy value as the next one, as can be shown in Figure
7.73.
Finally, the model architectures and the RMSE scores following the manual changes are
presented in Tables 7.59 and 7.60.
Table 7.60 presents the scores for the GRU experiments in the city of Los Angeles.
Notice that the different candidate models present very similar RMSE values across the
different forecasting horizons. The reason for this behaviour is explained later.
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Figure 7.74: The visualizations from the outputs of the Los Angeles GRU modified
candidate model for the Disabled sector.

Experiment name RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6 Mean RMSE

GRU_endogenous_LA_Standard 0.07801 0.09512 0.10619 0.11393 0.12064 0.12356 0.107401

GRU_endogenous_LA_Permit 0.032748 0.029283 0.031485 0.033495 0.034186 0.037622 0.032948

GRU_endogenous_LA_ZipCar 0.07025 0.09021 0.10057 0.10946 0.11207 0.11485 0.10076

GRU_endogenous_LA_Disabled 0.0476 0.05673 0.06614 0.06944 0.07601 0.08876 0.06872

Table 7.60: Los Angeles GRU candidate model RMSE values in the test set.
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Sector Training Validation Test

All sectors 2018-09-01, 2019-08-01 2019-08-02, 2019-09-12 2019-09-13, 2019-10-24

Table 7.61: Riyadh sector date intervals for the training, validation and test sets.

Experiment name Number of neurons Number of layers Dropout % Weights initializer Activation function Batch size Optimizer Learning rate

MLP_endogenous_riyadh_sector1 256 4 0.25 He normal ReLu 256 RMSProp 0.00022

MLP_endogenous_riyadh_sector10 1024 3 0 Glorot normal ReLu 256 RMSProp 0.00017

Table 7.62: Riyadh MLP candidate model characteristics for Sector-1 and Sector-10.

7.9 NN experiments - Riyadh

Table 7.61 presents the date range for the training, validation and test sets for each
of the experiments on the sectors in the city of Riyadh.Similarly to what was done in
Chapter 6, only the results from Sector-1 and Sector-10 are presented.

7.9.1 MLP

The characteristics of the MLP candidate models obtained for the Riyadh sectors are
presented in Table 7.62. We can observe that both models make use of the ReLu
activation function and some considerable depth, four layers for Sector-1 and three layer
for Sector-10.
Table 7.63 presents the RMSE scores for the MLP experiments in Riyadh. The most
remarkable point is that low RMSE scores have been obtained from both models (less
than 0.1 RMSE). As a particularity, Sector-1 presents that the error for successive hours
increases faster than in Sector-10, although the latter has more error in the first five
hours.
Figure 7.75 shows the forecasts of the candidate MLP model for Sector-1 in Riyadh.
The model shows nearly perfect accuracy across the month of data used in the test set
for one to six forecasting steps.
Figure 7.76 presents the visualizations of the candidate models for Sector-1 and Sector-
10 in Riyadh. Predictions from the candidate model for Sector-10 capture the patterns
that are present in the data, but they overestimate the occupancy at peak hours by
predicting occupancies above 1.

Experiment name RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6 Mean RMSE

MLP_endogenous_riyadh_sector1 0.047095 0.060557 0.073404 0.083346 0.093408 0.103209 0.079634

MLP_endogenous_riyadh_sector10 0.071116 0.081256 0.080439 0.086139 0.097126 0.096646 0.087643

Table 7.63: Riyadh MLP candidate model RMSE values in the test set for Sector-1
and Sector-10.
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Figure 7.75: Riyadh Sector-1 MLP candidate model forecast visualizations. From top
left to bottom right are steps one to six

385



7.9 NN experiments - Riyadh Computational experiments - Neural Networks

Figure 7.76: Riyadh MLP candidate model first forecasting step plots. Left is Sector-1
and right is Sector-10.

Experiment name Number of neurons Number of layers Dropout % Recurrent dropout % Weights initializer Activation function Batch size Optimizer Learning rate Clipping norm value

LSTM_endogenous_riyadh_sector1 512 2 0.5 0.25 He normal ReLu 64 SGD 0.195172 0.7

LSTM_endogenous_riyadh_sector10 256 3 0.25 0.5 He normal ReLu 128 SGD 0.966438 0.4

Table 7.64: Riyadh LSTM candidate model hyperparameter values.

7.9.2 LSTM

The hyperparameter values for the LSTM candidate models for Riyadh are presented
in Table 7.64. Both models use the activation function ReLu and are not very different
between each other.
Table 7.65 presents the RMSE values for the different forecasting steps (from one to
six) for the considered LSTM experiments in the city of Riyadh. Both models achieve
similar RMSE values, but the model for Sector-1 presents fewer errors, especially in the
first forecasting steps.
The visualizations of the forecasts at different horizon steps one to six are presented in
Figure 7.77 for the Sector-1. The visualizations show that the model outputs accurate
forecasts for the first forecasting steps, but the predictions fall short at higher time steps.
The first forecasting steps from the Riyadh candidate LSTM models are presented in
Figure 7.78. Both visualizations present accurate forecasts for a one-month span of time,
although those from Sector-1 offer lower values than expected. On the other hand, those
from Sector-10 offer higher values at the peaks than expected.

Experiment name RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6 Mean RMSE

LSTM_endogenous_riyadh_sector1 0.051068 0.069476 0.080824 0.085531 0.093426 0.111499 0.084376

LSTM_endogenous_riyadh_sector10 0.078077 0.090971 0.098520 0.108535 0.118905 0.128008 0.104397

Table 7.65: Riyadh LSTM candidate model RMSE values in the test set.
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Figure 7.77: Riyadh Sector-1 LSTM forecast visualizations. From top left to bottom
right are forecasting steps one to six.
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Figure 7.78: Riyadh LSTM candidate model step one forecasts. Top for Sector-1 and
bottom for Sector-10.

Experiment name Number of neurons Number of layers Dropout % Recurrent dropout % Weights initializer Activation function Batch size Optimizer Learning rate Clipping norm value

GRU_endogenous_riyadh_sector1 32 2 0.25 0. He normal Linear 256 RMSProp 0.0009239435 0.3

GRU_endogenous_riyadh_sector10 64 2 0.25 0. He normal Sigmoid 672 RMSProp 0.002696859 0.5

Table 7.66: Riyadh GRU candidate model hyperparameter values.

7.9.3 GRU

The candidate model hyperparameter values from the Riyadh experiments using the
GRU method are presented in Table 7.66. Both models are similar in the number of
hidden layers, and both also have a low number of neurons. Another aspect shared by
both models is the values of the regularization technique used, as both have the value
0.25 for dropout in the hidden layer and no dropout in the hidden states.
Table 7.67 presents the scores for the GRU experiments in the city of Riyadh. Both
models show a similar mean RMSE score where model for Sector-1 has lower error in
the first hours while the model for Sector-10 has low error in the last hours.
Forecasts at different horizon steps are presented in Figure 7.79 for the Sector-1 candidate
model. Although the model provides accurate forecasts for the six steps, it falls short
in the values of the peak occupancies.
When checking the first forecasting steps of both models (Figure 7.80), the candidate
model for Sector-10 offers better forecasted values for the next hour than those from
Sector-1.

Experiment name RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6 Mean RMSE

GRU_endogenous_riyadh_sector1 0.059842 0.076781 0.086742 0.092680 0.096025 0.106015 0.087838

GRU_endogenous_riyadh_sector10 0.063591 0.072662 0.081042 0.087759 0.091248 0.097092 0.083619

Table 7.67: Riyadh GRU candidate model RMSE values in the test set.
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Figure 7.79: Riyadh Sector-1 GRU forecasts step one visualizations. From top left to
bottom right are forecasting steps one to six.
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Figure 7.80: Riyadh GRU candidate model step one forecasts. Top for Sector-1 and
bottom for Sector-10.

Experiment name Number of neurons Number of layers Dropout % Weights initializer Activation function Batch size Optimizer Learning rate

MLP_endogenous_antwerp_pelikaanstraat 64 3 0.25 He normal ReLu 672 RMSProp 0.00028786

MLP_endogenous_antwerp_vanwesenbekestraat 512 4 0.25 Glorot normal Linear 64 RMSProp 0.00436647

MLP_endogenous_antwerp_vanwesenbekestraat2 128 3 0.25 Glorot normal ReLu 128 RMSProp 0.00265265

MLP_endogenous_antwerp_vanSchoonhovestraat1 64 3 0 He normal ReLu 256 RMSProp 0.00363

MLP_endogenous_antwerp_vanSchoonhovestraat2 64 4 0.25 Glorot normal Linear 64 RMSProp 0.000418

MLP_endogenous_antwerp_vanSchoonhovestraat3 64 5 0.5 He normal Linear 64 RMSProp 0.0002242

MLP_endogenous_barcelona_regular 256 4 0.5 He normal Linear 672 RMSProp 0.00282544

MLP_endogenous_wattens_inside 128 2 0.25 He normal ReLu 256 RMSProp 0.00386

MLP_endogenous_wattens_outside 256 5 0.5 He normal Sigmoid 256 RMSProp 0.00400

MLP_endogenous_LA_Standard 1024 4 0.5 He normal ReLu 128 RMSProp 0.00279

MLP_endogenous_LA_Permit 64 4 0.25 Glorot normal Linear 672 RMSProp 0.00725562

MLP_endogenous_LA_ZipCar 64 2 0.25 Glorot normal Sigmoid 672 RMSProp 0.00137

MLP_endogenous_LA_Disabled 256 5 0.5 Glorot normal ReLu 256 RMSProp 0.00277038

MLP_endogenous_riyadh_sector1 256 4 0.25 He normal ReLu 256 RMSProp 0.00022

MLP_endogenous_riyadh_sector10 1024 3 0 Glorot normal ReLu 256 RMSProp 0.00017

Table 7.68: MLP candidate model architectures.

7.10 Results and conclusions

Throughout this chapter, different experiments have been realized in order to model
parking occupancy data with NN methods. Next, the architecture and RMSE scores
of the models developed from each of the experiments are presented, along with the
comparison of the methods and the conclusions.

7.10.1 MLP

Table 7.68 presents the architectures of the candidate MLP models for each of the
experiments considered.
A more specific quantification of the usage number for each of the MLP method’s hy-
perparameters is given in Figure 7.81. The visualization shows clear tendencies for some
of the hyperparameter values considered, and this could help practitioners reduce the
search space of their random search experiments when using NN methods for parking
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Figure 7.81: MLP hyperparameter usage across experiments.

time series forecasting modeling. Specifically, we found that, for our candidate MLP
models, 64 is the preferred number of neurons per hidden layer while using four hidden
layers. A dropout usage of 25% has been used for more than half of the experiments
considered. There is no consensus regarding which weight initializer to use; but, because
ReLU is the most used activation function, the He activation function would be the way
to go. A batch size of 256 has been the most used, thus invalidating the intuition that
time series could benefit the most from larger batch sizes.
Table 7.69 presents all the RMSE scores obtained with the MLP candidate models from
all the experiments.
Figure 7.82 presents a matrix representation of the table of RMSE scores, which allows
identifying the behaviour of the candidate models in the considered experiments. The
results obtained are similar to all the candidate models, but it is clear that those mod-
els trained using data with smooth occupancy changes (the sectors with more parking
places) achieved fewer errors. Considering each scenario in detail, it can be observed
that:

• The Antwerp experiments are the ones with higher error rates, which may be
caused by their noisy patterns (mid- to small-sized sectors). The sector with the
highest error is Van Schoonhovestraat 2, as it has proved to be a random walk
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Experiment name RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6 Mean RMSE

MLP_endogenous_antwerp_pelikaanstraat 0.110130 0.133542 0.150384 0.162346 0.172676 0.179238 0.153562

MLP_endogenous_antwerp_vanwesenbekestraat 0.095566 0.116724 0.125885 0.131969 0.133297 0.133658 0.124019

MLP_endogenous_antwerp_vanwesenbekestraat2 0.101069 0.124634 0.135584 0.143275 0.146959 0.148462 0.134506

MLP_endogenous_antwerp_vanSchoonhovestraat1 0.123471 0.139036 0.148395 0.154933 0.158351 0.161390 0.149402

MLP_endogenous_antwerp_vanSchoonhovestraat2 0.157954 0.204540 0.235772 0.255512 0.268585 0.280565 0.237706

MLP_endogenous_antwerp_vanSchoonhovestraat3 0.13 0.156846 0.166445 0.173264 0.176913 0.177004 0.164277

MLP_endogenous_barcelona_regular 0.092727 0.109607 0.119814 0.125462 0.130421 0.135289 0.119841

MLP_endogenous_wattens_inside 0.056937 0.081595 0.101219 0.116856 0.127939 0.138484 0.107350

MLP_endogenous_wattens_outside 0.167275 0.168808 0.160449 0.161442 0.173651 0.192762 0.173874

MLP_endogenous_LA_Standard 0.083213 0.091379 0.096799 0.102012 0.105445 0.112373 0.099285

MLP_endogenous_LA_Permit 0.026132 0.027593 0.028446 0.029413 0.030845 0.032627 0.029377

MLP_endogenous_LA_ZipCar 0.065272 0.088367 0.099961 0.106587 0.111648 0.115079 0.099335

MLP_endogenous_LA_Disabled 0.068539 0.070388 0.073355 0.076586 0.078879 0.079243 0.074189

MLP_endogenous_riyadh_sector1 0.047095 0.060557 0.073404 0.083346 0.093408 0.103209 0.079634

MLP_endogenous_riyadh_sector10 0.071116 0.081256 0.080439 0.086139 0.097126 0.096646 0.087643

Table 7.69: MLP candidate models RMSE on test set.

process. Van Schoonhobestraat 1 and 3 scored similarly, because both sectors are
very similar in nature due to their size and proximity. The sector Van Wesen-
bekestraat 1 shows little increase in the RMSE, as the forecasting steps increase
in comparison to the other candidate models of Antwerp.

• Barcelona RMSE scores are as expected, remaining within the regular patterns
throughout the weekdays and weekends. The model has demonstrated adaptation
to the low occupancy that occurs on the weekends.

• For Wattens, the scores from the Outside sector are surprisingbecause they are the
second-highest, despite its regular patterns and similarity to the Inside sector.

• All sectors in Los Angeles scored low error values. This shows that the model
trained with data before and during works is able to provide forecasts with data
after street works.

• Both Riyadh sectors scored similarly, although the Sector-1 error increases more
with the time steps when compared to Sector-10. The regular patterns in the data
make it easy for the MLP models to acquire an RMSE value below 0.10, which
can be interpreted as missing in the occupancy status when there are fewer than
ten parking places in sectors with over one-hundred parking spots.

7.10.2 LSTM

Table 7.70 presents the values of all the architectures from the LSTM candidate models
obtained from the different experiments.
From Figure 7.83, it can be observed that the LSTM models do not have a clear winner
in terms of the number of units per layer, although it is not too high. For the number
of hidden layers, two is preferred. For regularization, we find that low dropout values
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Figure 7.82: MLP RMSE heatmap.

Experiment name Number of neurons Number of layers Dropout % Recurrent dropout % Weights initializer Activation function Batch size Optimizer Learning rate Clipping norm value

LSTM_endogenous_antwerp_pelikaanstraat 8 1 0.25 0.25 Glorot normal Sigmoid 64 SGD 0.02151 0.8

LSTM_endogenous_antwerp_vanwesenbekestraat 64 3 0.25 0.25 He normal Linear 64 SGD 0.55276 0.4

LSTM_endogenous_antwerp_vanwesenbekestraat2 128 2 0.25 0 He normal Linear 128 SGD 0.01078 0.6

LSTM_endogenous_antwerp_vanSchoonhovestraat1 8 3 0 0.25 He normal Linear 128 SGD 0.0299967 0.6

LSTM_endogenous_antwerp_vanSchoonhovestraat2 256 3 0.5 0 Glorot normal Linear 672 SGD 001710 0.9

LSTM_endogenous_antwerp_vanSchoonhovestraat3 32 3 0.25 0 He normal Linear 672 SGD 0.0279009 0.6

LSTM_endogenous_barcelona_regular 16 2 0 0.5 He normal ReLu 256 SGD 0.0542547 0.4

LSTM_endogenous_wattens_inside 16 2 0.25 0 He normal Linear 256 SGD 0.00483981 0.8

LSTM_endogenous_wattens_outside 32 2 0 0 He normal Sigmoid 64 SGD 0.39419 0.2

LSTM_endogenous_LA_Standard 128 2 0.5 0 He normal ReLu 128 SGD 0.0285305 0.9

LSTM_endogenous_LA_Permit 512 1 0 0.25 Glorot normal Linear 32 SGD 0.77142755 0.6

LSTM_endogenous_LA_ZipCar 512 1 0.5 0 Glorot normal Linear 672 SGD 0.0022204800 0.8

LSTM_endogenous_LA_Disabled 128 1 0.25 0.5 He normal Linear 672 SGD 0.0028594766 0.8

LSTM_endogenous_riyadh_sector1 512 2 0.5 0.25 He normal ReLu 64 SGD 0.195172 0.7

LSTM_endogenous_riyadh_sector10 256 3 0.25 0.5 He normal ReLu 128 SGD 0.966438 0.4

Table 7.70: LSTM candidate models architectures.
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Experiment name RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6 Mean RMSE

LSTM_endogenous_antwerp_pelikaanstraat 0.110668 0.137267 0.153259 0.165521 0.174594 0.181250 0.155625

LSTM_endogenous_antwerp_vanwesenbekestraat 0.103780 0.126287 0.137642 0.141567 0.142330 0.144293 0.133610

LSTM_endogenous_antwerp_vanwesenbekestraat2 0.093660 0.121632 0.137392 0.148286 0.154991 0.159997 0.137875

LSTM_endogenous_antwerp_vanSchoonhovestraat1 0.113743 0.132188 0.144037 0.145389 0.153726 0.155251 0.141533

LSTM_endogenous_antwerp_vanSchoonhovestraat2 0.177184 0.214003 0.231087 0.237052 0.254416 0.258750 0.233800

LSTM_endogenous_antwerp_vanSchoonhovestraat3 0.138450 0.157465 0.166710 0.171605 0.175181 0.175716 0.164694

LSTM_endogenous_barcelona_regular 0.100250 0.113873 0.128788 0.146382 0.164747 0.175187 0.141719

LSTM_endogenous_wattens_inside 0.063618 0.098741 0.126547 0.149175 0.162757 0.176160 0.134990

LSTM_endogenous_wattens_outside 0.095564 0.132638 0.162885 0.186857 0.191105 0.220024 0.169323

LSTM_endogenous_LA_Standard 0.157765 0.170322 0.187332 0.202759 0.221877 0.232236 0.198609

LSTM_endogenous_LA_Permit 0.023564 0.026408 0.028256 0.030966 0.0344788 0.029721 0.030148

LSTM_endogenous_LA_ZipCar 0.065059 0.088938 0.101202 0.108231 0.1166095 0.119523 0.101638

LSTM_endogenous_LA_Disabled 0.055212 0.079277 0.087534 0.119898 0.143644 0.192689 0.126183

LSTM_endogenous_riyadh_sector1 0.051068 0.069476 0.080824 0.085531 0.093426 0.111499 0.084376

LSTM_endogenous_riyadh_sector10 0.078077 0.090971 0.098520 0.108535 0.118905 0.128008 0.104397

Table 7.71: LSTM candidate models RMSE on test set.

are preferred for both the units and the hidden state (recurrent dropout), although no
dropout is used. Remember that layer normalization is applied to all the candidate
models after the RNN layers, and this introduces regularization into the model. For
initializers, He normal is the clear winner, which seems paradoxical because ReLU is
the least used activation function. The most used activation function is linear, and this
indicates either that parking occupancy can be modeled with linear models or that the
dying ReLU problem has a more severe effect on the models considered. This would be
something to explore further in the future. For the batch sizes, there is no a clear winner
among the different sizes considered. Lastly, from the bar chart figure (represented in
this way because of the number of factors being considered), shows that the models
benefited the most from clip norm values of 0.6 and 0.8.
Table 7.71 shows the RMSE scores from all the experiments using the LSTM method.
A better interpretation can be extracted by visualizing the data in a matrix heatmap,
as presented in Figure 7.84. Overall, the scores follow similar tendencies as in the MLP
experiments. More specifically, for each scenario considered, it can be observed that:

• The Antwerp scenario presents RMSE values of around 0.15, with the exception
of the sector Van Schoonhovestraat 2, which scored a larger error rate. Despite
the similarities between the Van Schoonhovestraat sector 1 and 3, the latter has
larger error rate than the former. Overall, the values are similar to those from the
MLP experiments.

• The scores for the candidate model of the Barcelona scenario are similar to those
of the Pelikaanstraat candidate model, although the former’s patterns are more
regular.

• The RMSE scores for the Wattens candidate models have a large increase in the
error rate as the forecasting steps increase. Although the patterns in the scenario
are regular from Monday to Thursday, the models cannot handle the forecasting
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Figure 7.83: LSTM hyperparameter usage across experiments.
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Figure 7.84: LSTM RMSE heatmap.

well beyond four hours.
• In the Los Angeles scenario, it can be observed that the second-highest RMSE

comes from the Standard sector. This could be interpreted as the model being
unable to adapt to the distribution changes due to the zone’s street works during
the considered span of time. On the other hand, the model for the Permit sector
shows adaptation to the changes in distribution, which could seem counter-intuitive
when compared to the Standard sector. However, the explanation for this is that
the test data for the Standard sector includes occupancy levels similar to those
prior to the street works, meaning that, after summer 2019, the street works ended
for that sector and the number of available places was restored; whereas, for the
Permit sector, the data levels were still the same as those of the street works. The
Disabled sector shows a huge increase in the error rate for the last forecasting step
(hour six), but a lower RMSE overall.

• The RMSE scores from the Riyadh sectors are similar to those of the MLP models.

7.10.3 GRU

All GRU candidate model hyperparameter values are presented in Table 7.72.
The visualization in Figure 7.85 presents the most used hyperparameter values from the
GRU candidate models. In contrast to LSTM, the GRU models have a tendency to use
64 and 32 units in the hidden layers. Notice that no model uses more than 256. For

396



7.10 Results and conclusions Computational experiments - Neural Networks

Experiment name Number of neurons Number of layers Dropout % Recurrent dropout % Weights initializer Activation function Batch size Optimizer Learning rate Clipping norm value

GRU_endogenous_antwerp_pelikaanstraat 32 1 0.25 0 He normal Sigmoid 672 RMSProp 0.00001 0.2

GRU_endogenous_antwerp_vanwesenbekestraat 16 2 0.25 0 He normal Linear 256 RMSProp 0.0001271 0.9

GRU_endogenous_antwerp_vanwesenbekestraat2 256 3 0.25 0 He normal Sigmoid 672 RMSProp 0.00100 0.2

GRU_endogenous_antwerp_vanschoonhovestraat1 128 3 0.25 0 He normal ReLu 128 RMSProp 0.00028981 0.5

GRU_endogenous_antwerp_vanschoonhovestraat2 32 1 0.25 0 Glorot normal Sigmoid 128 RMSProp 0.0000609171 0.4

GRU_endogenous_antwerp_vanschoonhovestraat3 8 1 0 0.25 Glorot normal Linear 32 RMSProp 0.00176222 0.7

GRU_endogenous_barcelona_regular 256 2 0.25 0 Glorot normal Sigmoid 64 RMSProp 0.00001291478 0.9

GRU_endogenous_wattens_inside 32 2 0.25 0 He normal Sigmoid 672 RMSProp 0.000373002 0.6

GRU_endogenous_wattens_outside 64 2 0.25 0 He normal Sigmoid 128 RMSProp 0.00370607 0.8

GRU_endogenous_LA_Standard 64 2 0.25 0. Glorot normal Linear 256 RMSProp 0.0001738 0.5

GRU_endogenous_LA_Permit 8 2 0.25 0 He normal Linear 32 RMSProp 0.008523 0.3

GRU_endogenous_LA_ZipCar 64 1 0.5 0 Glorot normal Sigmoid 32 RMSProp 0.00002339 0.2

GRU_endogenous_LA_Disabled 64 2 0 0. Glorot normal ReLu 672 RMSProp 0.00193683 0.2

GRU_endogenous_riyadh_sector1 32 2 0.25 0. He normal Linear 256 RMSProp 0.0009239435 0.3

GRU_endogenous_riyadh_sector10 64 2 0.25 0. He normal Sigmoid 672 RMSProp 0.002696859 0.5

Table 7.72: GRU candidate models architectures.

Experiment name RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6 Mean RMSE

GRU_endogenous_antwerp_pelikaanstraat 0.113561 0.135125 0.151318 0.165038 0.173547 0.182441 0.157462

GRU_endogenous_antwerp_vanwesenbekestraat 0.103207 0.124504 0.131194 0.137746 0.142796 0.132778 0.129447

GRU_endogenous_antwerp_vanwesenbekestraat2 0.099607 0.120591 0.128654 0.138555 0.139059 0.141712 0.129501

GRU_endogenous_antwerp_vanschoonhovestraat1 0.119425 0.134792 0.141594 0.144979 0.146056 0.148689 0.139435

GRU_endogenous_antwerp_vanschoonhovestraat2 0.163100 0.201986 0.229196 0.245610 0.258182 0.265528 0.229798

GRU_endogenous_antwerp_vanschoonhovestraat3 0.128000 0.15256 0.162955 0.167865 0.169857 0.171224 0.15943

GRU_endogenous_barcelona_regular 0.096280 0.114129 0.130481 0.142458 0.148959 0.158079 0.133832

GRU_endogenous_wattens_inside 0.056622 0.079935 0.100578 0.116191 0.127633 0.139902 0.107230

GRU_endogenous_wattens_outside 0.083591 0.116279 0.139536 0.156237 0.165543 0.174135 0.142176

GRU_endogenous_LA_Standard 0.07801 0.09512 0.10619 0.11393 0.12064 0.12356 0.107401

GRU_endogenous_LA_Permit 0.032748 0.029283 0.031485 0.033495 0.034186 0.037622 0.032948

GRU_endogenous_LA_ZipCar 0.07025 0.09021 0.10057 0.10946 0.11207 0.11485 0.10076

GRU_endogenous_LA_Disabled 0.0476 0.05673 0.06614 0.06944 0.07601 0.08876 0.06872

GRU_endogenous_riyadh_sector1 0.059842 0.076781 0.086742 0.092680 0.096025 0.106015 0.087838

GRU_endogenous_riyadh_sector10 0.063591 0.072662 0.081042 0.087759 0.091248 0.097092 0.083619

Table 7.73: GRU candidate models RMSE on test set.

the number of hidden layers considered, two is the most represented one among 60% of
the models. Regarding regularization, the most chosen option is 25% dropout and 0%
dropout for the hidden state, which concurs with the LSTM results. The initializers are
also like those in LSTM, namely in that the most used one is He normal while the least
used activation function is ReLU. Thus, the comment on LSTM also applies here. The
sigmoid activation function is the one used by most of the models. There is no clear
consensus about the batch sizes, but a larger batch size may be preferred. Lastly, for
the clipping norm value, the values are more or less spread among the different values
considered.
All RMSE scores obtained in the different experiments with the GRU candidate models
are presented in Table 7.73
A heatmap of the RMSE values obtained from the GRU candidate models is presented
in Figure 7.86. Overall, it can be seen that the RMSE values at each forecasting step
increase less than those from the other methods. The experiments with higher error
rates are the ones from the Van Schoonhovestraat 2 and Pelikaanstraat sectors. For
each scenario, it can be observed for the GRU models that:
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Figure 7.85: GRU hyperparameter usage across experiments.
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Figure 7.86: GRU RMSE heatmap.

• Similarly to previous methods, the Antwerp scenario achieves the worst RMSE
in the Van Schoonhovestraat 2 sector. Notice that the RMSE for the Vanwesen-
bekestraat sectors increases very little as the forecasting horizon increases.

• The candidate model for the Barcelona sector achieved a similar error rate as the
LSTM and MLP models, with a mean error of 0.13.

• The RMSE score of the Outside sector from the Wattens scenario is lower than
those presented by the LSTM and MLP models, while the Inside sector is similar
to those.

• The experiments for Los Angeles achieved low error rates, but remember that it
was necessary to hand-tune them because those proposed by the random search
were not able to generalize the test data and they provided forecasts that coincided
with the mean value of the time series.

• Both Riyadh sectors achieved low error rates that increase very little as the fore-
casting steps increase.

7.10.4 Method comparison

Figure 7.87 presents a comparison of the RMSE scores achieved in each of the experi-
ments for the Antwerp scenario. For each sector, observe that:
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• For the Pelikaanstraat sector, all three methods behaved very similarly, with a
larger error gap between forecasting steps one and two, something that also hap-
pens in other sectors.

• For the sector Van Wesenbekestraat Zone 1, the MLP model achieved lower RMSE
values than those of the RNN models; but at forecasting hour six, GRU drastically
reduces its error rate and matches the error rate of MLP.

• In the sector Van Wesenbekestraat Zone 2, LSTM scores the lowest RMSE for
forecasting hour one, but its error rate increases more than with the other methods.
At forecasting hour six, it has the highest error rate of all three models. On the
other hand, GRU and MLP began with similar RMSE scores for hour one, but at
the last forecasting hour GRU is the method with less error.

• In Van Schoonhovestraat Zone 1, the LSTM model starts with the lowest error at
the first forecasting hour, followed by GRU and MLP. At forecasting hour three,
the RNN methods score similarly; but, from there on, GRU scores lower than
LSTM. MLP achieves the highest RMSE values in all the forecasting steps.

• Van Schoonhovestraat Zone 2 has proven to be the sector where the models
achieved the worst errors of all the experiments. MLP has the lowest error rate at
forecasting step one, but it degrades faster than in the other methods because, at
forecasting hour three, it has than highest error rate than any of the other meth-
ods. On the other hand, LSTM started as the worst at the first forecasting step,
but ended up being the one with lowest error rate at the last forecasting hour.

• Lastly, for the Van Schoonhovestraat Zone 3 sector, GRU is the model that scores
the lowest error rates in all the forecasting steps. While MLP started with the
second-lowest at the first forecasting step, it ended up close behind LSTM.

Next, the RMSE errors of the candidate models for the Barcelona sector are presented
in Figure 7.88, where the RNN methods started with similar scores in the first four
forecasting steps, but then GRU started to score lower than LSTM. MLP presents fewer
errors in all the forecasting steps.
The visualizations of the RMSE scores for the Wattens sectors are presented in Figure
7.89. For each of the sectors, it can be observed that:

• In the Inside sector, MLP and GRU scored nearly equal in all the forecasting steps,
while LSTM performed worse as the forecasting steps increased.

• In the Outside sector, MLP presents an abnormal behaviour, as its starting error
decreases a little in forecasting steps three and four, something that has not been
observed in any other experiment. The GRU model achieved the lowest RMSE
values in all the forecasting steps. While LSTM started at the first forecasting hour
with a similar RMSE value as the GRU model, as the forecasting steps increased,
its error increased faster than the other two methods.

For the Los Angeles scenario, the RMSE visualizations for method comparison are pre-
sented in Figure 7.90. For each sector, it can be observed that:
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Figure 7.87: Antwerp candidate model NN RMSE.
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Figure 7.88: Barcelona candidate model NN RMSE.

Figure 7.89: Wattens candidate models NN RMSE.
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Figure 7.90: Los Angeles candidate model NN RMSE.

• In the Standard sector, MLP and GRU behaved similarly while LSTM presents
very bad results.

• In the Permit sector, the RMSE varies little between the models because the
street works in the zone cause the occupancy to vary little in time. The differences
between the lowest and highest RMSE values are of 0.008.

• In the ZipCar sector, all models behaved similarly, with LSTM achieving the lowest
RMSE for the first forecasting hour. However, at the sixth forecasting hour, MLP
and GRU scored the lowest.

• For the Disabled sector, the differences are notable between LSTM and the other
methods. MLP presents a smaller increase in the error rate throughout the fore-
casting steps, while GRU started with the lowest RMSE for the first step and
ended with a bit higher error rate than MLP at the sixth forecasting step.

Lastly, Figure 7.91 presents the RMSE obtained by the candidate models for the exper-
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Figure 7.91: Riyadh candidate model NN RMSE.

iments in the Riyadh scenario. The following can be observed:
• In Sector-1, MLP scores the lowest error between the forecasting steps (being

matched by LSTM at the fifth hour), thus presenting a nearly linear increase
in the error at each step. GRU started with a higher error rate than the other
methods in the first forecasting hour, but it ends up scoring second at the sixth
hour.

• In Sector-10, GRU presents the lowest error, but it matches MLP at steps three,
four and six. LSTM presents the worst scores across all forecasting steps.

Through the different experiments presented throughout this chapter, the following has
been observed:

• Due to the nature of NN methods (random initialization, local optima convergence,
a huger number of hyperparameters, etc.), it is difficult to infer the effect of the
parking sector’s behaviour (usage, regular patterns, noise, number of places, etc.)
and the obtained model architectures. However, exploring the training losses and
the forecast visualizations provides information on how to modify the architecture
in order to achieve better scores. An example of this is what happened in the
experiments with GRU in Los Angeles.

• There is no clear winner regarding which is the best NN method for parking occu-
pancy forecasting, as MLP and GRU presented very similar RMSE across all the
experiments. LSTM is the method that presented the worst scores in nearly all
the experiments.

• NN methods presented a high error rate in those sectors with random walk be-
haviour, such as the sector Van Schoonhovestraat Zone 2.

• Although the models were trained to output six forecasting hours at once, a large
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number of experiments has demonstrated that the forecasts come closer to the
mean as the forecasting steps increase. Thus, the error rate could be the same as
that obtained with a multi-step strategy, which is used by ARIMA models.

• For sectors with distribution changes in the training data, it has been observed
that NN methods can overcome this problem.

• In sectors with a high number of sensors that present smooth patterns in their
realizations (for example, the Riyadh sectors), a low error rate has been obtained.
This indicates that NN models of huge areas with sensors can be perfect candidates
for modeling the parking occupancy process.

7.10.5 Conclusions

Now, we can answer the questions that were formulated at the start of this chapter:
• How different are the sector models based on their idiosyncrasies?

It has been shown that model hyperparameters are greatly influenced by the data
realizations of the sectors. This can be observed in Riyadh sectors for exam-
ple, where similar hyperparameters are obtained for both models (Sector-1 and
Sector-10) as their data realizations have similar characteristics (levels and regular
patterns). So, although the inherent stochasticity is part of the NN methods, if
the processess modeled are similar, the obtained hyperparameters for the models
are similar.

• How different are the sector models based on the NN methods’ idiosyncrasies?
In general, it has been observed that hyperparameters like the optimizer, the num-
ber of layers or the number of neurons are different in the models just by their
method and this is independent of the sector being modeled.

• Is there a configuration of hyperparameters that provides better results for the park-
ing occupancy time series?
It has been shown that certain values of the hyperparameters have been obtained
more times from the random search. These values are constrained to the NN
method used.
For MLP, the optimizer used has been RMSProp and the most used values for the
hyperparameters are 64 neurons, 4 hidden layers, 25% dropout, ReLu activation
function and batch size of 256.
For LSTM, the optimizer used has been SGD with momentum and the most used
values for the hyperparameters have been 128 and 512 units, 2 hidden layers, 25%
dropout, 0 recurrent dropout, He normal as initializer, linear activation function
and batch size of value 64 or higher.
For GRU, the optimizer used has been RMSProp and the most used values for the
hyperparameters have been 64 units, 2 hidden layers, 25% dropout, 0% recurrent
dropout, He normal initializer, sigmoid activation function and 672 as batch size.
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• Is it possible for an NN model to handle multiple seasonalities?
The models have been trained using a windowed approach of twenty four hours
and it has been shown that they can adapt to daily and weekly seasonalities.

• Do nearby sectors share the same model?
Because NN stochasticity, nearby sectors do not present the same model but similar
ones.

• Can NN models overcome temporal changes?
Yes, it has been observed in Los Angeles sectors that the models can overcome
temporal changes if those are present in the training data.

• Is a model really necessary for each sector?
Due to sectors idosyncrasies and NN stochasticity, the best way to model parking
occupancy data is with a model for each sector.

• Which of the NN methods achieved better results overall?
MLP and GRU presented the lowest errors in the experiments performed while
LSTM scored, in general, worse.

7.11 Lessons learnt

Together with the conclusions, this section also presents the lessons learnt from the
empirical experiments of applying novel techniques designed for Deep Learning models.
One of the drawbacks when using such novel techniques is that not all of them are use-
ful for all the methods considered, as they were designed for a specific NN method or
problem. For example, activation functions like ReLu and techniques like batch nor-
malization were designed for convolutional neural networks; thus, there is little evidence
that those will work with other types of methods, such as recurrent ones.

7.11.1 The phases of an RNN model when training on time series

All RNN models trained in this work have shown similar behaviour during training:
1. Learn the mean.
2. Learn recurring patterns.
3. Adjust peaks and valleys.
4. In case of noise or overfitting, the RNNmodel becomes a naive model by forecasting

the most recent input as the most probable for the near future. This also happens
if the modeled process is a random walk.

These phases can help the practitioner identify whether the model is underfitting or
overfitting the data and how to correct for these. For example, a model that underfits
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Figure 7.92: RNN model training phases.

the data will only forecast the mean, which can happen if the model complexity is too
low or the regularization is too high.
Figure 7.92 presents the visualization of the training phases for a GRU model trained
with parking occupancy from the ZipCar sector in Los Angeles. As the epochs increase,
the model passes through each of the previously described phases. The overfit (the plot
at the bottom right) is noticeable, as the model presents a less smooth visualization
when compared to the previous ones.

7.11.2 Undesired local optimum convergence

One major problem that was found is the convergence of the model towards a bad local
optima. When the model always predicts the same outcome, it is usually the mean
value of the series and indicates that the model is not capable of learning the patterns
that govern the generation of the data. This could be because the model is not complex
enough (more hidden layers or units) or that the dropout used is too high (usually in
the recurrent dropout of the RNN methods). Sometimes the model learns to copy the
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Figure 7.93: Candidate model for the Los Angeles Standard sector with ReLU activa-
tion function at the output layer.

last input of the series and thus acts as a naive model. Usually, this indicates that the
underlying process that generates the data consists of a random walk or that the model
has overfitted the input data and needs regularization.

