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Abstract

Since less than a decade ago, deep learning techniques started to dominate many different
fields, revolutionizing the possibilities of artificial intelligence. Seeing their potential,
industrial sectors started to invest on applying such technologies as key components
of the company strategy. This thesis has been developed in an industrial context, in
AutomaticTV. The main focus along this period has been the transfer of knowledge
and know-how between the academia and industry, development of tools to exploit this
knowledge, the exploration of new techniques for future challenges, and, from an academic
research perspective, contributions to the multiple object tracking problem.

The first part of the thesis is devoted to the introduction of deep learning technologies
to AutomaticTV, a company dedicated to automatic sports analysis and broadcasting,
and the development of tools and tasks that surround the application.

The second part of this thesis introduces the contributions to the multiple object tracking
challenge. We present TrajE, a trajectory estimator based on mixture density networks
and beam search, used to boost the performance of existing multiple object trackers, and
introduce an occlusion reconstruction step using the estimated trajectory information.
By adding TrajE to an existing multiple object tracker, we boost its performance by 6.3,
1.8 points in MOTA and IDF1 scores respectively, becoming the new state of the art in
the MOTChallenge dataset.
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Introduction

In 2011, the term fourth industrial revolution was coined by the German government as
a strategy to promote the computerization of manufacturing. Since then, it has included
new emerging technologies, such as Internet Of Things, Cloud Computing, or Artificial
Intelligence.

In this ”4.0 revolution” context, the project AutomaticTV was born in 2010, from the
R&D development team in Mediapro, in Barcelona. Some of the company goals can be
summarized in generating automatic productions of sports events, and providing tools
for the teams to be able to further analyse their matches and training sessions. To do so,
the system uses computer vision techniques to gather useful information of the scene.

Deep learning techniques started their own revolution in 2012, where the computer vi-
sion community foresaw the uprising when the results on the ImageNet challenge were
published. AlexNet [1], competing in the image classification track, used a convolutional
neural network to solve the task, outperforming by a huge margin the challenge winners
from previous years. While research on deep learning [2, 3] has been cultivated since 1943,
with the formal definition of an Artificial Neural Network, it wasn’t until recently that
the three dimensions that deep learning techniques need to work, algorithms, datasets,
and computation, began to be accessible to the general public, making many research
fields to be dominated by these methods. In Figure 1.1, we show the evolution throughout
the years for challenges related to computer vision.

With the rise of deep learning algorithms, several challenges that were thought unsolvable
started to fall down like domino pieces, and the industry began to be interested. In this
context, this thesis was born from the collaboration between AutomaticTV, and the UPC
(Universitat Politècnica de Catalunya).

1.1 Objectives

This thesis has been conducted under the Generalitat de Catalunya’s Industrial PhD
program in AutomaticTV and UPC. The main goal of the program is to transfer knowl-
edge and know-how between academia and industry, while developing the research profile
of the PhD candidate. For this, the main contributions of this thesis in AutomaticTV
have been threefold: (i) knowledge assimilation from the academia, (ii) development of
tools to exploit this knowledge, (iii) the exploration of new techniques to further develop
the product. Some results of this industrial thesis are currently being deployed in the
AutomaticTV systems, used by clients around the globe.

On the other side, from an academic research perspective, this thesis has focused on
the Multiple Object Tracking (MOT) challenge. The main goal has been on exploiting
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Figure 1.1: Evolution of four different computer vision related fields throughout the
years. Deep learning techniques became a turning point when AlexNet [1] results were
presented in the ImageNet [4] challenge in 2012.

temporal cues, in form of trajectories, providing information that can be very helpful to
further boost the performance of the tracker. For this, we developed TrajE, a trajec-
tory estimator using mixture density networks and beam search to generate trajectory
hypotheses. We also proposed to use an occlusion reconstruction based on the estimated
trajectories. By adding TrajE to an existing multiple object tracker, CenterTrack [8], its
performance is boosted by 6.3 points in the MOTA score, becoming the current state of
the art in the MOTChallenge [7] multiple object tracking dataset.

1.2 Other contributions

While doing this industrial PhD we contributed to two peer-reviewed publications that
are not within the main focus of the thesis.

Tracked Instance Search. Andreu Girbau, Ryota Hinami, Shinichi Satoh. This work
consisted on using tracking as a generic addition to the task of instance search. In
instance search the goal is to, given an example of an object, find several instance of it
in a given dataset. In the TRECVID dataset [9], the challenge consists on retrieving a



1.3 Thesis outline 3

specific person in a specific location in the BBC TV show Eastenders, using all the video
information needed.

Typically, an instance search system takes a query given as an image (or images) option-
ally region specified (rectangle or segment), and returns a ranked list of possible instances
of that query from a dataset. A problem is that, usually, only a single image is provided,
and the results become solely dependent to the specific characteristics of that image
(pose, illumination, viewpoint...). In other words, the system becomes very dependent
towards the matching between the given visual example and the dataset. Exploiting the
video information, we tracked the given example back and forth in time, and provided
several instances of the example query to the instance search engine. To combine the sev-
eral queries, once the instances rankings were retrieved, a voting and re-ranking method
were also proposed.

This work was published in the 2018 ICASSP (International Conference on Acoustics,
Speech, and Signal Processing) conference.

RVOS: End-to-End Recurrent Network for Video Object Segmentation. Car-
les Ventura, Mı́riam Bellver, Andreu Girbau, Amaia Salvador, Ferran Marqués, Xavier
Giró-i-Nieto. This work consisted on building an end-to-end deep learning model for the
task of instance segmentation. This project uses as the baseline architecture RSIS [10],
a model for semantic instance segmentation, that produces sequences of binary masks
for the different objects within the image using a recurrent neural network in the spatial
domain. RVOS extends RSIS by adding recurrence to the temporal dimension, making
the instance segmentation per object available for video sequences, and resulting on an
end-to-end solution with no pre or post-processing for multiples objects at the same time,
making RVOS a very fast multiple video object segmentator.

RVOS is compared against DAVIS [11], and YOUTUBE-VOS [12] video instance segmen-
tation datasets, and was presented in the 2019 CVPR (Conference on Computer Vision
and Pattern Recognition) main conference.

1.3 Thesis outline

This thesis is divided in two parts. The first part focuses on the technology transfer in
the industrial context, its challenges, and the work done to make AutomaticTV system
improve. The second part consists on the contributions to the multiple object tracking
challenge.
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Technology transfer in the
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Introduction

This first part of the thesis is devoted to the introduction of deep learning technologies
to an industrial context. The main goal of the Industrial PhD program is the flow of
information and knowledge between the academia and the industry in both directions.
This knowledge may not come directly from a research perspective, but also from other
sources, such as coding practices or team and resources management. The industrial
development has been carried out in AutomaticTV, which focuses on automatic sports
broadcasting.

Starting with a little bit of history, broadcasting of sports is dated to start in the 1890s.
The plays between the Montreal and Winnipeg ice hockey teams was being broadcasted
via telegraph, to update the Winnipeg fans of the Stanley Cup challenge series. In the
1920s, the first radio broadcast of an ice hockey game took place. Latter, in 1936 with
the Berlin Olympic games, the first sports broadcasting through television was made.
Since then, the broadcasting technology has improved considerably.

Nowadays, a production of a live match involves the use of OB (Outside Broadcasting)
vans, broadcasting cameras, camera operators, producers, TV engineers, a director, and
other staff that are required to carry on the event. The cost of a minimum infrastructure
for this broadcast might not justify, in monetary terms, the production of minority sports
or leagues. An open debate on whether a sport is minoritary due to the lack of coverage
in comparison to others is being held, but still, the broadcasting model seems not to be
scalable.

In this context, AutomaticTV is born from Mediapro’s R+D department. The objective
of AutomaticTV is to make sport productions and analysis scalable. The target market
is divided into low budget segments, which are primarily low-cost internet streaming
channels, minority sports, schools and college sports, or the lower leagues of major sports,
and higher budget segments, which are major leagues, clubs, and production companies.
AutomaticTV proposed solution is to provide a setting that allows to make an analysis
and/or an automatic production of the event, reducing by a huge amount the cost of a
typical broadcasting operation.

The following sections introduce the AutomaticTV solution, challenges, and an introduc-
tion to deep learning object detection as the main challenge to solve in the AutomaticTV
context.

2.1 AutomaticTV

AutomaticTV bases its solution to a sports production depending on the user needs.
Typically, two or three cameras cover all the game zone, allowing the user to increase the
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viewpoints with more cameras. From these physical cameras we extract the information
to generate, what we call, virtual cameras, who emulate a camera operator. With these
virtual operators the system focuses on the elements of the scene that are interesting for
the user, both at broadcast and/or analysis levels.

The product allows remote operation via internet, and its output can be easily inte-
grated to other solutions that are present in the world of production, including graphics,
repetitions, or direct sound from commentators.

The system works in a fully automated manner, although there is the possibility to
override it and operate manually. As an example, the manual mode is typically used
in training cities, where an analyst follows the different training groups in a training
session, and records several videos in parallel with the virtual cameras for a posterior
analysis. In broadcast use cases, the system uses machine learning and computer vision
techniques for the automatic production, which takes the decisions on the camera move-
ment and framing. Every sport has its own logic, and the aim of the system is to find
the patterns that take the production to a good solution, in both terms of capturing the
plays and production naturalness. It is a very interesting challenge, as there are many
non-controllable elements, e.g. a second ball in the field or players trying to fool their
opponents, that can make the system get confused.

2.1.1 Setting

The AutomaticTV (ATV) solution consists on one to three fixed cameras, called master
cameras, covering the whole scene. In addition, several side cameras can be used to
have different viewpoints. From the master cameras, a stitching of the gaming zone is
made (shown in Figure 2.1), and, using this stitching and the side cameras, a virtual
camera captures the scene to generate a video output. Typically, a huge percentage of
the broadcast consists on the virtual camera moving through the stitching of the master
cameras, making the side cameras an alternative viewpoint for specific actions (such as
a serve in volleyball), replays, or VAR (Video Assistant Referee).

Figure 2.1: AutomaticTV setting. In this example, two physical cameras cover the whole
gaming zone, their stitching is computed, and the video output is generated from a virtual
camera.

The system includes an on-site server, processing the input stream of all the physical
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cameras, generating the production, and sending the outputting broadcast video through
internet to the broadcaster or to the desired streaming platform.

2.1.2 Challenges

The common use case in an automatic production is to have a single virtual camera
(emulating a camera operator) focusing on the region of interest of the scene. The
positioning and zooming of the camera will depend on the production strategy.

Understanding visual contents in a scene is crucial to have a good production strategy.
Whether these contents are objects of interest in the scene, actions, or directly inferring
how a camera operator would move in certain situations, the ATV production system
could use this information to propose a camera movement, and the different kind of shot,
suitable for the action occurring in the scene.

In recent years deep learning has arised as the state of the art for many different methods.
We believe it is not only due to their outstanding performance, but also for being much
”standardizable”, in the sense of being able to be easily customizable to other areas and
challenges.

For the ATV broadcasting strategy, an existing challenge is concerning the object de-
tection. If all the objects in the scene were correctly detected, the strategy could set
its base to these detections. For this, the main challenge regarding the ATV automatic
production strategy addressed in this thesis was to enhance the product by applying
state of the art deep learning techniques, including the building of a dataset, designing
the models architecture, and the training and maintenance of such models.

2.2 Object detection

There are many techniques that allow us to understand a scene. Object detection, object
segmentation, saliency prediction, pose estimation, or scene captioning are some of the
methods that can provide useful tools for further analysis. For the ATV case, knowing the
position and semantic class of every object can give good insights on what is happening
during a sports match, and seems to be the first and probably the most important
milestone.

Object detection is defined as the task of assigning a location and label to the objects
in the scene, answering the question of ”what objects are where?”. This location is
usually modelled as a bounding box, defined depending on the consumer’s taste. Some
researchers use its centroid, width, and height, others the top-left corner, width, and
height, and some others use the top-left and the bottom-right corner. While this 4-
point object modeling has been the main trend throughout the years, some researchers
argue that other definitions for the bounding boxes are more suit to solve the object
detection problem, e.g. predicting these 4 points + rotation of the bounding box [13].
For simplicity, and because typically the elements in a sports field are usually placed
vertically in the scene, we stick with the 4-point bounding boxes. In this part of the
thesis we use centroid (cx, cy), width (w), and height (h), and define a bounding box as:

s = {cx, cy, w, h} (2.1)
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We detect the objects of interest in a scene, depending on the ATV production needs.
For an object detector to be in the ATV production pipeline, the constraints it should
fulfill are: high speed, high accuracy, and low memory consumption.

Here, we review the two main families of object detectors, two-stage and one-stage, and
the state of the art in object detection.

2.2.1 Object detection review

To detect the objects in a scene we could use a sliding window at different sizes and scales
over an image, and classify every proposal to know whether it is an object of interest
or not. If the classifier was fast enough, this implementation would be feasible, and
could work as our object detector. These are the approaches of the so-called ”classical
methods”, SIFT [14] (1999), Viola-Jones [15] (2003), HOG [16] (2005), or DPM [17]
(2009), which use hand-crafted features to extract and classify elements of interest. In
2012, with the appearance of AlexNet [1] using deep learning to do image classification,
there was a huge shift in the paradigm, as the classifier could rely on features learned by
a Convolutional Neural Network (CNN), rather than relying on hand-crafted features.

These deep learning models are very powerful in the sense that they can infer and combine
robust and high level features that we are not able to express, even if internally our brain
does the job. The problem with directly training a deep neural network classifier and
use a sliding window approach is that deep learning methods are very demanding both
memory and computation-wise, making this setting not feasible for a real-time object
detection working along with other many processes.

In this context, two families of object detectors, two-stage and one-stage, appeared. The
two-stage approach assumes this lack of computation resources and, instead of performing
a classification of every position and scale over an image, classifies a subset of positions
and scales, known as object proposals. The one-stage approach parallelizes the feature
extraction across all the locations, making feasible the object detection at high speed.

Two-stage object detectors. Two-stage object detectors rely on two steps (i) a region
proposal stage, where several object proposals from regions likely to have an object inside
are generated, and (ii) a detection stage, where these proposals are regressed to better
fit the object, and classified as an object of interest or background.

The first work using deep learning to detect objects was OverFeat [18] in 2013, which
used a multiscale and sliding window approach integrated with a convolutional neural
network to extract features for classification.

A year after, in 2014, RCNN [19] (Regions with CNN) was published. Its main idea
consists on extracting a set of regions of interest (ROIs) as object proposals using image
segmentation techniques such as Selective Search [20] or MCG (Multiscale Combinatorial
Grouping) [21], rescale each proposal, fit each one into a CNN model to extract features,
and use these deep features to train a Support Vector Machine (SVM) [22] classifier to
predict the presence of an object and its class.

In the early 2015, SPPNet (Spatial Pyramid Pooling Networks) [23] was proposed. Pre-
vious CNN models required a fixed-size input (e.g. 224x224 for AlexNet), meaning that
changing the resolution of the input would lead to wrong results due to the size of the
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CNN activations not matching the feature vector size. SPPNet introduced the SPPLayer,
allowing the CNN to generate a fixed-length representation regardless of the input size
of the image or ROI without rescaling it.