7.11.3 Negative forecasts

Another eventuality that has been observed is negative forecasts that are not possible
in the framework of the problem. In order to overcome such an issue, it is possible to
use an activation function in the output layer that is bounded at zero : for example, the
ReLU function. The visualizations in Figure 7.93 show the behaviour of the candidate
model proposed in Section 7.8.3 when using a ReLU activation function instead of none.
A ReLU activation function forces the outputs to be greater than or equal to zero, but
it is necessary to take into account the dying ReLU problem because a bad initialization
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could result in a model that is incapable of learning, as the gradient of the ReLU function
is zero for the negative numbers. A solution to this could be using a parameterized
ReLU (proposed in the work He et al. [2015]), which modifies the ReLU function with
a learnable parameter that in turn modifies the domain of the function so that it is no
longer bounded at zero, like in the Leaky ReLU.

7.11.4 One-step and multi-step forecasting

One advantage that can be intuitively imposed on a Deep Learning model for time series
is a dense output layer (which is used in MLP models), which has as many neurons as
it has desired forecasting steps (so the output is a vector in which each element is a
forecasting step). This assumption should be taken with a pinch of salt, because there
are major factors that each play a role in the success of this strategy. Namely, these are:
initialization of the parameters for the output layer; loss function; and data structure.
Although taking care of only one of these elements can help achieve good results, all
three must be addressed in order to increase the probability of success. The solutions
that can be used are:

• Use the same initial parameters for each of the neurons at the output layer instead
of making them all different and random. The reason for this is that similar starting
values for the parameters allow the model to focus on learning the differences
between consecutive values of the series instead of learning the pattern for each
neuron.

• Loss functions such as MAE or MSE average the loss and make all neurons at the
output layer change their values, although the output of some of them is exactly
the expected output. Other loss functions like dynamic time warping or DILATE
(Guen and Thome [2019]) can be used to overcome this problem, as those loss
functions have been designed with time series in mind, which is in contrast to a
generic solution for regression, such as MAE or MSE.

• A proper data structure (time window length, overlap in the time window, number
of outputs) is crucial for overcoming the problem. In this work, a time window
length of 24 time steps has been used, as the ACF and PACF plots detected higher
correlations with the actual parking occupancy during that span of time.

7.11.5 The importance of hyperparameters

NN models in general are difficult to tune, as the effect of changing the hyperparameters
and their dependencies is still not well understood. As explained previously, the study
of the training loss curves and visualizing the fitting of the model can help improve the
models and correct some of the possible problems.
During this work, we found that the following hyperparameters have the greatest effects
on the model forecasts (from the most to least important):
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1. The optimizer and its learning rate. It has been shown how the methods behaved
differently across the three different optimizers (SGD with momentum, Adam and
RMSProp) while using a range of learning rate values based on the data of our
problem.

2. The number of layers has an effect on the computation time and the learning of
the patterns in the model.

3. Dropout affects the training, especially the recurrent dropout used in RNN. As
seen with the latter, we found that dropout values above 0 and below 0.25 work
well across all models.

4. The number of neurons must not be very low or very high. In this work, hidden
layers with neurons of between 32 and 256 worked well.

5. The effect of the activation function is not clear, but ReLU is one of the least used.
This could be because of the dying ReLU effect.

6. Normalization should be controlled. It has been shown that batch normalization
hurts learning in RNN methods while layer normalization seems to provide better
results, but using no normalization does not hurt at all.

7.11.6 Noise in the data

RNNs can be difficult to train, as they can overfit training data and provide the last
input as the next forecast, especially when the data is noisy. This work proposes one
way to overcome this phenomenon by using an autoencoder with forecasting capabilites.
The autoencoder will reconstruct the daily pattern of the data while reducing the noise
(similarly to exponential smoothing); and while the model learns to reconstruct the input
data (global patterns), a second part can provide predictions for the next forecasting
steps by learning local patterns.
The visualizations in Figure 7.94 show the outputs of the autoencoder throughout the
training, which demonstrates how it is able to capture recurrent patterns and filter the
noise.
The visualization in Figure 7.95 presents the step one forecasts of the autoencoder. It
shows that the model is able to forecast the rise and fall of occupancy while maintaining
a smooth shape, which indicates that the model has not learned noise. In addition, the
autoencoders’ reconstruction of the input can be used for anomaly detection. The au-
toencoder results seem to be promising and would be of interest for further investigation.
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Figure 7.94: Autoencoder training phases with data from the Antwerp sector Pe-
likaanstraat.
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Figure 7.95: Autoencoder outputs: input reconstruction (top) and forecasts (bottom).
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8 Neural networks with exogenous
information

The previous chapter demonstrated that NN methods achieve a lower RMSE error rate
than well-known methods like ARIMA do, although at the expense of model interpreta-
tion and statistical properties like confidence intervals. One of the strong points of NN
methods is that they can handle data with a high number of dimensions. Focusing on
this, this chapter characterizes the different parking sectors that were considered in this
work after adding exogenous variables that can have an effect on the systems.
Exogenous variables are those that do not belong to the modeled system but nevertheless
have an effect on it. Imposing their values onto the models can improve or worsen the
forecasts while providing extra information (interpretability) about the parking systems.
This chapter characterizes a subset of sectors presented in Chapter 3 using Neural Net-
work methods with endogenous and exogenous variables. The goal is to reduce the
RMSE and find interesting exogenous variables for adding interpretability to the mod-
els. In addition, and similarly to the previous chapter, a study is conducted on the
accuracy at different forecasting horizons. Finally, the results are compared to those of
the candidate NN models when using only the endogenous information. The objective
for this is to evaluate the effects of the different exogenous variables and offer conclusions
about their usage.
The subset of sectors used in this chapter are:

• The Pelikaanstraat in Antwerp.
• The Outside sector in Wattens.
• The Standard sector in Los Angeles.
• Sector-10 in Riyadh.

These sectors have been selected because the results achieved by the endogenous models
were not satisfactory and they may be able to be improved. Moreover, each of the
sectors presents different characteristics and therefore the exogenous variables could
have different effects on them.
This chapter is organized as follows. First, the exogenous variables we use are explained,
as well as their meaning, the preprocessing conducted on them, and how they are in-
troduced into the models. Next, we study the effects of these exogenous variables and
how to interpret them relative to the endogenous variables, then present the proposed
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data structure and model architecture used to adjust the models to the new variables.
After studying the exogenous variables all together (grouped either categorically or nu-
merically) and individually in order to forecast parking occupancy, we propose the final
models based on the lessons learnt and present their RMSE at different time horizons.
Finally, this chapter presents comments and conclusions about the obtained results.

8.1 Exogenous variables

One may intuitively think that only a parking system’s information is insufficient for
building a good model. For example, some days the occupancy is reduced by half of
the usual occupancy and after delving into the reasons is it possible to formulate a
hypothesis that matches the observations: those days are local holidays.
Taking this as a starting point, we study the effects of two sources of information that
intuitively seem to have an effect on parking systems due to their relationships with
the human routines. These sources of information are calendar effects and weather
conditions.

8.1.1 Description

The exogenous variables we use are the following:
• Calendar effects. Parking behavior can be affected by so-called calendar effects.

Occupancy on a weekend is different than on weekdays, but the pattern is main-
tained over weekends. In order to capture such patterns, this study uses the
following calendar information:
– Day of the Week: Categorical. Integer value between one and seven that

identifies the day of the week.
– Season: Categorical. Integer value between one and four that identifies the

season.
– Month. Categorical. Integer value between one and twelve that identifies the

month.
– Weekday (working day): Categorical. Binary value that indicates if the day

is a weekday or on the weekend.
– Holiday: Categorical. Binary value that indicates if it is a local or global

holiday.
• Weather conditions. The objective of using this source of information is to ascertain

whether the parking occupancy patterns are modified by weather conditions, as
they have an impact on human routines. The information related to weather is:
– Temperature: Numerical. Self-explanatory.
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– Cloud Cover. Numerical. Value in the 0–1 interval indicating the percentage
of sky occluded by clouds.

– Dew Point: Numerical. Dew point temperature.
– Humidity: Numerical. Value between zero and one representing the humidity.
– Wind Bearing: Numerical. Wind direction in degrees.
– Wind Speed: Numerical. Wind speed in miles per hour.
– Wind Gust: Numerical. Wind gust speed (miles per hour).
– UV Index: Numerical. Values in the interval bounded at zero and unbounded

above.
– Visibility: Numerical. Average visibility as distance (miles).
– Precipitation Intensity: Numerical. Inches of water per hour at a given time.
– Precipitation Accumulated: Numerical. Amount of snowfall accumulated in

inches per hour.
– Precipitation Type: Categorical. If precipitation, this describes its type.

Possible values are snow or rain.
– Weather summary for each hour: Text. A readable text that summarizes the

weather at a given hour. Possible values are clean, rainy, overcast, etc.
– Weather summary about the day: Text. A readable text that summarizes the

weather on a given day. Possible values are sentences like Overcast throughout
the day or Possible light rain in the morning with clear skies at night.

Through this chapter the value that a categorical variable can take is written in italic
letters in order to help the reader to differenciate them from the common usage of the
word. For example: foggy days are usually indicated when the Summary categorical
variable has the value foggy.

8.1.2 Preprocessing

In order to integrate the exogenous variables for modeling, it is necessary to preprocess
them to ensure that the models can make use of them. Things to consider are the types
of variables and their scale. Exogenous variables can be of two types:

• Categorical: Cannot be handled directly by a model because they are described as
text or as an integer value with low cardinality, such as the day of the week that
is described as an integer from one to seven in order to designate the seven days
of the week. For a human, these integers can mean a given day, but they are just
numbers to a computer.

• Numerical: Continuous variables usually in the R domain. These are the most
common types of variables.
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To digest these types of variables, NN models must satisfy some constraints:
• In the case of categorical data as text, it must be preprocessed and mapped to the

I domain (like the day of the week). This is known as ordinal representation. It is
better to convert the ordinal representation to one-hot encoding. This is a sparse
vector of size N that is equal to the number of possible values of the variable.
In this vector, all inputs are zero, except for the position that corresponds to the
integer value used to codify the value of the variable, which will be one. This
approach uses integer values in which the categorical variable values have been
mapped as an index whose vector has the value of one. This is a common approach
in machine learning and statistical methods, but NNs have problems with such
sparse codification. Thus, these representations are transformed to dense valued
vectors known as embeddings. Embeddings are part of the NN input layer and are
learnt during the training phase of the model.

• For numerical data, all the variables must be in the same scale. Moreover, ML
methods like NNs, work better if the data has mean 0 and unit variance. This is
essential for ensuring that high-scale variables do not have higher weights and are
thus considered more important than others. Furthermore, it avoids vanishing and
exploding gradients. Numerical data is usually preprocessed by a normalization
method.

Those variables described as type text in the previous section are sequences formed by
categorical variables, in which each word (normally called a “token” in the Natural Lan-
guage Processing literature) has a vocabulary value. If we use one-hot encoding for this
type of information, the size of the sparse vectors become very large and computationally
inefficient. For example, a text with 200 different words will create one-hot vectors for
each word that consists in 199 zeros and 1 one. The embeddings mentioned previously
are the key component for handling these types of variables.
What is more, this work uses a windowed approach for creating time series and it is
therefore necessary to adapt the exogenous variables to this methodology. Because all
the numerical variables are also hourly time series, they have been preprocessed to create
24-element time series in the same way as the occupancy variable. For the categorical
variables, a similar approach has been used. This ensures that those categorical/text
variables that have changing hourly frequencies can provide useful information at each
step, just as the numerical variables do. However, for those exogenous variables that
change at higher frequency (likethe variable Month that in average its value changes
every 30.42 days) their formed sequences changes very little.

8.1.2.1 Embeddings

Embeddings are formed by using a set of densely connected neurons as part of the input
layer of a NN model. This set of neurons uses words codified as integer values (they
could also be a one-hot encoded vector), and those integer values are mapped onto a
dense vector of values that are learned at the same time that the model is trained, in
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other words, the weights of these neurons act as a lookup table that maps the codified
words as integers to a vector representation. Once the model is trained, each of the
dense vectors offers a unique representation of the token (word or categorical value)
with which it is bounded. Moreover, as those vectors have been created during training,
they capture the semantic meaning of the token in relation to the problem or task
that the model has been trained to model. Finally, it is necessary to consider the size
output of an embedding layer, as its input is a vector of integer values (tokens) and it
returns a matrix of size (sequence length, number dense neurons). Sequence size is used
to determine beforehand a fixed size for the input of the embedding layer. As part of the
preprocessing, all sequences must be of the same length and this is achieved by padding
the sequences (adding zeros for example). The padded values are masked in order to
save computation by using a mask. The number of dense neurons is used in order to
determine the length of the embedding vectors (more neurons, larger the embeddings).
Taking this into account when training an NN model with N texts representing a data
row composed of words (a matrix), the embedding layer output will be a tensor of three
dimensions. This transformation into a three dimensional vector makes them perfect
candidates for use as input in recurrent layers. Detailed information about embeddings
is provided in Mikolov et al. [2013], Guo and Berkhahn [2016].

8.1.2.2 Numerical normalization

There exist different normalization techniques for providing better representations of the
numerical variables for NN models. In this work, we use standardization (presented in
Equation 8.1) and scaling (see Equation 8.2).

zscores = X − µx
σx

(8.1)

Xscale = x−min(x)
max(x)−min(x) (8.2)

Standardization is commonly used in statistics to center the variables to zero mean and
unit standard deviation, thus making them a normalized standard distribution. On
the other hand, scaling changes the range of the data so that it comprises the interval
between zero and one (although the formula can be modified in order to have any desired
interval). As mentioned previously, ML and statistical methods usually require that the
data be normalized, but this can also depend on the application. In order to know which
method provides better models (smoother training and lower loss values), 20 models were
created for the scenarios, and the losses from each scenario’s model were aggregated for
comparing which method provides better models. All models have the same structure:

• 2 GRU layers of 128 units each and a dense layer with six neurons as the output
(schema of simultaneous multiple predictions).
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• Adam as optimizer.
• Batch size of 128.
• Hyperbolic tangent as GRU activation function and linear activation function at

the output layer.
• 30 epochs, no early stop.
• MSE as loss function.

Figure 8.1 shows the averaged training and validation loss from 20 models trained with
all the exogenous variables together and normalized by means of standardization (blue)
and scaling (orange). Each visualization comes from the four scenarios. The important
points for extracting useful information from these plots are: the lower point of the
validation losses; the gap between training and validation losses at the last epoch (30);
and the variability at each epoch (vertical lines). The scaled method is superior in
the Antwerp and Los Angeles scenarios, while its scores are equal to the standardized
method in Wattens and Riyadh. The gap between training and validation loss is larger
for the scaling method, meaning that the model is still far from overfitting the data,
while the losses from the standardized method cross each other in Antwerp, Wattens
and Riyadh. This indicates that the scaled method allows for longer training, which
gives the model room to improve before overfitting. Lastly, the variability at each epoch
is similar for both methods.
In light of these results, this work uses scaling to normalize all the exogenous variables.
The endogenous variable is not normalized, as it is already in the 0-1 interval.

8.2 Parking characterization

A study has been done to characterize the behaviour of exogenous variables and oc-
cupancy. In order to obtain useful information, different models were created using
different inputs in order to provide occupancy forecasts for the next six hours. The
models are:

• A model using only categorical variables.
• A model using only numerical variables.
• A model for each of the exogenous variables.

These experiments will provide insights into the relationship between parking occupancy
and the exogenous information. In the case of the categorical variables, a study of the
embeddings can provide useful information about the parking systems.

8.2.1 All the categorical variables

A model has been created using the following variables as input :
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Figure 8.1: Normalization techniques. Losses in 20 models (averaged) for each scenario
using standardization and scaling. Vertical lines represent the standard deviation at
that epoch. From top left to bottom right: Antwerp Pelikaanstraat, Wattens Outside,
Los Angeles Standard and Riyadh Sector-10.
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• Day of the Week.
• Season.
• Month.
• Weekday (working day).
• Holiday.
• Weather precipitation type.
• Weather summary for an hour.
• Weather summary about a specific day.

The model consists of:
• An embedding layer with 128 neurons for each variable. Each embedding layer is

connected to a GRU layer of 64 units. The output of the recurrent layers are then
concatenated through the first dimension (columns), forming a matrix of shape
(batch size, 512) where the 512 columns come from the eight GRU layers (8*64).
This matrix is used as input to the output layer that consists of the well-known
six dense neurons that try to predict the next six hours of forecasts.

• Adam optimizer.
• 50 epochs with early stop.
• 128 as batch size.
• RMSE as loss.

The usage of a recurrent layer after embedding is due to the output nature of the embed-
ding layer, as it is a tensor of three dimensions (batch size, sequence length, embedding dimension).
These three-dimensional tensors (where the second dimension represents the sequence
length, i.e., the time step) are handled better by recurrent layers, although there exist
other options like flattening the tensor into a matrix (and losing temporal dimension)
or using some kind of operation like global pooling that averages the tensor.
The concatenation of the GRU outputs is interpreted as a matrix where each feature
(one of each 512 vectors in the first dimension) represents a summary of the twenty-four
previous values of the sequence, as each token has been converted into a dense vector
and the sequence of these vectors has been summarised in time by the recurrent layer
(one per feature). In this approach, our embeddings are projected into different feature
spaces. Other alternatives could be to create unique categorical variables that have the
values of all the others and project them all into the same feature space.
A visualization of the previously explained model architecture is presented in Figure 8.2.

Antwerp

Figure 8.3 presents the forecasts at six consecutive hours for the Pelikaanstraat sector in
Antwerp. Although the endogenous variable has not been used as input for the model,
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Figure 8.2: Schema of the architecture used to model all categorical variables for fore-
casting parking occupancy values.

the figure shows that the model has learnt the recurrent patterns of parking occupancy
that occur every day. Moreover, occupancy can be differentiated according to the day of
the week, as shown by more occupancy being indicated on Sundays and less on Saturdays
(April 13 and 14, respectively), something that was observed in Chapter 3.

Wattens

The visualizations in Figure 8.4 show the forecasts at different step horizons for the
Wattens Outside sector. The model has been able to learn some of the occupancy
patterns during workdays and weekends, like in the Antwerp scenario. Moreover, it is
capable of distinguishing that the occupancy pattern is different on Fridays compared
to the other working days.

Los Angeles

The plots in Figure 8.5 pertain to the forecasts at six time steps for the Los Angeles
Standard sector using only categorical information. Observations are similar to those
of the previous scenario models, although this model fails to detect the lowest levels of
occupancy.
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Figure 8.3: Forecasts for the next six hours from a model using only categorical inputs
for the Pelikaanstraat sector in the Antwerp scenario.
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Figure 8.4: Forecasts for the next six hours from a model using only categorical inputs
for the Outside sector in the Wattens scenario.

423



8.2 Parking characterization Neural networks with exogenous information

Figure 8.5: Forecasts for the next six hours from a model using only categorical inputs
for the Standard sector in the Los Angeles scenario.
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Figure 8.6: Forecasts for the next six hours from a model using only categorical inputs
for Sector-10 in the Riyadh scenario.

Riyadh

The last scenario corresponds to Sector-10 in Riyadh. The visualizations of the forecasts
at different time horizons presented in Figure 8.6 show that the model has learnt the
occupancy patterns of the parking sector throughout the days. The regular behaviours
that occur in the Riyadh sectors can easily be modeled with calendar and weather
information.
Those four models have shown that it is possible to model parking occupancy patterns
using exogenous variables, but the level of error is conditioned by the regularity of the
patterns in the modeled sectors. Moreover, the exogenous variables that have been used
correspond to categorical information of different types, like ordinals, categories and
texts. This shows that the proposed architecture based purely on the NN methodology
is a good candidate for modeling such types of problems.
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Figure 8.7: Architecture used for the models with only one categorical variable.

8.2.2 Categorical variables, one by one

A model has been created for each of the categorical variables with the goal of forecast-
ing the parking occupancy for the next six hours. This approach will provide insights
into which categorical variables contribute the most to the forecasts. In addition, the
embeddings from each input are inspected to find clues about the relationship between
the categorical variables and the parking occupancy.
The models consist of:

• An embedding layer with 128 neurons connected to a GRU layer of 64 units. The
output is used as input for the output layer, which has six neurons.

• Adam optimizer.
• 50 epochs with early stop.
• 128 as batch size.
• RMSE as loss function.

The architecture of the models with one categorical variable is presented in Figure 8.7.

Antwerp

Figure 8.8 presents the occupancy forecasts for the next six hours from the model created
with the categorical variable Summary. The model forecasts the mean of the series when
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Figure 8.8: Antwerp Summary variable forecasts.

the weather condition is the same during the day (11 April was clear at all hours), but
changes related to different weather conditions can be noticed in the forecasts, as days
16 and 17 became overcast, foggy and rainy in the afternoons and evenings (shown in
Table 8.1), which the model used to forecast lower values of parking occupancy.
It is possible to extract useful information from the embedding models, as they capture
the semantic relationships between the inputs and the outputs. The steps to do that
are:

1. Extract the weights of the embedding layer.
2. Perform dimensionality reduction using Principal Component Analysis (linear method)

and/or t-Distributed Stochastic Neighbor Embedding (tSNE) (non-linear method)
on the embedding weights in order to project the data into a lower dimension and
obtain clusters of similar tokens.

3. Visualize the data.
Some notes about tSNE: although tSNE can be used directly, it is recommended to first
use PCA to reduce computational loading by filtering redundant dimensions. This is

427



8.2 Parking characterization Neural networks with exogenous information

time precipType summary summary2

2019-04-17 00:00:00 rain Overcast Mostly cloudy throughout the day.

2019-04-17 01:00:00 rain Overcast Mostly cloudy throughout the day.

2019-04-17 02:00:00 rain Overcast Mostly cloudy throughout the day.

2019-04-17 03:00:00 none Overcast Mostly cloudy throughout the day.

2019-04-17 04:00:00 none Overcast Mostly cloudy throughout the day.

2019-04-17 05:00:00 none Overcast Mostly cloudy throughout the day.

2019-04-17 06:00:00 none Overcast Mostly cloudy throughout the day.

2019-04-17 07:00:00 none Overcast Mostly cloudy throughout the day.

2019-04-17 08:00:00 none Overcast Mostly cloudy throughout the day.

2019-04-17 09:00:00 none Overcast Mostly cloudy throughout the day.

2019-04-17 10:00:00 none Mostly Cloudy Mostly cloudy throughout the day.

2019-04-17 11:00:00 none Mostly Cloudy Mostly cloudy throughout the day.

2019-04-17 12:00:00 none Mostly Cloudy Mostly cloudy throughout the day.

2019-04-17 13:00:00 rain Mostly Cloudy Mostly cloudy throughout the day.

2019-04-17 14:00:00 rain Mostly Cloudy Mostly cloudy throughout the day.

2019-04-17 15:00:00 rain Mostly Cloudy Mostly cloudy throughout the day.

2019-04-17 16:00:00 rain Overcast Mostly cloudy throughout the day.

2019-04-17 17:00:00 rain Overcast Mostly cloudy throughout the day.

2019-04-17 18:00:00 rain Overcast Mostly cloudy throughout the day.

2019-04-17 19:00:00 rain Mostly Cloudy Mostly cloudy throughout the day.

2019-04-17 20:00:00 rain Mostly Cloudy Mostly cloudy throughout the day.

2019-04-17 21:00:00 rain Mostly Cloudy Mostly cloudy throughout the day.

2019-04-17 22:00:00 none Mostly Cloudy Mostly cloudy throughout the day.

2019-04-17 23:00:00 none Clear Mostly cloudy throughout the day.

Table 8.1: Antwerp Pelikaanstraat weather 17 April 2019.
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because tSNE is an algorithm that requires a lot of computational and memory resources,
due to it having an O(N2) complexity (where N is the number of data points). Then,
tSNE is used to reduce the dimensionality to two or three dimensions by mapping the
high dimensional data neighbourhoods in a lower dimension.
The tSNE method has a hyperparameter called perplexity, which is related to the band-
width of the distributions in the high dimensional data (as it uses a radial basis function),
meaning that higher values of this hyperparameter permits to have larger neighbour-
hoods. In order to obtain interpretable visualizations, it is necessary to try different
values for the perplexity hyperparameter. What is more, one could tune the learning
rate of the optimizer as the algorithm makes use of SGD. Although tSNE preserves local
structure, we must be cautelous with interpretations when using this method, specifi-
cally because there are no guarantees about the preserving of the global structure of the
high dimensionality space when it is mapped to a lower one. Thus, interpreting cluster
gaps must be done cautiously (in other words, the distances between clusters do not
mean anything). The work by van der Maaten and Hinton [2008] provides details about
using this methodology to visualize this type of high dimensional data.
Using the cosine distance (shown in Equation 8.3), the distance of the dense vectors
can be measured from the trained embeddings to obtain semantic relationships between
the words represented by the dense vectors represent in the current task. The cosine
distance output is in the interval between 0 and 2, where 0 means equal vectors, 1 is an
orthogonal vector, and 2 represents vectors with opposite directions.

dcosine = 1− a · b
‖a‖ ∗ ‖b‖

(8.3)

Figure 8.9 shows the distance matrix obtained when the cosine distance is applied to the
embeddings of the Summary variable as a heatmap. As the embeddings are learned by
modeling the input data to forecast parking occupancy, their distances are conditional
on the parking occupancy.
Figures 8.10 and 8.11 present the visualizations of the embeddings from the variable
Summary after applying PCA and tSNE. Our interpretation is that similar visualizations
mean that the information lost by the subset of principal components selected in the PCA
(i.e., the total variance ratio explained by the sum of the subset of principal components)
is low and, furthermore, that the relationships are linear. Moreover, this allows using
PCA interpretability methods that give meaning to the visualization, as the meaning of
the principal components is based on the variance of the features.
By observing the heatmap of distances, the PCA, and the tSNE visualizations for the
Summary variable, it is possible to interpret that the parking occupancy is conditioned
by different weather conditions. PCA shows that flurries, heavy snow, wind and fog
are different from the rest of the Summary values, while tSNE shows the following
neighbourhoods:

• Mostly heavy rain and fog. Weather conditions related to rainy days.
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Figure 8.9: Antwerp Pelikaanstraat sector heatmap of the cosine distance between the
values of the variable Summary.

Figure 8.10: Antwerp Pelikaanstraat scatterplots for the embeddings of the variable
Summary after PCA. .
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Figure 8.11: Antwerp Pelikaanstraat scatterplots for the embeddings of the variable
Summary after tSNE.

• Cloudy, flurries and snow. Weather conditions related to bad weather.
• Dangerous.
• The remaining values as like windy, drizzling, overcast, and clear, among others,

can be interpreted as mild weather conditions. Being the most usual, they do not
much affect parking occupancy.

Thus, it seems that weather conditions have an effect on parking occupancy, especially
unusual conditions that can be considered as bad weather conditions.
Another variable related to the weather is Summary2, which gives a daily and detailed
description of the weather throughout the day. Because it is more detailed, it uses more
tokens (words) to describe the weather. However, because it is modeled in a windowed
approach, the model receives the same input for the twenty-four hours of the day, so
the information is sparse and the model is not expected to obtain useful information for
hourly predictions.
Figure 8.12 shows the occupancy forecasts when using only the Summary2 variable. As
expected, the levels of occupancy change at the same frequency as the variable does, that
is, when a new day starts. Nevertheless, because the occupancy levels change according
to this information, so the Summary2 variable provides some useful information for the
model.
The heatmap of the cosine distance presented in Figure 8.13 shows results similar to
those from the Summary variable, as tokens for bad weather conditions are closer to
each other (flurries, cloudy, foggy and snow, for example).
The visualizations from the dimensionality reduction methods presented in Figures 8.14
and 8.15 allow for the interpretation that there are clearly two different weather condi-
tions, but they differ between PCA and tSNE. The tSNE seems to be more interpretable,
as one of the groups is related to calm weather conditions while the other (more hetero-
geneous) has the tokens foggy, snowy, rainy and windy together with words like evening,
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Figure 8.12: Pelikaanstraat forecasts using the Summary2 exogenous variable.
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Figure 8.13: Antwerp Pelikaanstraat sector heatmap of the cosine distance between
the values of the variable Summary2.
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Figure 8.14: Antwerp Pelikaanstraat scatterplots for the embeddings of the variable
Summary2 after PCA.

morning and throughout, which could indicate when the weather events will happen.
Therefore, these tokens usually appear together.
The last categorical variable related to weather is Precipitation Type, and it has three
possible values for each hour of the day: snow, rain or none. Its forecasts, presented in
Figure 8.16, show that the model predicts lower parking occupancy with the rain value
(days 13 and 17 of April in the afternoon/evening (shown in Table 8.1)), thus indicating
that parking occupancy is affected by those weather conditions.
The cosine distances in Figure 8.17 show that occupancy is totally different on rainy and
snowy days, while no precipitation has an effect that is similar to both values.
Although the 3D scatterplot of the PCA in Figure 8.18 seems to indicate that the values

Figure 8.15: Antwerp Pelikaanstraat scatterplots for the embeddings of the variable
Summary2 after tSNE.
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Figure 8.16: Pelikaanstraat forecasts using the Precipitation Type exogenous variable.

Figure 8.17: Antwerp Pelikaanstraat sector heatmap of the cosine distance between
the values of the variable Precipitation Type.
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Figure 8.18: Antwerp Pelikaanstraat scatterplots for the embeddings of the variable
Precipitation after PCA.

Figure 8.19: Antwerp Pelikaanstraat scatterplots for the embeddings of the variable
Precipitation after tSNE.

none and snow are more similar to each other, careful observation of their values in each
dimension reveals that the value none is closer to rain than to snow. This can be seen
more easily in the tSNE visualization (Figure 8.19), as it shows that the Precipitation
Type values none and rain are closer to the parking occupancy values than snow is,
which can be seen in the 2D PCA visualization.
The models created using each of three categorical variables related to weather present
overlapping forecasts, as the information is redundant. Of the three, the most promising
is the variable Summary, as it has hourly frequency and includes information from
Summary2 and Precipitation Type.
The next categorical variable is Season, whose values are Winter, Spring, Summer and
Autumn. Although its frequency change is very small when compared to the scale of
the problem, it is of interest to inspect how parking occupancies change throughout the
year.
In order to visualize the forecasts, it is necessary to use the whole interval of data,
which is approximately one year for the Pelikaanstraat sector. Figure 8.20 shows that
the model change the values of its forecasts based on the season, although the levels of
occupancy change from one step to the other. The model identifies that Spring is the
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Figure 8.20: Pelikaanstraat forecasts using the exogenous variable Season.

season with the highest parking occupancy and Winter the one with the lowest values.
The heatmap of the cosine distances is shown in Figure 8.21. It can be observed that
the occupancy patterns are more similar throughout consecutive seasons.
Figure 8.22 presents the scatterplots after reducing the dimensionality of the embeddings
for the categorical variable Season. As observed in the heatmap, consecutive seasons are
closer to each other, especially Autumn and Winter. Another fact that can be observed
is that Spring and Autumn are dissimilar. The tSNE visualization (Figure 8.23) shows
that each season is different from the others. It must notably be taken into account
that occupancy patterns can change over time, which could be the reason why Autumn–
Spring and Winter–Summer show orthogonal positions.
Another categorical variable with a small frequency change rate is Month. However,
like Season, it could offer interesting insights into parking occupancy patterns. Figure
8.24 shows the forecasts of the model trained only with the variable Month in order to
forecast the parking occupancy. What the model has learnt seems to be the same as it
did with the variable Season – but with finer granularity – as the forecasts for Month
are similar to those for Season in that they show more parking occupancy levels in April
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Figure 8.21: Antwerp Pelikaanstraat sector heatmap of the cosine distance between
the values of the variable Season.

Figure 8.22: Antwerp Pelikaanstraat scatterplots for the embeddings of the variable
Season after PCA.

Figure 8.23: Antwerp Pelikaanstraat scatterplots for the embeddings of the variable
Season after tSNE.

438



8.2 Parking characterization Neural networks with exogenous information

Figure 8.24: Pelikaanstraat forecasts using the Month exogenous variable.

(Spring) and fewer in December (Winter). Therefore, it is possible to just use Month
instead of both variables.
The heatmap of the cosine distances for the embeddings of the Month variable is shown in
Figure 8.25. It can be observed that the occupancy patterns are more similar throughout
consecutive months, something that was already observed with the variable Season.
Moreover, the influence of vacations can be observed, as months like July and December
show a small distance between each other due to having fewer parking occupancies.
Figures 8.26 and 8.27 present the scatterplots from the dimension reduction algorithms.
All three visualizations show clearly that two different clusters correspond to Sum-
mer/Winter months versus Spring/Autumn. This could be interpreted as the influence
of holidays and vacations on the parking occupancies.
Daily information can also be of interest, and it is represented with the categorical
variables Working Day, Holiday and Day of the Week.
Forecasts for the model trained with the categorical variable Working Day are presented
in Figure 8.28. The model differentiates the occupancy between April 13 to 15 (weekend),
and forecasts the same level of occupancy throughout the weekdays.
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Figure 8.25: Antwerp Pelikaanstraat sector heatmap of the cosine distance between
the values of the variable Month.

Figure 8.26: Antwerp Pelikaanstraat scatterplots for the embeddings of the variable
Month after PCA.
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Figure 8.27: Antwerp Pelikaanstraat scatterplots for the embeddings of the variable
Month after tSNE.

Figure 8.28: Pelikaanstraat forecasts using the Working Day information.
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Figure 8.29: Antwerp Pelikaanstraat sector heatmap of the cosine distance between
the values of the variable Working Day.

Figure 8.29 shows the heatmap of the cosine distance between the two possible values
of the variable Working Day. It shows clear orthogonality.
Dimensional reduction methods cannot offer relevant information, as the categorical
variable’s number of values is just two, and the heatmap already shows that the parking
occupancies are different between weekdays and weekends.
The categorical variable Holiday is of interest, as it could provide the model useful
calendar information if it detects that holidays behave differently than workdays. Figure
8.30 shows how the model predicts higher occupancy values for the days of the Easter
Holiday, which can be counterintuitive because holidays are usually associated with low
parking occupancies. However, this depends on the users of the parking sector. For the
non-holiday days, the forecasts are always the mean of the series.
Figure 8.31 shows the heatmap of the cosine distance between the two possible values
of the variable Holiday, with clear neutrality (distance one) being indicated between the
values.
Because of the low number of values, the dimension reduction methods do not offer any
useful information.
The last categorical variable is Day of the Week. It is expected that the model learns
more specific information than the variable Working Day, as Day of the Week can also
provide this information.
Figure 8.32 shows the forecasts when using only the categorical variable Day of the Week.
Surprisingly, of all the categorical variables, this is the one that provides forecasts with
the lowest error rate while making clear distinctions between the patterns for each day of
the week, although the variable has a daily frequency change. The monthly visualization
offered in Figure 8.33 clearly shows that the model differentiates the occupancy according
to the days of the week. This implies that parking occupancy is heavily influenced by
the day of the week. Furthermore, this could provide information that is not available
when using only the endogenous variable in sequences of twenty-four past values.
The heatmap from the cosine distance matrix is shown in Figure 8.34. Observe that
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Figure 8.30: Pelikaanstraat forecasts using the categorical variable Holiday.

Figure 8.31: Antwerp Pelikaanstraat sector heatmap of the cosine distance between
the values of the variable Holiday.
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Figure 8.32: Pelikaanstraat forecasts using the categorical variable Day of the Week.
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Figure 8.33: Pelikaanstraat forecasts through March 2019 using the categorical variable
Day of the Week.
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Figure 8.34: Antwerp Pelikaanstraat sector heatmap of the cosine distance between
the days of the week.

some days of the week are very similar, namely: Wednesday, Friday and Sunday; and
Monday and Thursday.
The scatterplots in Figures 8.35 and 8.36 provide a better visualization of the different
parking behaviours in the Pelikaanstraat sector, based on the values of the variable Day
of the Week. PCA shows that the days are organized into four groups:

1. Thursday and Monday
2. Friday, Wednesday and Sunday.
3. Tuesday.
4. Saturday

While tSNE presents four groups that differ a little from the PCA visualization:
1. Sunday and Wednesday.
2. Tuesday and Friday.
3. Thursday and Monday.
4. Saturday.

Day of the Week clearly offers information that is the same as or better than that of
Working Day. Therefore, the latter can be replaced by the former.
From the exogenous categorical variables in Antwerp, the following information has been
obtained:
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Figure 8.35: Antwerp Pelikaanstraat scatterplots for the embeddings of the variable
Day of the Week after PCA.

Figure 8.36: Antwerp Pelikaanstraat scatterplots for the embeddings of the variable
Day of the Week after tSNE.
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• Day of the Week is the one that contributes the most to model parking occupancy.
• There are redundant variables:

– Working Day can be replaced by Day of the Week.
– Season can be replaced by Month.
– Summary2 can be replaced by Summary, as it offers hourly descriptions of

the weather conditions, which is in contrast to the daily descriptions of Sum-
mary2.

• The Holidays variable seems to have an effect on the behaviour of the parking
occupancies.

For the next scenarios, the categorical variables for the analysis are:
• Summary.
• PrecipType
• Day of the Week.
• Month.
• Holiday.

Wattens

Figure 8.37 presents the occupancy forecasts for the next six hours from the model
created with the categorical variable Summary for the Wattens Outside sector. The
visualizations show that the forecasted levels of occupancy are influenced by the weather
information, but it is hard to quantify the importance of the effect. Table 8.2 shows the
information used as input for the day 15 May 2019.
Figure 8.38 shows the distance matrix obtained when the cosine distance is applied to
the embeddings of the Summary variable as a heatmap for the Wattens Outside sector.
It gives the impression that the occupancy is conditioned by the weather, as bad weather
conditions have small distances.
Figures 8.39 and 8.40 show the scatterplots after applying the dimensionality reduction
methods PCA and tSNE. It seems that PCA dimensions can be related to weather
conditions because windy, snow, heavy, flurries and drizzle are positioned at similar
levels in the third axis (PCA with three dimensions). tSNE provides a cluster for cloudy,
rain, partly and heavy (all weather conditions related to rainy days) and another for
windy, snow, flurries and drizzle (weather conditions related to snowy days) and the
other values are in between, forming little clusters of pair elements like none and clear
(neutral weather conditions in relation to occupancy).
The other categorical weather variable is Precipitation Type, whose forecasts are pre-
sented in Figure 8.41. Similarly to what was observed in Antwerp, the model tries to
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Figure 8.37: Wattens forecasts with the categorical variable Summary.
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time precipType summary

2019-05-15 00:00:00 rain Foggy

2019-05-15 01:00:00 rain Foggy

2019-05-15 02:00:00 rain Overcast

2019-05-15 03:00:00 rain Overcast

2019-05-15 04:00:00 rain Overcast

2019-05-15 05:00:00 rain Overcast

2019-05-15 06:00:00 rain Mostly Cloudy

2019-05-15 07:00:00 rain Mostly Cloudy

2019-05-15 08:00:00 rain Mostly Cloudy

2019-05-15 09:00:00 rain Mostly Cloudy

2019-05-15 10:00:00 rain Overcast

2019-05-15 11:00:00 rain Overcast

2019-05-15 12:00:00 rain Overcast

2019-05-15 13:00:00 rain Overcast

2019-05-15 14:00:00 rain Mostly Cloudy

2019-05-15 15:00:00 rain Mostly Cloudy

2019-05-15 16:00:00 rain Mostly Cloudy

2019-05-15 17:00:00 rain Mostly Cloudy

2019-05-15 18:00:00 rain Overcast

2019-05-15 19:00:00 rain Overcast

2019-05-15 20:00:00 rain Overcast

2019-05-15 21:00:00 rain Overcast

2019-05-15 22:00:00 none Mostly Cloudy

2019-05-15 23:00:00 none Mostly Cloudy

Table 8.2: Wattens Outside sector weather information on 15 May 2019.
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Figure 8.38: Wattens Outside sector heatmap of the cosine distance between the values
of the variable Summary.

Figure 8.39: Wattens Outside scatterplots for the embeddings of the variable Summary
after PCA.
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Figure 8.40: Wattens Outside scatterplots for the embeddings of the variable Day of
the Week after tSNE.

Figure 8.41: Wattens Outside sector forecasts with the categorical variable Precipita-
tion Type.
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Figure 8.42: Wattens Outside sector heatmap of the cosine distance between the values
of the variable Precipitation Type.

Figure 8.43: Wattens Outside scatterplots for the embeddings of the variable Precipi-
tation Type after PCA.

forecast the parking occupancy based on the values of Precipitation, which are none,
rain and snow. However, it lacks expressiveness power to produce good forecasts.
The cosine distance matrix (Figure 8.42) clearly shows that occupancy behaves differ-
ently on rainy days.
The scatterplots in Figure 8.43 show the distribution of the embedding values when
a dimensionality reduction method is applied. PCA shows that the three values have
different relationships with the parking occupancy. No visualization is offered for the
tSNE method because it is not able to converge, maybe because of the low number of
values.
Forecast visualizations for the different time steps of the model trained with the exoge-
nous variable Month are provided in Figure 8.44. It shows that the season with the
highest levels of occupancy is Autumn, as it coincides with the months between Septem-
ber and November. December shows the lowest occupancy levels, perhaps due to the
holidays. Remember that the Wattens sectors are private.
The heatmap of the cosine distance matrix is shown in Figure 8.45. It shows that Febru-
ary behaves differently than the rest of the months and that the December occupancy
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Figure 8.44: Wattens Outside sector forecasts from a model trained with the categorical
variable Month.
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Figure 8.45: Wattens Outside sector heatmap of the cosine distance between the values
of the variable Month.

levels are clearly different than those of September and October, which have the highest
occupancy levels.
The results from applying PCA and tSNE to the embeddings of Month are shown in
Figures 8.46 and 8.47. PCA shows that there is a clear linear pattern that distinguishes
November, October and September from the rest of the months, especially from Decem-
ber through the first axis. tSNE brings together October and September; February and
December; and January and March.
The forecasts for the model trained with the categorical variable Holiday are presented
in Figure 8.48. The visualizations show that the model predicts a mean value for non-

Figure 8.46: Wattens Outside scatterplots for the embeddings of the variable Month
after PCA.

455



8.2 Parking characterization Neural networks with exogenous information

Figure 8.47: Wattens Outside scatterplots for the embeddings of the variable Month
after tSNE.

holidays (21, 22 and 23 of December) and a different occupancy value for holidays (24,
25 and 26 of December). Interestingly, the model provides more detailed forecasts for
days that transition between holiday and non-holiday. The reason is the sparsity of the
variable, as it usually has the same value (non-holiday). However, the visualizations
suggest that holidays in the Wattens sectors have an effect on the parking occupancies.
Because of the lack of values in the variable (which is binary), the heatmap and the
dimensionality reduction plots do not offer any information.
Lastly, the visualizations of the forecasts for the categorical variable Day of the Week
are presented in Figure 8.49. Similarly to the Antwerp scenario, this is the categorical
variable that offers better forecasts, as the model has learnt the different patterns of
occupancy during the week. What is more, it is impressive how it is able to learn that
the occupancy on Fridays is different from the other days due to the company in that
parking sector closing earlier that day.
The heatmap of the cosine distance matrix from the Day of the Week is shown in Figure
8.50. Monday and Wednesday are similar to each other in terms of parking occupancy,
as well as Tuesday and Thursday.
The visualizations in Figures 8.51 and 8.52 show how the values of the embeddings are
positioned after applying PCA and tSNE. PCA visualizations show that Tuesday and
Thursday are similar while Monday and Wednesday (and maybe Sunday) are also similar
to each other, as well as Friday and Saturday. tSNE offers a slightly different version in
which the groups are Friday, Saturday and Sunday (weekends), Monday and Wednesday
and then, Tuesday and Thursday. Visually, it is clear that weekends are different from
weekdays, but it is not evident why Monday and Wednesday / Tuesday and Thursday
are so similar to each other and different from the rest, as those days have the same
office hours.
The categorical exogenous variables for the Wattens Outside sector prove to be useful
for correcting the forecast of parking occupancy on holidays and for taking into account
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Figure 8.48: Wattens Outside sector forecasts from the model trained with the cate-
gorical variable Holiday.
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Figure 8.49: Wattens Outside sector forecasts from a model trained with the categorical
variable Day of Week.
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Figure 8.50: Wattens Outside sector heatmap of the cosine distance between the values
of the variable Day of the Week.

Figure 8.51: Wattens Outside scatterplots for the embeddings of the variable Day of
the Week after PCA.
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Figure 8.52: Wattens Outside scatterplots for the embeddings of the variable Day of
the Week after tSNE.

patterns based on the day of the week, as the Wattens sectors have different behaviours
according to those characteristics.

Los Angeles

Figure 8.53 presents the occupancy forecasts for the next six hours from the model
created with the categorical variable Summary for the Los Angeles scenario (Standard
sector). At first sight, it would seem that there is some effect on the parking occupancy,
but not enough for forecasting. A weather table for Los Angeles on 17 October is shown
in Table 8.3, which supports the explanations presented in this section.
Figure 8.54 shows the distance matrix, which is obtained after applying the cosine dis-
tance to the embeddings matrix of the Summary variable, thus serving as a heatmap
for the Los Angeles Standard sector. Some of the vectors that form the embeddings
seem to be closer in the embedding space, for example, heavy and overcast or none and
overcast. Alternatively, other vectors like clear and overcast have the opposite meaning
in relation to parking occupancy.
Figures 8.55 and 8.56 show the visualizations of the embedding values projected into
lower dimensional space by PCA and tSNE. The PCA variance ratio explained by two
and three principal components is 80% and 87%, meaning that there is no huge loss
in information from using PCA. The principal components (axis in scatterplot) can be
interpreted as dimension 1 corresponding to weather conditions related to rainy, higher
values coincide with words like rain, foggy or heavy (this last always appears as heavy
rain), while lower values have a more neutral meaning (clear, none, partly, or possible).
For dimension 0, no intuitive explanation can be given. The visualization from tSNE
shows three clusters that consist of drizzle, heavy and overcast (rain adjectives); cloudy,
foggy and rain (weather conditions); and, lastly, clear, partly, light, mostly and possible,
which could be related to tokens that indicate a more neutral relationship between
weather and parking occupancy.
The Summary forecasts of parking occupancy can be similarly interpreted in the model
trained with the categorical variable Precipitation Type, which is shown in Figure 8.57.
Although the model offers different parking occupancy values based on the Precipitation
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Figure 8.53: Los Angeles Standard sector forecasts using the categorical variable Sum-
mary.
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time precipType summary

2019-05-17 00:00:00 none Clear

2019-10-17 01:00:00 none Clear

2019-10-17 02:00:00 none Clear

2019-10-17 03:00:00 none Clear

2019-10-17 04:00:00 none Clear

2019-10-17 05:00:00 none Partly Cloudy

2019-10-17 06:00:00 none Partly Cloudy

2019-10-17 07:00:00 none Partly Cloudy

2019-10-17 08:00:00 none Partly Cloudy

2019-10-17 09:00:00 none Partly Cloudy

2019-10-17 10:00:00 none Partly Cloudy

2019-10-17 11:00:00 none Partly Cloudy

2019-10-17 12:00:00 none Partly Cloudy

2019-10-17 13:00:00 rain Clear

2019-10-17 14:00:00 rain Clear

2019-10-17 15:00:00 rain Clear

2019-10-17 16:00:00 none Clear

2019-10-17 17:00:00 none Partly Cloudy

2019-10-17 18:00:00 rain Clear

2019-10-17 19:00:00 none Clear

2019-10-17 20:00:00 none Clear

2019-10-17 21:00:00 rain Clear

2019-10-17 22:00:00 rain Clear

2019-10-17 23:00:00 rain Clear

Table 8.3: Los Angeles weather information for 17 October 2019.
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Figure 8.54: Los Angeles Standard sector heatmap of the cosine distance between the
values of the variable Summary.

Figure 8.55: Los Angeles Standard sector scatterplots for the embeddings of the vari-
able Summary after PCA.
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Figure 8.56: Los Angeles Standard sector scatterplots for the embeddings of the vari-
able Summary after tSNE.

Type value, it is not enough to provide good forecasts. Therefore, it could be used as
support information. One reason for the the categorical variable Precipitation Type
having low expressivity for Los Angeles is due to it having only two possible values:
none and rain.
Due to the lack of values in the Precipitation Type variable, cosine distance and dimen-
sion reduction methods provide no useful information.
Figure 8.58 provides the visualizations for the Los Angeles Standard sector forecasts at
different time steps from the model trained with the exogenous variable Month. They
show that patterns exist between the current month and the occupancy levels in the
sector, and these can be useful for the modeling (at least for the forecasts at the first
time steps). Clearly, the occupancy is lower in the Summer months and higher in the
Autumn months, although the the occupancy pattern changes due to street works (2019)
could have a biased effect on the model’s learning, as this could cause forecasts below
zero at higher time steps and low parking occupancy values for the Spring months.
The heatmap of the cosine distance matrix is shown in Figure 8.59. Although there are
a lot of months with neutral distance (value of 1), it can be clearly seen that the Spring
and Autumn months have a greater distance between them. This could be an effect of
the street works on the sector during the Spring and Summer of 2019.
The results from applying PCA and tSNE to the embeddings of Month are shown in
Figures 8.60 and 8.61. PCA brings together those months that are less affected by
the street works (January, December, November, September, October and August) and
those that are more affected by them (April, May, June, July), placing each group to
one side along dimension 0 (first principal component). The visualization from tSNE is
similar to the one obtained by PCA, as it creates one group for the months of April,
March and February, and in another for November, October and August. The rest of
the months are scattered throughout the visualization.
The forecasts for the model trained with the categorical variable Holiday are presented
in Figure 8.62. The visualizations show that the model predicts a mean value for non-
holidays (21, 22 and 23 of December) and a different occupancy value for holidays (24, 25
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Figure 8.57: Standard sector forecasts using the categorical variable Precipitation
Type.
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Figure 8.58: Los Angeles Standard sector forecasts from a model trained with the
categorical variable Month.

Figure 8.59: Los Angeles Standard sector heatmap of the cosine distance between the
values of the variable Month.
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Figure 8.60: Los Angeles Outside scatterplots for the embeddings of the variable Month
after PCA.

Figure 8.61: Los Angeles Standard scatterplots for the embeddings of the variable
Month after tSNE.
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Figure 8.62: Los Angeles Standard sector forecasts from the model trained with the
categorical variable Holiday.

and 26 of December). Although the model forecasts less occupancy levels for holidays,
it does not show any behaviour like that of the Wattens Outside sector, in which the
value of the variable Holiday could provide the model enough information to give good
forecasts for some days (specially when changing from holiday to non-holiday).
Due to the lack of values in the variable (which is binary), the heatmap and the dimen-
sionality reduction plots do not offer any information.
The last model for Los Angeles using only categorical variables corresponds to the one
trained with the Day of the Week information. Figure 8.63 shows the forecasts from
the model when trying to predict the next six hours of parking occupancy. Similarly to
the previous scenario, the Day of the Week data provides the model with enough infor-
mation to forecast the recurrent patterns of the parking occupancy while discriminating
weekdays from weekends.
The heatmap of the cosine distance matrix from Day of the Week is shown in Figure
8.64. Vectors representing weekend days are closer to each other than the rest of the
days, and some of the weekdays present greater distances (Monday and Tuesday, for
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Figure 8.63: Forecasts from a model trained with the categorical variable Day of Week
for the Los Angeles Standard sector.
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Figure 8.64: Los Angeles Standard sector heatmap of the cosine distance between the
values of the variable Day of the Week.

example).
The visualizations in Figures 8.65 and 8.66 show how the values of the embeddings are
positioned after applying PCA and tSNE. Three principal components explain up to 77%
of the variance of the data (60% with two), so the projection of the data provided by PCA
can provide strong enough intuitions. PCA shows that Friday and Saturday are very
similar, and the same happens with Wednesday and Monday. The tSNE visualization
presents three distinct groups of relationships between day of the week and parking
occupancy:

1. Tuesday and Thursday.
2. Saturdays and Sunday.
3. Wednesday, Monday and Friday.

The categorical exogenous variables for the Los Angeles Standard sector show that they
can provide some useful information, especially day of the week, as it is able to dif-
ferentiate weekdays and weekend patterns. The visualizations show that street works
in 2019 affected how exogenous information changed its relationship with the parking
occupancies.
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Figure 8.65: Los Angeles Standard scatterplots for the embeddings of the variable Day
of the Week after PCA.

Figure 8.66: Los Angeles Standard scatterplots for the embeddings of the variable Day
of the Week after tSNE.
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Figure 8.67: Sector-10 from Riyadh forecasts using the categorical variable Summary.

Riyadh

The regular patterns of special weather conditions, cultural behaviours and parking
occupancy indicated by the high number of sensors show that exogenous variables can
be very useful for improving the parking occupancy forecasts for the Riyadh scenario.
Figure 8.67 presents the occupancy forecasts for the next six hours from the model
created with the categorical variable Summary for Riyadh Sector-10. The visualizations
show that weather information has an effect on the parking occupancy, which is notable
on rainy days (12 April). The problem is that the lack of variability in Riyadh limits
the usefulness of the weather information.
Table 8.4 shows the weather information for 12 April 2019 to support the text.
Figure 8.68 shows the distance matrix obtained when the cosine distance is applied to
the embeddings of the Summary variable as a heatmap for Sector-10 in Riyadh. The
lack of variability in the weather conditions is reflected in the cosine distance matrix,
as the Summary information presents lower possible values when compared to previous
scenarios. The most noticeable fact is that foggy and rain (and to a lesser extent, windy),
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time precipType summary

2019-04-12 00:00:00 rain Rain

2019-04-12 01:00:00 rain Rainr

2019-04-12 02:00:00 rain Mostly Cloudy

2019-04-12 03:00:00 rain Mostly Cloudy

2019-04-12 04:00:00 rain Partly Cloudy

2019-04-12 05:00:00 rain Partly Cloudy

2019-04-12 06:00:00 none Mostly Cloudy

2019-04-12 07:00:00 none Partly Cloudy

2019-04-12 08:00:00 none Partly Cloudy

2019-04-12 09:00:00 none Partly Cloudy

2019-04-12 10:00:00 rain Partly Cloudy

2019-04-12 11:00:00 rain Clear

2019-04-12 12:00:00 rain Clear

2019-04-12 13:00:00 rain Clear

2019-04-12 14:00:00 rain Clear

2019-04-12 15:00:00 none Clear

2019-04-12 16:00:00 none Clear

2019-04-12 17:00:00 none Clear

2019-04-12 18:00:00 rain Partly Cloudy

2019-04-12 19:00:00 rain Mostly Cloudy

2019-04-12 20:00:00 rain Partly Cloudy

2019-04-12 21:00:00 rain Clear

2019-04-12 22:00:00 rain Clear

2019-04-12 23:00:00 rain Partly Cloudy

Table 8.4: Riyadh Sector-10 weather information for 12 April 2019.
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Figure 8.68: Heatmap of the Riyadh Sector-10 cosine distance between the values of
the variable Summary.

have an opposite effect on parking occupancy when compared to the values clear, cloudy
or none.
After applying the dimensionality reduction methods PCA and tSNE, the scatterplots
are shown in Figures 8.69 and 8.70 . When using two principal components, PCA is
able to explain up to 40% of the variance in the data. With three of them, it explains
up to 51%. Therefore, tSNE will provide better explanations, as the relationships could
be non-linear. The dimension 0 in the PCA with 3 principal components has positive
values for foggy, windy and rain, while the rest are negative, indicating a relationship
between parking occupancy and the variable Summary. After trying different values
for the perplexity parameter, the visualization of the tSNE projections shows a small
neighbourhood formed by windy, rain and foggy; and another formed by the remaining
words with tokens like mostly, thus forming its own cluster apart from the rest. It
could be interpreted that Sector-10 in Riyadh has different occupancy behaviours due
to weather conditions.
The other weather categorical variable is Precipitation Type, whose forecasts are pre-
sented in Figure 8.71. It could be expected to behave similarly to the Summary variable
on rainy days, but the forecasts show that the information offered by the variable is not
powerful enough to forecast parking occupancies, although it seems that it could be used
to provide auxiliary information that can help the model in its forecasts.
Due to the lack of values in the variable Precipitation Type, the heatmap and scatterplots
from dimension reduction algorithms cannot offer useful information.
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Figure 8.69: Riyadh Sector-10 scatterplots for the embeddings of the variable Summary
after PCA.

Figure 8.70: Riyadh Sector-10 scatterplots for the embeddings of the variable Summary
after tSNE.
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Figure 8.71: Forecasts for Riyadh Sector-10 with the categorical variable Precipitation
Type.
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Figure 8.72: Riyadh Sector-10 forecasts from a model trained with the categorical
variable Month.

Forecast visualizations for different time steps for the model trained with the exogenous
variable Month are provided in Figure 8.72. The cultural aspects related to the holidays
can be useful for interpreting the forecasts of the model. The lower levels of occupancy
happen in August and September, as these months have a lot of national holidays,
specifically the Feast of Sacrifice and the celebration of the Islamic new year. On the
other hand, and contrary to Western scenarios, the month with the most occupancy
forecasted by the model is December, as no holidays take place in that month.
The heatmap of the cosine distance matrix is shown in Figure 8.73. While some
months are very close to actual parking occupancy patterns (January/February or Jan-
uary/July), there is only one pair with opposite meanings, namely May/August.
The results from applying PCA and tSNE to the embeddings of Month are shown in
Figures 8.74 and 8.75. PCA with three components explains up to 53% of the variability
of the embeddings layer. Therefore, it is possible that tSNE provides better visualization.
The tSNE visualization shows the following groups:

• June, July, August, September and October.

477



8.2 Parking characterization Neural networks with exogenous information

Figure 8.73: Sector-10 in Riyadh heatmap of the cosine distance between the values of
the variable Month.

• January, February, March and April.
• November and December.
• May.

It seems that the first months of the year have parking occupancy patterns that are
different from those between the middle and the end of the year. As already explained
in Chapter 3, May coincides with Ramadan, for which changes in the parking occupancy
patterns were detected.
The forecasts for the model trained with the categorical variable Holiday are presented
in Figure 8.76. The visualizations show that the model predicts a constant value for

Figure 8.74: Riyadh Sector-10 scatterplots for the embeddings of the variable Month
after PCA.
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Figure 8.75: Riyadh Sector-10 scatterplots for the embeddings of the variable Month
after tSNE.

non-holidays (1, 2 and 3 of June) and a different occupancy value (lower) for holidays
(5, 6 and 7 of December). Similarly to what was observed in the Wattens scenario, the
model provides more accurate forecasts when there is a change from holiday to non-
holiday. The forecasts show that the model learns that the occupancy levels are lower
on holidays than on the other days, making this useful information to incorporate into
the final model.
Due to the lack of values in the variable (which is binary), the heatmap and the dimen-
sionality reduction plots do not offer any information.
Lastly, the visualizations of the forecasts for the categorical variable Day of the Week
are presented in Figure 8.77. Similarly to the Antwerp and Wattens scenarios, this is
the categorical variable that offers better forecasts, as the model has learnt the different
patterns of occupancy during the week.
The heatmap of the cosine distance matrix from the Day of the Week is shown in Figure
8.78. The most similar days in terms of parking occupancy are Tuesday/Thursday, Sun-
day/Wednesday and Monday/Saturday. The most dissimilar pair is Monday/Wednesday.
The visualizations in Figure 8.79 and 8.80 show how the values of the embeddings are
positioned after applying PCA and tSNE. Using two principal axes, PCA explains up
to 80% of the variance of the Day of the Week embedding, and adding a third principal
component increases the explained variance up to nearly 90%. The two dimensional
visualization shows that Tuesday and Thursday occupancy values are very similar, and
the same happens with Wednesday and Sunday. The tSNE visualization shows three
clusters:

• Wednesday, Friday and Sunday.
• Tuesday and Thursday.
• Monday and Saturday.

For the Riyadh scenario, the categorical exogenous variable proves to offer useful in-
formation that can help improve parking occupancy predictions. Of all the variables
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Figure 8.76: Riyadh sector forecasts from the model trained with the categorical vari-
able Holiday.
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Figure 8.77: Forecasts of parking occupancy for Riyadh Sector-10 from a model trained
with the categorical variable Day of Week.
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Figure 8.78: Riyadh Sector-10 heatmap of the cosine distance between the values of
the variable Day of the Week.

Figure 8.79: Riyadh Sector-10 scatterplots for the embeddings of the variable Day of
the Week after PCA.
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Figure 8.80: Riyadh Sector-10 scatterplots for the embeddings of the variable Day of
the Week after tSNE.

considered, the only one that seems to have little impact is Precipitation Type, and this
is due to the low variation in the weather conditions.

8.2.3 All the numerical variables

A model has been created using as input the following variables:
• Temperature.
• Cloud Cover.
• Dew Point.
• Humidity.
• Wind Bearing.
• Wind Speed.
• Wind Gust.
• UV Index.
• Visibility.
• Precipitation Intensity.
• Precipitation Accumulated.

The model consists of:
• Two GRU layers of 128 units each. A dense output layer with six neurons that takes

the last output of the previous GRU layer and computes the parking occupancy
for the next six time steps.

• Adam optimizer.
• 50 epochs with early stop.

483



8.2 Parking characterization Neural networks with exogenous information

Figure 8.81: Schema of the architecture used to model all continuous variables (except
parking occupancy) in order to forecast parking occupancy values.

• 128 as batch size.
• RMSE as loss.

As explained previously, all the continuous variables are preprocessed and therefore their
range of values is between zero and one. Then, the time series are created as sequences
of the twenty-four past values for each variable. The data obtained after preprocessing
consists of a tensor of shape (samples, sequence length, number) exogenous variables).
This type of data can be directly used in RNN layers, as they specialize in processing
sequence data. Two RNN layers are used, as the first projects the inputs into a higher
dimensional space (128 dimensions) from which the second GRU will extract useful infor-
mation for providing forecasts of parking occupancy. In the same way as the endogenous
models, an output layer of six neurons is used to provide the next six hours of parking
occupancy.
A schema of the model is presented in Figure 8.81. The visualization summarizes what
has been explained previously about the model architecture used.
Figure 8.82 presents the Antwerp Pelikaanstraat sector’s next six hours of parking occu-
pancy forecasts, which were provided by a model trained with all exogenous continuous
variables. The forecasts show that the model has learnt that some relationship exists
throughout the days (daytime and nighttime), but it is not capable of distinguishing
weekend and weekeday patterns or hourly changes in the parking occupancy.
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Figure 8.82: Antwerp forecasts with all the numerical variables.
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Figure 8.83: Wattens forecasts with all the numerical variables.

Forecasts for the Wattens scenario are presented in Figure 8.83. Similarly to the previous
scenario, the forecasts show that the model knows that some relationship exists between
the hours of the day and the parking occupancy, but it fails to recognize more complex
patterns like those that distinguish weekends from weekdays.
Figure 8.84 presents the Los Angeles Standard sector’s next six hours of parking occu-
pancy forecasts, which were provided by a model trained with all exogenous continuous
variables. The forecasts show that the models cannot make good predictions about the
parking occupancy during the day, although it provides different values based on its
inputs.
The last scenario is Sector-10 in Riyadh. The forecasts of the model trained with only
exogenous continuous variables are presented in Figure 8.85. The regular patterns of
parking occupancy make it easy for the model to learn the relationship between the
inputs and the parking occupancies, while some different values among the days can be
caused by weather information.
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Figure 8.84: Los Angeles forecasts with all the numerical variables.
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Figure 8.85: Riyadh forecasts with all the numerical variables.
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Figure 8.86: Architecture used for the models with only one numerical variable.

8.2.4 Numerical variables one by one

In order to gain insights into the relationship between the numerical exogenous variables
and the parking occupancy, a model has been created for each of them in order to forecast
the next six hours of parking occupancy.
The models consist of:

• Two GRU layers of 128 units each, followed by a dense layer with six neurons.
• Adam optimizer.
• 50 epochs with early stop.
• 128 as batch size.
• RMSE as loss function.

The architecture of the models with one numerical variable is presented in Figure 8.86.
It is exactly the same as when all the numerical variables are used, with the exception
that the input corresponds to sequences (time series) from just one feature.

Antwerp

The model using all continuous variables for the Antwerp scenario learns that a rela-
tionship exists between the hours of the day and the parking occupancy, but the values
of the forecast were not good enough.
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time visibility cloudCover windBearing uvIndex

2019-04-16 00:00:00 1.000000 0.04 0.267409 0.000

2019-04-16 01:00:00 1.000000 0.06 0.270195 0.000

2019-04-16 02:00:00 1.000000 0.09 0.261838 0.000

2019-04-16 03:00:00 1.000000 0.15 0.267409 0.000

2019-04-16 04:00:00 1.000000 0.23 0.267409 0.000

2019-04-16 05:00:00 1.000000 0.29 0.267409 0.000

2019-04-16 06:00:00 1.000000 0.30 0.267409 0.000

2019-04-16 07:00:00 1.000000 0.28 0.259053 0.000

2019-04-16 08:00:00 1.000000 0.31 0.247911 0.000

2019-04-16 09:00:00 1.000000 0.44 0.247911 0.125

2019-04-16 10:00:00 1.000000 0.61 0.256267 0.125

2019-04-16 11:00:00 1.000000 0.74 0.261838 0.250

2019-04-16 12:00:00 1.000000 0.79 0.278552 0.375

2019-04-16 13:00:00 1.000000 0.79 0.289694 0.375

2019-04-16 14:00:00 1.000000 0.81 0.295265 0.375

2019-04-16 15:00:00 1.000000 0.76 0.337047 0.375

2019-04-16 16:00:00 1.000000 0.81 0.376045 0.250

2019-04-16 17:00:00 1.000000 0.86 0.420613 0.250

2019-04-16 18:00:00 0.960412 1.00 0.462396 0.125

2019-04-16 19:00:00 0.504486 1.00 0.515320 0.000

2019-04-16 20:00:00 0.209988 1.00 0.520891 0.000

2019-04-16 21:00:00 0.220089 1.00 0.515320 0.000

2019-04-16 22:00:00 0.391179 1.00 0.509749 0.000

2019-04-16 23:00:00 0.561077 1.00 0.506964 0.000

Table 8.5: Antwerp Visibility, Cloud Cover, Wind Bearing and UV Index values for 16
April 2019.

As support for the analysis, Table 8.5 provides the numerical values for 16 April 2019.
Figure 8.88 presents the forecasts from the model trained with the Temperature variable.
Similarly to when using UV Index and Humidity, the model uses the variable information
as a proxy for the hours of the day. Therefore, it relates them to the parking occupancy
but cannot discriminate days or learn other complex relationships.
The forecasts of the model trained with the exogenous variable Wind Gust are presented
in Figure 8.89. Similarly to what happens with Wind Bearing, this variable’s information
makes sense when used with other variables related to wind. The forecasts of the model
are more or less around the same value for the week of data visualized.
Table 8.6 provides auxiliary information about the values of the variables Wind Speed,
Precipitation Accumulation and Dew Point.
The visualizations in Figure 8.90 present the six time step forecasts from the model
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Figure 8.87: Six-hour parking occupancy forecasts from the model trained with Pre-
cipitation Intensity.

491



8.2 Parking characterization Neural networks with exogenous information

Figure 8.88: Antwerp scenario time series from parking occupancy (blue) and forecasts
of the model trained with the Temperature variable (orange).
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Figure 8.89: Time series visualizations of the forecasts from the model trained with
the Wind Gust variable (orange) and the parking occupancy (blue).
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time dewPoint precipAccumulation windSpeed

2019-04-16 00:00:00 0.531883 0.0 0.336777

2019-04-16 01:00:00 0.520399 0.0 0.342975

2019-04-16 02:00:00 0.514053 0.0 0.310606

2019-04-16 03:00:00 0.498036 0.0 0.306474

2019-04-16 04:00:00 0.476881 0.0 0.293388

2019-04-16 05:00:00 0.465095 0.0 0.292011

2019-04-16 06:00:00 0.462375 0.0 0.284435

2019-04-16 07:00:00 0.455425 0.0 0.289256

2019-04-16 08:00:00 0.464491 0.0 0.267906

2019-04-16 09:00:00 0.492898 0.0 0.285813

2019-04-16 10:00:00 0.523723 0.0 0.280992

2019-04-16 11:00:00 0.561499 0.0 0.280303

2019-04-16 12:00:00 0.593835 0.0 0.272039

2019-04-16 13:00:00 0.607736 0.0 0.269972

2019-04-16 14:00:00 0.565428 0.0 0.230716

2019-04-16 15:00:00 0.572378 0.0 0.242424

2019-04-16 16:00:00 0.588395 0.0 0.225207

2019-04-16 17:00:00 0.602297 0.0 0.249311

2019-04-16 18:00:00 0.603808 0.0 0.245179

2019-04-16 19:00:00 0.619825 0.0 0.251377

2019-04-16 20:00:00 0.636144 0.0 0.253444

2019-04-16 21:00:00 0.652765 0.0 0.251377

2019-04-16 22:00:00 0.654276 0.0 0.235537

2019-04-16 23:00:00 0.652765 0.0 0.239669

Table 8.6: Antwerp Wind Speed, Precipitation Accumulation and Dew Point values for
16 April 2019.
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Figure 8.90: Forecasts (orange) and parking occupancy (blue) visualizations from the
model trained with the variable Wind Speed.

trained with the Wind Speed variable. The variable offers information about the speed
of the wind in miles per hour. Because there is a recurrent pattern during the days where
Wind Speed is higher at night and lower during the day, the model uses this information
to produce forecasts that follows the hours of the day.
The variable Precipitation Accumulation (related to accumulated snow) (forecasts shown
in Figure 8.91) offers little information, as it is formed by very sparse time series.
Despite this, the model can use the information carried by the exogenous variable to
eventually adjust the occupancy values, as can be seen in Figure 8.92, which is based on
the information presented in Table 8.7. The visualizations correspond to a week with a
huge amount of snow precipitation in Antwerp. More specifically, day 22 experienced a
lot of snow accumulation. Therefore, it was not possible to travel by car. This anomaly
is reflected as a huge occupancy level with low variability throughout the day. The model
has learnt that, under certain conditions (high values for Precipitation Accumulation),
the occupancy levels are higher than the normal levels.
Figure 8.93 presents the forecasts from the model trained with the exogenous variable
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Figure 8.91: Pelikaanstraat (Antwerp) six-hour forecasts from the model trained using
the continuous variable Precipitation Accumulation.
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Figure 8.92: Pelikaanstraat (Antwerp) six-hour forecasts of the model trained using the
continuous variable Precipitation Accumulation, focusing on snowy days (2019-01-20
to 2019-01-24).
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time precipAccumulation

2019-01-22 00:00:00 0.000000

2019-01-22 01:00:00 0.000000

2019-01-22 02:00:00 0.000000

2019-01-22 03:00:00 0.000000

2019-01-22 04:00:00 0.000000

2019-01-22 05:00:00 0.000000

2019-01-22 06:00:00 0.000000

2019-01-22 07:00:00 0.000000

2019-01-22 08:00:00 0.010651

2019-01-22 09:00:00 0.062591

2019-01-22 10:00:00 0.160928

2019-01-22 11:00:00 0.376131

2019-01-22 12:00:00 0.705282

2019-01-22 13:00:00 1.000000

2019-01-22 14:00:00 0.772833

2019-01-22 15:00:00 0.440473

2019-01-22 16:00:00 0.237963

2019-01-22 17:00:00 0.115115

2019-01-22 18:00:00 0.036475

2019-01-22 19:00:00 0.008900

2019-01-22 20:00:00 0.000000

2019-01-22 21:00:00 0.000000

2019-01-22 22:00:00 0.005398

2019-01-22 23:00:00 0.006274

Table 8.7: Antwerp Precipitation Accumulated values for the date 2019-01-22.
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Figure 8.93: Pelikaanstraat (Antwerp) parking occupancy (blue) and forecasts from
model trained with the exogenous variable Dew Point (orange).

Dew Point. The visualizations show that the model has not learnt any useful information
from the input in order to produce forecasts.
From the models trained with each of the exogenous continuous variables for the Pe-
likaanstraat scenario, the following has been observed:

• The trained models use a subset of the exogenous variables as a proxy to map
their values to parking occupancy, thus exploiting the fact that parking occupancy
is a consequence of human activity. Those exogenous variables carry information
that is both related to and a consequence of sunshine hours. The exogenous
variables in which the models show this behaviour are: UV Index, Humidity and
Temperature (perhaps also Wind Speed). The information from these variables
could be redundant and can add noise to the models.

• A subset of the exogenous variables provides auxiliary information that can help
the model improve the forecasts in isolated moments. Those variables are Precip-
itation Accumulation, Precipitation Intensity and Wind Gust (perhaps also Wind
Speed).
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time visibility cloudCover windBearing uvIndex

2019-05-14 00:00:00 0.685950 0.68 0.103064 0.000000

2019-05-14 01:00:00 0.759647 0.64 0.128134 0.000000

2019-05-14 02:00:00 0.702355 0.58 0.181058 0.000000

2019-05-14 03:00:00 0.869384 0.49 0.211699 0.000000

2019-05-14 04:00:00 1.000000 0.38 0.256267 0.000000

2019-05-14 05:00:00 1.000000 0.30 0.270195 0.000000

2019-05-14 06:00:00 1.000000 0.29 0.183844 0.000000

2019-05-14 07:00:00 0.875536 0.31 0.097493 0.000000

2019-05-14 08:00:00 1 0.755670 0.32 0.052925 0.11111

2019-05-14 09:00:00 0.900081 0.33 0.038997 0.222222

2019-05-14 10:00:00 1.000000 0.34 0.038997 0.333333

2019-05-14 11:00:00 1.000000 0.36 0.038997 0.444444

2019-05-14 12:00:00 1.000000 0.40 0.030641 0.555556

2019-05-14 13:00:00 0.671286 0.45 0.019499 0.555556

2019-05-14 14:00:00 0.185422 0.53 0.863510 0.555556

2019-05-14 15:00:00 0.088113 0.67 0.899721 0.444444

2019-05-14 16:00:00 0.100354 0.84 0.949861 0.333333

2019-05-14 17:00:00 0.117070 0.96 0.994429 0.222222

2019-05-14 18:00:00 0.102343 0.98 0.997214 0.111111

2019-05-14 19:00:00 0.091965 0.97 0.994429 0.000000

2019-05-14 20:00:00 0.140869 0.97 0.963788 0.000000

2019-05-14 21:00:00 0.120549 0.98 0.974930 0.000000

2019-05-14 22:00:00 0.090226 0.98 0.983287 0.000000

2019-05-14 23:00:00 0.076431 0.99 0.986072 0.000000

Table 8.8: Wattens Visibility, Cloud Cover, Wind Bearing and UV Index values for 14
May 2019.

• Some exogenous variables do not offer any useful information, namely Dew Point,
Wind Bearing and Visibility.

Wattens

As support for the analysis, Table 8.8 provides the numerical values for 14 May 2019.
Figure 8.94 presents the forecasts from the model trained with the Visibility variable.
The visualizations show that the model has not learnt any useful information for fore-
casting parking occupancy.
Figure 8.95 presents the forecasts from the model trained with the exogenous numerical
variable Cloud Cover. The visualizations show that the model change its forecasts using
the variable’s information and by carefully inspecting the input and forecast. However,
it is hard to discern any pattern.
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Figure 8.94: Outside sector in Wattens forecast visualizations from a model trained
using the continuous variable Visibility.
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Figure 8.95: Outside sector parking occupancy (blue) and forecasts (orange) from a
model trained using the continuous variable Cloud Cover.
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Figure 8.96: Real parking occupancy (blue) and model forecasts (orange) for the Out-
side sector in Wattens. The model has been trained using the exogenous variable
Wind Bearing.