Figure 2.2: The architecture of Fast R-CNN. It computed the features of the whole image
in a single pass instead of resizing all the object proposals. Figure from [24].

In 2015 the Fast and Faster-RCNN [24, 25] were proposed. The first one improved RCNN
by doing a single forward pass of all the image instead of region by region (i.e. using
shared features for every object proposal), crop an object proposal within the features
convolutional map, and apply a ROI-pooling layer (following the idea of SPPNet) to have
a fixed-length feature vector. Also, in Fast-RCNN the SVM classifier was changed by a
set of multilayer perceptrons (fully connected layers) to further boost the performance.
In Figure 2.2 the Fast-RCNN method is depicted.

Faster-RCNN was proposed shortly after Fast-RCNN, and it tackled the problem of
generating region proposals, introducing the RPN (ROI Pooling Network), shown in
Figure 2.3. Instead of relying on an external object proposal method, it developed an
internal smaller network that handed object proposals for the inputted convolutional
features. The RPN introduces the concept of anchor boxes, which are a set of bounding
boxes with a size and scale, that are positioned over the feature map (in a sliding window
approach), and produce a fixed number of object proposals.

In 2017 the Feature Pyramid Networks (FPN) [26], introduced an architecture that ex-
ploited features at different scales, combining them in a forward and backward pass of
the network, in order to have high-level semantics at all scales, and, finally, in 2019 Tri-
dentNet [27] presented an architecture that uses the field of view of the filters to detect
multi-size, multi-scale objects. This is done by using dilated convolutions [28], which are
depicted in Figure 2.4, along with FPN’s pyramid architecture.

One-stage object detectors. One-stage object detectors skip the region proposal
stage, and run directly over a dense sampling of possible locations, as opposed to do
the regression and classification over the object proposals in two stage object detectors.
These methods became feasible due to hardware evolution and parallelization of feature
extraction across all locations.

The first one-stage object detector using deep learning is YOLO (You Only Look Once)
[29], presented in 2016. Shown in Figure 2.5, YOLO divides the image into a dense grid
at the feature map level, each grid cell predicts B bounding boxes, a probability of that
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Figure 2.3: Region Proposal Network (RPN) of the Faster-RCNN. K anchor boxes, given
a size and aspect ratio, are chosen, and the object proposals will be derived from them.
Figure from [25].

(a) Image Pyramid (b) Feature Pyramid Network (c) Trident Network

Figure 2.4: (a) Image pyramid methods perform feature extraction and object detection
for each scale of several input scales. (b) The feature pyramid methods utilize the features
from different layers of CNNs for different scales. (c) Trident Network generates scale-
aware feature maps by trident blocks with different receptive fields. Figure from [27].

bounding box to contain an object, and a probability score per class. A big problem
of the YOLO(v1) model is the detection over small objects. The subsequent versions of
YOLO(v2-v3-v4) [30, 31, 32] improve the main concept of YOLO using many state of
the art techniques.

Figure 2.5: YOLOv1 model. Both bounding box and class estimation are calculated in
the last layer of the network. Figure from [29].

A couple of months later, SSD (Single Shot multibox Detector) [33] was proposed. The
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main contribution of SSD is to perform the detection over multiple feature map resolu-
tions, significantly improving the detection accuracy of a one-stage detector, especially for
small objects. As an example of this, for the class ”bottle” in the VOC-12 [34] challenge,
SSD had an mAP of 52.6, while YOLOv1 had a score of 22.7.

Following the YOLO series, YOLOv2, presented in 2017, applied many state of the art
techniques, along with a new architecture, to improve the initial YOLOv1. From these
techniques we want to highlight three: the model was modified to be fully convolutional,
anchors were introduced in the detection stage, and the training was done in a multi-scale
manner, modifying the input resolution as a data augmentation technique, doable thanks
to the newly fully-convolutional nature of the detector. Following the previous example
on the bottle class in VOC-12, YOLOv2 mAP increased to 51.8.

Also in 2017, RetinaNet [35] presented a new loss term to balance the weight of the
negative samples on the loss function that they called focal loss, and a new neural ar-
chitecture based on the Feature Pyramid Network (FPN) [26]. The aim of the focal loss
is to balance the weights in the loss function of foreground and background classes by
adding an exponential decreasing factor for well classified samples. The main claim is
that this imbalance was the central cause of the one-stage object detectors performing
worse than the two stage object detectors, as the loss was dominated by the grid cells
containing background.

YOLOv3 was presented in the following year (2018). As in YOLOv2, they improved the
detection by developing a new architecture using several state of the art techniques, such
as residual blocks presented in the 2016 in ResNet [36], skip connections, upsampling,
detection at multiple scales, and allowing a grid cell to have multiple classes instead
of a single one. Finally, YOLOv4, presented in 2020, follows the development of new
architectures, maintenance of the code, and new features (usually from the state of the
art on several fields) of the YOLO community.

(a) CornerNet

(b) CenterNet

Figure 2.6: Left: CornerNet. Its aim is to estimate the top-left and bottom-right corners
of an object associated with a class. Right: CenterNet. It detects the center of the
objects in the image, estimating the width and height from it. Figures from [37] and [38]
respectively.

Another trend that has recently attracted the attention of the object detection community
is to eliminate the need of anchor boxes, and infer the bounding box from estimating key
points. CornerNet [37], presented in 2018, changes the paradigm from modeling objects
as bounding boxes to detecting objects as a pair of points (top-left and bottom-right).
Following this idea, ExtremeNet [39], presented in 2019, detects the top-left, bottom-
right, and center points of all objects. Finally, CenterNet [38], also presented in 2019,



14 Introduction

models the objects as single points (centroid of the object), and derives the information
needed from there (the width and height in the case of object detection), and can be
easily extended to other fields such as pose estimation.

Other recent works (2020) considering new architectures for improving the model effi-
ciency and accuracy are EfficientDet [40], which proposes a weighted bi-directional feature
pyramid network and a scaling method to rescale the model architecture efficiently, and
DETR [41], which introduces transformers for the task of object detection.

2.2.2 Object detection in the ATV context

From the ATV perspective, the object detector should be, as all the other processes
in the ATV production pipeline, as fast and lightweight as possible. While two-stage
object detectors are still giving a better performance than one-stage ones, several works
in progress [35, 42] are specifically working on the training step of the one-stage object
detectors to close that gap, while keeping the low run-time of the architectures.

This is the capped version of this thesis. To get full access to the rest of the document,
please contact doctorat.utgcntic@upc.edu.
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Introduction

This part of the thesis is devoted to the research conducted on the multiple object tracking
challenge. In this introductory chapter, the multiple object tracking and the trajectory
estimation frameworks are presented, as well as some core concepts regarding each of
these tasks, and the state of the art.

In Chapter 4 we present TrajE, a trajectory estimation method based on mixture density
networks that aims to boost existing multiple object trackers by predicting the trajecto-
ries of the objects in the video sequence, its definition, integration with two state of the
art multiple object trackers, and experiments.

3.1 Multiple object tracking

The Multiple Object Tracking (MOT) task aims to estimate tracks of multiple objects
across a sequence of frames. These objects must be detected with an accurate bounding
box, and their identity over time must be maintained.

Maintaining the identity of the objects detected in a sequence can be very helpful for
scene understanding and its further analysis. For instance, in the case of a sports match
(e.g. football or basketball), maintaining the identity of every player could be used for
detecting offensive or defensive actions and collecting player statistics.

Tracking multiple objects in a video sequence remains an open problem. Some of the
challenges come from the unknown number of present objects (as they may vary along
the sequence), ambiguities in assigning new detections to the existing tracks (e.g. due to
occlusions), or high similarity between objects.

3.1.1 MOT concepts

To solve the multiple object tracking challenge, recent methods benefit from the advances
in object detection, and mainly adopt the tracking-by-detection paradigm [43]. This
consists on (i) obtaining the detections per frame, and (ii) linking the detections to build
the objects track along the video sequence. For this reason, many MOT algorithms
formulate the task as an assignment problem. Other techniques that are being explored
are: regressing the bounding boxes from one frame to another [44, 8], applying correlation
filters to the features extracted from a CNN [45], or treating the different objects in a
scene as agents from a reinforcement learning perspective [46].

Throughout this thesis we use the following definitions:

Object ID. The identifier assigned to a given object. It consists on a label (usually a
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number) that specifically identifies the object from the others.

Track. List of positions assigned to an Object ID until the current time instant. For a
whole video sequence, tracks gather the position information of all tracked objects.

Trajectory. Concrete instantiation of the past, current, and future positions that an
object can take.

Motion. Displacement of a given object between two time instants.

To introduce the main concepts of MOT, we put focus on the tracking-by-detection ap-
proach. The following steps show the main pipeline.

Detection. The first step is to detect the objects in a scene. These object detections can
be already provided by the dataset [7, 47], or be detected by a custom object detector [25,
33, 30, 38]. Formally, although some works characterise detections with fewer parameters
[38], we define each detection as

s = {x, y, w, h} (3.1)

where (x, y) correspond to the centroid of a bounding box, and (w, h) correspond to the
width and height of the bounding box.

Assignment. Every detection is assigned to a track. If the detection is not assigned to
an existing track, a new track is defined with the detection as its first element.

To assign a detection to a track, a distance between the track and the new detection is
computed using several measures, that range from the difference between the last object
position in the track and the current detection, to the computation of a feature embedding
associated to every detection in the scene that compares to a track embedding, usually
computed over the last few detections associated to the track (visual example in Figure
3.1). A technique widely used to generate this feature embedding are siamese networks
[48], which use a triplet loss regarding positive and negative samples of an anchor object
to cluster the ones corresponding to the same object (positive samples), while keeping
the negatives samples (from other objects) at a distance.

Track management. Every track has a state associated to it depending on its inter-
action with the environment. When a track is initialized, i.e. a track is born due to a
detection not assigned to any existing track, the track state is set to active, and it stays
in this state while subsequent detections are associated to the track. If the track lacks a
detection in a posterior time step, the track state is set to lost. A track can be jumping
from one state to the other, depending on whether it has a detection associated to it or
not. Usually, a patience indicator is used to terminate the tracks that have spent too
much time in the lost state.

Datasets. The datasets for the multiple object tracking challenges include video se-
quences containing different point of view scenes (from a top-down perspective to almost
horizontal). During the sequence, the camera can be static or in movement. The objects
in a scene are labeled with an ID, and their positions are given as bounding boxes aligned
to each frame time-stamp, thus being modeled as (id, t, x, y, w, h). Popular datasets in
the field are KITTI-tracking [49], UA-DETRAC [47], MOTChallenge [7], and MOTS
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Detection

Track assignment

Detection

Track assignment

Tracks Detections

Track assignment

Figure 3.1: Track assignment using feature embeddings. The embeddings from the de-
tections in time t are compared to the tracks coming from (t− τ ,..., t− 1), and assigned
to a track if the embeddings are similar.

(which extends the challenge to segmentation) [50]. In Figure 3.2, we show two examples
on MOT datasets (MOTChallenge and UA-DETRAC).

MOTChallenge dataset

UA-DETRAC dataset.

Figure 3.2: Samples on two multiple object tracking datasets. MOTChallenge focuses
on pedestrians, while UA-DETRAC focuses on tracking cars in traffic.

3.1.2 State of the art

In general, in tracking we can differentiate between offline [51, 52, 53, 54, 55, 56, 57, 58,
59, 60, 61, 62, 63] and online [64, 44, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 45, 8]
methods. Offline methods try to globally optimize the tracks tacking into account a whole
video sequence (or a part of it), whereas online methods base their decision on previous
observations and current data, and do not take into account future information.

Even though the two perspectives usually tackle the multiple object tracking problem
from different angles, both paradigms have some common challenges to solve.
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To have better object representation in a video sequence, [59, 76] combine high-level
detections and lower-level features (in both cases superpixels) to track the objects, [58]
uses head and body detections for tracking pedestrians, [67, 74, 55] use CNN features
on different network depths, while [54] aggregates multiple features based on temporal
attentions, [78] builds a graph similarity model between objects, and [65, 67] build deep
affinity networks to model the object at different time instants.

To refine tracks [52] uses behavioral patterns to achieve global consistency, [51] exploits
different degrees of dependencies among tracks, [56, 66, 68, 63] focus on filtering noisy
detection candidates, [57] cleaves and reconnects the tracks by means of a siamese re-
current network, [62] uses an iterative clustering method to generate tracklets, [60, 61]
find a global solution by optimizing a graph, [69, 77] use recurrent neural networks for
data association, [73] encodes awareness within and between target models, and [75] uses
relation networks in spatio-temporal domain to combine object cues.

To simplify the tracking pipeline, [70, 71] associate detections in t− 1 to t by means of a
Kalman filter and the Hungarian algorithm, [44, 8] connect the detections in t− 1 to the
detections in t by regression, [64] directly assumes good detections in all frames and uses
the IoU (Intersection over Union) metric to associate the tracks, while [45] computes the
correlation between features from a deep network at multiple depths.

In this thesis, we focused on exploiting the trajectory information for multiple object
tracking, and built TrajE, a trajectory estimation model that can be added to those
aforementioned trackers that use motion information, showing that it can be useful to
boost their tracking performance. In addition, the estimated trajectory during an occlu-
sion can be included to the tracks once they are recovered.

It is not trivial to categorize TrajE as online or offline. If the estimated trajectory is
not used to fill the gaps between occlusions, we consider it as a fully online method.
Nevertheless, as the trajectory information can be used to fill these gaps, we talk about
an online method with a delayed response on the information that is being computed
online.

3.2 Trajectory estimation

The trajectory estimation task aims to infer future information of dynamic objects. Sev-
eral tasks, such as self-driving vehicles, risks prevention, and robotics, use such predictions
to make decisions as key factors for their success.

In the context of multiple object tracking, several of its challenges may be alleviated using
trajectory information, as knowing the posterior locations of an object may disambiguate
and solve situations such as occlusions, re-identification, and identity switching.

The challenge of making accurate predictions of a dynamic object (known as agent) arises
from the complexity and the variety of movements that are found in nature, and the way
we are able to capture such information. Human motion, for instance, would rely on
information not only of the person’s past positions, but also on external information
(other people crossing paths or objects in the scene), social interaction, or the person’s
free will to change the walking pattern for no apparent reason.

In this section we introduce trajectory estimation concepts, focusing on human motion,
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and the state of the art.

3.2.1 Trajectory estimation concepts

When analysing the human motion prediction challenge, [79] decomposes the different
methods based on the modeling approach and the type of contextual cues used (if avail-
able). The motion modeling approach consists on how the prediction approaches rep-
resent human motion, and the contextual cues are all the relevant stimuli (internal and
external) that can influence the motion behavior.

Based on the model, the different methods are classified in (i) Physics-based methods,
where motion is predicted by dynamics equations based on physical models, (ii) Pattern-
based methods, where the dynamics are learned from data, and (iii) Planning-based
methods, where there is a reasoning on the agent actions. These models can use (or not)
available contextual cues, classified in [79] as (i) Target agent cues, which use the target
agent information, (ii) Dynamic environmental cues, where the target agent is aware of
other agents, and (iii) Static environmental cues, where the target agent is aware of the
environment information (e.g. static obstacles, such as trees or buildings).