Figure 8.96 presents the forecasts from the model trained with the Wind Bearing vari-
able. The model fails to provide correct forecast values when using the Wind Bearing
information.
Figure 8.97 presents the forecasts from the model trained with the UV Index variable.
Similarly to what was observed in Antwerp, the model learns from the variable which
are the sunshine hours of the day and, based on that, it provides the occupancy levels.
This information can be obtained from better sources like the categorical variable Day
of the Week, as it also allows learning behaviours on special days (Friday, in the case of
Wattens) and weekend patterns.
Information about the next numerical variables (Humidity, Precipitation Intensity, Tem-
perature and Wind Gust) is offered in Table 8.9 as support for the text.
The visualizations in Figure 8.98 present the six time step forecasts from the model
trained with the Humidity variable. The interpretation of the visualizations is the same
as in the Antwerp scenario, as the model uses the humidity values throughout the day as a
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Figure 8.97: Real parking occupancy (blue) and model forecasts (orange) for the Out-
side sector in Wattens. The model has been trained using the exogenous variable UV
Index.
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time humidity precipIntensity temperature windGust

2019-05-15 00:00:00 0.722892 0.041774 0.281328 0.135561

2019-05-15 01:00:00 0.722892 0.040495 0.282465 0.139379

2019-05-15 02:00:00 0.698795 0.038515 0.291790 0.187589

2019-05-15 03:00:00 0.698795 0.034089 0.297930 0.183771

2019-05-15 04:00:00 0.710843 8 0.029211 0.300205 0.17183

2019-05-15 05:00:00 0.843373 0.0248433 0.257676 0.16372

2019-05-15 06:00:00 0.843373 0.020293 0.259950 0.165155

2019-05-15 07:00:00 0.819277 0.016366 0.269047 0.169928

2019-05-15 08:00:00 0.783133 0.013819 0 .282010 0.164678

2019-05-15 09:00:00 0.746988 0.012891 0.299068 0.173270

2019-05-15 10:00:00 0.710843 0.013072 0.319309 0.185203

2019-05-15 11:00:00 0.650602 0.012042 0.337958 0.192840

2019-05-15 12:00:00 0.614458 0.008477 0.362065 0.192363

2019-05-15 13:00:00 0.590361 0.005783 0.385718 0.188067

2019-05-15 14:00:00 0.602410 0.0048103 0.358199 0.17804

2019-05-15 15:00:00 0.530120 0.003814 0.398681 0.167542

2019-05-15 16:00:00 0.493976 0.002829 0.438026 0.154177

2019-05-15 17:00:00 0.626506 3 0.002456 0.384808 0.14224

2019-05-15 18:00:00 0.626506 0.002479 0.379577 0.134129

2019-05-15 19:00:00 0.626506 0.003169 9 0.371162 0.12696

2019-05-15 20:00:00 0.626506 0.003622 0.357744 0.075418

2019-05-15 21:00:00 0.650602 0.002705 0.345690 0.054415

2019-05-15 22:00:00 0.674699 0.001709 0.331817 0.035800

2019-05-15 23:00:00 0.710843 0.001245 0.315897 0.025298

Table 8.9: Wattens Humidity, Precipitation Intensity, Temperature and Wind Gust
values for 15 May 2019
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Figure 8.98: Real parking occupancy (blue) and model forecasts (orange) for the Out-
side sector in Wattens. The model has been trained using the exogenous variable
Humidity.

proxy variable to learn sunshine hours, which it then uses to predict parking occupancies.
Because of this, the model fails to predict the occupancy levels for Fridays and weekends.
Figure 8.99 presents the forecasts from the model trained with the exogenous numerical
variable Precipitation Intensity. As commented on in the Antwerp scenario, this variable
could be useful for adjusting some occasional forecasts. The visualizations show that the
model forecasts lower occupancy levels when the Precipitation Intensity value increases,
meaning that there could be a relationship.
Figure 8.100 presents the forecasts from the model trained with the Temperature vari-
able. As commented on in the Antwerp scenario, the model uses the variable information
to learn the relationship between sunshine hours and parking occupancy. Despite this,
the model’s Wattens forecasts seem to capture some more complex patterns, as the park-
ing occupancy for day 15 is different when compared to the other days. Furthermore,
the model’s forecasts are different, which could mean that the lower temperatures on
that day are interpreted by the model as lower parking occupancies (lower temperatures
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Figure 8.99: Time series visualizations of the real parking occupancy from Outside
sector (Wattens) (blue) and forecasts (orange). The forecasts are provided by a model
trained with the exogenous variable Precipitation Intensity.
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Figure 8.100: Time series visualizations of the parking occupancy (blue) and forecasts
(orange). The forecasts are provided by a model trained with the exogenous variable
Temperature.

were caused by precipitation). The problem is that temperature depends on the season
and therefore this variable alone is not enough for providing solid forecasts, although it
can help improve them.
The forecasts of the model trained with the exogenous variable Wind Gust are presented
in Figure 8.101. The visualizations show that the model does not learn any useful
information from the values of Wind Gust, although it is possible that it provides some
useful information about weather intensity for occasional hours.
Table 8.10 provides auxiliary information about the values of the variables Wind Speed,
Precipitation Accumulation and Dew Point.
The visualizations in Figure 8.102 present the six time step forecasts from the model
trained with the Wind Speed variable. The information carried by this exogenous vari-
able in the Wattens scenario seems to be insufficient for producing forecasts (remember
that Wind Speed in the Antwerp scenario provided some information correlated with
the sunshine hours, which the model learnt in order to produce forecasts). It is possible
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Figure 8.101: Time series visualizations of the parking occupancy (blue) and forecasts
(orange) for the Outside sector in Wattens. The forecasts are provided by a model
trained with the exogenous variable Wind Gust.
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time windSpeed precipAccumulation dewPoint

2019-05-15 00:00:00 0.091044 0.0 0.459580

2019-05-15 01:00:00 0.088823 0.0 0.458005

2019-05-15 02:00:00 0.080681 0.0 0.460367

2019-05-15 03:00:00 0.084382 0.0 0.465092

2019-05-15 04:00:00 0.094745 0.0 0.472178

2019-05-15 05:00:00 0.100666 0.0 0.475591

2019-05-15 06:00:00 0.100666 0.0 0.476903

2019-05-15 07:00:00 0.100666 0.0 0.477165

2019-05-15 08:00:00 0.099186 0.0 0.481102

2019-05-15 09:00:00 0.107328 0.0 0.487402

2019-05-15 10:00:00 0.119911 0.0 0.495801

2019-05-15 11:00:00 0.128793 0.0 0.493701

2019-05-15 12:00:00 0.131754 0.0 0.504199

2019-05-15 13:00:00 0.132494 0.0 0.514961

2019-05-15 14:00:00 0.142117 0.0 0.491601

2019-05-15 15:00:00 0.135455 0.0 0.503150

2019-05-15 16:00:00 0.124352 0.0 0.525722

2019-05-15 17:00:00 0.113990 0.0 0.531759

2019-05-15 18:00:00 0.105848 0.0 0.529134

2019-05-15 19:00:00 0.096965 0.0 0.516535

2019-05-15 20:00:00 0.070318 0.0 0.503412

2019-05-15 21:00:00 0.059215 0.0 0.498425

2019-05-15 22:00:00 0.051073 0.0 0.495276

2019-05-15 23:00:00 0.045152 0.0 0.489764

Table 8.10: Wattens Wind Speed, Precipitation Accumulation and Dew Point values
for 17 May 2019.
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Figure 8.102: Outside sector (Wattens) parking occupancy (blue) and forecasts from
a model trained with the exogenous variable Wind Speed (orange).

that this variable could offer some occasional information when severe weather happens.
Forecasts of the variable Precipitation Accumulation are shown in Figure 8.103. As
shown in Table 8.11, snow accumulated on day 23, and the model used this information
to predict that the occupancy will be lower in the upcoming hours.
Figure 8.104 presents the forecasts from the model trained with the exogenous variable
Dew Point. Similarly to what has been observed in Antwerp, this exogenous variable
does not provide any useful information.
From the model forecasts using each of the numerical variables as input to produce
parking occupancy forecasts, it can be concluded that:

• The usefulness of the exogenous variable values is dependent on the scenario, as
observed with the Wind Speed variable.

• The subset of proxy variables (UV Index and especially Temperature and Humid-
ity) could provide extra information, which was provided only by the sunshine
hours in the Antwerp observations.
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Figure 8.103: Outside sector (Wattens) parking occupancy (blue) and forecasts from
a model trained with the exogenous variable Precipitation Accumulation (orange).
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time precAccumulation

2018-03-23 00:00:00 0.046424

2018-03-23 01:00:00 0.016262

2018-03-23 02:00:00 0.057355

2018-03-23 03:00:00 0.038664

2018-03-23 04:00:00 0.011066

2018-03-23 05:00:00 0.049663

2018-03-23 06:00:00 0.023887

2018-03-23 07:00:00 0.005398

2018-03-23 08:00:00 0.000000

2018-03-23 09:00:00 0.000000

2018-03-23 10:00:00 1.000000

2018-03-23 11:00:00 1.000000

2018-03-23 12:00:00 0.000000

2018-03-23 13:00:00 0.000000

2018-03-23 14:00:00 0.000000

2018-03-23 15:00:00 0.000000

2018-03-23 16:00:00 0.000000

2018-03-23 17:00:00 0.000000

2018-03-23 18:00:00 0.000000

2018-03-23 19:00:00 0.000000

2018-03-23 20:00:00 0.000000

2018-03-23 21:00:00 0.000000

2018-03-23 22:00:00 0.000000

2018-03-23 23:00:00 0.000000

Table 8.11: Wattens Precipitation Accumulated values for the date 2019-01-22.
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Figure 8.104: Wattens scenario parking occupation (blue) and forecasts (orange). The
forecasts are provided by a model trained with the exogenous variable Dew Point.
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time visibility cloudCover windBearing uvIndex

2019-10-17 00:00:00 1.000000 0.09 0.506964 0.000000

2019-10-17 01:00:00 1.000000 0.09 0.493036 0.000000

2019-10-17 02:00:00 1.000000 0.13 0.420613 0.000000

2019-10-17 03:00:00 1.000000 0.13 0.295265 0.000000

2019-10-17 04:00:00 1.000000 0.25 0.342618 0.000000

2019-10-17 05:00:00 1.000000 0.33 0.353760 0.000000

2019-10-17 06:00:00 1.000000 0.50 0.295265 0.000000

2019-10-17 07:00:00 1.000000 0.53 0.239554 0.000000

2019-10-17 08:00:00 0.979306 0.53 0.236769 0.000000

2019-10-17 09:00:00 1.000000 0.55 0.267409 0.090909

2019-10-17 10:00:00 1.000000 0.55 0.339833 0.272727

2019-10-17 11:00:00 1.000000 0.48 0.412256 0.363636

2019-10-17 12:00:00 1.000000 0.41 0.417827 0.454545

2019-10-17 13:00:00 1.000000 0.20 0.412256 0.454545

2019-10-17 14:00:00 1.000000 0.21 0.448468 0.454545

2019-10-17 15:00:00 1.000000 0.24 0.532033 0.272727

2019-10-17 16:00:00 1.000000 0.28 0.604457 0.181818

2019-10-17 17:00:00 1.000000 0.34 0.662953 0.000000

2019-10-17 18:00:00 1.000000 0.26 0.632312 0.000000

2019-10-17 19:00:00 1.000000 0.23 0.793872 0.000000

2019-10-17 20:00:00 1.000000 0.19 0.679666 0.000000

2019-10-17 21:00:00 0 1.000000 0.17 0.545961 0.000000

2019-10-17 22:00:00 1.000000 0.16 0.590529 0.000000

2019-10-17 23:00:00 1.000000 0.14 0.584958 0.000000

Table 8.12: Los Angeles Visibility, Cloud Cover, Wind Bearing and UV Index values
for 17 October 2019.

• The variables that do not provide useful forecasts are Dew Point, Cloud Cover and
Wind Bearing.

Los Angeles

As support for the analysis, Table 8.12 provides the numerical values for 17 October
2019.
Figure 8.105 presents the forecasts from the model trained with the Visibility variable.
The visualizations show that the model does not learn any useful information for fore-
casting parking occupancy. Moreover, it could not be used to improve or support other
exogenous variables.
The model trained with the numerical exogenous variable Cloud Cover is not capable of
forecasting parking occupancy, as can be seen in Figure 8.106.
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Figure 8.105: Time series from Los Angeles Standard sector parking occupancy (blue)
and forecasts from a model trained with the exogenous variable Visibility (orange).
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Figure 8.106: Visualizations of the parking occupancy in Los Angeles Standard sector
(blue) and the forecasts of a model trained with the Cloud Cover variable (orange).
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Figure 8.107: Time series of the real parking occupancy of the Standard sector and
the values forecasted by a model trained with the exogenous variable Wind Bearing.

Figure 8.107 presents the forecasts from the model trained with the Wind Bearing vari-
able. The model is somehow able to provide forecasts with different values of parking
occupancy, but no relationship could be obtained from the visualization. There seems
to be some spurious correlation between the values of the Wind Bearing variable and
those of the parking occupancy.
Figure 8.108 presents the forecasts from the model trained with the UV Index variable.
Similarly to other scenarios, the model learns the relationship between sunshine hours
and parking occupancy. However, it fails to distinguish weekdays from weekends or the
correct levels of occupancy.
Information about the next numerical variables (Humidity, Precipitation Intensity, Tem-
perature and Wind Gust) is offered in Table 8.13 as support for the text.
The visualizations in Figure 8.109 present the six time step forecasts from the model
trained with the Humidity variable. In the same way as in Antwerp, the model learns
the sunshine hours and relates them to the parking occupancy based on the cyclical
behaviour of the relative humidity. It can be observed that the model for 18 October
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Figure 8.108: Los Angeles six-hour forecasts from a model trained using the continuous
variable UV Index.
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time humidity precipIntensity temperature windGust

2019-10-17 00:00:00 0.773196 0.000000 0.393186 0.137492

2019-10-17 01:00:00 0.814433 0.000000 0.374797 0.136150

2019-10-17 02:00:00 0.804124 0.000000 0.353164 0.122736

2019-10-17 03:00:00 0.845361 0.000000 0.350730 0.097250

2019-10-17 04:00:00 0.855670 0.000000 0.346944 0.11670

2019-10-17 05:00:00 0.865979 0.000000 0.355868 0.133467

2019-10-17 06:00:00 0.876289 0.000000 0.357761 0.105298

2019-10-17 07:00:00 0.896907 0.000000 0.357491 0.158954

2019-10-17 08:00:00 0.855670 0.000000 0.376420 0.218645

2019-10-17 09:00:00 0.793814 0.000000 0.405895 0.213280

2019-10-17 10:00:00 0.752577 0.000000 0.435911 0.241449

2019-10-17 11:00:00 0.721649 0.000000 0.467550 0.171697

2019-10-17 12:00:00 0.690722 0.000000 0.482693 0.193830

2019-10-17 13:00:00 0.6597946 0.002220 0.514332 0.248820

2019-10-17 14:00:00 0.628866 0.002337 0.532180 0.209926

2019-10-17 15:00:00 0.639175 0.001319 0.525419 0.283700

2019-10-17 16:00:00 0.659794 0.000000 0.505679 0.264252

2019-10-17 17:00:00 0.731959 0.000000 0.470525 0.336016

2019-10-17 18:00:00 0.742268 0.000914 0.450784 0.200537

2019-10-17 19:00:00 0.762887 0.000000 0.422390 0.179074

2019-10-17 20:00:00 0.773196 0.000000 0.406436 0.138833

2019-10-17 21:00:00 0.752577 0.002102 0.396971 0.135480

2019-10-17 22:00:00 0.742268 0.001580 0.383721 0.156940

2019-10-17 23:00:00 0.731959 0.001737 0.378042 0.154930

Table 8.13: Los Angeles Humidity, Precipitation Intensity, Temperature and Wind
Gust values for 17 October 2019
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Figure 8.109: Time series visualizations for the second week of April 2019 in the Los
Angeles Standard sector. The orange line shows the six-hour forecasts obtained from
a model trained using the continuous variable Humidity.

forecasts lower levels of parking occupancy, but the true occupancy did not change.
Therefore, it is possible to interpret that Humidity is not providing any useful informa-
tion.
Figure 8.110 presents the forecasts from the model trained with the exogenous numerical
variable Precipitation Intensity. The effects of the information provided by the variable
are barely noticeable in the forecasts of the model (for example, there is a small change
in the forecasted values on day 19). Despite this, this variable could serve as an auxiliary
for improving occasional forecasts.
The visualizations from the forecasts of the model trained with the exogenous variable
Temperature to provide multiple forecasts for the Los Angeles scenario are presented
in Figure 8.111. Although the model relates sunshine hours with parking occupancy,
it is similar to other observations in that the values provided are not good, as they
are insufficient for establishing patterns according to the day of the week (for example,
weekends).
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Figure 8.110: Visualizations at different time steps (from one to six) from a model
trained with the exogenous variable Precipitation Intensity in order to provide occu-
pancy forecasts for the Los Angeles scenario.
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Figure 8.111: Forecasts for the next six hours from a model trained using the continuous
variable Temperature in the Los Angeles scenario. The data interval is 15 to 23
October 2019.
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Figure 8.112: Los Angeles Standard sector six-hour forecasts from a model trained
using the continuous variable Wind Gust.

The forecasts of the model trained with the exogenous variable Wind Gust are presented
in Figure 8.112. From the visualizations of the forecasts, it is not clear if there is an
effect between the Wind Gust values and the parking occupancies, although the model
is able to follow cyclical daily patterns, possibly because the Wind Gust values are also
cyclical throughout the days.
Table 8.14 provides auxiliary information about the values of the variables Wind Speed,
Precipitation Accumulation and Dew Point.
Figure 8.113 presents the six time step forecasts from the model trained with the Wind
Speed variable. As the values of the variable seem to have a cyclical pattern throughout
the days, the model learns to map those to the parking occupancy values.However,
the variable alone is clearly not enough for providing useful forecasts or interpretable
information.
The variable Precipitation Accumulation does not provide any satisfactory information,
as it is always zero for the Los Angeles scenario.
In the same way as previous scenarios, the Dew Point variable does not allow any useful
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time windSpeed precipAccumulation dewPoint

2019-10-17 00:00:00 0.193878 0.0 0.837220

2019-10-17 01:00:00 0.240363 0.0 0.839865

2019-10-17 02:00:00 0.181406 0.0 0.817264

2019-10-17 03:00:00 0.121315 0.0 0.830248

2019-10-17 04:00:00 0.119048 0.0 0.830729

2019-10-17 05:00:00 0.138322 0.0 0.842991

2019-10-17 06:00:00 0.136054 0.0 0.851166

2019-10-17 07:00:00 0.265306 0.0 0.857418

2019-10-17 08:00:00 0.361678 0.0 0.859101

2019-10-17 09:00:00 0.329932 0.0 0.858379

2019-10-17 10:00:00 0.383220 0.0 0.865112

2019-10-17 11:00:00 0.259637 0.0 0.874249

2019-10-17 12:00:00 0.311791 0.0 0.870642

2019-10-17 13:00:00 0.340136 0.0 0.882664

2019-10-17 14:00:00 0.299320 0.0 0.879057

2019-10-17 15:00:00 0.402494 0.0 0.881943

2019-10-17 16:00:00 0.354875 0.0 0.876172

2019-10-17 17:00:00 0.478458 0.0 0.881943

2019-10-17 18:00:00 0.286848 0.0 0.871844

2019-10-17 19:00:00 0.243764 0.0 0.858379

2019-10-17 20:00:00 0.181406 0.0 0.845396

2019-10-17 21:00:00 0 0.193878 0.0 0.827843

2019-10-17 22:00:00 0.219955 0.0 0.814619

2019-10-17 23:00:00 0.219955 0.0 0.802837

Table 8.14: Los Angeles Wind Speed, Precipitation Accumulation and Dew Point values
for 17 October 2019
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Figure 8.113: Parking occupancy forecasts (next six hours) using a model trained with
Wind Speed information from the Los Angeles scenario.
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Figure 8.114: Time series visualizations from a model trained with the exogenous vari-
able Dew Point to produce parking occupancy forecasts for the Los Angeles Standard
sector. The blue line denotes the real occupancy values, and orange the forecasted
ones.

interpretation about any relationship that may exist between Dew Point and parking
occupancy, as can be seen in the visualizations in Figure 8.114.
The analysis of the exogenous numerical variables conducted for the city of Los Ange-
les (Standard sector) does not add any extra information to what has been observed
previously in the Wattens and Antwerp scenarios.

Riyadh

The last scenario corresponds to Riyadh. Its singular weather conditions could have
a different effect on parking occupancy when compared to the previous scenarios. As
support for the analysis, Table 8.15 provides the numerical values for October 18 2019.
Figure 8.115 presents the forecasts from the model trained with the Visibility variable.
Little information is obtained from the variable, as it nearly always has a value of 1, and
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time visibility cloudCover windBearing uvIndex

2019-10-18 00:00:00 1.0 1.00 0.852368 0.000000

2019-10-18 01:00:00 1.0 1.00 0.883008 0.000000

2019-10-18 02:00:00 1.0 1.00 0.994429 0.000000

2019-10-18 03:00:00 1.0 1.00 0.860724 0.000000

2019-10-18 04:00:00 1.0 0.98 0.813370 0.000000

2019-10-18 05:00:00 1.0 0.96 0.857939 0.000000

2019-10-18 06:00:00 1.0 0.94 0.871866 0.000000

2019-10-18 07:00:00 1.0 0.93 0.883008 0.000000

2019-10-18 08:00:00 1.0 0.92 0.913649 0.153846

2019-10-18 09:00:00 1.0 0.83 0.935933 0.230769

2019-10-18 10:00:00 1.0 0.57 0.977716 0.384615

2019-10-18 11:00:00 1.0 0.24 0.025070 0.615385

2019-10-18 12:00:00 1.0 8 0.00 0.061281 0.69230

2019-10-18 13:00:00 1.0 0.005 0.077994 0.61538

2019-10-18 14:00:00 1.0 0.00 0.080780 0.384615

2019-10-18 15:00:00 1.0 0.03 0 .086351 0.230769

2019-10-18 16:00:00 1.0 0.11 0.097493 0.076923

2019-10-18 17:00:00 1.0 0.22 0.105850 0.000000

2019-10-18 18:00:00 1.0 0.32 0.105850 0.000000

2019-10-18 19:00:00 1.0 0.44 0.114206 0.000000

2019-10-18 20:00:00 1.0 0.51 0.125348 0.000000

2019-10-18 21:00:00 1.0 0.58 0.128134 0.000000

2019-10-18 22:00:00 1.0 0.48 0.114206 0.000000

2019-10-18 23:00:00 1.0 0.38 0 0.089136 0.000000

Table 8.15: Riyadh Visibility, Cloud Cover, Wind Bearing and UV Index values for 15
May 2019.
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Figure 8.115: Sector-10 in Riyadh six-hour forecasts of the parking occupancy from a
model trained with only the Visibility exogenous variable.

this is reflected in the forecasts with a constant forecasted value.
The time series visualizations presented in Figure 8.116 show the forecasts at six time
steps of a model trained with the exogenous variable Cloud Cover to predict parking
occupancies for Sector-10 in Riyadh. From the visualizations, there is no clear effect or
usefulness of the variable values for the model to exploit.
Figure 8.117 presents visualizations of the forecasts from the model trained with the
exogenous variable Wind Bearing. In contrast to other scenarios, it seems that the
direction of the wind in Riyadh has some cyclical behaviour that the model learns in
order to provide parking occupancy forecasts. Despite this, it is more likely that the
correlation between Wind Bearing and parking occupancy is spurious.
Similar observations to those of the Wind Bearing variable can be made from the vi-
sualizations of the time series in Figure 8.118. The forecasts of the model with all the
numerical variables is very similar to the one presented here. Therefore, it is possi-
ble that UV Index is the variable with more information about the parking occupancy
patterns throughout the day. However, it is not true that UV Index is related to the
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Figure 8.116: Riyadh forecasts from a model trained with the Cloud Cover exogenous
variable. Blue denotes the real parking occupancy and orange the forecasted ones.
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Figure 8.117: Time series visualizations from a model trained using only the exogenous
variable Wind Bearing to forecast parking occupancies in Sector-10 in Riyadh.
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Figure 8.118: Riyadh Sector-10 time series visualizations from a model trained with
the categorical variable UV Index. Although it seems that the model is able to discern
parking occupancy from the UV Index, the reality is that UV Index measurements
are related to the sunshine hours in a similar way as human activities, thus affecting
parking occupancy levels similarly.

parking occupancy because parking occupancy is actually a consequence of human activ-
ities. Therefore, as those start to happen early in the day (for example, people going to
work), the parking occupancy in Sector-10 increases while it decreases at the end of the
day as human activities also decrease. Therefore, there are no correlations between UV
Index and parking occupancy, and the model merely exploits that both variables have
similar patterns throughout the day, thus learning a spurious correlation. Variables like
Day of the Week provide more useful information that can help the model learn parking
occupancy, as human activities are conditioned by the day of the week. Therefore, the
correlation is more plausible.
Information about the next numerical variables (Humidity, Precipitation Intensity, Tem-
perature and Wind Gust) is offered in Table 8.16 as support for the text.
The visualizations in Figure 8.119 present the six time step forecasts from the model
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time humidity precipIntensity temperature windGust

2019-10-18 00:00:00 0.195876 0.0 0.437995 0.022199

2019-10-18 01:00:00 0.206186 0.0 0.424009 0.025899

2019-10-18 02:00:00 0.216495 0.0 0.408625 0.030655

2019-10-18 03:00:00 0.216495 0.0 0.410490 0.038584

2019-10-18 04:00:00 0.226804 0.0 0.390676 0.080867

2019-10-18 05:00:00 0.247423 0.0 0.370163 0.104651

2019-10-18 06:00:00 0.237113 0.0 0.382051 0.129493

2019-10-18 07:00:00 0.206186 0.0 0.441958 0.128436

2019-10-18 08:00:00 0.164948 0.0 0.521445 0.115222

2019-10-18 09:00:00 0.134021 0.0 0.595338 0.113636

2019-10-18 10:00:00 0.113402 0.0 0.651049 0.135835

2019-10-18 11:00:00 0.092784 0.0 0.694406 0.169133

2019-10-18 12:00:00 0.082474 0.0 0.728671 0.198732

2019-10-18 13:00:00 0.072165 0.0 0.749650 0.218288

2019-10-18 14:00:00 0.061856 0.0 0.762937 0.233615

2019-10-18 15:00:00 0.082474 0.0 0.739161 0.250000

2019-10-18 16:00:00 0.082474 0.0 0.718415 0.271670

2019-10-18 17:00:00 0.092784 0.0 0.681119 0.294926

2019-10-18 18:00:00 0.103093 0.0 0.634033 0.309197

2019-10-18 19:00:00 0.123711 0.0 0.600000 0.313425

2019-10-18 20:00:00 0.144330 0.0 0.562005 0.313425

2019-10-18 21:00:00 0.164948 0.0 0.527273 0.273784

2019-10-18 22:00:00 0.195876 0.0 0.498601 0.255285

2019-10-18 23:00:00 0.206186 0.0 0.468065 0.115751

Table 8.16: Riyadh Humidity, Precipitation Intensity, Temperature and Wind Gust
values for 18 October 2019
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Figure 8.119: Riyadh Sector-10 scenario forecasts from the model trained with the ex-
ogenous variable Humidity. Real parking occupancy in blue and forecasted in orange.

trained with the Humidity variable. Again, it is possible that the model has learnt a
spurious correlation between Humidity and parking occupancy. The provided forecasts
(in orange) are a bit better than those obtained with the UV Index model, although
they are the same for all days.
Figure 8.120 presents the forecasts from the model trained with the exogenous numerical
variable Precipitation Intensity. The visualization shows that, although the time series
usually has the same value (zero) when precipitation occurs, the intensity can affect
parking occupancy. Thus, the information from the variable Precipitation Intensity
becomes useful. Table 8.17 provides the values of the variable for 11 April 2019.
Figure 8.121 shows the time series of the Riyadh Sector-10 parking occupancy from
a model trained with only the numerical variable Temperature. The obtained results
are similar to those of IV Index and Humidity. The model is able to provide accurate
forecasts because both variables have similar values throughout the day. However, in-
specting each day reveals that the shapes of the forecasted values are always the same
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Figure 8.120: Riyadh scenario parking occupancy forecasts from the model trained with
the exogenous variable Precipitation Intensity. Real occupancy in blue and forecasted
in orange.

535



8.2 Parking characterization Neural networks with exogenous information

time precipIntensity

2019-04-11 00:00:00 0.366658

2019-04-11 01:00:00 0.234663

2019-04-11 02:00:00 0.121081

2019-04-11 03:00:00 0.078550

2019-04-11 04:00:00 0.036199

2019-04-11 05:00:00 0.007410

2019-04-11 06:00:00 0.000000

2019-04-11 07:00:00 0.000000

2019-04-11 08:00:00 0.000000

2019-04-11 09:00:00 0.000000

2019-04-11 10:00:00 0.000000

2019-04-11 11:00:00 0.000000

2019-04-11 12:00:00 0.006871

2019-04-11 13:00:00 0.005255

2019-04-11 14:00:00 0.066020

2019-04-11 15:00:00 0.079448

2019-04-11 16:00:00 0.364951

2019-04-11 17:00:00 0.000000

2019-04-11 18:00:00 0.000000

2019-04-11 19:00:00 0.000000

2019-04-11 20:00:00 0.011003

2019-04-11 21:00:00 0.041543

2019-04-11 22:00:00 0.154002

2019-04-11 23:00:00 0.510689

Table 8.17: 11 April 2019 Precipitation Intensity values from Riyadh.
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Figure 8.121: Forecasts from the model trained with the exogenous variable Tempera-
ture for predicting Sector-10 parking occupancy. Real occupancy in blue and forecasts
in orange.

and do not make any distinction between days.
Figure 8.122 shows the time series from a model trained using only the exogenous variable
Wind Gust. The visualizations show that there weather conditions could lead to some
relationship between Wind Gust values and parking occupancy, but it is hard to discern
this.
Table 8.18 provides information about the values of the variables Wind Speed, Precipi-
tation Accumulation and Dew Point to support some of the explanations given.
Figure 8.123 shows the time series of the parking occupancy (real and forecasted) from
the model trained with the exogenous variable Wind Speed for the Riyadh scenario.
Although some relationship could exist between parking occupancy and Wind Speed
under severe weather conditions, a possible interpretation of the visualizations is that
the model is projecting the cyclical patterns of the wind in order to forecast the parking
occupancy. Therefore, it is hard to discern how useful the information provided by the
exogenous variable can be.
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Figure 8.122: Sector-10 (Riyadh) time series of the parking occupancy (blue) and the
forecasts (orange) of a model trained with the exogenous variable Wind Gust.
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time windSpeed precipAccumulation dewPoint

2019-10-18 00:00:00 0.071369 0.0 0.493378

2019-10-18 01:00:00 0.075519 0.0 0.498916

2019-10-18 02:00:00 0.081328 0.0 0.501324

2019-10-18 03:00:00 0.098755 0.0 0.496749

2019-10-18 04:00:00 0.170954 0.0 0.493378

2019-10-18 05:00:00 0.164315 0.0 0.499157

2019-10-18 06:00:00 0.160166 0.0 0.505659

2019-10-18 07:00:00 0.163485 0.0 0.516735

2019-10-18 08:00:00 0.169295 0.0 0.524199

2019-10-18 09:00:00 0.176763 0.0 0.532627

2019-10-18 10:00:00 0.185892 0.0 0.529497

2019-10-18 11:00:00 0.199170 0.0 0.515531

2019-10-18 12:00:00 0.228216 0.0 0.497231

2019-10-18 13:00:00 0.371784 0.0 0.481580

2019-10-18 14:00:00 0.371784 0.0 0.481580

2019-10-18 15:00:00 0.423237 0.0 0.498916

2019-10-18 16:00:00 0.421577 0.0 0.503973

2019-10-18 17:00:00 0.394191 0.0 0.503732

2019-10-18 18:00:00 0.321162 0.0 0.490970

2019-10-18 19:00:00 0.302075 0.0 0.498676

2019-10-18 20:00:00 0.271369 0.0 0.518420

2019-10-18 21:00:00 0.243983 0.0 0.531423

2019-10-18 22:00:00 0.215768 0.0 0.541055

2019-10-18 23:00:00 7 0.121162 0.0 0.53864

Table 8.18: Riyadh Wind Speed, Precipitation Accumulation and Dew Point values for
18 October 2019
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Figure 8.123: Sector-10 (Riyadh) six-hour forecasts of the model trained using the
continuous variable Wind Speed.
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Figure 8.124: Plots of the parking occupancy real and forecasted values from Sector-10
in Riyadh. The model has been trained with the numerical variable Dew Point.

The model trained with Precipitation Accumulation does not offer any useful informa-
tion, as the variable always has the same value (zero) and therefore the model cannot
learn anything.
Similarly to the previous scenario, the exogenous variable Dew Pointis not related to
parking occupancy levels, as can be seen in the model’s time series of the parking occu-
pation and forecasts in Figure 8.124.
From the models trained with each numerical exogenous variable to predict Riyadh
Sector-10 parking occupancy, the following observations and conclusions have been ex-
tracted:

• In previous scenarios, a subset of variables was identified as a proxy between sun-
shine hours and parking occupancy. Those proxy variables provide visualizations
that may lead one to think that the variables are correlated. However, those cor-
relations are in fact spurious. In Riyadh, these variables are: Visibility, Cloud
Cover, Wind Bearing, UV Index, Humidity and Temperature.

• The variable Precipitation Intensity can occasionally provide information to im-
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prove some forecasts, while the variable Precipitation Accumulated does not offer
any useful information because its values are always 0 (snow generally never accu-
mulates in Saudi Arabia, for obvious reasons).

• It is hard to conclude if Wind Speed and Wind Gust have any effect on parking
occupancy, as their values can be cyclical, just like the proxy variables, thus leading
to forecasts based on spurious correlations.

• Dew Point offered no useful information, just as in previous scenarios.
From all the scenarios, the following conclusions have been made about each of the
exogenous numerical variables:

• Visibility: No useful interpretation can be made from the visualizations; and when
the values are similar to the real occupancy values, the forecasts may possibly be
based on spurious correlations.

• Cloud Cover: The same conclusions as for Visibility.
• Wind Bearing: Their forecasts do not seem (visually) correlated or provide useful

information for parking forecasts.
• UV Index: It has been shown that models use UV Index information to provide

parking occupancy forecasts by exploiting the fact that both variables have similar
cycles during the hours of the day. The most possible explanation is that it is a
spurious correlation.

• Humidity: The same conclusions as for UV Index. However, changes in the Hu-
midity values could also be related to weather conditions. Therefore, they can
carry some useful information.

• Precipitation Intensity: It has been shown that these values have an effect on
parking occupancy.

• Precipitation Accumulated: Similar to Precipitation Intensity, but it is not always
useful (as in the case of Riyadh).

• Temperature: A spurious correlation that can mask some useful information about
the weather conditions.

• Wind Gust: It has been shown that, in some cases, this could provide a spurious
correlation, while in other cases it may provide some useful information for parking
occupancy.

• Dew Point: Not useful in any of the scenarios.

8.3 Proposed architectures

In order to be able to use all the information provided by the exogenous variables, differ-
ent architectures are proposed for each of the NN methods because they are constrained
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by their nature. The goal is to obtain models that forecast the next six hours of parking
occupancy by making use of the presented exogenous variables.
In general, the architectures have the following schema:

• Multiple input layers specialized in handling categorical and continuous data. This
could be interpreted as having sub-networks inside the model, which specialize in
handling specific types of data. One of the sub-networks specializes in handling the
numerical information represented as time series data, while the other sub-network
specializes in handling categorical data.

• Each sub-network performs its own computations before merging its outputs. In
this way, the models transform the input data into useful representations for later
use. Once the outputs of each sub-network are merged (concatenated by the feature
dimension), extra computations are made in a new sub-network that has the same
structure as the sub-network for the numerical inputs, because all the information
is numerical after merging.

• The output layer consists of a dense layer of six neurons, which output the next
six hours of parking occupancy.

A random search strategy has been performed in order to decide on the number of
hidden layers, neurons and activation functions for the sub-network with the numerical
inputs. For the sub-network with the categorical data, no random search is made,
as it consists mainly of one embedding layer for each categorical variable, followed by
some computational layer that transforms the embeddings so that they can be used
in subsequent layers. Other hyperparameters like the optimizer are the same as those
obtained in the endogenous models.

8.3.1 MLP proposed architecture

The addition of exogenous variables prevents the MLP architecture from being a good
candidate for modeling the data, because it is designed to handle two dimensional ten-
sors, and the input data has become a three-dimensional tensor. One solution is to have
as many inputs in the model as there are features in the data. This means that the MLP
model has 12 different inputs for the numerical variables (numerical sub-network), and
another 8 inputs for the categorical variables (categorical sub-network).
The categorical variables are handled first by embedding layers, then by a Global Average
Pooling layer that averages the information across the temporal dimension. This pooling
layer also transforms the three-dimensional tensors provided by the embedding layers
into two dimensional tensors, which can be concatenated along the feature dimension
with the output tensors from the numerical sub-network.
Each of the numerical variables is handled by a subset of dense layers (each variable has
its unique layers). The number of these layers and its number of neurons are decided by
random search.
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Figure 8.125: Proposed exogenous MLP model architecture.

The outputs from all the branches are merged by concatenating the last dimension
(features/columns), thus forming a new two dimensional tensor. This two dimensional
tensor is then used as input for a sub-network block that has the same structure as the
sub-network for the numerical variables. The output of this block is used as input for
the output layer.
In addition, because a large number of layers are used, residual connections are made
between the hidden layers of the numerical sub-network. Residual connections take the
output from a previous layer and add it to a subsequent layer (although not necessarily
the very next one). In doing this, the model can learn to skip some layers if no useful
representation of the information is learned. Moreover, residual connections (and skip
connections) enhance the training of the model, as they help the gradient flow better
to the first layers of the model. Further information about residual connections can be
found in He et al. [2016].
One major drawback of the proposed MLP model is that numerical variables cannot be
handled all together, and it is possible that patterns shared among variables become im-
possible to learn. This does not happen with RNN methods, because they can naturally
handle multiple sequences (each sequence is a feature) and learn patterns among them
in order to provide the forecasts.
The final architecture of the MLP model is presented in Figure 8.125.
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8.3.2 Proposed RNN architecture

For the RNN methods (LSTM and GRU), a similar architecture is proposed, although
all the numerical variables are used as inputs of the same RNN layer. Therefore, the
models can learn patterns that are shared among the numerical inputs. A random search
has been performed on only some of the numerical variables. Different architectures have
been tested by trial and error, by which we make the following observations after closely
monitoring the errors of the models while training:

• Normalization layers after each RNN layer: Not used because this increased the
training time.

• Normalization layer after merging;: Similar to the previous one.
• Global Average Pooling of the embeddings in the time dimension (as done in the

MLP architecture): Some models obtained slightly similar scores to those obtained
by the respective endogenous models.

• RNN layer after each embedding followed by concatenation: Similar to the previous
one, but it makes the training slower.

• Concatenating all the outputs of the embeddings with the numerical inputs, then
training a RNN sub-network with all this information: Slow, and bad scores.

• Concatenating all the outputs of the embeddings with the output of the sub-
network of the numerical inputs, then using the concatenated features as input for
a dense layer of 256 neurons before the output layer: The results better than for
the endogenous models.

• Concatenating all the outputs of the embeddings with the output of the sub-
network of the numerical inputs, then using the concatenated features as input
for a new sub-network with a structure similar to the sub-network with numerical
inputs: This achieved the best results.

• In addition, testing residual and skip connections found that skip connections
improved training time and RMSE by using them between RNN layers.

The final architecture proposed for the RNN methods is presented in 8.126.

8.3.3 Design of experiments

An experiment constitutes a modeling process for each sector in each city using a specific
NN method layer type for the hidden layers in each of the proposed architectures. The
NN methods considered are:

• Multilayer perceptron (MLP).
• The recurrent neural networks LSTM and GRU.
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Figure 8.126: Proposed exogenous RNN model architecture.

City Sector Experiment name Comments

Antwerp Pelikaanstraat

MLP_exogenous_antwerp_pelikaanstraat

Noisy sector that combines regular global patterns with non-regular local ones.LSTM_exogenous_antwerp_pelikaanstraat

GRU_exogenous_antwerp_pelikaanstraat

Wattens Outside

MLP_exogenous_wattens_outside

Small–medium sized sector. Both Wattens sectors are similar, but endogenous models of the Outside sector achieved far worse scores for no reason.LSTM_exogenous_wattens_outside

GRU_exogenous_wattens_outside

Los Angeles Standard

MLP_exogenous_LA_standard

2018 and 2019 have different occupancy values because of street works.LSTM_exogenous_LA_standard

GRU_exogenous_LA_standard

Riyadh Sector-10

MLP_exogenous_riyadh_sector10

Large sized sector. Endogenous models scored worse in Sector-10 in comparison to Sector-1, although they have similar occupancy patterns.LSTM_exogenous_riyadh_sector10

GRU_exogenous_riyadh_sector10

Table 8.19: Table of NN experiments.

For each experiment, the outcome is the best model from each method within the same
validation framework presented in 7.2. Comments are given about facts that emerged
during the execution, and we also provide the RMSE values of the best model perfor-
mances throughout the different forecasting steps (from t to t+ 6). Remember that, in
order to reduce the stochasticity of the NN models, we use the best architecture from
each experiment to re-create the model 20 times. The presented results correspond to
the mean RMSE values of each forecasting step.
Table 8.19 shows the experiments, with their names and comments about the scenarios
(city and sectors).
Questions that arise from the experiments are:

• What are the effects of the exogenous variables on the RMSE?
• Which exogenous variables contribute more to providing better forecasts?
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• Which exogenous variables do not contribute or make the forecasts worse?
• Is it worth using an exogenous model instead of an endogenous one?
• Can the models be improved?

A random search has been made for some parts of the model (those that concern the
numerical inputs of the model). The range of values for the hyperparameters are the
same as those in Chapter 7, with the addition of the hyperbolic tangent activation
function.

8.4 Antwerp experiments

Table 8.20 presents the date range for the training, validation and test sets for the
experiment in the Antwerp scenario. The models provide forecasts for the Pelikaanstraat
sector. We consider this sector because the exogenous variables are expected to help the
models reduce the noise in the endogenous data while providing better and smoother
forecasts.

8.4.1 MLP

Table 8.21 presents the hyperparameters obtained by random search when creating
the MLP model trained with exogenous variables for the Pelikaanstraat sector in the
Antwerp scenario. These hyperparameters are used to define both the sub-network with
the numerical inputs and the sub-network that occurs after the concatenate operation.
Table 8.22 presents the RMSE scores for each hour and the mean RMSE for the MLP
model trained with exogenous variables for the Antwerp scenario.
A visualization of each forecasting step from t to t+6 on the date interval of the test set
is presented in Figure 8.127. It can be observed that the model forecasts for forecast step
one (next hour from now) are accurate. At later forecast steps, the model forecasts are
smoother, but the model still provides different occupancy levels based on the week of
the day. For example, the model predicts higher occupancy values for Sunday afternoons
(March 31 and April 7 and 14) than for the other days.
In order to assess the findings from Section 8.1, the same model has been trained with a
subset of the variables. The variables of this subset are selected according to the scenario
characteristics. For the Antwerp scenario, the chosen exogenous variables are:

Sector Train Validation Test

Pelikaanstraat 2018-02-01, 2019-01-19 2019-01-20, 2019-03-04 2019-03-05, 2019-04-17

Table 8.20: Antwerp sector intervals of dates used for the training, validation and test
sets.
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Experiment name Number of neurons Number of layers Dropout % Weights initializer Activation function Batch size Optimizer Learning rate

MLP_exogenous_antwerp_pelikaanstraat 16 3 0 He normal Tanh 32 RMSprop 0.0013431

Table 8.21: Hyperparameter values obtained by the random search for the Antwerp
MLP model trained with exogenous variables.

Experiment name RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6 Mean RMSE

MLP_exogenous_antwerp_pelikaanstraat 0.116387 0.135267 0.147768 0.157503 0.164878 0.173999 0.150557

Table 8.22: Antwerp MLP exogenous model’s RMSE values obtained in the test set.

Figure 8.127: Forecast visualizations for the Antwerp Pelikaanstraat MLP model
trained with exogenous information. From top left to bottom right are steps one
to six
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Experiment name RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6 Mean RMSE

MLP_exogenous_antwerp_pelikaanstraat 0.115349 0.138901 0.153771 0.165558 0.173725 0.180106 0.156209

Table 8.23: Antwerp MLP model’s RMSE values when testing the model forecasts in
the test set. The model has been trained with a subset of the exogenous variables.

Experiment RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6

All exogenous variables 0.116387 0.135267 0.147768 0.157503 0.164878 0.173999

Subset of exogenous variables 0.115349 0.138901 0.153771 0.165558 0.173725 0.180106

Table 8.24: Antwerp RMSE comparison of MLP exogenous models trained with all the
exogenous variables and with only a subset of them.

• Summary.
• Precipitation Type.
• Day of the Week.
• Month.
• Holiday.
• Precipitation Intensity.
• Precipitation Accumulated.

If better RMSE scores are obtained by this model, then some of the exogenous variables
add noise to the model when it is trained with all of them. If not, this could be indicative
that NN methods for time series are robust to noise and/or non-informative features.
On the other hand, if the RMSE scores are similar, then the subset of variables is the
one from which the model learns.
The RMSE scores obtained from the model trained with the subset of exogenous variables
are presented in Table 8.23.
Table 8.24 presents a side-by-side comparison of the RMSE scores obtained by the model
trained with all the exogenous variables and those from the model trained with only the
subset. It can be seen that the model trained with only a subset of the exogenous
variables presents similar or higher RMSE values, especially from hour 3 onward.

8.4.2 LSTM

Table 8.25 presents the hyperparameter values obtained by the random search for the
LSTM sub-network for numerical inputs and the sub-network after the concatenate
operation.
Table 8.26 presents the the RMSE obtained for the successive hours one to six and the
mean RMSE for the LSTM model.

549



8.4 Antwerp experiments Neural networks with exogenous information

Experiment name Number of neurons Number of layers Dropout % Recurrent dropout % Weights initializer Activation function Batch size Optimizer Learning rate Clipping norm value

LSTM_exogenous_antwerp_pelikaanstraat 512 1 0.125 0.125 Glorot normal ReLu 32 SGD 0.045333421 0.7

Table 8.25: Hyperparameter values obtained by random search for the Antwerp LSTM
model trained with exogenous variables.

Experiment name RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6 Mean RMSE

LSTM_exogenous_antwerp_pelikaanstraat 0.112092 0.128344 0.135903 0.141196 0.145912 0.150256 0.136307

Table 8.26: Antwerp LSTM exogenous model’s RMSE values obtained in the test set.

Figure 8.128 presents the visualizations of the LSTM model at each forecasting step,
from step t = 1 to step t + 6 when making forecasts from step t = 0. The results show
very good forecasts at forecasting steps one, two and three. After those, the forecasts
are smooth and more conservative (lower values at the peak and higher values in the
valleys). One remarkable point is that the model forecasts for Sundays are higher than
the other days, independently of the forecasting step, showing that the model has learnt
perfectly the daily dynamics of parking occupancy.
The RMSE scores obtained from the model trained with the selected subset of exogenous
variables are presented in Table 8.27.
Table 8.28 presents a side-by-side comparison of the RMSE scores obtained by the model
trained with all the exogenous variables and the model trained with only the subset. The
results show that the model trained with the subset of exogenous variables has obtained
the lowest error in forecasting steps one and two, with a large margin in forecasting
step one. From forecasting step three onward, the LSTM model trained with all the
exogenous variables shows lower error than the others. This could be because some of
the exogenous variables are adding noise in the early steps of the forecasts while helping
in the later steps.

8.4.3 GRU

Table 8.29 presents the hyperparameter values obtained by the random search for the
GRU sub-networks .
The obtained RMSE scores for each forecasting step of the GRU model trained with
exogenous variables are presented in Table 8.30. The results show that the model error
increases greatly between forecasting step one and two when compared with the other
forecasting steps.

Experiment name RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6 Mean RMSE

LSTM_exogenous_antwerp_pelikaanstraat 0.099110 0.122019 0.133387 0.141840 0.147803 0.152289 0.133957

Table 8.27: Antwerp LSTM model’s RMSE values when testing the model forecasts in
the test set. The model has been trained with a subset of the exogenous variables.
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Figure 8.128: Antwerp Pelikaanstraat LSTM model trained with hourly forecast visu-
alizations of the exogenous variables. From top left to bottom right are steps one to
six

Experiment RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6

All exogenous variables 0.112092 0.128344 0.135903 0.141196 0.145912 0.150256

Subset of exogenous variables 0.099110 0.122019 0.133387 0.141840 0.147803 0.152289

Table 8.28: Antwerp RMSE comparison of LSTM exogenous models trained with all
the exogenous variables and with only a subset of them.

Experiment name Number of neurons Number of layers Dropout % Recurrent dropout Weights initializer Activation function Batch size Optimizer Learning rate Clipping norm value

GRU_exogenous_antwerp_pelikaanstraat 256 1 0 0 Glorot normal Tanh 256 RMSProp 0.0002656 0.4

Table 8.29: Hyperparameter values obtained by the random search for the Antwerp
GRU model trained with exogenous variables.

Experiment name RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6 Mean RMSE

GRU_exogenous_antwerp_pelikaanstraat 0.114243 0.140703 0.143994 0.150458 0.158148 0.164877 0.14648

Table 8.30: Antwerp GRU exogenous model’s RMSE values obtained in the test set.
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Figure 8.129: Forecast visualizations for the Antwerp Pelikaanstraat GRU model with
exogenous information. From top left to bottom right are steps one to six.

The visualizations of the forecasts at horizon steps one to six are presented in Figure
8.129 for the Pelikaanstraat GRU model. The forecast for the next hour (occupancy
hour 1 visualization) presents a low error rate and clearly discriminates the daily pat-
terns. An example of the daily discrimination can be found on days 7 and 14 of April,
which correspond to Sundays and have different occupancy patterns. Forecasts become
smoother as the forecasting hour extends further in time. However, the daily patterns
are maintained instead of becoming the mean of the series (something that was observed
in the endogenous models).
As we have done with the previous methods, Table 8.31 shows the GRU model’s RMSE
scores when using a subset of exogenous variables.
Table 8.32 shows a side-by-side comparison of the obtained RMSE scores. The scores
show that the model trained with the subset of exogenous variables has a higher RMSE
than the one that uses them all.
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RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6 Mean RMSE

0.124101 0.142577 0.160875 0.160392 0.166151 0.169904 0.155257

Table 8.31: Antwerp GRU model’s RMSE values when testing the model forecasts in
the test set. The model has been trained with a subset of exogenous variables.

Experiment RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6

All exogenous variables 0.114243 0.140703 0.143994 0.150458 0.158148 0.164877

Subset of exogenous variables 0.124101 0.142577 0.160875 0.160392 0.166151 0.169904

Table 8.32: Antwerp RMSE comparison of GRU exogenous models trained with all the
exogenous variables and with only a subset of them.

8.5 Wattens experiments

Table 8.33 presents the date range for the training, validation and test sets of the Wattens
experiment with exogenous variables. The Outside sector has been chosen because the
endogenous models provided high forecasting error rates when compared to the Inside
sector’s error rate, although some similarities occurred. It is expected that exogenous
information helps the model better discriminate the occupancy patterns based on the
day of the week.

8.5.1 MLP

The hyperparameter values of the MLP candidate models obtained by random search
for the Wattens scenario are presented in Table 8.34. The model is trained using all the
exogenous variables presented in Section 8.1.
Table 8.35 presents the scores for the MLP experiments in the Wattens scenario. They
show low error rates for forecasting step one, followed by increases at each successive
time step. However, the increase in error is more noticeable from steps one to two.
Figure 8.130 offers visualizations of the MLP candidate model for the Outside sector
in Wattens at different forecasting horizons (one to six). The visualizations for each
forecasting hour show that the model perfectly discriminates the occupancy based on
the day of the week. For example, it shows less occupancy on weekdays and weekends
as well as different levels for Mondays and Fridays. Another interesting observation is

Sector Training Validation Test

Outside 2018-03-01, 2019-02-23 2019-02-24, 2019-04-09 2019-04-10, 2019-05-23

Table 8.33: Wattens sector intervals of dates used for the training, validation and test
sets.
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Experiment name Number of neurons Number of layers Dropout % Weights initializer Activation function Batch size Optimizer Learning rate

MLP_exogenous_wattens_outside 16 2 0 Glorot normal Tanh 128 RMSprop 0.00682913

Table 8.34: Hyperparameter values obtained by random search for the Wattens MLP
model trained with exogenous variables.

Experiment name RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6 Mean RMSE

MLP_exogenous_wattens_outside 0.086194 0.103884 0.115519 0.123145 0.126526 0.130674 0.11554

Table 8.35: Wattens MLP exogenous model’s RMSE values obtained in the test set.

that the model differentiates occupancies on Holidays, as seen on 1 May (Labour day),
when the forecasted occupancy is lower than for a normal Wednesday.
In order to assess the findings from Section 8.1, the same model has been trained with
a subset of the variables, which were selected according to the scenario characteristics.
For the Wattens scenario, the chosen exogenous variables are:

• Summary.
• Precipitation Type.
• Day of the Week.
• Month.
• Holiday.
• Precipitation Intensity.
• Precipitation Accumulated.
• Wind Gust.
• Wind Speed.

The RMSE scores obtained from the model trained with the subset of exogenous variables
are presented in Table 8.36. The obtained RMSE scores indicate a lower increase in the
error rate for the latest hours in comparison to the earliest ones.
In order to compare the RMSE values obtained by both models for each hour, a side-by-
side table of results is presented in Table 8.37. The results show that the forecasts of the
model trained with a subset of the exogenous variables presents lower RMSE values for
the first time steps, but from Hour 3 onward the model with all the exogenous variables
has the lowest error rate. The means for the 6 time steps are similar in both models.
Therefore, it is possible that both models are nearly equivalent.

RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6 Mean RMSE

0.070058 0.097697 0.115905 0.126067 0.130791 0.132521 0.114405

Table 8.36: Wattens MLP model’s RMSE values when testing the model forecasts in
the test set. The model has been trained with a subset of the exogenous variables.

554



8.5 Wattens experiments Neural networks with exogenous information

Figure 8.130: Forecast visualizations for the Wattens Outside sector MLP model with
exogenous variables. From top left to bottom right are steps one to six

Experiment RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6

All exogenous variables 0.086194 0.103884 0.115519 0.123145 0.126526 0.130674

Subset of exogenous variables 0.070058 0.097697 0.115905 0.126067 0.130791 0.132521

Table 8.37: Wattens RMSE comparison of MLP exogenous models trained with all the
exogenous variables and with only a subset of them.
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Experiment name Number of neurons Number of layers Dropout % Recurrent dropout % Weights initializer Activation function Batch size Optimizer Learning rate Clipping norm value

LSTM_exogenous_wattens_outside 64 2 0.25 0.125 Glorot normal Linear 256 SGD 0.00344656 1

Table 8.38: Hyperparameter values obtained by random search for the Wattens LSTM
model trained with exogenous variables.

Experiment name RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6 Mean RMSE

LSTM_exogenous_wattens_outside 0.099849 0.115229 0.125736 0.132120 0.135185 0.139255 0.125309

Table 8.39: Wattens LSTM exogenous model’s RMSE values obtained in the test set.

8.5.2 LSTM

Table 8.38presents the hyperparameter values obtained by random search for the Wat-
tens Outside sector model that was trained using exogenous variables.
Table 8.39 presents the scores for the LSTM experiments in the Wattens scenario. Ob-
serve that the error rate increases faster for the first forecasting hours than for the later
ones.
The visualizations of the parking occupancy forecasts at step horizons one to six are
presented in Figure 8.131 for the Wattens Outside sector. The model has been trained
using all the exogenous variables. The visualizations show that the model forces the
forecasts to be more in line with the global patterns and less so with the local ones.
This is observed on days 11 and 12 of May, where the true parking occupancy presents
unusual parking occupancy levels for weekend days, but the model forecasts the usual
daily cycle with lower values of occupancy. The reason for this reduced flexibility could
be related to the dropout values used.
The RMSE scores obtained from the model trained with the subset of exogenous variables
are presented in Table 8.40. The RMSE scores show that the error increase between
successive forecasting steps goes from greater to lower, resulting in a very small difference
between the RMSE scores of hours five and six.
Table 8.41 presents the RMSE from the model trained with all the exogenous variables
and the model trained with the subset. The results show that both have similar RMSE
scores at the different forecasting steps, although the model with all the exogenous
information is a bit higher in the first hours (until hour 3), then becomes a bit lower for
the following forecasting steps.

RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6 Mean RMSE

0.092725 0.112870 0.127217 0.136021 0.140750 0.145832 0.12723

Table 8.40: Wattens LSTM model’s RMSE values when testing the model forecasts in
the test set. The model has been trained with a subset of the exogenous variables.
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Figure 8.131: Forecast visualizations for the Wattens Outside sector LSTM model with
exogenous variables. From top left to bottom right are steps one to six

Experiment RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6

All exogenous variables 0.099849 0.115229 0.125736 0.132120 0.135185 0.139255

Subset of exogenous variables 0.092725 0.112870 0.127217 0.136021 0.140750 0.145832

Table 8.41: Wattens RMSE comparison of LSTM exogenous models trained with all
the exogenous variables and with only a subset of them.
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Experiment name Number of neurons Number of layers Dropout % Recurrent dropout % Weights initializer Activation function Batch size Optimizer Learning rate Clipping norm value

GRU_full_exogenous_wattens_outside 128 1 0.25 0 Glorot normal Linear 256 RMSProp 0.00001349 0.4

Table 8.42: Hyperparameter values obtained by random search for the Wattens GRU
model trained with exogenous variables.

Experiment name RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6 Mean RMSE

GRU_exogenous_wattens_outside 0.099434 0.110648 0.117117 0.121229 0.123851 0.125638 0.116672

Table 8.43: Wattens GRU exogenous model’s RMSE values obtained in the test set.

8.5.3 GRU

The hyperparameter values obtained by the random search for the GRU model trained
with all the exogenous variables are presented in Table 8.42.
Table 8.43 presents the RMSE values for each hour of the forecast horizon (six hours).
The error rate increases considerably between forecasting steps one and two, and less so
for the following steps.
Figure 8.132 presents visualizations of the real and forecasted (hour by hour) parking
occupancy of the Wattens Outside sector. The visualizations show that the model
accurately forecasts the daily patterns of the parking sector. Similarly to what has been
observed in the LSTM case, the model fails to accurately predict days 11 and 12 of May,
as there was more occupancy than expected for a weekend. On the other hand, the
model takes into account holiday information and predicts lower occupancy levels for
Wednesday, the first of May, which was Labour Day.
The RMSE scores obtained from the model trained with the subset of exogenous variables
are presented in Table 8.44. The RMSE scores show similar behaviour throughout the
hours, just as when the model is trained with all the exogenous variables.
In order to compare the RMSE values obtained by both models, a side-by-side table of
results is presented in Table 8.45, which shows the scores for each forecasting step. It
can be seen that the error rates of both models are similar in the first forecasting steps,
but for the later ones, the model with all the exogenous variables shows lower RMSE.

RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6 Mean RMSE

0.097499 0.117115 0.128949 0.134831 0.138059 0.139208 0.126804

Table 8.44: Wattens GRU model’s RMSE values when testing the model forecasts in
the test set. The model has been trained with a subset of the exogenous variables.
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Figure 8.132: Forecast visualizations for the Wattens Outside sector GRU model with
exogenous variables. From top left to bottom right are steps one to six

Experiment RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6

All exogenous variables 0.099434 0.110648 0.117117 0.121229 0.123851 0.125638

Subset of exogenous variables 0.097499 0.117115 0.128949 0.134831 0.138059 0.139208

Table 8.45: Wattens RMSE comparison of GRU exogenous models trained with all the
exogenous variables and with only a subset of them.
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Sector Training Validation Test

Standard 2018-04-01, 2019-07-01 2019-07-02, 2019-08-27 2019-08-28, 2019-10-23

Table 8.46: Los Angeles sector intervals of dates used for the training, validation and
test sets.

Experiment name Number of neurons Number of layers Dropout % Weights initializer Activation function Batch size Optimizer Learning rate

MLP_exogenous_LA_Standard 64 2 0.125 He normal ReLu 256 RMSprop 0.007757

Table 8.47: Hyperparameter values obtained by random search for the Los Angeles
MLP model trained with exogenous variables.

8.6 Los Angeles experiments

Table 8.46 presents the date range for the training, validation and test sets for each of
the Los Angeles Standard sector’s experiments with exogenous variables. The models
were built to study the effects of the exogenous variables in time series with temporal
distribution changes.

8.6.1 MLP

Table 8.47 shows the hyperparameter values obtained by the random search from the
MLP experiments in the city of Los Angeles.
Table 8.48 presents the RMSE scores obtained from the model MLP trained with ex-
ogenous variables for the Los Angeles scenario. All the forecasting hours present similar
RMSE values.
Figure 8.133 shows the forecasts for the six different forecasting steps of the Standard
sector’s candidate model. The visualizations show that the model has adapted somewhat
to the street works. However, at later forecasting hours, the provided forecasts are of
bad quality.
The subset of exogenous variables for training a model with fewer exogenous variables
based on the scenario characteristics are:

• Summary.
• Precipitation Type.
• Month.

Experiment name RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6 Mean RMSE

MLP_endogenous_LA_Standard 0.133507 0.132600 0.135605 0.134806 0.138004 0.137220 0.135734

Table 8.48: Los Angeles MLP exogenous model’s RMSE values obtained in the test
set.
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Figure 8.133: Forecast visualizations for the Los Angeles Standard sector MLP model
with exogenous variables. From top left to bottom right are steps one to six.
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RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6 Mean RMSE

0.117905 0.122205 0.131001 0.130840 0.132634 0.134908 0.128791

Table 8.49: Los Angeles MLP model’s RMSE values when testing the model forecasts
in the test set. The model has been trained with a subset of the exogenous variables.

Experiment RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6

All exogenous variables 0.133507 0.132600 0.135605 0.134806 0.138004 0.137220

Subset of exogenous variables 0.117905 0.122205 0.131001 0.130840 0.132634 0.134908

Table 8.50: Los Angeles RMSE comparison of MLP exogenous models trained with all
the exogenous variables and with only a subset of them.

• Holiday.
• Day of the Week.
• Precipitation Intensity.

The RMSE scores obtained from the model trained with the subset of exogenous variables
are presented in Table 8.49. The obtained results show that the model with a subset of
the exogenous variables has the lowest error rate in forecasting hours one and two. For
the following hours, the error is very similar and the increase is small.
In order to compare the RMSE values obtained by both models, a side-by-side table of
results is presented in Table 8.50, which shows the scores for each forecasting step. It
can be seen that the error rates of both models are similar in the first forecasting steps,
but for the later ones, the model with all the exogenous variables shows lower RMSE.

8.6.2 LSTM

LSTM hyperparameter values of the model trained with exogenous information, which
were obtained by random search are presented in Table 8.51.
Table 8.52 shows the RMSE values obtained for the LSTM model trained with all the
exogenous variables. It can be observed that the error barely increases in the later
forecasting steps, specifically from forecasting step four onward.
The visualizations of the forecasts at different forecasting horizons (from one to six
hours) are presented in Figure 8.134. The visualizations show that the model forecasts

Experiment name Number of neurons Number of layers Dropout % Recurrent dropout % Weights initializer Activation function Batch size Optimizer Learning rate Clipping norm value

LSTM_exogenous_LA_Standard 1024 1 0.125 0.25 He normal ReLu 64 SGD 0.005 0.4

Table 8.51: Hyperparameter values obtained by random search for the Los Angeles
LSTM model trained with exogenous variables.
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Experiment name RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6 Mean RMSE

LSTM_exogenous_LA_Standard 0.099506 0.118512 0.121639 0.131558 0.132344 0.132003 0.123919

Table 8.52: Los Angeles LSTM exogenous model’s RMSE values obtained in the test
set.

RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6 Mean RMSE

0.085215 0.105905 0.116418 0.129116 0.138504 0.139243 0.121193

Table 8.53: Los Angeles LSTM model’s RMSE values when testing the model forecasts
in the test set. The model has been trained with a subset of exogenous variables.

are close to the real parking occupancy values for the first forecasting steps, but at the
later ones, the forecasts show that there is no distinction in the daily patterns. Moreover,
some of the forecasts have negative values, which were also observed in the endogenous
version of the model for this same scenario. This is an effect caused by the change in
the realizations of the data due to street works..
The RMSE scores obtained from the model trained with the subset of exogenous variables
are presented in Table 8.53.
In order to compare the RMSE values obtained by both models, a side-by-side table
of results is presented in Table 8.54, which shows the scores for each forecasting step.
The results show that the LSTM with all the exogenous variables has a higher RMSE
in forecasting steps one to four. However, the following forecasting steps present a lower
error rate than the model trained with the subset of exogenous variables. This indicates
that some of the exogenous information adds noise in the first forecasting steps, but it
contributes to reducing error in the later ones.

8.6.3 GRU

The hyperparameter values obtained for the GRU candidate models for the Los Angeles
sector are presented in Table 8.55.
Table 8.56 presents the scores for the GRU experiments in the city of Los Angeles. The
obtained RMSE scores show that the increase in error is smaller for the later forecasting
hours (from hour four onward).

Experiment RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6

All exogenous variables 0.099506 0.118512 0.121639 0.131558 0.132344 0.132003

Subset of exogenous variables 0.085215 0.105905 0.116418 0.129116 0.138504 0.139243

Table 8.54: Los Angeles RMSE comparison of LSTM exogenous models trained with
all the exogenous variables and with only a subset of them.
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Figure 8.134: Forecast visualizations for the Los Angeles Standard sector LSTM model
with exogenous variables. From top left to bottom right are steps one to six.

Experiment name Number of neurons Number of layers Dropout % Recurrent dropout % Weights initializer Activation function Batch size Optimizer Learning rate Clipping norm value

GRU_exogenous_LA_Standard 8 3 0.125 0.25 Glorot normal Linear 32 RMSProp 0.000271 1

Table 8.55: Hyperparameter values obtained by random search for the Los Angeles
GRU model trained with exogenous variables.

Experiment name RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6 Mean RMSE

GRU_exogenous_LA_Standard 0.103600 0.116677 0.125230 0.129723 0.131936 0.132077 0.124002

Table 8.56: Los Angeles GRU exogenous model’s RMSE values obtained in the test
set.
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Figure 8.135: Forecast visualizations for the Los Angeles Standard sector GRU model
with exogenous variables. From top left to bottom right are steps one to six.

Figure 8.135 shows that the GRU model differentiates daily and weekly patterns better
than previous models, although it fails when providing the lower occupancy values of the
time series, as they are higher than the true occupancy. In the later forecasting hours,
the forecasts still follow the time series pattern, but those values are more conservative
with a tendency towards the mean.
The RMSE scores obtained from the GRU model trained with the subset of exogenous
variables are presented in Table 8.57 for each of the forecasting hours (from one to six)
and their mean.
Table 8.58 shows the RMSE scores obtained for the model trained with all the exogenous

RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6 Mean RMSE

0.114316 0.124537 0.131245 0.135404 0.137455 0.137850 0.130909

Table 8.57: Los Angeles GRU model’s RMSE values when testing the model forecasts
in the test set. The model has been trained with a subset of exogenous variables.
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Experiment RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6

All exogenous variables 0.103600 0.116677 0.125230 0.129723 0.131936 0.132077

Subset of exogenous variables 0.114316 0.124537 0.131245 0.135404 0.137455 0.137850

Table 8.58: Los Angeles RMSE comparison of GRU exogenous models trained with all
the exogenous variables and with only a subset of them.

variables and the one trained with a subset of them. The subset of exogenous variables
has been selected based on the observations in Section 8.1. In all the forecasting steps,
the model that uses all the exogenous information has the lowest error rate.

8.7 Riyadh experiments

Table 8.59 presents the date range for the training, validation and test sets for each of
the Riyadh experiments. The sector for training the model with exogenous information
is Sector-10, because it presenteda higher error rate than Sector-1, although they have
similarities.

8.7.1 MLP

The hyperparameter values obtained by the random search from the MLP experiments
are presented in Table 8.60.
Table 8.61 presents the obtained RMSE scores for the Riyadh Sector-10 MLP model
trained with exogenous information. The model presents a very low error rate at fore-
casting step one (hour 1), which increases a little in the successive steps
Figure 8.136 shows the forecasts of the candidate MLP model for Sector-10 in Riyadh.
The model shows nearly perfect accuracy throughout the month in terms of the data
used in the test set for one to six forecasting steps, although it fails to achieve lower
values for some days of the weeks. Specifically, this can be observed for days 4, 11 and
18, which correspond to Fridays and are part of the weekend.
Similarly to the previous scenarios, in order to assess the findings from Section 8.1, the
same model has been trained with a subset of the variables. The variables of this subset
are selected according to the scenario characteristics and the findings mentioned. For
the Riyadh scenario, the chosen exogenous variables are:

Sector Training Validation Test

All sectors 2018-09-01, 2019-08-01 2019-08-02, 2019-09-12 2019-09-13, 2019-10-24

Table 8.59: Riyadh sector intervals of dates used for the training, validation and test
sets.
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Experiment name Number of neurons Number of layers Dropout % Weights initializer Activation function Batch size Optimizer Learning rate

MLP_exogenous_riyadh_sector10 64 2 0 He normal ReLu 32 RMSprop 0.0013431

Table 8.60: Hyperparameter values obtained by random search for the Riyadh MLP
model trained with exogenous variables.

Experiment name RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6 Mean RMSE

MLP_exogenous_riyadh_sector10 0.054872 0.068552 0.076159 0.080320 0.081744 0.081357 0.07451

Table 8.61: Riyadh MLP exogenous model’s RMSE values obtained in the test set.

Figure 8.136: Forecast visualizations for the Riyadh Sector-10 MLP model with ex-
ogenous variables. From top left to bottom right are steps one to six.
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RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6 Mean RMSE

0.051951 0.060792 0.066598 0.070552 0.071579 0.068780 0.065469

Table 8.62: Riyadh MLP model’s RMSE values when testing the model forecasts in
the test set. The model has been trained with a subset of exogenous variables.

Experiment RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6

All exogenous variables 0.054872 0.068552 0.076159 0.080320 0.081744 0.081357

Subset of exogenous variables 0.051951 0.060792 0.066598 0.070552 0.071579 0.068780

Table 8.63: Riyadh RMSE comparison of MLP exogenous models trained with all the
exogenous variables and with only a subset of them.

• Summary.
• Precipitation Type.
• Day of the Week.
• Month.
• Holiday.
• Precipitation Intensity.
• Wind Gust.
• Wind Speed

The RMSE scores obtained from the model trained with the subset of exogenous variables
are presented in Table 8.62.
Table 8.63 presents a side-by-side comparison of the RMSE scores obtained by the model
trained with all the exogenous variables and the model trained with only the subset. The
results show that the model trained with the subset of exogenous variables presents lower
RMSE values in all the hours, indicating that not all the exogenous variables provide
information and that some of them add noise to the model.

8.7.2 LSTM

The hyperparameter values obtained by random search when using exogenous variables
for the LSTM model are shown in Table 8.64.

Experiment name Number of neurons Number of layers Dropout % Recurrent dropout % Weights initializer Activation function Batch size Optimizer Learning rate Clipping norm value

LSTM_exogenous_riyadh_sector10 512 1 0.125 0.125 Glorot normal ReLu 32 SGD 0.0453334 0.7

Table 8.64: Hyperparameter values obtained by random search for the Riyadh LSTM
model trained with exogenous variables.
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Experiment name RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6 Mean RMSE

LSTM_exogenous_riyadh_sector10 0.049109 0.049818 0.051592 0.052692 0.052850 0.052960 0.051538

Table 8.65: Riyadh LSTM exogenous model’s RMSE values obtained in the test set.

RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6 Mean RMSE

0.040634 0.045190 0.047528 0.048567 0.049684 0.051854 0.047379

Table 8.66: Riyadh LSTM model’s RMSE values when testing the model forecasts in
the test set. The model has been trained with a subset of exogenous variables.

Table 8.65 presents the obtained RMSE scores for the different forecasting steps of the
LSTM model that was trained by incorporating the exogenous variables for Sector-10 in
the Riyadh scenario. The model presents a low error rate that increases slightly at each
successive forecasting step.
The visualizations of the Riyadh Sector-10 forecasts at horizon steps one to six are
presented in Figure 8.137. The visualizations show that the model outputs accurate
forecasts for all the forecasting steps, something that was not accomplished in the en-
dogenous version of the model.
Table 8.66 shows the RMSE values at each time step, which were obtained by an LSTM
model trained with a subset of exogenous variables. The error is low and does not
increase a lot between successive time steps.
A side-by-side comparison of the obtained RMSE scores is presented in Table 8.67, which
contrasts the model trained with all the exogenous variables and the model trained with
a subset of them. The table shows that the model trained with a subset of the variables
achieves a lower error rate in all the time steps than does the model trained with all the
exogenous variables, which is similar to what has been observed in the MLP model. This
indicates that the subset of variables considered are the ones that improve the model
and that the others add noise to the training process.

8.7.3 GRU

The hyperparameter values obtained by the random search for the GRU model of sector
Sector-10 in Riyadh when using exogenous variables are presented in Table 8.68.

Experiment RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6

All exogenous variables 0.049109 0.049818 0.051592 0.052692 0.052850 0.052960

Subset of exogenous variables 0.040634 0.045190 0.047528 0.048567 0.049684 0.051854

Table 8.67: Riyadh RMSE comparison of LSTM exogenous models trained with all the
exogenous variables and with only a subset of them.
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Figure 8.137: Forecast visualizations for the Riyadh Sector-10 LSTM model with ex-
ogenous variables. From top left to bottom right are steps one to six.

Experiment name Number of neurons Number of layers Dropout % Recurrent dropout % Weights initializer Activation function Batch size Optimizer Learning rate Clipping norm value

GRU_exogenous_riyadh_sector10 64 3 0.125 0 He normal Tanh 256 RMSProp 0.00128415 0.4

Table 8.68: Hyperparameter values obtained by random search for the Riyadh GRU
model trained with exogenous variables.
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Experiment name RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6 Mean RMSE

GRU_exogenous_riyadh_sector10 0.053634 0.057642 0.056152 0.059179 0.060058 0.061906 0.058238

Table 8.69: Riyadh GRU exogenous model’s RMSE values obtained in the test set.

Figure 8.138: Forecast visualizations for the Riyadh Sector-10 GRU model with ex-
ogenous variables. From top left to bottom right are steps one to six.

Table 8.69 presents the obtained error scores for the GRU model trained with exogenous
variables for Sector-10 in Riyadh. They present similar RMSE values across all the
forecasting hours, thus improving the forecasts of later hours when compared to the
endogenous model of the sector.
The visualizations of the forecasts at step horizons one to six are presented in Figure
8.138 for Sector-10 in Riyadh. The visualizations show that the model forecasts are
very similar in all the forecasting steps. The model shows consistent predictions for the
weekends, something that the endogenous model failed to do.
Table 8.70 shows the scores obtained by the GRU model trained with a subset of exoge-
nous variables.
Similarly to previous methods, a side-by-side comparison is provided in Table 8.71,
contrasting the model trained with all the exogenous variables and the model trained
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RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6 Mean RMSE

0.049293 0.053471 0.056453 0.056714 0.057627 0.061467 0.056044

Table 8.70: Riyadh GRU model’s RMSE values when testing the model forecasts in
the test set. The model has been trained with a subset of exogenous variables.

Experiment RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6

All exogenous variables 0.053634 0.057642 0.056152 0.059179 0.060058 0.061906

Subset of exogenous variables 0.049293 0.053471 0.056453 0.056714 0.057627 0.061467

Table 8.71: Riyadh RMSE comparison of GRU exogenous models trained with all the
exogenous variables and with only a subset of them.

with a subset of them. Similarly to the MLP and LSTM cases, the model trained with
a subset of the exogenous variables presents lower RMSE values, although the difference
is very small in the later time steps.

8.8 Results and conclusions

This section presents a comparative study of the results obtained for each scenario from
the experiments with the exogenous variables. Next, the findings of the chapter are
discussed and commented.

8.8.1 Result comparison

Table 8.72 shows the RMSE scores of the model trained with all the exogenous variables
from the experiments in the Antwerp scenario. All models have similar RMSE values
at forecasting step one. However, the LSTM model is the one that presents a smaller
increase in error rate for the successive time steps.
Figure 8.139 more clearly presents the evolution of the RMSE for the trained models at
each time step. As stated before, the LSTM model obtains the lowest RMSE for all the
time steps, followed by GRU. MLP presents a similar score as GRU, although it has a
higher increase at each time step.

Experiment name RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6 Mean RMSE

MLP_exogenous_antwerp_pelikaanstraat 0.116387 0.135267 0.147768 0.157503 0.164878 0.173999 0.150557

LSTM_exogenous_antwerp_pelikaanstraat 0.112092 0.128344 0.135903 0.141196 0.145912 0.150256 0.136307

GRU_exogenous_antwerp_pelikaanstraat 0.114243 0.140703 0.143994 0.150458 0.158148 0.164877 0.14648

Table 8.72: RMSE scores obtained from the models trained with exogenous variables
for the experiments in the Antwerp scenario.
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Figure 8.139: Visualizations of the RMSE scores obtained from the models trained
with exogenous variables for the experiments in the Antwerp scenario.