In Figure 3.3, the typical elements of a trajectory estimator are depicted. First, there
is a stimuli coming from the accessible information (positioning of an agent over time,
environmental information...), this information is fed into a trajectory estimation model,
and the agent’s trajectory prediction is outputted.

Lately, the trend in the field is to use pattern-based methods as the trajectory estimation.
These methods follow the Sense - Learn - Predict paradigm, and learn motion behaviors
by fitting different function approximators (i.e. neural networks, hidden Markov models,
Gaussian processes) to data. These Pattern-based methods are classified in [79] as se-
quential methods, which learn models conditioned on the past states, and non-sequential
methods, which directly model the distribution over full trajectories.

Figure 3.3: Typical trajectory estimation pipeline. A stimuli from an agent is captured
depending on the data available, processed by a model, and the trajectory estimation of
the agent is predicted. Figure from [79].

First, the trajectory estimator captures the available data (stimuli in Figure 3.3), thus



22 Introduction

senses. These stimuli depend on the contextual cues available. They can be partial
trajectories, the agents motion, environment information (such as scene geometry), and
other extra stimuli that can directly or indirectly influence the movement of the agent.
In the trajectory estimation setting, it is common to assume perfect tracking over the
sequence for the different agents.

The next step is to model the incoming data to predict trajectories (prediction method
in Figure 3.3). In the pattern-based approach, this model is learned from the training
data.

Finally, the prediction of the agents trajectory is inferred by feeding the stimuli to
the model. The trajectory estimation can be given in a parametric, non-parametric or
structured form of predictions, such as probability distributions over grids, singular or
multiple trajectory samples, or motion patterns using graphical models.

It is common in the trajectory estimation methods to use contextual cues, depending
on the data available. Target agent cues include agent motion (position and sometimes
velocity), articulated pose (such as head orientation), and semantic attributes (such as
age and gender or personality). Dynamic environmental cues can be ignored in the so-
called unaware methods (where the trajectory estimation does not take into consideration
other agents), can take into account other agents individually, or as a group. Finally,
regarding the static environmental cues, trajectory estimators can consider obstacles in
the scene (static elements or no-go zones), can have the map information (taking into
account the topology of the terrain), or can be unaware of this information, assuming an
open-space environment.

Datasets. The datasets for the trajectory estimation challenges usually include video-
cameras with static top-down view of the scene, or ground-based lasers and/or depth
sensors, mounted on a static or moving platform. The agents in a scene are labeled with
an ID, and their positions are given as points together with the frame time-stamp, thus
being modeled as (id, t, x, y). Furthermore, social grouping information, motion, interac-
tion between agents, presence of obstacles in the environment, and other contextual cues
can be provided.

Currently, the trajectory estimation community is working towards a common benchmark
to compare among methods [80]. Some trajectory estimation datasets include ETH [81],
UCY [82], NGSIM [83], KITTI [84], and Stanford drone [85]. In Figure 3.4, two dataset
samples (UCY and Stanford drone dataset) are depicted.

3.2.2 State of the art

Taking into account the previous classification, based on the model, TrajE follows the
pattern-based sequential approach. It is fully data-driven, meaning that we do not rely
on any prior information to model the trajectories to estimate, letting the model reason
about the underlying distribution of the data conditioned on the previous observations.

To model temporal dependencies for a sequence, [86, 87, 88, 89, 90, 91, 92, 93] combine
social information to predict trajectories, [94] uses convolutional neural networks with
overlapping windows, [95, 96, 46] consider a pedestrian in a scene as an agent that makes
decisions to predict the next position, and [97, 98] define a spatiotemporal graph to
predict multiple futures.
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UCY dataset

Stanford drone dataset.

Figure 3.4: Samples on two trajectory prediction datasets, both focusing on pedestrians.

Specifically, [96, 46] use reinforcement learning to predict the objects position in the next
time step, [87, 86, 97, 98] use graphical models to model pedestrian interactions, [93]
propose a two-step architecture for overcoming mixture density networks limitations, and
[89] proposes a GAN for trajectory prediction, using an LSTM to model each trajectory
and shares the information as in [88], taking into account obstacles in the scene and other
objects in the modelled trajectories.

To predict trajectories, [88, 91, 93, 97, 98], as TrajE, use mixture density networks.
Regarding contextual cues, all these methods are aware of the dynamic obstacles in
the form of other agents, and some take into account the static obstacles in the scene
[88, 91], are aware of the map geometry and topology [93] (considering roads and sidewalks
in the scene), or are able to use many diverse contextual information [98], given its
modular nature. All these works use complex models, combining the different agent cues
in a social-aware layer in [88], using generative-adversarial networks in [91], taking into
account the whole image as input to have contextual information in [93], or introducing
variational autoencoders with recurrency in a graph formulation in [97, 98].

In contrast, we define TrajE as a much lighter model: it consists on a single layer recur-
rent neural network, it is unaware of the other agents (dynamic cues) or environmental
elements (static cues) in the scene, and the inputs of the network are directly the offsets
between the centroids of the object previous positions, i.e. without any other visual or
previously ordered information.

We added TrajE to two state of the art multiple object trackers, CenterTrack [8] and
Tracktor [44], evaluating them against two well known datasets in multiple object track-
ing: MOTChallenge 2017 [7], focused on pedestrians in the wild, and UA-DETRAC [47],
focused on cars in traffic, modeling the trajectories of all the objects in the sequences.
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Mixture Density Networks for
Trajectory Estimation

To tackle the multiple object tracking problem there are many active fronts in the com-
munity, which are directly associated to parts of the multiple object tracking pipeline,
such as object modelling, data association, or track refinement. Lately, with the emerge
of the tracking-by-detection and tracking-by-regression paradigms, a strong prior of the
object position has become determinant. This prior allows the system to associate tracks
with detections, removing them from the combinatorial association problem between
objects from different time instants, alleviating the system from possible ambiguities.

To infer this positional prior, it is a common practice to use motion estimators over
consecutive frames (e.g. the Kalman filter or optical flow). Though being effective, we
observed that this motion is usually considered as an add-on for compensating some
weakness that the tracker might have. Instead, we believe that modeling the trajectories
of the objects in a scene can provide many useful insights, and can become a key factor
of a tracker’s performance.

We built TrajE, standing for TRAJectory Estimator, a trajectory estimator based on
mixture density networks, that learns to estimate the underlying distribution of an object
trajectory. By sampling from such a distribution, multiple hypotheses for likely positions
of the object can be forecasted.

We combine TrajE with beam search, a widely used technique in machine translation
algorithms, in order to keep several hypotheses alive per object. This is not only useful for
track association, but also for re-identification, as an object trajectory is being estimated
even when the object is occluded, allowing to infer the likely position of an object after
an occlusion. We use the estimated trajectory to reconstruct the object track after an
occlusion, allowing the tracker to reduce the amount of false negatives corresponding to
the occluded parts where the object detector was not able to properly detect the object.

We designed TrajE as a lightweight model, consisting in a single layer recurrent neural
network, capable of estimating the trajectories of the objects in a video sequence. We
added TrajE to two state of the art multiple object trackers, CenterTrack [8] and Tracktor
[44], improving their performance by a considerable margin.

The rest of the chapter depicts mixture density networks and beam bearch in the key of
TrajE, the algorithm itself, and the experiments conducted when applying TrajE on top
of the two aforementioned trackers, tested in two datasets, MOTChallenge 2017 [7] and
UA-DETRAC [47].
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4.1 Mixture Density Networks

Minimization of error functions such as sum-of-squares or cross-entropy leads a neural
network model to approximate the conditional averages of the target data, conditioned
on the input vector [99]. For problems involving the prediction of continuous variables,
the conditional averages provide a very limited information on the underlying structure
of data.

For this reason, predicting the outputs corresponding to input vectors from the condi-
tional probability distribution of the target data might lead to better results, as in the
context of anomaly detection [100], or handwriting generation [101]. To estimate such
a distribution we make use of mixture density networks (MDNs), introduced in [99].
These networks combine a conventional neural network with a mixture density model
(e.g. a mixture of Gaussians), so that the neural network estimates the parameters of
the distribution.

Following a set of detections from t− τ to t, TrajE estimates the parameters of a distri-
bution, in this case a bivariate Gaussian distribution, that models the evolution of the
trajectory for the next time step t + 1. From such a distribution, we sample a set of
possible states corresponding to a set of hypotheses for the position of the object in the
next time step.

TrajE takes an input a vector, xt, that consists on a real-valued pair (x1,t, x2,t), repre-
senting a trajectory point of an object being tracked. As we are dealing with multiple
object tracking, we take the centroids of the bounding boxes as the trajectory points.
The network outputs, ŷt, model the parameters of a distribution Pr(xt+1|yt). Some of
these outputs model the mixture weights πkt while the others estimate the parameters of
each mixture component. In this case we use a mixture of Gaussians, so the remaining
outputs are in charge of estimating the mean µkt , variance σkt , and correlation coefficient
ρkt for the M Gaussians that generate the probability distribution. Note that the mean
and standard deviation are two dimensional vectors, whereas the weight component and
correlation coefficient are scalar.

xt ∈ R× R (4.1)

yt = {πkt , µkt , σkt , ρkt }Mk=1 (4.2)

πkt ∈ R; µkt ∈ R2; σkt ∈ R2; ρkt ∈ R (4.3)

It is important to remark that the mixture components must satisfy several constraints
in order to correctly form a valid probability density distribution. To achieve this, several
operations are made to the direct outputs of the network ŷt = {π̂kt , µ̂kt , σ̂kt , ρ̂kt }Mk=1. First,
weights πkt must satisfy

M∑
k=1

πkt = 1 (4.4)
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which can be achieved by applying the softmax normalization.

πkt =
exp(π̂kt )∑M

k′=1 exp(π̂k
′
t )

(4.5)

For the other components, to keep their values within a meaningful range, µkt remains
the same, the elements of σkt must be positive, and ρkt must be a value between (−1, 1),
therefore we apply:

µkt = µ̂kt (4.6)

σkt = exp(σ̂kt ) (4.7)

ρkt = tanh(ρ̂kt ) (4.8)

Formally, the probability density Pr(xt+1|yt) of the next object position xt+1 given the
mixture components yt is defined as follows:

Pr(xt+1|yt) =

M∑
k=1

πktN (xt+1|µkt , σkt , ρkt ) (4.9)

where

N (x|µ, σ, ρ) =
1

2πσ1σ2
√

1− ρ2
exp

[
−Z

2(1− ρ2)

]
(4.10)

with

Z =
(x1 − µ1)2

σ21
+

(x2 − µ2)2

σ22
− 2ρ(x1 − µ1)(x2 − µ2)

σ1σ2
(4.11)

Mixture density networks are trained by maximising the log probability density of the
targets under the induced distributions. Equivalently, it is common to minimize the
negative log likelihood as loss function.

L(x) =
T∑
t=1

− log

(∑
k

πktN (xt+1|µkt , σkt , ρkt )

)
(4.12)

where T corresponds to the length of a sequence (in this case an object trajectory).

Biased sampling. A problem with directly sampling from the generated distribution
is that the generated trajectories might lead to a huge space of possible trajectories per
object. As the process is iterative (the probability of every output depends on all previous
outputs) and the number of samples limited, the generated trajectories may not lead to
an optimal solution, as seen in the experiments section 4.4, Figure 4.12 and Figure 4.13,
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for bias b = 0. A way to palliate this effect is by biasing the sampler towards more likely
predictions at each time step. To do so, we modify the distribution as in [101]:

πkt =
exp(π̂kt (1 + b))∑M

k′=1 exp(π̂k
′
t (1 + b))

(4.13)

σkt = exp
(
σ̂kt − b

)
(4.14)

where b ≥ 0, being Equation 4.5 and Equation 4.7 a specific case for b = 0.

4.2 Beam Search

Beam search is a well known technique used in the Natural Language Processing (NLP)
community, widely used in tasks like machine translation.

When translating a sentence to another language, there are many possible combinations of
words that could be outputted, but some solutions are better than others. These solutions
may come not in the first word, but after a few generated words. Ideally, keeping all the
possible combinations would be optimal in terms of translation, but unpractical in terms
of computation. To deal with it, a subset of options is used and explored in order to find
the best translation to the given text.

In the context of multiple object tracking, we hypothesize that a beam search technique
would be useful to take into account multiple trajectory hypotheses, as sampling a single
point (even the most likely one) does not guarantee the best solution.

In beam search, B stands for beam width. In machine translation the top-B predicted
words are considered for making the translation at every estimation step. This is, when
translating a sentence, the best B possibilities (given their likelihood) are taken as the
first word hypotheses. The next word to be generated comes from this top-B words,
ending up in B2 combinations of words. After this, again, the top-B words are chosen
(i.e. pruning the rest), and the next word is generated from these. It is important to
note that all the hypotheses are conditioned on the previously generated hypotheses.

The translation is terminated when an <EOS> (End Of Sequence) token is estimated as
the next word. Finally, the sentence with the highest likelihood, given the T predictions
that form the translated sentence, is chosen as the best translation for the input sentence.
This is done by keeping the top-B trajectories that maximize the conditioned probability
of the output (translated) sentence y conditioned to the input sequence x, and choosing
the one that maximizes the combined likelihood.

argmax
y

Ty∏
t=1

P (y<t>|x, y<1>, ..., y<t−1>) (4.15)

Equivalently, to have a numerically stable algorithm, we can maximize the log probability
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of the output.

argmax
y

Ty∑
t=1

logP (y<t>|x, y<1>, ..., y<t−1>) (4.16)

In our multiple object tracking case, B encodes both the amount of bounding box centroid
positions that are going to be sampled from the trajectory distribution, coming from the
MDN, and the beam width.

We start the tracking step by doing B hypotheses for the position in the next time step
t + 1 of an object associated to a track. These hypotheses are propagated and, if there
is no new detection associated to the track, again B hypotheses are made, ending up
with B2 hypotheses. To avoid an exponential growth, we prune to keep B trajectory
hypotheses, as it is usual in machine translation algorithms. Note that, for B = 1, beam
search becomes the greedy search algorithm.

In the multiple object tracking scenario, this cycle is over when a) the trajectory being
estimated is assigned to a detection, or b) the track patience counter is over, and the
track is terminated.

4.3 Trajectory estimation with mixture density networks

To estimate the trajectories of the objects in a video sequence we combine a mixture
density network, that aims to model the distribution of the trajectory position in time
t+1, with a beam search technique to explore several track hypotheses. We believe that,
for this problem, using recurrent neural networks is suitable, as the output distribution
is conditioned not only on the current input, but on the history of previous inputs.

RNN

Figure 4.1: Main concept of TrajE. The offset between the centroids of two consecutive
detections corresponding to a track is computed, and fed to a single layer recurrent neural
network, whose outputs correspond to the parameters of a mixture of Gaussians. From
these, a probability density function is generated, and the centroids corresponding to the
next possible position of the track are sampled from such a distribution.

As trajectory points we use the centroid of the detected objects bounding boxes. For
each bounding box centroid xjt = (xj1,t, x

j
2,t) assigned to a track, an instance of TrajE
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will estimate a mixture of Gaussians, modeling the distribution from where the centroid
xjt+1 is going to be sampled. Concretely, we feed the difference between the centroids

xjt−1 and xjt , ∆(xjt−1, x
j
t ), to the network, and sample the B offsets in the next time

step ∆(xj,bt , x
j,b
t+1) from the distribution. Predicting the trajectory distribution using the

offset instead of the position values can be seen as predicting the motion distribution
itself. Also, as in [101], using offsets was essential to train the network. For simplicity,
we refer to centroids instead of centroids offset for the rest of the chapter.