Experiment name RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6 Mean RMSE

MLP_exogenous_wattens_outside 0.086194 0.103884 0.115519 0.123145 0.126526 0.130674 0.11554

LSTM_exogenous_wattens_outside 0.099849 0.115229 0.125736 0.132120 0.135185 0.139255 0.125309

GRU_exogenous_wattens_outside 0.099434 0.110648 0.117117 0.121229 0.123851 0.125638 0.116672

Table 8.73: RMSE scores obtained from the models trained with exogenous variables
for the experiments in the Wattens scenario.

Table 8.73 shows the RMSE scores of the model trained with all the exogenous variables
from the experiments in the Wattens scenario. The error from MLP is the lowest one at
forecasting step one. However, its error rate increases faster than the error from GRU.
This fact ensures that both models achieve similar mean RMSE.
In Figure 8.140, the dynamics can be seen more clearly through the different forecasting
steps. As mentioned previously, MLP has the lowest error rate in the first forecasting
steps, but GRU scores better in forecasting steps four, five and six. LSTM is the one
witha higher error rate, although its error rate is similar to that of GRU at forecasting
step one.
Table 8.74 shows the RMSE scores of the model trained with all the exogenous variables
from the Los Angeles scenario. At first sight, LSTM and GRU have similar values at all
the forecasting steps, while MLP shows worse errors than those.
In Figure 8.141, the dynamics can be seen more clearly through the different forecasting
steps. GRU and LSTM show very similar behaviour across all the time steps, while
MLP presents higher error rates but with lower increases between the successive steps.
Table 8.75 shows the RMSE scores of the model trained with all the exogenous variables
from the experiments in the Riyadh scenario. At first sight, RNN models present the
lowest of the errors.
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Figure 8.140: Visualizations of the RMSE scores obtained from the models trained
with exogenous variables for the experiments in the Wattens scenario.

Experiment name RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6 Mean RMSE

MLP_exogenous_LA_standard 0.133507 0.132600 0.135605 0.134806 0.138004 0.137220 0.135734

LSTM_exogenous_LA_standard 0.099506 0.118512 0.121639 0.131558 0.132344 0.132003 0.123919

GRU_exogenous_LA_standard 0.103600 0.116677 0.125230 0.129723 0.131936 0.132077 0.124002

Table 8.74: RMSE scores obtained from the models trained with exogenous variables
for the experiments in the Los Angeles scenario.

Figure 8.141: Visualizations of the RMSE scores obtained from the models trained
with exogenous variables for the experiments in the Los Angeles scenario.
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Experiment name RMSE hour 1 RMSE hour 2 RMSE hour 3 RMSE hour 4 RMSE hour 5 RMSE hour 6 Mean RMSE

MLP_exogenous_riyadh_sector10 0.054872 0.068552 0.076159 0.080320 0.081744 0.081357 0.07451

LSTM_exogenous_riyadh_sector10 0.049109 0.049818 0.051592 0.052692 0.052850 0.052960 0.051538

GRU_exogenous_riyadh_sector10 0.053634 0.057642 0.056152 0.059179 0.060058 0.061906 0.058238

Table 8.75: RMSE scores obtained from the models trained with exogenous variables
for the experiments in the Riyadh scenario.

Figure 8.142: Visualizations of the RMSE scores obtained from the models trained
with exogenous variables for the experiments in the Riyadh scenario.

The visualizations in Figure 8.142 show that LSTM maintains a very low error rate
during the successive forecasting steps, something that can be seen also in GRU, although
its error rate increases faster than the former. MLP presents a very high error increase
in forecasting steps one to three, followed by slower error rate increases.
In three of the four scenarios, LSTM has shown to be the best method when exogenous
variables are included in the process of modeling parking occupancy time series by means
of NN models. Specifically, it presents a smaller increase in error rate at the different
steps of the forecasting horizon and the lowest error rate in all the time steps.

8.8.2 Conclusions

This chapter has presented a set of exogenous variables from different sources, namely
calendar and weather. These are intuitively perceived as possible sources of information
that can improve the modeling of parking occupancy time series.
We have studied the effects of the values of those variables, specifically on parking
systems, by analysing the embeddings of the categorical variables. This analysis of the
embeddings involved using dimensional reduction techniques like PCA and/or tSNE.
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For the numerical variables, we have studied the relationship between their values and
the parking occupancy. This was done by training NN models with each of the numerical
exogenous variables in order to create a model and predict the parking occupancy. This
has shown how the model forecasts changed when conditioned by the selected exogenous
variable values.
Different architectures have been proposed for incorporating the exogenous information
into the MLP and RNN methods, and we have shown the RMSE scores obtained by using
all the variables and a subset of the exogenous variables for the scenarios. The subsets
of the exogenous variables were selected from the findings obtained when performing the
study of the exogenous variables. In some cases, the model trained with the subset of the
exogenous variables has shown equal or lower error rates when compared to the model
trained with all the exogenous information. This indicates that not all the exogenous
variables contribute to the forecasts and that some of them can also add noise to the
training process. It would be interesting for further research to develop a NN methods
to detect which variables contribute and which ones add noise.
In summary, the proposals and findings of this chapter are:

• An analysis of the categorical and numerical exogenous variables has been pro-
posed.

• Different architectures for multivariate time series with exogenous variables (cat-
egorical) have been proposed.

• Categorical information that influences parking system behaviour has been iden-
tified.

• Interpretability has been established for categorical information that conditions
parking systems.

• Scaled normalization has been shown to work better than standardized normaliza-
tion.

• Possible architectures have been proposed for NN methods to handle multivariate
time series with exogenous variables.

• LSTM models have proven to be superior at forecasting parking occupancy when
adding exogenous information to the problem.

• A subset of exogenous data has all the necessary information for improving the
models, while using all the exogenous variables can add noise to the training pro-
cess. This subset depends on the scenario. Therefore, it could be useful to research
NN methods that can discern the contribution of the variables.
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9 Conclusions

In this final chapter, we turn back to the main achievements of this dissertation and
present a summary of the primary results obtained. Following this, we discuss the main
research findings and, finally, formulate some recommendation for further research.

9.1 Results Discussion

In this work, different methods have been studied in order to characterize different het-
erogeneous parking systems (namely parking sectors). Specifically, we use sensor data to
capture the occupancy and vacancy of a parking space. Moreover, this characterization
has been used to produce models that predict hourly parking occupancy from one to six
hours following the current timestamp. The data and its realizations are described in
Chapter 2.
Statistical methods and visualizations have been used to perform the characterization of
the systems and provide a guideline for detecting the relevant aspects that can be learnt
from the data. Insights about this characterization can be found in Chapter 3.
For the modeling aspect, two families of methods have been proposed: ARIMA and NN.
For ARIMA, we used the SARIMA method while the NN methods focus on MLP, LSTM
and GRU. The results of and discussions on each method are provided in Chapters 6
and 7.
In order to improve the models, a study of exogenous data has been conducted by
inspecting its behaviour in relation to parking occupancy when using NN methods.
In this way, we provide a methodology for studying and incorporating such exogenous
information into a time series context for NN. Using this information, we formulated new
models for comparison against models without this kind of data. Detailed descriptions
and results are presented in Chapter 8, which characterizes parking systems according
to the effect of exogenous influences.
Next, a comparison of the obtained results is provided for the models that used the
endogenous variable (ARIMA, MLP, LSTM and GRU). For a subset of models from
the NN family, we further compare the endogenous models with those that also use
exogenous information.
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Experiment name RMSE (1 to 6 hours) Mean RMSE
ARIMA_antwerp_pelikaanstraat 0.1033 0.1360 0.1562 0.1737 0.1881 0.1994 0.1594

MLP_endogenous_antwerp_pelikaanstraat 0.110130 0.133542 0.150384 0.162346 0.172676 0.179238 0.153562
LSTM_endogenous_antwerp_pelikaanstraat 0.110668 0.137267 0.153259 0.165521 0.174594 0.181250 0.155625
GRU_endogenous_antwerp_pelikaanstraat 0.113561 0.135125 0.151318 0.165038 0.173547 0.182441 0.157462

ARIMA_antwerp_vanwesenbekestraat 0.0778 0.0997 0.1073 0.1110 0.1130 0.1146 0.1039
MLP_endogenous_antwerp_vanwesenbekestraat 0.095566 0.116724 0.125885 0.131969 0.133297 0.133658 0.124019
LSTM_endogenous_antwerp_vanwesenbekestraat 0.103780 0.126287 0.137642 0.141567 0.142330 0.144293 0.133610
GRU_endogenous_antwerp_vanwesenbekestraat 0.103207 0.124504 0.131194 0.137746 0.142796 0.132778 0.129447

ARIMA_antwerp_vanwesenbekestraat2 0.0824 0.1039 0.1130 0.1190 0.1221 0.1233 0.1106
MLP_endogenous_antwerp_vanwesenbekestraat2 0.101069 0.124634 0.135584 0.143275 0.146959 0.148462 0.134506
LSTM_endogenous_antwerp_vanwesenbekestraat2 0.093660 0.121632 0.137392 0.148286 0.154991 0.159997 0.137875
GRU_endogenous_antwerp_vanwesenbekestraat2 0.099607 0.120591 0.128654 0.138555 0.139059 0.141712 0.129501

ARIMA_antwerp_vanschoonhovestraat1 0.1042 0.1259 0.1367 0.1423 0.1459 0.1489 0.134
MLP_endogenous_antwerp_vanSchoonhovestraat1 0.123471 0.139036 0.148395 0.154933 0.158351 0.161390 0.149402
LSTM_endogenous_antwerp_vanSchoonhovestraat1 0.113743 0.132188 0.144037 0.145389 0.153726 0.155251 0.141533
GRU_endogenous_antwerp_vanschoonhovestraat1 0.119425 0.134792 0.141594 0.144979 0.146056 0.148689 0.139435

ARIMA_antwerp_vanschoonhovestraat2 0.1310 0.1727 0.1975 0.2109 0.2207 0.2271 0.1933
MLP_endogenous_antwerp_vanSchoonhovestraat2 0.157954 0.204540 0.235772 0.255512 0.268585 0.280565 0.237706
LSTM_endogenous_antwerp_vanSchoonhovestraat2 0.177184 0.214003 0.231087 0.237052 0.254416 0.258750 0.233800
GRU_endogenous_antwerp_vanschoonhovestraat2 0.163100 0.201986 0.229196 0.245610 0.258182 0.265528 0.229798

ARIMA_antwerp_vanschoonhovestraat3 0.1307 0.1540 0.1642 0.1710 0.1731 0.1738 0.1611
MLP_endogenous_antwerp_vanSchoonhovestraat3 0.13 0.156846 0.166445 0.173264 0.176913 0.177004 0.164277
LSTM_endogenous_antwerp_vanSchoonhovestraat3 0.138450 0.157465 0.166710 0.171605 0.175181 0.175716 0.164694
GRU_endogenous_antwerp_vanschoonhovestraat3 0.128000 0.15256 0.162955 0.167865 0.169857 0.171224 0.15943

Table 9.1: Candidate model RMSE scores in test set for the Antwerp scenario.

9.1.1 Endogenous results

Table 9.1 presents the obtained RMSE scores for each of the experiments performed
in the Antwerp scenario. In checking the mean RMSE values obtained in each experi-
ment, it is observable that, overall, there are no huge discrepancies between the models;
although in some cases ARIMA outperformed NN methods by some margins.
By inspecting the visualizations in Figure 9.1, we can more easily identify the various
models’ scores in the Antwerp sectors. For each of the sectors, the following can be
concluded:

• For Pelikaanstraat, NN methods performed very similarly while ARIMA provides
slightly better first-step forecasts, but the error increases more quickly at each
successive step than with the other methods.

• ARIMA models from the Van Wesenbekestraat sectors perform better than any of
the NN methods considered. This indicates that few parameters are enough for
modeling those sectors, because both ARIMA models have one AR parameter in
the regular part and one MA parameter in the seasonal part.

• In the Van Schoonhovestraat sectors, ARIMA performed slightly better for Zone
1 in the first steps, but GRU has slightly less error in the last forecasting step.
Although the characteristics of Zone 2 make it a random walk, ARIMA performs
slightly better than the others. On the other hand, GRU performs best for Zone
3 at all the time steps considered, while ARIMA is the second best.

RMSE scores for Barcelona experiments are presented in Table 9.2. At first glance, it
seems that ARIMA is the method with the lowest error.

578



9.1 Results Discussion Conclusions

Figure 9.1: Antwerp sector endogenous modelRMSE scores for each hour. MLP in
blue, LSTM in orange, GRU in green and ARIMA in red.

Experiment name RMSE (1 to 6 hours) Mean RMSE
ARIMA_barcelona_regular 0.0656 0.0929 0.1079 0.1157 0.1218 0.1277 0.1053

MLP_endogenous_barcelona_regular 0.092727 0.109607 0.119814 0.125462 0.130421 0.135289 0.119841
LSTM_endogenous_barcelona_regular 0.100250 0.113873 0.128788 0.146382 0.164747 0.175187 0.141719
GRU_endogenous_barcelona_regular 0.096280 0.114129 0.130481 0.142458 0.148959 0.158079 0.133832

Table 9.2: Candidate model RMSE scores in test set for the Barcelona scenario.
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Figure 9.2: Barcelona sector endogenous modelRMSE scores for each hour. MLP in
blue, LSTM in orange, GRU in green and ARIMA in red.

Experiment name RMSE (1 to 6 hours) Mean RMSE
ARIMA_wattens_inside 0.0501 0.0825 0.1060 0.1244 0.1368 0.1465 0.1077

MLP_endogenous_wattens_inside 0.056937 0.081595 0.101219 0.116856 0.127939 0.138484 0.107350
LSTM_endogenous_wattens_inside 0.063618 0.098741 0.126547 0.149175 0.162757 0.176160 0.134990
GRU_endogenous_wattens_inside 0.056622 0.079935 0.100578 0.116191 0.127633 0.139902 0.107230

ARIMA_wattens_outside 0.0587 0.0989 0.1248 0.1436 0.1561 0.1665 0.1248
MLP_endogenous_wattens_outside 0.167275 0.168808 0.160449 0.161442 0.173651 0.192762 0.173874
LSTM_endogenous_wattens_outside 0.095564 0.132638 0.162885 0.186857 0.191105 0.220024 0.169323
GRU_endogenous_wattens_outside 0.083591 0.116279 0.139536 0.156237 0.165543 0.174135 0.142176

Table 9.3: Candidate model RMSE scores in test set for the Wattens scenario.

The visualizations in Figure 9.2 allow observing that the ARIMA model provided the
lowest error forecasts at each of the time steps considered, but the MLP model error
increases more slowly than that of ARIMA at each forecasting step, resulting in both
methods having similar errors at the last time step. Both RNN methods started by
performing similarly, but GRU has lower error than LSTM at higher time steps.
The results for the experiments in Wattens are provided in Table 9.3 for each of the
models obtained. Although in the Inside sector all models performed similarly, ARIMA
is clearly the method with less error in the Outside sector.
Inspecting the visualizations in Figure 9.3, one could conclude that:

• In the Inside sector, all models have similar scores at the first forecasting step
(ARIMA the lowest), but MLP and GRU present the lowest RMSE values as the
time step increases.

• In the Outside sector, ARIMA performed better than the other methods, but its
error increases more quickly at each forecasting step than the error from GRU,
resulting in similar scores in the sixth forecasting step.

Table 9.4 presents the RMSE scores of the endogenous models from the Los Angeles
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9.1 Results Discussion Conclusions

Figure 9.3: Wattens sector endogenous modelRMSE scores for each hour. MLP in
blue, LSTM in orange, GRU in green and ARIMA in red.

experiments. After checking the mean RMSE, the models seem to perform similarly
(with some exceptions) and it is not clear which one scores better.
The visualizations shown in Figure 9.4 allow close inspection of the RMSE scores ob-
tained, by which we can say:

• For the Standard sector, ARIMA outperforms the other models at the three first
forecasting steps; but, from there, MLP starts to have a similar score. GRU
performs similarly to MLP, but slightly worse.

• In the Permit sector, ARIMA has a very low error for the first forecasting step, but
the error increases more quickly than the other methods for the successive time
steps. Anecdotally, LSTM achieved the lowest error at the last forecasting step,

Experiment name RMSE (1 to 6 hours) Mean RMSE
ARIMA_LA_standard 0.0396 0.0672 0.0849 0.0971 0.1064 0.1140 0.0849

MLP_endogenous_LA_Standard 0.083213 0.091379 0.096799 0.102012 0.105445 0.112373 0.099285
LSTM_endogenous_LA_Standard 0.157765 0.170322 0.187332 0.202759 0.221877 0.232236 0.198609
GRU_endogenous_LA_Standard 0.07801 0.09512 0.10619 0.11393 0.12064 0.12356 0.107401

ARIMA_LA_permit 0.0179 0.0259 0.0294 0.0322 0.0334 0.0344 0.0289
MLP_endogenous_LA_Permit 0.026132 0.027593 0.028446 0.029413 0.030845 0.032627 0.029377
LSTM_endogenous_LA_Permit 0.023564 0.026408 0.028256 0.030966 0.0344788 0.029721 0.030148
GRU_endogenous_LA_Permit 0.032748 0.029283 0.031485 0.033495 0.034186 0.037622 0.032948

ARIMA_LA_disabled 0.0387 0.0594 0.0734 0.0827 0.0893 0.0929 0.0727
MLP_endogenous_LA_Disabled 0.068539 0.070388 0.073355 0.076586 0.078879 0.079243 0.074189
LSTM_endogenous_LA_Disabled 0.055212 0.079277 0.087534 0.119898 0.143644 0.192689 0.126183
GRU_endogenous_LA_Disabled 0.0476 0.05673 0.06614 0.06944 0.07601 0.08876 0.06872

ARIMA_LA_zipcar 0.0643 0.0913 0.1056 0.1139 0.1212 0.1261 0.1037
MLP_endogenous_LA_ZipCar 0.065272 0.088367 0.099961 0.106587 0.111648 0.115079 0.099335
LSTM_endogenous_LA_ZipCar 0.065059 0.088938 0.101202 0.108231 0.1166095 0.119523 0.101638
GRU_endogenous_LA_ZipCar 0.07025 0.09021 0.10057 0.10946 0.11207 0.11485 0.10076

Table 9.4: Candidate model RMSE scores in test set for the Los Angeles scenario.
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Figure 9.4: Los Angeles sector endogenous modelRMSE scores for each hour. MLP in
blue, LSTM in orange, GRU in green and ARIMA in red.

due to reducing its error from step five by a great margin.
• In the ZipCar sector, which is considered a random walk, all models present similar

error curves in the forecasting steps, with ARIMA achieving the lowest error in all
the steps.

• In the Disabled sector, GRU outscores the other methods in the first five forecasting
steps, but MLP scores slightly lower at the sixth step.

Table 9.5 presents the RMSE scores for the endogenous experiments in Riyadh. Contrary
to what has been observed in previous scenarios, NN methods outperform ARIMA in
both of the sectors considered.
The visualizations shown in Figure 9.5 present a more detailed overview of the RMSE
scores obtained by the models from the Riyadh experiments. Observe that:

• In both scenarios, the ARIMA models have a similar score as the other methods,
but their errors increase more quickly than the other methods at successive time
steps. Another interesting point to note is that NN methods seem to have a more
linear increase in error when compared to ARIMA.

• For the Sector-1, NN methods perform similarly at all time steps.
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Experiment name RMSE (1 to 6 hours) Mean RMSE
ARIMA_riyadh_sector1 0.05216 0.0955 0.1289 0.1564 0.1793 0.1999 0.1354

MLP_endogenous_riyadh_sector1 0.047095 0.060557 0.073404 0.083346 0.093408 0.103209 0.079634
LSTM_endogenous_riyadh_sector1 0.051068 0.069476 0.080824 0.085531 0.093426 0.111499 0.084376
GRU_endogenous_riyadh_sector1 0.059842 0.076781 0.086742 0.092680 0.096025 0.106015 0.087838

ARIMA_riyadh_sector10 0.05 0.0851 0.1117 0.1318 0.1458 0.1553 0.1133
MLP_endogenous_riyadh_sector10 0.071116 0.081256 0.080439 0.086139 0.097126 0.096646 0.087643
LSTM_endogenous_riyadh_sector10 0.078077 0.090971 0.098520 0.108535 0.118905 0.128008 0.104397
GRU_endogenous_riyadh_sector10 0.063591 0.072662 0.081042 0.087759 0.091248 0.097092 0.083619

Table 9.5: Candidate model RMSE scores in test set for the Riyadh scenario.

Figure 9.5: Riyadh sector endogenous modelRMSE scores for each hour. MLP in blue,
LSTM in orange, GRU in green and ARIMA in red.

• In Sector-10, GRU and MLP perform similarly, while LSTM scores worse than
them but better than ARIMA after the second forecasting step.

In the comparison of ARIMA and NN methods using endogenous information, the fol-
lowing has been observed:

• In nearly all cases, ARIMA performed best at the first forecasting step, but it is
not always the method with the lowest error at the last forecasting step. This
indicates that the ARIMA error for successive predictions increases more quickly
than the NN methods, thus making the mean RMSE similar across all methods,
although the RMSE scores at each hour are very different. This is a consequence
of training the NN models to provide all the forecasting steps at once instead of
using a multi-step strategy.

• There is a relationship between model performance and sector characteristics.
ARIMA performed better than NN methods in small sectors (Van Schoonhoves-
traat Zone 2 and ZipCar), but NN methods performed better in sectors with a huge
amount of sensors (Riyadh sectors). Subtle dynamics are probably best captured
by models with a high number of parameters.
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Experiment name RMSE (1 to 6 hours) Mean RMSE

MLP_endogenous_antwerp_pelikaanstraat 0.110130 0.133542 0.150384 0.162346 0.172676 0.179238 0.153562

MLP_exogenous_antwerp_pelikaanstraat 0.116387 0.135267 0.147768 0.157503 0.164878 0.173999 0.150557

LSTM_endogenous_antwerp_pelikaanstraat 0.110668 0.137267 0.153259 0.165521 0.174594 0.181250 0.155625

LSTM_exogenous_antwerp_pelikaanstraat 0.112092 0.128344 0.135903 0.141196 0.145912 0.150256 0.136307

GRU_endogenous_antwerp_pelikaanstraat 0.113561 0.135125 0.151318 0.165038 0.173547 0.182441 0.157462

GRU_exogenous_antwerp_pelikaanstraat 0.114243 0.140703 0.143994 0.150458 0.158148 0.164877 0.14648

Table 9.6: Comparison between exogenous and endogenous candidate model RMSE
scores in test set for the Antwerp scenario.

Figure 9.6: RMSE errors from the endogenous and exogenous models for the Antwerp
scenario.

9.1.2 Exogenous results

About the exogenous experiments, Table 9.6 compares the NN methods using only the
endogenous variables with the models using the exogenous variables in the Antwerp
Pelikaanstraat scenario. The obtained results show that the exogenous variables have
the effect of improving the forecasts of the latter steps of the forecasting horizon, specially
for LSTM and GRU.
Figure 9.6 shows the obtained RMSE scores from the endogenous and exogenous models
for the scenario of Antwerp. The visualization shows more clearly that RNN methods
are the ones that improve more when using exogenous information, specifically LSTM
shows a great improvement when comparing to its endogenous conterpart.
Figure 9.7 shows the forecasts of the LSTM models for the test set of the sector Pe-
likaanstraat, as it is the method in which the lower RMSE has been obtained. The
forecasts of the exogenous model are closer to the real parking occupancy values than
the forecasts of the endogenous model. One can observe that on latter forecasting steps
(forecasting step three onward), the endogenous model forecasts are more close to the
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Figure 9.7: Antwerp Pelikaanstraat LSTM model forecasts comparison. Blue belongs
to the true parking occupancy, orange to the forecasts from the endogenous model
and green to the forecasts from the exogenous model.

mean value of the series, something that does not happens in the forecasts of the exoge-
nous model because the information obtained from the exogenous variables makes the
model to differentiate occupancy based on the hours of the day and in the days of the
week.
Table 9.7 presents the obtained RMSE values from the forecasts for the Wattens Outside
sector when using the endogenous and the exogenous models. The results show that all
the NN methods have improved when exogenous information is used in the Wattens
scenario. Specifically, MLP shows a great improvement across all the forecasting hours,
while LSTM and GRU show a great improvement from the forecasting step two onward.
Figure 9.8 shows the obtained RMSE scores for each of NN models trained with only the
endogenous variable and with the exogenous variables. Models trained with exogenous
variables present lower error from the forecasting step two onward when comparing with
their counterparts.
Figure 9.9 shows the time series forecasts of the models with lower RMSE for the sector
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Experiment name RMSE (1 to 6 hours) Mean RMSE

MLP_endogenous_wattens_outside 0.167275 0.168808 0.160449 0.161442 0.173651 0.192762 0.173874

MLP_exogenous_wattens_outside 0.086194 0.103884 0.115519 0.123145 0.126526 0.130674 0.11554

LSTM_endogenous_wattens_outside 0.095564 0.132638 0.162885 0.186857 0.191105 0.220024 0.169323

LSTM_exogenous_wattens_outside 0.099849 0.115229 0.125736 0.132120 0.135185 0.139255 0.125309

GRU_endogenous_wattens_outside 0.083591 0.116279 0.139536 0.156237 0.165543 0.174135 0.142176

GRU_exogenous_wattens_outside 0.099434 0.110648 0.117117 0.121229 0.123851 0.125638 0.116672

Table 9.7: Comparison between exogenous and endogenous candidate model RMSE
scores in test set for the Wattens scenario.

Figure 9.8: RMSE errors from the endogenous and exogenous models for the Wattens
scenario.
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Figure 9.9: Wattens Outside MLP model forecasts comparison. Blue belongs to the
true parking occupancy, orange to the forecasts from the endogenous model and green
to the forecasts from the exogenous model.

Outside in the Wattens scenario. The visualizations correspond to the models of the
MLP method but, must to be considered that GRU has also similar RMSE scores. The
endogenous and the exogenous MLP models present similar forecasts values but, the
ones from the latter are more aligned with the real parking occupancy in the latter fore-
casting steps. For May 1st (Labour day), both models forecast low parking occupancy
in the first forecasting steps but, at the latter forecasting steps, the endogenous model
forecasts a sudden increase, something that the exogenous model does not do until the
last forecasting step. Other dates of interest are the days 11 and 12 of May where the
occupancy is higher than the usual weekend but the forecasts from both models are
lower than the true occupancy.
Table 9.8 shows the obtained RMSE scores by the endogenous and the exogenous mod-
els for Standard sector in the scenario of Los Angeles. Only LSTM shows a great
improvement in the exogenous model when compared with respect to its endogenous
counterpart. MLP and GRU endogenous models present lower errors in all the forecast-
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Experiment name RMSE (1 to 6 hours) Mean RMSE

MLP_endogenous_LA_Standard 0.083213 0.091379 0.096799 0.102012 0.105445 0.112373 0.099285

MLP_exogenous_LA_Standard 0.133507 0.132600 0.135605 0.134806 0.138004 0.137220 0.135734

LSTM_endogenous_LA_Standard 0.157765 0.170322 0.187332 0.202759 0.221877 0.232236 0.198609

LSTM_exogenous_LA_Standard 0.099506 0.118512 0.121639 0.131558 0.132344 0.132003 0.123919

GRU_endogenous_LA_Standard 0.07801 0.09512 0.10619 0.11393 0.12064 0.12356 0.107401

GRU_exogenous_LA_Standard 0.103600 0.116677 0.125230 0.129723 0.131936 0.132077 0.124002

Table 9.8: Comparison between exogenous and endogenous candidate model RMSE
scores in test set for the Los Angeles scenario.

Figure 9.10: RMSE errors from the endogenous and exogenous models for the Los
Angeles scenario.

ing steps. Clearly in these cases, exogenous variables are adding noise to the training
process of the model.
The visualization in Figure 9.10 shows that the RMSE values obtained for the scenario
of Los Angeles have only improved in the case of the LSTM method. For the other
methods, the models with endogenous variables present lower scores. The cause of the
obtained results can reside in the change of distribution in the data.
Visualizations in Figure 9.11 present the forecasts of the MLP models for the Standard
sector in Los Angeles. In this case, the endogenous model has lower RMSE error and this
can be perceived in the visualization as the time series corresponding to the endogenous
forecasts (orange) has nearly perfect match for the weekends occupancy. Also, the
endogenous model forecasts for the weekdays are closer to the true occupancy comparing
with the forecasts from the exogenous model. It can be observed than in the latter
forecasting step, the exogenous model fails in order to provide good forecasts.
The endogenous and exogenous RMSE scores for the Sector-10 in the Riyadh scenario are
presented in Table 9.9. The obtained results show a great improvement in the LSTM and
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Figure 9.11: Los Angeles Standard MLP model forecasts comparison. Blue belongs to
the true parking occupancy, orange to the forecasts from the endogenous model and
green to the forecasts from the exogenous model.
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Experiment name RMSE (1 to 6 hours) Mean RMSE

MLP_endogenous_riyadh_sector10 0.071116 0.081256 0.080439 0.086139 0.097126 0.096646 0.087643

MLP_exogenous_riyadh_sector10 0.054872 0.068552 0.076159 0.080320 0.081744 0.081357 0.07451

LSTM_endogenous_riyadh_sector10 0.078077 0.090971 0.098520 0.108535 0.118905 0.128008 0.104397

LSTM_exogenous_riyadh_sector10 0.049109 0.049818 0.051592 0.052692 0.052850 0.052960 0.051538

GRU_endogenous_riyadh_sector10 0.063591 0.072662 0.081042 0.087759 0.091248 0.097092 0.083619

GRU_exogenous_riyadh_sector10 0.053634 0.057642 0.056152 0.059179 0.060058 0.061906 0.058238

Table 9.9: Comparison between exogenous and endogenous candidate model RMSE
scores in test set for the Riyadh scenario.

Figure 9.12: RMSE errors from the endogenous and exogenous models for the Riyadh
scenario.

GRU models when exogenous information is considered. MLP shows less improvements.
The visualization in Figure 9.12 can help to clearly analyze the evolution of the RMSE
on the endogenous and exogenous models. It shows that LSTM method is the one
that improves the most from the usage of the exogenous variables followed by the GRU
method. MLP also improved with respect to its endogenous counterpart.
Visualizations in Figure 9.13 present the forecasts of the LSTM models for the sector
Sector-10 in Riyadh scenario. Both, endogenous and exogenous models, provide very
accurate forecasts making hard to distinguish when the exogenous model forecasts are
better than those from the endogenous model. In the latter forecasting steps, the ex-
ogenous model provides forecasts closer to the true parking occupancy, specially in the
peaks and valleys of the time series. One can also observe that both models provide
forecasts that differ a little from the true parking occupancy in the days 4, 11 and 18 of
October, as those corresponds to Fridays (weekend).
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Figure 9.13: Riyadh Sector-10 LSTM model forecasts comparison. Blue belongs to the
true parking occupancy, orange to the forecasts from the endogenous model and green
to the forecasts from the exogenous model.
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9.1.3 Findings by sectors idiosyncrasies

Sectors unique characteristics provide interpretations about the realizations of the pro-
cesses studied and the obtained goodness-of-fit of the models. Moreover, their identifi-
cation can help when considering a transfer learning of knowledge between models.
Next, a summary on how the sectors idiosyncrasies have an effect on the models is
presented. The findings come from the experiments presented at Chapters 6 and 7.

9.1.3.1 Sector size

It has been observed that the total number of places in a sector has an effect on the
sector realizations. Those sectors with a high number of parking spots (Riyadh sectors
for example) are less affected by outliers in the realizations and the visualizations on
the run charts (the scatterplots with Time at the x-axis) are smooth and continuous.
This makes that the time patterns are easy to be recognized and that models trained on
these sites are the ones that achieved the lowest error.
On the other hand, those sectors with a low number of places (for example Van Schoonhoves-
traat Zone 2 and Willow Zipcar) have shown to be governed by random walk processes,
with run charts that are not smooth and continuous. Models trained in those sectors
presented higher error than the rest.
Mid-size sectors presented an RMSE around 15%.

9.1.3.2 Parking type and parking use

Two important aspects that go hand by hand and have a greatly influence in the be-
haviour of a parking process are the type of parking places that compose the sector
(restrictions to use them) and the reason that the user has in order to leave the car
in that specific zone. A very good example of this is the case of Los Angeles where
all sectors with the exception of the ZipCar sector present similar patterns in time and
that is because the zone is a park-and-ride area where people leaves the car and travels
to the work by using the metro. In this case the usage of the parking is the driving
force behind the parking occupancy realizations because all the sectors are of different
type: Standard are free parking places, Permit corresponds to rented parking places and
Disabled are places that can only be used by users with a disabled license. On the other
hand, the ZipCar sector has a very different behaviour when compared with the others
and the reason this is that these parking places are reserved for the rent-a-car company
ZipCar and the usage of the parking places has little in common with the standard usage
of the other parking sectors.
When there is a shared context between parking sectors and no restrictions (or few
places with restrictions) it is possible to observe that all the parking sectors in the area
behave very similar as observed in the Riyadh sectors. This enables the possibility to
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Methodology Number of neurons Number of layers Dropout % Recurrent dropout % Weights initializer Activation function Batch size Optimizer Learning rate range Clipping norms value

MLP 64 4 0.25 - Does not matter ReLu 256 RMSProp [10−4, 10−2] -

LSTM 128, 512 2 0.25 0. He normal Linear 64, 128 SGD + Momentum [10−3, 10−1] 0.6, 0.8

GRU 64 2 0.25 0. He normal Sigmoid 672 RMSProp [10−5, 10−2] 0.2

Table 9.10: Hyperparameters summary.

train a generic model for all the sectors in the area or if new sectors are aggregated to
the existing area new models could be created from the knowledge already learnt by the
existing models of the old sectors.
Another interesting scenario is the one of Antwerp where sectors belong to the downtown
of the city and they are restricted by pricing policies and time of use. In those sectors one
can find through exponential smoothing or by the visualizations obtained from seasonal
plots that at each hour of the day the average occupancy is more or less the same and
that the variance explains the effect of the restrictions.

9.1.4 NN hyperparameters

During the realization of this dissertation a computational and time effort has been made
in order to explore the hyperparameters space of different NN methodologies, namely
MLP, LSTM and GRU for parking time series forecasting. The obtained results are of
great interest for practitioners in the area as they can be used as guidelines in order
to create new models in such type of data by means of reducing the search space. The
reduction in the search space makes much more feasible the creation of new models
because the task of finding a good subset of values for the hyperparameters its one of
the most time-consuming steps of the modeling process with NN.
Table 9.10 presents the most common values for the considered hyperparameters that
have been found through the random search algorithm accordingly to the results pre-
sented in Chapter 7.
Based on the values of the hyperparameters we checked if there is a relationship between
those and the sectors characteristics. Evidences about that relationship can indicate that
it is possible to use the same model for those sectors or even transfer the knowledge from
the model trained in one sector in order to train a new model on a new sector based on
the common features between the two sites.
In order to do the comparisson, we have selected sectors that are very similar between
them, like in the Wattens scenario. Observing the values of the hyperparameters for
the models trained with data from the Wattens sectors shown in Table 7 it is posible
to notice that in the case of RNN, the Inside and Outside models seems to have very
similar hyperparameters.
For the sake of finding the elements that define the relationship between the hyper-
parameter values and the sectors characteristics, Table 9.12 shows the hyperparameter
values of the GRU models trained for similar sector sizes. Observe that the hyperparam-
eters values of the models are quite different between them. Similarly is shown in Table
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Experiment name Number of neurons Number of layers Dropout % Weights initializer Activation function Batch size Optimizer

MLP_endogenous_wattens_inside 128 2 0.25 He normal ReLu 256 RMSProp

MLP_endogenous_wattens_outside 256 5 0.5 He normal Sigmoid 256 RMSProp

LSTM_endogenous_wattens_inside 16 2 0.25 He normal Linear 256 SGD

LSTM_endogenous_wattens_outside 32 2 0 He normal Sigmoid 64 SGD

GRU_endogenous_wattens_inside 32 2 0.25 He normal Sigmoid 672 RMSProp

GRU_endogenous_wattens_outside 64 2 0.25 He normal Sigmoid 128 RMSProp

Table 9.11: Hyperparameters values from Wattens models.

Experiment name Places Number of neurons Number of layers Dropout % Weights initializer Activation function Batch size Optimizer

GRU_endogenous_antwerp_pelikaanstraat 35 32 1 0.25 He normal Sigmoid 672 RMSProp

GRU_endogenous_LA_Permit 31 8 2 0.25 He normal Linear 32 RMSProp

GRU_endogenous_antwerp_vanwesenbekestraat2 12 256 3 0.25 He normal Sigmoid 672 RMSProp

GRU_endogenous_barcelona_regular 11 256 2 0.25 Glorot normal Sigmoid 64 RMSProp

GRU_endogenous_antwerp_vanwesenbekestraat 10 16 2 0.25 He normal Linear 256 RMSProp

GRU_endogenous_antwerp_vanschoonhovestraat1 8 128 3 0.25 He normal ReLu 128 RMSProp

GRU_endogenous_antwerp_vanschoonhovestraat3 8 8 1 0 Glorot normal Linear 32 RMSProp

Table 9.12: Hyperparameters values related to sectors size.

9.13 where the models have been considered by their type and use like the Barcelona
Regular and the Wattens Outside sector that are private and belong to a company and
have similar number of places.
It is hard to discern if there is a relationship between hyperparameter values and sectors
characteristics because it is possible that the variance shown in the results for similar
sectors can have its source in the inherent stochasticity of the NN methodologies (ran-
dom initialization, multiple local optimas, etc.), this is reaffirmed when one checks the
obtained ARIMA candidate models and sees that sectors with similar characteristics
have similar hyperparameters as shown in Table 9.14 (although this can also be because
the simplicity of the hyperparameter space of the ARIMA methodology).