Model architecture. As the number of objects in a scene can grow very large, we
designed the backbone network of TrajE as a lightweight architecture consisting in a
single layer Gated Recurrent Unit (GRU) [102] with a hidden state of size 64 connected
with 4 heads of fully connected layers. The two heads that predict the mixture weights
π and correlation coefficient ρ have dimension M , while the two heads that predict the
mean µ and variance σ of the coordinates have dimension 2M . The number of Gaussians
used (M) can vary, depending on what is being modeled. In TrajE, we set the number
of Gaussians in the mixture model to M = 5.

4.3.1 Integration of TrajE to object trackers

We have integrated TrajE into two existing multiple object trackers, CenterTrack [8] and
Tracktor [44]. We substituted the motion modules of both trackers for the trajectory
estimator, allowing not only to keep estimating the motion, but also the trajectory.

Baselines. CenterTrack and Tracktor are defined as trackers-by-regression, meaning
that, by ”regressing” the detections in t−1 to detections in t, they are able to assign the
newly detected object in t to the same track where the original object in t− 1 belonged.

The main idea in CenterTrack is to regress consecutive frame centroids to associate the
tracked objects from t−1 to the detections in t. They extend the CenterNet [103] object
detector to a network that is able to associate detections over time by means of feeding
the model with two consecutive images (It−1, It) and the heatmap of the detections in
the previous frame (Ht−1), biasing the detector towards previous detections. To further
boost their performance, the model computes, as the motion model, the offset between
detections in two consecutive time steps, as some sort of sparse optical flow between
object centroids. By modeling the objects as points and estimating their motion as
offsets, the tracks and detections are associated by means of L1 distance. In Figure 4.2,
the regression of detections in CenterTrack from t− 1 to t is depicted.

Figure 4.2: CenterTrack regression step. From two consecutive images and a heatmap
corresponding to the previous detections, the centroids, widths and heights of the detec-
tions in the next time step are computed. Also, the offset between each detection from
t− 1 to t is outputted, and used in a posterior assignment step. Figure from [8].

Tracktor [44] also forms tracks by propagating tracked objects from t− 1 to t, regressing
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them using the ROI-pooling layer present in Faster-RCNN [25], as if they were object
proposals computed by the network. To improve their results, they make use of re-
identification using siamese networks and a motion model based on the Constant Velocity
(CV) assumption or Camera Motion Compensation (CMC), depending on whether there
is large camera movement in the video sequence or not. In Figure 4.3, the regression step
used by Tracktor is depicted.

Figure 4.3: Tracktor regression step. The detections from t − 1 are regressed by means
of the ROI-pooling layer of the Faster-RCNN [25] object detector. Figure from [44].

Both methods heavily rely on the positioning of the objects to associate them with the
existing tracks projected from t−1, leading to the intuition that a better projection of the
objects between time instants should straightforwardly boost the trackers performance.
Also, with a reliable estimation of the trajectory, the re-identification and occlusion
reconstruction problems would be also reduced, as both trackers association mechanism
is highly biased towards the detections on the previous frame, making it difficult to
associate lost objects further in time (from t− τ) to newly detected objects in t.

4.3.2 Trajectory estimation applied to tracking

An active or lost state is associated to an object being tracked, depending on whether it
is detected and associated to an existing track, or lost due to occlusions, false negatives
in the detection phase, or leaving the scene.

When a track is initialized, a patience value is assigned to it. For every frame the track
is not associated to any detection (lost state), the patience value of the track is decreased
by 1, until it becomes 0, where that object tracking will be considered as terminated. If
the object is associated to a track (active state) the patience for that specific track is
reset. As TrajE helps the tracker handle occlusions, we set this patience value to 100,
allowing objects to reappear in the short-mid term. To add TrajE to a tracker, we define
the following common track handle policies.

Active tracks. Given an active track in t − 1 and its B position hypotheses in t, the
active track is associated with a detection in t. The beam corresponding to the trajectory
that best fits the detection is chosen, its hidden state copied to the other B− 1 instances
of the trajectory estimator, and its patience reset. The input to the trajectory estimator
will be the offset between the new detection and the previous one, and there will be again
B possible object mappings in t+ 1.

Lost tracks. If a track in t is not associated to any detection, the track will be considered
as lost. From this moment until a detection is associated with this track (using re-
identification) in t+ τ , the track will be in the lost state. The B sampled hypotheses in
t− 1 are kept, and fed to B new instances of the trajectory estimation network in t. The
resulting B2 hypotheses are pruned to B to avoid exponential growth.
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Forwarding the information of lost tracks is important to re-identify the track and recover
from occlusions. Also, the object track after an occlusion can be reconstructed if the new
detection is coherent with the estimated trajectory.

Recovered tracks. If a lost track since t− τ is associated to a detection in t, the best
beam given the likelihood of the estimated trajectory is associated to that track, the
beam search exploration is reset, and a decision is taken whether the trajectory that was
being estimated in the lost state (e.g. due to an occlusion) is added to the track or not.

This decision is made regarding the spatio-temporal coherence of the new detection and
the estimated trajectory. To compare both, we consider a bounding box with the centroid
of the estimated trajectory and the width and height of the last detection in t− τ . If the
detection associated to the track in t and the estimated trajectory of the lost object in t−τ
have an Intersection over Union (IoU) above a certain threshold (we use 0.5), we consider
that TrajE generated a good trajectory estimation, and keep the trajectory as part of
the path that the track has followed. Otherwise, we discard the estimated trajectory
during the occlusion, and associate only the new detection to the track. In Figure 4.4 we
graphically depict the beam search, track recovery, and occlusion reconstruction for an
object.

Terminated tracks. If the track remains a maximum number of time instants (max-
imum patience) in the lost state, the track will be terminated and removed from the
possible re-identification with new detections in the sequence.

Figure 4.4: Visualization of the beam search and occlusion handling. First, B (for
illustration purposes in this case B = 2) hypotheses of where the object could be in the
next time step are sampled from the generated trajectory distribution. If a detection is
associated to a track, the beam search corresponding to that track is reset. If no detection
is associated to an active track, several hypotheses are sampled from the trajectory
distribution and pruned (red crosses) in the next time step to keep B hypotheses. If
the track is recovered (a detection is assigned to the track again), and the estimated
trajectory is coherent with it, the computed trajectory during the lost state of the track
is added to the object track. The occlusion-filling bounding boxes are generated using
the centroids of the estimated trajectory, and the width and height of the new detection.

Training. To train TrajE we used the MOT17 [7] challenge data. To generate the
training data, we sampled random trajectories from objects in different sequences. These
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trajectories are split in batches of 100 points in order to have different beginnings and
ends of a trajectory. Also, we apply noise to the input sequences to make our model
more robust to noisy detections. We end up with 20000 sequences for training and 2000
as validation set. We trained the model for 100 epochs with a learning rate of 0.001,
multiplying it by a learning decay of 0.1 at iterations 15, 40, 80.

4.3.3 Integration strategies

We have analyzed three ways to integrate TrajE to an object tracker based on the explo-
ration strategy after estimating the trajectory probability density function. The first one
is a Greedy Beam Search (GBS). It takes the local best sample (using maximum likeli-
hood) at every time step given the estimated distribution as the motion of the tracked
object. The second one is a Pure Beam Search (PBS) that uses all B hypotheses to
forward the track in B possible ways. If a detection is associated to the track, the best
beam given the historic is chosen in order to keep a single detection per track at every
time step. Note that, for B = 1, both strategies become the same.

The last strategy is the Best Mean (BM), which takes the most likely mean of one of the
Gaussians forming the probability distribution of the trajectory. Note that the difference
between GBS and BM strategies is that GBS samples from the distribution, while BM
assumes that the best possible position in t+ 1 is the mean of the Gaussian with higher
likelihood of the mixture of Gaussians. BM ignores the beam search, as all the samples
are the same (the most likely mean).

In CenterTrack, we swapped its offset estimation directly with GBS, PBS or BM. Note
that CenterTrack’s offset estimation matches detections by estimating the objects offset
from t to t− 1, while TrajE estimates the trajectory of the objects from t− 1 to t. For
the GBS we swapped the motion module output (offset estimation in this case) with the
best sample given by TrajE at every time step. In this case we assume that taking the
best local decision per frame will lead to the best possible result. In a similar way, for
the BM strategy we take the most likely position of the object by taking the mean of the
Gaussian with higher likelihood in the distribution generated by TrajE.

For the PBS, we take the B position hypotheses per object in t, compare them to the
detections of the CenterTrack in t, and solve an assignation problem to end up with their
closest detection (if any). For all the different strategy cases, the assignment of IDs to
the detections follows the same strategy as in CenterTrack, which links the projected
object from t− 1 to t to its closest detection, in terms of L1 distance, in t.

Tracktor relies on the regression from the Faster-RCNN’s ROI pooling layer to map the
objects from t−1 to t. For the GBS and BM strategies we follow the same strategy as in
CenterTrack’s case, i.e. swapping the motion estimation by the next most likely sample or
mean (for GBS and BM respectively), projecting the object to its next probable position
in t.

For the PBS, B hypotheses are projected to the next time step (using the width and
height of the projected bounding box), and B regressions per track are made. If sev-
eral detections are associated to the track, the most probable trajectory associated to a
detection (given maximum likelihood) is chosen.



34 Mixture Density Networks for Trajectory Estimation

4.4 Experiments

Experiments and ablation studies are performed in the MOTChallenge dataset [7] (pedes-
trians). To see whether adding TrajE to a tracker generalizes, we also evaluate it against
the UA-DETRAC dataset [47] (cars), using the same trajectory estimation model trained
on pedestrians from the MOTChallenge training set.

The MOTChallenge dataset contains 14 challenging video sequences recording pedes-
trians in the wild (7 for training, 7 for testing) with both static and moving camera,
recorded in the wild (unconstrained environments), and different locations. The UA-
DETRAC dataset consists on 100 videos (60 for training, 40 for testing) with static
camera (stable or unstable), recording the road traffic.

Training sequences for MOTChallenge 2017

Name FPS Resolution Length Tracks Boxes Density Camera Viewpoint Conditions

MOT17-02 30 1920x1080 600 (00:20) 49 17,833 29.7 static medium cloudy
MOT17-04 30 1920x1080 1,050 (00:35) 80 47,557 45.3 static high night
MOT17-05 14 640x480 837 (01:00) 124 6,818 8.1 moving medium sunny
MOT17-09 30 1920x1080 525 (00:18) 25 5,257 10.0 static low indoor
MOT17-10 30 1920x1080 654 (00:22) 54 12,318 18.8 moving medium night
MOT17-11 30 1920x1080 900 (00:30) 67 9,174 10.2 moving medium indoor
MOT17-13 25 1920x1080 750 (00:30) 68 11,450 15.3 moving high sunny

Total training 5,316 (03:35) 512 110,407 20.8

Table 4.1: Overview of the sequences included in the MOTChallenge 2017 training set.

For the MOTChallenge, we use the object detection models provided by the two trackers
(and re-identification in case of Tracktor), for the UA-DETRAC dataset we re-trained
those models for car detection and re-identification.

Comparing trackers is a difficult task. Both MOTChallenge and UA-DETRAC datasets
provide the detections of the objects of interest for the different sequences. These detec-
tions are defined as public detections, and the idea behind this is that, using the same
detections, the trackers would be comparable in terms of tracking itself. In reality, these
detections are usually a source of errors (e.g. missing detections, false positives, repeated
detections over the same object, the detection size of of an object is not consistent over
frames...). In Figure 4.5, samples on the three detectors provided by the MOTChallenge
dataset are depicted.

For this, many methods started to refine these detections to do tracking [104], including
them in the tracks once modified. Following this refinement idea, several trackers started
using their own object detections, defined as private detections, using public detections
in some way to meet the challenge requisites. Some works do tracking by filtering the
public detections based on the private ones, initializing a track only if a public detection
is near the private detection, or use the public detections only to start the tracking,
relying afterwards on their private detections. Up to now this is an unsolved problem,
and the multiple object tracking community is still working on how to do a more fair
evaluation between trackers.

In our experiments, we use both trackers in their public detection mode, as MOTChal-
lenge requires the public detections to be used to compare with other state of the art
methods. Both trackers extend their tracking algorithm with private detections from the
public detection setting. CenterTrack initializes the new tracks if the private detection is
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(a) DPM (b) FRCNN

(c) SDP (d) Ground Truth

Figure 4.5: Detection samples on the three different detectors that MOTChallenge pro-
vides as public detections. The MOTChallenge testing set uses the average result from
the tracking method, over the public detections from the three detectors, in order to
compare to the other state of the art techniques.

closer than a threshold to a public detection, while Tracktor initializes a track by regress-
ing a public detection, as the first detection associated to a track, using the ROI-pooling
layer present in Faster-RCNN. Both use non maximum suppression to filter detections.

4.4.1 Metrics

The purpose of the evaluation metrics is to be able to compare the similarity between the
results coming from a method with the ground truth corresponding to the solution. In
the case of multiple object tracking, there are many ways of scoring this similarity, and
the properties of the metric determine how different errors contribute to a final score.

In the MOTChallenge benchmark, the MOTA [105] and IDF1 [106] scores are the pre-
dominant, being MOTA the main metric to rank the trackers. Recently, these metrics
have been extensively reviewed in [107], where a new metric called HOTA is proposed.

MOTA. In MOTA (Multi-object Tracking Accuracy) the matching between ground truth
and predictions is computed at a detection level. This is, every predicted detection
(prDet) in the sequence is associated to a ground truth detection (gtDet) without rep-
etition. The matching detections, given a threshold and an Intersection Over Union
(IOU) value over the bounding boxes, become True Positives (TP). The remaining prDet
that are not matched with a gtDet become False Positives (FP). The gtDet that are not
matched with a prDet become False Negatives (FN).

The association in MOTA is measured using the concept of the Identity Switch (IDSW).
An IDSW occurs when a tracker swaps identities between different objects, or when an
object is wrongly re-identified (the object ID doesn’t correspond to the initially assigned
ID).

The MOTA scoring function takes into account three types of tracking errors: the detec-
tion errors of FNs, FPs, and the association error IDSW. The total score is calculated
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by summing these errors, dividing by the number of ground truth detections gtDets, and
subtracting from one. Therefore, the closer to one, the better.

MOTA = 1− |FN|+ |FP|+ |IDSW|
|gtDet |

(4.17)

IDF1. In IDF1 (IDentification F1 score), the matching between ground truth and predic-
tions is computed on a track level. The mapping between the predicted tracks (prTrack)
and the ground truth tracks (gtTrack) is done by matching overlapping parts of the
tracks, given an overlapping threshold. Identity True Positives (IDTP) are defined as the
matches on the overlapping part between prTrack and gtTrack, Identity False Positives
(IDFP) are the parts of the prTrack that are not matched with any gtTrack, and Iden-
tity False Negatives (IDFN) are the parts of the gtTrack that are not matched with any
prTrack.

The IDF1 scoring function is derived from the Precision, Recall, and F-score concepts.

IDRecall =
|IDTP|

|IDTP|+ |IDFN|
(4.18)

IDPrecision =
|IDTP|

|IDTP|+ |IDFP|
(4.19)

IDF1 = 2 · IDPrecision · IDRecall

IDPrecision + IDRecall
=

|IDTP|
|IDTP|+ 1

2(|IDFN|+ |IDFP|)
(4.20)

The IDF1 metric considers trajectories, and computes the best matching sets between
prTrack and gtTrack, allowing only a single best set of matching tracks to be evaluated.
This means that any track that is not included in this matching set will be counted as an
IDFP, decreasing the score even if it contributes to correct detections and associations.

HOTA. The recently presented HOTA (Higher Order Tracking Accuracy) metric builds
upon MOTA, while addressing many of its deficits. The matching between predictions
and ground truth occurs at a detection level. As in MOTA, a True Positive (TP) consists
on a match between predicted detections (prDet) and ground truth detections (gtDet).
The False Positives (FP) are the remaining prDet that are not matched with a gtDet,
and the False Negatives (FN) are the gtDet that are not matched to any prDet.

The association measurement in HOTA is made upon the newly introduced concepts
of True Positive Associations (TPAs), False Negative Associations (FNAs), and False
Positive Associations (FPAs). For a given TP(c) (i.e. a match between prDet and
gtDet), the set of TPAs is the set of k TPs, following c, that have the same ID as the
initial TP(c) for the predicted ID (prID) and the ground truth ID (gtID) sets.

TPA(c) = {k}, k ∈ {TP|prID(k) = prID(c) ∧ gtID(k) = gtID(c)} (4.21)
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For a given TP(c), the set of FPAs is the set of k prDets with the same prID as c, but
that were assigned either a different gtID at some point over the set k, or no gtID if they
did not actually correspond to an object (FP in detection stage).

FPA(c) = {k},
k ∈ {TP|prID(k) = prID(c) ∧ gtID(k) 6= gtID(c)} ∪ {FP|prID(k) = prID(c)}

(4.22)

For a given TP(c), the set of FNAs is the set of k gtDets with the same gtID as c, but
that were assigned either a different prID at some point over the set k, or no prID if
they were missed (FN in detection stage).

FNA(c) = {k},
k ∈ {TP|prID(k) 6= prID(c) ∧ gtID(k) = gtID(c)} ∪ {FN|gtID(k) = gtID(c)}

(4.23)

The HOTA scoring function combines the previous values (TP, FP, FN, TPA, FPA,
FNA) to form its metric for a particular localisation threshold α (IOU between prDet
and gtDet). The main claim in HOTA is that the metric balances the tracking score,
both in detection and association terms. Also, HOTA can be separated in order to do an
extensive study on the two main factors of the tracking, the detection and the association
part. These two main factors are defined as DetA (Detection Accuracy score) and AssA
(Association Accuracy score).

DetAα =
|TP|

|TP|+ |FN|+ |FP|
(4.24)

AssAα =
1

|TP|
∑

c∈{TP}

A(c) (4.25)

A(c) =
|TPA(c)|

|TPA(c)|+ |FNA(c)|+ |FPA(c)|
(4.26)

HOTAα =

√ ∑
c∈{TP}A(c)

|TP|+ |FN|+ |FP|
=
√

DetAα ·AssAα (4.27)

We conduct experiments using the three metrics: MOTA and IDF1 for being the metrics
currently used in the multiple object tracking community, and HOTA as it gives many
useful insights, and we expect it to become the referent metric for the multiple object
tracking task. In the case of HOTA, we evaluate for α = 0.5.

4.4.2 Experiments

Ablation study. In Table 4.2 and Table 4.3 we present an ablation study on whether the
trackers, CenterTrack and Tracktor, benefit from estimating the trajectory of an object.
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MOTA ↑ IDF1 ↑ HOTA ↑ DetA ↑ AssA ↑ IDSW ↓

CenterTrack 67.4 62.7 63.0 69.3 57.2 1356

Centertrack with motion enhancements

+OFF 67.7 63.8 63.8 69.2 58.8 1077

Trajectory estimation baselines

+Kalman 68.7 64.4 64.0 70.9 57.7 1642
+BM 68.4 65.6 64.9 69.9 60.2 833
+GBS 68.9 ±0.28 65.6 ±0.47 65.1 ±0.51 70.3 ±0.27 60.2 ±1.06 857
+PBS 69.0 ±0.15 66.0 ±0.08 65.3 ±0.19 70.4 ±0.13 60.5 ±0.42 789

Trajectory estimation with occlusion reconstruction

+Kalman+occ 68.8 64.6 64.1 71.2 57.8 1382
+BM+occ 69.1 65.9 65.4 70.6 60.5 732
+GBS+occ 69.5 ±0.22 66.0 ±0.47 65.5 ±0.54 70.9 ±0.24 60.6 ±1.13 751
+PBS+occ 69.6 ±0.13 66.3 ±0.08 65.7 ±0.18 71.0 ±0.14 60.9 ±0.43 706

Table 4.2: Ablation study on CenterTrack + TrajE with the three different exploration
strategies, GBS, PBS, and BM, and CenterTrack + Kalman filter for trajectory estima-
tion. occ stands for occlusion reconstruction after recovering a lost track, and OFF for
offset prediction between two objects in consecutive frames. We evaluate on the Faster
R-CNN public detections of MOT17, with bias = 1, B = 5.

The starting point are two baselines: the trackers without any motion estimation, and the
trackers with their own defined motion estimators (see the baselines in the beginning of
Section 4.3.1 for details). We then swap the motion estimation of the baselines for TrajE,
and study the impact of the three exploration strategies, best mean (BM), Greedy Beam
Search (GBS), and Pure Beam Search (PBS). To see whether the benefits of including
trajectory information into object trackers generalize, we extended the Kalman filter im-
plemented in SORT [70] to do trajectory estimation by keeping generating trajectories for
a track which state is set to lost, while including the new detections assigned to the track
whenever its state is set to active, as a baseline for trajectory inclusion. Furthermore,
we study the impact of doing occlusion reconstruction (assuming an occlusion to be the
interval between the lost state and the recovery of a track), and using camera motion
compensation in the case of Tracktor.

Motion estimation. The first thing to notice is that any motion information that can be
provided is helpful to the trackers. In Table 4.2, by computing the motion of the object
with an offset head for CenterTrack, and Table 4.3, by assuming a constant velocity
(CV) of an object for Tracktor, both trackers improve their performance considerably
in all metrics. For both trackers, our trajectory estimator TrajE and the Kalman filter
extended to trajectories improve the motion estimator baselines. This is due to the fact
that both trackers motion estimators only take into account the previous frame (or two
frames in case of Tracktor), while the trajectory estimators adapt to all the previous seen
trajectory.

Occlusion reconstruction. When doing occlusion reconstruction, i.e. adding the esti-
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MOTA ↑ IDF1 ↑ HOTA ↑ DetA ↑ AssA ↑ IDSW ↓

Tracktor v2 60.6 62.0 60.7 61.6 59.7 913
-ReID 59.7 59.8 59.2 61.6 56.8 1928

Tracktor with motion enhancements

+CV-ReID 60.8 62.4 60.9 61.9 59.9 1026
+CV 61.2 63.9 62 61.9 62.1 557
+CV+CMC 61.7 64.9 62.8 62.1 63.5 269

Trajectory estimation baselines

+Kalman 61.4 65.2 63.1 62.0 64.2 462
+BM 61.6 66.4 63.7 62.1 65.3 399
+GBS 61.4 ±0.11 66.6 ±0.54 63.6 ±0.31 62 ±0.08 65.4 ±0.62 407
+PBS 61.5 ±0.04 66.7 ±0.45 63.7 ±0.29 62.1 ±0.06 65.5 ±0.55 369

Trajectory estimation with camera motion compensation

+Kalman+CMC 61.8 66.2 64.0 62.2 65.8 240
+BM+CMC 61.8 67.4 64.4 62.2 66.6 237
+GBS+CMC 61.8 ±0.05 67.3 ±0.48 64.4 ±0.28 62.2 ±0.07 66.6 ±0.55 231
+PBS+CMC 61.7 ±0.09 67.1 ±0.44 64.2 ±0.25 62.1 ±0.04 66.3 ±0.53 219

Trajectory estimation with occlusion reconstruction

+Kalman+occ 61.2 66.9 64.4 62.8 66.2 506
+BM+occ 62.2 66.8 64.2 62.8 65.7 399
+GBS+occ 61.9 ±0.11 66.9 ±0.54 64.1 ±0.31 62.5 ±0.07 65.7 ±0.63 409
+PBS+occ 62 ±0.09 67 ±0.43 64.2 ±0.29 62.6 ±0.05 65.8 ±0.59 370

Trajectory estimation with camera motion compensation and occlusion reconstruction

+Kalman+occ+CMC 62.3 68.3 65.7 63.4 68.1 303
+BM+occ+CMC 62.4 67.7 64.9 62.9 66.9 246
+GBS+occ+CMC 62.4 ±0.13 67.7 ±0.51 64.9 ±0.31 62.9 ±0.09 67 ±0.59 236
+PBS+occ+CMC 62.3 ±0.13 67.5 ±0.49 64.7 ±0.28 62.8 ±0.08 66.6 ±0.6 223

Table 4.3: Ablation study on Tracktor + TrajE with the three different exploration
strategies, GBS, PBS, and BM, and Tracktor + Kalman filter for trajectory estimation.
occ stands for occlusion reconstruction after recovering a lost track, CV for Constant
Velocity assumption, and CMC for Camera Motion Compensation as used in Tracktor.
We evaluate on the Faster R-CNN public detections of MOT17 with bias = 1, and B = 5.
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mated trajectories while an occlusion occurs, both trackers improve in all metrics, as a
result of reducing much more the false negatives rather than introducing false positives
during the tracking. For a more fine-grained discussion, we refer to the comparison of
Table 4.6 vs Table 4.7 for CenterTrack with or without occlusion reconstruction, and Ta-
ble 4.8 vs Table 4.10 for Tracktor. For all sequences, both Precision (DetPr, AssPr) and
Recall (DetRe, AssRe) for detection (DetA) and association (AssA) metrics are consis-
tently improving the Recall by reducing the amount of false negatives when including the
occluded trajectory to a track, with detriment to the Precision by introducing new false
positives due to erroneous occlusion reconstruction, usually by misconnecting a track
with another. In Figure 4.6 and Figure 4.7, we depict two visual examples considering
the pros and cons of using occlusion reconstruction.

Figure 4.6: Occlusion reconstruction (occ) pros. For a visual comparison, bottom se-
quence uses occlusion reconstruction, while top sequence does not. By adding the oc-
cluded trajectory to the track, the amount of false negatives with respect to the ground
truth is reduced. Considering that there are many occluded elements in a sequence, this
can be key to make the tracker performance improve.

Figure 4.7: Occlusion reconstruction (occ) cons. For a visual comparison, bottom se-
quence uses occlusion reconstruction, while top sequence does not. By misconnecting
two tracks, the occlusion reconstruction becomes a set of false positives.

Camera Motion Compensation. In Table 4.3, we observe a huge boost coming from
the camera motion compensation (CMC), used in Tracktor. Logically, this boost comes
from moving camera videos, where the camera motion estimation helps to better position
the objects in the scene by translating them following the camera movement from t− 1
to t. We can see this effect by comparing Figure 4.16 vs Figure 4.17, with the sequences
with camera movement (MOT17-05, MOT17-10, MOT17-11, MOT17-13). In Figure 4.8,
we show a visual example of how applying CMC can lead to better results in the sequence
with camera movement MOT17-10.
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It is interesting to observe in Figure 4.18 vs Figure 4.19 that, in some scenarios (MOT-05,
MOT-09), when combining occlusion reconstruction (occ) and CMC, there is a decrease
in performance. This is related to the type of CMC being used in Tracktor (Enhanced
Correlation Coefficient maximization [108]), which maximises the correlation between a
template image (in this case, the image in time t− 1), and an incoming image in time t.
During an occlusion, the object trajectory keeps being estimated, and the CMC applied
to the estimated trajectory at every time instant. If the occluding object is big enough
with respect to the image size, it can dominate the CMC at the occluded object position,
displacing the estimated trajectory away from the object being occluded. In Figure 4.9
we depict a visual example on how CMC can mislead the trajectory estimation.

Figure 4.8: Visual example on how the camera motion compensation (CMC) helps in
the matching of objects in consecutive images. Top sequence considers the trajectory
estimation taking into account the CMC, bottom sequence does only take into account
trajectory estimation.

Figure 4.9: Visual example on how the camera motion compensation (CMC) can interfere
with occlusion reconstruction (occ). Top sequence considers trajectory estimation + occ,
bottom sequence considers trajectory estimation + occ + CMC. Red arrow in the bottom
sequence symbolizes the CMC in the depicted place for that specific instant.

Trajectory estimation. Focusing on the trajectory estimation, we see in Table 4.2 and
Table 4.3 that using the trajectory estimation information in a multiple object tracker
can be a key factor for improving its performance. Both trajectory estimators, TrajE
with its exploration configurations and Kalman filter extended to trajectory estimation,
increase at least 2 points in HOTA score for both CenterTrack and Tracktor, around 2.5
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points in IDF1 score, and around 2 and around 0.6 points of MOTA score for CenterTrack
and Tracktor respectively.

Both trackers benefit from the exploration strategies in TrajE (BM, GBS, PBS), with an
increment in performance by using beam search in the GBS and PBS strategies. As GBS
and PBS strategies have a random sampling step that affects the trajectory hypothesis
generation, we did five runs per ablation, ending up with a mean and a variance per
strategy.

With respect to the Kalman filter extended to trajectories, TrajE better adapts even if the
sequence has camera movement (MOT17-10, MOT-13 in Figure 4.14 and Figure 4.15),
while Kalman excels in static camera sequences (MOT-09 in Figure 4.18). We believe this
is due to the fact that the Kalman filter model fits very well to simple human trajectories.
For this, when the CMC is used (in the case of Tracktor) to compensate the camera
movement, the Kalman filter increments considerably its capabilities, as it can focus on
the pedestrian trajectory, rather than having to adapt to the camera motion component.
Also, the Kalman filter model implemented in SORT [70] has its state modeled as a
bounding box, rather than only its centroid as in TrajE, helping the Kalman filter to
become more robust to noisy inputs.

CenterTrack vs Tracktor. It is interesting to compare CenterTrack and Tracktor
using the two separable metrics from HOTA, corresponding to detection (DetA), and
association (AssA). We see in Table 4.2 and Table 4.3 that CenterTrack has a much
higher DetA score than Tracktor for all the blocks in the ablation study, but Tracktor
has its counterpart on the AssA metric. The DetA score corresponds to the detected
objects associated to the ground truth, this is, it measures how well the object detector
associated to the tracker performs. Including TrajE into the trackers makes DetA and
AssA improve, both for providing new detection priors, and for better connecting the
detections among a track. In Figure 4.10 we show a visual example of CenterTrack
detections vs Tracktor detections.

Figure 4.10: Visual example considering the DetA score between trackers. Top corre-
sponds to the active tracks in CenterTrack, bottom corresponds to the active tracks in
Tracktor. The difference lies in how good the object detector from CenterTrack is, with
respect to Tracktor’s one.