9.2 Main Contributions

The main contributions of this thesis are: exhaustive characterizations, studies, model-
ing and real time parking occupancy forecasts for on-street parking systems in fifteen
different scenarios (on-street parking sectors) with unique characteristics.
This section briefly summarizes other contributions presented in this thesis, by order of
their appearance in the document:

Experiment name Places Number of neurons Number of layers Dropout % Weights initializer Activation function Batch size Optimizer

GRU_endogenous_wattens_outside 18 2 0.25 0.25 He normal Sigmoid 128 RMSProp

GRU_endogenous_barcelona_regular 11 256 2 0.25 Glorot normal Linear 32 RMSProp

Table 9.13: Hyperparameters values by sector type.
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Experiment name ARIMA model

ARIMA_antwerp_pelikaanstraat SARIMA(0, 1, 2)(0, 1, 1)24

ARIMA_antwerp_vanwesenbekestraat SARIMA(1, 0, 0)(0, 1, 1)24

ARIMA_antwerp_vanwesenbekestraat2 SARIMA(1, 0, 0)(0, 1, 1)24

ARIMA_antwerp_vanschoonhovestraat1 ARIMA(1, 0, 0)

ARIMA_antwerp_vanschoonhovestraat2 ARIMA(1, 0, 0)

ARIMA_antwerp_vanschoonhovestraat3 ARIMA(1, 0, 0)

ARIMA_barcelona_regular SARIMA(2, 1, 2)(0, 1, 1)24

ARIMA_wattens_inside SARIMA(2, 1, 2)(0, 1, 1)24

ARIMA_wattents_outside SARIMA(2, 1, 2)(0, 1, 1)24

ARIMA_LA_standard SARIMA(1, 1, 2)(0, 1, 2)24

ARIMA_LA_permit SARIMA(1, 1, 1)(0, 1, 1)24

ARIMA_LA_disabled SARIMA(0, 1, 1)(0, 1, 1)24

ARIMA_LA_zipcar SARIMA(0, 1, 0)(0, 1, 1)24

ARIMA_riyadh_sector1 SARIMA(1, 1, 1)(0, 1, 2)24

ARIMA_riyadh_sector10 SARIMA(0, 1, 1)(1, 1, 1)24

Table 9.14: ARIMA models hyperparameters.

• Guidelines for analyzing parking time series by means of statistical methods and
visualizations. Moreover, this methodology can also be applied to other data that
consist of time series realizations of hourly frequency processes.

• A characterization of different and heterogeneous parking systems according to re-
alizations of parking occupancy over time. This characterization will be profitable
for future works that take into account information and clues about modeling these
systems.

• The usage of the Box Jenkins methodology for creating ARIMA models through
the characterization of parking data, namely time series. By providing insights
into the strong and weak points of applying this methodology for the problem at
hand, this work can help create services using this technology.

• The modeling of parking systems using different NN methods, namely MLP, LSTM
and GRU. This study provides insights into how to organize the data and which
are the best ranges of hyperparameters, as well as into how these hyperparameters
are related to the heterogeneous characteristics of the parking systems. This in-
formation can be of great interest for future research on the topic. Moreover, the
information provided can help create services using this technology.

• Exogenous variables, which are information that is external to the parking systems,
have been studied under an NN framework in order to extract and interpret their
influence on parking. Moreover, guidelines have been provided on how to integrate
such data into NN models. We have quantified the errors of NN models with and
without exogenous variables and provided insights into the effects of the exogenous
variables.
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• An exhaustive comparison of the obtained models that highlights the strong and
weak points of each method and how they can be improved by further research.

• NN models for time series data using new methods and strategies for NN, which
have been developed from 2012 to 2020. At the moment of writing this thesis,
the area of NN research focuses mainly on computer vision problems and natural
language processing. This work studies the proposals and advancements made in
those domains while adapting them to the context of time series.

• Part of the data used in this work is publicly available under an open access
license (Creative Commons Attribution 4.0 International) so that it can be used
as a benchmark for parking occupancy forecasting. The data corresponds to the
cities of Antwerp, Barcelona and Wattens. This data consists of the raw sensor
readings, occupation by hour, weather, dates, auxiliary plots, and documentation
on the data realizations. All of these formed a part of the data analysis performed
in this thesis, which was developed in the context of the European H2020 project
FastPrk-2: Enhanced On-Street Parking Management. The data can be found in
the following references Hernandez-Ramirez [2018a,b,c].

From the listed contributions, we want to highlight the originality of this dissertation
by means of:

1. Methods:
a) An step-by-step data analysis on time series data that offers interpretability

and information from the observations. This permits to identify key points
for modeling such data.

b) An step-by-step description on how to model time series data using NN of any
type. Specifically, this thesis provides information about how to preprocess
the data, how to divide the train-validation-test sets, advices on how to obtain
good candidates values for the hyperparameters of the model, visualizations
on the data and how to interpret them in order to solve and/or avoid typical
problems that can occur in such models.

c) Analysis of exogenous variables and its effect by means of using NN techniques
like an study of the formed embeddings or the outputs of the models when
the endogenous variable is conditioned to each one of the exogenous variables.

2. Findings:
a) Identification of variables that affect the behaviour of parking systems and

that can help in the decision making when dealing with them. These variables
are parking usage restrictions (end user, pay per use, park-n-ride, etc.), socio-
cultural factors, surroundings (the influence of nearly parking sites and points
of interest) and the total number of places.

b) Parking sectors are highly dependent on the number of parking spots that
make it up. Found that those parking sectors with low numer of parking
places behave like a random walk process but more regular patterns arise as
the number of parking places increases.
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c) Mathematically and visible evidences that the recent realizations are the most
influential ones in a parking system and that a daily seasonality is present
in the process, ensuring the property of weakly stationarity (mean and vari-
ance are independent of time). This permits to model such systems with
interpretable models like ARIMA or with more complex models like NN.

d) Dense populated areas of sensors divided in neighbourhoods present very
similar realizations (with an undetermined ε that may be reduced to random
noise but this needs to be further investigated) between them and with the
area not divided if all the area shares the same values for the variables stated
at point a). This has been observed in the Riyadh scenario and can be useful
as an assumption in order to simulate parking behaviours in cities.

e) Identified that for a high number of parking systems the searching space of
the hyperparameters can be reduced, helping practitioners by reducing the
computational needs.

f) Based on the NN method used, some key hyperparameters like the optimizers
have very different behaviours when traversing through the searching space
looking for optimal optimal values in a time series context. This thesis has
identified which optimizers works better with which NN method and can be
used with similar time series.

g) GRU models performs better in the endogenous setting but as the complexity
grows (increased the space of the data through the exogenous variables) the
LSTM models has been shown to be the best candidates.

h) Exogenous variables such as weather and calendar provide useful information
to the modeling. Specifically, because parking systems are highly dependent
on human daily behaviour, a change on them is reflected as a change on the
parking processes. But, some of the information can be redundant and add
noise to the modeling process so of all the variables considered only a subset
of them are relevant in order to provide better forecasts than the one pro-
vided by models that only make use of the endogenous variable. As calendar
information directly affects human daily behaviour by providing information
about if it is working day or not, so variables of interest are day of the week,
holiday and month. On the side of the weather variables, those with a di-
rect effect in human daily behaviour are related to the precipitation type,
accumulation and intensity. Bear in mind that these subsets of variables are
dependent of the region of the world where the parking sites are located.

3. Innovations:
a) Discern the similarity of parking time series from the same area by means of

clustering techniques. Providing a way to summarize the process of the whole
area by just using the realization of a subset of the time series that are part
of the process. As we know, this method is new in the area of research.
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b) How embeddings formed by categorical exogenous variables in a NN reflect
aspects of the process modeled and can help in deciding which exogenous
variables are useful and also interpret their effect. Although the study of
the embeddings has been studied in NLP, as far as we know, there are no
studies about the embeddings formed by categorical exogenous variables in
the context of time series.

c) How to discern visually the impact of continuous exogenous variables to the
endogenous variable by means of using NN. This makes possible to identify
which continuous exogenous variables contribute the most in the model. We
found no prior usage of NN methods in order to assess the influence of exoge-
nous variables in the context of time series.

d) Proposed NN architectures that can handle exogenous variables for the MLP
and RNN cases.

Aside from these main contributions, we will answer the research questions presented in
Chapter 1.

• Forecasting the availability of parking places is not a new problem in the litera-
ture. Over the past 20 years, efforts have been made to provide solutions, although
without much progress due to the lack of data. However, because we currently
have real-time parking status made available by advances in IoT and increasing
computational capacity, we can train machine learning models that are capable of
learning and identifying complex patterns in the data. Considering these advan-
tages, is it now possible to provide a better solution to the problem of forecasting
parking availability?
Due to technological constraints, works prior to 2014 could measure parking in-
formation only by making use of off-street parking data and data coming from
pay-per-parking places in the city. The arrival of better technology for sensors
made it possible to collect parking data through platforms of sensors. One of the
first works that took advantage of these new sources of on-street parking system
data is Vlahogianni et al. [2016], who used well-known NN architectures like MLP
and Time Delay NN (a modification of the MLP, in which temporal delays of the
data are manually fine-tuned). One-and-a-half years later, no new research has
emerged on this topic; so the present work begins from there by applying ARIMA,
MLP and RNN architectures in order to study, characterize and model parking
systems.
The results show that it is possible to achieve low-error models that learn recur-
rent parking patterns and whose forecasts can be used to provide different services
while also improving parking system management.
It is difficult to quantify whether the results presented here are better than the
results from other works, as parking data is still owned by a few private companies
and the data is usually not shared with the research community.
Thus, the answer to the question is that this work provided models with low error
rates in their parking occupancy forecasts, but it is not possible to quantify by
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how much the proposed methods are better than those of other proposals in the
literature, as the problem is bound to the parking systems from which the data
comes, and this data is usually not available.

• Creating models is affordable using two different but related disciplines: classical
statistical methods and machine learning. Both try to solve the same problems
with different philosophies. Specifically, both provide algorithms that enable models
to forecast time-dependent data. Which approach would be the most suitable in
fulfilling our requirements?
This work provides results from both of the mentioned disciplines: ARIMA as a
classical statistical family of methods and NN as a machine learning approach. The
results from the models show that both methods have fulfilled the requirements of
providing forecasting models with low error rates and at different time steps (from
one to six hours). The differences between the methods make it evident that
the forecast quality of their models depends on the characteristics of the parking
system being modeled.
In the results presented here, both methods have proven to be good candidates for
the problem. Specifically, ARIMA has proven to be superior to NN in short-term
forecasts and with parking systems of low size. In addition, the ARIMA modeling
allows obtaining interpretability and estimation of the uncertainty in the forecasts.
On the other hand, NN models are best suited when a huge amount of data is used
or for easily including exogenous information that could have an impact on the
forecasts. This exogenous information could be easily integrated into the model
as time series or as independent input variables. In addition, NN methods have
demonstrated less increase in error as the forecasted time step increases. Therefore,
they would be of interest for dealing with data at a lower frequency (for example,
forecasting minute-by-minute frequency data for one hour to obtain 60 different
forecasts).

• Intuition leads us to question whether sensor data is enough for inferring patterns
that govern a parking system. Thus, it is natural to consider other data sources.
What other sources can be exploited to improve parking forecasts and what effect
do they have?
Exogenous data from weather and calendar sources have been considered, as park-
ing/traffic behaviours clearly change according to such information. The results
with exogenous variables have shown that they have an effect on the parking sys-
tems, providing an improvement in nearly all cases over the models that used only
the endogenous information.

• Models are trained with historical data, but a new installation in a new system
(city) lacks this fundamental prerequisite. In order to use the forecast service for
new installations, the proposed algorithm must provide models with some sort of
transfer learning in order to share knowledge of patterns between models in similar
situations. Is this feasible?
From the observations presented in this work, the data realizations of parking
systems depend on a wide variety of factors pertaining to the parking places’
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characteristics (users, time usage constraints, numbers of places, etc.), to their
location (near the town hall, leisure spots, points of interest, industrial zones,
etc.), and to cultural behaviours in the parking system’s country. Although some
patterns are common to all parking systems, all of these factors lead to huge
variability and make it impossible to transfer knowledge from trained models to
new ones. Thus, it would be better to train the models from scratch. Despite that,
this work provides enough information to create new models that will provide good
forecasts without any need to explore different architectures and hyperparameter
combinations when using the methods presented here.

• Which of the current NN methods is more suitable for handling data with temporal
dependencies?
Although previous works have used NN methods for time series problems, modern
techniques and strategies focus mainly on two areas of research, namely computer
vision and natural language tasks. Natural language problems are usually handled
by RNN methods, as these allow working with sequences of varying sizes in order
to learn language patterns. The starting point of this work has taken a similar
approach to those of the natural language domain, because the natural order of
time series elements is of great importance, just as it is in language sequences.
Based on this, the work presented here has explored two of the most common
RNN architectures: LSTM and GRU. Although GRU is a modification of LSTM,
we have found that it provides better results than LSTM and slightly better results
than an MLP architecture, in which the order of time is not taken into account.

9.3 Future Research

Although much has been accomplished by this work, it is just a starting point for this
area of research on the study of parking systems. Moreover, this work contributes to a
further expansion of using NN methods in the time series domain. In this section, we
discuss the directions for future research that will naturally follow the research described
in this thesis.

• It has been shown that, apart from time dependencies, some of the parking systems
studied have location dependencies (for example, in the Riyadh sectors). It would
be of interest to characterize and model how the occupation patterns are correlated
between sectors and their distances.

• As stated previously, some of the parking systems studied have spatial dependen-
cies. We propose three ways for future research in order to exploit such dependen-
cies:
1. Adapt the NN models presented in this work by using as exogenous vari-

ables the actual and past data realizations of nearby sectors where significant
correlations has been detected through cross-correlation.
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2. Vector-valued and multidimensional series. A generalization of “classical”
time series approach like ARIMA where a vector of mean value functions and
a matrix of correlations (diagonal values are autocorrelations and the others
are cross-correlations) are estimated from a collection of time series related
to a stochastic process of interest. This framework makes posible then to use
vector auto-regressive models or kriging models (Gaussian process regression).

3. Model the parking systems as a graph and use Graph Neural Networks (GNN)
Veličković et al. [2018] in order to forecast the evolution of the graph in time
by taking into account the dynamics that happen between the nodes and
vertices.

• This work used MLP and RNN to provide forecasts, but the problem of long-term
dependency is far from being solved and has an active area of research where new
methods are constantly proposed. Recently there have been two new approaches
that offer promising results, namely convolutional neural networks van den Oord
et al. [2016] and attention models Vaswani et al.. In particular, attention models
have become the state of the art in the NLP research area through the Transformer
model. This model has been designed in order to handle sequences but it can be
extended in order to be used with time series data by exploiting the properties
of such type of data. These new approaches can improve the presented work by
means of the need of less computational resources, better handle of the long term
dependencies or added interpretability to the models.

• This work used ARIMA and NN methods in order to modelize time series data
from different parking systems but, as exposed in Chapter 4, there exists other
methodologies for time series with a well-established theoretical background that
can provide new insights or be more appropiate when facing specific scenarios. We
consider that state space models (Kalman filter, particle filter, etc) can enhance
further the parking forecasting research area.

• Parking has an impact on traffic (and vice versa) and this has not been explored in
this thesis; so, in addition to improving models for parking occupancy forecasting,
characterizing the relationship between the two processes could also help improve
models that study and forecast traffic speed, density or flow in urban areas.

• Parking data comes from sensors that can be subject to noise and provide missing
data or data with errors. Detecting, quantifying and correcting these could be the
next step in incentivizing the usage of such technology.

• As stated previously, the limitation to the usage of data coming from sensor net-
works in specific areas makes that the used data comes from very limited and
closed systems that are far to represent the global dynamics that happens in the
parking processes of a whole city. The study of parking data from other sources
like GPS, vanets or connected cars can extend this work and also be extended by
taking inspiration by the ideas presented here.

• Low error rates from sensor realizations and from model forecasts make it possible
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to use operational research techniques to optimize security and the pay-per-parking
routes of guards.

• It has been shown that different parking sites have common properties that can be
exploited in order to transfer the learnt knowledge from a trained model in a sector
with a good amount of historical data to create new models for new sectors with
very little historical data. Specification and experimentation about the findings
provided in this work related to transfer learning can be of great interest for the
parking forecasting area of research.

• It has been observed that the behaviour of the occupancy at parking sectors is
mainly influenced by the unique characteristics of each one of them but it is hard
to discern the contribution of each characteristic to the process. It would be
of great interest to quantify the effect of these characteristics in the time series
realizations of different parking sectors.

• A methodology about how to detect the influence of the exogenous variables into
the endogenous variables by means of non-linear estimators (NN) have been pre-
sented in Chapter 8. Although it has been useful in order to discern which ex-
ogenous variables have an influence on the parking processes, it does not provide
measurables quantifications about the influence and so, as future research, it would
be very interesting to extend this methodology in order to provide quantifications
(sign and magnitude) of the influence of the exogenous variables onto the endoge-
nous variable.

9.4 Related Publications, Presentations, Teaching
Activities and Projects

In this final section we enumerate the activities developed in relation to this thesis, all
of which were carried out during the same period of time (2017–2020).

Publications

• Arjona, J., Linares, M.P., Casanovas, J., Vázquez, J.J. (2020). "Improving Park-
ing Availability Information Using Deep Learning Techniques". Transportation
Research Procedia, 47, 385-392. Elsevier.
https://doi.org/10.1016/j.trpro.2020.03.113

• Arjona, J., M.P. Linares, Casanovas, J. (2019). "A deep learning approach to real-
time parking availability prediction for smart cities". DATA ’19: Proceedings of
the Second International Conference on Data Science, E-Learning and Information
Systems. Dubai. December 2019, Article No.: 16, pp 1–7.
https://doi.org/10.1145/3368691.3368707
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• Vázquez, J.J., Arjona, J., Linares, M.P., Casanovas, J. (2020). "A Comparison of
Deep Learning Methods for Urban Traffic Forecasting using Floating Car Data".
Transportation Research Procedia, 47, 195-202. Elsevier.
https://doi.org/10.1016/j.trpro.2020.03.079

Submitted publications

• Arjona, J., Linares, M.P., Casanovas , J. "A Neural Network Approach to Long-
Term Parking Availability Forecast Using Real-Time Sensor Data, Weather Con-
ditions and Calendar Effect" to the Journal of Advanced Transportation (October
2019).

• Arjona, J., Linares, M.P., Casanovas , J. "Characterizing parking systems from
sensor data through a data-driven approach" submitted to the Transportation
Letters journal (March 2020).

• Arjona, J., Linares, M.P., Casanovas , J. "A data-driven approach to model park-
ing systems from real-time sensor data, calendar effects and weather conditions"
submitted to the Transportation Research Part C journal (April 2020).

Presentations at International Conferences

• Arjona, J., Linares, M.P., Casanovas, J., Vázquez, J.J. (2019). "Improving Park-
ing Availability Information Using Deep Learning Techniques". The 22nd Euro
Working Group on Transportation Meeting, September 2019, Barcelona.

• Arjona, J., Linares, M.P., Casanovas, J. (2019). "A deep learning approach to
real-time parking availability prediction for smart cities". DATA ’19: Second In-
ternational Conference on Data Science, E-Learning and Information Systems.
December 2019, Dubai.

• Arjona, J., M.P. Linares, Casanovas, J. (2019). "Improving Parking Availabil-
ity Information Using Deep Learning Techniques". Poster presentation at Deep
Learning Barcelona 2019. December, 19–20th, 2019, Barcelona.

• Vázquez, J.J., Arjona, J., Linares, M.P., Casanovas, J. (2019). "A Compari-
son of Deep Learning Methods for Urban Traffic Forecasting using Floating Car
Data". The 22nd Euro Working Group on Transportation Meeting, September
2019, Barcelona.

• Gardella, R., Arjona, J., Linares, M.P., Casanovas, J. (2020). "A Simulation-based
Evaluation of Travel Time Prediction Algorithms on Freeways using Floating Car
Data". Accepted for presentation in the 23rd Euro Working Group on Transporta-
tion Meeting, September 2020, Chipre.
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Teaching activities

• Meet-upc: “Data science for smarter cities”. PyLadies Bcn Meet-up June, 14th,
2018, Barcelona.

• Seminar: "Data analytics in societal challenges modeling: smart mobility and
other related fields" in the PATC: Big Data Analytics course in the Barcelona
Supercomputing Center, February, 6th, 2020, Barcelona.

• Master course: "Ambit intelligence", Master’s degree in Automatic Systems and In-
dustrial Electronics Engineering, Universitat Politècnica de Catalunya, February–
June 2020, Barcelona.

• Supervision of three master’s theses:
– “Traffic forecasting in smart cities”. (2019). Vázquez, J.J.

http://hdl.handle.net/2117/131604
– “Travel time forecasting using probe vehicle data on freeways”. (2019). Gardella,

R. http://hdl.handle.net/2117/170076
– (in process) “Modelling and forecasting bus passenger occupancy using data-

driven methods”. (2021). Recio, G.

Competitive European Projects

• FastPrk-2: Enhanced On-Street Parking Management (2016-2018). Call: H2020-
SMEINST-2-2016-2017. Topic: SMEInst-10-2016-2017 - Small business innovation
research for Transport and Smart Cities Mobility. Developed task: Artificial In-
telligence algorithms for automatic recommendation and predictive applications of
on-street parking.

• BIG IoT - Bridging the Interoperability Gap of the Internet of Things (2016-2019).
Call: H2020-ICT-2015. Topic: ICT-30-2015 Internet of Things and Platforms for
Connected Smart Objects. Developed task: Enforcement service for parking spots
in Barcelona pilot area.

604



Bibliography

Mohamed S Ahmed. Analysis of Freeway Traffic Time-Series Data by Using Box-
Jenkins Techniques. Transportation Research Board, (722):1–9, 1979. URL http:
//onlinepubs.trb.org/Onlinepubs/trr/1979/722/722-001.pdf.

Ding AiLing, Zhao XiangMo, and Jiao LiCheng. Traffic flow time series prediction
based on statistics learning theory. IEEE 5th International Conference on Intelligent
Transportation Systems. Proceedings, 3-6 Sept. 2002, (60073053):727–730, 2002. doi:
10.1109/itsc.2002.1041308. URL http://dx.doi.org/10.1109/ITSC.2002.1041308.

Constantinos Antoniou, Moshe Ben-akiva, and Haris N Koutsopoulos. Kalman Filter
Applications for Traffic Management. Intech, (May), 2010.

Constantinos Antoniou, Jaume Barceló, Martijn Breen, Manuel Bullejos, Jordi Casas,
Ernesto Cipriani, Biagio Ciuffo, Tamara Djukic, Serge Hoogendoorn, and Vittorio
Marzano. Towards a generic benchmarking platform for origin/destination flows esti-
mation / updating algorithms : Design , demonstration and validation. Transportation
Research Part C, 66:79–98, 2016. ISSN 0968-090X. doi: 10.1016/j.trc.2015.08.009.
URL http://dx.doi.org/10.1016/j.trc.2015.08.009.

Luigi Atzori, Antonio Iera, Giacomo Morabito, and A Diee. The Internet of Things:
A survey. Computer Networks xxx, 2010. doi: 10.1016/j.comnet.2010.05.010. URL
https://www.cs.mun.ca/courses/cs6910/IoT-Survey-Atzori-2010.pdf.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer Normalization. jul
2016. URL http://arxiv.org/abs/1607.06450.

Claudio Badii, Paolo Nesi, and Irene Paoli. Predicting Available Parking Slots on Critical
and Regular Services by Exploiting a Range of Open Data. IEEE Access, 6:44059–
44071, 2018. ISSN 2169-3536. doi: 10.1109/ACCESS.2018.2864157. URL https:
//ieeexplore.ieee.org/document/8430514/.

Baher Abdulhai, Himanshu Porwal, and Will Recker. Short Term Freeway Traffic Flow
Prediction Using Genetically-Optimized Time-Delay-Based Neural Networks. (iv),
1998.

James Bergstra and Yoshua Bengio. Random Search for Hyper-Parameter Optimiza-
tion Yoshua Bengio. Journal of Machine Learning Research, 13:281–305, 2012.
doi: 10.1.1.306.4385. URL http://www.jmlr.org/papers/volume13/bergstra12a/
bergstra12a.pdf.

Christopher M Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

605

http://onlinepubs.trb.org/Onlinepubs/trr/1979/722/722-001.pdf
http://onlinepubs.trb.org/Onlinepubs/trr/1979/722/722-001.pdf
http://dx.doi.org/10.1109/ITSC.2002.1041308
http://dx.doi.org/10.1016/j.trc.2015.08.009
https://www.cs.mun.ca/courses/cs6910/IoT-Survey-Atzori-2010.pdf
http://arxiv.org/abs/1607.06450
https://ieeexplore.ieee.org/document/8430514/
https://ieeexplore.ieee.org/document/8430514/
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf


Bibliography Bibliography

Phil Blythe, Yanjie Ji, Weihong Guo, Wei Wang, and Dounan Tang. Short-term fore-
casting of available parking space using wavelet neural network model. IET In-
telligent Transport Systems, 9(2):202–209, 2015. ISSN 1751-956X. doi: 10.1049/
iet-its.2013.0184. URL http://digital-library.theiet.org/content/journals/
10.1049/iet-its.2013.0184.

G. E. Box and D. R. Cox. An analysis of transformations revisited, rebutted. Journal
of the American Statistical Association, 77(377):209–210, 1982. ISSN 1537274X. doi:
10.1080/01621459.1982.10477788.

G E P Box, G M Jenkins, and G C Reinsel. Time Series Analysis: Forecasting and
Control. 1976. ISBN 8131716333. doi: 10.1016/j.ijforecast.2004.02.001.

Leo Breiman. Bagging Predictors. Technical report, 1994.
Leo Breiman. Statistical Modeling: The Two Cultures. Technical Report 3, 2001. URL

http://www.recognition.su/wiki/images/8/85/Breiman01stat-ml.pdf.
Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann Lecun. Spectral Networks

and Deep Locally Connected Networks on Graphs. In ICLR2014, 2013. URL https:
//arxiv.org/pdf/1312.6203.pdf.

Felix Caicedo, Carola Blazquez, and Pablo Miranda. Prediction of parking space
availability in real time. Expert Systems With Applications, 39:7281–7290, 2012.
doi: 10.1016/j.eswa.2012.01.091. URL https://www.sciencedirect.com/science/
article/pii/S0957417412001042.

Murat Caliskan, Andreas Barthels, Bjorn Scheuermann, and Martin Mauve. Pre-
dicting Parking Lot Occupancy in Vehicular Ad Hoc Networks. 2007 IEEE 65th
Vehicular Technology Conference - VTC2007-Spring, pages 277–281, 2007. ISSN
1550-2252. doi: 10.1109/VETECS.2007.69. URL http://ieeexplore.ieee.org/
document/4212497/.

Enrique Castillo, José María Menéndez, and Santos Sánchez-Cambronero. Predicting
traffic flow using Bayesian networks. Transportation Research Part B: Methodological,
42(5):482–509, 2008. ISSN 01912615. doi: 10.1016/j.trb.2007.10.003.

Hao a Chen and Hesham A. a Rakha. Real-time travel time prediction using par-
ticle filtering with a non-explicit state-transition model. Transportation Research
Part C: Emerging Technologies, 43:112–126, 2014. ISSN 0968090X. doi: 10.1016/
j.trc.2014.02.008. URL http://www.sciencedirect.com/science/article/pii/
S0968090X14000400.

Zhirong Chen, Jianhong Cecilia Xia, and Buntoro Irawan. Development of fuzzy logic
forecast models for location-based parking finding services. Mathematical Problems in
Engineering, 2013. ISSN 1024123X. doi: 10.1155/2013/473471.

Xingyi Cheng, Ruiqing Zhang, Jie Zhou, and Wei Xu. DeepTransport: Learning Spatial-
Temporal Dependeny for Traffic Condition Forecasting. In 2018 International Joint
Conference on Neural Networks, page 17, 2018. URL https://arxiv.org/pdf/1709.
09585.pdf.

606

http://digital-library.theiet.org/content/journals/10.1049/iet-its.2013.0184
http://digital-library.theiet.org/content/journals/10.1049/iet-its.2013.0184
http://www.recognition.su/wiki/images/8/85/Breiman01stat-ml.pdf
https://arxiv.org/pdf/1312.6203.pdf
https://arxiv.org/pdf/1312.6203.pdf
https://www.sciencedirect.com/science/article/pii/S0957417412001042
https://www.sciencedirect.com/science/article/pii/S0957417412001042
http://ieeexplore.ieee.org/document/4212497/
http://ieeexplore.ieee.org/document/4212497/
http://www.sciencedirect.com/science/article/pii/S0968090X14000400
http://www.sciencedirect.com/science/article/pii/S0968090X14000400
https://arxiv.org/pdf/1709.09585.pdf
https://arxiv.org/pdf/1709.09585.pdf


Bibliography Bibliography

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. On the
Properties of Neural Machine Translation: Encoder-Decoder Approaches. In Proceed-
ings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical
Translation, pages 103–111, 2014. ISBN 9781937284961. doi: 10.3115/v1/W14-4012.
URL http://arxiv.org/abs/1409.1259.

Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and Yann
Lecun. The Loss Surfaces of Multilayer Networks. In Proceedings of Machine Learning
Research 38, volume 38, pages 192–204. Microtome Publishing, 2015. URL http:
//proceedings.mlr.press/v38/choromanska15.html.

Zhiyong Cui, Kristian Henrickson, Ruimin Ke, and Yinhai Wang. Traf-
fic Graph Convolutional Recurrent Neural Network: A Deep Learning
Framework for Network-Scale Traffic Learning and Forecasting. 2018.
URL https://arxiv.org/ftp/arxiv/papers/1802/1802.07007.pdfhttps:
//github.com/zhiyongc/Graph{_}Convolutional{_}LSTM.

Justin Dauwels, Aamer Aslam, Muhammad Tayyab Asif, Xinyue Zhao, Nikola Mitro Vie,
Andrzej Cichocki, and Patrick Jaillet. Predicting traffic speed in urban transportation
subnetworks for multiple horizons. 2014 13th International Conference on Control
Automation Robotics and Vision, ICARCV 2014, pages 547–552, 2014. doi: 10.1109/
ICARCV.2014.7064363.

Alysha M. de Livera, Rob J. Hyndman, and Ralph D. Snyder. Forecasting time series
with complex seasonal patterns using exponential smoothing. Journal of the American
Statistical Association, 106(496):1513–1527, 2011. ISSN 01621459. doi: 10.1198/jasa.
2011.tm09771.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolu-
tional Neural Networks on Graphs with Fast Localized Spectral Filter-
ing. In Advances in Neural Information Processing Systems 29 (2016),
page 9, 2016. URL https://github.com/mdeff/cnn{_}graphhttps://github.com/
xbresson/spectral{_}graph{_}convnets.

El Periodico. El 17\% del tráfico de Barcelona son coches en busca de aparcamiento,
2012. URL https://www.elperiodico.com/es/barcelona/20121228/
el-17-del-trafico-de-barcelona-son-coches-en-busca-de-aparcamiento.

Jeffrey L. Elman. Finding structure in time. Cognitive Science, 14(2):179–211, 1990.
ISSN 03640213. doi: 10.1016/0364-0213(90)90002-E.

Eurostat. Energy, transport and environment indicators. 2018 edition. 2018. ISBN
978-92-79-96509-8. doi: 10.2785/94549. URL htttp://dx.doi.org/10.2785/94549.

Petr Fedchenkov, Theodoros Anagnostopoulos, Arkady Zaslavsky, Klimis Ntalianis, Inna
Sosunova, and Oleg Sadov. An Artificial Intelligence Based Forecasting in Smart
Parking with IoT. In Internet of Things, Smart Spaces, and Next Generation Networks
and Systems, number November, chapter ruSMART: N, pages 33–40. Sant Petersburg,
2018. ISBN 9783030011680. doi: 10.1007/978-3-030-01168-0_65.

607

http://arxiv.org/abs/1409.1259
http://proceedings.mlr.press/v38/choromanska15.html
http://proceedings.mlr.press/v38/choromanska15.html
https://arxiv.org/ftp/arxiv/papers/1802/1802.07007.pdf https://github.com/zhiyongc/Graph{_}Convolutional{_}LSTM
https://arxiv.org/ftp/arxiv/papers/1802/1802.07007.pdf https://github.com/zhiyongc/Graph{_}Convolutional{_}LSTM
https://github.com/mdeff/cnn{_}graph https://github.com/xbresson/spectral{_}graph{_}convnets
https://github.com/mdeff/cnn{_}graph https://github.com/xbresson/spectral{_}graph{_}convnets
https://www.elperiodico.com/es/barcelona/20121228/el-17-del-trafico-de-barcelona-son-coches-en-busca-de-aparcamiento
https://www.elperiodico.com/es/barcelona/20121228/el-17-del-trafico-de-barcelona-son-coches-en-busca-de-aparcamiento
htttp://dx.doi.org/10.2785/94549


Bibliography Bibliography

Rui Fu, Zuo Zhang, and Li Li. Using LSTM and GRU neural network methods for
traffic flow prediction. In Proceedings - 2016 31st Youth Academic Annual Confer-
ence of Chinese Association of Automation, YAC 2016, pages 324–328, 2017. ISBN
9781509044238. doi: 10.1109/YAC.2016.7804912.

Eric Gantelet and Amélie Lefauconnier. The time looking for a parking
space: strategies, associated nuisances and stakes of parking management
in France. 2008. URL http://www.mit.edu/course/11/11.951/OldFiles/
oldstuff/albacete/Other{_}Documents/EuropeTransportConference/
traffic{_}engineering{_}an/the{_}time{_}looking{_}f1580.pdf.

Dipankar Ghosh and C.H. H Knapp. Estimation of traffic variables using a lin-
ear model of traffic flow. Transportation Research, 12(6):395–402, 1978. ISSN
00411647. doi: 10.1016/0041-1647(78)90027-8. URL http://www.sciencedirect.
com/science/article/pii/0041164778900278.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feed-
forward neural networks. In Proceedings of the Thirteenth International Confer-
ence on Artificial Intelligence and Statistics, pages 249–256, 2010. URL http:
//www.iro.umontreal.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep Sparse Rectifier Neural Net-
works. In Geoffrey Gordon, David Dunson, and Miroslav Dudík, editors, Proceed-
ings of the Fourteenth International Conference on Artificial Intelligence and Statis-
tics, volume 15 of Proceedings of Machine Learning Research, pages 315–323, Fort
Lauderdale, FL, USA, 2011. PMLR. URL http://proceedings.mlr.press/v15/
glorot11a.html.

Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial Nets. In
Proceedings of the 27th International Conference on Neural Information Processing
Systems - Volume 2, page 9, Montreal, Canada, 2014. MIT Press. doi: 2969033.
2969125. URL http://www.github.com/goodfeli/adversarial.

Vincent Le Guen and Nicolas Thome. Shape and Time Distortion Loss for Training Deep
Time Series Forecasting Models. (NeurIPS):1–13, sep 2019. URL http://arxiv.org/
abs/1909.09020.

Cheng Guo and Felix Berkhahn. Entity Embeddings of Categorical Variables. Technical
report, 2016. URL https://www.kaggle.com/c/rossmann-store-sales.

Robert C. Hampshire and Donald Shoup. What Share of Traffic is Cruising for Parking?
Journal of Transport Economics and Policy, 52(3):184–201, 2018.

Robert Cornelius Hampshire, Kats Sasanuma, Tayo Fabusuyi, Robert C Hampshire, Vic-
toria Hill, and Katsunobu Sasanuma. A Predictive Model and Evaluation Framework
for Smart Parking: The Case of ParkPGH. 2011. URL https://www.researchgate.
net/publication/268128841.

608

http://www.mit.edu/course/11/11.951/OldFiles/oldstuff/albacete/Other{_}Documents/Europe Transport Conference/traffic{_}engineering{_}an/the{_}time{_}looking{_}f1580.pdf
http://www.mit.edu/course/11/11.951/OldFiles/oldstuff/albacete/Other{_}Documents/Europe Transport Conference/traffic{_}engineering{_}an/the{_}time{_}looking{_}f1580.pdf
http://www.mit.edu/course/11/11.951/OldFiles/oldstuff/albacete/Other{_}Documents/Europe Transport Conference/traffic{_}engineering{_}an/the{_}time{_}looking{_}f1580.pdf
http://www.sciencedirect.com/science/article/pii/0041164778900278
http://www.sciencedirect.com/science/article/pii/0041164778900278
http://www.iro.umontreal.
http://www.iro.umontreal.
http://proceedings.mlr.press/v15/glorot11a.html
http://proceedings.mlr.press/v15/glorot11a.html
http://www.github.com/goodfeli/adversarial
http://arxiv.org/abs/1909.09020
http://arxiv.org/abs/1909.09020
https://www.kaggle.com/c/rossmann-store-sales
https://www.researchgate.net/publication/268128841
https://www.researchgate.net/publication/268128841


Bibliography Bibliography

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification. In 2015 IEEE In-
ternational Conference on Computer Vision (ICCV), pages 1026–1034. Microsoft Re-
search, IEEE, dec 2015. ISBN 978-1-4673-8391-2. doi: 10.1109/ICCV.2015.123. URL
http://ieeexplore.ieee.org/document/7410480/.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, volume 2016-Decem, pages 770–778, 2016.
ISBN 9781467388504. doi: 10.1109/CVPR.2016.90. URL http://image-net.org/
challenges/LSVRC/2015/.

Mikael Henaff, Joan Bruna, and Yann Lecun. Deep Convolutional Networks on Graph-
Structured Data. Technical report, 2015. URL https://arxiv.org/pdf/1506.
05163.pdf.

Francisco Hernandez-Ramirez. Fastprk2 - Data (pilot Barcelona - UPC). jul 2018a. doi:
10.5281/ZENODO.1313667. URL https://zenodo.org/record/1313667.

Francisco Hernandez-Ramirez. Fastprk2 - Data (pilot Antwerp). jul 2018b. doi: 10.
5281/ZENODO.1313673. URL https://zenodo.org/record/1313673.

Francisco Hernandez-Ramirez. Fastprk2 - Data (pilot Wattens). jul 2018c. doi: 10.
5281/ZENODO.1313810. URL https://zenodo.org/record/1313810.

Sepp Hochreiter. Fundamental Deep Learning Problem. PhD thesis, Technis-
che UniversitÂšat Munchen, 1991. URL http://people.idsia.ch/{~}juergen/
SeppHochreiter1991ThesisAdvisorSchmidhuber.pdf.