On the other hand, Tracktor dominates in the AssA metric, which corresponds to how
long an object kept its identity over a period of time. In this case, the way regression of
the bounding boxes is made in both trackers (CenterTrack looks for the closest centroid
while Tracktor regresses from the previous bounding box), and the fact that Tracktor
uses re-identification features (see how not using re-identification in Table 4.3 affects to
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the AssA score), makes Tracktor dominate in the association. As an example, we show in
Figure 4.11 how Tracktor keeps the identity of a tracked object, how it performs without
re-identification, and how CenterTrack mixes two tracks due to the association being
made using the bounding box centroids.

Figure 4.11: Visual example considering the AssA score between trackers. Top corre-
sponds to the tracking of Tracktor + ReID, middle to Tracktor without ReID, and bot-
tom corresponds to CenterTrack, where two tracks are swapped due to the association
by means of the distance between centroids. Same color correspond to same track.

TrajE parameters. In Figure 4.12 and Figure 4.13 we study the impact of the bias
and beam width (B) values for the different trajectory estimation strategies. We show
the behavior of the two parameters over the different exploration strategies, Best Mean
(BM), Greedy Beam Search (GBS), and Pure Beam Search (PBS), and put them in
comparison with the Kalman filter extended to trajectory estimation, and the trackers
baselines (using their own motion estimators). In the trajectory estimation strategies,
the occlusion reconstruction is used. The columns of the figures represent the beam
width for values B = 1, 3, 5, 10. The y axis represents the score of each metric, and the
x axis represents the different bias values b = 0, 0.1, 0.5, 1, 5, 10. Due to the stochastic
nature of TrajE, for the GBS and PBS exploration strategies we did five runs for every
configuration pair (bias and beam width). We show the maximum and minimum values
that TrajE can achieve per exploration strategy. Note that for B = 1, GBS and PBS
strategies become the same.

It is difficult to jump to conclusions over the amount of beams used to do the beam search
for trajectory hypothesis exploration. It is clear from applying low bias to the trajectory
distribution (bias = 0, bias = 0.1, bias = 0.5) that using beam search with B > 1 helps
to explore more possibilities, leading to better results, but it is not straightforward to
see whether using a beam width B > 3 (for low biased distributions) helps to find better
trajectories. We believe this requires further investigation on the decision over how to
chose between trajectories coming from the beam search, and increasing amount of runs
per experiment.



44 Mixture Density Networks for Trajectory Estimation

It is interesting to see how important is to bias the distribution towards more likely
results. In the limit (bias → ∞), we have the BM strategy, which takes the mean of
the Gaussian with highest weight in the mixture model. We see that the exploration
strategies that use beam search (GBS or PBS), can help the tracker to improve its
performance by exploring beyond the most likely solution, but taking into account the
average performance increase with respect to the BM exploration strategy (+0.1 for GBS
and +0.3 for PBS in CenterTrack + TrajE for HOTA score), and the amount of resources
used by the GBS and PBS strategies, coming at a cost of O(n2) with respect to the beam
width, we believe that it might be not worth to use in real world applications.

Comparison with the state of the art. For the state of the art comparison, we use
the metrics defined by the MOTChallenge, which are mainly MOTA and IDF1. In Table
4.4 we compare the two trackers (CenterTrack and Tracktor) adding TrajE in its PBS
exploration setting with occlusion reconstruction, using bias = 1, B = 5, with respect
to the state of the art of multiple object trackers in the MOTChallenge testing set. By
using TrajE to predict trajectories, their performance in both MOTA and IDF1 scores
is boosted by a considerable margin, and set a new state of the art results in the case
of CenterTrack + TrajE, with an increase of 6.3 points in the MOTA score and 1.8 in
IDF1, and improve the performance of Tracktor + TrajE by 0.3 in MOTA score and 2.9
in IDF1 without using camera motion compensation.

To see if the trajectories learned from pedestrians in TrajE generalize, we tested both
trackers + TrajE trained with MOTChallenge data against the UA-DETRAC dataset.
In Table 4.5 we compare both Tracktor and CenterTrack with or without TrajE in the
PBS exploration configuration and occlusion reconstruction, with respect to other state
of the art results on the UA-DETRAC dataset. In both cases, using TrajE for trajectory
estimation boosts the performance of the tracker, with an increase of 1.1 and 2.2 points
in MOTA, and 2.7 and 1.8 in IDF1 score for CenterTrack and Tracktor respectively.

It is important to state that UA-DETRAC dataset does not have fully annotated frames
(i.e only some of the cars inside the scene are annotated), and some of the non-annotated
cars are inside ”ignore zones”, where the detections should be disregarded. We modified
the MOT evaluation tool to take into account such zones by ignoring the detections whose
bounding box centroid is inside the ”ignore zones”.

4.5 Conclusions

In this part of the document we have presented TrajE, a lightweight trajectory estimator
based on mixture density networks and beam search, and used it in two sate of the art
multiple object trackers, CenterTrack [8] and Tracktor [44]. We have also proposed an
occlusion reconstruction based on the estimated trajectory. We have tested our technique
in the multiple object tracking datasets MOTChallenge [7], which focuses on tracking
pedestrians, and UA-DETRAC [47], which focuses on tracking cars in traffic.

The experiments have showed that using the trajectory information can be a key factor
for the multiple object tracking. To proof the validity of our method, we also extended
the Kalman filter to estimate trajectories, and used it in the aforementioned trackers,
making their performance significantly improve.

By adding TrajE to the trackers in the MOTChallenge testing set, there is an increase
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Figure 4.12: Experiments on biasing the trajectory estimation distribution (bias), and
modifying the beam width (B) over different values (bias = (0, 0.1, 0.5, 1, 5, 10), B =
(1, 3, 5, 10)) for CenterTrack using TrajE with occlusion reconstruction for HOTA, DetA,
AssA, MOTA, and IDF1 metrics. The y-axis correspond to the metric score, the x-
axis to the bias, and the columns correspond to the different B values. Blue and red
solid lines correspond to the average value, given five runs per (bias, B) pair, for GBS
and PBS techniques respectively. The more transparent region limits correspond to the
maximum and minimum metric scores for the five runs. In dashed lines, black stands
for CenterTrack with offset estimation for motion, dark blue for Kalman with occlusion
reconstruction, and orange for BM with occlusion reconstruction.



46 Mixture Density Networks for Trajectory Estimation

0 0.1 0.5 1 5 10

61

62

63

64

65

Bias

H
O
T
A

B = 1

GBS
PBS

Tracktor
Kalman
BM

0 0.1 0.5 1 5 10

61

62

63

64

65

Bias

B = 3

0 0.1 0.5 1 5 10

61

62

63

64

65

Bias

B = 5

0 0.1 0.5 1 5 10

61

62

63

64

65

Bias

B = 10

0 0.1 0.5 1 5 10

61

62

63

Bias

D
et
A

GBS
PBS

Tracktor
Kalman
BM

0 0.1 0.5 1 5 10

61

62

63

Bias
0 0.1 0.5 1 5 10

61

62

63

Bias
0 0.1 0.5 1 5 10

61

62

63

Bias

0 0.1 0.5 1 5 10

60

61

62

63

64

65

66

67

Bias

A
ss
A

GBS
PBS

Tracktor
Kalman
BM

0 0.1 0.5 1 5 10

60

61

62

63

64

65

66

67

Bias
0 0.1 0.5 1 5 10

60

61

62

63

64

65

66

67

Bias
0 0.1 0.5 1 5 10

60

61

62

63

64

65

66

67

Bias

0 0.1 0.5 1 5 10

60

61

62

63

Bias

M
O
T
A

GBS
PBS

Tracktor
Kalman
BM

0 0.1 0.5 1 5 10

60

61

62

63

Bias
0 0.1 0.5 1 5 10

60

61

62

63

Bias
0 0.1 0.5 1 5 10

60

61

62

63

Bias

0 0.1 0.5 1 5 10

63

64

65

66

67

68

Bias

ID
F
1

GBS
PBS

Tracktor
Kalman
BM

0 0.1 0.5 1 5 10

63

64

65

66

67

68

Bias
0 0.1 0.5 1 5 10

63

64

65

66

67

68

Bias
0 0.1 0.5 1 5 10

63

64

65

66

67

68

Bias

Figure 4.13: Experiments on biasing the trajectory estimation distribution (bias), and
modifying the beam width (B) over different values (bias = (0, 0.1, 0.5, 1, 5, 10), B =
(1, 3, 5, 10)) for Tracktor using TrajE with occlusion reconstruction for HOTA, DetA,
AssA, MOTA, and IDF1 metrics. The y-axis correspond to the metric score, the x-axis
to the bias, and the columns correspond to the different B values. Blue and red solid
lines correspond to the average value, given five runs per (bias, B) pair, for GBS and PBS
techniques respectively. The more transparent region limits correspond to the maximum
and minimum metric scores for the five runs. In dashed lines, black stands for Tracktor
with constant velocity and camera motion estimation for motion, dark blue for Kalman
with occlusion reconstruction, and orange for BM with occlusion reconstruction.
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MOT17 [7]

Method MOTA ↑ IDF1 ↑ MT % ↑ ML % ↓ FP ↓ FN ↓

CenterTrack + TrajE 67.8 61.4 36.0 24.5 20982 157468
CenterTrack [8] 61.5 59.6 26.4 31.9 14076 200672
Lif T [60] 60.5 65.6 27.0 33.6 14966 206619
MPNTrack [61] 58.8 61.7 28.8 33.5 17413 213594
Tracktor(v2) + TrajE 56.6 58.2 21.9 35.7 10119 231091
GSM [78] 56.4 57.8 22.2 34.5 14379 230174
Tracktor(v2)[44] 56.3 55.1 21.1 35.3 8866 235449
TT17 [62] 54.9 63.1 24.4 38.1 20236 233295
TPM [63] 54.2 52.6 22.8 37.5 13739 242730
JBNOT [109] 52.6 50.8 19.7 35.8 31572 232659
FAMNet [65] 52.0 48.7 19.1 33.4 14138 253616
ETC [110] 51.9 58.1 23.1 35.5 36164 232783
eHAF[59] 51.8 54.7 23.4 37.9 33212 236772
AFN [111] 51.5 46.9 20.6 35.5 22391 248420
NOTA [54] 51.3 54.7 17.1 35.4 20148 252531
FWT [58] 51.3 47.6 21.4 35.2 24101 247921
jCC [76] 51.2 54.5 20.9 37.0 25937 247822
STRN [75] 50.9 56.0 18.9 33.8 25295 249365

Table 4.4: Comparison integrating TrajE to CenterTrack and Tracktor against the state
of the art methods on the MOTChallenge 17 testing set using public detections. In
bold tracker + our method (TrajE). In red the best result, in blue the second best. In
MOTChallenge, MOTA and IDF1 are the metrics used to evaluate the tracking perfor-
mance, being HOTA not yet integrated to the MOTChallenge evaluation for the testing
set. Table adapted from [7]

UA-DETRAC [47]

Method MOTA ↑ IDF1 ↑ MT % ↑ ML % ↓ FP ↓ FN ↓

CenterTrack + TrajE 72.0 80.8 72.5 7.4 44415 130911
CenterTrack [8] 69.9 78.1 71.5 8.5 46657 141356
Tracktor(v2) + TrajE 69.2 76.1 62.2 9.3 26236 181029
POI [112] 69.2 - 67.4 5.2 - -
WD [113] 68.5 - 70.2 3.1 - -
Tracktor(v2) [44] 67.7 74.3 60.0 9.9 23422 193526
DeepSORT [71] 65.4 - 65.9 4.7 - -
RMOT [114] 62.6 - 42.1 6.5 - -
IHTLS [115] 62.6 - 63.4 3.8 - -

Table 4.5: Comparison integrating TrajE to CenterTrack and Tracktor with state-of-the
art methods on the UA-DETRAC dataset using CompACT [116] public detections. In
bold tracker + our method (TrajE). In red the best result, in blue the second best.
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of 6.3, 0.3 points in the MOTA score, and 1.8, 2.9 in IDF1 respectively for CenterTrack
and Tracktor, and, for the UA-DETRAC testing set, an increase of 0.5, 2.2 points in the
MOTA score, and 0.2, 1.8 in IDF1 respectively for CenterTrack and Tracktor. In the
case of CenterTrack + TrajE, the algorithm became the new state of the art for multiple
object tracking in the MOTChallenge dataset.

Future work will be directly related to improve the trajectory model for better exploiting
existing track information. This can be done by estimating the evolution of the bound-
ing boxes of the tracked objects instead of using a single point (centroid of the bounding
box), improving the backbone model by specifically focusing on previous trajectory in-
formation with self-attention mechanisms by using transformers, making TrajE aware of
other dynamic agents in the scene, or using visual information, in the form of feature
vectors from the tracked objects, to better match existing tracks.

Ethical concerns. Tools are neutral, it is the action that provide the moral implication
to them. We believe that multiple object tracking and trajectory estimation can bring
much good to the society (robotics, automatic broadcasting, person flux optimization,
counter-terrorism...), but wrongly applied can become very scary (population control or
offensive military purposes). As there seems to be no turning back on the development of
these algorithms, we believe that the research communities should shift the interest of the
usage of these methods, starting by changing the datasets used (the reference dataset for
MOT, MOTChallenge, focuses on people surveillance), and building new ones to make
these tools to better serve humanity.

4.6 Experiments annex. Analysis per sequence

In this section we include the figures and tables corresponding to each sequence and
ablation study block for the MOTChallenge training set.
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Sequence HOTA DetA AssA DetPr DetRe AssPr AssRe HOTA TP HOTA FP HOTA FN

CenterTrack + OFF

MOT17-02 39.4 44.7 34.7 97.8 45.2 94.0 35.3 8398 187 10183
MOT17-04 75.9 78.9 73.0 99.7 79.1 96.0 74.3 37626 122 9931
MOT17-05 49.5 59.8 40.9 91.3 63.5 85.7 44.1 4390 420 2527
MOT17-09 58.3 70.3 48.4 99.4 70.6 94.2 50.9 3759 22 1566
MOT17-10 54.2 69.9 42.1 95.1 72.5 88.8 44.8 9310 478 3529
MOT17-11 64.7 71.6 58.5 98.1 72.6 96.5 59.9 6853 136 2583
MOT17-13 61.4 71.7 52.6 93.7 75.3 88.3 55.1 8772 587 2870
OVERALL 63.8 69.2 58.8 97.6 70.4 93.5 60.5 79108 1952 33189

CenterTrack + Kalman

MOT17-02 40.2 45.1 35.9 96.9 45.7 77.3 38.6 8495 273 10086
MOT17-04 78.9 82.5 75.4 99.6 82.7 86.2 81.2 39351 155 8206
MOT17-05 45.7 60.3 34.6 91.1 64.1 62.1 43.9 4433 432 2484
MOT17-09 58.2 70.3 48.1 99.4 70.6 78.4 52.9 3761 22 1564
MOT17-10 48.7 70.0 33.8 95.0 72.7 66.5 39.5 9336 496 3503
MOT17-11 61.2 72.1 52.0 98.0 73.1 80.0 59.9 6899 138 2537
MOT17-13 57.1 71.8 45.4 92.8 76.1 65.4 55.1 8856 685 2786
OVERALL 64.0 70.9 57.7 97.4 72.2 78.5 63.9 81131 2201 31166

CenterTrack + BM

MOT17-02 40.1 45.1 35.7 97.0 45.7 74.3 39.1 8493 264 10088
MOT17-04 78.7 80.0 77.3 99.6 80.3 88.5 82.0 38190 156 9367
MOT17-05 46.2 60.7 35.1 91.1 64.5 52.8 52.2 4458 433 2459
MOT17-09 55.0 70.3 43.0 99.4 70.6 64.5 53.6 3759 22 1566
MOT17-10 54.7 70.1 42.8 94.9 72.8 71.8 49.4 9347 502 3492
MOT17-11 65.2 71.8 59.1 98.0 72.8 81.7 67.1 6873 137 2563
MOT17-13 59.5 72.0 49.3 93.0 76.1 68.6 60.7 8863 672 2779
OVERALL 64.9 69.9 60.2 97.3 71.2 79.2 67.0 79983 2186 32314

CenterTrack + GBS

MOT17-02 42.4 45.1 39.9 97.0 45.7 78.1 43.4 8491 264 10090
MOT17-04 78.0 81.1 75.0 99.6 81.4 87.2 80.7 38707 159 8850
MOT17-05 46.3 60.4 35.5 91.1 64.2 56.6 51.0 4442 433 2475
MOT17-09 54.2 70.4 41.8 99.4 70.7 62.9 54.0 3763 22 1562
MOT17-10 55.1 70.0 43.4 95.0 72.7 73.9 49.9 9338 495 3501
MOT17-11 66.4 71.8 61.4 98.0 72.8 86.3 67.5 6874 137 2562
MOT17-13 61.1 72.0 51.8 93.1 76.1 72.7 60.8 8858 658 2784
OVERALL 65.0 70.3 60.2 97.4 71.7 80.2 67.0 80473 2169 31824

CenterTrack + PBS

MOT17-02 43.6 45.0 42.3 97.0 45.7 79.6 45.3 8487 263 10094
MOT17-04 77.9 81.3 74.6 99.6 81.6 86.6 80.4 38809 161 8748
MOT17-05 48.4 60.5 38.7 91.1 64.3 58.8 52.9 4449 433 2468
MOT17-09 54.7 70.3 42.6 99.4 70.6 64.3 56.5 3759 22 1566
MOT17-10 55.2 70.0 43.6 95.0 72.7 73.5 49.9 9339 495 3500
MOT17-11 65.6 71.8 59.9 98.0 72.9 85.1 66.4 6878 137 2558
MOT17-13 62.1 72.0 53.5 93.0 76.1 73.6 62.4 8865 663 2777
OVERALL 65.3 70.4 60.5 97.4 71.8 80.2 67.4 80586 2174 31711

Table 4.6: Ablation study per sequence for CenterTrack. For GBS and PBS parameters
are set to bias = 1, B = 5, and the results are the mean of five different runs.
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Figure 4.14: CenterTrack + TrajE per sequence.
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Sequence HOTA DetA AssA DetPr DetRe AssPr AssRe HOTA TP HOTA FP HOTA FN

CenterTrack + OFF

MOT17-02 39.4 44.7 34.7 97.8 45.2 94.0 35.3 8398 187 10183
MOT17-04 75.9 78.9 73.0 99.7 79.1 96.0 74.3 37626 122 9931
MOT17-05 49.5 59.8 40.9 91.3 63.5 85.7 44.1 4390 420 2527
MOT17-09 58.3 70.3 48.4 99.4 70.6 94.2 50.9 3759 22 1566
MOT17-10 54.2 69.9 42.1 95.1 72.5 88.8 44.8 9310 478 3529
MOT17-11 64.7 71.6 58.5 98.1 72.6 96.5 59.9 6853 136 2583
MOT17-13 61.4 71.7 52.6 93.7 75.3 88.3 55.1 8772 587 2870
OVERALL 63.8 69.2 58.8 97.6 70.4 93.5 60.5 79108 1952 33189

CenterTrack + Kalman + occ

MOT17-02 41.3 47.1 36.3 93.8 48.6 74.7 40.0 9032 595 9549
MOT17-04 79.4 83.5 75.6 99.4 83.9 85.9 81.6 39898 247 7659
MOT17-05 45.8 58.8 35.6 85.6 65.2 61.5 45.5 4510 757 2407
MOT17-09 58.4 71.5 47.7 98.2 72.5 76.3 53.0 3861 72 1464
MOT17-10 48.5 69.2 33.9 91.4 74.0 65.0 40.1 9504 891 3335
MOT17-11 61.2 72.3 51.9 96.7 74.1 79.1 60.1 6989 237 2447
MOT17-13 56.4 70.1 45.4 87.9 77.5 64.1 56.0 9028 1240 2614
OVERALL 64.1 71.2 57.8 95.3 73.8 77.5 64.4 82822 4039 29475

CenterTrack + BM + occ

MOT17-02 41.3 46.4 36.7 96.3 47.3 73.7 40.4 8782 340 9799
MOT17-04 79.1 80.7 77.6 99.5 81.0 88.5 82.3 38510 182 9047
MOT17-05 46.6 60.8 35.7 89.8 65.3 52.8 53.3 4520 514 2397
MOT17-09 56.1 72.8 43.3 99.1 73.3 63.4 54.6 3901 35 1424
MOT17-10 55.6 70.9 43.6 94.2 74.1 71.4 50.5 9515 587 3324
MOT17-11 65.5 71.9 59.5 97.4 73.3 81.5 67.7 6920 183 2516
MOT17-13 59.7 72.2 49.3 91.9 77.1 68.1 61.2 8980 788 2662
OVERALL 65.4 70.6 60.5 96.9 72.2 78.8 67.5 81128 2629 31169

CenterTrack + GBS + occ

MOT17-02 43.7 46.4 41.2 96.4 47.2 78.0 44.9 8771 331 9810
MOT17-04 78.4 81.7 75.3 99.5 82.0 87.1 81.0 39010 207 8547
MOT17-05 46.8 60.5 36.3 89.6 65.0 56.8 52.4 4498 522 2419
MOT17-09 55.1 71.7 42.4 99.3 72.0 62.7 55.0 3836 26 1489
MOT17-10 55.4 70.5 43.6 94.4 73.6 73.3 50.3 9447 564 3392
MOT17-11 66.9 72.2 61.9 97.9 73.3 86.3 68.2 6919 149 2517
MOT17-13 61.4 72.2 52.2 92.3 76.8 72.3 61.4 8946 750 2696
OVERALL 65.5 70.9 60.6 97.0 72.5 80.0 67.5 81427 2551 30870

CenterTrack + PBS + occ

MOT17-02 44.8 46.2 43.6 96.3 47.0 79.6 46.7 8733 334 9848
MOT17-04 78.3 81.9 74.8 99.5 82.3 86.4 80.7 39124 194 8433
MOT17-05 48.9 60.6 39.4 89.7 65.1 59.0 54.1 4506 518 2411
MOT17-09 55.9 72.1 43.4 99.2 72.5 64.0 57.7 3861 33 1464
MOT17-10 55.4 70.5 43.6 94.4 73.6 73.0 50.2 9444 561 3395
MOT17-11 66.1 72.3 60.4 97.9 73.4 85.1 67.1 6926 147 2510
MOT17-13 62.2 72.2 53.6 92.1 77.0 73.1 63.0 8963 767 2679
OVERALL 65.7 71.0 60.9 97.0 72.6 80.0 67.9 81557 2555 30740

Table 4.7: Ablation study per sequence for CenterTrack + occlusion reconstruction. For
GBS and PBS parameters are set to bias = 1, B = 5, and the results are the mean of
five different runs.
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Figure 4.15: CenterTrack + TrajE + occ per sequence.
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Sequence HOTA DetA AssA DetPr DetRe AssPr AssRe HOTA TP HOTA FP HOTA FN

Tracktor + CV

MOT17-02 41.5 41.1 41.9 99.7 41.1 95.6 42.7 7645 22 10936
MOT17-04 68.7 64.3 73.4 99.8 64.4 96.7 74.3 30631 70 16926
MOT17-05 60.0 56.8 63.3 98.0 57.5 93.7 65.7 3975 80 2942
MOT17-09 51.8 63.0 42.6 99.1 63.3 82.9 53.1 3373 30 1952
MOT17-10 57.2 69.9 46.8 98.0 70.9 87.8 50.6 9104 183 3735
MOT17-11 63.0 68.6 57.8 98.8 69.2 94.8 60.2 6527 82 2909
MOT17-13 69.6 73.1 66.3 99.0 73.7 90.1 71.7 8581 89 3061
OVERALL 62.0 61.9 62.1 99.2 62.2 93.6 64.6 69836 556 42461

Tracktor + Kalman

MOT17-02 42.5 41.2 43.8 99.8 41.3 86.0 46.5 7665 19 10916
MOT17-04 70.0 64.6 76.0 99.8 64.7 96.1 77.3 30760 72 16797
MOT17-05 51.7 57.0 47.0 98.0 57.7 60.2 69.5 3988 80 2929
MOT17-09 58.9 64.0 54.2 99.1 64.4 79.2 64.4 3427 31 1898
MOT17-10 59.0 69.7 50.0 98.0 70.7 78.1 56.3 9071 181 3768
MOT17-11 68.4 68.5 68.4 98.7 69.1 92.4 71.5 6521 83 2915
MOT17-13 68.1 72.7 63.7 98.9 73.3 83.4 72.6 8538 96 3104
OVERALL 63.1 62.0 64.2 99.2 62.3 87.9 69.0 69970 562 42327

Tracktor + BM

MOT17-02 43.2 41.2 45.2 99.8 41.2 89.2 47.5 7663 19 10918
MOT17-04 70.7 64.6 77.4 99.8 64.7 95.0 80.1 30760 72 16797
MOT17-05 59.0 56.9 61.3 98.0 57.5 83.9 69.2 3980 81 2937
MOT17-09 54.7 64.0 46.8 99.1 64.4 78.4 60.4 3427 31 1898
MOT17-10 59.5 70.1 50.5 98.1 71.0 85.4 54.0 9120 178 3719
MOT17-11 65.2 68.5 62.0 98.8 69.1 92.6 65.2 6521 81 2915
MOT17-13 70.1 73.5 66.9 98.9 74.1 87.2 74.2 8624 92 3018
OVERALL 63.7 62.1 65.3 99.2 62.4 90.5 69.5 70095 554 42202

Tracktor + GBS

MOT17-02 43.6 41.2 46.2 99.8 41.2 89.6 48.3 7660 18 10921
MOT17-04 70.3 64.5 76.7 99.8 64.6 96.7 77.9 30709 72 16848
MOT17-05 59.0 56.8 61.3 98.0 57.5 84.8 69.0 3979 82 2938
MOT17-09 54.3 63.6 46.3 99.1 64.0 75.9 59.2 3408 30 1917
MOT17-10 59.6 70.0 50.9 98.0 71.0 84.1 55.3 9113 185 3726
MOT17-11 65.1 68.6 61.9 98.8 69.1 91.1 65.2 6522 78 2914
MOT17-13 70.4 72.8 68.1 98.9 73.4 89.2 74.3 8550 94 3092
OVERALL 63.6 62.0 65.2 99.2 62.3 91.2 68.7 69940 559 42357

Tracktor + PBS

MOT17-02 43.6 41.2 46.2 99.8 41.2 89.9 48.2 7659 18 10922
MOT17-04 70.6 64.4 77.3 99.8 64.5 96.9 78.5 30686 72 16871
MOT17-05 59.3 56.8 61.9 98.0 57.5 85.5 69.2 3976 82 2941
MOT17-09 54.5 63.8 46.6 99.2 64.1 73.7 59.6 3414 29 1911
MOT17-10 59.0 70.0 49.8 98.0 71.0 85.5 54.0 9113 189 3726
MOT17-11 65.0 68.6 61.7 98.8 69.1 90.7 65.2 6524 78 2912
MOT17-13 70.4 72.8 68.1 99.0 73.4 89.6 74.1 8545 90 3097
OVERALL 63.6 62.0 65.4 99.2 62.3 91.4 68.8 69917 558 42380

Table 4.8: Ablation study per sequence for Tracktor and different techniques for trajec-
tory estimation. For GBS and PBS parameters are set to bias = 1, B = 5, and the
results are the mean of five different runs.
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Figure 4.16: Tracktor + TrajE per sequence.
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Sequence HOTA DetA AssA DetPr DetRe AssPr AssRe HOTA TP HOTA FP HOTA FN

Tracktor + CV + CMC

MOT17-02 41.4 41.1 41.8 99.7 41.1 94.5 42.7 7641 22 10940
MOT17-04 68.7 64.3 73.4 99.8 64.4 96.7 74.3 30631 71 16926
MOT17-05 59.9 56.9 63.1 98.0 57.5 92.3 66.4 3979 80 2938
MOT17-09 51.8 63.0 42.6 99.1 63.3 82.9 53.1 3373 30 1952
MOT17-10 62.4 71.2 54.8 98.3 72.0 93.8 57.2 9248 156 3591
MOT17-11 62.7 68.5 57.4 98.8 69.1 93.5 60.1 6520 78 2916
MOT17-13 71.8 73.9 69.8 98.2 74.9 89.7 75.9 8716 160 2926
OVERALL 62.8 62.1 63.5 99.2 62.4 94.0 66.0 70108 597 42189

Tracktor + Kalman + CMC

MOT17-02 42.5 41.2 43.8 99.8 41.3 86.0 46.5 7665 19 10916
MOT17-04 70.0 64.6 76.0 99.8 64.7 96.1 77.3 30760 72 16797
MOT17-05 53.4 56.8 50.2 98.0 57.5 64.1 70.6 3977 80 2940
MOT17-09 59.0 64.0 54.4 99.1 64.4 80.8 64.4 3427 31 1898
MOT17-10 63.2 71.2 56.1 98.3 72.1 81.5 62.6 9254 161 3585
MOT17-11 68.5 68.6 68.4 98.8 69.2 92.4 71.6 6529 79 2907
MOT17-13 71.0 73.3 68.8 98.3 74.2 84.5 78.0 8635 146 3007
OVERALL 64.0 62.2 65.7 99.2 62.6 88.7 70.5 70247 588 42050

Tracktor + BM + CMC

MOT17-02 43.2 41.2 45.2 99.8 41.2 89.2 47.5 7663 19 10918
MOT17-04 70.7 64.6 77.4 99.8 64.7 95.0 80.1 30760 72 16797
MOT17-05 56.8 56.8 56.9 98.1 57.5 81.1 66.4 3974 79 2943
MOT17-09 54.7 64.0 46.8 99.1 64.4 78.4 60.4 3427 31 1898
MOT17-10 64.8 71.2 59.1 98.4 72.0 89.7 62.5 9250 153 3589
MOT17-11 66.3 68.6 64.1 98.8 69.2 93.9 66.6 6528 81 2908
MOT17-13 71.4 73.2 69.7 98.3 74.1 89.4 75.6 8628 146 3014
OVERALL 64.4 62.2 66.6 99.2 62.5 91.3 70.7 70230 581 42067