Sepp Hochreiter and Jj Urgen Schmidhuber. Long short-term memory. Neural Com-
putation, 9(8):1735–1780, 1997. URL http://www.bioinf.jku.at/publications/
older/2604.pdf.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward net-
works are universal approximators. Neural Networks, 2(5):359–366, 1989. ISSN
08936080. doi: 10.1016/0893-6080(89)90020-8.

Eric Hsueh, Chan Lu, and Chen-Hao Liao. A Parking Occupancy Prediction Ap-
proach Based on Spatial and Temporal Analysis. Springer, Cham, 2018. doi:
10.1007/978-3-319-75417-8_47.

IBM. IBM News room - 2011-09-08 IBM Global Commuter Pain Survey: Traffic Con-
gestion Down, Pain Way Up - United States, 2011. URL https://www-03.ibm.com/
press/us/en/pressrelease/35359.wss.

Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift. 32nd International Conference on
Machine Learning, ICML 2015, 1:448–456, feb 2015. URL http://arxiv.org/abs/
1502.03167.

Andrei Ionita, Michael Cochez, Tobias Meisen, and Stefan Decker. Where to
Park? Predicting Free Parking Spots in Unmonitored City Areas. 18, 2018.

609

http://ieeexplore.ieee.org/document/7410480/
http://image-net.org/challenges/LSVRC/2015/
http://image-net.org/challenges/LSVRC/2015/
https://arxiv.org/pdf/1506.05163.pdf
https://arxiv.org/pdf/1506.05163.pdf
https://zenodo.org/record/1313667
https://zenodo.org/record/1313673
https://zenodo.org/record/1313810
http://people.idsia.ch/{~}juergen/SeppHochreiter1991ThesisAdvisorSchmidhuber.pdf
http://people.idsia.ch/{~}juergen/SeppHochreiter1991ThesisAdvisorSchmidhuber.pdf
http://www.bioinf.jku.at/publications/older/2604.pdf
http://www.bioinf.jku.at/publications/older/2604.pdf
https://www-03.ibm.com/press/us/en/pressrelease/35359.wss
https://www-03.ibm.com/press/us/en/pressrelease/35359.wss
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167


Bibliography Bibliography

doi: 10.1145/3227609.3227648. URL http://users.jyu.fi/{~}miselico/papers/
parking{_}paper.pdf.

Sherif Ishak, Prashanth Kotha, and Ciprian Alecsandru. Optimization of Dynamic
Neural Network Performance for Short-Term Traffic Prediction. Transportation Re-
search Record: Journal of the Transportation Research Board, 1836:45–56, 2003. ISSN
0361-1981. doi: 10.3141/1836-07. URL http://trrjournalonline.trb.org/doi/
10.3141/1836-07.

Hongxia Jin. The application of neuro-FDT in urban short-term traffic flow prediction.
Proceedings - Third International Conference on Natural Computation, ICNC 2007, 5
(Icnc):499–503, 2007. doi: 10.1109/ICNC.2007.710.

Michael Jones, Aftab Khan, Mahesh Sooriyabandara, Parag Kulkarni, and Pietro
Carnelli. ParkUs 2.0: Automated Cruise Detection for Parking Availability Infer-
ence. 2018. doi: 10.1145/3144457.3144495. URL https://www.researchgate.net/
publication/322387223.

Shinobu Kawashima, Kajiro Watanabe, and Kazuyuki Kobayashi. Traffic Condition
Monitoring by Laser Radar for Advanced Safety Driving. pages 299–303, 1995.

Eamonn Keogh, Jessica Lin, and Ada Fu. HOT SAX: Finding the most Unusual Time
Series Subsequences: Algorithms and Application. Icdm, 2005. ISSN 1550-4786. doi:
10.1109/ICDM.2005.79.

Abhirup Khanna and Rishi Anand. IoT based smart parking system. In 2016 Interna-
tional Conference on Internet of Things and Applications, IOTA 2016, 2016. ISBN
9781509000449. doi: 10.1109/IOTA.2016.7562735.

Thomas N Kipf and Max Welling. Semi-Supervised Classification with Graph Convo-
lutional Networks. In International Conference on Learning Representations (ICLR
’17), page 14, 2016. URL https://arxiv.org/pdf/1609.02907.pdf.

Andreas Klappenecker, Hyunyoung Lee, Jennifer L Welch, Klappenecker Andreas,
Lee Hyunyoung, and L Welch Jennifer. Finding Available Parking Spaces Made
Easy. 2010. URL https://www.sciencedirect.com/science/article/pii/
S157087051200042X.

Andrew Koster, Allysson Oliveira, Orlando Volpato, Viviane Delvequio, and Fer-
nando Koch. Recognition and recommendation of parking places. Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 8864:675–685, 2014. ISSN 16113349. doi:
10.1007/978-3-319-12027-0_54.

Amir O. Kotb, Yao Chun Shen, and Yi Huang. Smart Parking Guidance, Monitoring
and Reservations: A Review. IEEE Intelligent Transportation Systems Magazine, 9
(2):6–16, 2017. ISSN 19411197. doi: 10.1109/MITS.2017.2666586.

Mark A. Kramer. Nonlinear principal component analysis using autoassociative neural
networks. AIChE Journal, 37(2):233–243, 1991. ISSN 15475905. doi: 10.1002/aic.
690370209.

610

http://users.jyu.fi/{~}miselico/papers/parking{_}paper.pdf
http://users.jyu.fi/{~}miselico/papers/parking{_}paper.pdf
http://trrjournalonline.trb.org/doi/10.3141/1836-07
http://trrjournalonline.trb.org/doi/10.3141/1836-07
https://www.researchgate.net/publication/322387223
https://www.researchgate.net/publication/322387223
https://arxiv.org/pdf/1609.02907.pdf
https://www.sciencedirect.com/science/article/pii/S157087051200042X
https://www.sciencedirect.com/science/article/pii/S157087051200042X


Bibliography Bibliography

Thomas J Laetz. Predictions and Perceptions Defining the Traffic Congestion
Problem. 1990. URL https://www.sciencedirect.com/science/article/pii/
0040162590900746.

Lawrence W Lan and April Y Kuo. Journal of the Eastern Asia Society for Transporta-
tion Studies, Vol. 6, pp. 1518 - 1533, 2005. 6:1518–1533, 2005.

Jorge Lanza, Luis Sánchez, Verónica Gutiérrez, José Galache, Juan Santana, Pablo
Sotres, and Luis Muñoz. Smart City Services over a Future Internet Platform Based
on Internet of Things and Cloud: The Smart Parking Case. Energies, 2016. ISSN
1996-1073. doi: 10.3390/en9090719.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the
Loss Landscape of Neural Nets. In S Bengio, H Wallach, H Larochelle, K Grauman,
N Cesa-Bianchi, and R Garnett, editors, Advances in Neural Information Processing
Systems 31, pages 6389–6399. Curran Associates, Inc., 2018. URL http://papers.
nips.cc/paper/7875-visualizing-the-loss-landscape-of-neural-nets.
pdfhttps://github.com/tomgoldstein/loss-landscape.

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion Convolu-
tional Recurrent Neural Network: Data-Driven Traffic Forecasting. In Inter-
national Conference on Learning Representations (ICLR ’18), page 16, 2017.
URL https://arxiv.org/pdf/1707.01926.pdfhttps://github.com/liyaguang/
DCRNNhttp://arxiv.org/abs/1707.01926.

Trista Lin, Herve Rivano, and Frederic Le Mouel. A Survey of Smart Parking Solutions.
IEEE Transactions on Intelligent Transportation Systems, 18(12):3229 – 3253, 2017.
ISSN 15249050. doi: 10.1109/TITS.2017.2685143.

Seppo Linnainmaa. Taylor expansion of the accumulated rounding error. Bit, 16(2):
146–160, 1976. ISSN 15729125. doi: 10.1007/BF01931367.

J W C Van Lint, C Hinsbergen, J W C Van Lint, and F Sanders. Short Term Traffic
Prediction Models. 14th World Congress on Intelligent Transport Systems, ITS 2007,
7, 2007. URL https://www.researchgate.net/publication/228882378.

Los Angeles Times. L.A. program aims to make parking easier - Los
Angeles Times, 2010. URL https://www.latimes.com/archives/
la-xpm-2010-aug-22-la-me-express-park-20100822-story.html.

Jorge Ludlow and Walter Enders. Estimating non-linear ARMA models using Fourier
coefficients. International Journal of Forecasting, 16(3):333–347, 2000. ISSN 01692070.
doi: 10.1016/S0169-2070(00)00048-0.

Mohammad M. Hamed, Hashem R. Al-Masaeid, and Zahi M. Bani Said. Short-term
prediction of traffic volume in urban arterials. Division of UrbanTraffic, I(June):249–
254, 1995.

David J. C. MacKay. A Practical Bayesian Framework for Backpropagation Networks.
Neural Computation, 4(3):448–472, 1992. ISSN 0899-7667. doi: 10.1162/neco.1992.4.3.
448. URL http://www.mitpressjournals.org/doi/10.1162/neco.1992.4.3.448.

611

https://www.sciencedirect.com/science/article/pii/0040162590900746
https://www.sciencedirect.com/science/article/pii/0040162590900746
http://papers.nips.cc/paper/7875-visualizing-the-loss-landscape-of-neural-nets.pdf https://github.com/tomgoldstein/loss-landscape
http://papers.nips.cc/paper/7875-visualizing-the-loss-landscape-of-neural-nets.pdf https://github.com/tomgoldstein/loss-landscape
http://papers.nips.cc/paper/7875-visualizing-the-loss-landscape-of-neural-nets.pdf https://github.com/tomgoldstein/loss-landscape
https://arxiv.org/pdf/1707.01926.pdf https://github.com/liyaguang/DCRNN http://arxiv.org/abs/1707.01926
https://arxiv.org/pdf/1707.01926.pdf https://github.com/liyaguang/DCRNN http://arxiv.org/abs/1707.01926
https://www.researchgate.net/publication/228882378
https://www.latimes.com/archives/la-xpm-2010-aug-22-la-me-express-park-20100822-story.html
https://www.latimes.com/archives/la-xpm-2010-aug-22-la-me-express-park-20100822-story.html
http://www.mitpressjournals.org/doi/10.1162/neco.1992.4.3.448


Bibliography Bibliography

Niall McCarthy. The World’s Worst Cities For Traffic Congestion [Info-
graphic], 2019. URL https://www.forbes.com/sites/niallmccarthy/2019/
06/05/the-worlds-worst-cities-for-traffic-congestion-infographic/
{#}2769841e12bc.

Marcelo C Medeiros, Timo Teräsvirta, and Gianluigi Rech. Building Neural Network
Models for Time Series: A Statistical Approach. 2006. doi: 10.1002/for.974. URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/for.974.

Lyudmila Mihaylova, René Boel, and A Hegyi. An Unscented Kalman Filter for Freeway
Traffic Estimation. Journal of Chemical Information and Modeling, pages 31–36, 2006.
ISSN 1098-6596. doi: 10.1017/CBO9781107415324.004.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeffrey Dean.
Distributed Representations of Words and Phrases and their Compositionality.
In C J C Burges, L Bottou, M Welling, Z Ghahramani, and K Q Weinberger,
editors, Advances in Neural Information Processing Systems 26, pages 3111–
3119. Curran Associates, Inc., 2013. URL https://papers.nips.cc/paper/
5021-distributed-representations-of-words-and-phrases-and-their-compositionality.
pdf.

Bandu Nandekar, Ranjana Raut SGB Amravati, and Pravin Dakhole YCCE Nagpur.
Parking System with Space Modeling to Improve Parking Efficiency and Parking Rev-
enue. 2015. doi: 10.1109/ICCN.2015.51.

H Nicholson and C D Swann. The prediction of traffic flow volumes based on spectral
analysis. Tra˜zspn Rus, 8:533–538, 1974. URL https://www.sciencedirect.com/
science/article/pii/0041164774900306.

Iwao Okutani and Yorgos J. Stephanedes. Dynamic prediction of traffic volume through
Kalman filtering theory. Transportation Research Part B, 18(1):1–11, 1984. ISSN
01912615. doi: 10.1016/0191-2615(84)90002-X.

Catriona Queen Osvaldo Anacleto and Casper J . Albers. Multivariate forecasting of road
traffic flows in the presence of heteroscedasticity and measurement errors. Journal,
Source Statistical, Royal Series, Society Statistics, C Applied, 62(2):251–270, 2013.

Nicola Piovesan, Leo Turi, Enrico Toigo, Borja Martinez, and Michele Rossi. Data
analytics for smart parking applications. Sensors (Switzerland), 2016. ISSN 14248220.
doi: 10.3390/s16101575.

John W Polak, Ian C Hilton, Ian Hilton Consultancy, Kay W Axhausen, and William
Young. Parking Guidance Systems: Current Practice and Future Prospects. 1990.
URL http://webarchiv.ethz.ch/ivt/vpl/publications/reports/o9.pdf.

Nicholas G. Polson and Vadim O. Sokolov. Deep learning for short-term traffic flow
prediction. Transportation Research Part C: Emerging Technologies, 2017. ISSN
0968090X. doi: 10.1016/j.trc.2017.02.024.

Tooraj Rajabioun and Petros Ioannou. On-Street and off-street parking availability
prediction using multivariate spatiotemporal models. IEEE Transactions on In-

612

https://www.forbes.com/sites/niallmccarthy/2019/06/05/the-worlds-worst-cities-for-traffic-congestion-infographic/{#}2769841e12bc
https://www.forbes.com/sites/niallmccarthy/2019/06/05/the-worlds-worst-cities-for-traffic-congestion-infographic/{#}2769841e12bc
https://www.forbes.com/sites/niallmccarthy/2019/06/05/the-worlds-worst-cities-for-traffic-congestion-infographic/{#}2769841e12bc
https://onlinelibrary.wiley.com/doi/abs/10.1002/for.974
https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://www.sciencedirect.com/science/article/pii/0041164774900306
https://www.sciencedirect.com/science/article/pii/0041164774900306
http://webarchiv.ethz.ch/ivt/vpl/publications/reports/o9.pdf


Bibliography Bibliography

telligent Transportation Systems, 16(5):2913 – 2924, 2015. ISSN 15249050. doi:
10.1109/TITS.2015.2428705.

Tooraj Rajabioun, Brandon Foster, and Petros Ioannou. Intelligent parking assist. 2013
21st Mediterranean Conference on Control and Automation, MED 2013 - Conference
Proceedings, pages 1156–1161, 2013. doi: 10.1109/MED.2013.6608866.

Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu,
Quoc V Le, Alexey Kurakin, Jie Tan, Quoc V Le, and Alexey Kurakin. Large-Scale
Evolution of Image Classifiers. CoRR, abs/1703.0, 2017. URL http://arxiv.org/
abs/1703.01041.

Felix Richter, Sergio Di Martino, and Dirk C. Mattfeld. Temporal and Spatial Clustering
for a Parking Prediction Service. Proceedings - International Conference on Tools
with Artificial Intelligence, ICTAI, 2014-Decem:278–282, 2014. ISSN 10823409. doi:
10.1109/ICTAI.2014.49.

F. Rosenblatt. The Perceptron - A Perceiving and Recognizing Automaton, 1957.
Royal Society. Machine Learning: The power and promise of computers that learn

by example. 2017. URL https://royalsociety.org/topics-policy/projects/
machine-learning/.

Sebastian Ruder. An overview of gradient descent optimization algorithms. pages 1–14,
2016. ISSN 0006341X. doi: 10.1111/j.0006-341X.1999.00591.x. URL http://arxiv.
org/abs/1609.04747.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning represen-
tations by back-propagating errors. Nature, 323(6088):533–536, oct 1986. ISSN 0028-
0836. doi: 10.1038/323533a0. URL http://www.nature.com/articles/323533a0.

Abolfazl Safikhani, Camille Kamga, Sandeep Mudigonda, Sabiheh Sadat Faghih, and
Bahman Moghimi. Spatio-temporal modeling of yellow taxi demands in New York
City using Generalized STAR models. (November), 2017.

Maria Scalabrin, Matteo Gadaleta, Riccardo Bonetto, and Michele Rossi. A Bayesian
forecasting and anomaly detection framework for vehicular monitoring networks. In
IEEE International Workshop on Machine Learning for Signal Processing, MLSP,
2017. ISBN 9781509063413. doi: 10.1109/MLSP.2017.8168151.

SFPark. Technical Manual, 2014.
Wei Shao, Yu Zhang, Bin Guo, Kai Qin, Jeffrey Chan, and Flora D. Salim. Parking

Availability Prediction with Long Short Term Memory Model. In Green, Pervasive,
and Cloud Computing. GPC 2018. Lecture Notes in Computer Science, vol 11204.
Springer, Cham, 2018. ISBN 978-3-319-57185-0. doi: 10.1007/978-3-319-57186-7.
URL http://link.springer.com/10.1007/978-3-319-57186-7.

Donald Shoup. The High Cost of Free Parking. 1997. URL https://www.
researchgate.net/publication/235359727www.tstc.org.

613

http://arxiv.org/abs/1703.01041
http://arxiv.org/abs/1703.01041
https://royalsociety.org/topics-policy/projects/machine-learning/
https://royalsociety.org/topics-policy/projects/machine-learning/
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1609.04747
http://www.nature.com/articles/323533a0
http://link.springer.com/10.1007/978-3-319-57186-7
https://www.researchgate.net/publication/235359727 www.tstc.org
https://www.researchgate.net/publication/235359727 www.tstc.org


Bibliography Bibliography

Donald Shoup. Instead of Free Parking. 1999. URL http://shoup.bol.ucla.edu/
InsteadOfFreeParking.pdf.

Donald Shoup. PERFORMANCE PARKING PRICES. 2011. URL
https://www.accessmagazine.org/wp-content/uploads/sites/7/2016/01/
access38{_}free{_}parking{_}markets.pdf.

Donald Shoup. The Right Price for Curb Parking. 2016. URL https:
//www.delawarevalleysmartgrowth.org/wp-content/uploads/2016/05/
The-Right-Price-for-Curb-Parking-April-21.pdf.

Donald Shoup. Parking and the City, volume 29. Planners Press, Los Angeles, 1 edition,
2018. ISBN 9781138497030. doi: 10.1080/07293682.1991.9657508.

Donald C Shoup. Cruising for parking. Transport Policy, 13:479–486, 2006. doi: 10.
1016/j.tranpol.2006.05.005. URL http://shoup.bol.ucla.edu/Cruising.pdf.

Robert H. Shumway and David S. Stoffer. Time Series Analysis and Its Applications.
Springer Texts in Statistics. Springer International Publishing, Cham, 2017. ISBN
978-3-319-52451-1. doi: 10.1007/978-3-319-52452-8. URL http://link.springer.
com/10.1007/978-3-319-52452-8.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ruslan Salakhutdinov, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: A Simple Way to Prevent Neural
Networks from Overfitting. Journal of Machine Learning Research, 15:1929–1958,
2014. URL http://jmlr.org/papers/v15/srivastava14a.html.

Anthony Stathopoulos and Matthew G Karlaftis. A multivariate state space approach
for urban traffic flow modeling and prediction. 2003. doi: 10.1016/S0968-090X(03)
00004-4. URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.88.2521{&}rep=rep1{&}type=pdfhttp://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.88.2521{%}7B{&}{%}7Drep=rep1{%}7B{&}{%}7Dtype=pdf.

Shiliang Sun, Changshui Zhang, and Guoqiang Yu. A Bayesian network approach to
traffic flow forecasting. IEEE Transactions on Intelligent Transportation Systems,
2006. ISSN 15249050. doi: 10.1109/TITS.2006.869623.

Dusan Teodorovic and Panta Lucic. Intelligent parking systems. European Journal of
Operational Research, 175(3):1666–1681, 2006. ISSN 03772217. doi: 10.1016/j.ejor.
2005.02.033.

UK Government. Parking guidance and information, 2003. URL http://www.dft.gov.
uk/pgr/roads/tpm/tal/its/parkingguidanceandinformation.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals,
Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. WaveNet:
A Generative Model for Raw Audio. pages 1–15, 2016. URL http://arxiv.org/
abs/1609.03499.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal
of machine learning research, 9(Nov):2579–2605, 2008.

614

http://shoup.bol.ucla.edu/InsteadOfFreeParking.pdf
http://shoup.bol.ucla.edu/InsteadOfFreeParking.pdf
https://www.accessmagazine.org/wp-content/uploads/sites/7/2016/01/access38{_}free{_}parking{_}markets.pdf
https://www.accessmagazine.org/wp-content/uploads/sites/7/2016/01/access38{_}free{_}parking{_}markets.pdf
https://www.delawarevalleysmartgrowth.org/wp-content/uploads/2016/05/The-Right-Price-for-Curb-Parking-April-21.pdf
https://www.delawarevalleysmartgrowth.org/wp-content/uploads/2016/05/The-Right-Price-for-Curb-Parking-April-21.pdf
https://www.delawarevalleysmartgrowth.org/wp-content/uploads/2016/05/The-Right-Price-for-Curb-Parking-April-21.pdf
http://shoup.bol.ucla.edu/Cruising.pdf
http://link.springer.com/10.1007/978-3-319-52452-8
http://link.springer.com/10.1007/978-3-319-52452-8
http://jmlr.org/papers/v15/srivastava14a.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.88.2521{&}rep=rep1{&}type=pdf http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.88.2521{%}7B{&}{%}7Drep=rep1{%}7B{&}{%}7Dtype=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.88.2521{&}rep=rep1{&}type=pdf http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.88.2521{%}7B{&}{%}7Drep=rep1{%}7B{&}{%}7Dtype=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.88.2521{&}rep=rep1{&}type=pdf http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.88.2521{%}7B{&}{%}7Drep=rep1{%}7B{&}{%}7Dtype=pdf
http://www.dft.gov.uk/pgr/roads/tpm/tal/its/parkingguidanceandinformation
http://www.dft.gov.uk/pgr/roads/tpm/tal/its/parkingguidanceandinformation
http://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1609.03499


Bibliography Bibliography

Mascha Van Der Voort, Mark Dougherty, and Susan Watson. Combining Kohonen
maps with ARIMA time series models to forecast traffic flow. Transportation Research
Part C: Emerging Technologies, 4(5):307–318, 1996. ISSN 0968090X. doi: 10.1016/
S0968-090X(97)82903-8.

J. W.C. van Lint, S. P. Hoogendoorn, and H. J. van Zuylen. Accurate freeway travel
time prediction with state-space neural networks under missing data. Transportation
Research Part C: Emerging Technologies, 13(5-6):347–369, 2005. ISSN 0968090X. doi:
10.1016/j.trc.2005.03.001.

V N Vapnik. An overview of statistical learning theory. IEEE transactions on neural
networks / a publication of the IEEE Neural Networks Council, 10(5):988–999, 1999.
ISSN 1045-9227. doi: 10.1109/72.788640. URL http://www.ncbi.nlm.nih.gov/
pubmed/18252602.

Ashish Vaswani, Google Brain, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention Is All You
Need. Technical report. URL https://arxiv.org/pdf/1706.03762.pdf.

Petar Veličković, Arantxa Casanova, Pietro Liò, Guillem Cucurull, Adriana Romero,
and Yoshua Bengio. Graph attention networks. In 6th International Conference on
Learning Representations, ICLR 2018 - Conference Track Proceedings. International
Conference on Learning Representations, ICLR, 2018.

Eleni I Vlahogianni and Matthew G Karlaftis. Testing and Comparing Neural Network
and Statistical Approaches for Predicting Transportation Time Series. Transporta-
tion Research Record Journal of the Transportation Research Board Transportation
Research Board of the National Academies, (2399):9–22, 2013. doi: 10.3141/2399-02.
URL https://trrjournalonline.trb.org/doi/abs/10.3141/2399-02.

Eleni I. Vlahogianni, John C. Golias, and Matthew G. Karlaftis. Short term traffic
forecasting: Overview of objectives and methods. Transport Reviews, 24(5):533–557,
sep 2004. ISSN 0144-1647. doi: 10.1080/0144164042000195072. URL http://www.
tandfonline.com/doi/abs/10.1080/0144164042000195072.

Eleni I. Vlahogianni, Matthew G. Karlaftis, and John C. Golias. Optimized and meta-
optimized neural networks for short-term traffic flow prediction: A genetic approach.
Transportation Research Part C: Emerging Technologies, 2005. ISSN 0968090X. doi:
10.1016/j.trc.2005.04.007.

Eleni I. Vlahogianni, Matthew G. Karlaftis, and John C. Golias. Statistical methods
for detecting nonlinearity and non-stationarity in univariate short-term time-series of
traffic volume. Transportation Research Part C: Emerging Technologies, 2006. ISSN
0968090X. doi: 10.1016/j.trc.2006.09.002.

Eleni I Vlahogianni, Matthew G Karlaftis, and John C Golias. Temporal Evolution of
Short-Term Urban Traffic Flow: A Nonlinear Dynamics Approach. Computer-Aided
Civil and Infrastructure Engineering, 23:536–548, 2008.

615

http://www.ncbi.nlm.nih.gov/pubmed/18252602
http://www.ncbi.nlm.nih.gov/pubmed/18252602
https://arxiv.org/pdf/1706.03762.pdf
https://trrjournalonline.trb.org/doi/abs/10.3141/2399-02
http://www.tandfonline.com/doi/abs/10.1080/0144164042000195072
http://www.tandfonline.com/doi/abs/10.1080/0144164042000195072


Bibliography Bibliography

Eleni I. Vlahogianni, Matthew G. Karlaftis, and John C. Golias. Short-term traffic
forecasting: Where we are and where we’re going. Transportation Research Part C:
Emerging Technologies, 2014. ISSN 0968090X. doi: 10.1016/j.trc.2014.01.005.

Eleni I. Vlahogianni, Konstantinos Kepaptsoglou, Vassileios Tsetsos, and Matthew G.
Karlaftis. A Real-Time Parking Prediction System for Smart Cities. Journal of
Intelligent Transportation Systems, 20(2):192–204, mar 2016. ISSN 1547-2450. doi: 10.
1080/15472450.2015.1037955. URL https://www.tandfonline.com/doi/full/10.
1080/15472450.2015.1037955.

Jin Wang and Qixin Shi. Short-term traffic speed forecasting hybrid model based
on Chaos-Wavelet Analysis-Support Vector Machine theory. Transportation Re-
search Part C, 27:219–232, 2013. doi: 10.1016/j.trc.2012.08.004. URL https:
//www.sciencedirect.com/science/article/pii/S0968090X1200109X.

Menglin Wang, Baisheng Lai, Zhongming Jin, Yufeng Lin, Xiaojin Gong, Jianqiang
Huang, and Xiansheng Hua. Dynamic Spatio-temporal Graph-based CNNs for Traffic
Prediction. Technical report, 2018. URL https://arxiv.org/pdf/1812.02019v3.
pdf.

T. Warren Liao. Clustering of time series data - A survey. Pattern Recognition, 38(11):
1857–1874, 2005. ISSN 00313203. doi: 10.1016/j.patcog.2005.01.025.

Rachel R. Weinberger and Robert Cornelius Hampshire. Parking-Cruising Caused Con-
gestion. SSRN Electronic Journal, 2017. doi: 10.2139/ssrn.2906528.

Billy M. Williams and Lester A. Hoel. Modeling and Forecasting Vehicular Traffic Flow
as a Seasonal ARIMA Process: Theoretical Basis and Empirical Results. Journal of
Transportation Engineering, 129(6):664–672, nov 2003. ISSN 0733-947X. doi: 10.
1061/(ASCE)0733-947X(2003)129:6(664). URL http://ascelibrary.org/doi/10.
1061/{%}28ASCE{%}290733-947X{%}282003{%}29129{%}3A6{%}28664{%}29.

Eric Hsiao Kuang Wu, Jagruti Sahoo, Chi Yun Liu, Ming Hui Jin, and Shu Hui Lin.
Agile urban parking recommendation service for intelligent vehicular guiding system.
IEEE Intelligent Transportation Systems Magazine, 6(1):35–49, 2014. ISSN 19391390.
doi: 10.1109/MITS.2013.2268549.

Shuguan Yang, Wei Ma, Xidong Pi, and Sean Qian. A deep learning approach to
real-time parking occupancy prediction in spatio-termporal networks incorporating
multiple spatio-temporal data sources. Technical report, Pittsburgh, 2019. URL
https://arxiv.org/pdf/1901.06758.pdf.

Yanjie Duan, Yisheng Lv, and Fei-Yue Wang. Travel time prediction with LSTM neural
network. In 2016 IEEE 19th International Conference on Intelligent Transportation
Systems (ITSC), 2016. ISBN 978-1-5090-1889-5. doi: 10.1109/ITSC.2016.7795686.

Bing Yu, Mengzhang Li, Jiyong Zhang, and Zhanxing Zhu. 3D Graph Convolutional
Networks with Temporal Graphs: A Spatial Information Free Framework For Traffic
Forecasting. page 7, mar 2019a. URL http://arxiv.org/abs/1903.00919.

616

https://www.tandfonline.com/doi/full/10.1080/15472450.2015.1037955
https://www.tandfonline.com/doi/full/10.1080/15472450.2015.1037955
https://www.sciencedirect.com/science/article/pii/S0968090X1200109X
https://www.sciencedirect.com/science/article/pii/S0968090X1200109X
https://arxiv.org/pdf/1812.02019v3.pdf
https://arxiv.org/pdf/1812.02019v3.pdf
http://ascelibrary.org/doi/10.1061/{%}28ASCE{%}290733-947X{%}282003{%}29129{%}3A6{%}28664{%}29
http://ascelibrary.org/doi/10.1061/{%}28ASCE{%}290733-947X{%}282003{%}29129{%}3A6{%}28664{%}29
https://arxiv.org/pdf/1901.06758.pdf
http://arxiv.org/abs/1903.00919


Bibliography Bibliography

Bing Yu, Haoteng Yin, and Zhanxing Zhu. ST-UNet: A Spatio-Temporal U-Network
for Graph-structured Time Series Modeling. Technical report, 2019b. URL https:
//arxiv.org/pdf/1903.05631v1.pdf.

E.S. Yu and C.Y.R. Chen. Traffic prediction using neural networks. Proceedings of
GLOBECOM ’93. IEEE Global Telecommunications Conference, (January 1994):991–
995, 1993. doi: 10.1109/GLOCOM.1993.318226. URL http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber=318226.

Haiyang Yu, Zhihai Wu, Shuqin Wang, Yunpeng Wang, and Xiaolei Ma. Spatiotemporal
Recurrent Convolutional Networks for Traffic Prediction in Transportation Networks.
Sensors, 17(7):1501, jun 2017. ISSN 1424-8220. doi: 10.3390/s17071501. URL http:
//www.mdpi.com/1424-8220/17/7/1501.

J M Zamarreño and P Vega. State space neural network. Properties and application.
Neural Networks, 11(6):1099–1112, 1998. ISSN 0893-6080. doi: http://dx.doi.org/
10.1016/S0893-6080(98)00074-4. URL http://www.sciencedirect.com/science/
article/pii/S0893608098000744.

Hongjun Zhang, Stephen G Ritchie, and Zhen-Ping Lo. Macroscopic Modeling of
Freeway Traffic Using an Artificial Neural Network. 1997. URL https://pdfs.
semanticscholar.org/2374/8b6173dbcb6cc724371d06417f7ce893466e.pdf.

Yanxu Zheng, Sutharshan Rajasegarar, Christopher Leckie, and Marimuthu
Palaniswami. Smart car parking: Temporal clustering and anomaly detection in ur-
ban car parking. In IEEE ISSNIP 2014 - 2014 IEEE 9th International Conference
on Intelligent Sensors, Sensor Networks and Information Processing, Conference Pro-
ceedings, 2014. ISBN 9781479928439. doi: 10.1109/ISSNIP.2014.6827618.

Yanxu Zheng, Sutharshan Rajasegarar, and Christopher Leckie. Parking availability pre-
diction for sensor-enabled car parks in smart cities. In 2015 IEEE 10th International
Conference on Intelligent Sensors, Sensor Networks and Information Processing, ISS-
NIP 2015, 2015. ISBN 9781479980550. doi: 10.1109/ISSNIP.2015.7106902.

Barret Zoph, Quoc V Le Google Brain, and Quoc V Le. Neural Architecture Search
with Reinforcement Learning. CoRR, abs/1611.0, 2016. URL http://arxiv.org/
abs/1611.01578.

617

https://arxiv.org/pdf/1903.05631v1.pdf
https://arxiv.org/pdf/1903.05631v1.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=318226
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=318226
http://www.mdpi.com/1424-8220/17/7/1501
http://www.mdpi.com/1424-8220/17/7/1501
http://www.sciencedirect.com/science/article/pii/S0893608098000744
http://www.sciencedirect.com/science/article/pii/S0893608098000744
https://pdfs.semanticscholar.org/2374/8b6173dbcb6cc724371d06417f7ce893466e.pdf
https://pdfs.semanticscholar.org/2374/8b6173dbcb6cc724371d06417f7ce893466e.pdf
http://arxiv.org/abs/1611.01578
http://arxiv.org/abs/1611.01578

	Contents
	1 Introduction
	1.1 Thesis context
	1.1.1 DEIO-UPC
	1.1.2 Worldsensing S.L.

	1.2 Background
	1.2.1 The parking problem
	1.2.2 Company motivation

	1.3 Motivations and thesis objectives
	1.4 Thesis Outline
	1.5 Methodology outline

	2 Problem overview based on data flow characterization
	2.1 Data pipeline
	2.1.1 Physical components
	2.1.2 Logical components

	2.2 Services
	2.3 Sector and sensor data
	2.3.1 Sector data
	2.3.2 Sensor data

	2.4 Model serving

	3 Data analysis
	3.1 The nature of sensor data
	3.2 Theoretical time series properties
	3.3 Data preprocessing
	3.4 Visualizations, methods and descriptive tools
	3.5 Scenarios
	3.5.1 Antwerp (Belgium)
	3.5.2 Barcelona (Spain)
	3.5.3 Wattens (Austria)
	3.5.4 Los Angeles (USA)
	3.5.5 Riyadh (UAE)

	3.6 Conclusions
	3.6.1 Antwerp summary 
	3.6.2 Barcelona summary 
	3.6.3 Wattens summary 
	3.6.4 Los Angeles summary 
	3.6.5 Riyadh summary 


	4 Related work
	4.1 Smart parking
	4.2 Predictive modeling
	4.2.1 Predictive modeling for traffic
	4.2.2 Time series forecast for parking


	5 Theoretical aspects of time series algorithms
	5.1 ARIMA
	5.2 Artificial neural network
	5.2.1 ANN structure
	5.2.2 MLP
	5.2.3 Recurrent NN: Long short-term memory and gated recurrent unit


	6 Computational experiments – ARIMA
	6.1 Design of experiments
	6.2 Goodness-of-fit metrics
	6.3 ARIMA modeling methodology
	6.4 Antwerp ARIMA models
	6.4.1 Pelikaanstraat sector
	6.4.2 Van Wesenbekestraat sectors
	6.4.3 Van Schoonhovestraat sectors

	6.5 Barcelona ARIMA models
	6.5.1 Regular sector

	6.6 Wattens ARIMA models
	6.6.1 Swarco sectors

	6.7 Los Angeles ARIMA models
	6.7.1 Standard sector
	6.7.2 Permit sector
	6.7.3 Disabled sector
	6.7.4 ZipCar sector

	6.8 Riyadh ARIMA models
	6.8.1 Northernmost and southernmost sectors

	6.9 Summary of the results and conclusions

	7 Computational experiments - Neural Networks 
	7.1 Design of experiments 
	7.2 Validation framework 
	7.2.1 Data subsets
	7.2.2 Hyperparameter values
	7.2.3 Model choice

	7.3 Data structure 
	7.3.1 A note on overlapping windows

	7.4 Hyperparameter calibration
	7.4.1 Optimizers 
	7.4.2 Model capacity
	7.4.3 Normalization in RNN
	7.4.4 Hyperparameter calibration conclusions

	7.5 NN experiments - Antwerp 
	7.5.1 MLP
	7.5.2 LSTM
	7.5.3 GRU

	7.6 NN experiments - Barcelona 
	7.6.1 MLP
	7.6.2 LSTM
	7.6.3 GRU

	7.7 NN experiments - Wattens 
	7.7.1 MLP
	7.7.2 LSTM
	7.7.3 GRU

	7.8 NN experiments - Los Angeles 
	7.8.1 MLP
	7.8.2 LSTM
	7.8.3 GRU

	7.9 NN experiments - Riyadh 
	7.9.1 MLP
	7.9.2 LSTM
	7.9.3 GRU

	7.10 Results and conclusions
	7.10.1 MLP
	7.10.2 LSTM
	7.10.3 GRU
	7.10.4 Method comparison
	7.10.5 Conclusions

	7.11 Lessons learnt
	7.11.1 The phases of an RNN model when training on time series
	7.11.2 Undesired local optimum convergence
	7.11.3 Negative forecasts
	7.11.4 One-step and multi-step forecasting
	7.11.5 The importance of hyperparameters
	7.11.6 Noise in the data


	8 Neural networks with exogenous information 
	8.1 Exogenous variables
	8.1.1 Description
	8.1.2 Preprocessing

	8.2 Parking characterization
	8.2.1 All the categorical variables
	8.2.2 Categorical variables, one by one
	8.2.3 All the numerical variables
	8.2.4 Numerical variables one by one

	8.3 Proposed architectures
	8.3.1 MLP proposed architecture
	8.3.2 Proposed RNN architecture
	8.3.3 Design of experiments 

	8.4 Antwerp experiments
	8.4.1 MLP
	8.4.2 LSTM
	8.4.3 GRU

	8.5 Wattens experiments 
	8.5.1 MLP
	8.5.2 LSTM
	8.5.3 GRU

	8.6 Los Angeles experiments 
	8.6.1 MLP
	8.6.2 LSTM
	8.6.3 GRU

	8.7 Riyadh experiments
	8.7.1 MLP
	8.7.2 LSTM
	8.7.3 GRU

	8.8 Results and conclusions
	8.8.1 Result comparison
	8.8.2 Conclusions


	9 Conclusions
	9.1 Results Discussion
	9.1.1 Endogenous results
	9.1.2 Exogenous results
	9.1.3 Findings by sectors idiosyncrasies
	9.1.4 NN hyperparameters

	9.2 Main Contributions
	9.3 Future Research
	9.4 Related Publications, Presentations, Teaching Activities and Projects