Tracktor + GBS + CMC

MOT17-02 43.7 41.2 46.4 99.8 41.2 91.0 48.1 7664 18 10917
MOT17-04 70.5 64.3 77.3 99.8 64.4 97.1 78.3 30645 73 16912
MOT17-05 58.9 56.9 61.0 98.0 57.5 83.8 69.6 3980 82 2937
MOT17-09 52.5 63.4 43.5 99.1 63.8 73.5 58.0 3395 32 1930
MOT17-10 63.5 71.3 56.6 98.4 72.1 91.9 59.7 9258 150 3581
MOT17-11 65.3 68.6 62.1 98.8 69.2 90.0 66.3 6531 81 2905
MOT17-13 71.5 72.9 70.0 97.2 74.5 88.7 76.8 8678 254 2964
OVERALL 64.2 62.1 66.3 99.0 62.5 92.1 69.8 70151 691 42146

Tracktor + PBS + CMC

MOT17-02 43.6 41.2 46.1 99.8 41.2 89.9 48.1 7659 18 10922
MOT17-04 70.5 64.5 77.1 99.8 64.6 96.7 78.3 30711 72 16846
MOT17-05 59.1 56.9 61.4 98.1 57.5 84.6 69.6 3978 78 2939
MOT17-09 54.4 63.6 46.5 99.1 64.0 76.5 59.3 3408 30 1917
MOT17-10 64.0 71.2 57.6 98.4 72.1 92.1 60.7 9254 154 3585
MOT17-11 65.2 68.6 62.0 98.8 69.1 91.6 65.4 6524 80 2912
MOT17-13 72.1 73.3 71.1 98.1 74.3 89.9 76.9 8654 172 2988
OVERALL 64.3 62.2 66.6 99.1 62.5 92.4 69.9 70188 603 42109

Table 4.9: Ablation study per sequence for Tracktor + camera motion compensation.
For GBS and PBS parameters are set to bias = 1, B = 5, and the results are the mean
of five different runs.
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Figure 4.17: Tracktor + TrajE + CMC per sequence.
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Sequence HOTA DetA AssA DetPr DetRe AssPr AssRe HOTA TP HOTA FP HOTA FN

Tracktor + CV

MOT17-02 41.5 41.1 41.9 99.7 41.1 95.6 42.7 7645 22 10936
MOT17-04 68.7 64.3 73.4 99.8 64.4 96.7 74.3 30631 70 16926
MOT17-05 60.0 56.8 63.3 98.0 57.5 93.7 65.7 3975 80 2942
MOT17-09 51.8 63.0 42.6 99.1 63.3 82.9 53.1 3373 30 1952
MOT17-10 57.2 69.9 46.8 98.0 70.9 87.8 50.6 9104 183 3735
MOT17-11 63.0 68.6 57.8 98.8 69.2 94.8 60.2 6527 82 2909
MOT17-13 69.6 73.1 66.3 99.0 73.7 90.1 71.7 8581 89 3061
OVERALL 62.0 61.9 62.1 99.2 62.2 93.6 64.6 69836 556 42461

Tracktor + Kalman + occ

MOT17-02 50.4 46.6 54.5 97.0 47.2 86.6 58.6 8775 268 9806
MOT17-04 72.6 65.3 80.7 99.6 65.4 97.4 81.7 31125 117 16432
MOT17-05 56.0 56.1 56.0 87.2 61.1 76.7 68.0 4224 618 2693
MOT17-09 65.0 70.4 60.0 97.4 71.8 80.8 72.8 3823 103 1502
MOT17-10 49.2 66.1 36.6 88.9 72.1 71.9 42.4 9255 1161 3584
MOT17-11 66.2 67.9 64.5 97.0 69.4 90.7 68.8 6547 204 2889
MOT17-13 68.6 70.7 66.5 94.2 73.9 85.7 74.5 8605 529 3037
OVERALL 64.4 62.8 66.2 96.0 64.4 88.8 70.6 72354 3000 39943

Tracktor + BM + occ

MOT17-02 45.3 43.3 47.3 99.5 43.4 89.2 49.8 8068 42 10513
MOT17-04 70.8 64.7 77.5 99.8 64.8 95.0 80.3 30817 75 16740
MOT17-05 60.0 57.9 62.2 95.8 59.4 83.1 70.5 4108 180 2809
MOT17-09 56.0 65.7 47.8 98.9 66.3 77.9 61.6 3528 41 1797
MOT17-10 60.2 70.7 51.3 97.9 71.8 85.5 54.9 9216 194 3623
MOT17-11 65.6 68.9 62.5 98.8 69.4 92.6 65.7 6553 81 2883
MOT17-13 70.3 73.6 67.1 98.4 74.5 86.9 74.5 8676 142 2966
OVERALL 64.2 62.8 65.7 98.9 63.2 90.4 70.0 70966 755 41331

Tracktor + GBS + occ

MOT17-02 46.0 43.3 48.9 99.5 43.4 89.6 51.2 8071 42 10510
MOT17-04 70.4 64.6 76.8 99.8 64.7 96.7 78.0 30768 76 16789
MOT17-05 59.8 57.7 62.0 96.2 59.0 84.0 70.3 4082 163 2835
MOT17-09 54.9 64.9 46.4 98.9 65.4 75.2 59.8 3482 38 1843
MOT17-10 59.5 69.6 50.8 97.0 71.2 83.7 55.5 9139 283 3700
MOT17-11 65.6 68.9 62.4 98.5 69.6 91.1 65.9 6570 100 2866
MOT17-13 70.5 72.9 68.1 98.8 73.6 89.1 74.4 8570 106 3072
OVERALL 64.0 62.5 65.5 98.9 62.9 91.0 69.1 70682 807 41615

Tracktor + PBS + occ

MOT17-02 46.0 43.3 48.8 99.5 43.4 89.9 51.1 8067 41 10514
MOT17-04 70.7 64.5 77.4 99.8 64.6 96.9 78.5 30727 75 16830
MOT17-05 60.4 58.2 62.8 97.1 59.2 84.9 70.6 4094 122 2823
MOT17-09 55.4 65.1 47.3 99.1 65.4 73.4 60.5 3485 31 1840
MOT17-10 59.0 69.8 49.8 97.4 71.2 85.2 54.1 9138 247 3701
MOT17-11 65.4 68.8 62.1 98.3 69.6 90.5 65.7 6566 112 2870
MOT17-13 70.5 72.9 68.2 98.7 73.6 89.4 74.1 8567 114 3075
OVERALL 64.1 62.5 65.7 99.0 62.9 91.2 69.2 70643 741 41654

Table 4.10: Ablation study per sequence for Tracktor + occlusion reconstruction. For
GBS and PBS parameters are set to bias = 1, B = 5, and the results are the mean of
five different runs.
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Figure 4.18: Tracktor + TrajE + occ per sequence.
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Sequence HOTA DetA AssA DetPr DetRe AssPr AssRe HOTA TP HOTA FP HOTA FN

Tracktor + CV + CMC

MOT17-02 41.4 41.1 41.8 99.7 41.1 94.5 42.7 7641 22 10940
MOT17-04 68.7 64.3 73.4 99.8 64.4 96.7 74.3 30631 71 16926
MOT17-05 59.9 56.9 63.1 98.0 57.5 92.3 66.4 3979 80 2938
MOT17-09 51.8 63.0 42.6 99.1 63.3 82.9 53.1 3373 30 1952
MOT17-10 62.4 71.2 54.8 98.3 72.0 93.8 57.2 9248 156 3591
MOT17-11 62.7 68.5 57.4 98.8 69.1 93.5 60.1 6520 78 2916
MOT17-13 71.8 73.9 69.8 98.2 74.9 89.7 75.9 8716 160 2926
OVERALL 62.8 62.1 63.5 99.2 62.4 94.0 66.0 70108 597 42189

Tracktor + Kalman + occ + CMC

MOT17-02 49.7 47.0 52.5 97.2 47.7 82.2 56.9 8858 256 9723
MOT17-04 72.9 65.4 81.2 99.7 65.5 97.8 82.1 31151 93 16406
MOT17-05 54.5 56.3 52.7 87.0 61.5 71.1 69.3 4253 638 2664
MOT17-09 60.8 69.3 53.3 97.8 70.3 78.9 66.9 3746 83 1579
MOT17-10 62.4 69.9 55.7 95.2 72.5 87.0 59.2 9310 473 3529
MOT17-11 65.6 68.3 63.0 96.9 69.8 91.3 66.8 6590 211 2846
MOT17-13 69.8 71.5 68.2 95.8 73.7 89.4 73.9 8585 372 3057
OVERALL 65.7 63.4 68.1 97.2 64.6 90.4 72.2 72493 2126 39804

Tracktor + BM + occ + CMC

MOT17-02 45.7 43.6 47.9 99.5 43.7 89.2 50.4 8115 42 10466
MOT17-04 70.8 64.7 77.5 99.8 64.8 95.0 80.3 30817 75 16740
MOT17-05 57.3 57.4 57.2 95.1 59.2 79.5 67.9 4095 211 2822
MOT17-09 56.0 65.6 47.8 98.8 66.1 77.9 61.7 3520 41 1805
MOT17-10 65.2 71.7 59.2 98.2 72.7 89.4 62.7 9330 167 3509
MOT17-11 66.7 69.2 64.3 98.6 69.8 93.4 67.0 6591 94 2845
MOT17-13 71.4 73.3 69.5 97.7 74.6 88.7 75.6 8684 203 2958
OVERALL 64.9 62.9 66.9 98.8 63.4 90.9 71.2 71152 833 41145

Tracktor + GBS + occ + CMC

MOT17-02 46.1 43.4 49.0 99.4 43.5 89.6 51.3 8077 46 10504
MOT17-04 70.3 64.6 76.6 99.8 64.7 96.5 77.9 30749 76 16808
MOT17-05 60.2 58.4 62.0 96.8 59.5 84.0 70.9 4118 137 2799
MOT17-09 54.3 64.8 45.5 98.9 65.2 73.0 59.7 3474 38 1851
MOT17-10 63.5 71.6 56.3 97.5 73.0 89.7 60.3 9370 244 3469
MOT17-11 66.4 69.3 63.6 98.6 70.0 91.9 67.0 6604 95 2832
MOT17-13 72.1 73.9 70.4 97.8 75.1 88.7 77.5 8746 195 2896
OVERALL 64.6 62.9 66.4 98.8 63.3 91.6 70.2 71137 830 41160

Tracktor + PBS + occ + CMC

MOT17-02 46.0 43.3 48.8 99.5 43.4 89.9 51.0 8069 45 10512
MOT17-04 70.6 64.6 77.2 99.8 64.7 96.7 78.5 30766 75 16791
MOT17-05 58.8 57.7 59.9 96.5 58.9 83.4 68.3 4074 150 2843
MOT17-09 55.7 65.5 47.4 99.0 65.9 76.0 60.7 3511 35 1814
MOT17-10 64.0 71.4 57.5 98.1 72.4 90.7 61.0 9294 182 3545
MOT17-11 65.5 68.9 62.3 98.5 69.6 91.2 65.7 6569 101 2867
MOT17-13 72.1 73.3 70.9 97.8 74.6 91.0 75.7 8679 194 2963
OVERALL 64.7 62.8 66.8 98.9 63.2 92.1 70.1 70963 781 41334

Table 4.11: Ablation study per sequence for Tracktor + occlusion reconstruction + cam-
era motion compensation. For GBS and PBS parameters are set to bias = 1, B = 5, and
the results are the mean of five different runs.
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5

Conclusions

Less than ten years ago, the machine learning community foresaw the revolution that
was going to come. AlexNet [1], applied to image classification, was the starting shot of a
series of fields evolving at a vertiginous pace. With strong fundamentals built during the
past eighty years, deep learning has become the leading technology to use in academia,
and it is becoming the core of many industrial applications. This thesis is an example on
how both worlds can benefit from each other, and, among other conclusions, in this final
chapter we emphasize practices from where the academia could benefit from the industry
and vice-versa.

From the industrial point of view, deep learning has become a double edged sword.
On the one hand, it allows to tackle challenges that were unsolvable just a few years
ago due to its potential, and the improvements being done to standardize the working
pipeline. On the other hand, many new competitors are appearing and, if the company
does not keep up with the fast pace of the current developments, it may lead to loss of
competitiveness and, in last instance, the disappearance of the firm. Also, a difficulty
to incorporate deep learning techniques into the production pipeline lies in the feeling
of lack of control, despite the final results, in comparison with other ”more classical”
methods.

This thesis has been developed in the AutomaticTV context, where we focused on tackling
the object detection challenge and its surrounding pipeline. To carry on this project, we
relied on many knowledge developed by the academia, from deep learning architectures
to the dataset generation, and kept integrating state of the art techniques to the final
product. As a result, the generated object detection models are being currently used
by many customers around the world, and became a key component for the automatic
sports production.

On the other hand, for developing the second part of this thesis, devoted to the multiple
object tracking from a pure academic perspective, we used many resources and learned
practices from the industry. We introduced trajectory estimation as a key element for
tracking. We built TrajE, a lightweight trajectory estimator based on mixture density
networks, and integrated it to two state of the art multiple object trackers, CenterTrack
[8] and Tracktor [44]. Together with a beam search technique to explore multiple tra-
jectory hypotheses, and reconstructing occlusions based on the estimated trajectories,
both trackers performance is boosted by a considerable margin. In the case of Center-
Track + TrajE, we set a new state of the art on both widely used MOTChallenge [7] and
UA-DETRAC [47] datasets.

To keep on with this symbiosis, it is mandatory for industry to support academia, as it
is the present and future of many yet unthought ideas, and for the academia to support
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industry, as it paves the road for the ideas to become reality.

During this thesis, we saw many practices that are not shared between these two worlds,
and we believe they could help both grow stronger. For us, the academic world would
benefit from the knowledge of industry on improving the standardization of the published
solutions (especially code and datasets), methodologies for optimizing the time spent
implementing an idea, and more teamwork developing the same idea, which we feel is
usually discouraged for, what we call, ”first author syndrome”, where usually the first
author gets all the credit. On the other side, we think industry would benefit from a
more open community, as many secrets are not shared due to fear of giving away any
competitive advantage, and more active engagement with the sate of the art, to be able
to prepare for next advances.

To conclude, throughout this thesis we observed how artificial intelligence is currently
shaping the future for next generations. We expect the trend to continue, due to the wide
range of applications, and the amount of people working on making the whole pipeline,
from annotating to deployment, accessible to anyone. Considering the extremely large,
and uncontrollable, amount of possibilities using these emergent technologies, it will take
a global effort to stick to an ethical code to make them focus on the wellness and freedom
of society. Let us hope for the best.
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[86] Leal-Taixé, L, Fenzi, M, Kuznetsova, A, Rosenhahn, B, & Savarese, S. (2014) Learning an
image-based motion context for multiple people tracking. pp. 3542–3549. 22, 23

[87] Pellegrini, S, Ess, A, & Van Gool, L. (2010) Improving data association by joint modeling
of pedestrian trajectories and groupings. (Springer), pp. 452–465. 22, 23

[88] Alahi, A, Goel, K, Ramanathan, V, Robicquet, A, Fei-Fei, L, & Savarese, S. (2016) Social
lstm: Human trajectory prediction in crowded spaces. pp. 961–971. 22, 23

[89] Gupta, A, Johnson, J, Fei-Fei, L, Savarese, S, & Alahi, A. (2018) Social gan: Socially
acceptable trajectories with generative adversarial networks. pp. 2255–2264. 22, 23
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